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PREFACE

This book is intended as a short introduction to the foundations 
of electromagnetic field theory. It has been based on my experience 
both as a former field theorist (working on quantum field theories, 
quantum electrodynamics and Casimir physics) and currently as an 
applied optical physicist. Indeed, my thoughts were in the last cou-
ple of years to simply write down what I thought I knew and try to 
critically examine this. What has been very interesting to see is that, 
in my opinion, an appreciation of its history together with the char-
acters involved is a necessity to get to grips with the foundations of 
the subject, and therefore understanding at a deeper level.

I was fortunate enough as an undergraduate to be exposed to 
some quite advanced electromagnetic field theory early on. My then 
tutor, Robin Devenish, at Hertford College, Oxford, set me some 
very interesting problems on electromagnetic fields written in the 
four-vector notation of special relativity at the end of my first year. 
This was real classical field theory that one would typically study 
before moving on to quantum fields. It came about because I actu-
ally wanted to study the general theory of relativity, and I had asked 
him how to get into it. In hindsight, these were exactly the right 
problems to work on over a summer vacation, and I thank him 
greatly for his direction here.

My prejudice is clearly going to be skewed towards the field 
theory aspects. However, and importantly, I have not shied away 
from experimental and measurement issues that ultimately are the 
reason for introducing a field theory in the first place. In particular, 
the historical demonstration of a principle, or the quantification of 
a law takes first place. The mathematics should be there to capture 
the essence of any experimental studies and provide a language with 
which to ask further questions. With this in mind, I am assuming on 
the part of the reader a genuine interest in the subject and present 
the material from this standpoint.

I have included some problems at the end with solutions; these 
are meant to illuminate parts of the text with either a definite cal-
culation method, or to just see some numbers. In addition to these, 



viii • Preface

exercises are scattered throughout the text to give a little poke to the 
reader to interact.

Finally, I would like to dedicate this book to my wife Serena and 
my son Albert with the very greatest affection.

James Babington

June 2016



CHAPTER 1
INTRODUCTION

Electromagnetism is perhaps the most basic theory we see 
around us in the natural world. It is responsible for the color we see, 
the forces that bind us together and for any technology beyond the 
steam engine. It is the theory par excellence in that it is responsible 
for the macroscopic world around us that we are part of and interact 
with. But it goes far beyond this as it is also the gateway to the sub-
atomic world that tries to ultimately explain the existence of matter 
and forces. From these concepts must emerge the structures such 
as the atomic nuclei that are necessary to get any form of life going. 
Modern particle physics theories that try to explain the nature of 
quarks and the very small, and the evolution and dynamics of the 
universe on the other, take as their starting point something that 
looks quite similar to electromagnetism (that is the central role of 
gauge theories and symmetry as a governing principle).

One of the main thrusts of this book was to see how the theory of 
electromagnetism is (or should be) consistent, together with making 
no a priori assumptions about the nature of matter and its interac-
tions. In particular, I have taken the opposite approach from that of 
the infamous Bleaney and Bleaney [5] and abandoned the modern 
atomic viewpoint from the outset. Obviously one has to have good 
reason for doing this and it is the following question; how can you be 
sure that what you are measuring is the genuine physical variable and 
not something that requires some extra theory on top or refers back 
to itself? This is an important point because I suspect many seeming 
inconsistencies that one encounters in advanced work would simply 
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not appear if the corresponding measurement theory had been cor-
rectly setup and applied. All this being said, there is obviously great 
merit in taking the atomic viewpoint on good faith from scratch as 
it speeds up the time to be able to perform calculations and get to 
grips with more material. Both [8] and [5] are classic works on elec-
tromagnetism and essential reading; the current book simply tries to 
aim at a macroscopic and foundational level, and should therefore 
be considered as complementary material.

The outline of this book is as follows. In the current chapter, we 
describe in fairly general terms field theory with a certain amount 
of flowery language to try and give the bigger picture. Following on 
from this in Chapter 2, we list in an overview like way the neces-
sary math that will be used later on throughout the book. We do 
not prove theorem’s here, but rather state them. The form is some-
what terse but gives the notation and conventions used throughout. 
It gives the necessary language with which to be able to understand 
the latter chapters.

Chapter 3 derives the first two of Maxwell’s equations. Both the 
electric and magnetic fields are introduced and then an equation of 
motion for each is deduced. This is a constructive chapter and aims 
firstly to start the construction of a field theory, and secondly, to 
show the parallel between electric and magnetic phenomena.

Chapter 4 formulates the remaining Maxwell equations, together 
with the continuity equation and the Lorentz force law for dynamic 
charges moving in background fields. Currents are included, both 
the more standard electric current and the displacement current 
deduced by Maxwell from the consistency of the field theory. With 
these in place on has the governing dynamics of the theory.

Chapter 5 describes the attributes of the fields from a math-
ematical standpoint. This involves solutions to the wave equations in 
different coordinate systems. From here one finds that polarization 
is a necessary consequence to keep track of the genuine degrees of 
freedom. It also surfaces then with the realization that what we are 
dealing with is a gauge theory and so gauge transformations and fix-
ing are discussed.

Chapter 6 gives an account of what we can measure and the cor-
responding quantities in the field theory. This is a complicated topic, 
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but essential understanding for the foundations of electromagnetism 
as well as applications (such as photometry, polarimetry, etc).

In Chapter 7, we discuss how fields interact with real matter. 
The two distinct aspects here how charges assemble themselves into 
multipoles and how the dynamics of these give rise to response func-
tions. A summary and omissions chapter then follows.

I have included short exercises throughout the text as a way for 
the reader to try and assist assimilation. These are not difficult prob-
lems, rather they are just meant to fill in the gaps typically with the 
derivation of a result. At the end of the book there are some prob-
lems with worked solutions. These are a bit more difficult and cover 
some material that was not included in the main chapters.

A word of caution about notation used here is also appropriate. 
I have found over the years that one tends to switch between nota-
tion, and this is certainly what the student will encounter in skip-
ping between different books and papers. My advice on this front 
is that it should be clear from the context in which the equations 
are presented. Thus one should not be alarmed at seeing x, x, xa all 
meaning the same position vector because it depends on the setting 
which one gives the best aesthetic. Likewise, seeing E(x) written 
down shouldn’t lead the reader to think the field is only a function 
of the x Cartesian coordinate. Common sense should prevail here 
and if there is any consternation, the best solution is to write down 
oneself the offending expression in a more pleasing form.

1.1 GENERAL REMARKS

Field theory is a complicated business. The original conception 
due to Michael Faraday and the later mathematical synthesis due to 
James Clerk Maxwell has remained fairly well intact for over a century. 
In its current form, the electromagnetic field equations serve as the 
basis for investigating any micro or nano structure, at the applied level, 
and is the DNA blueprint for modern theory of the sub-atomic world.

The impression one gets, certainly for school level (in particular 
A-level in the UK), is that electromagnetism is quite a neat and tidy 
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affair, and that the subject doesn’t require any further investigation 
(save for in applications). I would like to challenge this view, that 
instead not just because of its history, but because as you start to 
appreciate its foundations, it is richer but more complex.

There are couple of points that I would like the reader to have 
at the back of the mind while using this book. One is of measur-
ables and the other is of disturbances. Both of these are strongly 
interconnected and cannot really be considered by themselves. 
Since this is a quantitative science, it is obviously necessary to be 
able to calculate quantities that can then be measured. In fact this 
is the purpose of the theory in some real sense (this depends very 
much philosophical school one has subscribed to). The measurables 
will therefore require a set of devices that are sensitive to and can 
respond accordingly to the quantity being measured. This means 
that there is coupling between the device and the electromagnetic 
field quantity being measured that necessarily has a certain amount 
of extra structure and assumptions built into it. Clearly this will dis-
turb the original configuration, which may well be small, but there 
is necessity to be able to quantify this. Admittedly, this is a difficult 
programme to pursue rigorously and a heuristic approach will often 
be required to make progress. Nevertheless, for those with the pre-
disposition, I would like to advocate a rigorous approach as a topic 
for further research. My hope with the current book is that it can 
stimulate thoughts in this direction, as well as introducing the basic 
subject matter at an introductory level.

A closing comment concerns the history of the subject. Obvi-
ously with a history as long as electricity and magnetism, this is going 
to be varied, full and sometimes confusing. It seemed a shame not 
to give some of the original protagonists a little bit more character. 
To this end, I have made some historical inclusions where I felt it 
illuminating or worthy acknowledgement that fits the general devel-
opment of the topics addressed herein.



CHAPTER 2
MATHEMATICAL TOPICS

In this first chapter, we will provide essentially a look up table 
of mathematical formulae and concepts that feature prominently 
throughout the book. It will consist of basically a definition or a state-
ment about mathematical quantities that are needed in the descrip-
tion and manipulation of the field equations. The key topics are 
vector calculus, a bit on Fourier transforms, and coordinate systems. 
A few side topics, such as group theory, are also included to provide 
some extra language for some of the math we will encounter later 
on. This is intended only to broaden the vocabulary of the reader. In 
fact each of these topics sit in a more general theory, which has in 
part been borrowed from. For example, vector calculus and coordi-
nate systems naturally lie in differential geometry, the mathemati-
cal structure that for one underpins general relativity. The objective 
of this chapter is therefore to outline the notation used throughout 
the following chapters and to collect together relevant mathematical 
results. At the end we provide a table of some useful numbers and 
notational descriptions that are fairly standard. See [15] for good 
introductory material and [2] for a more sophisticated treatment.

2.1  SUMMARY OF NECESSARY MATHEMATICAL 
FORMULAE

We will focus on here fields that live naturally on our normal three 
dimensional space. All of the results generalize straightforwardly to 
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an n-dimensional space. A scalar field is defined simply as some 
function f(x), where x∈!3  and f (x)∈!.  A vector field is defined 
as a vector valued function xV( ),  or in terms of its three components 

xV ( ).a  The three components can be specified with respect to an 
orthonormal basis of vectors (or for that matter any vectors that span 
the space), xe ( ),a  such that

 ∑= =
=

x x x x xV V e V e( ) ( ) ( ) : ( ) ( ),a
a

a

a
a

1

3

 (2.1)

where in the last line the Einstein summation convention been 
adopted. This means that when there is one upstairs and one down-
stairs index that are the same letter, they are summed over (also 
known as being contracted). We will assume in this book that the 
orthonormal basis vectors are self evident and from the stand 
point of performing operations on vector fields, simply make the 
identification

 V(x)↔ V a(x).  (2.2)

This is just a notational convenience. There is an important 
distinction between an upstairs index and an downstairs index. An 
upper index is referred to as being a tangent vector index (or simply 
a vector index), while a downstairs index is referred to as covector 
index. Note that this is true for the components rather than the basis 
vectors index.

If an object has more than one index then it is referred to as a 
tensor field and in general will look like 



T x( ).de
abc

Two important second rank tensors that are the underpinnings 
of all operations are the Kronecker delta and the metric tensor. They 
are defined in the following way

The Kronecker Delta δb
a :

 
δ = =
= ≠

a b

a b

1, if ,
0, if .

b
a

 (2.3)

This can be thought of as an identity matrix (and in our case is  
3 × 3).
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The metric tensor gab:

 =ds g dx dx ,ab
a b2  (2.4)

where ds2 is the square distance of a small line element and dxa are 
small distances in the respective coordinate. A metric is then a tensor 
field that allows one to compute distances between points. Thinking 
of this also as a matrix allows us to define its inverse, gab with now 
two indices upstairs,

 δ=g g : .ac
cb b

a  (2.5)

The key property of the metric and its inverse is that it is a 
machine that allows one to raise or lower indices on any tensor field.

The scalar product between two vector fields is defined by

 ⋅ =x x x xV W V W( ) ( ) : ( ) ( )a
a  (2.6)

 = g x x xV W( ) ( ) ( ).ab
a b  (2.7)

Note that the scalar product only makes sense when the two vec-
tor fields are evaluated at the same point.

The divergence of a vector is defined as

 ⋅ =∇ ∇V V: ,a
a  (2.8)

where the gradient operator is given by the partial derivatives 
= ∂/∂ ∂/∂ ∂/∂∇ x x x( , , ).a

1 2 3  More exactly, this type of derivative is 
referred to as a covariant derivative, which means it should not act 
on any factor of the metric (the metric is said to be covariantly con-
stant). So the partial derivative has to promoted to accommodate 
this. This would be relevant for example if you wanted to do your 
calculus on the surface of a sphere.

The wedge (or cross) product of two covector fields is given by

 ∧ =V W V W e: ,a b
abc

c  (2.9)
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and the curl of a covector field is defined as

 ∧ =∇ ∇V V e: ,a b
abc

c  (2.10)

where abc  is the Levi-Civita tensor. It is defined by

   =− = ,abc bac bca  (2.11)

  = = = =a b c1, for 1, 2, 3 are the same.abc  (2.12)

Note that this definition requires that the Levi-Civita tensor 
has its indices raised and therefore involves three factors of the 
inverse metric. It is an unfortunate accident of three dimensions 
that the Levi-Civita tensor provides one with a map from what 
appear to be vectors to vectors, i.e. we take the curl of a vector 
and get another vector. As with the covariant derivative, there is 
more taking place. The derivative of a covector field gives a two 
index tensor (with indices downstairs) and then contracting this 
with the Levi-Civita tensor (with indices) upstairs (known as taking 
the Hodge dual in differential geometry) leads to a tensor with one 
index upstairs, i.e. a vector. This is why we seemingly get another 
vector quantity.

Considering a two index tensor Fab  for simplicity, a tensor is said 
to be symmetric if

 =F F ,ab ba  (2.13)

and antisymmetric if

 =−F F .ab ba  (2.14)

The metric tensor is a symmetric tensor (gab = gba), while the 
Levi-Civita is totally anti-symmetric on its indices. If a tensor satis-
fies such conditions, then the number of independent components 
is reduced. For example a second rank tensor has 3 = 9 independent 
components, whereas a symmetric tensor has 3 × 2 = 6 indepen-
dent components.
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2.1.1 Some Basic Group Theory
The ideas of group theory are so useful that it is worth collect-

ing here a few basic concepts and definitions. This will add clarity 
in particular to some of the mathematical issues encountered with 
Maxwell’s equations.

A group is defined as a set of objects G on which we can impose 
a rule combining pairs of elements ∈a b G,  to form other objects 
= ⋅ ∈c a b G.  This rule of combination must satisfy certain axioms 

to make it useful. It might be helpful to keep in mind rotations of 
a body in three dimensional space. The set of all such is then the 
group of rotations. The axioms are:

1. Combing elements is an associative operation, which means 
that ∀ ∈a b c G, ,  it is such that ⋅ ⋅ = ⋅ ⋅a b c a b c( ) ( ) .

2. For all ∈g G  there exists a unit element ∈e G  defined by 
⋅ = ⋅ =g e e g g.

3. There exists for every ∈g G  an inverse element ∈−g G1  
defined by the property that ⋅ = ⋅ =− −g g g g e.1 1

As an example of a group, the group of rotations in three dimen-
sions is written as =G SO(3)  which means in words “special orthog-
onal transformations in three dimensions”. Elements of this group 
are simply 3 × 3 matrices R that perform a rotation on a position 
vector. The orthogonal bit means that they satisfy the constraint 
that any rotation preserves the length of the position vector and the 
special bit discounts reflections (or parity transformations). Another 
group that occurs in electromagnetism is the group =G U(1)  which 
is the one dimensional unitary group. This is an example of an abe-
lian group, where the order of operations is irrelevant, while SO(3) is 
a non-abelian group; performing two rotations about different axes is 
different depending on which one is done first. This has the techni-
cal name of commutation. The rotations just described are examples 
of operators if we start thinking more generally. For two operators 
O and P, one can form another operator given by the commutator 
that is defined by

 O P OP PO= −[ , ] : .  (2.15)



10 • Basic Electromagnetic Theory

Two operators are said to commute if [O, P] = 0. So abelian 
groups have commutators that are zero, and non-abelian groups 
have nonzero commutators. One last remark; the groups we are con-
sidering here are all continuous groups rather than discrete groups 
(an example of a discrete group are the permutations of a set of 
numbers).

2.1.2 Operators and Eigenvalue Business
In general, an operator is anything that acts on another object, 

for example a partial derivative on a function or a matrix on a vector. 
The eigenvalues λn and eigenvectors (or eigenfunctions) Vn of an 
operator ̂  are defined by the relation

  λ=V Vˆ .n n n  (2.16)

Eigenvalues are useful in connection with group theory because 
they can be used to label how the group theory is realized at the 
practical level of finding solutions (this goes by the name of repre-
sentation theory). In turn, the eigenvectors are the indivisible units 
that the group theory forbids from turning into one another.

The eigenvalues and eigenvectors (or eigenfunctions) satisfy 
very neat relations in perhaps the most useful case when the opera-
tor is Hermitian. An Hermitian operator is given by the condition 
 =ˆ† ˆ ,  where the dagger indicates the Hermitian conjugate oper-
ation. In this the eigenvalues are real λn ∈!.  If the eigenvectors and 
functions are normalized to unity, then they both satisfy the ortho-
normality conditions

 δ⋅ =∗V V( ) ,m n mn  (2.17)

for eigenvectors and

 ∫ δ⋅ =∗dx V x V x( ( )) ( ) ,m n
a

b

mn  (2.18)

for eigenfunctions defined on the interval [a, b]. Not for both functions 
and vectors, the concept of vector space can be applied to both which 
the allows eigenvalue problems to be viewed from a unified perspective.
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2.1.3 Differential Vector Calculus
We now list a set of identities that are useful in the simplifica-

tion of vector calculus equations. For scalar fields f(x) and g(x) and 
vector fields Va(x) and Wa(x), there are a set of one derivative - two 
field relations

 = +∇ ∇ ∇fg f g g f( ) ( ) ( ), (Leibnitz property)  (2.19)

 = ⋅ + ⋅∇ ∇ ∇f f fV V V( ) ,  (2.20)

 ∧ = ∧ + ∧∇ ∇ ∇f f fV V V( ) ( ) ,  (2.21)

∧ ⋅ = ∧ ∧ + ⋅ + ∧ ∧ + ⋅∇ ∇ ∇ ∇ ∇V W V W V W W V W V( ) ( ) ( ) ( ) ( ) ,
 (2.22)

 ⋅ ∧ = ⋅ ∧ − ⋅ ∧∇ ∇ ∇V W V W W V( ) ( ) ( ),  (2.23)

 ∧ ∧ = ⋅ − ⋅ + ⋅ − ⋅∇ ∇ ∇ ∇ ∇V W V W W V W V V W( ) ( ) ( ) ( ) ( ) .  (2.24)

There are also a useful set of two derivative - one field relations

 ⋅ =∇ ∇ ∇f f( ) ,2  (2.25)

 ∧ ≡∇ ∇f( ) 0,  (2.26)

 ⋅ ∧ ≡∇ ∇ V( ) 0,  (2.27)

 ∧ ∧ = ⋅ −∇ ∇ ∇ ∇ ∇V V V( ) ( ) .2  (2.28)

An interesting point to note is that in the above the resulting 
expressions will depend explicitly on the metric used.

One can express the total time derivative of a function in terms 
of partial derivatives and the instantaneous velocity

 =
∂
∂
+ ∇d

dt t
dx
dt

.
a

a  (2.29)

2.1.4 Integral Vector Calculus
It is necessary to be able to integrate over different types of 

surfaces. These are one dimensional curves, two dimensional sur-
faces, and three dimensional volumes. Therefore a knowledge of 



12 • Basic Electromagnetic Theory

the different integration measures is required so that one can switch 
between different coordinates and metrics with ease.

The length of the curve C is obtained from the line element in 
Equation (2.4) by

 
 ∫∫= =L ds g dx dx .ab

a b  (2.30)

It is in this form that the metric can be seen as the means by 
which distances between points are calculated.

The following integration measures are defined with respect to 
the Levi-Civita tensor,

 =d x
g

dx dx dx:
3!

,abc
a b c3  (2.31)

 Σ =d
h

dx dx:
2!

,a abc
a b2  (2.32)

where the tensor hab is obtained from the metric gab by restricting it 
to the two-dimensional subspace where the area integration is to be 
carried out. This may be as simple as choosing one of the coordinate 
values to be a constant value.

There are two key integral relations for vector fields. They allow 
one to transform between volume and surface integrals, and sepa-
rately between surface integrals and line integrals when there are 
derivatives involved. Because of the different dimensionality of the 
integration measure, derivatives of the vector fields feature in these 
relations 

For a volume V that is bounded by the surface ∂V the divergence 
theorem is given by

 
 ∫ ∫= Σ

∂
∇d x x d xV V( ) ( ).a

a
a

a3 2  (2.33)

For an area A bounded by the loop ∂A, Stokes’s theorem is 
given by

 
 ∫ ∫Σ ⋅ ∧ =

∂
∇d x dx V xV( ( )) ( ).a

a a
a

2  (2.34)
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2.1.5 Functions, Distributions, and all Things Fourier
Next we consider some basic properties of functions and distri-

butions. This is necessary because having written the field equations 
from the previous vector calculus techniques, we need to be able to 
analyze and extract information out of them.

A Fourier series is an infinite sum of trigonometric functions 
given by the following expression

 ∑= +
=

∞

f x a nx b nx( ) sin( ) cos( ),n
n

n
0

 (2.35)

where n∈!.  In particular, the f(x) here will be a periodic function, 
so that for some + =L f x L f x, ( ) ( ).

A Fourier transform of a function in one dimensional space, say 
f(x) where x∈!,  to another function in reciprocal space (given by 
k) is defined by

 ∫=F k dxe f x( ) ( )ikx  (2.36)

 ∫ π
=f x

dk
e F k( )

(2 )
( ).ikx  (2.37)

The Fourier transform is the continuum version of a Fourier 
series, where we let the integer that defines the summation turn into 
a continuous variable, i.e. n→ k.  It is a simple matter to perform a 
Fourier transform in three dimensions (or indeed in any number of 
dimensions). The above then become

 ∫= ⋅F k d xe f x( ) ( )ik x3  (2.38)

 ∫ π
= ⋅f x

d k
e F k( )

(2 )
( ).ik x

3

3
 (2.39)

The Dirac delta function, δ x( ),3  in three dimensions is defined 
with respect to an arbitrary function as

 ∫ δ′ = ′−
−∞

∞
f x d x x x f x( ) : ( ) ( ).3 3  (2.40)
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It is not really a function but rather a distribution which means 
that it should be sat inside an integral. It is used so often that one 
cannot really do without it. An integral representation of the the 
delta function in three dimensions is given by

 ∫δ
π

= ⋅

−∞

∞
x

d k
e( )

(2 )
.ik x3

3

3
 (2.41)

The convolution of two functions f(x) and g(x) is defined by

 ∫∗ = −f x g x dy f y g x y( ) ( ) : ( ) ( ).  (2.42)

Using Fourier transforms in this definition results in the convolu-
tion theorem; if F(k) and G(k) are the Fourier transforms of f(x) and 
g(x), then their convolution satisfies the simple multiplicative property

 ∫ =dxe f x g x F k G k( ) ( ) : ( ) ( ).ikx  (2.43)

Two useful expressions for what are Green functions of the 
Laplace equation are

 
− ′

=−
− ′

− ′
∇

x x
x x
x x

1
| | | |

,a

a a

3
q r  (2.44)

 πδ
− ′

=− − ′∇
x x

x x
1

| |
4 ( ).2 3q r  (2.45)

 / − ′ =− ′ / − ′∇ ∇x x x x(1 | |) (1 | |)b b  (2.46)

An integral representation of the above Green function is given by

 ∫π π− ′
=
− ⋅ − ′

x x
d k

e
k

1
| |

1
4 (2 )

1
.ik x x

3

3
( )

2
 (2.47)

A function f(x) is said to be square-normalizable if

 ∫ <∞
−∞

+∞
d x f x| ( )| .3 2  (2.48)

This shows up time to time when it is necessary to ensure that 
physical fields are not ending up with infinite energy.
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2.2  COORDINATE SYSTEMS AND 
TRANSFORMATIONS

The vectors and tensor quantities encountered so far require 
us to specify both a set of coordinates xa which labels points in the 
space we are working in and a vector space with which a tensor can 
be expanded in. The components of a tensor transform under a 
coordinate transformation according to how differentials or deriva-
tives transform by application of the chain rule of differentiation. 
For example, the line element dxa can serve as a basis of orthogonal 
vectors (if the metric is diagonal) in which a co-vector field can be 
expanded in. In the new coordinates x′a we have the transforma-
tion law

 ′ =
∂ ′

∂
dx

x
x

dx .a
a

b
b  (2.49)

Since we have an upstairs index here, this serves as the transfor-
mation law for a vector field

 ′ =
∂ ′

∂
x
x

V V .a
a

b
b  (2.50)

In a similar fashion, a general coordinate transformation on a 
derivative operator is given again by the chain rule as

 ′ =
∂
∂ ′

∇ ∇x
x

.a

b

a b  (2.51)

The lower index here gives now the transformation law for a co-
vector field as

 ′ =
∂
∂ ′

x
x

V V .a

b

a b  (2.52)

Given then a particular coordinate transformation the transfor-
mation matrix ∂ /∂ ′x xb a  can then be calculated explicitly. While this 
gives a set of vectors that are at least locally orthogonal, it remains 
to normalize them to unity in order to obtain an orthonormal basis. 
The majority of expressions encountered at least at a basic level are 
expressed in an orthonormal basis.
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Standard Cartesian coordinates are given by (x, y, z) together 
with their line element. With our numbering convention these are 
given by

 =x x,1  (2.53)
 =x y,2  (2.54)
 =x z.3  (2.55)

The line element is just the familiar one based on Pythagoras’s 
theorem

 = = + +ds g dx dx dx dy dz .ab
a b2 2 2 2  (2.56)

The Laplacian operator ∇2  is given by

 =
∂
∂
+
∂
∂
+
∂
∂

∇
x y z

.2
2 2 2

 (2.57)

The position vector x can be written in terms of an orthonormal 
basis as

 = + +x y zx e e e .x y z  (2.58)

The components of the wedge product with respect to the ortho-
normal basis e e e( , , )x y z  are

 ∧ =
∂
∂
−
∂
∂

∇ V
y

V
z

V( ) ,x

z y

 (2.59)

 ∧ =
∂
∂
−
∂
∂

∇ V
z

V
x

V( ) ,y

x z

 (2.60)

 ∧ =
∂
∂
−
∂
∂

∇ V
x

V
y

V( ) .z

y x

 (2.61)

Spherical coordinates θ φr( , , )  are defined by the coordinate 
transformation from Cartesian coordinates by
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 θ φ=x r sin cos ,1  (2.62)

 θ φ=x r sin sin ,2  (2.63)

 θ=x r cos ,3  (2.64)

with θ π φ π≥ < < <r 0, 0 , 0 , 2 .  Notice that there is a degeneracy in 
the coordinates at the origin; at θ φ=r 0, and  can be anything and 
still label the same point. The corresponding line element is

 θ θ θ φ= + + +ds dr r d r d r dsin .2 2 2 2 2 2 2 2 2  (2.65)

Following from this the Laplacian operator is given by

 
θ θ

θ
θ θ φ

=
∂
∂

∂
∂
+

∂
∂

∂
∂
+

∂
∂

∇
r r

r
r r r

.
1 1

sin
sin

1
sin

2
2

2
2 2 2

2

2
q r  (2.66)

The components of the wedge product with respect to the ortho-
normal basis θ φe e e( , , )r  are

 
θ

θ
θ θ φ

∧ =
∂
∂

−
∂
∂

φ θ

∇
r

V
r

V
V( )

1
sin

(sin ) 1
sin

,r  (2.67)

 
θ φ

∧ =
∂
∂
−
∂
∂θ

φ

∇
r

V
r

rV
r

V( )
1

sin
1 ( )

,
r

 (2.68)

 
θ

∧ =
∂
∂

−
∂
∂φ

θ

∇
r

rV
r r

V
V( )

1 ( ) 1
.

r

 (2.69)

Cylindrical coordinates θr z( , , )  are defined by another coordi-
nate transformation from Cartesian coordinates by

 θ=x r sin ,1  (2.70)

 θ=x r cos ,2  (2.71)

 =x z,3  (2.72)

with θ π≥ < < < <∞r z0, 0 2 , 0 .  The line element is given by

 θ= + +ds dr r d dz .2 2 2 2 2  (2.73)
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The Laplacian operator is then

 
θ

=
∂
∂

∂
∂
+

∂
∂
+
∂
∂

∇
r r

r
r r z

.
1 12

2

2

2

2

2
q r  (2.74)

The components of the wedge product with respect to the ortho-
normal basis θe e e( , , )r z  are

 
θ

∧ =
∂
∂
−
∂
∂

θ

∇
r

V V
z

V( )
1

,r

z

 (2.75)

 ∧ =
∂
∂
−
∂
∂θ∇ V

z
V
r

V( ) ,
r z

 (2.76)

 
θ

∧ =
∂
∂

−
∂
∂

θ

∇
r

rV
r r

V
V( )

1 ( ) 1
.z

r

 (2.77)

These are the most often used coordinate systems in electro-
magnetism, but there are others. It largely depends on the problem 
at hand that is trying to be solved.

2.3 PHYSICAL CONSTANTS AND USEFUL NUMBERS

In this last section, we list a number of physical constants, use-
ful numbers, and some mathematical notation used throughout. 
The standard SI units are used whenever a numerical calculation is 
performed.

Physical Constant,  
Property/Notation

Symbol Value

Speed of light c 2.998 × 108ms−1

Permittivity of free space 0 8.854 × 10−12C2m−2N−1

Permeability of free space μ0 4π × 10−7NA−2

Elementary electric charge e 1.602 × 10−19C

Gravity of Earth g 9.81ms−2

Earth’s magnetic field at equator |B|E 3 × 10−5T
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Physical Constant,  
Property/Notation

Symbol Value

Intensity of solar radiation at 
Earth’s surface

I⊙(⊕) ≈ 1.0kWm−2

Typical refractive index of glass ntypical ≈ 1.5

Typical laboratory electric field Etypical ≈ 104Vm−1

Typical laboratory magnetic field Btypical ≈ 10T

Optical frequency fopt. ≈ 1015Hz

The integers  0, ±1, ±2, • • •

The real numbers  1.3, −2.567, π, • • •

The complex numbers  1 + 3i, eiπ/4, • • •





CHAPTER 3
MAXWELL’S EQUATIONS 
PART I

In this chapter, we will think about the formulation of two of the 
field equations from the larger set collectively known as “Maxwell’s 
equations”. They are Gauss’s law and the magnetic version which 
is sometimes referred to as Gauss’s magnetic law. This is where the 
electric field Ea and the magnetic flux density Ba will make their 
first appearances. The electric field is intertwined from the outset 
with the notion of electric charge, while the magnetic flux density 
has no such counterpart. These quantities are introduced as a way of 
accounting for observed static forces Fa on macroscopic bodies. For 
the electric field it is due to acquiring a net charge by some means; 
for the magnetic flux density it is more complicated.

3.1  THE LAW OF COULOMB - ELECTRIC CHARGE, 
FORCE, AND BASIC MEASUREMENT

Let us consider from first principles a number of observa-
tions and experiments that lead to the idea of electric charge and 
the electric field. Much of this may be considered to be somewhat 
elementary material. It is interesting, however, to have an historical 
perspective and to clearly delineate the foundations of the subject. 
Ultimately we must be able to trace back any useful definitions or 
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theoretical abstractions to a set of basic physical measurables. For an 
illuminating and useful discussion of this history and the basic set of 
experiments see [11].

Experiment 1 (Greek antiquity - circa 1700s) Take two bodies 
(for example glass and rubber) that are initially in mechanical equi-
librium. Next apply frictional forces to their surfaces with a third 
material (for example rub them with a silk cloth or a piece of fur). 
What happens at some later time to the two bodies?

Observation 1 At some later time they are no longer in equilibrium 
and will feel attractive or repulsive forces Fa to one another by some 
action at a distance agent.

Normally to produce a mechanical force on a body there would 
have to be some physical contact for this to happen. This is not the 
case in the above (the same is also true for gravity - much of histori-
cal electrostatics took its inspiration form Newtonian gravity).

Thales of Miletus (ca 624 BC–547 BC), 
according to Bertrand Russell, “Western 
philosophy begins with Thales”, and so 
does the path to electromagnetism. Some 
of the earliest observations of static elec-
tricity were due to Thales (around 600 BC). 
The basic observation in this epoch was 
that the fossil material amber would attract 
objects when it had been rubbed by wool.

This first experiment and observation gives us the idea that some 
quantity can be transferred between bodies and depending on how 
much and its type will lead to different amounts of observable forces. 
We are thus led to the quantity which we call the electric charge of a 
body which might be in the form of discrete point like units that are 
sat at particular points, or distributed continuously in some fashion 
throughout a body given by a charge density. A key observation of 
this behavior was made by Benjamin Franklin. He observed a fun-
damental book keeping principle taking place which we now call the 
law of conservation of charge:-
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Principle 1 - In any system, electric charge is neither created nor 
destroyed but is simply redistributed amongst the subsystems.

Reconsidering our first experiment where the frictional forces 
cause charge to be transferred from one body to the other, we see 
that each must have an equal but opposite amount to satisfy the con-
servation of charge (given that the net charge at the start was zero). 
Note also that we haven’t specified anything about the dynamics of 
how the charge moved, or what type of quantity it is (one should 
think scalar, vector, tensor… here).

Benjamin Franklin (1706–1790), the quintes-
sential polymath, dabbling in a huge num-
ber of areas such as printing, authoring, 
science, and political theory, as well being 
President of the State of Philadelphia and 
one of the founding fathers. It is amazing 
he had any time to do any experimental 
physics at all.

It is now necessary to put the observed forces on a more quan-
titative footing by systematically varying the previously described 
systems. The basic parameters are the amount of charge on the 
two bodies, their separation and shapes and also the types of 
material they are made of. What we will be able to measure then is 
the macroscopic force on the bodies that was previously encoun-
tered qualitatively. This was investigated by Coulomb in the late 
1700s which resulted in the now well known Coulomb’s law of 
electrostatics:-

Experiment 2 (Coulomb) Taking two spherical bodies (for sim-
plicity), vary the separation between them and the amount of the 
quantity transferred in the previous experiment.

Observation 2 The force between them is found vary as the inverse 
square of the separation and is proportional to the amount of the 
quantity residing on/in the body due to the previous transfer process.

A necessary point to appreciate here is how this force can be 
measured. One way to measure the electric force on a body is by 
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balancing it with a known mechanical force. We can also do the same 
balancing with torques if the geometry of the apparatus is arranged 
appropriately. The form originally used by Coulomb is just such a sys-
tem, the apparatus being known as a torsion balance (see Figure 3.1).

Charles-Augustin de Coulomb (1736–1806), 
as a Captain returning to France from 
the West Indies, Coulomb discovered 
the inverse square law for charged bod-
ies (1785). In addition to this he also 
established for conductors that the charge 
resided on the surface.

This method was used earlier by Cavendish to measure gravita-
tional forces between bodies. It comprises of a bar suspended at its 
midpoint by a thin fiber. At one end is a body which can be charged 

FIGURE 3.1: Coulomb’s torsion balance experiment (1785) The left picture is taken from 
Coulomb’s 1785 memoirs of the French academy of sciences. The right figure shows the 

principles of operation, as described in the main text.
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to a known reference level. One such way is to charge an identi-
cal body outside and then bring the two into contact - by geom-
etry the charge will distributed evenly between the two and we have 
thus defined the reference point. When a second charged body is 
brought into proximity repulsion or attraction results. The bar twists 
and because the fiber has a weak spring constant one can obtain a 
large deflection angle of the bar, thus ensuring that weak forces map 
to large easily observed angles. When the torque due to the electric 
force balances the restoring torque of the fiber, attaining an equi-
librium, we can read off the observed force by the angular deflec-
tion. Therefore the torsion balance physically measures the force 
and from this an amount of charge can be deduced, with respect to 
the reference level.

It is straightforward to codify Coulomb’s law mathematically. 
Suppose we have two bodies labelled by I and J and that they have 
positions xa(I) and xa(J). By positions we either mean their center 
of mass, for finite size objects, or regard them as point like objects 
when their separation is much larger than their respective length 
scales. It is observed that charge is a scalar quantity - varying the 
orientation has no effect on the mutual force. Then Coulomb’s law 
states that the force on charge qI due to charge qJ is given by

 
π

=
−

−
I J

q q x I x J

x I x J
F ( | )

4
( ) ( )

| ( ) ( ) |
.a I J

a a

0
3

q r  (3.1)

A constant of proportionality has been introduced and we need 
to think about the units of measure and how more generally we 
should measure the electric charge on a body. In fact this turns out 
to be a subtle issue because we will in addition need to introduce a 
dynamical element. Clearly, both the observed forces and separa-
tions are honest to goodness measurable quantities. If we can iden-
tify the correct symmetry in a problem that has been setup with this 
in mind, we will be able find the ratio of the charges. But ultimately 
the observed forces will have to be made with respect to the unde-
termined constant 0, which is called the permittivity of free space. 
If charge was infinitely divisible we would need to define a basic 
unit, whereas if (as is the actual case for electrons and protons) it is 
found to have a minimum discrete unit, we can use this as our basic 
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natural unit of charge. The upshot is that, at this point, we will not 
ascribe to 0 a particular number and return to its numerical value 
later on.

A natural question to ask is what is the effect of a number of 
charged bodies on one another. Let us do another experiment.

Experiment 3 Suppose we introduce other electrically charged 
bodies in addition to the previous two already considered. What is 
the effect on one of the bodies?

Observation 3 (The principle of linear superposition) After 
this introduction and a long enough time for all the bodies to settle 
down, the resultant force on the body is the vector sum due to all the 
other bodies.

In connection with this principle, it is useful to introduce the 
idea of a test charge as this is what we were alluding to in the dis-
cussion of Coulomb’s law. Suppose we have a number of bodies all 
charged in some static configuration. If we introduce another body 
that doesn’t change the existing configuration, we then have a mea-
sure of the local force felt there; it doesn’t disrupt the configuration 
and only feels the measurable force acting on it. We will assume 
that for any macroscopic configuration of bodies considered, a test 
charge can always be found.

Building on Coulomb’s law, it is necessary to think about how 
to measure electric charge on bodies in more detail and quantita-
tively. To that end, we consider some very basic material properties 
and make a statement about the types of materials involved, as part 
of their definition and grouping relies on the movement of charge 
(which will anticipate the following chapter, in particular the con-
sequences of currents). We will not worry at this point about the 
details of how charge moves apart from saying that it does. A mate-
rial is said to be a conductor if charge can move freely in it and 
an insulator if it is impeded and so remains static. For insulators, 
charge can be built up in local regions on a body whereas for con-
ductors the charge is redistributed on the surface of the body. The 
notion of the movement of charge is a very important one as it is the 
mechanism by which systems can find new electrostatic equilibria 
when we change the system. Of course, this is a sliding scale; we 
know charge does move and can expect different materials to display 
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differing amounts of resistance to charge movement. The definitions 
introduced are simply a convenient division. These definitions result 
from how different materials are able to transfer charge from one 
another e.g. for two conductors bringing one charged into contact 
with the other uncharged will result in the total charge being shared 
easily between the two. We lastly define ground to be the infinite 
reservoir of charge that when a body is connected by a conductor to 
the earth (terra firma), the charge flows from the body to the reser-
voir thus becoming charge neutral - this relies on the earth therefore 
being conductive.

One can measure the electric charge on a body by using an elec-
trometer or an electroscope. At its simplest level an electroscope 
consists of a strip of metal foil that is hung over a metal bar which 
is in turn connected to the outside world. Charge is transferred 
onto the foil which can then move upwards symmetrically until the 
electrostatic force is balanced by the downward gravitational force. 
The angle of separation is then a measure of the electric force and 
since the separation is known, we can calculate the charge. An elec-
trometer on the the other hand is often a mechanical device similar 
in spirit to the torsion balance that requires an auxiliary store of 
charge to operate. In Figure 3.2, a quadrant electrometer is shown. 
Its principle feature is that the charge can be determined to a high 
degree of accuracy.

We perform one last experiment before getting down to some 
math and collectively building up a scheme with which to perform 
calculations. It was mentioned earlier that for conductors with a 
net charge, all the charge resides on the surface. Given that it is 
now possible to measure electric charge, we are now in a position to 
observe this.

Experiment 4 Suppose we lower a charged metal sphere suspend 
by an insulating thread into an uncharged hollow conductor that is 
insulated from the ground. What happens to the hollow conductor?

Observation 4 It is found that charge is induced onto the surface of 
the hollow conductor but not into its interior.

This basic observation was originally found by a number of sci-
entists (Franklin, Coloumb, and Faraday) in slightly different ways. 
An electrometer is connected to the outside of the metal container 
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FIGURE 3.2: The quadrant electrometer developed by Lord Kelvin in the 1860s.  
An aluminium vane with a known amount of charge (that is stored via a Leyden jar  

at the bottom of the apparatus) is suspended by a thin fiber which has a mirror attached. 
The vane in turn is suspended inside a circular metal box like structure that is divided into 
quadrants. Each quadrant is connected to the diagonally opposite one with a conductor  

so that they will have the same charge. One pair of quadrants are positively charged,  
the remaining two are grounded. As the quadrants are charged due to an external  

source that is being investigated, the vane rotates and therefore so does the mirror.  
Shining a beam of light off the mirror provides a measure of the deflection action  

thus establishing the amount of charge on the sample.

FIGURE 3.3: Faraday’s ice pail experiment, for demonstrating that electrostatic  
charge resides on the surface of a conductor, not in its interior. It consists 
 of a metal container into which a charged sphere is lowered. The metal  

container is connected to an electrometer, shown on the right.

as in Figure 3.3. As the sphere is lowered inside, the electrometer 
registers a charge. This persists when the sphere touches the inside 
of the container. Taking the sphere out, one finds now that it no lon-
ger has any charge on it. The inside of the container also has lost its 
charge, whereas the outside still retains its original charge which is 
equal to the original charge on the sphere. Experimentally then we 
have the basic fact that for conductors, any charge must reside on 
its outer surface when the system is in equilibrium. The interested 
reader can find in [17] a good commentary about these points. We 
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will return to this point later on in this chapter when we are thinking 
in terms of fields.

3.2  THE LAW OF GAUSS - THE ELECTRIC FIELD 
AND SOME BASIC MATH

Forces are what we can measure, as previously seen, but what 
exactly is there located at the point where the charge is? A conceptual 
leap is required here to assert that the other charged body produces 
something at the point where the original charge is located, regard-
less of whether the charge is there or not. A coupling is therefore 
taking place between the electric charge (which we have already said 
is a scalar quantity) and a vector quantity due to the other charged 
body, such that one just multiplies the other. We call this vector 
quantity the electric field Ea and  it is given by the defining relation

 =x q xF E( ) ( ),a a  (3.2)

for a discrete charge q located at x. We can extend this to a collection 
of N charges by use of the linear superposition principle, so that one 
has by simple summation the total force given by

 ∑∑= =
==

x I q x IF F E: ( ( )) ( ( )).a a
I

a

I

N

I

N

11

 (3.3)

This readily extends to a continuous distribution of charge as

 
∫ ρ= d x x xF E| ( ) ( ),a a3  (3.4)

where ρ(x) is the charge density of a body of volume V. These are 
the defining relations for the concept of the electric field. There is an 
interesting interplay between the continuous or discrete nature of the 
electric charge1 which will depend on the length scale we are choos-
ing to do our measurements or perform calculations. For example, if 
we are working with discrete charges that have some characteristic 
separation d, and working on a length scale >>L d then we can treat 
the discrete set of charges as a continuum i.e. qI(x(I))→ ρ(x).
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The use of the test charge introduced earlier should now be 
apparent. It provides a local measure of the electric field strength 
at a point, since it will not disrupt the local field there. Taking the 
idea of a test charge further, let us assume we have some charge on 
a small insulating ball. Now imagine we make the radius smaller and 
smaller and we decrease the charge on there. Either we will reach a 
practical limit or a fundamental limit to how many times this reduc-
tion can be done2. When this is done Coulomb’s law seems to hold at 
each reduction. This is fortunate as we are now able to give expres-
sions for the electric field in terms of its source charge. By using 
Equation (3.1) together with the linear superposition principle, the 
field at x is then
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 (3.5)

It is straightforward to convert this to a continuum version as well
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 (3.6)

The reader will notice just how similar these expressions are to 
what is encountered in Newtonian gravity. In fact the static elec-
tric field is also a central force field and it is easily verified that it 
satisfies

 ∇∧E= 0, in vector notation,  (3.7)

 εabc∇
bEc = 0, in components.  (3.8)

(Exercise: verify this)

As we will see in the next chapter, this only holds for static fields.

Together, Equations (3.6) and (3.7) constitute the equations of 
electrostatics. To solve these equations we have to specify for a given 
system its geometry and the boundary conditions the field must sat-
isfy. We can write Equation (3.7) also in integral form

 d2Σ⋅(∇∧E)= 0,
A∫  (3.9)
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 d2Σaεabc∇
bEc = 0,

A∫  (3.10)

for a two dimensional area A (with the topology of a disk). This 
can be converted to a line integral by the use of Stokes theorem 
 Equation (2.34) such that

 dxaEa = 0.
∂A!∫  (3.11)

From the definition of the electric field, we see that this is a 
statement about the work done in moving our test charge around a 
closed loop. In this case no work is done, and in particular, leads to 
the result that the work done by the electrostatic force between two 
points is path independent for a central force. It is a mathematical 
result that any such vector field can be written as the gradient of a 
scalar function so that the electric field can be recast as

 Ea(x)=−∇aφ(x).  (3.12)

(Exercise: verify this is path independent)

The scalar function φ(x) is known as the electrostatic potential. 
This quantity will be important when we start thinking about volt-
ages as an observable. The reader is more likely to be familiar with 
the idea of voltages from standard school physics and electronics 
courses.

Having introduced the concept of an electric field, we can now 
turn the question around and ask for a statement about how the 
electric field is produced or sourced by other electric charges. We 
know already that it is due to the body having a net charge of the 
same type as the first. That they should be proportional is also evi-
dent. From Coulomb’s observation of an inverse square law, one can 
see that if we were to surround the source body with a sphere that 
was centered on where the source body was, then the product of 
the area of the sphere and the size of the electric field should be a 
numerical constant. In fact it should also be proportional to how the 
charge is distributed on the source body. This is all encapsulated in 
Gauss’s law.
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Carl Friedrich Gauss (1777–1855), one of 
the strongest mathematicians of the 19th 
century (he was named the “Prince of 
Mathematicians”). He worked on a huge 
number of different areas in mathematics 
and physics. Gauss published this particu-
lar result in 1838; however it had already 
been discovered earlier by George Green in 
1828 and was later rediscovered by Lord 
Kelvin in 1842.

We define the electric flux ΦE through a closed two dimensional 
surface ∂V which is the boundary of the volume V to be:-

 
∫Φ = Σ
∂

d E: .E a
a2  (3.13)

In integral form, Gauss’s law states that the electric flux for a 
closed surface area that encloses a certain amount of charge is pro-
portional to the enclosed charge:-

 
εV
∑∫ Σ =
=∂

d qE
1

.a
a

I

I

N
2

0 1

 (3.14)

The constant 0 is the permittivity of free space mentioned ear-
lier so that when we consider a single point charge and its electric 
field at some distance we get back Coulomb’s law Equation (3.1).

(Exercise: verify this)

Since it is an integral equation we are making a global statement 
about the system. However, we can also make a local statement (that 
is, recast the equation so that it holds at each point in space) by using 
one of our useful integral relations. The two-dimensional surface 
integral can be converted to the volume integral by the divergence 
theorem Equation (2.33) whence,

 d3x∇aE
a =

1
ε0V∫ d3xρ(x).

V∫  (3.15)

We have now replaced here the discrete charge summation with 
a continuous distribution of charge density integrated, as in earlier 
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examples. By dropping the integrals Gauss’s law becomes local, so it 
has a differential form. One finds

 ∇aE
a(x)=

ρ(x)
ε0

,  (3.16)

 ∇⋅E(x)=
ρ(x)
ε0

. (Maxwell I).  (3.17)

Gauss’s law is the first of the four of Maxwell’s equation and we 
shall refer to it throughout the text as Maxwell I. We can also derive 
Gauss’s Law simply by taking the divergence of Equation (3.6) and 
using Equations (2.44) and (2.46) so that

 

∇aE
a(x)= d3 ′x∇a

ρ( ′x )
4πε0| x− ′x |3

(xa− ′x a)
V∫

=−
1

4πε0
d3 ′x∇aρ( ′x )∇a 1

| x− ′x |V∫

=−
1

4πε0
d3 ′x ρ( ′x )∇2 1

| x− ′x |V∫

=
ρ(x)
ε0

.  (3.18)

Note also from the nature of the experiments and observations 
previously discussed that we are dealing initially with static phe-
nomena; the bodies that have been subjected to forces via electric 
charges on one another have all been allowed to “settle down” after 
having been disturbed and so we do not see any time dependence 
in our equations.

Two important equations follow by the use of the scalar potential 
that is valid when dealing with static phenomena. If we use the result 
Equation (3.12), one finds that the scalar field φ(x) satisfies by virtue 
of Equation (3.17)

 ∇2φ(x)=−
ρ(x)
ε0

,  (3.19)

which is known as the Poisson equation. This is for a region of space 
where there is a distribution of charge. In fact, this equation can be 
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inverted to express the potential as a function of charge distribution. 
It results in a scalar form of Equation (3.6) by combining it with 
Equations (2.44) and (3.12) to give

 
ε V∫φ
π

ρ
= ′

′

− ′
x d x

x
x x

( )
1

4
( )

| |
.

0

3  (3.20)

If there is no charge present such that ρ(x) = 0 then

 ∇2φ(x)= 0,  (3.21)

which is called the Laplace equation. The solution of these two sec-
ond order partial differential equations is one of the key aspects in 
studying electrostatic phenomena.

It is worth while putting a picture to the ideas of electric 
vector fields and charges that act as sources. Figure 3.4 shows 
how iron filings align themselves between a positive and negative 
charge and also two positive charges. The filings serve to illumi-
nate (not literally) the direction of the electric vector field at a 
particular point in space (it doesn’t say anything about its mag-
nitude because this would require some type of movement to 
show the force). It is conventional to attach an arrow to one of 
these field lines that points away outward for a positive charge 
and inwards for a negative charge. A field line therefore either 
starts on a charge or terminates on it. The corresponding case for 
magnetism is quite different!

As a final remark as concerns Figure 3.4, there is a neat rela-
tionship with the scalar potential. Suppose we consider an equi-
potential surface given by φ(x) = 0. Then, from the definition of 

FIGURE 3.4: A pictorial representation of the electric field in the region of two charges.
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the electric field as a gradient of the scalar potential, the electric 
field lines must be orthogonal to the equipotential surfaces. To 
see this, first take the differential of the scalar potential, which 
is dφ(x) = (∇aφ)dxa. Now, on an equipotential surface dφ(x) must 
also equal zero and dxa must lie in the local area element of the 
equipotential surface. Therefore ∇φ must be normal to the equi-
potential surface. In this way in  Figure 3.4 we could draw in lines 
that cut field lines normally.

3.3  THE “MAGNETIC” LAW OR THE LAW WITH  
NO NAME

At this point we have arrived at the idea of electric charges 
that produce and couple to electric fields. These then do the same 
in return. These systems are therefore always coupled and the 
interaction cannot be turned off3. We now turn our attention to 
the phenomena of magnetism. Some materials (e.g. iron or mag-
netite) when suspended in free air will naturally align themselves 
in a preferential direction directed from the North to the South 
pole along a great circle. This basic property is the principle by 
which the magnetic compass operates, a piece of technology that 
has been around as a navigational aid since the 11th century. A 
material that shows this alignment along a great circle is said to 
be magnetized. It is also possible to magnetize a body which previ-
ously did not display any magnetization (that is, for those materi-
als which can display magnetization). This leads to the following 
experiment:-

Experiment 5 Take two magnetic bodies in the form of iron bar 
magnets. For a single bar magnet label one end positive and the 
other negative so that the positive points to the North Pole and the 
negative to the South Pole. Now bring them into close proximity. 
What happens to the bar magnets some time later?

Observation 5 The bar magnets ends either repel if a positive (neg-
ative) end from one bar is close to a positive (negative) of the other 
end, or they attract one another if the ends are a positive and a nega-
tive. That is like sign ends repel while unlike ends attract.
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This looks very much like the phenomena encountered earlier 
in electrostatics (at least qualitatively) where the positive or negative 
ends corresponds to the the two types of electric charge. Indeed, 
looking at Figure 3.5 that shows a bar magnet, one sees that the 
fields lines displayed by the iron filings look quite similar to the elec-
tric field lines between the two equal and opposite electric charges 
shown in Figure 3.4. A natural question arises now as to whether 
we can isolate the corresponding “charges” at either end of the bar 
magnet, such that we might try and build up a picture similar to that 
of electric charges. Consider the following experiment.

Experiment 6 Take one such bar magnet and divide it into two 
by cutting it across its axis where the positive and negative charges 
reside. What happens?

Observation 6 We find two new (smaller) bar magnets have been 
created. Where we have performed the cut we find a positive and 
negative charge on either side that gives rise to the two new bar 
magnets.

No matter how many times we subdivide the bar magnet we will 
continually find smaller and smaller bar magnets. We are of course 
trying to investigate magnetism in an analogous way to the electri-
cal forces previously found. Having introduced an electric charge 
earlier we have just found that their appears to be no comparable 
“magnetic” charge for magnetized bodies4. However, they do appear 
to share a common form of interaction between themselves.

FIGURE 3.5: Iron Filings lining up around a bar magnet. The filings show the local  
direction of the magnetic field in the vicinity of the magnet’s poles.
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It’s frustrating cutting bar magnets.

Given that the idea and introduction of an electric field proved 
so useful beforehand to account for observable static forces, it is 
clear we should then do something similar for magnetism. To this 
end we introduce a magnetic field Ba(x) that a bar magnet will  couple 
to such that it feels a force and aligns itself with. Not only does it 
couple to the magnetic field but it is also a source of a magnetic field. 
Thus the Earth produces a magnetic field, which we can regard as 
a background field in a similar way to the bar magnets, albeit on a 
much larger scale. Note also that while the electric charge is a scalar 
quantity, for the bar magnet a vector type charge can be associated 
connecting the north and south poles.

It is necessary now to setup some basic field theory that is an 
equivalent of Gauss’s law applicable to magnetic bodies. We define 
therefore the magnetic flux as

 
∫Φ = Σ
∂

d B: .M a
a2  (3.22)

In the electric case the electric flux through a closed surface was 
found to be proportional to the enclosed charge. Since there appears 
to be no free magnetic charge the magnetic flux must be zero

 
∫ Σ =
∂

d B 0.a
a2  (3.23)

To see this geometrically take the bar magnet shown in  Figure 3.5 
and surround it by a sphere. For every small area on the sphere 
where the magnetic field pierces it pointing outwards, there is 
another small area somewhere else where the magnetic field pierces 
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the sphere pointing inwards. As before, the divergence theorem can 
be applied to this, resulting in an integral over the volume. Clearly 
the differential version is just

 ∇aB
a(x)= 0. (Maxwell II)  (3.24)

(Exercise: verify this)

We shall refer to this as Maxwell II and is the second of the four 
Maxwell’s equations. On an historical note as the title of this section 
suggests, Equation (3.24) does not have a name as the others do. It 
seems Maxwell wrote it down first based on earlier work of Lord 
Kelvin and Faraday’s idea of closed magnetic lines of force [6, 17]. It 
might better be called the Maxwell-Kelvin-Faraday law, though this 
is a bit of a mouthful.

At this juncture, we have introduced the idea of two distinct 
fields and one source. Maxwell I tells us that a charge density ρ(x) 
is a source of the electric field and that it will feel a force due to 
the presence of an electric field there. The magnetic field however 
does not have a single source term but rather a positive and negative 
end separated by some distance. To account for the observed forces 
on electrically or magnetically charged bodies, an electric field has 
to vanish on a charge; there is a definite single termination point. 
A magnetic field always comes as loop; there is no start nor end point.

3.4 VOLTAGE AND CAPACITANCE

It is now possible to define two basic quantities for conductors 
that are already probably familiar to the reader, but are essential 
in any form of measurement theory and the construction of simple 
electronic circuits. They are voltage and capacitance.

Definition 1 The voltage V of a conductor is the potential there with 
respect to some reference point or space.

For example, if we think of an electrical circuit where wires are 
essentially straight lines, the voltage is the potential difference between 
two points, typically with a component in between. Compare this with 
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the case of a charged metal sphere where we often choose the dif-
ference to be between the surface of the metal sphere and a sphere 
at infinity. The potential can also be measured by use of the elec-
trometer encountered earlier that was used to measure charge; it acts 
as a local probe of the potential at some point. This follows because 
having determined the charge on a body, we just need to measure 
the distance to the local probe to find the potential. We assume in 
addition that we can identify the traditional term voltage associated 
with a battery with this potential difference and will therefore regard 
them as synonymous. The reader can consult [17] and [11] for more 
on its equivalence and historical finding. From now on we will take 
the voltage to be a macroscopic physical measurable that can used to 
measure other quantities. Now let us turn to the capacitance.

Definition 2 The capacitance of a body is the ability of a conductor 
or collection of conductors to store electrical charge. It is defined as 
the ratio of the electrical charge on a conductor to the voltage on it. 
One writes it schematically as  /C Q V.

For the case of a single conductor this is a constant that depends 
on its size and geometry. It is evident, however, that for a more gen-
eral situation of many bodies it is more complicated. This is because 
the introduction of a new body (remember it is not a test body!) 
disrupts the previous electrostatic equilibrium; all the charges are 
shifted around as the new body is introduced and a new electrostatic 
equilibrium has to be found. For example, suppose we have some 
conductor with a charge on it and we know what it’s equilibrium 
potential is. Now bring a second conductor into proximity with the 
first body. Charges will be induced in the second. Obviously it has 
required work to separate the charges, which can only come from 
the potential of the original body. Therefore the potential must have 
lowered, thereby increasing the capacitance since the charge on it 
has remained constant. Saying it in slightly different way, for a col-
lection of conductors imagine we put known amounts of charge on 
them and then electrically isolate each one. Clearly there is poten-
tial due to this distribution of charge and this will depend on the 
overall geometry of the system. We have already encountered an 
early form of capacitor in connection with the electrometer. The 
Leyden jar employed there was used for the simple purpose of stor-
ing a known amount of electric charge - this was the original form 
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of the capacitor [11]. To get an idea of the form a capacitance takes, 
consider the following simple example.

Example 3.1 A solid metal sphere of radius R carries a charge Q on 
it. Calculate the capacitance of the sphere.

Since this problem involves spherical geometry we clearly need 
to work in spherical polar coordinates. We can apply Maxwell I to 
this in the form of Equation (3.14). By spherical symmetry the elec-
tric field only has a radial component and is given by
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 = ≤RE 0, .r  (3.26)

From this we can calculate the potential difference between the 
surface of the sphere and a sphere at infinity,
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The capacitance is therefore

 π=
−

=
∞
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R
0  (3.30)

Another important example that we would like to start thinking 
about is the parallel plate capacitor in the form of two disks each of 
radius a separated by a small distance d. What is the capacitance of 
this system? It is in fact quite a difficult problem to calculate exactly 
because the edge of the disks cause a complication in the math. One 
should note here that this system will play an important part for 
other aspects of the field theory we are investigating. We will return 
to it again and again as there is really a lot of physics taking place 
under the hood.
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The standard geometry of the paral-
lel plate disk capacitor. It consists of 
two metal disks, each of radius a and 
a separation d. Each has been con-
nected to a wire and ends on some 
type of module labelled as “Opera-
tion” This could be a simple switch, 
a battery cell or something else.

Notwithstanding the above, let us calculate an expression for the 
capacitance (per unit area) in the limit that <<d a.  This amounts 
to saying that we have two infinite plates and that on each we have 
a constant charge density σ. One plate has +σ the other has −σ. 
What then is the potential difference between the two plates? Let 
the separation d be in the z coordinate of the standard Cartesian 
coordinates so that the plates lie in the x, y plane. By symmetry the 
electric field is constant - using Maxwell I one finds

 


σ
=+E

2
, for plate 1,z

0

 (3.31)
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2

, for plate 2.z
0

σ
=−  (3.32)

Using the linear superposition principle the electric field in 
the two regions outside the plates cancel, whereas for the region 
in between the fields add together. The potential difference between 
the two surfaces is

 ∫− =−V V dr E2d z

d

0
0

 (3.33)
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From this it is straightforward to derive the capacitance per unit 
area as

 
σ

=
−

=C
V V d

.
d 0

0  (3.36)

This is a useful expression to bear in mind as it gives us at least 
a first approximation to the finite geometry disk case. The compli-
cations set in for finite geometries because of fringing effects at 
the boundaries and typically this will require a numerical type of 
solution.

3.5 SUMMARY

We have seen in this chapter that to account for observations of 
static forces between bodies, charges and fields have had to be intro-
duced. By measuring a mechanical force we can in turn measure an 
electric charge on another body with respect to some known refer-
ence amount. The introduction of a scalar potential together with 
Gauss’s law turns electrostatics into a precise mathematical theory 
where one needs to solve either the Poisson equation in the pres-
ence of static charges, or the Laplace equation in free space. For 
magnetic interactions we have found a physical field but not a simple 
equivalent of electric charge. This would have made life simpler (or 
at least more symmetric) as one would perhaps like to have a similar 
situation to the electric case. Standard references on electrostatics 
are; [8] very complete and rigorous; [5] useful but with a condensed 
matter/atomic bent; and [7], always a joy to read and full of many 
interesting side lines. For an historical point of view on Maxwell II, 
the reader can consult [17] as a starting point.

NOTES

1Of course we know that there is a lower limit where electric charge becomes dis-
crete at the atomic level and that it can not be further reduced. The oil drop experi-
ment due to Millikan gives a clear demonstration of this but relies on extra structure 
so far not introduced. We are just trying to keep each matter logically separate
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2This follows on from the previous point. The answer to this in our enlightened 
age is well established and standard school textbook facts that are committed to 
memory. We simply wish to keep things as macroscopic and bottom up as possible 
to begin with.
3One can see this is a difficult path to tread; if we can’t turn the interactions off, can 
we be sure we are measuring the right thing? And does the very act of measuring 
the system disturb the system too much such that we do not obtain genuine results? 
Not surprisingly there is a large overlap here with quantum mechanics.
4This in particular makes Maxwell’s equations asymmetrical with regard to their 
matter content; we shall discuss this more later.





CHAPTER 4
MAXWELL’S EQUATIONS 
PART II

We have encountered the two fundamental physical fields Ea 
and Ba that arise in static experimental situations. They are constructs 
that are used to quantify the forces found in electric and magnetic 
situations after they have settled down into an equilibrium state. The 
electric charge distributions and magnetic bars have been static and 
therefore by definition, not been moving. A natural question to ask is 
exactly this :- what if they do move in some simple fashion (constant 
velocity or constant acceleration)? By studying the nature of this time 
dependent phenomena, we will arrive at the astonishing fact that the 
electric and magnetic fields are intertwined. Not only that they are 
really two sides of the same coin. As one varies in time and space 
there is always the other present and can never be switched off. It 
is in this sense the topic is truly called electromagnetism. Originally 
electricity and magnetism were considered separate phenomena and 
it was only with the discovery and introduction of the galvanic cell 
that currents were linked to magnetism and unity was brought for-
ward. For some historical background on this point, see [11] and [6].

4.1 THE CONSERVATION OF CHARGE

In the previous chapter, we encountered the law of conserva-
tion of charge. It is a book keeping device that demands that a final 
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system in some state must have the same charge as the system in 
its initial state. To formulate this more generally we need to think 
about the movement of charge which naturally leads to the idea of a 
current. We will write it in the form of what is known as a continuity 
equation. Consider a volume V bounded by the surface area ∂V and 
within which sits a certain amount of charge Q(t) at time t. A current 
I(t) is simply the flow of charge per unit time through some surface 
I(t) = dQ(t)/dt. This could consist of a set of discrete charges mov-
ing on their own trajectories or a continuum where there is a flow 
at each point. Suppose this charge now starts to move about. How 
much charge will there be in V at some later time? What we need 
to think about is the rate of change of charge dQ(t)/dt within the 
volume as a function of time. Let us also cut up the boundary ∂V 
into lots of small areas ΔΣa. If we know the velocity va(t, x) of a small 
amount of charge ΔQ(t) in a small volume ΔV that has part of its 
boundaries as one of the areas, then we can calculate the outflow of 
charge through this area.

A volume V with a boundary ∂V 
encloses a charge Q(t) which is a 
function of time. The dashed cyl-
inder indicates the small volume 
ΔV inside the main volume and 
just below the boundary surface. 
One of the cylinders end faces 
(with area ΔΣa) forms a small 
part of the boundary.

We define a current density Ja(t, x) to be the flow of charge per 
unit area per unit time. Then the dynamic statement of the conser-
vation of charge is

 
∫=− Σ
∂

dQ t
dt

d t xJ
( )

( , ).a
a2  (4.1)

Given a velocity vector field va(t, x) and a charge density we can 
write an expression for the current density in terms of these vari-
ables, that is



Maxwell’s Equations Part II  •  47

 ρ=t x t x t xJ v( , ) ( , ) ( , ).a a  (4.2)

(Exercise: check you agree with the dimensions of this 
expression.)

As with the earlier Maxwell’s I and II equations, this can be 
written in differential form when the charge distribution is continu-
ous Q(t)→ ρ(t, x)

 

d
dt

d3xρ(t, x)
V∫ =− d2ΣaJ

a(t, x)
∂V∫

=− d3x∇aJ
a(t, x)

V∫
⇒

∂ tρ(t, x)+∇aJ
a(t, x)= 0.  (4.3)

This is the equation of continuity and although it is applying 
here to electric charge, it also shows up in many other areas of phys-
ics (notably fluid dynamics). A further point that we will discuss in 
the next chapter is to do with symmetry. The conservation of charge 
has a mathematical consequence that the field equations have a sym-
metry built into them.

How does one generate a current in the first place? There are 
two straightforward ways that follow from its definition. One is sim-
ply to move away from a charged object at a constant velocity. Rela-
tive to you the charge will thus appear to be moving. The second is 
the use of a simple battery cell. This involves some chemistry that 
converts chemical energy into electrical energy in the form of a sus-
tained potential difference at two terminals - negative charge builds 
up at one end, positive charge at the other [11]. As long as there is a 
potential difference in a region of space then we know that a charge 
will couple to the local electric field and feel a force. It will therefore 
be in a local state of acceleration. Although discharging a capacitor 
does indeed produce a current, it is not very useful because it mani-
fests itself as a sudden burst of uncontrolled charge movement.

At this juncture we are interested in steady currents meaning 
constant velocities so we must think about a further element. In 
defining the electrical properties of materials we defined an effective 
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division between conductors and insulators. Of course this boundary 
is not sharp and there is a whole spectrum of behavior. Depending 
on the material, the charge will be subjected to different amounts 
of resistive forces when a potential difference is applied across two 
regions. When the two balance out, we will attain a steady flow and 
hence a steady current. It is useful therefore to consider how the 
electrical current and voltage are related. The relationship consid-
ered here is an effective description that we are establishing phe-
nomenologically as a useful way of characterising materials which 
in turn can be used in applying electromagnetism to other systems. 
This is because a priori we do not know what happens on a small 
length scale. The basic idea is that we want an equation of motion for 
the electric charge, but not to keep track of each individual charge. 
Since this type of scenario invariably involves wires, the equation of 
motion should be for the current, rather than an individual electric 
charge, so that we are always working at a coarse grained level where 
we have a chance of making decent measurements.

A cross-sectional view of a piece 
of wire that has been magnified to 
show the basic material configura-
tion. It takes the form of a metallic 
cylinder which has a potential V(t) 
applied across its end faces of area 
A. This then must set up a movement 
of charge within the volume, the con-
stant velocity contribution being the 
macroscopic current I(t).

For a potential difference V(t) between two end faces of mate-
rial we make a guess at a general polynomial of order N type behav-
ior for the equation of motion

 ∑ + =
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Here we haven’t included any higher order derivative terms sim-
ply because equations of motion tend to have only a second time 
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derivative as their highest - higher derivatives leads to all sorts of 
mathematical and physical difficulties, notably improperly behaved 
solutions and ghosts. Obviously in order to map out which terms are 
important in Equation (4.4) we need to be able to measure currents 
as well as voltages. In principle, we could use the electrometer to 
measure both the electric charge and its rate of flow, but one might 
anticipate practical difficulties in this. It would therefore be good to 
have an independent means with which to measure just the current. 
To do this we need to bring back onto the scene the magnetic com-
pass and its transformation into a galvanometer.

Hans Christian Oersted (1777–1851), a profes-
sor at Copenhagen, submitted a set of insight-
ful observations on currents and magnetism 
to a leading group of physicists which were 
largely ignored. Working in both physics and 
chemistry, he was the first physicist to name 
and explicitly describe the “thought experi-
ment” concept.

A key observation was made by Hans Christian Oersted in 1820 
(during a lecture), that a compass needle was deflected when the cur-
rent from a battery was switched on or off. More generally he found 
that the compass needle was deflected when it was placed in the 
vicinity of a current carrying wire. Building on this Ampère aligned a 
current carrying wire (produced via a battery) in a North-South direc-
tion and then simply placed a magnetic compass close to it having 
found that the needles’ plane of rotation should be perpendicular to 
the Earth’s magnetic flux density for it not to be influenced by it. The 
degree of the deflection is thus a measure of the local current flowing 
in the conductor. If the deflection settles down to a constant value 
the local current must have reached a steady state. We have already 
introduced the magnetic flux density in the last chapter. What must be 
taking place here is a balance between the torque produced due to the 
background magnetic flux density of the Earth and a local magnetic 
flux density produced by the current carrying wire in general - cur-
rents are a source of magnetic flux density! Thus we have a consistent 
picture and a local probe with which to perform measurements.
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Andrè-Marie Ampère (1775–1836), Maxwell described 
him as the “Newton” of electricity. With a flurry of 
experimental and theoretical activity in 1820 Ampère 
linked firmly the magnetic field to steady current 
sources. He is also credited with the basic invention 
of the “Galvanometer”.

Given that we can now measure current as well as voltage by 
two independent means, we can return to Equation (4.4) and try to 
establish a phenomenological relationship. This is exactly what Ohm 
did and established the well known phenomenological law

 =V t RI t( ) ( ).  (4.5)

Georg Simon Ohm (1789–1854), found the familiar 
Ohm’s law by varying the length, area and mate-
rial of different wire type configurations. This was 
then further developed by the use of Fourier series 
analysis and analogies to thermal heat flow.

For the diagram depicting the cross-sectional view of a piece of 
wire one can see that there is a new macroscopic component being 
conceptualised - the resistor. This simply limits the amount of cur-
rent that can flow in a circuit that would otherwise flow without hin-
drance. Since the materials resistance has a dissipative effect on the 
current flow, the component will naturally turn this absorbed energy 
into heat, thus transforming the energy in some fashion.

4.2  ELECTRIC CURRENTS AND THE LAW  
OF AMPÈRE

Now that we know what current is and how to measure it, we are 
going to try and play the same game as we did for electric charge. To 
that end, we will think about how steady currents interact and that 
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the magnetic field is the agent by which forces are affected. See [6] 
for more details on the history and experimental discussion.

Experiment 7 (Ampère, 1820–25) - Take two wires carrying steady 
currents in the form of two separate current loops and bring them 
into proximity with one another. What happens to the loops of wire?

Observation 7 Each of them feels a force and can be either attrac-
tive or repulsive depending upon the orientation of the two loops 
relative to one another. It is proportional to each of the currents and 
varies inversely with the square of the separation.

One should in fact be careful here about the square of the separa-
tion observation because with two different current loops there are 
obviously other length scales that can enter. This will be clearer when 
we write the force down. We now try to codify a similar equation for 
the currents as we did in Equation (3.1) for the electric charges. There 
is a striking difference that can be immediately seen between charges 
and currents. While charges referred to small local regions in space, 
steady currents require loops of a conductor to sustain themselves (i.e. 
we need charge to be continually moving through some region).

One of Ampère’s experimental 
arrangements. This one gives 
the repulsion of collinear elec-
tric currents.

The equivalent of Coulomb’s law for electric currents is Ampères 
law for current loops M and N:-

 F(M|N)=
µ0I

MIN

4π
dx(M)∧dx(N)∧[x(M)− x(N)]

| [(x(M)− x(N)] |3
.

CN
!∫CM
!∫  (4.6)

As with Coulomb’s law, an arbitrary constant has been intro-
duced and will depend on the system of units used. We will use 
Equation (4.6) to define the system of units and thus the reference 
point. Note also the plethora of indices - it is quite easy for these 
expressions to become unwieldy. The ampère will be the standard 
unit of current, so that one ampère is written as 1A. It is of course an 
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arbitrary definition, just as the kilogram or meter are simply defined 
to be something. This allows us to define the unit of charge as the 
coulomb so that = −1A 1Cs .1  Then the constant of proportionality is 
defined to be µ0 = 4π×10−7NA−2 ,  and is called the permeability of 
free space. Using Ampère’s law, this tells us that two parallel wires 
each carrying 1A of current 1m apart will feel a force per unit length 
of × −2 10 N.7  So a base unit of current has been defined in terms of 
a measurable mechanical force.

(Exercise: verify this.)

4.2.1 The Magnetic Flux Density and Current Coupling
Since we are playing the same game as we did for electric fields, 

we want to understand how the current loop is a source of mag-
netic field. The observations of Oersted gave us the basic coupling 
between the field and the current and Ampère’s law gives us the 
coupling between the currents. Let us take a step back and ask how 
we should try to run our magnetic investigation in a similar way to 
the the electric case. Suppose we do another experiment;

Experiment 8 Replace one of the current loops with a bar magnet. 
What happens to the current loop and bar magnet?

Observation 8 Each of them feels a force that can be either attrac-
tive or repulsive depending upon the orientation of the two and basi-
cally behaves in a similar manner as if we had the previous current 
loops (at large enough separations).

The current loops and bar magnets interact in apparently the 
same way, so we conclude that they are the same sources - currents 
(the movement of charge). What then is the magnetic equivalent of 
Equation (3.2)? Clearly we need a current loop from Ampère’s law 
so the basic coupling must look like

 

∫= ∧I x dx xF B( ) ( )( ( )).  (4.7)

Note the difference with the electric case, that we really need 
think in terms of current loops. For the sustained and constant cur-
rent, a loop of wire and a battery cell are required. Therefore the 
observable effect is necessarily on the entire loop and will effectively 
be at its center of mass - the effect is non-local. If the geometry and 
configuration permits it, we may be able to drop the integral such that
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 δ = ∧x I x dx xF B( ) ( )( ( )),  (4.8)

where there is a current in a small element of length, but this form 
will not always make sense.

As it stands, the currents are naturally confined to the wires in 
which they have been set up. If we can identify individual charges as 
in Equation (3.2), that is of a point like nature, then we can rewrite 
Equation (4.7) in terms of its velocity v(x) of the charge q so that

 = ∧x q x xF v B( ) ( ) ( ).  (4.9)

Note here another difference between a magnetic and electric 
field. An electric field is a vector quantity while the magnetic field is 
an axial-vector. In brief this means that under a reflection the electric 
field points in the opposite direction, while the axial vector remains 
unchanged. One can see this from the wedge product - the velocity 
and the wedge product would yield a force that was an axial vector, 
were it not for the fact that the magnetic flux density is also an axial 
vector. How these vectors are classified is based on the group theory 
for how the fields transform under symmetry transformations. In par-
ticular, these definitions follow from considering how the fields trans-
form under the rotation group and the parity group (written as O(3)).

(⇐ Left) Jean - Baptiste Biot 
(1774–1862) - a critic of 
Ampère and extremely con-
servative - more Laplacian 
than Laplace himself!

(Right ⇒) Felix Savart (1791–
1841) - went to Paris in 1819 
to see Biot and ended up 
putting forward the Biot-
Savart law in 1820.
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The experiments of Biot and Savart established the dependency 
of the the magnetic flux density on the current [6]. Returning to 
Equations (4.6) and (4.7) we see that the magnetic flux density due 
to a steady current loop is therefore

 B(x)=
µ0I
4π

d ′x ∧(x− ′x )
| (x− ′x ) |3C

!∫ .  (4.10)

When the charge is continuous so that the current becomes a 
current density (as is used in the continuity equation), we must form 
a continuum version of the above with the result

 B(x)=
µ0

4π
d3 ′x qJ( ′x )∧(x− ′x )

| (x− ′x ) |3
r .

V∫  (4.11)

Remember that although the current I is the physical measur-
able, any conducting wire will have finite cross sectional area. This 
means that while it will be the current density that enters our equa-
tions, this will have to be integrated over the wire area to give the 
physical measurable I. The units of the magnetic flux density are the 
Tesla, T, where = − −1T 1NA m .1 1

It is also worth writing this in components

 Ba(x)=
µ0

4π
d3 ′x εabcJ

b( ′x )
(x− ′x )c

| x− ′x |3
,

V∫  (4.12)

and drawing attention to a slightly mathematical point. In this form 
it is clear that the magnetic flux density is metric dependent and 
similarly for the equivalent electric field expression, since distances 
enter explicitly. However, these correspond to a particular solution 
of the field equations. What is independent of the metric is the 
absence of any magnetic monopoles. This is reflected in the form of 
Maxwell II where there is no source term present that is akin to the 
electric charge.
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4.3 THE LAW OF FARADAY

Michael Faraday (1791–1867). The influence of 
Faraday’s work on physics and electromagne-
tism cannot be understated; electrolysis, polari-
zation and electromagnetic induction to name 
just a few. His achievements are all the more 
remarkable as he started his career as a book-
binder with little formal education.

Up until this point, we have investigated electric and magnetic 
phenomena that have mostly been decoupled. This is because histori-
cally the two originated separately and while electrostatics was seem-
ingly well understood mathematically and experimentally, sources of 
current were less so; they were shrouded in the ethos of galvanism 
[11, 17, 6]. The observation of Oersted of changing currents produc-
ing magnetic fields of course still had a voltage (from the battery) to 
produce the current in the first place, so the state of decoupling is not 
absolute. The type of coupling manifests itself in the force laws

 
∫ ρ= d x x xF E( ) ( ),a

Electric
a

3  (4.13)

 ε
V∫= d x x xF J B( ) ( ),a

Magnetic
abc

b c3  (4.14)

for continuous charge distributions. The corresponding force law for 
a the point like test charge q is given by the Lorentz force law

 = + ∧x q x q xF E v B( ) ( ) ( ).  (4.15)

By a coupling we typically mean a simple multiplication of the test 
body charge or current and the field at that point due to something 
else. The first of these is a simple scalar coupling, while the second 
(for the magnetic case) is a tensor coupling. Further, the magnetic 
field has no point source, arising as they do from the steady move-
ment of charge. It is this very fact that suggests the following: given 
that they originate from the same basic source (electrical charge), it 
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might well be that the magnetic and electric fields are two sides of the 
same coin. If I change one in time, will I see a manifestation of the 
other? This is exactly what happens. Time for another experiment.

Experiment 9 (Faraday, 1831) Suppose we move a bar magnet 
through a loop C of conducting wire. What happens in the loop?

Observation 9 We observe a time dependent current is induced in 
the loop. It is found that the induced voltage that produces this cur-
rent is proportional to the rate of change of magnetic flux.

Faraday’s original experiment used another coil of wire instead 
of a bar magnet through which a time varying current passed. This 
had the effect of creating a time varying magnetic flux, some of 
which cut the coils interior in a similar fashion to the above moving 
bar magnet.

We can capture the above experiment in terms of the electric 
and magnetic fields and link them directly for the first time. The 
voltage V(t) in our loop is just the line integral of the electric field 
which itself must now be time dependent

 

∫=V t dx t xE( ) ( , ).a

a  (4.16)

FIGURE 4.1: Faraday’s induction experiment, 1820. When the bar magnet is moved  
towards or away from the coil (in its vicinity) a time varying magnetic flux is generated  

from standpoint of the coil. This cuts the the loop formed by the coil and the  
galvanometer is observed to deflect. This is the same observable effect  

as when a time varying voltage is setup in the coil.
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This satisfies based on the above observation

 ∝
Φ

V t
d

dt
( ) .M  (4.17)

The question at this point is what the constant of proportionality 
should be. Remember that up until this experiment the electric and 
magnetic fields have been considered separate. Electric charge has 
been measured with respect to an arbitrary source, and current has 
been measured with a particular compass. The next input on this 
law was to fix the relative sign by essentially performing a number 
of experiments. This was done by Emil Lenz [6] and can be sum-
marised as follows:-

Principle 2 (Lenz’s law) - the induced current takes the route such 
that the magnetic field it produces opposes the change in flux through 
the loop that initiates it.

The best that we can do at this point therefore is to write down

 χ=−
Φ

V t
d

dt
( ) ,M  (4.18)

where the minus sign is capturing the result of Lenz’ law.

Heinrich Friedrich Emil Lenz (1804–1865). Lenz arrived 
at his law based on the examples of induction that 
Faraday had considered, and some of his own 
experiments.

The fact that the constant of proportionality −χ appears to be 
undetermined requires us to impose some further constraints or 
symmetries. We have defined the unit of current (the Ampère) as 
being a flow of 1Cs−1. So we now take the Coulomb to be the unit 
of charge used in Coulomb’s force law Equation (3.1). This fixes the 
units such that χ becomes a dimensionless number and for the per-
mittivity of free space 0 to have units that feature the Coloumb.

(Exercise: verify the constant of proportionality is a dimen-
sionless number and check the dimensions of the 0.)
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We can go further and evaluate χ by thinking about the relative 
motion of the loop with respect to the bar magnet and the conse-
quence of assuming Galilean invariance.

Principle 3 Physical laws must be invariant under a Galilean trans-
formation. In particular, forces felt by bodies must be the same in 
any inertial frame that is moving relative to one another with con-
stant velocity.

A Galilean transformation is a time dependent mapping between 
two coordinate systems that are moving relative to one another with 
some constant velocity u .a  If t x( , )a  and ′ ′t x( , )a  are coordinates in 
the original and moving frames of reference, then the transforma-
tion is given by the defining relations

 ′ = +x x tu ,a a a  (4.19)
 ′ =t t.  (4.20)

From this, it is simple to see how the velocity in the two frames 
are related, viz

 
′
′
= +

dx
dt

dx
dt

u .
a a

a  (4.21)

Now consider again Equation (4.15) in view of Galilean invari-
ance. Suppose that a test charge is at rest and subjected to fields E(x) 
and B(x) in the unprimed reference frame1. In the primed system, 
since the fields are vector quantities, we expect them to also undergo 
a Galilean transformation to the fields ′ ′xE ( )  and ′ ′xB ( ).  Galilean 
invariance says that the force should be the same in both reference 
frames so that

 

′F ( ′x )= q ′E ( ′x )−qu∧ ′B ( ′x )
=F(x)
= qE(x).
⇒

′E ( ′x )=E(x)+u∧B(x).  (4.22)

To complete the transformation laws we should also calculate 
what the B(x) transforms too. This, however, is not necessary for the 
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task at hand of determining χ .2  Writing Equation (4.18) in integral 
form we have

 
 ∫ ∫χ+ Σ =
∂

dx
d
dt

dE B 0,a
a a

a  (4.23)

where the loop of wire is along the contour ∂  and the magnetic 
flux density of the bar magnet cuts the area .  The reader can 
probably see the road ahead. If the bar magnet is moving so that the 
loop is stationary, the time derivative just acts on the field. In the 
Galilean transformed frame however, the loop has some constant 
relative velocity (and so therefore does the area), such that we need 
to invoke Equation (2.29). On this point we should remember the 
Leibnitz rule for differentiating under the integral sign

 ∫ ∫=
∂
∂
+ −

d
dt

dxf t x dt
f
t

f t v
dv
dt

f t u
du
dt

( , ) ( , ) ( , ) .
u t

v t

u t

v t

( )

( )

( )

( )
 (4.24)

It becomes

 dxa ′Ea
∂A∫ +χ dΣa(∂ t B

a+ ub∇bB
a)

A∫ = 0.  (4.25)

This can be simplified by using Equation (2.24) and Maxwell 
II to

 dxa ′Ea
∂A∫ +χ dΣa(∂ t B

a−(∇∧(u∧B))a)
A∫ = 0.  (4.26)

Finally, by using Stoke’s theorem the last term can be converted 
to a line integral and regrouped with the electric field

 dxa( ′Ea
∂A∫ −χ(u∧B))a)+χ dΣa(∂ t B

a)
A∫ = 0.  (4.27)

For Galilean invariance to hold the line integral quantity in the 
above must be equal to the transformed electric field found in Equa-
tion (4.22) so that χ=1.  Equation (4.27) becomes

 
 ∫ ∫+ Σ ∂ =
∂

dx dE B 0.a
a a t

a  (4.28)
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So the constant of proportionality has been determined.

For the situation where the loop itself is not varying in time, 
we can write Faraday’s law in local differential form, as we did for 
Gauss’s law. By using Stoke’s theorem Equation (2.34) we can con-
vert the line integral into a surface integral

 dΣa(∇∧E)a

A∫ + dΣa∂ t B
a

A∫ = 0.  (4.29)

This reduces to

 ∇∧E+∂ t B= 0. (Maxwell III)  (4.30)

It is worth drawing the readers attention here to a couple of 
points about this equation. The first is that it is a statement about the 
basic electromagnetic fields with no matter content and all the action 
is happening in the vacuum of free space. The electric and magnetic 
fields are always coupled in this way regardless of what charges and 
currents are on the scene. The second point is a mathematical one. 
This equation is what is termed in differential geometry as exact, 
which means that locally we can replace the electric and magnetic 
fields with potentials (see for example [2] for a fuller discussion of 
these types of mathematical issues). We have already partly done 
this with the scalar potential for the electric field. In the next chapter 
we will look at this more fully and how it works for both fields.

Faraday’s law is of crucial importance because it links electric 
and magnetic fields for the first time. If you have a magnetic field 
that varies in time, there is an electric field present at the same time. 
We will refer to this equation as Maxwell III. It should not come 
as too much of a surprise, however, since the original experimental 
means of detecting a current was from the magnetic deflection of a 
compass, that was initiated with an electric potential! A very read-
able discussion of Faraday’s law can be found in [7].

One immediate use of Maxwell III is in the operation of an 
inductor and its inductance. Not surprisingly this features a coiled 
conducting structure, taking the form of something like a squashed 
helix. The key aspect to this component is that we have a conducting 
pathway that circulates about an axis so that a magnetic field can be 
produced by a steady current. What then is the phenomenological 
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parameter that is like the resistance for a resistor and the capaci-
tance for a capacitor?

The basic geometry of an inductor consists of a loop 
type spiral structure. This allows charge to circulate 
around a common orthogonal axis and thereby cou-
ple to a magnetic flux density in this direction.

Considering then a simple inductor geometry where we apply a 
time varying potential across it, Maxwell III takes the form

 
∫= Σ ∂V t d B( ) ,a t

a  (4.31)

together with the Biot-Savart Law Equation (4.10) that the mag-
netic flux density is proportional to the current I(t), we can write the 
above as

 V(t)=
µ0

4π
dI(t)

dt
dΣ⋅

d ′x ∧(x− ′x )
| (x− ′x ) |3

,
∂A!∫A∫  (4.32)

 = L
dI t

dt
( )

, where  (4.33)

 L=
µ0

4π
dΣ⋅

d ′x ∧(x− ′x )
| (x− ′x ) |3

.
∂A!∫A∫  (4.34)

In the above, L is the inductance for the inducting component. 
Typically the loop integral is evaluated by overlaying a number of 
circles on top of one another leading N number of coil turns, rather 
than evaluating the complicated helical arrangement. However, for 
certain applications this distinction may be necessary.

4.4 THE DISPLACEMENT CURRENT

We now return to Ampère’s study of the magnetic field produced 
by a steady current in a long straight wire. Let us reconsider the 
expression Equation (4.10) which gives the magnetic field at some 
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point due to a steady current. Clearly the magnetic field is in a direc-
tion normal to the current flow. It is also normal to the difference 
vector which, together with the direction of current flow, define a 
plane. The magnetic field has only one component and it is normal 
to this plane. If we rotate the difference vector about the axis of the 
current, the magnetic field is unchanged and we have an honest to 
goodness symmetry.

Our aim here is to try and invert this relationship - we want the 
current in terms of the magnetic field. The simplest way to proceed is 
with Equation (4.12); we want to get rid of the integral over volume on 
the right hand side. To that end we know that if we can extract a Dirac 
delta function, the integral will collapse and we will have another local 
equation. This is further supported by recalling Gauss’s law, where we 
have a partial derivative acting on the electric field that is equal to the 
charge density. So consider taking the curl of Equation (4.12);

 ∇∧B(x)=
µ0

4π
d3 ′x∇∧ qJ( ′x )∧(x− ′x )

| (x− ′x ) |3V∫ r .  (4.35)

To make progress on simplifying the right hand side we use 
Equation (2.44) so that we can rewrite Equation (4.35) as

 ∇∧B(x)=−
µ0

4π
∇∧∇∧ d3 ′x J( ′x )q 1

|x− ′x |V∫ r .  (4.36)

We can simplify the above double curl using the vector identity, 
where we now write our expressions in components

 (∇∧∇∧)b
a =∇a∇b−δb

a∇2.  (4.37)

This gives in components

 εabc∇
bBc(x)=

µ0

4π
d3 ′x Jb( ′x )(∇b∇a−δa

b∇2) q 1
|x− ′x |

r
V∫ .  (4.38)

The second term in the above is straightforward to evaluate, 
since it just gives a delta function using Equation (2.46), so
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 εabc∇
bBc(x)=µ0Ja(x)+

µ0

4π
d3 ′x Jb( ′x )(∇b∇a) q 1

|x− ′x |
r

V∫ .  (4.39)

The last term can be further simplified to

 εabc∇
bBc(x)=µ0Ja(x)+

µ0

4π
∇a d3 ′x ′∇bJb( ′x ) q 1

|x− ′x |
r

V∫ ,  (4.40)

where we have used Equation (2.46) and have performed an integra-
tion by parts (we have also assumed that the boundary term vanishes 
by the current vanishing on ∂ ).  In the case of magneto-statics 
where we have steady currents,

 ∇bJ
b(x)=−

∂ρ
∂t
= constant= ψ.  (4.41)

We can therefore operate on the integrand and again make use 
of Equation (2.46)

 εabc∇
bBc(x)=µ0Ja(x)−

µ0

4π
ψ d3 ′x ′∇a q 1

|x− ′x |
r

V∫ ,  (4.42)

which can be readily converted to a surface integral and dropped, 
since in the limit the boundary tends to infinity, the integrand van-
ishes. Thus we find that

 ∇∧B(x)=µ0J(x).  (4.43)

This can be readily converted to an expression involving the cur-
rent by integrating the right hand side over an area

 d2Σa(∇∧B(x))a =µ0
A∫ d2ΣaJ

a(x)=µ0I,
A∫  (4.44)

while the left hand side, by Stoke’s theorem, can be converted into 
a line integral

 dxaBa(x)=µ0I.
∂A∫  (4.45)
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This equation is known as Ampères’ circuit law and its practical 
merit is that it can be used to calculate the magnetic field when the 
system has some manifest symmetries in it [8].

As it stands, Ampère’s circuit law is valid when the current is in 
a steady state. This is not, however, the whole story. If we think of 
the parallel plate capacitor we encountered in the last chapter, it was 
assumed we built up the charge by some static transfer process. By 
pushing a current into it, the plates can similarly build up an amount 
of charge in well controlled manner, rather than the lumpiness in 
static case. Also, casting a glance at Equation (4.40) tells us that if 
the charge density is a general function of time

 εabc∇
bBc(x)=µ0Ja(x)−

µ0

4π
∇a d3 ′x

V∫ ∂ tρ(t, ′x ) q 1
| x− ′x |

r ,  (4.46)

so that the last term in general does not vanish. To aid us in better 
understanding this equation, let us do another experiment.

Experiment 10 Suppose we apply a time varying voltage across 
a parallel plate capacitor and consider the time period when it is 
charging up. What happens to the magnetic field?

Observation 10 The magnetic field surrounding the current in the 
wires is continuous in the separation region of the capacitor plates, 
as detected by a galvanometer.

The parallel plate capacitor again. A volt-
age is applied across the plates so that a 
current flows and charge accumulates on 
the disks until it saturates. This is a time 
dependent process.

Note that no current travels between the two capacitor 
plates. Since charge is building up on the plates, the electric field 
in between will be varying as a function of time. If we take the 



Maxwell’s Equations Part II  •  65

divergence of Equation (4.43), we find that it is inconsistent with 
conservation of charge

 

∇⋅(∇∧B)=µ0∇aJ
a

=−µ0∂ tρ
=−µ0ε0∂ t∇⋅E.  (4.47)

The left hand side is identically zero due to the vector identity 
Equation (2.28). Maxwell gave the solution to this  problem by 
introducing the displacement current J  (see for instance [6, 8]) to 
account for the conservation of charge. It is defined as

 !Ja =µ0ε0∂ t E
a.  (4.48)

If we add this to the current in Equation (4.47) then we restore 
the continuity equation. With this then Ampère’s law becomes

 ∇∧B(x)−µ0ε0∂ t E(x)=µ0J(x).  (4.49)

Note that we have modified this field equation at the local 
level. It is interesting to see how this arises at the global level (in 
terms of the basic Ampèrean integrals) as follows. Going back to 
our observation that the magnetic field is continuous between the 
metal plates, we know there is no physical movement of charge 
between the plates. But x( )tρ∂  is nonzero on the plates. Therefore 

xE ( )t i∂  is nonzero between the plates and up to a constant factor 
and a ∇,  must be the required displacement current. We can see 
this is exactly what was happening in Equation (4.46) if we now use 
Maxwell I

 εabc∇
bBc(x)=µ0Ja(x)−µ0ε0∇a d3 ′x ∂ t ′∇bE

b(t, ′x )
V∫ q 1

| x− ′x |
r .

 (4.50)

To get rid of the integral as before we pull out the time deriva-
tive and perform an integration by parts. This gives
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 εabc∇
bBc(x)=µ0Ja(x)−µ0ε0∂ t d3 ′x Eb(t, ′x )

V∫ ∇a∇b q 1
| x− ′x |

r .

 (4.51)

This integral is more complicated to evaluate because of the ten-
sorial nature of the two derivatives, but it must reduce to a Dirac 
delta function in some fashion. We shall defer its evaluation until the 
next chapter when we understand the concept of gauge potentials 
and gauge invariance. Accepting this then for now, the final form of 
Ampère’s original law after the addition of the displacement current 
which must coincide with the local version previously found is

 ∇∧B−µ0ε0∂ t E=µ0J.  (4.52)

This is the last of Maxwell’s equations referred to as Maxwell IV.

James Clerk Maxwell (1831–1879). The fact that 
Einstein had pictures of both Isaac Newton and 
Maxwell hanging on his wall gives a fair idea of 
Maxwell’s contribution.

We can now return to the issue of the numerical value of the 
permittivity of free space that was encountered in the previous chap-
ter. In Equation (4.52) the displacement current has the permittivity 
of free space 0 multiplying the electric field term. This equation 
also links the electric and magnetic field in the same way that Fara-
day’s law does except that now we have a matter content entering. 
Because the matter content is explicit, the permittivity has to enter 
into it. So a numerical value for the permittivity can now be found 
because we know how to measure currents and electric/magnetic 
fields. This required in the first instance the arbitrary definition 
of μ0, otherwise this would not be possible. The numerical value 
of the permittivity of free space can now be determined by again 
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performing simple types of force experiments (for example on a par-
allel plate capacitor configuration) or just the capacitance. Originally 
Weber and Kohlrausch [6] made this measurement by discharging 
a Leyden jar though a galvanometer; the Leyden jar’s charge was 
measured before and after with an electrometer. The key aspect 
is to ensure that charge is now measured in Coulombs, since cur-
rents are given in terms of Coulombs per second. It is found to be 

8.85 10 C N m .0
12 2 1 2 = × − − −  It is now possible to define both the unit 

of voltage and the unit of electric field, since we have a definition of 
the Coulomb unit. The unit of voltage is the volt where 1V 1JC ,1= −  
while the unit of electric field is the Vm .1−

(⇐ Left) Wilhelm Weber (1804– 
1891) and Rudolf Kohlrausch (1809–
1858) (right ⇒) succeeded in 1856 
in measuring the ratio of electro-
static to magnetostatic forces. 
This number has the dimension 
of the inverse of velocity squared

4.5 SUMMARY

We collect here Maxwell’s equation for completeness

 ∇⋅E=
ρ
ε0

, (Maxwell I)  (4.53)

 ∇⋅B= 0, (Maxwell II)  (4.54)

 ∇∧E+∂ t B= 0, (Maxwell III)  (4.55)

 ∇∧B−µ0ε0∂ t E=µ0J. (Maxwell IV)  (4.56)

These field equations tell us how charges and currents are 
sources for electric and magnetic fields and how electric and mag-
netic fields are coupled together. Going back to how the electric 
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and magnetic fields were deduced, in addition to the four Maxwell 
equations we have the continuity equation and the Lorentz force law

 ∂ tρ+∇⋅ J= 0,  (4.57)

 F= d3xρE+ J∧B,
V∫  (4.58)

which tells us how individual charges move in the presence of elec-
tric and magnetic fields.

A few more remarks are in order here about the theory we have 
so far. There is the mathematical problem of how to solve these 
equations and the physical problem of choosing boundary condi-
tions and the sources. In searching for the most common solutions 
(not the vulgar type), perhaps of practical interest and the simplest 
mathematically, it is often the case that the fields and the sources 
are decoupled in a very particular way. An inspection of the above 
equations would suggest that if we specify the sources then we can 
try and calculate the corresponding fields. In the inverse scenario 
they also suggest that if we specify the fields then we can calculate 
the trajectories of charged particles or bodies. But of course this 
division is one that we have made for convenience. As soon as the 
one quantity is specified, the dynamical variable we are trying to cal-
culate will have a return effect (or back-reaction) on the system. This 
is a difficult problem to get to grips with and the interested reader 
can consult [8] for further discussion. Standard references for this 
chapter are [8] and [7].

NOTES

1 Question: how do you know the test charge is at rest?
2 In fact, as one can see by dimensional analysis, the magnetic flux density transfor-
mation will have a factor involving the relative velocity and the square of the speed 
of light, leading to a much smaller contribution for small speeds.



CHAPTER 5
PHYSICAL DEGREES  
OF FREEDOM

Perhaps the most startling of all the consequences to emerge 
from Maxwell’s Equations is that they admit wave solutions which 
in the vacuum propagate with the speed of light - they are light! By 
decoupling the field equations, that is, separating the electric and 
magnetic fields from one another by performing a few mathematical 
operations, we find fields that satisfy wave equations. However, the 
picture is complicated by the fact that there is some redundancy in 
the system (there are two physical polarization states of light that the 
reader probably already knows about). It will therefore be necessary 
to be careful and to ensure that we do not have any spurious degrees 
of freedom running around in the system.

This chapter is largely mathematical. Having found the equa-
tions that govern electromagnetic fields and simple charged matter, 
it is obviously necessary to investigate them to begin to understand 
the field concept in detail. It is now that one wants to bring the 
full machinery of vector calculus (and more generally differential 
geometry) into the arena in order to manipulate the mathematical 
structures so far found.

5.1 THE WAVE EQUATION AND SOLUTIONS

Our starting point is the Maxwell Equations (4.53)–(4.56). Sup-
pose that in some region of space there are no currents or charge 
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sources, what we call the vacuum1. What are the type of electric and 
magnetic fields that can exist here? In free space Equations (4.53)–
(4.56) are simply

 ∇⋅E= 0,
∇⋅B= 0,

∇∧E+∂ t B= 0,
∇∧B−µ0ε0∂ t E= 0.

 (5.1)
  (5.2)
  (5.3)
  (5.4)

If we now take the curl of Equations (5.3) and (5.4) we obtain

 ∇∧∇∧E+∇∧∂ t B= 0,
∇∧∇∧B−µ0ε0∇∧∂ t E= 0.

 (5.5)
  (5.6)

The partial derivatives with respect to time and space commute, 
i.e. [∂ t ,∇]= 0,  so that

  (5.7)
 

∇∧∇∧E+∂ t∇∧B= 0,
∇∧∇∧B−µ0ε0∂ t∇∧E= 0.  (5.8)

By using Equations (5.3) and (5.4) a further time we can achieve 
the decoupling of the electric and magnetic fields, so that

  (5.9)

 

∇∧∇∧E(x)+µ0ε0∂ t
2 E= 0,

∇∧∇∧B(x)+µ0ε0∂ t
2 Bi(x)= 0.  (5.10)

In this way the fields have decoupled into two separate equa-
tions of motion. To simplify the two wedge products we have to use 
the vector identity Equation (2.28), where

 ∇∧∇∧E=∇(∇⋅E)−∇2E,

∇∧∇∧B=∇(∇⋅B)−∇2B.

 (5.11)

  (5.12)

With this, the source free Maxwell Equations finally reduce to
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  (5.13)
  (5.14)

  (5.15)
 

−∇2E(t, x)+µ0ε0∂ t
2 E(t, x)= 0,

=!E(t, x)= 0,

−∇2B(t, x)+µ0ε0∂ t
2 B(t, x)= 0.

=!B(t, x)= 0,  (5.16)
 ! :=−∇2+µ0ε0∂ t

2 ,  (5.17)

where we have introduced the second order differential operator 
!,  which is known as the D’Alembertian operator. Its significance 
is that it is a wave operator and what we have just written down are 
the three dimensional wave equations. The reader should already be 
familiar with the wave equation in one spatial dimension, where the 
solutions in general look like f x vt( ),±  with v the speed of propa-
gation along the x direction. So electric and magnetic fields that are 
wave like in nature are admitted as solutions and describe propaga-

tion in free space (the vacuum) at a speed c=1/ µ0ε0 .  In the previ-
ous chapter we saw that µ0  was a defined quantity and that 0 was 
measured relative to this. Historically it was found that by taking the 
values stated there then numerically the value of c was found to be 
close to the speed of light c 3.0 10 ms .8 1≈ × −

The Fizeau-Foucault experiment was a 
way of measuring the speed of light 
by mechanical means. It was devised 
such that the time parameter is linked 
to a rotational speed. Light is shone 
on a mirror at a known distance from 
the source. In between is a toothed 
wheel that rotates with a known angu-
lar velocity. The beam of light is thus 
converted into a series of pulses. Mak-
ing observations close to the source 
and knowing the number of teeth on 
the wheel allows us measure the tran-
sit time of the beam of light. Fizeau 
arrived at a value of c ms3.1 10 .8 1≈ × −
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The great insight of Maxwell was to realize that light is exactly 
this type of electromagnetic disturbance and that it is one part of 
infinite spectrum of different types of an electromagnetic radiation 
[17, 6]. Measuring the speed of light of course had been performed 
in an independent fashion previously. The key parameter to measure 
is a transit time for light to propagate from one point to another, 
given that we know the separation accurately.

(Left ⇐) Armand Hippolyte 
Louis Fizeau (1819–1896), 
in addition to the meas-
urement of the speed of 
light also predicted red 
shifting of electromagnetic 
waves and the discovery of 
the Doppler Effect. His 
name is inscribed on the 
Eiffel Tower.

(Right ⇒) Jean Bernard Léon 
Foucault (1819–1868) also 
invented a rather special 
pendulum that shows that 
the Earth is rotating, as 
his name suggests.

5.2  BASIC WAVE SOLUTIONS - SCALAR FIELD 
THEORY

What do the fields look like that satisfy the wave equation? 
Looking at Equations (5.13) and (5.15) one sees that we are solving 
the same basic partial differential equation, but that the two vector 
fields are not independent. We will need to ensure that the solutions 
we obtain are consistent. To this end, we will start off just looking at 
the electric field solutions and then check later on to see what the 
consistency conditions demand.



Physical Degrees of Freedom  •  73

To obtain a solution we must consider the coordinate system. So 
far we have not specified any at all, but to obtain an analytical expres-
sion it is obvious that a choice has to be made. In general, the choice 
of a coordinate system should be based on any geometrical symme-
tries in the problem, if indeed any exist at all. For example, it would 
be unwise to choose oblate spheroidal coordinates to solve a problem 
involving a single long cylinder. We will develop solutions in the three 
simplest and perhaps most useful coordinate systems: (i)  Cartesian 
coordinates, (ii) spherical coordinates, and (iii)  cylindrical coordi-
nates. Our aim here is to arrive at the solutions without complete 
mathematical rigor, but rather to have an appreciation of the type of 
solutions and what they mean with respect to one another.

Since we are choosing to consider wave like solutions the time 
dependency will clearly be oscillatory. Regardless of the spatial coor-
dinates used, we can write down the functional dependence on time.  
It is simply

 t x x e c cE E( , ) ( ) . .a a
i t= +ω  (5.18)

for a single frequency mode or

 t x d e x c cE E( , ) ( , ) . .a
i t

a∫ ω ω= +ω

−∞

∞

 (5.19)

when there is continuous spectrum of frequencies (or modes). Note 
here the observation about this part of the solution, that we have 
assumed a Fourier transform of the solution; we are therefore turn-
ing the operator in time (that is the second partial derivative in time) 
into an algebraic expression in frequency space. This is quite the 
common theme in searching for solutions to the wave equation. For 
a continuous space (such as the time coordinate) the strategy is to 
look for a Fourier transform solution, while for a periodic (compact) 
space the strategy is to look for a Fourier series type solution.

Substitution of Equation (5.18) into the Equation (5.13) gives

 ∇2Ea(x)+
ω2

c2
Ea = 0.  (5.20)

This equation is known as the scalar Helmholtz equation, and 
for the time being we postpone the complication that the electric 
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field is a constrained vector field and treat it as a scalar quantity with  
an index.

Hermann Ludwig Ferdinand von Helmholtz (1821–1894). 
Both a physicist and a physician, he worked on a 
number of areas ranging from color vision, visual 
perception, thermodynamics, electrodynamics, plus 
a good smattering of philosophy.

To solve this equation we will use the method of separation of 
variables to obtain analytic expressions of the coordinates used. In 
fact we have done this implicitly in Equation (5.18); write the solu-
tion as t x x T tE E( , ) ( ) ( )a a=  and then rearrange into separate spatial 
and time pieces, so that

 ∇2Ea(x)−
1
c2

Ea(x) c 1
T(t)
∂2 T(t)
∂t2 d = 0.  (5.21)

The term in square brackets must be a constant, ,2ω−  so that 
the spatial part is independent of time. The solutions are exponen-
tials in time. If this constant is negative, we have oscillating exponen-
tials while if it positive the solutions exponentially grow or decay. In 
general it could be a complex number, ω2 ∈!.  The choice made is 
dictated by what type of boundary conditions one is putting on the 
problem and also what type of source they are originating from. Of 
immediate interest is of some type of oscillating source so that we 
choose the oscillating solutions from

 c d ω=−
T t

d T t
dt

1
( )

( )
.

2

2
2  (5.22)

This leads directly to the Helmholtz equation Equation (5.20).

The simplest set of coordinates to work in are Cartesian coordi-
nates wherein the Helmholtz equation is

 
x y z c

E E 0.a a

2

2

2

2

2

2

2

2

ω∂
∂
+
∂
∂
+
∂
∂

+ =q r  (5.23)
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This has the well known plane wave set of solutions which can be 
obtained by separation of variables if desired. Each coordinate spans 
the entire real line !, so it will be a Fourier transform solution that 
we seek. Note also that there is no difference between an upstairs 
and a downstairs index in these coordinates because the metric is 
simply the Kronecker Delta tensor. One finds

  (5.24)

  (5.25)

 

x E e

k k k k k k k k k k k

k c

E ( ) ,

,

: .

a a
ik x

a
a a a 1 1 2 2 2 2

2

2 2 2ω

=

= = + + =

= /

± ⋅

 (5.26)

The constants Ea are just the complex amplitudes of the electric 
field, which are the arbitrary integration constants. That they are 
complex should not worry the reader, as it is only the full electric 
field that needs to be real. With this in mind the full electric field 
solution reads

 t x E e E eE ( , ) .a a
i k x t

a
i k x t( ) ( )= +ω ω⋅ − ∗ − ⋅ −  (5.27)

(Exercise: verify this is a solution)

The plane wave solutions are also eigenfunctions of the differ-
ent differential operators that make up the Helmholtz operator, with 
the respective wavevectors being the eigenvalues. This is of course 
intimately linked with the separation of variables method which we 
can illustrate thus. Recall that for an operator (or a matrix) M̂  with 
eigenvalues nλ  and eigenfunctions (or vectors) nψ  one has

 M̂ .n n nψ λ ψ=  (5.28)

Apply this to Equation (5.23); if we take M xˆ 2=∂/∂  then the 
eigenfunction is en

ik x1ψ =  with the eigenvalue k k .n 1 1λ =−  Equation 
(5.23) then becomes

 k
y z

y z k y zE E( ) ( , ) ( , ) 0,a a1
2

2

2

2

2
2− +

∂
∂
+
∂
∂

+ =q r  (5.29)

where the electric field has the eigenfunction multiplying the remain-
ing part of the solution (separation of variables). In this manner we 
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then build up the remaining parts of the solution. In other coordi-
nate systems the same strategy can be adopted.

One last thing that we can see here is that in general there may 
be many wave vectors contributing to the electric field in which case 
we should sum over them with an appropriate weight for each mode

 t x
d

E e E eE
k

k k( , )
(2 )

[ ( ) ( ) ].a a
i k x t

a
i k x t

3

3
( ) ( )∫ π

= +ω ω⋅ − ∗ − ⋅ +  (5.30)

This is exactly a Fourier transform in three dimensional space, as 
to be expected because we are solving a wave equation. In addition 
to this, all of the spatial dimensions are infinite (non-compact). The 
Helmholtz equation then serves to put a constraint on the wave vec-
tors in the form of Equation (5.25).

5.2.1 Solutions in Spherical Coordinates
Turning now to spherical coordinates r( , , ),θ φ  one can try to 

build up a general solution using spherical waves, the equivalent of 
plane waves in the previous discussion. There is a subtlety now that 
since in spherical coordinates the metric is non-trivial, we would 
need to ensure that we are using the correct form of the Laplacian 
operator to act of the electric vector field. The Laplacian operator 
given in Equation (2.66) is for a scalar field. We will assume for now 
that a scalar field will be sufficient but it is worth checking under 
what conditions this is valid or is a well defined approximation.

The Helmholtz operator in spherical coordinates acting on a sca-
lar field ε x( )  is given by

ε ε
r r

r
r r r

x k x
1 1

sin
sin

1
sin

( ) ( ) 0.
2

2
2 2 2

2

2
2q r

θ θ
θ
θ θ φ

∂
∂

∂
∂
+

∂
∂

∂
∂
+

∂
∂

+ =

 (5.31)

Assuming again the separation of variables method so that the 
solution in spherical coordinates take the form ε x R kr( ) ( ) ( ) ( ),θ φ= Θ Φ  
one can start the reduction off again (we have included a factor of 
k in the radial solution so that its argument is dimensionless). The 
simplest term in this Laplacian is the φ  partial derivative and so this 
is the place to start with
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φ φ

φ
Φ

Φ =− =
d

d
m

1
( )

( ) constant.
2

2
2  (5.32)

In spherical coordinates, any solution must be invariant under a 
full rotation of the φ  coordinate so that φ→φ+2π  leaves any solu-
tion invariant. This forces the two conditions that m 0,2 >  so that 
the solutions are not exponentially growing or decaying, and that 

m 0, 1, 2 ,= ± ±  so that the solutions are periodic. It is a straight-
forward differential equation solve, with the two solutions

 e( ) .imφΦ = φ±  (5.33)

Using this to simplify Equation (5.31) results in

 

q r q r
θ θ θ

θ
θ
θ

θ

+
Θ

Θ

− + =

R kr r
d
dr

r
dR kr

dr r
d
d

d
d

m
r

k

1
( )

( ) 1
( )sin

sin
( )

sin
0.

2
2

2

2

2 2
2  (5.34)

Since each term involve factors of r2, one needs to ensure that 
there is a resulting differential equation in r has no other factors 
involving the other two coordinates in it. So the two terms that have 
the θ factors in should be set equal to some constant

 q r q r+ −
+
+ =

R kr r
d
dr

r
dR kr

dr
l l

r
k

1
( )

( ) ( 1)
0,

2
2

2
2  (5.35)

where the constant has been chosen to be the value l l( 1)− +  for 
later convenience. Indeed, given the earlier discussion about  
eigenvalues, one may well be tempted to suspect that the l given 
here is something to do with this - and it certainly is. It is therefore 
helpful to rewrite Equations (5.34) and (5.35) in the following form

 
r

d
dr

r
dR kr

dr
l l

r
k R kr

1 ( ) ( 1)
( ) 0,

2
2

2
2q r q r+ −

+
+ =  (5.36)
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d
d

d
d

m
l lsin

( )
sin

( ) ( 1) ( ) 0.
2

2
s q r t
θ

θ
θ
θ θ

θ θ
Θ

− Θ + + Θ =  (5.37)

(Exercise: verify this is true.)

The problem has now been reduced to finding solutions for two 
separate second order differential equations. These two equations 
occur so often in theoretical physics that they have been named. 
Equation (5.36) is known as the spherical Bessel equation, while 
Equation (5.37) is known as the associated Legendre equation. A 
standard piece of mathematical analysis to solve these equations is 
to make a power series substitution into the differential equations 
and then deduce recurrence relations amongst the coefficients. Any 
standard textbook on mathematical methods describe this proce-
dure, so we shall not pursue this avenue further (see for example 
[15]). The radial part of the solution then consists of the spherical 
Bessel functions j kr( )l  (which are regular at the origin) and the 
spherical Neumann functions n kr( )l  (which diverge at the origin). 
The angular part of the solution consists of the associated Legendre 
polynomials P (cos ).l m, θ  The general solution then looks like

 ε r V j kr W n kr P e( , , ) ( ) ( ) (cos ) ,l m
l

l m
l l m

im

l m

( , ) ( , )
,

,

Q R∑θ φ θ= + φ  (5.38)

where the summation runs over all l, =l( 0, 1, )  and the m summa-
tion is bounded by l m l.− ≤ ≤  In addition to the constrained sum-
mation, it is necessary to impose a reality condition on the solutions, 
so that the physical field as a function of time (rather than frequency) 
is real valued. This is because both the solutions are complex val-
ued. Note that summations over the discrete angular momentum 
numbers have replaced the continuous integrations over plane wave 
vectors. The fact that these are eigenfunctions with eigenvalues is 
perhaps a little less clear here (after all we haven’t explained it) but 
it is there and much more interesting in this case.

To finish off this subsection, it is useful to write down recursion rela-
tions for generating the respective solutions from simpler well known 
elementary functions (rather than just a power series expansion).
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 j x x
x

d
dx

x
x

n x x
x

d
dx

x
x

Y
l l m

l m
P e

P x x
d
dx l

d
dx

x .

( ) ( )
1 sin

,

( ) ( )
1 cos

,

( , )
(2 1)( )!

4 ( )!
(cos ) ,

( ) ( 1) (1 )
1

2 !
( 1)
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l
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l
l

l

l m l m
im

l m
m m

m

m l

l

l
l

, ,

,
2 /2 2

a b a b

a b a b

a b

θ φ
π

θ

= −

=−−

=
+ −
+

= − − −

φ

 (5.39)

  (5.40)

  (5.41)

  (5.42)

The Y ( , )l m, θ φ  introduced above are called the spherical har-
monics and play a fundamental role in spherical coordinates. They 
are the eigenfunctions on the two dimensional sphere. Note also the 
different nature of the dispersion relation here compared with the 
plane wave solutions. In spherical coordinates, via the spherical Bes-
sel functions, the constant k defines the length scale over which the 
radial solutions vary. The angular form, however, is unconstrained by 
it and only coupled the by the l eigenvalue.

5.2.2 Solutions in Cylindrical Coordinates
The other standard set of coordinates that every undergraduate 

has to play with are the cylindrical coordinates r z( , , ).θ  The method 
of solution proceeds analogously with spherical coordinates. Note 
that this is the halfway house between Cartesian and spherical; one 
dimension is compact (θ), one is semi-infinite (r) and the other is 
infinite (z). The first thing to do is write down the Helmholtz equa-
tion in cylindrical coordinates

 ε ε
r r

r
r r z

x k x
1 1

( ) ( ) 0.
2

2

2

2

2
2q r

θ
∂
∂

∂
∂
+

∂
∂
+
∂
∂

+ =  (5.43)

Both the θ and z variables do not present much difficulty now in 
solving as we have already come across their types of solution earlier. 
They are both complex exponentials with either a continuous or dis-
crete separation constant (think eigenvalue!) that labels the solution. 
They look like
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 Θ(θ)= eimθ , m∈!,

Z(z)= eipz , p∈!.

 (5.44)

  (5.45)

With these solutions the Helmholtz equation reduces to a sim-
ple second order differential equation given by

 
r

d
dr

r
dR
dr

k p
m
r

R
1

0.2 2
2

2
a b a b+ − − =  (5.46)

This is just the standard Bessel equation with solutions given by 
the Bessel functions J x( )m  and N x( ).m  They are related simply to 
previous spherical Bessel and Neumann functions defined by

 J x
x

j x

N x
x

n x

( )
2

( ),

( )
2

( ).

L L

L L

1/2

1/2

π

π

=

=

−

−

 (5.47)

  (5.48)

The full solution then will require a combination of a sum over 
the discrete index and an integration over the continuous one. Thus,
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As with the other solutions found for the Helmholtz equation, it 
is necessary impose a reality constraint so that the physical electric 
fields are real valued.

5.2.3 Comments
A few remarks are in order here about the scalar field solutions 

found in the three coordinate systems. The first comment is that it 
is only in spherical coordinates that the solutions can be square nor-
malizable (see Equation (2.48)). This is intimately related to the fact 
that two of the coordinates are compact (the θ and φ) and the type of 
source that is ultimately producing the electric field. The implication 
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here is that the source has a finite spatial extent in all directions of 
space. One can therefore put a closed surface around it. This can 
only be done in spherical polar coordinates where this closed surface 
would be a sphere of suitable size radius. A second remark following 
on from this is that the energy associated with these waves will then 
be finite. While we have not defined so far the energy contained in 
a fluctuating field, it will turn out the energy density looks like the 
product of two fields together. In the other two coordinate systems 
this is not the case. A necessary condition is to maintain the geom-
etry of the problem. In Cartesian coordinates we would be consider-
ing an infinite plane (or surface) source giving rise to the plane wave 
type solutions. Similarly in cylindrical coordinates it would be an 
infinite line (or curve) source that would produce cylindrical wave 
type solution. A final remark is that for distances much larger than 
the corresponding wavelength (given by c/ω) one can often work, at 
least locally, in Cartesian coordinates as an approximation to one of 
the others. This is because locally a curved surface can be approxi-
mated by a flat plane. One must remember then not to calculate out-
side its region of applicability. Useful discussions on related matters 
can be found in both [8] and [7].

5.3 DEGREES OF FREEDOM - POLARIZATION

We have just seen that the electric and magnetic fields satisfy 
separately wave equations, and one might conclude hastily that 
there are six degrees of freedom (the three electric Ea and three 
magnetic Ba undetermined amplitudes). That this is not the case will 
be seen by being a bit more explicit with the type of wave solutions 
we encounter and a closer look at how they are satisfying Maxwell’s 
equations. It should be said that this is a difficult topic - we are trying 
to find consistent solutions to the full vector field equations. This is 
necessary however to understand what polarization really is.

5.3.1 Polarization in Cartesian Coordinates
Let us consider again the plane wave solutions in Cartesian coor-

dinates for a a particular wavevector. We now also include a similar 
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solution for the magnetic field and ask the question how they are 
connected. The general vector solutions will look like

 Ea(t, x)=ℜ(Ea exp(i(kaxa±ωt)),
Ba(t, x)=ℜ(Ba exp(i(kaxa±ωt)),

 (5.50)
  (5.51)

where the wavevector ka gives the direction of propagation (and 
wavelength) and both amplitudes are in general constant complex 
numbers. We must remember now that to derive the two wave 
equations we had to perform certain vector calculus operations on 
the first order Maxwell’s equations to disentangle the electric and 
magnetic fields. So we should really substitute the solutions into the 
original equations. Doing so yields
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 (5.52)

  (5.53)
  (5.54)

  (5.55)

The first two equations say that one component of the electric 
and magnetic field are redundant. For a given ka, one of the physi-
cal field vector components can be found in terms of the other two. 
So we lose a degree of freedom for the electric and magnetic fields. 
Similarly, for the next two equations, it can be seen that we lose 
another degree of freedom from each. We have therefore lost four 
degrees of freedom, bringing down the physical degrees of freedom 
from six to two.

This now takes us neatly on to the polarization of an electro-
magnetic plane wave. Equation (5.54) says that the magnetic field 
is normal to the wavevector and the electric field, while Equation 
(5.55) says that the electric field is normal to the wavevector and the 
magnetic field. So the three form a mutually orthogonal set of vec-
tors. Without any loss of generality, imagine the wave is propagating 
in the +z direction. The electric field will then have in general the 
components (Ex, Ey). The question we now ask is what is the allowed 
solution space? Let us return to our wave solution Equation (5.50) 
and write it out in components
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 Ex(t, x)=ℜ[E1 exp(i(kzz−ωt)],

Ey(t, x)=ℜ[E2eiε exp(i(kzz−ωt)].

 (5.56)

  (5.57)

We have allowed here for a phase difference  between the two 
components, with E1, E2 ∈! and positive. The strategy now is to 
eliminate the time dependence so that find the required solution 
space. Using the double angle formula in the above we have
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  (5.59)

The time dependence can now be eliminated from Equation (5.59)
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This leads to the equation of an ellipse
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where the ellipse is rotated by some angle with respect to the x, y 
coordinates. It easy to work out what this angle is - just perform a 
rotation on the x, y electric field components.

(Exercise: calculate the angle α the ellipse is rotated by in the 
above.)

Following on from this general state of polarization, it is neces-
sary to catalogue the different states of polarization that all descend 
from the elliptical case, since these are often used in practice.

●● Linear polarization - the two components are either com-
pletely in phase or out of phase with one another by n , π=  
with n∈!.  The electric field oscillates in a straight tilted line 
that is determined by the two amplitudes.

●● Circular polarization - here the amplitudes are equal, 
E E ,1 2=  but now the phase relationship is given by n2 , π=±  
with n∈!.  The positive sign is defined to be left-circularly  
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polarized, while the negative sign is defined to be  
right-circularly polarized.

●● Elliptical polarization - This is when the amplitudes and 
phase take on general values as already described. The angle 
of tilt α of the ellipse with respect to the coordinate system of 
E E,x y  is given by tan E E E E2 cos ( ).1 2 1

2
2
2α= / −

What about polarization in the other coordinate systems? We 
know that either the waves are outgoing or incoming with respect 
to their coordinate origin. They are made up of eigenfunctions that 
respect the symmetries of the coordinate system about their coordi-
nate origin. The math of it is more complicated (though quite inter-
esting) so only a sketch of the solutions are given. The interested 
reader can pursue this further in [8] and [13].

5.3.2  Polarization in Spherical Coordinates - TE and TM  
Modes

In spherical coordinates the full vector Helmholtz equation 
needs to be solved. These need to be disentangled into two polariza-
tion states known as the transverse electric (TE) and transverse mag-
netic (TM) modes. Heavy use is made of the angular momentum 
operator L= x∧∇.  We give here just a brief statement of the form 
they take. The general solution takes the form

 B= aE(l,m)LΨ l ,m(r, θ,φ)−
i
k

aM(l,m)∇∧LΠl ,m(r, θ,φ)
l ,m
∑ ,

E= aM(l,m)LΠl ,m(r, θ,φ)+
i
k

aE(l,m)∇∧LΨ l ,m(r, θ,φ),
l ,m
∑

 (5.62)

  (5.63)
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 cl , dl , ′cl , ′dl ∈!.  (5.66)



Physical Degrees of Freedom  •  85

What this shows is that the solutions consist of solutions to the 
scalar Helmholtz equation which are then acted on by suitable oper-
ators to generate the full vector field solutions. From the boundary 
conditions and the source conditions all of the integration constants 
can be determined in as a set of multipole fields. It is helpful to just 
write down the equivalent polarization conditions for the spherical 
case. The polarization state given by just the TE modes satisfy

 ⋅ =
⋅ =

x

x

E
B

0,
satisfies scalar Helmholtz equation,

 (5.67)
  (5.68)

while the polarization state of just the TM modes satisfy

 ⋅ =
⋅ =

x

x

B
E

0,
satisfies scalar Helmholtz equation.

 (5.69)
  (5.70)

Multipole fields, while being somewhat more fiddly in a math-
ematical sense, are extremely useful. For example, if you want to 
consider light scattering from a dielectric or metallic sphere, these 
are the solutions typically required to evaluate physical observables. 
Comparing this with the more standard Cartesian coordinates polar-
ization where we had an ellipse of possibilities, we see something 
simpler here. The reader is referred to [8] for a fuller discussion. In 
a similar fashion polarization in cylindrical coordinates can be con-
structed, and is quite relevant for structures such as waveguides [8].

5.4 GAUGE INVARIANCE AND POTENTIALS

Earlier we encountered a scalar potential that was used to 
describe the static electric field. By taking the gradient of this we 
could recover the electric field. A natural question to ask is what is 
the corresponding potential for the magnetic field? Recall that Max-
well II is a statement that there are no magnetic monopoles

 ∇aB
a = 0.  (5.71)
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Just as we found earlier that a scalar potential solves the curl 
free condition on the electric field (∇∧E= 0), our question now is 
what is the corresponding potential for the above. It is a mathemati-
cal result (see for instance [2]) that a vector potential Aa solves the 
divergence free condition on the vector field Ba such that

 Ba = εabc∇bA c.  (5.72)

(Exercise: verify this solves Maxwell II.)

If we now put this into Maxwell III we find a new statement for 
the electric field, that is

 

εabc∇
bEc+∂ tεabc∇

bA c = 0,

εabc∇
b(Ec+∂ t A

c)= 0.  (5.73)

Equation (3.7) has been modified to include the time dependent 
effects of Maxwell III. However, it is once again in the form of the 
curl of some new vector equalling zero, so we know that it can be 
written as the gradient of some scalar function viz,

 
Ea+∂ t A a =−∇aφ⇒

Ea =−∇aφ−∂ t A a.  (5.74)

Just as the magnetic field has been written in terms of a poten-
tial, so has the electric field (in terms of the same vector potential), 
but also an additional scalar potential. One can not help but notice 
the lack of symmetry here between the electric and magnetic fields. 
We also seem to have created a problem for ourselves in terms of 
the number of degrees of freedom we now have in the system. It 
was found previously that there were only two physical polarization 
states, yet now we seem to have a total of four (scalar plus vector) 
degrees of freedom. Why the mismatch?

What we have just touched upon is the concept of gauge invari-
ance, first expounded by Hermann Weyl in connection with coordi-
nate transformations in general relativity. The astute reader will have 
noticed that there has always been something to do with symmetry 
lurking in the background. The basic point that we will see is that 
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the potentials we have just discovered are not unique - we can add 
arbitrary functions (in fact two) to them and the field equations will 
be unchanged because the physical fields themselves are invariant 
under this transformation. This type of deep symmetry is the basis 
for much of modern particle physics and the Standard Model. For 
an historical perspective on classical gauge theory see [9].

Hermann Klaus Hugo Weyl (1885–1955), math-
ematician, theoretical physicist and philoso-
pher, he worked on a large number of areas 
including number theory, group theory, and 
the geometry associated with combining 
electromagnetism with general relativity.

To this end, we consider substituting Equations (5.72) and (5.74) 
into the field Equations (4.53)–(4.56). One finds that

 −∇2φ(x)+∂ t(∇aA
a(x))=

ρ(x)
ε0

,

εabc∇a∇bA c ≡ 0,

∇∧(−∇φ+∂ t A)+∂ t∇∧A= 0,

(∇∧∇∧A)+µ0ε0∂ t(∇φ−∂ t A)=µ0J.

 (5.75)

  (5.76)

  (5.77)

  (5.78)

Immediately it is clear that these equations will simplify. Equa-
tion (5.76) is identically zero, while in Equation (5.77) a simple 
cancellation of the vector potential occurs together with the vector 
identity that the curl of a divergence is zero. This leaves the two 
remaining equations as

 −∇2φ(x)+∂ t∇bA
b(x)=

ρ(x)
ε0

,

+∇2A a−µ0ε0∂ t
2 A a+∇a(µ0ε0∂ tφ−∇bA

b)=µ0Ja.

 (5.79)

  (5.80)

Here we have used Equation (2.24) together with a small amount 
of rearrangement. Now it is time to use the gauge invariance. A short 



88 • Basic Electromagnetic Theory

calculation reveals that if we use instead the gauge potentials A, aφ′ ′  
that are related to the original ones in Equation (5.79) and Equation 
(5.80) by

 ′φ (t, x)=φ(t, x)+∂ tΩ(t, x),

′A a(t, x)= A a(t, x)+∇aΩ(t, x),

 (5.81)

  (5.82)

where Ω(t, x)  is an arbitrary function, then the electric and mag-
netic fields remain unchanged. Therefore, the field equations for 
the potentials Equation (5.79) and Equation (5.80) will also remain 
invariant with this choice of potentials. In technical language they 
are said to be gauge invariant. This means that we can choose the 
arbitrary function so that φ and Aa satisfy some condition, thereby 
choosing a gauge. Looking at Equation (5.80) one can see that it is 
nearly a wave equation, we just need to get rid of the last term. We 
can do this by choosing the gauge

 µ0ε0∂ tφ−∇⋅A= 0.  (5.83)

The above gauge condition is in fact known as the Lorentz gauge. 
By making this choice one of the four potentials becomes a function 
of the other three. For example, perform an integration over time 
such that

 φ(t, x)=
1
µ0ε0

dT∇⋅A(T, x)
−∞

t

∫ .  (5.84)

Here the scalar potential becomes a functional of the vector 
potential.

With this choice of constraint on the gauge potential the two 
field equations reduce to

 −∇2φ(t, x)+µ0ε0∂ t
2φ(t, x)=

ρ(t, x)
ε0

,

+∇2A(t, x)−µ0ε0∂ t
2 A(t, x)=µ0J(t, x).

 (5.85)

  (5.86)

It should be apparent that we have not quite finished as we still 
appear to have three degrees of freedom in the system. We need to 
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impose a further constraint to be sure that we have only two physical 
degrees of freedom, which we know to be true from the two states of 
polarization previously found. Where does this come from?

Let us re-examine the Lorentz gauge condition Equation (5.83) 
that we imposed. Clearly we chose it because the field equations for 
the scalar and vector potentials would disentangle from one another 
rather neatly, but apart from that it looked quite arbitrary. This is 
the point about gauge transformations that they are arbitrary. Once 
we choose a gauge we need to ensure two important properties; one 
is that we have removed all spurious degrees of freedom from the 
system; and a second is that all the physical observables and proper-
ties remain gauge invariant. Let us pin down the first point. What 
happens to the Lorentz gauge if we if we do another gauge trans-
formation? Obviously the electric and magnetic fields are the same, 
whereas the Lorentz gauge condition becomes

 µ0ε0∂ t(φ+∂ tχ)−∇b(A b+∇bχ)= 0,  (5.87)

where t x( , )χ  is another arbitrary function that specifies the gauge 
transformation. The Lorentz gauge is preserved in the above pro-
vided the new gauge transformation parameter satisfies

 µ0ε0∂ t∂ tχ(t, x)−∇2χ(t, x))= 0,  (5.88)

that is, it must satisfy a scalar wave equation. So this arbitrary sca-
lar can then be chosen to set one of the components of the vector 
potential to zero. For example in Cartesian coordinates if we have a 
wave propagating in the z-direction, we can choose A t x y z( , , , ) 0z =  
by a suitable choice of t x y z( , , , )χ  satisfying the wave equation. At 
this point we arrive at two components of the vector potential repre-
senting the two physical degrees of freedom of the electromagnetic 
field. Note another feature of this process. By performing a gauge 
transformation on the gauge condition itself, we were able to elimi-
nate another spurious degree of freedom. One might ask if it is pos-
sible to do the same thing again and finish with only one degree of 
freedom. The answer is an emphatic “no”, because any subsequent 
gauge transformation will have a gauge function that also satisfies 
the scalar wave equation and (by the superposition of solution for 



90 • Basic Electromagnetic Theory

linear equation) this second gauge function can be absorbed into the 
first transformation.

Another commonly encountered gauge choice is the Coulomb 
gauge which is given by

 ∇aA
a(t, x)= 0.  (5.89)

With this gauge condition the field equations become

 −∇2φ=
ρ
ε0

,

+∇2A a−µ0ε0∂ t
2 A a−µ0ε0∇a∂ tφ=µ0Ja.

 (5.90)

  (5.91)

For the connections between the Lorentz and Coulomb gauges, 
see [10].

Given now that we have written the field equations in terms of 
potentials, what are the immediate quantities of interest? Certainly, 
it would be useful to have the gauge potential as a functional of the 
current, as we can then simply derive the magnetic field. In addition 
to this, the Lorentz force law Equation (4.15) when expressed in 
terms of gauge potentials is also an observable of interest. As a final 
point, we should return to displacement current encountered in the 
global setting and try to evaluate Equation (4.51).

Firstly, in the case of magnetostatics, where the displacement 
current does not contribute, we can rewrite Ampère’s law in terms 
of the vector potential as

 

∇∧∇∧A(x)=µ0J(x),

∇(∇⋅A)−∇2A=µ0J(x),

−∇2A=µ0J(x),

A(x)=
µ0

4π
d3 ′x

J( ′x )
| x− ′x |

,
V∫  (5.92)

where we have taken the vector potential to be in the Coulomb 
gauge and have just inverted the Laplacian operator in exactly the 
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same way as in the Poisson equation. Moving on to the Lorentz force 
equation one sees that

 

m
d2xa(t)

dt2
=−q(∇aφ+∂ t A
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dt
εcmn∇

mA n
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=−q
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A a−q∇a qφ+ dxb(t)
dt

A br , (5.93)

which rearranges to

 
d
dt
qm dxa(t)

dt
+ qAar =−q∇a qφ+ dxb(t)

dt
A br .  (5.94)

The interesting observation here is that the charged par-
ticle receives a contribution of qA a  to its momentum (in classi-
cal mechanics, notably when one works in terms of hamiltonians, 
one has to be careful to distinguish between velocity and conjugate 
momenta). It looks like that the momenta m qAdx t

dt
a( )a

+  is a gauge 
dependent quantity.

(Exercise: Check that the Equation (5.94) written in terms of 
the gauge potential remains gauge invariant.)

Finally we reconsider the displacement current using gauge 
potentials. If we consider evaluating Equation (4.51) by writing the 
electric field in terms of the gauge potentials one finds

 

εabc∇
bBc(x)=µ0Ja(x)−µ0ε0∂ t d3 ′x (−∇bφ(t, ′x )

V∫

−∂ t A(t, ′x ))∇a∇b q 1
| x− ′x |

r .  (5.95)

If we choose the Coulomb gauge then the φ term integrates 
simply, while the A term vanishes after an integration by parts. 
Therefore
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 εabc∇
bBc(x)=µ0Ja(x)−µ0ε0∂ t∇aφ(t, x).  (5.96)

The final step is to realize that the conservation of charge results 
from taking the divergence of the above equation; therefore, we can 
simply add the Coloumb gauge condition to the divergence of the 
above. As a field equation it must be gauge invariant so we make the 
replacement

 εabc∇
bBc(x)=µ0Ja(x)+µ0ε0∂ t(−∇aφ(t, x)−∂ t A(t, x)),  (5.97)

which is now a gauge invariant equation.

The discussion of physical observables remaining gauge invari-
ant is simple provided we are working with the fields and not the 
gauge potentials. So far we have built up the field theory implicitly 
assuming some symmetries in the system. Consider the coordinates 
where the field is sat at say t xE ( , ).a  Here we have taken time t to be 
just a parameter, but the spatial coordinates x have been implicitly 
assume to transform under the rotation group in three dimensions. 
If we have chosen a gauge for example where A t x( , ) 0,z =  then one 
can see that this symmetry group has now been broken. One needs 
to ensure then that any measurable will not suffer from this issue 
(indeed this goes into making sure that any quantum theory of elec-
trodynamics remains internally consistent).

5.5 SUMMARY

We have found in this chapter some of the basic physical prop-
erties that emerge by looking at the mathematical details of the the 
field equations. The equations admit wave like solutions in free 
space, which we have focused on as the physical solutions of the field 
equations. Good discussions can be found in [8] and [15]. It is com-
plicated by the fact that the physical propagating modes (two degrees 
of freedom) are fewer in number than the number of components 
that constitute the electric and magnetic fields. These are hidden 
by the original fields and the corresponding potentials from which 
they are derived. This is the central feature of gauge invariance, and 
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is the key mathematical structure around which electromagnetism 
and more general field theories revolve. A fuller discussion of the 
historical roots of gauge invariance and how they feature in classical 
electrodynamics are given in [9] and [10].

NOTE

1 The vacuum is a subtle concept. In quantum theories of electromagnetic fields, for 
example, forces can still arise due to fluctuations in the vacuum. This is a rich but 
somewhat advanced topic.





CHAPTER 6
PHYSICAL OBSERVABLES

The physical observables we have encountered thus far have 
been forces that we could measure mechanically. Electric forces 
were turned into voltage measurements by using an electrometer. 
Having understood the connection between currents and magnetic 
fields, galvanometers have been constructed that provide a mea-
sure for a current. Each time a mechanical force or torque has been 
traded for a voltage or current. These are then what we would regard 
as macroscopic physical observables. They can be used to quantify 
measurements of different electromagnetic structures when a test 
body is introduced as a local probe of the system.

Another feature that is apparent is that the field theory has been 
investigated at the linear level. For example, when we considered 
the force on a charge or current it has always been proportional to 
the field in a linear way. This is not surprising because of how the 
fields are defined in the first place. But we can now go a bit further 
and ask, since this is a dynamical system, what are the observable 
properties like energy or momentum of the fields themselves. To 
answer this type of question, it is necessary to go to the next order 
and consider bilinear field terms. This is where much of the dynam-
ics and observables reside. A detector will only register a small piece 
of information about the field in this context.

Before getting on to this, however, we first make a short con-
solidation of the physical observables that are associated not with 
the fields themselves, but with the movement of charge. A field is 
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applied and the charges move. This movement under different con-
ditions produces distinct effects. We shall therefore consider the 
students favourite electrical circuit as a means to understand some 
of the intricacies involved.

6.1 THE RLC CIRCUIT

Every student of physics knows and loves (or hates) this circuit. 
It is the Resistor-Inductor-Capacitor circuit and it is quite ubiqui-
tous in its dynamical form. Thinking of it mechanically, it describes 
an oscillating body that is subjected to a frictional force. The basic 
observable in this circuit is the current and an applied voltage is the 
source that drives the circuit. Let us start off analyzing this circuit 
as a tube of metal (the wire) which lies in the z-direction. The ends 
have a cross sectional area  across which we apply a time depen-
dent voltage V(t). The current across the plane z = 0 is given by

 ∫= = ∑ =


I t z d x y zJ( , 0) ( , , 0).a
a2  (6.1)

We will assume that at any other cross sectional plane to the 
tube the current is the same. In principle Ja is a function of position 
along the tube. The essential constraint is obviously conservation of 
charge. The three components we can immediately insert are the 
parallel plate capacitor (given in Section 3.4), the resistor (given in 
Section 4.1), and the inductor (given is Section 4.3). In terms of the 
tube geometry, a cut is made in the tube and a small section removed. 
Then the faces are made oversize so that the diameter of the face is 
much larger than the diameter of the tube - this is the insertion of 
a parallel plate disk capacitor. We make a similar cut for the resistor 
and insert a different piece of material, that neither conducts too 
much, nor too little. For the final component (the inductor) we take 
a section of tube, squash it and then coil it up so that we have a heli-
cal structure with an axis and a radius about it. We now take the tube 
to be small in comparison with the components, that is  → 0. To 
finish off the circuit we assume that its shape is rectangular with four 
corners as shown in Figure (6.1). The question now to ask is what is 
the dynamical equation that governs this system?
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The two constraints that determine the equation of motion are 
the conservation of current, together with that the potential differ-
ences across each component must sum to the applied voltage V(t). 
It is given by the well known equation

 + + =
C

Q R
dQ
dt

L
d Q

dt
V t

1
( ).

2

2  (6.2)

Since we know V(t), we can differentiate it to obtain an expres-
sion involving the current, viz

 + + =L
d I t

dt
R

dI t
dt C

I t
dV t

dt
( ) ( ) 1

( )
( )

.
2

2
 (6.3)

So what have we learned? By applying what is often called a 
test function V(t), we can drive this circuit so that it responds. The 
response is the movement of charge and the physical observable is 
the current as a function of time (as measured by a galvanometer). 
From a simple knowledge of differential equations, we recognize two 
solutions to the above - the transient and the particular integral. If the 
voltage V(t) is switched off then the solution reverts to the transient 
solution where the constants of integration are determined from its 
behavior at the switching off time. The transient solution looks like 
exponential functions which have a real and imaginary component. 
They are

 = + =α βI t c e c e V t( ) , for ( ) 0,t t
1 2  (6.4) 

 α= / + / − /R L R L LC2 ( 2 ) 1 ( ),2  (6.5)

FIGURE 6.1: The RLC circuit - the basic form of this equation appears in large number  
of different areas. A pendulum with friction, a material with absorption and  

a decaying particle state all share this common type of structure.
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 β = / − / − /R L R L LC2 ( 2 ) 1 ( ),2  (6.6)

where ∈c c,1 2  are constants of integration. There is always an 
exponentially decaying component to these solutions but these may 
well be oscillating as well. When the test function is on, the solu-
tion is the particular integral plus the transient solution that is deter-
mined from earlier behavior. Note also that this is perhaps the sim-
plest example of the use of Green functions that one may encounter, 
and serves as a basis for more complicated problems. To solve using 
a Green function we simply write the current as

 ∫= ′ − ′
′
′

I t dt G t t
dV t

dt
( ) ( )

( )
.  (6.7)

We are making here an explicit causal link where a source of 
oscillation at an earlier time propagates and has its resulting effect at 
a later time. With this Equation (6.3) is transformed to

 δ
− ′
+

− ′
+ − ′ = − ′L

d G t t
dt

R
dG t t

dt C
G t t t t

( ) ( ) 1
( ) ( ).

2

2
 (6.8)

It may not be obvious, but it is expedient to perform a Fourier 
transform on this equation so that we can trade time derivatives for 
multiples of frequency ω. One finds

 ω ω ω ω ω− + + =LG Ri G
C

G( ) ( )
1

( ) 1.2  (6.9)

The time dependent Green function then is obtained by trans-
forming back into the time coordinate

 ∫
ω
π

ω− ′ = ω − ′G t t
d

e G( )
2

( )i t t( )  (6.10)

 ∫
ω
π

ω ω= − + + /ω − ′ −d
e L Ri C

2
( 1 ) .i t t( ) 2 1  (6.11)

With this Green function we have the system response (the cur-
rent) as a functional of the input test function (the voltage) viz

 ∫
ω
π

ω ω= − + + /
′
′

ω − ′ −I t
d

e L Ri C
dV t

dt
( )

2
( 1 )

( )
.i t t( ) 2 1  (6.12)
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In addition to the movement of charge through each component 
given by Equation (6.3), there is also their energy/power behavior 
as a function of time. For each component there is a potential dif-
ference (and a corresponding force) across it that does work on the 
charge to move it between the two points p1 and p2. This movement 
of charge is given exactly by the current. Therefore, the instanta-
neous rate of doing work W is for each of the three components

 

∇

∫

∫ φ

φ φ

=

=

= −

=

W
d
dt
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dx
dq
dt

dq
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p p
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a
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2
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 (6.13)

With this result, we can consider each component in turn. The 
resistor is particularly simple - just use Ohm’s law for the voltage in 
terms of the current to reach

 =W RI t( ).R
2  (6.14)

This is the energy lost in the resistor which is converted into 
heating in the component which would then be given off as thermal 
radiation (another topic in itself). Similarly, for the inductor using 
Equation (4.33) we have

 a b= = .W LI t
dI t

dt
d
dt

L
I t( )

( )
2

( )L
2  (6.15)

This expression represents how the inductor releases and stores 
its energy. For the capacitor, we have to work at the level of charge 
rather than current such that

 a b= =W
C

Q t
dQ t

dt
d
dt C

Q t
1

( )
( ) 1

2
( ) .C

2  (6.16)

Again, this gives how the capacitor stores and releases energy 
into the circuit. For the most part this is standard electrical theory 
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and the reader can consult any standard text (for example [7]) for 
more discussion.

Of course, in order to derive these macroscopic observables, 
information has been thrown away to reach these results. We 
have traded the local current density for a current and coarse 
grained over the geometry of the circuit. Its virtue lies in its 
applicability and utility. All of electronics is built up from simi-
lar considerations. This is perhaps one the simplest examples of 
physical observables - it sits on the matter side and is linear. We 
now turn to similar considerations for the fields themselves and 
their bilinear nature.

6.2  FIELD ENERGY, MOMENTUM, AND ANGULAR 
MOMENTUM

The fields that we originally encountered were due to the pres-
ence of charged bodies or steady currents. Observed static forces on 
similar charges or currents were our reason to introduce the fields 
and necessarily in a linear way. We also have found that electromag-
netic fields can propagate in the vacuum. The natural question to 
then ask is if such propagating fields can carry energy with them and 
can produce physical forces on other bodies. To answer this, we will 
have to work at the next level of complication and consider quanti-
ties that are bilinear in the fields.

A simple illustration of this can be made by considering the 
Lorentz force law. Suppose we ask what the force on a charge q is 
due to a passing electromagnetic wave that is linearly polarized. For 
an oscillating electric field, the Lorentz force law looks like

 ω= q tF E cos( ).0  (6.17)

Taking as a reference point an optical frequency in the above with 
an order of magnitude value of ω π/2 10 Hz,15  one sees that the 
charge will be forced to oscillate extremely rapidly. If we can agree 
that this fluctuation (that is the displacement caused by the force) 
is too fast to be measured, then it becomes necessary to employ an 
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averaging procedure. In such cases we take the time  average over 
one period T of oscillation with the result that

 〈Ei(t)〉T = 0,  (6.18)

 〈Bi(t)〉T = 0.  (6.19)

So physical quantities that are linear in the fields when they 
are oscillating average to zero in this scenario. It is then neces-
sary to work with higher order polynomial field quantities to obtain 
non-vanishing physical measurables.

6.2.1 The Stress Tensor and Conservation of Momentum
Firstly, let us formulate the conservation of momentum by start-

ing with the Lorentz force law applied to a continuum charge den-
sity enclosed in a volume .

 ∫ ρ= +εV
V

x d x x x x xF E J B( ) | ( ) ( ) ( ) ( ).a a abc
b c3  (6.20)

Conservation laws in physics are ultimately the consequence 
of symmetries. From classical mechanics, one of the key results 
is that the equations of motion do not change under a symme-
try transformation and this leads to a constant of motion (this 
can be expressed most elegantly in the Lagrangian formalism 
where the concept of a Noether current is introduced). In this 
way, invariance under time translations leads to conservation of 
energy; invariance under spatial translations leads to conservation 
of momentum; and invariance under rotations leads to conserva-
tion of angular momentum. We will begin with a consideration 
of the field equations. Symmetries also give rise to a conserved 
“charge”, where the idea of charge is used in a very general 
sense. Historically it arose from electric charge where the under-
lying gauge symmetry of the field equations leads to this. It is 
also worth remarking on the tensor nature of the encountered 
charges. If one recalls Equation (4.3) for the conservation of elec-
tric charge we see a scalar and a vector quantity present. This is 
because we are looking at the transport of a scalar quantity, the 
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electric charge. If we now wish to think about the conservation of 
momentum, it should not be a surprise to see the introduction of 
a different tensorial object.

Our strategy then is to eliminate the matter fields by the use 
Maxwell’s Equations (4.53) and (4.56). Then we will have an expres-
sion that is bilinear in the fields. Since we have a bounding area ∂ 
of the volume, we are thus looking to find a stress on this area. It 
is therefore necessary to convert the volume integral into a surface 
integral.

 Fa|V = d3xε0(∇cE
c)Ea+

1
µ0

(εbcd∇bBc−
1
c2
∂ t E

d)εdeaB
e.

V∫  (6.21)

Noting that

 ∂ ∧ =∂ ∧ + ∧∂E B E B E B( ) ,t t t  (6.22)

and using this in the above allows the force to be written as

 

Fa|V = d3x0(∇bE
b)Ea+

1
µ0

bcmmna(∇bBc)B
n

V∫

−
1
c2
∂ t(abcE

bBc)+0(abcE
b∂t B

c).  (6.23)

Before making further simplifications let us understand what we 
have so far. The left hand side is clearly a mechanical quantity. It is 
the sum of all the forces on the charge distribution and so therefore 
can be written using Newton’s second law as

 =
d
dt

F P| .a a
mech.  (6.24)

On the right hand side we can also see a total derivative with 
respect to time. The fact that it is cross product between the elec-
tric and magnetic field means that for wave like solutions, it is 
pointing in the direction of propagation. It also has the units of 
momentum which suggests that we identify it with field momen-
tum, viz
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 ∫= ε ε
V

d xP E B .a
field

abc
b c

0
3  (6.25)

The remaining terms are bilinear in the fields and also have a 
derivative. If we collect the two types of momentum together then a 
small rearrangement using Equation (4.55) gives

 

d
dt
QPa

mech.+Pa
fieldR= d3x[ε0ε

bcmεmna(∇bEc)E
n

V∫

+
1
µ0

εbcmεmna(∇bBc)B
n]+ε0[(∇bE

b)Ea].  (6.26)

In this form we see that the time derivative of the total momen-
tum must equal the force acting upon it. So the right hand side 
must be the force of the physical fields. We can also make the right 
hand side symmetrical in the fields by adding into it Maxwell II 
( Equation (4.54)) so that

 

d
dt
QPa

mech.+Pa
fieldR= d3x0[(∇bE

b)Ea+
bcmmnaE

n∇bEc]
V∫

+
1
µ0

[(∇bB
b)Ba+

bcmmnaB
n∇bBc].  (6.27)

A final step in the simplification is to use the tensor identity

 δ δ δ δ= −  .abc
cmn m

a
n
b

n
a

m
b  (6.28)

Using this result one finds

 

d
dt
QPa

mech.+Pa
fieldR= d3x∇b[ε0(EaE

b−
1
2
δa

bEcE
c)

V∫

+
1
µ0

(BaB
b−

1
2
δa

bBcB
c)].  (6.29)

(Exercise: verify this.)

From the right hand side we see that we are taking the diver-
gence of a symmetric two-index tensor. It is in fact the stress tensor 
and from the above we define it to be
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 Tab := ε0(EaEb−
1
2

gabEcE
c)+

1
µ0

(BaBb−
1
2

gabBcB
c).  (6.30)

To check what it means we just rewrite the above conservation 
of momentum law and make use of Gauss’s theorem

 

d
dt
QPa

mech.+Pa
fieldR= d3x∇bTa

b

V∫
= d2∑b Ta

b.
∂V∫  (6.31)

If we integrate the stress tensor over an area we find the total 
force on that area. By measuring the force on this boundary surface, 
we are then indeed measuring the stress tensor Tab and so it repre-
sents a physical observable.

Note also here that it is really the total momentum that is the 
meaningful quantity and that in general it will not be possible to 
make a sharp split between the two. Consider again Equation (6.29); 
the right hand describes the flow of field momentum across the 
bounding surface of the volume. The left had side has both a chang-
ing field and mechanical part. How the momentum is distributed 
between these two inside the volume is not specified. This is not so 
much of an issue here since it is the stress tensor evaluated on the 
bounding surface that can be measured (the total change in momen-
tum must be the applied force).

One such measurement of the electromagnetic stress is the radi-
ation pressure on a surface. This is the experimental observable that 
paved the way to throwing the corpuscular theory of light into some 
confusion (see for instance [12]).

6.2.2 The Poynting Vector and Energy Conservation
Carrying on from the previous matter and fields system, where 

forces are acting on the matter, we can also ask if they do work on 
them. If this is true then because this is a time varying system, we 
can calculate the rate of doing work on them. It is only the electric 
field that can do work on the assembled charges; they must have a 
velocity and from the Lorentz force law Equation (4.58), the mag-
netic field doesn’t contribute since it is orthogonal. If the fields are 
doing work on the charges then energy must be lost from the field 
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and an accompanying flow of energy must result. This is the basic 
statement of Poynting’s theorem.

John Henry Poynting (1852–1914) worked 
with Maxwell in the late 1870s and formu-
lated his conservation law in 1874.

The rate of doing work on matter by the physical fields is given by

 ∫= 
W d xE J ,a

a3  (6.32)

and not surprisingly the algebraic manipulations are similar to 
before. We use Maxwell IV (Equation (4.56)) to express the current 
density in terms of the electric and magnetic fields so that

 

W = d3xEa
1
µ0

(εabc∇bBc−
1
c2
∂ t E

a)
V∫

= d3x
1
µ0

(∇b(εabcEaBc)−(εabc∇bEa)Bc−
1
c2

Ea∂ t E
a).

V∫  (6.33)

For the last step, we just have to use Maxwell III (Equation (4.55)) 
for the final simplification

 

W = d3x
1
µ0

(−∇b(εabcEaBc)+ (−∂ t B
a)Ba−
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Ea∂ t Ea)
V∫

=− d3x s 1
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Ea∂ t E
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1
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Ba∂ tB
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V∫
=− d3x

V∫ ∇aS
a+∂ tU  (6.34)

 ∫ ∫=− ∑ + ∂
∂ 

d d x US ,a
a

t
2 3  (6.35)
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where

 Sa :=
1
µ0

εabcEbBc ,  (6.36) 

 U :=
1
2
aε0EaE

a+
1
µ0

BaB
ab .  (6.37)

We see then that U represents the energy density of the field while 
Sa is the energy flux and is called the Poynting vector. This is the state-
ment of conservation of energy; if fields do work on charges then the 
fields energy density must change together with a flux out of/into the 
enclosing volume. In the case where no work is done on the internal 
charges we see conservation of energy just for the field. The Poynting 
vector when integrated over some closed surface represents the total 
power of the field that has flowed into or out of that bounded volume.

Samuel Pierpont Langley (1834–1906) first 
invented the bolometer in 1878 in connec-
tion with his work in astronomy.

The type of measurement required for the power is a bit differ-
ent from the previous conservation of momentum observables. In 
that case we were measuring a force, which could be achieved by a 
mechanical type balancing procedure. For a power measurement we 
need to employ a different approach. Essentially we need the incom-
ing radiation to be deposited completely in the matter itself so that the 
fields do work on the charges. One such a device is a bolometer (first 
invented by Samuel Langley). It measures incoming electromagnetic 
power by turning the deposited power in the detector into heat. This 
in turn can be converted phenomenologically into a change of of tem-
perature, which in turn can be converted to an incident power.

Note that as with measuring the stress tensor, the observable 
has had to be traded (or balanced) with a similar quantity (in this 
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case a thermal energy). There is a second more subtle point con-
nected with the process of depositing energy and Equation (6.35). 
How can one be sure that all of the incident power flux is con-
verted into mechanical power and thereby heat? The left hand side 
of Equation (6.35) has both a mechanical and a field part, both 
of which are scalar quantities. In principle the incident flux that 
enters the volume can be distributed between the two contribu-
tions completely arbitrarily. The other point is that we are hav-
ing to invoke some outside phenomenology in order to make the 
measurement. Therefore it is necessary to use thermodynamics 
and coarse grained material properties to try to capture the field 
information. The reader might like to think over these issues at a 
later date.

A bolometer being used to measure the 
magnitude of the Poynting vector. If all 
of the incident flux is deposited into 
the absorbing material and this turned 
directly into heat, then a measurement 
of the deposited power can be made. A 
measured temperature difference can be 
then be turned into a power, as the weak 
thermal link to the cold bath is designed 
to ensure a steady state configuration.

6.2.3 Conservation of Angular Momentum
We have seen two conservation laws at work in basic electromag-

netic field theory, the conservation of energy and the conservation of 
momentum. As any man on the street will tell you, it is only natural 
to consider the conservation of angular momentum as well. Just as in 
the case of the conservation of momentum, where a force couples to 
a displacement of charge, we need to consider how a torque couples 
to an angular change. If we consider Equation (6.21) again but drop 
the integral sign we have at the point x that

 δFa(x)= ε0(∇cE
c)Ea+

1
µ0

(εbcd∇bBc−
1
c2
∂t E

d)εdeaB
e.  (6.38)
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Let us suppose for the time being we are working in standard 
Cartesian coordinates. Then x is also the position vector from the 
coordinate system origin - this means that we can use it to form the 
torque δΓa(x)  at the point x by the standard wedge product

  

δΓa(x)= εabcx
bδFc(x)

= ε0(∇mEm)εabcx
bEc+

1
µ0

εabcx
b(εmnd∇mBn

−
1
c2
∂ t E

d)εde
c Be.  (6.39)

It is possible to save oneself some work here by recalling the 
calculation of the stress tensor Equations (6.29) and (6.30). Basically 
we can form the simple product of xa with the stress tensor and other 
components because of two reasons. Firstly the partial time deriva-
tive doesn’t act on the xa so it can be moved around freely. Secondly, 
the spatial derivative operators will also act on xa in a simple way. 
Summing up all the contributions to the torque by reinstating the 
integral, we find the equivalent of Equation (6.27) is

 

Γa
Mech. =−ε0∂ t d3xεabcx

bEdε
cdeBe

V∫
ε0 d3xεabcx

b[(∇mEm)Ec+εpqmεmn
c En∇pEq]

V∫
+

1
µ0

d3xεabcx
b[(∇mBm)Bc+εpqmεmn

c Bn∇pBq].
V∫  (6.40)

What we see here is exactly the angular equivalent of the con-
servation of momentum. The first point to note in Equation (6.40) is 
that from simple mechanics the applied torque on a body is equal to 
the rate of change of angular momentum, viz

 Γ =
d
dt

L .a
mech

a
mech. .  (6.41)

The first term on the right was originally the field momentum, 
but now it has the extra factor of xa involved. This must be the cor-
responding field angular momentum, so that

 ∫= ε ε ε
V

d x xL E B .a
field

abc
b

d
cde

e0
3  (6.42)
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This can simplified using the tensor identity Equation (6.28) to

 ∫= −ε
V

d x x xL E B B E( ) ( ).a
field

a
b

b a
b

b0
3  (6.43)

The remaining terms in Equation (6.40) can be written again in 
terms of the stress tensor so that

 

d
dt

(La
mech.+La

field)= d3xεabc
V∫ xb∇mT mc

= d3x∇mεabc
V∫ xbT mc.  (6.44)

Since the stress tensor is symmetric we have been able to put the 
xa inside the brackets as it it differentiates to give a Kronecker delta. 
This in turn means the stress tensor indices contract with the abc 
giving a null result. Since it is a total derivative we can again form a 
surface integral so that

 ∫+ = ∑
∂

ε
V

d
dt

d x TL L( ) .a
mech

a
field

m abc
b mc. 2  (6.45)

We have arrived at another physical measurable and conserva-
tion law. The above is the statement of the conservation of angular 
momentum; the left hand side is the rate of change of the total (field 
plus mechanical) angular momentum and that this must equal the 
total torque due to the fields which is the measurable. The tensor 
quantity on the right is the angular equivalent of the stress tensor.

Can we measure the angular momentum of the field? It turns out 
to be possible but involves an extra degree of sophistication.  Essentially 
(again) it requires transferring angular momentum to matter. The inter-
ested reader can consult [4] for more details of this advanced topic.

6.3  POLARIZATION (AGAIN) COURTESY  
OF STOKES

In Chapter 5, we encountered the polarization of the electro-
magnetic field - the fact that there are two physical degrees of free-
dom that have to be extracted from the electric and magnetic fields. 
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In that case, where we considered plane wave type solutions, it was 
enough to know which components of the electric and magnetic field 
were nonzero with respect to the direction of propagation given by 
the wave vector. We return to this topic now from the point of view 
of the physical measurables that this chapter has been focused on.

Experiment 11 (Étienne-Louis Malus) Place a special material in 
front of a light source called a polarizer and a second similar polar-
izer (sometimes called an analyzer) after the first polarizer. Now 
rotate one with respect to the other. What happens?

Observation 11 The intensity of observed light (as seen by the eye 
for example) depends on the relative angle between the polarizer and 
the analyzer. Its functional form is I(θ) = I(0) cos2(θ). This is known 
as Malus’ law.

Étienne-Louis Malus (1775–1812), formerly a 
military engineer in the army of  Napoleon, 
first published his law in 1809. He also has 
his name on the Eiffel Tower.

As we have already mentioned, the electric or magnetic field by 
itself is not measurable for rapidly oscillating fields simply because 
it is too fast for a detector to respond to it. What we want to do for 
the state of polarization is trade up for a bilinear object, similar to 
the stress tensor or the Poynting vector that has already been found. 
Then we can apply the same averaging procedure to obtain a physi-
cal measurable. So consider the following object

 =O t x t x t xE E( , ) : ( , ) ( , ).ab a b  (6.46)

For the plane-wave like solutions we know already that the 
time average will be nonzero for components that contain the 
directions of polarization and zero otherwise. What we didn’t see 
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earlier are two important aspects, firstly that there is a parameter 
space that describes the state of polarization even for rapidly oscil-
lating fields. In addition to this, due to a lack of information about 
the source that sometimes occur (e.g. natural light), the polariza-
tion state may have a random element to it leading to an incom-
plete specification.

We now define the Stokes parameters for a plane wave 
propagating in the z-direction (in Cartesian coordinates). Four 
parameters are introduced to describe the state of polarization 
such that

 S0 := 〈Ex(t,x)Ex(t,x)〉+〈Ey(t,x)Ey(t,x)〉,  (6.47)

 S1 := 〈Ex(t,x)Ex(t,x)〉−〈Ey(t,x)Ey(t,x)〉,  (6.48)

 S2 := 2〈Ex(t,x)Ey(t,x)cos(t)〉,  (6.49)

 S3 := 2〈Ex(t,x)Ey(t,x)sin(t)〉.  (6.50)

Recall that the variable (t) is the phase difference between the 
x and y electric field components as given in Equation (5.59), but 
we have now allowed it to have a general time dependence. One can 
immediately verify that with these definitions the Stokes parameters 
satisfy

 = + +S S S S ,0
2

1
2

1
2

1
2  (6.51)

for fully polarized light i.e. where there is definite known amount of 
each component such that (t) is a constant.

For totally unpolarized light, by definition

 〈Ex(t,x)Ex(t,x)〉= 〈Ey(t,x)Ey(t,x)〉.  (6.52)

This implies that the Stokes parameters then take the form

 ≠ = = =S S S S0, 0.0
2

1
2

1
2

1
2  (6.53)
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George Gabriel Stokes (1819–1903), mathe-
matician, physicist, theologian, and politi-
cian. The parameters which bear his name 
were published in 1852 and then were 
forgotten for some time. He also held the 
Lucasian Professor of Mathematics chair 
at Cambridge.

There is a nice way of thinking about the state of polarization 
geometrically. The degree of polarization is given by a point that lies 
on or in a three dimensional ball. If the point lies on the surface, 
called the Poincaré sphere, the state is completely polarized. Inside 
the ball we have in general a partially polarized state - a mixture 
of unpolarized and polarized. At the center the state is completely 
unpolarized. Collectively then any degree of polarization can be rep-
resented by the inequality

 ≥ + +S S S S .0
2

1
2

1
2

1
2  (6.54)

These can be related to the polarization states associated 
with plane waves (linear, circular, and elliptical) encountered in 
 Chapter 5. To aid in the presentation we group the four Stokes 
parameters into the object S = (S0, S1, S2, S3), with the following 
statements:

●● Linear polarization - this is when S = (S0 ≠ 0, S1 = ±S0, 
S2 = 0, S3 = 0). The positive sign indicates linear polariza-
tion in the x direction, while the minus sign corresponds to 
y direction polarization.

●● Circular polarization - here we require that S = (S0 ≠ 0, 
S1 = 0, S2 = 0, S3 = ±s0). The positive is left circularly polar-
ized, the negative is right circularly polarized.

●● Elliptical polarization - this is the most general state and 
any particular point on the sphere will correspond to an 
 elliptically polarized state.



Physical Observables  •  113

In Figure 6.2, one can see graphically how the different polarization 
states sit on the sphere. There is the further geometrically interesting 
property that rotations on the Poincaré sphere correspond to transfor-
mations of the state of polarization. Thus we can, with the appropriate 
definitions, start to build this into a vector space and consider other 
operations such as additions. Basic group theory can be used to describe 
manipulations of polarized beams. See [14] for some useful discussion.

Jules Henri Poincaré (1854–1912), another 
polymath in the history of science. He 
excelled in all areas, contributing to topol-
ogy, chaos, and mathematical physics. 
The Poincaré group is the symmetry which 
is built into all relativistic field theories.

6.4 SUMMARY

The aim of this chapter was to establish the basic field theory 
measurables and the principles of their measurement. In the first 
instance voltages and currents that we have applied externally were 

FIGURE 6.2: The Poincaré sphere - The different states of polarization are given  
by a point on the bounding sphere while point in the interior are only partially polarized.
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used to understand the coarse grained dynamics of simple circuits. 
Then we have seen that to observe the field properties (energy, 
momentum, angular momentum and its polarization) it is necessary 
to consider bilinear field quantities as the observables. These char-
acterize the electromagnetic field as a dynamical quantity very much 
like what one encounter in classical mechanics. Starting point for 
topics discussed in this chapter can be found in [8] and [7].



CHAPTER 7
DISTRIBUTIONS 
OF CHARGE, 
 MACROSCOPIC  MATTER, 
AND BOUNDARY 
 CONDITIONS

In this chapter, we will consider the implications of how real 
matter interacts with the physical electromagnetic field. There are 
many subtle problems associated in trying to understand the basic 
mechanisms. We want to be able to think about this without resort-
ing to any sort of “fundamental” microscopic theory. The principle 
difficulty one encounters is in applying electromagnetism to account 
for structure of matter. The question is that if Coulomb law holds at 
the microscopic level then what is the underlying stability of matter - 
why doesn’t everything just collapse in on itself or blow apart. As the 
reader is no doubt aware, it is in the arena of quantum mechanics 
that this has to be sorted out. However, this book is on the classical 
theory of electromagnetic fields. One must be careful not to tread in 
other pastures, lest we not treat the topic consistently.

Thinking about this then somewhat further, one can ask how the 
fields change when they enter into or are confined in normal solid 
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matter. In such circumstances one needs to know what happens at 
the separating intermediate surface between two such media. If we 
were to regard Coulomb’s law as something very basic that would 
continue to be true at microscopic distances (so that it accounts 
for the structure of matter), then as we look at smaller and smaller 
length scales, how does the distribution of charge appear? What 
happens to this charge distribution as we change length scale? Nec-
essarily, this will have to be an in part phenomenological approach 
because we do not know the microscopic theory. So the basic physi-
cal observables and measurements should not lose sight of the 
 phenomenological assumptions.

As in previous chapters, the setup and formalism is such that the 
electric and magnetic cases are treated in an analogous mirror like 
fashion. The astute reader has probably become aware that the mag-
netic cases tend to be a little bit more complicated than the equiva-
lent electric one. The basic reason for this, in a general sense, is 
that for the magnetic field we are always finding a rotational angular 
momentum type variable that is intertwined with the magnetic field. 
In the electric case, it is typically a linear distance or velocity that has 
the equivalent connection.

7.1 MULTIPOLES

Thus far, we have developed the theory and measurement of 
electromagnetic fields by themselves. Of course the  measurement 
process requires that these fields interact with our measuring 
devices, but that they themselves are not really disturbed. However, 
they are of course made from real matter so the question now turns 
to how fields interact with real matter. Let us revisit the parallel plate 
capacitor à la Faraday [6] and consider the following experiment.

Experiment 12 (Faraday, 1836) Take the parallel plate capacitor, 
apply a voltage across the plates and measure its capacitance with an 
electrometer. What happens when we insert an insulator in between 
the plates?

Observation 12 The capacitance is found to increase as the the 
measured charge on the plates increases.
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The experimental apparatus Faraday used 
in 1836 to quantitatively study the effect 
of dielectrics in between capacitor plates. 
In this version, the spherical capacitor 
plates geometry removed any doubts 
about the particular geometric configura-
tions (e.g. edge effects).

From this experiment we establish the fact that the charge den-
sity has changed on the plates. So how should we interpret this? If 
the charge density on the plates has changed then the charge den-
sity in the insulator must also have changed to produce this effect. 
But it can’t be the simple addition or subtraction of charge because 
this would lead to a violation of the conservation of charge. It would 
give an observable net Coulomb like force outside the capacitor. 
There are obviously charges inside the insulator, but they must be 
in the form of bound states - groups of charge that form a stable 
unit. When the insulator is placed between the plates, the electric 
field due to the potential difference must cause the charges in the 
insulator to be redistributed. In terms of the bound state they are 
displaced with respect to one another, but relax back to their origi-
nal configuration when they are taken out from the capacitor plates. 
This then is the picture we have of the mechanism by which the 
interaction takes place.

Let us try and capture this in terms of the field equations [8]. 
Consider Equation (4.53) (Maxwell I) where a charge density is 
a source for an electric field. We can actually think about separat-
ing the charge density into different contributions, depending on a 
length scale and whether it is free charge or is part of a bound state. 
If we do this then

 ρ ρ⋅ = +∇ Q RE
1

.Free Bound

0
 (7.1)

By free charge we mean charge that can run around in the 
material subject only to resistive forces (collisions, but what really 
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are collisions?) that will eventually bring it to a stop. For a bound 
state charge, a phenomenological model could be a pair of equal 
and opposite charges that have an harmonic potential binding them 
together (a spring). This is perhaps the simplest example of a bound 
state charge distribution. Note there that the spring constant would 
have to be introduced by hand - it is a phenomenological param-
eter that isn’t calculated but would have to be measured. In general, 
however, the distribution of charge in a bound state will be more 
complicated and so we now address this point.

Consider the following model of a collection of charges. To start 
off with let us assume they are point like so that the charge density 
can be expressed in terms of a number of Dirac delta functions and 
a set of center of mass coordinates. As before we make a distinc-
tion between mobile charge and bound charge. Let us assume that 
the material we are considering has both mobile and bound charges 
present, where for the time being we focus on the bound charges. 
Next, let us divide the charges up into groups (or systems of charge 
that we shall colorfully refer to as “molecules”) that we index by N. 
Around each of these we can surround them with a small volume and 
regard it as an object in its own right (this is exactly how the molecu-
lar structure of matter is developed). So this grouping looks like

 ∑∑ρ ρ ρ= = −t x t x t x x( , ) ( , ) ( , ),Bound
N N

NN

 (7.2)

where xN is the center of mass coordinate for the molecule N. Next, 
we use the seemingly trivial equation

 ∫ρ δ ρ= −t x d y y t x y( , ) ( ) ( , ),3 3  (7.3)

 ∫ρ δ ρ= −t x d y y t x y( , ) ( ) ( , ).N N
3 3  (7.4)

Since we are thinking about a large number of systems, that is an 
ensemble of distinct charge distributions, this system starts to take on 
a statistical character. To that end it is sensible to replace the above 
equations with spatially averaged versions. This means replacing the 
delta function distribution in the above with a statistical test function 
that localizes the function in a similar way but as applied to a large 
number of charge groups. We define a spatial averaging, 〈〉, to be 
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realized by a test function π(x) (a smooth and finite version of a Dirac 
delta function) such that

 〈 f (t,x)〉 := d3yπ(y) f (t,x−y).∫  (7.5)

It has the effect of localizing any function about some pre-
ferred point. As it is a statistical function, the length scale which the 
averaging is done over should be much larger than the molecular 
dimension. Next we consider the charge density about the individual 
center of mass coordinates using the previous test function. Then 
Equation (7.4) becomes

 〈ρN(t,x)〉= d3yπ(y)ρN∫ (t,x−y)  (7.6)

 ∑∫ π δ= − − −d y y q x y x x( ) ( )i N N iN
i

3
( , )

3
( )  (7.7)

 ∑ π= − −q x x x( ).i N N iN
i

( , ) ( )  (7.8)

The spatially averaged charge density has been decomposed into 
a sum of contributions about each groups center of mass indicated 
by the index i. Since the spatial averaging occurs on a length scale 
much bigger than x(i,N) (that is π(x − xN) is slowly varying on the 
length scale of the interchange separations), it is a simple matter to 
perform a Taylor series expansion in powers of x(i,N)

 

〈ρN(t,x)〉= q( i,N)[π(x− xN)
i
∑ − x( iN)

a ∇aπ(x− xN)

+
1
2

x( i,N)
a x( i,N)

b ∇a∇bπ(x− xN)]+!,  (7.9)

from which we define the multipole moments of the N-th molecule as

 ∑= =q q molecular charge,N i N
i

( , )  (7.10)

 ∑= =d q x molecular dipole moment,N
a

i N i N
a

i
( , ) ( , )  (7.11)

 ∑= =Q q x x3 molecular quadrupole moment.N
ab

i N i N
a

i N
b

i
( , ) ( , ) ( , )  (7.12)
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The factor of three in the quadrupole moment is a convenient 
definition for normalization only and nothing fundamental. Given 
the definition of the test function, together with the delta function 
nature of the charge distributions, this can be recast as

 

〈ρN(t,x)〉= 〈qNδ
3(x− xN)〉−∇a〈dN

aδ3(x− xN)〉

+
1
6
∇a∇b〈QN

abδ(x− xN)〉+!  (7.13)

It is now straightforward to sum over all the N molecules to 
obtain the macroscopic polarization. Equation (7.1) has to have the 
charge density sources replaced with the spatially averaged versions 
and can be written as

 ∇aε0E
a(t,x)= 〈ρ free(t,x)〉+ 〈ρN(t,x)〉

N
∑  (7.14)

 

= 〈ρ free(t,x)+ qN
N
∑ δ3(x− xN)〉

−∇a〈dN
aδ3(x− xN)〉+∇a∇b〈QN

abδ(x− xN)〉+!  (7.15)

Now we make the following definitions

 ρ(t,x) := 〈ρ free(t,x)+ qNδ
3(x− xN)〉

N
∑  (7.16)

= macroscopic charge density,

 Pa(t,x) := 〈dN
aδ3(x− xN)〉

N
∑  (7.17)

= macroscopic polarization density,

 Qab(t,x) := 〈QN
abδ3(x− xN)〉

N
∑  (7.18)

= macroscopic quadrupole density.

  (7.19)

With these definitions, the resulting field equation is

  ρ+ − + =∇ ∇E P Q( )a
a a

b
ab

0  (7.20)

 ρ=∇ D ,a
a  (7.21)
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where it is customary to denote the combination of the bare electric 
field and the multipole additions as the displacement field, defined as

 = + − +∇D E P Q:a a a
b

ab
0  (7.22)

In relation to Equations (7.21) and (7.22) it is clear what this 
means physically if the displacement field is linear in the electric 
field: the measured charge is greater than without the dielectric, 
so the electric field must be modified inside the dielectric. If there 
are only point sources which can attract or repel then they must 
be in the form of bound states, that is stable collections of spatially 
distributed charge, and these are exactly the multipole moments 
we have already worked out. A further point to mention is that we 
have been deliberately vague about the length scales involved. If 
we assume the atomic theory of matter and molecular theory we 
can indeed put in numbers here. Instead, what we have shown 
here is how one can go about establishing such a theory. By using 
a macroscopic theory plus some phenomenology, one can start 
building up such a model.

In an exactly similar fashion, the analogous situation for the mag-
netic field can be carried out. Equation (4.56) (Maxwell IV) has to 
be modified for both electric and magnetic fields. The equivalent of 
Equation (7.1) for bound state currents is

 ∇∧B−µ0ε0∂ t E=µ0QJFree+ JBoundR .  (7.23)

Similarly to Equation (7.2), the bound state current density is

 〈JBound(t,x)〉= 〈JN(t,x)〉
N
∑ .  (7.24)

The starting point to turn this into the equivalent of (7.21) is to 
reconsider the current density in the light of Equation (7.7) such that

 〈JN(t,x)〉= d3yπ(y)JN∫ (t,x−y).  (7.25)

The expression for JN takes the same form as for charge density 
(i.e., the argument is centered around the center of mass coordinate 
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and the charge to center separation), but in addition to this we 
should not lose sight of the velocities of the collection of charges 
that collectively constitute the basic current. One has

 ∑ δ− = + − − −t x y q x y x xJ v v( , ) ( ) ( ),N i N i N N N iN
i

( , ) ( , )
3

( )  (7.26)

 〈JN(t,x)〉= q( i,N)(v( i,N)+ vN)π(x− xN− x( iN)).
i
∑  (7.27)

As before, it is necessary to expand the spatial averaging func-
tion in a power series in x(iN). To simplify matters we shall  perform 
the expansion only to linear order in x(iN). Doing this one finds

 

〈JN(t,x)〉= q( i,N)(v( i,N)+ vN)π(x− xN)
i
∑
− q( i,N)x( i,N)

a (v( i,N)+ vN)∇aπ(x− xN)+!
i
∑
= q( i,N)vNπ(x− xN)

i
∑
+ q( i,N)v( i,N)π(x− xN)

i
∑
− q( i,N)x( i,N)

a vN∇aπ(x− xN)
i
∑
− q( i,N)x( i,N)

a v( i,N)∇aπ(x− xN)+!.
i
∑  (7.28)

The reason for writing the above in this format is that each line 
has a separate interpretation and can therefore rewritten in simpler 
terms. The first line in Equation (7.28) is the average current density 
of molecule N

 q( i,N)vNπ(x− xN)
i
∑ = 〈qNvNδ

3(x− xN)〉.  (7.29)

The second line in Equation (7.28) gives zero since on average 
there is no current density associated with the relative velocities, 
so that

 ∑ π − =q x xv ( ) 0.i N i N N
i

( , ) ( , )  (7.30)
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Looking now at Equation (7.9), the partial time derivative of the 
dipole term is just the third line above

 ∑ ∑π π∂ − =− ⋅ −∇q x x x q x x xv( ) ( ),t i N i N
a

N
i

i N i N
a

N N
i

( , ) ( , ) ( , ) ( , )  (7.31)

so that the third line in Equation (7.9) is

 ∂ t〈dN
aδ(x− xN)〉=− q( i,N)x( i,N)

a vN ⋅∇π(x− xN).
i
∑  (7.32)

The last line that involves both relative separations and veloci-
ties requires further work once we have simplified the current den-
sity. Returning to Equation (7.23) one can now substitute in the the 
molecular density as follows

 

∇∧B−µ0ε0∂ t E=µ0(〈J free+ JN(t,x)〉)
N
∑

=µ0(〈J free+ qNvNδ
3(x− xN)〉)

N
∑

+µ0∂ t〈dNδ
3(x− xN)〉

−µ0 q( i,N)x( i,N)
a v( i,N)∇aπ(x− xN)

i
∑

N
∑

+! .  (7.33)

The above immediately shows that there is a clear contribution 
to the current density in the first line. In the second line, the par-
tial time derivative of the dipole moment becomes the partial time 
derivative of the polarization density which we have already encoun-
tered. This can be put together with the electric field contribution 
to form the displacement field. The last term presents the genuinely 
new term. We want to factor this in with the Ba field, but to do this 
requires the Levi-Civita tensor. It is therefore necessary to use the 
identity Equation (6.28) again so that

 δ= − ⋅x x xv v v( ).dab
dmn i N

m
b i N i N

a
n i N n

a
i N i N( , ) ( , ) ( , ) ( , ) ( , ) ( , )   (7.34)

However, the molecular separations and velocities are orthogonal 
so the last term above vanishes. We now have two wedge products, 
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one of which can be used in conjunction with the magnetic field. 
Using this in Equation (7.33) one finds

 

∇∧B−µ0 q( i,N)x( i,N)
a v( i,N)∇aπ(x− xN)

i
∑

N
∑
−µ0ε0∂ t E−µ0∂ t〈dNδ(x− xN)〉

=µ0〈J
free+ qNvNδ(x− xN)

N
∑ 〉

+!
∇∧B−µ0 q( i,N)x( i,N)∧ v( i,N)∧∇π(x− xN)

i
∑

N
∑

−µ0ε0∂ t(E+〈dNδ(x− xN)〉)
=µ0〈J〉+!.  (7.35)

The magnetization and the macroscopic current are thus defined as

 J(t,x) := 〈J free+ qNvNδ(x− xN)
N
∑ 〉  (7.36)

= macroscopic current density,

 Ma(t,x) := 〈mN
a δ3(x− xN)〉

N
∑  

 = macroscopic magnetization density, (7.37)

 ∑= ∧m q x v:N
a

i N i N i N
i

( , ) ( , ) ( , )  

 = molecular magnetic moment. (7.38)

Therefore, Equation (7.35) can be recast as

 ∇∧H−∂ tD=µ0J,  (7.39)

 Ha :=
1
µ0

Ba−Ma+! ,  (7.40)

where we have only included the macroscopic magnetization in the 
magnetic field strength Ha.

From the definitions of the two macroscopic fields we can now 
define the two important material properties. These are the permit-
tivity tensor b

a and the permeability tensor µb
a and are given by



Distributions of Charge,  Macroscopic  Matter, and Boundary  Conditions  •  125

 

δ
δ

δ
δ
δ

= = + +
D
E

P
E

: ,b
a

a

b b
a

a

b
  (7.41)

 µb
a :=µ0

δHa

δBb
= δb

a+
δMa

δBb
+!.  (7.42)

The above relations constitute the manner in which the physi-
cal fields interact with phenomenological models of matter. As such, 
they serve as background fields which determine how the electro-
magnetic fields themselves behave in matter.

7.1.1 Interlude on Electric and Magnetic Dipoles
The multipole expressions just encountered are quite general. It 

is often the case, however, that the dipole terms represent the most 
interesting part of the total expressions. This is so because they rep-
resent the largest contribution to the series. The next set of observ-
ables one would want to consider are the couplings of the electric 
and magnetic dipoles to external electric and magnetic fields. The 
natural set of observables to consider are obviously the observed 
forces, but in addition, since a distance scale is involved (the spatial 
separation of the charge or the radius of the current loop), a torque 
is also now possible.

To derive expressions for the forces and torques for a simple 
(molecular) electric and magnetic dipole one must appreciate that 
this is two particle problem. Considering Equations (7.11) and 
(7.38) for a two particle system reveals the following. The electric 
dipole consists of two equal and opposite charges ±q with some 
separation between them (we consider here the special case of 
two equal masses to make the bound states nice symmetric objects 
and simplify the calculations), while the magnetic dipole is two 
equal and opposite charges circulating around a common center of 
mass. We can therefore write down two equations of motion (The 
Lorentz force law) that governs each charge in the presence of 
spatially varying electric and magnetic fields. Firstly, consider the 
electric dipole

 =x q xF E( ) ( ),a a(1) (1)  (7.43)

 =−x q xF E( ) ( ).a a(2) (2)  (7.44)
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We now expand each position vector of the charges about the 
center of mass coordinate X in a power series in their separation 
 vector x, which are defined by

 = + /X x x: ( ) 2 ,(1) (2)  (7.45)

 = −x x x: .(1) (2)  (7.46)

Replacing the arguments of the external fields with the coordi-
nates (X, x) gives a power series in x

 x q X xF E( ) ( 2)a a(1) = + /  (7.47)

 = + +∇q X
q

x X xE E( )
2

( ) ( ),a
a

a a
2  (7.48)

 =− − /x q X xF E( ) ( 2)a a(2)  (7.49)

 =− + −∇q X
q

x X xE E( )
2

( ) ( ).a
a

a a
2  (7.50)

Therefore, adding together the two forces on the dipole results in

 = +X x xF F F( ) ( ) ( )a a a(1) (2)  (7.51)

 = +∇qx X xE ( ) ( )b
b a

2  (7.52)

 = +∇d X xE ( ) ( ).b
b a

2  (7.53)

One can see that in a uniform electric field, the dipolar force 
vanishes to a first order approximation.

The torque is simply evaluated now about the center mass coor-
dinate to be

 Γ = + X x x x xF F( )
1
2

( )
1
2

( )a abc
b c

abc
b c

(1) (2)  (7.54)

 = q x XE ( )abc
b c  (7.55)

 = d XE ( ).abc
b c  (7.56)
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So for a constant electric field, a dipole will be acted upon to 
produce a torque until the vector da is aligned with the field.

Turning our attention now to the magnetic dipole we start again 
with the Lorentz Force law equations where a spatially varying mag-
netic field is present

 = ∧x q x xF v B( ) ( ) ( ),(1) (1) (1) (1)  (7.57)

 =− ∧x q x xF v B( ) ( ) ( ).(2) (2) (2) (2)  (7.58)

As before we expand the magnetic field about the center of mass 
coordinates so that

 = + / ∧ + /x q X x X xF v B( ) ( 2) ( 2)(1) (1)  (7.59)

 

= ∧ + ∧

+ ∧ +

∇

∇

q X X
q

X x X

q
x X X x

v B v B

v B

( ) ( )
2

( ) ( )

2
( ) ( ) ( ),

a
a

a
a

(1) (1)

(1)
2  (7.60)

 =− − / ∧ − /x q X x X xF v B( ) ( 2) ( 2)(2) (2)  (7.61)

 

=− ∧ + ∧

+ ∧ +

∇

∇

q X X
q

X x X

q
x X X x

v B v B

v B

( ) ( )
2

( ) ( )

2
( ) ( ) ( ).

a
a

a
a

(2) (2)

(2)
2  (7.62)

For the symmetrical pair of circulating charges we are consider-
ing, v(1)(X) = v(2)(X) = v. The total force on the magnetic dipole is 
just the sum of the above two

 = +X x xF F F( ) ( ) ( )(1) (2)  (7.63)

 = ∧ + ∧ +∇ ∇q x X qx X xv B v B( ) ( ) ( ).a
a

a
a

2  (7.64)

 = ∧ +∇qx X xv B( ( )) ( )a
a

2  (7.65)

We know that to form the magnetic dipole moment we require 
at least an extra Levi-Civita tensor so we use Equation (6.28) to 
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introduce the necessary wedge product. This leads to, after some 
calculation

 = ∧ ∧ ∧ + ∧∇ ∇X q x X q x XF v B v B( ) ( ) ( ) ( ( ))a
a  (7.66)

 = ∧ ∧ + ∧∇ ∇m X q x XB v B( ) ( ( )).a
a  (7.67)

The last term is zero for the special case of the circular sym-
metric dipole. This can be seen by taking X = 0 and working in 
cylindrical polar coordinates. In this case the velocity only has a θ 
component, while B(0) and x are independent of θ. The force on the 
magnetic dipole then further simplifies to

 = ∧ ∧∇X m XF B( ) ( )  (7.68)

 = −∇ ∇m X m XB B( ( )) ( ( ))a
a

a
a  (7.69)

 =∇ m XB( ( )).a
a  (7.70)

As one can see, the magnetic case is considerably more awkward 
to deal with. However, the torque on a magnetic dipole is nice and 
simple. Evaluating this in the center of mass coordinates and using 
Equation (7.54) one finds

 Γ = ∧ ∧X qx Xv B( ) ( )a  (7.71)

 = ∧m XB( ).  (7.72)

If we were to work at the next order of approximation i.e., quad-
rupoles, the type and number of manipulations will be far greater. 
For other derivations see [8] and [5].

7.2 BOUNDARY CONDITIONS

As the field equations stand, we could in principle try to find 
 solutions for the electric and magnetic fields when they are in a 
 material region as described by the permittivity and permeability 
 tensors. So far, we have really been thinking about a continuous 
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medium - a region of space where the material properties are described 
by smoothly varying functions. But what happens if we come across a 
sharp boundary, for example a glass-air interface? We know that the 
material properties will change discontinuously across such a space. 
What is the right way of handling this?

Considering the four Maxwell’s equations, we are asking for 
solutions of the two bare fields Ea and Ba and the two dressed fields 
Da and Ha, in the two different regions. We should certainly be able 
to find separate solutions for the fields in the two separate regions. 
Since the field equations involve derivatives of fields, we can see 
that we will potentially run into trouble using them because of the 
discontinuities. However, if we recast them in their integral form we 
are more likely to have success as a number of the spatial derivatives 
will vanish.

To that end, let us start with the scalar equations, Maxwell II 
and the modified Maxwell I, Equation (7.21), and write them in 
their integral form

 ∫ Σ =
∂

d B 0,a
a2


 (7.73)

 ∫ Σ =
∂

d QD .a
a2


 (7.74)

Suppose we consider a small volume that is located on the 
boundary of two distinct material regions that intersects both 
regions. If the box is “thin” then the faces that are parallel to the the 
separating region space will have the bigger areas. We can approxi-
mate the integral above by just a sum over the areas of the top and 
bottom faces.

The continuity conditions are obtained 
by considering a cylinder with area 
A (with normal vector n) upper and 
lower surfaces and thickness s. It is a 
thin cylinder which means <<s A. 
The vector V has a negligible scalar 
product with the side area normal.
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Of course, we still have to form the scalar product with the sur-
face normal which leads to the result

 − =nB B( ) 0,a
a(1) (2)  (7.75)

where na is the surface normal to the interface region. By the exact 
same construction we can derive an analogous result for the dis-
placement field

 σ− =nD D( ) ,a
a(1) (2)  (7.76)

where σ is the surface charge residing on the interface region. 
Because we have taken the limit that the volume is thin, the 
charge density is then distributed in a volume that sits on the 
interface. So the volume charge density becomes localized to a 
surface charge density.

If we now consider the vector field equations we can adopt the 
same procedure as before and write them in their integral form

 ∫ ∫+ Σ ∂ =
∂

dx dE B 0,a
a

a
t a

2

 
 (7.77)

 ∫ ∫− Σ ∂ =
∂

dx d IH D .a
a

a
t a

2

 
 (7.78)

It is necessary now to cut the interface region in a different way. 
Since we have a line integral and an area, we can see that we need 
to form a small loop that cuts both regions and that forms a small 
area. The small sides are normal to the interface surface and the long 
sides parallel to it.

The continuity conditions are 
obtained by considering a rectangu-
lar loop with length L and thickness 
s that intersects both regions. It is a 
small loop which means <<s L. The 
vector V has a negligible scalar prod-
uct with the side element vectors.
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As the small sides tend to zero →s( 0),  the area also tends 
to zero so that the area integrals featuring the time derivative of 
the B and D fields vanish. The loop integral can be split into four 
pieces. The small side elements which are in the direction of the 
normal to the interface surface vanish i.e., the scalar product pro-
jection with the normal. This means it is only the orthogonal pro-
jection of the normal given by the wedge product that is nonzero. 
Therefore

 − ∧ =nE E( ) 0.(1) (2)  (7.79)

To obtain the final continuity equation we need the analogous 
situation of the surface charge previously encountered. One must 
include a surface current density w so that

 − ∧ =nH H w( ) .(1) (2)  (7.80)

With these equations one can now glue solutions in two distinct 
material regions at their common boundary. Good discussions can 
be found in [8] and [5].

7.3  ELECTROMAGNETIC INTERACTIONS  
WITH MATTER

A fundamental topic to address is the nature of how and the 
effect electromagnetic fields have on real physical matter. Indirectly 
this topic is implicit in all of the discussions so far, as the control of 
charge and current has been performed by us using physical matter. 
We now wish to go further and ask in what way the matter reacts in 
the presence of physical fields, be they oscillating, static, large, or 
small. We will assume that a mixture of macroscopic and microscopic 
modelling of bulk real matter will be sufficient for this purpose. In 
reality, we would really need to think about the quantum nature of 
matter in order to get a consistent calculation scheme in which to 
talk about atoms and their coupling to electromagnetic fields. Turn-
ing this around, however, we can try to push these models as far as 
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they can go as a way to better understand the necessity of any quan-
tum scheme. You have to start somewhere!

Our first macroscopic model for bulk matter then will be to 
assume that it consists of some type of lattice of bound state charges, 
that overall has no net electrical charge. Suppose we consider 
one such pair (i.e. we look at the local charge distribution at some 
point) and ask what is the effect of applying an electric field to it. 
The charges must be displaced by some small distance, where we 
are assuming that the bounding potential can admit a new equilib-
rium position. Indeed, thinking about the simple molecular models 
encountered earlier in the chapter, we can imagine that they are 
flexible in the presence of applied fields. Alternatively, think of the 
sample as being overall charge neutral but that we know it has posi-
tive and negative charge degrees of freedom inside it. Suppose they 
are sitting on top of one another. By applying an external field to the 
sample we force such pairs to separate.

The electric polarization δPa(t, x) for a collection of a bound state 
of charges (the ±q pair of the electric dipole) is then defined to be

 δPa(t,x) := qn(t,x)〈δxa(t,x)〉,  (7.81)

where n(t, x) is number density distribution for the collection of 
bound states (for the time being we set 0 = 1 and reinstate it at 
the end) and δxa(t, x) is the increase in separation from equilibrium 
of the charge pair. The brackets indicate that since the bound state 
is a microscopic structure and we are applying the field on a mac-
roscopic sample, we should think of it in some statistical sense (if 
we were using quantum mechanics here, this would simply be the 
expectation value between ground states). In complete generality 
this happens due to the application of some electric field at an ear-
lier time and some other point in space δ ′ ′t xE ( , ).b  There is then a 
polynomial relationship between the two
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The first term defines the linear theory, while the second and 
higher orders define the non-linear theory. The quantities χab and 
ξabc are called in general response functions. They are clearly non-
local in time and in space and tell us how strongly a system reacts 
to given input (or test) field. Therefore, they also represent physical 
observables. See [1] for a nice discussion.

We will now make two simplifying assumptions which will 
allow us to derive useful relations and that also have physical rel-
evance. The first is that we shall work at the linear level. Not sur-
prisingly, this makes many calculations tractable. Secondly, we will 
consider response functions that do not depend on space so that 
 Equation (7.82) can be written as

 ∫δ χ δ= ′ − ′ ′P t x dt t t x t xE( , ) ( , ) ( , ).a ab
b  (7.83)

Clearly in this form the right hand side is a convolution integral. 
It therefore affords simple multiplicative form when Fourier trans-
formed, by the use of the convolution theorem. In frequency space 
it becomes

 δ ω χ ω δ ω=P x x xE( , ) ( , ) ( , ) ,a ab
b  (7.84)

and thus

 χ ω
δ ω
δ ω

=x
P x

xE
( , )

( , )
( , )

.ab
a

b

 (7.85)

If we can calculate the the polarization as a function of electric 
field, we can extract the response function. This particular response 
function is known as the electric susceptibility. What may not be obvi-
ous is that it is basically the Green’s function of the model. If we know 
the equation of motion of the charge then we can invert this and obtain 
the Green function. This is exactly the same as what we encountered 
for the RLC circuit and so carries over straightforwardly. We will do 
this now for a simple model of a damped harmonic oscillator.

Recall the Lorentz force law, Equation (4.15). For an harmonic 
oscillator that is damped, the equation of motion of the charge q 
with displacement vector δxa(t) takes the form
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 m〈δ!!xa(t)〉+γ〈δ !xa(t)〉+mω0
2〈δxa(t)〉=Ô〈δxa(t)〉= qδEa(t).  (7.86)

Here again on the left hand side we are considering the separa-
tion of charge to be a statistical quantity. So we just have invert the 
operator Ô to obtain the susceptibility. A short cut is possible here by 
just substituting in harmonic oscillator type solutions, i.e.

 δ δ ω= ωt eE E( ) ( ) ,a a i t  (7.87)

 〈δxa(t)〉= δxa(ω)eiωt.  (7.88)

Substituting these into Equation (7.86) and assuming a constant 
number density n(t, x) = N gives

 δ ω
ω ω γω

δ ω=
− +

x
q

m i
E( )

( )
( ),a a

0
2 2

 (7.89)

 δ ω
ω ω γω

δ ω=
− +

P
q N

m i
E( )

( )
( ).a a

2

0
2 2

 (7.90)

We therefore find the response function to be

 χ ω
δ

ω ω γω
=

− +

q N

m i
( )

( )
.b

a b
a2

0
2 2

 (7.91)

Our model is thus describing the following behavior. A macro-
scopic sample has an oscillating electric field applied to it. The field 
can see the local charge difference of the bound states that consti-
tute the model and drives them to oscillate. This will then ultimately 
depend on the nature of the bound state forces as to how strong or 
weak their subsequent oscillations will be. The response function 
represents another physical observable, this time about the macro-
scopic sample being probed. The local charge oscillations cause the 
input field to be deviated (or scattered) in some fashion and we will 
observe this as an altered output field. This is basis for explaining the 
laws of refraction in terms of a refractive index by linking it to the 
electric susceptibility.

A brief comment is also in order about the equivalent mag-
netic system, where a fluctuating test magnetic field gives rise to 
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a fluctuating current loop. In the electric case, the applied test elec-
tric field caused two equal and opposite charges to separate some 
distance. Upon application of the magnetic field, the charges that are 
separated start rotating about their center of mass. Just as the elec-
tric field will be replaced by the magnetic field, the perturbed sepa-
ration will be replaced by the perturbed angular momentum. In this 
fashion, we can calculate a response function for the magnetic case.

7.4 ELECTRICAL CONDUCTIVITY

It is also possible to obtain a response function for how well a 
material conducts electricity. Ohm’s law that one typically learns at 
school is the first term in the series of Equation (4.4), that is

 = /I V R .  (7.92)

This is a coarse grained phenomenological model. We can also, 
however, turn this into a continuum version. The current needs to 
be replaced by the current density I → Ja, and the potential dif-
ference turns into the the electric field V → Ea. This should not 
be too alarming because the original form of Ohm’s law had lost all 
the details about the geometry and microscopic behavior. Both of 
the these are vector quantities so in general they will be related by 
a two index tensor

 ∫ σ= ′ − ′ ′t x dt t t x t xJ E( , ) ( , ) ( , ),a
b
a b  (7.93)

where σb
a is defined as the conductivity tensor. This is yet another 

constitutive relation that is necessary to specify when solving the 
full field equations in certain circumstances. It is a response func-
tion and so exactly parallels the structure encountered earlier for 
the polarization. Since in a conductor the charge is not bound, a 
simple alternative to Equation (7.86) is to drop the binding poten-
tial term, whence

 m〈δ!!xa(t)〉+γ〈δ !xa(t)〉=Ô〈δxa(t)〉= qδEa(t).  (7.94)
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If we perform the same substitution for the electric field and the 
displacement vector, the above in frequency space becomes

 δ ω
ω γω

δ ω=−
−

P
q

m i
E( ) ( ),a a

2

2
 (7.95)

 χ ω
δ

ω γω
=−

−

q N

m i
( ) ,b

a b
a2

2
 (7.96)

which is known as the Drude model, and for frequencies that are so 
large that damping is negligible

 δ ω
ω
δ ω=−P

q

m
E( ) ( ),a a

2

2
 (7.97)

 χ ω
δ
ω

=−
q N

m
( ) ,b

a b
a2

2
 (7.98)

which is known as the Plasma model.

Paul Karl Ludwig Drude (1863–1906), made 
advances in connecting optical phenom-
ena with electromagnetism and the ther-
mal properties of solids.

We can relate the conductivity to the susceptibility in the fol-
lowing way (to simplify the notation we will take them to be sca-
lars and promote them to tensors at the end). Firstly, write down 
Equation (7.39),

 ∇∧H(x,ω)− iωD(x,ω)=µ0J(x,ω).  (7.99)

Now substitute in the the frequency space susceptibility and 
conductivity
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∇∧H(x,ω)− iω(1+χ)E(x,ω)=µ0σE(x,ω)

∇∧H(x,ω)= iω(1+χ−
iσ
ω

)E(x,ω).  (7.100)

If we consider setting χ = 0, the system then has some con-
ductivity. Now set σ = 0 and substitute the Drude model in for the 
susceptibility. The imaginary part again has appeared to give us a 
conductivity. Therefore, we can calculate the conductivity from sus-
ceptibility by

 σ ω ωχ ω=−i( ) ( ).ab ab  (7.101)

What one can see then is that for ω ≠ 0, there is no real differ-
ence between a dielectric and a conductor, because ultimately they 
are both describing the movement of charge subjected to binding 
potentials.

7.5 FIELD EQUATIONS WITH GENERAL MATTER

Given that we have simple models for macroscopic matter in 
terms their underlying micro structure, it is instructive to make the 
corresponding substitutions into the field equations. A first obvious 
point is that the field equations in general are no longer local in 
time, since the response function is non-local in time (see Equation 
(7.82)). The assumption with this type of interaction is that the field 
arrives where the dipole (or some microstructure) is located, it then 
disturbs the system, and finally the system tries to return to its equi-
librium state, thereby giving up the energy just acquired. This inter-
action must take place over a a certain amount of time that allows 
this disturbance and then relaxation to take place. What this means 
for the field equations is that it is simpler to work with the frequency 
components of the fields and the matter; if it is necessary, one can 
Fourier transform to the time difference coordinates at the end.

Let us consider then a macroscopic medium with a permittivity 
 ω x( , )b

a  a permeability µb
a(ω,x) and a conductivity σ ω x( , ).b

a  Then the 
constitutive relations are given by
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 ω ω ω=x x xD E( , ) ( , ) ( , ),a
b
a b  (7.102)

 Ha(ω,x)=µb
a(ω,x)Bb(ω,x),  (7.103)

 ω σ ω ω=x x xJ E( , ) ( , ) ( , ).a
b
a b  (7.104)

The field equations in frequency space are

 ω ρ ω⋅ =∇ x xD( , ) ( , ) ,  (7.105)

 ω⋅ =∇ xB( , ) 0 ,  (7.106)

 ω ω ω∧ + =∇ x i xE B( , ) ( , ) 0 ,  (7.107)

 ∇∧H(ω,x)− iωD(ω,x)=µ0J(ω,x).  (7.108)

To simplify, we multiply Equation (7.107) by the inverse of the 
permeability tensor and take the curl, so that

 ∇∧µ−1∇∧E(ω,x)+ iω∇∧H(ω,x)= 0.  (7.109)

We now use Equation (7.108) to simplify the second term

 ∇∧µ−1∇∧E(ω,x)−ω2D(ω,x)+ iωµ0J(ω,x)= 0.  (7.110)

Finally, using the constitutive relations Equations (7.102) and 
(7.104) one obtains

 ∇∧µ−1∇∧E(ω,x)−ω2ε(ω,x)E(ω,x)+ iωµ0σ(ω,x)E(ω,x)= 0,

 (7.111)

 ∇∧µ−1∇∧E(ω,x)−(ω2ε(ω,x)− iωµ0σ(ω,x))E(ω,x)= 0.  
 (7.112)

This is the most general vector Helmholtz type equation that 
one is likely to encounter. There is a similar equation for the mag-
netic field Ha.

(Exercise: What is the corresponding vector Helmholtz equa-
tion that Ha must satisfy?)
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It is worth commenting on some aspects of the form of these 
equations. The first point is due to the tensorial nature of material 
properties, in general wave propagation will be different in all direc-
tions. Next it will also be inhomogeneous as the tensors vary in posi-
tion. They will depend on the frequency of the fields and due to 
the real and imaginary parts we will find both wave like solutions 
combined with growing or decaying modes. These will be fixed by 
the particular boundary conditions imposed.

7.6 SUMMARY

This chapter has focused on how real matter interacts with the 
electromagnetic field. Maxwell’s field equations have been general-
ized to material media and the basic conditions have been laid down 
that are necessary for the fields to obey. Response functions have 
been derived that simple material models give, as well as the idea 
of small structures (multipoles) that cause the bare fields to become 
dressed. From here one can start to consider the many applications 
electromagnetism has to everything around us.  Discussions of real 
matter can be found in [8] and [7].





CHAPTER 8
CONCLUSIONS  
AND OMISSIONS

Alas, we have reached journey’s end. This book has been 
intended for the reader to gain some insight into the foundations of 
electromagnetism and field theory. In this sense it is a complimen-
tary textbook and should hopefully serve to throw up questions for 
the reader to further pursue.

In any such work (and on a finite and short time scale) it is not 
possible to be complete. I have not covered many topics which are 
also necessary to have a full understanding (whatever that might 
mean). Listed now are a host of topics that may turn out to be a 
second volume to this book, or can be pursued by the reader at their 
leisure. Most of the topics I have not covered are either firmly in 
the applications arena, or else sufficiently advanced that I thought 
it would be an unnecessary detour from the objective of the book.

The radiation of moving charges, such as found in antennae or in 
accelerating beams of charges has been omitted. This is an important 
topic and the reader can do no better than consulting [7] to make a 
start here. In particular the Liénard-Wiechert potentials would be 
an appropriate place to start together with simple dipole radiation.

Special relativity and the formulation of electromagnetism as a 
relativistic field theory has been completely omitted. While this is a 
topic necessary to understand advanced field theory (for example, to 
get to grips with modern quantum field theories), I felt it would be 
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too distracting to enter in the current volume. In particular, one must 
be quite comfortable with Lagrangian and Hamiltonian mechanics 
to appreciate its full significance, and these topics in themselves can 
quite happily fill a textbook. It is also the case here that one is tread-
ing a more mathematical path. For example the nature of how fields 
interact with atomic matter can be quite mathematically technical 
[16] and one might also then think about group theory issues and the 
spinor formulation of electrodynamics [3]. These are indeed inter-
esting advanced topics, but since they have a less well established 
measurement theory basis, I have not pushed at these doors.

A final couple of topics worth mentioning and worthy of further 
discussion are the scattering of electromagnetic waves and diffraction, 
which can be viewed from a unified rather than separate approach. 
These are certainly basic topics and correlate strongly with the philos-
ophy here of a measurement centric approach, but to do them full jus-
tice would require enough material to fatten out a second book. The 
interested reader can consult [8] or [13] to make a start on this topic.

This book has tried to discuss electromagnetism from the point 
of view of not taking anything on faith. Coupled together with this 
has been the constructive bottom up approach to developing the 
field theory concepts that give the governing dynamics of the sys-
tem. As a closing set of thoughts, one might just say that it is not a 
closed book. While electrodynamics is a well developed and tested 
theory, there do occur conceptual problems as well that do not have 
universally agreed upon solutions. Radiation reaction, self force, and 
pre-acceleration are some of the difficulties one encounters when 
charges interact with the fields they themselves produce. In a similar 
spirit, it is not always clear which stress tensor to use when consider-
ing interactions within materials themselves (for example the stress 
tensor we have defined or the Minkowski version). These issues 
indicate that even classically there are consistency issues that may 
need further thought perhaps with the help of some quantum input. 
This is a good task for the interested reader to further research and 
a good place to end.



EXERCISES  
AND SOLUTIONS

EXERCISES

Exercise 1
Take an average party balloon that is fully inflated and charge it 

up by rubbing it on your hair. What is a typical voltage that the bal-
loon acquires due to this electrostatic charging process?

Exercise 2
Consider the following electrometer configuration. A disc has 

an area of 0.02m2 that is separated from a fixed plate by distance 
0.2mm. The potential difference between the two plates is held 
at 200V. What is the force between the two plates and how does 
this depend on the potential difference? how sensitive is this to the 
voltage across the plates? Suppose the upper disc is attached to a 
spring. If in equilibrium the separation of the two plates is d (when 
the potential difference is V) or a (when the potential difference is 
zero), deduce a criterion for stable equilibrium for the separation d 
configuration.

Exercise 3
Suppose we have four very long metallic plates that form a wave-

guide type structure, that is, two long strips of a certain width and 
parallel to one another, and another two long strips of another width 
and also parallel two one another. These are then glued together to 
form a rectangular structure that is extended in one direction. Sup-
pose now we choose to hold the different plates at different electro-
static potentials. Two opposite faces are held at zero potential, while 
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the other two are held at a constant value V. What is the potential 
inside the wave-guide? The wave-guide has a length L that is much 
larger than the separations of the faces.

Exercise 4
Consider one of the disk plates that form a parallel plate disk 

capacitor. Suppose it has a static charge density on it that varies as a 
quadratic power of the radial coordinate. What is the potential and 
the electric field of this charge distribution directly above the center 
of the disk? What does it look like far away and close to the disk?

Exercise 5
Find an expression for the magnetic field of an elliptical current 

loop at a general point with respect to its center due to a steady cur-
rent, in the limit that the point is far away from the ellipse. Do this 
by considering the vector potential first from which the magnetic 
field can be derived. Evaluate the corresponding expression when 
the ellipse is circular and nearly circular.

Exercise 6
Consider the gauge transformation that relates the Coloumb 

gauge to the Lorentz gauge. What equation must the corresponding 
gauge function satisfy? What does this look like in reciprocal space?

Exercise 7
Consider firstly the Green function that solves the scalar 

Helmholtz equation. In terms of this, what is the Green tensor 
that solves the vector Helmholtz equation? What transverse con-
dition does it satisfy? Find expressions for the Green tensor in 
both wave vector space and position space. As the wavelength of 
the radiation is varied, which terms in the Green tensor are the 
most important?

Exercise 8
A perfectly absorbing sheet of metal has 200W of light incident 

on it normally for 10s. What is the total linear momentum trans-
ferred to the sheet? If the magnitude of the Poynting vector at the 
top of Earth’s atmosphere is ≈ 1.4kWm−2, what is the average radia-
tion pressure on the above metal sheet? If we wanted to use this as 
a solar sail, what size of sheet is necessary to capture 1N of force?
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Exercise 9
Consider the expression for the energy, momentum, and angu-

lar momentum of the electromagnetic field. Suppose into these we 
substitute plane wave solutions. What are the particle like properties 
featuring in these expressions?

Exercise 10
Suppose magnetic monopoles did exist. What form would 

 Maxwell’s equations take? Discuss the symmetry between the elec-
tric and magnetic charges. What form would the Lorentz force law 
now take? How would you reconcile using B = ∇ ∧ A?

SOLUTIONS

Solution 1
This is one of those orders of magnitude, guesstimate questions 

based partly on common experience. If this is not common knowledge, 
you can easily do this simple experiment yourself! To measure the 
charge on the balloon and so determine its voltage, we need another 
balloon that is similarly charged. We can then balance the correspond-
ing repulsive force with another mechanical force. It is a simple mat-
ter to balance this against gravity. Suspend each balloon from a point 
by two pieces of thread that are the same length. Because the balloons 
have about the same amount of net charge of the same kind, they will 
repel. The angle α the thread will make with the vertical will be in the 
range 0 < α < π/2. One now just resolves forces at the center of each 
balloon to balance off gravity and the repulsive forces.

Putting in some numbers, a typical balloon has a mass m ≈ 5g, 
while a suspension angle of α = 30° and separation of their centers 
of 50cm are also typical. The downward force is thus ≈ 5 × 10−2N 
and therefore the horizontal force is ≈ 5 sin(30) ≈ 2.5 × 10−2N. We 
can thus equate this to the repulsive Coulomb force
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Assuming now that the charge has been distributed uniformly 
over the sphere, all we need is the capacitance of a sphere to get the 
voltage - and we know this. The radius of the balloon is R ≈ 15cm so

V
q

R4
,

50000V.
0π

=

≈

Solution 2
For this problem we can assume the parallel plates are well 

described by the infinite plane idealization since the separation s is 
much smaller than the square root of the discs area A. The potential 
difference and therefore the force across the plates, remembering 
the lower plate is fixed, is given by (from Chapter 3)
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Therefore putting in the numbers, one obtains for the force 
between the plates that F ≈ 1.77N. to get the sensitivity at this voltage, 
we just need to differentiate with respect to the voltage, resulting in

dF
dV

VA
s

1.77 10 Nm .

0
2

2

5 1


=

≈ × − −

Since we have now attached a spring to the upper disc, the linear 
restoring force now needs to be included in the forces acting on the 
disc. Suppose the plates have some separation x, then
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F
VA
x

k x x

dF
dx

VA
x

k

( ),

2
.

0
2

2 0

0
2

3





=− + −

= +

When V = 0, x = a so therefore at the second equilibrium x0 = a. 
At the other equilibrium one has

VA
d

k x a

k
VA

d d a

0 ( ),

( )
.

0
2

2

0
2

2





=− + −

=
−

For this position to be a stable equilibrium requires that dF dx 0/ >  
and so

VA
d

k

VA
d

VA
d d a

a d

2
0,

2
( )

0,

3 2.

0
2

3

0
2

3
0

2

2



 

+ >

+
−

>

< /

Solution 3
Obviously we need to work in Cartesian coordinates, so let the 

long direction be z. We define the faces at the potential V to be  
x = ±a and the zero potential faces to be y = 0, b. This is a bound-
ary problem associated with solving Laplace’s equation in Cartesian 
coordinates

φ φ=
∂
∂
+
∂
∂
+
∂
∂

=∇ a b
x y z

x y z( , , ) 0.2
2 2 2

In the case that we regard L as being very long, we can drop the 
z-dependence such that the above reduces to the two-dimensional 
Laplace equation in the x, y coordinates. The separation of variables 
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for this equation leads to both exponential and sinusoidal solutions. 
The boundary conditions require that the potential vanishes in two 
planes which can only be fulfilled by the sine or cosine eigenfunc-
tion. Writing the solution as

x y X x Y y( , ) ( ) ( ),φ =

one has

= +
= +

X x a kx a kx

Y y b ky b ky

( ) sinh( ) cosh( ),
( ) sin( ) cos( ).

1 2

1 2

The boundary conditions tell us the following; X(x) must be sym-
metric in x since the potential is the same on the planes x = ±a. This 
means a1 = 0. Next, since the potential vanishes at y = 0, we must 
have b2 = 0; and finally at y = b, the only way for the sine function 
to vanish there is if kb = nπ and therefore that

k
n
b

,
π

=

where ∈n .  So the solution looks so far like

∑φ
π π

=
=

∞

a b a bx y c
n x

b
n y

b
( , ) cosh sin ,n

n 1

the sum being performed over all positive n since this is a linear 
equation and we must in general superpose all possible solutions. 
The negative integers do not give any new solutions which is why the 
n have been restricted to only the positive values. To determine the 
coefficients we use the last piece of information available, that we 
know the potential at x = a

V c
n a

b
n y

b
cosh sin ,n

n 1
∑ π π
=

=

∞

a b a b

This is just a standard Fourier series in y; one uses the orthogo-
nality of the eigenfunctions to invert the above equation



Exercises and Solutions•  149

a b a b

a b
c d

a b
c d

∫
π π

π π
π

π

π π π

= / /

= −

= − −

dyV
n y

b
c

n a
b

b

c
V

b
n a

b

b
n

n
b

n

c
V
n a

b
n n

sin ( 2)cosh ( 2).

2

cosh
cos( ) ,

2

cosh

1
( 1)

1
.

b

n

n

n
n

0

So the coefficients are only nonzero for odd values of n.

Solution 4
The starting point for this problem is going to be Poisson’s equa-

tion in its inverted form. We will calculate the potential first from 
which we can obtain the electric field by differentiation. The poten-
tial is given in terms of the charge density by

x d x
x

x x
( )

1
4

( )
| |

.
0

3

 ∫φ
π

ρ
= ′

′

− ′

Working in cylindrical coordinates, let the radius of the disk be 
a and the charge density be r z z r( , , ) ( ) .2ρ θ δ λ=  The potential then 
becomes

r z d dr r dz
r z

z r

dr
r

z r

( , , )
1

4
( )

2
.

a

a

0 0

2

0

2

2 2

0

3

2 20





∫ ∫ ∫

∫

φ θ
π

θ
λ δ

λ

= ′ ′ ′ ′
′ ′

+ ′

= ′
′

+ ′

π

−∞

∞

If we make the substitution r′2 = X the integral then takes a 
standard integral form that one can find in a book in integrals (or 
just do it yourself)

∫φ
λ

=
+

z dX
X

z X
( )

4
.

X

X a

0
2(0)

( )
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This integrates to

φ
λ

λ

λ

= −
−

+

= −
−

+ +

= −
−

+

c d

c d

c d

z
z X

z X

z a
z a

z
z

z z a
z a

( )
4

2(2 )
3

4
2(2 )

3
2(2 )

3

4
4
3

2(2 )
3

.

X

X a

0

2
2

(0)

( )

0

2 2
2 2

2
2

0

3 2 2
2 2







The electric field then has only a z-component and is

φ

λ

=−

=− − + −
−

+

∇

c d
z

z
z

z a
z z a

z a

E ( )

4
4

8
3

2 (2 )

3
.

z z

0

2 2 2
2 2

2 2

Finally we should consider the limits when <<z a and also 
>>z a. The potential in these limits reduces to

φ
λ

φ
λ

λ

≈ <<

= −
−

+ /

≈ >>

a b

a b a b

a b

z
a

z a

z
z z a

z a z

a
z

z a

( )
2
3 4

, when ,

( )
4

4
3

2(2 )
3

1

6 4
, when .

3

0

0

3 2 2
2 2

4

0







From these approximations we see on axis that the electric field 
vanishes just above the disc, and falls off as / z1 2  far away from the 
disc; this is to be expected since at large distances away from the disc 
one cannot resolve any structure and it is only the total charge that 
is meaningful.

Solution 5
To evaluate the magnetic field we will need to use the Biot-

Savart law since we have an expression for the current I. In this case 
it takes the line integral form 
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B(x)=
µ0I
4π

d ′l ∧(x− ′x )
| (x− ′x ) |3!∫ ,

where dl is the line element of the ellipse and − ′x x( )  is the vector 
between the point x′ where the line element is located and x where 
we are evaluating the field. It will clearly be necessary to use the 
equation of the ellipse to be able to perform the integration. Since 
we are dealing with a magnetostatic situation it is simpler to calculate 
the vector potential first and from this calculate the field (this way 
removes an initial wedge product). The vector potential is given by

A(x)=
µ0I
4π

d ′l
| (x− ′x ) |!∫ .  

So we can see here that since the vector potential only has a 
rotational component the field will be out of the plane. We work in 
spherical polar coordinates with the origin at the center of the ellipse, 
with the ellipse itself lying in the θ π= /2  plane. To start with we will 
evaluate the field at the general off axis point θ φ= rx ( , , )  so that we 
can differentiate it. After this we will restrict it to on axis. The points 
on the ellipse are given by π φ′ = ′ / ′rx ( , 2 , )  so that

θ φ φ− ′ = + ′ − ′ − ′r r rrx x| ( ) | 2 sin cos( ).2 2  

The more involved part is the length vector of the current ele-
ment itself. It is the variable φ′  that parametrizes the ellipse, but 
now ′r  is a function of φ′  (for the circle ′r  is of course a constant). 
The position vector ′x  lies in the x, y plane of the equivalent Car-
tesian coordinates. In terms of this basis then the position vector is 
given by φ φ′ = ′ ′ ′ ′r rx ( cos , sin ).  Therefore the line element in this 
basis is given by

φ
φ

φ φ φ φ φ φ φ φ

=
∂ ′

∂ ′
′

= − ′ ′ ′+ ∂ ′ ′ ′ ′ ′ ′+ ∂ ′ ′ ′φ φ′ ′

d d

r d r d r d r d

l
x

,

( sin ( )cos , cos ( )sin ).

From this one then has an expression for the vector potential 
in the Cartesian coordinate basis. One must be careful here to not 
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loose sight of the different coordinate systems and variables. The 
vector potential components then are

 

A x(r, θ,φ)=
µ0I
4π

d ′φ!∫
− ′r sin ′φ + (∂ ′φ ′r )cos ′φ

r 2+ ′r 2−2r ′r sinθcos(φ− ′φ )
,

A y(r, θ,φ)=
µ0I
4π

d ′φ!∫
′r cos ′φ + (∂ ′φ ′r )sin ′φ

r 2+ ′r 2−2r ′r sinθcos(φ− ′φ )
.

 

From these expressions the magnetic field can be calculated in 
full generality, even though we can evaluate them explicitly in cer-
tain limits. We will evaluate them in the two limits, >> ′r r  and 
<< ′r r .  Firstly for >> ′r r

 

A x(r, θ,φ)=
µ0I
4πr

d ′φ!∫ [− ′r sin ′φ + (∂ ′φ ′r )cos ′φ ]

×[1− ′r 2/2r 2+ ( ′r /r)sinθcos(φ− ′φ )] ,

A y(r, θ,φ)=
µ0I
4πr

d ′φ!∫ [ ′r cos ′φ + (∂ ′φ ′r )sin ′φ ]

×[1− ′r 2/r 2− ( ′r /r)sinθcos(φ− ′φ )] .

It is now time to include the equation of the ellipse to evaluate 
the integral. In standard two dimensional Cartesian coordinates the 
ellipse is parameterized by for constants a and b

x= acos ′φ ,
y= bsin ′φ ,
⇒
′r 2 = a2 cos2 ′φ + b2 sin2 ′φ ,

d ′r
d ′φ
=

(a2−b2)sin2 ′φ
2 ′r

.

 

If the ellipse is nearly circular then = +a b  where   is small 
number that will serve as an expansion parameter. Therefore
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φ

φ
φ

′ ≈ + ′
′
′
≈ ′

r b

dr
d

cos ,

sin 2 .

2


 

With these expressions we can now evaluate the gauge potential 
components

A x(r, θ,φ)=
µ0I
4πr

d ′φ!∫ [−bsin ′φ −εsin ′φ cos2 ′φ +εsin2 ′φ cos ′φ ][1

−b2/2r 2−bεcos2 ′φ /r 2−bsinθcos(φ− ′φ )/r

−εsinθcos3(φ− ′φ )/r],

A y(r, θ,φ)=
µ0I
4πr

d ′φ!∫ [bcos ′φ +εcos3 ′φ +εsin2 ′φ sin ′φ ][1

−b2/2r 2−bεcos2 ′φ /r 2−bsinθcos(φ− ′φ )/r

−εsinθcos3(φ− ′φ )/r] .

 

By inspection we can simplify these by remembering the rules for 
integrating sine and cosine functions. With this in mind they become

A x(r, θ,φ)=
µ0I

4πr 2
d ′φ!∫ [b2 sinθsin ′φ cos(φ− ′φ )

+ bεsinθsin ′φ cos3(φ− ′φ )

+ bεsinθsin ′φ cos2 ′φ cos(φ− ′φ )

−bεsinθsin2 ′φ cos ′φ cos(φ− ′φ )],

A y(r, θ,φ)=
µ0I

4πr 2
d ′φ!∫ [−b2 sinθcos ′φ cos(φ− ′φ )

−bεsinθcos ′φ cos3(φ− ′φ )

−bεsinθcos3 ′φ cos(φ− ′φ )

−bεsinθsin2 ′φ sin ′φ cos(φ− ′φ )],

where 2  terms have been dropped. The integrals can now be evalu-
ated straightforwardly since they take the form of products of sine 
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and cosine functions once the double angle has been expanded. 
With this in mind, they reduce to

A x(r, θ,φ)=
µ0I
2r 2

[(b2 sinθsinφ)/2 + (3bεsinθsinφ)/8

−(bεsinθsinφ)/8]

=
µ0Isinθsinφ

2r 2
[b2/2+ bε/4],

A y(r, θ,φ)=
µ0I
2r 2

[−(b2 sinθcosφ)/2 −3(bεsinθcosφ)/8 )

−5(bεsinθcosφ)/8] ,

=
µ0Isinθcosφ

2r 2
[−b2/2−bε].

To finally obtain the magnetic field in the z direction we need to 
partially differentiate these expressions with respect x and y. So we 
write the above expressions back into Cartesian coordinates

A x =
µ0Iy

2(x2+ y2+ z2)3/2
[b2/2+ bε/4],

A y =
µ0Ix

2(x2+ y2+ z2)3/2
[−b2/2−bε] .

 

The magnetic field in the z direction is just B A Az x y y x=∂ −∂  so

Bz =−
µ0I
2r 3

[b2+5bε/4]−
3µ0I
2r 5

[b2(x2+ y2)/2+ bε(x2+ y2/4)].

The difference then from the circular current loop will be seen 
at points off the z axis.

Solution 6
Let us assume that we know the potentials in the Coulomb 

gauge, given by A( , ),φ  and so that we will perform a gauge transfor-
mation on these to the Lorentz gauge with potentials A( , ).φ′ ′  The 
Lorentz condition is
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φ∂ ′− ⋅ ′ =∇
c

A
1

0.t2

Since these potentials are related to the Coulomb gauge poten-
tials by a gauge function Ω(t, x),  we have 

1
c2
∂ t(φ+∂ tΩ)−∇ ⋅(A+∇Ω)= 0,

1
c2
∂ tφ+

1
c2
∂ t

2Ω−∇2Ω= 0,

where the Coulomb gauge condition ∇ A 0⋅ =  has been used. If we 
now Fourier transform both the gauge function and the scalar poten-
tial then an expression in reciprocal space can also be obtained, so that

+
1
c2
∂ t

2Ω (t, x)−∇2Ω(t,x) = −
1
c2
∂ tφ(t,x),

+
1
c2
∂ t

2Ω(t,k)+ k2Ω(t,k) = ∂ tφ(t,k).

The gauge function then depends explicitly on the charge con-
tent and will be proportional to the velocity of these charges.

Solution 7
The scalar Green function ∆ x y( , )  that satisfies the scalar Helm-

holtz equation is given by

∇ ∆k x y x y( ) ( , ) ( ).2 2 3δ+ = −

The tensor Green function ∆ x y( , )ab  that satisfies the vector 
Helmholtz equation is similarly given by

∇ ∇ ∆k x y x y(( ) ) ( , ) ( ).a
c

a
c

cb ab
2 3δ δ δ∧ − =− −

The trick here is to try and write the Green tensor in such a 
way that when it is substituted into the vector Helmholtz equation, 
it reduces to the scalar equation. To that end we try the following 
decomposition 



156 • Basic Electromagnetic Theory

∆ ∇ ∇ ∆ ∆x y x y x y( , ) ( , ) ( , ),ab a b abα βδ= +

where α and β are constants to be determined. The double wedge of 
the derivative operator can be written as δ∧ = −∇ ∇ ∇ ∇ ∇( ) .ac a c ac

2  
This leads directly to the the two conditions 

k , 1.2α β β= / =

Therefore the Green tensor is

∆ ∇ ∇ ∆ ∆x y
k

x y x y( , )
1

( , ) ( , ).ab a b ab2
δ= +

It is a simple matter to see that this satisfies a transverse con-
straint. If we act on the Green tensor with the derivative operator 
one finds

= +

=

∇ ∆ ∇ ∇ ∆ ∇ ∆x y
k

x y x y( , )
1

( , ) ( , )

0.

b
ab a a2

2

This result has its root in Gauss’s law and is the basic statement 
that for propagating fields there is a local plane of fluctuations that 
are normal to the direction of propagation.

It is a simple matter to obtain an expression for the Green func-
tion in wave vector space; simply perform a Fourier transform

(∇2+ k2)Δ(x, y)= δ3(x−y)

d3p
(2π)3

eip⋅(x−y)(−p2+ k2)Δ(p)∫ =
d3p

(2π)3
eip⋅(x−y)∫

⇒

Δ(x, y)=
d3p

(2π)3

eip⋅(x−y)

−p2+ k2
.∫

Straightforward differentiation now gives Green tensor for the 
vector Helmholtz equation
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∫

δ

π
δ

= +

=
− +

− / +
⋅ −

∆ ∇ ∇ ∆ ∆x y
k

x y x y

d p e
p k

p p k

( , )
1

( , ) ( , )

(2 )
( ) ).

ab a b ab

ip x y

a b ab

2

3

3

( )

2 2
2

We can also calculate what the Green function looks like in posi-
tion space by evaluating the above integrals. To do this requires per-
forming an integral in the complex plane. Since this topic lies outside 
the main drive of this book, we will assume the reader knows how to 
perform such integrals (i.e. method of residues etc). For the scalar 
Green function a ±i  is added to the denominator that gives a pre-
scription of how to enclose the poles in the complex plane. Having 
done this the integral can then be evaluated by finding the residues 
of the integrand. This results in the two expressions

∆ x y
e

x y
( , )

4 | |
.

ik x y| |

π
=

−
±

± −

The + sign prescription gives the retarded solution (where effect 
follows cause) and the − sign gives the advanced solution (where 
cause follows effect), amounting to either incoming or outgoing 
waves. From this we can simply deduce the position space version of 
the Green tensor, which is for the retarded solution

δ
π

π
δ

π
δ

π
δ

= +
−

=
−

−
− −

−

+
− −

−
− −

−

+
− −

− +
− −

−

+
−

−

−

−

∆ ∇ ∇

a b

a b

a b

x y
k

e
x y

e
x y

x y x y

x y

e
x y

i
k x y

x y x y

x y

e
x y k x y

x y x y

x y

( , ) (
1

)
4 | |

4 | |
( ) ( )

| |

4 | | | |
3

( ) ( )
| |

4 | |
1

( | |)
3

( ) ( )
| |

ab a b ab

ik x y

ik x y

ab
a b

ik x y

ab
a b

ik x y

ab
a b

2

| |

| |

2

| |

2

| |

2 2

The expression for the Green tensor has therefore organized 
itself into increasing powers in the denominator of the dimension-
less variable k x y| | .−  The k x y( | |)2−  is called the near field term, 
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since this dominates when for radiation of wavelength λ one has 
λ− <<x y| | .  The k x y( | |)−  term is called the intermediate field 

when x y| |  λ−  and therefore dominates the expression. Finally 
the remaining term is called the far field piece which is the most 
important when x y| | .λ− >>  Interestingly, the intermediate field 
is exactly 2π/  out of phase with the far field and near field Green 
tensor contributions.

Solution 8
Assuming that the incident radiation is propagating in the z 

direction and that the metal sheet spans the x, y plane, the con-
servation of momentum equation gives that the radiation pressure 
ρ in the z direction is just the stress tensor component Tzz. Using 
the form of the stress tensor in terms of the fields, this is just 
Tzz =−(ε0E

2+B2/µ0)/2.  In an amount of time ∆ t,  the energy ∆E  
incident on the sheet is therefore ∆ ∆E d T c t| |zz

2∫= ∑  which is 
numerically just the power times the time, ∆E 2000J.=  On the 
other side, multiplying the radiation pressure by ∆t  and integrat-
ing over the sheet gives us the total change in linear momentum ∆P 
which is therefore = / ≈ × − −∆ ∆P E c 6.6 10 kgms .6 1

For a plane wave we take the magnitudes of the electric and 
magnetic field to be related by = cE B| | | |  (this can be verified 
by just making a plane wave substitution into Maxwell’s field equa-
tions) which allows us to take the radiation pressure to be ρ= /cS| | . 
So numerically we find that on the metal sheet ρ≈ × − −4.7 10 Nm .6 2  
To produce 1N of force on a solar sail then would require an area 
of ≈ ×2.1 10 m .6 2  If this was a square sail then the length of a side 
would be approximately 1km long.

Solution 9
By consider plane wave solutions of the field equations and 

summing over their corresponding eigenvalues, we are attempting 
to generate a solution that is typically a fluctuation. To be definite, 
we will look at field fluctuations in a matter free region of space and 
start from the scalar and vector potentials. Let us fix the gauge to be 
the Coloumb gauge so that 0φ=  and ∇⋅A= 0.  The mode expan-
sion in plane waves of the gauge field then takes the form

∫ π
= +ω ω⋅ − ∗ − ⋅ +t

d
e eA x

k
a k a k( , )

(2 )
[ ( ) ( ) ].b b

i t
b

i tk x k x
3

3
( ) ( )



Exercises and Solutions•  159

This is easily verified as a solution to the wave equation with 
the constraint that c k k.2 2ω = ⋅ The gauge condition requires that 
k a 0.⋅ =  To that end we can introduce two polarization vectors that 
characterise the modes of vibration. Write them as e k( ),( )λ  where

1, 2λ=  are the two polarization state labels. Using these the vector 
Fourier modes a k( )b  are then replaced with a scalar quantity that 
has the polarization mode attached, that is a k( ).( )λ  With these two 
quantities the gauge potential now looks like

t
d

a e a eA x
k

e k k k( , )
(2 )

( ) [ ( ) ( ) ( ) ].i t i tk x k x
3

3
( ) ( ) ( ) ( ) ( )

1

2

∑∫ π
= +λ λ ω λ ω

λ

⋅ − ∗ − ⋅ +

=

Obviously, the polarization vectors will be required to satisfy 
certain constraints that describe the basic choice of the Coloumb 
gauge. They are 

e k k

e k e k

( ) 0,

( ) ( ) ,

( )

( ) ( ) δ

⋅ =

⋅ =

λ

λ λ λλ′ ′

the second condition just ensuring that the polarization vectors form 
a local set of orthonormal basis vectors that, from the first condition, 
are transverse to the wave vector. This is then the basic field and its 
decomposition. Let us now turn to evaluating the momentum of the 
field given by

d xP E B.0
3∫= ∧

The fields E and B can be written in terms of the mode decom-
position as

∑∫

∑∫

φ

π
ω

π

=− +∂

= −

−

= ∧

= − ∧

−

λ λ ω

λ

λ ω

λ λ ω

λ

λ ω

⋅ −

=

∗ − ⋅ +

⋅ −

=

∗ − ⋅ +

∇

∇

t

d
i a e

a e

t

d
i a e

a e

E x A

k
e k k

k

B x A

k
k e k k

k

( , )

(2 )
( ) ( )[ ( )

( ) ( ) ],

( , )

(2 )
( ) ( )[ ( )

( ) ( ) ].

t

i t

i t

i t

i t

k x

k x

k x

k x

3

3
( ) ( ) ( )

1

2

( ) ( )

3

3
( ) ( ) ( )

1

2

( ) ( )
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If we now substitute these into the expression for the momen-
tum and perform the integration over the spatial coordinate, we will 
obtain delta functions in the wave vectors. As an example, let us 
evaluate the first term in the electric field with the second term in 
the magnetic field,

d x
d d

a a e

P
k k

e k k e k

k k

(1, 2)
(2 ) (2 )

( ) ( ) ( )

( )( ) ( ) .i tk k x

0
3

3

3

3

3
( ) ( )

1

2

1

2

( ) ( ) ( ) ( )

∫∫ ∑∑
π π

ω=
′
− ∧ ′∧ ′

× ′

λ λ

λλ

λ λ ω ω

′

′==

′ ∗ − ′ ⋅ − − ′



The argument of momentum in the above (1, 2) denotes the cross 
term specification. Performing the integral over space gives the delta 
function k k( ).3δ − ′  Then the integral over k′  can be done simply, 
also giving ω ω′ = . The two wedge product then simplifies to

e k k e k e k k e k k e k e k
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.
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The above then simplifies to
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We obtain a similar result for the other cross term involving an 
a k( )( )λ  and its complex conjugate, while the other two terms inte-
grate to zero. This can be seen as follows for the first term in the 
electric and magnetic field cross product 

d
a aP

k
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0,

0

3
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 ∫∑ π
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=
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since the integrand is an odd function and therefore integrates to 
zero. The final result were are left with then is
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The energy of the field E is given by

E= d3x
1
2
aε0E aE

a+
1
µ0

BaB
a∫ b.

With similar manipulations to before this reduces to

E
d

a a
k

k k
(2 )

(2 ) ( )( ( )) ( ) .0

3

3
( ) ( )

1

2

 ∫∑ π
ω ω= λ λ

λ

∗

=

The angular momentum of the field is a little bit more tricky 
because we have the explicit appearance of the position vector in 
the integral, that is

d xL x E B .0
3 ∫= ∧ ∧

Again we substitute in the field decompositions as before, but 
in addition, to generate the position vector we need to partially dif-
ferentiate the exponential by the wave vector, i.e.

e i ex
k

.i t i tk x k x( ) ( )=
∂
∂

ω ω− ⋅ + − ⋅ +

Using this in the simplification results in the field angular momentum
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Looking at the three results we see that the common factor 2ω  
acts as an overall normalization for the modes and the density of 
these modes are given by the bilinear a ak k( ) ( ) .( ) ( )λ λ ∗  The macro-
scopic physical observables EP L( , , )  map to the mode parameters 

ik k k( , , )ω − ∧ ∂/∂  which up to a constant factor are the mode 
values of the momentum, energy and angular momentum. In fact 
in the quantum theory this constant factor is Planck’s constant and 
these modes then describe a particle like excitation.

Solution 10
If magnetic monopoles did exist we would have to ascribe to 

them a new magnetic charge g or magnetic charge density x( ).Mρ  
This would require Maxwell II to take the new form
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x xB( ) ( ).Mρ⋅ =∇

In addition to this, assuming that it can move in much the 
same way as an electric charge, one now has a magnetic current. 
It is therefore necessary to modify Faraday’s law (Maxwell III) to 
include this so that

x xE B J( ) ( ) .t M∧ +∂ =−∇

For the other two Maxwell equations it is sensible to label the 
electric charge and current as x( )Eρ  and JE. If we now form a com-
plex charge given by i Mρ ρ+  and a complex current iJ JE M+  then 
there exists a new symmetry of the field equations. Starting with the 
charge the new version of Maxwell I reads

x i x x i xE B( ( ) ( )) ( ) ( ) .E Mρ ρ⋅ + = +∇

It is simple enough to see now that the transformations (in fact a 
U(1) Abelian group rotation) 

x i x e x i x

x i x e x i xE B

( ) ( ) ( ( ) ( )),

( ) ( ) ( ( ) ( )),
E M

i
E M

i
E M

ρ ρ ρ ρ

ρ ρ

+ → +

+ → +

θ

θ

leave the above Gauss law invariant and is therefore a symmetry of 
this equation. We also need to check the remaining complex field 
equation which is

x i x i i i x i xE B E B J J( ( ) ( )) ( ) ( ( ) ( )).t E M∧ + − ∂ + = +∇

With x i x e x i xJ J J J( ( ) ( )) ( ( ) ( ))E M
i

E M+ → +θ  as before, the gen-
eralized field equations are invariant under this symmetry transfor-
mation.This is perhaps the simplest example of what is known as 
a duality relation, and physically it is describing how we can inter-
change electric and magnetic charges without any effect on the 
physics - what you mean by electric or magnetic charge depends on 
how you look at it.

For electric charges the Lorentz force law stays the same, but 
we now have in addition a magnetic Lorentz force law for the mag-
netic charge g which is
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= + ∧

= − ∧

q q

g g

F E v B

F B v E

,

.

E

M

Note at this point there is no duality symmetry here; if there are 
two types of charges, you should be able to distinguish them (by defi-
nition) by applying electric and magnetic fields. However, if a particle 
has both types of charge (known as a dyon) then the above becomes 

= + + ∧ −q g q gF E B v B E( ),

which is invariant under the symmetry transformation. To see 
this the above needs to be written in terms of the complex charge 
Q q ig:= +  and the complex field iG E B: ,= +  together with their 
complex conjugates. One finds

Q Q i Q QF G G v G G( ) ,= + + ∧ −

where each piece now is separately invariant.

Turning our attention now to the vector potential, we were able 
to introduce this originally because B⋅∇  was exactly zero and there-
fore B A= ∧∇  was a mathematical result. If we now have a mono-
pole source then in spherical coordinates

g

r
B

4
.r 2π

=

Can we obtain this from a gauge potential? the curl of the gauge 
field has components
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The simplest solution we can look for is when A 0r =  and 
A 0.=θ  The first equation then tells us that Aφ  should be inversely 
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proportional to sin θ, while the second requires that it is inversely 
proportional to r. The first equation also tells us that we need a cos 
θ (plus a constant) in the numerator so that when differentiated it 
will cancel off the remaining sin θ in the denominator. One can see 
therefore that the gauge potential 

θ
π θ

=
−

φ
g

r
A

(1 cos )
4 sin

,

gives the monopole magnetic field. However, there is a problem 
because this has a singular behavior at .θ π=  It is this singular aspect 
that causes the standard vector calculus identity A( ) 0⋅ ∧ =∇ ∇  to 
breakdown, as it needs to if we going to extract a monopole charge. 
In fact it doesn’t matter at all that the gauge field has a singularity 
provided the magnetic field shows no such behavior. We can side 
step the singularity in the potential by introducing a second poten-
tial. The idea here is that each potential is only to be used in a sub-
space where it doesn’t have a singularity. Together they then can 
cover the whole space. An example choice would be 

g
r

g
r

A

A

(1 cos )
4 sin

, for ,

(1 cos )
4 sin

, for ,

θ
π θ

θ π δ

θ
π θ

θ δ

=
−

< −

=−
+

>

φ

φ

+

−

the plus referring to the upper hemisphere and the minus sign, to 
the lower hemisphere (the δ is a small angle). Provided one uses 
these on their correct coordinate patch we have a solution for the 
magnetic field that is correct everywhere.

As a final point, to see how all this ties together, what happens to 
the two gauge potentials in the overlap region, for example at θ π= /2? 
They are magically related by a gauge transformation as follows

a b

θ π θ π
π

φ
π

= / − = / =

=

φ φ

φ

+ −

∇

g
r

g

A A( 2) ( 2)
2

,

2
,

so the gauge function is φ πΛ= /g 2 .
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