

Xamarin.Forms Projects

Build seven real-world cross-platform mobile apps with C#
and Xamarin.Forms

Johan Karlsson
Daniel Hindrikes

BIRMINGHAM - MUMBAI

Xamarin.Forms Projects
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Trusha Shriyan
Content Development Editor: Pranay Fereira
Technical Editor: Aishwarya More
Copy Editor: Safis Editing
Project Coordinator: Pragati Shukla
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Alishon Mendonsa
Production Coordinator: Shraddha Falebhai

First published: December 2018

Production reference: 1261218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-750-5

www.packtpub.com

http://www.packtpub.com

I dedicate this book to all the people I met during my years as a Xamarin developer that never
believed in Xamarin. If you read this book, you will hopefully understand how great Xamarin

is!

– Daniel Hindrikes

This book is dedicated to the spider in my basement that motivated me to write a book thick
enough to finally kill him with.

– Johan Karlsson

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Foreword
Xamarin.Forms was launched 6 years ago with the humble intention of being a simple tool
for creating simple apps. In the years since then, the toolkit has grown considerably,
becoming more capable and more complex. To my astonishment, a community sprung up
around this little project, and before we knew it there were thousands of early adopters. It
turns out there was a real call for bringing a XAML-style framework to mobile application
development.

The journey to today has not been without mistakes. At times, things have become more
complicated or less clear than they ought to have been. With the public release of version
1.0, there were many problems with the toolkit, and it took a lot of work, along with help
from the community, to get most of them ironed out. I tell you this not to turn you away
from using Xamarin.Forms—quite the opposite—it has had its trial by fire. I tell you this
because having a guide who has seen where the traps and pitfalls are can save you time
and anguish.

Johan Karlsson and Daniel Hindrikes have proven with this book that they not only
understand how to use the tool we created, but they understand the vision of where we are
trying to go. Their knowledge and expertise will help you to have a more complete
understanding of the toolkit, as well as letting you navigate its ups and downs. This book
will walk you through the most basic aspects of Xamarin.Forms through to some of the
most complicated, and takes in some interesting side-streets along the way.

Jason Smith

Xamarin.Forms co-creator

Contributors

About the authors
Johan Karlsson has been working with Xamarin since the days of MonoTouch and Mono
for Android, and it all started with writing a game. He is a full-stack developer, currently
focusing on mobile applications using Xamarin. But he has, in the past, worked a lot with
ASP.NET MVC, Visual Basic.NET, and C#. He has also created a whole bunch of databases
in SQL Server over the years.
Johan works at tretton37 in Sweden and has about 20 years experience in the trade of
assembling ones and zeros.

I want to send a special thanks to my ex-wife, Jenny, for allowing me to pursue my coding
interest by letting me fly around the world at the most inconvenient times! (Honey, I’m
heading to The United States tomorrow. Please feed the cat and pick our kids up from
daycare, etc.) And, of course, to my children, Ville and Lisa, for being an inspiration in
life!

Also, thanks to Packt and our tech reviewer, Jimmy Engström, who has nitpicked our
applications, and made us sit up late at night correcting the code. (Smiles...)

Daniel Hindrikes is a developer and architect whose passion is for developing mobile apps
powered by the cloud. Daniel fell in love with Xamarin in its early days, when he realized
that he could use C# even for iOS and Android apps, and that he could share code with the
Windows applications he was building. But Daniel started to build mobile applications
long before that: he built Android applications with Java and even Java ME applications (a
long, long time ago).
Daniel enjoys sharing his knowledge, for example, by speaking at conferences, blogging,
and recording the podcast The Code Behind.
Daniel works at tretton37 in Sweden and has experience of working with both local and
global customers.

My special thanks to my family; my wife, Anna-Karin; and our twins, Ella and Willner.
They've supported me during the writing process.

Also, I would like to say thanks to the fantastic team at Packt and our technical reviewer,
Jimmy Engström, who has reviewed the content and helped us make it better.

About the reviewer
Jimmy Engstrom wrote his first line of code when he was 7 years old, and it has been his
greatest passion. It is a passion since that day that has made him the developer he is today
and that has taken him around the world, spreading his knowledge. It has given him
awards such as second place in Dice's worldwide game developer competition, a place in
the top ten best developers in Sweden, five Microsoft MVP awards in Windows
development, not to mention Geek of the year. When he is not out spreading his
knowledge, he is working as a web developer, trying out the latest tech, or reading up on
the latest framework.

Jimmy also runs his own company, called Azm Dev, with his wife, where they focus on
future tech such as AI, bots, and holographic computing, but also on teaching UX and
presentation skills.

He is the co-host of a podcast called Coding After Work.

A big thank you to my wife, Jessica, who has been picking up my slack while reviewing
this book.
Love you!

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Xamarin 6
Native applications 7
Xamarin and Mono 7

Code sharing 8
Using existing knowledge 8

Xamarin.iOS 9
Xamarin.Android 9
Xamarin.Mac 10
Xamarin.Forms 11

The architecture of Xamarin.Forms 11
Defining a user interface using XAML 12

Defining a Label control 12
Creating a page in XAML 13
Creating a page in C# 14
XAML or C#? 15

Xamarin.Forms versus traditional Xamarin 15
When to use Xamarin.Forms 16

Setting up a development machine 16
Setting up a Mac 17

Installing Xcode 17
Installing Visual Studio 17
Configuring the Android emulator 18

Setting up a Windows machine 21
Installing Xamarin for Visual Studio 22
Pairing Visual Studio with a Mac 23
Configuring an Android emulator and hardware acceleration 25
Configuring UWP developer mode 29

Summary 30

Chapter 2: Building Our First Xamarin.Forms App 32
Technical requirements 33
An overview of the project 33
Beginning the project 33

Setting up the project 34
Creating the new project 34
Examining the files 36

DoToo 38
DoToo.Android 39
DoToo.iOS 40
DoToo.UWP 41

Table of Contents

[ii]

Updating the Xamarin.Forms packages 42
Removing the MainPage file 43

Creating a repository and a TodoItem model 44
Defining a to-do list item 44
Creating a repository and its interface 45
Connecting SQLite to persist data 47

Adding the SQLite NuGet package 47
Updating the TodoItem class 48
Creating a connection to the SQLite database 49
Implementing the Get, Add, and Update methods 50

Using MVVM – creating Views and ViewModels 52
Defining a ViewModel base class 52
Introducing PropertyChanged.Fody 53
Creating the MainViewModel 55
Creating the TodoItemViewModel 56
Creating the ItemViewModel 57
Creating the MainView 57
Creating the ItemView 60
Wiring up a dependency injection through Autofac 62

Adding a reference to Autofac 63
Creating the resolver 63
Creating the bootstrapper 64
Adding a bootstrapper on iOS 66
Adding a bootstrapper in Android 67
Adding a bootstrapper in UWP 67

Making the app run 68
Adding data bindings 69

Navigating from the MainView to the ItemView to add a new item 70
Adding new items to the list 71
Binding the ListView in the MainView 73
Creating a ValueConverter for the item status 76

Using the ValueConverter 77
Navigating to an item using a command 79
Marking an item as complete using a command 81
Creating the filter toggle function using a command 82

Laying out contents 84
Setting an application-wide background color 84
Laying out the MainView and ListView items 85

The filter button 85
Touching up the ListView 86

Summary 87

Chapter 3: A Matchmaking App with a Rich UX Using Animations 88
Technical requirements 89
Project overview 89
Creating the matchmaking app 89

Creating the project 89
Creating the new project 89
Updating the Xamarin.Forms NuGet packages 92

Designing the MainPage file 94

Table of Contents

[iii]

Creating the Swiper control 95
Creating the control 96
Defining the main grid 97
Adding a content view for the photo 98
Creating the DescriptionGenerator 100
Creating a picture class 101
Binding the picture to the control 102

Setting the source 102
Controlling the loading label 103

Handling pan gestures 103
Testing the control 107
Creating decision zones 108

Extending the grid 108
Adding the StackLayout for liking photos 108
Adding the StackLayout for denying photos 109

Determining the screen size 109
Adding a clamp function 111
Adding code to calculate the state 111

Defining a method for calculating the state 111
Wiring up the pan state check 112

Adding exit logic 113
Checking if the image should exit 113
Removing the image 114
Updating PanCompleted 115

Adding events to the control 115
Declaring two events 116
Raising the events 116

Wiring up the Swiper control 117
Adding images 117

Adding initial photos 117
Making the call from the constructor 118

Adding count labels 118
Subscribing to events 119

Adding methods to update the GUI and respond to events 119
Wiring up events 120

Summary 121

Chapter 4: Building a Location Tracking App Using GPS and Maps 122
Technical requirements 123
Project overview 123
Getting started 123
Building the MeTracker app 124

Creating a repository to save the location of the users 125
Creating a model for the location data 126
Creating the repository 126

Xamarin.Essentials 128
Installing the NuGet package 129
Configuring Xamarin.Essentials on Android 129

Creating a service for location tracking 129
Setting up the app logic 130

Table of Contents

[iv]

Creating a view with a map 131
Creating a ViewModel 135
Creating a resolver 137
Creating the bootstrapper 139

Creating the iOS bootstrapper 140
Creating the Android bootstrapper 141

Setting the MainPage 142
Background location tracking on iOS 143

Enabling location updates in the background 143
Getting permissions to use the location of the user 144
Subscribing to location updates 145

Background location tracking with Android 148
Adding the required permissions to use the location of the user 148
Creating a background job 149
Scheduling a background job 150
Subscribing to location updates 152

Creating a heat map 154
Adding a GetAll method to the LocationRepository 154
Preparing the data for visualization 155
Creating custom renderers 159

Creating a custom control for the map 160
Creating a custom renderer to extend the map in the iOS app 161
Creating a custom renderer to extend the map in the Android app 165

Refreshing the map when resuming the app 168
Summary 168

Chapter 5: Building a Weather App for Multiple Form Factors 169
Technical requirements 169
Project overview 169
Getting started 170
Building the weather app 170

Creating models for the weather data 170
Adding the weather API models manually 171
Adding the app-specific models 173
Adding the ForecastItem model 173
Adding the Forecast model 174

Creating a service for fetching the weather data 174
Configuring the applications to use location services 178

Configuring the iOS app to use location services 178
Configuring the Android app to use location services 178
Configuring the UWP app to use location services 180

Creating the ViewModel class 180
Getting the weather data 182
Grouping the weather data 183

Creating a Resolver 186
Creating a bootstrapper 187
Creating a RepeaterView based on a FlexLayout 188
Creating the view for tablets and desktop computers 191

Using RepeaterView 192

Table of Contents

[v]

Adding a toolbar item to refresh the weather data 195
Adding a loading indicator 196

Setting a background image 197
Creating the view for phones 198

Using a grouped ListView 200
Adding pull to refresh functionality 202

Navigating to different views based on the form factor 202
Handling states with VisualStateManager 205

Creating a behavior to set state changes 207
Summary 211

Chapter 6: Setting up a Backend for a Chat App Using Azure Services 212
Technical requirements 213
Azure serverless services 213

Azure SignalR Service 213
Azure functions 214
Azure blob storage 214
Azure Cognitive Services 215

Project overview 215
Building the serverless backend 216

 Creating a SignalR service 216
Creating a storage account 217
Creating a Cognitive Service 220
Creating functions 221

Creating the Azure service for functions 221
Creating a function to return the connection information for the SignalR service 223
Creating a message library 226
Creating a storage helper 228
Creating a function for sending messages 231
Using the Computer Vision API to scan for adult content 233
Creating a scheduled job to clear photos from storage 234

Deploying the functions to Azure 236
Summary 237

Chapter 7: Building a Real-Time Chat Application 238
Technical requirements 239
Project overview 239
Getting started 239
Building the chat app 240

Creating the chat service 241
Initializing the app 248

Creating a resolver 248
Creating a Bootstrapper 249

Creating a base ViewModel 250
Creating the Mainview 251

Creating MainViewModel 252
Creating the MainView 253

Table of Contents

[vi]

Replacing the MainPage 253
Editing the XAML 253
Fixing the code behind the view 255

Setting the main view 256
Creating the ChatView 256

Creating the ChatViewModel 257
Creating the class 257
Adding the text property 259
Receiving messages 259
Creating the LocalSimpleTextMessage class 261
Sending text messages 262
Installing the Acr.UserDialogs plugin 263
Installing the Media plugin 264
Sending photos 265

Creating the ChatView 268
Creating Base64ToImageConverter 268
Creating the skeleton ChatView 269
Adding ResourceDictionary 271
Adding ListView 271
Adding templates 272
Creating a template selector 276
Adding the buttons and entry control 277
Fixing the code behind 278

Styling 280
Styling with CSS 281
Applying the style sheet 282

Handling life cycle events 283
Summary 284

Chapter 8: Creating an Augmented-Reality Game 285
Technical requirements 285
Essential theory 286
An overview of the project 286
Beginning the project 287

Creating the project 287
Updating the Xamarin.Forms NuGet packages 290
Setting the Android target to 8.1 292
Adding the camera permission to Android 293
Adding Camera Usage Description for iOS 295

Defining the user interface 297
Creating the ARView control 298
Modifying the MainPage 299

Adding Urhosharp 300
Installing the UrhoSharp NuGet package for iOS 301
Installing the UrhoSharp.ARCore Nuget Package for Android 303
Adding the Android life cycle events 304
Defining the PlaneNode 305
Adding custom renderers for the ARView control 306

For iOS 307
For Android 308

Creating the game 310

Table of Contents

[vii]

Adding the shared partial Game class 311
CreateSubPlane 312
UpdateSubPlane 313
FindNodeByPlaneId 313

Adding platform-specific partial classes 314
Adding the iOS-specific partial class 314
Adding the Android-specific partial class 315

Writing the ARKit-specific code 316
Defining the ARKitComponent 316
Writing handlers for adding and updating anchors 317

SetPositionAndRotation 317
UpdateOrAddPlaneNode 318
OnAddAnchor 319
OnUpdateAnchors 319

Writing a handler for removing anchors 320
OnRemoveAnchors 320

Initializing ARKit 320
Writing ARCore-specific code 322

Defining the ARCoreComponent 322
SetPositionAndRotation 323
Writing a handler for ARFrame updates 323
Initializing ARCore 325

OnConfigRequested 325
InitializeAR 326

Writing the game 326
Adding a camera 326
Configuring a renderer 327
Adding lights 328
Implementing the game startup 329
Adding boxes 330

AddBox() 330
OnUpdate() 331

Making boxes rotate 332
Creating the rotate component 332
Assigning the Rotator component 334

Adding box hit-test 335
Adding a death animation 335
DetermineHit() 336
OnTouchBegin() 337
Wiring up input 338

Updating statistics 339
Defining a statistics class 339
Sending updates via MessagingCenter 339
Wiring up events 340
Updating the GUI 341
Subscribing to the updates in the MainForm 341

Summary 343

Chapter 9: Hot Dog or Not Hot Dog Using Machine Learning 344
Technical requirements 345
Machine learning 345

Table of Contents

[viii]

Azure Cognitive Services – Custom Vision 345
CoreML 346
TensorFlow 346

Project overview 346
Getting started 347
Building the Hot Dog or Not Hot Dog application using machine
learning 347

Training a model 347
Tagging images 348
Training a model 350
Exporting a model 352

Building the app 352
Classifying images with machine learning 354

Using CoreML for image classification 355
Using TensorFlow for image classification 358

Creating a base ViewModel 361
Initializing the app 362

Creating a Resolver 363
Creating a Bootstrapper 364
Creating the iOS bootstrapper 365
Creating the Android bootstrapper 366

Building the first view 367
Building the ViewModel 367
Building the view 373

Building the result view 375
Building the ViewModel 375
Building the view 377

Summary 380

Other Books You May Enjoy 381

Index 384

Preface
Xamarin.Forms Projects is a hands-on book in which you get to create seven applications
from the ground up. You will gain the fundamental skills you need in order to set up your
environment, and we will explain what Xamarin is before we transition into
Xamarin.Forms to really take advantage of truly native cross-platform code.

After reading this book, you will have a real-life understanding of what it takes to create an
app that you can build on and that stands the test of time.

We will cover, among other things, animations, augmented reality, consuming REST
interfaces, real-time chat using SignalR, and location tracking using a device's GPS. There is
also room for machine learning and the must-have to-do list.

Happy coding!

Who this book is for
This book is for developers who know their way around C# and Visual Studio. You don't
have to be a professional programmer, but you should have basic knowledge of object-
oriented programming using .NET and C#. The typical reader would be someone who
wants to explore how you can use Xamarin, and specifically Xamarin.Forms, to create
applications using .NET and C#.

No knowledge of Xamarin is required ahead of time, but it would be a great help if you've
worked in traditional Xamarin and want to take the step toward Xamarin.Forms.

What this book covers
Chapter 1, Introduction to Xamarin, explains the basic concepts of Xamarin and
Xamarin.Forms. It helps you understand the building blocks of how to create a true cross-
platform app. It's the only theoretical chapter of the book and it will help you get started
and set up your development environment.

Preface

[2]

Chapter 2, Building Our First Xamarin.Forms App, guides you through the concepts of
Model-View-ViewModel and explains how to use Inversion of Control to simplify the
creation of Views and ViewModels. We will create a to-do app that supports navigation,
filtering, and the adding of to-do items to a list, and will also render a user interface that
takes advantage of the powerful data-binding mechanisms in Xamarin.Forms.

Chapter 3, A Matchmaking App with a Rich UX Using Animations, lets you dive deeper into
how to define a richer user interface with animations and content placement. It also covers
the concept of custom controls to encapsulate the user interface into components that are
self-contained.

Chapter 4, Building a Location-Tracking App Using GPS and Maps, taps into using geolocation
data from the device's GPS and how to plot this data on a layer on a map. It also explains
how to use background services to keep tracking the location over a long period of time to
create a heat map of where you spend your time.

Chapter 5, Building a Weather App for Multiple Form Factors, is all about consuming a third-
party REST interface and displaying the data in a user-friendly way. We will hook up to a
weather service to get the forecast for the current location you are in and display the results
in a list.

Chapter 6, Setting up a Backend for a Chat App Using Azure Services, is the first of a two-part
chapter in which we'll set up as a chat app. This chapter explains how to use Azure Services
to create a backend that exposes functionality through SignalR to set up a real-time
communication channel between apps.

Chapter 7, Building a Real-Time Chat Application, follows on from the previous chapter and
covers the frontend of the app, in this case, a Xamarin.Forms app that connects to the
backend that relays messages between users. The chapter focuses on setting up SignalR on
the client side and explains how to create a service model that abstracts this communication
through messages and events.

Chapter 8, Creating an Augmented Reality Game, ties the two different AR APIs into a single
UrhoSharp solution. Android uses ARCore to handle augmented reality, and iOS uses
ARKit to do the same. We will drop down into platform-specific APIs through custom
renderers and expose the result as a common API for the Xamarin.Forms app to consume.

Chapter 9, Hot Dog or Not Hot Dog Using Machine Learning, covers the creation of an app
that uses machine learning to identify whether an image contains a hot dog or not.

Preface

[3]

To get the most out of this book
We recommend that you read the first chapter to make sure that you are up to speed with
the basic concepts of Xamarin in general. After that, you could pretty much pick any
chapter you like to learn more about. Each chapter is standalone but the chapters are
ordered by complexity; the further you are into the book, the more complex the app is.

The apps are adapted for real-world use but some parts are left out, such as proper error
handling and analytics, since they are out of the scope of the book. You should, however,
get a good grasp of the building blocks of how to create an app.

Having said that, it does help if you have been a C# and .NET developer for a while, since
many of the concepts are not really app-specific but are good practice in general, such as
Model-View-ViewModel and Inversion of Control.

But, most of all, it's a book you can use to kick-start your Xamarin.Forms development
learning curve by focusing on what chapters interest you the most.

Download the example code files
The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Xamarin. Forms- Projects. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789537505_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Open the DescriptionGenerator.cs file and add a constructor, as shown in
the following code."

https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/Xamarin.Forms-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789537505_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

public class DescriptionGenerator
{
 private string[] _adjectives = { "nice", "horrible", "great",
 "terribly old", "brand new" };
 private string[] _other = { "picture of grandpa", "car", "photo
 of a forest", "duck" };
 private static Random random = new Random();
 public string Generate()
{
 var a = _adjectives[random.Next(_adjectives.Count())];
 var b = _other[random.Next(_other.Count())];
 return $"A {a} {b}";
}
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(savedInstanceState);
 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState);
 LoadApplication(new App());
}

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introduction to Xamarin

This chapter is all about getting to know what Xamarin is and what to expect from it. It is
the only chapter that is a pure theory chapter; all the others will cover hands-on projects.
You're not expected to write any code at this point, but instead, simply read through the
chapter to develop a high-level understanding of what Xamarin is and how Xamarin.Forms
are related to Xamarin.

We will start by defining what a native application is and what .NET as a technology brings
to the table. After that, we will look at how Xamarin.Forms fit into the bigger picture and

learn when it is appropriate to use traditional Xamarin and Xamarin.Forms. We often use
the term traditional Xamarin to describe applications that don't use Xamarin.Forms, even
though Xamarin.Forms applications are bootstrapped through a
traditional Xamarin application.

In this chapter, we will be covering the following topics:

Native applications
Xamarin and Mono
Xamarin.Forms
Setting up a development machine

Let's get started!

Introduction to Xamarin Chapter 1

[7]

Native applications
The term native application means different things to different people. For some people, it
is an application that is developed using the tools specified by the creator of the platform,
such as an application developed for iOS with Objective-C or Swift, an Android app
developed with Java or Kotlin, or a Windows app developed with .NET. Other people use
the term native application to refer to applications that are compiled to machine code that is
native. In this book, we will define a native application as one that has a native user
interface, performance, and API access. The following list explains these three concepts in
greater detail:

Native user interface: Applications built with Xamarin use the standard controls
for each platform. This means, for example, that an iOS app built with Xamarin
will look and behave as an iOS user would expect, and an Android app built
with Xamarin will look and behave as an Android user would expect.

Native performance: Applications built with Xamarin are compiled for native
performance and could use platform-specific hardware acceleration.

Native API access: Native API access means that applications built with Xamarin
could use everything that the target platforms and devices offer to developers.

Xamarin and Mono
Xamarin is a developer platform that is used for developing native applications for iOS
(Xamarin.iOS), Android (Xamarin.Android), and macOS (Xamarin.Mac). It is technically a
binding layer on top of these platforms. Binding to platform APIs enables .NET developers
to use C# (and F#) to develop native applications with the full capacity of each platform.
The C# APIs we use when we develop applications with Xamarin are more or less identical
to the platform APIs, but they are .NETified. For example, APIs are often customized to
follow .NET naming conventions, and Android set and get methods are often replaced by
properties. The reason for this is that APIs should be easier to use for .NET developers.

Mono (https:// www. mono- project. com) is an open source implementation of the Microsoft
.NET framework, which is based on the European Computer Manufacturers
Association (ECMA) standards for C# and the common language runtime (CLR). Mono
was created to bring the .NET framework to platforms other than Windows. It is part of the
.NET foundation (http:/ / www. dotnetfoundation. org), an independent organization that
supports open development and collaboration involving the .NET ecosystem.

https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
https://www.mono-project.com/
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/
http://www.dotnetfoundation.org/

Introduction to Xamarin Chapter 1

[8]

With the combination of Xamarin platforms and Mono, we will be able to use both all
platform-specific APIs and all platform-independent parts of .NET, including, for example,
namespaces, systems, System.Linq, System.IO, System.Net, and
System.Threading.Tasks.

There are several reasons to use Xamarin for mobile application development, as we will
see in the following sections.

Code sharing
If there is one common programming language for multiple mobile platforms, and even
server platforms, then we can share a lot of code between our target platforms, as
illustrated in the following diagram. All code that isn't related to the target platform can be
shared with other .NET platforms. Code that is typically shared in this way includes
business logic, network calls, and data models:

There is also a large community based around the .NET platforms and a wide range of
third-party libraries and components that can be downloaded from NuGet (https:/ /
nuget.org) and used across the .NET platforms.

Code sharing across platforms will lead to shorter development times. It will also lead to
applications of a higher quality because we only need to write the code for business logic
once. There will be a lower risk of bugs, and we will also be able to guarantee that a
calculation will return the same result, no matter what platform our users are using.

Using existing knowledge
For .NET developers who want to start building native mobile applications, it is easier to
just learn the APIs for the new platforms than it is to learn programming languages and
APIs for both old and new platforms.

https://nuget.org
https://nuget.org
https://nuget.org
https://nuget.org
https://nuget.org
https://nuget.org

Introduction to Xamarin Chapter 1

[9]

Similarly, organizations that want to build native mobile applications could use their
existing developers with their knowledge of .NET to develop applications. Because there
are more .NET developers than Objective-C and Swift developers, it would be easier to find
new developers for mobile application development projects.

Xamarin.iOS
Xamarin.iOS is used for building applications for iOS with .NET, and contains the
bindings to the iOS APIs mentioned previously. Xamarin.iOS uses ahead of time (AOT)
compiling to compile the C# code to Advanced RISC Machines (ARM) assembly
language. The Mono runtime runs along with the Objective-C runtime. Code that uses
.NET namespaces, such as System.Linq or System.Net, will be executed by the Mono
runtime, while code that uses iOS-specific namespaces will be executed by the Objective-C
runtime. Both the Mono runtime and the Objective-C runtime will run on top of the Unix-
like kernel, X is Not Unix (XNU) (https:/ /en. wikipedia. org/wiki/ XNU), which is
developed by Apple. The following diagram shows an overview of the iOS architecture:

Xamarin.Android
Xamarin.Android is used to build applications for Android with .NET, and contains the
bindings to the Android APIs. The Mono runtime and the Android runtime run side by
side on top of a Linux kernel. Xamarin.Android applications could either be just-in-time
(JIT)-compiled or AOT-compiled, but to AOT-compile them, you need to use Visual Studio
Enterprise.

https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/XNU

Introduction to Xamarin Chapter 1

[10]

Communication between the Mono runtime and the Android runtime occurs via a Java
Native Interface (JNI) bridge. There are two types of JNI bridges: manage callable
wrapper (MCW) and Android callable wrapper (ACW). An MCW is used when the code
needs to run in the Android runtime (ART) and an ACW is used when ART needs to run
code in the Mono runtime, as shown in the following diagram:

Xamarin.Mac
Xamarin.Mac is for building applications for macOS with .NET, and contains the bindings
to the macOS APIs. Xamarin.Mac has the same architecture as Xamarin.iOS—the only
difference is that Xamarin.Mac applications are JIT compiled, unlike Xamarin.iOS apps,
which are AOT-compiled. This is shown in the following diagram:

Introduction to Xamarin Chapter 1

[11]

Xamarin.Forms
Xamarin.Forms is a UI framework that is built on top of Xamarin (for iOS and Android)
and the Universal Windows Platform (UWP). Xamarin.Forms enables developers to create
a UI for iOS, Android, and UWP with one shared code base, as illustrated in the following
diagram. If we are building an application with Xamarin.Forms, we can use XAML, C#, or a
combination of both to create the UI:

The architecture of Xamarin.Forms
Xamarin.Forms is more or less just an abstract layer on top of each
platform. Xamarin.Forms has a shared layer, which is used by all platforms, as well as a
platform-specific layer. The platform-specific layer contains renderers. A renderer is a class
that maps a Xamarin.Forms control into a platform-specific native control. Each
Xamarin.Forms control has a platform-specific renderer.

The following diagram illustrates how an entry control in Xamarin.Forms is rendered to
a UITextField control from the UIKit namespace when the shared Xamarin.Forms code is
used in an iOS app. The same code in Android renders an EditText control from
the Android.Widget namespace:

Introduction to Xamarin Chapter 1

[12]

Defining a user interface using XAML
The most common way to declare your user interface in Xamarin.Forms is by defining it in
a XAML document. It is also possible to create the GUI in C#, since XAML is really only a
markup language for instantiating objects. You could, in theory, use XAML to create any
type of object, as long as it has a parameterless constructor. A XAML document is
an Extensible Markup Language (XML) document with a specific schema.

Defining a Label control
As a simple example, let's look at the following snippet of XAML:

<Label Text="Hello World!" />

When the XAML parser encounters this snippet, it will create an instance of a Label object
and then set the properties of the object that correspond to the attributes in the XAML. This
means that if we set a Text property in XAML, it will set the Text property on the instance
of the Label object that is created. The XAML in the preceding example will have the same
effect as the following:

var obj = new Label()
{
 Text = "Hello World!"
};

Introduction to Xamarin Chapter 1

[13]

XAML exists to make it easier to view the object hierarchy that you need to create in order
to make a GUI. An object model for a GUI is also hierarchical by design, so XAML has
support for adding child objects. You can simply add them as child nodes, as follows:

<StackLayout>
 <Label Text="Hello World" />
 <Entry Text="Ducks are us" />
</StackLayout>

The StackLayout is a container control that will organize the children vertically or
horizontally within that container. A vertical organization is the default value, and will be
used unless you specify otherwise. There are also a number of other containers, such as the
Grid and the FlexLayout. These will be used in many of the projects in the following
chapters.

Creating a page in XAML
A single control is no good unless it has a container that hosts it. Let's see what an entire
page would look like. A fully valid ContentPage defined in XAML is an XML document.
This means that we must start with an XML declaration. After that, we must have one, and
only one, root node, as shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="MyApp.MainPage">

 <StackLayout>
 <Label Text="Hello world!" />
 </StackLayout>
</ContentPage>

In the preceding example, we have defined a ContentPage that translates into a single
view on each platform. In order to make it valid XAML, you must specify a default
namespace (xmlns="http://xamarin.com/schemas/2014/forms") and then add the
x namespace (xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml").

The default namespace lets you create objects without prefixing them, like the
StackLayout object. The x namespace lets you access properties such as the x:Class,
which tells the XAML parser which class to instantiate to control the page when the
ContentPage object is being created.

Introduction to Xamarin Chapter 1

[14]

A ContentPage can have only one child. In this case, it's a StackLayout control. Unless
you specify otherwise, the default layout orientation is vertical. A StackLayout can,
therefore, have multiple children. Later on, we will touch on more advanced layout
controls, such as the Grid and the FlexLayout control.

In this specific example, we are going to create a Label control as the first child of the
StackLayout.

Creating a page in C#
For clarity, the following code shows how the same thing would look in C#:

public class MainPage : ContentPage
{
}

A page is a class that inherits from the Xamarin.Forms.ContentPage. This class is
autogenerated for you if you create a XAML page, but if you go code-only, then you will
need to define it yourself.

Let's create the same control hierarchy as the XAML page we defined earlier using the
following code:

var page = new MainPage();

var stacklayout = new StackLayout();
stacklayout.Children.Add(
 new Label()
 {
 Text = "Welcome to Xamarin.Forms"
 });

page.Content = stacklayout;

The first statement creates a page. You could, in theory, create a new page directly of the
ContentPage type, but this would prohibit you from writing any code behind it. For this
reason, it's a good practice to subclass each page that you are planning to create.

The block following this first statement creates the StackLayout control that contains the
Label control that is added to the Children collection.

Finally, we need to assign the StackLayout to the Content property of the page.

Introduction to Xamarin Chapter 1

[15]

XAML or C#?
Generally, using XAML will give you a much better overview, since the page is a
hierarchical structure of objects and XAML is a very nice way of defining that structure. In
code, the structure gets flipped around since you must define the innermost object first,
making it harder to read the structure of your page. This was shown in an
earlier example in this chapter. Having said that, it is generally a matter of preference as to
how you decide to define the GUI. This book will use XAML rather than C# in the projects
to come.

Xamarin.Forms versus traditional Xamarin
While this book is about Xamarin.Forms, we will highlight the difference between using
traditional Xamarin and Xamarin.Forms. Traditional Xamarin is used when developing
applications that use iOS and Android SDK without any means of abstraction. For example,
we can create an iOS app that defines its user interface in a storyboard or in the code
directly. This code will not be reusable for other platforms, such as Android. Applications
built using this approach can still share non-platform-specific code by simply referencing a
.NET standard library. This relationship is shown in the following diagram:

Xamarin.Forms, on the other hand, is an abstraction of the GUI, which allows us to define
user interfaces in a platform-agnostic way. It still builds on top of Xamarin.iOS,
Xamarin.Android, and all other supported platforms. The Xamarin.Forms application can
be created as a .NET standard library or as a shared code project, where the source files are
linked as copies and built within the same project as the platform you are currently
building for. This relationship is shown in the following diagram:

Introduction to Xamarin Chapter 1

[16]

Having said that, Xamarin.Forms cannot exist without traditional Xamarin, since it's
bootstrapped through an application for each platform. This gives you the ability to extend
Xamarin.Forms on each platform using custom renderers and platform-specific code that
can be exposed to your shared code base through interfaces. We'll look at these concepts in
detail later in this chapter.

When to use Xamarin.Forms
We can use Xamarin.Forms in most cases and for most types of applications. If we need to
use controls that not are available in Xamarin.Forms, we can always use the platform-
specific APIs. There are, however, cases where Xamarin.Forms is not useful. The most
common situation in which we might want to avoid using Xamarin.Forms is if we are
building an app that we want to look very different across our target platforms.

Setting up a development machine
To develop an app for multiple platforms imposes higher demands on our development
machine. One reason for this is that we often want to run one or multiple simulators or
emulators on our development machine. Different platforms also have different
requirements with regard to what is needed to begin development. Regardless of whether
we are using Mac or Windows, Visual Studio will be our IDE. There are several versions of
Visual Studio, including the free community edition. Go to https:/ /visualstudio.
microsoft.com/ to compare the available versions of Visual Studio. The following list is a
summary of what we need to begin development for each platform:

iOS: To develop an app for iOS, we need a Mac. This could either be the machine
that we are developing on or a machine on our network, if we are using one. The
reason that we need to connect to a Mac is that we need Xcode for compiling and
debugging an app. Xcode also provides the iOS simulator.

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/

Introduction to Xamarin Chapter 1

[17]

Android: Android apps can be developed on either macOS or Windows.
Everything you need, including SDKs and simulators, are installed with Visual
Studio.

UWP: UWP apps can only be developed in Visual Studio on a Windows
machine.

Setting up a Mac
There are two main tools that are required to develop applications for iOS and Android
with Xamarin on a Mac. These are Visual Studio for Mac (if we are only developing
Android applications, this is the only tool we need) and Xcode. In the following sections,
we will take a look at how to set up a Mac for app development.

Installing Xcode
Before we install Visual Studio, we need to download and install Xcode. Xcode is the
official development IDE from Apple and contains all the tools they provide for iOS
development, including SDKs for iOS, macOS, tvOS, and watchOS.

We can download Xcode from the Apple developer portal (https:/ /developer. apple. com)
or from Apple App Store. I recommend that you download it from App Store because this
will always provide you with the latest stable version. The only reason to download Xcode
from the developer portal is if we want to use a prerelease version of Xcode, to develop for
a prerelease of iOS, for example.

After the first installation, and after each update of Xcode, it is important to open it. Xcode
often needs to install additional components after an installation or an update. You also
need to open Xcode to accept the license agreement with Apple.

Installing Visual Studio
To install Visual Studio, we first need to download it from https:/ /visualstudio.
microsoft.com.

When we start the Visual Studio installer via the file we downloaded, it will start to check
what we already have installed on our machine. When the check has finished, we will be
able to select which platforms and tools we would like to install. Note that Xamarin
Inspector requires a Visual Studio Enterprise license.

https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com

Introduction to Xamarin Chapter 1

[18]

Once we have selected the platforms that we want to install, Visual Studio will download
and install everything that we need to get started with app development using Xamarin, as
shown in the following screenshot:

Configuring the Android emulator
Visual Studio will use the Android emulators provided by Google. If we would like the
emulator to be fast, then we need to ensure that it is hardware-accelerated. To hardware-
accelerate the Android emulator, we need to install the Intel Hardware Accelerated
Execution Manager (HAXM), which can be downloaded from https:/ / software. intel.
com/en-us/articles/ intel- hardware- accelerated- execution- manager- intel- haxm.

https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm
https://software.intel.com/en-us/articles/intel-hardware-accelerated-execution-manager-intel-haxm

Introduction to Xamarin Chapter 1

[19]

The next step is to create an Android Emulator. First, we need to ensure that the Android
emulator and the Android OS images are installed. To do this, go through the following
steps:

Go to the Tools tab to install the Android Emulator:1.

 We also need to install one or multiple images to use with the emulator. We can2.
install multiple images if, for example, we want to run our application on
different versions of Android. We will select emulators with Google Play (as
shown in the following screenshot) so that we can use Google Play services in
our app, even when we are running it in an emulator. This is required if, for
example, we want to use Google Maps in our app:

Introduction to Xamarin Chapter 1

[20]

Then, to create and configure an emulator, go to the Android Device Manager3.
from the Tools tab in Visual Studio. From the Android Device Manager, we can
start an emulator if we have already created one, or we can create new emulators,
as shown in the following screenshot:

Introduction to Xamarin Chapter 1

[21]

If we click the New Device button, we can create a new emulator with the4.
specifications that we need. The easiest way to create a new emulator here is to
select a base device that matches our needs. These base devices will be
preconfigured, and that is often enough. However, it is also possible to edit the
properties of the device so that we can get an emulator that matches our specific
needs.

Because we will not run the emulator on a device with an ARM processor, we have to select
either an x86 processor or an x64 processor, as shown in the following screenshot. If we try
to use an ARM processor, the emulator will be very slow:

Setting up a Windows machine
We can either use a virtual or a physical Windows machine for development with Xamarin.
We can, for example, run a virtual Windows machine on our Mac. The only tool we need
for app development on our Windows machine is Visual Studio.

Introduction to Xamarin Chapter 1

[22]

Installing Xamarin for Visual Studio
If we already have Visual Studio installed, we must first open Visual Studio Installer;
otherwise, we need to go to https:/ / visualstudio. microsoft. com to download the
installation files.

Before the installation starts, we need to select which workloads we want to install.

If we want to develop apps for Windows, we need to select the Universal Windows
Platform development workload, as shown in the following screenshot:

For Xamarin development, we need to install Mobile development with .NET. If you want
to use Hyper-V for hardware acceleration, we can deselect the checkbox for Intel HAXM in
the detailed description of the Mobile development with .NET workload on the left-hand
side, as shown in the following screenshot. When we deselect Intel HAXM, the Android
emulator will also be deselected, but we can install it later:

https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com

Introduction to Xamarin Chapter 1

[23]

When we first start Visual Studio, we will be asked whether we want to sign in. It is not
necessary for us to sign in unless we want to use Visual Studio Professional or Enterprise,
in which case we have to sign in so that our license can be verified.

Pairing Visual Studio with a Mac
If we want to run, debug, and compile our iOS app, then we need to connect it to a Mac. We
can set up the Mac manually, as described earlier in this chapter, or we can use Automatic
Mac Provisioning. This will install Mono and Xamarin.iOS on the Mac that we are
connecting to. It will not install the Visual Studio IDE, but this isn't necessary if you just
want to use it as a build machine. We do, however, need to install Xcode manually.

To be able to connect to the Mac—either to a manually-installed Mac or using Automatic
Mac Provisioning—the Mac needs to be accessible via our network and we need to enable
Remote Login on the Mac. To do this, go to Settings | Sharing and select the checkbox for
Remote Login. To the left of the window, we can select which users are allowed to connect
with Remote Login, as shown in the following screenshot:

Introduction to Xamarin Chapter 1

[24]

To connect to the Mac from Visual Studio, use the Pair to Mac button in the toolbar (as
shown in the following screenshot), or, in the top menu, select Tools | iOS and finally Pair
to Mac:

A dialog will appear showing all the Macs that can be found on the network. If the Mac
doesn't appear in the list of available Macs, we can use the Add Mac button in the bottom
left corner to enter an IP address, as shown in the following screenshot:

If everything that you require is installed on the Mac, then Visual Studio will connect and
we can start building and debugging our iOS app. If Mono is missing on the Mac, a
warning will appear. This warning will also give us the option to install it, as shown in the
following screenshot:

Introduction to Xamarin Chapter 1

[25]

Configuring an Android emulator and hardware
acceleration
If we want a fast Android emulator that works smoothly, we need to enable hardware
acceleration. This can be done using either Intel HAXM or Hyper-V. The disadvantage of
Intel HAXM is that it can't be used on machines with an Advanced Micro Devices (AMD)
processor; you have to have a machine with an Intel processor. We can't use Intel HAXM in
parallel with Hyper-V.

For these reasons, Hyper-V is the preferred way to hardware accelerate the Android
emulator on a Windows machine. To use Hyper-V with the Android emulator, we need to
have the April 2018 update (or later) for Windows and Visual Studio version 15.8 (or
later) installed. To enable Hyper-V, you need to go through the following steps:

Open the Start menu and type Turn Windows features on or off. Click the1.
option that appears to open it, as shown in the following screenshot:

Introduction to Xamarin Chapter 1

[26]

To enable Hyper-V, select the Hyper-V checkbox. Also, expand the Hyper-V2.
option and check the Hyper-V Platform checkbox. We also need to select the
Windows Hypervisor Platform checkbox, as shown in the following screenshot:

Restart the machine when Windows prompts you to.3.

Because we didn't install an Android emulator during the installation of Visual Studio, we
need to install it now. Go to the Tools menu in Visual Studio, click on Android, and then
Android SDK Manager.

Introduction to Xamarin Chapter 1

[27]

Under Tools in Android SDK Manager, we can install the emulator by selecting Android
Emulator, as shown in the following screenshot. Also, we should ensure that the latest
version of Android SDK Build Tools is installed:

We recommend installing the NDK (Native Development Kit). The NDK makes it possible
to import libraries that are written in C or C++. NDK is also required if we want to AOT
compile an app.

The Android SDK allows for multiple emulator images to be installed simultaneously. We
can install multiple images if, for example, we want to run our application on different
versions of Android. Select emulators with Google Play (as shown in the following
screenshot) so we can use Google Play services in our app even when we are running it in
an emulator.

Introduction to Xamarin Chapter 1

[28]

This is required if we want to use Google Maps in our app, for example:

The next step is to create a virtual device to use the emulator image. To create and
configure an emulator, go to the Android Device Manager, which we will open from the
Tools tab in Visual Studio. From the Device Manager, we can either start an emulator—if
we already have created one—or we can create new emulators, as shown in the following
screenshot:

Introduction to Xamarin Chapter 1

[29]

If we click the New Device button, we can create a new emulator with the specifications
that we need. The easiest way to create a new emulator here is to select a base device that
matches our needs. These base devices will be preconfigured, which is often enough.
However, it is possible to edit the properties of the device so that we can get an emulator
that matches our specific needs.

We have to select either an x86 processor (as shown in the following screenshot) or an x64
processor since we will not run the emulator on a device with an ARM processor. If we try
to use an ARM processor, the emulator will be very slow:

Configuring UWP developer mode
If we want to develop UWP apps, we need to activate developer mode on our development
machine. To do this, go to Settings | Update & Security | For developers. Then, click on
Developer Mode, as shown in the following screenshot. This makes it possible for us to
sideload and debug apps via Visual Studio:

Introduction to Xamarin Chapter 1

[30]

If we select Sideload apps instead of Developer Mode, we will only be able to install apps
without going via Microsoft Store. If we have a machine to test, rather than debug our apps
on, we can just select Sideload apps.

Summary
After reading this chapter, you should feel a little bit more comfortable about what Xamarin
is and how Xamarin.Forms relates to Xamarin itself.

In this chapter, we established our definition of what a native application is, which includes
the following elements:

Native user interface
Native performance
Native API access

Introduction to Xamarin Chapter 1

[31]

We talked about how Xamarin is based on Mono, which is an open source implementation
of the .NET framework, and discussed how, at its core, Xamarin is a set of bindings to
platform-specific APIs. We then looked in detail at how Xamarin.iOS and Xamarin.Android
work under the hood.

After that, we started to touch upon the core topic of this book, which is Xamarin.Forms.
We started off with an overview of how platform-agnostic controls are rendered into
platform-specific controls and how to use XAML to define a hierarchy of controls to
assemble a page.

We then spent some time looking at the difference between a Xamarin.Forms application
and a traditional Xamarin application.

A traditional Xamarin app uses platform-specific APIs directly, without any abstraction
other than what .NET adds as a platform.

Xamarin.Forms is an API that is built on top of the traditional Xamarin APIs, and allows us
to define platform-agnostic GUIs in XAML or in code that is rendered to platform-specific
controls. There's more to Xamarin.Forms than this, but this is what it does at its core.

In the last part of this chapter, we discussed how to set up a development machine on
Windows or macOS.

Now it's time to put our newly acquired knowledge to use! We will start off by creating a
To-Do app from the ground up in the next chapter. We will look at concepts such
as Model–View–ViewModel (MVVM), for a clean separation between business logic and
the user interface, and SQLite.NET, for persisting data to a local database on your device.
We will do this for three platforms at the same time—read on!

2
Building Our First

Xamarin.Forms App
In this chapter, we will create a to-do list app and, in doing so, we'll explore all the bits and
pieces of what makes an app. We will look at creating pages, adding content to those pages,
navigating between them, and creating a stunning layout. Well, stunning might be a bit of a
stretch, but we will be sure to design the app so that you can tweak it to your needs once it
is complete!

The following topics will be covered in this chapter:

Setting up the project
Persisting data locally on a device
Using the repository pattern
What MVVM is and why it's a great fit for Xamarin.Forms
Using Xamarin.Forms pages (as Views) and navigating between them
Using Xamarin.Forms Control in XAML
Using data binding
Using styling in Xamarin.Forms

Building Our First Xamarin.Forms App Chapter 2

[33]

Technical requirements
To be able to complete this project, we need to have Visual Studio for Mac or PC installed,
as well as the Xamarin components. See Chapter 1, Introduction to Xamarin, for more details
on how to set up your environment.

An overview of the project
Everyone needs a way of keeping track of things. To kick-start our Xamarin.Forms
development learning curve, we've decided that a to-do list app is the best way to get
started and also to help you keep track of things. A simple, classic, win-win scenario.

We will start by creating the project and defining a repository in which to store the items of
a to-do list. We will render these items in list form and allow the user to edit them using a
detailed user interface. We will also look at how to store the to-do list items locally on the
device through SQLite-net so they don't get lost when we exit the app.

The build time for this project is about two hours.

Beginning the project
It's time to start coding! Before moving on, however, make sure you have your
development environment set up as described in Chapter 1, Introduction to Xamarin.

This chapter will be a classic File | New Project chapter, guiding you step-by-step through
the process of creating your first to-do list app. There will be no downloads required
whatsoever.

Building Our First Xamarin.Forms App Chapter 2

[34]

Setting up the project
A Xamarin app can essentially be created using one of two code-sharing strategies:

As a shared project
As a .NET Standard library

The first choice, a shared project, will create a project type that is essentially a linked copy
of each file in it. The file exists in one common place and is linked in at build time. This
means that we cannot determine the runtime when writing the code and we are only
allowed to access the APIs that are available on each target platform. It does allow us to use
conditional compilations, which can be useful in certain circumstances but can also be
confusing for someone who reads the code later on. Going for the shared project option
may also be a bad choice as it locks down our code to specific platforms.

We will use the second choice, a .NET Standard library. This is, of course, a matter of
choice and both ways will still work. With a little imagination, you can still follow this
chapter, even if you select a shared project.

Let's get started!

Creating the new project
The first step is to create a new Xamarin.Forms project. Open up Visual Studio 2017 and
click on File | New| Project:

Building Our First Xamarin.Forms App Chapter 2

[35]

This will open the New Project dialog box. Expand the Visual C# node and click on Cross-
Platform. Select the Mobile App (Xamarin.Forms) item in the list. Complete the form by
naming your project and click OK. Make sure to name the project DoToo to avoid
namespace issues:

The next step is to select a project template and a Code Sharing Strategy to use. Select
Blank App to create a bare Xamarin.Forms app and change the Code Sharing Strategy to
.NET Standard. Finalize the setup by clicking OK and wait for Visual Studio to create the
necessary projects:

Building Our First Xamarin.Forms App Chapter 2

[36]

Congratulations, we've just created our first Xamarin.Forms app!

Examining the files
The template selected has now created four projects:

DoToo: This is a .NET Standard library targeting .NET Standard 2.0. It can be
imported by any runtime that supports this version of .NET Standard.
DoToo.Android: This is an Android app for bootstrapping Xamarin.Forms on
Android.
DoToo.iOS: This is an iOS app for bootstrapping Xamarin.Forms on iOS.
DoToo.UWP: This is a Universal Windows Platform (UWP) app for
bootstrapping Xamarin.Forms on UWP.

The three platform-specific libraries reference the .NET Standard library. Most of our code
will be written in the .NET Standard library and only a small portion of platform-specific
code will be added to each target platform.

Building Our First Xamarin.Forms App Chapter 2

[37]

The project should now look like as follows:

Building Our First Xamarin.Forms App Chapter 2

[38]

We will highlight a few important files in each project so that we can have a basic
understanding of what they each are. We'll go through these project by project.

DoToo
This is the .NET Standard library that all the platform-specific projects reference and the
location to which most of our code will be added. The following screenshot displays the
structure of the .NET Standard library:

Under Dependencies, we will find references to external dependencies such as
Xamarin.Forms. We will update the Xamarin.Forms package version in the Updating
Xamarin.Forms packages section. We will add more dependencies as we progress throughout
the chapter.

The App.xaml file is a XAML file that represents the app. This is a good place to put
application-wide resources, which we will do later on. We can also see
the App.xaml.cs file, which contains the startup code and some lifetime events to which
we can add custom code, such as OnStart or OnSleep.

If we open up App.xaml.cs, we can see the starting point for our Xamarin.Forms
application:

public partial class App : Application
{
 public App()
 {
 InitializeComponent();
 MainPage = new DoToo.MainPage();
 }

 protected override void OnStart()
 {
 // Handle when your app starts
 }

 // code omitted for brevity
}

Building Our First Xamarin.Forms App Chapter 2

[39]

The assignment of a page to the MainPage property is particularly important, as this is
what determines which page will be displayed to the user first. In the template, this is
the DoToo.MainPage() class.

The last two files are the MainPage.xaml file, which contains the first page of the
application and the code-behind file, which is called MainPage.xaml.cs. These files will
be removed in order to comply with the Model–View–ViewModel (MVVM) naming
standards.

DoToo.Android
This is the Android app. It only has one file:

The important file here is MainActivity.cs. This contains the entry point for our
application if we run the app on an Android device. The entry point method for an
Android app is OnCreate(...).

If you open the MainActivity.cs and examine the OnCreate(...) method, it should
look something like this:

protected override void OnCreate(Bundle bundle)
{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;
 base.OnCreate(bundle);
 global::Xamarin.Forms.Forms.Init(this, bundle);
 LoadApplication(new App());
}

Building Our First Xamarin.Forms App Chapter 2

[40]

The first two lines assign resources for the Tabbar and the Toolbar. We then call the base
method, followed by the mandatory initialization of Xamarin.Forms. Finally, we have the
call to load the Xamarin.Forms application that we have defined in the .NET Standard
library.

We don't need to understand these files in detail, just remember that they are important for
the initialization of our app.

DoToo.iOS
This is the iOS app. It contains a few more files than its Android counterpart:

The AppDelegate.cs file is the entry point for an iOS app. This file contains a method
called FinishedLaunching(...), which is where we start writing code:

public override bool FinishedLaunching(UIApplication app, NSDictionary
options)
{
 global::Xamarin.Forms.Forms.Init();
 LoadApplication(new App());
 return base.FinishedLaunching(app, options);
}

The code starts off by initializing Xamarin.Forms and then loads the application from the
.NET Standard library. After that, it returns the control to iOS. It must do this within 17
seconds, or the app will be terminated by the OS.

Building Our First Xamarin.Forms App Chapter 2

[41]

The info.plist file is an iOS-specific file that contains information about the app, such as
the bundle ID and its provisioning profiles. It has a graphical editor, but can also be edited
in any text editor, since it's a standard XML file.

The Entitlements.plist file is also an iOS-specific file that configures the entitlements
that we want our app to take advantage of, such as in-app purchases or push notifications.

As with the Android app's startup code, we don't need to understand what is going on
here in detail, other than that it's important for the initialization of our app.

DoToo.UWP
The last project to examine is the UWP app. The file structure of the project looks like the
following screenshot:

It has an App.xaml file, which is similar to the one in the .NET Standard library, but
specific to the UWP app. It also has a related file called App.xaml.cs. This contains a
method called OnLaunched(...), which is the entry point for a UWP app. This file is quite
large, so we won't be printing it out here, but do open it up and see if we can locate the
Xamarin.Forms initialization code in it.

Building Our First Xamarin.Forms App Chapter 2

[42]

Updating the Xamarin.Forms packages
After creating the project, we should always update our Xamarin.Forms packages to the
latest version. To do this, follow these steps:

Right-click on our Solution in the Solution Explorer.1.
Click on Manage NuGet Packages for Solution...:2.

Building Our First Xamarin.Forms App Chapter 2

[43]

This brings up the NuGet Package Manager in Visual Studio:3.

To update Xamarin.Forms to the latest version, do this:

Click the Updates tab1.
Check Xamarin.Forms and click Update2.
Accept any license agreements3.

Keep an eye on the output pane and wait for all the packages to be updated. However,
ensure that you don't update any Android packages manually, as this might break your
application.

Removing the MainPage file
In Xamarin.Forms, we have the concept of pages. This is not the case, however, for the
MVVM architectural pattern, which instead uses the concept of views. Views are the same
thing as pages but they are not suffixed with -Page, so we will delete the MainPage
generated by the template. We will go into more detail on MVVM shortly, but for the time
being, we will remove the MainPage.cs class from the solution. This can be done as
follows:

Right-click on the MainPage.xaml file in the DoToo project (the .NET Standard1.
library)
Click Delete and confirm the delete action2.

Building Our First Xamarin.Forms App Chapter 2

[44]

Creating a repository and a TodoItem model
Any good architecture always involves abstraction. In this app, we need something to store
and retrieve the items of our to-do list. These will later be stored in an SQLite database, but
adding a reference to the database directly from the code that is responsible for the GUI is
generally a bad idea.

What we need instead is something to abstract our database from the GUI. For this app,
we've chosen to use a simple repository pattern. This repository is simply a class that sits in
between the SQLite database and our upcoming ViewModels. This is the class that handles
the interaction with the view, which in turn handles the GUI.

The repository will expose methods for getting items, adding items, and updating items, as
well as events that allow other parts of the app to react to changes in the repository. It will
be hidden behind an interface so that we can replace the entire implementation later on,
without modifying anything but a line of code in the initialization of the app. This is made
possible by Autofac.

Defining a to-do list item
We will start off by creating a TodoItem class, which will represent a single item in the list.
This will be a simple Plain Old CLR Object (POCO) class, where CLR stands
from Common Language Runtime. In other words, this will be a .NET class without any
dependencies on third-party assemblies. To create the class, follow the steps:

In the .NET Standard library project, create a folder called Models.1.
Add a class called TodoItem.cs in that folder and enter the following code:2.

public class TodoItem
{
 public int Id { get; set; }
 public string Title { get; set; }
 public bool Completed { get; set; }
 public DateTime Due { get; set; }
}

The code is pretty self-explanatory; it's a simple Plain Old CLR Object (POCO) class that
only contains properties and no logic. We have a Title that describes what we want to be
done, a flag (Completed) that determines if the to-do list item is done, a Due date when we
expect it to be done, and a unique id that we need later on for the database.

Building Our First Xamarin.Forms App Chapter 2

[45]

Creating a repository and its interface
Now that we have the TodoItem class, let's define an interface that describes a repository to
store our to-do list items:

In the .NET Standard library project, create a folder called Repositories.1.
Create an interface called ITodoItemRepository.cs in2.
the Repositories folder and write the following code:

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using DoToo.Models;

namespace DoToo.Repositories
{
 public interface ITodoItemRepository
 {
 event EventHandler<TodoItem> OnItemAdded;
 event EventHandler<TodoItem> OnItemUpdated;

 Task<List<TodoItem>> GetItems();
 Task AddItem(TodoItem item);
 Task UpdateItem(TodoItem item);
 Task AddOrUpdate(TodoItem item);
 }
}

The eagle-eyed among you might notice that we are not defining a
Delete method in this interface. This is definitely something that should
be there in a real-world app. While the app that we are creating in this
chapter will not support the deleting of items, we are quite sure that you
could add this yourself if you want to!

This interface defines everything we need for our app. It is there to create logical insulation
between your implementation of a repository and the user of that repository. If any other
part of your application wants an instance of TodoItemRepository, we can pass it any
object that implements ITodoItemRepository, regardless of how it's implemented.

Building Our First Xamarin.Forms App Chapter 2

[46]

Having that said, let's implement ITodoItemRepository:

Create a class called TodoItemRepository.cs.1.
Enter the following code:2.

using DoToo.Models;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;

namespace DoToo.Repositories
{
 public class TodoItemRepository : ITodoItemRepository
 {
 public event EventHandler<TodoItem> OnItemAdded;
 public event EventHandler<TodoItem> OnItemUpdated;

 public async Task<List<TodoItem>> GetItems()
 {
 }

 public async Task AddItem(TodoItem item)
 {
 }

 public async Task UpdateItem(TodoItem item)
 {
 }

 public async Task AddOrUpdate(TodoItem item)
 {
 if (item.Id == 0)
 {
 await AddItem(item);
 }
 else
 {
 await UpdateItem(item);
 }
 }
 }
}

Building Our First Xamarin.Forms App Chapter 2

[47]

This code is the bare-bones implementation of the interface, except for the
AddOrUpdate(...) method. This handles a small piece of logic that states that if the ID of
an item is 0, it's a new item. Any item with an ID larger than 0 is stored in the database.
This is because the database assigns a value larger than zero when we create rows in a
table.

There are also two events defined in the preceding code. These will be used for notifying
any subscriber that items have been updated or added.

Connecting SQLite to persist data
We now have an interface and a skeleton to implement that interface. The last thing we
need to do to finish this section is to connect SQLite inside the implementation of the
repository.

Adding the SQLite NuGet package
To access SQLite in this project, we need to add a NuGet package called sqlite-net-pcl to
the .NET Standard library project. To do this, right-click on the Dependencies item under
the DoToo project node of the Solution and click Manage NuGet Packages:

You might notice that the NuGet package is suffixed with -pcl. This is an
example of what happens when naming conventions go wrong. This
package actually supports .NET Standard 1.0, even though the name says
Portable Class Library (PCL), which was the predecessor to .NET
Standard.

Building Our First Xamarin.Forms App Chapter 2

[48]

This brings up the NuGet Package Manager:

Click Browse and enter sqlite-net-pcl in the search box1.
Select the package by Frank A. Krueger and click Install2.

Wait for the installation to complete. We'll then add some code to the TodoItem class and
the repository.

Updating the TodoItem class
Since SQLite is a relational database, it needs to know some basic information about how to
create the tables that will store our objects. This is done using attributes, which are defined
in the SQLite namespace:

Open up the Models/TodoItem.1.
Add a using SQLite statement at the start of the file right below the2.
existing using statements, as shown in the following code:

using System;
using SQLite;

Building Our First Xamarin.Forms App Chapter 2

[49]

Add the PrimaryKey and AutoIncrement attributes right before the ID3.
property, as demonstrated in the following code:

[PrimaryKey, AutoIncrement]
public int Id { get; set; }

The PrimaryKey attribute instructs SQLite that the Id property is the primary key of the
table. The AutoIncrement attribute will make sure that the value of Id will be increased
by one for each new TodoItem class that is added to the table.

Creating a connection to the SQLite database
We will now add all the code needed to communicate with the database. The first thing we
need to do is to define a connection field that will hold the connection to the database:

Open up the Repositories/TodoItemRepository file.1.
Add a using SQLite statement at the start of the file right below the existing2.
using statements, as shown in the following code:

using DoToo.Models;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;
using SQLite

Add the following field right below the class declaration:3.

private SQLiteAsyncConnection connection;

The connection needs to be initialized. Once it is initialized, it can be reused throughout the
lifespan of the repository. Since the method is asynchronous, it cannot be called from the
constructor without introducing a locking strategy. To keep things simple, we will simply
call it from each of the methods that are defined by the interface:

Add the following code to the TodoItemRepository class.1.
Add a using System.IO statement at the start of the file so that we can use2.
Path.Combine(...):

private async Task CreateConnection()
{
 if (connection != null)
 {
 return;
 }
 var documentPath = Environment.GetFolderPath(

Building Our First Xamarin.Forms App Chapter 2

[50]

 Environment.SpecialFolder.MyDocuments);
 var databasePath = Path.Combine(documentPath, "TodoItems.db");

 connection = new SQLiteAsyncConnection(databasePath);
 await connection.CreateTableAsync<TodoItem>();

 if (await connection.Table<TodoItem>().CountAsync() == 0)
 {
 await connection.InsertAsync(new TodoItem() { Title =
 "Welcome to DoToo" });
 }
}

The method begins by checking whether we already have a connection. If we do, we can
simply return. If we don't have a connection set up, we define a path on the disk to indicate
where we want the database file to be located. In this case, we will choose
the MyDocuments folder. Xamarin will find the closest match to this on each platform that
we target.

We then create the connection and store the reference to that connection in the connection
field. We need to make sure that SQLite has created a table that mirrors the schema of the
TodoItem table. To make the development of the app easier, we add a default to-do list
item if the TodoItem table is empty.

Implementing the Get, Add, and Update methods
The only thing left to do in the repository is to implement the methods for getting, adding,
and updating items:

Locate the GetItems() method in the TodoItemRepository class.1.
Update the GetItems() method with the following code:2.

public async Task<List<TodoItem>> GetItems()
{
 await CreateConnection();
 return await connection.Table<TodoItem>().ToListAsync();
}

To ensure that the connection to the database is valid, we call the CreateConnection()
method we created in the previous section. When this method returns, we can make sure
that it is initialized and that the TodoItem table has been created.

We then use the connection to access the TodoItem table and return a List<TodoItem>
that contains all the to-do list items in the database.

Building Our First Xamarin.Forms App Chapter 2

[51]

SQLite supports querying data using Language Integrated
Query (LINQ). You could play around with this after the project is
complete to get a better understanding of how to work with databases
inside your app.

The code for adding items is even simpler:

Locate the AddItem() method in the TodoItemRepository class.1.
Update the AddItem() method with the following code:2.

public async Task AddItem(TodoItem item)
{
 await CreateConnection();
 await connection.InsertAsync(item);
 OnItemAdded?.Invoke(this, item);
}

The call to CreateConnection() makes sure that we have a connection in the same way
as we did for the GetItems() method. After this, we perform the actual insertion into the
database using the InsertAsync(...) method on the connection object. After an item has
been inserted into the table, we invoke the OnItemAdded event to notify any subscribers.

The code to update an item is basically the same as the AddItem() method, but also
includes calls to UpdateAsync and OnItemUpdated. Let's finish up by updating the
UpdateItem() method with the following code:

Locate the UpdateItem() method in the TodoItemRepository class.1.
Update the UpdateItem() method with the following code:2.

public async Task UpdateItem(TodoItem item)
{
 await CreateConnection();
 await connection.UpdateAsync(item);
 OnItemUpdated?.Invoke(this, item);
}

In the next section, we'll get started with MVVM. Grab a cup of coffee and let's get started.

Building Our First Xamarin.Forms App Chapter 2

[52]

Using MVVM – creating Views and ViewModels
MVVM is all about the separation of concerns. Each part has a specific meaning:

Model: This relates to anything that represents data and that can be referenced
by the ViewModel
View: This is the visual component. In Xamarin.Forms, this is represented by a
page
ViewModel: This is a class that acts as the glue between the Model and the View

In our app, we could say that the Model is the repository and the to-do list items it returns.
The ViewModel has a reference to this repository and exposes properties that the View can
bind to. The ground rule is that any logic should reside in the ViewModel and no logic
should be in the View. The View should know how to present data, such as converting a
Boolean value to Yes or No.

MVVM can be implemented in many ways and there are quite a few frameworks that we
could use. In this chapter, we have chosen to keep things simple and implement MVVM in
a vanilla way, without any framework at all.

Defining a ViewModel base class
A ViewModel is the mediator between the View and the Model. We can benefit greatly by
creating a common base class for all our ViewModels to inherit from. To do this, follow
these steps:

Create a folder called ViewModels in the DoToo .NET Standard project.1.
Create a class called ViewModel in the ViewModels folder .2.
Resolve references to System.ComponentModel and Xamarin.Forms and add3.
the following code:

public abstract class ViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 public void RaisePropertyChanged(params string[] propertyNames)
 {
 foreach (var propertyName in propertyNames)
 {
 PropertyChanged?.Invoke(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }

Building Our First Xamarin.Forms App Chapter 2

[53]

 public INavigation Navigation { get; set; }
}

The ViewModel class is a base class for all ViewModels. This is not meant to be instantiated
on its own, so we mark it as abstract. It implements INotifyPropertyChanged, which is
an interface defined in System.ComponentModel in the .NET base class libraries. This
interface only defines one thing: the PropertyChanged event. Our ViewModel must raise
this event whenever we want the GUI to be aware of any changes to a property. This can be
done manually, by adding code to a setter in a property, or by using an intermediate
language (IL) weaver such as PropertyChanged.Fody. We will talk about this in detail in
the next section.

We are also taking a little shortcut here by adding an INavigation property in the
ViewModel. This will help us with navigation later on. This is also something that can (and
should) be abstracted, since we don't want the ViewModel to be dependent on
Xamarin.Forms, in order to be able to reuse the ViewModels on any platform.

Introducing PropertyChanged.Fody
The traditional way of implementing a ViewModel is to inherit from a base class (such as
the ViewModel that we defined previously) and then add code that might look as follows:

public class MyTestViewModel : ViewModel
{
 private string name;
 public string Name
 {
 get { return name; }
 set { name = value; RaisePropertyChanged(nameof(Name)); }
 }
}

Each property that we want to add to a ViewModel yields six lines of code. Not too bad,
you might think. However, considering that a ViewModel could potentially contain 10 to 20
properties, this rapidly turns into a lot of code. We can do better than this.

Building Our First Xamarin.Forms App Chapter 2

[54]

In just a few simple steps, we can use a tool called PropertyChanged.Fody to
automatically inject almost all the code during the build process:

In the .NET Standard library, install the PropertyChanged.Fody NuGet1.
package.
Create a file called FodyWeavers.xml and add the following XML to it:2.

<?xml version="1.0" encoding="utf-8" ?>
<Weavers>
 <PropertyChanged />
</Weavers>

PropertyChanged.Fody will scan the assembly for any class that implements
the INotifyPropertyChanged interface and adds the code needed to raise the
PropertyChanged event. It will also take care of dependencies between properties,
meaning that if you have a property that returns values based on two other properties, it
will be raised if either of those two values changes.

The result is that the test class we had previously is reduced to a single line of code per
property. This makes the code base more readable because everything happens behind the
scenes:

public class MyTestViewModel : ViewModel
{
 public string Name { get; set; }
}

It is worth noting that there are a lot of different plugins that can be used
to make Fody automate tasks, such as logging or method decoration.
Check out https:/ / github. com/ Fody/ Fody for more info.

https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody
https://github.com/Fody/Fody

Building Our First Xamarin.Forms App Chapter 2

[55]

Creating the MainViewModel
Up to this point, we have mainly been preparing to write the code that will make up the
app itself. The MainViewModel is the ViewModel for the first view that will be displayed to
the user. It will be responsible for providing data and logic to a list of to-do list items. We
will create the bare-bones ViewModels and add code to them as we move through the
chapter:

Create a class called MainViewModel inside the ViewModels folder.1.
Add the following template code and resolve the references:2.

public class MainViewModel : ViewModel
{
 private readonly TodoItemRepository repository;

 public MainViewModel(TodoItemRepository repository)
 {
 this.repository = repository;
 Task.Run(async () => await LoadData());
 }

 private async Task LoadData()
 {
 }
}

The structure in this class is something that we will reuse for all the ViewModels to come.

Let's summarize the important features we want the ViewModel to have:

We inherit from the ViewModel to gain access to shared logic, such as
the INotifyPropertyChanged interface and common navigation code.
All dependencies to other classes, such as repositories and services, are passed
through the constructor of the ViewModel. This will be handled by
the dependency injection pattern and, more specifically for our case, by Autofac,
which is the implementation of dependency injection we are using.
We use an asynchronous call to LoadData() as an entry point to initialize the
ViewModel. Different MVVM libraries might do this in different ways, but the
basic functionally is the same.

Building Our First Xamarin.Forms App Chapter 2

[56]

Creating the TodoItemViewModel
The TodoItemViewModel is the ViewModel that represents each item in the to-do list on
the MainView. It will not have an entire view of its own (although it could have), but
instead will be rendered by a template in the ListView. We will get back to this when we
create the controls for the MainView.

The important thing here is that this ViewModel will represent a single item, regardless of
where we choose to render it.

Let's create the TodoItemViewModel:

Create a class called TodoItemViewModel inside the ViewModels folder.1.
Add the following template code and resolve the references:2.

public class TodoItemViewModel : ViewModel
{
 public TodoItemViewModel(TodoItem item) => Item = item;

 public event EventHandler ItemStatusChanged;
 public TodoItem Item { get; private set; }
 public string StatusText => Item.Completed ? "Reactivate" :
 "Completed";
}

As with any other ViewModel, we inherit the TodoItemViewModel from ViewModel. We
conform to the pattern of injecting all dependencies in the constructor. In this case, we pass
an instance of the TodoItem class in the constructor that the ViewModel will use to expose
to the view.

The ItemStatusChanged event handler will be used later when we want to signal to the
view that the state of the TodoItem has changed. The Item property allows us to access the
item that we passed in.

The StatusText property is used for making the status of the to-do item human readable
in the view.

Building Our First Xamarin.Forms App Chapter 2

[57]

Creating the ItemViewModel
The ItemViewModel represents the to-do list item in a view that can be used to create new
items and to edit existing items:

In the ViewModels folder, create a class called ItemViewModel.1.
Add the code as following:2.

using DoToo.Models;
using DoToo.Repositories;
using System;
using System.Windows.Input;
using Xamarin.Forms;

namespace DoToo.ViewModels
{
 public class ItemViewModel : ViewModel
 {
 private TodoItemRepository repository;

 public ItemViewModel(TodoItemRepository repository)
 {
 this.repository = repository;
 }
 }
}

The pattern is the same as for the previous two ViewModels:

We use dependency injection to pass the TodoItemRepository into the
ViewModel

We use inheritance from the ViewModel base class to add the common features
defined by the base class

Creating the MainView
Now that we are done with the ViewModels, let's create the skeleton code and the XAML
needed for the views. The first view that we are going to create is the MainView, which is
the view that will be loaded first:

Create a folder named Views in the .NET Standard library.1.
Right-click the Views folder, select Add, and then click New Item....2.
Select Xamarin.Forms under the Visual C# Items node on the left.3.

Building Our First Xamarin.Forms App Chapter 2

[58]

Select Content Page and name it MainView.4.
Click Add to create the page:5.

Let's add some content to the newly created view:

Open MainView.xaml.1.
Remove all the template code below the ContentPage root node and add the2.
XAML code marked in bold in the following code:

<?xml version="1.0" encoding="utf-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:DoToo"
 x:Class="DoToo.Views.MainView"
 Title="Do Too!">

 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" />
 </ContentPage.ToolbarItems>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

Building Our First Xamarin.Forms App Chapter 2

[59]

 <Button Text="Toggle filter" />

 <ListView Grid.Row="1">
 </ListView>
 </Grid>
</ContentPage>

To be able to access custom converters, we need to add a reference to a local namespace.
The line xmlns:local="clr-namespace:DoToo" defines this namespace for us. We will
not be using it directly in this case, but it's a good idea to have a local namespace defined. If
we create custom controls, we can then access these by writing something like
<local:MyControl />.

The Title property on the ContentPage gives the page a title. Depending on the platform
we are running on, the title is displayed differently. If we are using a standard navigation
bar, it will be displayed at the top in both iOS and Android, for example. A page should
always have a title.

The ContentPage.Toolbar node defines a toolbar item for adding new to-do items. It will
also be rendered differently based on the platform, but it will always follow the platform-
specific UI guidelines.

A page in Xamarin.Forms (and also an XML document in general) can only have one root
node. The root node in a Xamarin.Forms page will populate the Content property of the
page itself. Since we want our MainView to contain a list of items and a button at the top to
toggle a filter (to switch between all items and only active items), we need to add a Layout
control to position them on the page. The Grid is a control that allows you to partition the
available space based on rows and columns.

For our MainView, we want to add two rows. The first row is a space calculated by the
height of the button (Height="auto") and the second row takes up all of the remaining
available space for the Listview (Height="*"). Elements, like the ListView, are
positioned in the grid using the Grid.Row and Grid.Column attributes. Both of these
properties default to 0 if they are not specified, just like the Button.

If you are interested in how the Grid works, you should search for more
information about Xamarin.Forms Grid on the internet or study the
official documentation at https:/ /docs. microsoft. com/ en-us/ xamarin/
xamarin- forms/ user- interface/ layouts/ grid.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/layouts/grid

Building Our First Xamarin.Forms App Chapter 2

[60]

We also need to wire up the ViewModel to the view. This can be done by passing the
ViewModel in the constructor of the view:

Open up the code-behind file of the MainView by expanding the1.
MainView.xaml file in the Solution Explorer.
Add a using DoToo.ViewModels statement at the top of the following file the2.
existing using statements.
Modify the constructor of the class to look like the following code by adding the3.
code marked in bold:

public MainView(MainViewModel viewModel)
{
 InitializeComponent();
 viewModel.Navigation = Navigation;
 BindingContext = viewModel;
}

We follow the same pattern as we did with the ViewModels by passing any dependencies
through the constructor. A view is always dependent on a ViewModel. To simplify the
project, we also assign the Navigation property of the page directly to the Navigation
property defined in the ViewModel base class. In a larger project, we might want to abstract
this property as well, to make sure that we separate the ViewModels completely from
Xamarin.Forms. For the sake of this app, however, it is OK to reference it directly.

Lastly, we assign the ViewModel to the BindingContext of the page. This tells the
Xamarin.Forms binding engine to use our ViewModel for the bindings that we will create
later on.

Creating the ItemView
Next up is the second view. We will use this for adding and editing to-do list items:

Create a new Content Page (the same way as we created the MainView) and1.
name it ItemView.
Edit the XAML and make it look like the following code:2.

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DoToo.Views.ItemView"
 Title="New todo item">

Building Our First Xamarin.Forms App Chapter 2

[61]

 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" />
 </ContentPage.ToolbarItems>

 <StackLayout Padding="14">
 <Label Text="Title" />
 <Entry />
 <Label Text="Due" />
 <DatePicker />
 <StackLayout Orientation="Horizontal">
 <Switch />
 <Label Text="Completed" />
 </StackLayout>
 </StackLayout>
 </ContentPage>

As with the MainView, we need a title. We will give it a default title of "New todo
item" for now, but we will change this to "Edit todo item" when we reuse this view for
editing later on. The user must be able to save a new or edited item, so we have added a
toolbar save button. The content of the page uses a StackLayout to structure the controls.
A StackLayout adds an element vertically (the default option) or horizontally based on
the space it calculates that the element takes up. This is a CPU-intensive process, so we
should only use it on small portions of our layout. In the StackLayout, we add a Label
that will be a line of text over the Entry control that comes underneath it. The Entry
control is a text input control that will contain the name of the to-do list item. We then have
a section for a DatePicker, where the user can select a due date for the to-do list item. The
final control is a Switch control, which renders a toggle button to control when an item is
completed, and a heading next to that. Since we want these to be displayed next to each
other horizontally, we use a horizontal StackLayout to do this.

The last step for the views is to wire up the ItemViewModel to the ItemView:

Open up the code-behind file of the ItemView by expanding1.
the ItemView.xaml file in the Solution Explorer.
Modify the constructor of the class to look like the following code. Add the code2.
that is marked in bold.

Building Our First Xamarin.Forms App Chapter 2

[62]

Add a using DoToo.ViewModels statement at the top of the following file the3.
existing using statements:

public ItemView (ItemViewModel viewmodel)
{
 InitializeComponent ();
 viewmodel.Navigation = Navigation;
 BindingContext = viewmodel;
}

This code is identical to the code that we added for MainView, except for the type of the
ViewModel.

Wiring up a dependency injection through Autofac
Earlier, we discussed the dependency injection pattern, which states that all dependencies,
such as the repositories and view models, must be passed through the constructor of the
class. This has several benefits:

It increases the readability of the code, since we can quickly determine all
external dependencies
It makes dependency injection possible
It makes unit testing possible by mocking classes
We can control the lifetime of an object by specifying whether it should be a
singleton or a new instance for each resolution

Dependency injection is a pattern that lets us determine at runtime which instance of an
object should be passed to a constructor when an object is created. We do this by defining a
container where we register all the types of a class. We let the framework that we are using
resolve any dependencies between them. Let's say that we ask the container for a
MainView. The container takes care of resolving the MainViewModel and any
dependencies that the class has.

To set this up, we need to reference a library called Autofac. There are other options out
there, so feel free to switch to one that better fits your needs. We also need an entry point to
resolve the types into instances. To do this, we will define a bare-bones Resolver class. To
wrap it all up, we need a bootstrapper that we will call to initialize the dependency
injection configuration.

Building Our First Xamarin.Forms App Chapter 2

[63]

Adding a reference to Autofac
We need a reference to Autofac to get started. We will use NuGet to install the packages
needed:

Open up the NuGet-manager by right-clicking on the Solution node and clicking1.
on Manage NuGet packages for solution....
Click on Browse and type autofac in the search box.2.
Tick all checkboxes under Project, scroll down, and click Install:3.

Creating the resolver
The resolver will be responsible for creating our objects for us based on the type that we
request. Let's create the resolver:

In the root of the .NET Standard library project, create a new file1.
called Resolver.cs.
Add the following code to the file:2.

using Autofac;

namespace DoToo
{
 public static class Resolver

Building Our First Xamarin.Forms App Chapter 2

[64]

 {
 private static IContainer container;

 public static void Initialize(IContainer container)
 {
 Resolver.container = container;
 }

 public static T Resolve<T>()
 {
 return container.Resolve<T>();
 }
 }
}

The container property of the IContainer type is defined in Autofac and represents a
container that holds the configuration on how to resolve types. The Initialize method
takes an instance of an object that implements the IContainer interface and assigns it to
the container property. The Resolve method uses the container to resolve a type to an
instance of an object. While it might seem strange to use this at first, it will become much
easier with experience.

Creating the bootstrapper
The bootstrapper's responsibility is to initialize Autofac. It will be called at the startup of
the application. We can create it as follows:

In the root of the .NET Standard library project, create a new file called1.
Bootstrapper.cs.
Enter the following code:2.

using Autofac;
using System.Linq;
using Xamarin.Forms;
using DoToo.Views;
using DoToo.Repositories;
using DoToo.ViewModels;

namespace DoToo
{
 public abstract class Bootstrapper
 {
 protected ContainerBuilder ContainerBuilder { get; private
 set; }

 public Bootstrapper()

Building Our First Xamarin.Forms App Chapter 2

[65]

 {
 Initialize();
 FinishInitialization();
 }

 protected virtual void Initialize()
 {
 var currentAssembly = Assembly.GetExecutingAssembly();
 ContainerBuilder = new ContainerBuilder();

 foreach (var type in currentAssembly.DefinedTypes
 .Where(e =>
 e.IsSubclassOf(typeof(Page)) ||
 e.IsSubclassOf(typeof(ViewModel))))
 {
 ContainerBuilder.RegisterType(type.AsType());
 }

ContainerBuilder.RegisterType<TodoItemRepository>().SingleInstance(
);
 }

 private void FinishInitialization()
 {
 var container = ContainerBuilder.Build();
 Resolver.Initialize(container);
 }
 }
}

The Bootstrapper will be inherited by each platform since this is where the execution of
the app begins. This will also give us the option to add platform-specific configurations. To
ensure that we inherit from the class, we define it as abstract.

The ContainerBuilder is a class defined in Autofac that takes care of creating the
container for us after we are finished with the configuration. The building of the
container happens in the FinishInitialization method defined at the end and is
called by the constructor right after we call the virtual Initialize method. We can
override the Initialize method to add custom registrations on each platform.

Building Our First Xamarin.Forms App Chapter 2

[66]

The Initialize method scans the assembly for any types that inherit from the Page or
ViewModel and adds them to the container. It also adds the TodoItemRepository as a
singleton to the container. This means that each time we ask for a TodoItemRepository,
we will get the same instance. The default behavior for Autofac (this may vary between
libraries) is that we get a new instance for each resolution.

Adding a bootstrapper on iOS
The Bootstrapper for iOS is a simple wrapper for the common bootstrapper defined in
the .NET Standard library, but with the addition of an Init method that will be called at
startup:

In the root of the iOS project, create a new class called Bootstrapper.cs.1.
Add the following code to it:2.

public class Bootstrapper : DoToo.Bootstrapper
{
 public static void Init()
 {
 var instance = new Bootstrapper();
 }
}

The Init method may look strange since we don't retain a reference to the instance we
create. Keep in mind, however, that we do keep a reference to a Resolver instance inside
the Resolver class, which is itself a singleton.

The final step for iOS is to call this Init method in the right place:

Open up AppDelegate.cs.1.
Locate the FinishedLaunching method and add the code in bold:2.

public override bool FinishedLaunching(UIApplication app,
NSDictionary options)
{
 global::Xamarin.Forms.Forms.Init();
 Bootstrapper.Init();
 LoadApplication(new App());

 return base.FinishedLaunching(app, options);
}

Building Our First Xamarin.Forms App Chapter 2

[67]

Adding a bootstrapper in Android
Just like for iOS, the Bootstrapper for Android is a simple wrapper for the common
bootstrapper defined in the .NET Standard library, but with the addition of an Init
method that will be called at startup:

 In the root of the Android project, create a new class called Bootstrapper.cs.1.
Add the following code to it:2.

public class Bootstrapper : DoToo.Bootstrapper
{
 public static void Init()
 {
 var instance = new Bootstrapper();
 }
}

We then need to call this Init method. A good place to do this is right before the
LoadApplication call in OnCreate:

Open up MainActivity.cs.1.
Locate the OnCreate method and add the code in bold:2.

protected override void OnCreate(Bundle bundle)
{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(bundle);

 global::Xamarin.Forms.Forms.Init(this, bundle);
 Bootstrapper.Init();
 LoadApplication(new App());
}

Adding a bootstrapper in UWP
The bootstrapper for UWP is identical to the other platforms:

In the root of the UWP project, create a new class called Bootstrapper.cs.1.
Add the following code to it:2.

public class Bootstrapper : DoToo.Bootstrapper
{
 public static void Init()
 {

Building Our First Xamarin.Forms App Chapter 2

[68]

 var instance = new Bootstrapper();
 }
}

And as with the other platforms, we need to call the Init method in a good place:

In the UWP project, open up the App.xaml.cs file. 1.
Locate the call to the Xamarin.Forms.Forms.Init() method and add the code2.
in bold:

Xamarin.Forms.Forms.Init(e);
Bootstrapper.Init();

Making the app run
We can start the app for the first time as follows:

Open up App.xaml.cs by expanding the App.xaml node in the .NET Standard1.
library.
Locate the constructor.2.
Add a using statement for DoToo.Views and add the following code line in3.
bold:

public App ()
{
 InitializeComponent();
 MainPage = new NavigationPage(Resolver.Resolve<MainView>());
}

The line added resolves the MainView (and all dependencies, including MainViewModel
and the TodoItemRepository) and wraps it into a NavigationPage. The
NavigationPage is a page defined in Xamarin.Forms that adds a navigation bar and
enables the user to navigate to other views.

Building Our First Xamarin.Forms App Chapter 2

[69]

That's it! At this point, your project should start. Depending on the platform you are using,
it might look like the following screenshot:

Adding data bindings
Data binding is the heart and soul of MVVM. This is the way that the Views and
the ViewModel communicate with each other. In Xamarin.Forms, we need two things to
make data binding happen:

We need an object to implement INotifyPropertyChanged.1.
We need to set the BindingContext of the page to that object. We already do2.
this on both the ItemView and the MainView.

Building Our First Xamarin.Forms App Chapter 2

[70]

A really useful feature of data binding is that it allows us to use two-way communication.
For example, when data binding text to an Entry control, the property on the data-bound
object will be updated directly. Consider the following XAML:

<Entry Text="{Binding Title} />

To make this work, we need a property named Title on the object that is a string. We have
to look at the documentation, define an object, and let Intellisense provide us with a hint to
find out what type our property should be.

Controls that perform some kind of action, like a Button, usually expose a property called
Command. This property is of the ICommand type and we can either return a
Xamarin.Forms.Command or an implementation of our own. The Command property is
explained in the next section, where we will use it to navigate to the ItemView.

Navigating from the MainView to the ItemView to add a
new item
We have an Add toolbar button in the MainView. When the user taps this button, we want
to navigate to the ItemView. The MVVM way to do this is to define a command and then
bind that command to the button. Let's add the code:

Open ViewModels/MainViewModel.cs.1.
Add using statements for System.Windows.Input,2.
DoToo.Views, and Xamarin.Forms.
Add the following property to the class:3.

public ICommand AddItem => new Command(async () =>
{
 var itemView = Resolver.Resolve<ItemView>();
 await Navigation.PushAsync(itemView);
});

All commands should be exposed as a generic ICommand. This abstracts the actual
command implementation, which is a good general practice to follow. The command must
be a property; in our case, we are creating a new Command object that we assign to this
property. The property is read-only, which is usually fine for a Command. The action of the
command (the code that we want to run when the command is executed) is passed to the
constructor of the Command object.

Building Our First Xamarin.Forms App Chapter 2

[71]

The action of the command creates a new ItemView through the Resolver and
Autofac builds the necessary dependencies. Once the new ItemView has been created, we
simply tell the Navigation service to push it onto the stack for us.

After that, we just have to wire up the AddItem command from the ViewModel to the add
button in the view:

Open Views/MainView.xaml.1.
Add the Command attribute to the ToolbarItem:2.

<ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Command="{Binding AddItem}" />
</ContentPage.ToolbarItems>

Run the app and tap the Add button to navigate to the new item view. Notice that the back
button appears automatically.

Adding new items to the list
We have now finished adding the navigation to a new item. Let's now add the code needed
to create a new item and save it to the database:

Open up ViewModels/ItemViewModel.cs.1.
Add the following code in bold.2.
Resolve the reference to System.Windows.Input:3.

public class ItemViewModel : ViewModel
{
 private TodoItemRepository repository;

 public TodoItem Item { get; set; }

 public ItemViewModel(TodoItemRepository repository)
 {
 this.repository = repository;
 Item = new TodoItem() { Due = DateTime.Now.AddDays(1) };
 }
 public ICommand Save => new Command(async () =>
 {
 await repository.AddOrUpdate(Item);
 await Navigation.PopAsync();
 });
}

Building Our First Xamarin.Forms App Chapter 2

[72]

The Item property holds a reference to the current item that we want to add or edit. A new
item is created in the constructor and when we want to edit an item, we can simply assign
our own item to this property. The new item is not added to the database unless we execute
the Save command defined at the end. After the item is added or updated, we remove the
view from the navigation stack and return to the MainView again.

Since the navigation keeps pages in a stack, the framework declares
methods that reflect operations that you can perform on a stack. The
operation of removing the topmost item in a stack is known as popping
the stack, so instead of RemoveAsync(), we have PopAsync(). To add a
page to the navigation stack, we push it, so that method is called
PushAsync().

Now that we have extended the ItemViewModel with the necessary commands and
properties, it's time to data-bind them in the XAML:

Open ViewModels/ItemView.xaml.1.
Add the code marked in bold:2.

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="DoToo.Views.ItemView">
 <ContentPage.ToolbarItems>
 <ToolbarItem Text="Save" Command="{Binding Save}" />
 </ContentPage.ToolbarItems>
 <StackLayout Padding="14">
 <Label Text="Title" />
 <Entry Text="{Binding Item.Title}" />
 <Label Text="Due" />
 <DatePicker Date="{Binding Item.Due}" />
 <StackLayout Orientation="Horizontal">
 <Switch IsToggled="{Binding Item.Completed}" />
 <Label Text="Completed" />
 </StackLayout>
 </StackLayout>
</ContentPage>

The binding to the ToolbarItems command attribute triggers the Save command exposed
by the ItemViewModel when a user taps the Save link. It's worth nothing again that any
attribute called Command indicates that an action will take place and that we must bind it to
an instance of an object implementing the ICommand interface.

Building Our First Xamarin.Forms App Chapter 2

[73]

The Entry control that represents the title is data-bound to the Item.Title property of the
ItemViewModel, and the Datepicker and Switch control bind in a similar way to their
respective properties.

We could have exposed Title, Due, and Complete as properties directly on the
ItemViewModel, but chose to reuse the already existing TodoItem as a reference. This is
fine, as long as the properties of the TodoItem object implement the
INotifyPropertyChange interface.

Binding the ListView in the MainView
A to-do list is not much use without a list of items. Let's extend the MainViewModel with a
list of items:

Open ViewModels/MainViewModel.cs.1.
Add using statements for System.Collections.ObjectModel and2.
System.Linq.
Add a property for the to-do list items:3.

public ObservableCollection<TodoItemViewModel> Items { get; set; }

An ObservableCollection is like an ordinary collection, but it has a useful superpower.
It can notify listeners about changes in the list, such as when items are added or deleted.
The Listview will listen to changes in the list and update itself automatically based on
these.

We now need some data:

Open ViewModels/MainViewModel.cs.1.
Replace (or complete) the LoadData method and create the2.
CreateTodoItemViewModel and ItemStatusChanged methods.
Resolve the reference to DoToo.Models by adding a using statement:3.

private async Task LoadData()
{
 var items = await repository.GetItems();
 var itemViewModels = items.Select(i =>
 CreateTodoItemViewModel(i));
 Items = new ObservableCollection<TodoItemViewModel>
 (itemViewModels);
}

Building Our First Xamarin.Forms App Chapter 2

[74]

private TodoItemViewModel CreateTodoItemViewModel(TodoItem item)
{
 var itemViewModel = new TodoItemViewModel(item);
 itemViewModel.ItemStatusChanged += ItemStatusChanged;
 return itemViewModel;
}

private void ItemStatusChanged(object sender, EventArgs e)
{
}

The LoadData method calls the repository to fetch all items. We then wrap each to-do list
item in the TodoItemViewModel. This will contain more information that is specific to the
view and that we don't want to add to the TodoItem class. It is a good practice to wrap
plain objects in a ViewModel; this makes it simpler to add actions or extra properties to it.
The ItemStatusChanged is a stub that will be called when we change the status of the to-
do list item from active to completed and vice versa.

We also need to hook up some events from the repository to know when data changes:

Open ViewModels/MainViewModel.cs.1.
Add the following code in bold:2.

public MainViewModel(TodoItemRepository repository)
{
 repository.OnItemAdded += (sender, item) =>
 Items.Add(CreateTodoItemViewModel(item));
 repository.OnItemUpdated += (sender, item) =>
 Task.Run(async () => await LoadData());

 this.repository = repository;
 Task.Run(async () => await LoadData());
}

When an item is added to the repository, no matter who added it, the MainView will add it
to the items list. Since the items collection is an observable collection, the list will update. If
an item gets updated, we simply reload the list.

Let's data-bind our items to the ListView:

Open up MainView.xaml and locate the ListView element.1.
Modify it to reflect the following code:2.

<ListView Grid.Row="1"
 RowHeight="70"
 ItemsSource="{Binding Items}">

Building Our First Xamarin.Forms App Chapter 2

[75]

 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid Padding="15,10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="10" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <BoxView Grid.RowSpan="2" />
 <Label Grid.Column="1"
 Text="{Binding Item.Title}"
 FontSize="Large" />
 <Label Grid.Column="1"
 Grid.Row="1"
 Text="{Binding Item.Due}"
 FontSize="Micro" />
 <Label Grid.Column="1"
 Grid.Row="1"
 HorizontalTextAlignment="End"
 Text="Completed"
 IsVisible="{Binding Item.Completed}"
 FontSize="Micro" />
 </Grid>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
</ListView>

The ItemsSource binding tells the ListView where to find the collection to iterate over
and is local to the ViewModel. Any bindings inside the ViewCell node, however, are local
to each item that we iterate in the list. In this case, we are binding to
the TodoItemViewModel, which contains a property named Item. This, in turn, has
properties such as Title, Due, and Completed. We can navigate down the hierarchy of
objects without any problem when defining a binding.

The DataTemplate defined what each row will look like. We use a grid to partition the
space just like we did earlier.

Building Our First Xamarin.Forms App Chapter 2

[76]

Creating a ValueConverter for the item status
Sometimes, we want to bind to objects that are a representation of the original value. This
could be a piece of text that is based on a Boolean value. Instead of true and false, for
example, we might want to write Yes and No, or return a color. This is where
ValueConverter comes in handy. It can be used to convert a value to and from another
value. We are going to write a ValueConverter that converts the status of a to-do list item
to a color:

In the root of the .NET Standard library project, create a folder called1.
Converters.
Create a class called StatusColorConverter.cs and add the following code:2.

using System;
using System.Globalization;
using Xamarin.Forms;

namespace DoToo.Converters
{
 public class StatusColorConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo
 culture)
 {
 return (bool)value ?
(Color)Application.Current.Resources["CompletedColor"]:

 (Color)Application.Current.Resources["ActiveColor"];
 }

 public object ConvertBack(object value, Type
targetType,
 object parameter, CultureInfo
 culture)
 {
 return null;
 }
 }
}

Building Our First Xamarin.Forms App Chapter 2

[77]

A ValueConverter is a class that implements IValueConverter. This, in turn, only has
two methods defined. The Convert method is called when the view reads data from the
ViewModel, and the ConvertBack method is used when the ViewModel gets data from the
view. The ConvertBack method is only used for controls that return data from plain text,
such as the Entry control.

If we look at the implementation of the Convert method, we notice that any value passed
into the method is of the object type. This is because we don't know what type the user has
bound to the property to which we are adding this ValueConverter. We may also notice
that we fetch colors from a resource file. We could have defined the colors in the code, but
this is not recommended, so instead, we went the extra mile and added them as a global
resource in the App.xaml file. Resources are a good thing to take another look at once
we've finished with the chapter:

Open App.xaml in the .NET Standard library project.1.
Add the following ResourceDictionary:2.

 <Application ...>
 <Application.Resources>
 <ResourceDictionary>
 <Color x:Key="CompletedColor">#1C8859</Color>
 <Color x:Key="ActiveColor">#D3D3D3</Color>
 </ResourceDictionary>
 </Application.Resources>
 </Application>

A ResourceDictionary can define a wide range of different objects. We settle for the two
colors that we want to access from the ValueConverter. Notice that these are accessible by
the key given to them and they can also be accessed from any other XAML file using a
static resource binding. The ValueConverter itself will be referenced as a static resource,
but from a local scope.

Using the ValueConverter
We want to use our brand new StatusColorConverter in the MainView. Unfortunately,
we have to jump through some hoops to make this happen. We need to do three things:

Define a namespace in XAML
Define a local resource that represents an instance of the converter
Declare in the binding that we want to use that converter

Building Our First Xamarin.Forms App Chapter 2

[78]

Let's start with the namespace:

Open Views/MainView.xaml.1.
Add the following namespace to the page:2.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:converters="clr-namespace:DoToo.Converters"
 x:Class="DoToo.Views.MainView"
 Title="Do Too!>

Add a Resource node to the MainView.xaml file:

Open Views/MainView.Xaml.1.
Add the following ResourceDictionary, shown in bold under the root element2.
of the XAML file:

<ContentPage ...>
 <ContentPage.Resources>
 <ResourceDictionary>
 <converters:StatusColorConverter
 x:Key="statusColorConverter" />
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.ToolBarItems>
 <ToolbarItem Text="Add" Command="{Binding AddItem}" />
 </ContentPage.ToolbarItems>
 <Grid ...>
 </Grid>
</ContentPage>

This has the same form as the global resource dictionary, but since this one is defined in the
MainView, it will only be accessible from there. We could have defined this in the global
resource dictionary, but it's usually best to define objects that you only consume in one
place as close to that place as possible.

The last step is to add the converter:

Locate the BoxView node in the XAML.1.
Add the BackgroundColor XAML, which is marked in bold:2.

<BoxView Grid.RowSpan="2"
 BackgroundColor="{Binding Item.Completed,
 Converter={StaticResource
 statusColorConverter}}" />

Building Our First Xamarin.Forms App Chapter 2

[79]

What we have done here is bound a Boolean value to a property that takes a Color object.
Right before the data binding takes place, however, the ValueConverter converts the
Boolean value to a color. This is just one of the many cases where a ValueConverter
comes in handy. Keep this in mind when you are defining the GUI.

Navigating to an item using a command
We want to be able to see the details for a selected to-do list item. When we tap a row, we
should navigate to the item in that row.

To do this, we need to add the following code:

Open ViewModels/MainViewModel.cs.1.
Add the SelectedItem property and the NavigateToItem method to the class:2.

public TodoItemViewModel SelectedItem
{
 get { return null; }
 set
 {
 Device.BeginInvokeOnMainThread(async () => await
 NavigateToItem(value));
 RaisePropertyChanged(nameof(SelectedItem));
 }
}

private async Task NavigateToItem(TodoItemViewModel item)
{
 if (item == null)
 {
 return;
 }

 var itemView = Resolver.Resolve<ItemView>();
 var vm = itemView.BindingContext as ItemViewModel;
 vm.Item = item.Item;

 await Navigation.PushAsync(itemView);
}

Building Our First Xamarin.Forms App Chapter 2

[80]

The SelectedItem property is a property that we will data-bind to the ListView. When
we select a row in the ListView, this property will be set to the TodoItemViewModel that
represents that row. Since we can't really use Fody here to carry out its PropertyChanged
magic, because of the need to do a method call in the setter, we need to go old-school and
manually add a getter and a setter.

The setter then calls NavigateToItem, which creates a new ItemView using the
Resolver. We extract the ViewModel from the newly created ItemView and assign the
current TodoItem that the TodoItemViewModel contains. Confused? Remember that the
TodoItemViewModel actually wraps a TodoItem and it is that item that we want to pass to
the ItemView.

We are not done yet. We now need to data-bind the new SelectedItem property to the
right place in the view:

Open Views/MainView.xaml.1.
Locate the ListView and add the attributes in bold:2.

<ListView x:Name="ItemsListView"
 Grid.Row="1"
 RowHeight="70"
 ItemsSource="{Binding Items}"
 SelectedItem="{Binding SelectedItem}">

The SelectedItem attribute binds the, SelectedItem property ListView to the
ViewModel property. When the selection of an item in the ListView changes, the
ViewModels SelectedItem property will be called and we will navigate to the new and
exciting views.

The x:Name attribute is for naming the ListView, because we do need to make a small and
ugly hack to make this work. The ListView will actually stay selected after the navigation
is done. When we navigate back, it cannot be selected again until we select another row. To
mitigate this, we need to hook up to the ItemSelected event of ListView and reset the
selected item directly on the ListView. This is not recommended, because we shouldn't
really have any logic in our Views, but sometimes we have no other choice:

Open Views/MainView.xaml.cs.1.
Add the following code in bold:2.

public MainView(MainViewModel viewmodel)
{
 InitializeComponent();
 viewmodel.Navigation = Navigation;

Building Our First Xamarin.Forms App Chapter 2

[81]

 BindingContext = viewmodel;

 ItemsListView.ItemSelected += (s, e) =>
 ItemsListView.SelectedItem = null;
}

We should now be able to navigate to an item in the list.

Marking an item as complete using a command
We need to add a functionality that allows us to toggle the items between complete and
active. It is possible to navigate to the detailed view of the to-do list item, but this is too
much work for a user. Instead, we'll add a ContextAction to the ListView. In iOS, for
example, this will be accessed by swiping left on a row:

Open ViewModel/TodoItemViewModel.cs.1.
Add a using statement for System.Windows.Input and Xamarin.Forms.2.
Add a command to toggle the status of the item and a piece of text that describes3.
the status:

public ICommand ToggleCompleted => new Command((arg) =>
{
 Item.Completed = !Item.Completed;
 ItemStatusChanged?.Invoke(this, new EventArgs());
});

Here, we have added a command for toggling the state of an item. When executed, it
inverses the current state and raises the ItemStatusChanged event so that subscribers are
notified. To change the text of the context action button depending on the status, we added
a StatusText property. This is not a recommended practice, because we are adding code
that only exists because of a specific UI case into the ViewModel. Ideally, this would be
handled by the view, perhaps by using a ValueConverter. To save us having to
implement these steps, however, we have left it as a string property:

Open Views/MainView.xaml.1.
Locate the ListView.ItemTemplate node and add the2.
following ViewCell.ContextActions node:

<ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <ViewCell.ContextActions>
 <MenuItem Text="{Binding StatusText}"

Building Our First Xamarin.Forms App Chapter 2

[82]

 Command="{Binding ToggleCompleted}" />
 </ViewCell.ContextActions>
 <Grid Padding="15,10">
 ...
 </Grid>
 </DataTemplate>
</ListView.ItemTemplate>

Creating the filter toggle function using a command
We want to be able to toggle between viewing only active items and all items. We will
create a simple mechanism to do this.

Hook up the changes in the MainViewModel as follows:

Open ViewModels/MainViewModel.cs and locate the1.
ItemStatusChangeMethod.
Add the implementation to the ItemStatusChanged method and a property2.
called ShowAll to control the filtering:

private void ItemStatusChanged(object sender, EventArgs e)
{
 if (sender is TodoItemViewModel item)
 {
 if (!ShowAll && item.Item.Completed)
 {
 Items.Remove(item);
 }

 Task.Run(async () => await
 repository.UpdateItem(item.Item));
 }
}

public bool ShowAll { get; set; }

The ItemStatusChanged event handler is triggered when we use the context action from
the last section. Since the sender is always an object, we try to cast it to a
TodoItemViewModel. If this is successful, we check whether we can remove it from the list
if ShowAll is not true. This is a small optimization; we could have called LoadData and
reloaded the entire list, but since the Items list is an ObservableCollection, it
communicates to the ListView that one item has been removed from the list. We also call
the repository to update the item to persist the change of status.

Building Our First Xamarin.Forms App Chapter 2

[83]

The ShowAll property is what controls which state our filter is in. We need to adjust the
LoadData method to reflect this:

Locate the Load method in the MainViewModel.1.
Add the lines of code marked in bold:2.

private async Task LoadData()
{
 var items = await repository.GetItems();

 if (!ShowAll)
 {
 items = items.Where(x => x.Completed == false).ToList();
 }

 var itemViewModels = items.Select(i =>
 CreateTodoItemViewModel(i));
 Items = new ObservableCollection<TodoItemViewModel>
 (itemViewModels);
}

If ShowAll is false, we limit the content of the list to the items that have not been
completed. We could do this either by having two methods, GetAllItems() and
GetActiveItems(), or by using a filter argument that could be passed to
GetItems(). Take a minute to think about how we would have implemented this.

Let's add the code that toggles the filter:

Open ViewModels/MainViewModel.cs.1.
Add the FilterText and ToggleFilter properties:2.

public string FilterText => ShowAll ? "All" : "Active";

public ICommand ToggleFilter => new Command(async () =>
{
 ShowAll = !ShowAll;
 await LoadData();
});

The FilterText property is a read-only property used to display the status as a string in
human-readable form. We could have used a ValueConverter for this, but to save some
time, we simply expose it as a property. The logic for the ToggleFilter command is a
simple inversion of the state and then a call to LoadData. This, in turn, causes a reload of
the list.

Building Our First Xamarin.Forms App Chapter 2

[84]

Before we can filter the items, we need to hook up the filter button:

Open Views/MainView.xaml.1.
Locate the Button that controls the filter (the only button in the file).2.
Adjust the code to reflect the following code:3.

<Button Text="{Binding FilterText, StringFormat='Filter: {0}'}"
 Command="{Binding ToggleFilter}" />

The app is now complete with regard to this feature! But it isn't very attractive; we'll deal
with this in the following section.

Laying out contents
This last section is about making the app look a bit nicer. We are just going to scratch the
surface of the possibilities here, but this should give you some ideas about how styling
works.

Setting an application-wide background color
Styles are a great way to apply styling to elements. They can be applied either to all
elements of a type or to the elements referenced by a key, if you add an x:Key attribute:

Open App.xaml in the .NET Standard project.1.
Add the following XAML, which is in bold, to the file:2.

<ResourceDictionary>
 <Style TargetType="NavigationPage">
 <Setter Property="BarBackgroundColor" Value="#A25EBB" />
 <Setter Property="BarTextColor" Value="#FFFFFF" />
 </Style>
 <Style x:Key="FilterButton" TargetType="Button">
 <Setter Property="Margin" Value="15" />
 <Setter Property="BorderWidth" Value="1" />
 <Setter Property="BorderRadius" Value="6" />
 <Setter Property="BorderColor" Value="Silver" />
 <Setter Property="TextColor" Value="Black" />
 </Style>
 <Color x:Key="CompletedColor">#1C8859</Color>
 <Color x:Key="ActiveColor">#D3D3D3</Color>
</ResourceDictionary>

Building Our First Xamarin.Forms App Chapter 2

[85]

The first style we are going to apply is a new background color and text color in the
navigation bar. The second style will be applied to the filter button. We can define a style
by setting the TargetType that instructs Xamarin.Forms which type of object this style can
be applied to. We can then add one or more properties that we want to set. The result is the
same as if we had added these properties directly to the element in the XAML code.

Styles that lack the x:Key attribute will be applied to all instances of the type defined in
TargetType. The styles that have a key must be explicitly assigned in the XAML of the
user interface. We will see examples of this when we define the filter button in the next
section.

Laying out the MainView and ListView items
In this section, we'll be improving the appearance of the MainView and the
ListView. Open up Views/MainView.xaml and apply the changes in bold in the XAML
code for each section following.

The filter button
The filter button allows us to toggle the state of the list to show only active to-do items and
all to-do items. Let's style it to make it stand out a bit in the layout:

Find the filter button.1.
Make the following changes:2.

<Button Style="{StaticResource FilterButton}"
 Text="{Binding FilterText, StringFormat='Filter: {0}'}"
 BackgroundColor="{Binding ShowAll,
Converter={StaticResource
 statusColorConverter}}"
 TextColor="Black"
 Command="{Binding ToggleFilter}">
 <Button.Triggers>
 <DataTrigger TargetType="Button" Binding="{Binding ShowAll}"
 Value="True">
 <Setter Property="TextColor" Value="White" />
 </DataTrigger>
 </Button.Triggers>
</Button>

Building Our First Xamarin.Forms App Chapter 2

[86]

The style is applied using a StaticResource. Anything defined in a resource dictionary,
either in the App.xaml file or in the local XAML file, is accessible through it. We then set
the BackgroundColor, based on the ShowAll property of the MainViewModel, and the
TextColor to Black.

The Button.Triggers node is a useful feature. We can define a number of types of
triggers that fire when a certain criteria is met. In this case, we use a data trigger that checks
whether the value of ShowAll changes to true. If it does, we set the TextColor to white.
The coolest part is that when ShowAll becomes false again, it switches back to whichever
color it was before.

Touching up the ListView
The ListView could use a couple of minor changes. The first change is formatting the due-
date string to a more human, readable format, and the second is to change the color of the
completed label to a nice green tint:

Open up Views/MainView.xaml.1.
Locate the labels that bind Item.Due and Item.Completed in the ListView:2.

<Label Grid.Column="1"
 Grid.Row="1"
 Text="{Binding Item.Due, StringFormat='{0:MMMM d, yyyy}'}"
 FontSize="Micro" />
<Label Grid.Column="1"
 Grid.Row="1"
 HorizontalTextAlignment="End"
 Text="Completed"
 IsVisible="{Binding Item.Completed}"
 FontSize="Micro"
 TextColor="{StaticResource CompletedColor}" />

We added a string formatting in the binding to format the date using a specific format. In
this case, the 0:MMMM d, yyyy format that will display the date as a string in the format of
May 5, 2019.

We also added a text color to the Completed label that is only visible if an item is
completed. We do this by referencing our dictionary in App.xaml.

Building Our First Xamarin.Forms App Chapter 2

[87]

Summary
We should now have a good grasp of all the steps involved in creating a Xamarin.Forms
application from scratch. We have learned about the project structure and the important
files in a newly created project. We talked about dependency injection, using Autofac, and
learned the basics of MVVM by creating all the Views and ViewModels needed. We also
covered data storage in SQLite, to be able to persist data on the device in a fast and secure
way. Using the knowledge gained from this chapter, you should now be able to create the
backbone of any app you like.

The next chapter will focus on creating a richer user experience by creating a match-making
application that displays images that you can pan around the screen. We will take a closer
look at XAML and how to create custom controls.

3
A Matchmaking App with a Rich

UX Using Animations
In this chapter, we will create the base functionality for a matchmaking app. We won't be
rating people, however, because of privacy issues. Instead, we will download images from
a random source on the internet. This project is for anyone who wants an introduction to
how to write reusable controls. We will also look at using animations to make our
application feel nicer to use. This app will not be an MVVM application, since we want to
isolate the creation and usage of a control from the slight overhead of MVVM.

The following topics will be covered in this chapter:

Creating a custom control
How to style the app to look like a photo with descriptive text beneath it
Animations using Xamarin.Forms
Subscribing to custom events
Reusing the custom control over and over again
Handling pan gestures

A Matchmaking App with a Rich UX Using Animations Chapter 3

[89]

Technical requirements
To be able to complete this project, you will need to have Visual Studio for Mac or
Windows installed, as well as the necessary Xamarin components. See Chapter
1, Introduction to Xamarin, for more details on how to set up your environment.

Project overview
Many of us have been there, faced with the conundrum to swipe left or right. All of a
sudden, you may find yourself wondering: how does this work? How does the swipe
magic happen? Well, in this project, we're going to learn all about it. We will start by
defining a MainPage file, in which the images of our application will reside. After that, we
will create the image control and gradually add the GUI and functionality to it until we
have nailed the perfect swiping experience.

The build time for this project is about 90 minutes.

Creating the matchmaking app
In this project, we will learn more about creating reusable controls that can be added to a
XAML page. To keep things simple, we will not be using MVVM, but bare-metal
Xamarin.Forms without any data binding. What we aim to create is an app that allows the
user to swipe images, either to the right or the left, just like most popular matchmaking
applications do.

Well, let's get started by creating the project!

Creating the project
Just as with the to-do list app in Chapter 2, Building our First Xamarin.Forms App, this
chapter will start with a clean File | New Project approach. We are going to opt for a .NET
Standard approach rather than a shared code approach in this chapter; please refer back to
Chapter 2, Building our First Xamarin.Forms App to gain more insight into the differences
between them if you're not sure why we're doing this.

Let's get started!

A Matchmaking App with a Rich UX Using Animations Chapter 3

[90]

Creating the new project
Open up Visual Studio and click on File | New | Project:

This will open up the New Project dialog. Expand the Visual C# node and click on Cross-
Platform. Select the Mobile App (Xamarin.Forms) item from the list. Complete the form by
naming your project. We will be calling our application Swiper in this case. Move on to the
next dialog by clicking OK:

A Matchmaking App with a Rich UX Using Animations Chapter 3

[91]

The next step is to select a project template and a Code Sharing Strategy. Select Blank to
create a bare minimum Xamarin.Forms app and make sure that the Code Sharing Strategy
is set to .NET Standard. Finish the setup wizard by clicking OK and let Visual Studio
scaffold the project for you. This might take a couple of minutes:

Just like that, the app is created. Let's move on to updating Xamarin.Forms to the latest
version.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[92]

Updating the Xamarin.Forms NuGet packages
Currently, the Xamarin.Forms version that your project will be created with is most likely a
bit old. To rectify this, we need to update the NuGet Packages. Please note that you should
only update the Xamarin.Forms packages and not the Android packages; doing the latter
might cause your packages to get out of sync with each other, resulting in the app not
building at all. To update the NuGet packages, perform the following steps:

Right-click on our Solution in the Solution Explorer.1.
Click Manage NuGet Packages for Solution...:2.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[93]

This will open the NuGet Package Manager in Visual Studio:

To update Xamarin.Forms to the latest version, perform the following steps:

Click the Updates tab.1.
Check Xamarin.Forms and click Update.2.
Accept any license agreements.3.

The update takes at most a few minutes. Check the output pane to find information about
the update. At this point, we can run the app to make sure it works. We should see the text
Welcome to Xamarin.Forms! in the middle of the screen:

A Matchmaking App with a Rich UX Using Animations Chapter 3

[94]

Designing the MainPage file
A brand new blank Xamarin.Forms app named Swiper is created with a single page called
MainPage.xaml. This is located in the .NET Standard Project that is referenced by all
platform-specific projects. We will need to replace the XAML template with a new layout
that will contain our Swiper control.

Let's edit the already existing MainPage.xaml file by replacing the default content with
what we need:

Open the MainPage.xaml file.1.
Replace the content of the page with the following XAML code marked in bold:2.

<?xml version="1.0" encoding="utf-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:Swiper"
 x:Class="Swiper.MainPage">

A Matchmaking App with a Rich UX Using Animations Chapter 3

[95]

 <Grid Padding="0,40" x:Name="MainGrid">
 <Grid.RowDefinitions>
 <RowDefinition Height="400" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Grid Grid.Row="1" Padding="30">
 <!-- Placeholder for later -->
 </Grid>
 </Grid>
</ContentPage>

The XAML within the ContentPage node defines two grids in the application. A grid is
simply a container for other controls. It positions those controls based on rows and
columns. The outer grid, in this case, defines two rows that will cover the entire available
area of the screen. The first row is 400 units high and the second row, with height="*",
uses the rest of the available space.

The inner grid, which is defined within the first grid, is assigned to the second row with the
attribute Grid.Row="1". The row and column indexes are zero-based, so "1" actually
refers to the second row. We will add some content to this grid later on in the chapter, but
we'll leave it empty for now.

Both grids define their padding. You could enter a single number, meaning that all sides
will have the same padding, or as in this case, enter two numbers. We have entered 0,40,
which means that the left and right sides should have zero units of padding and the top
and bottom should have 40 units of padding. There is also a third option with four digits,
which sets the padding of the left side, the top, the right side, and the bottom, in that specific
order.

The last thing to notice is that we give the outer grid a name, x:Name="MainGrid". This
will make it directly accessible from the code-behind defined in the MainPage.xaml.cs
file. Since we are not using MVVM in this example, we will need a way to access the
grid without data binding.

Creating the Swiper control
The main part of this project involves creating the Swiper control. A control is a self-
contained UI with a code-behind to go with it. It can be added to any XAML page as an
element or in code in the code-behind file. We will be adding the control from code in this
project.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[96]

Creating the control
Creating the Swiper control is a straightforward process. We just need to make sure that
we select the correct item template, which is the Content View:

In the .NET Standard library project, create a folder called Controls.1.
Right-click on the Controls folder, select Add, and then click New item....2.
Select Visual C# Items and then Xamarin.Forms in the left pane of the Add New3.
Item dialog box.
Select the Content View (C#) item. Make sure you don't select the C# version;4.
this only creates a C# file and not an XAML file.
Name the control SwiperControl.xaml.5.
Click Add:6.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[97]

This adds an XAML file for the UI and a C# code-behind file. It should look like the
following screenshot:

Defining the main grid
Let's set the basic structure of the Swiper control:

Open the SwiperControl.xaml file.1.
Replace the content with the code marked in bold:2.

<?xml version="1.0" encoding="UTF-8"?>
<ContentView xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Swiper.Controls.SwiperControl">
 <ContentView.Content>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="100" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="100" />
 </Grid.ColumnDefinitions>

 <!-- ContentView for photo here -->

 <!-- StackLayout for like here -->

 <!-- StackLayout for deny here -->
 </Grid>
 </ContentView.Content>
</ContentView>

This defines a grid with three columns. The leftmost and the rightmost columns will take
up 100 units of space and the center will occupy the rest of the available space. The spaces
on the sides will be areas in which we will add labels to highlight the choice that the user
has made. We've also added three comments that act as placeholders for the XAML to
come.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[98]

Adding a content view for the photo
We will now extend the SwiperControl.xaml file by adding a definition of what we want
the photo to look like. Our final result will look like the following photo. Since we are going
to pull images off the internet, we'll display a loading text to make sure that the user gets
feedback on what's going on. To make it look like an instantly printed photo, we add some
handwritten text under the photo:

The preceding photo is what we would like the photo to look like. To make it a reality, we
need to add some XAML to the SwiperControl:

Open up SwiperControl.xaml. 1.
Add the XAML in bold to the following comment: <!-- ContentView for2.
photo here -->. Make sure that you do not replace the entire ContentView
for the page; just add this under the comment as follows. The rest of the page
should be untouched:

<!-- ContentView for photo here -->
<ContentView x:Name="photo" Padding="40" Grid.ColumnSpan="3" >
 <Grid x:Name="photoGrid" BackgroundColor="Black" Padding="1" >
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="40" />
 </Grid.RowDefinitions>

 <BoxView BackgroundColor="White" Grid.RowSpan="2" />

A Matchmaking App with a Rich UX Using Animations Chapter 3

[99]

 <Image x:Name="image" Margin="10"
 BackgroundColor="#AAAAAA"
 Aspect="AspectFill" />

 <Label x:Name="loadingLabel"
 Text="Loading..."
 TextColor="White"
 FontSize="Large"
 FontAttributes="Bold"
 HorizontalOptions="Center"
 VerticalOptions="Center" />

 <Label x:Name="descriptionLabel"
 Margin="10,0"
 Text="A picture of grandpa"
 Grid.Row="1"
 FontFamily="Bradley Hand" />
 </Grid>
</ContentView>

A ContentView control defines a new area where we can add other controls. One very
important feature of a ContentView is that it only takes one child control. Most of the time,
we would add one of the layout controls that are available. In this case, we'll use a Grid
control to lay out the control, as shown in the preceding code.

The grid defines two rows:

A row for the photo itself, which takes up all the available space when the other
rows have been allocated space
A row for the comment, which will be exactly 40 units in height

The Grid itself is set to use a black background and a padding of 1. This, in combination
with a BoxView, which has a white background, creates the frame that we see around the
control. The BoxView is also set to span both rows of the grid (Grid.RowSpan="2"), taking
up the entire area of the grid, minus the padding.

The Image control comes next. It has a background color set to a nice gray tone (#AAAAAA)
and a margin of 40, which will separate it a bit from the frame around it. It also has a
hardcoded name (x:Name="image"), which will allow us to interact with it from the code-
behind. The last attribute, called Aspect, determines what we should do if the image
control isn't of the same ratio as the source image. In this case, we want to fill the entire
image area, but not show any blank areas. This effectively crops the image either in height
or in width.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[100]

We finish off by adding two labels, which also have hardcoded names for later reference.

Creating the DescriptionGenerator
At the bottom of the image, we see a description. Since we don't have any general
descriptions of the images from our upcoming image source, we need to create a generator
that makes up descriptions. Here's how we would do it:

Create a folder called Utils in the .NET Standard project.1.
Create a new class called DescriptionGenerator in that folder.2.
Add a using statement for System.Linq (using System.Linq;).3.
Add the following code to the class:4.

public class DescriptionGenerator
{
 private string[] _adjectives = { "nice", "horrible", "great",
 "terribly old", "brand new" };
 private string[] _other = { "picture of grandpa", "car", "photo
 of a forest", "duck" };
 private static Random random = new Random();

 public string Generate()
 {
 var a = _adjectives[random.Next(_adjectives.Count())];
 var b = _other[random.Next(_other.Count())];
 return $"A {a} {b}";
 }
}

This class only has one purpose. It takes one random word from the _adjectives array
and combines it with a random word from the _other array. By calling the Generate()
method, we get a fresh new combination. Feel free to enter your own words in the arrays.
Note that the Random instance is a static field. This is because if we create new instances of
the Random class that are too close to each other in time, they get seeded with the same
value and return the same sequence of random numbers.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[101]

Creating a picture class
To abstract all the information about the image we want to display, we'll create a class that
encapsulates this information. There isn't much information in our Picture class, but it is
good coding practice to do this:

Create a new class called Picture in the Utils folder.1.
Add the following code to the class:2.

public class Picture
{
 public Uri Uri { get; set; }
 public string Description { get; set; }

 public Picture()
 {
 Uri = new Uri($"https://picsum.photos/400/400/?random&ts=
 {DateTime.Now.Ticks}");

 var generator = new DescriptionGenerator();
 Description = generator.Generate();
 }
}

The Picture class has two public properties:

The Uri of an image, which points to its location on the internet
The description of that image

In the constructor, we create a new Uniform Resource Identifier (URI), which points to a
public source of test photos that we can use. The width and height are specified in the
query string part of the URI. We also append a random timestamp to avoid the images
being cached by Xamarin.Forms. This generates a unique URI each time we request an
image.

We then use the DescriptionGenerator class that we created to generate a random
description for the image.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[102]

Binding the picture to the control
Let's begin to wire up the Swiper control so that it starts displaying images. We need to set
the source of an image and then control the visibility of the loading label based on the
status of the image. Since we are using an image fetched from the internet, it might take a
couple of seconds to download. This has to be communicated to the user to avoid confusion
about what is going on.

Setting the source
We begin by setting the source of the image. The image control (referred to as image in the
code) has a source property. This property is of the abstract type, ImageSource. There are
a few different types of image sources that you can use. The one we are interested in is the
UriImageSource, which takes a URI, downloads the image, and allows the image control
to display it.

Let's extend the Swiper control to set the source and description:

Open the Controls/Swiper.Xaml.cs file (the code-behind for the Swiper1.
control).
Add a using statement for Swiper.Utils (using Swiper.Utils;).2.
Add the code marked in bold to the constructor:3.

public SwiperControl()
{
 InitializeComponent();
 var picture = new Picture();
 descriptionLabel.Text = picture.Description;
 image.Source = new UriImageSource() { Uri = picture.Uri };
}

We create a new instance of a Picture class and assign the description to the
descriptionLabel in the GUI by setting the text property of that control. We then set the
source of the image to a new instance of a UriImageSource class and assign the URI from
the picture instance. This will start the download of the image from the internet and display
it as soon as it is downloaded.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[103]

Controlling the loading label
While the image is downloading, we want to show a loading text centered over the image.
This is already in the XAML file that we created earlier, so what we really need to do is hide
it once the image is downloaded. We will do this by controlling the IsVisibleProperty
of the loadingLabel by setting a binding to the IsLoading property of the image. Any
time the IsLoading property is changed on the image, the binding changes the IsVisible
property on the label. This is a nice fire-and-forget approach.

Let's add the code needed to control the loading label:

Open the Swiper.xaml.cs code-behind file.1.
Add the code marked in bold to the constructor:2.

public SwiperControl()
{
 InitializeComponent();
 var picture = new Picture();
 descriptionLabel.Text = picture.Description;
 image.Source = new UriImageSource() { Uri = picture.Uri };

 loadingLabel.SetBinding(IsVisibleProperty, "IsLoading");
 loadingLabel.BindingContext = image;
}

In the preceding code, the loadingLabel sets a binding to the IsVisibleProperty,
which actually belongs to the VisualElement class that all controls inherit from. It tells the
loadingLabel to listen to changes in the IsLoading property of whichever object is
assigned to the binding context. In this case, this is the image control.

Handling pan gestures
A core feature of this app is the pan gesture. A pan gesture is when a user presses on the
control and moves it around the screen. We will also add a random rotation to the Swiper
control to make it look like there are photos in a stack when we add multiple images.

We start by adding some fields to the SwiperControl:

Open the SwiperControl.xaml.cs file.1.
Add the following fields in the code to the class:2.

private readonly double _initialRotation;
private static readonly Random _random = new Random();

A Matchmaking App with a Rich UX Using Animations Chapter 3

[104]

The first field, _initialRotation, stores the initial rotation of the image. We will set this
in the constructor. The second field is a static field containing a Random object. As you
might remember, it's better to create one static random object to make sure multiple
random objects don't get created with the same seed. The seed is based on time, so if we
create objects too close in time to each other, they get the same random sequence generated,
so it wouldn't actually be that random at all.

The next thing we have to do is create an event handler for the PanUpdated event that we
will bind to at the end of this section:

Open the SwiperControl.xaml.cs code-behind file.1.
Add the OnPanUpdated method to the class:2.

private void OnPanUpdated(object sender, PanUpdatedEventArgs e)
{
 switch (e.StatusType)
 {
 case GestureStatus.Started:
 PanStarted();
 break;

 case GestureStatus.Running:
 PanRunning(e);
 break;

 case GestureStatus.Completed:
 PanCompleted();
 break;
 }
}

The code is really straightforward. We handle an event that takes a
PanUpdatedEventArgs object as the second argument. This is a standard method of
handling events. We then have a switch clause that checks which status the event refers to.

A pan gesture can have three states:

GestureStatus.Started: The event is raised once with this state when the
panning begins
GestureStatus.Running: The event is then raised multiple times, once for each
time you move your finger
GestureStatus.Completed: The event is raised one last time when you let go

A Matchmaking App with a Rich UX Using Animations Chapter 3

[105]

For each of these states, we call specific methods that handle the different states. We'll
continue with adding those methods now:

Open the SwiperControl.xaml.cs code-behind file.1.
Add these three methods to the class:2.

private void PanStarted()
{
 photo.ScaleTo(1.1, 100);
}

private void PanRunning(PanUpdatedEventArgs e)
{
 photo.TranslationX = e.TotalX;
 photo.TranslationY = e.TotalY;
 photo.Rotation = _initialRotation + (photo.TranslationX / 25);
}

private void PanCompleted()
{
 photo.TranslateTo(0, 0, 250, Easing.SpringOut);
 photo.RotateTo(_initialRotation, 250, Easing.SpringOut);
 photo.ScaleTo(1, 250);
}

Let's start by looking at PanStarted(). When the user starts dragging the image, we want
to add the effect of it raising up a little bit over the surface. This is done by scaling the
image by 10%. Xamarin.Forms has a set of excellent functions to do this. In this case, we call
the ScaleTo() method on the image control (named Photo) and tell it to scale to 1.1,
which corresponds to 10% of its original size. We also tell it to do this in a duration of 100
ms. This call is also awaitable, which means we can wait for the control to finish animating
before executing the next call. In this case, we are going to use a fire-and-forget approach.

Next, we have PanRunning(), which is called multiple times during the pan operation.
This takes an argument, which is the PanUpdatedEventArgs from the event handler that
PanRunning() is called from. We could also just pass in an X and a Y value as arguments
to reduce the coupling of the code. This is something that you can experiment with. The
method extracts the X and Y components from the TotalX/TotalY properties of the event
and assigns them to the TranslationX/TranslationY properties of the image control. We
also adjust the rotation slightly, based on how far the image has been moved.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[106]

The last thing to do is to restore everything to its initial state when the image is released.
This can be done in PanCompleted(). First, we translate (or move) the image back to its
original local coordinates (0,0) in 250 ms. We also add an easing function to make it
overshoot the target a bit and then animate back. We can play around with the different
predefined easing functions; these are really useful for creating nice animations. We do the
same to move the image back to its initial rotation. Finally, we scale it back to its original
size in 250 ms.

It's now time to add the code in the constructor that will wire up the pan gesture and set
some initial rotation values:

Open the SwiperControl.xaml.cs code-behind file.1.
Add the code in bold to the constructor. Note that there is more code in the2.
constructor, so don't copy and paste the whole method, just add the bold text:

public SwiperControl()
{
 InitializeComponent();

 var panGesture = new PanGestureRecognizer();
 panGesture.PanUpdated += OnPanUpdated;
 this.GestureRecognizers.Add(panGesture);

 _initialRotation = _random.Next(-10, 10);
 photo.RotateTo(_initialRotation, 100, Easing.SinOut);

 <!-- other code omitted for brevity -->
}

All Xamarin.Forms controls have a property called GestureRecognizers. There are
different types of gesture recognizers, such as TapGestureRecognizer
or SwipeGestureRecognizer. In our case, we are interested in the
PanGestureRecognizer. We create a new PanGestureRecognizer and subscribe to the
PanUpdated event by hooking it up to the OnPanUpdated() method we created earlier.
We then add it to the Swiper controls, GestureRecognizers collection.

We then set an initial rotation of the image and make sure we store it so that we can modify
the rotation and then rotate it back to the original state.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[107]

Testing the control
We now have all the code written to take the control for a test run:

Open MainPage.xaml.cs.1.
Add a using statement for the Swiper.Controls (using2.
Swiper.Controls;).
Add the code marked in bold to the constructor:3.

public MainPage()
{
 InitializeComponent();
 MainGrid.Children.Add(new SwiperControl());
}

If all goes well with the build, we should end up with an image like the following one:

We can also drag the image around (pan it). Notice the slight lift effect when you begin
dragging and the rotation of the image based on the amount of translation, which is the
total movement. If you let go of the image, it animates back in place.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[108]

Creating decision zones
A matchmaking app is nothing without those special drop-zones on each side of the screen.
We want to do a few things here:

When a user drags an image to either side, text should appear that says LIKE or
DENY (the decision zones)
When the users drop an image on a decision zone, the app should remove the
image from the page

We will create the zones by adding some XAML to the SwiperControl.xaml file and then
move on to adding the necessary code to make this happen. It is worth noting here that the
zones are not actually hotspots for dropping the image, but rather for displaying labels on
top of the control surface. The actual drop-zones are calculated and determined based on
how far you drag the image.

Extending the grid
The Swiper control has three columns defined. We want to add some kind of visual
feedback to the user if the image is dragged to either side of the page. We will do this by
adding a StackLayout with a Label on each side.

Adding the StackLayout for liking photos
The first thing to do is to add the StackLayout for liking photos on the right-hand side of
the control:

Open Controls/SwiperControl.xaml.1.
Add the following code under the comment <!-- StackLayout for like2.
here -->:

<StackLayout x:Name="likeStackLayout" Grid.Column="2"
 Opacity="0" Padding="0, 100">
 <Label Text="LIKE"
 TextColor="Lime"
 FontSize="30"
 Rotation="30"
 FontAttributes="Bold" />
</StackLayout>

A Matchmaking App with a Rich UX Using Animations Chapter 3

[109]

The StackLayout is the container of what we want to display. It has a name and is
assigned to be rendered in the third column (it says Grid.Column="2" in the code due to
the zero indexing). The Opacity is set to 0, making it completely invisible, and the
Padding is adjusted to make it move down a bit from the top.

Inside the StackLayout, we'll add a Label.

Adding the StackLayout for denying photos
The next step is to add the StackLayout for denying photos on the left-hand side of the
control:

Open Controls/SwiperControl.xaml.1.
Add the following code under the comment <!-- StackLayout for deny2.
here -->:

<StackLayout x:Name="denyStackLayout" Opacity="0"
 Padding="0, 100" HorizontalOptions="End">
 <Label Text="DENY"
 TextColor="Red"
 FontSize="30"
 Rotation="-20"
 FontAttributes="Bold" />
</StackLayout>

The setup for the left-hand side StackLayout is the same, except that it should be in the
first column, which is the default, so there is no need to add a Grid.Column attribute. We
have also specified HorizontalOptions="End", which means that the content should be
right-justified.

Determining the screen size
To be able to calculate a percentage of how far the user has dragged the image, we need to
know the size of the control. This is not determined until the control is laid out by
Xamarin.Forms.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[110]

We will override the OnSizeAllocated() method and add a field in the class called
_screenWidth to keep track of the current width of the window by following these few
steps:

Open SwiperControl.xaml.cs.1.
Add the following code to the file. Put the field at the beginning of the class and2.
the OnSizeAllocated() method below the constructor:

private double _screenWidth = -1;

protected override void OnSizeAllocated(double width, double
height)
{
 base.OnSizeAllocated(width, height);

 if (Application.Current.MainPage == null)
 {
 return;
 }

 _screenWidth = Application.Current.MainPage.Width;
}

The _screenWidth field is used to store the width as soon as we have resolved it. We do
this by overriding the OnSizeAllocated() method that is called by Xamarin.Forms when
the size of the control is allocated. This is called multiple times. The first time it's called is
actually before the width and height have been set and before the MainPage of the current
app is set. At this time, the width and height are set to -1 and the
Application.Current.MainPage is null. We look for this state by null checking
Application.Current.MainPage and returning if it is null. We could also have checked
for -1 values on the width. Either method would work. If it does have a value, however, we
want to store it in our _screenWidth field for later use.

Xamarin.Forms will call the OnSizeAllocated() method any time the frame of the app
changes. This is most relevant for UWP apps since they are in a window that a user can
easily change. Android and iOS apps are less likely to get a call to this method a second
time, since the app will take up the entire screen's real estate.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[111]

Adding a clamp function
To be able to calculate the state, we need to clamp a value later on. At the time of writing,
this function is already in Xamarin.Forms, but it's marked as an internal function, meaning
that we shouldn't really be using it. According to the rumors, it will soon be made public in
later versions of Xamarin.Forms, but for now, we need to redefine it ourselves:

Open SwiperControl.xaml.cs.1.
Add the following static method to the class:2.

private static double Clamp(double value, double min, double max)
{
 return (value < min) ? min : (value > max) ? max : value;
}

The method takes a value to clamp, a minimum boundary, and a maximum boundary. It
returns either the value itself, or the edge value, if it's greater or larger than the set
boundaries.

Adding code to calculate the state
To calculate the state of the image, we need to define what our zones are and then create a
function that takes the current amount of movement and updates the opacity of the GUI
decision zones based on how far we panned the image.

Defining a method for calculating the state
Let's add the CalculatePanState() method to calculate how far we have panned the
image, and if it should start to affect the GUI, by following these few steps:

Open Controls/SwiperControl.xaml.cs.1.
Add the properties at the top and the CalculatePanState() method2.
anywhere in the class, as shown in the following code:

private const double DeadZone = 0.4d;
private const double DecisionThreshold = 0.4d;

private void CalculatePanState(double panX)
{
 var halfScreenWidth = _screenWidth / 2;
 var deadZoneEnd = DeadZone * halfScreenWidth;

 if (Math.Abs(panX) < deadZoneEnd)
 {

A Matchmaking App with a Rich UX Using Animations Chapter 3

[112]

 return;
 }

 var passedDeadzone = panX < 0 ? panX + deadZoneEnd : panX -
 deadZoneEnd;
 var decisionZoneEnd = DecisionThreshold * halfScreenWidth;
 var opacity = passedDeadzone / decisionZoneEnd;

 opacity = Clamp(opacity, -1, 1);

 likeStackLayout.Opacity = opacity;
 denyStackLayout.Opacity = -opacity;
}

We define two values as constants:

The DeadZone, which defines that 40% (0.4) of the available space on either side
of the center point is a dead zone when panning an image. If we release the
image in this zone, it simply returns to the center of the screen without any action
being taken.
 The next constant is the DecisionThreshold, which defines another 40% (0.4)
of the available space. This is used for interpolating the opacity of the
StackLayout on either side of the layout.

We then use these values to check the state of the panning action whenever the panning
changes. If the absolute panning value of X (panX) is less than the dead zone, we return
without any action being taken. If not, we calculate how far over the dead zone we have
passed and how far into the decision zone we are. We calculate the opacity values based on
this interpolation and clamp the value between -1 and 1.

Finally, we set the opacity to this value for both likeStackLayout and
denyStackLayout.

Wiring up the pan state check
While the image is being panned, we want to update the state:

Open Controls/SwiperControl.xaml.cs.1.
Add the code in bold to the PanRunning() method:2.

private void PanRunning(PanUpdatedEventArgs e)
{
 photo.TranslationX = e.TotalX;
 photo.TranslationY = e.TotalY;

A Matchmaking App with a Rich UX Using Animations Chapter 3

[113]

 photo.Rotation = _initialRotation + (photo.TranslationX / 25);

 CalculatePanState(e.TotalX);
}

This addition to the PanRunning() method passes the total amount of movement on the x
axis to the CalculatePanState() method to determine if we need to adjust the opacity of
either the StackLayout on the right or the left of the control.

Adding exit logic
So far, all is good, except for the fact that if we drag an image to the edge and let go, the text
stays. We need to determine when the user stops dragging the image, and, if so, whether or
not the image is in a decision zone.

Checking if the image should exit
We want a simple function that determines if an image has panned far enough for it to
count as an exit of that image:

Open Controls/SwiperControl.xaml.cs.1.
Add the CheckForExitCritera() method to the class, as shown in the2.
following code:

private bool CheckForExitCriteria()
{
 var halfScreenWidth = _screenWidth / 2;
 var decisionBreakpoint = DeadZone * halfScreenWidth;
 return (Math.Abs(photo.TranslationX) > decisionBreakpoint);
}

This function calculates whether we have passed over the dead zone and into the decision
zone. We need to use the Math.Abs() method to get the total absolute value to compare it
against. We could have used a < and > operator as well, but we are using this approach as it
is more readable. This is a matter of code style and taste—feel free to do it your own way.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[114]

Removing the image
If we determine that an image has panned far enough for it to exit, we want to animate it
off the screen and then remove the image from the page:

Open Controls/SwiperControl.xaml.cs.1.
Add the Exit() method to the class, as shown in the following code:2.

private void Exit()
{
 Device.BeginInvokeOnMainThread(async () =>
 {
 var direction = photo.TranslationX < 0 ? -1 : 1;

 await photo.TranslateTo(photo.TranslationX +
 (_screenWidth * direction),
 photo.TranslationY, 200, Easing.CubicIn);
 var parent = Parent as Layout<View>;
 parent?.Children.Remove(this);
 });
}

The Exit() method does the following:

We begin by making sure that this call is done on the UI thread, which is also1.
known as the MainThread. This is because only the UI thread can do animations.
We also need to run this thread asynchronously, so that we can kill two birds2.
with one stone. Since this method is all about animating the image to either side
of the screen, we need to determine in which direction to animate it.
We do this by determining if the total translation of the image is positive or3.
negative.
We then use this value to await a translation through the4.
photo.TranslateTo() call.
We await this call since we don't want the code execution to continue until it's5.
done. Once it has finished, we remove the control from the parent's collection of
children, causing it to disappear from existence forever.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[115]

Updating PanCompleted
The decision on whether the image should disappear or simply return to its original state is
triggered in the PanCompleted() method. Here, we wire up the two methods that we
created in the previous two sections:

Open Controls/SwiperControl.xaml.cs.1.
Add the code in bold to the PanCompleted() method:2.

private void PanCompleted()
{
 if (CheckForExitCriteria())
 {
 Exit();
 }

 likeStackLayout.Opacity = 0;
 denyStackLayout.Opacity = 0;

 photo.TranslateTo(0, 0, 250, Easing.SpringOut);
 photo.RotateTo(_initialRotation, 250, Easing.SpringOut);
 photo.ScaleTo(1, 250);
}

The last step in this section is to use the CheckForExitCriteria() method, and the
Exit() method if those criteria are met. If the exit criteria are not met, we need to reset the
state and the opacity of the StackLayout to make everything go back to normal.

Adding events to the control
The last thing we have left to do in the control itself is to add some events that
indicate whether the image has been Liked or Denied. We are going to use a clean interface,
allowing for a simple use of the control while hiding all the implementation details.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[116]

Declaring two events
To make the control easier to interact with from the application itself, we'll need to add
events for Like and Deny:

Open Controls/SwiperControl.xaml.cs.1.
Add two event declarations at the beginning of the class, as shown in the2.
following code:

public event EventHandler OnLike;
public event EventHandler OnDeny;

These are two standard event declarations with out-of-the-box event handlers.

Raising the events
We need to add code in the Exit() method to raise the events we created earlier:

Open Controls/SwiperControl.xaml.cs.1.
Add the code in bold to the Exit() method:2.

private void Exit()
{
 Device.BeginInvokeOnMainThread(async () =>
 {
 var direction = photo.TranslationX < 0 ? -1 : 1;

 if (direction > 0)
 {
 OnLike?.Invoke(this, new EventArgs());
 }

 if (direction < 0)
 {
 OnDeny?.Invoke(this, new EventArgs());
 }

 await photo.TranslateTo(photo.TranslationX + (_screenWidth
 * direction),
 photo.TranslationY, 200, Easing.CubicIn);
 var parent = Parent as Layout<View>;
 parent?.Children.Remove(this);
 });
}

A Matchmaking App with a Rich UX Using Animations Chapter 3

[117]

Here, we inject the code to check whether we are liking or disliking an image. We then raise
the correct event based on this information.

Wiring up the Swiper control
We have now reached the final part of the chapter. In this section, we are going to wire up
the images and make our app a closed-loop app that can be used forever. We will add 10
images that we will download from the internet when the app starts up. Each time an
image is removed, we'll simply add another one.

Adding images
Let's start by creating some code that will be adding the images to the MainView. We will
first add the initial images, and then create logic for adding a new image to the bottom of
the stack each time an image is liked or disliked.

Adding initial photos
To make the photos look like they are stacked, we need at least 10 of them:

Open MainPage.xaml.cs.1.
Add the AddInitalPhotos() method and the InsertPhotoMethod() to the2.
class:

private void AddInitialPhotos()
{
 for (int i = 0; i < 10; i++)
 {
 InsertPhoto();
 }
}

private void InsertPhoto()
{
 var photo = new SwiperControl();
 this.MainGrid.Children.Insert(0, photo);
}

A Matchmaking App with a Rich UX Using Animations Chapter 3

[118]

First, we create a method called AddInitialPhotos() that will be called upon startup.
This method simply calls the InsertPhoto() method 10 times and adds a new
SwiperControl to the MainGrid each time. It inserts the control at the first position in the
stack, effectively putting it at the bottom of the pile, since the collection of controls is
rendered from the beginning to the end.

Making the call from the constructor
We need to call this method in order for the magic to happen:

Open MainPage.xaml.cs.1.
Add the code in bold to the constructor and make sure it looks like the following:2.

public MainPage()
{
 InitializeComponent();
 AddInitialPhotos();
}

There isn't much to say here. After the MainPage is initialized, we call the method to add 10
random photos that we will download from the internet.

Adding count labels
We want to add some values to the app as well. We can do this by adding two labels below
the collection of Swiper controls. Each time a user rates an image, we will increment one of
two counters and display the result.

So, let's add the XAML needed to display the labels:

Open MainPage.xaml.1.
Replace the comment <!-- Placeholder for later --> with the code2.
marked in bold:

<Grid Grid.Row="1" Padding="30">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 <RowDefinition Height="auto" />
 </Grid.RowDefinitions>
 <Label Text="LIKES" />
 <Label x:Name="likeLabel"
 Grid.Row="1"

A Matchmaking App with a Rich UX Using Animations Chapter 3

[119]

 Text="0"
 FontSize="Large"
 FontAttributes="Bold" />
 <Label Grid.Row="2"
 Text="DENIED" />
 <Label x:Name="denyLabel"
 Grid.Row="3"
 Text="0"
 FontSize="Large"
 FontAttributes="Bold" />
</Grid>

This code adds a new Grid with four auto-height rows. This means that we calculate the
height of the content of each row and use this for the layout. It is basically the same thing as
a StackLayout, but we wanted to demonstrate a better way of doing this.

We add a Label in each row and name two of them as likeLabel and denyLabel. The
two named labels will hold how many images have been liked and how many have been
denied.

Subscribing to events
The last step is to wire up the OnLike and OnDeny events and display the total count to the
user.

Adding methods to update the GUI and respond to events
We need some code to update the GUI and to keep track of the count:

Open MainPage.xaml.cs.1.
Add the following code to the class, as shown here:2.

private int _likeCount;
private int _denyCount;

private void UpdateGui()
{
 likeLabel.Text = _likeCount.ToString();
 denyLabel.Text = _denyCount.ToString();
}

private void Handle_OnLike(object sender, EventArgs e)
{
 _likeCount++;
 InsertPhoto();

A Matchmaking App with a Rich UX Using Animations Chapter 3

[120]

 UpdateGui();
}

private void Handle_OnDeny(object sender, EventArgs e)
{
 _denyCount++;
 InsertPhoto();
 UpdateGui();
}

The two fields at the top keep track of the number of likes and denies. Since they are value-
type variables, they default to zero.

To make the changes of these labels propagate to the UI, we've created a method called
UpdateGui(). This takes the value of the two aforementioned fields and assigns it to the
Text properties of both labels.

The two methods that follow are the event handlers that will be handling the OnLike and
OnDeny events. They increase the appropriate field, add a new photo, and then update the
GUI to reflect the change.

Wiring up events
Each time a new SwiperControl is created, we need to wire up the events:

Open MainPage.xaml.cs.1.
Add the code in bold to the InsertPhoto() method:2.

private void InsertPhoto()
{
 var photo = new SwiperControl();
 photo.OnDeny += Handle_OnDeny;
 photo.OnLike += Handle_OnLike;

 this.MainGrid.Children.Insert(0, photo);
}

The added code wires up the event handlers that we defined earlier. The events really make
it easy to interact with our new control. Try it for yourself and have a play around with the
app that you have created.

A Matchmaking App with a Rich UX Using Animations Chapter 3

[121]

Summary
Good job! In this chapter, we have learned how to create a reusable, good-looking control
that can be used in any Xamarin.Forms app. To enhance the User Experience (UX) of the
app, we used some animations that give the user more visual feedback. We also got
creative with the use of XAML to define a GUI of the control that looks like a photo with a
hand-written description.

After that, we used events to expose the behavior of the control back to the MainPage to
limit the contact surface between your app and the control. Most importantly of all, we
touched on the subject of GestureRecognizers, which can make our life much easier
when dealing with common gestures.

In the next chapter, we will take a look at how to use track the location of a user in the
background on an iOS and Android device. To visualize what we are tracking, we will use
the map component in Xamarin.Forms.

4
Building a Location Tracking

App Using GPS and Maps
In this chapter, we will create a location tracking app that saves the location of the user and
display it as a heat map. We will look at how to run tasks in the background on iOS and
Android devices and how to use custom renderers to extend the functionality of
Xamarin.Forms maps.

The following topics will be covered in this chapter:

Tracking the location of a user in the background on an iOS device
Tracking the location of a user in the background on an Android device
How to show maps in a Xamarin.Forms app
How to extend the functionality of Xamarin.Forms maps with custom renderers

Building a Location Tracking App Using GPS and Maps Chapter 4

[123]

Technical requirements
To be able to complete the project, you need to have Visual Studio for Mac or PC installed,
as well as the Xamarin components. See Chapter 1, Introduction to Xamarin, for more details
on how to set up your environment.

Project overview
Many apps could be made richer by adding a map and location services. In this project, we
will build a location tracking app that we will call MeTracker. The app will track the
position of the user and save it to an SQLite database so we can visualize the result in the
form of a heat map. To build this app, we will learn how to set up processes in the
background, on both iOS and Android, because we cannot share code between iOS and
Android. For the map, we will use the Xamarin.Forms.Maps component and extend its
functionality in order to build a heat map. To do this, we will use a custom renderer for iOS
and a custom renderer for Android so that we can use the platform APIs.

Getting started
We can use either Visual Studio 2017 on a PC or Visual Studio for Mac to do this project. To
build an iOS app using Visual Studio for PC, you have to have a Mac connected. If you
don't have access to a Mac at all, you can just do the Android part of this project.

Building a Location Tracking App Using GPS and Maps Chapter 4

[124]

Building the MeTracker app
It's time to start building the app. Create a Mobile App (Xamarin.Forms). We will find that
template under the Cross-Platform ta in the New Project dialog. We will name the
project MeTracker.

Building a Location Tracking App Using GPS and Maps Chapter 4

[125]

Use .NET Standard as the code sharing strategy and select iOS and Android as the
platforms.

Make sure that you are compiling using Android version Oreo (API level 26) or higher. We
can set this in the project Properties under the Application tab.

Update the NuGet packages that was added by the template to make sure that we use the
latest versions.

Creating a repository to save the location of the
users
The first thing we will do is create a repository that we can use to save the location of the
users.

Building a Location Tracking App Using GPS and Maps Chapter 4

[126]

Creating a model for the location data
Before we create the repository, we will create a model class that will represent a user
location by going through the following steps:

Create a new folder that we can use for this and other models, called Models.1.
Create a class with the name Location in the Models folder and add properties2.
for the Id, the Latitude, and the Longitude.
Create two constructors, one empty and one that takes the latitude and3.
longitude as arguments, using the following code:

using System;

namespace MeTracker.Models
{
 public class Location
 {
 public Location() {}

 public Location(double latitude, double longitude)
 {
 Latitude = latitude;
 Longitude = longitude;
 }

 public int Id { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 }
}

Creating the repository
Now that we have created a model, we can move on to creating the repository. First, we
will create an interface for the repository by going through the following steps:

In the MeTracker project, create a new folder, called Repositories.1.
In our new folder, we will create an interface that we will2.
call ILocationRepository.
Write the following code in the new file that we created for the interface:3.

using MeTracker.Models;
using System;
using System.Threading.Tasks;

Building a Location Tracking App Using GPS and Maps Chapter 4

[127]

namespace MeTracker.Repositories
{
 public interface ILocationRepository
 {
 Task Save(Location location);
 }
}

Add a using directive for MeTracker.Models and4.
System.Threading.Tasks to resolve the references for Location and Task.

Once we have an interface, we need to create an implementation of it by going through
the following steps:

In the MeTracker project, create a new class with the1.
name LocationRepository.
Implement the ILocationRepository interface and add the async keyword to2.
the Save method using the following code:

using System;
using System.Threading.Tasks;
using MeTracker.Models;

namespace MeTracker.Repositories
{
 public class LocationRepository : ILocationRepository
 {
 public async Task Save(Location location)
 {
 }
 }
}

To store the data, we will use an SQLite database and the object relational mapper (ORM),
SQLite-net, so that we can write code against a domain model instead of using SQL for
operations against the database. This is an open source library created by Frank A. Krueger.
Let's set this up by going through the following steps:

Install the NuGet package, sqlite-net-pcl, for the MeTracker project.1.
Go to the Location model class and add a PrimaryKeyAttribute and2.
an AutoIncrementAttribute to the Id property. When we add the attributes,
the Id property will be a primary key in the database, and a value for it will
automatically be created.

Building a Location Tracking App Using GPS and Maps Chapter 4

[128]

Write the following code in the LocationRepository class to create a3.
connection to the SQLite database. The if statement is to check whether we
have already created a connection. If this is the case, we will not create a new
one; we will instead use the connection that we already created:

private SQLiteAsyncConnection connection;
private async Task CreateConnection()
{
 if (connection != null)
 {
 return;
 }

 var databasePath =
 Path.Combine(Environment.GetFolderPath
 (Environment.SpecialFolder .MyDocuments), "Locations.db");

 connection = new SQLiteAsyncConnection(databasePath);
 await connection.CreateTableAsync<Location>();
}

Now, it's time to implement the Save method, which will take a location object as a
parameter and store it in the database.

We will now use the CreateConnection method in the Save method so we can be sure
that a connection is created when we try to save data to the database. When we know that
we have an active connection, we can just use the InsertAsync method and pass the
location parameter of the Save method as an argument.

Edit the Save method in the LocationRepository class to look like the following code:

public async Task Save(Location location)
{
 await CreateConnection();
 await connection.InsertAsync(location);
}

Xamarin.Essentials
Xamarin.Essentials is a library that was created by Microsoft and Xamarin to make it
possible for developers to use platform-specific APIs from shared
code. Xamarin.Essentials targets Xamarin.iOS, Xamarin.Android, and UWP. In this project,
we will use Xamarin.Essentials for various tasks, including getting a location and executing
code on the main thread.

Building a Location Tracking App Using GPS and Maps Chapter 4

[129]

Installing the NuGet package
At the time of writing, Xamarin.Essentials is in preview. To find the NuGet packages in
preview, we will have to check the Include Prerelease checkbox.

Configuring Xamarin.Essentials on Android
We need to initialize Xamarin.Essentials on Android by calling an initialization method. We
do this by going through the following steps:

In the Android project, open the MainActivity.cs file.1.
Add the code in bold under the global::Xamarin.Forms.Forms.Init2.
method:

protected override void OnCreate(Bundle savedInstanceState)
{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(savedInstanceState);

 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState);
 LoadApplication(new App());
}

That's it. We are all good to go.

Creating a service for location tracking
To track a user's location, we need to write the code according to the platform.
Xamarin.Essentials has methods for getting the location of a user in shared code, but it
cannot be used in the background. To be able to use the code that we will write for each
platform, we need to create an interface. For the ILocationRepository interface, there
will be just one implementation that will be used on both platforms, whereas for the
location tracking service, we will have one implementation for the iOS platform and one for
the Android platform.

Building a Location Tracking App Using GPS and Maps Chapter 4

[130]

Go through the following steps to create the ILocationRepository interface:

In the MeTracker project, create a new folder and name it Services.1.
Create a new interface in the Services folder with the2.
name ILocationTrackingService.
In the interface, add a method called StartTracking as shown in the following3.
code:

 public interface ILocationTrackingService
 {
 void StartTracking();
 }

For the moment, we will just create an empty implementation of the interface in both the
iOS and the Android projects by going through the following steps. We will come back to
each implementation later in this chapter:

Create a folder named Services in both the iOS and Android projects.1.
Create an empty implementation as shown in the following code, in a class2.
called LocationTrackingService in the new Service folder in both the iOS
and Android projects:

public class LocationTrackingService : ILocationTrackingService
{
 public void StartTracking()
 {
 }
}

Setting up the app logic
We have now created the interfaces we need to track the location of the user and save it
locally on the device. It's time to write code to start the tracking of a user. We still don't
have any code that actually tracks the location of the user, but it will be easier to write this
if we have already written the code that starts the tracking.

Building a Location Tracking App Using GPS and Maps Chapter 4

[131]

Creating a view with a map
To start with, we will create a view with a simple map that is centered on the position of the
user. Let's set this up by going through the following steps:

In the MeTracker project, create a new folder called Views.1.
In the Views folder, create a XAML-based ContentPage and name it MainView.2.

Building a Location Tracking App Using GPS and Maps Chapter 4

[132]

The Xamarin.Forms package has no map controls, but there is an official package from
Microsoft and Xamarin that can be used to show maps in a Xamarin.Forms app. This
package is called Xamarin.Forms.Maps, and we can install it from NuGet by following the
steps below:

Install Xamarin.Forms.Maps in the MeTracker, MeTracker.Android, and1.
MeTracker.iOS projects.
Add the namespace for Xamarin.Forms.Maps to the MainView using the2.
following code:

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:map="clr-
 namespace:Xamarin.Forms.Maps;assembly
 =Xamarin.Forms.Maps"
 x:Class="MeTracker.Views.MainView">

We can now use the map in our view. Because we want the Map to cover the whole page,
we can add it to the root of the ContentPage. Let's set this up by going through the
following steps:

Add the map to the ContentPage.1.
Give the map a name so we can access it from the code-behind. Name it Map, as2.
shown in the following code:

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:map="clr-
namespace:Xamarin.Forms.Maps;assembly=Xamarin.Forms.Maps"
 x:Class="MeTracker.Views.MainView">
 <map:Map x:Name="Map" />
</ContentPage>

To use the map control, we need to run code on each platform to initialize it by going
through the following steps:

In the iOS project, go to AppDelegate.cs.1.
In the FinishedLaunching method, after the Init of Xamarin.Forms, add2.
global::Xamarin.FormsMaps.Init() to initialize the map control for the iOS
app using the following code:

public override bool FinishedLaunching(UIApplication app,
NSDictionary options)
{

Building a Location Tracking App Using GPS and Maps Chapter 4

[133]

 global::Xamarin.Forms.Forms.Init();
 global::Xamarin.FormsMaps.Init();

 LoadApplication(new App());

 return base.FinishedLaunching(app, options);
}

Continue with to initialize it for Android:

In the Android project, go to MainActivity.cs.1.
In the OnCreate method, after the Init of Xamarin.Forms,2.
add global::Xamarin.FormsMaps.Init(this, savedInstanceState) to
initialize the map control for iOS.
Initialize Xamarin.Essentials by using 3.
 Xamarin.Essentials.Platform.Init(this, savedInstanceState) as
shown in the following code:

protected override void OnCreate(Bundle savedInstanceState)
{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(savedInstanceState);
 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
 global::Xamarin.FormsMaps.Init(this, savedInstanceState);

 Xamarin.Essentials.Platform.Init(this, savedInstanceState);

 LoadApplication(new App());
}

For Android, we also need to decide what happens when a user has answered a request for
permission dialog and send the result to Xamarin.Essentials. We will do that by adding the
following code to MainActivity.cs:

public override void OnRequestPermissionsResult(int requestCode,
 string[] permissions,
 [GeneratedEnum] Android.Content.PM.Permission[]
 grantResults)
{ Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode,
 permissions, grantResults);
 base.OnRequestPermissionsResult(requestCode,
 permissions, grantResults);
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[134]

For Android, we will need an API key for Google Maps in order to get the maps to work.
The Microsoft documentation about how to obtain an API key can be found at https:/ /
docs.microsoft.com/ en- us/ xamarin/ android/ platform/ maps- and- location/ maps/
obtaining-a-google- maps- api- key. Here's how we go about obtaining the API key:

Open AndroidMainfest.xml, which is located in the Properties folder in the1.
Android project.
Insert a metadata element as a child of the application element, as shown in the2.
following code:

 <application android:label="MeTracker.Android">
 <meta-data android:name="com.google.android.maps.v2.API_KEY"
 android:value="{YourKeyHere}" />
</application>

We also want the map to be centered on the position of the user. We will do this in the
constructor of the MainView.xaml.cs. Because we want to run the fetching of the user's
location asynchronously and it needs to be executed on the main thread, we will wrap it in
MainThread.BeginInvokeOnMainThread. To get the current location of the user, we will
use Xamarin.Essentials. When we have the location, we can use the MoveToRegion method
of the Map. We can set this up by going through the following steps:

In the MeTracker project, open MainView.xaml.cs.1.
Add the code in bold in the following code fragment to the constructor of the2.
MainView.xaml.cs class:

public MainView ()
{
 InitializeComponent ();
 MainThread.BeginInvokeOnMainThread(async() =>
 {
 var location = await Geolocation.GetLocationAsync();
 Map.MoveToRegion(MapSpan.FromCenterAndRadius(
 new Position(location.Latitude, location.Longitude),
 Distance.FromKilometers(5)));
 });
}

https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key
https://docs.microsoft.com/en-us/xamarin/android/platform/maps-and-location/maps/obtaining-a-google-maps-api-key

Building a Location Tracking App Using GPS and Maps Chapter 4

[135]

Creating a ViewModel
Before we create an actual view model, we will create an abstract base view model that all
view models can inherit from. The idea behind this base view model is that we can write
common code in it. In this case, we will implement the INotifyPropertyChanged
interface by going through the following steps:

Create a folder with the name ViewModels in the MeTracker project.1.
Write the following code and resolve all references:2.

public abstract class ViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 public void RaisePropertyChanged(params string[] propertyNames)
 {
 foreach(var propertyName in propertyNames)
 {
 PropertyChanged?.Invoke(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
}

The next step is to create the actual view model that will use ViewModel as a base class.
Let's set this up by going through the following steps:

In the MeTracker project, create a new class called MainViewModel in the1.
ViewModels folder.
Make the MainViewModel inherit the ViewModel.2.
Add a read-only field of the ILocationTrackingService type and name3.
it locationTrackingService.
Add a read-only field of the ILocationRepository type and name4.
it locationRepository.
Create a constructor with the ILocationTrackingService and5.
the ILocationRepository as parameters.
Set the values of the fields that we created in step 3 and step 4 with the values6.
from the parameters, as shown in the following code:

public class MainViewModel : ViewModel
{
 private readonly ILocationRepository
locationRepository;
 private readonly ILocationTrackingService

Building a Location Tracking App Using GPS and Maps Chapter 4

[136]

 locationTrackingService;

 public MainViewModel(ILocationTrackingService
 locationTrackingService,
 ILocationRepository locationRepository)
 {
 this.locationTrackingService =
 locationTrackingTrackingService;
 this.locationRepository = locationRepository;
 }
}

In order to make the iOS app start tracking the location of a user, we need to run the code
that starts the tracking on the main thread by going through the following steps:

In the constructor of the newly created MainViewModel, add an invocation to the1.
main thread using MainThread.BeginInvokeOnMainThread from
Xamarin.Essentials. Xamarin.Forms has a helper method for invoking code on
the main thread, but if we use the one from Xamarin.Essentials, we can have a
view model without any dependencies on Xamarin.Forms. If we do not have any
dependencies to Xamarin.Forms in the ViewModels we can reuse them in apps
where we not using Xamarin.Forms if we will add other platforms in the future.
Call locationService.StartTracking in the action that we pass to the2.
BeginInvokeOnMainThread method, shown in the following code marked in
bold:

public MainViewModel(ILocationTrackingService
 locationTrackingService,
 ILocationRepository locationRepository)
{
 this.locationTrackingService = locationTrackingTrackingService;
 this.locationRepository = locationRepository;
 MainThread.BeginInvokeOnMainThread(async() =>
 {
 locationTrackingService.StartTracking();
 });
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[137]

Finally, we need to inject a MainViewModel into the constructor of the MainView and
assign the MainViewModel instance to the binding context of the view by going through
the following steps. This will allow the data binding to be processed, and the properties
of MainViewModel will be bound to the controls in the user interface:

In the MeTracker project, go to the constructor of the1.
Views/MainView.xaml.cs file.
Add MainViewModel as a parameter of the constructor and call it viewModel.2.
Set BindingContext to the instance of the MainViewModel, as shown in the3.
following code:

public MainView(MainViewModel viewModel)
{
 InitializeComponent();

 BindingContext = viewModel;

 MainThread.BeginInvokeOnMainThread(async () =>
 {
 var location = await
 Geolocation.GetLastKnownLocationAsync();
 Map.MoveToRegion(MapSpan.FromCenterAndRadius(
 new Position(location.Latitude, location.Longitude),
 Distance.FromKilometers(5)));
 });
}

Creating a resolver
We will be using dependency injection in this project, for which we will use a library
called Autofac. Autofac is an open source inversion of control (IoC) container. We will
create a Resolver class in order to easily resolve types that we will add to the container
later in this chapter. To do so, we will go through the following steps:

Install Autofac from NuGet in the MeTracker, MeTracker.Android, and1.
MeTracker.iOS projects.
In the MeTracker project, create a new class called Resolver in the root of the2.
project.
Create a private static IContainer field called container.3.

Building a Location Tracking App Using GPS and Maps Chapter 4

[138]

Create a static method called Initialized that has an IContainer argument4.
and set the value of the container field as shown in the following code:

using Autofac;
using System;
using System.Collections.Generic;
using System.Text;

namespace MeTracker
{
 public class Resolver
 {
 private static IContainer container;

 public static void Initialize(IContainer container)
 {
 Resolver.container = container;
 }
 }
}

The Initialize method will be called after the configuration of Autofac is complete,
which we will do when we create the bootstrapper. This method simply takes the
container that it gets as an argument and stores it in the static container field.

Now, we need a method to access it from. Create one more static method, called
Resolve. This method will be generic, and when we use it, we will specify its type as the
type that will be resolved. Use the container field to resolve the type as shown in the
following code:

public static T Resolve<T>()
{
 return container.Resolve<T>();
}

The Resolve<T> method takes a type as an argument and looks in the container to see
whether there is any information on how to construct this type. If there is, then we return it.

So, now that we have the Resolver that we will use to resolve instances of types of objects,
we need to configure it. That's the job of the bootstrapper.

Building a Location Tracking App Using GPS and Maps Chapter 4

[139]

Creating the bootstrapper
To configure the dependency injection and initialize the Resolver, we will create a
bootstrapper. We will have one shared bootstrapper, as well as other bootstrappers for each
platform to meet their specific configurations. The reason that we need them to be
platform-specific is that we will have different implementations of
the ILocationTrackingService on iOS and Android. To create a bootstrapper, we go
through the following steps:

Create a new class in the MeTracker project and name it Bootstrapper.1.
Write the following code in the new class:2.

using Autofac;
using MeTracker.Repositories;
using MeTracker.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using System.Text;
using Xamarin.Forms;

namespace MeTracker
{
 public class Bootstrapper
 {
 protected ContainerBuilder ContainerBuilder { get; private
 set; }

 public Bootstrapper()
 {
 Initialize();
 FinishInitialization();
 }

 protected virtual void Initialize()
 {
 ContainerBuilder = new ContainerBuilder();

 var currentAssembly = Assembly.GetExecutingAssembly();

 foreach (var type in currentAssembly.DefinedTypes.
 Where(e => e.IsSubclassOf(typeof(Page))))
 {
 ContainerBuilder.RegisterType(type.AsType());
 }

Building a Location Tracking App Using GPS and Maps Chapter 4

[140]

 foreach (var type in currentAssembly.DefinedTypes.
 Where(e => e.IsSubclassOf(typeof(ViewModel))))
 {
 ContainerBuilder.RegisterType(type.AsType());
 }

 ContainerBuilder.RegisterType<LocationRepository>
 ().As<ILocationRepository>();
 }

 private void FinishInitialization()
 {
 var container = ContainerBuilder.Build();
 Resolver.Initialize(container);
 }
 }
}

Creating the iOS bootstrapper
In the iOS bootstrapper, we will have configurations that are specific to the iOS app. To
create an iOS app, we go through the following steps:

In the iOS project, create a new class and name it Bootstrapper.1.
Make the new class inherit from MeTracker.Bootstrapper.2.
Write the following code:3.

using Autofac;
using MeTracker.iOS.Services;
using MeTracker.Services;

namespace MeTracker.iOS
{
 public class Bootstrapper : MeTracker.Bootstrapper
 {
 public static void Execute()
 {
 var instance = new Bootstrapper();
 }

 protected override void Initialize()
 {
 base.Initialize();

ContainerBuilder.RegisterType<LocationTrackingService>()

Building a Location Tracking App Using GPS and Maps Chapter 4

[141]

 .As<ILocationTrackingService>().SingleInstance();
 }
 }
}

Go to AppDelegate.cs in the iOS project.4.
Before the call to LoadApplication, in the FinishedLaunching method, call5.
the Init method of the platform-specific bootstrapper, as shown in the following
code:

public override bool FinishedLaunching(UIApplication app,
NSDictionary options)
{
 global::Xamarin.Forms.Forms.Init();
 global::Xamarin.FormsMaps.Init();
 Bootstrapper.Init();

 LoadApplication(new App());

 return base.FinishedLaunching(app, options);
}

Creating the Android bootstrapper
In the Android bootstrapper, we will have configurations that are specific to
the Android app. To create the bootstrapper in Android, we go through the following steps:

In the Android project, create a new class and name it Bootstrapper.1.
Make the new class inherit from MeTracker.Bootstrapper.2.
Write the following code:3.

using Autofac;
using MeTracker.Droid.Services;
using MeTracker.Services;

namespace MeTracker.Droid
{
 public class Bootstrapper : MeTracker.Bootstrapper
 {
 public static void Init()
 {
 var instance = new Bootstrapper();
 }

 protected override void Initialize()
 {

Building a Location Tracking App Using GPS and Maps Chapter 4

[142]

 base.Initialize();

ContainerBuilder.RegisterType<LocationTrackingService()
 .As<ILocationTrackingService>().SingleInstance();
 }
 }
}

Go to the MainActivity.cs file in the Android project.4.
Before the call to LoadApplication, in the OnCreate method, call the5.
Init method of the platform-specific bootstrapper, as shown in the following
code:

protected override void OnCreate(Bundle savedInstanceState)
{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState);

 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
 global::Xamarin.FormsMaps.Init(this, savedInstanceState);

 Bootstrapper.Init();

 LoadApplication(new App());
}

Setting the MainPage
The last step before we can start the app for the first time is to set the MainPage property in
the App.xaml.cs file by going through the following steps. But first, we can delete the
MainPage.xaml file and the MainPage.xaml.cs file that we created when we started the
project because we are not using them here:

Delete the MainPage.xaml and the MainPage.xaml.cs in the MeTracker1.
project, since we will be setting our MainView as the first view that the user sees.
Use the Resolver to create an instance of the MainView.2.

Building a Location Tracking App Using GPS and Maps Chapter 4

[143]

Set the MainPage in the constructor to the instance of the MainView, as shown in3.
the following code:

public App()
{
 InitializeComponent();
 MainPage = Resolver.Resolve<MainView>();
}

The resolver uses Autofac to figure out all the dependencies we need in order to create a
MainView instance. It looks at the constructor of the MainView and decides that it requires
a MainViewModel. If the MainViewModel has further dependencies, then the process
iterates through all those dependencies and builds all the instances we need.

We will now be able to run the app. It will be showing us a map centered at the current
location of the user. We will now add code to track the location over time using
background location tracking.

Background location tracking on iOS
The code for location tracking is something that we need to write for each platform. For
iOS, we will use the CLLocationManager from the CoreLocation namespace.

Enabling location updates in the background
When we want to perform tasks in the background in an iOS app, we need to declare what
we want to do in the info.plist file. The following steps show how we go about it:

In the MeTracker.iOS project, open info.plist.1.
Go to the Capabilities tab.2.
Select Enable Background Modes and Location updates, as shown in the3.
following screenshot:

Building a Location Tracking App Using GPS and Maps Chapter 4

[144]

We can also enable background modes directly in the info.plist file, if we open it with
an XML editor. In this case, we will add the following XML:

<key>UIBackgroundModes</key>
<array>
 <string>location</string>
</array>

Getting permissions to use the location of the user
Before we can request permissions for using the location of the user, we need to add a
description of what we will use the location for. Since the introduction of iOS 11, we are no
longer allowed to just ask for permission to track the location of the user all the time; the
user has to be able to give us permission to only track their location while they are using
the app. We will add the description to the info.plist file by going through the following
steps:

Open info.plist with the XML (text) editor that can be found in the1.
MeTracker.iOS project.
Add the key, NSLocationWhenInUseUsageDescription, with a description.2.
Add the key, NSLocationAlwaysAndWhenInUsageDescription, with a3.
description, as shown in the following code:

<key>NSLocationWhenInUseUsageDescription</key>
<string>We will use your location to track you</string>
<key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
<string>We will use your location to track you</string>

Building a Location Tracking App Using GPS and Maps Chapter 4

[145]

Subscribing to location updates
Now that we have prepared the info.plist file for location tracking, it is time to write the
actual code that will track the location of the user. If we don't set the CLLocationManager
to not pause location updates, location updates can be paused automatically by iOS when
the location data is unlikely to change. In this app, we don't want that to happen because
we want to save the location multiple times so that we can establish whether a user visits a
particular location frequently. Let's set this up by going through the following steps:

In the MeTracker.iOS project, open the LocationTrackingService.1.
Add a private field for the CLLocationManager.2.
Create an instance of the CLLocationMananger in the StartTracking method.3.
Set PausesLocationUpdatesAutomatically to false.4.
Set AllowBackgroundLocationUpdates to true (as shown in the following5.
code) so that the location updates will continue even when the app is running in
the background:

public void StartTracking()
{
 locationManager = new CLLocationManager
 {
 PausesLocationUpdatesAutomatically = false,
 AllowsBackgroundLocationUpdates = true
 };

 // Add code here
}

The next step is to ask the user for permission to track their location. We will request
permission to track their location all the time, but the user has the option of only giving us
permission to track their location when they are using the app. Because the user also has
the option of denying us permission to track their location, we need to check before we start
to. Let's set this up by going through the following steps:

Add an event listener for when the authorization is changed by hooking up the1.
AuthorizationChanged event on the locationManager.
In the event listener, create an if statement to check whether the user allows us2.
to track their location.
Call the RequestAlwaysAuthorization method of the instance that we3.
recently created in the CLLocationManager.

Building a Location Tracking App Using GPS and Maps Chapter 4

[146]

The code should be placed under the // Add code here comment, as shown in4.
bold in the following code:

public void StartTracking()
{
 locationManager = new CLLocationManager
 {
 PausesLocationUpdatesAutomatically = false,
 AllowsBackgroundLocationUpdates = true
 };

 // Add code here
 locationManager.AuthorizationChanged += (s, args) =>
 {
 if (args.Status == CLAuthorizationStatus.Authorized)
 {
 // Next section of code goes here
 }
 };

 locationManager.RequestAlwaysAuthorization();
}

Before we start to track the location of the user, we will set the accuracy of the data that we
want to receive from the CLLocationManager. We will also add an event handler to
handle the location updates. Let's set this up by going through the following steps:

Set the DesiredAccuracy to CLLocation.AccurracyBestForNavigation.1.
One of the constraints when running the app in the background is that the
DesiredAccuracy needs to be set to either AccurracyBest
or AccurracyBestForNavigation.
Add an event handler for LocationsUpdated and, after that, call2.
the StartUpdatingLocation method.
The code should be placed at the // Next section goes here comment, and3.
it should look like the code in bold in the following fragment:

 locationManager.AuthorizationChanged += (s, args) =>
 {
 if (args.Status == CLAuthorizationStatus.Authorized)
 {
 // Next section of code goes here
 locationManager.DesiredAccuracy =
 CLLocation.AccurracyBestForNavigation;
 locationManager.LocationsUpdated +=
 async (object sender, CLLocationsUpdatedEventArgs e) =>
 {

Building a Location Tracking App Using GPS and Maps Chapter 4

[147]

 // Final block of code goes here
 };

 locationManager.StartUpdatingLocation();
 }
 };

The higher the accuracy we set, the higher the battery consumption. If we
only want to track where the user has been and not how popular a place
is, we could also set AllowDeferredLocationUpdatesUntil. This
way, we can specify that the user has to move a specific distance before
the location is updated. We can also specify how often we want locations
to be updated using the timeout argument. The most power-efficient
solution to track how long a user has been at a place is to use the
StartMonitoringVisits method of CLLocationManager.

Now, it's time to handle the LocationsUpdated event. Let's go through the following
steps:

Add a private field with the name locationRepository that is of the1.
ILocationRepository type.
Add a constructor that has ILocationRepository as a parameter. Set the value2.
of the parameter to the locationRepository field.
Read the latest location of the Locations property on 3.
CLLocationsUpdatedEventArgs.
Create an instance of the MeTracker.Models.Location and pass the latitude4.
and longitude of the latest location to it.
Save the location using the Save method of the ILocationRepository.5.
The code should be placed at the // Final block of code goes here6.
comment, and it should look like the code in bold in the following fragment:

locationManager.LocationsUpdated +=
 async (object sender, CLLocationsUpdatedEventArgs e) =>
 {
 var lastLocation = e.Locations.Last();
 var newLocation = new
 Models.Location(lastLocation.Coordinate.Latitude,
 lastLocation.Coordinate.Longitude);

 await locationRepository.Save(newLocation);
 };

Building a Location Tracking App Using GPS and Maps Chapter 4

[148]

We have completed the tracking part of the app for iOS. We will now implement
background tracking for Android. After this, we will visualize the data.

Background location tracking with Android
The Android way to carry out background updates is very different from how we
implemented this with iOS. With Android, we need to create a JobService and schedule
it.

Adding the required permissions to use the location of
the user
To track the location of the user in the background with Android, we need to request five
permissions, as shown in the following table:

ACCESS_COARSE_LOCATION To get an approximate location for the user
ACCESS_FINE_LOCATION To get a precise location for the user

ACCESS_NETWORK_STATE Because the location services in Android use information from a
network to determine the location of the user

ACCESS_WIFI_STATE Because the location services in Android use information from a
Wi-Fi network to determine the location of the user

RECEIVE_BOOT_COMPLETED So that the background job can start again after the device is
rebooted

Permissions can be set either from the Android Manifest tab in the properties of the
MeTracker.Android project or via the AndroidManifest.xml file in the Properties
folder. When changes are made from the Android Manifest tab, the changes will be written
to the AndroidMainfest.xml file as well, so it doesn't matter which method you prefer.

Building a Location Tracking App Using GPS and Maps Chapter 4

[149]

The following is a screenshot of setting the permissions in the Android Manifest tab in the
properties of the MeTracker.Android project:

The uses-permission elements should be added to the manifest element in
the AndroidManifest.xml file, as shown in the following code:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"
/>
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"
/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />

Creating a background job
To track the location of users in the background, we need to create a background job by
going through the following steps:

In the Android project, create a new class with the name LocationJobService1.
in the Services folder.
Make the class public and add Android.App.Job.JobService as a base class.2.
Implement the abstract methods OnStartJob and OnStopJob, as shown in the3.
following code:

public class LocationJobService : JobService
{

Building a Location Tracking App Using GPS and Maps Chapter 4

[150]

 public override bool OnStopJob(JobParameters @params)
 {
 return true;
 }

 public override bool OnStartJob(JobParameters @params)
 {
 return true;
 }
}

All services in an Android app need to be added to the AndroidManifest.xml file. We
don't have to do this manually; however, we can instead add an attribute to the class, which
will then be generated in the AndroidManifest.xml file. We will use the Name and
Permission properties to set the required information, as shown in the following code:

 [Service(Name = "MeTracker.Droid.Services.LocationJobService",
 Permission = "android.permission.BIND_JOB_SERVICE")]
 public class LocationJobService : JobService

Scheduling a background job
When we have created a job, we can schedule it. We will do this from the
LocationTrackingService in the MeTracker.Android project. To configure the job, we
will use the JobInfo.Builder class.

We will use the SetPersisted method to ensure that the job starts again after a reboot.
This is why we added the RECEIVE_BOOT_COMPLETED permission earlier.

To schedule a job, at least one constraint is needed. In this case, we will
use SetOverrideDeadline. This will specify that the job needs to run before the specified
time (in milliseconds) has elapsed.

The SetRequiresDeviceIdle code phrase can be used to make sure that a job only runs
when the device is not being used by a user. We could pass true to the method if we want
to make sure that we don't slow down the device when the user is using it.

The SetRequiresBatteryNotLow code phrase can be used to specify that a job
should not run when the battery level is low. We recommend that this should always be set
to true if you don't have a good reason to run it when the battery is low. This is because
we don't want our applications to drain the user's battery.

Building a Location Tracking App Using GPS and Maps Chapter 4

[151]

So, let's implement the LocationTrackingService that is found in the Android project in
the Services folder by going through the following steps:

Create a JobInfo.Builder based on an ID that we specify (we will use 1 here)1.
and on the component name (which we create from the application context and
the Java class) in the StartTracking method. The component name is used to
specify which code will run during the job.
Use the SetOverrideDeadline method and pass 1000 to it to make the job run2.
before one second has elapsed from when the job was created.
Use the SetPersisted method and pass true to make the job persist even after3.
the device is rebooted.
Use the SetRequiresDeviceIdle method and pass false so that the job will4.
run even when a user is using the device.
Use the SetRequiresBatteryLow method and pass true to make sure that we5.
don't drain the user's battery. This method was added in Android API level 26.
The code for the LocationTrackingService should now look as follows:6.

using Android.App;
using Android.App.Job;
using Android.Content;
using MeTracker.Services;

namespace MeTracker.Droid.Services
{
 public class LocationTrackingService : ILocationTrackingService
 {
 var javaClass =
 Java.Lang.Class.FromType(typeof(LocationJobService));
 var componentName = new ComponentName(Application.Context,
 javaClass);
 var jobBuilder = new JobInfo.Builder(1, componentName);

 jobBuilder.SetOverrideDeadline(1000);
 jobBuilder.SetPersisted(true);
 jobBuilder.SetRequiresDeviceIdle(false);
 jobBuilder.SetRequiresBatteryNotLow(true);

 var jobInfo = jobBuilder.Build();
 }
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[152]

The JobScheduler service is a system service. To get an instance of a system service, we
will use the application context by going through the following steps:

Use the GetSystemService method on the Application.Context to get the1.
JobScheduler.
Cast the result to the JobScheduler.2.
Use the Schedule method on the JobScheduler class and pass the JobInfo3.
object to schedule the job, as shown in the following code:

var jobScheduler =
 (JobScheduler)Application.Context.GetSystemService
 (Context.JobSchedulerService);
 jobScheduler.Schedule(jobInfo);

Subscribing to location updates
Once we have scheduled the job, we can write the code to specify what the job should do,
which is track the location of a user. To do this, we will use the LocationManager, which
is a SystemService. With the LocationManager, we can either request a single location
update or we can subscribe to location updates. In this case, we want to subscribe to
location updates.

We will start by creating an instance of the ILocationRepository interface that we will
use to save the locations to the SQlite database. Let's set this up by going through the
following steps:

Create a constructor for the LocationJobService.1.
Create a private read-only field for the ILocationRepository interface with2.
the name locationRepository.
Use the Resolver in the constructor to create an instance of3.
the ILocationRepository, as shown in the following code:

private ILocationRepository locationRepository;
public LocationJobService()
{
 locationRepository = Resolver.Resolve<ILocationRepository>();
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[153]

Before we subscribe to location updates, we will add a listener. To do this, we will use
the Android.Locations.ILocationListener interface by going through the following
steps:

Add the Android.Locations.ILocationListener to1.
the LocationJobService.
Implement the interface.2.
Remove all instances of throw new NotImplementedException();, which3.
is added to the methods, if you let Visual Studio generate the implementation of
the interface.
In the OnLocationChanged method, map the Android.Locations.Location4.
object to the Model.Location object.
Use the Save method on the LocationRepository class, as shown in the5.
following code:

public void OnLocationChanged(Android.Locations.Location location)
{
 var newLocation = new Models.Location(location.Latitude,
 location.Longitude);
 locationRepository.Save(newLocation);
}

When we have created a listener, we can subscribe for location updates by going through
the following steps:

Go to the StartJob method in the LocationJobService.1.
Create a static field of the LocationManager type.2.
Get the LocationManager by using the GetSystemService on the3.
ApplicationContext.
To subscribe for location updates, use the RequestLocationUpdates method,4.
as shown in the following code:

public override bool OnStartJob(JobParameters @params)
{
 locationManager =
 (LocationManager)ApplicationContext.GetSystemService
 (Context.LocationService);
 locationManager.RequestLocationUpdates
 (LocationManager.GpsProvider, 1000L, 0.1f, this);

 return true;
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[154]

The first argument that we pass to the RequestLocationUpdates method ensures that we
get locations from the GPS. The second ensures that at least 1000 milliseconds will elapse
between location updates. The third argument ensures that the user has to move at least
0.1 meters to get a location update. The last one specifies which listener we should use.
Because the current class implements
the Android.Locations.ILocationListener interface, we will pass this.

Creating a heat map
To visualize the data that we have collected, we will create a heat map. We will add lots of
dots to a map and make them different colors, based on how much time a user spends in a
particular place. The most popular places will have a warm color and the least popular
places will have a cold color.

Adding a GetAll method to the LocationRepository
In order to visualize the data, we need to write code so that is can be read from the
database. Let's set this up by going through the following steps:

In the MeTracker project, open the ILocationRepository.cs file.1.
Add a GetAll method, which returns a list of Location objects using the2.
following code:

 Task<List<Location>> GetAll() ;

In the MeTracker project, open the LocationRepository.cs file, which3.
implements the ILocationRepository.
Implement the new GetAll method and return all the saved locations in the4.
database, as shown in the following code:

public async Task<List<Location>> GetAll()
{
 await CreateConnection();
 var locations = await connection.Table<Location>
 ().ToListAsync();

 return locations;
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[155]

Preparing the data for visualization
Before we can visualize the data on the map, we need to prepare the data. The first thing
we will do is create a new model that we can use for the prepared data. Let's set this up by
going through the following steps:

In the Models folder in the MeTracker project, create a new class and name it1.
Point.
Add properties for the Location, the Count, and the Heat, as shown in the2.
following code:

namespace MeTracker.Models
{
 public class Point
 {
 public Location Location { get; set; }
 public int Count { get; set; } = 1;
 public Xamarin.Forms.Color Heat { get; set; }
 }
}

The MainViewModel will store the locations that we will find later on. Let's add a property
for storing the Points by going through the following steps:

In the MeTracker project, open the MainViewModel class.1.
Add a private field with the name points, which has the List<Point> type.2.
Create a property with the name Points that has the List<Point> type.3.
In the get method, return the value of the points field.4.
In the set method, set the points field to the new value and5.
call RaisePropertyChanged with the name of the property as an argument.
At the end of the LoadData method, assign the pointList variable to6.
the Points property, as shown in the following code:

private List<Models.Point> points;
public List<Models.Point> Points
{
 get => points;
 set
 {
 points = value;
 RaisePropertyChanged(nameof(Points));
 }
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[156]

Now that we have the storage for our points, we must add code to add locations. We will
do this by implementing the LoadData method of the MainViewModel class and making
sure that it is called on the main thread right after the location tracking has started.

The first thing we will do is to group the saved locations so that all locations within 200
meters will be handled as one point. We will track how many times we have logged a
position within that point so we can later decide which color the point will be on the map.
Let's set this up using the following steps:

Add an async method with the name LoadData, which returns a Task to the1.
MainViewModel.
Call the LoadData method from the constructor after the call to the2.
StartTracking method on the ILocationTrackingService, as shown in the
following code:

public MainViewModel(ILocationTrackingService
 locationTrackingService,
 ILocationRepository locationRepository)
{
 this.locationTrackingService = locationTrackingService;
 this.locationRepository = locationRepository;
 MainThread.BeginInvokeOnMainThread(async() =>
 {
 locationTrackingService.StartTracking();
 await LoadData();
 });
}

The first step in the LoadData method is to read all tracked locations from the SQLite
database. When we have all the locations, we will loop through them and create the points.
To calculate the distance between a location and a point, we will use
the CalculateDistance method from Xamarin.Essentials.Location, as shown in the
following code:

private async Task LoadData()
{
 var locations = await locationRepository.GetAll();
 var pointList = new List<Models.Point>();

 foreach (var location in locations)
 {
 //If no points exist, create a new one an continue to the next
 location in the list
 if (!pointList.Any())
 {

Building a Location Tracking App Using GPS and Maps Chapter 4

[157]

 pointList.Add(new Models.Point() { Location = location });
 continue;
 }

 var pointFound = false;

 //try to find a point for the current location
 foreach (var point in pointList)
 {
 var distance =
 Xamarin.Essentials.Location.CalculateDistance(
 new Xamarin.Essentials.Location(
 point.Location.Latitude, point.Location.Longitude),
 new Xamarin.Essentials.Location(location.Latitude,
 location.Longitude), DistanceUnits.Kilometers);

 if (distance < 0.2)
 {
 pointFound = true;
 point.Count++;
 break;
 }
 }

 //if no point is found, add a new Point to the list of points
 if (!pointFound)
 {
 pointList.Add(new Models.Point() { Location = location });
 }

 // Next section of code goes here
 }
}

When we have a list of points, we can calculate the heat color for each point. We are going
to use the hue, saturation, and lightness (HSL) representation of a color, as described in
the following list:

Hue: Hue is a degree on the color wheel that goes from 0 to 360, 0 being red and
240 being blue. Because we want our most popular places to be red (hot) and our
least popular places to be blue (cold), we will calculate a value between 0 and 240
for each point, based on how many times the user has been to that point. This
means that we will only use two-thirds of the scale.
Saturation: Saturation is a percentage value: 0% is a shade of gray, while 100% is
full color. In our app, we will always use 100% (this will be represented as 1 in
the code).

Building a Location Tracking App Using GPS and Maps Chapter 4

[158]

Lightness: Lightness is a percentage value of the amount of light: 0% is black and
100% is white. We want it to be neutral, so we will use 50% (this will be
represented as 0.5 in the code).

The first thing that we need to do is find out how many times the user has been in the most
popular and least popular places. We find this out by going through the following steps:

First, check that the list of points is not empty.1.
Get the Min and Max values for the Count property in the list of points.2.
Calculate the difference between the minimum and the maximum values.3.
The code should be added at the // Next section of code4.
goes comment at the bottom of the LoadData method, as shown in the
following code:

private async Task LoadData()
{
 // The rest of the method has been commented out for brevity

 // Next section of code goes here
 if (pointList == null || !pointList.Any())
 {
 return;
 }

 var pointMax = pointList.Select(x => x.Count).Max();
 var pointMin = pointList.Select(x => x.Count).Min();
 var diff = (float)(pointMax - pointMin);

 // Last section of code goes here
}

We will now be able to calculate the heat for each point by going through the following
steps:

Loop through all the points.1.
Use the following calculation to calculate the heat for each point.2.
The code should be added at the // Last section of code goes here3.
comment at the bottom of the LoadData() method, as shown in bold in the
following code:

private async Task LoadData()
{
 // The rest of the method has been commented out for brevity

Building a Location Tracking App Using GPS and Maps Chapter 4

[159]

 // Next section of code goes here
 if (pointList == null || !pointList.Any())
 {
 return;
 }

 var pointMax = pointList.Select(x => x.Count).Max();
 var pointMin = pointList.Select(x => x.Count).Min();
 var diff = (float)(pointMax - pointMin);

 // Last section of code goes here
 foreach (var point in pointList)
 {
 var heat = (2f / 3f) - ((float)point.Count / diff);
 point.Heat = Color.FromHsla(heat, 1, 0.5);
 }

 Points = pointList;
}

That's it for setting up location tracking in the MeTracker project. Let's turn our attention
to visualizing the data we get.

Creating custom renderers
Custom renderers are a powerful way to extend Xamarin.Forms. As mentioned in Chapter
1, Introduction to Xamarin, Xamarin.Forms is built with renderers, so for each
Xamarin.Forms control there is a renderer that creates a native control. By overriding an
existing renderer or creating a new one, we can extend and customize how Xamarin.Forms
controls are rendered to native controls. We can also use renderers to create new
Xamarin.Forms controls from scratch.

Renderers are platform specific, so when we create custom renderers, we have to create one
for each platform that we want to change or use to extend the behavior of a control. To
make our renderers visible for Xamarin.Forms, we will use the assembly
attribute ExportRenderer. This contains information about which control the renderer is
for and which renderer will be used.

Building a Location Tracking App Using GPS and Maps Chapter 4

[160]

Creating a custom control for the map
In order to show the heat map on our map, we will create a new control, for which we will
use a custom renderer. We set this up by going through the following steps:

In the MeTracker project, create a new folder with the name Controls.1.
Create a new class with the name CustomMap.2.
Add the Xamarin.Forms.Maps.Map as a base class to the new class, as shown in3.
the following code:

using System.Collections.Generic;
using Xamarin.Forms;
using Xamarin.Forms.Maps;

namespace MeTracker.Controls
{
 public class CustomMap : Map
 {
 }
}

If we want to have properties that we want to bind data to, we need to create a
BindableProperty. This should be a public static field in the class. We also need to
create a regular property. The naming of the properties is really important. The name of the
BindableProperty needs to be {NameOfTheProperty}Property; for example, the name
of the BindableProperty that we will create in the following steps will be
PointsProperty, because the name of the property is Points. A BindableProperty is
created using the static Create method on the BindableProperty class. This requires at
least four arguments, as shown in the following list:

propertyName: This is the name of the property as a string.
returnType: This is the type that will be returned from the property.
declaringType: This is the type of the class in which the BindableProperty is
declared.
defaultValue: This is the default value that will be returned if no value is set.
This is an optional argument. If it is not set, Xamarin.Forms will use null as a
default value.

Building a Location Tracking App Using GPS and Maps Chapter 4

[161]

The set and get methods for the property will call methods in the base class to set or get
values from the BindableProperty:

In the MeTracker project, create a BindableProperty with the name1.
PointsProperty, as shown in the following code.
Create a property of the List<Models.Point> type with the name2.
Points. Remember to cast the result of the GetValue as the same type as the
property, because the GetValue will return the value as the type object:

public static BindableProperty PointsProperty =
 BindableProperty.Create(nameof(Points),
 typeof(List<Models.Point>), typeof(CustomMap), new
 List<Models.Point>());

public List<Models.Point> Points
{
 get => GetValue(PointsProperty) as List<Models.Point>;
 set => SetValue(PointsProperty, value);
}

When we have created a custom map control, we will use it to replace the Map control in the
MainView by going through the following steps:

In the MainView.xaml file, declare the namespace for the custom control.1.
Replace the Map control with the new control that we have created.2.
Add a binding to the Points property in the MainViewModel, as shown in the3.
following code:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:map="clr-namespace:MeTracker.Controls;"
 x:Class="MeTracker.Views.MainView">
 <ContentPage.Content>
 <map:CustomMap x:Name="Map" Points="{Binding Points}" />
 </ContentPage.Content>
</ContentPage>

Creating a custom renderer to extend the map in the iOS app
First, we will create a custom renderer for iOS by going through the following steps.
Because we want to extend the functionality, we will use the MapRenderer as a base class:

Create a folder with the name Renderers in the MeTracker.iOS project.1.
Create a new class in this folder and name it CustomMapRenderer.2.

Building a Location Tracking App Using GPS and Maps Chapter 4

[162]

Add MapRenderer as a base class.3.
Add the ExportRenderer attribute, as shown in the following code:4.

 using System.ComponentModel;
 using System.Linq;
 using MapKit;
 using MeTracker.Controls;
 using MeTracker.iOS.Renderers;
 using Xamarin.Forms;
 using Xamarin.Forms.Maps.iOS;
 using Xamarin.Forms.Platform.iOS;

 [assembly:ExportRenderer(typeof(CustomMap),
 typeof(CustomMapRenderer))]
 namespace MeTracker.iOS.Renderers
{
 public class CustomMapRenderer : MapRenderer
 {
 }
}

When a property changes for the control that we are writing a custom renderer for, the
OnElementPropertyChanged method is called. The method is a virtual method, which
means that we can override it. We want to listen to any changes to the Points property in
our CustomMap control.

To do this, go through the following steps:

Override the OnElementPropertyChanged method. This method will run every1.
time a property value is changed in the element (the Xamarin.Forms control).
Add an if statement to check that it is the Points property that has changed, as2.
shown in the following code:

protected override void OnElementPropertyChanged(object sender,
 PropertyChangedEventArgs e)
{
 base.OnElementPropertyChanged(sender, e);

 if (e.PropertyName == CustomMap.PointsProperty.PropertyName)
 {
 //Add code here
 }
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[163]

To create the heat map, we will add circles as overlays to the map, one circle for each point.
Before we do this, however, we need to add some code to specify how an overlay should be
rendered. Let's set this up by going through the following steps:

Create a mapView variable. Cast the Control property to MKMapView and assign1.
it to the variable.
Create a customMap variable. Cast the Element property to the CustomMap and2.
assign it to the variable.
Create an action using an expression with parameters for MKMapView and3.
IMKOverlay and assign it to the OverlayRenderer property on the map view.
Cast the overlay parameter to MKCircle and assign it to a new variable called4.
circle.
Verify that the circle variable is not null.5.
Find the point object from the point list on the CustomMap object using6.
coordinates.
Create a new MKCircleRenderer object and pass the circle variable to the7.
constructor.
Set the FillColor property to the heat color of the point. Convert it to UIColor8.
using the extension method ToUIColor.
Set the Alpha property to 1.0f to make sure that the circle not will be9.
transparent.
Return the circleRenderer variable.10.
Return null if the circle variable is null.11.
The code should look like the bold code in the following fragment:12.

protected override void OnElementPropertyChanged(object sender,
 PropertyChangedEventArgs e)
{
 base.OnElementPropertyChanged(sender, e);

 if (e.PropertyName == CustomMap.PointsProperty.PropertyName)
 {
 var mapView = (MKMapView)Control;
 var customMap = (CustomMap)Element;

 mapView.OverlayRenderer = (map, overlay) =>
 {
 var circle = overlay as MKCircle;

 if (circle != null)
 {

Building a Location Tracking App Using GPS and Maps Chapter 4

[164]

 var point = customMap.Points.Single
 (x => x.Location.Latitude ==
 circle.Coordinate.Latitude &&
 x.Location.Longitude ==
 circle.Coordinate.Longitude);

 var circleRenderer = new MKCircleRenderer(circle)
 {
 FillColor = point.Heat.ToUIColor(),
 Alpha = 1.0f
 };

 return circleRenderer;
 }

 return null;
 };

 // Next section of code goes here
 }
}

We have implemented how we want each overlay of the map to be rendered. What we
need to do now is to go through all the points we have gathered so far and create an
Overlay for each one. Let's set this up by going through the following steps:

Loop through all the points.1.
Create a circle overlay with the static method Circle on the MKCircle class,2.
as shown in the following code. The first argument is the position of the Circle
and the second one is the radius of the Circle.
Add the overlay to the map using the AddOverlay method.3.
The code should now look like the bold code in the following fragment:4.

// Next section of code goes here
foreach (var point in customMap.Points)
{
 var overlay = MKCircle.Circle(
 new CoreLocation.CLLocationCoordinate2D
 (point.Location.Latitude, point.Location.Longitude), 100);

 mapView.AddOverlay(overlay);
}

This concludes the section on how to extend the Maps control for iOS. Let's do the same for
Android.

Building a Location Tracking App Using GPS and Maps Chapter 4

[165]

Creating a custom renderer to extend the map in the Android app
We will now create a custom renderer for Android. The structure is the same as the one we
used for iOS. We will use the ExportRenderer attribute in the same way and we will also
add the MapRenderer class as the base class. This, however, is the Android-specific
MapRenderer.

We start by creating a custom renderer for our CustomMap control. The renderer will
inherit from the MapRenderer base class so that we can extend any existing functionality.
To do this, go through the following steps:

Create a folder with the name Renderers in the MeTracker.Android project.1.
Create a new class in this folder and name it CustomMapRenderer.2.
Add MapRenderer as a base class.3.
Add the ExportRenderer attribute.4.
Add a constructor that has Context as a parameter. Pass the parameter to the5.
constructor of the base class.
Resolve all the references, as shown in the following code:6.

using System.ComponentModel;
using Android.Content;
using Android.Gms.Maps;
using Android.Gms.Maps.Model;
using MeTracker.Controls;
using MeTracker.Droid.Renderers;
using Xamarin.Forms;
using Xamarin.Forms.Maps;
using Xamarin.Forms.Maps.Android;
using Xamarin.Forms.Platform.Android;

[assembly: ExportRenderer(typeof(CustomMap),
typeof(CustomMapRenderer))]
namespace MeTracker.Droid.Renderers
{
 public class CustomMapRenderer : MapRenderer
 {
 public CustomMapRenderer(Context context) : base(context)
 {
 }
 }
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[166]

To get a map object to work with, we need to request it. We do this by overriding the
OnElementChanged method that all custom renderers have. This method is called each
time an element changes, such as when it's set for the first time when parsing the XAML, or
when it's replaced in code. Let's set this up by going through the following steps:

Override the OnElementChanged method.1.
If the NewElement property of the ElementChangedEventArgs is not null,2.
request the map object with the GetMapAsync method on the Control property,
as shown in the following code:

protected override void OnElementChanged
 (ElementChangedEventArgs<Map> e)
{
 base.OnElementChanged(e);

 if (e.NewElement != null)
 {
 Control.GetMapAsync(this);
 }
}

When we have a map to work with, the virtual OnMapReady method will be called. To add
code of our own to handle this, we override this method by going through the following
steps:

Create a private field of the GoogleMap type and name it map.1.
Override the OnMapReady method.2.
Assign the new field with the parameter from the method body, as shown in the3.
following code:

protected override void OnMapReady(GoogleMap map)
{
 this.map = map;

 base.OnMapReady(map);
}

Building a Location Tracking App Using GPS and Maps Chapter 4

[167]

Just as we did with the iOS renderer, we need to handle changes in the Points property of
our custom map. To do this, we override the OnElementPropertyChanged method that is
called each time a property on the control we are writing our renderer for changes. Let's do
this by going through the following steps:

Override the OnElementPropertyChanged method. This method will run every1.
time a property value is changed in the Element (the Xamarin.Forms control).
Add an if statement to check that it is the Points property that has changed, as2.
shown in the following code:

protected override void OnElementPropertyChanged(object sender,
 PropertyChangedEventArgs e)
{
 base.OnElementPropertyChanged(sender, e);

 if(e.PropertyName == CustomMap.PointsProperty.PropertyName)
 {
 }
}

We can now add code to handle the specific event of the Points property being set by
drawing the location out on the map. To do this, go through the following steps:

For each point, create an instance of the CircleOptions class.1.
Use the InvokeStrokeWidth method to set the stroke width of the circle to 0.2.
Use the InvokeFillColor method to set the color of the circle. Use the3.
ToAndroid extension method to convert the color to
an Android.Graphics.Color.
Use the InvokeRadius method to set the size of the circle to 200.4.
Use the InvokeCenter method to set where on the map the circle should be.5.
Add the circle to the map using the AddCircle method on the map object.6.
The code should look the same as the bold code in the following fragment:7.

protected override void OnElementPropertyChanged(object sender,
 PropertyChangedEventArgs e)
{
 base.OnElementPropertyChanged(sender, e);

 if(e.PropertyName ==
CustomMap.PointsProperty.PropertyName)
 {
 var element = (CustomMap)Element;

Building a Location Tracking App Using GPS and Maps Chapter 4

[168]

 foreach (var point in element.Points)
 {
 var options = new CircleOptions();
 options.InvokeStrokeWidth(0);
 options.InvokeFillColor(point.Heat.ToAndroid());
 options.InvokeRadius(200);
 options.InvokeCenter(new
 LatLng(point.Location.Latitude,
 point.Location.Longitude));
 map.AddCircle(options);
 }
 }
}

Refreshing the map when resuming the app
The last thing we will do is to make sure that the map is up to date with the latest points
when the app is resumed. The easiest way to do this is to set the MainPage property in
the App.xaml.cs file to a new instance of MainView, in the same way as the constructor, as
shown in the following code:

protected override void OnResume()
{
 MainPage = Resolver.Resolve<MainView>();
}

Summary
In this chapter, we built an app for iOS and Android that tracked the location of a user.
When we built the app, we learned how to use maps in Xamarin.Forms and how to use
location tracking running in the background. We also learned how to extend
Xamarin.Forms with custom controls and custom renderers. With this knowledge, we can
create applications that perform other tasks in the background. We also learned how to
extend most controls in Xamarin.Forms.

The next project will be a real-time chat app. In the next chapter, we will set up a serverless
backend based on services in Microsoft Azure. We will use that backend in a later chapter
once we have built the app.

5
Building a Weather App for

Multiple Form Factors
Xamarin.Forms isn't only be used for creating apps for phones; it can also be used for
creating apps for tablets and desktop computers. In this chapter, we will build an app that
will work on all of these platforms. As well as using three different form factors, we are also
going to be working on three different operating systems: iOS, Android, and Windows.

The following topics will be covered in this chapter:

How to use FlexLayout in Xamarin.Forms
How to use VisualStateManager
How to use different views for different form factors
How to use behaviors

Technical requirements
To work on this project, we need to have Visual Studio for Mac or PC installed, as well as
the Xamarin components. See Chapter 1, Introduction to Xamarin, for more details on how
to set up your environment.

Project overview
Applications for iOS and Android can run on both phones and tablets. Very often, apps are
just optimized for phones. In this chapter, we will build an app that will work on different
form factors, but we aren't going to stick to just phones and tablets—we are going to target
desktop computers as well. The desktop version will be for the Universal Windows
Platform (UWP).

Building a Weather App for Multiple Form Factors Chapter 5

[170]

The app that we are going to build is a weather app that displays the weather forecast
based on the location of the user.

Getting started
We can use either Visual Studio 2017 for PC or Visual Studio for Mac to work on this
project. To build an iOS app using Visual Studio for PC, you have to have a Mac connected.
If you don't have access to a Mac at all, you can choose to just work on the Windows and
Android parts of this project. Similarly, if you only have a Mac, you can choose to work on
only the iOS and Android parts of this project.

Building the weather app
It's time to start building the app. Create a new blank Xamarin.Forms app using .NET
Standard as the Code Sharing Strategy, and select iOS, Android, and Windows (UWP) as
the platforms. We will name the project Weather.

As the data source for this app, we will use an external weather API. This project will
use OpenWeatherMap, a service that offers a couple of free APIs. You can find this service
at https://openweathermap. org/ api. We will use the service called 5 day / 3
hour forecast in this project, which provides a five-day forecast in three-hour intervals.
To use the OpenWeather API, we have to create an account to get an API key. If you don't
want to create an API key, we can mock the data instead.

Creating models for the weather data
Before we write the code to fetch data from the external weather service, we will create
models in order to deserialize the results from the service so that we have a common model
that we can use to return data from the service.

The easiest way to generate models to use when we are deserializing results from the
service is to make a call to the service either in the browser or with a tool (such as Postman)
to see the structure of the JSON. We can either create classes manually or use a tool that can
generate C# classes from the JSON. One tool that can be used is quicktype, which can be
found at https://quicktype. io/ .

If you generate them manually, make sure to set the namespace to Weather.Models.

https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://openweathermap.org/
https://quicktype.io/
https://quicktype.io/
https://quicktype.io/
https://quicktype.io/
https://quicktype.io/
https://quicktype.io/
https://quicktype.io/
https://quicktype.io/

Building a Weather App for Multiple Form Factors Chapter 5

[171]

As stated, you can also create these models manually. We will describe how to do this in
the next section.

Adding the weather API models manually
If you choose to add the models manually, then go through the following instructions. We
will be adding a single code file called WeatherData.cs that will contain multiple classes:

In the Weather project, create a folder named Models.1.
Add a file called WeatherData.cs. 2.
Add the following code:3.

using System.Collections.Generic;

namespace Weather.Models
{
 public class Main
 {
 public double temp { get; set; }
 public double temp_min { get; set; }
 public double temp_max { get; set; }
 public double pressure { get; set; }
 public double sea_level { get; set; }
 public double grnd_level { get; set; }
 public int humidity { get; set; }
 public double temp_kf { get; set; }
 }

 public class Weather
 {
 public int id { get; set; }
 public string main { get; set; }
 public string description { get; set; }
 public string icon { get; set; }
 }

 public class Clouds
 {
 public int all { get; set; }
 }

 public class Wind
 {
 public double speed { get; set; }
 public double deg { get; set; }

Building a Weather App for Multiple Form Factors Chapter 5

[172]

 }

 public class Rain
 {
 }

 public class Sys
 {
 public string pod { get; set; }
 }

 public class List
 {
 public long dt { get; set; }
 public Main main { get; set; }
 public List<Weather> weather { get; set; }
 public Clouds clouds { get; set; }
 public Wind wind { get; set; }
 public Rain rain { get; set; }
 public Sys sys { get; set; }
 public string dt_txt { get; set; }
 }

 public class Coord
 {
 public double lat { get; set; }
 public double lon { get; set; }
 }

 public class City
 {
 public int id { get; set; }
 public string name { get; set; }
 public Coord coord { get; set; }
 public string country { get; set; }
 }

 public class WeatherData
 {
 public string cod { get; set; }
 public double message { get; set; }
 public int cnt { get; set; }
 public List<List> list { get; set; }
 public City city { get; set; }
 }
}

Building a Weather App for Multiple Form Factors Chapter 5

[173]

As you can see, there are quite a lot of classes. These map directly to the response we get
from the service.

Adding the app-specific models
In this section, we will create the models that our app will translate the Weather API
models into. Let's start by adding the WeatherData class (unless you created this manually
in the preceding section), using the following steps:

Create a new folder with the name Models in the Weather project.1.
Add a new file with the name WeatherData.2.
Paste or write the code for the classes based on the JSON. If code other than the3.
properties is generated, ignore it and just use the properties.
Rename MainClass (this is what quicktype names the root object)4.
as WeatherData.

We will now create models based on the data we are interested in. This will make the rest
of the code more loosely coupled to the data source.

Adding the ForecastItem model
The first model we are going to add is ForecastItem, which represents a specific forecast
for a point in time. We do this by going through the following steps:

In the Weather project, create a new class called ForecastItem.1.
Add the following code:2.

using System;
using System.Collections.Generic;

namespace Weather.Models
{
 public class ForecastItem
 {
 public DateTime DateTime { get; set; }
 public string TimeAsString => DateTime.ToShortTimeString();
 public double Temperature { get; set; }
 public double WindSpeed { get; set; }
 public string Description { get; set; }
 public string Icon { get; set; }
 }
}

Building a Weather App for Multiple Form Factors Chapter 5

[174]

Adding the Forecast model
Next, we'll create a model called Forecast that will keep track of a single forecast for a
city. The Forecast keeps a list of multiple ForeCastItem objects, each representing a
forecast for a specific point in time. Let's set this up by going through the following steps:

In the Weather project, create a new class called Forecast.1.
Add the following code:2.

using System;
using System.Collections.Generic;

namespace Weather.Models
{
 public class Forecast
 {
 public string City { get; set; }
 public List<ForecastItem> Items { get; set; }
 }
}

Now that we have our models for both the Weather API and the app, we need to fetch data
from the Weather API.

Creating a service for fetching the weather data
To make it easier to change the external weather service and to make the code more
testable, we will create an interface for the service. Here's how we go about it:

In the Weather project, create a new folder and name it Services.1.
Create a new public interface and name it IWeatherService.2.
Add a method for fetching data based on the location of the user, as shown in the3.
following code. Name the method GetForecast:

 public interface IWeatherService
 {
 Task<Forecast> GetForecast(double latitude, double
longitude);
 }

Building a Weather App for Multiple Form Factors Chapter 5

[175]

When we have an interface, we can create an implementation for it by going through the
following steps:

In the Services folder, create a new class with the name1.
OpenWeatherMapWeatherService.
Implement the interface and add the async keyword to the GetForecast2.
method.
The code should look as follows:3.

using System;
using System.Globalization;
using System.Linq;
using System.Net.Http;
using System.Threading.Tasks;
using Newtonsoft.Json;
using Weather.Models;

namespace Weather.Services
{
 public class OpenWeatherMapWeatherService : IWeatherService
 {
 public async Task<Forecast> GetForecast(double latitude,
 double longitude)
 {
 }
 }
}

Before we call the OpenWeatherMap API, we need to build a URI for the call to the Weather
API. It will be a GET call and the latitude and longitude will be added as query parameters.
We will also add the API key and the language in which we would like the response. Let's
set this up by going through the following steps:

In the WeatherProject, open the OpenWeatherMapWeatherService class.1.
Add the code marked in bold in the following code fragment:2.

public class OpenWeatherMapWeatherService : IWeatherService
{
 public async Task<Forecast> GetForecast(double latitude, double
 longitude)
 {
 var language =
 CultureInfo.CurrentUICulture.TwoLetterISOLanguageName;
 var apiKey = "{AddYourApiKeyHere}";
 var uri =
 $"https://api.openweathermap.org/data/2.5/forecast?

Building a Weather App for Multiple Form Factors Chapter 5

[176]

 lat={latitude}&lon={longitude}&units=metric&lang=
 {language}&appid={apiKey}";
 }
}

In order to deserialize the JSON that we will get from the external service, we will use
Json.NET, the most popular NuGet package for serializing and deserializing JSON in .NET
applications. We can install it using the following steps:

Open the NuGet Package Manager.1.
Install the Json.NET package. The ID of the package is Newtonsoft.Json.2.

To make the call to the Weather service, we will use the HttpClient class and
the GetStringAsync method using the following steps:

Create a new instance of the HttpClient class.1.
Call GetStringAsync and pass the URL as the argument.2.
Use the JsonConvert class and the DeserializeObject method from3.
Json.NET to convert the JSON string in to an object.
Map the WeatherData object to a Forecast object.4.
The code should look like the bold code in the following fragment:5.

public async Task<Forecast> GetForecast(double latitude, double
 longitude)
{
 var language =
 CultureInfo.CurrentUICulture.TwoLetterISOLanguageName;
 var apiKey = "{AddYourApiKeyHere}";
 var uri = $"https://api.openweathermap.org/data/2.5/forecast?
 lat={latitude}&lon={longitude}&units=metric&lang=
 {language}&appid={apiKey}";

 var httpClient = new HttpClient();
 var result = await httpClient.GetStringAsync(uri);

 var data = JsonConvert.DeserializeObject<WeatherData>(result);

 var forecast = new Forecast()
 {
 City = data.city.name,
 Items = data.list.Select(x => new ForecastItem()
 {
 DateTime = ToDateTime(x.dt),
 Temperature = x.main.temp,
 WindSpeed = x.wind.speed,

Building a Weather App for Multiple Form Factors Chapter 5

[177]

 Description = x.weather.First().description,
 Icon =
$"http://openweathermap.org/img/w/{x.weather.First().icon}.png"
 }).ToList()
 };
 return forecast;
}

To optimize the performance, we can use HttpClient as a singleton and
reuse it for all network calls in the application. The following information
is from Microsoft's documentation: HttpClient is intended to be instantiated
once and reused throughout the life of an application. Instantiating an HttpClient
class for every request will exhaust the number of sockets available under heavy
loads. This will result in SocketException errors. This can be found at: https:/
/docs. microsoft. com/ en- gb/ dotnet/ api/ system. net. http. httpclient?
view= netstandard- 2.0.

In the previous code, we have a call to a ToDateTime method, which is a method that we
will need to create. This method converts the date from a Unix timestamp in to a DateTime
object, as shown in the following code:

private DateTime ToDateTime(double unixTimeStamp)
{
 DateTime dateTime = new DateTime(1970, 1, 1, 0, 0, 0, 0,
 DateTimeKind.Utc);
 dateTime = dateTime.AddSeconds(unixTimeStamp).ToLocalTime();
 return dateTime;
}

By default, HttpClient uses the Mono implementation of HttpClient
(iOS and Android). To increase performance, we can use a platform-
specific implementation instead. For iOS, use NSUrlSession. This can be
set in the project settings of the iOS project under the iOS Build tab. For
Android, use Android. This can be set in the project settings of the
Android project under Android Options | Advanced.

https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0
https://docs.microsoft.com/en-gb/dotnet/api/system.net.http.httpclient?view=netstandard-2.0

Building a Weather App for Multiple Form Factors Chapter 5

[178]

Configuring the applications to use location
services
To be able to use location services, we need to carry out some configurations on each
platform. We will use Xamarin.Essentials and the classes it contains. Ensure that you have
installed Xamarin.Essentials from NuGet into all projects in the solution before going
through the steps in the following sections.

Configuring the iOS app to use location services
To use location services in an iOS app, we need to add a description to indicate why we
want to use the location in the info.plist file. In this app, we only need to get the
location when we are using the app, so we only need to add a description for this. Let's set
this up by going through the following steps:

Open info.plist in Weather.iOS with the XML (Text) Editor.1.
Add the key, which is NSLocationWhenInUseUsageDescription, using the2.
following code:

<key>NSLocationWhenInUseUsageDescription</key>
<string>We are using your location to find a forecast for
you</string>

Configuring the Android app to use location services
For Android, we need to set the app to require the following two permissions:

 ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

We can set this in the AndroidManifest.xml file that can be found in the Properties
folder in the Weather.Android project, but we can also set it in the project properties
under the Android Manifest tab as well, as shown in the following screenshot:

Building a Weather App for Multiple Form Factors Chapter 5

[179]

When we request permissions in an Android app, we also need to add the following code
to MainActivity.cs file in the Android project:

public override void OnRequestPermissionsResult(int requestCode, string[]
permissions,
[GeneratedEnum] Android.Content.PM.Permission[] grantResults)
{
 Xamarin.Essentials.Platform.OnRequestPermissionsResult(requestCode,
permissions, grantResults); base.OnRequestPermissionsResult(requestCode,
permissions, grantResults);
}

For Android, we also need to initialize Xamarin.Essentials. We will do this in the OnCreate
method of the MainActivity:

protected override void OnCreate(Bundle savedInstanceState)
{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(savedInstanceState);
 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
 Xamarin.Essentials.Platform.Init(this, savedInstanceState);
 LoadApplication(new App());
}

Building a Weather App for Multiple Form Factors Chapter 5

[180]

Configuring the UWP app to use location services
Since we will use location services in the UWP app, we need to add the Location capability
under Capabilities in the Package.appxmanifest file of the Weather.UWP project, as
shown in the following screenshot:

Creating the ViewModel class
We now have a service that is responsible for fetching weather data from the external
weather source. It's time to create a ViewModel. First, however, we will create a base view
model, where we can put the code that can be shared between all view models of the app.
Let's set this up by going through the following steps:

Create a new folder with the name ViewModels.1.
Create a new class with the name ViewModel.2.
Make the new class public and abstract.3.

Building a Weather App for Multiple Form Factors Chapter 5

[181]

Add and implement the INotifiedPropertyChanged interface. This4.
is necessary because we want to use data bindings.
Add a Set method that will make it easier to raise the PropertyChanged event5.
from the INotifiedPropertyChanged interface, as shown in the following
code. The method will check whether the value has changed. If it has, it will raise
the event:

public abstract class ViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 protected void Set<T>(ref T field, T newValue,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(field,
 newValue))
 {
 field = newValue;
 PropertyChanged?.Invoke(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
}

The CallerMemberName attribute can be used in a method body if you
want the name of the method or the property that made the call to the
method to be a parameter. We can always override this, however, by
simply passing a value to it. The default value of the parameter is required
when you are using the CallerMember attribute.

We now have a base view model. We can use this for the view model that we are creating
now, as well as for all of the other view models that we will add later.

It's now time to create MainViewModel, which will be ViewModel for our MainView in the
app. We do this by going through the following steps:

In the ViewModels folder, create a new class called MainViewModel.1.
Add the abstract ViewModel class as a base class.2.
Because we are going to use constructor injection, we will add a constructor with3.
the IWeatherService interface as a parameter.
Create a read-only private field that we will use to store the IWeatherService4.
instance using the following code:

public class MainViewModel : ViewModel
{

Building a Weather App for Multiple Form Factors Chapter 5

[182]

 private readonly IWeatherService weatherService;

 public MainViewModel(IWeatherService weatherService)
 {
 this.weatherService = weatherService;
 }
}

MainViewModel takes any object that implements IWeatherService and stores a
reference to that service in a field. We will be adding functionality to fetch weather data in
the next section.

Getting the weather data
We will now create a new method for loading the data. This will be a three-step process.
First, we will get the location of the user. Once we have this, we can fetch data related to
that location. The final step is to prepare the data that the views can consume to create a
user interface for the user.

To get the location of the user, we will use Xamarin.Essentials, which we installed earlier as
a NuGet package, and the Geolocation class, which exposes methods to fetch the location
of the user. We do this by going through the following steps:

Create a new method called LoadData. Make it an asynchronous method that1.
returns a Task.
Use the GetLocationAsync method on the Geolocation class to get the2.
location of the user.
Pass the latitude and longitude from the result of the GetLocationAsync call3.
and pass it to the GetForecast method on the object that
implements IWeatherService using the following code:

public async Task LoadData()
{
 var location = await Geolocation.GetLocationAsync();
 var forecast = await weatherService.GetForecast
 (location.Latitude, location.Longitude);
}

Building a Weather App for Multiple Form Factors Chapter 5

[183]

Grouping the weather data
When we present the weather data, we will group it by day so that all of the forecasts for
one day will be under the same header. To do this, we will create a new model that we will
name ForecastGroup. To make it possible to use this model with the Xamarin.Forms
ListView, it has to have an IEnumerable type as the base class. Let's set this up by going
through the following steps:

Create a new class called ForecastGroup in the Models folder.1.
Add List<ForecastItem> as the base class for the new model.2.
Add an empty constructor and a constructor that has a list of3.
ForecastItem instances as a parameter.
Add a Date property.4.
Add a property, DateAsString, that returns the Date property as a short date5.
string.
Add a property, Items, that returns the list of ForecastItem instances, as6.
shown in the following code:

using System;
using System.Collections.Generic;

namespace Weather.Models
{
 public class ForecastGroup : List<ForecastItem>
 {
 public ForecastGroup() { }
 public ForecastGroup(IEnumerable<ForecastItem> items)
 {
 AddRange(items);
 }

 public DateTime Date { get; set; }
 public string DateAsString => Date.ToShortDateString();
 public List<ForecastItem> Items => this;
 }
}

When we have done this, we can update MainViewModel with two new properties by
going through the following steps:

Create a property called City for the name of the city for which we are fetching1.
the weather data.
Create a property called Days that will contain the grouped weather data.2.

Building a Weather App for Multiple Form Factors Chapter 5

[184]

The MainViewModel class should look like the bold code in the following3.
fragment:

public class MainViewModel : ViewModel
{
 private string city;
 public string City
 {
 get => city;
 set => Set(ref city, value);
 }

 private ObservableCollection<ForecastGroup> days;
 public ObservableCollection<ForecastGroup> Days
 {
 get => days;
 set => Set(ref days, value);
 }

 // Rest of the class is omitted for brevity
}

We are now ready to do the actual grouping of the data. We will do this in the LoadData
method. We will loop through the data from the service and add items to groups by going
through the following steps:

Create a itemGroups variable of the List<ForecastGroup> type .1.
Create a foreach loop that loops through all items in the forecast variable.2.
Add an if statement that checks whether the itemGroups property is empty. If3.
it is empty, add a new ForecastGroup to the variable and continue to the next
item in the item list.
Use the SingleOrDefault method (this is an extension method from4.
System.Linq) on the itemGroups variable to get a group based on the date of the
current ForecastItem. Add the result to a new variable, group.
If the group property is null, then there is no group with the current day in the5.
list of groups. If this is the case, a new ForecastGroup should be added to the
list in the itemGroups variable, and the execution of the code will continue to
the next forecast item in the forecast.Items list. If a group is found, it
should be added to the list in the itemGroups variable.
After the foreach loop, set the Days property with a new6.
ObservableCollection<ForecastGroup> and use the itemGroups variable
as an argument in the constructor.

Building a Weather App for Multiple Form Factors Chapter 5

[185]

Set the City property to the City property of the forecast variable.7.
The LoadData method should now look as follows:8.

public async Task LoadData()
{
 var itemGroups = new List<ForecastGroup>();

 foreach (var item in forecast.Items)
 {
 if (!itemGroups.Any())
 {
 itemGroups.Add(new ForecastGroup(
 new List<ForecastItem>() { item })
 { Date = item.DateTime.Date});
 continue;
 }

 var group = itemGroups.SingleOrDefault(x => x.Date ==
 item.DateTime.Date);

 if (group == null)
 {
 itemGroups.Add(new ForecastGroup(
 new List<ForecastItem>() { item })
 { Date = item.DateTime.Date });

 continue;
 }

 group.Items.Add(item);
 }

 Days = new ObservableCollection<ForecastGroup>(itemGroups);
 City = forecast.City;
}

Don't use the Add method on ObservableCollection when you want to
add more than a couple of items. It is better to create a new instance of
ObservableCollection and pass a collection to the constructor. The
reason for this is that every time you use the Add method, you will have a
binding to it from the view, and it will trigger a rendering of the view. We
will get a better performance if we avoid using the Add method.

Building a Weather App for Multiple Form Factors Chapter 5

[186]

Creating a Resolver
We will create a helper class for Inversion of Control (IoC). This will help us to create
types based on a configured IoC container. In this project, we will use Autofac as the IoC
library. Let's set this up by going through the following steps:

Install the NuGet package Autofac in the Weather project.1.
Create a new class called Resolver in the Weather project.2.
Add a private static field called container of the IContainer type (from3.
Autofac).
Add a public static method called Initialize with IContainer as a4.
parameter. Set the value of the parameter to the container field.
Add a generic public static method called Resolve<T>, which will return an5.
instance of an object of the type specified with the T parameter. The Resolve<T>
method will then call the Resolve<T> method on the IContainer instance that
was passed to it during initialization.
The code should now look like the following:6.

using Autofac;

namespace Weather
{
 public class Resolver
 {
 private static IContainer container;

 public static void Initialize(IContainer container)
 {
 Resolver.container = container;
 }

 public static T Resolve<T>()
 {
 return container.Resolve<T>();
 }
 }
}

Building a Weather App for Multiple Form Factors Chapter 5

[187]

Creating a bootstrapper
In this section, we will create a Bootstrapper class that we will use to set up the common
configurations that we need in the startup phase of the app. Usually, there is one part of the
bootstrapper for each target platform and one that is shared for all platforms. In
this project, we only need the shared part. Let's set this up by going through the following
steps:

In the Weather project, create a new class called Bootstrapper.1.
Add a new public static method called Init.2.
Create a new ContainerBuilder and register the types to container.3.
Create a Container by using the Build method of the ContainerBuilder.4.
Create a variable called container that contains the instance of Container.
Use the Initialize method on Resolver and pass container variable as an5.
argument.
The Bootstrapper class should now look like the following code:6.

using Autofac;
using TinyNavigationHelper.Forms;
using Weather.Services;
using Weather.ViewModels;
using Weather.Views;
using Xamarin.Forms;

namespace Weather
{
 public class Bootstrapper
 {
 public static void Init()
 {
 var containerBuilder = new ContainerBuilder();
 containerBuilder.RegisterType
 <OpenWeatherMapWeatherService>().As
 <IWeatherService>();
 containerBuilder.RegisterType<MainViewModel>();

 var container = containerBuilder.Build();

 Resolver.Initialize(container);
 }
 }
}

Building a Weather App for Multiple Form Factors Chapter 5

[188]

Call the Init method of Bootstrapper in the constructor in the App.xaml.cs file after
the call to the InitializeComponent method. Also, set the MainPage property
to MainView, as shown in the following code:

public App()
{
 InitializeComponent();
 Bootstrapper.Init();
 MainPage = new NavigationPage(new MainView());
}

Creating a RepeaterView based on a FlexLayout
In Xamarin.Forms, we can use ListView if we want to show a collection of data.
Using ListView is great, and we will use it later in this chapter, but it can only show data
vertically. In this app, we want to show data in both directions. In the vertical direction, we
will have the days (we group forecasts based on days), while in the horizontal direction, we
will have the forecasts within a particular day. We also want the forecasts within a day to
wrap if there is not enough space for all of them in one row. With FlexLayout, we are able
to add items in both directions. However, FlexLayout is a layout, which means that we
can't bind items to it, so we have to extend its functionality. We will name our extended
FlexLayout RepeaterView. The RepeaterView class will render content based on a
DataTemplate and the items added to it will appear as if you have used ListView.

Let's create RepeaterView by following these steps:

Create a new folder called Controls in the Weather project.1.
Add a new class called RepeaterView to the Controls folder.2.
Create an empty method called Generate. We will add code to this method3.
later.
Create a new private field called itemsTemplate of the DataTemplate type.4.
Create a new property called ItemsTemplate of the DataTemplate type. The5.
get method will just return the itemsTemplate field. The set method will set
the itemsTemplate field to the new value. However, it will also call the
Generate method to trigger a regeneration of the data when we have a new
template that needs to be generated. The generation has to be done on the main
thread, as shown in the following code:

using System.Collections.Generic;
using Xamarin.Essentials;
using Xamarin.Forms;

Building a Weather App for Multiple Form Factors Chapter 5

[189]

namespace Weather.Controls
{
 public class ReperaterView : FlexLayout
 {
 private DataTemplate itemsTemplate;
 public DataTemplate ItemsTemplate
 {
 get => itemsTemplate;
 set
 {
 itemsTemplate = value;
 MainThread.BeginInvokeOnMainThread(() =>
 Generate());
 }
 }

 public void Generate()
 {
 }
 }
}

In order to bind to a property, we need to add BindableProperty by going through the
following steps:

Add a public static BindableProperty field called1.
ItemsSourceProperty that returns null as a default value.
Add a public property called ItemsSource.2.
Add a setter to the ItemSource that sets the value of ItemsSourceProperty.3.
Add a getter to the ItemsSource property that returns the value4.
of ItemsSourceProperty, as shown in the following code:

public static BindableProperty ItemsSourceProperty =
BindableProperty.Create(nameof(ItemsSource),
typeof(IEnumerable<object>), typeof(RepeaterView), null);

public IEnumerable<object> ItemsSource
{
 get => GetValue(ItemsSourceProperty) as
IEnumerable<object>;
 set => SetValue(ItemsSourceProperty, value);
}

Building a Weather App for Multiple Form Factors Chapter 5

[190]

In a bindable property declaration like the one in the preceding code, we can take action on
different actions. The one we are interested in is the propertyChanged action. If we assign
a delegate to this property, then it will get called any time that property changes in value
and we can take action on that change. In this case, we will regenerate the content
of RepeaterView. We do this by going through the following steps:

Add a property-changed delegate (as shown in the following code) as an1.
argument to the Create method of BindableProperty to regenerate the UI
when the ItemsSource property changes.
Check that DateTemplate is not null before regenerating the UI on the main2.
thread, as shown in the following code:

public static BindableProperty ItemsSourceProperty =
BindableProperty.Create(nameof(ItemsSource),
typeof(IEnumerable<object>), typeof(RepeaterView), null,
 propertyChanged: (bindable, oldValue, newValue) =>
{

 var repeater = (RepeaterView)bindable;

 if(repeater.ItemsTemplate == null)
 {
 return;
 }

 MainThread.BeginInvokeOnMainThread(() =>
 repeater.Generate());

 });

The last step of RepeaterView is to generate content in the Generate method.

Let's implement the Generate method by going through the following steps:

Clear all child controls with Children.Clear();.1.
Verify that ItemSource is not null. If it is null, do an empty return.2.
Loop through all items and generate content from DataTemplate. Set the3.
current item as BindingContext and add it as a child of FlexLayout, as shown
in the following code:

private void Generate()
{
 Children.Clear();

 if(ItemsSource == null)

Building a Weather App for Multiple Form Factors Chapter 5

[191]

 {
 return;
 }

 foreach(var item in ItemsSource)
 {
 var view = itemsTemplate.CreateContent() as View;

 if(view == null)
 {
 return;
 }

 view.BindingContext = item;

 Children.Add(view);
 }
}

Creating the view for tablets and desktop
computers
The next step is to create the view that we will use when the app is running on a tablet or a
desktop computer. Let's set this up by going through the following steps:

Create a new folder in the Weather project and name it Views.1.
Create a new Content Page with XAML and name it MainView.2.
Use the Resolver in the constructor of the view to setBindingContext3.
to MainViewModel, as shown in the following code:

public MainView ()
{
 InitializeComponent ();
 BindingContext = Resolver.Resolve<MainViewModel>();
}

To trigger LoadData method in MainViewModel, call the LoadData method by
overriding the OnAppearing method on the main thread. We need to make sure that the
call gets marshaled to the UI thread since it will interact directly with the user interface.

Building a Weather App for Multiple Form Factors Chapter 5

[192]

To do this, follow these steps:

In the Weather project, open the MainView.xaml.cs file.1.
Create an override of the OnAppearing method.2.
Add the code in bold in the following fragment:3.

protected override void OnAppearing()
{
 base.OnAppearing();

 if (BindingContext is MainViewModel viewModel)
 {
 MainThread.BeginInvokeOnMainThread(async () =>
 {
 await viewModel.LoadData();
 });
 }
}

In the XAML, add a binding for the Title property of ContentPage to the City property
inViewModel by going through the following steps:

In the Weather project, open the MainView.xaml file.1.
Add the Title binding to the ContentPage element, as highlighted in bold in 2.
the following code fragment:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Weather.Controls"
 x:Class="Weather.Views.MainView"
 Title="{Binding City}">

Using RepeaterView
To add a custom control to a view, we need to import a namespace to the view. If the view
is in another assembly, we also need to specify the assembly, but in this case, we have both
the view and the control in the same namespace, as shown in the following code:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Weather.Controls"
 x:Class="Weather.Views.MainView"

Building a Weather App for Multiple Form Factors Chapter 5

[193]

Follow the steps below to build the view:

Add a Grid as the root view of the page.1.
Add a ScrollView to Grid. We need this to be able to scroll if the content is2.
higher than the height of the page.
Add RepeaterView to ScrollView and set the direction to Column so the3.
content will be in a vertical direction.
Add a binding to the Days property in MainViewModel.4.
Set a DataTemplate to the content of ItemsTemplate, as shown in the5.
following code:

<Grid>
 <ScrollView BackgroundColor="Transparent">
 <controls:RepeaterView ItemsSource="{Binding Days}"
 Direction="Column">
 <controls:RepeaterView.ItemsTemplate>
 <DataTemplate>
 <!--Content will be added here -->
 </DataTemplate>
 </controls:RepeaterView.ItemsTemplate>
 </controls:RepeaterView>
 </ScrollView>
</Grid>

The content for each item will be a header with the date and a horizontal RepeaterView
with the forecasts for the day. Let's set this up by going through the following steps:

In the Weather project, open the MainView.xaml file.1.
Add StackLayout so that the children we are adding to it will be placed in a2.
vertical direction.
Add ContentView to StackLayout with Padding set to 103.
and BackgroundColor set to #9F5010. This will be the header. The reason that
we need ContentView is that we want to have padding around the text.
Add Label to ContentView with the TextColor set to White4.
and FontAttributes set to Bold.
Add a binding to DateAsString for the Text property of Label.5.
The code should be placed at the <!-- Content will be added here -->6.
comment, and should look like the following code:

<StackLayout>
 <ContentView Padding="10" BackgroundColor="#9F5010">
 <Label Text="{Binding DateAsString}" TextColor="White"

Building a Weather App for Multiple Form Factors Chapter 5

[194]

 FontAttributes="Bold" />
 </ContentView>
</StackLayout>

Now that we have the date in the user interface, we need to add a RepeaterView that will
repeat through Items in MainViewModel by going through the following
steps. RepeaterView is the control we created earlier that inherits from FlexLayout:

Add a RepeaterView after the </ContentView> tag, but before the1.
</StackLayout> tag.
Set JustifyContent to Start to set the Items to be added from the left side2.
without distributing them over the available space.
Set AlignItems to Start to set the content to the left of each item3.
in FlexLayout that RepeaterView is based on, as shown in the following code:

 <controls:RepeaterView ItemsSource="{Binding Items}" Wrap="Wrap"
 JustifyContent="Start" AlignItems="Start">

After defining RepeaterView, we need to provide an ItemsTemplate that defines how
each item in the list should be rendered. Continue adding the XAML directly under the
<controls:RepeaterView> tag you just added by going through the following steps:

Set the ItemsTemplate property to DataTemplate.1.
Fill the DataTemplate with elements, as shown in the following code:2.

If we want to add formatting to a binding, we can use StringFormat. In
this case, we want to add the degree symbol after the temperature. We can
do this by using the {Binding Temperature, StringFormat='{0}°
C'} phrase. With the StringFormat property of the binding, we can
format data with the same arguments that we would use if we did it in C#.
This is the same as string.Format("{0}° C", Temperature) in C#.
We can also use it to format a date—for example {Binding Date,
StringFormat='yyyy'}. In C#, this would look
like Date.ToString("yyyy").

<controls:RepeaterView.ItemsTemplate>
 <DataTemplate>
 <StackLayout Margin="10" Padding="20" WidthRequest="150"
 BackgroundColor="#99FFFFFF">
 <Label FontSize="16" FontAttributes="Bold" Text="{Binding
 TimeAsString}" HorizontalOptions="Center" />
 <Image WidthRequest="100" HeightRequest="100"
 Aspect="AspectFit" HorizontalOptions="Center" Source="

Building a Weather App for Multiple Form Factors Chapter 5

[195]

 {Binding Icon}" />
 <Label FontSize="14" FontAttributes="Bold" Text="{Binding
 Temperature, StringFormat='{0}° C'}"
 HorizontalOptions="Center" />
 <Label FontSize="14" FontAttributes="Bold" Text="{Binding
 Description}" HorizontalOptions="Center" />
 </StackLayout>
 </DataTemplate>
</controls:RepeaterView.ItemsTemplate>

The AspectFill phrase, as a value of the Aspect property for Image,
means that the whole image will always be visible and that aspects will
not be changed. The AspectFit phrase will also keep the aspect of an
image, but the image can be zoomed and cropped to fill the whole Image
element. The last value that Aspect can be set to, Fill, means that the
image can be stretched or compressed to match the Image view without
ensuring that the aspect is kept.

Adding a toolbar item to refresh the weather data
To be able to refresh the data without restarting the app, we will add a Refresh button to
the toolbar. MainViewModel is responsible for handling any logic that we want to perform,
and we must expose any action as an ICommand that we can bind to.

Let's start by creating the Refresh command property on MainViewModel by going
through the following steps:

In the Weather project, open the MainViewModel class.1.
Add an ICommand property with the name Refresh and a get method that2.
returns a new Command
Add an action as an expression to the constructor of the Command that calls the3.
LoadData method, as shown in the following code:

public ICommand Refresh => new Command(async() =>
{
 await LoadData();
});

Now that we have defined Command, we need to bind it to the user interface so that when
the user clicks the toolbar button, the action will be executed.

Building a Weather App for Multiple Form Factors Chapter 5

[196]

To do this, follow these steps:

In the Weather app, open the MainView.xaml file.1.
Add a new ToolbarItem with the Text property set to Refresh to the2.
ToolbarItems property of ContentPage and set the Icon property to
refresh.png (the icon can be downloaded from GitHub; see https:/ / github.
com/PacktPublishing/ Xamarin. Forms- Projects/ tree/ master/ Chapter- 5).
Bind the Command property to the Refresh property in MainViewModel, as3.
shown in the following code:

<ContentPage.ToolbarItems>
 <ToolbarItem Icon="refresh.png" Text="Refresh"
Command="{Binding
 Refresh}" />
</ContentPage.ToolbarItems>

That's all for refreshing the data. Now we need some kind of indicator that data is loading.

Adding a loading indicator
When we refresh the data, we want to show a loading indicator so the user will know that
something is happening. To do this, we will add ActivityIndicator, which is what this
control is called in Xamarin.Forms. Let's set this up by going through the following steps:

In the Weather project, open the MainViewModel class.1.
Add a Boolean property with the name IsRefreshing to the MainViewModel.2.
Set the IsRefreshing property to true at the beginning of the LoadData3.
method.
At the end of the LoadData method, set the IsRefreshing property to false,4.
as shown in the following code:

private bool isRefreshing;
public bool IsRefreshing
{
 get => isRefreshing;
 set => Set(ref isRefreshing, value);
}

public async Task LoadData()
{
 IsRefreshing = true;
 // The rest of the code is omitted for brevity
 IsRefreshing = false;
}

https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-5

Building a Weather App for Multiple Form Factors Chapter 5

[197]

Now that we have added some code in the MainViewModel, we need to bind
the IsRefreshing property to a user interface element that will be displayed when the
IsRefreshing property is true, as shown in the following code:

In the MainView.xaml, add a Frame after the ScrollView as the last element in1.
the Grid.
Bind the IsVisible property to the IsRefreshing method that we created in2.
the MainViewModel.
Set the HeightRequest and the WidthRequest to 100.3.
Set the VerticalOptions and the HorizontalOptions to Center so that the4.
Frame will be in the middle of the view.
Set the BackgroundColor to #99000000 to set the background to white with a5.
little bit of transparency.
Add ActivityIndicator to the Frame with the Color set to Black and6.
IsRunning set to True, as shown in the following code:

 <Frame IsVisible="{Binding IsRefreshing}"
 BackgroundColor="#99FFFFFF"
 WidthRequest="100" HeightRequest="100"
 VerticalOptions="Center"
 HorizontalOptions="Center">
 <ActivityIndicator Color="Black" IsRunning="True" />
</Frame>

This will create a spinner that will be visible while data is loading, a really good practice
when creating any user interface. Now we'll add a background image to make the app look
a bit nicer.

Setting a background image
The last thing we will do to this view for the moment is to add a background image. The
image we are using in this example is a result of a Google search for images that are free to
use. Let's set this up by going through the following steps:

In the Weather project, open the MainView.xaml file.1.
Wrap the ScrollView in a Grid. Using a Grid is great if we want to have our2.
elements in layers.
Set the Background property of the ScrollView to Transparent.3.
Add an Image element in the Grid with UriImageSource as the value of the4.
Source property.

Building a Weather App for Multiple Form Factors Chapter 5

[198]

Set the CachingEnabled property to true and the CacheValidity to 5. This5.
means that the image will be cached in five days.
The XAML should now look like the following code:6.

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Weather.Controls"
 x:Class="Weather.Views.MainView" Title="{Binding
 City}">
 <ContentPage.ToolbarItems>
 <ToolbarItem Icon="refresh.png" Text="Refresh" Command="
 {Binding Refresh}" />
 </ContentPage.ToolbarItems>

 <Grid>
 <Image Aspect="AspectFill">
 <Image.Source>
 <UriImageSource
Uri="https://upload.wikimedia.org/wikipedia/commons/7/79/
Solnedg%C3%A5ng_%C3%B6ver_Laholmsbukten_augusti_2011.jpg"
 CachingEnabled="true" CacheValidity="1" />
 </Image.Source>
 </Image>
 <ScrollView BackgroundColor="Transparent">
 <!-- The rest of the code is omitted for brevity -->

We can also set the URL directly in the Source property by using <Image
Source="https://ourgreatimage.url" />. However, if we do this,
we can't specify the caching for the image.

Creating the view for phones
Structuring content on a tablet and on a desktop computer is very similar in many ways.
On phones, however, we are much more limited in what we can do. Therefore, in this
section, we will create a specific view for this app when used on phones by going through
the following steps:

Create a new XAML-based Content Page in the Views folder.1.
Name the new view called MainView_Phone.2.

Building a Weather App for Multiple Form Factors Chapter 5

[199]

Use the Resolver in the constructor of the view to set the BindingContext to3.
the MainViewModel, as shown in the following code:

public MainView_Phone ()
{
 InitializeComponent ();
 BindingContext = Resolver.Resolve<MainViewModel>();
}

To trigger the LoadData method in the MainViewModel, call the LoadData method by
overriding the OnAppearing method on the main thread. To do this, go through the
following steps:

In the Weather project, open the MainView_Phone.xaml.cs file.1.
Add the override of the OnAppearing method, as shown in the following code:2.

protected override void OnAppearing()
{
 base.OnAppearing();

 if (BindingContext is MainViewModel viewModel)
 {
 MainThread.BeginInvokeOnMainThread(async () =>
 {
 await viewModel.LoadData();
 });
 }
}

In the XAML, add a binding for the Title property of the ContentPage to
the City property in the ViewModel, as shown in the following code:

In the Weather project, open the MainView_Phone.xaml file.1.
Add the Title property with a binding to the City property of the2.
MainViewModel, as shown in the following code:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Weather.Controls"
 x:Class="Weather.Views.MainView_Phone"
 Title="{Binding City}">

Building a Weather App for Multiple Form Factors Chapter 5

[200]

Using a grouped ListView
We could use RepeaterView for the phone's view, but because we want our user
experience to be as good as possible, we will use ListView instead. To get the headers for
each day, we will use grouping for the ListView. For RepeaterView, we
had ScrollView, but for ListView, we don't need that because ListView can handle
scrolling by default.

Let's continue to create the user interface for the phone's view by going through the
following steps:

In the Weather project, open the MainView_Phone.xaml file.1.
Add ListView to the root of the page.2.
Set a binding to the Days property in MainViewModel for the ItemSource3.
property.
Set the IsGroupingEnabled to True to enable grouping in the ListView.4.
Set HasUnevenRows to True so the height of each cell will be calculated for each5.
item in the ListView.
Set the CachingStrategy to RecycleElement to reuse cells that are not on the6.
screen.
Set the BackgroundColor to Transparent, as shown in the following code:7.

<ListView ItemsSource="{Binding Days}" IsGroupingEnabled="True"
 HasUnevenRows="True" CachingStrategy="RecycleElement"
 BackgroundColor="Transparent">
</ListView>

Set the CachingStrategy to RecycleElement to get better performance
from the ListView. This means it will reuse cells that are not shown on
the screen, so it will use less memory and we will get a smoother scrolling
experience if we have many items in the ListView.

To format how each header will look, we will create a DataTemplate by going through the
following steps:

Add a DataTemplate to the GroupHeaderTemplate property of the ListView.1.
Add ViewCell to the DataTemplate.2.
Add the content for the row to the ViewCell, as shown in the following code:3.

<ListView ItemsSource="{Binding Days}" IsGroupingEnabled="True"
 HasUnevenRows="True"
 CachingStrategy="RecycleElement"

Building a Weather App for Multiple Form Factors Chapter 5

[201]

 BackgroundColor="Transparent">
 <ListView.GroupHeaderTemplate>
 <DataTemplate>
 <ViewCell>
 <ContentView Padding="15,5"
 BackgroundColor="#9F5010">
 <Label FontAttributes="Bold" TextColor="White"
 Text="{Binding DateAsString}"
 VerticalOptions="Center"/>
 </ContentView>
 </ViewCell>
 </DataTemplate>
 </ListView.GroupHeaderTemplate>
</ListView>

To format how each forecast will look, we will create a DataTemplate, as we did with the
group header. Let's set this up by going through the following steps:

Add a DataTemplate to the ItemTemplate property of the ListView.1.
Add ViewCell to the DataTemplate.2.
In the ViewCell, add a Grid that contains four columns. Use the3.
ColumnDefinition property to specify the width of the columns. The second
column should be 50 and the other three will share the rest of the space. We will
do this by setting the Width to *.
Add content to the Grid, as shown in the following code:4.

<ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid Padding="15,10" ColumnSpacing="10"
 BackgroundColor="#99FFFFFF">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="50" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Label FontAttributes="Bold" Text="{Binding
 TimeAsString}" VerticalOptions="Center" />
 <Image Grid.Column="1" HeightRequest="50"
 WidthRequest="50" Source="{Binding Icon}"
 Aspect="AspectFit" VerticalOptions="Center" />
 <Label Grid.Column="2" Text="{Binding Temperature,
 StringFormat='{0}° C'}" VerticalOptions="Center"
/>
 <Label Grid.Column="3" Text="{Binding Description}"

Building a Weather App for Multiple Form Factors Chapter 5

[202]

 VerticalOptions="Center" />
 </Grid>
 </ViewCell>
 </DataTemplate>
</ListView.ItemTemplate>

Adding pull to refresh functionality
For the tablet and desktop version of the view, we added a button to the toolbar to refresh
the weather forecast. In the phone version of the view, however, we will instead add pull to
refresh, which is a common way to refresh content in a list of data. The ListView in
Xamarin.Forms has built-in support for pull to refresh. Let's set this up by going through
the following steps:

Go to the MainView_Phone.xaml.1.
Set the IsPullToRefreshEnabled property to True to enable pull-to-refresh for2.
the ListView.
Bind the Refresh property in the MainViewModel to the RefreshCommand3.
property of the ListView to trigger a refresh when the user performs a pull-to-
refresh gesture.
To show a loading icon when the refresh is in progress, bind the IsRefreshing4.
property in the MainViewModel to the IsRefreshing property of the
ListView. When we are setting this, we will also get a loading indicator when
the initial load is running, as shown in the following code:

<ListView ItemsSource="{Binding Days}" IsGroupingEnabled="True"
 HasUnevenRows="True" CachingStrategy="RecycleElement"
 BackgroundColor="Transparent"
 IsPullToRefreshEnabled="True"
 RefreshCommand="{Binding Refresh}"
 IsRefreshing="{Binding
 IsRefreshing}">

Navigating to different views based on the form
factor
We now have two different views that should be loaded in the same place in the
app. MainView should be loaded if the app is running on a tablet or on a desktop and
MainView_Phone should be loaded if the app is running on a phone.

Building a Weather App for Multiple Form Factors Chapter 5

[203]

The Device class in Xamarin.Forms has a static Idiom property that we can use to check
which form factor the app is running on. The value of Idiom can be Phone, Table,
Desktop, Watch, or TV. Because we only have one view in this app, we could have used an
if statement when we were setting MainPage in App.xaml.cs and checked what the
Idiom value was. Instead, however, we are going to build a solution that we can also use
for a bigger app.

One solution is to build a navigation service that we can use to navigate to different views
based on a key. Which view will be loaded for which key will be configured upon starting
the app. With this solution, we can configure different views on the same key on different
types of devices. An open source navigation service that we can use for this purpose is
TinyNavigationHelper, which can be found at https:/ / github. com/ TinyStuff/
TinyNavigationHelper and was created by the authors of this book.

There is also an MVVM library called TinyMvvm that includes
TinyNavigationHelper as a dependency. The TinyMvvm library is a
library that contains helper classes to get started quicker with MVVM in a
Xamarin.Forms app. We created TinyMvvm because we want to avoid
writing the same code again and again. You can read more at https:/ /
github. com/ TinyStuff/ TinyMvvm.

Follow the steps below to add TinyNavigationHelper to the app:

Install the TinyNavigationHelper.Forms NuGet package in the Weather1.
project.
Go to Bootstrapper.cs.2.
At the start of the Execute method, create a FormsNavigationHelper and pass3.
the current application to the constructor.
Add an if statement to check whether the Idiom is Phone. If this is true, the4.
MainView_Phone view should be registered for the MainView key.
Add an else statement that registers the MainView for the MainView key.5.
The Bootstrapper class should now look as shown in the following code, with6.
the new code marked in bold:

public class Bootstrapper
{
 public static void Init()
 {
 var navigation = new
 FormsNavigationHelper(Application.Current);

 if (Device.Idiom == TargetIdiom.Phone)

https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyNavigationHelper
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm
https://github.com/TinyStuff/TinyMvvm

Building a Weather App for Multiple Form Factors Chapter 5

[204]

 {
 navigation.RegisterView("MainView",
 typeof(MainView_Phone));
 }
 else
 {
 navigation.RegisterView("MainView", typeof(MainView));
 }

 var containerBuilder = new ContainerBuilder();
 containerBuilder.RegisterType<OpenWeatherMapWeatherService>
 ().As<IWeatherService>();
 containerBuilder.RegisterType<MainViewModel>();

 var container = containerBuilder.Build();

 Resolver.Initialize(container);
 }
}

Now, we can use the NavigationHelper class to set the root view of the app in the
constructor of the App class by going through the following steps:

In the Weather app, open the App.xaml.cs file.1.
Locate the constructor of the App class.2.
Remove the assignment of the MainPage property.3.
Add the code to set the root view via the NavigationHelper.4.
The constructor should now look like the bold code in the following fragment:5.

public App()
{
 InitializeComponent();
 Bootstrapper.Execute();
 NavigationHelper.Current.SetRootView("MainView", true);
}

If we want to load different views on different operating systems, we can
use the static RuntimePlatform method on the Xamarin.Forms Device
class—for example, if(Device.RuntimePlatform == Device.iOS).

Building a Weather App for Multiple Form Factors Chapter 5

[205]

Handling states with VisualStateManager
VisualStateManager was introduced in Xamarin.Forms 3.0. It is a way to make changes
in the UI from the code. We can define states and set values for selected properties to apply
for a specific state. VisualStateManager can be really useful in cases where we want to
use the same view for devices with different screen resolutions. It was first introduced in
UWP to make it easier to create Windows 10 applications for multiple platforms because
Windows 10 could run on Windows Phone as well as on desktops and tablets (the OS was
called Windows 10 Mobile). However, Windows Phone has now been
depreciated. VisualStateManager is really interesting for us as Xamarin.Forms
developers, especially when both iOS and Android can run on both phones and tablets.

In this project, we will use it to make a forecast item bigger when the app is running in
landscape mode on a tablet or on a desktop. We will also make the weather icon bigger.
Let's set this up by going through the following steps:

In the Weather project, open the MainView.xaml file.1.
In the first RepeaterView and in the DataTemplate, insert2.
a VisualStateManager.VisualStateGroups element in the first
StackLayout:

<StackLayout Margin="10" Padding="20" WidthRequest="150"
 BackgroundColor="#99FFFFFF">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</StackLayout>

To the VisualStateGroup, we should add two states, we will do that by following these
steps:

Add a new VisualState called Portrait to the VisualStateGroup.1.
Create a setter in the VisualState and set the WidthRequest to 150.2.
Create another VisualState called Landscape to the VisualStateGroup.3.
Create a setter in the VisualState and set the WidthRequest to 200, as shown4.
in the following code:

 <VisualStateGroup>
 <VisualState Name="Portrait">
 <VisualState.Setters>
 <Setter Property="WidthRequest" Value="150" />
 </VisualState.Setters>

Building a Weather App for Multiple Form Factors Chapter 5

[206]

 </VisualState>
 <VisualState Name="Landscape">
 <VisualState.Setters>
 <Setter Property="WidthRequest" Value="200" />
 </VisualState.Setters>
 </VisualState>
</VisualStateGroup>

We also want the icons in a forecast item to be bigger when the item itself is bigger. To do
this, we will use the VisualStateManager again. Let's set this up by going through the
following steps:

Insert a VisualStateManager.VisualStateGroups element in the second1.
RepeaterView and in the Image element in the DataTemplate.
Add VisualState for both Portrait and Landscape.2.
Add setters to the states to set the WidthRequest and the HeightRequest. The3.
value should be 1oo in the Portrait state and 150 in the Landscape state, as
shown in the following code:

<Image WidthRequest="100" HeightRequest="100" Aspect="AspectFit"
HorizontalOptions="Center" Source="{Binding Icon}">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState Name="Portrait">
 <VisualState.Setters>
 <Setter Property="WidthRequest" Value="100" />
 <Setter Property="HeightRequest" Value="100" />
 </VisualState.Setters>
 </VisualState>
 <VisualState Name="Landscape">
 <VisualState.Setters>
 <Setter Property="WidthRequest" Value="150" />
 <Setter Property="HeightRequest" Value="150" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</Image>

Building a Weather App for Multiple Form Factors Chapter 5

[207]

Creating a behavior to set state changes
With Behavior, we can add functionality to controls without having to subclass them.
With behaviors, we can also create a more reusable code than we could if we subclassed a
control. The more specific the Behavior we create, the more reusable it will be. For
example, a Behavior that inherits from Behavior<View> could be used on all controls,
but a Behavior that inherits from a Button can only be used for buttons. Because of this,
we always want to create behaviors with a less specific base class.

When we create a Behavior, we need to override two methods: OnAttached and
OnDetachingFrom. It is really important to remove event listeners in the OnDeattached
method if we have added them in the OnAttached method. This will make the app use less
memory. It is also important to set back values to the value that they had before the
OnAppearing method ran; otherwise, we might see some strange behavior, especially if the
behavior is in a ListView that is reusing cells.

In this app, we will create a Behavior for the RepeaterView. This is because we can't set
the state of an item in the RepeaterView from the code behind. We could have added the
code to check whether the app runs in portrait or landscape in the RepeaterView, but if
we use Behavior instead, we can separate that code from the RepeaterView so that it will
be more reusable. Instead, we will add a Property string to the RepeaterView, which
will set the state for the RepeaterView and all children in it. Let's set this up by going
through the following steps:

In the Weather project, open the RepeaterView.cs file.1.
Create a new private string field called visualState.2.
Create a new string property called VisualState.3.
Create a getter that uses an expression to return visualState.4.
In the setter, set the state of the RepeaterView and all children, as shown in the5.
following code:

private string visualState;
public string VisualState
{
 get => visualState;
 set
 {
 visualState = value;

 foreach(var child in Children)
 {
 VisualStateManager.GoToState(child, visualState);

Building a Weather App for Multiple Form Factors Chapter 5

[208]

 }

 VisualStateManager.GoToState(this, visualState);
 }
}

This will iterate through each child control and set the visual state. Now let's create the
behavior that will trigger state changes by following these steps:

In the Weather project, create a new folder called Behaviors.1.
Create a new class called RepeaterViewBehavior.2.
Add the Behavior<RepeaterView> as a base class.3.
Create a private field of the RepeaterView type called view.4.
The code should look like the following:5.

using System;
using Weather.Controls;
using Xamarin.Essentials;
using Xamarin.Forms;

namespace Weather.Behaviors
{
 public class RepeaterViewBehavior : Behavior<RepeaterView>
 {
 private RepeaterView view;
 }
}

RepeaterViewBehavior is a class that inherits from the Behavior<RepeaterView> base
class. This will give us the ability to override some virtual methods that will be called when
we attach and detach the behavior from a RepeaterView.

But first, we need to create a method to handle the change in state by going through the
following steps:

In the Weather project, open the RepeaterViewBehavior.cs file.1.
Create a private method called UpdateState.2.
Run the code on the MainThread to check whether the app is running in portrait3.
or landscape mode.
Create a variable called page and set its value4.
to Application.Current.MainPage.

Building a Weather App for Multiple Form Factors Chapter 5

[209]

Check whether the Width is larger than the Height. If this is true, set the5.
VisualState property on the view variable to Landscape. If this is not true, set
the VisualState property on the view variable to Portrait, as shown in the
following code:

private void UpdateState()
{
 MainThread.BeginInvokeOnMainThread(() =>
 {
 var page = Application.Current.MainPage;

 if (page.Width > page.Height)
 {
 view.VisualState = "Landscape";
 return;
 }

 view.VisualState = "Portrait";
 });
}

The UpdateState method is now added. Now we need to override the OnAttachedTo
method that will be called when the behavior is added to the RepeaterView. When it is,
we want to update the state by calling this method and also hook up to the SizeChanged
event of the MainPage so that when the size changes, we will update the state again.

Let's set this up by going through the following steps:

In the Weather project, open the RepeaterViewBehavior.cs file.1.
Override the OnAttachedTo method from the base class.2.
Set the view property to the parameter from the OnAttachedTo method.3.
Add an event listener to Application.Current.MainPage.SizeChanged. In4.
the event listener, add a call to the UpdateState method, as shown in the
following code:

protected override void OnAttachedTo(RepeaterView view)
{
 this.view = view;

 base.OnAttachedTo(view);

 UpdateState();

 Application.Current.MainPage.SizeChanged +=
 MainPage_SizeChanged;

Building a Weather App for Multiple Form Factors Chapter 5

[210]

}

 void MainPage_SizeChanged(object sender, EventArgs e)
{
 UpdateState();
}

When we remove behaviors from a control, it's very important to also remove any event
handlers from it in order to avoid memory leaks, and in the worst case, a crash of the app.
Let's do this by going through the following steps:

In the Weather project, open the RepeaterViewBehavior.cs file.1.
Override OnDetachingFrom from the base class.2.
Remove the event listener from3.
Application.Current.MainPage.SizeChanged.
Set the view field to null, as shown in the following code:4.

protected override void OnDetachingFrom(RepeaterView view)
{
 base.OnDetachingFrom(view);
 Application.Current.MainPage.SizeChanged -=
 MainPage_SizeChanged;
 this.view = null;
}

Follow the steps below to add the behavior to the view:

In the Weather project, open the MainView.xaml file.1.
Import the Weather.Behaviors namespace, as shown in the following code:2.

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:controls="clr-namespace:Weather.Controls"
 xmlns:behaviors="clr-
 namespace:Weather.Behaviors"
 x:Class="Weather.Views.MainView" Title="{Binding City}">

The last thing we will do is add the RepeaterViewBehavior to the second
RepeaterView, as shown in the following code:

 <controls:RepeaterView ItemsSource="{Binding Items}" Wrap="Wrap"
 JustifyContent="Start" AlignItems="Start">
 <controls:RepeaterView.Behaviors>
 <behaviors:RepeaterViewBehavior />
 </controls:RepeaterView.Behaviors>
 <controls:RepeaterView.ItemsTemplate>

Building a Weather App for Multiple Form Factors Chapter 5

[211]

Summary
We have now successfully created an app for three different operating systems—iOS,
Android, and Windows—and three different form factors—phones, tablets, and desktop
computers. To create a good user experience on all platforms and form factors, we used
FlexLayout and VisualStateManager. We also learned a way of handling when we
want to use different views for different form factors, as well as how to use Behaviors.

The next app we will build is a chat app with real-time communication. In the next chapter,
we will take a look at how we can use the SignalR service in Azure as the backend for the
chat app.

6
Setting up a Backend for a Chat

App Using Azure Services
In this chapter, we will build a chat app with real-time communication. To do this, we need
a backend. We will create a backend that can scale up to handle a large number of users but
also scale down when the number of users is reduced. To build that backend, we will use a
serverless architecture based on services in Microsoft Azure.

The following topics will be covered in this chapter:

Creating a SignalR service in Microsoft Azure
Using Azure functions as an API
Scheduling jobs with Azure functions
Using blob storage to store photos
Using Azure Cognitive Services to scan photos for adult content

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[213]

Technical requirements
To be able to complete this project, you need to have Visual Studio for Mac or PC
installed. See Chapter 1, Introduction to Xamarin, for more details on how to set up your
environment. You also need an Azure account. If you have a Visual Studio subscription,
there is a specific amount of Azure credits included each month. To activate your Azure
benefits, go to the following link: https:/ /my. visualstudio. com.

You can also create a free account, where you can use selected services for free over 12
months. You will get $200 worth of credit to explore any Azure service for 30 days and you
can also use the free services at any time. Read more at the following link: https:/ / azure.
microsoft.com/en- us/ free/ .

Azure serverless services
Before we start to build a backend with a serverless architecture, we need to define what
serverless actually means. In a serverless architecture, of course the code will run on a
server, but we don't need to worry about that; the only thing we need to focus on is
building our software. We let someone else handle everything to do with servers. We don't
need to think about how much memory or CPU the server needs, or even how many
servers we need. When we use services in Azure, Microsoft takes care of this for us.

Azure SignalR Service
The Azure SignalR Service is a service in Microsoft Azure for real-time communication
between a server and clients. The service will push content to the clients without them
having to poll the server to get content updates. SignalR can be used for multiple types of
applications, including mobile applications, web applications, and desktop applications.

SignalR will use WebSockets if that option is available. If it is not, SignalR will use other
techniques for communication, such as Server-Sent Events (SSE) or long polling. SignalR
will detect which transport technology is available and use it without the developer having
to think about it at all.

SignalR can be used in the following examples:

Chat applications: Where the application needs updates from the server
immediately when new messages are available
Collaborative applications: For example, meeting applications or when users on
multiple devices are working with the same document

https://my.visualstudio.com
https://my.visualstudio.com
https://my.visualstudio.com
https://my.visualstudio.com
https://my.visualstudio.com
https://my.visualstudio.com
https://my.visualstudio.com
https://my.visualstudio.com
https://my.visualstudio.com
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[214]

Multiplayer games: Where all users need live updates about other users
Dashboard applications: Where users need live updates

Azure functions
Azure functions is a Microsoft Azure service that allows us to run code in a serverless way.
We will deploy small pieces of code called Functions. Functions are deployed in groups,
called Function Apps. When we are creating a Function App, we need to select whether we
want it to run on a consumption plan or on an app service plan. We select a consumption
plan if we want the application to be completely serverless, while with an app service plan,
we have to specify the requirements of the server. With a consumption plan, we pay for the
execution time and for how much memory the function uses. One benefit of the app service
plan is that you can configure it to be Always On and you won't have any cold starts as
long as you don't have to scale up to more instances. The big benefit of a consumption plan
is that it will always scale according to which resources are needed at that time.

There are several ways in which a function can be triggered to run. Two examples are
HttpTrigger and TimeTrigger. HttpTrigger will trigger the function to run when an
HTTP request is calling the function. With TimeTrigger, functions will run at an interval
that we can specify. There are also triggers for other Azure services. For example, we can
configure a function to run when a file is uploaded to blob storage, when a new message is
posted to an event hub or service bus, or when data is changed in an Azure CosmosDB.

Azure blob storage
Azure blob storage is used for storing unstructured data objects, such as images, videos,
audio, and documents. Objects or blobs can be organized into containers. Blob storage can
be redundant over multiple data centers in Azure. This to protect the data from unplanned
events ranging from transient hardware failures to network or power outages, or even
massive natural disasters. Blob storage in Azure can have different tiers, depending on how
often we want to use the objects that we are storing. These include archive and cold tiers,
and hot and premium tiers, which are used for applications in which we need to access data
more often. As well as blob storage, we can add a Content Delivery Network (CDN) to
make the content in our storage closer to our users. This is important if we have users
around the globe. If we can deliver our content from a place that is closer to the user, we
can reduce the loading time of content and we can give the users a better experience.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[215]

Azure Cognitive Services
The easiest way to describe Azure Cognitive Services is that it is Machine Learning as a
service. With just a simple API call, we can use machine learning in our applications,
without which we have to use complex data science techniques. When we use APIs, we are
making predictions against the models that Microsoft has trained for us.

The services in Azure Cognitive Services have been organized into five categories:

Vision: The vision services are about image processing. These include APIs for
face recognition, detection of adult content, image classification, and Optical
Character Recognition (OCR).
Knowledge: An example of a knowledge service is the Question and Answer
(QnA) makers that allow us to train a model with a knowledge base. When we
have trained the model, we can use it for getting answers when we are asking
questions.
Language: The language services are about understanding text, such as text
analytics, language understanding, and translations.
Speech: Examples of speech APIs include speaker recognition, speech-to-text
functionality, and speech translation.
Search: The search services are about using the power of a web search engine to
find an answer to your problems. These include knowledge acquisition from
images, the auto-completion of search queries, and the identification of similar
people.

Project overview
This project will be to set up the backend for a chat application. The biggest part of the
project will be the configuration that we will carry out in the Azure portal. We will also
write some code for the Azure Functions that will handle the SignalR connections. There
will be one function to return information about the SignalR connection and one that posts
messages to the SignalR service. The function that we will post messages to will also
determine whether the message contains an image. If it does, it will be sent to the Vision
API in Azure Cognitive Services to analyze whether it contains adult content. If it does, it
won't be posted to the SignalR service and the other users will not get it. Because the
SignalR service has a limitation about how big messages can be, we need to store images in
blob storage and just post the URL of the image to the users. Because we don't save any
chat history in this app, we also want to clear the blob storage at specific intervals. To do
this, we will create a function that uses TimeTrigger.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[216]

The following diagram shows an overview of the architecture of this application:

The estimated time to complete this project is about two hours.

Building the serverless backend
Let's start setting up the backend based on the services described in the preceding section.

 Creating a SignalR service
The first service that we will set up is the one for SignalR:

Go to the Azure portal: https:/ /portal. azure. com.1.
Create a new resource. The SignalR Service is in the web category.2.
Fill in a name for the resource in the form.3.
Select the subscription you want to use for this project. 4.
We recommend that you create a new Resource Group and use it for all5.
resources that we will create for this project. The reason that we want one
resource group is that it is easier to track what resources are related to this
project, and it is also easier to delete all the resources together.
Select a location that is close to your users.6.

https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[217]

Select a pricing tier. For this project, we can use the free tier. We can always use7.
the free tier for development and later scale up to a tier that can handle more
connections. Refer to the following screenshot:

This is all we need to do to set up a SignalR Service. We will return to it in the Azure portal
later to grab a connection string to it.

Creating a storage account
The next step is to set up a storage account in which we can store the images that are
uploaded by the users:

Create a new Storage Account resource. Storage Account is found under the1.
Storage category.
Select a subscription and a resource group. We recommend that you use the2.
same as you did for the SignalR Service.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[218]

Give the storage account a name.3.
Select a location that is close to your users.4.
Select a performance option. If we use Premium storage, the data will be stored5.
on SSD disks. Select Standard storage for this project.
Use StorageV2 for the Account kind.6.
In replication, we can select how we want our data to be replicated across the7.
data centers.
For the access tier, we will use Hot, because we will need to access the data8.
frequently in this app.
Click Create + review to review the settings before creating the storage account.9.
Click Create to create the storage account:10.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[219]

The last step of the configuration of the blob storage is to go to the resource and create a
container for the chat images:

Go to the resource and select Blobs.1.
Create a New container with the name chatimages.2.
Set the Public access level to Blob (anonymous read access for blobs only). This3.
means that it will have public read access, but that you have to be authorized to
upload content. Refer to the following screenshot:

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[220]

Creating a Cognitive Service
To be able to use Cognitive Services to scan images for adult content, we need to create a
resource in the Azure portal. This will give us a key that we can use when making calls to
the API:

Create a new Custom Vision resource.1.
Give the resource a name and select a subscription.2.
Select a location that is close to your users.3.
Select a pricing tier for prediction and training. This app will only use predictions4.
because we will use a model that is already trained.
Select the same resource groups as you selected for the other resources.5.
Click OK to create the new resource. Refer to the following screenshot:6.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[221]

We have now finished creating the Cognitive Service. We will come back later to grab a key
that we will use for the calls we will make against the API.

Creating functions
All the code we will write in the backend will be functions. We will use version 2 of Azure
Functions, which will run on top of .NET Core. Version 1 ran on top of the full .NET
framework.

Creating the Azure service for functions
Before we start to write any code, we will create the Function App. This will contain the
functions in the Azure portal:

Create a new Function App resource. Function App is found under the1.
Compute category.
Give the Function App a name. The name will also be the start of the URL of the2.
function.
Select a subscription for the Function App.3.
Select a resource group for the Function App, which should be the same as the4.
other resources we have created in this chapter.
Because we will use .NET Core as the runtime for the functions, we can run them5.
in both Windows and Linux. In this case, however, we will run them in
Windows.
We will use the Consumption Plan as our Hosting Plan, so we only pay for what6.
we use. The Function App will scale both up and down according to our
requirements, without us having to think about it at all, if we select a
Consumption Plan.
Select a location that is close to your users.7.
Select .NET as the Runtime stack.8.
For storage, we can either create a new storage account or use the one we created9.
earlier in this project.
Set Application Insights to be On so that we can monitor our functions.10.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[222]

Click Create to create the new resource:11.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[223]

Creating a function to return the connection
information for the SignalR service
If you want, you can create functions in the Azure portal. I prefer to use Visual Studio,
however, because the code editing experience is much better and you can use version
tracking for the source code:

Create a new project in Visual Studio of the Azure Functions type. This can be1.
found under the Cloud tab of the new project dialog box.
Name the project Chat.Functions.2.
Click OK to continue:3.

The next step is to create our first function:

Select Azure Functions v2 (.NET Core) at the top of the dialog box.1.
Select Http trigger as the trigger for our first function.2.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[224]

Change the Access rights from Admin to Anonymous.3.
Click OK to continue and our functions project will be created:4.

Our first function will return the connection information for the SignalR service. To do that,
we need to connect the function by adding a connection string to the SignalR service:

Go to the SignalR Service resource in the Azure Portal.1.
Go to the Keys tab and copy the connection string.2.
Go to the Function App resource and add the connection string under3.
Application Settings. Use AzureSignalRConnectionString as the name for
the setting.
Add the connection string to the Values array in the local.settings.json4.
file in the Visual Studio project to be able to run the function locally on the
development machine:

 {
 "IsEncrypted": false,
 "Values": {
 "AzureWebJobsStorage": "",
 "AzureWebJobsDashboard": ""
 "AzureSignalRConnectionString":

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[225]

"{EnterTheConnectingStringHere}"
 }
 }

Now, we can write the code for the function that will return the connection information. Go
to Visual Studio and follow these instructions:

Install the Microsoft.Azure.WebJobs.Extensions.SignalRService NuGet1.
package in the functions project. The package contains the classes we need to
communicate with the SignalR service. It is a prerelease package so we have to
check the Include prerelease checkbox. If an error occurs during this and you are
not able to install the package, make sure that you have the latest version of all
other packages in the project and try again.
Rename the function that was created when we created the functions project2.
as GetSignalRInfo.
Also, rename the class as GetSignalRInfo.3.
To implement the binding to the SignalR service, we will add a parameter of4.
the SignalRConnectionInfo type to the method of the function. The parameter
will also have the SignalRConnectionInfo attribute, which specifies HubName,
as in the following code.
Return the connection info parameter:5.

using Microsoft.AspNetCore.Http;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.Azure.WebJobs.Extensions.SignalRService;

 [FunctionName("GetSignalRInfo")]
 public static SignalRConnectionInfo GetSignalRInfo(
 [HttpTrigger(AuthorizationLevel.Anonymous)] HttpRequest req,
 [SignalRConnectionInfo(HubName = "chat")] SignalRConnectionInfo
 connectionInfo)
{
 return connectionInfo;
}

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[226]

Creating a message library
We will now define a couple of message classes that we will use to send the chat messages.
We will create a base message class that will contain information that is shared between all
types of messages. We will also create a separate project for the messages, which will be a
.NET Standard library. The reason that we will create it as a separate .NET Standard library
is that we then can reuse it in the app we will build in the next chapter.

Create a new .NET Standard 2.0 project and name it Chat.Messages.1.
Add a reference to Chat.Messages in the Chat.Functions project.2.
Create a new class and name it Message in the Chat.Messages project.3.
Add a TypeInfo property to the Message class. We need this property later in4.
Chapter 7, Building a Real-Time Chat Application, when we will carry out
serialization of the messages.
Add a property for the Id of the string type.5.
Add a property for the Timestamp of the DateTime type.6.
Add a property for the Username of the string type.7.
Add an empty constructor.8.
Add a constructor that takes a username as a parameter.9.
Set the values of all properties as in the following code:10.

public class Message
{
 public Type TypeInfo { get; set; }
 public string Id {get;set;}
 public string Username { get; set; }
 public DateTime Timestamp { get; set; }

 public Message(){}
 public Message(string username)
 {
 Id = Guid.NewGuid().ToString();
 TypeInfo = GetType();
 Username = username;
 Timestamp = DateTime.Now;
 }
}

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[227]

When a new client is connecting, a message will be sent to other users to indicate that they
have connected:

Create a new class called UserConnectedMessage.1.
Set Message as the base class.2.
Add an empty constructor.3.
Add a constructor that takes the username as a parameter and sends it to the4.
constructor of the base class, as shown in the following code:

public class UserConnectedMessage : Message
{
 public UserConnectedMessage() { }
 public UserConnectedMessage(string username) :
base(username) { }
}

When a client is sending a message with text, it will send a SimpleTextMessage:

Create a new class called SimpleTextMessage.1.
Add Message as the base class.2.
Add an empty constructor.3.
Add a constructor that takes the username as a parameter and sends it to the4.
constructor of the base class.
Add a string property called Text. Refer to the following code:5.

public class SimpleTextMessage : Message
{
 public SimpleTextMessage(){}
 public SimpleTextMessage(string username) :
base(username){}
 public string Text { get; set; }
}

If a user uploads an image, it will be sent to the functions as a base64 string:

Create a new class called PhotoMessage.1.
Add Message as the base class.2.
Add an empty constructor.3.
Add a constructor that takes the username as a parameter and sends it to the4.
constructor of the base class.
Add a string property called Base64Photo.5.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[228]

Add a string property called FileEnding as shown in the following code6.
snippet:

public class PhotoMessage : Message
{
 public PhotoMessage() { }
 public PhotoMessage(string username) : base(username) { }

 public string Base64Photo { get; set; }
 public string FileEnding { get; set; }
}

The last message we will create is used to send information about a photo to the user:

Create a new class called PhotoUrlMessage.1.
Add Message as the base class.2.
Add an empty constructor.3.
Add a constructor that takes the username as a parameter and sends it to the4.
constructor of the base class.
Add a string property called Url. Refer to the following code:5.

public class PhotoUrlMessage : Message
{
 public PhotoUrlMessage() {}
 public PhotoUrlMessage(string username) : base(username){}

 public string Url { get; set; }
}

Creating a storage helper
We will create a helper to share some of the code that we will write for Azure Blob Storage
between the send message function and the clear photos function that we will create. When
we are creating the Function App in the Azure Portal, a setting for the connection string is
created so we just have to add this to the local.settings.json file in order to be able to
run it locally. The name for the connection string will be StorageConnection:

 {
 "IsEncrypted": false,
 "Values": {
 "AzureWebJobsStorage": "",
 "AzureWebJobsDashboard": "",
 "AzureSignalRConnectionString": "{EnterTheConnectingStringHere}"
 "StorageConnection": "{EnterTheConnectingStringHere}"

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[229]

 }
 }

For the helper, we will create a new static class, as given in the following steps:

Install the WindowsAzure.Storage NuGet package in the Chat.Functions1.
project. This is to get the classes we need to work with storage.
Create a new class called StorageHelper in the Chat.Functions project.2.
Make the class static.3.
Create a new static method called GetContainer. 4.
Use the static GetEnviromentVariable method on the Environment class to5.
read the connection string for storage.
Create a CloudStorageAccount object of it using the static Parse method6.
on CloudStorageAccount.
Create a new CloudBlobClient using the CreateCloudBlobClient method7.
on the CloudStorageAccount class.
Get the container reference using the GetContainerReference method on the8.
CloudBlobClient class and pass the name of the container we created earlier in
the chapter as an argument:

using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.Blob;
using System;
using System.IO;
using System.Threading.Tasks;

public static class StorageHelper
{

 private static CloudBlobContainer GetContainer()
 {
 string storageConnectionString =
 Environment.GetEnvironmentVariable("StorageConnection");
 var storageAccount =
 CloudStorageAccount.Parse(storageConnectionString);
 var blobClient = storageAccount.CreateCloudBlobClient();

 var container =
 blobClient.GetContainerReference("chatimages");

 return container;
 }
}

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[230]

To upload files to the blob storage, we will create a method that has the bytes of the photo
and what type of photo it is as parameters. The photo type will be defined by its file ending:

Create a new async static method that returns Task<string>.1.
Add a byte[] and a string parameter to the method. Name the parameters2.
bytes and fileEnding.
Call the GetContainer method to get a reference to the container.3.
Define a filename for the new blob and use it as an argument4.
to GetBlockBlobReference in the CloudBlobContainer class. Use GUID as
the filename to make sure that it is unique.
Create a MemoryStream of the bytes.5.
Use the UploadFromStreamAsync method on the BlockBlobReference class6.
to upload the photo to the cloud.
Return the AbsoluteUri of the blob:7.

public static async Task<string> Upload(byte[] bytes, string
fileEnding)
{
 var container = GetContainer();
 var blob = container.GetBlockBlobReference($"
 {Guid.NewGuid().ToString()}.{fileEnding}");

 var stream = new MemoryStream(bytes);
 await blob.UploadFromStreamAsync(stream);

 return blob.Uri.AbsoluteUri;
}

The second public method that we will add to the helper is a method to delete all photos
that are older than an hour:

Create a new async static method called Clear that returns Task.1.
Use the GetContainer method to get a reference to the container.2.
Get all blobs in the container by calling the ListBlobsSegmentedAsync method3.
with the arguments shown in the following code.
Loop through all blobs that are of the CloudBlob type.4.
Add an if statement to check whether the photos were created more than an5.
hour ago. If so, the blob should be deleted:

public static async Task Clear()
{
 var container = GetContainer();

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[231]

 var blobList = await
 container.ListBlobsSegmentedAsync(string.Empty, false,
 BlobListingDetails.None, int.MaxValue, null, null, null);

 foreach(var blob in blobList.Results.OfType<CloudBlob>())
 {
 if(blob.Properties.Created.Value.AddHours(1) <
DateTime.Now)
 {
 await blob.DeleteAsync();
 }
 }
}

Creating a function for sending messages
To handle messages that are sent by the user, we will create a new function:

Create a function with an HttpTrigger and with anonymous access rights.1.
Name the function Messages.2.
Add a collection of SignalRMessage as in the following code.3.
Use the SignalR attribute to specify the hub name:4.

[FunctionName("Messages")]
 public async static Task SendMessages(
 [HttpTrigger(AuthorizationLevel.Anonymous, "post")] object
 message,
 [SignalR(HubName = "chat")] IAsyncCollector<SignalRMessage>
 signalRMessages)
 {

The message parameter will be the message that the user sent. It will be of
the JObject type (from Newtonsoft.Json). We need to convert it to the Message type
that we created earlier. To do that, we need to add a reference to the Chat.Messages
project. However, because the parameter is of an object type, we first need to cast it
to JObject. Once we have done this, we can use the ToObject method to get a Message:

var jsonObject = (JObject)message;
var msg = jsonObject.ToObject<Message>();

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[232]

If the message is a PhotoMessage, we will upload the photo to blob storage. All other
messages will be sent directly to the SignalR service using the AddAsync method on the
signalRmessages parameter:

if (msg.TypeInfo.Name == nameof(PhotoMessage))
{
 //ToDo: Upload the photo to blob storage.
}

await signalRMessages.AddAsync(new SignalRMessage
 {
 Target = "newMessage",
 Arguments = new[] { message }
 });

Before we upload the photo to blob storage with the helper we created, we need to convert
the base64 string to a byte[]:

Use the static FromBase64String method on the Converter class to convert the1.
base64 string to a byte[].
Upload the photo to blob storage with the static Upload method2.
on StorageHelper.
Create a new PhotoUrlMessage, pass the username to the constructor, and set it3.
as the value for the msg variable.
Set the Timestamp property to the value of the original message, because we are4.
interested in when the message was created by the user.
Set the Id property to the value of the original message so that it will be handled5.
as the same message on the client.
Set the Url property to the URL that was returned by StorageHelper when we6.
uploaded the photo.
Use the AddAsync method on the signalRMessages variable to send a message7.
to the SignalR service.
Add an empty return statement:8.

if (msg.TypeInfo.Name == nameof(PhotoMessage))
{
 var photoMessage = jsonObject.ToObject<PhotoMessage>();
 var bytes = Convert.FromBase64String(photoMessage.Base64Photo);
 var url = await StorageHelper.Upload(bytes,
 photoMessage.FileEnding);
 msg = new PhotoUrlMessage(photoMessage.Username)
 {
 Id = photoMessage.Id,

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[233]

 Timestamp = photoMessage.Timestamp,
 Url = url
 };

 await signalRMessages.AddAsync(new SignalRMessage
 {
 Target = "newMessage",
 Arguments = new[] { message }
 });
 return;
}

Using the Computer Vision API to scan for adult
content
To minimize the risk that offensive photos are shown in our chat, we will use machine
learning to try to find problematic material and prevent it from being posted to the chat.
For that, we will use the Computer Vision API in Azure, which is a part of the Azure
Cognitive services. To use the API, we need a key. We will add it to the application settings
of the Function App:

Go to the Azure Portal.1.
Go to the resource we created for the Custom Vision API.2.
The key can be found under the Keys tab. You can use either Key 1 or Key 2.3.
Go to the resource for Function App.4.
Add the Key as an application setting named ComputerVisionKey. Also, add5.
the key to local.settings.json.
Also, add the Endpoint as an application setting. Use the name6.
ComputerVisionEndpoint. The Endpoint can be found under the Overview
tab of the Function App resource. Also, add the Endpoint to
local.settings.json.
Install7.
the Microsoft.Azure.CognitiveServices.Vision.ComputerVision
NuGet package in the Chat.Functions project in Visual Studio. This is to get
the necessary classes to use the Computer Vision API.
The code for the call to the Computer Vision API will be added to the Message8.
function. After that, we convert the base 64 string to a byte[].
Create a MemoryStream based on the byte array.9.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[234]

Create a ComputerVisonClient as shown in the following code and send the10.
credentials to the constructor.
Create a list of which features we will use when we are analyzing the photo. In11.
this case, we will use the VisualFeatureTypes.Adult feature.
Use the AnalyzeImageInStreamAsync method on ComputerVisionClient12.
and pass the stream and feature list to the constructor to analyze the photo.
If the result is IsAdultContent, stop the execution of the function by using an13.
empty return statement:

var stream = new MemoryStream(bytes);
 var subscriptionKey =
 Environment.GetEnvironmentVariable("ComputerVisionKey");
 var computerVision = new ComputerVisionClient(new
 ApiKeyServiceClientCredentials(subscriptionKey), new
 DelegatingHandler[] { });

 computerVision.Endpoint =
 Environment.GetEnvironmentVariable("ComputerVisionEndpoint");

 var features = new List<VisualFeatureTypes>() {
 VisualFeatureTypes.Adult };

 var result = await
 computerVision.AnalyzeImageInStreamAsync(stream, features);

if (result.Adult.IsAdultContent)
{
 return;
}

Creating a scheduled job to clear photos from storage
The last thing we will do is clean the blob storage at regular intervals and delete photos that
are older than one hour. We will do that by creating a function that is triggered
by TimeTrigger:

To create a new function, right-click the Chat.Functions project and click New1.
Azure Function, which will be found under the Add menu.
Name the function ClearPhotos.2.
Select that the function will use a Time trigger, because we want it to run on a3.
time interval.

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[235]

Use a chron expression to set the Schedule to 0 */60 * * * * to make it run4.
every 60 minutes:

The only thing we will do in the ClearPhotos function is call the Clear method of the
StorageHelper that we created earlier in this chapter:

[FunctionName("ClearPhotos")]
 public static async Task Run(
 [TimerTrigger("0 */60 * * * *")]TimerInfo myTimer, ILogger log)
{
 await StorageHelper.Clear();
}

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[236]

Deploying the functions to Azure
The last step in this chapter is to deploy the functions to Azure. You can do that as a part of
a CI/CD pipeline, for example with Azure DevOps. But the easiest way to deploy the
functions in this case is to do it directly from Visual Studio. Follow these steps to deploy the
functions:

Right-click on the Chat.Functions project and select Publish.1.
Select the Select existing option. Also, check the Run from package file option.2.
Click the Create profile button.3.
Sign in to the same Microsoft account that we used in the Azure portal when we4.
were creating the Function App.
Select the subscription that contains the Function App. All Function Apps we5.
have in the subscription will now be loaded.
Select the Function App and click OK. 6.
When the profile is created, click the Publish button.7.

The following screenshot shows the last step. After that, the publishing profile is created:

Setting up a Backend for a Chat App Using Azure Services Chapter 6

[237]

Summary
In this chapter, we have learned how to set up a serverless backend for real-time
communication with Azure Functions and the Azure SignalR Service. We have also learned
how to use blob storage and machine learning with the Azure Cognitive Services to scan for
adult content in photos.

In the next chapter, we will build a chat app that will use the backend we have built in this
project.

7
Building a Real-Time Chat

Application
In this chapter, we will build a chat app with real-time communication. In the app, you will
be able to send and receive messages and photos to and from other users, which will
appear without the page needing to be refreshed. We will look at how we can use SignalR
to implement a real-time connection with the server.

The following topics will be covered in this chapter:

How to use SignalR in a Xamarin.Forms app
How to use template selectors for a ListView
How to use CSS-styling in a Xamarin.Forms app

Building a Real-Time Chat Application Chapter 7

[239]

Technical requirements
Before you can build the app for this project, you need to build the backend that we
detailed in Chapter 6, Setting up a Backend for a Chat App Using Azure Services. You will also
need to have Visual Studio for Mac or PC installed, as well as the Xamarin
components. See Chapter 1, Introduction to Xamarin, for more details on how to set up your
environment. The source code for this chapter is available in the GitHub repository, which
is available at https:/ /github. com/ PacktPublishing/ Xamarin. Forms- Projects/ tree/
master/Chapter-6- and- 7.

Project overview
When building a chat app, it is really important to have real-time communication because
the user expects messages to arrive more or less immediately. To achieve this, we will use
SignalR, which is a library for real-time communication. SignalR will use WebSockets if
they are available and, if not, it will have several fallback options it can use instead. In the
app, a user will be able to send text and photos from the photo library on the device.

The build time for this project is about 180 minutes.

Getting started
We can use either Visual Studio 2017 on a PC or Visual Studio for Mac to do this project. To
build an iOS app using Visual Studio for PC, you have to have a Mac connected. If you
don't have a access to a Mac at all, you can choose to just build the Android part of the app.

https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-6-and-7

Building a Real-Time Chat Application Chapter 7

[240]

Building the chat app
It's time to start building the app. We recommend that you use the same method as in
Chapter 6, Setting up a Backend for a Chat App Using Azure Services, because this will make
code sharing easier. In that solution, create a Mobile App (Xamarin.Forms) with the name
Chat:

Building a Real-Time Chat Application Chapter 7

[241]

Select the Blank template and use .NET Standard as the Code Sharing Strategy. Select iOS
and Android as the platforms. After we have created the project, we will update all NuGet
packages to the latest versions because the project templates are not updated as often as the
packages that are used inside the templates:

Creating the chat service
The first thing we will do is create a chat service that will be used by both the iOS and
Android applications. To make the code more testable and to make it easier to replace the
chat service if we want to use another provider in the future, we will follow these steps:

In the Chat project, add a reference to the Chat.Messages project.1.
Create a new folder in the Chat project called Services.2.
Create a new interface called IChatService in the Services folder.3.
Create a bool property called IsConnected.4.
Create a method called SendMessage that takes Message as an argument5.
and returns Task.
Create a method called CreateConnection that returns Task. The method will6.
create and start a connection to the SignalR service.

Building a Real-Time Chat Application Chapter 7

[242]

Create a method called Dispose that returns Task. The method will be used7.
when the app goes to sleep to ensure that the connection to the SignalR service is
properly closed:

using Chat.Events;
using Chat.Messages;
using System;
using System.Threading.Tasks;

namespace Chat.Services
{
 public interface IChatService
 {
 bool IsConnected { get; }

 Task CreateConnection();
 Task SendMessage(Message message);
 Task Dispose();
 }
}

The interface will also contain an event, but before we add the event to the interface, we
will create an EventArgs class that the event will use. We will do this as follows:

In the Chat project, create a new folder called Events.1.
Create a new class called NewMessageEventArgs in the Events folder.2.
Add EventArgs as a base class.3.
Create a property called Message of the Message type with a public getter and a4.
private setter.
Create an empty constructor.5.
Create a constructor with Message as a parameter.6.
Set the parameter of the constructor to the Message property.7.

The following code is the result of these steps:

using Chat.Messages;
using System;
namespace Chat.Events
{
 public class NewMessageEventArgs : EventArgs
 {
 public Message Message { get; private set; }

 public NewMessageEventArgs(Message message)
 {

Building a Real-Time Chat Application Chapter 7

[243]

 Message = message;
 }
 }
}

Now that we have created a new EventArgs class, we can use it and add an event to the
interface. We will name the event NewMessage:

public interface IChatService
{
 event EventHandler<NewMessageEventArgs> NewMessage;

 bool IsConnected { get; }

 Task CreateConnection();
 Task SendMessage(Message message);
 Task Dispose();
}

The first thing we will do in the service is to make a call to the GetSignalRInfo service
that we created in Chapter 6, Setting up a Backend for a Chat App Using Azure Services, to
obtain information about how to connect to the SignalR service. To serialize that
information, we will create a new class:

 In the Chat project, create a new folder called Models.1.
Create a new class called ConnectionInfo.2.
Add a string property called Url for the string.3.
Add a string property called AccessToken for the string:4.

public class ConnectionInfo
{
 public string Url { get; set; }
 public string AccessToken { get; set; }
}

Now that we have the interface and a model to obtain the connection information, it is time
to create an implementation of the IChatService interface. To use SignalR, we need to
add a package for NuGet that will give us the necessary classes. Follow these steps:

In the Chat project, install the NuGet1.
package, Microsoft.AspNetCore.SignalR.Client.
In the Services folder, create a new class called ChatService.2.
Add and implement the IChatService interface to the ChatService.3.

Building a Real-Time Chat Application Chapter 7

[244]

Add a private field for HttpClient called httpClient.4.
Add a private field for HubConnection called hub.5.
Add a private field for SemaphoreSlim called semaphoreSlim and create a new6.
instance with an initial and maximum count of one in the constructor:

using Chat.Events;
using Chat.Messages;
using Microsoft.AspNetCore.SignalR.Client;
using Newtonsoft.Json;
using System;
using System.Net.Http;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

public class ChatService : IChatService
{
 private HttpClient httpClient;
 private HubConnection hub;
 private SemaphoreSlim semaphoreSlim = new SemaphoreSlim(1, 1);

 public event EventHandler<NewMessageEventArgs> NewMessage;
 public bool IsConnected { get; set; }

 public async Task CreateConnection()
 {
 }

 public async Task SendMessage(Message message)
 {
 }
 public async Task Dispose()
 {
 }
}

We will start with the CreateConnection, which will call the GetSignalRInfo function.
We will then use the information to connect to the SignalR service and start listening for
messages. To do this, carry out the following steps:

Add a call to the WaitAsync method of SemaphoreSlim to make sure that only1.
one thread can use the method at any one time.
Check weather httpClient is null. If it is, create a new instance. We will reuse2.
the instance of the httpClient because this is better from a performance
perspective.

Building a Real-Time Chat Application Chapter 7

[245]

Make a call to GetSignalRInfo and serialize the result to a ConnectionInfo3.
object:

public async Task CreateConnection()
{
 await semaphoreSlim.WaitAsync();

 if(httpClient == null)
 {
 httpClient = new HttpClient();
 }

 var result = await
httpClient.GetStringAsync("https://{theNameOfTheFunctionApp}.azurew
ebsites.net/api/GetSignalRInfo");

 var info = JsonConvert.DeserializeObject<Models.ConnectionInfo>
 (result);
}

When we have the information about how to connect to the SignalR service, we can use the
HubConnectionBuilder to create a connection. We can then start listening for messages:

Create a new HubConnectionBuilder.1.
Use the WithUrl method to specify the URL to the SignalR service as the first2.
argument. The second argument is an Action of the HttpConnectionObject
type. This means that you will get an object of the HttpConnectionObject type
as a parameter.
In the action, set AccessTokenProvider to a Func that returns the value of the3.
AccessToken property on the ConnectionInfo object.
Use the Build method of the HubConnectionBuilder to create a connection4.
object.
Add an Action that will run when new messages arrive using the On<object>5.
method on the HubConnection object. The action will be specified as the second
argument. For the first argument, we will specify the name of the target (we
specified the target in Chapter 6, Setting up a Backend for a Chat App Using Azure
Services, when we sent the message), which is newMessage.
In the Action, convert the incoming message to a string using the ToString6.
method and deserialize it to a Message object so we can read its TypeInfo
property. To do this, use the JsonConvert class and the
DeserializeObject<Message> method.

Building a Real-Time Chat Application Chapter 7

[246]

The reason we have to deserialize the object twice is that we only get
the value of properties in the Message class the first time. When we
know which subclass of Message we received, we can use this to
deserialize that information for that class. We are casting it
to Message so we can pass it to the NewMessageEventArgs object. In
this case, we will not lose the properties of the subclass. To access the
properties, we just cast the class back to the subclass.

When we know what type the message is, we can use this to deserialize the7.
object to the actual type. Use the DeserializeObject method of JsonConvert
and pass the JSON string and the TypeInfo to it and then cast it to Message.
Invoke the NewMessage event and pass the current instance of the8.
ChatService and a new NewMessageEventArgs object to it. Pass the Message
object to the constructor of NewMessageEventArgs.
Once we have a connection object and we have configured what will happen9.
when a message arrives, we will start to listen to messages with the StartAsync
method of the HubConnection.
Set the IsConnected property to true.10.
Use the Release method of SemaphoreSlim to let other threads go to the11.
CreateConnection method:

var connectionBuilder = new HubConnectionBuilder();
connectionBuilder.WithUrl(info.Url,
(Microsoft.AspNetCore.Http.Connections.Client.HttpConnectionOpt
ions obj) =>
 {
 obj.AccessTokenProvider = () => Task.Run(() =>
 info.AccessToken);
 });

hub = connectionBuilder.Build();
hub.On<object>("newMessage", (message) =>
{
 var json = message.ToString();
 var obj = JsonConvert.DeserializeObject<Message>(json);
 var msg = (Message)JsonConvert.DeserializeObject(json,
 obj.TypeInfo);
 NewMessage?.Invoke(this, new NewMessageEventArgs(msg));
});

await hub.StartAsync();

IsConnected = true;
semaphoreSlim.Release();

Building a Real-Time Chat Application Chapter 7

[247]

The next method to implement is the SendMessage method. This will send a message to an
Azure function, which will add the message to the SignalR service:

Use the Serialize method on the JsonConvert class to serialize the Message1.
object to JSON.
Create a StringContent object and pass the JSON string as the first argument,2.
Encoding.UTF8 as the second argument, and the content-type
application/json as the last argument to the constructor.
Use the PostAsync method on the HttpClient object with the URL as the first3.
argument and the StringContent object as the second argument to post the
message to the function:

public async Task SendMessage(Message message)
{
 var json = JsonConvert.SerializeObject(message);

 var content = new StringContent(json, Encoding.UTF8,
 "application/json");
 await
 httpClient.PostAsync
("https://{TheNameOfTheFunctionApp}.azurewebsites.net/api/messages"
content);
}

The last method to implement is the Dispose method. This will close the connection when
the app is entering the background state, for example when a user hits the home button or
switches app:

Use the WaitAsync method to ensure that there is no thread that is trying to1.
create a connection or to dispose of a connection when we are running the
method.
Add an if statement to ensure that the hub field isn't null.2.
If it is not null, call the StopAsync method and the DisposeAsync method of3.
the HubConnection.
Set the httpClient field to null.4.
Set IsConnected to false.5.
Release SemaphoreSlim with the Release method:6.

public async Task Dispose()
{
 await semaphoreSlim.WaitAsync();

 if(hub != null)

Building a Real-Time Chat Application Chapter 7

[248]

 {
 await hub.StopAsync();
 await hub.DisposeAsync();
 }

 httpClient = null;

 IsConnected = false;

 semaphoreSlim.Release();
}

Initializing the app
We are now ready to write the initialization code for the app. We will set up Inversion-of-
Control (IoC) and carry out the necessary configuration.

Creating a resolver
We will create a helper class that will ease the process of resolving object graphs through
Autofac. This will help us to create types based on a configured IoC container. In this
project, we will use Autofac as the IoC library:

Install the NuGet package, Autofac, in the Chat project.1.
Create a new class called Resolver in the Chat project.2.
Add a private static field called container of the IContainer type (from3.
Autofac).
Add a public static method called Initialize with IContainer as a4.
parameter. Set the value of the parameter to the container field.
Add a generic static public method called Resolve, which will return an instance5.
that is based on the argument type with the Resolve method of IContainer:

using Autofac;

public class Resolver
{
 private static IContainer container;

 public static void Initialize(IContainer container)
{
 Resolver.container = container;
 }

Building a Real-Time Chat Application Chapter 7

[249]

 public static T Resolve<T>()
 {
 return container.Resolve<T>();
 }
}

Creating a Bootstrapper
Here, we will create a Bootstrapper class that we will use to set up the common
configurations that we need in the startup phase of the app. Usually, there is one part of the
Bootstrapper for each target platform and one that is shared for all platforms. In
this project, we only need the shared part:

Create a new class called Bootstrapper in the Chat project.1.
Add a new public static method called Init.2.
Create a new ContainerBuilder and register the types to the container.3.
Create a Container using the Build method of the ContainerBuilder. Create4.
a variable called container that should contain the instance of the Container.
Use the Initialize method on the Resolver and pass the container variable5.
as an argument, as shown in the following code:

using Autofac;
using Chat.Chat;
using System;
using System.Reflection;

public class Bootstrapper
{
 public static void Init()
 {
 var builder = new ContainerBuilder();

 builder.RegisterType<ChatService>().As<IChatService>
 ().SingleInstance();

 var currentAssembly = Assembly.GetExecutingAssembly();

 builder.RegisterAssemblyTypes(currentAssembly)
 .Where(x => x.Name.EndsWith("View",
 StringComparison.Ordinal));

 builder.RegisterAssemblyTypes(currentAssembly)
 .Where(x => x.Name.EndsWith("ViewModel",
 StringComparison.Ordinal));

Building a Real-Time Chat Application Chapter 7

[250]

 var container = builder.Build();

 Resolver.Initialize(container);
 }
}

Call the Init method of the Bootstrapper in the constructor in the App.xaml.cs file
after the call to InitializeComponents:

public App()
{
 InitializeComponent();
 Bootstrapper.Init();
 MainPage = new MainPage();
}

Creating a base ViewModel
We now have a service that is responsible for handling the communication with the
backend. It's time to create a view model. First, however, we will create a base view model,
where we can put the code that will be shared between all view models of the app:

Create a new folder called ViewModels.1.
Create a new class called ViewModel.2.
Make the new class public and abstract.3.
Add a static field called Navigation of the INavigation type. This will be used4.
to store a reference to the navigation services provided by Xamarin.Forms.
Add a static field called User of the string type. The field will be used when5.
connecting to the chat service so that messages you send will be displayed with
your name attached.
Add and implement the INotifiedPropertyChanged interface. This6.
is necessary because we want to use data bindings.
Add a Set method that will make it easier for us to raise7.
the PropertyChanged event from the INotifiedPropertyChanged interface.
The method will check if the value has changed. If it has, it will raise the event:

using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;
using Xamarin.Forms;

public abstract class ViewModel : INotifyPropertyChanged

Building a Real-Time Chat Application Chapter 7

[251]

{
 public static INavigation Navigation { get; set; }
 public static string User { get; set; }

 public event PropertyChangedEventHandler PropertyChanged;
 protected void Set<T>(ref T field, T newValue,
 [CallerMemberName] string propertyName =
 null)
 {
 if (!EqualityComparer<T>.Default.Equals(field, newValue))
 {
 field = newValue;
 PropertyChanged?.Invoke(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }
}

Creating the Mainview
Now that we have our ViewModel base class set up and all of the code for receiving and
sending messages, it's time to create the two views. These will act as the user interface of
the app.

We are going to start by creating the main view. This is the view that will be displayed
when the user starts the app. We will add an entry control (an input textbox) so that the
user can enter a username and add a command to navigate to the chat view.

The main view will be composed of the following:

A ViewModel file called MainViewModel.cs
An XAML file called MainView.xaml, which contains the layout
A code-behind file called MainView.xaml.cs, which will carry out the data-
binding

Let's start by creating the ViewModel for the MainView.

Building a Real-Time Chat Application Chapter 7

[252]

Creating MainViewModel
The MainViewModel that we are about to create will hold a username that the user will
enter in the UI. It will also contain a Command property called Start that will be bound to a
Button that the user will click after entering their username:

In the ViewModel folder, create a class called MainViewModel.cs.1.
Inherit the class from ViewModel.2.
Make the class public.3.
Add a property called Username of the string type.4.
Add a property called Start of the ICommand type and implement it as shown5.
as the following. The Start command will assign the Username from the
Username property and assign it to the static User property in the base
ViewModel. It then creates a new instance of ChatView by using the Resolver
and pushing it onto the navigation stack.

MainViewModel should now look as follows:

 using System.Windows.Input;
 using Chat.Views;
 using Xamarin.Forms;

 namespace Chat.ViewModels
 {
 public class MainViewModel : ViewModel
 {
 public string Username { get; set; }

 public ICommand Start => new Command(() =>
 {
 User = Username;

 var chatView = Resolver.Resolve<ChatView>();
 Navigation.PushAsync(chatView);
 });
 }
 }

Now that we have the MainViewModel, we need a view that goes with it. It's time to create
the MainView.

Building a Real-Time Chat Application Chapter 7

[253]

Creating the MainView
The MainView will display a user interface that allows the user to enter a name before
starting the chat. This section will be about creating the MainView XAML file and the code
behind that view.

We will start by removing the template-generated MainPage and replacing it with an
MVVM-friendly MainView.

Replacing the MainPage
When we created the app, the template generated a page called MainPage. Since we are
using MVVM as a pattern, we need to remove this page and replace it with a view called
MainView instead:

In the root of the Chat project, delete the page called MainPage.1.
Create a new folder called Views.2.
Add a new XAML page called MainView in the Views folder.3.

Editing the XAML
It's now time to add some content to the newly created MainView.xaml file. The icons that
are mentioned next can be found in the same folder that they should be added to if you go
to the project on GitHub. The GitHub URL can be found at the beginning of this chapter.
There is a lot going on here, so make sure to check what you write against the code:

Add the chat.png icon to the Drawable folder that is inside the Resources1.
folder in the Android project.
Add the chat@2x.png icon to the Resources folder in the iOS project.2.
Open the MainView.xaml file.3.
Add a Title property in the ContentPage node. This will be the title displayed4.
in the navigation bar of the app.
Add a Grid and define two rows in it. The first one should have a height of "*"5.
and the second one of "2*". This will partition the space in two rows, of which
the first will take up 1/3 of the space and the second will take up 2/3 of the
space.
Add an Image with the Source set to "chat.png" and its VerticalOptions6.
and HorizontalOptions set to "Center".

Building a Real-Time Chat Application Chapter 7

[254]

Add StackLayout with the Grid.Row set to "1", the Padding set to "10", and7.
the Spacing set to "20". The Grid.Row property positions the StackLayout in
the second row. The Padding adds 10 units of space around the StackLayout
and the Spacing defines the amount of space between each element added in the
StackLayout.
In the StackLayout, add an Entry node that has its Text property set to8.
"{Binding UserName}" and a Placeholder property set to "Enter a
username". The binding of the Text node will make sure that, when the user
enters a value in the Entry control, it's updated in the ViewModel.
In the StackLayout, add a Button control that will have the Text property set9.
to "Start" and its Command property set to "{Binding Start}". The
Command property binding will execute when the user taps the button. It will run
the code that we defined in the MainViewModel class.

When finished, the code should look as follows:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Chat.Views.MainView" Title="Welcome">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="2*" />
 </Grid.RowDefinitions>
 <Image Source="chat.png" VerticalOptions="Center"
 HorizontalOptions="Center" />
 <StackLayout Grid.Row="1" Padding="10" Spacing="20">
 <Entry Text="{Binding Username}"
 Placeholder="Enter a username" />
 <Button Text="Start" Command="{Binding Start}" />
 </StackLayout>
 </Grid>
 </ContentPage>

The layout is finished and we now need to turn our focus to the code behind this view to
wire up some loose ends.

Building a Real-Time Chat Application Chapter 7

[255]

Fixing the code behind the view
As with all views, when using MVVM, we need to pass our view a ViewModel. Since we
are using dependency injection in this project, we will pass it through the constructor and
then assign it to the BindingContext of the view itself. We will also make sure that we
enable safe areas to avoid controls being partially hidden behind the iPhone X notch at the
top:

Open the MainView.xaml.cs file.1.
Add a parameter called viewModel of the MainViewModel type in the2.
constructor of the MainView class. The argument for this parameter will be
injected by Autofac at runtime.
Add a platform-specific statement that instructs the application to use safe3.
areas on iOS. A safe area makes sure that the app does not use the space on the
side of the notch at the top of the screen on an iPhone X.
Assign the viewModel argument to the BindingContext property of the view.4.

The changes made are marked in bold in the code, as follows:

using Chat.ViewModels;
using Xamarin.Forms;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;
using Xamarin.Forms.Xaml;

public partial class MainView : ContentPage
{
 public MainView(MainViewModel viewModel)
 {
 InitializeComponent();

 On<Xamarin.Forms.PlatformConfiguration.iOS>
 ().SetUseSafeArea(true);

 BindingContext = viewModel;
 }
 }

Our MainView is complete but we still need to tell the application to use it as the entry
point view.

Building a Real-Time Chat Application Chapter 7

[256]

Setting the main view
The entry point view, also referred to as the application's MainPage, is set during the
initialization of a Xamarin.Forms app. Usually, it is set in the constructor of the App
class. We will be creating the MainView through the resolver we created earlier and
wrapping it in NavigationPage to enable platform-specific navigation on the device that
the app runs on:

Open the App.xaml.cs file.1.
Resolve an instance to a MainView class by using the Resolver and storing it in2.
a variable called mainView.
Create a new instance of NavigationPage by passing the mainView variable as3.
a constructor argument and assigning it to a variable called navigationPage.
Assign the navigationPage.Navigation property to the static Navigation4.
property on the ViewModel type. This property will be used when navigating
between pages later on.
Assign the navigationPage variable to the MainPage property on the App class.5.
This sets the start view of our application:

public App()
{
 InitializeComponent();
 Boostrapper.Init();

 var mainView = Resolver.Resolve<MainView>();
 var navigationPage = new NavigationPage(mainView);
 ViewModel.Navigation = navigationPage.Navigation;
 MainPage = navigationPage;
}

That's it for the MainView; nice and easy. Let's now move on to something more
interesting: the ChatView that will be used to send and receive messages.

Creating the ChatView
The ChatView is a standard chat client. It will have an area for displaying incoming and
outgoing messages and a text field at the bottom in which the user can type a message. It
will also have a button for taking a photo and a button for sending messages if the user
doesn't hit return on the on-screen keyboard.

Building a Real-Time Chat Application Chapter 7

[257]

We will start by creating the ChatViewModel that contains all of the logic by acting as the
glue between the view and the model. Our model, in this case, is represented by our
ChatService.

After that, we will create the ChatView that handles the rendering of the Graphical User
Interface (GUI).

Creating the ChatViewModel
As stated previously, the ChatViewModel is the glue between the visual representation
(the View) and the model (which is basically our ChatService). The ChatViewModel will
handle the storing of messages and the communication with the ChatService by hooking
up the functionality to send and receive messages.

Creating the class
The ChatViewModel is a simple class that inherits from the ViewModel base class we
created earlier. In the first code exercise, we will create the class, adding relevant using
statements and a property called Messages in which we will store the messages that we
have received. The view will use the Message collection to display the messages in a
ListView.

Since this is a large block of code, we recommend that you write it first and then go over the
numbered list to get to grips with what has been added to the class:

Create a new class called ChatViewModel in the ViewModels folder of the Chat1.
project.
Make the class public and inherit it from the ViewModel base class to gain the2.
common base functionality from the base class.
Add a readonly property called chatService of the IChatService type. This3.
will store a reference to an object that implements IChatService and make the
concrete implementation of ChatService replaceable. It's good practice to
expose any service as an interface.
Add a public property called Messages of the public4.
ObservableCollection<Message> type with a private setter. This collection
will hold all messages. The private setter makes the property inaccessible from
outside this class. This maintains the integrity of the collection by ensuring
messages are not inserted anywhere but inside the class.

Building a Real-Time Chat Application Chapter 7

[258]

Add a constructor parameter called chatService of the5.
IChatService type. When we use dependency injection, this is where Autofac
will inject an object that implements IChatService.
In the constructor, assign the chatService parameter to the chatService6.
property. This will store the reference to the ChatService so that we can use it
during the lifetime of the ChatViewModel.
In the constructor, instantiate the Messages property to a new7.
ObservableCollection<Message>.
In the constructor, create a Task.Run statement that will call the8.
chatService.CreateConnection() method if the
chatService.IsConnected property is false. End the Task.Run statement
by sending a new UserConnected message:

 using System;
 using System.Collections.ObjectModel;
 using System.IO;
 using System.Linq;
 using System.Threading.Tasks;
 using System.Windows.Input;
 using Acr.UserDialogs;
 using Chat.Messages;
 using Chat.Services;
 using Plugin.Media;
 using Plugin.Media.Abstractions;
 using Xamarin.Forms;

 namespace Chat.ViewModels
 {
 public class ChatViewModel : ViewModel
 {
 private readonly IChatService chatService;
 public ObservableCollection<Message> Messages { get;
 private set; }

 public ChatViewModel(IChatService chatService)
 {
 this.chatService = chatService;

 Messages = new ObservableCollection<Message>();

 Task.Run(async() =>
 {
 if(!chatService.IsConnected)
 {
 await chatService.CreateConnection();

Building a Real-Time Chat Application Chapter 7

[259]

 }

 await chatService.SendMessage(new
 UserConnectedMessage(User));
 });
 }
 }
}

Now that we have our ChatViewModel instantiated, it's time to add a property that will
hold whatever the user is typing at that moment.

Adding the text property
At the bottom of the GUI, there will be a text field (an entry control) that will allow the user
to enter the message. This entry will be data-bound to a property that we will call Text in
the ChatViewModel. Whenever the user changes the text, this property will be set. This is
classic data binding:

Add a new private field called text of the string type.1.
Add a public property called Text that returns the private text field in the getter2.
and makes a call to the Set() method of the base class in the setter. The Set
method is defined in the ViewModel base class and will raise an event back to the
view if the property changes in the ChatViewModel, effectively keeping them in
sync:

private string text;
public string Text
{
 get => text;
 set => Set(ref text, value);
}

We now have a property ready for data-binding. Let's look at some code for receiving
messages from the ChatService.

Receiving messages
When a message is sent from the server, over SignalR, the ChatService will parse this
message and transform it into a Message object. It will then raise an event called
NewMessage, which is defined in the ChatService.

Building a Real-Time Chat Application Chapter 7

[260]

What we will do in this section is implement an event handler to handle these events and
add them to the Messages collection, unless a message with the same ID already exists in
the collection.

Again, follow the steps and look at the code:

In the ChatViewModel, create a method called ChatService_NewMessage,1.
which will be a standard event handler. This has two parameters: sender,
which is of the object type, and e, which is of
the Events.NewMessageEventArgs type.
Wrap the code in this method in a Device.BeginInvokeOnMainThread() since2.
we are going to add messages to the Message collection. Items added to this
collection will be modifying the view and any code that modifies the view must
be run on the UI thread.
In the Device.BeginInvokeOnMainThread, add the incoming message from3.
e.Message to the Messages collection if a message with the specific
Message.Id isn't already present in the collection. This is to avoid message
duplication.

The method should look as follows:

private void ChatService_NewMessage(object sender,
Events.NewMessageEventArgs e)
{
 Device.BeginInvokeOnMainThread(() =>
 {
 if (!Messages.Any(x => x.Id == e.Message.Id))
 {
 Messages.Add(e.Message);
 }
 });
}

When the event handler is defined, we need to hook it up in the constructor:

Locate the constructor of the ChatViewModel class.1.
Wire up a chatService.NewMessage event to the ChatService_NewMessage2.
handler we just created. A good place to do this is under the instantiation of the
Messages collection.

Building a Real-Time Chat Application Chapter 7

[261]

The code marked in bold is what we should add to the ChatViewModel class:

public ChatViewModel(IChatService chatService)
{
 this.chatService = chatService;

 Messages = new ObservableCollection<Message>();

 chatService.NewMessage += ChatService_NewMessage;

 Task.Run(async() =>
 {
 if(!chatService.IsConnected)
 {
 await chatService.CreateConnection();
 }

 await chatService.SendMessage(new UserConnectedMessage(User));
 });
}

The app will now be able to receive messages. How about sending them? Well, stay tuned!

Creating the LocalSimpleTextMessage class
To make it easier to recognize whether a message is coming from the server or whether it is
sent by the user of the device that the code is executing on, we will create a
LocalSimpleTextMessage:

Create a new class with the name LocalSimpleTextMessage in the1.
Chat.Messages project.
Add SimpleTextMessage as the base class.2.
Create a constructor with SimpleTextMessage as the parameter.3.
Set the value to all of the base properties with the value from the parameter, as in4.
the code that follows:

public class LocalSimpleTextMessage : SimpleTextMessage
{
 public LocalSimpleTextMessage(SimpleTextMessage message)
 {
 Id = message.Id;
 Text = message.Text;
 Timestamp = message.Timestamp;
 Username = message.Username;
 TypeInfo = message.TypeInfo;

Building a Real-Time Chat Application Chapter 7

[262]

 }
}

Sending text messages
Sending text messages is also very straightforward. We need to create a command that we
can data-bind for the GUI. The command will be executed either when the user hits return
or when the user clicks the send button. When a user does either of these two things, the
command will create a new SimpleTextMessage and pass in the current user to identify
the message for other users. We will copy the text from the ChatViewModel text property,
which, in turn, is in sync with the Entry control.

We will then add the message to the Messages collection, triggering the ListView that will
be handling messages to update. After that, we will pass the message to the ChatService
and clear the ChatViewModel text property. By doing this, we notify the GUI that it has
changed and let the data-binding magic clear the field.

Refer to the following steps and look at the code:

Create a new property called Send of the ICommand type.1.
Assign it a new Command instance and follow these steps to implement it.2.
Create a new instance of a SimpleTextMessage class by passing the User3.
property of the base class as an argument. Assign the instance to a variable called
message.
Set the Text property of the message variable to the Text property of the4.
ChatViewModel class. This copies the current text in the chat entry defined by
the GUI later on.
Create a LocalSimpleTextMessage object and pass in the message variable as a5.
constructor argument. The LocalSimpleTextMessage is
a SimpleTextMessage and makes it possible for the view to recognize it as a
message that the user of the app sent, effectively rendering it on the right side of
the chat area. Add the LocalSimpleTextMessage instance to the Messages
collection. This will display the message in the view.
Make a call to the chatService.SendMessage() method and pass the message6.
variable as an argument.

Building a Real-Time Chat Application Chapter 7

[263]

Empty the Text property of the ChatViewModel to clear the entry control in the7.
GUI:

public ICommand Send => new Command(async()=>
{
 var message = new SimpleTextMessage(User)
 {
 Text = this.Text
 };

 Messages.Add(new LocalSimpleTextMessage(message));

 await chatService.SendMessage(message);

 Text = string.Empty;
});

What good is a chat app if we can't send photos? Let's implement this in the next section.

Installing the Acr.UserDialogs plugin
Acr.UserDialogs is a plugin that makes it possible to use several standard user dialogs
from code that are shared between platforms. To install and configure it, there are a few
steps we need to follow:

Install the Acr.UserDialogs NuGet package to the Chat-, Chat.iOS, and1.
Chat.Android projects.
In the MainActivity.cs file, add UserDialogs.Init(this) in the OnCreate2.
method:

protected override void OnCreate(Bundle savedInstanceState)
{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;
 base.OnCreate(savedInstanceState);
 UserDialogs.Init(this);

 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);
 LoadApplication(new App());
}

Building a Real-Time Chat Application Chapter 7

[264]

Installing the Media plugin
We will use the Xam.Plugin.Media NuGet package to access the photo library of the
device. We need to install the package to the Chat-, Chat.iOS, and Chat.Android
projects in the solution. Before we can use the package, however, we need to do some
configuration for each platform. We will start with Android:

The plugin needs1.
the WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE permissions.
The plugin will add these for us, but we need to override the
OnRequestPermissionResult in the MainActivity.cs.
Call the OnRequestPermissionsResult method.2.
Add CrossCurrentActivity.Current.Init(this, savedInstanceState)3.
 after the initalizing of Xamarin.Forms in the OnCreate method in
the MainActivity.cs file, as shown in the following code:

public override void OnRequestPermissionsResult(int requestCode,
string[] permissions, Android.Content.PM.Permission[] grantResults)
{
Plugin.Permissions.PermissionsImplementation.Current.OnRequestPermi
ssionsResult(requestCode, permissions, grantResults);
}

We also need to add some configuration for the file paths from which the users can pick
photos:

Add a folder called xml to the Resources folder in the Android project.1.
Create a new XML file called file_paths.xml in the new folder.2.
Add the following code to file_paths.xml:3.

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <external-files-path name="my_images" path="Pictures" />
 <external-files-path name="my_movies" path="Movies" />
</paths>

The last thing we need to do to set up the plugin for the Android project is to add the code
that follows in the AndroidManifest.xml field inside the application element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
android:versionCode="1" android:versionName="1.0" package="xfb.Chat">
<uses-sdk android:minSdkVersion="21" android:targetSdkVersion="27" />
 <application android:label="Chat.Android">
 <provider
 android:name="android.support.v4.content.FileProvider"

Building a Real-Time Chat Application Chapter 7

[265]

 android:authorities="${applicationId}.fileprovider"
 android:exported="false" android:grantUriPermissions="true">
 <meta-data android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/file_paths"></meta-data>
 </provider>
 </application>
 </manifest>

For the iOS project, the only thing we need to do is to add the following four usage
descriptions to the info.plist:

<key>NSPhotoLibraryUsageDescription</key>
<string>This app needs access to photos.</string>
<key>NSPhotoLibraryAddUsageDescription</key>
<string>This app needs access to the photo gallery.</string>

Sending photos
To be able to send photos, we will have to use a source of photos. In our case, we will be
using the camera as the source. The camera will return the photo as a stream after it has
been taken. We need to convert that stream into a byte array and then finally Base64 encode
it into a string that is easy to send over SignalR.

The method that we are about to create, called ReadFully(), takes a stream and turns it
into a byte array, which is a step towards achieving the Base64-encoded string. This is a
standard piece of code that creates a buffer that will be used when we are reading the
Stream parameter and writing it to the MemoryStream in chunks until we have read the
full stream, hence the name of the method.

Follow along and check out the code:

Create a method called ReadFully that takes a stream called input as a1.
parameter and returns a byte array.
Declare a buffer variable of the byte[] type and initialize it as a 16 KB big byte2.
array. (16 * 1024)
Inside a using statement, create a new MemoryStream called ms.3.
Read the input of the Stream into the ms variable:4.

private byte[] ReadFully(Stream input)
{
 byte[] buffer = new byte[16 * 1024];
 using (MemoryStream ms = new MemoryStream())
 {
 int read;

Building a Real-Time Chat Application Chapter 7

[266]

 while ((read = input.Read(buffer, 0, buffer.Length)) >
0)
 {
 ms.Write(buffer, 0, read);
 }
 return ms.ToArray();
 }
}

Following this, we have a large chunk of code. This code exposes a command that will be
executed when the user clicks the photo button in the app. It starts by configuring
CrossMedia (a media plugin), which indicates the quality the photo should be, and then it
starts the photo picker. When the photo picker returns from the async call to
PickPhotoAsync(), we start uploading the photo. To notify the user, we use
UserDialogs.Instance.ShowLoading to create a loading overlay with a message to
indicate that we are uploading the photo.

We will then get the stream of the photo, convert it into a byte array using the
ReadFully() method, and Base64 encode it into a string. The string will be wrapped in a
PhotoMessage instance, added to the local Message collection of the ChatViewModel, and
then sent to the server.

Follow the steps and study the code:

Create a new property called Photo of the ICommand type. Assign it a new1.
Command instance.
Create an anonymous async method (a lambda expression) and add the code2.
defined in the upcoming steps into it. You can see the full code of the method in
the code section following.
Create a new instance of the PickMediaOptions class and set the3.
CompressionQuality property to 50.
Call CrossMedia.Current.PickPhotoAsync with an async method call and4.
save the result to a local variable called photo.
Install the NuGet package.5.
Show a message dialog by calling UserDialogs.Instance.ShowLoading()6.
with the text, "Uploading photo".
Get the photo stream by calling the GetStream() method of the photo variable7.
and save it to a variable called stream.

Building a Real-Time Chat Application Chapter 7

[267]

Convert the stream in to a byte array by calling the ReadFully() method.8.
Convert the byte array in to a Base64-encoded string using the9.
Convert.ToBase64String() method. Save the string to a variable called
base64photo.

Create a new PhotoMessage instance and pass the User as the constructor10.
argument. Set the Base64Photo property to the base64photo variable and the
FileEnding property to the file ending of the photo.Path string, using the
Split function of the string object. Store the new PhotoMessage instance in a
variable called message.
Add the message object to the Messages collection.11.
Send the message to the server by calling the async12.
chatService.SendMessage() method.
Hide the loading dialog by calling UserDialogs.Instance.HideLoading().13.

The code that follows shows how this can be implemented:

public ICommand Photo => new Command(async() =>
{
 var options = new PickMediaOptions();
 options.CompressionQuality = 50;

 var photo = await CrossMedia.Current.PickPhotoAsync();

 UserDialogs.Instance.ShowLoading("Uploading photo");

 var stream = photo.GetStream();
 var bytes = ReadFully(stream);

 var base64photo = Convert.ToBase64String(bytes);

 var message = new PhotoMessage(User)
 {
 Base64Photo = base64photo,
 FileEnding = photo.Path.Split('.').Last()
 };

 Messages.Add(message);
 await chatService.SendMessage(message);

 UserDialogs.Instance.HideLoading();
});

The ChatViewModel is complete. It's now time to visualize our GUI.

Building a Real-Time Chat Application Chapter 7

[268]

Creating the ChatView
The ChatView is responsible for creating the user interface that the user will interact with.
It will display local and remote messages, both text and photos, and also notify a user when
a remote user has joined the chat. We'll start by creating a converter that will convert
photos represented as a Base64-encoded string into an ImageSource that can be used as
the source of the image control in XAML.

Creating Base64ToImageConverter
When we take a picture using the phone's camera, it will be handed to us as a byte array. In
order to send this to the server, we will convert in it to a Base64-encoded string. To display
that message locally, we will need to convert it back into a byte array and then pass that
byte array to a helper method of the ImageSource class to create an instance of the
ImageSource object. This object will make sense to the Image control and an image will be
displayed.

Since there is a lot of code here, we suggest you follow the steps and look at each line of
code in detail as you follow them:

Create a folder called Converters in the Chat project.1.
Create a new class called Base64ImageConverter in the Converters folder; let2.
the class implement the IValueConverter interface.
In the Convert() method of the class, cast the object parameter called value to a3.
string called base64String.
Convert the base64String to a byte array using the4.
System.Convert.FromBase64String() method. Save the result to a variable
called bytes.
Create a new MemoryStream by passing the byte array into its constructor. Save5.
the stream to a variable called stream.
Call the ImageSource.FromStream() method and pass the stream as a lambda6.
expression that returns the stream variable. Return the ImageSource object
created.
The ConvertBack() method does not need to be implemented since we will7.
never convert an image back into a Base64-encoded string via data-binding. We
will just let it throw a NotImplementedException:

using System;
using System.Globalization;
using Xamarin.Forms;
using System.IO;

Building a Real-Time Chat Application Chapter 7

[269]

namespace Chat.Converters
{
 public class Base64ToImageConverter : IValueConverter
 {
 public object Convert(object value, Type targetType,
 object parameter, CultureInfo
culture)
 {
 var base64string = (string)value;
 var bytes =
 System.Convert.FromBase64String(base64string);
 var stream = new MemoryStream(bytes);
 return ImageSource.FromStream(() => stream);
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, CultureInfo
 culture)
 {
 throw new NotImplementedException();
 }
 }
}

Now it's time to start adding some actual XAML code to the view. We will start by creating
the main layout skeleton that we will then gradually build on until we have the finished
view.

Creating the skeleton ChatView
This XAML file will contain the view that lists messages we have sent and messages we
have received. It's quite a large file to create, so for this part, I suggest that you copy the
XAML and study every step carefully:

Create a new XAML Content Page in the Views folder called ChatView.1.
Add XML namespaces for Chat.Selectors and Chat.Converters and call2.
them selectors and converters.
Add a ContentPage.Resources node that will, later on, contain resources for3.
this view.
Add ScrollView as the page content.4.
Add Grid as the only child of the ScrollView and name it MainGrid by setting5.
the x:Name property to MainGrid.

Building a Real-Time Chat Application Chapter 7

[270]

Create a RowDefinitions element that contains three rows. The first should6.
have a height of *, the second a height of 1, and the third a platform-specific
height based on the platform using an OnPlatform element.
Save some space for the ListView that will be inserted later on.7.
Add a BoxView that will act as a visual divider by setting the HeightRequest8.
property to 1, the BackgroundColor property to #33000000, and the Grid.Row
property to 1. This will position the BoxView in the one-unit-high row of the
grid, effectively drawing a single line across the screen.
Add another Grid that will use the space of the third row by setting the9.
Grid.Row property to 2. Also, add some padding by setting the Padding
property to 10. Define three rows in the grid with heights of 30, *, and 30:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:selectors="clr-namespace:Chat.Selectors"
 xmlns:converters="clr-namespace:Chat.Converters"
 x:Class="Chat.Views.ChatView">
 <ContentPage.Resources>
 <!-- TODO Add resources -->
 </ContentPage.Resources>
 <ScrollView>
 <Grid x:Name="MainGrid">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="1" />
 <RowDefinition>
 <RowDefinition.Height>
 <OnPlatform x:TypeArguments="GridLength">
 <On Platform="iOS" Value="50" />
 <On Platform="Android" Value="100" />
 </OnPlatform>
 </RowDefinition.Height>
 </RowDefinition>
 </Grid.RowDefinitions>

 <!-- TODO Add ListView -->
 <BoxView Grid.Row="1" HeightRequest="1"
 BackgroundColor="#33000000" />
 <Grid Grid.Row="2" Padding="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="30" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="30" />
 </Grid.ColumnDefinitions>

Building a Real-Time Chat Application Chapter 7

[271]

 <!-- TODO Add buttons and entry controls -->
 </Grid>
 </Grid>
 </ScrollView>
 </ContentPage>

Now that we have completed the main skeleton of our page, we need to start adding some
specific content. First, we will add ResourceDictionary to create a DataTemplate
selector that will select the correct layouts for different chat messages. Then, we need to put
the Base64ToImageConverter to use and, to do that, we need to define it in the view.

Adding ResourceDictionary
It's now time to add some resources to the view. In this case, we will be adding a template
selector that we will create later on, and the Base64ToImageConverter that we created
earlier. The template selector will look at each row that we will bind to the ListView,
which will be presenting messages and selecting the best layout template that suits that
message. To be able to use these pieces of code from XAML, we need to define a way for
the XAML parser to find them:

Locate the <!-- TODO Add resources --> comment inside the1.
ContentPage.Resources element.
Add the XAML in the sample as follows, right underneath this comment2.
mentioned in step 1:

 <ResourceDictionary>
 <selectors:ChatMessageSelector
 x:Key="SelectMessageTemplate" />
 <converters:Base64ToImageConverter x:Key="ToImage" />
 </ResourceDictionary>

This will create one instance of each resource that we define and make it accessible to the
rest of the view.

Adding ListView
We will be using a ListView to display the messages in the chat app. Again, follow the
steps and take a look at the code to make sure you understand each step:

Locate the <!-- TODO Add ListView --> comment in the ChatView.xaml1.
file.
Add a ListView and set the x:Name property to MessageList.2.

Building a Real-Time Chat Application Chapter 7

[272]

Data-bind the ListView by setting the ItemsSource property to {Binding3.
Messages}. This will make the ListView aware of changes in the
ObservableCollection<Message>, which is exposed through the Messages
property. Any time a message is added or removed, the ListView will update to
reflect this change.
Add the SelectMessageTemplate resource we defined in the previous section4.
to the ItemTemplate property. This will run some code each time that an item is
added to make sure that we programmatically select the correct visual template
for a specific message. No worries, we will soon write that code.
Make sure that the ListView is able to create rows of uneven height by setting5.
the HasUnevenRows property to true.
The last property we need to set is the SeparatorVisibility, and we set it to6.
None to avoid a row in between each row.
We define a placeholder where we will add resources. The resources we will be7.
adding are the different DataTemplate that we will be using to render different
types of messages.

The XAML should look as follows:

<ListView x:Name="MessageList" ItemsSource="{Binding Messages}"
 ItemTemplate="{StaticResource SelectMessageTemplate}"
 HasUnevenRows="true" SeparatorVisibility="None">
 <ListView.Resources>
 <ResourceDictionary>
 <!-- Resources go here later on -->
 </ResourceDictionary>
 </ListView.Resources>
</ListView>

Adding templates
We will now be adding five different templates, each corresponding to a specific message
type that the app either sends or receives. Each of these templates goes under the <!--
Resources go here later on --> comment from the code snippet in the previous
section.

We will not be explaining each of these templates step by step, since the XAML that they
contain should be starting to feel familiar at this point.

Building a Real-Time Chat Application Chapter 7

[273]

Each template starts the same way: the root element is a DataTemplate with a name set.
The name is important because we will be referencing it in code very soon. The first child of
the DataTemplate is always ViewCell with the IsEnabled property set to false to
avoid the user being able to interact with the content. We simply want to display it. The
content that follows after this element is the actual content that the row will be constructed
from.

Bindings inside the ViewCell will also be local to each item or row that the ListView
renders. In this case, this will be an instance of a Message class, since we are data binding
the ListView to a collection of Message objects. You will see some StyleClass properties
in the code. These will be used when we do the final styling of the app using Cascading
Style Sheets (CSS).

Our task here is to write each of these templates under the <!-- Resources go here
later on --> comment.

The SimpleText is the DataTemplate that is selected when the Message is a remote
message. It will be rendered on the left side of the list view, just as you might expect. It
displays a username and a text message:

<DataTemplate x:Key="SimpleText">
 <ViewCell IsEnabled="false">
 <Grid Padding="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Frame StyleClass="remoteMessage" HasShadow="false">
 <StackLayout>
 <Label Text="{Binding Username}"
 StyleClass="chatHeader" />
 <Label Text="{Binding Text}" StyleClass="chatText" />
 </StackLayout>
 </Frame>
 </Grid>
 </ViewCell>
</DataTemplate>

Building a Real-Time Chat Application Chapter 7

[274]

The LocalSimpleText template is the same as the SimpleText data template, except that
it renders on the right side of the ListView by setting the Grid.Column property to 1,
effectively using the right column:

<DataTemplate x:Key="LocalSimpleText">
 <ViewCell IsEnabled="false">
 <Grid Padding="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Frame Grid.Column="1" StyleClass="localMessage"
 HasShadow="false">
 <StackLayout>
 <Label Text="{Binding Username}"
 StyleClass="chatHeader" />
 <Label Text="{Binding Text}" StyleClass="chatText" />
 </StackLayout>
 </Frame>
 </Grid>
 </ViewCell>
</DataTemplate>

This DataTemplate is used when a user connects to the chat:

<DataTemplate x:Key="UserConnected">
 <ViewCell IsEnabled="false">
 <StackLayout Padding="10" BackgroundColor="#33000000"
 Orientation="Horizontal">
 <Label Text="{Binding Username}" StyleClass="chatHeader"
 VerticalOptions="Center" />
 <Label Text="connected" StyleClass="chatText"
 VerticalOptions="Center" />
 </StackLayout>
 </ViewCell>
</DataTemplate>

Building a Real-Time Chat Application Chapter 7

[275]

A photo that is uploaded to the server is accessible via a URL. This DataTemplate displays
an image based on a URL and is used for remote images:

<DataTemplate x:Key="Photo">
 <ViewCell IsEnabled="false">
 <Grid Padding="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <StackLayout>
 <Label Text="{Binding Username}"
 StyleClass="chatHeader" />
 <Image Source="{Binding Url}" Aspect="AspectFill"
 HeightRequest="150" HorizontalOptions="Fill" />
 </StackLayout>
 </Grid>
 </ViewCell>
</DataTemplate>

A message that contains a photo that is sent by the user and rendered directly based on the
Base64-encoded image that we generate from the camera. Since we don't want to wait for
the image to upload, we use this DataTemplate, which utilizes the
Base64ImageConverter that we wrote earlier to transform the string into ImageSource
that can be displayed by the Image control:

<DataTemplate x:Key="LocalPhoto">
 <ViewCell IsEnabled="false">
 <Grid Padding="10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <StackLayout Grid.Column="1">
 <Label Text="{Binding Username}"
 StyleClass="chatHeader" />
 <Image Source="{Binding Base64Photo, Converter=
 {StaticResource ToImage}}"
 Aspect="AspectFill" HeightRequest="150"
 HorizontalOptions="Fill" />
 </StackLayout>
 </Grid>
 </ViewCell>
</DataTemplate>

Building a Real-Time Chat Application Chapter 7

[276]

These are all of the templates we need. It's now time to add some code to make sure we
select the right template for the message to display.

Creating a template selector
Using a template selector is a powerful way of injecting different layouts based on the items
that are being data-bound. In this case, we will look at each message that we want to
display and select the best DataTemplate for them. The code is somewhat repetitive, so we
will be using the same approach as for the XAML—simply adding the code and letting you
study it yourself:

Create a folder called Selectors in the Chat project.1.
Create a new class called ChatMessagesSelector in the Selectors folder and2.
inherit it from DataTemplateSelector.
Add the following code, which will look at each object that is data-bound and3.
pull the correct DataTemplate from the resources we just added:

using Chat.Messages;
using Xamarin.Forms;

namespace Chat.Selectors
{
 public class ChatMessagesSelector : DataTemplateSelector
 {
 protected override DataTemplate OnSelectTemplate(object
 item, BindableObject container)
 {
 var list = (ListView)container;

 if(item is LocalSimpleTextMessage)
 {
 return
 (DataTemplate)list.Resources["LocalSimpleText"];
 }
 else if(item is SimpleTextMessage)
 {
 return (DataTemplate)list.Resources["SimpleText"];
 }
 else if(item is UserConnectedMessage)
 {
 return
 (DataTemplate)list.Resources["UserConnected"];
 }
 else if(item is PhotoUrlMessage)
 {

Building a Real-Time Chat Application Chapter 7

[277]

 return (DataTemplate)list.Resources["Photo"];
 }
 else if (item is PhotoMessage)
 {
 return (DataTemplate)list.Resources["LocalPhoto"];
 }

 return null;
 }
 }
}

Adding the buttons and entry control
Now we will add the buttons and the entry that the user will use for writing chat messages.
The icons that we are using can be found in the GitHub repository for this chapter. For
Android, the icons will be placed in the Drawable folder inside the Resource folder and
for iOS, they will be in the Resource folder. The icons are in the same folder on GitHub:

Locate the <!-- TODO Add buttons and entry controls --> comment in1.
the ChatView.xaml file.
Add an ImageButton. The Source should be set to photo.png, the Command set2.
to {Binding Photo}, and the VerticalOptions and HorizontalOptions set
to Center. The Source is used to display an image; the Command will be
executed when a user taps the image and the
HorizontalOptions and VerticalOptions will be used to center the image in
the middle of the control.
Add an Entry control to allow the user the enter a message to be sent. The Text3.
property should be set to {Binding Text}. Set the Grid.Column property to 1
and the ReturnCommand to {Binding Send} to execute the send command in
the ChatViewModel when a user hits Enter.
An ImageButton with the Grid.Column property set to 2, the Source set to4.
send.png, and the Command set to {Binding Send} (the same as the return
command). Center it horizontally and vertically:

<ImageButton Source="photo.png" Command="{Binding Photo}"
 VerticalOptions="Center" HorizontalOptions="Center" />
 <Entry Text="{Binding Text}" Grid.Column="1"
 ReturnCommand="{Binding Send}" />
<ImageButton Grid.Column="2" Source="send.png"
 Command="{Binding Send}"
 VerticalOptions="Center" HorizontalOptions="Center" />

Building a Real-Time Chat Application Chapter 7

[278]

Fixing the code behind
Now that the XAML is done, we have some work to do in the code behind. We'll start by
modifying the class to be partial and then we'll be adding some using statements:

Open the ChatView.xaml.cs file.1.
Mark the class as partial.2.
Add a private field called viewModel of the ChatViewModel type, which will3.
hold a local reference to the ChatViewModel.
Add using statements for Chat.ViewModels, Xamarin.Forms, and4.
Xamarin.Forms.PlatformConfiguration.iOSSpecific.

The class should now look as follows. The bold code indicates what should have changed:

using System.Linq;
using Chat.ViewModels;
using Xamarin.Forms;
using Xamarin.Forms.PlatformConfiguration.iOSSpecific;

namespace Chat.Views
{
 public partial class ChatView : ContentPage
 {
 private ChatViewModel viewModel;
 public ChatView()
 {
 InitializeComponent();
 }
 }
}

When a new message arrives, this will be added to the Messages collection in the
ChatViewModel. To make sure that the MessageList and ListView scroll appropriately
so that the new message is visible, we need to write some additional code:

Create a new method called Messages_CollectionChanged that takes an1.
object as the first parameter and NotifyCollectionChangedEventArgs as the
second parameter.
Add a call to the MessageList.ScrollTo() method and pass the last Message2.
in the viewModel.Messages collection by calling
viewModel.Messages.Last(). The second parameter should be set to
ScrollPosition.End, indicating that we want to make the entire messages
ListView row visible. The third parameter should be set to true to enable
animations.

Building a Real-Time Chat Application Chapter 7

[279]

The method should now look as follows:

private void Messages_CollectionChanged(object sender,
 System.Collections.Specialized.NotifyCollectionChangedEventArgs
e)
{
 MessageList.ScrollTo(viewModel.Messages.Last(),
 ScrollToPosition.End, true);
}

It's now time to extend the constructor so that it takes ChatViewModel as a parameter and
sets the BindingContext in the way that we are used to. The constructor will also make
sure that we use the safe area when rendering controls and that we hook up to the events
necessary for handling changes in the Messages collection of the ChatViewModel:

Modify the constructor in the ChatView class so that it takes a ChatViewModel1.
as the only parameter and name the parameter viewModel.
Assign the viewModel parameter from the constructor to the local viewModel2.
field in the class.
The call to the InitializeComponent() method, add a platform-specific call to3.
the SetUseSafeArea(true) method to ensure that the app will be visually safe
to use on an iPhone X and not partially hidden behind the notch at the top:

 public ChatView(ChatViewModel viewModel)
 {
 this.viewModel = viewModel;

 InitializeComponent();
 On<Xamarin.Forms.PlatformConfiguration.iOS>
 ().SetUseSafeArea(true);

 viewModel.Messages.CollectionChanged +=
 Messages_CollectionChanged;
 BindingContext = viewModel;
 }

Building a Real-Time Chat Application Chapter 7

[280]

Every time a view appears, the OnAppearing() method is called. This method is virtual
and we can override it. We will use this feature to make sure that we will have the correct
height on the MainGrid. This is because we have to wrap everything in a ScrollView
because the view has to be able to scroll when the keyboard appears. If we don't calculate
the width of the MainGrid it could be bigger than the screen because the ScrollView
allows it to expand:

Override the OnAppearing() method.1.
Calculate the safe area to use by calling the platform-specific2.
method, On<Xamarin.Forms.PlatformConfiguration.iOS>().SafeAreaIn
sets(). This will return a Xamarin.Forms.Thickness object that will contain
the inset information we need in order to calculate the height of the MainGrid.
Assign the Thickness object to a variable called safeArea.
Set the MainGrid.HeightRequest property to the height of the view3.
(this.Height) and then subtract the Top and Bottom properties of the
safeArea:

protected override void OnAppearing()
{
 base.OnAppearing();
 var safeArea = On<Xamarin.Forms.PlatformConfiguration.iOS>
 ().SafeAreaInsets();
 MainGrid.HeightRequest = this.Height - safeArea.Top -
 safeArea.Bottom;
}

Styling
Styling is an important part of an app. Just like with HTML, you can do styling by setting
properties on each control directly, or by setting Style elements in the application's
resource dictionary. Recently, however, a new way of styling has emerged in
Xamarin.Forms, which is using Cascading Style Sheets, better known as CSS.

Building a Real-Time Chat Application Chapter 7

[281]

Since CSS doesn't cover all cases, we will fall back to standard application resource
dictionary styling as well.

Styling with CSS
Xamarin.Forms supports styling via CSS files. It has a subset of the functionalities you
would expect from normal CSS, but support is getting better with each version. We are
going to use two different selectors to apply the styling.

First, let's create the style sheet and we'll discuss the content of it after that:

Create a folder called Css in the Chat project.1.
Create a new text file in the Css folder and name it Styles.css.2.
Copy the style sheet, shown as follows, into that file:3.

button {
 background-color: #A4243B;
 color: white;
}

.chatHeader {
 color: white;
 font-style: bold;
 font-size: small;
}

.chatText {
 color: white;
 font-size: small;
}

.remoteMessage {
 background-color: #F04D6A;
 padding: 10;
}

.localMessage {
 background-color: #24A43B;
 padding: 10;
}

The first selector, button, applies to every button control in the entire application. It sets the
background color to #A4243B and the foreground color to white. You can do this for
almost every type of control in Xamarin.Forms.

Building a Real-Time Chat Application Chapter 7

[282]

The second selectors we use are class selectors, which are the ones beginning with a period,
such as .chatHeader. The selectors are used in the XAML with the StyleClass property.
Look back at the ChatView.xaml file we created earlier and you'll find these in the
template resources.

Each property in the CSS is mapped to a property on the control itself. There are also some
Xamarin.Forms specific properties that can be used, but those are out of the scope of this
book. If you search for Xamarin.Forms and CSS on the internet, you'll find all of the
information you need to dive deeper into this.

Applying the style sheet
A style sheet is no good on its own. We need to apply it to our application. We also need to
set some styling on the NavigationPage here as well, since we can't gain access to it from
the CSS directly.

We will be adding some resources and a reference to the style sheet. Copy the code and
refer to the steps to study what each line does:

Open the App.xaml file in the Chat project.1.
In the Application.Resources node, add a <StyleSheet2.
Source="/Css/Styles.css" /> node to reference the style sheet.
Following is the StyleSheet node. Add a Style node with the TargetType set3.
to "NavigationPage" and create a setter for the BarBackgroundColor
property with a value of "#273E47" and a setter for the BarTextColor property
with a value of "White".

The App.xaml file should now look as follows:

<?xml version="1.0" encoding="utf-8"?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Chat.App">
 <Application.Resources>
 <StyleSheet Source="/Css/Styles.css" />
 <ResourceDictionary>
 <Style TargetType="NavigationPage">
 <Setter Property="BarBackgroundColor" Value="#273E47" />
 <Setter Property="BarTextColor" Value="White" />
 </Style>
 </ResourceDictionary>
 </Application.Resources>
</Application>

Building a Real-Time Chat Application Chapter 7

[283]

Handling life cycle events
Finally, we need to add some life cycle events that will take care of our SignalR connection
in case the app goes to sleep or when it wakes up again:

Open the App.Xaml.cs file.1.
Add the code that follows somewhere in the class:2.

protected override void OnSleep()
{
 var chatService = Resolver.Resolve<IChatService>();
 chatService.Dispose();
}
protected override void OnResume()
{
 Task.Run(async() =>
 {
 var chatService = Resolver.Resolve<IChatService>();

 if (!chatService.IsConnected)
 {
 await chatService.CreateConnection();
 }
 });

 Page view = null;

 if(ViewModel.User != null)
 {
 view = Resolver.Resolve<ChatView>();
 }
 else
 {
 view = Resolver.Resolve<MainView>();
 }

 var navigationPage = new NavigationPage(view);
 MainPage = navigationPage;
}

The OnSleep() method will be called when the user minimizes the app and it will dispose
of any active chatService that is running by closing the active connections. The
OnResume() method has a little more content. It will recreate the connection if there isn't
one already active and, depending on whether the user is set or not, it will resolve to the
correct view. If a user isn't present, it will display the MainView; otherwise it will display
the ChatView. Finally, it sets the selected view, wrapped in a navigation page.

Building a Real-Time Chat Application Chapter 7

[284]

Summary
That's that—good work! We have now created a chat app that connects to our backend. We
have learned how to work with SignalR, how to style an app with CSS, how to use template
selectors in a ListView, and how to use a value converter to convert a byte[] into a
Xamarin.Forms ImageSource.

In the next chapter, we will dive into an augmented world! We will create an AR-game for
iOS and Android using UrhoSharp together with ARKit (iOS) and ARCore (Android).

8
Creating an Augmented-Reality

Game
In this chapter, we will be exploring augmented reality (AR) using Xamarin.Forms. We
will be using custom renderers to inject platform-specific code, UrhoSharp to render the
scene and handle input, and MessagingCenter to pass internal messages around in the
app.

The following topics will be covered in this chapter:

Setting up a project
Using ARKit
Using ARCore
Learning how to use UrhoSharp to render graphics and handle input
Using custom renderers to inject platform-specific code
Using MessagingCenter to send messages

Technical requirements
To be able to complete this project, we need to have Visual Studio for Mac or PC installed,
as well as the Xamarin components. See Chapter 1, Introduction to Xamarin, for more details
on how to set up your environment.

You cannot run AR on an emulator. To run AR, you need a physical device, along with the
following software:

On iOS, you need iOS 11 or higher and a device that has an A9 processor or
above
On Android, you need Android 8.1 and a device that supports ARCore

Creating an Augmented-Reality Game Chapter 8

[286]

Essential theory
This section will describe how AR works. The implementation differs slightly between
platforms. Google's implementation is called ARCore, and Apple's implementation is called
ARKit.

AR is all about superimposing computer graphics on top of a camera feed. This sounds like
a simple thing to do, except that you have to track the camera position with great accuracy.
Both Google and Apple have written some great APIs to do this magic for you, with the
help of the motion sensors in your phone and data from the camera. The computer graphics
that we add on top of the camera feed are synced to be in the same coordinate space as the
surrounding real-life objects, making them appear as if they are part of the image you see
on your phone.

An overview of the project
In this chapter, we are going to create a game that explores the fundamentals of AR. We are
also going to learn how to integrate AR control in Xamarin.Forms. Android and iOS
implement AR differently, so we will need to unify the platforms along the way. We will do
this using UrhoSharp, an open source 3D game engine, which will do the rendering for us.
This is simply made up of bindings to the Urho3D engine, which allows us to use Urho3D
with .NET and C#.

The game will render boxes in AR that the user needs to tap to make disappear. You can
then extend the game yourself by learning about the Urho3D engine.

The shared code will be placed in a shared project. This is different than the usual .NET
Standard library approach we have taken so far. The reason for this is that UrhoSharp
doesn't support .NET Standard (at the time of writing this book). It's also a good idea to
learn how to create a shared project. The code in a shared library will not compile by itself.
It needs to be linked to a platform project (such as iOS or Android) and then the compiler
can compile all the source files along with the platform project. This is exactly the same
thing as copying the files directly into that project. So, by defining a shared project, we
don't need to write code twice.

Creating an Augmented-Reality Game Chapter 8

[287]

This strategy also unlocks another powerful feature: conditional compilation. Consider the
following example:

#if __IOS__
 // Only compile this code on iOS
#elif __ANDROID__
 // Only compile this code on Android
#endif

The preceding code shows how you can insert platform-specific code inside a shared code
file. This will come in very handy in this project.

The estimated build time for this project is 90 minutes.

Beginning the project
It's time to start coding! First, however, make sure you have your development
environment set up as described in Chapter 1, Introduction to Xamarin.

This chapter will be a classic File | New Project chapter, guiding you step-by-step through
the process of creating the app. There will be no downloads required whatsoever.

Creating the project
Open Visual Studio and click on File | New | Project, as shown in the following
screenshot:

Creating an Augmented-Reality Game Chapter 8

[288]

This will open the New Project dialog. Expand the Visual C# node and click on Cross-
Platform. Select the Mobile App (Xamarin.Forms) item in the list. Complete the form by
naming your project. We will be calling our application WhackABox in this example. Move
on to the next dialog box by clicking OK, as shown in the following screenshot:

Creating an Augmented-Reality Game Chapter 8

[289]

The next step is to select a project template and a Code Sharing Strategy. Select the Blank
template option to create a bare minimum Xamarin.Forms app and make sure that the
Code Sharing Strategy is set to Shared Project. Uncheck the Windows (UWP) checkbox
under the Platform heading, since this app will only be supporting iOS and Android.
Finish the setup wizard by clicking OK and let Visual Studio scaffold the project for you.
This might take a couple of minutes. Please note that we will be using a Shared Project for
this chapter—this is very important! You can see the aforementioned fields and options that
you need to select in the following screenshot:

Just like that, the app has been created. Let's move on to updating Xamarin.Forms to the
latest version.

Creating an Augmented-Reality Game Chapter 8

[290]

Updating the Xamarin.Forms NuGet packages
Currently, the Xamarin.Forms version that your project has been created with is most likely
a bit old. To rectify this, we need to update the NuGet packages. Please note that you
should only update the Xamarin.Forms packages and not the Android packages; updating
the Android packages might cause your packages to get out of sync with each other,
resulting in the app not building at all. To update the NuGet packages, go through the
following steps:

Right-click on our Solution in the Solution Explorer.1.
Click Manage NuGet Packages for Solution..., as shown in the following2.
screenshot:

Creating an Augmented-Reality Game Chapter 8

[291]

This will open the NuGet Package Manager in Visual Studio, as shown in
the following screenshot:

To update Xamarin.Forms to the latest version, go through the following steps:

Click the Updates tab.1.
Check the Xamarin.Forms checkbox and click Update.2.
Accept any license agreements.3.

The update takes at most a few minutes. Look at the output pane to find information about
the update. At this point, we can run the app to make sure it works. We should see the text
Welcome to Xamarin.Forms! in the middle of the screen.

Creating an Augmented-Reality Game Chapter 8

[292]

Setting the Android target to 8.1
ARCore is available from Android version 8.1 and later. We will, therefore, verify the
Target Framework for the Android project by going through the following steps:

Double-click on the Properties node under the Android project in the Solution1.
Explorer.
Verify that the Target Framework version is at least Android 8.0 (Oreo), as2.
shown in the following screenshot:

If it's not at least Android 8.0 (Oreo), you will need to select Android 8.1 (or above). If there
is an asterisk next to the Target Framework name, then you will need to install that SDK by
going through the following steps:

Locate the Android SDK Manager in the toolbar.1.
Click the highlighted button to open the SDK Manager, as shown in the2.
following screenshot:

Creating an Augmented-Reality Game Chapter 8

[293]

This is the control center for all SDK versions of Android that are installed on the system:

Expand the SDK version you want to install. In our case, this should be at least1.
Android 8.1 - Oreo.
Select the Android SDK Platform <version number> node. You can also to2.
install emulator images that will be used by the emulator to run the selected
version of Android.
Click Apply Changes, as shown in the following screenshot:3.

Creating an Augmented-Reality Game Chapter 8

[294]

Adding the camera permission to Android
In order to get access to the camera in Android we must add a required permission in the
Android manifest. This can be done by following these steps:

Open up the Android project node in the Solution Explorer.1.
Double-click the Properties node to open the properties for Android.2.
Click the Android Manifest tab on the left and scroll down until you see the3.
Required permissions section.
Locate the CAMERA permission and check the box.4.
Save the file by clicking Ctrl + S or File and the Save.5.

Now that we have configured Android, we only have one small change to make on iOS
before we are ready to write some code.

Creating an Augmented-Reality Game Chapter 8

[295]

Adding Camera Usage Description for iOS
In iOS, you need to specify why you need access to the camera. The way to do this is to add
an entry to the info.plist file in the root folder of the iOS project. The info.plist file is
an XML file that you can edit in any text editor. A simpler way to this, however, is by using
the Generic PList Editor provided by Visual Studio.

Add the required Camera Usage Description using the Generic PList Editor, as follows:

Locate the WhackABox.iOS project.1.
Right-click on info.plist and click Open With..., as shown in the following2.
screenshot:

Creating an Augmented-Reality Game Chapter 8

[296]

Select Generic PList Editor and click OK, as shown in the following screenshot:3.

Locate the plus (+) icon at the bottom of the property list.4.
Click the plus (+) icon to add a new key. Make sure that the key is in the root of5.
the document and not under another property, as shown in the following
screenshot:

Creating an Augmented-Reality Game Chapter 8

[297]

The Generic PList Editor helps you to find the right property by giving it a more user-
friendly name. Let's add the value we need to describe why we want to use the camera:

Open the drop-down menu on the newly created row.1.
Select Privacy - Camera Usage Description.2.
Write a good reason in the values field to the right, as shown in the following3.
screenshot. The field for the reason is a free-text field, so use plain English to
describe why your app needs access to the camera:

That's it. The setup of both Android and iOS is complete, and we can now focus on the fun
part—writing code!

You can also open the Info.plist file in any text editor, since it's an
XML file. The key's name is
NSCameraUsageDescription, and it must be added as a direct child of
the root node.

Defining the user interface
We are going to start off by defining the user interface that will wrap the AR components.
First, we will define a custom control that we will use as a placeholder for injecting an
UrhoSurface that will contain the AR components. Then, we will add this control in a grid
that will contain some statistics about how many planes we have found and how many
boxes are active in the world. The goal of the game is to find boxes in AR using your phone
and tapping on them to make them disappear.

Let's start by defining the custom ARView control.

Creating an Augmented-Reality Game Chapter 8

[298]

Creating the ARView control
The ARView control belongs in the shared project, since it will be a part of both applications.
It's a standard Xamarin.Forms control that inherits directly from Xamarin.Forms.View. It
will not load any XAML (so it will simply be a single class), nor will it contain any
functionality other than simply being defined, so we can add it to the main grid.

Go over to Visual Studio and go through the following three steps to create an ARView
control:

In the WhackABox project, add a folder called Controls.1.
Create a new class called ARView in the Controls folder.2.
Add the following code to the ARView class:3.

using Xamarin.Forms;

namespace WhackABox.Controls
{
 public class ARView : View
 {
 }
}

What we have created here is a simple class, without implementation, that inherits from
Xamarin.Forms.View. The point of this is to make use of custom renderers for each
platform, allowing us to specify platform-specific code to be inserted at the place in the
XAML where we put this control. Your project should now look as follows:

The ARView control is no good just sitting there. We need to add it to the MainPage.

Creating an Augmented-Reality Game Chapter 8

[299]

Modifying the MainPage
We will be replacing the entire contents of the MainPage and adding a reference to the
WhackABox.Controls namespace so that we can use the ARView control. Let's set this up
by going through the following steps:

In the WhackABox project, open the MainPage.xaml file.1.
Edit the XAML to look like the following code. The XAML in bold represents the2.
new elements that must be added:

<?xml version="1.0" encoding="utf-8">
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="clr-namespace:WhackABox"
 xmlns:controls="clr-namespace:WhackABox.Controls"
 x:Class="WhackABox.MainPage">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="100" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <StackLayout Grid.Row="0" Padding="10">
 <Label Text="Plane count" />
 <Label Text="0" FontSize="Large"
 x:Name="planeCountLabel" />
 </StackLayout>
 <StackLayout Grid.Row="0" Grid.Column="1" Padding="10">
 <Label Text="Box count" />
 <Label Text="0" FontSize="Large"
 x:Name="boxCountLabel"/>
 </StackLayout>

 <controls:ARView Grid.Row="1" Grid.ColumnSpan="2" />
 </Grid>
 </ContentPage>

Creating an Augmented-Reality Game Chapter 8

[300]

Now that we have the code, let's go through it step by step:

First, we define a controls namespace that points to the WhackABox.Controls
namespace in code. This namespace is used at the end of the XAML to locate the
ARView control.
We then define the content element by setting it to a Grid. A page can only have
one child, which, in this case, is a Grid. The Grid defines two columns and two
rows. The columns split the Grid into two equal parts, where we have one row
that is 100 units high at the top and one row that takes up all the available space
below it.
We use the top two cells to add instances of StackLayout that contain the
information about the number of planes and the number of boxes in the game.
The location of those instances of StackLayout in the grid is defined by the
Grid.Row=".." and Grid.Column=".." attributes. Remember that the rows
and columns are zero based. You don't actually have to add attributes for row or
column 0, but it can sometimes be a good practice to improve code readability.
Finally, we have the ARView control, which resides in row 1 but spans both
columns by specifying Grid.ColumnSpan="2".

The next step is to install UrhoSharp, which will be our library for rendering graphics to
represent the augmented part of our reality.

Adding Urhosharp
Urho is an open source 3D game engine. UrhoSharp is a package that contains bindings to
iOS and Android binaries, enabling us to use Urho in .NET. It is a very competent piece of
software, and we will only be using a very small part of it to do the heavy lifting when it
comes to rendering planes and boxes in the app. We urge you to find out more about
UrhoSharp to add your own cool features to the app.

All you have to do to install UrhoSharp is download a NuGet package for each platform.
The iOS platform uses the UrhoSharp NuGet package, and Android uses the
UrhoSharp.ARCore package. Also, in Android, we need to add some code to wire up life
cycle events, but we will get to that later. Basically, we will set up an UrhoSurface on each
platform. We will access this to add nodes to the node tree. These nodes will then be
rendered based on their type and properties.

First, however, we need to install the packages.

Creating an Augmented-Reality Game Chapter 8

[301]

Installing the UrhoSharp NuGet package for iOS
All we need to do for iOS is to add the UrhoSharp NuGet package. This contains
everything we need for our AR app. You can add the package as follows:

Right-click on the WhackABox.iOS project.1.
Click Manage NuGet Packages..., as shown in the following screenshot:2.

Creating an Augmented-Reality Game Chapter 8

[302]

This opens the NuGet Package Manager. Click the Browse link on the top-left of3.
the window.
Enter UrhoSharp in the search box and hit Enter.4.

Select the UrhoSharp package and click Install on the right side of the5.
window, as shown in the following screenshot:

That's it for iOS. Android is a little bit trickier to set up, since it needs a special UrhoSharp
package and some code to be written to wire everything up.

Creating an Augmented-Reality Game Chapter 8

[303]

Installing the UrhoSharp.ARCore Nuget Package for
Android
For Android, we will be adding the UrhoSharp.ARCore package, which contains extensions
for ARCore. It has a dependency on UrhoSharp, so we don't have to add that package
specifically. You can add the UrhoSharp.ARCore package as follows:

Right-click on the WhackABox.Android project.1.
Click Manage NuGet Packages..., as shown in the following screenshot:2.

This opens the NuGet Package Manager. Click the Browse link on the top-left of3.
the window.
Enter UrhoSharp.ARCore in the search box and hit Enter.4.

Creating an Augmented-Reality Game Chapter 8

[304]

Select the UrhoSharp.ARCore package and click Install on the right side of the5.
window, as shown in the following screenshot:

That's it—all your dependencies on UrhoSharp have been installed in the project. We now
have to wire up some life cycle events.

Adding the Android life cycle events
In Android, Urho needs to know about some specific events and be able to respond to them
accordingly. We also need to add an internal message using MessagingCenter so that we
can react to the OnResume event later on in the app. We will get to that when we add the
code to initialize ARCore. But for now, add the five required overrides for Android events,
as follows:

In the Android project, open MainActivity.cs.1.
Add the five overrides from the following code anywhere in the MainActivity2.
class.
Resolve the unresolved references by adding using statements for Urho.Droid3.
and Xamarin.Forms, as shown in the following code:

protected override void OnResume()
{
 base.OnResume();
 UrhoSurface.OnResume();

 MessagingCenter.Send(this, "OnResume");

Creating an Augmented-Reality Game Chapter 8

[305]

}

protected override void OnPause()
{
 UrhoSurface.OnPause();
 base.OnPause();
}

protected override void OnDestroy()
{
 UrhoSurface.OnDestroy();
 base.OnDestroy();
}

public override void OnBackPressed()
{
 UrhoSurface.OnDestroy();
 Finish();
}

public override void OnLowMemory()
{
 UrhoSurface.OnLowMemory();
 base.OnLowMemory();
}

The events map one-on-one to internal UrhoSharp events, except for OnBackPressed,
which calls UrhoSharp.OnDestroy(). The reason for this is memory management, so that
UrhoSharp knows when to clean up.

The MessagingCenter library is a built-in Xamarin.Forms pub-sub
library for passing internal messages in an app. It has a dependency on
Xamarin.Forms. We have created a library of our own called TinyPubSub
that breaks this dependency and has a slightly easier API (as well as some
additional features). You can check it out on GitHub
at https://github.com/TinyStuff/TinyPubSub.

Defining the PlaneNode
In Urho, you work with scenes that contain a tree of nodes. A node can be just about
anything in the game, such as a renderer, a sound player, or simply a placeholder for
subnodes.

https://github.com/TinyStuff/TinyPubSub

Creating an Augmented-Reality Game Chapter 8

[306]

As we talked about earlier when discussing AR fundamentals, planes are a common entity
that is shared between the platforms. We need to create a common ground that represents a
plane, which we can do by extending an Urho node. The position and the rotation will be
tracked by the node itself, but we need to add a property to track the origin and the size of
the plane, expressed by ARKit and ARCore as the extent of the plane.

We will add this class now and put it to use when we implement the AR-related code on
each platform. The code to do this is straightforward, and can be set up by going through
the following steps:

In the WhackABox project, create a new file called PlaneNode.cs in the root of1.
the project.
Add the following implementation of the class:2.

using Urho;

namespace WhackABox
{
 public class PlaneNode :Node
 {
 public string PlaneId { get; set; }
 public float ExtentX { get; set; }
 public float ExtentZ { get; set; }
 }
}

The PlaneId will be an identifier that allows us to track which platform-specific plane this
node represents. In iOS, this will be a string, while in Android, it will be the hashcode of the
plane-object that is converted to a string. The ExtentY and ExtentZ properties represent
the size of the plane in meters. We are now ready to start creating the game logic and
hooking up our application to the AR SDKs.

Adding custom renderers for the ARView control
Custom renderers are a very smart way of extending platform-specific behaviors to custom
controls. They can also be used to override behaviors on controls that are already defined.
In fact, all of the controls in Xamarin.Forms use renderers to translate the Xamarin.Forms
control into a platform-specific control.

We are going to create two renderers, one for iOS and one for Android, that initialize the
UrhoSurface on which we are going to render. The instantiation of the UrhoSurface
differs on each platform, which is why we need two different implementations.

Creating an Augmented-Reality Game Chapter 8

[307]

For iOS
A custom renderer is a class that inherits from another renderer. It allows us to add custom
code for important events, such as when an element in XAML is created when the XAML
file is parsed. Since the ARView control inherits from the View, we will be using the
ViewRenderer as a base class. Let's create the ARViewRenderer by going through the
following steps:

In the iOS project, create a folder called Renderers.1.
Add a new class called ARViewRenderer to that folder.2.
Add the following code to the class:3.

using System.Threading.Tasks;
using Urho.iOS;
using WhackABox.Controls;
using WhackABox.iOS.Renderers;using Xamarin.Forms;
using Xamarin.Forms.Platform.iOS;

 [assembly: ExportRenderer(typeof(ARView), typeof(ARViewRenderer))]
 namespace WhackABox.iOS.Renderers
{
 public class ARViewRenderer : ViewRenderer<ARView, UrhoSurface>
 {
 protected async override void
 OnElementChanged(ElementChangedEventArgs<ARView> e)
 {
 base.OnElementChanged(e);

 if (Control == null)
 {
 await Initialize();
 }
 }

 private async Task Initialize()
 {
 var surface = new UrhoSurface();
 SetNativeControl(surface);
 await surface.Show<Game>();
 }
 }
}

Creating an Augmented-Reality Game Chapter 8

[308]

The ExportRenderer attribute registers this renderer to Xamarin.Forms so that it knows
that when it parses (or compiles) an ARView element, it should render it using this specific
renderer. It takes two arguments: the first is the Control that we want to register a
renderer to and the second is the type of the renderer. This attribute must be placed outside
the namespace declarations.

The ARViewRenderer class inherits ViewRenderer<ARView, UrhoSurface>. This
specifies which control this renderer is created for and which native control it should
render. In this case, the ARView will be natively replaced by a UrhoSurface control that in
itself is an iOS-specific UIView.

We override the OnElementChanged() method that is called every time the ARView
element changes, either when it is created or when it is replaced. We can then check
whether the Control property is set. The control is of the UrhoSurface type, since we
declared that in the class definition. If it's null, then we make a call to Initialize() to
create it.

The creation is straightforward. We simply create a new UrhoSurface control and set the
native control to this newly created object. We then call the Show<Game>() method to start
the game by specifying which class represents our Urho game. Note that the Game class is
not defined yet, but it will be very soon, right after we create the custom renderer for
Android.

For Android
The custom renderer for Android does the same thing as it does for iOS, but with the
additional step of checking permissions. Let's create the ARViewRenderer for Android by
going through the following steps:

In the Android project, create a folder called Renderers.1.
Add a new class called ARViewRenderer to that folder.2.
Add the following code to the class:3.

 using System.Threading.Tasks;
 using Android;
 using Android.App;
 using Android.Content;
 using Android.Content.PM;
 using Android.Support.V4.App;
 using Android.Support.V4.Content;
 using WhackABox.Droid.Renderers;
 using WhackABox;
 using WhackABox.Controls;

Creating an Augmented-Reality Game Chapter 8

[309]

 using WhackABox.Droid;
 using Urho.Droid;
 using Xamarin.Forms;
 using Xamarin.Forms.Platform.Android;

 [assembly: ExportRenderer(typeof(ARView),
 typeof(ARViewRenderer))]
 namespace WhackABox.Droid.Renderers
 {
 public class ARViewRenderer : ViewRenderer<ARView,
 Android.Views.View>
 {
 private UrhoSurfacePlaceholder surface;
 public ARViewRenderer(Context context) : base(context)
 {
 MessagingCenter.Subscribe<MainActivity>(this,
 "OnResume", async (sender) =>
 {
 await Initialize();
 });
 }

 protected async override void
 OnElementChanged(ElementChangedEventArgs<ARView> e)
 {
 base.OnElementChanged(e);

 if (Control == null)
 {
 await Initialize();
 }
 }

 private async Task Initialize()
 {
 if (ContextCompat.CheckSelfPermission(Context,
 Manifest.Permission.Camera) != Permission.Granted)
 {
 ActivityCompat.RequestPermissions(Context as
 Activity, new[] { Manifest.Permission.Camera },
 42);
 return;
 }

 if (surface != null)
 return;

 surface = UrhoSurface.CreateSurface(Context as

Creating an Augmented-Reality Game Chapter 8

[310]

 Activity);
 SetNativeControl(surface);
 await surface.Show<Game>();
 }
 }
 }

This custom renderer also inherits from ViewRenderer<T1, T2>, where the first type is
the type of the renderer itself and the second is the native control that the renderer will
produce. In this case, the native control will be a control that inherits from
Android.Views.View. The renderer creates a UrhoSurfacePlaceholder instance, which
it assigns as the native control. The UrhoSurfacePlaceholder is a class that wraps some
functionality of the Simple DirectMedia Layer (SDL) library that Urho uses on Android to
access media functionality. The last thing it does is to start the game based on the soon-to-
exist Game class. We will define this in the next section of this chapter.

Creating the game
To write an application that uses Urho, we need to create a class that inherits from
Urho.Application. This class defines some virtual methods that we can use to set up the
scene. The method we will use is Start(). Before that, however, we need to create the
class. The class will be split into three files using partial classes, as described in the
following list:

The Game.cs file, which will contain code that is cross platform
The Game.iOS.cs file, which will contain code that will only be compiled in the
iOS version of the app
The Game.Android.cs file, which will contain code that will only be compiled
in the Android version of the app

We will be using a conditional compile to do so. We discussed conditional compiling in the
introduction to this project. Simply put, this means that we can use something called
preprocessor directives to determine at compile time whether the code should be included.
In practice, this means that we will be compiling different code in Android and iOS by
defining the same InitializeAR() method in both Game.iOS.cs and
Game.Android.cs. During initialization, we will call this method, and, depending on
which platform we run it on, it will be implemented differently. This can only be done with
a shared project.

Creating an Augmented-Reality Game Chapter 8

[311]

Visual Studio has excellent support for conditional compiling and will resolve the correct
references depending on which project you have set as the startup project or what you
select in the toolbar above the code file itself.

For this project, we could have moved the Game.iOS.cs file to the iOS
project and the Game.Android.cs and removed the conditional compile
preprocessor statements. The app would compile just fine, but for the
purposes of learning how this works, we will include them in the shared
project. This could also be a positive thing, since we are gathering related
code in one place, making it easier to understand the architecture.

Adding the shared partial Game class
We start by creating the Game.cs file that will contain shared code. Let's set this up by
going through the following steps:

In the WhackABox project, create a new file called Game.cs in the root of the1.
project.
Add the following code to the class:2.

using System;
using System.Linq;
using Urho;
using Urho.Shapes;

namespace WhackABox
{
 public partial class Game : Application
 {
 private Scene scene;

 public Game(ApplicationOptions options) : base(options)
 {
 }
 }
}

The first thing to notice is the partial keyword in the class. This indicates to the compiler
that this is not the entire implementation, and that more code will be present in other files.
The code in those files will be treated as if it were in this file; it's a nice way to split large
implementations into different files.

Creating an Augmented-Reality Game Chapter 8

[312]

The Game inherits from Urho.Application, which will do most of the work regarding the
game itself. We define a property called scene of the Scene type. A Scene in Urho
represents one screen of the game (we could have different scenes for different parts of a
game or for a menu, for example). In this game, we will only be defining one scene, which
will be initialized later. A scene maintains a hierarchy of nodes that compose it, and each
node can have any number of children and any number of components. It's the components
that do the work. Later on, for example, we will be rendering boxes, which will be
represented by a node that will have a Box component attached.

The Game class itself is instantiated from the custom renderers that we defined in the earlier
section, and it takes an ApplicationOptions instance as a parameter in the constructor.
This needs to be passed to the base class. We now need to write some methods that will be
AR specific and used by the code we will write later on.

CreateSubPlane
The first method is the CreateSubPlane() method. When the application finds a plane on
which we can place objects, it will create a node. We will write that code specifically for
each platform soon. This node also defines a subplane that will position a box, representing
the position and size of that plane. We have already defined the PlaneNode class earlier in
this chapter.

Let's add the code by going through the following steps:

In the WhackABox project, open the Game.cs class.1.
Add the following CreateSubPlane() method to the class:2.

private void CreateSubPlane(PlaneNode planeNode)
{
 var node = planeNode.CreateChild("subplane");
 node.Position = new Vector3(0, 0.05f, 0);

 var box = node.CreateComponent<Box>();
 box.Color = Color.FromHex("#22ff0000");
}

Any class inheriting from Urho.Node, such as PlaneNode, has the
CreateChild() method. This allows us to create a child node and specify a name for that
node. That name will be used later on to find specific children to perform operations on. We
position the node at the same position as the parent node, except that we raise it 0.05
meters (5 cm) above the plane.

Creating an Augmented-Reality Game Chapter 8

[313]

To see the plane, we add a box component with a semitransparent red color. The box is a
component that is created with a call to CreateComponent() on our node. The color is
defined in the AARRGGBB pattern, where AA is the alpha component (the transparency)
and RRGGBB is the standard red-green-blue format. We use hexadecimal representation of
the colors.

UpdateSubPlane
Both ARKit and ARCore update planes continuously. What we are interested in are
changes in the position of a subplane and the extent of it. By extension, we are referring to
the size of the plane. Let's set this up by going through the following steps:

In the WhackABox project, open the Game.cs class.1.
Add the UpdateSubPlane() method in the code anywhere in the Game.cs class,2.
as shown in the following code:

private void UpdateSubPlane(PlaneNode planeNode, Vector3 position)
{
 var subPlaneNode = planeNode.GetChild("subplane");
 subPlaneNode.Scale = new Vector3(planeNode.ExtentX, 0.05f,
 planeNode.ExtentZ);
 subPlaneNode.Position = position;
}

The method takes the PlaneNode that we want to update, along with a new position for it.
We locate the subplane by querying the current node for any node called "subplane".
Remember that we named the subplane in the AddSubPlane() method. We can now easily
access the node by name. We update the scale of the subplane node by taking the ExtentX
and ExtentZ properties from the PlaneNode. The plane node will be updated by some
platform-specific code before we call UpdateSubPlane(). Finally, we set the position of
the subplane to the passed position parameter.

FindNodeByPlaneId
We need a method to quickly find nodes. Both ARKit and ARCore keep an internal track of
their planes, and to map those internal representations of planes to our PlaneNode, we
have to assign a custom ID to a plane when it's created. This will be done in the platform-
specific code, but we can still write the function to query the scene for PlaneNode.

Creating an Augmented-Reality Game Chapter 8

[314]

The PlaneNode is a string, since ARKit defines the plane ID in a form that resembles
a Global Unique Identifier (GUID). A GUID is a structured sequence of hexadecimal
numbers that can be represented in a string format, as shown in the following code:

private PlaneNode FindNodeByPlaneId(string planeId) =>
 scene.Children.OfType<PlaneNode>()
 .FirstOrDefault(e => e.PlaneId == planeId);

The method queries the scene by using Linq and looks for the first child with the plane ID
that it was given. If it can't find one, it returns null, since null is the default value of a
reference type object.

These are all of the methods that we need in the shared code before dropping down into
ARKit and ARCore.

Adding platform-specific partial classes
It's now time to take advantage of conditional compiling. We will create two partial classes,
one for iOS and one for Android, that will be conditionally compiled into the Game class.

In this section, we will simply set up the skeleton code for these files.

Adding the iOS-specific partial class
Let's start by creating the partial class for Game on iOS and wrapping the whole code file
within a preprocessor directive that specifies that this code will only be compiled on iOS:

In the WhackABox project, add a new file called Game.iOS.cs.1.
Rename the class Game in the code, if Visual Studio doesn't do it automatically.2.
Make the class public and partial.3.
Add the #if and #endif preprocessor directives to allow for conditional4.
compiling, as shown in the following code:

#if __IOS__
namespace WhackABox
{
 public partial class Game
 {
 }
}
#endif

Creating an Augmented-Reality Game Chapter 8

[315]

The first line of code is a preprocessor directive that the compiler will use to determine
whether the code within the #if and #endif directives should be included in the
compilation. If it is included, a partial class will be defined. The code in this class can be
iOS specific, even though we are defining it in the shared project. Visual Studio is smart
enough to treat any code within this section as if it were present directly in the iOS project.
There will be no problem with instantiating a UIView here, since the code will never be
compiled for any platform other than iOS.

Adding the Android-specific partial class
The same goes for Android: only the name of the file and the preprocessor
directive changes. Let's set this up by going through the following steps:

In the WhackABox project, add a new file called Game.Android.cs.1.
Rename the class Game in the code, if Visual Studio doesn't do it automatically.2.
Make the class public and partial.3.
Add the #if and #endif conditional compile statements, as shown in the4.
following code:

#if __ANDROID__
namespace WhackABox
{
 public partial class Game
 {
 }
}
#endif

As with iOS, only code for Android will ever be compiled between the #if and #endif
statements.

Let's now start adding some platform-specific code.

Creating an Augmented-Reality Game Chapter 8

[316]

Writing the ARKit-specific code
In this section, we will write the platform-specific code for iOS that will initialize ARKit,
find planes, and create nodes for UrhoSharp to render on the screen. We will be taking
advantage of an Urho component that wraps ARKit in iOS. We will also be writing all the
functions that will position, add, and remove nodes. ARKit uses anchors, which act as
virtual points that glue the overlaid graphics to the real world. We are specifically looking
for ARPlaneAnchor, which represents a plane in the AR world. There are other types of
anchors available, but for this app, we only need to find horizontal planes.

Let's start off by defining the ARKitComponent so that we can use it later.

Defining the ARKitComponent
We start by adding a private field to an ARKitComponent that will be initialized later on.
Let's set this up by going through the following steps:

In the WhackABox project, open Game.iOS.cs.1.
Add a private field that holds an ARKitComponent, as shown in bold in the2.
following code :

#if __IOS__
using System;
using System.Collections.Generic;
using System.Text;
using System.Linq;
using ARKit;
using Urho;
using Urho.iOS;

namespace WhackABox
{
 public partial class Game
 {
 private ARKitComponent arkitComponent;
 }
}
#endif

Make sure that you add all the using statements to ensure that all the code we later use
resolves the correct types.

Creating an Augmented-Reality Game Chapter 8

[317]

Writing handlers for adding and updating anchors
We will now add the necessary code that will add and update anchors. We will also add
some methods to help set the orientation of the nodes after ARKit updates the anchors.

SetPositionAndRotation
The SetPositionAndRotation() method will be used by both the add and update
anchors, so we need to define it before creating the handlers for the events that will be
raised by ARKit. Let's set this up by going through the following steps:

In the WhackABox project, open the Game.iOS.cs file.1.
Add the SetPositionAndRotation() method to the class, as shown in the2.
following code:

private void SetPositionAndRotation(ARPlaneAnchor anchor, PlaneNode
 node)
{
 arkitComponent.ApplyOpenTkTransform(node, anchor.Transform,
 true);

 node.ExtentX = anchor.Extent.X;
 node.ExtentZ = anchor.Extent.Z;

 var position = new Vector3(anchor.Center.X, anchor.Center.Y, -
 anchor.Center.Z);
 UpdateSubPlane(node, position);
}

The method takes two parameters. The first is an ARPlaneAnchor defined by ARKit and
the second is the PlaneNode that we have in the scene. The purpose of the method is to
make sure that the PlaneNode is in sync with the ARPlaneAnchor object passed by
ARKit. The arkitComponent has a helper method called ApplyOpenTkTransform() to
translate the position and rotation of the ARPlaneAnchor object into the position and
rotation objects used by Urho. We then update the Extent (size) of the plane to the
PlaneNode and get the anchor center position from the ARPlaneAnchor. Finally, we call a
method that we defined earlier to update the subplane node that holds the Box component
that will do the actual rendering of the plane as a semitransparent red box.

We need one more method to handle the update and add functionality.

Creating an Augmented-Reality Game Chapter 8

[318]

UpdateOrAddPlaneNode
The UpdateOrAddPlaneNode() does exactly what the name implies: it takes an
ARPlaneAnchor as an argument and either updates or adds a new PlaneNode to the
scene. Let's set this up by going through the following steps:

In the WhackABox project, open the Game.iOS.cs file.1.
Add the UpdateOrAddPlaneNode() method, as described in the following code:2.

private void UpdateOrAddPlaneNode(ARPlaneAnchor anchor)
{
 var node = FindNodeByPlaneId(anchor.Identifier.ToString());

 if (node == null)
 {
 node = new PlaneNode()
 {
 PlaneId = anchor.Identifier.ToString(),
 Name = $"plane{anchor.GetHashCode()}"
 };

 CreateSubPlane(node);
 scene.AddChild(node);
 }

 SetPositionAndRotation(anchor, node);
}

A node is either already present in the scene or it needs to be added. The first line of code
calls the FindNodeByPlaneId() to query the scene for an object with the given PlaneId.
For iOS, we use the anchor.Identifier property to track planes defined by iOS. If this
call returns null, it means that the plane is not present in the scene and we need to create
it. To do this, we instantiate a new PlaneNode, giving it a PlaneId and a user-friendly
name for debugging purposes. We then create the subplane to visualize the plane itself by
calling CreateSubPlane(), which we defined earlier, and add the node to the
scene. Lastly, we update the position and rotation. We do this for every call to the
UpdateOrAddPlaneNode() method, since it's the same for both new and existing
nodes. It's now time to write the handlers that we will eventually hook up to ARKit
directly.

Creating an Augmented-Reality Game Chapter 8

[319]

OnAddAnchor
Let's add some code. The OnAddAnchor() method will be called each time ARKit updates
its collection of anchors that describe points that we will use to relate to within our virtual
world. We are specifically looking for anchors of the ARPlaneAnchor type.

Add the OnAddAnchor() method to the Game.iOS.cs class by going through the
following two steps:

In the WhackABox project, open the Game.iOS.cs file.1.
Add the OnAddAnchor() method anywhere in the class, as shown in the2.
following code:

private void OnAddAnchor(ARAnchor[] anchors)
{
 foreach (var anchor in anchors.OfType<ARPlaneAnchor>())
 {
 UpdateOrAddPlaneNode(anchor);
 }
}

The method takes an array of ARAnchors as a parameter. We filter out the anchors that are
of the ARPlaneAnchor type and iterate through the list. For each ARPlaneAnchor, we call
the UpdateOrAddPlaneNode() method that we created earlier to add a node to the
scene. Let's now do the same for when ARKit wants to update anchors.

OnUpdateAnchors
Each time ARKit receives new information about an anchor, it will call this method. We do
the same as we did with the previous code and iterate through the list to update the extent
and position of the anchor in the scene:

In the WhackABox project, open the Game.iOS.cs file.1.
Add the OnUpdateAnchors() method anywhere in the class, as shown in the2.
following code:

private void OnUpdateAnchors(ARAnchor[] anchors)
{
 foreach (var anchor in anchors.OfType<ARPlaneAnchor>())
 {
 UpdateOrAddPlaneNode(anchor);
 }
}

Creating an Augmented-Reality Game Chapter 8

[320]

The code is a copy of the OnAddAnchors() method. It updates all nodes in the scene based
on the information provided by ARKit.

We also need to write some code to remove the anchors that ARKit has removed.

Writing a handler for removing anchors
When ARKit decides that an anchor is invalid, it will remove it from the scene. This does
not happen very often, but it's a good practice to handle this call anyway.

OnRemoveAnchors
Let's add a method to handle the removal of an ARPlaneAnchor by going through the
following steps:

In the WhackABox project, open the Game.iOS.cs file.1.
Add the OnRemoveAnchors() method anywhere in the class, as shown in the2.
following code:

private void OnRemoveAnchors(ARAnchor[] anchors)
{
 foreach (var anchor in anchors.OfType<ARPlaneAnchor>())
 {
 FindNodeByPlaneId(anchor.Identifier.ToString())?.Remove();
 }
}

As with the Add and Remove functions, this method accepts an array of ARAnchor. We
iterate through this array, looking for anchors of the ARPlaneAnchor type. We then look
for a node that represents this plane by calling the FindNodeByPlaneId() method. If it's
not null, then we call for that node to be removed. Note the null-check operator before the
Remove() call.

Initializing ARKit
We've now come to the last part of the iOS-specific code, which is where we initialize
ARKit. This method is called InitializeAR(), and takes no parameters. It is the same as
the method for Android, but since they are never compiled simultaneously because of the
use of conditional compiling, the code calling this method will not know the difference.

Creating an Augmented-Reality Game Chapter 8

[321]

The code to initialize ARKit is straightforward, and the ARKitComponent does a lot of
work for us. Let's set it up by going through the following steps:

In the WhackABox project, open the Game.iOS.cs file.1.
Add the InitializeAR() method anywhere in the class, as shown in the2.
following code:

private void InitializeAR()
{
 arkitComponent = scene.CreateComponent<ARKitComponent>();
 arkitComponent.Orientation =
 UIKit.UIInterfaceOrientation.Portrait;
 arkitComponent.ARConfiguration = new
 ARWorldTrackingConfiguration
 {
 PlaneDetection = ARPlaneDetection.Horizontal
 };
 arkitComponent.DidAddAnchors += OnAddAnchor;
 arkitComponent.DidUpdateAnchors += OnUpdateAnchors;
 arkitComponent.DidRemoveAnchors += OnRemoveAnchors;
 arkitComponent.RunEngineFramesInARKitCallbakcs =
 Options.DelayedStart;
 arkitComponent.Run();
}

The code starts by creating an ARKitComponent. We then set the allowed orientation and
create an ARWorldTrackingConfiguration class that states that we are only interested in
horizontal planes. To respond to the addition, updating, and removal of planes, we attach
the event handlers we created earlier.

We instruct the ARKit component to delay calling the callbacks to allow ARKit to initialize
properly. Note the spelling error in the RunEngineFramesInARKitCallbakcs property.
This is a good example of why you need to carry out a review of your code, since it will be
hard to change this name without breaking backward compatibility. Naming is hard.

The last thing is to tell ARKit to start running. We do this by calling
the arkitComponent.Run() method.

Creating an Augmented-Reality Game Chapter 8

[322]

Writing ARCore-specific code
It's now time to do the same for Android with ARCore. Just as with iOS, we are going to
put all Android-specific code in a file of its own. This file is the Game.Android.cs that we
created earlier.

Defining the ARCoreComponent
First, we are going to add a field that stores a reference to the ARCoreComponent.
This wraps most of the interaction with ARCore. The ARCoreComponent is defined in the
UrhoSharp.ARCore NuGet package that we installed at the beginning of the chapter.

Let's add some using statements and the field by going through the following steps:

In the WhackABox project, open the Game.Android.cs file.1.
Add the arCore private field, as described in the following code. Also, make2.
sure that you add the using statements marked in bold:

#if __ANDROID__
using Com.Google.AR.Core;
using Urho;
using Urho.Droid;

namespace WhackABox
{
 public partial class Game
 {
 private ARCoreComponent arCore;
 }
}
#endif

The using statements will allow us to resolve the types that we need in this file and the
arCore property will be a shorthand when we want to access ARCore functions.

We'll continue by adding some methods to this class.

Creating an Augmented-Reality Game Chapter 8

[323]

SetPositionAndRotation
We need to add or update a PlaneNode whenever a plane is detected or updated. The
SetPositionAndRotation() method updates the passed PlaneNode and sets properties
on that node based on the content of the AR.Core.Plane object. Let's set this up by going
through the following steps:

In the WhackABox project, open the Game.Android.cs file.1.
Add the SetPositionAndRotation() method to the class, as shown in the2.
following code:

private void SetPositionAndRotation(Com.Google.AR.Core.Plane plane,
 PlaneNode node)
{
 node.ExtentX = plane.ExtentX;
 node.ExtentZ = plane.ExtentZ;
 node.Rotation = new Quaternion(plane.CenterPose.Qx(),
 plane.CenterPose.Qy(),
 plane.CenterPose.Qz(),
 -plane.CenterPose.Qw());

 node.Position = new Vector3(plane.CenterPose.Tx(),
 plane.CenterPose.Ty(),
 -plane.CenterPose.Tz());
}

The previous code updates the extent of the plane for the node and creates a
rotation, Quaternion. Don't worry if you don't know what a Quaternion is—few people
do—but they seem to magically hold the rotation information of the model in a very
flexible way. The plane.CenterPose property is a matrix that holds the position and
orientation of the plane. Finally, we update the position of the node from the CenterPose
property.

The next step is to create a method that handles frame updates from ARCore.

Writing a handler for ARFrame updates
Android handles updates from ARCore a little bit differently than ARKit, which exposes
three different events for added, updated, and removed nodes. When using ARCore, we
get called whenever any changes occur, and the handler that will take care of this is the one
we are about to add.

Creating an Augmented-Reality Game Chapter 8

[324]

Let's add the method by going through the following steps:

In the WhackABox project, open the Game.Android.cs file.1.
Add the OnARFrameUpdated() method anywhere in the class, as shown in the2.
following code:

private void OnARFrameUpdated(Frame arFrame)
{
 var all = arCore.Session.GetAllTrackables(
 Java.Lang.Class.FromType(
 typeof(Com.Google.AR.Core.Plane)));

 foreach (Com.Google.AR.Core.Plane plane in all)
 {
 var node =
 FindNodeByPlaneId(plane.GetHashCode().ToString());

 if (node == null)
 {
 node = new PlaneNode
 {
 PlaneId = plane.GetHashCode().ToString(),
 Name = $"plane{plane.GetHashCode()}"
 };

 CreateSubPlane(node);
 scene.AddChild(node);
 }

 SetPositionAndRotation(plane, node);
 UpdateSubPlane(node, Vector3.Zero);
 }
}

We start by querying the arCore component for all the planes that it keeps track of. We
then iterate through this list and see whether we have any nodes in the scene by calling the
FindNodeByPlaneId() method, using the hash code of the plane as the identifier. If we
can't find any, we create a new PlaneNode and assign the hash code as the PlaneId. We
then create a subplane that contains the Box component to visualize the plane, and, finally,
we add it to the scene. We then update the position and the rotation of the plane and make
a call to update the subplane as well. Now that we have the handler written, we need to
hook it up.

Creating an Augmented-Reality Game Chapter 8

[325]

Initializing ARCore
To initialize ARCore, we will add two methods. The first one is a method that will take care
of the configuration of ARCore, called OnConfigRequested(). The second one is the
InitializeAR() method that will be called from the shared Game class later on. This
method is also defined in the iOS-specific code, but, as we talked about earlier, this method
in iOS will never be compiled when we compile for Android, since we are using
conditional compiling, which filters out code from the platform that isn't selected.

OnConfigRequested
ARCore needs to know a few things, just like iOS. In Android, this is done by defining a
method that the ARCore component will call upon initialization. To create the method, go
through the following steps:

In the WhackABox project, open the Game.Android.cs file.1.
Add the OnConfigRequested() method anywhere in the class, as shown in the 2.
following code:

private void OnConfigRequested(Config config)
{
 config.SetPlaneFindingMode(Config.PlaneFindingMode.Horizontal);
 config.SetLightEstimationMode

 (Config.LightEstimationMode.AmbientIntensity);
 config.SetUpdateMode(Config.UpdateMode.LatestCameraImage);
}

The method takes a Config object, which will store any configuration you make in this
method. First, we set which type of plane we want to find. We are interested in
Horizontal planes for this game. We define which kind of light-estimation mode we want
to use and, finally, we select which update mode we want. In this case, we want to use the
latest camera image available. You can do a lot of fine-tuning during configuration, but this
is out of the scope of this book. Be sure to check out the documentation for ARCore to learn
more about its awesome power.

We now have all the code we need to initialize ARCore.

Creating an Augmented-Reality Game Chapter 8

[326]

InitializeAR
As mentioned previously, the InitializeAR() method shares the same name as the iOS-
specific code, but the compiler will only include one of them in the build because of the use
of conditional compiling. Let's set this up by going through the following steps:

In the WhackABox project, open the Game.Android.cs file.1.
Add the InitializeAR() method anywhere in the class, as shown in the2.
following code:

private void InitializeAR()
{
 arCore = scene.CreateComponent<ARCoreComponent>();
 arCore.ARFrameUpdated += OnARFrameUpdated;
 arCore.ConfigRequested += OnConfigRequested;
 arCore.Run();
}

The first step is to create the ARCoreComponent provided by UrhoSharp. This component
wraps the initialization of the native ARCore classes. We then add two event handlers: one
for taking care of frame updates and one that will be called during initialization. The last
thing we do is call the Run() method on the ARCoreComponent to start tracking the world.

Now that we have both ARKit and ARCore configured and ready to go, it's time to write
the actual game.

Writing the game
In this section, we will initialize Urho by setting up the camera, lighting, and a renderer.
The camera is the object that determines where objects will be rendered. The AR
components take care of updating the position of the camera to virtually track your phone
so that any object we render will be in the same coordinate space as what you are looking
at. First, we need a camera that will be the viewing point of the scene.

Adding a camera
Adding a camera is a straightforward process, as shown in the following steps:

In the WhackABox project, open the Game.cs file.1.
Add the camera property to the class, as shown in the following code. You2.
should place it right after the declaration of the class itself, but placing it
anywhere within the class will work.

Creating an Augmented-Reality Game Chapter 8

[327]

Add the InitializeCamera() method anywhere in the class, as shown in the3.
following code:

private Camera camera;

private void InitializeCamera()
{
 var cameraNode = scene.CreateChild("Camera");
 camera = cameraNode.CreateComponent<Camera>();
}

In UrhoSharp, everything is a node just like everything is a GameObject in Unity, including
the camera. We create a new node, which we call camera, and then we create a Camera
component on that node and keep the reference to it for later use.

Configuring a renderer
UrhoSharp needs to render the scene to a viewport. A game can have multiple viewports,
based on multiple cameras. Think of a game where you drive a car. The main viewport
will be the game from the perspective of the driver. Another viewport might be the rear-
view mirrors, which would actually be cameras themselves that render what they see on to
the main viewport. Let's set this up by going through the following steps:

In the WhackABox project, open the Game.cs file.1.
Add the viewport property to the class, as shown in the following code. You2.
should place it right after the declaration of the class itself, but placing it
anywhere within the class will work.
Add the InitializeRenderer() method anywhere in the class, as shown in3.
the following code:

private Viewport viewport;

private void InitializeRenderer()
{
 viewport = new Viewport(Context, scene, camera, null);
 Renderer.SetViewport(0, viewport);
}

Creating an Augmented-Reality Game Chapter 8

[328]

The viewport property will hold a reference to the viewport for later use. The viewport
is created by instantiating a new viewport class. The constructor of that class needs a
Context provided by the base class, the scene that we will create while initializing the
game, a camera to know which point in space to render from, and a render path, which we
default to null. A render path allows for post-processing of the frame created while
rendering. This is also outside the scope of this book, but it is worth checking out as well.

Now, let there be light.

Adding lights
To make objects visible, we need to define some lighting. We do this by creating a method
that defines which type of lighting we want in the game. Let's set this up by going through
the following steps:

In the WhackABox project, open the Game.cs file.1.
Add the InitializeLights() method anywhere in the class, as shown in the2.
following code:

private void InitializeLights()
{
 var lightNode = camera.Node.CreateChild();
 lightNode.SetDirection(new Vector3(1f, -1.0f, 1f));
 var light = lightNode.CreateComponent<Light>();
 light.Range = 10;
 light.LightType = LightType.Directional;
 light.CastShadows = true;
 Renderer.ShadowMapSize *= 4;
}

Again, everything in UrhoSharp is a node, and lights are no exception to that rule. We
create a generic node on the camera node by accessing the stored camera component and
accessing the node it belongs to. We then set a direction of that node and create a Light
component to define a light. The range of the light will be 10 units in length. The type is
directional, meaning that it will shine from the position of the node in its defined direction.
It will also cast shadows. We set the ShadowMapSize to four times the default value to give
the shadow map some more resolution.

At this point, we have all we need to initialize UrhoSharp and the AR components.

Creating an Augmented-Reality Game Chapter 8

[329]

Implementing the game startup
The base class of the Game class provides some virtual methods that we can override. One
of these is Start(), which will be called shortly after the custom renderer has set up the
UrhoSurface.

Add the method by going through the following steps:

In the WhackABox project, open the Game.cs file.1.
Add the Start() method anywhere in the class, as shown in the following code:2.

protected override void Start()
{
 scene = new Scene(Context);
 var octree = scene.CreateComponent<Octree>();

 InitializeCamera();
 InitializeLights();
 InitializeRenderer();

 InitializeAR();
}

The scene that we have been talking about is created here in the first line of the method.
This is the scene that we look at when UrhoSharp is running. It keeps track of all nodes that
we add to it. All 3D games in UrhoSharp need an Octree, which is a component
that implements spatial partitioning. It is used by the 3D engine to quickly find objects in a
3D space without having to query every single one in each frame. The second line of the
method creates this component directly on the scene.

Following this, we have the four methods that initialize the camera, the lights, and the
renderer, and that make a call to one of the two InitializeAR() methods, based on
which platform we are compiling for. If you start the app at this point, you should see that
it finds planes and renders them, but that nothing more happens. It's time to add something
to interact with.

Creating an Augmented-Reality Game Chapter 8

[330]

Adding boxes
We are now going to focus on adding virtual boxes to our augmented world. We are going
to write two methods. The first one is the AddBox() method, which will add a new box at a
random position on a plane. The second is an override of the OnUpdate() method that
UrhoSharp calls with each frame to perform game logic.

AddBox()
To add boxes to a plane, we need to add a method to do so. This method is called
AddBox(). Let's set this up by going through the following steps:

In the WhackABox project, open the Game.cs file.1.
Add the random property to the class (preferably at the top, but anywhere in the2.
class will work).
Add the AddBox() method anywhere in the class, as shown in the following3.
code:

private static Random random = new Random();

private void AddBox(PlaneNode planeNode)
{
 var subPlaneNode = planeNode.GetChild("subplane");

 var boxNode = planeNode.CreateChild("Box");
 boxNode.SetScale(0.1f);

 var x = planeNode.ExtentX * (float)(random.NextDouble() -
0.5f);
 var z = planeNode.ExtentZ * (float)(random.NextDouble() -
0.5f);

 boxNode.Position = new Vector3(x, 0.1f, z) +
 subPlaneNode.Position;

 var box = boxNode.CreateComponent<Box>();
 box.Color = Color.Blue;
}

Creating an Augmented-Reality Game Chapter 8

[331]

The static random object that we create will be used for randomizing the location of a box
on a plane. We want to use a static Random instance, since we don't want to risk creating
multiple instances that may be seeded with the same value, and that therefore return the
exact same sequence of random numbers. The method starts by finding the subplane child
of the PlaneNode instance that we pass in by calling
planeNode.GetChild("subplane"). We then create a node that will render the box. To
make the box fit the world, we need to set the scale to 0.1, which will make it 10 cm in size.

We then randomize the position of the box using the ExtentX and ExtentZ properties,
multiplied by a new random value between 0 and 1 that we first subtract 0.5 from. This is
to center the position, since the position of the parent node is the center of the plane. Then,
we set the position of the box node at the randomized position and 0.1 units above the
plane. We also need to add the subplanes position, since it might be a little bit offset from
the parent node. Finally, we add the actual box to be rendered and set the color to blue.

Let's now add code to call the AddBox() method, based on some game logic.

OnUpdate()
Most games use a game loop. This calls an Update() method, which takes an input and
calculates the state of the game. UrhoSharp is no exception. The base class of our game has
a virtual OnUpdate() method that we can override so that we can write code that will be
executed with each frame. This method is called frequently, usually about 50 times per
second.

We will now override the Update() method to add game logic that adds a new box every
other second. Let's set this up by going through the following steps:

In the WhackABox project, open the Game.cs file.1.
Add the newBoxTtl field and the newBoxIntervalInSeconds field to the class2.
at the top of the code.
Add the OnUpdate() method anywhere in the class, as shown in the following3.
code:

private float newBoxTtl;
private readonly float newBoxIntervalInSeconds = 2;

protected override void OnUpdate(float timeStep)
{
 base.OnUpdate(timeStep);

 newBoxTtl -= timeStep;

Creating an Augmented-Reality Game Chapter 8

[332]

 if (newBoxTtl < 0)
 {
 foreach (var node in scene.Children.OfType<PlaneNode>())
 {
 AddBox(node);
 }

 newBoxTtl += newBoxIntervalInSeconds;
 }
}

The first field, newBoxTtl where Ttl is time to live (TTL), is an internal counter that will
be reduced by the number of milliseconds that have passed since the last frame. When it
fall below 0, we will add a new box to each plane of the scene. We find all instances of
PlaneNode by querying the Children collection of the scene and returning only the
children of the PlaneNode type. The second field, newBoxIntervalInSeconds,
indicates how many seconds we will add to the newBoxTtl once it reaches 0. To know how
much time has passed since the last frame, we use the timeStep parameter that is passed
into the OnUpdate() method by UrhoSharp. The value of this parameter is the number of
seconds since the last frame. It's usually a small value, which will be something like 0.016
if the update loop runs at 50 frames per second. It could vary though, which is why you
will want to use this value to carry out the subtraction from newBoxTtl.

If you run the game now, you will see that boxes appear on the detected planes. We still
cannot interact with them, however, and they look pretty boring. Let's continue by making
them rotate.

Making boxes rotate
You can add your own components to UrhoSharp by creating a class that inherits from
Urho.Component. We will be creating a component that will make the boxes spin around
all three axes.

Creating the rotate component
As we mentioned, a component is a class that inherits from Urho.Component. This base
class defines a virtual method called OnUpdate() that behaves the same way as the
Update() method on the Game class itself. This allows us to add logic to the component so
that it can modify the state of the node it belongs to.

Creating an Augmented-Reality Game Chapter 8

[333]

Let's create the rotate component by going through the following steps:

In the WhackABox project, create a new class called Rotator.cs in the root of the1.
project.
Add the following code:2.

using Urho;

namespace WhackABox
{
 public class Rotator : Component
 {
 public Vector3 RotationSpeed { get; set; }

 public Rotator()
 {
 ReceiveSceneUpdates = true;
 }

 protected override void OnUpdate(float timeStep)
 {
 Node.Rotate(new Quaternion(
 RotationSpeed.X * timeStep,
 RotationSpeed.Y * timeStep,
 RotationSpeed.Z * timeStep),
 TransformSpace.Local);
 }
 }
}

The RotationSpeed property will be used to determine the speed of rotation around any
specific axis. It will be set when we assign the component to the box node in the next
step. To enable the component to receive calls to the OnUpdate() method on each frame,
we need to set the ReceiveSceneUpdates property to true. If we don't do this, the
component will not be called by UrhoSharp at each update. It's set to false by default for
performance reasons.

All the fun happens in the override of the OnUpdate() method. We create a new
quaternion to represent a new rotation state. Again, we don't need to know how this works
in detail, only that quaternions belong to the mystical world of advanced mathematics. We
multiply each axis in the RotationSpeed vector by the timeStep to generate a new value.
The timeStep parameter is the number of seconds that have passed since the last frame.
We also define the rotation as being around the local coordinate space of this box.

Creating an Augmented-Reality Game Chapter 8

[334]

Now that the component is created, we need to add it to the boxes.

Assigning the Rotator component
Adding the Rotator component is as simple as adding any other component. Let's set this
up by going through the following steps:

In the WhackABox project, open the Game.cs file.1.
Update the AddBox() method by adding the code marked in bold in the2.
following code:

private void AddBox(PlaneNode planeNode)
{
 var subPlaneNode = planeNode.GetChild("subplane");

 var boxNode = planeNode.CreateChild("Box");
 boxNode.SetScale(0.1f);

 var x = planeNode.ExtentX * (float)(random.NextDouble() -
0.5f);
 var z = planeNode.ExtentZ * (float)(random.NextDouble() -
0.5f);

 boxNode.Position = new Vector3(x, 0.1f, z) +
 subPlaneNode.Position;

 var box = boxNode.CreateComponent<Box>();
 box.Color = Color.Blue;

 var rotationSpeed = new Vector3(10.0f, 20.0f, 30.0f);
 var rotator = new Rotator() { RotationSpeed = rotationSpeed };
 boxNode.AddComponent(rotator);
}

We begin by defining how we want the box to rotate by creating a new Vector3 struct and
assigning it to a new variable called rotationSpeed. In this case, we want it to rotate 10
units around the x axis, 20 units around the y axis, and 30 units around the z axis. We use
the rotationSpeed variable to set the RotationSpeed property of the Rotator
component that we instantiate in the second row of the code we added.

Finally, we add the component to the box node. The boxes should now rotate in an
interesting way.

Creating an Augmented-Reality Game Chapter 8

[335]

Adding box hit-test
We now have rotating boxes that keep piling up. We need to add a way to remove boxes.
The simplest thing would be to add a feature that removes boxes when we touch them, but
we are going to make it a little fancier than that: whenever we touch a box, we want it to
shrink and disappear before we remove it from the scene. To do this, we are going to use
our newly acquired knowledge of components and then add some code to determine
whether we are touching a box.

Adding a death animation
The Death component that we are about to add has the same template as the Rotator
component that we created in the last section. Let's add it by going through the following
steps and taking a look at the code:

In the WhackABox project, create a new class called Death.cs.1.
Replace the code in the class with the following code:2.

 using Urho;
 using System;

 namespace WhackABox
 {
 public class Death : Component
 {
 private float deathTtl = 1f;
 private float initialScale = 1;

 public Action OnDeath { get; set; }

 public Death()
 {
 ReceiveSceneUpdates = true;
 }

 public override void OnAttachedToNode(Node node)
 {
 initialScale = node.Scale.X;
 }

 protected override void OnUpdate(float timeStep)
 {
 Node.SetScale(deathTtl * initialScale);

 if (deathTtl < 0)
 {

Creating an Augmented-Reality Game Chapter 8

[336]

 Node.Remove();
 }

 deathTtl -= timeStep;
 }
 }
 }

We first define two fields. The deathTtl field determines how long the animation will be
in seconds. The initialScale field keeps track of the scale of the node when the
component is attached to the node. To receive updates, we need to set
ReceiveSceneUpdates to true in the constructor. The overridden OnAttachedToNode()
method is called when the component is attached to a node. We use this method to set the
initialScale field. After the component is attached, we start getting calls on each frame
to OnUpdate(). On each call, we set a new scale of the node based on the deathTtl
field multiplied by the initialScale field. When the deathTtl field reaches zero, we
remove the node from the scene. If we don't reach zero, then we subtract the amount of
time since the last frame was called, which is given to us by the timeStep parameter. All
we need to do now is figure out when to add the Death component to a box.

DetermineHit()
We need a method that can interpret a touch on the 2D surface of the screen and figure out
which boxes we are hitting using an imaginary ray travelling from the camera toward the
scene we are looking at. This method is called DetemineHit. Let's set this up by going
through the following steps:

In the WhackABox project, open the Game.cs file.1.
Add the DetemineHit() method anywhere in the class, as shown in the2.
following code:

private void DetermineHit(float x, float y)
{
 var cameraRay = camera.GetScreenRay(x, y);
 var result = scene.GetComponent<Octree>
 ().RaycastSingle(cameraRay);

 if (result?.Node?.Name?.StartsWith("Box") == true)
 {
 var node = result?.Node;

 if (node.Components.OfType<Death>().Any())
 {
 return;

Creating an Augmented-Reality Game Chapter 8

[337]

 }

 node.CreateComponent<Death>();
 }
}

The x and y parameters that are passed into the method range from 0 to 1, where 0
represents the left edge or top edge of the screen and 1 represents the right edge or bottom
edge of the screen. The exact center of the screen would be x=0.5 and y=0.5. Since we
want to get a ray from the camera, we can use a method directly on the camera component
called GetScreenRay(). It returns a ray from the camera in the scene in the same direction
that the camera is set to. We use this ray and pass it to the Octree component's
RaycastSingle() method, which returns a result that will contain a single node, if one is
hit.

We examine the results, perform multiple null checks, and finally check whether the name
of the node starts with Box. If this is true, we check to see whether the box we hit
is already doomed by examining whether there is a Death component attached. If there is,
we return. If there isn't, we create a Death component and leave the box to die.

This all looks good so far. We now need something to call the DetermineHit() method.

OnTouchBegin()
Touches are handled as events in UrhoSharp, and this means that they require event
handlers. Let's create a handler for the TouchBegin event by going through the following
steps:

In the WhackABox project, open the Game.cs file.1.
Add the OnTouchBegin() method anywhere in the code, as shown in the2.
following:

private void OnTouchBegin(TouchBeginEventArgs e)
{
 var x = (float)e.X / Graphics.Width;
 var y = (float)e.Y / Graphics.Height;

 DetermineHit(x, y);
}

Creating an Augmented-Reality Game Chapter 8

[338]

When a touch is registered, this method will be called and information about that touch
event will be sent as a parameter. This parameter has an X and a Y property, which
represent the point on the screen that we have touched. Since the DetermineHit() method
wants the values in the range of 0 to 1, we need to divide the X and Y coordinates by the
width and height of the screen.

Once that is done, we call the DetermineHit() method. To complete this section, we just
have to wire up the event.

Wiring up input
All that's left now is to wire up the event to the Input subsystem of UrhoSharp. This is
done by adding a single line of code to the Start() method, as shown in the following
steps:

In the WhackABox project, open the Game.cs file.1.
In the Start() method, add the code highlighted in bold in the following code2.
fragment:

protected override void Start()
{
 scene = new Scene(Context);
 var octree = scene.CreateComponent<Octree>();

 InitializeCamera();
 InitializeLights();
 InitializeRenderer();

 Input.TouchBegin += OnTouchBegin;

 InitializeAR();
}

This wires up the TouchBegin event to our OnTouchBegin event handler.

If you run the game now, the boxes should animate and disappear when you tap on them.
What we need now is some kind of statistic that shows how many planes there are and how
many boxes are still alive.

Creating an Augmented-Reality Game Chapter 8

[339]

Updating statistics
At the beginning of the chapter, we added some controls to the XAML that displayed the
number of planes and boxes that were present in the game. It's now time to add some code
to update those numbers. We will be using internal messaging to decouple the game from
the Xamarin.Forms page that we use to display this information.

The game will send a message to the main page that will contain a class that has all the
information we need. The main page will receive this message and update the labels.

Defining a statistics class
We are going to use MessagingCenter in Xamarin.Forms, which allows us to send an
object along with the message. We need to create a class that can carry the information we
want to pass. Let's set this up by going through the following steps:

In the WhackABox project, create a new class called GameStats.cs.1.
Add the following code to the class:2.

public class GameStats
{
 public int NumberOfPlanes { get; set; }
 public int NumberOfBoxes { get; set; }
}

The class will be a simple data carrier that indicates how many planes and boxes we have.

Sending updates via MessagingCenter
When a node is created or removed, we need to send statistics to anything that is listening.
To do this, we need a new method that will go through the scene and count how many
planes and boxes we have, and then send a message. Let's set this up by going through the
following steps:

In the WhackABox project, open the Game.cs file.1.
Add a method called SendStats() anywhere in the class, as shown in the2.
following code:

private void SendStats()
{
 var planes = scene.Children.OfType<PlaneNode>();
 var boxCount = 0;

Creating an Augmented-Reality Game Chapter 8

[340]

 foreach (var plane in planes)
 {
 boxCount += plane.Children.Count(e => e.Name == "Box");
 }

 var stats = new GameStats()
 {
 NumberOfBoxes = boxCount,
 NumberOfPlanes = planes.Count()
 };

 Xamarin.Forms.Device.BeginInvokeOnMainThread(() =>
 {
 Xamarin.Forms.MessagingCenter.Send(this, "stats_updated",
 stats);
 });
}

The method checks all children of the scene object to find nodes of the PlaneNode type.
We iterate through all of these nodes and count how many of the node's children have the
name Box, and then indicate this number in a variable called boxCount. When we have this
information, we create a GameStats object and initialize it with the box count and the
plane count.

The last step is to send the message. We have to make sure that we are using the UI thread
(the MainThread) since we are going to update the GUI. Only the UI thread is allowed to
touch the GUI. This is done by wrapping the MessagingCenter.Send() call in
BeginInvokeOnMainThread().

The message that is sent is stats_updated. It contains the stats information as an
argument. Let's now make use of the SendStats() method.

Wiring up events
The scene has a lot of events that we can wire up. We will hook up to NodeAdded and
NodeRemoved to determine when we need to send statistics information. Let's set this up by
going through the following steps:

In the WhackABox project, open the Game.cs file.1.
In the Start() method, add the code that is highlighted in bold in the following2.
fragment:

protected override void Start()
{

Creating an Augmented-Reality Game Chapter 8

[341]

 scene = new Scene(Context);
 scene.NodeAdded += (e) => SendStats();
 scene.NodeRemoved += (e) => SendStats();
 var octree = scene.CreateComponent<Octree>();

 InitializeCamera();
 InitializeLights();
 InitializeRenderer();

 Input.TouchEnd += OnTouchEnd;

 InitializeAR();
}

Each time a node is either added or removed, a new message will be sent to the GUI.

Updating the GUI
This will be the last method we add to the game. It handles the information updates and
also updates the labels in the GUI. Let's add it by going through the following steps:

In the WhackABox project, open the MainPage.xaml.cs file.1.
Add a method called StatsUpdated() anywhere in the code, as shown in the2.
following fragment:

private void StatsUpdated(Game sender, GameStats stats)
{
 boxCountLabel.Text = stats.NumberOfBoxes.ToString();
 planeCountLabel.Text = stats.NumberOfPlanes.ToString();
}

The method receives the GameStats object that we sent and updates the two labels in the
GUI.

Subscribing to the updates in the MainForm
The last line of code to add will wire up the StatsUpdated handler to an incoming
message. Let's set this up by going through the following steps:

In the WhackABox project, open the MainPage.xaml.cs file.1.

Creating an Augmented-Reality Game Chapter 8

[342]

In the constructor, add the line of code that is highlighted in bold in the following2.
fragment:

public MainPage()
{
 InitializeComponent();
 MessagingCenter.Subscribe<Game, GameStats>(this,
 "stats_updated", StatsUpdated);
}

This line of code hooks up an incoming message with the content stats_updated to the
StatsUpdated method. Now run the game and go out into the world to hunt down those
boxes!

The completed app looks something like the following screenshot, with spinning boxes
popping up at random locations:

Creating an Augmented-Reality Game Chapter 8

[343]

Summary
In this chapter, we learned how to integrate AR into Xamarin.Forms by using custom
renderers. We took advantage of UrhoSharp to use cross-platform rendering, components,
and input management to interact with the world. We also learned a bit about
MessagingCenter, which can be used to send internal in-process messages between
different parts of an application to reduce coupling.

Next up, we are going to dive into machine learning and create an app that can recognize a
hotdog in an image.

9
Hot Dog or Not Hot Dog Using

Machine Learning
In this chapter, we will learn how to use machine learning to create a model that we can use
for image classification. We will export the model as a TensorFlow model that we can use
on Android devices and a CoreML model that we can use on iOS devices. In order to train
and export models, we will use Azure Cognitive Services and the Custom Vision service.

Once we have exported the models, we will learn how to use them for Android and iOS
apps.

The following topics will be covered in this chapter:

Training a model with Azure Cognitive Service Custom Vision
How to use TensorFlow models for image classification on an Android device
How to use CoreML models for image classification on an iOS device

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[345]

Technical requirements
To be able to complete this project, you need to have Visual Studio for Mac or PC installed,
as well as the Xamarin components. See Chapter 1, Introduction to Xamarin, for more details
on how to set up your environment. To use Azure Cognitive Services, you need a Microsoft
account. The source code for this chapter is available at the GitHub repository at https:/ /
github.com/PacktPublishing/ Xamarin. Forms- Projects/ tree/ master/ Chapter- 9.

Machine learning
The term machine learning was coined in 1959 by Arthur Samuel, an American pioneer in
artificial intelligence. Tom M. Mitchell, an American computer scientist, provided a more
formal definition of machine learning later:

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E.

In simpler terms, this quote describes a computer program that has the ability to
learn without being explicitly programmed. In machine learning, algorithms are used to
build a mathematical model of sample data or training data. The models are used for
computer programs to make predictions and decisions without being explicitly
programmed for the task in question.

Azure Cognitive Services – Custom Vision
Custom Vision is a tool or service that can be used for training models for image
classification and for detecting objects in images. In Custom Vision, we are able to upload
our own images and tag them so that they can be trained for image classification. If we train
a model for object detection, we can also tag specific areas of an image. Because
models are already pretrained for basic image recognition, we don't need a large amount of
data to get a great result. The recommendation is to have at least 30 images per tag.

When we have trained a model, we can use it with an API that is part of the Custom Vision
service. We can also, however, export models for CoreML (iOS), TensorFlow (Android),
ONNX (Windows), and Dockerfile (Azure IoT Edge, Azure Functions, and AzureML).
These models can be used to carry out classification or object detection without having a
connection to the Custom Vision service.

https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9
https://github.com/PacktPublishing/Xamarin.Forms-Projects/tree/master/Chapter-9

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[346]

CoreML
CoreML is a framework that was introduced in iOS 11. CoreML makes it possible to
integrate Machine Learning models into iOS apps. On top of CoreML, we have three high-
level APIs—Vision APIs for image analysis, natural language APIs for natural language
processing, and Gameplay Kit for evaluating learned decision trees. More information
about CoreML can be found in the official documentation from Apple at https:/ /
developer.apple. com/ documentation/ coreml.

TensorFlow
TensorFlow is an open source machine learning framework, which can be found at https:/
/www.tensorflow.org/ . TensorFlow can be used for more than simply running models on
mobile devices—it can also be used for training models. For running it on mobile devices,
we have TensorFlow Mobile and TensorFlow Lite. The models that are exported from
Azure Cognitive Services are for TensorFlow Mobile. There are also Xamarin bindings for
both TensorFlow Mobile and TensorFlow Lite, which are available as NuGet packages.
However, bear in mind that plans have been made to depreciate TensorFlow Mobile during
2019. This does not mean that we can't use it after that, but it does mean that it is unlikely to
get any more updates after they have depreciated it, and as long as Custom Vision still
exports models for TensorFlow Mobile, we will continue to use it. The concepts will be the
same, even if the APIs look a bit different.

Project overview
If you have seen the TV series Silicon Valley, you have probably heard of the Not Hotdog
application. In this chapter, we will learn how to build that app. The first part of this
chapter will involve collecting the data that we will use for creating a machine learning
model that can detect whether or not a photo has a hot dog.

In the second part of the chapter, we will build an app for iOS and an app for Android
where the user can pick a photo in the photo library in order to analyze it to see whether it
has a hot dog. The estimated time for completing this project is 120 minutes.

https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[347]

Getting started
We can use either Visual Studio 2017 on a PC or Visual Studio for Mac to do this project. To
build an iOS app using Visual Studio for PC, you must have a Mac connected. If you don't
have access to a Mac at all, you can choose to just do the Android parts of this project.
Similarly, if you only have a Mac, you can choose to just do the iOS or Android parts of this
project.

Building the Hot Dog or Not Hot Dog
application using machine learning
Let's get started! We will first train a model for image classification that we can use later in
the chapter to decide whether a photo has a hot dog.

Training a model
To train a model for image classification, we need to collect photos of hot dogs and photos
that aren't of hot dogs. Because most items in the world are not hot dogs, we need more
photos that don't contain hot dogs. It's better if the photos of hot dogs cover a lot of
different hot-dog scenarios—with bread, with ketchup, or with mustard, such as. This is so
the model will be able to recognize hot dogs in different situations. When we are collecting
photos that aren't of hot dogs, we also need to have a big variety of photos that are both of
items that are similar to hot dogs and that are completely different to hot dogs.

The model that is in the solution on GitHub was trained with 240 photos, 60 of which were
of hot dogs and 180 of which were not.

Once we have collected all the photos, we will be ready to start training the model by going
through the following steps:

Go to https:/ /customvision. ai.1.
Log in and create a new project.2.
Give the project a name—in our case, HotDogOrNot.3.
The project type should be Classification.4.
Select General (compact) as the domain. We use a compact domain if we want to5.
export models and run them on a mobile device.

https://customvision.ai
https://customvision.ai
https://customvision.ai
https://customvision.ai
https://customvision.ai
https://customvision.ai
https://customvision.ai

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[348]

Click Create project to continue, as shown in the following screenshot:7.

Tagging images
Once we have created a project, we can start to upload images and tag them. We will start
by adding photos of hot dogs by going through the following steps:

Click Add images.1.
Select the photos of hot dogs that should be uploaded.2.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[349]

Tag the photos with hotdog, as shown in the following screenshot:3.

Once we have uploaded all the photos of hot dogs, it is time to upload photos that aren't of
hot dogs by going through the following steps. For best results, we should also include
photos of objects that look similar to hot dogs but are not:

Click Add images.1.
Select the photos that aren't of hot dogs.2.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[350]

Tag the photos with not-hotdog, as shown in the following screenshot. Set this3.
tag as a negative tag. A negative tag is used for photos that don't contain any
objects that we have created other tags for. In this case, none of the photos we
will upload contain hot dogs:

Training a model
Once we have uploaded the photos, it is time to train a model. Not all the photos that we
are uploading will be used for training; some will be used for verification, to give us a score
about how good the model is. If we upload photos in chunks and train the model after each
chunk, we will be able to see our scores improving. To train a model, click the green Train
button at the top of the page.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[351]

The following screenshot shows the result of a training iteration, where the precision of the
model is 93.4%:

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[352]

Exporting a model
Once we have trained a model, we will be able to export it so that it can be used on a
device. We can use the APIs if we want to, but to make fast classifications, and to be able to
do this offline, we will add the models to the app packages. Export and download
the CoreML model and the TensorFlow model, as shown in the following screenshot:

Building the app
Once we have one CoreML model and one TensorFlow model, it is time to build the app.
Our app will use the trained models to classify photos according to whether they are
photos of hot dogs. The CoreML model that we exported from the Custom Vision service
will be used for iOS and the TensorFlow model for Android.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[353]

Create a new project with the template for Mobile App (Xamarin.Forms). The template can
be found under the Cross-Platform tab. Use HotDotOrNot as the name of the project, as
shown in the following screenshot:

In the next step, we will select what Xamarin.Forms template we should use. For our
project, select Blank. For this project, we will target Android and iOS as the platforms and
use .NET Standard as the code-sharing strategy, as shown in the following screenshot:

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[354]

Before doing anything else we will update the Xamarin.Forms NuGet package to make sure
that we have the latest version of it.

Classifying images with machine learning
The code that we will use for image classification cannot be shared between the iOS and the
Android projects. However, to be able to carry out classifications from shared code (the
HotDogOrNot project), we will create an interface. First, however, we will create a class for
the EventArgs that we will use in the interface by going through the following steps:

In the HotDogOrNot project, create a new class1.
called ClassificationEventArgs.
Add EventArgs as a base class, as shown in the following code:2.

using System;
using System.Collections.Generic;

public class ClassificationEventArgs : EventArgs
{
 public Dictionary<string, float> Classifications { get; private
 set; }

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[355]

 public ClassificationEventArgs(Dictionary<string, float>
 classifications)
 {
 Classifications = classifications;
 }
}

Now that we have created the ClassificationEventArgs, we can create the interface by
going through the following steps:

In the HotdogOrNot project, create a new interface called IClassifier in1.
the HotdogOrNot project.
Add a method called Classify that doesn't return anything but takes a byte2.
array as an argument.
Add an event that uses the ClassificationEventArgs and call3.
it ClassificationCompleted, as shown in the following code:

using System;
using System.Collections.Generic;

public interface IClassifier
{
 void Classify(byte[] bytes);
 event EventHandler<ClassificationEventArgs>
 ClassificationCompleted;
}

Using CoreML for image classification
The first thing we will do is add the CoreML model to the HotDogOrNot.iOS project by
going through the following steps:

Extract the ZIP file that we get from the Custom Vision service.1.
Find the .mlmodel file and rename it as hotdog-or-not.mlmodel.2.
Add it to the Resources folder in the iOS project.3.
Make sure that the build action is BundleResource. If you are using Visual4.
Studio on a Mac, a .cs file will be created. Remove this file, because it will be
easier to use the model without the code.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[356]

When we have added the file to the iOS project, we will be ready to create the iOS
implementation of the IClassifier interface by going through the following steps:

Create a new class called CoreMLClassifier in the HotDogOrNotDog.iOS1.
project.
Add the IClassifier interface.2.
Implement the ClassificationCompleted event and the Classify method3.
from the interface, as shown in the following code:

using System;
using System.Linq;
using CoreML;
using Foundation;
using ImageIO;
using Vision;
using System.Collections.Generic;

namespace HotDogOrNot.iOS
{
 public class CoreMLClassifier : IClassifier
 {
 public event EventHandler<ClassificationEventArgs>
 ClassificationCompleted;
 public void Classify(byte[] bytes)
 {
 //Code will be added here
 }
 }
}

The first thing we will do in the Classify method is compile the CoreML model by going
through the following steps:

Get the path of the model with the1.
NSBundle.MainBundle.GetUrlForResource method.
Compile the model with the MLModel.CompileModel method. Pass the model's2.
URL and an error object that will indicate whether one or more errors occurred
during the compilation of the model.
Use the URL from the CompileModel method and pass it to MLModel.Create to3.
create a model object that we can work with, as shown in the following code:

var modelUrl = NSBundle.MainBundle.GetUrlForResource("hotdog-or-
not", "mlmodel");
var compiledUrl = MLModel.CompileModel(modelUrl, out var error);
var compiledModel = MLModel.Create(compiledUrl, out error);

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[357]

Because we are going to use a photo for the CoreML model, we can use the Vision APIs that
are built on top of the CoreML. To do this, we will use VNCoreMLRequest. Before creating
the request, however, we will create a callback that will handle when the request is
completed by going through the following steps:

Open the CoreMLClassifier.cs.1.
Create a new private method called HandleVNRequest with two parameters,2.
one of the VNRequst type and one of the NSError type.
If the error is null, invoke the ClassificationCompleted event with3.
ClassificationEventArgs, which contains an empty Dictionary.
If the error is not null, get the result with the GetResults method on the4.
VNRequest object.
Order the classifications by Confidence so that the classification with the5.
highest confidence is first.
Convert the result to a Dictionary using the ToDictionary method.6.
Invoke the ClassificationCompleted event with7.
ClassificationEventArgs, which contains the sorted dictionary. This is
shown in the following code:

private void HandleVNRequest(VNRequest request, NSError error)
{
 if (error != null)
 {
 ClassificationCompleted?.Invoke(this, new
 ClassificationEventArgs(new Dictionary<string, float>()));
 }

 var result = request.GetResults<VNClassificationObservation>();
 var classifications = result.OrderByDescending(x =>
 x.Confidence).ToDictionary(x => x.Identifier, x =>
 x.Confidence);

 ClassificationCompleted?.Invoke(this, new
 ClassificationEventArgs(classifications));
}

When we have created the callback, we will go back to the Classify method and perform
the classification by going through the following steps:

Convert the model to a VNCoreMLModel, because we need this to use the Vision1.
APIs. Use the VNCoreMLModel.FromMLModel method to convert the model.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[358]

Create a new VNCoreMLRequest object and pass the VNCoreMLModel and the2.
callback we created as arguments to the constructor.

Convert the input data to an NSData object using the NSData.FromArray3.
method.
Create a new VNImageRequestHandler object and pass the data4.
object, CGImagePropertyOrientation.Up, and a new VNImageOptions object
to the constructor.
Use the Perform method on the VNImageRequestHandler and pass5.
the VNCoreMLRequest in an array and an error object as an argument, as shown
in the following code:

public void Classify(byte[] bytes)
{
 var modelUrl = NSBundle.MainBundle.GetUrlForResource("hotdog-
or-
 not", "mlmodel");
 var compiledUrl = MLModel.CompileModel(modelUrl, out var
error);
 var compiledModel = MLModel.Create(compiledUrl, out error);

 var vnCoreModel = VNCoreMLModel.FromMLModel(compiledModel, out
 error);

 var classificationRequest = new VNCoreMLRequest(vnCoreModel,
 HandleVNRequest);

 var data = NSData.FromArray(bytes);
 var handler = new VNImageRequestHandler(data,
 CGImagePropertyOrientation.Up, new VNImageOptions());

 handler.Perform(new[] { classificationRequest }, out error);
}

Using TensorFlow for image classification
Now that we have written the code in iOS to recognize hot dogs, it is now time to write the
code for Android. The first things to do is to add the files we exported from the Custom
Vision to the Android project. For TensorFlow, the actual model and the labels (the tags)
are separated into two files. Let's set this up by going through the following steps:

Extract the ZIP file that we got from the Custom Vision service.1.
Find the model.pb file and rename it as hotdog-or-not-model.pb.2.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[359]

Find the labels.txt file and rename it as hotdog-or-not-labels.txt.3.
Import the files to the Assets folder in the Android project. Make sure that the 4.
build action is Android Asset.

When we have imported the files into the Android project, we can start to write code. To
get the libraries we need for TensorFlow, we also need to install a NuGet package by going
through the following steps:

In the HotDogOrNotDog.Android project, install1.
the Xam.Android.Tensorflow NuGet package.
Then, create a new class called TensorflowClassifier in the2.
HotDogOrNotDog.Android project.
Add the IClassifier interface to the TensorflowClassifier class.3.
Implement the ClassificationCompleted event and the Classify method4.
from the interface, as shown in the following code:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Android.App;
using Android.Graphics;
using Org.Tensorflow.Contrib.Android;

public class TensorflowClassifier : IClassifier
{
 public event EventHandler<ClassificationEventArgs>
 ClassificationCompleted;

 public void Classify(byte[] bytes)
 {
 //Code will be added here
 }
}

The first thing we will do in the Classify method is read the model and the label files
from the Assets folder by going through the following steps:

Use the TensorFlowInferenceInterface class to import the model. After that,1.
use the path to the asset folder and the name of the model file as arguments for
the constructor.
Use StreamReader to read the labels.2.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[360]

Read the whole text file, split by line breaks ('/n'), and trim the text on each row3.
to remove whitespaces. We will also filter away items that are empty or null and
convert the result to a list of strings, as shown in the following code:

public void Classify(byte[] bytes)
{
 var assets = Application.Context.Assets;

 var inferenceInterface = new
 TensorFlowInferenceInterface(assets, "hotdog-or-not-model.pb");

 var sr = new StreamReader(assets.Open("hotdog-or-not-
 labels.txt"));
 var labels = sr.ReadToEnd().Split('\n').Select(s => s.Trim())
 .Where(s => !string.IsNullOrEmpty(s)).ToList();
}

TensorFlow models do not understand images, so we need to convert them to binary
data. The images need to be converted to a float array of point values, one per red, green,
and blue value for each pixel. Some adjustments to the color values are also necessary. As
well as this, we need to resize the images so that they are 227 x 227 pixels. To do this,
write the following code:

var bitmap = BitmapFactory.DecodeByteArray(bytes, 0, bytes.Length);
var resizedBitmap = Bitmap.CreateScaledBitmap(bitmap, 227, 227, false)
 .Copy(Bitmap.Config.Argb8888, false);

var floatValues = new float[227 * 227 * 3];
var intValues = new int[227 * 227];

resizedBitmap.GetPixels(intValues, 0, 227, 0, 0, 227, 227);

for (int i = 0; i < intValues.Length; ++i)
{
 var val = intValues[i];
 floatValues[i * 3 + 0] = ((val & 0xFF) - 104);
 floatValues[i * 3 + 1] = (((val >> 8) & 0xFF) - 117);
 floatValues[i * 3 + 2] = (((val >> 16) & 0xFF) - 123);
}

We are now ready to run the model by going through the following steps:

Create a new array of floats with the same size as the list of labels. The output of1.
the model will be fetched into this array. An item in the array will represent the
confidence for a tag. The matching label will have the same position in the labels
list as the confidence result in the float array.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[361]

Run the Feed method of the TensorFlowInferenceInterface and pass2.
"Placeholder" as the first argument, the binary data as the second argument,
and the dimensions of the image as the third argument.
Run the Run method of TensorFlowInferenceInterface and pass an array3.
that contains a string with the value "loss".

Run the Fetch method of the TensorFlowInferenceInterface. Pass "loss"4.
as the first argument and the float arrays for the outputs as the second argument.
Create a Dictionary <string, float> and fill it with the labels and the5.
confidence for each label.
Invoke the ClassificationCompleted event with6.
ClassificationEventArgs, which contains the dictionary, as shown in the
following code:

var outputs = new float[labels.Count];
inferenceInterface.Feed("Placeholder", floatValues, 1, 227, 227,
3);
inferenceInterface.Run(new[] { "loss" });
inferenceInterface.Fetch("loss", outputs);

var result = new Dictionary<string, float>();

for (var i = 0; i < labels.Count; i++)
{
 var label = labels[i];
 result.Add(label, outputs[i]);
}

ClassificationCompleted?.Invoke(this, new
ClassificationEventArgs(result));

Creating a base ViewModel
Before we initialize the app, we will create a base ViewModel so that we can use it when we
are registering the other ViewModels. In this, we will put the code that can be shared
between all the ViewModels of the app. Let's set this up by going through the following
steps:

In the HotDogOrNot project, create a new folder called ViewModels.1.
Create a new class called ViewModel in the ViewModels folder we created.2.
Make the new class public and abstract.3.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[362]

Add and implement the INotifiedPropertyChanged interface. This4.
is necessary because we want to use data bindings.
Add a Set method that will make it easier for us to raise5.
the PropertyChanged event from the INotifiedPropertyChanged interface.
The method will check whether the value has changed. If it has, it will raise the
event.

Add a static property of the INavigation type called Navigation, as shown in6.
the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Runtime.CompilerServices;
using Xamarin.Forms;

namespace HotDogOrNot
{
 public abstract class ViewModel : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;
 protected void Set<T>(ref T field, T newValue,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(field,
 newValue))
 {
 field = newValue;
 PropertyChanged?.Invoke(this, new
 PropertyChangedEventArgs(propertyName));
 }
 }

 public static INavigation Navigation { get; set; }
 }
}

Initializing the app
We are now ready to write the initialization code for the app. We will set up inversion of
control (IoC) and carry out the necessary configuration.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[363]

Creating a Resolver
We will now create a helper class that will ease the process of resolving object graphs
through Autofac. This will help us to create types based on a configured IoC container. In
this project, we will use Autofac as the IoC library by going through the following steps:

In the HotDogOrNot project, install the NuGet package Autofac to1.
the HotDogOrNot project.
Create a new class called Resolver in the root.2.

Add a private static field of the IContainer type called container (from3.
Autofac).
Add a public static method called Initialize with IContainer as a4.
parameter. Set the value of the parameter to the container field.
Add a generic static public method called Resolve, which will return an5.
instance that is based on the type argument with the Resolve method
of IContainer, as shown in the following code:

using System;
using Autofac;

namespace HotDogOrNot
{
 public class Resolver
 {
 private static IContainer container;

 public static void Initialize(IContainer container)
 {
 Resolver.container = container;
 }

 public static T Resolve<T>()
 {
 return container.Resolve<T>();
 }
 }
}

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[364]

Creating a Bootstrapper
To configure the dependency injection and initialize the Resolver, we will create a
bootstrapper. We will have one shared bootstrapper and one bootstrapper for each
platform to match their specific configurations. We will have different implementations of
the IClassifier in iOS and Android. To create a bootstrapper, go through the following
steps:

Create a new class in the HotDogOrNot project and name it Bootstrapper.1.
Write the following code in the new class, as shown in the following code:2.

using System.Linq;
using System.Reflection;
using Autofac;
using HotdogOrNot.ViewModels;
using Xamarin.Forms;
namespace HotDogOrNot
{
 public class Bootstrapper
 {
 protected ContainerBuilder ContainerBuilder { get; private
 set; }

 public Bootstrapper()
 {
 Initialize();
 FinishInitialization();
 }

 protected virtual void Initialize()
 {
 ContainerBuilder = new ContainerBuilder();

 var currentAssembly = Assembly.GetExecutingAssembly();

 foreach (var type in
 currentAssembly.DefinedTypes.Where(e =>
 e.IsSubclassOf(typeof(Page))))
 {
 ContainerBuilder.RegisterType(type.AsType());
 }

 foreach (var type in
 currentAssembly.DefinedTypes.Where(e =>
 e.IsSubclassOf(typeof(ViewModel))))
 {
 ContainerBuilder.RegisterType(type.AsType());

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[365]

 }
 }

 private void FinishInitialization()
 {
 var container = ContainerBuilder.Build();

 Resolver.Initialize(container);
 }
 }
}

Creating the iOS bootstrapper
In the iOS bootstrapper, we will have configurations that are specific to the iOS app. To
create an iOS app, we go through the following steps:

In the HotDogOrNot.iOS project, create a new class and name it Bootstrapper.1.
Make the new class inherit from HotDogOrNot.Bootstrapper.2.
Write the following code and resolve all the references:3.

using System;
using Autofac;

public class Bootstrapper : HotdogOrNot.Bootstrapper
{
 public static void Init()
 {
 var instance = new Bootstrapper();
 }

 protected override void Initialize()
 {
 base.Initialize();

 ContainerBuilder.RegisterType<CoreMLClassifier>
 ().As<IClassifier>();
 }
}

Go to AppDelegate.cs in the iOS project.4.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[366]

Before the call to LoadApplication, in the FinishedLaunching method, call5.
the Init method of the platform-specific bootstrapper, as shown in the following
code:

public override bool FinishedLaunching(UIApplication app,
NSDictionary options)
{
 global::Xamarin.Forms.Forms.Init();
 Bootstrapper.Init();

 LoadApplication(new App());

 return base.FinishedLaunching(app, options);
}

Creating the Android bootstrapper
In the Android bootstrapper, we will have configurations that are specific to
the Android app. To create bootstrapper in Android, we go through the following steps:

In the Android project, create a new class and name it Bootstrapper.1.
Make the new class inherit from HotDogOrNot.Bootstrapper.2.
Write the following code and resolve all the references:3.

using System;
using Autofac;

public class Bootstrapper : HotDogOrNot.Bootstrapper
{
 public static void Init()
 {
 var instance = new Bootstrapper();
 }

 protected override void Initialize()
 {
 base.Initialize();

 ContainerBuilder.RegisterType<TensorflowClassifier>
 ().As<IClassifier>().SingleInstance();
 }
}

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[367]

Go to the MainActivity.cs file in the Android project.4.
Before the call to LoadApplication, in the OnCreate method, call5.
the Execute method of the platform-specific bootstrapper, as shown in the
following code:

protected override void OnCreate(Bundle savedInstanceState)
{
 TabLayoutResource = Resource.Layout.Tabbar;
 ToolbarResource = Resource.Layout.Toolbar;

 base.OnCreate(savedInstanceState);
 global::Xamarin.Forms.Forms.Init(this, savedInstanceState);

 Bootstrapper.Init();

 LoadApplication(new App());
}

Building the first view
The first view in this app will be a simple view with two buttons. One button will be for
starting the camera so the users can take a photo of something to determine whether it is a
hot dog. The other button will be for picking a photo from the photo library of the device.

Building the ViewModel
We will start by creating the ViewModel, which will handle what will happen when a user
taps one of the buttons. Let's set this up by going through the following steps:

Create a new class called MainViewModel in the ViewModels folder.1.
Add ViewModel as a base class for MainViewModel.2.
Create a private field of the IClassifier type and call it classifier.3.
Create a constructor that has the IClassifier as a parameter.4.
Set the value of the classifier field to the value of the parameter in the5.
constructor, as shown in the following code:

using System.IO;
using System.Linq;
using System.Windows.Input;
using HotdogOrNot.Models;
using HotdogOrNot.Views;
using Xamarin.Forms;

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[368]

public class MainViewModel : ViewModel
{
 private IClassifier classifier;

 public MainViewModel(IClassifier classifier)
 {
 this.classifier = classifier;
 }
}

We will use the Xam.Plugin.Media NuGet package for taking the photo and accessing the
photo library of the device. We need to install the package for all projects in the solution by
using the NuGet package manager. Before we can use the package, however, we need to do
some configuration for each platform. We will start with Android. Let's set this up by going
through the following steps:

The plugin needs1.
the WRITE_EXTERNAL_STORAGE and READ_EXTERNAL_STORAGE permissions.
The plugin will add these for us, but we need to override the
OnRequestPermissionResult in the MainActivity.cs.
Call the OnRequestPermissionsResult method, as shown in the following2.
code.
Add CrossCurrentActivity.Current.Init(this, savedInstanceState)3.
 after initializing Xamarin.Forms in the OnCreate method in the
MainActivity.cs file, as shown in the following code:

public override void OnRequestPermissionsResult(int requestCode,
string[] permissions, Android.Content.PM.Permission[] grantResults)
{
Plugin.Permissions.PermissionsImplementation.Current.OnRequestPermi
ssionsResult(requestCode, permissions, grantResults);
}

We also need to add some configuration about the file paths from which the users can pick
photos. Let's set this up by going through the following steps:

In the HotDogOrNot.Android project, add a folder called xml to the Resources1.
folder
Create a new XML file called file_paths.xml in the new folder.2.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[369]

Add the following code to file_paths.xml:3.

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <external-files-path name="my_images" path="Pictures" />
 <external-files-path name="my_movies" path="Movies" />
</paths>

The last thing we need to do to set up the plugin for the Android project is add the
following code in the AndroidManifest.xml (it can be found in the Properties folder of
the Android project) inside the application element:

 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1" android:versionName="1.0"
 package="xfb.HotdogOrNot">
 <uses-sdk android:minSdkVersion="21" android:targetSdkVersion="27"
 />
 <application android:label="HotdogOrNot.Android">
 <provider android:name="android.support.v4.content.FileProvider"
 android:authorities="${applicationId}.fileprovider"
 android:exported="false" android:grantUriPermissions="true">
 <meta-data android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/file_paths"></meta-data>
 </provider>
 </application>
 </manifest>

For the iOS project, the only thing we need to do is add the following four usage
descriptions to the info.plist:

<key>NSCameraUsageDescription</key>
<string>This app needs access to the camera to take photos.</string>
<key>NSPhotoLibraryUsageDescription</key>
<string>This app needs access to photos.</string>
<key>NSMicrophoneUsageDescription</key>
<string>This app needs access to microphone.</string>
<key>NSPhotoLibraryAddUsageDescription</key>
<string>This app needs access to the photo gallery.</string>

Once we have finished with the configuration for the plugin, we can start using it. We will
start by creating a method that will handle the media file that we will get both when the
user is taking a photo and when the user is picking a photo.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[370]

Let's set this up by going through the following steps:

Open the MainViewModel.cs file.1.

Create a private method called HandlePhoto that has a parameter of the2.
MediaFile type.
Add an if statement to check whether the MediaFile parameter is null. If so,3.
perform an empty return.
Get the stream of the photo using the GetStream method of the MediaFile4.
class.
Add a private field of the byte [] type called bytes.5.
Convert the stream into a byte array with the ReadFully method that we will6.
create in the next step.
Add an event handler to the ClassificationCompleted event of the classifier.7.
We will create the event handler later in this chapter.

Finally, add a call to the Classify method of the classifier and use the byte array8.
as the argument, as shown in the following code:

private void HandlePhoto(MediaFile photo)
{
 if(photo == null)
 {
 return;
 }

 var stream = photo.GetStream();
 bytes = ReadFully(stream);

 classifier.ClassificationCompleted +=
 Classifier_ClassificationCompleted;
 classifier.Classify(bytes);
}

We will now create the ReadFully method that we called in the preceding code. We will
use this to read the full stream into a byte array. The code will look as follows:

private byte[] ReadFully(Stream input)
{
 byte[] buffer = new byte[16 * 1024];
 using (MemoryStream memoryStream = new MemoryStream())
 {
 int read;
 while ((read = input.Read(buffer, 0, buffer.Length)) > 0)

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[371]

 {
 memoryStream.Write(buffer, 0, read);
 }
 return memoryStream.ToArray();
 }

}

Before we create the event handler, we will create a model that we will use inside the event
handler by going through the following steps:

In the HotDogOrNot project, create a new folder called Models in the1.
HotDogOrNot project.
Create a new class in the Models folder called Result.2.
Add a property of the bool type called IsHotdog.3.
Add a property of the float type called Confidence.4.

Add a property of the byte[] type called PhotoBytes, as shown in the5.
following code:

public class Result
{
 public bool IsHotdog { get; set; }
 public float Confidence { get; set; }
 public byte[] PhotoBytes { get; set; }
}

We can now add an event handler to the ViewModel by going through the following steps:

Create a method called Classifier_ClassificationCompleted that has an1.
object and a ClassificationEventArgs parameter.
Remove the event handler from the classifier so that we don't allocate2.
unnecessary memory.
Check whether the classifications dictionary contains any items. If it does, order3.
the dictionary so that the classifications with the highest confidence (values) will
be first.
Create a new Result object and set the properties as shown in the following4.
code:

void Classifier_ClassificationCompleted(object sender,
ClassificationEventArgs e)
{
 classifier.ClassificationCompleted -=
 Classifier_ClassificationCompleted;

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[372]

 Result result = null;

 if (e.Classifications.Any())
 {
 var classificationResult =
 e.Classifications.OrderByDescending(x => x.Value).First();

 result = new Result()
 {
 IsHotdog = classificationResult.Key == "hotdog",
 Confidence = classificationResult.Value,
 PhotoBytes = bytes
 };
 }
 else
 {
 result = new Result()
 {
 IsHotDog = false,
 Confidence = 1.0f,
 PhotoBytes = bytes
 };
 }
}

When we have created the result view, we will go back to the event handler to add the
navigation to the result view. The last thing we will do in this ViewModel is create
a Command property for the buttons that we have in the view. Let's start by setting up the
take photo button by going through the following steps:

Create a new property of the ICommand type called TakePhoto in the1.
MainViewModel.cs file.
Use an expression to return a new Command.2.
Pass an Action as an expression to the constructor of the Command.3.
In the Action, use the CrossMedia.Current.TakePhotoAsync method and4.
pass a StoreCameraMediaOptions object to it.
In StoreCameraMediaOptions, set the default camera as the rear camera using5.
the DefaultCamera property.
Pass the result of the call to the TakePhotoAsync method to the HandlePhoto6.
method, as shown in the following code:

public ICommand TakePhoto => new Command(async() =>
{
 var photo = await CrossMedia.Current.TakePhotoAsync(new

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[373]

 StoreCameraMediaOptions()
 {
 DefaultCamera = CameraDevice.Rear
 });

 HandlePhoto(photo);
});

The final thing we will do in the MainViewModel for now is to handle what happens when
the pick photo from library button is tapped. Let's set this up by going through the
following steps:

Create a new property of the ICommand type called PickPhoto.1.
Use an expression to return a new Command.2.
Pass an Action as an expression to the constructor of the Command. 3.

In the Action, use the CrossMedia.Current.PickPhotoAsync to open the4.
default photo picker of the operating system.
Pass the result of the call to the TakePhotoAsync method of5.
the HandlePhoto method, as shown in the following code:

 public ICommand PickPhoto => new Command(async () =>
 {
 var photo = await CrossMedia.Current.PickPhotoAsync();

 HandlePhoto(photo);
 });

Building the view
Now, once we have created the ViewModel, it is time to create the code for the GUI. Go
through the following steps to create the GUI for the MainView:

Create a new folder called Views in the HotDogOrNot project.1.
Add a new XAML ContentPage called MainView.2.
Set the Title property of the ContentPage to Hotdog or Not hotdog.3.
Add a StackLayout to the page and set its VerticalOptions property to4.
Center.
Add a Button to the StackLayout with the text Take Photo. For the Command5.
property, add a binding to the TakePhoto property in the ViewModel.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[374]

Add a Button to the StackLayout with the text Pick Photo. For6.
the Command property, add a binding to the PickPhoto property in the
ViewModel, as shown in the following code:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="HotDogOrNot.Views.MainView"
 Title="Hot dog or Not hot dog">
 <ContentPage.Content>
 <StackLayout VerticalOptions="Center">
 <Button Text="Take Photo" Command="{Binding TakePhoto}" />
 <Button Text="Pick Photo" Command="{Binding PickPhoto}" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

In the code behind the MainView, we will set the binding context of the view by going
through the following steps:

Add MainViewModel as a parameter of the constructor.1.
After the InitialComponent method call, set the BindingContext property of2.
the view to the MainViewModel parameter.
Use the static method SetBackButtonTitle on the NavigationPage class so3.
that an arrow for navigation back to this view will be shown in the navigation
bar on the result view, as shown in the following code:

public MainView(MainViewModel viewModel)
{
 InitializeComponent();

 BindingContext = viewModel;
 NavigationPage.SetBackButtonTitle(this, string.Empty);
}

Now we can go to App.xaml.cs and set the MainPage to MainView by going through the
following steps:

In the HotDogOrNot project, go to App.xaml.cs.1.
Create an instance of MainView using the Resolve method on the Resolver.2.
Create a NavigationPage and pass the MainView to the constructor.3.
Set the static Navigation property on the ViewModel to the value of the4.
Navigation property on the NavigationPage.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[375]

Set the MainPage property to the instance of the NavigationPage that we5.
created in step 3.
Delete MainPage.xaml, because we no longer need it. You should be left with6.
the following code:

public App()
{
 InitializeComponent();

 var mainView = Resolver.Resolve<MainView>();
 var navigationPage = new NavigationPage(mainView);

 ViewModel.Navigation = navigationPage.Navigation;

 MainPage = navigationPage;
}

Building the result view
The last thing we need to do in this project is to create the result view. This view will show
the input photo, and whether or not it is a hot dog.

Building the ViewModel
Before we create the view, we will create a ViewModel that will handle all the logic for the
view by going through the following steps:

Create a class called ResultViewModel in the ViewModels folder in the1.
HotdogOrNot project.
Add ViewModel as a base class to the ResultViewModel.2.
Create a property of the string type called Title. Add a private field for the3.
property.
Create a property of the string type called Description. Add a private field4.
for the property.
Create a property of the byte[] type called PhotoBytes. Add a private field for5.
the property, as shown in the following code:

using HotdogOrNot.Models;

namespace HotDogOrNot.ViewModels
{
 public class ResultViewModel : ViewModel

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[376]

 {
 private string title;
 public string Title
 {
 get => title;
 set => Set(ref title, value);
 }

 private string description;
 public string Description
 {
 get => description;
 set => Set(ref description, value);
 }

 private byte[] photoBytes;
 public byte[] PhotoBytes
 {
 get => photoBytes;
 set => Set(ref photoBytes, value);
 }
 }
}

The final thing we will do in the ViewModel is to create an Initialize method that will
have the result as a parameter. Let's set this up by going through the following steps:

In the Initialize method, set the PhotoBytes property to the value of the1.
PhotoBytes property of the result parameter.
Add an if statement that checks whether the IsHotDog property of the result2.
parameter is true and whether the Confidence is higher than 90%. If this is the
case, set the Title to "Hot dog" and the Description to "This is for sure
a hotdog".
Add an else if statement to check whether the IsHotdog property of the3.
result parameter is true. If this is the case, set the Title to "Maybe" and the
Description to "This is maybe a hotdog".
Add an else statement that sets the Title to "Not a hot dog" and the4.
Description to "This is not a hot dog", as shown in the following code:

public void Initialize(Result result)
{
 PhotoBytes = result.PhotoBytes;

 if (result.IsHotdog && result.Confidence > 0.9)
 {

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[377]

 Title = "Hot dog";
 Description = "This is for sure a hot dog";
 }
 else if (result.IsHotdog)
 {
 Title = "Maybe";
 Description = "This is maybe a hot dog";
 }
 else
 {
 Title = "Not a hot dog";
 Description = "This is not a hot dog";
 }
}

Building the view
Because we want to show the input photo in the input view, we need to convert it from
byte[] to Xamarin.Forms.ImageSource. We will do this in a value converter that we
can use together with the binding in the XAML by going through the following steps:

Create a new folder called Converters in the HotDogOrNot project.1.
Create a new class called BytesToImageConverter.2.
Add and implement the IValueConverter interface, as shown in the following3.
code:

using System;
using System.Globalization;
using System.IO;
using Xamarin.Forms;
public class BytesToImageConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object
 parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }

 public object ConvertBack(object value, Type targetType, object
 parameter, CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[378]

The Convert method will be used when a ViewModel updates a view. The ConvertBack
method will be used in two-way bindings when the View updates the ViewModel. In this
case, we only need to write code for the Convert method by going through the following
steps:

First, check whether the value parameter is null. If so, we should return null.1.
If the value not is null, cast it as byte[].2.
Create a MemoryStream from the byte array.3.

Return the result of the ImageSource.FromStream method to which we will4.
pass the stream to, as shown in the following code:

public object Convert(object value, Type targetType, object
parameter, CultureInfo culture)
{
 if(value == null)
 {
 return null;
 }
 var bytes = (byte[])value;
 var stream = new MemoryStream(bytes);

 return ImageSource.FromStream(() => stream);
}

The view will contain the photo, which will take up two-thirds of the screen. Under the
photo, we will add a description of the result. Let's set this up by going through the
following steps:

In the Views folder, create a new XAML ContentPage and name it ResultView. 1.
Import the namespace for the converter.2.
Add the BytesToImageConverter to the Resources for the page and give it3.
the key "ToImage".
Bind the Title property of the ContentPage to the Title property of the4.
ViewModel.
Add a Grid to the page with two rows. The Height value for the first5.
RowDefinition should be 2*. The height of the second row should be *. These
are relative values that mean that the first row will take up two-thirds of the
Grid, while the second row will take up one-third of the Grid.
Add an Image to the Grid and bind the Source property to the PhotoBytes6.
property in the ViewModel. Use the converter to convert the bytes to
the ImageSource of the Source property.

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[379]

Add a Label and bind the Text property to the Description property of the7.
ViewModel, as shown in the following code:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:converters="clr-
namespace:HotdogOrNot.Converters"
 x:Class="HotdogOrNot.Views.ResultView"
 Title="{Binding Title}">
<ContentPage.Resources>
 <converters:BytesToImageConverter x:Key="ToImage" />
</ContentPage.Resources>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="2*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Image Source="{Binding PhotoBytes, Converter=
 {StaticResource ToImage}}" Aspect="AspectFill" />
 <Label Grid.Row="1" HorizontalOptions="Center"
 FontAttributes="Bold" Margin="10" Text="{Binding
 Description}" />
 </Grid>
</ContentPage>

We also need to set the BindingContext of the view. We will do this in the same way as
we did in the MainView—in the code-behind file (ResultView.xaml.cs), as shown in the
following code:

public ResultView (ResultViewModel viewModel)
{
 InitializeComponent ();
 BindingContext = viewModel;
}

The very last thing we need to do is add navigation from the MainView to the ResultView.
We will do this by adding the following code at the end of
the Classifier_ClassificationCompleted method in the MainViewModel:

var view = Resolver.Resolve<ResultView>();
((ResultViewModel)view.BindingContext).Initialize(result);

Navigation.PushAsync(view);

Hot Dog or Not Hot Dog Using Machine Learning Chapter 9

[380]

Below could you see how the app will look if we upload a photo of a hot dog:

Summary
In this chapter, we built an app that can recognize whether or not a photo has a hot dog.
We accomplished this by training a machine learning model for image classification using
Azure Cognitive Services and the Custom Vision service.

We exported models for CoreML and TensorFlow and we learned how to use them in apps
for both iOS and Android. In these apps, a user can take a photo or pick a photo from their
photo library. This photo will be sent to the model to be classified, and we will get a result
that tells us whether or not the photo is of a hot dog.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Xamarin UI Development - Second Edition
Steven F. Daniel

ISBN: 9781788995511

Build native and cross-platform apps for both iOS and Android using the
Xamarin and Xamarin.Forms platform using C# 7.
Implement and customize different user-interface layouts and Animations within
your application and use the PlatFormEffects API to change appearance of
control elements.
Understand the MVVM architectural pattern and how to implement this with
your apps.
Build a NavigationService class to enable. navigation between your ViewModels
as well as Implementing Data-Binding to control elements within your XAML
pages and ViewModels.
Work with the Razor Templating Engine to create Models and Razor Pages that
communicate with an SQLite database.
Build a LocationService class to incorporate location-based features within your
cross-platform apps to display the user’s current location by creating a custom
cross-platform map control and handle location tracking updates.
Work with the Microsoft Azure App Services Platform and Implement Social
networking features within your app using the Twitter API.
Unit Testing your Xamarin.Forms apps using the NUnit and UITest Frameworks

https://www.packtpub.com/application-development/mastering-xamarin-ui-development-second-edition

Other Books You May Enjoy

[382]

React and React Native - Second Edition
Adam Boduch

ISBN: 9781789346794

Learn what has changed in React 16 and how you stand to benefit
Craft reusable components using the React virtual DOM
Learn how to use the new create-react-native-app command line tool
Augment React components with GraphQL for data using Relay
Handle state for architectural patterns using Flux
Build an application for web UIs using Relay

https://www.packtpub.com/application-development/react-and-react-native-second-edition

Other Books You May Enjoy

[383]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET foundation
 reference 7
.NET Standard library 34

A
Advanced Micro Devices (AMD) processor 25
Advanced RISC Machines (ARM) 9
ahead of time (AOT) 9
Android Asset 359
Android callable wrapper (ACW) 10
Android emulator
 configuring 18, 19, 20, 21, 25, 26, 27, 28, 29
Android runtime (ART) 10
Android
 about 17
 background location tracking 148
 Xamarin.Essentials, configuring 129
API key
 reference 134
 using 134
ARCore 286
ARCore-specific code, WhackABox
 ARCore, initializing 325
 ARCoreComponent, defining 322
 handler, writing for ARFrame updates 323, 324
 InitializeAR 326
 OnConfigRequested 325
 SetPositionAndRotation 323
 writing 322
ARKit 286
ARKit-specific code
 anchors, adding 317
 anchors, removing 320
 anchors, updating 317
 ARKit, initializing 320, 321

 ARKitComponent, defining 316
 OnAddAnchor 319
 OnRemoveAnchors 320
 OnUpdateAnchors 319, 320
 SetPositionAndRotation 317
 UpdateOrAddPlaneNode 318
 writing 316
augmented reality (AR) 285, 286
augmented reality (AR) game
 overview 286
augmented reality game
 overview 287
Autofac
 about 44
 bootstrapper, adding in Android 67
 bootstrapper, adding in iOS 66
 bootstrapper, adding in UWP 67
 bootstrapper, creating 64, 66
 dependency injection, wiring up 62
 reference, adding 63
 resolver, creating 63
Azure Cognitive services 233
Azure serverless services
 about 213
 Azure blob storage 214
 Azure Cognitive Services 215
 Azure functions 214
 Azure SignalR Service 213
Azure
 functions, deploying 236
 reference 216

B
background location tracking, on iOS
 location updates, enabling in background 143
 location updates, subscribing to 145, 146, 148
 user location, using with permissions 144

[385]

background location tracking, with Android
 background job, creating 149
 background job, scheduling 150, 152
 location updates, subscribing to 152, 153, 154
 user location, using with permissions 148, 149
boxes, WhackABox
 AddBox() 330, 331
 adding 330
 box hit-test, adding 335
 death animation, adding 335
 DetermineHit() 336
 input, wiring up 338
 OnTouchBegin() 337, 338
 OnUpdate() 331
 rotate component, creating 332, 333
 rotating 332
 Rotator component, assigning 334

C
C#
 page, creating 14
 versus XAML 15
Cascading Style Sheets (CSS) 273
chat application
 overview 215
 serverless backend, building 216
ChatView, real-time chat application
 Acr.UserDialogs plugin, installing 263
 Base64ToImageConverter, creating 268, 269
 buttons, adding 277
 ChatViewModel, creating 257
 class, creating 257, 259
 code, fixing 278, 279, 280
 creating 256, 268
 entry control, adding 277
 ListView, adding 271
 LocalSimpleTextMessage class, creating 261
 Media plugin, installing 264, 265
 messages, receiving 260, 261
 photos, sending 265, 266, 267
 ResourceDictionary, adding 271
 skeleton ChatView, creating 269, 271
 style sheet, applying 282
 styling 280
 styling, with CSS 281, 282

 template selector, creating 276
 templates, adding 272, 274, 275
 text messages, sending 262
 text property, adding 259
Cognitive Service
 creating 220, 221
Common Language Runtime (CLR) 7, 44
Computer Vision API
 adult content, scanning 233
conditional compilation 287
Content Delivery Network (CDN) 214
CoreML
 about 346
 reference 346
custom renderers, MeTracker app
 creating 159
 creating, to extend map in Android app 165,

166, 167
 creating, to extend map in iOS app 161, 163,

164

 custom control, creating for map 160, 161
custom renderers, UrhoSharp
 adding, for Android 308
 adding, for ARView control 306
 adding, for iOS 307, 308
Custom Vision
 about 345
 reference 347

D
data binding
 about 69
 adding 70
 complete item, creating with command 81
 features 70
 filter toggle function, creating with command 82,

83, 84
 item, navigating with command 79, 80
 ListView, binding in MainView 73
 new items, adding 70, 71
 new items, adding to list 71, 72, 73
 ValueConverter, creating for item status 76, 77
 ValueConverter, using 77, 78, 79
decision zones, matchmaking app
 clamp function, adding 111

[386]

 creating 108
 events, adding to control 115
 events, declaring 116
 events, raising 116
 exit logic, adding 113
 grid, extending 108
 image, checking for exit 113
 image, removing 114
 pan state check, wiring up 112
 PanCompleted, updating 115
 screen size, determining 109, 110
 StackLayout, adding for denying photos 109
 StackLayout, adding for linking photos 108
 state, calculating 111, 112
dependency injection
 about 55
 wiring up, through Autofac 62
development machine
 Mac, setting up 17
 setting up 16
 Windows machine, setting up 21

E
European Computer Manufacturers Association

(ECMA) standards 7
Extensible Markup Language (XML) document 12

F
Function Apps 214
Functions 214
functions, chat application
 adult content, scanning with Computer Vision

API 233
 Azure service, creating 221
 connection information, returning for SignalR

Service 223, 225
 creating 221
 message library, creating 226, 227, 228
 messages, sending 231, 232
 photos, clearing from storage with scheduled job

234, 235
 storage helper, creating 228, 229, 230

G
Game class, WhackABox
 adding 311, 312
 CreateSubPlane 312, 313
 FindNodeByPlaneId 313, 314
 UpdateSubPlane 313
Global Unique Identifier (GUID) 314
Graphical User Interface (GUI) 257

H
hardware acceleration
 configuring 25, 26, 27, 29
heat map, MeTracker app
 creating 154
 custom renderers, creating 159
 data, preparing for visualization 155, 156, 157,

158, 159
 GetAll method, adding to LocationRepository

154

HttpClient
 reference 177
hue, saturation, and lightness (HSL)
 about 157
 hue 157
 lightness 158
 saturation 157

I
images, Not Hotdog application
 classifying, with CoreML 355, 356, 357, 358
 classifying, with machine learning 354
 classifying, with TensorFlow 358, 359, 361
in-app purchases 41
Intel Hardware Accelerated Execution Manager

(HAXM)
 installing 18
 reference 18
intermediate language (IL) 53
inversion of control (IoC) 137, 362
iOS
 about 16
 background location tracking 143

[387]

J
Java Native Interface (JNI) bridge 10
just-in-time (JIT)-compiled 9

L
Language Integrated Query (LINQ) 51
location services, weather app
 Android app, configuring 178, 179
 iOS app, configuring 178
 using 178
 UWP app, configuring 180
logic, MeTracker app
 Android bootstrapper, creating 141, 142
 bootstrapper, creating 139
 iOS bootstrapper, creating 140, 141
 MainPage, setting 142
 resolver, creating 137, 138
 setting up 130
 view, creating with map 131, 132, 133, 134
 ViewModel, creating 135, 136, 137
long polling 213

M
Mac
 Android emulator, configuring 18, 19, 20, 21
 setting up 17
 Visual Studio, installing 17
 Visual Studio, pairing 23, 24
 Xcode, installing 17
machine learning
 about 215, 345
 CoreML 346
 Custom Vision 345
 Not Hotdog application, building 347
 TensorFlow 346
MainView, real-time chat application
 code, fixing 255
 creating 251, 253
 MainPage, replacing 253
 MainViewModel, creating 252
 setting 256
 XAML, editing 253, 254
manage callable wrapper (MCW) 10
matchmaking app

 creating 89
 decision zones, creating 108
 MainPage file, designing 94, 95
 overview 89
 project, creating 89, 90, 91
 Swiper control, creating 95
 Swiper control, wiring up 117
 Xamarin.Forms NuGet packages, updating 92,

93

MeTracker app
 background location tracking, on iOS 143
 background location tracking, with Android 148
 building 124, 125
 heat map, creating 154
 logic, setting up 130
 map, refreshing on app resume 168
 overview 123
 repository, creating for user location 125
 requisites 123
 service, creating for location tracking 129
 Xamarin.Essentials, using 128
Microsoft Azure 213
models, weather app
 app-specific models, adding 173
 creating 170
 Forecast model, adding 174
 ForecastItem model, adding 173
 weather API models, adding 171, 173
Model–View–ViewModel (MVVM)
 about 39
 dependency injection, wiring up through Autofac

62

 ItemView, creating 60, 62
 ItemViewModel, creating 57
 MainView, creating 57, 58, 60
 MainViewModel, creating 55
 Model 52
 PropertyChanged.Fody 53, 54
 TodoItemViewModel, creating 56
 using 52
 View 52
 ViewModel 52
 ViewModel base class, defining 52
Mono
 about 7

[388]

 reference 7

N
native application
 about 7
 native API access 7
 native performance 7
 native user interface 7
NDK (Native Development Kit) 27
Not Hotdog application
 Android bootstrapper, creating 366
 base ViewModel, creating 361, 362
 Bootstrapper, creating 364
 building 352, 353, 354
 building, with machine learning 347
 images, classifying with machine learning 354
 images, tagging 348, 349, 350
 initializing 362
 iOS bootstrapper, creating 365
 model, exporting 352
 model, training 347, 348, 350, 351
 overview 346
 prerequisites 347
 Resolver, creating 363
 result view, building 375
 view, building 367
NuGet
 reference 8

O
object relational mapper (ORM) 127
OpenWeatherMap
 reference 170
Optical Character Recognition (OCR) 215

P
partial classes, WhackABox
 adding 314
 Android-specific partial class, adding 315
 iOS-specific partial class, adding 314, 315
Plain Old CLR Object (POCO) class 44
Portable Class Library (PCL) 47
preprocessor directives 310
project, to-do list app
 DoToo 38, 39

 DoToo.Android 39, 40
 DoToo.iOS 40, 41
 DoToo.UWP 41
push notifications 41

Q
Question and Answer (QnA) 215
quicktype
 reference 170

R
real-time chat application
 base ViewModel, creating 250
 Bootstrapper, creating 249, 250
 building 240, 241
 chat service, creating 241, 242, 243, 244, 245,

247

 ChatView, creating 256
 initializing 248
 life cycle events, handling 283
 MainView, creating 251
 overview 239
 requisites 239
 resolver, creating 248
repository, MeTracker app
 creating 126, 127, 128
 creating, for user location 125
 model, creating for location data 126
result view, Not Hotdog application
 building 375, 377, 378, 379, 380
 ViewModel, building 375

S
Server-Sent Events (SSE) 213
serverless backend, chat application
 building 216
 Cognitive Service, creating 220, 221
 functions, creating 221
 functions, deploying to Azure 236
 SignalR Service, creating 216, 217
 storage account, creating 217, 219
shared project 34
SignalR Service
 about 216
 creating 216, 217

[389]

SignalR, examples
 chat applications 213
 collaborative applications 213
 dashboard applications 214
 multiplayer games 214
Simple DirectMedia Layer (SDL) library 310
SQLite-net 33
SQLite
 Add method, implementing 50, 51
 connecting, to persist data 47
 connection, creating to database 49
 Get method, implementing 50, 51
 NuGet package, adding 47, 48
 TodoItem class, updating 48, 49
 Update method, implementing 50, 51
statistics, WhackABox
 events, wiring up 340
 GUI, updating 341
 statistics class, defining 339
 updates, sending via MessagingCenter 339
 updates, subscribing in MainForm 341, 342
 updating 339
storage account
 creating 217, 219
Swiper control, matchmaking app
 constructor, creating for call 118
 content view, adding for photo 98, 99
 count labels, adding 118
 creating 95, 96, 97
 DescriptionGenerator, creating 100
 events, responding 119
 events, subscribing 119
 events, wiring up 120
 GUI, updating with methods 119
 images, adding 117
 initial photos, adding 117
 loading label, controlling 103
 main grid, defining 97
 pan gesture, handling 103, 104, 105, 106
 picture class, creating 101
 picture, binding 102
 source, setting of image 102
 testing 107
 wiring up 117

T
TensorFlow
 about 346
 reference 346
time to live (TTL) 332
TinyNavigationHelper
 reference 203
to-do list app
 application-wide background color, setting 84,

85

 contents, laying out 84
 data binding, adding 69
 executing 68, 69
 files, examining 36, 37
 filter button 85, 86
 interface, creating 45, 47
 ListView item, formatting 86
 ListView item, laying out 85
 MainPage file, removing 43
 MainView item, laying out 85
 MVVM, using 52
 overview 33
 project, creating 34, 35, 36
 project, setting up 33, 34
 repository, creating 44, 45, 47
 SQLite, connecting to persist data 47
 to-do list item, defining 44
 TodoItem model, creating 44
 Xamarin.Forms packages, updating 42, 43
traditional Xamarin
 versus Xamarin.Forms 15, 16

U
Universal Windows Platform (UWP) 11, 36, 169
Urho3D engine 286
UrhoSharp
 about 285, 286, 300
 adding 300
 Android life cycle events, adding 304
 custom renderers, adding for ARView control

306

 NuGet package, installing for iOS 301, 302
 PlaneNode, defining 306
 UrhoSharp.ARCore Nuget Package, installing for

[390]

Android 303
user interface, WhackABox
 ARView control, creating 298
 defining 297
 MainPage, modifying 299, 300
UWP 17
UWP developer mode
 configuring 29, 30

V
view, Not Hotdog application
 building 367, 373, 374
 VIewModel, building 373
 ViewModel, building 367, 368, 370, 371
view, weather app
 background image, setting 197
 creating, for desktop computers 191, 192
 creating, for phones 198, 199
 creating, for tablets 191, 192
 grouped ListView, using 200, 201
 loading indicator, adding 196, 197
 navigating, based on form factor 202, 203, 204
 pull, adding to refresh functionality 202
 RepeaterView, using 192, 193, 194
 toolbar item, adding 195, 196
ViewModel class, weather app
 creating 180, 181, 182
 weather data, grouping 183, 184, 185
 weather data, obtaining 182
Visual Studio
 installing 17
 pairing, with Mac 23, 24
 reference 16, 17, 22
 Xamarin, installing 22, 23

W
weather app
 behavior, creating 207, 208, 209, 210
 bootstrapper, creating 187, 188
 building 170
 location services, using 178
 models, creating for weather data 170
 overview 169
 RepeaterView, creating based on FlexLayout

188, 189, 190

 requisites 170
 Resolver, creating 186
 states, handling with VisualStateManager 205,

206

 view, creating for desktop computers 191, 192
 view, creating for phones 198, 199
 view, creating for tablets 191, 192
 ViewModel class, creating 180, 181, 182
 views, navigating based on form factor 202, 203,

204

 weather data, fetching with service 174, 175,
177

WhackABox
 Android version 8.0, setting 292, 293
 ARCore-specific code, writing 322
 ARKit-specific code, writing 316
 boxes, adding 330
 camera permission, adding to Android 294
 Camera Usage Description, adding for iOS 295,

296, 297
 camera, adding 326, 327
 game startup, implementing 329
 game, creating 310, 311
 game, writing 326
 lights, adding 328
 platform-specific partial classes, adding 314
 project, creating 287, 288, 289
 project, starting 287
 renderer, configuring 327, 328
 shared partial Game class, adding 311, 312
 statistics, updating 339
 Urhosharp, adding 300
 user interface, defining 297
 Xamarin.Forms NuGet packages, updating 290,

291

Windows machine
 Android emulator, configuring 25, 26, 27, 29
 hardware acceleration, configuring 25, 26, 27,

28, 29
 setting up 21
 UWP developer mode, configuring 29, 30
 Visual Studio, pairing with Mac 23, 24
 Xamarin, installing for Visual Studio 22, 23

X
X is Not Unix (XNU)
 reference 9
Xamarin, advantages
 code sharing 8
 existing knowledge, using 8
Xamarin.Android 9
Xamarin.Essentials
 about 128
 configuring, on Android 129
 NuGet package, installing 129
Xamarin.Forms Grid
 reference 59
Xamarin.Forms
 about 11
 architecture 11

 usage 16
 user interface, defining with XAML 12
 versus traditional Xamarin 15, 16
Xamarin.iOS 9
Xamarin.Mac 10
Xamarin
 about 7
 installing, for Visual Studio 22, 23
XAML
 Label control, defining 12, 13
 page, creating 13, 14
 page, creating in C# 14
 user interface, defining 12
 versus C# 15
Xcode
 installing 17
 reference 17

	Cover
	Title Page
	Copyright and Credits
	Dedication
	www.PacktPub.com
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Xamarin
	Native applications
	Xamarin and Mono
	Code sharing
	Using existing knowledge

	Xamarin.iOS
	Xamarin.Android
	Xamarin.Mac
	Xamarin.Forms
	The architecture of Xamarin.Forms
	Defining a user interface using XAML
	Defining a Label control
	Creating a page in XAML
	Creating a page in C#
	XAML or C#?

	Xamarin.Forms versus traditional Xamarin
	When to use Xamarin.Forms

	Setting up a development machine
	Setting up a Mac
	Installing Xcode
	Installing Visual Studio
	Configuring the Android emulator

	Setting up a Windows machine
	Installing Xamarin for Visual Studio
	Pairing Visual Studio with a Mac
	Configuring an Android emulator and hardware acceleration
	Configuring UWP developer mode

	Summary

	Chapter 2: Building Our First Xamarin.Forms App
	Technical requirements
	An overview of the project
	Beginning the project
	Setting up the project
	Creating the new project
	Examining the files
	DoToo
	DoToo.Android
	DoToo.iOS
	DoToo.UWP

	Updating the Xamarin.Forms packages
	Removing the MainPage file

	Creating a repository and a TodoItem model
	Defining a to-do list item
	Creating a repository and its interface
	Connecting SQLite to persist data
	Adding the SQLite NuGet package
	Updating the TodoItem class
	Creating a connection to the SQLite database
	Implementing the Get, Add, and Update methods

	Using MVVM – creating Views and ViewModels
	Defining a ViewModel base class
	Introducing PropertyChanged.Fody
	Creating the MainViewModel
	Creating the TodoItemViewModel
	Creating the ItemViewModel
	Creating the MainView
	Creating the ItemView
	Wiring up a dependency injection through Autofac
	Adding a reference to Autofac
	Creating the resolver
	Creating the bootstrapper
	Adding a bootstrapper on iOS
	Adding a bootstrapper in Android
	Adding a bootstrapper in UWP

	Making the app run

	Adding data bindings
	Navigating from the MainView to the ItemView to add a new item
	Adding new items to the list
	Binding the ListView in the MainView
	Creating a ValueConverter for the item status
	Using the ValueConverter

	Navigating to an item using a command
	Marking an item as complete using a command
	Creating the filter toggle function using a command

	Laying out contents
	Setting an application-wide background color
	Laying out the MainView and ListView items
	The filter button
	Touching up the ListView

	Summary

	Chapter 3: A Matchmaking App with a Rich UX Using Animations
	Technical requirements
	Project overview
	Creating the matchmaking app
	Creating the project
	Creating the new project
	Updating the Xamarin.Forms NuGet packages

	Designing the MainPage file
	Creating the Swiper control
	Creating the control
	Defining the main grid
	Adding a content view for the photo
	Creating the DescriptionGenerator
	Creating a picture class
	Binding the picture to the control
	Setting the source
	Controlling the loading label

	Handling pan gestures

	Testing the control
	Creating decision zones
	Extending the grid
	Adding the StackLayout for liking photos
	Adding the StackLayout for denying photos

	Determining the screen size
	Adding a clamp function
	Adding code to calculate the state
	Defining a method for calculating the state
	Wiring up the pan state check

	Adding exit logic
	Checking if the image should exit
	Removing the image
	Updating PanCompleted

	Adding events to the control
	Declaring two events
	Raising the events

	Wiring up the Swiper control
	Adding images
	Adding initial photos
	Making the call from the constructor

	Adding count labels
	Subscribing to events
	Adding methods to update the GUI and respond to events
	Wiring up events

	Summary

	Chapter 4: Building a Location Tracking App Using GPS and Maps
	Technical requirements
	Project overview
	Getting started
	Building the MeTracker app
	Creating a repository to save the location of the users
	Creating a model for the location data
	Creating the repository

	Xamarin.Essentials
	Installing the NuGet package
	Configuring Xamarin.Essentials on Android

	Creating a service for location tracking
	Setting up the app logic
	Creating a view with a map
	Creating a ViewModel
	Creating a resolver
	Creating the bootstrapper
	Creating the iOS bootstrapper
	Creating the Android bootstrapper

	Setting the MainPage

	Background location tracking on iOS
	Enabling location updates in the background
	Getting permissions to use the location of the user
	Subscribing to location updates

	Background location tracking with Android
	Adding the required permissions to use the location of the user
	Creating a background job
	Scheduling a background job
	Subscribing to location updates

	Creating a heat map
	Adding a GetAll method to the LocationRepository
	Preparing the data for visualization
	Creating custom renderers
	Creating a custom control for the map
	Creating a custom renderer to extend the map in the iOS app
	Creating a custom renderer to extend the map in the Android app

	Refreshing the map when resuming the app

	Summary

	Chapter 5: Building a Weather App for Multiple Form Factors
	Technical requirements
	Project overview
	Getting started
	Building the weather app
	Creating models for the weather data
	Adding the weather API models manually
	Adding the app-specific models
	Adding the ForecastItem model
	Adding the Forecast model

	Creating a service for fetching the weather data
	Configuring the applications to use location services
	Configuring the iOS app to use location services
	Configuring the Android app to use location services
	Configuring the UWP app to use location services

	Creating the ViewModel class
	Getting the weather data
	Grouping the weather data

	Creating a Resolver
	Creating a bootstrapper
	Creating a RepeaterView based on a FlexLayout
	Creating the view for tablets and desktop computers
	Using RepeaterView
	Adding a toolbar item to refresh the weather data
	Adding a loading indicator

	Setting a background image

	Creating the view for phones
	Using a grouped ListView
	Adding pull to refresh functionality

	Navigating to different views based on the form factor
	Handling states with VisualStateManager
	Creating a behavior to set state changes

	Summary

	Chapter 6: Setting up a Backend for a Chat App Using Azure Services
	Technical requirements
	Azure serverless services
	Azure SignalR Service
	Azure functions
	Azure blob storage
	Azure Cognitive Services

	Project overview
	Building the serverless backend
	 Creating a SignalR service
	Creating a storage account
	Creating a Cognitive Service
	Creating functions
	Creating the Azure service for functions
	Creating a function to return the connection information for the SignalR service
	Creating a message library
	Creating a storage helper
	Creating a function for sending messages
	Using the Computer Vision API to scan for adult content
	Creating a scheduled job to clear photos from storage

	Deploying the functions to Azure

	Summary

	Chapter 7: Building a Real-Time Chat Application
	Technical requirements
	Project overview
	Getting started
	Building the chat app
	Creating the chat service
	Initializing the app
	Creating a resolver
	Creating a Bootstrapper

	Creating a base ViewModel
	Creating the Mainview
	Creating MainViewModel
	Creating the MainView
	Replacing the MainPage
	Editing the XAML
	Fixing the code behind the view

	Setting the main view

	Creating the ChatView
	Creating the ChatViewModel
	Creating the class
	Adding the text property
	Receiving messages
	Creating the LocalSimpleTextMessage class
	Sending text messages
	Installing the Acr.UserDialogs plugin
	Installing the Media plugin
	Sending photos

	Creating the ChatView
	Creating Base64ToImageConverter
	Creating the skeleton ChatView
	Adding ResourceDictionary
	Adding ListView
	Adding templates
	Creating a template selector
	Adding the buttons and entry control
	Fixing the code behind

	Styling
	Styling with CSS
	Applying the style sheet

	Handling life cycle events

	Summary

	Chapter 8: Creating an Augmented-Reality Game
	Technical requirements
	Essential theory
	An overview of the project
	Beginning the project
	Creating the project
	Updating the Xamarin.Forms NuGet packages
	Setting the Android target to 8.1
	Adding the camera permission to Android
	Adding Camera Usage Description for iOS

	Defining the user interface
	Creating the ARView control
	Modifying the MainPage

	Adding Urhosharp
	Installing the UrhoSharp NuGet package for iOS
	Installing the UrhoSharp.ARCore Nuget Package for Android
	Adding the Android life cycle events
	Defining the PlaneNode
	Adding custom renderers for the ARView control
	For iOS
	For Android

	Creating the game
	Adding the shared partial Game class
	CreateSubPlane
	UpdateSubPlane
	FindNodeByPlaneId

	Adding platform-specific partial classes
	Adding the iOS-specific partial class
	Adding the Android-specific partial class

	Writing the ARKit-specific code
	Defining the ARKitComponent
	Writing handlers for adding and updating anchors
	SetPositionAndRotation
	UpdateOrAddPlaneNode
	OnAddAnchor
	OnUpdateAnchors

	Writing a handler for removing anchors
	OnRemoveAnchors

	Initializing ARKit

	Writing ARCore-specific code
	Defining the ARCoreComponent
	SetPositionAndRotation
	Writing a handler for ARFrame updates
	Initializing ARCore
	OnConfigRequested
	InitializeAR

	Writing the game
	Adding a camera
	Configuring a renderer
	Adding lights
	Implementing the game startup
	Adding boxes
	AddBox()
	OnUpdate()

	Making boxes rotate
	Creating the rotate component
	Assigning the Rotator component

	Adding box hit-test
	Adding a death animation
	DetermineHit()
	OnTouchBegin()
	Wiring up input

	Updating statistics
	Defining a statistics class
	Sending updates via MessagingCenter
	Wiring up events
	Updating the GUI
	Subscribing to the updates in the MainForm

	Summary

	Chapter 9: Hot Dog or Not Hot Dog Using Machine Learning
	Technical requirements
	Machine learning
	Azure Cognitive Services – Custom Vision
	CoreML
	TensorFlow

	Project overview
	Getting started
	Building the Hot Dog or Not Hot Dog application using machine learning
	Training a model
	Tagging images
	Training a model
	Exporting a model

	Building the app
	Classifying images with machine learning
	Using CoreML for image classification
	Using TensorFlow for image classification

	Creating a base ViewModel
	Initializing the app
	Creating a Resolver
	Creating a Bootstrapper
	Creating the iOS bootstrapper
	Creating the Android bootstrapper

	Building the first view
	Building the ViewModel
	Building the view

	Building the result view
	Building the ViewModel
	Building the view

	Summary

	Other Books You May Enjoy
	Index

