

Test-Driven iOS Development
with Swift 4
Third Edition

Write Swift code that is maintainable, flexible, and easily
extensible

Dr. Dominik Hauser

BIRMINGHAM - MUMBAI

Test-Driven iOS Development with Swift 4

Third Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Second edition: October 2016

Third edition: October 2017

Production reference: 1271017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78847-570-9

www.packtpub.com

http://www.packtpub.com

Credits

Author
Dr. Dominik Hauser

Copy Editors
Charlotte Carneiro
Safis Editing

Reviewer
S Ravi Shankar

Project Coordinator
Sheejal Shah

Commissioning Editor
Kunal Chaudhari

Proofreader
Safis Editing

Acquisition Editor
Reshma Raman

Indexer
Francy Puthiry

Content Development Editor
Jason Pereira

Production Coordinator
Shraddha Falebhai

Technical Editor
Prajakta Mhatre

About the Author
Dr. Dominik Hauser completed his PhD in physics from the University of Heidelberg.
While working as a university professor, he started iOS development in his spare time. His
first app on physics has been an astounding success worldwide. Since then, he has turned
himself into a full-time iOS developer, with a number of successful apps to his name. He
has been a Swift developer since day one and runs a blog on iOS development.

About the Reviewer
S Ravi Shankar is a multi-skilled software consultant with over 17+ years of experience in
IT industry. He has a good all-around ability to work in different technologies and
extensive experience in product development, system maintenance, and support. He is a
polyglot and a self-taught programmer with hands-on experience in Swift, Objective-C, and
Java.

It was a pleasure to work with Sheejal, project coordinator at Packt, and thanks to Packt for
giving me this opportunity.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788475704.

If you'd like to join our team of regular reviewers, you can e-mail us
at customerreviews@packtpub.com. We award our regular reviewers with free eBooks
and videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788475704

Table of Contents
Preface 1

Chapter 1: Your First Unit Tests 6

Building your first automatic unit test 7
What are unit tests? 8
Implementing a unit test example 8
Important built-in assert functions 13

Understanding TDD 16
The TDD workflow - red, green, and refactor 18

Red 18
Green 18
Refactor 18

TDD in Xcode 19
An example of TDD 20

Red - example 1 20
Green - example 1 22
Refactor - example 1 22
Red - example 2 23
Green - example 2 23
Refactor - example 2 24
A recap 25

Finding information about tests in Xcode 26
Test Navigator 26
Tests overview 27
Running tests 29

Running one specific test 29
Running all tests in a test case 30
Running a group of tests 30

The setUp() and tearDown() methods 31
Debugging tests 32
Breakpoint that breaks on test failure 33
The test again feature 35

The advantages of TDD 35
The disadvantages of TDD 36
What to test 37
Summary 37

Chapter 2: Planning and Structuring Your Test-Driven iOS App 38

The task list view 39

[ii]

The task detail view 41
The task input view 42
The structure of the app 43

The table view controller, the delegate, and the data source 44
Table view cells 44
The model 44
Other view controllers 45
The development strategy 45

Getting started with Xcode 45
Setting up useful Xcode behaviors for testing 47

Useful build behaviors 47
Testing behaviors 49

Summary 50

Chapter 3: A Test-Driven Data Model 51

Implementing the ToDoItem struct 52
Adding a title property 52
Adding an itemDescription property 54
Removing a hidden source of bugs 55
Adding a timestamp property 57
Adding a location property 58

Implementing the Location struct 59
Adding a coordinate property 59

Implementing the ItemManager class 62
Count 62
Adding and checking items 64
Equatable 70
Removing all items 81
Ensuring uniqueness 83

Summary 83

Chapter 4: A Test-Driven View Controller 84

Implementing ItemListViewController 85
Implementing ItemListDataProvider 95

Conducting the first tests 95
Fake objects 101
Using mocks 102
Checking and unchecking items 113
Implementing ItemCell 115

Implementing DetailViewController 122

[iii]

Implementing InputViewController 128
Summary 134

Chapter 5: Testing Network Code 135

Implementing tests using a web service 136
Implementing a login request 139
Handling errors 150
Summary 154

Chapter 6: Putting It All Together 155

Connecting parts 156
The initial view controller 156
Showing the input view 157
Showing the detail view 166

Serialization and deserialization 170
Functional tests 178

Adding a UI test target 178
Recording and testing 179

Summary 185

Chapter 7: Code Coverage 187

Enabling code coverage 187
Code coverage in Xcode 188
How much code coverage is enough? 191

Automatic deployment with fastlane 192
Installing fastlane 192
Setting up 192

Summary 193

Chapter 8: Where to Go from Here 195

What you have learned so far 195
Integration tests 196
UI tests 196
Behavior-Driven Development 197
TDD in existing projects 198
Generating mocks with Sourcery 199
More information about TDD 200
Summary 201

Index 202

Preface
iOS projects have become bigger and more complex. Many projects have already surpassed
desktop applications in their complexity. One important strategy to manage this complexity
is through the use of unit tests. By writing tests, a developer can point out the intention of
the code and provide a safety net against the introduction of bugs.

By writing tests first (test-driven development), the developer focuses on the problem. This
way, they are forced to think about the domain and rephrase a feature request using their
own understanding by writing the test. In addition to this, applications are written using
TDD only containing code that is necessary to solve the problem.

As a result, the code is clearer, and the developer gains more confidence that the code
actually works.

In this book, you will develop an entire iOS app using TDD. You will experience different
strategies for writing tests for models, view controller, and networking code.

What this book covers
Chapter 1, Your First Unit Tests, walks you through your first unit tests using Xcode and
discusses the benefits of using TDD.

Chapter 2, Planning and Structuring Your Test-Driven iOS App, introduces the app you are
going to write through the course of this book and how to set up a project in Xcode.

Chapter 3, A Test-Driven Data Model, discusses the TDD of a data model.

Chapter 4, A Test-Driven View Controller, shows you how to write tests for a view controller,
and describes how to use fake objects to isolate micro features for the test.

Chapter 5, Testing Network Code, teaches you to test network code using stubs to fake a
server component before it is developed.

Chapter 6, Putting It All Together, walks you through the integration of all the different
parts developed in previous chapters and shows the use of functional tests.

Chapter 7, Code Coverage, shows you how to measure the code coverage of your tests using
Xcode.

Preface

[2]

Chapter 8, Where to Go from Here, wraps up and shows you the possible next steps to
improve your acquired testing skills.

What you need for this book
The following hardware and software is needed to follow the code examples in
the book:

Mac with Sierra or above (macOS 10.12)
Xcode 9

Who this book is for
If debugging iOS apps is a nerve-racking task for you and you are looking for a fix, this
book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To be
able to write tests for your code, you need to import the module with the @testable
keyword."

A block of code is set as follows:

func makeHeadline(string: String) -> String {
 return "This Is A Test Headline"
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

override func setUp() {
 super.setUp()
 viewController = ViewController()
}

Preface

[3]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "To edit the build scheme,
click on scheme on the toolbar in Xcode, and then click on Edit Scheme…."

Tips and important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

Select the book for which you're looking to download the code files5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Test-Driven-iOS-Development-with-Swift-4-Thi

rd-Edition. We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
https://www.packtpub.com/sites/default/files/downloads/TestDriveniOSDevelopment

withSwift4ThirdEdition_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

https://github.com/PacktPublishing/Test-Driven-iOS-Development-with-Swift-4-Third-Edition
https://github.com/PacktPublishing/Test-Driven-iOS-Development-with-Swift-4-Third-Edition
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/TestDriveniOSDevelopmentwithSwift4ThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TestDriveniOSDevelopmentwithSwift4ThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TestDriveniOSDevelopmentwithSwift4ThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TestDriveniOSDevelopmentwithSwift4ThirdEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Preface

[5]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Your First Unit Tests

When the iPhone platform was first introduced, applications were small and focused only
on one feature. It was easy to make money with an app that only did just one thing (for
example, a flashlight app that only showed a white screen). The code for these apps only
had a few hundred lines and could easily be tested by tapping the screen for a few minutes.

Since then, the App Store has changed a lot. Even now, there are small apps with a clear
focus in the App Store, but it's much harder to make money from them. A common app is
complicated and feature-rich, but still needs to be easy to use. There are companies with
several developers per platform working on one app all the time. These apps sometimes
have a feature set that is normally found in desktop applications. It is very difficult and
time consuming to test all the features on such apps by hand.

One reason for this is that manual testing needs to be done through a user interface, and it
takes time to load the app to be tested. In addition to this, human beings are very slow
compared to the capabilities of computers. Most of the time, a computer waits for the user's
next input. If we could let a computer insert values, testing could be drastically accelerated.
Additionally, the computer could test the features of the app without loading the user
interface; thus, the complete app could be tested within seconds. This is exactly what unit
tests are all about.

Writing unit tests is hard at first because it is a new concept. This chapter is aimed at
helping you to get started with unit tests and how they are used in Xcode. We will also
discuss Test-Driven Development (TDD), in which the tests are written before the
implementation code. We will see how TDD is done in Xcode, and we will discuss its
advantages and disadvantages.

Your First Unit Tests

[7]

We will cover the following topics in this chapter:

Building your first automatic unit test
Understanding TDD
TDD in Xcode
The advantages of TDD
The disadvantages of TDD

Building your first automatic unit test
If you have done some iOS development (or application development in general) already,
the following example might seem familiar to you.

You are planning to build an app. You start collecting features, drawing some sketches, or
your project manager hands the requirements to you. At some point, you start coding. After
you have set up the project, you start implementing the required features of the app.

Let's say an app is an input form, and the values the user puts in have to be validated before
the data can be sent to the server. The validation checks, for example, whether the email
address looks like it's supposed to and the phone number has a valid format. You
implement the form and check whether everything works. But before you can test, you
need to write code that presents the form on the screen. Then, you build and run your app
in the iOS simulator. The form is somewhere deep in the view hierarchy. So, you navigate
to this view and put the values into the form. It doesn't work. Next, you go back to the code
and try to fix the problem. Sometimes, this also means that you need to run the debugger,
and build and run to check whether the code still has errors.

Eventually, the validation works for the test data you put in. Normally, you would need to
test for all possible values to make sure that the validation not only works for your name
and your data, but also for all valid data. But there is this long list of requirements on your
desk, and you are already running late. The navigation to the form takes three taps in the
simulator, and putting in all the different values just takes too long. You are a coder after
all.

If only a robot could perform this testing for you.

Your First Unit Tests

[8]

What are unit tests?
Automatic unit tests act like this robot for you. They execute code, but without the need of
navigating to the screen with the feature to test. Instead of running the app over and over
again, you write tests with different input data and let the computer test your code in the
blink of an eye. Let's see how this works in a simple example.

Implementing a unit test example
Open Xcode and go to File | New | Project. Navigate to iOS | Application | Single View
App, and click on Next. Put in the name FirstDemo, select the language Swift, and check
Include Unit Tests. Uncheck Use Core Data and Include UI Tests, and click on Next. The
following screenshot shows the options in Xcode:

Your First Unit Tests

[9]

Xcode sets up a project ready for development in addition to a test target for your unit tests.
Open the FirstDemoTests folder in the Project Navigator. Within the folder, there are two
files: FirstDemoTests.swift and Info.plist. Select FirstDemoTests.swift to open
it in the editor.

What you see here is a test case. A test case is a class comprising several tests. In the
beginning, it's good practice to have a test case for each class in the main target.

Let's go through this file step by step:

import XCTest
@testable import FirstDemo

Every test case needs to import the XCTest framework. It defines the XCTestCase class and
the test assertions that you will see later in this chapter.

The second line imports the module FirstDemo. All the code you write for the app will be
in this module. By default, classes, structs, enums, and their methods are defined as
internal. This means that they can be accessed within the module. But the test code lives
outside of the module. To be able to write tests for your code, you need to import the
module with the @testable keyword. This keyword makes the internal elements of the
module accessible to the test case.

Next, we'll take a look at the class declaration:

class FirstDemoTests: XCTestCase {

Nothing special here. This defines the FirstDemoTests class as a subclass of XCTestCase.

The first two methods in the class are as follows:

 override func setUp() {
 super.setUp()
 // Put setup code here. This method is called ...
 }

 override func tearDown() {
 // Put teardown code here. This method is called ...
 super.tearDown()
 }

The setUp() method is called before the invocation of each test method in the class. Here,
you can insert the code that should run before each test. You will see an example of this
later in this chapter.

Your First Unit Tests

[10]

The opposite of setUp() is tearDown(). This method is called after the invocation of each
test method in the class. If you need to clean up after your tests, put the necessary code in
this method.

There are two test methods in the template provided by Apple:

 func testExample() {
 // This is an example of a functional test case.
 // Use XCTAssert and related functions to verify your ...
 }

 func testPerformanceExample() {
 // This is an example of a performance test case.
 self.measure {
 // Put the code you want to measure the time of here.
 }
 }
}

The first method is a normal test. You will use this kind of test a lot in the course of this
book.

The second method is a performance test. It is used to test methods or functions that
perform time-critical computations. The code you put into the measure closure is called 10
times, and the average duration is measured. Performance tests can be useful when
implementing or improving complex algorithms and to make sure that their performance
does not decline. We will not use performance tests in this book.

All the test methods that you write have to have the test prefix; otherwise, the test runner
can't find and run them. This behavior allows easy disabling of tests--just remove the test
prefix of the method name. Later, you will take a look at other possibilities to disable some
tests without renaming or removing them.

Now, let's implement our first test. Let's assume that you have a method that counts the
vowels of a string. A possible implementation looks like this:

func numberOfVowels(in string: String) -> Int {
 let vowels: [Character] = ["a", "e", "i", "o", "u",
 "A", "E", "I", "O", "U"]

 var numberOfVowels = 0
 for character in string {
 if vowels.contains(character) {
 numberOfVowels += 1
 }
 }

Your First Unit Tests

[11]

 return numberOfVowels
}

Add this method to the ViewController class in ViewController.swift.

This method does the following things:

First, an array of characters is defined containing all the vowels in the English1.
alphabet.

Without the [Character] type declaration right after the name of the
constant, this would be created as an array of strings, but we need an array
of characters here.

Next, we define a variable to store the number of vowels. The counting is done by2.
looping over the characters of the string. If the current character is contained in
the vowels array, numberOfVowels is increased by one.
Finally, numberOfVowels is returned.3.

Open FirstDemoTests.swift methods (the methods with the test prefix). Add the
following method to it:

func test_NumberOfVowels_WhenPassedDominik_ReturnsThree() {
 let viewController = ViewController()

 let string = "Dominik"

 let numberOfVowels = viewController.numberOfVowels(in: string)

 XCTAssertEqual(numberOfVowels, 3,
 "should find 3 vowels in Dominik")
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http:/ /www. packtpub. com. If you have
purchased this book from elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Your First Unit Tests

[12]

This test creates an instance of ViewController and assigns it to the viewController
constant. It defines a string to use in the test. Then, it calls the function that we want to test
and assigns the result to a constant. Finally, the test method calls the XCTAssertEqual(_,
_) function to check whether the result is what we expected.

To run the tests, go to Product | Test, or use the command + U shortcut. Xcode compiles the
project and runs the test. You will see something similar to what is shown in this
screenshot:

The green diamond with a checkmark on the left-hand side of the editor indicates that the
test passed. So, this is it. This is your first unit test. Step back for a moment and celebrate.
This could be the beginning of a new development paradigm for you.

Now that we have a test that proves that the method does what we intended, we are going
to improve the implementation. The method looks like it has been translated from
Objective-C. But this is Swift. We can do better. Open ViewController.swift, and
replace the numberOfVowels(in:) method with this swifter implementation:

func numberOfVowels(in string: String) -> Int {
 let vowels: [Character] = ["a", "e", "i", "o", "u",
 "A", "E", "I", "O", "U"]

 return string.characters.reduce(0) {
 $0 + (vowels.contains($1) ? 1 : 0)
 }
}

Here, we make use of the reduce function, which is defined in the array type. Run the tests
again (command + U), to make sure that this implementation works the same as the one
earlier.

Your First Unit Tests

[13]

Before we move on, let's recap what we have seen so far. First, you learned that you could
easily write code that tests your code. Secondly, you saw that a test helped improve the
code because now you don't have to worry about breaking the feature when changing the
implementation.

To check whether the result of the method is as we expected, we used XCTAssertEqual(_,
_). This is one of many XCTAssert functions that are defined in the XCTest framework.
The next section shows the most important ones.

Important built-in assert functions
Each test needs to assert some expected behavior. The use of the XCTAssert functions tells
Xcode what is expected.

A test method without a XCTAssert function will always pass as long as it
compiles.

The most important assert functions are:

XCTAssertTrue(_:_:file:line:): This asserts that an expression is true
XCTAssertFalse(_:_:file:line:): This asserts that an expression is false
XCTAssertEqual(_:_:_:file:line:): This asserts that two expressions are
equal
XCTAssertEqualWithAccuracy(_:_:accuracy:_:file:line:): This asserts
that two expressions are the same, taking into account the accuracy defined in the
accuracy parameter
XCTAssertNotEqual(_:_:_:file:line:): This asserts that two expressions
are not equal
XCTAssertNil(_:_:file:line:): This asserts that an expression is a nil
XCTAssertNotNil(_:_:file:line:): This asserts that an expression is not nil
XCTFail(_:file:line:): This always fails

Your First Unit Tests

[14]

To take a look at the full list of the available XCTAssert functions, press
Ctrl, and click on the XCTAssertEqual word in the test that you have just
written. Then, select Jump to Definition in the pop-up menu.

Note that all the XCTAssert functions could be written using
XCTAssertTrue(_:_:file:line:). For example, these two lines of code are equivalent to
each other:

// This assertion is equivalent to...
XCTAssertEqual(2, 1+1, "2 should be the same as 1+1")

// ...this assertion
XCTAssertTrue(2 == 1+1, "2 should be the same as 1+1")

But you should use the more precise assertions whenever possible. The reason is, the log
output of the more precise assertion methods tells you exactly what happened in case of a
failure. For example, look at the log output of the following two assertions:

XCTAssertEqual(2, 1, "foo")
// Output:
// XCTAssertEqual failed: ("2") is not equal to ("1") - foo

XCTAssertTrue(2 == 1, "bar")
// Output:
// XCTAssertTrue failed - bar

In the first case, you don't need to look at the test to understand what happened. The log
tells you exactly what went wrong.

In all the XCTAssert functions, the last three parameters are optional. To take a look at an
example for the use of all the parameters, let's check out what a failing test looks like in
Xcode. Open FirstDemoTests.swift, and change the expected number of vowels from 3
to 4:

XCTAssertEqual(numberOfVowels, 4,
 "should find 4 vowels in Dominik")

Your First Unit Tests

[15]

Now, run the tests. The test fails. You will see something like this:

Xcode tells you that something went wrong with this test. Next, to the test function in the
preceding screenshot, there is a red diamond with an x on line number 24. The same symbol
is in the line that actually failed. On the right is the explanation of what actually went
wrong, followed by the string you provided in the XCTAssertEqual function. In this case,
the first parameter, numberOfVowels, is 3; and the second parameter is 4. As 3 is not equal
to 4, the test fails.

As mentioned earlier, XCTAssertEqual(...) has two more parameters--file and line.
These parameters allow you to alter what is printed in the debug console in case of a test
failure. Navigate to View | Debug Area | Activate Console and open the debug console. If
the debug area is split in half, click on the second right-most button in the bottom-right
corner to hide the variables' view:

Your First Unit Tests

[16]

We have only one test at the moment, and the debug output is already kind of messy. Later
in this chapter, we will learn that there is a better UI for the same information in Xcode.

There is one line in the output that shows the failing test:

/Users/dom/Documents/TDD_book/edition_03/code/FirstDemo/FirstDemoTests/Firs
tDemoTests.swift:31: error: -[FirstDemoTests.FirstDemoTests
test_NumberOfVowels_WhenPassedDominik_ReturnsThree] : XCTAssertEqual
failed: ("3") is not equal to ("4") - should find 4 vowels in Dominik

The output starts with the file and line where the failing tests are located. With the file
and line parameter of the XCTAssert functions, we can alter what is printed there. Go
back to the test method, and replace the assertion with this:

XCTAssertEqual(numberOfVowels, 4,
 "should find 4 vowels in Dominik",
 file: "FirstDemoTests.swift", line: 24)

The test method starts at line number 24.

With this change, the output is as follows:

FirstDemoTests.swift:24: error: -[FirstDemoTests.FirstDemoTests
test_NumberOfVowels_WhenPassedDominik_ReturnsThree] : XCTAssertEqual
failed: ("3") is not equal to ("4") - should find 4 vowels in Dominik

The debug output of the test now shows the filename and line number that we specified in
the assertion function. This doesn't sound like a useful feature, but later in the book, you
will see an example where this really shines.

As I mentioned earlier, in all the XCTAssert functions, the last three
parameters are optional. In cases where you don't need the message
because the used assertion function makes clear what the failure is, you
can omit it.

Before we move on with the introduction to TDD, change the test so that it passes again.

Understanding TDD
Now that we have seen what unit tests are and how they can help in development, we are
going to learn about TDD.

Your First Unit Tests

[17]

In 1996, Kent Beck introduced a new software development methodology called Extreme
Programming. The word Extreme indicates that the concepts behind Extreme Programming
are totally different from the concepts used in software development back then. For many
people, these concepts sound extreme even today.

The methodology is based on 12 rules or practices. One of the rules states that developers
have to write unit tests and all parts of the software have to be thoroughly tested. All tests
have to pass before the software (or a new feature) can be released to customers. The tests
should be written before the production code that they test.

This so-called test-first programming led to TDD. As the name suggests, in TDD, tests
drive the development. This means that the developer writes code only because there is a
test that fails. The tests dictate whether the code has to be written, and they also provide a
measure when a feature is "done"--it is done when all tests for this feature pass.

Robert C. Martin (known as Uncle Bob) has come up with three simple rules for TDD:

You are not allowed to write any production code unless it is to pass a failing unit
test
You are not allowed to write any more of a unit test that is sufficient to fail, and
compilation failures are failures
You are not allowed to write any more production code that is sufficient to pass
the one failing unit test

For more information, visit http:/ /www. butunclebob. com/ ArticleS.
UncleBob. TheThreeRulesOfTdd.

These rules sound kind of silly because when you start with a feature that uses a new class
or method that is not declared yet, the test will fail immediately, and you have to add some
code just to be able to finish writing the test. But by following these rules, you will only
write code that is actually needed to implement the features. And you will only write test
code that is needed as well. All the code you write will either end up being part of the final
product or it will be a part of your test suite.

Because of the focus on just one feature at a time, you will have a working piece of software
almost all the time. So, when your boss enters your office and asks you for a demonstration
of the current status of the project, you are only a few minutes away from a presentable
(that is, compiling), and a thoroughly tested piece of software.

http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://www.butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

Your First Unit Tests

[18]

The TDD workflow - red, green, and refactor
The normal workflow of TDD comprises three steps--the red, green, and refactor steps,
respectively. The following sections describe these steps in detail.

Red
You start by writing a failing test. It needs to test a required feature of the software product
that is not already implemented or an edge case that you want to make sure is covered. The
name red comes from the way most IDEs indicate a failing test. Xcode uses a red diamond
with a white x on it.

It is very important that the test you write in this step initially fails. Otherwise, you can't
ensure that the test works and really tests the feature that you want to implement. It could
be that you have written a test that always passes and is, therefore, useless. Or, it is possible
that the feature is already implemented. Either way, you gain insight into your code.

Green
In the green step, you write the simplest code that makes the test pass. It doesn't matter
whether the code you write is good and clean. The code can also be silly and even wrong. It
is enough when all the tests pass. The name green refers to how most IDEs indicate a
passing test. Xcode uses a green diamond with a white check mark.

It is very important that you try to write the simplest code that makes the tests pass. By
doing so, you only write code that you actually need and that is the simplest
implementation possible. When I say simple, I mean that it should be easy to read,
understand, and change. The code should always be easy to understand.

Often the simplest implementation will not be enough for the feature you try to implement,
but still enough to make all the tests pass. This just means that you need another failing test
to further drive the development of that feature.

Refactor
During the green step, you write just enough code to make all the tests pass again. As I just
mentioned, it doesn't matter what the code looks like in the green step. In the refactor step,
you should improve the code. You remove duplication, extract common values, and so on.
Do what is needed to make the code as good as possible. The tests help you to not break
already implemented features while refactoring.

Your First Unit Tests

[19]

Don't skip this step. Always try to think how you can improve the code
after you have implemented a feature. Doing so helps to keep the code
clean and maintainable. This ensures that it is always in good shape.

As you have written only a few lines of code since the last refactor step, the changes needed
to make the code clean shouldn't take much time.

TDD in Xcode
In 1998, the Swiss company Sen:te developed OCUnit, a testing framework for Objective-C
(hence, the OC prefix). OCUnit was a port of SUnit, a testing framework that Kent Beck had
written for Smalltalk in 1994.

With Xcode 2.1, Apple added OCUnit to Xcode. One reason for this step was that they used
it to develop Core Data at the same time that they developed Tiger, the OS with which Core
Data was shipped. Bill Bumgarner, an Apple engineer, wrote this later in a blog post:

"Core Data 1.0 is not perfect, but it is a rock solid product that I'm damned proud of. The
quality and performance achieved could not have been done without the use of unit testing.
Furthermore, we were able to perform highly disruptive operations to the codebase very late
in the development cycle. The end result was a vast increase in performance, a much
cleaner codebase, and rock solid release."

Apple realized how valuable unit tests can be when developing complex systems in a
changing environment. They wanted third-party developers to benefit from unit tests as
well. OCUnit could be (and has been) added to Xcode by hand before version 2.1. But by
including it into the IDE, the investment in time that was needed to start unit testing was
reduced a lot, and as a result, more people started to write tests.

In 2008, OCUnit was integrated into the iPhone SDK 2.2 to allow unit testing of iPhone
apps.

Finally, in 2013, unit testing became a first-class citizen in Xcode 5 with the introduction of
XCTest. With XCTest, Apple added specific user interface elements to Xcode that helped
with testing, which allowed running specific tests, finding failing tests quickly, and getting
an overview of all the tests. We will go over the testing user interface in Xcode later in this
chapter. But, first, we will take a look at TDD using Xcode in action.

Your First Unit Tests

[20]

An example of TDD
For this TDD example, we are going to use the same project we created at the beginning of
this chapter. Open the FirstDemo project in Xcode, and run the tests by hitting command +
U. The one existing test should pass.

Let's say we are building an app for a blogging platform. When writing a new post, the user
puts in a headline for the post. All the words in the headline should start with an uppercase
letter.

To start the TDD workflow, we need a failing test. The following questions need to be
considered when writing the test:

Precondition: What is the state of the system before we invoke the method?
Invocation: How should the signature of the method look? What are the input
parameters (if any) of the method?
Assertion: What is the expected result of the method invocation?

For our blogging app example, here are some possible answers to these questions:

Precondition: None.
Invocation: The method should take a string and it should return a string. A
possible name for that method is makeHeadline.
Assertion: The resulting string should be the same, but all the words should start
with an uppercase letter.

This is enough to get us started. Enter the red step.

Red - example 1
Open FirstDemoTests.swift, and add the following code to the FirstDemoTests class:

func test_MakeHeadline_ReturnsStringWithEachWordStartCapital() {
 let viewController = ViewController()

 let string = "this is A test headline"

 let headline = viewController.makeHeadline(from: string)
}

Your First Unit Tests

[21]

This isn't a complete test method yet because we aren't really testing anything. The
assertion is missing. But we have to stop writing the test at this point because the compiler
complains that Value of type 'ViewController' has no member 'makeHeadline'.

Following the TDD workflow, we need to add code until the compiler stops printing errors.
Remember that code does not compile within a test means the test is failing. And a failing test
means we need to write code until the test does not fail anymore.

Open ViewController.swift, and add the following method to the ViewController
class:

func makeHeadline(from string: String) {
}

The error still remains. The reason for this is that we need to compile to make the test target
aware of this change. Run the tests to check whether this change is enough to make the test
green again. The test is indeed green, but sometimes the error is still shown. The reason is
that Xcode sometimes "forgets" to remove old errors.

Now we get a warning that the headline constant isn't used, and we should change it to _.
So, let's use it. Add the following assert function at the end of the test:

XCTAssertEqual(headline, "This Is A Test Headline")

This results in another compiler error:

Argument type '()' does not conform to expected type 'Equatable'

The reason for this error is that the makeHeadline(from:) method at the moment returns
Void or (). But XCTAssertEqual can only be used if both expressions conform to the
protocol Equatable and are of the same type. This makes sense as two expressions of
different types can't be equal to each other.

Go back to ViewController, and change makeHeadline(from:) to this:

func makeHeadline(from string: String) -> String {
 return ""
}

Your First Unit Tests

[22]

Green - example 1
Now, the method returns an empty string. This should be enough to make the test compile.
Run the test. The test fails. But this time, it's not because the code we've written does not
compile, but due to the failed assertion instead. This is not a surprise because an empty
string isn't equal to "This Is A Test Headline". Following the TDD workflow, we
need to go back to the implementation and add the simplest code that makes the test pass.

In ViewController, change makeHeadline(from:) to read as follows:

func makeHeadline(from string: String) -> String {
 return "This Is A Test Headline"
}

This code is stupid and wrong, but it is the simplest code that makes the test pass. Run the
tests to make sure that this is actually the case.

Even though the code we just wrote is useless for the feature we are trying to implement, it
still has value for us, the developers. It tells us that we need another test.

Refactor - example 1
Before writing more tests, we need to refactor the existing ones. In the production code,
there is nothing to refactor. This code couldn't be simpler or more elegant. In the test case,
we now have two test methods. Both start by creating an instance of ViewController. This
is a repetition of code and a good candidate for refactoring.

Add the following property at the beginning of the FirstDemoTests class:

var viewController: ViewController!

Remember that the setUp() method is called before each test is executed. So, it is the
perfect place to initialize the viewController property:

override func setUp() {
 super.setUp()
 viewController = ViewController()
}

Now, we can remove this let viewController = ViewController() line of code from
each test.

Your First Unit Tests

[23]

Red - example 2
As mentioned in the preceding section, we need another test because the production code
we have written to make the previous test pass only works for one specific headline. But the
feature we want to implement has to work for all possible headlines. Add the following test
to FirstDemoTests:

func test_MakeHeadline_ReturnsStringWithEachWordStartCapital2() {
 let string = "Here is another Example"

 let headline = viewController.makeHeadline(from: string)

 XCTAssertEqual(headline, "Here Is Another Example")
}

Run the test. This new test obviously fails. Let's make the tests green.

Green - example 2
Open ViewController.swift, and replace the implementation of
makeHeadline(from:) with the following lines of code:

func makeHeadline(from string: String) -> String {
 let words = string.components(separatedBy: " ")

 var headline = ""
 for var word in words {
 let firstCharacter = word.remove(at: word.startIndex)
 headline += "\(String(firstCharacter).uppercased())\(word) "
 }
 headline.remove(at: headline.index(before: headline.endIndex))
 return headline
}

Let's go through this implementation step by step:

Split the string into words.1.
Iterate over the words, and remove the first character and change it to uppercase.2.
Add the changed character to the beginning of the word. Add this word with a
trailing space to the headline string.
Remove the last space and return the string.3.

Your First Unit Tests

[24]

Run the tests. All the tests pass. The next thing to perform in the TDD workflow is
refactoring.

Do not skip refactoring. This step is as important as the red and the green
step. You are not done until there is nothing to refactor anymore.

Refactor - example 2
Look at the two tests you have for this feature. They are hard to read. The relevant
information for the tests is kind of unstructured. We are going to clean it up.

Replace the two tests with the following code:

func test_MakeHeadline_ReturnsStringWithEachWordStartCapital() {
 let input = "this is A test headline"
 let expectedOutput = "This Is A Test Headline"

 let headline = viewController.makeHeadline(from: input)

 XCTAssertEqual(headline, expectedOutput)
}

func test_MakeHeadline_ReturnsStringWithEachWordStartCapital2() {
 let input = "Here is another Example"
 let expectedOutput = "Here Is Another Example"

 let headline = viewController.makeHeadline(from: input)

 XCTAssertEqual(headline, expectedOutput)
}

Now, the tests are easy to read and understand. They follow a logical structure:
precondition, invocation, and assertion.

Run the tests. All the tests should still pass. But how do we know whether the tests still test
the same thing as they did earlier? In most cases, the changes we'll make while refactoring
the tests don't need to be tested themselves. But, sometimes (such as in this case), it is good
to make sure that the tests still work. This means that we need a failing test again. Go to
makeHeadline(from:) and comment out (by adding // at the beginning) the line:

headline.remove(at: headline.index(before: headline.endIndex))

Your First Unit Tests

[25]

Run the tests again. Eureka! Both tests fail.

As you can see here, a failing test does not stop the tests in general. But
you can change this behavior by setting continueAfterFailure to
false in setUp().

Remove the comment symbols again to make the test pass again. Now, we need to refactor
the implementation code. The implementation we have right now looks like it was
translated from Objective-C to Swift (if you haven't used Objective-C yet, you have to trust
me on this). But Swift is different and has many concepts that make it possible to write less
code that is easier to read. Let's make the implementation more swiftly. Replace
makeHeadline(from:) with the following code:

func makeHeadline(from string: String) -> String {
 let words = string.components(separatedBy: " ")

 let headlineWords = words.map { (word) -> String in
 var mutableWord = word
 let first = mutableWord.remove(at: mutableWord.startIndex)

 return String(first).uppercased() + mutableWord
 }

 return headlineWords.joined(separator: " ")
}

In this implementation, we use the map function to iterate the words array and return
another array containing the same words, but starting with uppercase letters. The result is
then transformed into a string by joining the words using a space as the separator.

Run the tests again to make sure we didn't break anything with the refactoring. All the tests
should still pass.

A recap
In this section, we have added a feature to our project using the TDD workflow. We started
with a failing test. We made the test pass. And, finally, we refactored the code to be clean.
The steps you have seen here seem so simple and stupid that you may think that you could
skip some of the tests and still be good. But then, it's not TDD anymore. The beauty of TDD
is that the steps are so easy that you do not have to think about them. You just have to
remember what the next step is.

Your First Unit Tests

[26]

Because the steps and the rules are so easy, you don't have to waste your brainpower
thinking about what the steps actually mean. The only thing you have to remember is red,
green, and refactor. As a result, you can concentrate on the difficult part: writing tests,
making them pass, and improving code.

Finding information about tests in Xcode
With Xcode 5 and the introduction of XCTest, unit testing became tightly integrated into
Xcode. Apple added many UI elements to navigate to tests, run specific tests, and find
information about failing tests. One key element here is the Test Navigator.

Test Navigator
To open the Test Navigator, click on the diamond with a minus sign (-) in the navigator
panel:

The Test Navigator shows all the tests. In the preceding screenshot, you can see the Test
Navigator for our demo project. In the project, there is one test target. For complex apps, it
can be useful to have more than one test target, but this is beyond the scope of this book.
The number of tests is shown right behind the name of the test target. In our case, there are
three tests in the target.

The demo project has only one test case with three tests.

Your First Unit Tests

[27]

At the bottom of the navigator is a filter control with which you can filter the shown tests.
As soon as you start typing, the shown tests are filtered using fuzzy matching. There's a
button in the control showing a diamond with an x:

If this button is clicked on, only the failing tests are shown in the list.

Tests overview
Xcode also has a test overview where all the results of the tests are collected in one place. To
open it, select the Result Navigator in the navigator panel, and select the last test in the list:

You can also select other tests in the list if you want to compare test runs with each other. In
the editor on the right-hand side, an overview of all the tests from the selected test run is
shown:

Your First Unit Tests

[28]

When you hover over one of the tests with the mouse pointer, a circle with an arrow to the
right appears. If you click on the arrow, Xcode opens the test in the editor.

In the overview, there is also the Logs tab. It shows all the tests in a tree-like structure. Here
is an example of what this looks like:

The logs show the test cases (in this example, one test case) and the tests within the test
cases (in this example, two failing and one passing test). And in addition to this, the time
each test case and even each test need to execute.

Your First Unit Tests

[29]

In TDD, it is important for the tests to execute quickly. You want to be able to execute the
whole test suite in less than a second. Otherwise, the whole workflow is dominated by test
execution and testing can distract your focus and concentration. You should never be
tempted to switch to another application (such as Safari) because the tests will take half a
minute.

If you notice that the test suite takes too long to be practical, open the logs and search for
the tests that slow down testing and try to make the tests faster.

Running tests
Xcode provides many different ways to execute tests. You have already seen two ways to
execute all the tests in the test suite--go to the Project | Test menu item and use the
command + U keyboard shortcut.

Running one specific test
In TDD, you normally want to run all the tests as often as possible. Running the tests gives
you confidence that the code does what you intended when you wrote the tests. In addition
to this, you want immediate feedback (that is, a failing test) whenever new code breaks a
seemingly unrelated feature. Immediate feedback means that your memory of the changes
that broke the feature is fresh, and the fix is made quickly.

Nevertheless, sometimes, you need to run one specific test, but don't let it become a habit.

To run one specific test, you can click on the diamond visible next to the test method:

When you click on it, the production code is compiled and launched in the simulator or on
the device, and the test is executed.

Your First Unit Tests

[30]

There is another way to execute exactly one specific test. When you open the Test Navigator
and hover over one test, a circle with a play icon is shown next to the test method name:

Again, if you click on this test, it is run exclusively.

The test framework identifies tests by the prefix of the method name. If you want to run all
tests but one, remove the test prefix from the beginning of this test method name.

Running all tests in a test case
In the same way as running one specific test, you can run all the tests of a specific test case.
Click on the diamond next to the definition of the test case, or click on the Play button that
appears when you hover over the test case name in the Test Navigator.

Running a group of tests
You can choose to run a group of tests by editing the build scheme. To edit the build
scheme, click on the scheme in the toolbar in Xcode, and then click on Edit Scheme...:

Your First Unit Tests

[31]

Then, select Test, and expand the test suite by clicking on the small triangle. On the right-
hand side, there is a column called Test:

The selected scheme only runs the tests that are checked. By default, all the tests are
checked, but you can uncheck some tests if you need to. But don't forget to check all the
tests again when you are finished.

As an alternative, you can add a build scheme for a group of tests that you want to run
regularly without running all tests.

But as mentioned earlier, you should run the complete test suite as often as possible.

The setUp() and tearDown() methods
We have already seen the setUp() and tearDown() instance methods earlier in this
chapter. The code in the setUp() instance method is run before each test invocation. In our
example, we used setUp() to initialize ViewController that we wanted to test. As it was
run before each test invocation, each test used its own instance of ViewController. The
changes we made to this particular instance in one test didn't affect the other test. The tests
executed independently of each other.

Your First Unit Tests

[32]

The tearDown() instance method is run after each test invocation. Use tearDown() to
perform the necessary cleanup.

In addition to the instance methods, there are also the setUp() and tearDown() class
methods. These are run before and after all the tests of a test case, respectively.

Debugging tests
Sometimes, but usually, rarely, you may need to debug your tests. As with normal code,
you can set breakpoints in test code. The debugger then stops the execution of the code at a
breakpoint. You can also set breakpoints in the code that will be tested to check whether
you have missed something or whether the code you'd like to test is actually executed.

To get a feeling of how this works, let's add an error to a test in the preceding example and
debug it. Open FirstDemoTests.swift, and replace the
test_MakeHeadline_ReturnsStringWithEachWordStartCapital2() test method
with this code:

func test_MakeHeadline_ReturnsStringWithEachWordStartCapital2() {
 let input = "Here is another Example"
 let expectedOutput = "Here iS Another Example"

 let headline = viewController.makeHeadline(from: input)

 XCTAssertEqual(headline, expectedOutput)
}

Have you seen the error that we have introduced? The value of the string expectedOutput
has a typo. The letter s in iS is an uppercase letter, and the letter i is a lowercase letter. Run
the tests. The test fails and Xcode tells you what the problem is. But for the sake of this
exercise, let's set a breakpoint in the line with the XCTAssertEqual() function. Click on
the area on the left-hand side of the line where you want to set a breakpoint. You have to
click on the area next to the red diamond.

Your First Unit Tests

[33]

As a result, your editor will look similar to what is shown here:

Run the tests again. The execution of the tests stops at the breakpoint. Open the debug
console if it is not already open (go to View | Debug Area | Activate Console). In the
console, some test output is visible. The last line starts with (lldb) and a blinking cursor.
Put in po expectedOutput and hit return. po is the "print object" command. As the name
suggests, it prints a representation of the object:

(lldb) po expectedOutput
"Here iS Another Example"

Now, print the value of the result:

(lldb) po headline
"Here Is Another Example"

So, with the help of the debugger, you can find out what is happening.

To learn more about the debugger, search for lldb in the Apple
documentation.

For now, keep the typo in expectedOutput as it is, but remove the breakpoint by dragging
it with the mouse from the area to the left of the editor.

Breakpoint that breaks on test failure
Xcode has a built-in breakpoint that breaks on test failures. When this breakpoint is set, the
execution of the tests is stopped, and a debug session is started whenever a test fails.

Your First Unit Tests

[34]

Usually, this is not what you want because in TDD failing tests are normal, and you don't
need a debugger to find out what's going on. You explicitly wrote the test to fail at the
beginning of the TDD workflow cycle.

But in case you need to debug one or more failing tests, it's good to know how this
breakpoint is activated. Open the Debug Navigator:

At the bottom of the navigator view is a button with a plus sign (+). Click on it, and select
Test Failure Breakpoint:

As the name suggests, this breakpoint stops the execution of the tests whenever a test fails.
We still have a failing test in our example. Run the tests to see the breakpoint in action.

The debugger stops at the line with the assertion because the tests fail. Like in the preceding
example, you get a debug session so that you can put in LLDB commands to find out why
the test failed.

Remove the breakpoint again because it's not very practical while performing TDD.

Your First Unit Tests

[35]

The test again feature
Now, let's fix the error in the tests and learn how to run the previous test again. Open
FirstDemoTests.swift, and run only the failing test by clicking on the diamond symbol
next to the test method. The test still fails. Fix it by changing iS to Is in expectedOutput.
Then, go to Product | Perform Action | Test
"test_MakeHeadline_ReturnsStringWithEachWordStartCapital2()" Again, or use the
shortcut ctrl + option + command + G to run just the previous test again. The shortcut is
especially useful when you are working on one specific feature, and you need to test
whether the implementation is already enough.

The advantages of TDD
TDD comes with advantages and disadvantages. These are the main advantages:

You only write code that is needed: Following the rules, you have to stop
writing production code when all your tests pass. If your project needs another
feature, you need a test to drive the implementation of that feature. The code you
write is the simplest code possible. So, all the code ending up in the product is
actually needed to implement the features.

More modular design: In TDD, you concentrate on one micro feature at a time.
And as you write the test first, the code automatically becomes easy to test. Code
that is easy to test has a clear interface. This results in a modular design for your
application.
Easier to maintain: As the different parts of your application are decoupled from
each other and have clear interfaces, the code becomes easier to maintain. You
can exchange the implementation of a micro feature with a better implementation
without affecting another module. You could even keep the tests and rewrite the
complete application. When all the tests pass, you are done.
Easier to refactor: Every feature is thoroughly tested. You don't need to be afraid
to make drastic changes because if all the tests still pass, everything is fine. This
point is very important because you, as a developer, improve your skills each and
every day. If you open the project after six months of working on something else,
most probably, you'll have many ideas on how to improve the code. But your
memory about all the different parts and how they fit together isn't fresh
anymore. So, making changes can be dangerous. With a complete test suite, you
can easily improve the code without the fear of breaking your application.

Your First Unit Tests

[36]

High test coverage: There is a test for every feature. This results in high test
coverage. High test coverage helps you gain confidence in your code.
Tests document the code: The test code shows you how your code is meant to be
used. As such, it documents your code. The test code is sample code that shows
what the code does and how the interface has to be used.
Less debugging: How often have you wasted a day to find a nasty bug? How
often have you copied an error message from Xcode and searched for it on the
internet? With TDD, you write fewer bugs because the tests tell you early on
whether you've made a mistake. And the bugs you write are found much earlier.
You can concentrate on fixing the bug when your memory about what the code is
supposed to do and how it does it.

The disadvantages of TDD
Just like everything else in the world, TDD has some disadvantages. The main ones are
here:

No silver bullet: Tests help to find bugs, but they can't find bugs that you
introduce in the test code and in implementation code. If you haven't understood
the problem you need to solve, writing tests most probably won't help.

It seems slower at the beginning: If you start TDD, you will get the feeling that it
takes longer to make easy implementations. You need to think about the
interfaces, write the test code, and run the tests before you can finally start
writing the code.
All the members of a team need to do it: As TDD influences the design of code,
it is recommended that either all the members of a team use TDD or no one at all.
In addition to this, it's sometimes difficult to justify TDD to the management
because they often have the feeling that the implementation of new features takes
longer if developers write code that won't end up in the product half of the time.
It helps if the whole team agrees on the importance of unit tests.
Tests need to be maintained when requirements change: Probably, the strongest
argument against TDD is that the tests have to be maintained as the code has to.
Whenever requirements change, you need to change the code and tests. But you
are working with TDD. This means that you need to change the tests first, and
then make the tests pass. So, in reality, tests help you to understand the new
requirements and implement the code without breaking other features.

Your First Unit Tests

[37]

What to test
What should be tested? When using TDD and following the rules mentioned in the
previous sections, the answer is easy--everything. You only write code because there is a
failing test.

In practice, it's not that easy. For example, should the position and color of a button be
tested? Should the view hierarchy be tested? Probably not; the color and exact position of
the button is not important for the functioning of an app. In the early stages of
development, these kinds of things tend to change. With the auto layout and different
localizations of the app, the exact position of buttons and labels depend on many
parameters.

In general, you should test the features that make the app useful for a user and those that
need to work. The user doesn't care whether the button is exactly 20 points from the
rightmost edge of the screen. All the user is interested in is that the button does what they
expect it to and the app looks good.

In addition to this, you should not test the whole application in total using unit tests. Unit
tests are meant to test small units of computation. They need to be fast and reliable. Things,
such as database access and networking, should be tested using integration tests, where the
tests drive the real finished application. Integration tests are allowed to be slow because
they are run a lot less often than unit tests. Usually, they are run at the end of the
development before the application is released, or they are run with the help of a
continuous integration system each night on a server, where it doesn't matter that the
complete test suite takes several minutes (or even hours) to execute.

Summary
In this chapter, we saw unit tests in action and how they are set up in Xcode. You learned
what TDD is and why it can help build better apps. With the help of TDD, we implemented
a feature of a demo app to get used to the workflow. We saw many different possibilities to
run tests and how we can find bugs in our tests using LLDB, the debugger integrated into
Xcode. Finally, we discussed the advantages and disadvantages of TDD and what should be
tested with unit tests.

In the next chapter, we will take a look at an app that we will build together using TDD.

2
Planning and Structuring Your

Test-Driven iOS App
In the previous chapter, you learned how to write unit tests and saw an easy example of
TDD. When starting TDD, writing unit tests is easy for most people. The hard part is to
transfer knowledge from writing test to driving development. What can be assumed? What
should be done before one writes the first test? What should be tested to end up with a
complete app?

As a developer, you are used to thinking in terms of code. When you see a feature on the
requirement list for an app, your brain already starts to layout the code for this feature. For
recurring problems in iOS development (such as building table views), you most probably
have already developed your own best practices.

In TDD, you should not think about the code while working on the test. The tests have to
describe what the unit under test should do and not how it should do it. It should be
possible to change the implementation without breaking the tests. Thinking like this is the
hard part about TDD. You'll need a lot of practice before this becomes natural.

To practice this approach of development, we will develop a simple to-do list app in the
remainder of this book. It is, on purpose, a boring and easy app. We want to concentrate on
the TDD workflow, not complex implementations. An interesting app would distract from
what is important in this book--how to perform TDD.

This chapter introduces the app we are going to build and shows the views that the finished
app will have.

Planning and Structuring Your Test-Driven iOS App

[39]

We will cover the following topics in this chapter:

The task list view
The task detail view
The task input view
The structure of an app
Getting started with Xcode
Setting up useful Xcode behaviors for testing

The task list view
When starting the app, the user sees a list of to-do items. The items in the list consist of a
title, an optional location, and the due date. New items can be added to the list by an add
(+) button, which is shown in the navigation bar of the view. The task list view will look like
this:

Planning and Structuring Your Test-Driven iOS App

[40]

User stories:

As a user, I want to see the list of to-do items when I open the app
As a user, I want to add to-do items to the list

In a to-do list app, the user will obviously need to be able to check items when they are
finished. The checked items are shown below the unchecked items, and it is possible to
uncheck them again. The app uses the Delete button in the UI of UITableView to check and
uncheck items. Checked items will be put at the end of the list in a section with the Finished
header. The user can also delete all the items from the list by tapping the Trash button. The
UI for the to-do item list will look like this:

User stories:

As a user, I want to check a to-do item to mark it as finished
As a user, I want to see all the checked items following the unchecked items

Planning and Structuring Your Test-Driven iOS App

[41]

As a user, I want to uncheck a to-do item
As a user, I want to delete all the to-do items

When the user taps an entry, the details of this entry are shown in the task detail view.

The task detail view
The task detail view shows all the information that's stored for a to-do item. The
information consists of a title, due date, location (name and address), and a description. If
an address is given, a map with an address is shown. The detail view also allows checking
the item as finished. The detail view looks like this:

Planning and Structuring Your Test-Driven iOS App

[42]

User stories:

As a user, given that I have tapped a to-do item in the list, I want to see its details
As a user, I want to check a to-do item from its details view

The task input view
When the user selects the add (+) button in the list view, the task input view is shown. The
user can add information for the task. Only the title is required. The Save button can only
be selected when a title is given. It is not possible to add a task that is already on the list.
The Cancel button dismisses the view. The task input view will look like this:

User stories:

As a user, given that I tapped the add (+) button in the item list, I want to see a
form to put in the details (title, optional date, optional location name, optional
address, and optional description) of a to-do item
As a user, I want to add a to-do item to the list of to-do items by tapping on the
Save button

Planning and Structuring Your Test-Driven iOS App

[43]

We will not implement the editing and deletion of tasks. But, when you have worked
through this book completely, it will be easy for you to add this feature yourself by writing
the tests first.

Keep in mind that we will not test the look and design of the app. Unit tests cannot figure
out whether an app looks like it was intended. Unit tests can test features, and these are
independent of their presentation. In principle, it would be possible to write unit tests for
the position and color of UI elements. But, such things are very likely to change a lot in the
early stages of development. We do not want to have failing tests only because a button has
moved ten points.

However, we will test whether the UI elements are present in the view. If your user cannot
see the information for the tasks, or if it is not possible to add all the information of a task,
then the app does not meet the requirements.

The structure of the app
The following diagram shows the structure of the app:

Planning and Structuring Your Test-Driven iOS App

[44]

The table view controller, the delegate, and the
data source
In iOS apps, data is often presented using a table view. Table views are highly optimized
for performance; they are easy to use and to implement. We will use a table view for the list
of to-do items.

A table view is usually represented by UITableViewController, which is also the data
source and delegate for the table view. This often leads to a massive table view controller,
because it is doing too much: presenting the view, navigating to other view controllers, and
managing the presentation of the data in the table view.

Sometimes, it's a good idea to split up the responsibility into several classes. Therefore, we
will use a helper class to act as the data source and delegate for the table view. The
communication between the table view controller and the helper class will be defined using
a protocol. Protocols define what the interface of a class looks like. This has a great benefit:
if we need to replace an implementation with a better version (maybe because you have
learned how to implement the feature in a better way), we only need to develop against the
clear interface. The inner workings of other classes do not matter.

Table view cells
As you can see in the preceding screenshots, the to-do list items have a title and, optionally,
they can have a due date and a location name. The table view cells should only show the set
data. We will accomplish this by implementing our own custom table view cell.

The model
The model of the application consists of the to-do item, the location, and an item manager,
which allows the addition and removal of items and is also responsible for managing the
items. Therefore, the controller will ask the item manager for the items to present. The item
manager will also be responsible for storing the items on the disc.

Beginners often tend to manage the model objects within the controller. Then, the controller
has a reference to a collection of items, and the addition and removal of items are directly
done by the controller. This is not recommended because if we decide to change the storage
of the items (for example, using core data), their addition and removal would have to be
changed within the controller. It is difficult to keep an overview of such a class; because of
this reason, it is a source of bugs.

Planning and Structuring Your Test-Driven iOS App

[45]

It's much easier to have a clear interface between the controller and the model objects
because if we need to change how the model objects are managed, the controller can stay
the same. We could even replace the complete model layer if we just keep the interface the
same. Later in the book, we will see that this decoupling also helps to make testing easier.

Other view controllers
The application will have two more view controllers: a task detail view controller and a
view controller for the input of the task.

When the user taps a to-do item in the list, the details of the item are presented in the task
detail view controller. From the Details screen, the user will be able to check an item.

New to-do items will be added to the list of items using the view presented by the input
view controller.

The development strategy
In this book, we will build the app from inside out. We will start with the model and then
build the controllers and networking. At the end of the book, we will put everything
together.

Usually, you would rather build apps feature-by-feature when doing TDD. But, by
separating on the basis of layers instead of features, it is easier to follow and keep an
overview of what is happening. When you later need to refresh your memory, the relevant
information you need is easier to find.

Getting started with Xcode
Now, let's start our journey by creating a project that we will implement using TDD.

Open Xcode and create a new iOS project using the Single View Application template. In
the options window, add ToDo as the product name, select Swift as language, and check the
box next to Include Unit Tests. Let the Use Core Data and Include UI Tests boxes stay
unchecked.

Planning and Structuring Your Test-Driven iOS App

[46]

Xcode creates a small iOS project with two targets: one for the implementation code and the
other for the unit tests. The template contains code that presents a single view on screen. We
could have chosen to start with the master-detail application template because the app will
show a master and a detail view. However, we have chosen the Single View Application
template because it comes with hardly any code. In TDD, we want to have all the
implementation code demanded by failing tests.

To take a look at how the application target and test target fit together, select the project in
the Project Navigator, and then select the ToDoTests target. In the General tab, you'll find a
setting for the Host Application that the test target should be able to test. It looks like this:

Xcode has already set up the test target correctly to allow the testing of the implementations
that we will write to the application target.

Planning and Structuring Your Test-Driven iOS App

[47]

Xcode has also set up a scheme to build the app and run the tests. Click on the scheme
selector next to the Stop button in the toolbar, and select Edit Scheme.... In the test action,
all the test bundles of the project will be listed. In our case, only one test bundle is shown--
ToDoTests. On the right-hand side of the shown window is a column named Test, with a
checked checkbox. This means that if we run the tests while this scheme is selected in
Xcode, all the tests in the selected test suite will be run.

Setting up useful Xcode behaviors for
testing
Xcode has a feature called behaviors. With the use of behaviors and tabs, Xcode can show
useful information depending on its state.

Open the Behaviors window by navigating to Xcode | Behaviors | Edit Behaviors. On the
left-hand side are the different stages for which you can add behaviors (Build, Testing,
Running, and so on). The following behaviors are useful when doing TDD.

The behaviors shown here are those that I find useful. Play around with the settings to find
the ones most useful for you. Overall, I recommend using behaviors because I think they
speed up development.

Useful build behaviors
When the building starts, Xcode compiles the files and links them together. To see what is
going on, you can activate the build log when building starts. It is recommended that you
open the build log in a new tab because this allows switching back to the code editor when
no error occurs during the build. Select the Starts stage and check Show tab named. Put in
the Log name and select in as active window. Check the Show navigator setting and Issue
Navigator.

Planning and Structuring Your Test-Driven iOS App

[48]

At the bottom of the window, check Navigate to and select current log. After you have
made these changes, the settings window will look like this:

Build and run to see what the behavior looks like.

Planning and Structuring Your Test-Driven iOS App

[49]

Testing behaviors
To write some code, I have an Xcode tab called Coding. Usually, in this tab, the test is open
on the left-hand side, and in the Assistant Editor, which is on the right-hand side; there is
the code to be tested (or in the case of TDD, the code to be written). It looks like the
following:

When the test starts, we want to see the code editor again. So, we add a behavior to show
the Coding tab. In addition to this, we want to see the Test Navigator and debugger with
the console view.

When the test succeeds, Xcode should show a bezel to notify us that all tests have passed.
Navigate to the Testing | Succeeds stage and check the Notify using bezel or system
notification setting. In addition to this, it should hide the navigator and the debugger,
because we want to concentrate on refactoring or writing the next test.

Planning and Structuring Your Test-Driven iOS App

[50]

In case the testing fails (which happens a lot in TDD), Xcode should show a bezel again. I
like to hide the debugger, because usually, it is not the best place to figure out what is going
on in the case of a failing test. In most of the cases in TDD, we already know what the
problem is.

You can even make your Mac speak the announcements. Check Speak announcements
using and select the voice you like, but be careful not to annoy your coworkers. You might
need their help in the future.

Now, the project and Xcode are set up, and we can start our TDD journey.

Summary
In this chapter, we took a look at the app that we are going to build throughout the course
of this book. We took a look at how the screens of the app will look when we are finished
with it. We created the project that we will use later on and learned about Xcode behaviors.

In the next chapter, we will develop the data model of the app using TDD. We will use
structs for the model wherever we can, because models are best represented in Swift by
value types. We will add some conformance to the Equatable protocol to make the
comparison of the model instances easier.

3
A Test-Driven Data Model

iOS apps are often developed using a design pattern called Model-View-Controller (MVC).
In this pattern, each class, struct, or enum is either a model object, view, or a controller.
Model objects are responsible for storing data. They should be independent of the kind of
presentation by the UI. For example, it should be possible to use the same model object for
an iOS app and a command-line tool on macOS.

View objects are the presenters of the data. They are responsible for making the objects
visible (or hearable in the case of a VoiceOver-enabled app) for the user. Views are special
for the device that the app is executed on. In the case of a cross-platform application, view
objects cannot be shared. Each platform needs its own implementation of a view layer.

Controller objects communicate between the model and view objects. They are responsible
for making the model objects presentable.

We will use MVC for our to-do app because it is one of the easiest design patterns, and it is
commonly used by Apple in its sample code.

This chapter starts our journey in the field of TDD with the model layer of our application.
It is divided into three sections:

Implementing the ToDoItem struct
Implementing the Location struct
Implementing the ItemManager class

A Test-Driven Data Model

[52]

Implementing the ToDoItem struct
A to-do app needs a model class/struct to store information for to-do items.

We start by adding a new test case to the test target. Open the to-do project that we have
created in the Getting started with Xcode section of Chapter 2, Planning and Structuring Your
Test-Driven iOS App, and select the ToDoTests group. Go to File | New | File..., navigate to
iOS | Source | Unit Test Case Class, and click on Next. Put in the name ToDoItemTests,
make it a subclass of XCTestCase, select Swift as the language, and click on Next. In the
next window click on Create.

Now, delete the ToDoTests.swift template test case.

At the time of writing, if you delete ToDoTests.swift before you add the first test case in
a test target, you will see a pop-up from Xcode telling you that adding the Swift file will
create a mixed Swift and Objective-C target:

This is a bug in Xcode 9.0. It seems that when you add the first Swift file to
a target, Xcode assumes that there have to be Objective-C files already.
Click on Don't Create if this happens to you because we will not use
Objective-C in our tests.

Adding a title property
Open ToDoItemTests.swift and add the following import expression right below
import XCTest:

@testable import ToDo

This is needed in order to be able to test the ToDo module. The @testable keyword makes
the internal methods of the ToDo module accessible to the test case.

Remove the two template test methods, testExample() and
testPerformanceExample().

A Test-Driven Data Model

[53]

The title of a to-do item is required. Let's write a test to ensure that an initializer exists that
will take a title string. Add the following test method to the end of the test case (but
within the ToDoItemTests class):

func test_Init_TakesTitle() {
 ToDoItem(title: "Foo")
}

The static analyzer built into Xcode will complain about Use of unresolved
identifier 'ToDoItem':

We cannot compile this code because Xcode cannot find the ToDoItem identifier.
Remember that a non-compiling test is a failing test; and as soon as we have a failing test,
we need to write implementation code to make the test pass.

To add a file for the implementation code, first, click on the ToDo group in the Project
Navigator. Otherwise, the added file will be put into the test group. Go to File | New |
File..., navigate to the iOS | Source | Swift File template, and click on Next. In the Save As
field, add the name ToDoItem.swift; make sure that the file is added to the ToDo target
and not to the ToDoTests target, and click on Create.

Open ToDoItem.swift in the editor, and add the following code:

struct ToDoItem {
}

This code is a complete implementation of a struct named ToDoItem. So, Xcode should now
be able to find the ToDoItem identifier. Run the test by either going to Product | Test or
using the command + U shortcut. The code does not compile because there is an argument
passed to a call that takes no arguments. This means that at this stage, we could initialize an
instance of ToDoItem like this:

let item = ToDoItem()

But we want to have an initializer that takes a title. We need to add a property, named
title, of type String to store the title:

struct ToDoItem {
 let title: String
}

A Test-Driven Data Model

[54]

Run the test again. It will pass. We have implemented the first micro feature of our to-do
app using TDD. And it wasn't even hard. For the rest of the book, we will do this over and
over again until the app is finished. But we first need to check whether there is anything to
refactor in the existing test and implementation code. The tests and code are clean and
simple. There is nothing to refactor yet.

Always remember to check whether refactoring is needed after you have
made the tests green.

There are, however, a few things to note about the test. First, Xcode shows a Result of
'ToDoItem' initializer is unused warning. To make this warning go away, assign
the result of the initializer to an underscore _ = ToDoItem(title: "Foo"). This tells
Xcode that we know what we are doing. We want to call the initializer of ToDoItem, but we
do not care about its return value.

Second, there is no XCTAssert function call in the test. To add an assert, we could rewrite
the test like this:

func test_Init_TakesTitle() {
 let item = ToDoItem(title: "Foo")
 XCTAssertNotNil(item, "item should not be nil")
}

But in Swift, a non-failable initializer cannot return nil. It always returns a valid instance.
This means that the XCTAssertNotNil() method is useless. We do not need it to ensure
that we have written enough code to implement the tested micro feature. Following the
rules of TDD mentioned in Chapter 1, Your First Unit Tests, we are not allowed to write this
code. It is not needed to drive the development, and it does not make the code better.

Before we proceed with the next few tests, let's set up the editor in a way that makes the
TDD workflow easier and faster. Open ToDoItemTests.swift in the editor. Open Project
Navigator, and hold down the Option key while clicking on ToDoItem.swift in the
navigator to open it in the Assistant Editor. Depending on the size of your screen and your
preferences, you might prefer to hide the navigator again. With this setup, you have the
tests and the code side by side, and switching from test to code and vice versa takes no
time. In addition to this, as the relevant test is visible while you write the code, it can guide
the implementation.

A Test-Driven Data Model

[55]

Adding an itemDescription property
A to-do item can have a description. We would like to have an initializer that also takes a
description string. To drive the implementation, we need a failing test for the existence of
this initializer:

func test_Init_TakesTitleAndDescription() {
 _ = ToDoItem(title: "Foo",
 itemDescription: "Bar")
}

Again, this code does not compile because there is Extra argument 'itemDescription'
in call. To make this test pass, we add an itemDescription property of type String?
to ToDoItem:

struct ToDoItem {
 let title: String
 let itemDescription: String?
}

Run the tests. The test_Init_TakesTitle() test fails (that is, it does not compile)
because there is Missing argument for parameter 'itemDescription' in the call.
The reason for this is that we use a feature of Swift where structs have an automatic
initializer with arguments defining their properties. The initializer in the first test only has
one argument, and therefore, the test fails. To make the two tests pass again, we need to add
an initializer that can take a variable number of parameters. Swift functions (and init
methods as well) can have default values for parameters. You will use this feature to set
itemDescription to nil if there is no parameter for it in the initializer.

Add the following code to ToDoItem:

init(title: String,
 itemDescription: String? = nil) {

 self.title = title
 self.itemDescription = itemDescription
}

This initializer has two arguments. The second argument has a default value, so we do not
need to provide both arguments. When the second argument is omitted, the default value is
used.

Now, run the tests to make sure that both tests pass.

A Test-Driven Data Model

[56]

Removing a hidden source of bugs
To be able to use a short initializer only setting the title, we need to define it ourselves. But
this also introduces a new source of potential bugs. We can remove the two micro features
we have implemented and still have both tests pass. To take a look at how this works, open
ToDoItem.swift, and comment out the properties and assignment in the initializer:

struct ToDoItem {
// let title: String
// let itemDescription: String?

 init(title: String,
 itemDescription: String? = nil) {

// self.title = title
// self.itemDescription = itemDescription
 }
}

Run the tests. Both tests still pass. The reason for this is that they do not check whether the
values of the initializer arguments are actually set to any ToDoItem properties. We can
easily extend the tests to make sure that the values are set. First, let's change the name of the
first test to test_Init_WhenGivenTitle_SetsTitle(), and replace its contents with the
following code:

let item = ToDoItem(title: "Foo")
XCTAssertEqual(item.title, "Foo",
 "should set title")

This test does not compile because ToDoItem does not have a title property (it is
commented out). This shows that the test is now testing our intention. Remove the
comment signs for the title property and assignment of the title in the initializer, and run
the tests again. All the tests pass. Now, replace the second test with this one:

func test_Init_WhenGivenDescription_SetsDescription() {
 let item = ToDoItem(title: "",
 itemDescription: "Bar")
 XCTAssertEqual(item.itemDescription, "Bar",
 "should set itemDescription")
}

Remove the remaining comment signs in ToDoItem, and run the tests again. Both the tests
pass again, and they now actually test that the initializer works.

A Test-Driven Data Model

[57]

It is a good idea to use speaking test method names. It's quite common to
use a pattern such as test_<method
name>_<precondition>_<expected behavior>. This way, the method
name tells all that you need to know about the test when a test fails. In this
book, we will try to follow this pattern, but we will leave out some
information (for example, the precondition), when the code gets harder to
read because of the limited space here in the book. You should develop
your own pattern and use it in all your tests.

Adding a timestamp property
A ToDoItem can also have a due date represented by a timestamp. Add the following test
to make sure we can initialize an instance of ToDoItem with timestamp:

func test_Init_SetsTimestamp() {
 let item = ToDoItem(title: "",
 timestamp: 0.0)

 XCTAssertEqual(item.timestamp, 0.0,
 "should set timestamp")
}

Again, this test does not compile because there is an extra argument in the initializer. From
the implementation of the other properties, we know that we have to add a timestamp
property in ToDoItem and set it in the initializer:

struct ToDoItem {
 let title: String
 let itemDescription: String?
 let timestamp: Double?

 init(title: String,
 itemDescription: String? = nil,
 timestamp: Double? = nil) {
 self.title = title
 self.itemDescription = itemDescription
 self.timestamp = timestamp
 }
}

Run the tests. All the tests pass. The tests are green and there is nothing to refactor.

A Test-Driven Data Model

[58]

Adding a location property
The last property that we would like to be able to set in the initializer of ToDoItem is its
location. The location has a name and can optionally have a coordinate. We will use a struct
to encapsulate this data into its own type. Add the following code to ToDoItemTests:

func test_Init_WhenGivenLocation_SetsLocation() {
 let location = Location(name: "Foo")
}

The test is not finished, but it already fails because Location is an unresolved identifier.
There is no class, struct, or enum named Location yet. Open the Project Navigator, add a
Swift file with the name Location.swift to the ToDo target. From our experience with the
ToDoItem struct, we already know what is needed to make the test green. Add the
following code to Location.swift:

struct Location {
 let name: String
}

This defines a struct Location with a name property and makes the test code compilable
again. But the test is not finished yet. Add the following code to
test_Init_SetsLocation():

func test_Init_SetsLocation() {

 let location = Location(name: "Foo")
 let item = ToDoItem(title: "",
 location: location)

 XCTAssertEqual(item.location?.name,
 location.name,
 "should set location")
}

Unfortunately, we cannot use the location itself yet to check for equality, so the following
assert does not work:

XCTAssertEqual(item.location, location,
 "should set location")

The reason for this is that the first two arguments of XCTAssertEqual() have to conform
to the Equatable protocol. We will add the protocol conformance later in this chapter.

A Test-Driven Data Model

[59]

Again, this does not compile because the initializer of ToDoItem does not have an argument
called location. Add the location property and initializer argument to ToDoItem. The
result should look like this:

struct ToDoItem {
 let title: String
 let itemDescription: String?
 let timestamp: Double?
 let location: Location?

 init(title: String,
 itemDescription: String? = nil,
 timestamp: Double? = nil,
 location: Location? = nil) {

 self.title = title
 self.itemDescription = itemDescription
 self.timestamp = timestamp
 self.location = location
 }
}

Run the tests again. All the tests pass and there is nothing to refactor.

We have now implemented a struct to hold the ToDoItem using TDD.

Implementing the Location struct
In the previous section, we added a struct to hold information about the location. We will
now add tests to make sure that Location has the required properties and initializer.

The tests could be added to ToDoItemTests, but they are easier to maintain when the test
classes mirror the implementation classes/structs. So, we need a new test case class.

Open the Project Navigator, select the ToDoTests group, and add a unit test case class with
the name LocationTests. Make sure that you go to iOS | Source | Unit Test Case Class
because we want to test the iOS code, and Xcode sometimes navigates to OS X | Source.

Set up the editor to show LocationTests.swift on the left-hand side and
Location.swift in the Assistant Editor on the right-hand side. In the test class, add
@testable import ToDo, and remove the testExample() and
testPerformanceExample() template tests.

A Test-Driven Data Model

[60]

Adding a coordinate property
To drive the addition of a coordinate property, we need a failing test. Add the following
test to LocationTests:

func test_Init_SetsCoordinate() {
 let coordinate =
 CLLocationCoordinate2D(latitude: 1,
 longitude: 2)

 let location = Location(name: "",
 coordinate: coordinate)

 XCTAssertEqual(location.coordinate?.latitude,
 coordinate.latitude)
 XCTAssertEqual(location.coordinate?.longitude,
 coordinate.longitude)
}

First, we create a coordinate and use it to create an instance of Location. Then, we assert
that the latitude and longitude of the location coordinates are set to the correct
values. We use the values 1 and 2 in the initializer of CLLocationCoordinate2D, because
it also has an initializer that takes no arguments (CLLocationCoordinate2D()) and sets
the longitude and latitude to zero. We need to make sure that the initializer of
Location assigns the coordinate argument to its property in the test.

You might have noticed that we have omitted the message parameter in
the XCTAssertEqual() function. The reason is that the used assertion
already gives enough context to figure out what we expect in the test. We
expect that the two values are the same. There is no need to duplicate that
information in the message. If you find that information useful, feel free
to add message yourself.

The test does not compile because CLLocationCoordinate2D is an unresolved identifier.
We need to import CoreLocation in LocationTests.swift:

import XCTest
@testable import ToDo
import CoreLocation

A Test-Driven Data Model

[61]

The test still does not compile because Location does not have a coordinate property
yet. Similar to ToDoItem, we would like to have a short initializer for locations that only
have a name argument. Therefore, we need to implement the initializer ourselves, and we
cannot use the one provided by Swift. Replace the contents of Location.swift with the
following lines of code:

import Foundation
import CoreLocation

struct Location {
 let name: String
 let coordinate: CLLocationCoordinate2D?

 init(name: String,
 coordinate: CLLocationCoordinate2D? = nil) {
 self.name = ""
 self.coordinate = coordinate
 }
}

Now run the tests. All the tests pass.

Note that we have intentionally set name in the initializer to an empty string. This is the
easiest implementation that makes the tests pass. But it is clearly not what we want. The
initializer should set the name of the location to the value in the name argument. So, we
need another test to make sure that name is set correctly.

Add the following test to LocationTests:

func test_Init_SetsName() {
 let location = Location(name: "Foo")

 XCTAssertEqual(location.name, "Foo")
}

Run the test to make sure it fails. To make the test pass, change self.name = "" in the
initializer of Location to self.name = name. Run the tests again to check whether they
all pass now. There is nothing to refactor in the tests and implementation. Let's move on.

A Test-Driven Data Model

[62]

Implementing the ItemManager class
The to-do app will show all the to-do items in a list. The list of items will be managed by a
class called ItemManager. It will expose an interface to get, add, and remove items.

Open Project Navigator and select the ToDoTests group. Go to the iOS | Source | Unit
Test Case class to create a test case class with the name ItemManagerTests, and put it in
the Model folder. Import the ToDo module (@testable import ToDo) and remove the
two test method templates.

Count
The requirements of Chapter 2, Planning and Structuring Your Test-Driven iOS App, ask for a
list with unchecked to-do items at the top and checked to-do items at the bottom of the list
in the app. How the items are presented is not a matter of concern with regard to the model.
But it has to be possible to get the number of unchecked and checked to-do items from the
item manager.

Add the following code to ItemManagerTests:

func test_ToDoCount_Initially_IsZero() {
 let sut = ItemManager()
}

The sut abbreviation stands for System Under Test. We could also write this as
itemManager, but using sut makes it easier to read, and it also allows us to copy and paste
test code into other tests when appropriate.

The test is not yet finished, but it already fails because ItemManager is an unresolved
identifier. Open Project Navigator again and select the ToDo group. Go to iOS | Source |
Swift File. This will create a Swift file; let's call it ItemManager.swift, and select the
Model folder as the file location.

Add the following class definition:

class ItemManager {
}

A Test-Driven Data Model

[63]

This is enough to make the test code compilable. Run the tests to make sure that all the tests
pass and we can continue writing tests. In test_ToDoCount_Initially_IsZero(), add
the assert function highlighted in the following code:

func test_ToDoCount_Initially_IsZero() {
 let sut = ItemManager()

 XCTAssertEqual(sut.toDoCount, 0)
}

With this addition, the test method tests whether ItemManager has the toDoCount
property and whether it is initially set to zero.

The test still does not compile again because Value of type 'ItemManager' has no
member 'toDoCount'. The simplest way to make the test pass is to add the following
property declaration to ItemManager:

let toDoCount = 0

Run the tests. All the tests pass. The code and tests look good, so we do not need to refactor
them.

In addition to the unchecked items, we also need to be able to get the number of checked
items from the item manager. Add the following test to ItemManagerTests:

func test_DoneCount_Initially_IsZero() {
 let sut = ItemManager()

 XCTAssertEqual(sut.doneCount, 0)
}

To make this test pass, add the following property definition to ItemManager:

let doneCount = 0

Run the tests to check that this is enough to make them pass. If we look at the previously
written test methods, we'll see a repetition. The sut variable is initialized in each test
method. Let's refactor the test methods and remove the repetition. Add the following
property declaration to the beginning of ItemManagerTests:

var sut: ItemManager!

Then, at the end of setUp(), add this initialization of sut:

sut = ItemManager()

A Test-Driven Data Model

[64]

Add the line sut = nil in tearDown() right before super.tearDown(). Now, we can
remove the initialization from the tests:

func test_ToDoCount_Initially_IsZero() {
 XCTAssertEqual(sut.toDoCount, 0)
}

func test_DoneCount_Initially_IsZero() {
 XCTAssertEqual(sut.doneCount, 0)
}

Run the tests again to make sure that we have not broken anything with the refactoring.

Adding and checking items
The item manager should be able to add items to the list. Therefore, it should provide a
method that takes an item. Later, we can call this method from the ViewController that
will provide a UI to add items. Add the following code to ItemManagerTests:

func test_AddItem_IncreasesToDoCountToOne() {
 sut.add(ToDoItem(title: ""))
}

Here, we assume that ItemManager has an add(_:) method. You can see how TDD helps
us think about the class/struct interface before a feature is implemented.

The ItemManager class does not have an add(_:) method and the test does not compile.
Let's add the simplest implementation of add(_:):

func add(_ item: ToDoItem) {
}

Run the tests to make sure they all pass. Now, we need to assert that after adding an item,
toDoCount is 1. Add the following assert to
test_AddItem_IncreasesToDoCountToOne():

XCTAssertEqual(sut.toDoCount, 1)

A Test-Driven Data Model

[65]

Run the tests. The tests fail because toDoCount is a constant, and therefore, it never
changes. Replace the highlighted lines in ItemManager:

class ItemManager {
 var toDoCount = 0
 let doneCount = 0

 func add(_ item: ToDoItem) {
 toDoCount += 1
 }
}

We have converted the toDoCount constant into a variable and added code in add(_:) to
increase its value.

Run the tests. Everything works. The code and tests look good and there is nothing to
refactor.

Nevertheless, the code clearly does not do what we intend it to. The item passed into
add(_:) is not used or stored at all. This is a sign that we need another test.

The to-do items need to be presented to the user somehow. Therefore, ItemManager needs
to provide a method that returns an item. Add the following code to ItemManagerTests:

func test_ItemAt_ReturnsAddedItem() {
 let item = ToDoItem(title: "Foo")
 sut.add(item)

 let returnedItem = sut.item(at: 0)
}

At this point, we have to stop writing the test because this code does not compile. There is
no item(at:) method in ItemManager yet. We need to add it before we can continue with
the test. Add the following to ItemManager:

func item(at index: Int) -> ToDoItem {
 return ToDoItem(title: "")
}

It is the simplest implementation that makes the test code compilable again. Now, add the
following assert to test_ItemAt_ReturnsAddedItem():

XCTAssertEqual(returnedItem.title, item.title)

A Test-Driven Data Model

[66]

The test fails because item(at:) returns an item with an empty title. To fix it, we need to
add an array to store the item passed into add(_:), and use the same array to return the
item again in item(at:). Replace the implementation of ItemManager with the following
code:

class ItemManager {
 var toDoCount = 0
 let doneCount = 0
 private var toDoItems: [ToDoItem] = []

 func add(_ item: ToDoItem) {
 toDoCount += 1
 toDoItems.append(item)
 }

 func item(at index: Int) -> ToDoItem {
 return toDoItems[index]
 }
}

Let's go through the changes step by step. We have added a toDoItems array to store the
to-do items. The array is private because we want to encapsulate the underlying array. In
add(_:), the item that's passed in is added to the array. And in item(at:), the item at the
specified index is returned.

Run the tests. All the tests pass and there is nothing to refactor.

The user has to be able to check the items. The checked items need to be accessible from the
item manager. Add the following code to ItemManagerTests:

func test_CheckItemAt_ChangesCounts() {
 sut.add(ToDoItem(title: ""))

 sut.checkItem(at: 0)
}

This code does not compile because there is no checkItem(at:) method in ItemManager.
To make the test code compilable, add it to ItemManager:

func checkItem(at index: Int) {
}

A Test-Driven Data Model

[67]

When the user checks an item, toDoCount should decrease and doneCount should
increase. Add the following asserts to test_CheckAt_ChangesCounts():

XCTAssertEqual(sut.toDoCount, 0)
XCTAssertEqual(sut.doneCount, 1)

To make this test pass, we simply decrease and increase the values. A possible
implementation looks like this:

class ItemManager {
 var toDoCount = 0
 var doneCount = 0
 private var toDoItems: [ToDoItem] = []

 // ... other methods ...

 func checkItem(at index: Int) {
 toDoCount -= 1
 doneCount += 1
 }
}

This is the simplest implementation that makes the tests pass. Again, the code clearly does
not do what we have planned. When checking an item, it should be removed from the
toDoItems array. We need another test to ensure that it implements this behavior:

func test_CheckItemAt_RemovesItFromToDoItems() {
 let first = ToDoItem(title: "First")
 let second = ToDoItem(title: "Second")
 sut.add(first)
 sut.add(second)

 sut.checkItem(at: 0)

 XCTAssertEqual(sut.item(at: 0).title,
 "Second")
}

This test fails. To make it pass, add the following line to checkItemAtIndex(_:):

_ = toDoItems.remove(at: index)

This code uses the remove(at:) method of the built-in array type. Run the tests. All the
tests pass. There is nothing further to refactor.

A Test-Driven Data Model

[68]

In the app, the checked items will be shown below the unchecked items. This means that
ItemManager also needs to provide a method that returns checked items. Add the
following code to ItemManagerTests:

func test_DoneItemAt_ReturnsCheckedItem() {
 let item = ToDoItem(title: "Foo")
 sut.add(item)

 sut.checkItem(at: 0)
 let returnedItem = sut.doneItem(at: 0)
}

Before we can continue writing the test, we need to add doneItem(at:) to ItemManager:

func doneItem(at index: Int) -> ToDoItem {
 return ToDoItem(title: "")
}

Again, this is the simplest implementation to make the test pass, so let's continue writing
the test. Add the following assert to test_DoneItemAt_ReturnsCheckedItem():

XCTAssertEqual(returnedItem.title, item.title)

This test fails because we return a dummy item from doneItem(at:). To make it pass,
replace the implementation of ItemManager with the following code:

class ItemManager {
 var toDoCount = 0
 var doneCount = 0
 private var toDoItems: [ToDoItem] = []
 private var doneItems: [ToDoItem] = []

 func add(_ item: ToDoItem) {
 toDoCount += 1
 toDoItems.append(item)
 }

 func item(at index: Int) -> ToDoItem {
 return toDoItems[index]
 }

 func checkItem(at index: Int) {
 toDoCount -= 1
 doneCount += 1

 let item = toDoItems.remove(at: index)
 doneItems.append(item)
 }

A Test-Driven Data Model

[69]

 func doneItem(at index: Int) -> ToDoItem {
 return doneItems[index]
 }
}

We have added a doneItems array to store the checked items. In checkItem(at:), we
take the item removed from toDoItems and add it to doneItems. In doneItem(at:), we
simply return the item for the passed in index from the doneItems array.

Run the tests. All the tests pass. But there is a small thing we should refactor. The
todoCount and doneCount variables are always the same as the count of the toDoItems
and doneItems arrays, respectively. So, replace the todoCount and doneCount variables
with computed properties:

var toDoCount: Int { return toDoItems.count }
var doneCount: Int { return doneItems.count }

Remove the lines with the toDoCount += 1, todoCount -= 1, and doneCount += 1
statements. Run the tests to make sure that everything still works.

There is something else that should be improved. To assert the equality of ToDoItem
instances, we have used assert functions like this:

XCTAssertEqual(returnedItem.title, item.title)

We would, however, like to write them like this:

XCTAssertEqual(returnedItem, item)

If we try to do this and run the tests, we get this error:

error: cannot invoke 'XCTAssertEqual' with an argument list of type
'(ToDoItem, ToDoItem)'

To figure out what this means, let's have a look at the definition of XCTAssertEqual:

public func XCTAssertEqual<T : Equatable>(_ expression1: @autoclosure ()
throws -> T, _ expression2: @autoclosure () throws -> T, _ message:
@autoclosure () -> String = default, file: StaticString = #file, line: UInt
= #line)

A Test-Driven Data Model

[70]

The important information here is <T : Equatable>. It indicates that we can only use
XCTAsserEqual to check whether two elements are equal when they have the same type,
and this type should conform to the Equatable protocol. We could stop here and decide
that we do not need to make ToDoItem conform to Equatable, just to make the tests
clearer. We can always compare each property of the items. But test code is still code. It
should be easy to read and to understand.

In addition to this, we would like to make sure that the user cannot add the same item to
the list twice because doing this does not add any value to the app. In fact, it could be
considered a bug. To check whether an item is already managed by the list, we need to also
be able to easily check whether two items represent the same information. This again means
that to-do items need to be Equatable. In the next few sections, we will add conformance
to Equatable, ToDoItem, and Location.

Before we continue, replace the assertion in the last test with the assertion we had earlier:

XCTAssertEqual(returnedItem.title, item.title)

Run the tests again to make sure that we start from a green state.

Equatable
At the time of writing, conformance to the protocol Equatable had to be
implemented by the developer. But at the same time, there is a discussion
about whether the compiler will be able to generate the necessary code in
the future. So, maybe by the time you read this section, it's enough to add
Equatable in the definition of a class or struct to make it conform to
Equatable. In this case, you can skip this section.

Open ToDoItemTests.swift in the editor and ToDoItem.swift in the Assistant Editor.
We would like to be able to compare to-do items using XCTAssertEqual. Add the
following test to ToDoItemTests to drive the implementation of the Equatable
conformance:

func text_EqualItems_AreEqual() {
 let first = ToDoItem(title: "Foo")
 let second = ToDoItem(title: "Foo")

 XCTAssertEqual(first, second)
}

A Test-Driven Data Model

[71]

The static analyzer tells us that it Cannot invoke 'XCTAssertEqual' with an
argument list of type '(ToDoItem, ToDoItem)'. This is because ToDoItem is not
Equatable. Make ToDoItem conform to Equatable like this:

struct ToDoItem : Equatable {
 // ...
}

Now, we get an error saying that 'ToDoItem' does not conform to the 'Equatable'
protocol. The Equatable protocol looks like this for Swift 3.0:

public protocol Equatable {
 public static func ==(lhs: Self, rhs: Self) -> Bool
}

So, we need to implement the == equivalence operator for ToDoItem. The operator needs to
be defined in a global scope. At the end of ToDoItem.swift outside of the ToDoItem class,
add the following code:

func ==(lhs: ToDoItem, rhs: ToDoItem) -> Bool {
 return true
}

Run the tests. The tests pass and, again, there is nothing to refactor.

The implementation of the equivalence operator is strange because it doesn't check any
properties of the items that are passed in. But following the rules of TDD, it is good enough.
Let's move on to more complicated tests:

func test_Items_WhenLocationDiffers_AreNotEqual() {
 let first = ToDoItem(title: "",
 location: Location(name: "Foo"))
 let second = ToDoItem(title: "",
 location: Location(name: "Bar"))

 XCTAssertNotEqual(first, second)
}

A Test-Driven Data Model

[72]

The two items differ in terms of their location names. Run the test. It fails because the
equivalence operator always returns true. But it should return false if the locations differ.
Replace the implementation of the operator with this code:

func ==(lhs: ToDoItem, rhs: ToDoItem) -> Bool {
 if lhs.location != rhs.location {
 return false
 }
 return true
}

Again, the static analyzer complains. This is because this time, Location does not conform
to Equatable. In fact, Location needs to be Equatable too. But before we can move to
Location and its tests, we need to have all tests pass again. Replace the highlighted line in
the equivalence operator to make all the tests pass again:

func ==(lhs: ToDoItem, rhs: ToDoItem) -> Bool {
 if lhs.location?.name != rhs.location?.name {
 return false
 }
 return true
}

For now, we just test whether the names of the locations differ. Later, when Location
conforms to Equatable, we will be able to compare locations directly.

Open LocationTests.swift in the editor and Location.swift in the Assistant Editor.
Add the following test to LocationTests:

func test_EqualLocations_AreEqual() {
 let first = Location(name: "Foo")
 let second = Location(name: "Foo")
 XCTAssertEqual(first, second)
}

Again, this code does not compile because Location does not conform to Equatable. Let's
add the Equatable conformance. Replace the struct declaration with this:

struct Location : Equatable {
 // ...
}

A Test-Driven Data Model

[73]

Add the dummy implementation of the equivalence operator in Location.swift, but
outside of the Location struct:

public static func ==(lhs: Location,
 rhs: Location) -> Bool {

 return true
}

Run the tests. All the tests pass again, and at this point, there is nothing to refactor. Add the
following test:

func test_Locations_WhenLatitudeDiffers_AreNotEqual() {
 let firstCoordinate =
 CLLocationCoordinate2D(latitude: 1.0,
 longitude: 0.0)
 let first = Location(name: "Foo",
 coordinate: firstCoordinate)

 let secondCoordinate =
 CLLocationCoordinate2D(latitude: 0.0,
 longitude: 0.0)
 let second = Location(name: "Foo",
 coordinate: secondCoordinate)

 XCTAssertNotEqual(first, second)
}

The two locations differ in terms of latitude. Run the test. This test fails because the
equivalence operator always returns true. Replace the implementation of the equivalence
operator with the following code:

public static func ==(lhs: Location,
 rhs: Location) -> Bool {

 if lhs.coordinate?.latitude !=
 rhs.coordinate?.latitude {

 return false
 }

 return true
}

A Test-Driven Data Model

[74]

In case the latitude of the location's coordinates differ, the operator returns false;
otherwise, it returns true. Run the tests. All the tests pass again. Next, we need to make
sure that the locations that differ in terms of longitude are not equal. Add the following
test:

func test_Locations_WhenLongitudeDiffers_AreNotEqual() {
 let firstCoordinate =
 CLLocationCoordinate2D(latitude: 0.0,
 longitude: 1.0)
 let first = Location(name: "Foo",
 coordinate: firstCoordinate)

 let secondCoordinate =
 CLLocationCoordinate2D(latitude: 0.0,
 longitude: 0.0)
 let second = Location(name: "Foo",
 coordinate: secondCoordinate)

 XCTAssertNotEqual(first, second)
}

Run the test. This test fails because we do not check longitude in the equivalence operator
yet. Add the highlighted lines to the operator:

public static func ==(lhs: Location,
 rhs: Location) -> Bool {

 if lhs.coordinate?.latitude !=
 rhs.coordinate?.latitude {

 return false
 }
 if lhs.coordinate?.longitude !=
 rhs.coordinate?.longitude {

 return false
 }

 return true
}

A Test-Driven Data Model

[75]

Run the tests. All the tests pass again. The last two tests that we have written are very
similar to each other. The only difference is the definition of the first coordinate. Let's
refactor the test code to make it clearer to read and easier to maintain. First, we create a
method that performs the tests that are given different values for the Location properties:

func assertLocationNotEqualWith(firstName: String,
 firstLongLat: (Double, Double)?,
 secondName: String,
 secondLongLat: (Double, Double)?) {
 var firstCoord: CLLocationCoordinate2D? = nil
 if let firstLongLat = firstLongLat {
 firstCoord =
 CLLocationCoordinate2D(latitude: firstLongLat.0,
 longitude: firstLongLat.1)
 }
 let firstLocation =
 Location(name: firstName,
 coordinate: firstCoord)
 var secondCoord: CLLocationCoordinate2D? = nil
 if let secondLongLat = secondLongLat {
 secondCoord =
 CLLocationCoordinate2D(latitude: secondLongLat.0,
 longitude: secondLongLat.1)
 }
 let secondLocation =
 Location(name: secondName,
 coordinate: secondCoord)
 XCTAssertNotEqual(firstLocation, secondLocation)
}

This method takes two strings and optional tuples, respectively. With this information, it
creates two Location instances and compares them using XCTAssertNotEqual.

Now, we can replace test_Locations_WhenLatitudeDiffers_AreNotEqual() with
this:

func test_Locations_WhenLatitudeDiffers_AreNotEqual() {
 assertLocationNotEqualWith(firstName: "Foo",
 firstLongLat: (1.0, 0.0),
 secondName: "Foo",
 secondLongLat: (0.0, 0.0))
}

A Test-Driven Data Model

[76]

To check whether this test still works, we need to make it fail by removing some
implementation code. If the test passes again when we re-add the code, we can be confident
that the test still works. In Location.swift, remove the check for the nonequality of
latitude:

if lhs.coordinate?.latitude != rhs.coordinate?.latitude {
 return false
}

Run the test. The test does indeed fail, but the failure shows in the line where
XCTAssertNotEqual is located:

A Test-Driven Data Model

[77]

We would like to see the failure in the test method. In Chapter 1, Your First Unit Tests, we
discussed how to change the line for which the failure is reported. The easiest way to do
this is to add the line argument to assertLocationNotEqualWith(...) and use it in
the assertion:

func assertLocationNotEqualWith(firstName: String,
 firstLongLat: (Double, Double)?,
 secondName: String,
 secondLongLat: (Double, Double)?,
 line: UInt) {

 // ...

 XCTAssertNotEqual(firstLocation,
 secondLocation,
 line: line)
}

In test_Locations_WhenLatitudeDiffers_AreNotEqual(), we need to call this
method like this:

assertLocationNotEqualWith(firstName: "Foo",
 firstLongLat: (1.0, 0.0),
 secondName: "Foo",
 secondLongLat: (0.0, 0.0),
 line: 64)

The number 64 is the line number at which the method call starts in my case. This could be
different for you. Run the tests again. The failure is now reported on the specified line.

We cannot be satisfied with this solution. A hardcoded value for the line number is a bad
idea. What if we want to add a test at the beginning of the class or add something to
setUp()? Then, we would have to change the line argument of all the calls of that
function. There has to be a better way of doing this.

C has some magic macros that are also available when writing Swift code. Replace 64 (or
whatever you have put there) with the #line magic macro. Run the tests again. Now, the
failure is reported in the line where the magic macro is. This is good enough even if the
method call is spread over several lines.

We can do better using default values for method arguments. Add a default value to the last
argument of assertLocationNotEqualWith(...):

line: UInt = #line

A Test-Driven Data Model

[78]

As the method now has a default value for the last argument, we can remove it from the
call:

assertLocationNotEqualWith(firstName: "Foo",
 firstLongLat: (1.0, 0.0),
 secondName: "Foo",
 secondLongLat: (0.0, 0.0))

Run the tests again. The failure is now reported at the beginning of the call, but without the
need to hardcode the line number. Add the code again to the equivalence operator that we
had to remove in order to make the test fail:

if lhs.coordinate?.latitude != rhs.coordinate?.latitude {
 return false
}

Run the tests to make sure that all of them pass again. Now, replace
test_Locations_WhenLongitudeDiffers_AreNotEqual() with the following code:

func test_Locations_WhenLongitudeDiffers_AreNotEqual() {

assertLocationNotEqualWith(firstName: "Foo",
 firstLongLat: (0.0, 1.0),
 secondName: "Foo",
 secondLongLat: (0.0, 0.0))
}

Run the tests. All the tests pass.

If one location has a coordinate set and the other one does not, they should be considered to
be different. Add the following test to make sure that the equivalence operator works this
way:

func test_Locations_WhenOnlyOneHasCoordinate_AreNotEqual() {

 assertLocationNotEqualWith(firstName: "Foo",
 firstLongLat: (0.0, 0.0),
 secondName: "Foo",
 secondLongLat: nil)
}

Run the tests. All the tests pass. The current implementation of the equivalence operator
already works in this way.

A Test-Driven Data Model

[79]

Right now, two locations with the same coordinate but different names are equivalent. But
we want them to be considered different. Add the following test:

func test_Locations_WhenNamesDiffer_AreNotEqual() {
 assertLocationNotEqualWith(firstName: "Foo",
 firstLongLat: nil,
 secondName: "Bar",
 secondLongLat: nil)
}

This test fails. Add the following if condition right before the return true line in the
implementation of the equivalence operator:

if lhs.name != rhs.name {
 return false
}

Run the tests again. All the tests pass and there is nothing to refactor.

The Location struct now conforms to Equatable. Let's go back to ToDoItem and continue
where we left off.

First, let's refactor the current implementation of the equivalence operator of ToDoItem.
Now that Location conforms to Equatable, we can check whether the two locations are
different using the != operator (which we get for free by implementing the == operator):

public static func ==(lhs: ToDoItem,
 rhs: ToDoItem) -> Bool {
 if lhs.location != rhs.location {
 return false
 }
 return true
}

Run the tests. All the tests pass and there is nothing to refactor.

If one to-do item has a location and the other does not, they are not equal. Add the
following test to ToDoItemTests to make sure this is the case:

func test_Items_WhenOneLocationIsNil_AreNotEqual() {
 let first = ToDoItem(title: "",
 location: Location(name: "Foo"))
 let second = ToDoItem(title: "",
 location: nil)
 XCTAssertNotEqual(first, second)
}

A Test-Driven Data Model

[80]

The test already passes. Let's make sure that it also works the other way round. Change the
let keywords to var, and add the following code to the end of
test_Items_WhenOneLocationIsNil_AreNotEqual():

first = ToDoItem(title: "",
 location: nil)
second = ToDoItem(title: "",
 location: Location(name: "Foo"))

XCTAssertNotEqual(first, second)

Run the tests. This also works with the current implementation of the equivalence operator
of ToDoItem.

Next, if the timestamp of two to-do items differs, they are different. The following code
tests whether this is the case in our implementation:

func test_Items_WhenTimestampsDiffer_AreNotEqual() {

 let first = ToDoItem(title: "Foo",
 timestamp: 1.0)
 let second = ToDoItem(title: "Foo",
 timestamp: 0.0)

 XCTAssertNotEqual(first, second)
}

Both to-do items are equivalent to each other, except for the timestamp. The test fails
because we do not compare the timestamp in the equivalence operator yet. Add the
following if condition in the operator implementation right before the return true
statement:

if lhs.timestamp != rhs.timestamp {
 return false
}

Run the tests. All the tests pass and there is nothing to refactor. From the tests about the
equivalence of the Location instances, we already know that this implementation is
enough even if one of the timestamps is nil. So, no more tests for the equivalence of
timestamps are needed.

A Test-Driven Data Model

[81]

Now, let's make sure that two to-do items that differ in their descriptions are not equal. Add
this test:

func test_Items_WhenDescriptionsDiffer_AreNotEqual() {

 let first = ToDoItem(title: "Foo",
 itemDescription: "Bar")
 let second = ToDoItem(title: "Foo",
 itemDescription: "Baz")

 XCTAssertNotEqual(first, second)
}

Adding the following if condition to the equivalence operator right before the return
true statement, makes the test pass:

if lhs.itemDescription != rhs.itemDescription {
 return false
}

The last thing we have to check is whether two to-do items differ if their titles differ. Add
this test:

func test_Items_WhenTitlesDiffer_AreNotEqual() {
 let first = ToDoItem(title: "Foo")
 let second = ToDoItem(title: "Bar")

 XCTAssertNotEqual(first, second)
}

With all the experience we have gained in this section, the implementation nearly writes
itself. Add another if condition again right before the return true statement:

if lhs.title != rhs.title {
 return false
}

Run the tests. All the tests pass.

Now that ToDoItem and Location conform to Equatable, the to-do items and locations
can be used directly in XCTAssertEqual. Go through the tests and make the necessary
changes.

A Test-Driven Data Model

[82]

Removing all items
The ItemManager class needs to provide a method to remove all items. Add the following
code to ItemManagerTests:

func test_RemoveAll_ResultsInCountsBeZero() {

 sut.add(ToDoItem(title: "Foo"))
 sut.add(ToDoItem(title: "Bar"))
 sut.checkItem(at: 0)

 XCTAssertEqual(sut.toDoCount, 1)
 XCTAssertEqual(sut.doneCount, 1)

 sut.removeAll()
}

This code adds two to-do items to the manager and checks one item. Then, it asserts that the
count of the items has the expected values and calls removeAll().

The code does not compile because removeAll() is not implemented yet. Add the minimal
implementation needed to make the test code compilable:

func removeAll() {
}

Now, add the following assertions to test_RemoveAll_ResultsInCountsBeZero() to
check whether the items have been removed:

XCTAssertEqual(sut.toDoCount, 0)
XCTAssertEqual(sut.doneCount, 0)

To make this test pass, we need to remove all the items from the underlying arrays. Add the
following implementation in removeAll():

toDoItems.removeAll()
doneItems.removeAll()

Run the tests. All the tests pass and there is nothing to refactor.

A Test-Driven Data Model

[83]

Ensuring uniqueness
As mentioned earlier, we would like to make sure that each to-do item can only be added to
the list once. To ensure this behavior is implemented, add the following test to
ItemManagerTests:

func test_Add_WhenItemIsAlreadyAdded_DoesNotIncreaseCount() {

 sut.add(ToDoItem(title: "Foo"))
 sut.add(ToDoItem(title: "Foo"))

 XCTAssertEqual(sut.toDoCount, 1)
}

This test fails. To make the test pass, we need to check whether the item we want to add to
the list is already contained in the list. Fortunately, Swift provides a method on the array
type that does exactly this. Replace add(_:) with the following code:

func add(_ item: ToDoItem) {

 if !toDoItems.contains(item) {

 toDoItems.append(item)
 }
}

Run the tests. All the tests pass, and we are finally finished with the implementation of our
model.

Summary
In this chapter, we took a look at how to implement the model layer of our app using TDD.
We followed the TDD workflow (red, green, and refactor) to guide the implementation of
the required micro features.

We implemented two model structs and a manager class. We added conformance to the
Equatable protocol for the model structs in order to make sure that the same to-do item
cannot be added to the list more than once. We also encapsulated the internals of the
manager class with methods to add, receive, and remove to-do items from the manager.

TDD led us to a clean, simple, and fully-tested model.

In the next chapter, we will implement the controller layer and the view layer following the
Model-View-Controller design pattern using TDD.

4
A Test-Driven View Controller

View controllers are glue-like components that hold an app together. They are responsible
for the moderation between the model and the view layer. As moderators, they are highly-
specialized according to the needs of the model and the user interface they belong to. As a
result, the controller layer is often not reusable in other parts of the app, or even in other
apps.

As the controller is responsible for many different tasks, it often becomes large. It is a good
practice, therefore, to construct the controller layer of a specific feature out of different
controller classes. For instance, beginners often put their networking code into the same
class that is responsible for filling the UI with information. This results in a so-called god
class, a class that knows and controls everything.

Such classes are hard to write, read, and maintain, and should, therefore, be avoided. To
make the view controller that's showing the list of items clean, we need to separate the data
source and delegate the table view out into its own class, the data provider. The
communication between the view controller and the data provider can be defined using
protocols. This way, you can swap one implementation for another by just conforming to
the protocol. In addition to this, when defining a protocol, you need to think about how to
make the API surface (that is, the number of methods that are exposed to other classes)
small and easy to understand. The result of this will be a modular architecture with a clear
separation of tasks into different classes and structs.

In this chapter, we will build the different classes that make up the controller layer of our
app. In a later chapter, we will put all the modules we have implemented together in a
running app.

We'll cover the following topics in this chapter:

Implementing ItemListViewController
Implementing DataProvider

A Test-Driven View Controller

[85]

Implementing DetailViewController
Implementing InputViewController

Implementing ItemListViewController
Let's start with the list showing the to-do items. This is the most important view controller.
It is the first view that a user sees when the app has started.

This controller is also responsible for presenting the input screen that allows the user to add
to-do items to the list. In addition, it also presents the detail screen that shows the details of
selected to-do items.

We first need to structure the files in the Project Navigator in order to enable seamless
navigation between the different files. Select the three model files that we already have
(ToDoItem.swift, Location.swift, and ItemManager.swift), and hold down the
ctrl key while you click on one of the selected files. Xcode presents a menu similar to what's
shown in the following screenshot:

A Test-Driven View Controller

[86]

Select New Group from Selection and call it Model. Do the same in the test target with the
corresponding test cases.

With an easy-to-navigate project in the Project Navigator, let's return to the TDD workflow.
To drive the implementation of ItemListViewController, we need a test case to collect
the tests.

Select the ToDoTests group and add Unit Test Case Class. Put in the name
ItemListViewControllerTest and click on Next. Click on Create. As demonstrated in
the previous chapters, add the import statement @testable import ToDo and remove the
two template test methods.

The data will be presented to the user using a table view. We need a test to make sure that
ItemListViewController has a table view and that it is set after viewDidLoad(). Add
the following code to ItemListViewControllerTests:

func test_TableViewIsNotNilAfterViewDidLoad() {
 let sut = ItemListViewController()
}

The static analyzer complains that ItemListViewController is an unresolved identifier.
We have seen this message so often that we already expected this to happen. There is no
ItemListViewController yet. Select the ToDo group in the Project Navigator in Xcode,
and go to File | New | File.... Create iOS | Source | Cocoa Touch Class, name it
ItemListViewController, make it a subclass of UIViewController, and click on Next.
Click on Create. Remove the code within the ItemListViewController class so that it
looks like the following snippet:

import UIKit

class ItemListViewController: UIViewController {
}

To make writing tests easier, set up the Xcode window as you did earlier, with the test case
on the left-hand side and the implementation code in the Assistant Editor on the right-hand
side. Run the tests to make sure that we have set up everything correctly.

Add the following code at the end of test_TableView_AfterViewDidLoad_IsNotNil():

sut.loadViewIfNeeded()

XCTAssertNotNil(sut.tableView)

A Test-Driven View Controller

[87]

The line sut.loadViewIfNeeded() triggers the call of viewDidLoad(). Never call
viewDidLoad() directly.

Again, the static analyzer complains. This is because of Value of type
'ItemListViewController' has no member 'tableView'. To fix this, add the
tableView property:

var tableView: UITableView?

Run the test. It should compile but fail. This is because we are not testing whether the
property is present, but if the property is set to a value different from nil after
viewDidLoad() has been called, and we have not done anything in the implementation to
set it to some value.

This is the simplest implementation to make the test pass:

override func viewDidLoad() {
 super.viewDidLoad()

 tableView = UITableView()
}

Run the tests to make sure that all the tests pass.

After following the rules of TDD, we've done enough for now and the code looks clean, so
there should be nothing to refactor. At this point, however, we need to make a decision. Do
we want to implement the UI using Interface Builder (IB) in Xcode, or do we want to
implement it completely in code?

IB has improved a lot over the last few years, and using storyboards can speed up the
development of a small app, especially when you are not experienced in building user
interfaces in code. In addition to this, you get a preview of what the UI will look like while
you are building it. For larger projects, I would recommend that you at least have a look at
how UIs are built without IB, because it is often easier to reason and maintain that way.

We will use IB for our project because TDD does not help a lot with UIs, and using IB gives
us a clear-cut idea of what to test and what not to, as you would normally test the position
and color of your UI elements.

A Test-Driven View Controller

[88]

When we created the project for our app, Xcode added a storyboard file,
Main.storyboard, for the UI. Open Project Navigator and click on Main.storyboard to
open it in IB. You will see something like the following screenshot:

There is already a scene for a view controller in the storyboard, and there is also a
ViewController.swift file from the Xcode template of a Single View Application. We
won't use it, so let's remove the file and scene. First, select ViewController.swift and
press the Delete key. Then, select the View Controller scene in the storyboard and press the
Delete key again.

A Test-Driven View Controller

[89]

Now we have a clean slate to build the UI. Open the object library by going to View |
Utilities | Show Object Library, and drag View Controller onto the storyboard. Change
the class in Identity Inspector to ItemListViewController. Add a table view to the View
Controller, make it fill up the scene, and add layout constraints to the edges of the super
view as follows:

A Test-Driven View Controller

[90]

Open ItemListViewController.swift in the Assistant Editor and replace the
tableView property with the following snippet:

@IBOutlet var tableView: UITableView!

Now, hold the ctrl key and drag from the table view in the storyboard scene to the
tableView property to connect the two. Remove the implementation of viewDidLoad()
and run the tests. The test_TableView_AfterViewDidLoad_IsNotNil() test fails
because the tableView property is nil after viewDidLoad() is called. The reason for this
is that we are not using the storyboard to instantiate the View Controller yet. By calling the
ItemListViewController() initializer, we use the simple init() initializer. But we
need to use the storyboard to create the Item List View Controller.

Open the storyboard and set Storyboard ID to ItemListViewController in Identity
Inspector. Replace test_TableView_AfterViewDidLoad_IsNotNil() with the
following code:

func test_TableView_AfterViewDidLoad_IsNotNil() {
 let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
 let viewController =
 storyboard.instantiateViewController(
 withIdentifier: "ItemListViewController")
 let sut = viewController
 as! ItemListViewController
 sut.loadViewIfNeeded()
 XCTAssertNotNil(sut.tableView)
}

This code first gets a reference to the Main storyboard, and then it instantiates an instance of
ItemListViewController from the storyboard. This works because we have set the
Storyboard ID.

Run the tests. Now, all the tests pass.

A Test-Driven View Controller

[91]

As mentioned previously, we would like to put the data source and delegate of the table
view into a separate class. Add the following test to ItemListViewControllerTests to
drive the implementation:

func test_LoadingView_SetsTableViewDataSource() {
 let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
 let viewController =
 storyboard.instantiateViewController(
 withIdentifier: "ItemListViewController")
 let sut = viewController
 as! ItemListViewController

 sut.loadViewIfNeeded()

 XCTAssertTrue(sut.tableView.dataSource is ItemListDataProvider)
}

The assertion makes sure that the data source of the table view is of
type ItemListDataProvider. To make the test compilable, we first need to add the
ItemListDataProvider class. Select the ToDo group in the Project Navigator, and add an
iOS | Source | Cocoa Touch Class called ItemListDataProvider as a subclass of
NSObject.

Now the test compiles, but it fails because we need to set an instance of
ItemListDataProvider as the data source of the table view. Let's add a property for the
data provider to ItemListViewController as follows:

@IBOutlet var dataProvider: ItemListDataProvider!

We will connect the data provider with an element in the storyboard. Doing this has the
advantage of the data provider being instantiated when the View Controller is loaded from
the storyboard.

A Test-Driven View Controller

[92]

Open Main.storyboard and drag an object from the object library into the scene in the
Document Outline of the storyboard, as shown in the following screenshot:

A Test-Driven View Controller

[93]

In the Identity Inspector, set the class to ItemListDataProvider. Hold down the ctrl key,
and drag the Document Outline from the Item List View Controller to the Item List Data
Provider, as shown in the following screenshot:

In the appearing pop-up, select dataProvider. This connects the dataProvider property in
ItemListViewController to the Item List Data Provider object in the storyboard.
Remember that we need to make sure that the data provider is set as the data source of the
table view after viewDidLoad() is called. Add the following implementation of
viewDidLoad() to ItemListViewController:

override func viewDidLoad() {
 super.viewDidLoad()

 tableView.dataSource = dataProvider
}

The static analyzer complains that ItemListDataProvider does not conform to the
UITableViewDataSource protocol. To fix this, open ItemListDataProvider and replace
the class implementation with the following code:

class ItemListDataProvider: NSObject, UITableViewDataSource {

 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 return 0
 }

A Test-Driven View Controller

[94]

 func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 return UITableViewCell()
 }
}

Run the tests. All the tests pass, so let's take a look at whether there is something to refactor.
In ItemListViewController, dataProvider is of the type ItemListDataSource. This
is needed to make the connection between IB and the property. Now that we have the
connection, we can replace the type with the UITableViewDataSource protocol:

@IBOutlet var dataProvider: UITableViewDataSource!

With this change, ItemListViewController only knows that dataProvider conforms to
the UITableViewDataSource protocol. This means that the two classes are decoupled
from each other, and there is a defined interface in the form of the protocol.

Run the tests to make sure that everything still works.

There is more to refactor. We have some code duplication in the test methods. Remove the
following code from the test methods:

let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
let viewController =
 storyboard.instantiateViewController(
 withIdentifier: "ItemListViewController")
let sut = viewController as! ItemListViewController
sut.loadViewIfNeeded()

Add the var sut: ItemListViewController! property to
ItemListViewControllerTests, and add the following code to setUp():

let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
let viewController =
 storyboard.instantiateViewController(
 withIdentifier: "ItemListViewController")
sut = viewController as! ItemListViewController
sut.loadViewIfNeeded()

Run the tests again. Everything should still work.

A Test-Driven View Controller

[95]

Next, we need to make sure that the data provider is also the delegate of the table view.
Add the following test to ItemListViewControllerTests:

func test_LoadingView_SetsTableViewDelegate() {
 XCTAssertTrue(sut.tableView.delegate is ItemListDataProvider)
}

To make the test pass, add the UITableViewDelegate conformance in the declaration of
the dataProvider property, such that it looks like this:

@IBOutlet var dataProvider: (UITableViewDataSource & UITableiewDelegate)!

Add the following line at the end of viewDidLoad():

tableView.delegate = dataProvider

Run the tests. All the tests pass.

The data source and delegate need to be the same instance because otherwise selecting a cell
could result in showing the details of a completely different item. Add the following test:

func test_LoadingView_DataSourceEqualDelegate() {
 XCTAssertEqual(sut.tableView.dataSource as? ItemListDataProvider,
 sut.tableView.delegate as? ItemListDataProvider)
}

Run the tests. All the tests pass. This is already implemented.

Implementing ItemListDataProvider
In the previous section, we created a class to act as the data source and delegate for the item
list table view. In this section, we will implement its properties and methods, but we first
need a test case class for ItemListDataProvider.

Conducting the first tests
Open Project Navigator and select the ToDoTests group. Add a new Unit Test Case
Class and call it ItemListDataProviderTests. Add the @testable import ToDo
import statement and remove the two test template methods.

A Test-Driven View Controller

[96]

The table view should have two sections--one for unchecked to-do items and the other for
checked items. Add the following test to ItemListDataProviderTests:

func test_NumberOfSections_IsTwo() {
 let sut = ItemListDataProvider()
 let tableView = UITableView()
 tableView.dataSource = sut

 let numberOfSections = tableView.numberOfSections
 XCTAssertEqual(numberOfSections, 2)
}

First, we create an instance of ItemListDataProvider, set up the table view, and then we
check whether the table view has the expected number of sections. This test fails because
the default number of sections for a table view is one. Open ItemListDataProvider and
add the following code:

func numberOfSections(
 in tableView: UITableView) -> Int {

 return 2
}

This is enough to make all the tests pass again.

The number of rows in the first section should be the same as the number of to-do items.
But where do we get the to-do items from? ItemListDataProvider needs a property of
the type ItemManager to ask it for the items to present in the table view. Add the following
code to ItemListDataProviderTests:

func test_NumberOfRows_Section1_IsToDoCount() {
 let sut = ItemListDataProvider()
 let tableView = UITableView()
 tableView.dataSource = sut

 sut.itemManager?.add(ToDoItem(title: "Foo"))
}

A Test-Driven View Controller

[97]

At this point, we have to stop writing this test because the static analyzer complains
'ItemListDataProvider' has no member 'itemManager'. Open
ItemListDataProvider and add the property var itemManager: ItemManager?. This
makes the test compilable again. Add the following code at the end of
test_NumberOfRows_InFirstSection_IsToDoCount():

XCTAssertEqual(tableView.numberOfRows(inSection: 0), 1)

sut.itemManager?.add(ToDoItem(title: "Bar"))

XCTAssertEqual(tableView.numberOfRows(inSection: 0), 2)

First, we check whether the number of rows in the first section is equal to one after we have
added an item to the item manager. Then, we add another item and check whether the
number of rows is equal to two. Run the test. This test fails because the number of rows in
the table view is always zero, as we have not implemented the corresponding data source
method to return the correct values. Open ItemListDataProvider and replace
tableView(_:numberOfRowsInSection:) with the following code:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 return itemManager?.toDoCount ?? 0
}

This implementation returns the number of to-do items from itemManager if
itemManager is not nil; otherwise, it returns zero. Run the tests. Oh, they still fail because
the number of rows in the first section is always zero.

The reason for this is that the property required to hold a reference to the item manager is
optional, and we never set a value for this property. Therefore, the value of itemManager is
always nil, and the number of rows returned from the data source method is always zero.

At this point, it is not clear who is going to set the item manager to itemManager. We will
decide this in a later chapter when we put all the modules together to form a complete app.
For the tests, we will set itemManager in them. Add the following line right after let sut
= ItemListDataProvider() in
test_NumberOfRows_InFirstSection_IsToDoCount():

sut.itemManager = ItemManager()

A Test-Driven View Controller

[98]

Run the tests. Now the first assertion passes but the second one, asserting that the number
of rows is two after we added another item, fails. The reason for this is that table views
seem to cache the values returned from tableView(_:numberOfRowsInSection:). This
is one of the many performance optimizations that are built into table views. We, as
developers, need to tell the table view that the data source has changed by calling
reloadData(). Add the following code right after the line where the second to-do item is
added to the item manager:

tableView.reloadData()

Run the tests. All the tests pass. Before we move on, let's check whether there is anything to
refactor. The implementation code looks nice and clean now, but the tests show some
duplication. To refactor, let's first add two properties to ItemListDataProviderTests:

var sut: ItemListDataProvider!
var tableView: UITableView!

Then, add the following setup code to setUp():

sut = ItemListDataProvider()
sut.itemManager = ItemManager()

tableView = UITableView()
tableView.dataSource = sut

Finally, remove the following code from the test methods because it is no longer needed:

let sut = ItemListDataProvider()
sut.itemManager = ItemManager()

let tableView = UITableView()
tableView.dataSource = sut

Run the tests again to make sure that everything still works.

If the user checks an item in the first section, it should appear in the second section. Add the
following test to make sure the number of rows in the second section is the same as the
number of completed items in the item manager:

func test_NumberOfRows_Section2_IsToDoneCount() {
 sut.itemManager?.add(ToDoItem(title: "Foo"))
 sut.itemManager?.add(ToDoItem(title: "Bar"))
 sut.itemManager?.checkItem(at: 0)

 XCTAssertEqual(tableView.numberOfRows(inSection: 1), 1)

A Test-Driven View Controller

[99]

 sut.itemManager?.checkItem(at: 0)
 tableView.reloadData()

 XCTAssertEqual(tableView.numberOfRows(inSection: 1), 2)
}

This test is similar to the earlier test. First, we add items to the item manager, and then we
check an item and see whether the number of rows in the second section matches our
expectations. Run the test. The test fails but look closely: the first assertion passes. This is
because the implementation of tableView(_:numberOfRowsInSection:) returns the
number of to-do items, and when the first assertion is called this is the same as the expected
number of done items. This example shows that it is important to start with a failing test,
otherwise, we cannot be sure we are testing the real thing. So, remove the second assertion
and make the test red by replacing tableView(_:numberOfRowsInSection:) with the
following code:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 let numberOfRows: Int
 switch section {
 case 0:
 numberOfRows = itemManager?.toDoCount ?? 0
 case 1:
 numberOfRows = 0
 default:
 numberOfRows = 0
 }
 return numberOfRows
}

Run the tests. Now, the assertion fails because the number of rows in the second section is
always zero. To make the test pass, replace the assignment in case 1 with the following
line of code:

numberOfRows = 1

Run the tests again. The tests pass. Now, add the
XCTAssertEqual(tableView.numberOfRows(inSection: 1), 2) assertion at the end
of test_NumberOfRows_InSecondSection_IsToDoneCount() again.The test fails again.
This is a good thing, however, because it means that we are actually testing whether the
number of rows represents the number of items in the item manager. Replace the
assignment in case 1 one more time with the following line of code:

numberOfRows = itemManager?.doneCount ?? 0

A Test-Driven View Controller

[100]

Run the tests again. All the tests pass. Let's now check whether there is something to
refactor; indeed, there is. The implementation does not look good. There is a question mark
at the end of itemManager, and in the switch statement, we need to implement the
default case even though we know that there will never be more than two sections.

To improve the code, we start by adding an enum for the sections. Add the following code
in ItemListDataProvider.swift but outside the ItemListDataProvider class:

enum Section: Int {
 case toDo
 case done
}

Now, replace the implementation of tableView(_:numberOfRowsInSection:) with the
following code:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 guard let itemManager = itemManager else { return 0 }
 guard let itemSection = Section(rawValue: section) else {
 fatalError()
 }

 let numberOfRows: Int

 switch itemSection {
 case .toDo:
 numberOfRows = itemManager.toDoCount
 case .done:
 numberOfRows = itemManager.doneCount
 }
 return numberOfRows
}

This looks much better. We first check whether itemManager is nil using guard and
return zero if this is the case. Then, we create itemSection from the argument section.
The guard statement makes it clear that a value for the section argument can only be 0 or
1 because the Section enum only has two cases.

Run the tests to make sure that everything still works.

The to-do items should be presented in the table view using a custom table view cell
because the cells provided by UIKit can only show an image and two text strings. In our
case, we need to show three text strings because we want to show the title, location, and the
due date.

A Test-Driven View Controller

[101]

Add the following test to make sure that tableView(_:cellForRowAt:) returns our
custom cell:

func test_CellForRow_ReturnsItemCell() {
 sut.itemManager?.add(ToDoItem(title: "Foo"))
 tableView.reloadData()

 let cell = tableView.cellForRow(at: IndexPath(row: 0,
 section: 0))

 XCTAssertTrue(cell is ItemCell)
}

Xcode complains that ItemCell is an undeclared type. Open Project Navigator, add an iOS
| Source | Cocoa Touch Class, and call it ItemCell. Make it a subclass of
UITableViewCell. Store it in the Controller folder, and ensure that it is added to the
ToDo target and not to the ToDoTests target. Remove all the template code, such that the
file looks as follows:

import UIKit

class ItemCell: UITableViewCell {
}

Now, the test compiles but still fails. Replace the return statement in
tableView(_:cellForRowAt:) with the following line of code:

return ItemCell()

This change is enough to make the tests pass, but it is clearly not enough for the feature that
we want to implement. For performance reasons, table view cells need to be dequeued.
Before we can write a test that makes sure that a cell is dequeued, we need to introduce a
very important concept in unit testing--fake objects.

Fake objects
Ideally, a unit test should test one microfeature and nothing else. However, in object-
oriented programming (OOP), objects talk to each other, exchange data, and react to the
changes of their neighbors. As a result, when writing a test, it is often difficult to isolate one
specific module from another. Without isolation, a test does not test just one microfeature,
but many.

A Test-Driven View Controller

[102]

To isolate modules from each other, we can use a concept called fake objects. Fake objects
act as placeholders for real objects or modules, but they are controlled by test code. This
means a test sets up fake objects, controls their behavior, and tests whether the system
under the test reacts as expected.

The most important fake objects are mocks, stubs, and fakes. These are explained as follows:

Mocks: They act as recorders. They register whether the system under a test calls
the expected methods of another instance with expected arguments. For example,
if we have class A that should call method b() of class B, when something
happens, we would create a mock for B that sets a Boolean value to true in case
b() is called. In the test, we use this Boolean value to assert whether b() has
been called.
Stubs: These are used when we need defined return values from a method. In a
test, it is often useful to have a fixed hardcoded return value for a method that the
system under the test calls. The test then asserts that the system under test reacts
in an expected way to the defined return value. This makes it easy to test many
different scenarios without complicated setups.
Fakes: They act as stand-ins for real objects that a system under test
communicates with. They are needed to make the code compile, but they are not
needed to assert that something expected has happened. Fakes are often used
when they are easier to set up than the real objects, or when we need to make
sure that the test is independent of the implementation of the real object.

For the next test, we will need a table view mock.

Using mocks
As mentioned in the previous section, table view cells should be dequeued. To make sure
that this happens, we need a test. The dequeuing is done by calling the
dequeueReusableCell(withIdentifier:for:) method on the table view. The table
view then checks whether there is a cell that can be reused. If not, it creates a new cell and
returns it. We are going to use a table view mock to register when the method is called.

In Swift, classes can be defined within other classes. In the case of mocks, this is useful
because, this way, the mocks are only visible and accessible at the point where they are
needed.

A Test-Driven View Controller

[103]

Add the following code to ItemListDataProviderTests.swift, outside of the
ItemListDataProviderTests class:

extension ItemListDataProviderTests {
 class MockTableView: UITableView {
 var cellGotDequeued = false

 override func dequeueReusableCell(
 withIdentifier identifier: String,
 for indexPath: IndexPath) -> UITableViewCell {

 cellGotDequeued = true

 return super.dequeueReusableCell(withIdentifier: identifier,
 for: indexPath)
 }
 }
}

We have used an extension of ItemListDataProviderTests to define a mock of
UITableView. Our mock uses a Boolean property to register when
dequeueReusableCell(withIdentifier:for:) is called.

Add the following test to ItemListDataProviderTests:

func test_CellForRow_DequeuesCellFromTableView() {
 let mockTableView = MockTableView()
 mockTableView.dataSource = sut
 mockTableView.register(ItemCell.self,
 forCellReuseIdentifier: "ItemCell")

 sut.itemManager?.add(ToDoItem(title: "Foo"))
 mockTableView.reloadData()

 _ = mockTableView.cellForRow(at: IndexPath(row: 0, section: 0))

 XCTAssertTrue(mockTableView.cellGotDequeued)
}

In the test, we first create an instance and set up our table view mock. Then, we add an item
to the item manager of sut. Next, we call cellForRow(at:) to trigger the method call that
we want to test. Finally, we assert that the table view cell is dequeued.

Run this test. It fails because the cell has not yet been dequeued. Replace the
implementation of tableView(_:cellForRowAt:) with the following code:

func tableView(_ tableView: UITableView,

A Test-Driven View Controller

[104]

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ItemCell",
 for: indexPath)

 return cell
}

Run the tests. Now, the last added test succeeds, but
test_CellForRow_ReturnsItemCell() fails. The reason for this is that we need to
register a cell when we want to make use of the automatic dequeuing of cells in
UITableView. There are three ways to register a cell. Firstly, we can do this in code, just as
we did in test_CellForRow_DequeuesCellFromTableView(). Secondly, we can do this
by registering a nib for the cell. Thirdly, it can be done by adding a cell with the used reuse
identifier to the storyboard. We will implement the third way because we are already using
a storyboard for the app.

Open Main.storyboard in the editor and add a Table View Cell to the Table View:

A Test-Driven View Controller

[105]

In the Identity Inspector, change the class of the cell to ItemCell:

In the Attribute Inspector, set Identifier to ItemCell:

Next, we need to set up the test case such that it uses the storyboard to create the table view.
First, add the following property to ItemListDataProviderTests:

 var controller: ItemListViewController!

Then, replace setUp() with the following code:

override func setUp() {
 super.setUp()

 sut = ItemListDataProvider()
 sut.itemManager = ItemManager()

A Test-Driven View Controller

[106]

 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 controller = storyboard.instantiateViewController(
 withIdentifier: "ItemListViewController") as!
 ItemListViewController

 controller.loadViewIfNeeded()

 tableView = controller.tableView
 tableView.dataSource = sut
}

Instead of creating a table view using an UITableView initializer, we instantiate an instance
of ItemListViewController from the storyboard and use its table view. The
controller.loadViewIfNeeded() call is needed because, otherwise, the table view is
nil.

Run the tests. All the tests pass and there should be nothing to refactor.

After the cell is dequeued, the name, location, and due date should be set to labels in the
cell. A common pattern in the implementation of table view cells in iOS is to implement a
configCell(with:) method in the cell class. The table view data source then needs to call
this method in tableView(_:cellForRowAt:).

To make sure that configCell(with:) is called after the cell is dequeued, we will write a
test that uses a table view cell mock. Add the following mock class after the table view
mock:

class MockItemCell : ItemCell {
 var configCellGotCalled = false

 func configCell(with item: ToDoItem) {
 configCellGotCalled = true
 }
}

The mock registers when configCell(with:) is called by setting configCellGotCalled
to true. Add the following test to ItemListDataProviderTests:

func test_CellForRow_CallsConfigCell() {

 let mockTableView = MockTableView()
 mockTableView.dataSource = sut
 mockTableView.register(
 MockItemCell.self,
 forCellReuseIdentifier: "ItemCell")

A Test-Driven View Controller

[107]

 let item = ToDoItem(title: "Foo")
 sut.itemManager?.add(item)
 mockTableView.reloadData()

 let cell = mockTableView
 .cellForRow(at: IndexPath(row: 0, section: 0)) as! MockItemCell

 XCTAssertTrue(cell.configCellGotCalled)
}

In this test, we use a mock for the table view and for the table view cell. After setting up the
table view, we add an item to the item manager. Then, we get the first cell of the table view.
This triggers the call of tableView(_:cellForRowAt:). Finally, we assert that
configCellGotCalled of our table view cell mock is true.

Run the tests to make sure that this test fails. A failing test means that we need to write the
implementation code.

Add the following line to tableView(_:cellForRowAt:) before the cell is returned:

cell.configCell(with: ToDoItem(title: ""))

The static analyzer will complain 'UITableViewCell' has no member 'configCell'.
Obviously, we have forgotten to cast the cell to ItemCell. Add the cast at the end of the
line where the cell is dequeued as follows:

let cell = tableView.dequeueReusableCell(
 withIdentifier: "ItemCell",
 for: indexPath) as! ItemCell

Now, the static analyzer complains 'ItemCell' has no member 'configCell'. Open
ItemCell.swift and add the following empty method definition to ItemCell:

func configCell(with item: ToDoItem) {
}

Run the tests. Xcode complains in MockItemCell that configCell(with:) needs the
override keyword. In Swift, whenever you override a method of the superclass, you need
to add this keyword. This is a safety feature. In Objective-C, you may accidentally override
a method because if you don't know that the method was defined in the superclass. This is
not possible in Swift.

A Test-Driven View Controller

[108]

Add the keyword to the method definition, such that it looks like this:

override func configCell(with item: ToDoItem) {
 configCellGotCalled = true
}

Now run the tests. All the tests are green again.

Let's check whether there is something to refactor. Currently, the
test_CellForRow_CallsConfigCell() test, just asserts that the method is called, but we
can do better. The configCell(with:) method gets called with an item as a parameter.
This item should be used to fill the label of the cell. We'll extend the test to also test whether
the method is called with the expected item.

Replace the table view cell mock with the following code:

class MockItemCell : ItemCell {
 var catchedItem: ToDoItem?

 override func configCell(with item: ToDoItem) {
 catchedItem = item
 }
}

Then, replace the assertion in test_CellForRow_CallsConfigCell() with this line of
code:

XCTAssertEqual(cell.catchedItem, item)

The test now fails because we have not yet used the item from the item manager. Replace
tableView(_:cellForRowAt:) with the following code:

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ItemCell",
 for: indexPath) as! ItemCell

 if let item = itemManager?.item(at: indexPath.row) {
 cell.configCell(with: item)
 }

 return cell
}

A Test-Driven View Controller

[109]

After dequeuing the cell, we get toDoItem from the item manager; call
configCell(with:) if it succeeds.

Run the tests. All the tests pass. We are now confident that the cell is called with the right
to-do item to configure its labels.

Earlier in this chapter, we tested that the number of rows in the first section corresponds to
the number of unchecked to-do items, as well as the number of rows in the second section
to the number of checked to-do items. Now, we need to test that the configuration of the cell
in the second section passes a checked item to the configuration method.

Add the following test to ItemListDataProviderTests:

func test_CellForRow_Section2_CallsConfigCellWithDoneItem() {

 let mockTableView = MockTableView()
 mockTableView.dataSource = sut
 mockTableView.register(MockItemCell.self,
 forCellReuseIdentifier: "ItemCell")

 sut.itemManager?.add(ToDoItem(title: "Foo"))

 let second = ToDoItem(title: "Bar")
 sut.itemManager?.add(second)
 sut.itemManager?.checkItem(at: 1)
 mockTableView.reloadData()

 let cell = mockTableView
 .cellForRow(at: IndexPath(row: 0, section: 1)) as! MockItemCell

 XCTAssertEqual(cell.catchedItem, second)
}

The test is similar to the earlier one. The main difference here is that we add two to-do items
to the item manager and check the second to populate the second section of the table view.

Run the test. The test crashes because the runtime unexpectedly found nil while
unwrapping an Optional value. This is strange because the similar code has worked
before this. The reason for this crash is that UIKit optimizes the second section because the
table view has a frame of CGRect.zero. As a result, cellForRow(at:) returns nil, and
the as! forced unwrapping lets the runtime crash.

A Test-Driven View Controller

[110]

Replace the definition of the table view mock in the test with the following code:

let mockTableView = MockTableView(
 frame: CGRect(x: 0, y:0, width: 320, height: 480),
 style: .plain)

Run the tests again. It doesn't crash anymore but the test fails so, we need to write some
implementation code.

In the implementation of tableView(_:numberOfRowsInSection:), we introduced an
enum for the table view sections, which has improved the code a lot. We will take
advantage of the enum in the implementation of tableView(_:cellForRowAt:). Replace
the code of tableView(_:cellForRowAt:) with the following code:

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "ItemCell",
 for: indexPath) as! ItemCell

 guard let itemManager = itemManager else { fatalError() }
 guard let section = Section(rawValue: indexPath.section) else
 {
 fatalError()
 }

 let item: ToDoItem
 switch section {
 case .toDo:
 item = itemManager.item(at: indexPath.row)
 case .done:
 item = itemManager.doneItem(at: indexPath.row)
 }

 cell.configCell(with: item)

 return cell
}

After dequeuing the cell, we use guard to make sure that the item manager is present and
the index path section has a supported value. Then, we switch on the section and assign a
to-do item to a constant that is used to configure the cell. Finally, the cell is returned.

Run the tests. All the tests pass.

A Test-Driven View Controller

[111]

Look at the previous tests that you have written. They have duplicated code. Let's clean it
up a bit. Add the following code to MockTableView:

class func mockTableView(
 withDataSource dataSource: UITableViewDataSource)
 -> MockTableView {

 let mockTableView = MockTableView(
 frame: CGRect(x: 0, y: 0, width: 320, height: 480),
 style: .plain)

 mockTableView.dataSource = dataSource
 mockTableView.register(MockItemCell.self,
 forCellReuseIdentifier: "ItemCell")

 return mockTableView
}

This class method creates a mock table view, sets the data source, and registers the mock
table view cell.

Now, we can replace the initialization and setup of the mock table view in
test_CellForRow_DequeuesCellFromTableView(),
test_CellForRow_CallsConfigCell(), and
test_CellForRow_InSectionTwo_CallsConfigCellWithDoneItem() with the
following:

let mockTableView = MockTableView.mockTableView(withDataSource: sut)

Run the tests to make sure that everything still works.

When a table view allows the deletion of cells and a user swipes on a cell to the left, then on
the right-hand side, a red button will appear with the Delete title. In our application, we
want to use this button to check and uncheck items. The button title should show the
actions that the button is going to perform. Let's write a test to make sure that this is the
case for the first section:

func test_DeleteButton_InFirstSection_ShowsTitleCheck() {
 let deleteButtonTitle = tableView.delegate?.tableView?(
 tableView,
 titleForDeleteConfirmationButtonForRowAt: IndexPath(row: 0,
 section: 0))

 XCTAssertEqual(deleteButtonTitle, "Check")
}

A Test-Driven View Controller

[112]

This method is defined in the UITableViewDelegate protocol. Add the following line to
setUp() right after tableView.dataSource = sut:

tableView.delegate = sut

The static analyzer complains that ItemListDataProvider does not conform to
UITableViewDelegate. Add the conformance to it like this:

class ItemListDataProvider: NSObject, UITableViewDataSource,
UITableViewDelegate {
 // ...
}

Run the tests. The tests fail. In ItemListDataProvider, add the method as follows:

func tableView(
 _ tableView: UITableView,
 titleForDeleteConfirmationButtonForRowAt indexPath:
 IndexPath) -> String? {

 return "Check"
}

Now, the tests pass.

In the second section, the title of the Delete button should be Uncheck. Add the following
test to ItemListDataProviderTests:

func test_DeleteButton_InSecondSection_ShowsTitleUncheck() {
 let deleteButtonTitle = tableView.delegate?.tableView?(
 tableView,
 titleForDeleteConfirmationButtonForRowAt: IndexPath(row: 0,
 section: 1))

 XCTAssertEqual(deleteButtonTitle, "Uncheck")
}

Run the tests. The last test fails because of a missing implementation. Replace
tableView(_:titleForDeleteConfirmationButtonForRowAt:) with this:

func tableView(
 _ tableView: UITableView,
 titleForDeleteConfirmationButtonForRowAt indexPath:
 IndexPath) -> String? {

 guard let section = Section(rawValue: indexPath.section) else
 {
 fatalError()

A Test-Driven View Controller

[113]

 }

 let buttonTitle: String
 switch section {
 case .toDo:
 buttonTitle = "Check"
 case .done:
 buttonTitle = "Uncheck"
 }

 return buttonTitle
}

Here, we used guard again, as well as the Section enum to make the code clean and easy
to read.

Run the tests. All the tests pass.

Checking and unchecking items
The last thing we need to make sure in ItemListDataProvider is that we can check and
uncheck items and that they can then change sections. Unfortunately, like in the last test, we
need to invoke the responsible data source method directly in the test. We would like to
have some kind of high-level method to call to simulate the user tapping the Check and
Uncheck buttons, such as in numberOfRows(inSection:), but UIKit does not provide
these. We will see how to use UI tests to simulate the taps of the user later in the book. Here,
we will use the data source method to do this. Add the following test to
ItemListDataProviderTests:

func test_CheckingAnItem_ChecksItInTheItemManager() {
 sut.itemManager?.add(ToDoItem(title: "Foo"))

 tableView.dataSource?.tableView?(tableView,
 commit: .delete,
 forRowAt: IndexPath(row: 0,
 section: 0))

 XCTAssertEqual(sut.itemManager?.toDoCount, 0)
 XCTAssertEqual(sut.itemManager?.doneCount, 1)
 XCTAssertEqual(tableView.numberOfRows(inSection: 0), 0)
 XCTAssertEqual(tableView.numberOfRows(inSection: 1), 1)
}

A Test-Driven View Controller

[114]

This test fails because we have not implemented tableView(_:commit:forRowAt:) yet.
Add the following code to ItemListDataProvider:

func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {

 itemManager?.checkItem(at: indexPath.row)
 tableView.reloadData()
}

Run the tests. All the tests pass and there is nothing to refactor.

Next, we need to write a test for the unchecking of a to-do item. Add the following test to
ItemListDataProviderTests:

func test_UncheckingAnItem_UnchecksItInTheItemManager() {

 sut.itemManager?.add(ToDoItem(title: "First"))
 sut.itemManager?.checkItem(at: 0)
 tableView.reloadData()
 tableView.dataSource?.tableView?(tableView,
 commit: .delete,
 forRowAt: IndexPath(row: 0,
 section: 1))

 XCTAssertEqual(sut.itemManager?.toDoCount, 1)
 XCTAssertEqual(sut.itemManager?.doneCount, 0)
 XCTAssertEqual(tableView.numberOfRows(inSection: 0), 1)
 XCTAssertEqual(tableView.numberOfRows(inSection: 1), 0)
}

This test results in a crash because the code in tableView(_:commit:forRowAt:) tries to
remove an item for the unchecked items, but the corresponding array in the item manager
is already empty. Replace the implementation of tableView(_:commit:forRowAt:) with
the following code:

func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {

 guard let itemManager = itemManager else { fatalError() }
 guard let section = Section(rawValue: indexPath.section) else
 {
 fatalError()
 }

A Test-Driven View Controller

[115]

 switch section {
 case .toDo:
 itemManager.checkItem(at: indexPath.row)
 case .done:
 itemManager.uncheckItem(at: indexPath.row)
 }
 tableView.reloadData()
}

This implementation code results in a message from the static analyzer
saying 'ItemManager' has no member 'uncheckItemAtIndex'. It looks like we forgot
to add it in the previous chapter so, let's add it now. Add the following method to
ItemManager:

func uncheckItem(at index: Int) {
 let item = doneItems.remove(at: index)
 toDoItems.append(item)
}

Run the tests. All the tests pass and there is nothing to refactor.

Implementing ItemCell
We have tests that make sure that configCell(with:) gets called when the cell is
prepared. Now, we need tests to make sure that the information is set to the label of
ItemCell. You may ask, "What label?", which would be correct, as we also need tests to
make sure that ItemCell has labels in order to present the information.

Select the ToDoTests group in the Project Navigator and add a new test case. Call it
ItemCellTests. Add the import @testable import ToDo statement and remove the
two template test methods.

To be able to present the data on the screen, ItemCell needs labels. We will add the labels
in Interface Builder (IB). This means that to test whether the label is set up when the table
view cell is loaded, we need to set up the loading in a similar way to how it will be in the
app. The table view needs a data source, but we don't want to set up the real data source,
because we will then need an item manager. Instead, we will use a fake object to act as the
data source.

A Test-Driven View Controller

[116]

Add the following code to ItemCellTests.swift but outside of the ItemCellTests
class:

extension ItemCellTests {
 class FakeDataSource: NSObject, UITableViewDataSource {

 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {

 return 1
 }

 func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath)
 -> UITableViewCell {

 return UITableViewCell()
 }
 }
}

This is the minimal implementation a table-view data source needs. Note that we are
returning a plain UITableViewCell. We will see in a minute why this does not matter.
Add the following test to ItemCellTests:

func test_HasNameLabel() {
 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 let controller = storyboard
 .instantiateViewController(withIdentifier: "ItemListViewController")
 as! ItemListViewController

 controller.loadViewIfNeeded()

 let tableView = controller.tableView
 let dataSource = FakeDataSource()
 tableView?.dataSource = dataSource

 let cell = tableView?.dequeueReusableCell(
 withIdentifier: "ItemCell",
 for: IndexPath(row: 0, section: 0)) as! ItemCell

 XCTAssertNotNil(cell.titleLabel)
}

A Test-Driven View Controller

[117]

This code creates an instance of the View Controller from the storyboard, and it sets
an instance of FakeDataSource to its table-view data source. Then, it dequeues a cell from
the table view and asserts that this cell has titleLabel. This code does not compile
because 'ItemCell' has no member 'titleLabel'. Open ItemCell.swift in
Assistant Editor and add the property declaration let titleLabel = UILabel().

Run the tests. All tests pass, but the code is clearly not what we want. First, the label is not
set in the storyboard and second, the label is not added to the content view of the cell. This
means that when we run the app, the label isn't visible. To drive the implementation, we
need a failing test.

Change the assertion in test_HasNameLabel() to the following:

XCTAssertTrue(cell.titleLabel.isDescendant(of: cell.contentView))

With this assertion, we check whether the titleLabel is added to the content view of the
cell as a subview.

To make the test pass (and use the storyboard to add the label), replace the property
definition let titleLabel = UILabel() with the declaration @IBOutlet var
titleLabel: UILabel!.

Open Main.storyboard and add a label to ItemCell as follows:

Open ItemCell.swift in Assistant Editor and hold down the ctrl key while you drag from
the Label to the property to connect the two.

Run the tests. Now, all the tests pass.

The item cell also needs to show the location if one is set. Add the following test to
ItemCellTests:

func test_HasLocationLabel() {
 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 let controller = storyboard
 .instantiateViewController(
 withIdentifier:"ItemListViewController")
 as! ItemListViewController

A Test-Driven View Controller

[118]

 controller.loadViewIfNeeded()

 let tableView = controller.tableView
 let dataSource = FakeDataSource()
 tableView?.dataSource = dataSource

 let cell = tableView?.dequeueReusableCell(
 withIdentifier: "ItemCell",
 for: IndexPath(row: 0, section: 0)) as! ItemCell

 XCTAssertTrue(cell.locationLabel.isDescendant(of: cell.contentView))
}

To make this test pass, we need to perform the same steps as we did for the Title label.
Add the @IBOutlet var locationLabel: UILabel! property to ItemCell, add
UILabel to the cell in Main.storyboard, and connect the two by control-dragging from IB
to the property.

Run the tests. All the tests pass, but there is a lot of duplication in the previous two tests.
We need to refactor them. First, add the following properties to ItemCellTests:

var tableView: UITableView!
let dataSource = FakeDataSource()
var cell: ItemCell!

Then, add the following code to the end of setUp():

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let controller = storyboard
 .instantiateViewController(
 withIdentifier: "ItemListViewController")
 as! ItemListViewController

controller.loadViewIfNeeded()

tableView = controller.tableView
tableView?.dataSource = dataSource

cell = tableView?.dequeueReusableCell(
 withIdentifier: "ItemCell",
 for: IndexPath(row: 0, section: 0)) as! ItemCell

A Test-Driven View Controller

[119]

Remove the following code from the two test methods:

let storyboard = UIStoryboard(name: "Main", bundle: nil)
let controller = storyboard
 .instantiateViewController(
 withIdentifier: "ItemListViewController")
 as! ItemListViewController

_ = controller.view

let tableView = controller.tableView
let dataSource = FakeDataSource()
tableView?.dataSource = dataSource

let cell = tableView?.dequeueReusableCell(
 withIdentifier: "ItemCell",
 for: IndexPath(row: 0, section: 0)) as! ItemCell

Run the tests to make sure that everything still works.

We need a third label. The steps are exactly the same as those in the last tests. Make the
changes yourself (don't forget the test) and call the label dateLabel.

Now that we have the labels in the item cell, we need to fill them with information when
the cell is configured. Add the following test to ItemCellTests:

func test_ConfigCell_SetsTitle() {
 cell.configCell(with: ToDoItem(title: "Foo"))

 XCTAssertEqual(cell.titleLabel.text, "Foo")
}

We call configCell(with:) on the dequeued cell from the setUp() method. Run the
tests. The last test fails.

To make the test pass, add the following line to configCell(with:):

titleLabel.text = item.title

Now, all the tests pass again and there is nothing to refactor.

A Test-Driven View Controller

[120]

Next, we move on to the date label. Add the following test to ItemCellTests:

func test_ConfigCell_SetsDate() {
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"
 let date = dateFormatter.date(from: "08/27/2017")
 let timestamp = date?.timeIntervalSince1970
 cell.configCell(with: ToDoItem(title: "Foo",
 timestamp: timestamp))
 XCTAssertEqual(cell.dateLabel.text, "08/27/2017")
}

This test first creates a timestamp from a date string and configures the cell with it, and
then it asserts whether the text of the date label matches the expectation.

Run the tests. The last test fails because the dateLabel still shows the word Label from
when we dragged it into the storyboard scene. To make the test pass, replace
configCell(with:) with the following code:

func configCell(with item: ToDoItem) {

 titleLabel.text = item.title

 if let timestamp = item.timestamp {
 let date = Date(timeIntervalSince1970: timestamp)
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"
 dateLabel.text = dateFormatter.string(from: date)
 }
 }

Run the tests. All tests pass, but we need to refactor. It is not a good idea to create a date
formatter every time configCell(with:) gets called because the date formatter is the
same for all cells. To improve the code, add the following property to ItemCell:

lazy var dateFormatter: DateFormatter = {
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"
 return dateFormatter
}()

The lazy keyword indicates that this property is set the first time it is accessed. Now, you
can delete the local definition of the date formatter:

let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM/dd/yyyy"

A Test-Driven View Controller

[121]

Run the tests. Everything still works.

The implementation for the locationLabel (with a test first) is left for you as an exercise.

From the screenshots seen in Chapter 2, Planning and Structuring Your Test-Driven iOS App,
we know that the title labels of the cells with the checked items were struck through. An
item itself doesn't know that it is checked. The state of an item is managed by the item
manager. This means that we need a way to put the state of the item into the
configCell(with:) method.

Add the following test to check whether the title of the label has been struck through and
that the other labels are empty:

func test_Title_WhenItemIsChecked_IsStrokeThrough() {
 let location = Location(name: "Bar")
 let item = ToDoItem(title: "Foo",
 itemDescription: nil,
 timestamp: 1456150025,
 location: location)

 cell.configCell(with: item, checked: true)

 let attributedString = NSAttributedString(
 string: "Foo",
 attributes: [NSAttributedStringKey.strikethroughStyle:
 NSUnderlineStyle.styleSingle.rawValue])

 XCTAssertEqual(cell.titleLabel.attributedText, attributedString)
 XCTAssertNil(cell.locationLabel.text)
 XCTAssertNil(cell.dateLabel.text)
}

This test looks a bit like the previous one, but the main difference between them is that we
call configCell(with:checked:) with an additional argument, and we assert that the
attributedText of titleLabel is set to the expected attributed string.

This test does not compile. Replace the method signature of configCell with the
following:

func configCell(with item: ToDoItem, checked: Bool = false) {
 // ...
}

A Test-Driven View Controller

[122]

Open ItemListDataProviderTests.swift and also change the signature of the
overridden method in MockItemCell. Run the tests. The last test added fails. To make it
pass, replace configCell(with:checked:) with the following code:

 func configCell(with item: ToDoItem,
 checked: Bool = false) {
 if checked {
 let attributedString = NSAttributedString(
 string: item.title,
 attributes: [NSStrikethroughStyleAttributeName:
 NSUnderlineStyle.styleSingle.rawValue])
 titleLabel.attributedText = attributedString
 locationLabel.text = nil
 dateLabel.text = nil
 } else {
 titleLabel.text = item.title
 locationLabel.text = item.location?.name ?? ""
 if let timestamp = item.timestamp {
 let date = Date(timeIntervalSince1970: timestamp)
 dateLabel.text = dateFormatter.string(from: date)
 }
 }
}

In case checked is true, we set the attributed text to the Title label. Otherwise, we use the
code that we had earlier. Run the tests. Everything works and there is nothing to refactor.

For now, we are finished with the to-do item list. In Chapter 6, Putting It All Together, we
will connect the list view controller and the data source with the rest of the application.

In the remaining sections of this chapter, we will implement the other two view controllers.
We won't go into as much detail as we have thus far because the tests and the
implementation are similar to the ones we have already written.

Implementing DetailViewController
We start the implementation of DetailViewController with the creation of a test case.
Select the ToDoTests group in Project Navigator and go to iOS | Source | Unit Test Case
Class. Let's name it DetailViewControllerTests, and select the Controller folder as
the destination location. Import the @testable import ToDo main module and delete the
two template test methods.

A Test-Driven View Controller

[123]

Going by the screenshots we've seen in Chapter 2, Planning and Structuring Your Test-Driven
iOS App, we know that DetailViewController needs a map view, four labels, and a
button. Here, we will only show the TDD process for one label and the button. Add the
following code to DetailViewControllerTests:

func test_HasTitleLabel() {
 let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
 let sut = storyboard
 .instantiateViewController(
 withIdentifier: "DetailViewController")
 as! DetailViewController
}

At this point, we have to stop writing the test because there is no DetailViewController
yet. Select the ToDo group in the Project Navigator and add an iOS | Source | Cocoa
Touch Class with the name DetailViewController. Make it a subclass of
UIViewController. As we did earlier, remove everything from the class except the
minimal class definition:

import UIKit

class DetailViewController: UIViewController {
}

Now, add the following to the end of test_HasTitleLabel():

sut.loadViewIfNeeded()

let titleLabelIsSubView =
 sut.titleLabel?.isDescendant(
 of: sut.view) ?? false
XCTAssertTrue(titleLabelIsSubView)

The test does not compile because there is no titleLabel in DetailViewController.
Add the following property to DetailViewController:

@IBOutlet var titleLabel: UILabel!

Run the tests. The last test fails with the error storyboard doesn't contain a view
controller with identifier 'DetailViewController'. Let's fix this. Open
Main.storyboard and add a View Controller to it. In the Identity Inspector, change its
class and the Storyboard ID to DetailViewController.

A Test-Driven View Controller

[124]

Run the tests again. It still fails because the titleLabel property is nil. Again, open
Main.storyboard and add a label to the View Controller scene. In the Assistant Editor,
open DetailViewController, and connect the label in the storyboard to the outlet by
holding down the ctrl key while you drag the label to the outlet.

Run the tests. Now, all the tests pass.

We already know that we need tests for the other labels and map view. So, let's put the
setup code into setUp(). First, add the property var sut: DetailViewController! to
DetailViewControllerTests and add the following code to setUp():

let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
sut = storyboard
 .instantiateViewController(
 withIdentifier: "DetailViewController")
 as! DetailViewController
sut.loadViewIfNeeded()

Replace test_HasTitleLabel() with the following:

func test_HasTitleLabel() {
 let titleLabelIsSubView =
 sut.titleLabel?.isDescendant(
 of: sut.view) ?? false
 XCTAssertTrue(titleLabelIsSubView)
}

Run the tests again to make sure we didn't break anything during refactoring. Everything
still works.

Add the remaining three labels using TDD.

For the map view, we need to add the MapKit framework. Select the project in the Project
Navigator and switch on Maps in the Capabilities tab:

Add the following test to DetailViewControllerTests:

func test_HasMapView() {
 let mapViewIsSubView =
 sut.mapView?.isDescendant(
 of: sut.view) ?? false
 XCTAssertTrue(mapViewIsSubView)
}

A Test-Driven View Controller

[125]

To make the test pass, first import MapKit in DetailViewController:

import MapKit

Then, add the outlet @IBOutlet var mapView: MKMapView! and a map view element in
the storyboard; connect the two (by control-dragging). Run the tests to make sure
everything works.

When presenting DetailViewController, ItemListViewController needs to be able
to set the item to be shown. As the user will be able to check items in the details view, we
will pass the item manager plus the selected index to DetailViewController. We will
assume that the details can only be presented for unchecked items. This makes sense for the
app because checked items are no longer that important for the user. If we later decide that
we also want to show the details for checked items, we can still add this feature.

We will now write a test that ensures that we can pass the data to
DetailViewController, and that the information is shown in the labels. Add the
following code to DetailViewControllerTests:

func test_SettingItemInfo_SetsTextsToLabels() {
 let coordinate = CLLocationCoordinate2DMake(51.2277, 6.7735)

 let location = Location(name: "Foo", coordinate: coordinate)
 let item = ToDoItem(title: "Bar",
 itemDescription: "Baz",
 timestamp: 1456150025,
 location: location)

 let itemManager = ItemManager()
 itemManager.add(item)

 sut.itemInfo = (itemManager, 0)
}

There are two errors in this code already. Firstly, CLLocationCoordinate2D(_:_:) is
defined in Core Location; we need to add this module to the test code. Add the following
import statement immediately below the existing import statements:

import CoreLocation

Secondly, 'DetailViewController' has no member 'itemInfo'. Add the following
property declaration to DetailViewController:

var itemInfo: (ItemManager, Int)?

A Test-Driven View Controller

[126]

With this change, there are no longer any errors from the static analyzer. Let's move on.

We will fill the labels with the information from the to-do item in viewWillAppear(_:).
Because of this, we need to trigger the call of that method in the test. It is not recommended
that you call this method directly. Instead, you can ask View Controller to begin and end
the appearance transition. Add the following code to
test_SettingItemInfo_SetsTextsToLabels():

sut.beginAppearanceTransition(true, animated: true)
sut.endAppearanceTransition()
XCTAssertEqual(sut.titleLabel.text, "Bar")
XCTAssertEqual(sut.dateLabel.text, "02/22/2016")
XCTAssertEqual(sut.locationLabel.text, "Foo")
XCTAssertEqual(sut.descriptionLabel.text, "Baz")
XCTAssertEqualWithAccuracy(sut.mapView.centerCoordinate.latitude,
 coordinate.latitude,
 accuracy: 0.001)
XCTAssertEqualWithAccuracy(sut.mapView.centerCoordinate.longitude,
 coordinate.longitude,
 accuracy: 0.001)

Normally, you would put the tests for the different label and the map
view into their own tests. We have put it into one test method here to keep
the chapter short. Take your time and split the last test into several smaller
tests.

With beginAppearanceTransition(_:animated:) and
endAppearanceTransition(), we trigger the call of viewWillAppear(_:) (as well
as viewDidAppear(_:) and similar methods for the presentation of the view hierarchy).
Then, we assert that the information from the to-do item is set to the labels and map view of
DetailViewController. Run the tests. The last test fails because we haven't implemented
viewWillAppear(_:) yet. Open DetailViewController and add the implementation as
follows:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)

 guard let itemInfo = itemInfo else { return }
 let item = itemInfo.0.item(at: itemInfo.1)
 titleLabel.text = item.title
 locationLabel.text = item.location?.name
 descriptionLabel.text = item.itemDescription

 if let timestamp = item.timestamp {
 let date = Date(timeIntervalSince1970: timestamp)
 dateLabel.text = dateFormatter.string(from: date)

A Test-Driven View Controller

[127]

 }

 if let coordinate = item.location?.coordinate {
 let region = MKCoordinateRegionMakeWithDistance(coordinate,
 100, 100)
 mapView.region = region
 }
}

Add the definition of the date formatter below the existing properties:

let dateFormatter: DateFormatter = {
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"
 return dateFormatter
}()

Run the tests. All the tests pass again and there is nothing to refactor.

Next, we need to implement the Check button. When the user taps the Check button, the
item should be checked in the item manager. Add the following test to
DetailViewControllerTests:

func test_CheckItem_ChecksItemInItemManager() {
 let itemManager = ItemManager()
 itemManager.add(ToDoItem(title: "Foo"))

 sut.itemInfo = (itemManager, 0)
 sut.checkItem()

 XCTAssertEqual(itemManager.toDoCount, 0)
 XCTAssertEqual(itemManager.doneCount, 1)
}

This test does not compile because there is no checkItem() method in
DetailViewController. Add the minimal implementation to make the test compile as
follows:

func checkItem() {
}

A Test-Driven View Controller

[128]

Now, the test compiles, but it fails because the method does nothing. To make the test pass,
add the following code to checkItem():

func checkItem() {
 if let itemInfo = itemInfo {
 itemInfo.0.checkItem(at: itemInfo.1)
 }
}

Run the tests. All the tests pass and there is nothing to refactor. Next, we need to implement
InputViewController.

Implementing InputViewController
Add a test case with the name InputViewControllerTests, import the ToDo module,
and remove the two template methods. If you have problems with this task, go back to the
beginning of the previous sections, where we covered this in more detail.

You have taken a look at the first steps of the TDD of controllers several times now.
Therefore, we will perform several steps at once and put the setup code directly in
setUp(). Firstly, add the property var sut: InputViewController!. Secondly, add the
view controller class InputViewController. Again, if you are unsure about how to do
this, have a look at the previous sections. Next, add the following setup code to setUp():

let storyboard = UIStoryboard(name: "Main",
 bundle: nil)
sut = storyboard
 .instantiateViewController(
 withIdentifier: "InputViewController")
 as! InputViewController

sut.loadViewIfNeeded()

Add the following test:

func test_HasTitleTextField() {
 let titleTextFieldIsSubView =
 sut.titleTextField?.isDescendant(
 of: sut.view) ?? false
 XCTAssertTrue(titleTextFieldIsSubView)
}

A Test-Driven View Controller

[129]

This test does not compile because InputViewController does not have a member called
titleTextField. To make the test compile, add the property @IBOutlet var
titleTextField: UITextField! to InputViewController. If you run the test, it still
does not pass. We already know what is needed to make it pass from the implementation of
DetailViewController. First, add a View Controller to the storyboard. Change its Class
and Storyboard ID to InputViewController. Second, add a text field to the storyboard
scene and connect it to the outlet in InputViewController. This should be enough to
make the test pass.

Now add the rest of the text fields and the two buttons (dateTextField,
locationTextField, addressTextField, descriptionTextField, saveButton, and
cancelButton) in a test-driven way. Make sure that all tests pass before you move on, and
don't forget to refactor your code and tests if needed.

In the address field, the user can put in addresses for the to-do items. The app should then
fetch the coordinate and store it in the to-do items' location. Apple provides the
CLGeocoder class in CoreLocation for this task. In the test, we want to mock this class to
be independent of the internet connection. Import the CoreLocation module (import
CoreLocation) and add the following code to InputViewControllerTests.swift
outside of the class InputViewControllerTests:

extension InputViewControllerTests {
 class MockGeocoder: CLGeocoder {

 var completionHandler: CLGeocodeCompletionHandler?

 override func geocodeAddressString(
 _ addressString: String,
 completionHandler: @escaping CLGeocodeCompletionHandler) {

 self.completionHandler = completionHandler
 }
 }
}

The only thing the mock does is capture the completion handler when
geocodeAddressString(_:completionHandler:) is called. This way, we can call the
completion handler in the test and check whether the system under the test works as
expected.

The signature of the completion handler looks as follows:

public typealias CLGeocodeCompletionHandler = ([CLPlacemark]?, NSError?) ->
Void

A Test-Driven View Controller

[130]

The first argument is an optional array of place marks, which are sorted from the best to
worst match. In the test, we would like to return a place mark with a defined coordinate to
check whether the to-do item is created correctly. The problem is that all the properties in
CLPlacemark are readonly, and it does not have an initializer that we can use to set the
coordinate. Therefore, we need another mock that allows us to override the location
property. Add the following class definition to the InputViewControllerTests
extension:

class MockPlacemark : CLPlacemark {

 var mockCoordinate: CLLocationCoordinate2D?

 override var location: CLLocation? {
 guard let coordinate = mockCoordinate else
 { return CLLocation() }

 return CLLocation(latitude: coordinate.latitude,
 longitude: coordinate.longitude)
 }
}

Now, we are ready for the test. The test is a bit complicated. To clearly show you what is
going on, we will show the complete test, and then add implementation code until the test
passes. By doing this, we are not following the TDD workflow, as we will get errors from
the static analyzer before we have even finished writing the test method. This way also
makes it easier to see what is going on. First, add a property for the place mark mock to
InputViewControllerTests:

var placemark: MockPlacemark!

This is needed because the test would crash if the place mark is accessed outside of its
definition scope. Add the following test method to InputViewControllerTests:

func test_Save_UsesGeocoderToGetCoordinateFromAddress() {
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"

 let timestamp = 1456095600.0
 let date = Date(timeIntervalSince1970: timestamp)

 sut.titleTextField.text = "Foo"
 sut.dateTextField.text = dateFormatter.string(from: date)
 sut.locationTextField.text = "Bar"
 sut.addressTextField.text = "Infinite Loop 1, Cupertino"
 sut.descriptionTextField.text = "Baz"

A Test-Driven View Controller

[131]

 let mockGeocoder = MockGeocoder()
 sut.geocoder = mockGeocoder

 sut.itemManager = ItemManager()

 sut.save()

 placemark = MockPlacemark()
 let coordinate = CLLocationCoordinate2DMake(37.3316851,
 -122.0300674)
 placemark.mockCoordinate = coordinate
 mockGeocoder.completionHandler?([placemark], nil)

 let item = sut.itemManager?.item(at: 0)

 let testItem = ToDoItem(title: "Foo",
 itemDescription: "Baz",
 timestamp: timestamp,
 location: Location(name: "Bar",
 coordinate: coordinate))

 XCTAssertEqual(item, testItem)
}

Let's take a look at what is going on here. Firstly, we create the text for the date text field
from an arbitrary timestamp. We set the date text and the other text values to the text
fields. Then, we create a geocoder mock and set it to a property of the sut. This is called a
dependency injection. We inject the instance from the test that should be used to fetch the
coordinate for the given address. To add an item to the list of to-do items,
InputViewController needs to have an item manager. In the test, we set it to a new
instance. Next, we call the method we want to test (save()). This should call
geocodeAddressString(_:completionHandler:) of our geocoder mock, and as a
result, the mock should capture the completion handler from the implementation. In the
next step, we call the completion handler with a place mark that has a given coordinate. We
expect that the completion handler uses the place mark and information from the text fields
to create a to-do item. In the rest of the test methods, we assert that this is actually the case.

Now, let's make the test pass. InputViewController needs a geocoder, so import
CoreLocation to InputViewController and add this property:

lazy var geocoder = CLGeocoder()

A Test-Driven View Controller

[132]

Lazy properties are set the first time they are accessed. This way, we can set our mock to
geocoder before we access it in the test for the first time. We inject the dependency in the
test. In the implementation code, we can use geocoder as it would be a normal property.

Next, we add a property to hold a reference to the item manager:

var itemManager: ItemManager?

To make the test compilable, add the minimal implementation of the save method:

func save() {
}

Now, we need to create a to-do item and add it to the item manager within save(). Add
the following code to save():

guard let titleString = titleTextField.text,
 titleString.characters.count > 0 else { return }
let date: Date?
if let dateText = self.dateTextField.text,
 dateText.characters.count > 0 {
 date = dateFormatter.date(from: dateText)
} else {
 date = nil
}
let descriptionString = descriptionTextField.text
if let locationName = locationTextField.text,
 locationName.characters.count > 0 {
 if let address = addressTextField.text,
 address.characters.count > 0 {

 geocoder.geocodeAddressString(address) {
 [unowned self] (placeMarks, error) -> Void in

 let placeMark = placeMarks?.first

 let item = ToDoItem(
 title: titleString,
 itemDescription: descriptionString,
 timestamp: date?.timeIntervalSince1970,
 location: Location(
 name: locationName,
 coordinate: placeMark?.location?.coordinate))

 self.itemManager?.add(item)
 }
 }
}

A Test-Driven View Controller

[133]

Let's go over the code step by step.

First, we use guard to get the string from the Title text field. If there is nothing in the
field, we immediately return from the method. Next, we get the date and description of the
to-do item from the corresponding text fields. The date is created from the string in the text
field using a date formatter. Add the date formatter immediately above save():

let dateFormatter: DateFormatter = {
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"
 return dateFormatter
}()

Then, we check whether a name is given in the Location text field. If this is the case, we
check whether an address is given in the Address text field. In this case, we get the
coordinate from the geocoder, create the to-do item, and add it to the item manager.

Run the tests. All the tests pass and there is nothing to refactor.

The implementation of save() is not finished yet. The minimum input a user has to give is
the title. Add tests for the to-do items with less information given by the user.

The last test for this chapter is to test that the Save button is connected to the save()
action. Add the following test to InputViewControllerTests:

func test_SaveButtonHasSaveAction() {
 let saveButton: UIButton = sut.saveButton

 guard let actions = saveButton.actions(
 forTarget: sut,
 forControlEvent: .touchUpInside) else {
 XCTFail(); return
 }

 XCTAssertTrue(actions.contains("save"))
}

We should get the Save button and guard that it has at least one action; if not, we fail the
test using XCTFail(). Then, we assert that the actions array has a method, the "save"
selector.

Run the tests. The last test fails.

Change the signature of the save method to @IBAction func save() and connect it to
the Save button in the storyboard scene (do this by hitting the ctrl key + dragging from the
button in the storyboard to the IBAction in code).

A Test-Driven View Controller

[134]

Run the tests again. Now, all the tests pass.

Summary
In this chapter, we looked at how to implement a view controller with a table view using
TDD. We split the table view controller into code that manages the view hierarchy and code
for the data source, and the delegate of the table view.

We discussed how to write tests to drive the development of subviews, outlets, and actions,
and how to use fake objects to isolate the microfeature to be tested. The usage of mock
objects allowed us to create fast, isolated, and reliable tests. This way, we were able to write
tests for the table view cell without the need to instantiate the real data source of the table
view.

Next, we implemented the detail view controller using TDD. We added MapKit to the
project in order to show the location of the to-do item in case a user added an address.

Finally, we wrote tests to drive the implementation of the input view controller. We also
looked at how to stub an asynchronous API to make the test execution fast.

In this chapter, we set up the system under tests using the code and instantiating from a
storyboard. You should now be able to use both techniques, depending on the feature you
test.

In the next chapter, we will take a look at how to build the network layer of the app using
TDD without a finished server side.

5
Testing Network Code

Most apps in the App Store perform networking in one way or the other. Apple provides a
great class for network requests--URLSession. Its requests are asynchronous. This means
that the response is delivered on a background thread. If that wasn't the case, the UI would
freeze while the app waits for a response from the server.

The main topic of this chapter is how to test an asynchronous API. There are two ways to
write tests for asynchronous API calls. First, it can be done using the real server that is
going to be used when the app is in the App Store. Second, it can be done using stubs, as we
did in the previous chapter.

Both methods have their advantages. Tests with the real server let us additionally test
whether the server is implemented as described in the documentation. Those tests are closer
to the implementation of the finished app and, therefore, are more likely to find bugs that
would end up in the final version.

On the flip side, stubs let us develop the network layer of our app even before the web
service is implemented. We just need the documentation of the API calls and the expected
responses. As the tests do not depend on communication with a server, the test execution is
significantly faster.

You should have both kinds of tests in your iOS development toolbox.

This chapter covers the following topics:

Implementing tests using a live web service
Implementing a login request to a fake web service
Handling errors

Testing Network Code

[136]

Implementing tests using a web service
In the previous chapter, we wrote a stub for CLGeocoder. Now, we will write a test that
asserts that the geocoder built into CoreLocation works as we expect it to. The fetching of
coordinates from a geocoder is asynchronous. This means that we have to write a test that
can deal with asynchronous interfaces.

Let's first structure the files a bit in the Project Navigator of Xcode. Select all the controller
files in the main target (ItemListViewController.swift,
ItemListDataProvider.swift, ItemCell.swift, DetailViewController.swift,
and InputViewController.swift), and press ctrl + click to create a group from the
selection. Let's call this group Controller. Do the same with the corresponding test cases
in the test target.

Now, let's get started with the test. We start naively by adding the following test to
InputViewControllerTests:

func test_Geocoder_FetchesCoordinates() {

 let address = "Infinite Loop 1, Cupertino"
 CLGeocoder()
 .geocodeAddressString(address) {
 (placemarks, error) -> Void in

 let coordinate =
 placemarks?.first?.location?.coordinate
 guard let latitude =
 coordinate?.latitude else {
 XCTFail()
 return
 }

 guard let longitude =
 coordinate?.longitude else {
 XCTFail()
 return
 }

 XCTAssertEqual(latitude,
 37.3316,
 accuracy: 0.001)
 XCTAssertEqual(longitude,
 -122.0300,
 accuracy: 0.001)
 }
}

Testing Network Code

[137]

Run the tests. All the tests pass. So, it looks like that the geocoder works as we thought it
would. But wait a minute. We have skipped the red phase. In TDD, we first have to have a
failing test. Otherwise, we cannot be sure whether the test actually works.

We have no access to the source of CLGeocoder, so we cannot change its implementation to
make the test fail. The only thing we can do is to change the assertion. Replace the
assertions within the closure with this code:

XCTAssertEqual(latitude,
 0.0,
 accuracy: 0.001)
XCTAssertEqual(longitude,
 0.0,
 accuracy: 0.001)

Run the tests again. Uh, the tests still pass. To figure out what is going on, add a breakpoint
in the line of the first assertion:

Run the tests again. During the execution of this test, the debugger should stop at this line,
so open the debugger console to investigate what is going on.

The debugger never reaches the breakpoint.

The reason for this is that geocodeAddressString(_:completionHandler:) call is
asynchronous. This means that the closure is called sometime in the future on a different
thread, and the execution of the tests moves on. The test is finished before the callback block
is executed, and the assertions never get called. We need to change the test to make it
asynchronous.

Replace test_Geocoder_FetchesCoordinates() with the following lines of code:

func test_Geocoder_FetchesCoordinates() {
 let geocoderAnswered = expectation(description: "Geocoder")
 let address = "Infinite Loop 1, Cupertino"
 CLGeocoder()
 .geocodeAddressString(address) {
 (placemarks, error) -> Void in

 let coordinate =
 placemarks?.first?.location?.coordinate
 guard let latitude =
 coordinate?.latitude else {

Testing Network Code

[138]

 XCTFail()
 return
 }

 guard let longitude =
 coordinate?.longitude else {

 XCTFail()
 return
 }
 XCTAssertEqual(latitude,
 0.0,
 accuracy: 0.001)
 XCTAssertEqual(longitude,
 0.0,
 accuracy: 0.001)

 geocoderAnswered.fulfill()
 }

 waitForExpectations(timeout: 3,
 handler: nil)
}

The new lines are highlighted. We create an expectation using
expectation(description:). At the end of the test, we call
waitForExpectations(timeout:handler:) with a timeout of 3 seconds. This tells the
test runner that it should stop at this point and wait until either all the expectations that are
created in the test are fulfilled, or the timeout duration is over. If all the expectations are not
fulfilled when the timeout duration has passed, the test fails. In the callback closure, we
fulfill the expectation after the assertions are called.

Now, run the tests again. The last test fails because the coordinate we get from the geocoder
does not match the values (0.0 and 0.0) we put into the assertions. Replace the assertions
again with the correct ones that we had when we first wrote the test:

XCTAssertEqual(latitude,
 37.3316,
 accuracy: 0.001)
XCTAssertEqual(longitude,
 -122.0300,
 accuracy: 0.001)

Run the tests again. All the tests pass, and CLGeocoder works as expected.

Testing Network Code

[139]

We have just taken a look at how we can use XCTest to test asynchronous APIs. This can be
used to test many different aspects of iOS development (for example, sending
NSNotifications, fetching data from a web server, writing data to a database in the
background, and so on). Whenever something asynchronous takes place, we can add
expectations and set them as fulfilled when the asynchronous callback is executed.

This is very powerful. But keep in mind that unit tests should be fast and reliable. Using a
web service in your tests makes the test fragile and slow. If the web server needs more than
three seconds that we set as timeout, the test will fail. And you always need internet
connectivity to run this test.

In the following sections, we will use stubs to make an asynchronous test robust and fast.
The additional benefit is that we can develop the network layer of our app without a
finished web server at hand. The only thing we need is a finished API documentation.

Implementing a login request
Let's assume that a colleague is developing a web service, but it is not finished yet.
However, we already know what the API will look like. There will be an endpoint for the
login. The URL will be https://awesometodos.com/login; it will take two parameters: a
username and password, and it will return a token that has to be used with each further
call to the API.

We need a test that asserts that the token that is returned from the login call is put into a
token struct.

Add a new iOS | Source | Unit Test Case Class, and call it APIClientTests. Import the
main module so that it can be tested (@testable import ToDo), and remove the two
template tests.

We will split the login feature into several micro features. As mentioned previously, the
login should make an HTTPS request to https://awesometodos.com/login with the
username and password as query parameters. Let's write a test for this.

Add the following code to APIClientTests:

func test_Login_UsesExpectedHost() {

 let sut = APIClient()
}

Testing Network Code

[140]

The static analyzer tells us that we need an APIClient class. Add an iOS | Source | Swift
File to the main target, and call it APIClient.swift. Add the following code to it:

class APIClient {
}

This is enough to make the static analyzer happy.

You need to be able to inject a fake URL session that fakes the network call because the
server side isn't finished yet. Add the following code to
test_Login_UsesExpectedHost():

let mockURLSession = MockURLSession()

This code does not compile because the mock class is missing. Add the following code to
APIClientTests.swift, but outside of the class definition:

extension APIClientTests {

 class MockURLSession {
 var url: URL?
 func dataTask(
 with url: URL,
 completionHandler: @escaping
 (Data?, URLResponse?, Error?) -> Void)
 -> URLSessionDataTask {

 self.url = url
 return URLSession.shared.dataTask(with: url)
 }
 }
}

This mock class implements the method dataTask(with:completionHandler:),
because this is the method we want to use in the implementation of the network requests.
The mock class catches the URL. This enables us to check the URL in the test. Next, we want
to inject the mock class into the implementation. Add the following code at the end of
test_Login_UsesExpectedHost():

sut.session = mockURLSession

To make this code compilable, you need to add a session property. Open APIClient and
add this property:

 lazy var session: URLSession = URLSession.shared

Testing Network Code

[141]

Try to run the tests. The test will still not compile. The reason for this is that it
complains cannot assign value of type 'APIClientTests.MockURLSession' to
type 'URLSession'. This makes sense. You have to change the type of session in order
to be able to set it either as an instance of URLSession or an instance of our mock class. The
key is to use protocol. Add the following code in APIClient.swift but outside of
APIClient:

protocol SessionProtocol {
 func dataTask(
 with url: URL,
 completionHandler: @escaping
 (Data?, URLResponse?, Error?) -> Void)
 -> URLSessionDataTask
}

URLSession already implements the protocol method. To make it conform to protocol,
add the following extension in APIClient.swift (but outside of the class definition):

extension URLSession: SessionProtocol {}

Next, you have to tell the compiler that the mock class conforms to that protocol as well.
Change the definition of the mock class to the following one:

class MockURLSession: SessionProtocol {
 // ...
}

Finally, you have to change the type of the session property. In APIClient, replace the
URLSession type with SessionProtocol like this:

lazy var session: SessionProtocol = URLSession.shared

Run the tests. Now, the test compiles, and you can continue. APIClient needs a method
that does the login. Add the following code to test_Login_UsesExpectedHost():

let completion = { (token: Token?, error: Error?) in }
sut.loginUser(withName:"dasdom",
 password: "1234",
 completion: completion)

Testing Network Code

[142]

This does not compile because of the
method loginUser(withName:password:completion:) and the Token struct are
missing. Open APIClient, and add the following code:

func loginUser(withName username: String,
 password: String,
 completion: @escaping (Token?, Error?) -> Void) {

}

Next, add an iOS | Source | Swift File to the main target and call it Token.swift. Add the
following code:

struct Token {

}

This is enough to make the test compilable again.

To make sure that the login method uses the expected host, add the following code at the
end of test_Login_UsesExpectedHost():

guard let url = mockURLSession.url else { XCTFail(); return }
let urlComponents = URLComponents(url: url,
 resolvingAgainstBaseURL: true)
XCTAssertEqual(urlComponents?.host, "awesometodos.com")

This code gets the URL components from mockURLSession (remember that our session
mock catches the URL) and asserts that the host of the URL is awesometodos.com.

Run this test. It fails. To make it pass, add the following code to
loginUser(withName:password:completion:):

guard let url = URL(string: "https://awesometodos.com") else {
 fatalError()
}
session.dataTask(with: url) { (data, response, error) in

}

Run the tests again. Now all the tests pass, and there is nothing to refactor. Next, let's add a
test for the path of the URL. Copy the test method test_Login_UsesExpectedHost(),
change the method name of the copy to test_Login_UsesExpectedPath() and replace
the assertion with the following:

XCTAssertEqual(urlComponents?.path, "/login")

Testing Network Code

[143]

To make the test pass again, replace the definition of the URL with this:

guard let url = URL(string: "https://awesometodos.com/login") else {
 fatalError()
}

Run the tests to make sure that all the tests pass. The two tests in APIClientTests share a
lot of code. Let's refactor the tests to be more readable.

Add the following two properties to APIClientTests:

var sut: APIClient!
var mockURLSession: MockURLSession!

Next, add these lines to set up after super.setUp():

sut = APIClient()
mockURLSession = MockURLSession()
sut.session = mockURLSession

With these changes, the setup of the system under test is done in setup(). Remove the
following lines from the two test methods:

let sut = APIClient()
let mockURLSession = MockURLSession()
sut.session = mockURLSession

Run the tests. All tests still pass. But wait a minute. How do we know that the tests still
work? We have changed the tests. What if we changed the tests in a way that they always
pass? Sometimes it's good to be paranoid about the tests. So, let's test the tests.

In APIClient change the generated URL to:

guard let url = URL(string: "https://example.com") else {
 fatalError()
}

Run the tests. Both tests in APIClientTests fail. Good. So, they still work. Fix the code
that the tests pass again.

Testing Network Code

[144]

There is still room for improvement in the tests. Before we can assert that the host and the
path are as expected, we have to create an instance of URLComponents with the caught url.
The test would be much cleaner if we put that code into the MockURLSession. So let's do
exactly this. Add the following code to MockURLSession:

var urlComponents: URLComponents? {
 guard let url = url else { return nil }
 return URLComponents(url: url,
 resolvingAgainstBaseURL: true)
}

Then we can replace the assertions in the test methods with this:

func test_Login_UsesExpectedHost() {

 // ...

 XCTAssertEqual(
 mockURLSession.urlComponents?.host,
 "awesometodos.com")
}

func test_Login_UsesExpectedPath() {

 // ...

 XCTAssertEqual(
 mockURLSession.urlComponents?.path,
 "/login")
}

Much better! Run the tests. All tests still pass. Now we can move on.

Next, you need to make sure that username and password are passed as parameters in the
URL query. Copy the test method test_Login_UsesExpectedPath(), change the name
of the copy to test_Login_UsesExpectedQuery() and replace the assertion with this:

XCTAssertEqual(
 mockURLSession.urlComponents?.query,
 "username=dasdom&password=1234")

Testing Network Code

[145]

Run this test. The test fails because you do not use username and password to construct
the URL. To make the test pass, replace the URL with the following one:

let query = "username=\(username)&password=\(password)"
guard let url = URL(string:
 "https://awesometodos.com/login?\(query)") else {
 fatalError()
}

Now, the tests pass again. But if you have worked with a web service before, you might
have realized that there is a problem with your code. Some characters have a special
meaning when they are used in a URL. For example, the character & splits the URL query
into query items. But the user could use this character in their password. We need to encode
the query items. Let's change the test to drive the change of the implementation code. First,
change the call of loginUser(withName:password:completion:) in
test_Login_UsesExpectedQuery() to use special characters in username and
password:

sut.loginUser(withName:"dasdöm",
 password: "%&34",
 completion: completion)

Next, replace the assertion for the query with the following code:

XCTAssertEqual(
 mockURLSession.urlComponents?
 .percentEncodedQuery,
 "username=dasd%C3%B6m&password=%25%2634")

With these changes, you assert that username and password are properly encoded to be
used in a URL query. Note that we are now using the percentEncodedQuery of
URLComponents. Go ahead, look up the difference between query and
percentEncodedQuery.

Run the tests. The test crashes because you chose to call fatalError() in case the URL
cannot be constructed for the string. To remove the crash and make the test pass, replace the
contents of loginUser(withName:password:completion:) with the following lines of
code:

let allowedCharacters = CharacterSet(
 charactersIn:
 "/%&=?$#+-~@<>|*,.()[]{}^!").inverted

guard let encodedUsername = username.addingPercentEncoding(
 withAllowedCharacters: allowedCharacters) else { fatalError() }

Testing Network Code

[146]

guard let encodedPassword = password.addingPercentEncoding(
 withAllowedCharacters: allowedCharacters) else { fatalError() }

let query = "username=\(encodedUsername)&password=\(encodedPassword)"
guard let url = URL(string:
 "https://awesometodos.com/login?\(query)") else {
 fatalError()
}

session.dataTask(with: url) { (data, response, error) in

}

With this code, you encode username and password before you construct the URL. Run
the tests. Now, all the tests pass again.

The encoding makes the method loginUser(withName:password:completion:) hard
to read. It would be easier to read if we could encode with code like this:

username.percentEncode()

So let's add an extension to String. Add the following code in APIClient.swift, but
outside of the class APIClient:

extension String {

 var percentEncoded: String {

 let allowedCharacters = CharacterSet(
 charactersIn:
 "/%&=?$#+-~@<>|*,.()[]{}^!").inverted

 guard let encoded = self.addingPercentEncoding(
 withAllowedCharacters: allowedCharacters) else { fatalError() }

 return encoded
 }
}

Testing Network Code

[147]

With this change, we can write the
method loginUser(withName:password:completion:) like this:

func loginUser(withName username: String,
 password: String,
 completion: @escaping (Token?, Error?) -> Void)

 let query = "username=\(username.percentEncoded)&password=
(password.percentEncoded)"
 guard let url = URL(string:
 "https://awesometodos.com/login?\(query)") else {
 fatalError()
 }
 session.dataTask(with: url) { (data, response, error) in
 }
}

Right now the test depends on the order of the query items. This is not a good idea because
in a URL, the order is irrelevant. This means the test could fail even if the URL is correct. So
you should refactor the test before you proceed with the next test.

URLComponents has a property called queryItems. This should help.

Right now, MockURLSession only catches the URL of the request. To test the login code,
we need to be able to call the completion handler of the data task in the test. This way, we
can ensure that the login code processes the returned data in the way we expect. We will
accomplish this task by catching the completion handler and calling it when resume on the
dataTask is called.

To do this, you need to create a mock for the data task first. Add the following mock class to
the extension on APIClientTests:

class MockTask: URLSessionDataTask {
 private let data: Data?
 private let urlResponse: URLResponse?
 private let responseError: Error?

 typealias CompletionHandler = (Data?, URLResponse?, Error?)
 -> Void
 var completionHandler: CompletionHandler?

 init(data: Data?, urlResponse: URLResponse?, error: Error?) {
 self.data = data

Testing Network Code

[148]

 self.urlResponse = urlResponse
 self.responseError = error
 }

 override func resume() {
 DispatchQueue.main.async() {
 self.completionHandler?(self.data,
 self.urlResponse,
 self.responseError)
 }
 }
}

This code defines four properties. The first three properties are used to set the values to be
fed into the completion handler. The fourth property is the completion handler to be
executed when resume() gets called.

In addition, this mock has two methods: an init method that takes the values for the
completion handler and the overridden resume method. In the resume method, the
completion handler is dispatched to the main queue. This is done to make sure that the
completion handler is asynchronous to the surrounding code.

MockURLSession has to create a mock data task and return it when
dataTask(with:completionHandler:) is called. Replace the MockURLSession class
with the following implementation:

class MockURLSession: SessionProtocol {
 var url: URL?
 private let dataTask: MockTask

 var urlComponents: URLComponents? {
 guard let url = url else { return nil }
 return URLComponents(url: url,
 resolvingAgainstBaseURL: true)
 }
 init(data: Data?, urlResponse: URLResponse?, error: Error?) {
 dataTask = MockTask(data: data,
 urlResponse: urlResponse,
 error: error)
 }

 func dataTask(
 with url: URL,
 completionHandler: @escaping
 (Data?, URLResponse?, Error?) -> Void)
 -> URLSessionDataTask {
 self.url = url

Testing Network Code

[149]

 print(url)
 dataTask.completionHandler = completionHandler
 return dataTask
 }
}

You have added an init method to create and store the data task. The parameters in the
init method take the values to be used when calling the completion handler. In
dataTask(with:completionHandler:), you store the completion handler in the mock
data task and return the mock data task.

With all this preparation, the completion handler of the request gets executed when the
resume of the mock data task is called. The parameters of the completion handler are set
when an instance of MockURLSession is instantiated.

Because you have added an init method to the MockURLSession class, the initialization of
the mock URL session in the previous test does not compile anymore. Replace the line let
mockURLSession = MockURLSession() with let mockURLSession =
MockURLSession(data: nil, urlResponse: nil, error: nil) to make it
compilable again.

With these changes made, you are ready for the test. Add the following test to
APIClientTests:

func test_Login_WhenSuccessful_CreatesToken() {
 let jsonData =
 "{\"token\": \"1234567890\"}"
 .data(using: .utf8)
 mockURLSession = MockURLSession(data: jsonData,
 urlResponse: nil,
 error: nil)
 sut.session = mockURLSession
 let tokenExpectation = expectation(description: "Token")
 var caughtToken: Token? = nil
 sut.loginUser(withName: "Foo", password: "Bar") { token, _
in
 caughtToken = token
 tokenExpectation.fulfill()
 }
 waitForExpectations(timeout: 1) { _ in
 XCTAssertEqual(caughtToken?.id, "1234567890")
 }
}

Testing Network Code

[150]

First, you set up sut with a mock URL session prepared to return a simple JSON. Then, you
create an expectation and call the login method. The username and password are
irrelevant this time, because you return the simple JSON in the completion handler
anyways. At the end of the test, you wait for the expectation to be fulfilled and assert that
the token has the expected id.

This does not compile because Token does not have an id property yet. Add the property
in the Token struct:

let id: String

Run the test. The test fails because the completion handler in the implementation does
nothing right now. Replace the session.dataTask(with:completionHandler:) call
with the following:

session.dataTask(with: url) { (data, response, error) in
 guard let data = data else { return }
 let dict = try! JSONSerialization.jsonObject(
 with: data,
 options: []) as? [String:String]

 let token: Token?
 if let tokenString = dict?["token"] {
 token = Token(id: tokenString)
 } else {
 token = nil
 }
 completion(token, nil)
}.resume()

Note that you now call resume() on the created data task. Otherwise, the test would not
pass because the completion handler would not get called in the test.

This code gets the dictionary from the response data and creates a Token instance with the
string from the "token" key. The created token is then passed to the completion handler of
the login method.

Run the tests. All the tests pass. There is nothing to refactor even though the code looks bad.
Whenever you see an exclamation mark (!) in Swift code, you need to figure out whether it
is really needed or if the developer (in this case, us) has just been lazy. In the preceding
code, you used try! to bypass the need for proper error handling. Let's refactor this code
using tests to guide the implementation instead.

Testing Network Code

[151]

Handling errors
Using try! instead of try in the call to jsonObject(with:options:), you tell the
compiler: trust me on this: this method will never fail. Let's write a test that feeds in wrong data
and asserts that an error is thrown:

func test_Login_WhenJSONIsInvalid_ReturnsError() {
 mockURLSession = MockURLSession(data: Data(),
 urlResponse: nil,
 error: nil)
 sut.session = mockURLSession

 let errorExpectation = expectation(description: "Error")
 var catchedError: Error? = nil
 sut.loginUser(withName: "Foo", password: "Bar") { (token, error) in
 catchedError = error
 errorExpectation.fulfill()
 }

 waitForExpectations(timeout: 1) { (error) in
 XCTAssertNotNil(catchedError)
 }
}

In the test, you feed an empty data object to the completion handler.

Run the tests. The implementation code crashes because the deserialization fails and throws
an error. Change the code so that it handles the thrown error correctly. Replace the content
of the completion handler with this:

guard let data = data else { return }
do {
 let dict = try JSONSerialization.jsonObject(
 with: data,
 options: []) as? [String:String]

 let token: Token?
 if let tokenString = dict?["token"] {
 token = Token(id: tokenString)
 } else {
 token = nil
 }
 completion(token, nil)
} catch {
 completion(nil, error)
}

Testing Network Code

[152]

With this code, you catch the error if there is one, and pass it to the completion block of the
login method. Run the tests. All the tests pass again.

Next, you need to make sure that the implementation calls the completion handler with an
error when the data value is nil. Add the following test:

func test_Login_WhenDataIsNil_ReturnsError() {

 mockURLSession = MockURLSession(data: nil,
 urlResponse: nil,
 error: nil)
 sut.session = mockURLSession

 let errorExpectation = expectation(description: "Error")
 var catchedError: Error? = nil
 sut.loginUser(withName: "Foo", password: "Bar") { (token, error) in
 catchedError = error
 errorExpectation.fulfill()
 }

 waitForExpectations(timeout: 1) { (error) in
 XCTAssertNotNil(catchedError)
 }
}

Run the test to make sure it fails.

To make the test pass, you need to define the errors to be thrown. Add the following enum
to the end of APIClient.swift:

enum WebserviceError : Error {
 case DataEmptyError
}

Replace the guard statement at the beginning of the completion handler in the login
method with this:

guard let data = data else {
 completion(nil, WebserviceError.DataEmptyError)
 return
}

Run the tests. All the tests pass, and there is nothing to refactor.

Testing Network Code

[153]

There is one error left that you need to handle. The completion handler of the data task is
called with an error parameter. The web service returns any error that has occurred on the
server side in this parameter. Our code has to handle this error. Add the following test to
make sure that the implementation handles the error when it is set:

func test_Login_WhenResponseHasError_ReturnsError() {

 let error = NSError(domain: "SomeError",
 code: 1234,
 userInfo: nil)
 let jsonData =
 "{\"token\": \"1234567890\"}"
 .data(using: .utf8)
 mockURLSession = MockURLSession(data: jsonData,
 urlResponse: nil,
 error: error)
 sut.session = mockURLSession

 let errorExpectation = expectation(description: "Error")
 var catchedError: Error? = nil
 sut.loginUser(withName: "Foo", password: "Bar") { (token, error) in
 catchedError = error
 errorExpectation.fulfill()
 }

 waitForExpectations(timeout: 1) { (error) in
 XCTAssertNotNil(catchedError)
 }
}

Note that you only initialize the mock URL session with valid response data. If you pass in
nil as data in this test, it would already pass, even though you haven't written the code to
handle the response error.

To make this test pass, add the ResponseError case to the WebserviceError enum, and
add the following code to the beginning of the completion handler of the data task:

guard error == nil else {
 return completion(nil, error)
}

Run the tests. All the tests pass, and there is nothing to refactor.

Testing Network Code

[154]

There are still some tests and implementations for the APIClient class that are missing.
You could add tests to fetch an item from and post an item to the web service, for example,
to make it possible to access the to-do items from a web application. We won't add the tests
in this book because they would look similar to the tests you have already written. But you
should add the tests yourself to practice the TDD workflow.

Summary
In this chapter, we wrote tests using test expectations provided by XCTest. We also used
stubs to fake a server. We took a look at how both ways bring us closer to our goal--a
finished app with as few bugs as possible.

We used dependency injection to catch the completion handler of the session data task in
our fake URL session. This way, we could feed test data into the implementation code and
assert that the code is implemented as expected. As we controlled the data that the
completion handler received, we were able to simulate all kinds of errors and drive the
implementation of the correct error handling.

In the following chapter, we will put the different parts of the last few chapters together and
finally see the app running.

6
Putting It All Together

In the previous chapters, we implemented different parts of our app using TDD. Now, it is
time to put all the parts together to develop a complete app.

This part of the implementation using TDD is the most exciting one. Usually, when not
using TDD, you build and run the app in the simulator all the time to check whether your
code works and changes bring the app closer to its final state.

In TDD, most of the development is done without running the app on the simulator or
device. The tests guide the implementation. This has one big advantage: you can implement
parts of the app that need to talk to a component that has not been implemented yet. For
example, you can write and verify the complete data model before a view controller or view
is able to show the data on the screen.

In this chapter, we will put the different parts of our code together to form the final app. In
addition to this, we will take a look at how functional tests can help to find bugs we missed
when writing the unit tests.

This chapter covers the following topics:

Connecting parts
Serialization and deserialization
Functional tests

Putting It All Together

[156]

Connecting parts
We will now put the different parts together and implement transitions between them. We
need tests for the initial view that is shown after the app is started and for navigating from
this view to the other two views. The tests have to ensure that the view controllers have
passed the data they need to populate their UIs.

The initial view controller
When you build and run the app now on the simulator, you will only see a black screen.
The reason for that is we haven't specified which screen the app should show after it is
started. Let's write a test for this. Because this is a test about the storyboard, add iOS |
Source | Unit Test Case Class to the test target and call it StoryboardTests. Import the
main module using the @testable keyword and remove the two template tests.

Add the following test to StoryboardTests:

func test_InitialViewController_IsItemListViewController() {
 let storyboard = UIStoryboard(name: "Main", bundle: nil)

 let navigationController =
 storyboard.instantiateInitialViewController()
 as! UINavigationController
 let rootViewController = navigationController.viewControllers[0]

 XCTAssertTrue(rootViewController is ItemListViewController)
}

This test gets a reference to the Main storyboard, instantiates its initial view controller
(which should be a navigation controller), and gets its root view controller. Then, it asserts
that the root view controller is of the type ItemListViewController.

Run the test. The test crashes with an error: unexpectedly found nil while
unwrapping an Optional value in the line where we try to initialize the initial view
controller. The reason for this is that we have not told Xcode what the initial view controller
is.

Putting It All Together

[157]

Open Main.storyboard, select the item list view controller and open the Attribute
Inspector. Check the checkbox next to Is Initial View Controller, as shown in the following
screenshot:

With the item list view controller still selected, navigate to Editor | Embed In | Navigation
Controller. With these changes in the storyboard, the initial view controller will be a
navigation controller with an instance of ItemListViewController as its root view
controller.

Run the tests again. All the tests pass and there is nothing to refactor.

Showing the input view
The user should be able to add an item to the list view. As shown in the mockups in
Chapter 2, Planning and Structuring Your Test-Driven iOS App, there should be an Add
button in the navigation bar that presents the input view controller. We will add the
following tests to ItemListViewControllerTests because these are tests about
ItemListViewController.

Open ItemListViewControllerTests and add this test:

func test_ItemListViewController_HasAddBarButtonWithSelfAsTarget() {
 let target = sut.navigationItem.rightBarButtonItem?.target
 XCTAssertEqual(target as? UIViewController, sut)
}

Putting It All Together

[158]

To make this test pass, we need to add a bar button item to the item list view controller.
Open Main.storyboard, drag a Bar Button Item to the navigation bar of the item list view
controller, and set the value of System Item to Add, as shown in the following screenshot:

Open ItemListViewController in the Assistant Editor and control + drag from the
button to below viewDidLoad(), as shown in the following screenshot:

Set the value of Connection to Action, Name to addItem, and Type to UIBarButtonItem.

Run the tests again. The tests pass and there is nothing to refactor.

Putting It All Together

[159]

Next, we want to make sure that the input view controller is presented when the user taps
the Add button. Add the following test to ItemListViewControllerTests:

func test_AddItem_PresentsAddItemViewController() {

 XCTAssertNil(sut.presentedViewController)

 guard let addButton = sut.navigationItem.rightBarButtonItem else
 { XCTFail(); return }
 guard let action = addButton.action else { XCTFail(); return }

 sut.performSelector(onMainThread: action,
 with: addButton,
 waitUntilDone: true)

 XCTAssertNotNil(sut.presentedViewController)
 XCTAssertTrue(sut.presentedViewController is InputViewController)
}

Before we do anything in the test, we make sure that sut does not present a view controller
on the screen. Then, we get a reference to the Add button and perform its selector on sut.
This makes sense because, from the previous test, we know that sut is the target for this
button. Run the test to make sure it fails.

To make the test pass, add the following line to the addItem method:

present(InputViewController(),
 animated: true,
 completion: nil)

Run the test. It still fails. To figure out what is going on, navigate to View | Debug Area |
Activate Console. You should see a line with information similar to this:

Warning: Attempt to present <ToDo.InputViewController: 0x7ff2fc75bd90> on
<ToDo.ItemListViewController: 0x7ff2fc75a420> whose view is not in the
window hierarchy!

The reason for this warning is that we have just instantiated the view controller, but it is not
shown anywhere. It is only possible to present a view controller from another view
controller whose view is in the view hierarchy. When the app is running outside of the test,
this is not an issue because if the user can tap the Add button, the item list view controller
must be visible on the screen and therefore its view has to be in the view hierarchy. So, we
need to figure out how to write a test for this.

Putting It All Together

[160]

In fact, it is quite easy. We can add the view to the view hierarchy by setting the view
controller to the rootViewController property of the key window. Add the following
line in test_AddItem_PresentsAddItemViewController() right below the guard
statements:

UIApplication.shared.keyWindow?.rootViewController = sut

Run the tests again. Now, all the tests pass, but the code looks strange. We instantiate an
instance of InputViewController using its initializer. This bypasses the storyboard. As a
result, the outlet connections we created in Chapter 4, A Test-Driven View Controller, are all
nil. This means that we wouldn't be able to put in the data for the to-do item we want to
add.

So, we need another test to make sure that the implementation code instantiates the input
view controller instance using the storyboard. Add the following code at the end of
test_AddItem_PresentsAddItemViewController():

let inputViewController =
 sut.presentedViewController as! InputViewController
XCTAssertNotNil(inputViewController.titleTextField)

Run the test to make sure it is red. To make the test pass, replace the contents of
addItem(_:) with the following code:

@IBAction func addItem(_ sender: AnyObject) {
 if let nextViewController =
 storyboard?.instantiateViewController(
 withIdentifier: "InputViewController")
 as? InputViewController {

 present(nextViewController, animated: true, completion: nil)
 }
}

This code instantiates an instance of InputViewController from the storyboard and
presents it on the screen. Run the tests. All the tests pass.

To be able to add items to the list, ItemListViewController and InputViewController
need to share the same item manager. This is possible because ItemManager is a class and
therefore both view controllers can hold a reference to the same instance. If we had used
struct instead, adding an item in InputViewController would not have changed the
item manager referenced by ItemListViewController.

Putting It All Together

[161]

Let's write a test to make sure that both view controllers refer to the same object. Add the
following test to ItemListViewControllerTests:

func testItemListVC_SharesItemManagerWithInputVC() {

 guard let addButton = sut.navigationItem.rightBarButtonItem else
 { XCTFail(); return }
 guard let action = addButton.action else { XCTFail(); return }
 UIApplication.shared.keyWindow?.rootViewController = sut

 sut.performSelector(onMainThread: action,
 with: addButton,
 waitUntilDone: true)

 guard let inputViewController =
 sut.presentedViewController as? InputViewController else
 { XCTFail(); return }
 guard let inputItemManager = inputViewController.itemManager else
 { XCTFail(); return }
 XCTAssertTrue(sut.itemManager === inputItemManager)
}

The first part of the test is similar to the earlier test. After presenting the input view
controller on the screen, we assert that itemManager in inputViewControler refers to the
same object as sut.

This test does not compile because Value of type 'ItemListViewController' has
no member 'itemManger'. Add the following property to make it compile:

let itemManager = ItemManager()

Run the test. It compiles but fails because itemManager of inputViewController is nil.
Add the following line in addItem(_:) right before the next view controller is presented:

nextViewController.itemManager = ItemManager()

Run the test. It still fails, but this time it's because the item manager of sut and input view
controller do not refer to the same object. Replace the line you just added with this one:

nextViewController.itemManager = itemManager

Run all the tests. All the tests pass.

If you look at the last two tests, there is a lot of duplicated code. The tests need refactoring.
This is left as an exercise for you. You should be able to extract the duplicated code with the
knowledge you have gained so far.

Putting It All Together

[162]

Now, let's check whether we can add a to-do item to the list. Build and run the app. Tap the
plus (+) button and put a title into the text field connected to the titleTextField
property. Tap the Save button (the one that is connected to the save action). Nothing
happens. The reason for this is that we did not add the code to dismiss the view controller
when the Save button was tapped. We need a test for this.

Open InputViewControllerTests.swift and add the following definition of a mock
class after the other mock classes:

class MockInputViewController : InputViewController {

 var dismissGotCalled = false

 override func dismiss(animated flag: Bool,
 completion: (() -> Void)? = nil) {

 dismissGotCalled = true
 }
}

The mock class is a subclass of InputViewController. The correct term for such a mock is
partial mock because it only mocks parts of the behavior of its super class. With this in
place, we can write the test:

func testSave_DismissesViewController() {
 let mockInputViewController = MockInputViewController()
 mockInputViewController.titleTextField = UITextField()
 mockInputViewController.dateTextField = UITextField()
 mockInputViewController.locationTextField = UITextField()
 mockInputViewController.addressTextField = UITextField()
 mockInputViewController.descriptionTextField = UITextField()
 mockInputViewController.titleTextField.text = "Test Title"

 mockInputViewController.save()

 XCTAssertTrue(mockInputViewController.dismissGotCalled)
}

As we do not instantiate from the storyboard, we need to set the text fields in the test;
otherwise, the test will crash because it will try to access text fields that are nil. After this,
we set a test title to the title text field and call save. This should dismiss the view
controller.

Putting It All Together

[163]

Run the test. It fails. To make it pass is quite easy. Add the following line at the end of
save():

dismiss(animated: true)

Now, run all the tests. All the tests pass.

Let's take a look at what the app looks like now. Build and run the app in the simulator, tap
the Add button, put in a title, and hit Save. The input view controller is dismissed but no
item is added to the list. There are two problems concerning this micro feature. First, the
item manager defined in ItemListViewController is not shared with the data provider.
Second, after an item has been added to the list, we need to tell the table view to reload its
data.

Let's write a test for the first problem. Add the following test to
ItemListViewController:

func test_ViewDidLoad_SetsItemManagerToDataProvider() {
 XCTAssertTrue(sut.itemManager === sut.dataProvider.itemManager)
}

This test does not compile because the data provider is of the type
(UITableViewDataSource & UITableViewDelegate)!. The compiler cannot know that
it also has an itemManager property. To fix this, add the following protocol to
ItemDataProvider.swift outside of the class definition:

@objc protocol ItemManagerSettable {
 var itemManager: ItemManager? { get set }
}

Now, the static analyzer tells us that this property cannot be a member of an
@objc protocol because its type cannot be represented in Objective-C.
But, we need to declare the protocol to be @objc because we've set the data provider from
the storyboard. The solution is to make ItemManager a subclass of NSObject:

class ItemManager: NSObject {
 //
}

Putting It All Together

[164]

Now, we can make ItemListDataProvider conform to ItemManagerSettable as
follows:

class ItemListDataProvider: NSObject, UITableViewDataSource,
UITableViewDelegate, ItemManagerSettable {
 //
}

We can finally add the protocol in the declaration of the data provider in
ItemListViewController:

@IBOutlet var dataProvider: (UITableViewDataSource & UITableViewDelegate &
ItemManagerSettable)!

Run the test. Finally, the test compiles but it fails. To make it pass, add the following line at
the end of viewDidLoad() in ItemListViewController:

dataProvider.itemManager = itemManager

Now, run all the tests. All the tests pass again and there is nothing to refactor.

On to the next problem: we need to make sure that the table view is reloaded when an item
is added to the item manager. A perfect place for the reload is viewWillAppear(_:). As
an exercise, add this test to ItemListViewControllerTests. You may need a mock for
the table view to register when reloadData() is called. A reminder: to trigger
viewWillAppear(_:), do this in your test:

sut.beginAppearanceTransition(true, animated: true)
sut.endAppearanceTransition()

Write the test as an exercise.

To make the test pass, add the following code to ItemListViewController:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)

 tableView.reloadData()
}

Putting It All Together

[165]

Finally, build and run the app again and add an item to the list. You should see something
like this:

If adding a to-do item doesn't work when you run the app, make sure that you have
implemented the else path in add() no location is added to the location text field. It
should look like this:

let item = ToDoItem(title: titleString,
 itemDescription: descriptionString,
 timestamp: date?.timeIntervalSince1970,
 location: nil)
self.itemManager?.add(item)

Putting It All Together

[166]

Showing the detail view
When the user taps a cell, the detail view should be shown on the screen with the
information of the corresponding to-do item. The selection of the cell is managed by the
data provider because it is the delegate for the table view. The presentation of the detail
view controller is managed by the item list view controller. This means the data provider
has to communicate the selection of a cell to the list view controller. There are several
different ways to achieve this. We will use a notification because it will be interesting to
take a look at how we can test sending of notifications.

Communication with notifications has two partners: the sender and the receiver. In our
case, the sender is the data provider. Let's write a test that ensures that a notification is sent
when the user selects a cell. Open ItemListDataProviderTests and add the following
test method:

func test_SelectingACell_SendsNotification() {
 let item = ToDoItem(title: "First")
 sut.itemManager?.add(item)

 expectation(
 forNotification: NSNotification.Name(
 rawValue: "ItemSelectedNotification"),
 object: nil) { (notification) -> Bool in

 guard let index =
 notification.userInfo?["index"] as? Int else
 { return false }

 return index == 0
 }

 tableView.delegate?.tableView!(
 tableView,
 didSelectRowAt: IndexPath(row: 0, section: 0))

 waitForExpectations(timeout: 3, handler: nil)
}

First, we add an item to the item manager to create a cell that we can select. Then, we create
an expectation for a notification. When a notification with that name is sent, the closure is
called. In the closure, we check whether the user information contains an index and the
index is equal to 0. If it is, the closure will return true; otherwise, it'll return false. A
return value of true means that the expectation is fulfilled. Next, we will call
didSelectRowAt on the table view's delegate and wait for the expectation to be fulfilled.

Putting It All Together

[167]

Run the test. It fails. To make the test pass, add the following code to
ItemListDataProvider:

func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 guard let itemSection = Section(rawValue: indexPath.section) else
 { fatalError() }

 switch itemSection {
 case .toDo:
 NotificationCenter.default.post(
 name: NSNotification.Name("ItemSelectedNotification"),
 object: self,
 userInfo: ["index": indexPath.row])

 default:
 break
 }
}

This code is straightforward. We get the section, and if the tap is in the to-do section, we
send the notification with the tapped row in userInfo.

Run all the tests. All the tests pass and there is nothing to refactor.

The receiver of the notification should be the item list view controller, and it'll push the
detail view controller onto the navigation stack when it receives the message. To test this,
we need another mock. Add the following code in
ItemListViewControllerTests.swift but outside of the
class ItemListViewControllerTests:

extension ItemListViewControllerTests {
 class MockNavigationController : UINavigationController {

 var lastPushedViewController: UIViewController?

 override func pushViewController(_ viewController:
 UIViewController,
 animated: Bool)
 {
 lastPushedViewController = viewController
 super.pushViewController(viewController, animated: animated)
 }
 }
}

Putting It All Together

[168]

This is a mock for UINavigationController, and it simply registers when a view
controller is pushed onto the navigation stack.

Add the following test to ItemListViewControllerTests:

func testItemSelectedNotification_PushesDetailVC() {

 let mockNavigationController =
 MockNavigationController(rootViewController: sut)

 UIApplication.shared.keyWindow?.rootViewController =
 mockNavigationController

 sut.loadViewIfNeeded()
 sut.itemManager.add(ToDoItem(title: "foo"))
 sut.itemManager.add(ToDoItem(title: "bar"))
 NotificationCenter.default.post(
 name: NSNotification.Name("ItemSelectedNotification"),
 object: self,
 userInfo: ["index": 1])

 guard let detailViewController = mockNavigationController
 .lastPushedViewController as? DetailViewController else {
 return XCTFail()
 }

 guard let detailItemManager = detailViewController.itemInfo?.0 else
 { return XCTFail() }

 guard let index = detailViewController.itemInfo?.1 else
 { return XCTFail() }

 detailViewController.loadViewIfNeeded()

 XCTAssertNotNil(detailViewController.titleLabel)
 XCTAssertTrue(detailItemManager === sut.itemManager)
 XCTAssertEqual(index, 1)
}

Putting It All Together

[169]

There are many lines of code. Let's go through them step by step. First, we create an
instance of our navigation controller mock and set its root view controller to be the sut
property. As seen earlier, in order to be able to push a view controller onto the navigation
stack, the view of the pushing view controller has to be in the view hierarchy. Then, we load
the view of sut to trigger viewDidLoad() because we assume that sut is added as an
observer to NotificationCenter.default in viewDidLoad(). With this setup, we can
send the notification using NotificationCenter.default. Next, we get the pushed view
controller and assert that it is of the DetailViewController type. Then, we check whether
the item's information is passed to the pushed view controller. Finally, we check whether
titleLabel of the detail view controller is not nil and if it shares the item manager with
the item list view controller.

Run the test. The test fails. To make the test pass, we first need to add
ItemListViewController as an observer to NotificationCenter.default. Add the
following code at the end of viewDidLoad():

NotificationCenter.default.addObserver(
 self,
 selector: #selector(showDetails(sender:)),
 name: NSNotification.Name("ItemSelectedNotification"),
 object: nil)

Next, we have to implement showDetails(_:). Add the following method to
ItemListViewController:

@objc func showDetails(sender: NSNotification) {
 guard let index = sender.userInfo?["index"] as? Int else
 { fatalError() }

 if let nextViewController = storyboard?.instantiateViewController(
 withIdentifier: "DetailViewController") as? DetailViewController {

 nextViewController.itemInfo = (itemManager, index)
 navigationController?.pushViewController(nextViewController,
 animated: true)
 }
}

Run all the tests. All the tests pass and there is nothing to refactor.

Putting It All Together

[170]

Serialization and deserialization
You may notice that the to-do item you put in is gone when you restart the app. Such an
app is useless for the user. The app needs to store the to-do items somehow and reload
them when it is opened the next time. There are different possibilities to implement this. We
could use Core Data, serialize the data using NSCoding, or use a third-party framework. In
this book, we will write the date into a property list (plist). A plist has the advantage that it
can be opened and altered with Xcode or any other editor.

The data model we implemented uses structs. Unfortunately, structs cannot be written to a
plist. We have to convert the data into Any arrays and String:Any dictionaries. Add the
following code to ToDoItemTests:

func test_HasPlistDictionaryProperty() {
 let item = ToDoItem(title: "First")
 let dictionary = item.plistDict
}

The static analyzer complains that there is no property with the name plistDict. Let's add
it. Open ToDoItem and add the property:

var plistDict: String {
 return ""
}

We will use a calculated property here because we don't want to initialize it during
initialization, and the value should be calculated from the current values of the other
properties. Add the following assertions at the end of the test:

XCTAssertNotNil(dictionary)
XCTAssertTrue(dictionary is [String:Any])

As mentioned previously, to be able to write the date into a plist, it needs to be of
type [String:Any]. Run the test. It fails because, right now, the calculated property is of
type String. Replace the property with this code:

var plistDict: [String:Any] {
 return [:]
}

Run all the tests. All the tests pass and there is nothing to refactor.

Putting It All Together

[171]

Now, we need to make sure that we can recreate an item from plistDict. Add the
following code to ToDoItemTests:

func test_CanBeCreatedFromPlistDictionary() {
 let location = Location(name: "Bar")
 let item = ToDoItem(title: "Foo",
 itemDescription: "Baz",
 timestamp: 1.0,
 location: location)

 let dict = item.plistDict
 let recreatedItem = ToDoItem(dict: dict)
}

We have to stop writing the test because the static analyzer complains The 'ToDoItem'
struct does not have an initializer with a parameter named 'dict'. Open
ToDoItem.swift and add the following code to the ToDoItem struct:

init?(dict: [String:Any]) {
 return nil
}

This is enough to make the test compilable. Now, add the assertion to the test:

XCTAssertEqual(item, recreatedItem)

That assertion asserts that the recreated item is the same as the item used to create
plistDict. Run the test. The test fails because we haven't implemented writing the data of
struct to [String:Any] and the creation of a to-do item from [String:Any]. To write
the complete information needed to recreate a to-do item into a dictionary, we first have to
make sure that an instance of Location can be written to and recreated from
[String:Any].

In TDD, it is important to always have only one failing test. So, before we can move to the
tests for Location, we have to disable the last test we wrote. During test execution, the test
runner searches for methods in the test cases that begin with test. Change the name of the
previous test method to xtest_CanBeCreatedFromPlistDictionary(). Run the tests to
make sure that all tests, except this one, are executed.

Putting It All Together

[172]

Now, open LocationTests and add the following code:

func test_CanBeSerializedAndDeserialized() {
 let location = Location(
 name: "Home",
 coordinate: CLLocationCoordinate2DMake(50.0, 6.0))

 let dict = location.plistDict
}

Again, the static analyzer complains because the property is missing. We already know how
to make this compilable again. Add this code to Location:

var plistDict: [String:Any] {
 return [:]
}

With this change, the test compiles. Add the following code to the end of the test:

XCTAssertNotNil(dict)
let recreatedLocation = Location(dict: dict)

Again, this does not compile because Location does not have an initializer with one
parameter called dict. Let's add it:

init?(dict: [String:Any]) {
 return nil
}

The test passes again. But it is not finished yet. We need to make sure that the recreated
location is the same as the one we used to create the [String:Any]. Add the assertion at
the end of the test:

XCTAssertEqual(location, recreatedLocation)

Run the test. It fails. To make it pass, the plistDict property has to have all the
information needed to recreate the location. Replace the calculated property with this code:

private let nameKey = "nameKey"
private let latitudeKey = "latitudeKey"
private let longitudeKey = "longitudeKey"

var plistDict: [String:Any] {
 var dict = [String:Any]()

 dict[nameKey] = name

Putting It All Together

[173]

 if let coordinate = coordinate {
 dict[latitudeKey] = coordinate.latitude
 dict[longitudeKey] = coordinate.longitude
 }
 return dict
}

The code explains itself. It just puts all the information of a location into an instance of
[String:Any]. Now, replace the initializer with the dict argument with the following:

init?(dict: [String:Any]) {
 guard let name = dict[nameKey] as? String else
 { return nil }

 let coordinate: CLLocationCoordinate2D?
 if let latitude = dict[latitudeKey] as? Double,
 let longitude = dict[longitudeKey] as? Double {
 coordinate = CLLocationCoordinate2DMake(latitude, longitude)
 } else {
 coordinate = nil
 }

 self.name = name
 self.coordinate = coordinate
}

Run the tests. All the tests pass again.

As the location can be written to [String:Any], we can use it for the serialization of
ToDoItem. Open ToDoItemTests again, and remove the x at the beginning of the method
name of xtest_CanBeCreatedFromPlistDictionary(). Run the tests to make sure that
this test fails.

Now, replace the implementation of the calculated plistDict property in ToDoItem with
this code:

private let titleKey = "titleKey"
private let itemDescriptionKey = "itemDescriptionKey"
private let timestampKey = "timestampKey"
private let locationKey = "locationKey"

var plistDict: [String:Any] {
 var dict = [String:Any]()
 dict[titleKey] = title
 if let itemDescription = itemDescription {
 dict[itemDescriptionKey] = itemDescription
 }

Putting It All Together

[174]

 if let timestamp = timestamp {
 dict[timestampKey] = timestamp
 }
 if let location = location {
 let locationDict = location.plistDict
 dict[locationKey] = locationDict
 }
 return dict
}

Again, this is straightforward. We will put all the values stored in the properties into a
dictionary and return it. To recreate a to-do item from a plist dictionary, replace
init?(dict:) with this:

init?(dict: [String:Any]) {
 guard let title = dict[titleKey] as? String else
 { return nil }

 self.title = title

 self.itemDescription = dict[itemDescriptionKey] as? String
 self.timestamp = dict[timestampKey] as? Double
 if let locationDict = dict[locationKey] as? [String:Any] {
 self.location = Location(dict: locationDict)
 } else {
 self.location = nil
 }
}

In this init method, we fill the properties of ToDoItem with the values from the
dictionary. Run the tests. All the tests pass and there is nothing to refactor.

The next step is to write the list of checked and unchecked to-do items to the disk and
restore them when the app is started again. To drive the implementation, we will write a
test that creates two to-do items and adds them to an item manager, sets the item manager
to nil, and then, creates a new one. The created item manager should then have the same
items as the one that got destroyed. Open ItemManagerTests and add the following test in
it:

func test_ToDoItemsGetSerialized() {
 var itemManager: ItemManager? = ItemManager()

 let firstItem = ToDoItem(title: "First")
 itemManager!.add(firstItem)

 let secondItem = ToDoItem(title: "Second")
 itemManager!.add(secondItem)

Putting It All Together

[175]

 NotificationCenter.default.post(
 name: .UIApplicationWillResignActive,
 object: nil)

 itemManager = nil

 XCTAssertNil(itemManager)

 itemManager = ItemManager()
 XCTAssertEqual(itemManager?.toDoCount, 2)
 XCTAssertEqual(itemManager?.item(at: 0), firstItem)
 XCTAssertEqual(itemManager?.item(at: 1), secondItem)
}

In this test, we first create an item manager, add two to-do items, and send
UIApplicationWillResignActive to signal to the app that it should write the data to
disk. Next, we set the item manager to nil to destroy it. Then, we create a new item
manager and assert that it has the same items.

Run the test. The test crashes because we try to access a to-do item in the item manager but
there is no item yet.

Before we write the code that writes the to-do items to disk, add the following code to
tearDown(), right before super.tearDown():

sut.removeAllItems()
sut = nil

This is needed because, otherwise, all the tests would end up writing their to-do items to
disk, and the tests would not start from a clean state.

As mentioned previously, the item manager should register as an observer for
UIApplicationWillResignActive and write the data to disk when the notification is
sent. Add the following init method to ItemManager:

override init() {
 super.init()

 NotificationCenter.default.addObserver(
 self,
 selector: #selector(save),
 name: .UIApplicationWillResignActive,
 object: nil)
}

Putting It All Together

[176]

The enum with the value UIApplicationWillResignActive is defined in UIKit, so
replace import Foundation with import UIKit. Next, add the following calculated
property to create a path URL for the plist:

var toDoPathURL: URL {
 let fileURLs = FileManager.default.urls(
 for: .documentDirectory, in: .userDomainMask)

 guard let documentURL = fileURLs.first else {
 print("Something went wrong. Documents url could not be found")
 fatalError()
 }

 return documentURL.appendingPathComponent("toDoItems.plist")
}

This code gets the document directory of the app and appends the toDoItems.plist path
component. Now, we can write the save method:

@objc func save() {
 let nsToDoItems = toDoItems.map { $0.plistDict }

 guard nsToDoItems.count > 0 else {
 try? FileManager.default.removeItem(at: toDoPathURL)
 return
 }
 do {
 let plistData = try PropertyListSerialization.data(
 fromPropertyList: nsToDoItems,
 format: PropertyListSerialization.PropertyListFormat.xml,
 options: PropertyListSerialization.WriteOptions(0)
)
 try plistData.write(to: toDoPathURL,
 options: Data.WritingOptions.atomic)
 } catch {
 print(error)
 }
}

First, we create an Any array with the dictionaries of the to-do items. If the array has at least
one item, we write it to the disk using the PropertyListSerialization class. Otherwise,
we remove whatever is stored at the location of the file path.

Putting It All Together

[177]

When a new item manager is created, we have to read the data from the plist and fill the
toDoItems array. The perfect place to read the data is in the init method. Add the
following code at the end of init():

if let nsToDoItems = NSArray(contentsOf: toDoPathURL) {

 for dict in nsToDoItems {
 if let toDoItem = ToDoItem(dict: dict as! [String:Any]) {
 toDoItems.append(toDoItem)
 }
 }
}

Before we can run the tests, we need to do some housekeeping. We have added the item
manager as an observer to NotificationCenter.default. Like good citizens, we have to
remove it when we aren't interested in notifications anymore. Add the following deinit
method to ItemManager:

deinit {
 NotificationCenter.default.removeObserver(self)
 save()
}

In addition to removing the observer, we call save() to trigger the save operation.

There are many lines of code needed to make one test pass. We could have broken these
down into smaller steps. In fact, you should experiment with the test and the
implementation and see what happens when you comment out parts of it.

Run all tests. Uh!? A lot of unrelated tests fail.

If you do not see failing tests, the timing of your tests might be different to mine. Do the
following changes anyway because, otherwise, you might see failing tests later.

Putting It All Together

[178]

We haven't changed the code the other tests are testing, but we changed the way
ItemManager works. If you have a look at ItemListDataProviderTests,
DetailViewControllerTests, and InputViewControllerTests, we added items to an
item manager instance in there. This means that we need to clean up after the tests have
been executed. Open ItemListDataProviderTests and add the following code to
tearDown(), right before super.tearDown():

sut.itemManager?.removeAll()

Add the same code to tearDown() in InputViewControllerTests.

Now, add the following to tearDown() in DetailViewControllerTests:

sut.itemInfo?.0.removeAll()

Run the tests again. All the tests pass. We will move to the next section, but you should
implement the tests and code for the serialization and deserialization of the done items in
ItemManager.

Functional tests
Until now, we have written unit tests to drive the implementation. Unit tests test a small
microfeature (a unit of the project) under controlled circumstances.

On the other side of the spectrum are functional tests, which test the functionalities of the
app in terms of how a user would approach them. The user does not care how the app
they're using is implemented. The user cares about what they can do with the app.
Functional tests help make sure that the app works as expected.

In this section, we will add a functional test using UI tests, which were introduced with
Xcode 7. We will take one functionality (adding a to-do item) and write a test from the
user's perspective.

Adding a UI test target
First, we need to add a UI test target to our project. In Project Navigator, select the project
and click on the button at the bottom of the view showing the target list:

Putting It All Together

[179]

From the template chooser, navigate to iOS | Test | iOS UI Testing Bundle. Let the name
remain as Xcode suggests it, click on Next, and then on Finish.

Recording and testing
Open Project Navigator and scroll down to the ToDoUITests group. In the group, you'll
find a file called ToDoUITests.swift. Click on it to open it in the editor. The structure of
the file is similar to the other test cases. In fact, the UI test class is a subclass of XCTextCase,
like all our other test cases. Take a look at setUp(). You'll see this line:

XCUIApplication().launch()

Putting It All Together

[180]

This line launches the app for the UI test. Here, you can already see the difference between
unit tests and UI tests. A unit test just loads the classes it needs for the test. It doesn't matter
how the classes are put together or how the user interacts with the app. In UI tests, the test
runner needs to launch the app in order to be able to interact with the real UI. The user
interacts with the same UI when they start the app.

Before we write the functional test, open Main.storyboard and add Auto Layout
constraints to position the views. Then, add placeholders to the text fields of the input view
controller. The scene in the storyboard should then look something like this:

Also, add constraints to the other views in the storyboard.

Putting It All Together

[181]

Now, go back to ToDoUITests, remove the comment, and position the cursor within the
method testExample. At the bottom of the editor, you'll see a red dot:

Click on it to start recording the UI test. Xcode compiles the app and launches it in the
simulator. When the app is running, click on the Add button to navigate to the input screen.
Then, put in the values for all the fields and click on Save. Remember to put the date in the
02/22/2016 format because this is the format we used when we built
InputViewController.

While you were interacting with the UI, Xcode recorded your actions. Open ToDoUITests
and have a look at the code. The recording doesn't always produce the same code but, in
general, it should look like this (if the recording didn't work, just copy and paste the code
into the test method):

let app = XCUIApplication()
app.navigationBars["ToDo.ItemListView"].buttons["Add"].tap()

let titleTextField = app.textFields["Title"]
titleTextField.tap()
titleTextField.typeText("Meeting")

let dateTextField = app.textFields["Date"]
dateTextField.tap()
dateTextField.typeText("02/22/2018")

let locationNameTextField = app.textFields["Location"]
locationNameTextField.tap()
locationNameTextField.typeText("Office")

let addressTextField = app.textFields["Address"]
addressTextField.tap()
addressTextField.typeText("Infinite Loop 1, Cupertino")

let descriptionTextField = app.textFields["Description"]
descriptionTextField.tap()
descriptionTextField.typeText("Bring iPad")
app.buttons["Save"].tap()

Putting It All Together

[182]

Let's take a look at what happens when we run the test. Click on the diamond next to the
beginning of the test method and switch to the simulator. Like magic, Xcode will run your
app and interact with the UI.

But there is something strange. After the test runner has tapped Save, the input screen is
dismissed and the list view is shown. But, where is the item? It is not added to the list. It
looks like we have a bug in our code.

Let's add assertions to the test to make sure we fix this bug. Add the following code at the
end of the test:

XCTAssertTrue(app.tables.staticTexts["Meeting"].exists)
XCTAssertTrue(app.tables.staticTexts["02/22/2018"].exists)
XCTAssertTrue(app.tables.staticTexts["Office"].exists)

Run the UI test to make sure it fails.

Now, open InputViewController and let's see if we can spot the problem. If you would
like to find the bug yourself, add breakpoints and step through the code (and stop reading
further until you have found it).

Did you find it? As described earlier, the geocoder is asynchronous. This means that the call
back closure is executed on a different thread. The main thread does not wait until the
geocoder has finished its work and dismisses the view controller before an item can be
added to the item manager.

Let's fix this bug. First, remove the following line of code:

dismiss(animated: true)

Next, change the code according to the following code:

// ...

if let locationName = locationTextField.text,
 locationName.characters.count > 0 {
 if let address = addressTextField.text,
 address.characters.count > 0 {

 geocoder.geocodeAddressString(address) {
 [unowned self] (placeMarks, error) -> Void in

 let placeMark = placeMarks?.first

 let item = ToDoItem(
 title: titleString,
 itemDescription: descriptionString,

Putting It All Together

[183]

 timestamp: date?.timeIntervalSince1970,
 location: Location(
 name: locationName,
 coordinate: placeMark?.location?.coordinate))

 DispatchQueue.main.async(execute: {
 self.itemManager?.add(item)
 self.dismiss(animated: true)
 })
 }
 } else {
 let item = ToDoItem(title: titleString,
 itemDescription: descriptionString,
 timestamp: date?.timeIntervalSince1970,
 location: nil)
 self.itemManager?.add(item)
 dismiss(animated: true)
 }
} else {
 let item = ToDoItem(title: titleString,
 itemDescription: descriptionString,
 timestamp: date?.timeIntervalSince1970,
 location: nil)
 self.itemManager?.add(item)
 dismiss(animated: true)
}

Run the test. Now, the test passes. We have just recorded and written our first functional
test. You should add the missing functional tests, for example, in order to check and
uncheck items and show their details.

To make sure we haven't broken anything due to these changes, let's run all the tests again.
Bummer. The test execution crashes in
test_Save_UsesGeocoderToGetCoordinateFromAddress() when we try to access the
item at index 0. The reason for this crash is that we call add(_:) in the save() method on a
different thread. This means that the assertions are executed before the item is added to the
item manager. We need to make the test asynchronous to account for the change in the
implementation.

Putting It All Together

[184]

Open InputViewControllerTests and replace MockInputViewController with this
code:

class MockInputViewController : InputViewController {

 var dismissGotCalled = false
 var completionHandler: (() -> Void)?

 override func dismiss(animated flag: Bool,
 completion: (() -> Void)? = nil) {

 dismissGotCalled = true
 completionHandler?()
 }
}

By making this change, we added the ability to get notified when dismiss
(animated:completion:) is called. We need to change the test to use the input view
controller mock and add code to make the test asynchronous. Replace
test_Save_UsesGeocoderToGetCoordinateFromAddress() with the following code:

func test_Save_UsesGeocoderToGetCoordinateFromAddress() {
 let mockSut = MockInputViewController()

 mockSut.titleTextField = UITextField()
 mockSut.dateTextField = UITextField()
 mockSut.locationTextField = UITextField()
 mockSut.addressTextField = UITextField()
 mockSut.descriptionTextField = UITextField()

 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy"

 let timestamp = 1456095600.0
 let date = Date(timeIntervalSince1970: timestamp)

 mockSut.titleTextField.text = "Foo"
 mockSut.dateTextField.text = dateFormatter.string(from: date)
 mockSut.locationTextField.text = "Bar"
 mockSut.addressTextField.text = "Infinite Loop 1, Cupertino"
 mockSut.descriptionTextField.text = "Baz"
 let mockGeocoder = MockGeocoder()
 mockSut.geocoder = mockGeocoder

 mockSut.itemManager = ItemManager()

Putting It All Together

[185]

 let dismissExpectation = expectation(description: "Dismiss")

 mockSut.completionHandler = {
 dismissExpectation.fulfill()
 }

 mockSut.save()

 placemark = MockPlacemark()
 let coordinate = CLLocationCoordinate2DMake(37.3316851,
 -122.0300674)
 placemark.mockCoordinate = coordinate
 mockGeocoder.completionHandler?([placemark], nil)

 waitForExpectations(timeout: 1, handler: nil)

 let item = mockSut.itemManager?.item(at: 0)

 let testItem = ToDoItem(title: "Foo",
 itemDescription: "Baz",
 timestamp: timestamp,
 location: Location(name: "Bar",
 coordinate: coordinate))

 XCTAssertEqual(item, testItem)
 mockSut.itemManager?.removeAll()
}

This looks more complicated than it is. We just replaced sut with an instance of
MockInputViewController. As seen earlier, because we are not using the storyboard, we
need to set the text fields. We need to remove all items from the item manager, otherwise,
the added item would get serialized.

Run all the tests. Now, all the tests pass.

Summary
In this chapter, you took a look at how tests guide you toward the final steps to create the
complete app. You used tests to drive the implementation of the navigation between the
view controllers of the app. You also implemented the serialization and deserialization of
the to-do items.

Putting It All Together

[186]

Finally, you used functional tests to make sure that the app worked from the user
perspective, and you found a critical bug by doing so.

In the next chapter, you will take a look at the code coverage of your tests. This means that
you will get a better insight into how much of the code is covered by tests. You will also set
up continuous integration in order to improve the feedback about your code.

7
Code Coverage

We now have about 80 tests and the code that makes tests pass, but do the tests really test
all the code? Using TDD, the code coverage of our tests should be quite high. Should.

Instead of guessing, we would rather have numbers that tell us how good the code
coverage of our tests really is. Before Xcode 7, it was quite difficult to measure the coverage
of a test suite, but with version 7, Apple added this feature to Xcode.

In this chapter, we will measure the code coverage of our tests, and we will take a look at
how we can use Xcode Server and fastlane to automate everyday tasks in our lives as iOS
developers. The chapter is structured like this:

Enabling code coverage
Automatic deployment with fastlane

Enabling code coverage
Measuring the code coverage of our tests gives us a feeling of completeness about our test
suite. While following the TDD workflow, as we don't write any code without a failing test,
the code coverage of our project should be very high. We don't expect it to be 100%,
meaning that all the code paths are executed in the tests because the static analyzer forces
us to write code that we don't expect to be executed. For example, in the code we wrote, we
often used guard to make sure that the value we wanted to access was not nil. We could
have written tests for a case where the value was nil. But in my opinion, in most cases
these tests give no additional value.

Nevertheless, we will examine the parts of the project without code coverage and discuss
whether we need to add tests to cover them.

Code Coverage

[188]

Code coverage in Xcode
Xcode has added native support for the measurement of the code coverage of tests with
version 7. To enable it, select Edit Scheme... in the scheme selector in Xcode:

In the following pop-up window, select the Test phase and check Gather coverage data:

Code Coverage

[189]

That is all! If you have tried to add the gathering of code coverage in Xcode 6, you will most
probably be impressed by how easy this is in Xcode 9. Close the window, and run all the
tests to measure the code coverage.

After the tests have finished, select the Report Navigator, click on Test, and select the
Coverage tab, as shown in the following screenshot:

This opens the Coverage data view. On the left-hand side, you can see the files in the
project, and on the right-hand side, the corresponding coverage value is shown. The worst
coverage is in AppDelegate.swift. Click on the triangle next to the filename to expand its
details. The details show the coverage data for all the methods in the file. It immediately
becomes clear why the code coverage in AppDelegate.swift is that low. We left the
methods from the template in AppDelegate even though we don't need them.

Let's remove the unused methods. Open AppDelegate.swift. The only really required
method here is application(_:didFinishLaunchingWithOptions:). Remove all the
other methods, run all the tests, and open the code coverage for the new test run.
Now, AppDelegate has 100% test coverage. Great!

Code Coverage

[190]

Let's take a look at another file where the code coverage is not 100%. Open
DetailViewController.swift and go to Editor | Show Code Coverage. If you cannot
find the menu item and, instead, there is an item called Hide Code Coverage, it means that
your editor is already set up correctly. With this setting, Xcode shows the coverage data in
the editor next to the code:

The numbers show how often this code block has been executed during the test's run. If the
number is 0, it means that this line did not get executed. This is strange. Why isn't the code
in the date formatter executed? I think this is a bug. Apple rewrote the code editor in Xcode
9. A rewrite of something as complex as the editor in Xcode is not simple. This means, take
the code coverage info in the editor with a grain of salt.

Code Coverage

[191]

In the case of DetailViewController.swift, the following line has no code coverage:

guard let itemInfo = itemInfo else { return }

To take a look at what is going on here, let's replace this line with the following equivalent
implementation:

guard let itemInfo = itemInfo
 else { return }

Run the tests again to collect the coverage data. The code coverage is zero in the line with
the else clause. The reason for this is that we did not write a test for the case when
itemInfo was nil. Do we need this test? In my opinion, in this case, it does not make
sense to add a test for this because we will just return from viewWillAppear(_:) when
itemInfo is nil. In addition to this, in our app, the only controller that creates an instance
of DetailViewController is ItemListViewController, and we already have a test that
this controller sets in the itemInfo dictionary.

In fact, it is a development error if we forget to set itemInfo because then the detail view
controller will not be able to show any useful data. So, instead of adding a test, we'd rather
make sure that the app crashes when there isn't itemInfo at this point. Then, such an error
would show up as a crash during development. We also find the error faster than in a case
where we just return from viewWillAppear(_:), and wonder why the UI is not populated
with data.

To make the app crash in case there is no itemInfo, replace the guard statement with the
following:

guard let itemInfo = itemInfo
 else { fatalError() }

How much code coverage is enough?
What value of code coverage is enough? This question cannot be answered because it
mostly depends on the project and people working on the project. In fact, it is often better to
ignore the code coverage data altogether, because it only has a limited value to decide
whether tests are missing. But if you search the internet for this question, you will find a lot
of different opinions on the topic. You might have to find your own answer to this question.

In my opinion, the one and only measurement to answer whether there are enough tests is
your confidence. If you are confident that the code you've written is working because
you've tested all the relevant aspects of it, then you have enough tests.

Code Coverage

[192]

But, nevertheless, the code coverage data can help you figure out whether you have missed
something in your test that you thought would have already been tested.

Automatic deployment with fastlane
Automatic deployment is the ability to create a beta or an App Store version of an app with
just one click or command. It is of great benefit to be able to ship a version without all the
hassle of provisioning profiles and code signing (often referred to as code signing hell).
Felix Krause, a developer, started a project named fastlane.tools to make deployment
on iOS as easy as running a command in Terminal.app. We will use fastlane in this
section to set up the automatic deployment for our to-do app.

To run the commands in this section, you need a paid developer account.

Installing fastlane
Go to fastlane.tools (put fastlane.tools in your browser) and follow the installation
guide. We won't repeat the steps here because fastlane is still in active development, and
the probability that the installation process changes before this book is published is very
high.

Setting up
Open Terminal.app and navigate to the folder with the to-do project. Put in the following
command, press Enter, and follow the instructions on the screen:

fastlane init

When you are asked if you want to set up deliver or snapshot, put in n for No. But we
want to use sigh to automatically create and download provisioning profiles for the app.
The next step is to add the app to your developer portal. Put the following command into
Terminal.app and press Enter:

produce

Code Coverage

[193]

You will be asked for the credentials of your Apple ID. The password you provide here will
be stored in the keychain. When asked about the app name, put in a good name for the app.
This name will be used to create the app in iTunes Connect. If there is already an app with
that name in the App Store, fastlane will tell you so. In this case, run produce again and
choose another name.

Before we can create a beta build and load it to TestFlight, the app needs an icon file that is
120 x 120 in size. Create your own icon.

Add the icon by navigating to Assets.xcassets | AppIcon | iPhone App iOS 7-10 60 pt | 2x.

To create a beta build and load it to TestFlight, use this simple command:

fastlane beta

Fastlane fetches the required provisioning profile, builds the app, and loads it into
TestFlight. The whole process takes a while. But, everything runs automatically and you can
do something else until the upload is finished.

If this is your first upload, fastlane will print something like this:

This build could not be used for external testing because the build is not
approved.

You can now open iTunes Connect, and submit the build for a beta review. This is how you
can perform automatic deployments using fastlane.

Among others, fastlane is also able to upload the App Store description and screenshots for
your app, and it can submit these for review. Take a look at the GitHub page
https://github.com/fastlane/fastlane to obtain some knowledge about the many
different tools in fastlane and how they can help you with your day-to-day development
tasks.

Summary
In this chapter, you learned how to activate code coverage. You used the data from a
measurement to improve your code. By activating the presentation of the coverage data in
the editor, you figured out which lines aren't tested by the test suite.

https://github.com/fastlane/fastlane

Code Coverage

[194]

Finally, you used fastlane to automatically create and load provisioning profiles and build
and submit our app for the TestFlight review.

In the next and final chapter, we will discuss what you can do to learn more about testing
and the other approaches that are included in writing tests.

8
Where to Go from Here

You learned how to write tests for models, view controllers, and networking code using the
TDD workflow. Of course, an introductory book can only cover an overview of the wide
topic of TDD.

There is more to learn (as always). This chapter starts with a recap of what we have covered
in the book so far. Then, it'll go on to describe certain possible topics that you can take a
look at next.

This chapter covers the following topics:

What you have learned so far
Integration tests
UI tests
Behavior-Driven Development
TDD in existing projects
More information on TDD

What you have learned so far
In the course of this book, we have mainly written unit tests. As the name suggests, unit
tests test small units in isolation. The advantage of using unit tests for TDD is the immediate
feedback that is received in the TDD workflow. We wrote a test, ran it, and immediately got
a feedback about the status of our code.

We used mocks, stubs, and fakes to separate the units from the rest of the code. This
allowed us to focus the tests on one microfeature at a time.

Where to Go from Here

[196]

Using TDD, we build a model, view controller, and the network layer of our app. Next, we
put all the parts together to form a real iOS app. We have seen how to use UI tests to
implement functional testing that focuses on individual features rather than units.

Finally, we also used fastlane to automate the deployment process.

But, as you might have guessed, there is more. This book is, at best, only the beginning of
your journey towards becoming a testing expert. The next few sections will give you some
guidance on where you can go in order to gain more experience in testing.

Integration tests
In Chapter 6, Putting It All Together, we saw that unit tests could only test microfeatures in
isolation. The next step would be to use integration tests to make sure that individual
features play well together. In integration tests, you do not mock other components.
Instead, you use the real implementation and write tests that make sure that the different
parts of the codebase interact with each other in the way you anticipated.

You can also use XCTest to implement integration tests. But the setup is more complicated
than in the tests we have seen in this book. You use real classes and structs, and even
network requests can fetch real data from a web service. What makes integration tests more
complicated is that you don't want to change data in a real database during the test. This
means that everything you do in the test has to be reverted when the test is finished. Or,
you may have to use a different database or web service for the test.

The disadvantage of integration tests in respect to unit tests is that it is much harder to find
the reason for a failing test. This means that integration tests are complementary to a unit
test suite. Integration tests should only fail because of an error in the integration, not
because one of the units has a bug. So, you should not skip writing unit tests.

UI tests
We have written one UI test in Chapter 6, Putting It All Together, to implement a functional
test for the input of new to-do items. But, the other features of the UI aren't tested yet. Unit
tests can test whether an element is on the screen, but doing this is cumbersome. It is much
easier to use the new UI tests that were introduced in Xcode 7.

Where to Go from Here

[197]

As you may have already noticed, UI tests are slow. They need to start the app and wait
until the UI is loaded before they can interact with it. In addition to this, the app is closed
and reopened after each test to make sure that each test starts with a defined state. As a
result, you should not test each UI element in isolation. You'd rather write tests for a
complete function of the app (for example, adding a to-do item to the list).

In the case of the ToDo app implemented in this book, a useful UI test would test whether a
to-do item can be checked on the list and if a user can show the details of a to-do item. Go
ahead, add the tests yourself using the recording feature of Xcode.

But, as described, you should add a separate scheme for the UI tests to keep the main
testing suite fast.

Behavior-Driven Development
Behavior-Driven Development (BDD) is sort of similar to TDD, but you can focus on
testing the behavior of your app instead. The main difference is the way the tests are
written. Using XCTest, you mainly use the method name to describe what the test does.
BDD frameworks usually allow you to write the expected behavior as a text string and
therefore make the tests easier to read.

It is often said that the tests become so clear that people who are not familiar with
programming can write them. Here is an example that uses the Quick framework and its
matcher framework, Nimble:

class ToDoItemSpec: QuickSpec {
 override func spec() {
 describe("to-do item") {

 it("can be created with a title") {
 let item = ToDoItem(title: "Test title")
 expect(item).toNot(beNil())
 }

 it("can be created with a title and a description") {
 let item = ToDoItem(title: "Test title",
 itemDescription: "Test description")
 expect(item).toNot(beNil())
 }
 }
 }
}

Where to Go from Here

[198]

These two tests are equivalent to the one that we wrote in Chapter 3, A Test-Driven Data
Model:

func testInit_ShouldTakeTitle() {
 let item = ToDoItem(title: "Test title")
 XCTAssertNotNil(item)
}

func testInit_ShouldTakeTitleAndDescription() {
 let item = ToDoItem(title: "Test title",
 itemDescription: "Test description")
 XCTAssertNotNil(item)
}

Quick can do a lot more to make your tests easier to read. Search for Quick on GitHub and
see yourself. Even if you don't want to use BDD, the Quick documentation has a lot of
general and valuable information about testing.

TDD in existing projects
You most probably already have projects that have been implemented without any tests. It
is much harder to add tests to an existing project than it is to write them first. When you
don't keep in mind that you need to write a test for code sometime in the future, the code
itself will become hard to test. It is often easier to tie the different parts of the app together,
instead of keeping them separated with a clear and defined interface to each other. As a
result, it becomes hard to separate microfeatures in order to test them with unit tests. In
addition to this, testing methods with many side effects can be cumbersome to deal with.

When writing the tests initially, you will automatically think about the tests. The code
naturally becomes easier to test and more modular.

Back to your existing projects. What could you do to add tests? The way to go is to start
small. Don't rewrite all the methods using TDD. This won't work, and you will most
probably remove all the tests when you realize how hard this is.

Instead, when you find a bug in the code, try to write a failing test for the bug, and make
the test pass. This way, you can improve your code, and make sure that this bug never
returns without being noticed. Unfortunately, this method will not work all the time, as
your code might have a lot of coupling. But you should try it anyway. Take some time to
think about what you would have to change to make this feature testable.

Where to Go from Here

[199]

A second approach is to add features using TDD. You may have many ideas about how you
could improve your app. Let's say, in the example of the ToDo app, you would like to add
the ability to share the number of to-do items on Twitter to show all your friends and
followers how busy you are. Even if the app doesn't have any tests, we could break this
feature into several micro features and write tests for them before we implement the code.

The most important thing is to start writing tests. The tests don't have to be perfect. In the
beginning, a nonperfect test is better than no test. Later, you may realize that some of the
tests could be improved and even deleted. That is not a problem. Just keep adding tests. The
more tests you write, the better your tests will become.

Generating mocks with Sourcery
In this book, you created all the needed mocks yourself. You may have noticed that this is a
boring task. Most mock classes consisted of mainly boilerplate code. Fortunately, there is a
solution: Sourcery (https:/ /github. com/ krzysztofzablocki/ Sourcery). From its GitHub
page:

"Sourcery scans your source code, applies your personal templates, and generates Swift
code for you, allowing you to use meta-programming techniques to save time and decrease
potential mistakes."

There are many templates for common tasks that are ready to use. For example, there is a
template to generate mock classes from protocols. Let's have a look how we could use
Sourcery to generate a mock for ItemCell.

To enable Sourcery to generate the code, we need to add a protocol with the methods that
should be mocked. Imagine, we want to generate a mock for the
method configCell(withItem:checked:). All we have to do is add the following
protocol to ItemCell.swift:

protocol ItemCellProtocol: AutoMockable {
 func configCell(withItem: ToDoItem, checked: Bool)
}

In the Terminal, we run Sourcery like this:

path/to/sourcery --sources path/to/ItemCell.swift --templates
Templates/AutoMockable.stencil --output ItemCellMock.swift

https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery
https://github.com/krzysztofzablocki/Sourcery

Where to Go from Here

[200]

The generated mock class looks like this:

// Generated using Sourcery 0.8.0
—https://github.com/krzysztofzablocki/Sourcery
// DO NOT EDIT

// swiftlint:disable line_length
// swiftlint:disable variable_name

import Foundation
#if os(iOS) || os(tvOS) || os(watchOS)
import UIKit
#elseif os(OSX)
import AppKit
#endif

class ItemCellProtocolMock: ItemCellProtocol {

 //MARK: - configCell

 var configCell_withItem_checked_Called = false
 var configCell_withItem_checked_ReceivedArguments:
 (withItem: ToDoItem, checked: Bool)?

 func configCell(withItem: ToDoItem, checked: Bool) {
 configCell_withItem_checked_Called = true
 configCell_withItem_checked_ReceivedArguments =
 (withItem: withItem, checked: checked)
 }
}

For most of the mocks you'll need, this might be enough. But even if you need something
more, these generated mocks are a good starting point. In case you are really curious, you
could generate your own template to generate exactly the code you need.

For more information about code generation with Sourcery, go to its GitHub page.

More information about TDD
You probably want to learn more about TDD and iOS. For example, we haven't discussed
how to use TDD in an app using Core Data.

Where to Go from Here

[201]

There are many blogs and screencasts on the internet about TDD and iOS (for example,
http://qualitycoding.org, http:/ / iosunittesting. com and http://masilotti.com).
With the experience you have gained by reading through this book, you now have a good
foundation of how to follow these articles and find your own testing style.

Maybe, by learning more about testing in iOS, you might start a blog to share what you
have learned. I'm looking forward to reading about your experiments and findings. Let me
know where I can find it. You can find me on Twitter at @dasdom.

Summary
This chapter gave you a short overview of the possible steps involved in becoming a testing
expert. I hope you enjoyed reading the book as much as I enjoyed writing it. I also hope that
you are eager to learn more about testing, in general, as well as TDD.

http://qualitycoding.org/
http://iosunittesting.com/
http://iosunittesting.com/
http://iosunittesting.com/
http://iosunittesting.com/
http://iosunittesting.com/
http://iosunittesting.com/
http://iosunittesting.com/
http://masilotti.com/

Index

A
assert functions
 XCTAssertEqual() 13
 XCTAssertFalse() 13
 XCTAssertNil() 13
 XCTAssertNotNil() 13
 XCTAssertTrue() 13
 XCTFail() 13
automatic deployment
 with fastlane 192
automatic unit test
 about 8
 building 7
 built-in assert functions 13
 example, implementing 8

B
Behavior-Driven Development (BDD) 197, 198

C
code coverage
 enabling 187
 using, in Xcode 188, 189, 190, 191
 value, determining 191
code signing hell 192
coordinate property
 adding 60
Core Data 19

D
deserialization 170, 171, 172, 173, 177, 178
detail view
 displaying 166, 169
DetailViewController
 implementing 122, 123, 126

E
errors
 handling 151, 152, 153
expressions
 XCTAssertNotEqual() 13
Extreme Programming 17

F
fake objects
 about 101
 fakes 102
 mocks 102
 stubs 102
fakes, fake objects 102
fastlane
 installing 192
 reference 193
 setting up 192
 used, for automatic deployment 192
functional tests
 about 178
 recording 179, 180, 181, 182, 183
 testing 179, 180, 181, 182, 183
 UI test target, adding 178

I
initial view controller 156
input view
 displaying 157, 158, 159, 160, 161, 162, 163,

164, 165
InputViewController
 implementing 128, 130, 132, 133
integration tests
 about 196
 disadvantage 196
Interface Builder (IB) 87, 115

[203]

ItemCell
 implementing 115, 116, 117, 118
itemDescription property
 adding 55
ItemListDataProvider
 fake objects 101, 102
 first test, conducting 95, 97, 98, 99, 100, 101
 implementing 95
 ItemCell, implementing 115, 116, 117, 118,

120, 122
 items, checking 113, 114
 items, unchecking 113, 114
 mocks, using 102, 103, 107, 109, 110, 111,

112

ItemListViewController
 implementing 85, 86, 87, 88, 89, 90, 91, 92, 93,

94, 95
ItemManager class
 all items, removing 82
 count 62, 63
 Equatable 70, 72, 73, 77, 78, 79, 80
 implementing 62
 item, adding 66
 items, adding 64, 67, 69, 70
 items, checking 64, 66, 68, 69, 70
 uniqueness, ensuring 83

L
location property
 adding 58, 59
Location struct
 coordinate property, adding 60
 implementing 59
login request
 implementing 139, 140, 142, 147, 149, 150

M
MapKit framework 124
mocks, fake objects 102
mocks
 generating, with Sourcery 199, 200
Model-View-Controller (MVC) 51

O
object-oriented programming (OOP) 101
OCUnit 19

P
parts, connecting
 about 156
 detail view, displaying 166, 169
 initial View Controller 156
 input view, displaying 157, 158, 159, 160, 161,

162, 163, 164, 165
property list (plist) 170

Q
Quick framework 197

S
serialization 170, 171, 172, 173, 177, 178
Sourcery
 reference link 199
 used, for generating mocks 199, 200
stubs, fake objects 102
SUnit 19
System Under Test 62

T
task detail view 41
task input view 42, 43
task list view 39, 40
test case 9
test information
 overview 27, 29
 running 29
 searching 26
 setUp() method 31
 tearDown() method 31
 test again feature 35
 Test Navigator 26
 tests failure, breakpoint 33
Test Navigator 26
Test-Driven Development (TDD) workflow
 about 18
 green 18
 red 18

 refactor 18
Test-Driven Development (TDD)
 about 6, 17, 200, 201
 advantages 35
 disadvantages 36
 example 20
 failing test, writing 20
 green example 22, 23
 in existing projects 198, 199
 red example 20, 21, 23
 refactor example 22, 24
 reference link 17
 references 201
 rules 17
 summarizing 25
 using, in Xcode 19
 workflow 18
Test-Driven iOS App
 data source 44
 delegate 44
 development strategy 45
 model 44
 structure 43
 table view cells 44
 Table View Controller 44
 task detail view 41
 task detail View Controller 45
 task input view 42, 43
 task list view 39, 40
 View Controller 45
testing 37
tests
 debugging 32
 executing, in test case 30
 group of tests, executing 30, 31
 implementing, web service used 136, 137
 running 29
 specific test, executing 29, 30

Tiger 19
timestamp property
 adding 57
title property
 adding 52
ToDoItem struct
 hidden source of bugs, removing 56
 implementing 52
 itemDescription property, adding 55
 location property, adding 58, 59
 timestamp property, adding 57
 title property, adding 52

U
UI test target
 adding 178
UI tests 196
UIKit 100
unit test
 about 37
 advantage 195

W
web service
 used, for implementing tests 136, 137

X
Xcode behaviors
 build behaviors 47
 setting up, for testing 47
 testing 49
Xcode
 behaviors, setting up for testing 47
 code coverage 188, 189, 190, 191
 starting with 45, 46
 test information, searching 26
 Test-Driven Development (TDD), using 19
XCTest 19

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Your First Unit Tests
	Building your first automatic unit test
	What are unit tests?
	Implementing a unit test example
	Important built-in assert functions

	Understanding TDD
	The TDD workflow - red, green, and refactor
	Red
	Green
	Refactor

	TDD in Xcode
	An example of TDD
	Red - example 1
	Green - example 1
	Refactor - example 1
	Red - example 2
	Green - example 2
	Refactor - example 2
	A recap

	Finding information about tests in Xcode
	Test Navigator
	Tests overview
	Running tests
	Running one specific test
	Running all tests in a test case
	Running a group of tests

	The setUp() and tearDown() methods
	Debugging tests
	Breakpoint that breaks on test failure
	The test again feature

	The advantages of TDD
	The disadvantages of TDD
	What to test
	Summary

	Chapter 2: Planning and Structuring Your Test-Driven iOS App
	The task list view
	The task detail view
	The task input view
	The structure of the app
	The table view controller, the delegate, and the data source
	Table view cells
	The model
	Other view controllers
	The development strategy

	Getting started with Xcode
	Setting up useful Xcode behaviors for testing
	Useful build behaviors
	Testing behaviors

	Summary

	Chapter 3: A Test-Driven Data Model
	Implementing the ToDoItem struct
	Adding a title property
	Adding an itemDescription property
	Removing a hidden source of bugs
	Adding a timestamp property
	Adding a location property

	Implementing the Location struct
	Adding a coordinate property

	Implementing the ItemManager class
	Count
	Adding and checking items
	Equatable
	Removing all items
	Ensuring uniqueness

	Summary

	Chapter 4: A Test-Driven View Controller
	Implementing ItemListViewController
	Implementing ItemListDataProvider
	Conducting the first tests
	Fake objects
	Using mocks
	Checking and unchecking items
	Implementing ItemCell

	Implementing DetailViewController
	Implementing InputViewController
	Summary

	Chapter 5: Testing Network Code
	Implementing tests using a web service
	Implementing a login request
	Handling errors
	Summary

	Chapter 6: Putting It All Together
	Connecting parts
	The initial view controller
	Showing the input view
	Showing the detail view

	Serialization and deserialization
	Functional tests
	Adding a UI test target
	Recording and testing

	Summary

	Chapter 7: Code Coverage
	Enabling code coverage
	Code coverage in Xcode
	How much code coverage is enough?

	Automatic deployment with fastlane
	Installing fastlane
	Setting up

	Summary

	Chapter 8: Where to Go from Here
	What you have learned so far
	Integration tests
	UI tests
	Behavior-Driven Development
	TDD in existing projects
	Generating mocks with Sourcery
	More information about TDD
	Summary

	Index

