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Preface

Today, the finite element method (FEM) has become a common tool for solving 
engineering problems in industries for the obvious reasons of its versatility and 
affordability. To expose an undergraduate student in engineering to this powerful 
method, most of the universities have included this subject in the undergraduate 
curriculum. This book contains materials applied to mechanical engineering, 
civil engineering, electrical engineering, and physics. It is written primarily for 
students and educators as a simple introduction to the practice of FEM analysis in 
engineering and physics. This book contains many 1D and 2D problems solved by 
the analytical method, by FEM using hand calculations, and by using ANSYS 11 
academic teaching software and COMSOL. Results of all the methods have been 
compared. This book compromises 10 chapters and 3 appendices.

Chapter 1 contains mathematical preliminaries needed for understanding the 
chapters of the book. Chapter 2 provides a brief introduction to FEA, a theoretical 
background, and its applications. Chapter 3 contains the linear static analysis of 
bars of a constant cross-section, tapered cross-section, and stepped bar. In each 
section, a different variety of exercise problems is given. Chapter 4 contains the 
linear static analysis of trusses. Trusses problems are also selected in such a way 
that each problem has different boundary conditions to apply. Chapter 5 provides 
the linear static analysis of simply supported and cantilever beams. In Chapters 3 
to 5, all the problems are considered as one dimensional in nature. Indeed, stress 
analysis of a rectangular plate with a circular hole is covered in Chapter 6. In this 
chapter, emphasis is given on the concept of exploiting symmetric geometry 
and symmetric loading conditions. Also, stress and deformation plots are given.  
Chapter 7 introduces the thermal analysis of cylinders and plates. Here both one 
dimensional and two dimensional problems are considered. Chapter 8 contains 



xiv� Preface

the problems of potential flow distribution over a cylinder and over an airfoil.  
Chapter 9 provides the dynamic analysis (modal and transient analysis) of bars and 
beams. Chapter 10 provides the engineering electromagnetics analysis. The chapter 
gives an overview of electromagnetics theory and provides the finite element 
method analysis toward the electromagnetics, some models are demonstrated using 
the COMSOL multiphysics application and also ANSYS.

The appendices are located on the companion disc in the back of the book. 
Appendix A contains the introduction to Classic ANSYS and ANSYS Workbench. 
Appendix B contains an overview of computational MATLAB. Appendix C 
contains the color figures in the book.

Sarhan M. Musa
Houston, Texas
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Chapter

Mathematical 
Preliminaries1

1.1 Introduction

This chapter introduces matrix and vector algebra that is essential in the formulation 
and solution of finite element problems. Finite element analysis procedures are 
most commonly described using matrix and vector notations. These procedures 
eventually lead to the solutions of a large set of simultaneous equations. This 
chapter will be a good help in understanding the remaining chapters of the book.

1.2 Matrix Definition

A matrix is an array of numbers or mathematical terms arranged in rows (horizontal 
lines) and columns (vertical lines). The numbers, or mathematical terms, in the 
matrix are called the elements of the matrix. We denote the matrix through this book, 
by a boldface-letter, a letter in brackets [], or a letter in braces {}. We sometimes use 
{} for a column matrix. Otherwise, we define the symbols of the matrices.

Example 1.1
The following are matrices.

A =












0 1

3 p
, B[ ] =



















sin

cos

tan

q

q

q

0 0

0 0

0 0

,
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C

xdx

ydy

{ } =























∫

∫

0

3

4

11
, D

f x y

x

f x y

y
[ ] = ∂

∂
∂

∂






( , ) ( , )
, E = [ ]e

The size (dimension or order) of the matrices varies and is described by the 
number of rows (m) and the number of columns (n). Therefore, we write the size 
of a matrix as m × n (m by n). The sizes of the matrices in Example 1.1 are 2 × 2,  
3 × 3, 2 × 1, 1 × 2, and 1 × 1, respectively. 

We use aij to denote the element that occurs in row i and column j of matrix A. 
In general, matrix A can be written 

	

A = [ ] =A

a a a a

a a a a

j n

j n

11 12 1 1

21 22 2 2

. . . . . .

. . . . . .

. . . . . . . . . .

. . . . . . .. . . .

. . . . . . . . . .

. . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . .

a a a ai i ij in1 2

.. . . . .

. . . . . .a a a am m mj mn1 2











































	 (1.1)

Example 1.2
Location of an element in a matrix.

Let A =



















a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

Find (a) size of the matrix A
          (b) location of elements a11, a12, a32, and a33
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Solution
(a)  Size of the matrix A is 3 × 3
(b)  a11 is element a at row 1 and column 1
        a12 is element a at row 1 and column 2
        a32 is element a at row 3 and column 2 
        a33 is element a at row 3 and column 3

Note that, two matrices are equal if they have the same size and their corresponding 
elements in the two matrices are equal. For example,

let, A B
e

C
e

[ ] = [ ] [ ] =












[ ] =












1 3 7
0

1

0

1
, ,

p

p
, then [A] ≠ [B] since [A] and [B]

are not the same size. Also, [B] ≠ [C] since the corresponding elements are not all equal.

1.3 Types of Matrices

The types of matrices are based on the number of rows (m) and the number of 
columns (n) in addition to the nature of elements and the way the elements are 
arranged in the m  atrix. 

(a)	 Rectangular matrix is a matrix of different number of rows and columns, that 
is, m ≠ n. For example, the matrix

	

[ ]X = -



















1 2

3 5

7 0

, is rectangular matrix.

(b)	Square matrix is a matrix of equal number of rows and columns, that is,  
m = n. For example, the matrix

[ ]K
k k

k k
=













1 2

3 4

, is square matrix.

 

(c)	 Row matrix is a matrix that has one row and has more than one column, that 
is, m = 1 and n > 1. For example, the matrix 

[F] = [x  y  z], is row matrix. 
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(d)	Column matrix is a matrix that has one column and has more than one row, 
that is, n = 1 and m > 1. For example, the matrix

N = { } =



















N

0

2

4

, is column matrix.

(e)	 Scalar matrix is a matrix that has the number of columns and the number of 
rows equal to 1, that is, m = 1 and n = 1. For example, the matrix

[M] = [7], is a scalar matrix; we can write it as 7 without bracket.

(f)	 Null matrix is a matrix whose elements are all zero. For example, the matrix

0 0 0

0 0 0













, is a null matrix.

(g)	 Diagonal matrix is a square matrix that has zero elements everywhere except 
on its main diagonal. That is, for diagonal matrix aij = 0 when i ≠ j and not all 
are zero for aii when i = j. For example, the matrix

a

a

a

11

22

33

0 0

0 0

0 0



















, is a diagonal matrix.

Main diagonal

Main diagonal elements have equal row and column subscripts. The main 
diagonal runs from the upper-left corner to the lower-right corner. The main 
diagonal of the matrix here is a11, a22, and a33.

(h)	Identity (unit) matrix [I] or I, is a diagonal matrix whose main diagonal 
elements are equal to unity (1’s) for any square matrix. That is, if the elements 
of an identity matrix are denoted as eij, then

	

e
i j

i j
ij =

=

≠







1

0

,

,
.	 (1.2)
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For example, the matrix 

	

I[ ] =



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, is an identity matrix.

(i)	 Banded matrix is a square matrix that has a band of nonzero elements parallel 
to its main diagonal. For example, the matrix 

	

a a

a a a

a a a

a a a

a a

11 12

21 22 23

32 33 34

43 44 45

54 55

0 0 0

0 0

0 0

0 0

0 0 0























, is a banded matrix.

(j)	 Symmetric matrix is a square matrix whose elements satisfy the condition  
aij = aji for i ≠ j. For example, the matrix

a

a

a

11

22

33

5 8

5 2

8 2

















, is a symmetric matrix.

(k)  Anti-symmetric (Skew-symmetric) matrix is a square matrix whose elements 
aij = −aji for i ≠ j, and aii = 0. For example, the matrix

	

0 3 7

3 0 2

7 2 0

-
-

-

















, is an anti-symmetric matrix.�

(l)  �Triangular matrix is a square matrix whose elements on one side of the main 
diagonal are all zero. There are two types of triangular matrices; first, an upper 
triangular matrix whose elements below the main diagonal are zero, that is, 
a i jij = >0 for ; second, a lower triangular matrix whose elements above the 
main diagonal are all zero, that is a i jij = <0 for . For example, the matrix

	

a a a

a a

a

11 12 13

22 23

33

0

0 0



















, is an upper triangular matrix.�
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While, the matrix

	

a

a a

a a a

11

21 22

31 32 33

0 0

0



















, is a lower triangular matrix.�

(m) � Partitioned matrix (Super-matrix) is a matrix that can be divided into 
smaller arrays (sub-matrices) by horizontal and vertical lines, that is, the 
elements of the partitioned matrix are matrices. For example, the matrix

           

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
   =       

A B
C D

, is partitioned matrix with four smaller matrices, 

where

A = [a11   a12], B = [a13], C =












a a

a a

21 22

31 32

, and D =












a

a

23

33

. For example, the 
matrix

0 1 5
8 3 4
6 2 9

 
   =       

A B
C D

, is a partitioned matrix,
 

where A =












0

8
, B =













1 5

3 4
, C = [ ]6 , and D = [ ]2 9 .

1.4 Addition or Subtraction of Matrices

Addition and subtraction of matrices can only be performed for matrices of the 
same size, that is, the matrices must have same number of rows and columns. 
The addition is accomplished by adding corresponding elements of each matrix. 
For example, for addition of two matrices A and B, can give C matrix, that is, 
C A B= +  implies that c a bij ij ij= + . Where cij, aij, and bij  are typical elements of 
the C A B, ,  and  matrices, respectively.

Now, the subtraction of matrices is accomplished by subtracting corresponding 
elements of each matrix. For example, for subtraction of two matrices A and B, can give 
you C matrix, that is, C A B= -  implies that c a bij ij ij= - . Note that, both A B and 
matrices are the same size, m n× , then the resulting matrix C is also of size m n× . 



Mathematical Preliminaries	 7

For example, let A[ ] =












1 2

5 7
and B[ ] =













0 6

9 12
, then

	

A B[ ]+ [ ] =












+












=
+ +

+ +













=
1 2

5 7

0 6

9 12

1 0 2 6

5 9 7 12

1 88

14 19













, and 

	

A B[ ]-[ ] =












-












=
- -

- -













=
1 2

5 7

0 6

9 12

1 0 2 6

5 9 7 12

1 --

- -













4

4 5
.

Matrices addition and subtraction are associative; that is

	

A B C A B C A B C
A B C A B C A B C

+ + = +( )+ = + +( )
+ - = +( ) - = + -( )

	 (1.3)

For example,

let A[ ] =












1 3

7 8
, B[ ] =













2 5

3 1
, and C[ ] =













9 8

4 6
.

Then,

 

( )A B C[ ]+ [ ] + [ ] =
+ +

+ +













+












=




1 2 3 5

7 3 8 1

9 8

4 6

12 16

14 15









A B C[ ]+ [ ]+ [ ] =












+
+ +

+ +













=



( )

1 3

7 8

2 9 5 8

3 4 1 6

12 16

14 15









.

Therefore, (A+B) + C = A + (B + C).
Matrices addition and subtraction are commutative; that is

	

A B B A
A B B A

+ = +
- = - +

	 (1.4)

For example,

let A[ ] =












6 5

2 1
 and B[ ] =













3 2

1 5
, then A B[ ]+ [ ] =













+












=












6 5

2 1

3 2

1 5

9 7

3 6
,

and B A[ ]+ [ ] =












+












=












3 2

1 5

6 5

2 1

9 7

3 6
, therefore, [A] + [B] = [B] + [A].
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1.5 Multiplication of a Matrix by Scalar

A matrix is multiplied by a scalar, c , by multiplying each element of the matrix by 
this scalar. That is, the multiplication of a matrix A[ ]  by a scalar c  is defined as 

	
c A caij[ ] =   .	 (1.5)

The scalar multiplication is commutative. 
For example, 

	 Let A[ ] =
-











3 1

4 2
, then 5

15 5

20 10
A[ ] =

-











.�

1.6 Multiplication of a Matrix  
by Another Matrix

The product of two matrices is C AB= , if and only if, the number of columns in 
A is equal to the number of rows in B. The product of matrix A of size m n×  and 
matrix B of size n r× ,  the result in matrix C has size m r× .

	

�at is, [ ] [ ] [ ]m n n r m rA  B C
× × ×

= , 

must be equal

	 (1.6)

	

and c a bij ik
k

n

kj=
=

∑
1

, 	 (1.7)

where, the (ij)th component of matrix C is obtained by taking the dot product  
Cij = (ith row of A). (jth column of B).

That is, to find the element in row i and column j of [A][B], you need 
to single out row i from [A] and column j from [B], then multiply the 
corresponding elements from the row and column together and add up the 
resulting products.

For example,

	let A[ ] =












×2 2

1 3

7 8  

and

 

B[ ] =
-













×2 3

3

1

2

0

4

6
, then�
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A B[ ][ ] =










 −













=
× + × −

× + × −

×

7 8 1

2

0

4

6

1 3 3 1

7 3 8 1

1 2( )

( )

++ ×

× + ×

× + ×

× + ×













=




3 0

7 2 8 0

1 4 3 6

7 4 8 6
0

13

2

14

22

76









1 3 3

�

Size of [A][B] = 2 × 3.

1.7 Rules of Matrix Multiplications

Matrix multiplication is associative; that is

	 ABC = (AB)C = A(BC).	 (1.8)

Matrix multiplication is distributive; that is

	 A(B + C) = AB + AC	 (1.9)

or

	 (A + B)C = AC + BC.	 (1.10)

Matrix multiplication is not commutative; that is

	 AB ≠ BA.	 (1.11)

A square matrix multiplied by its identity matrix is equal to same matrix; that is

	 AI = IA = A.	 (1.12)

A square matrix can be raised to an integer power n; that is

	 An = A A…A .
n

	 (1.13)

A same square matrix multiplication with different integer power n and m can be 
given as 

	 An Am = An + m and A An m nm( ) = .� (1.14)

Transpose of product of matrices rule is given as 

	
AB B A ABC C B A( ) = ( ) ( ) =T T T T T T T, . 	 (1.15)
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Example 1.3
Given matrices

	

A{ } =



























2

4

1

3

,

 

B[ ] =

-

-

-

-























6 1 2 1

4 3 5 9

8 2 6 7

0 7 8 3

,

 

C[ ] =

-

-

-

-























4 0 3 2

1 8 4 4

5 3 2 6

9 1 0 7

,

�

	

D[ ] =

-

-



















1 1 0

2 3 1

4 0 5 �

Find the following:

a. [ ] [ ]B C+
b. [ ] [ ]B C-

c. 5 A{ }
d. B A[ ]{ }
e. D[ ]2

f. show that D I I D D[ ][ ] = [ ][ ] = [ ]

Solution

a.

 

[ ] [ ]B C+ =

-

-

-

-























-

-

-

6 1 2 1

4 3 5 9

8 2 6 7

0 7 8 3

4 0 3 2

1 8 4 4

5 3
+

22 6

9 1 0 7

6 4 1 0 2 3 1 2

4 1 3 8 5

-























=

+( ) +( ) -( ) - +( )

+( ) - +( ) ++( ) -( )

+( ) - +( ) -( ) +( )

+( ) -( ) - +( ) +( )










4 9 4

8 5 2 3 6 2 7 6

0 9 7 1 8 0 3 7














=

-

-
















              

10 1 1 1

5 5 9 5

13 1 4 13

9 6 8 10







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b. [ ] [ ]B C- =

-

-

-

-























-

-

-

-

6 1 2 1

4 3 5 9

8 2 6 7

0 7 8 3

4 0 3 2

1 8 4 4

5 3 22 6

9 1 0 7

6 4 1 0 2 3 1 2

4 1 3 8 5

-























=

-( ) -( ) +( ) - -( )

-( ) - -( ) --( ) +( )

-( ) - -( ) +( ) -( )

-( ) +( ) - -( ) -( )










4 9 4

8 5 2 3 6 2 7 6

0 9 7 1 8 0 3 7














=

-

-

-

- - -












              

2 1 5 3

3 11 1 13

3 5 8 1

9 8 8 4












c. 5 A{ }  = 5

2

4

1

3

10

20

5

15



























=



























d. B A[ ]{ } =

-

-

-

-








































6 1 2 1

4 3 5 9

8 2 6 7

0 7 8 3

2

4

1

3










=

×( ) + ×( ) + ×( ) + - ×( )

×( ) + - ×( ) + ×( ) + ×( )

6 2 1 4 2 1 1 3

4 2 3 4 5 1 9 3

8 ××( ) + - ×( ) + ×( ) + ×( )

×( ) + ×( ) + - ×( ) + ×( )
















2 2 4 6 1 7 3

0 2 7 4 8 1 3 3












=



























13

28

35

29

e. D D D[ ] = [ ][ ] =

-

-



















-

-















2

1 1 0

2 3 1

4 0 5

1 1 0

2 3 1

4 0 5



=

- × -( ) + ×( ) + ×( ) - ×( ) + ×( ) + ×( ) - ×( ) + × -

       

1 1 1 2 0 4 1 1 1 3 0 0 1 0 1 11 0 5

2 1 3 2 1 4 2 1 3 3 1 0 2 0 3 1

( ) + ×( )

× -( ) + ×( ) + - ×( ) ×( ) + ×( ) + - ×( ) ×( ) + × -( )) + - ×( )

× -( ) + ×( ) + ×( ) ×( ) + ×( ) + ×( ) ×( ) + × -( ) +

1 5

4 1 0 2 5 4 4 1 0 3 5 0 4 0 0 1 5 ××( )



















=

-

-



















5

3 2 1

0 10 8

16 4 25
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f. D I[ ][ ] =

-

-





































1 1 0

2 3 1

4 0 5

1 0 0

0 1 0

0 0 1

           =

- ×( ) + ×( ) + ×( ) - ×( ) + ×( ) + ×( ) - ×( ) + ×( ) + ×(1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1))

×( ) + ×( ) + - ×( ) ×( ) + ×( ) + - ×( ) ×( ) + ×( ) + - ×( )

×

2 1 3 0 1 0 2 0 3 1 1 0 2 0 3 0 1 1

4 11 0 0 5 0 4 0 0 1 5 0 4 0 0 0 5 1( ) + ×( ) + ×( ) ×( ) + ×( ) + ×( ) ×( ) + ×( ) + ×( )



















=

-

-



















= [ ]

[ ][ ] =

         

and

1 1 0

2 3 1

4 0 5

1 0 0

0 1 0

D

I D

00 0 1

1 1 0

2 3 1

4 0 5

1 1 0



















-

-



















=

× -( ) +

          

××( ) + ×( ) ×( ) + ×( ) + ×( ) ×( ) + × -( ) + ×( )

× -( ) + ×( )

2 0 4 1 1 0 3 0 0 1 0 0 1 0 5

0 1 1 2 ++ ×( ) ×( ) + ×( ) + ×( ) ×( ) + × -( ) + ×( )

× -( ) + ×( ) + ×

0 4 0 1 1 3 0 0 0 0 1 1 0 5

0 1 0 2 1 4(( ) ×( ) + ×( ) + ×( ) ×( ) + × -( ) + ×( )

















0 1 0 3 1 0 0 0 0 1 1 5

          =

-

-



















= [ ]

1 1 0

2 3 1

4 0 5

D

1.8 Transpose of a Matrix Multiplication

The transpose of a matrix A = [aij] is denoted as AT = [aji]. It is obtained 
by interchanging the rows and columns in matrix A. Thus, if a matrix A is of order 
m × n, then AT will be of order n × m.

For example, 

	 let A[ ] =
-













×2 3

0

1

1

2

3

5
, then

 

A T[ ] =

-

















×3 2

0 1

1 2

3 5

.�



Mathematical Preliminaries	 13

Note that it is valid that, (AB)T = BT AT, (A + B)T = AT + BT , (cB)T = cBT, and  
(AT)T = A. Also note, if AT = A, then A is a symmetric matrix.

Example 1.4

Consider that matrix

 

A[ ] =












1 2

3 4
and

 

B[ ] =
- -

- -













1 0 3

4 2 5
.

Show that ([A][B])T = [B]T [A]T.

Solution

A B[ ][ ]( ) =












- -

- -













=
× -( )+ × -( ) ×( )1 2

3 4

1 0 3

4 2 5

1 1 2 4 1 0 ++ × -( ) × -( )+ ×( )

× -( )+ × -( ) ×( )+ × -( ) × -( )+ ×( )
 2 2 1 3 2 5

3 1 4 4 3 0 4 2 3 3 4 5









=
- -

- -













[ ][ ]( ) =

-

                 
9 4 7

19 8 11

9

A B T

--

- -



















19

4 8

7 11

A T[ ] =












1 3

2 4
, B T[ ] =

- -

-

-



















1 4

0 2

3 5

B AT T[ ] [ ] =

- -

-

-































=

- ×( )+ - ×( ) -1 4

0 2

3 5

1 3

2 4

1 1 4 2 11 3 4 4

0 1 2 2 0 3 2 4

3 1 5 2 3 3 5

×( )+ - ×( )

×( )+ - ×( ) ×( )+ - ×( )

- ×( )+ ×( ) - ×( )+ × 44

9 19

4 8

7 11

( )



















- -

- -



















               =

Therefore, ([A][B])T = [B]T [A]T.
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1.9 Trace of a Matrix

A trace of a matrix A, tr(A), is a square matrix and is defined to be the sum of the 
elements on the main diagonal of matrix A. 

For example, let, A[ ] =

-



















3 5 8

5 7 2

8 2 1

, then tr(A) = 3 + 7 + (-1) = 9.

Example 1.5
Consider that matrix

	

A[ ] =












5 8

7 6
.

�

Find the tr(A).

Solution
	 tr(A) = 5 + 6 = 11.�

1.10 Differentiation of a Matrix

Differentiation of a matrix is differentiation of every element of the matrix 
separately. For example, if the elements of the matrix A are a function of t, then 

	

d

dt

da

dt

ijA = 





.
�

(1.16)

Example 1.6

Consider the matrix A
x x

x
[ ] =













3

7 6

5 2

, find the derivative 
d A

dx

[ ]
.

Solution

	

d A

dx

x x[ ] =












15 2

7 0

4

�
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1.11 Integration of a Matrix

Integration of a matrix is integration of every element of the matrix separately. 
For example, if the elements of the matrix A are a function of t, then 

	
A  dt a dtij∫ ∫= 



 .	 (1.17)

Example 1.7

Consider the matrix

 

A
x

x
[ ] =













4 2

8 1

3

, find the derivative A dx[ ]∫ .

Solution

	

A dx
x x

x x
[ ] =











∫

4

2

2

4 �

1.12 Equality of Matrices

Two matrices are equal if they have the same sizes and their corresponding 
elements are equal.

Example 1.8

Let

 

A =
-











1 4

5 3  

and B =
- +













2

2 1

x w

z k
.

If the matrices A and B are equal, find the value of x, w, z, and k.

Solution
1 = 2x                  x = ½
w = −4
z − 2 = 5                   z = 7
3 = k + 1                  k = 2
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1.13 Determinant of a Matrix

The determinant of a square matrix A is a scalar number denoted by |A| or det [A]. It 
is the sum of the products (-1)i+j aijMij, where aij are the elements along any one row or 
column and Mij are the deleted elements of i th row and j th column from the matrix [A].

For example, the value of the determinant of matrix [A] is a and can be 
obtained by expanding along the first row as:

	

a =

a a a a

a a a a

a a a a

n

n

n

11 12 13 1

21 22 23 2

31 32 33 3

...

...

...

. . . ..
.

.

.

.

.

.

.. .

...

... ( )

.

.

a a a a

a M a M a M a

n n n nn

n

1 2 3

11 11 12 12 13 13
1

11   = - + + + - +
nn nM1 	

(1.18)

where the minor Mij is a (n - 1) × (n - 1) determinant of the matrix formed by 
removing the ith row and jth column.

Also, the value a can be obtained by expanding along the first column as:

	 a = - + + + - +a M a M a M a Mn
n n11 11 21 21 31 31

1
1 11... ( ) . 	 (1.19)

Now, the value of a second-order determinant of (2 × 2) matrix is calculated by 

	
a = 





= = -det .
a a

a a

a a

a a
a a a a11 12

21 22

11 12

21 22
11 22 12 21

	 (1.20)

The value of a third-order determinate of (3 × 3) matrix is calculated by

	

a =
















=det

a a a

a a a

a a a

a a a

a a
11 12 13

21 22 23

31 32 33

11 12 13

21 22 aa

a a a
23

31 32 33 �

	

=a
a a

a a
a

a a

a a
a

a a

a11
2 22 23

32 33
12

3 21 23

31 33
13

4 21 22

3

1 1 1-( ) + -( ) + -( )
11 32a �

	

= a
a a

a a
a

a a

a a
a

a a

a a
11

22 23

32 33

12

21 23

31 33

13

21 22

31 32

- +
�

	 =a a a a a a a a a a a a a a a11 22 33 23 32 12 21 33 23 31 13 21 32 22 31-( ) - -( )+ -( ). � (1.21)
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Example 1.9
Find the value, a, of the following determinants:

a. 
2 3

1 4-

b.

 

1 3 4

2 1 2

5 4 6

- -
-

Solution

a.  a =
-

= × - × - = + =
2 3

1 4
2 4 3 1 8 3 11( ) ( )

b.  a = - -
-

= ×
-
-

- ×
-

+ ×
- -

-

= - + - - -

1 3 4

2 1 2

5 4 6

1
1 2

4 6
3

2 2

5 6
4

2 1

5 4

1 6 8 3 12 10( ) ( )) ( )+ + = + + =4 8 5 2 66 52 120

An alternative method of obtaining the determinant of a (3 × 3) matrix is by using 
the sign rule of each term that is determined by the first row in the diagram as 
follows:  

+ - +

- + -

+ - +

, or by repeating the first two rows and multiplying the terms diagonally as 

follows: 

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

a a a
a a a
a a a
a a a
a a a

a =

+
+

+
–

–

–

   = + + - - -a a a a a a a a a a a a a a a a a a11 22 33 21 32 13 31 12 23 13 22 31 23 32 11 33 12 221.
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1.14 Direct Methods for Linear Systems

Many engineering problems in finite element analysis will result in a set of 
simultaneous equations represented by [A]{X} = {B}. 

For a set of simultaneous equations having the form 

	

a x a x a x a x b

a x a x a x a x
n n

n n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2

+ + + + =
+ + + + =

...

... bb

a x a x a x a x b

a x a

n n

n

2

31 1 32 2 33 3 3 3

1 1

+ + + + =

+

...

. . . . . .

. . . . . .

. . . . . .

nn n nn n nx a x a x b2 2 3 3+ + + =... �

(1.22)

where there are n unknown x1, x2, x3,…, xn to be determined. These equations can 
be written in matrix form as 

	

a a a a
a a a a
a a a a

n

n

n

11 12 13 1

21 22 23 2

31 32 33 3

...

...

...
.
.
.

.

.

.

.

.

.

.

.

.

.

..

.
...

.

.

.
a a a a

x
x
x

xn n n nn n1 2 3

1

2

3













































=























b
b
b

bn

1

2

3
.
.
.

.

 This matrix equation can be written in a compact form as 

	 AX = B,	 (1.23)

where A is a square matrix with order n × n, while X and B are column matrices 
defined as 

	

A =

a a a a
a a a a
a a a a

n

n

n

11 12 13 1

21 22 23 2

31 32 33 3

...

...

...
.
.
.

.

.

.

.

.

.

.

.

..

.

.

.
...

, .
.
.

a a a a

x
x
x

xn n n nn1 2 3

1

2

3























=         X

nn n

b
b
b

b























=























, .
.
.

         B

1

2

3

There are several methods for solving a set of simultaneous equations such 
as by substitution, Gaussian elimination, Cramer’s rule, matrix inversion, and 
numerical analysis.
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1.15 Gaussian Elimination Method

In the argument matrix of a system, the variables of each equation must be on the 
left side of the equal sign (vertical line) and the constants on the right side. For 
example, the argument matrix of the system

	

2 3 5

4 8
1 2

1 2

x x

x x

- = -
- = �

	

is 
2 3 5

1 4 8

- -

-













.

�

The argument matrix is used in Gaussian elimination method. The Gaussian 
elimination method is summarized by the following steps:

1.	 Write the system of equations in the argument matrix form.

2.	Perform elementary row operations to get zeros below the main diagonal.

a. interchange any two rows
b. replace a row by a nonzero multiply of that row
c. �replace a row by the sum of that row and a constant nonzero multiple of 

some other row

3.	Use back substitution to find the solution of the system.

We demonstrate the Gaussian elimination method in Example 1.10.  

Example 1.10
Solve the linear system using the Gaussian elimination method.

	

x x

x x

x x x

2 3

1 3

1 2 3

2 0

2 3 5 0

3 0

+ - =
+ - =

+ + - = �

Solution
We use Ri to represent the ith row. Write the argument matrix of the system as:

	

0 1 1 2

2 0 3 5

1 1 1 3



















.

�
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	 Interchange R1 and R2, this gives:

2 0 3 5

0 1 1 2

1 1 1 3



















.�

	

1

2 1R ,  this gives:

1 0
3

2

5

2

0 1 1 2

1 1 1 3























.�

	 -R1 + R3, this gives:

1 0
3

2

5

2

0 1 1 2

0 1
1

2

1

2
-























.�

	 -R2 + R3, this gives:

1 0
3

2

5

2

0 1 1 2

0 1
3

2

3

2
- -























.�

	
- 2

3 3R ,  this gives:

1 0
3

2

5

2

0 1 1 2

0 1 1 1























.�

R3 gives x3 = 1, substitute the value of x3 in R2 and R3, this gives x2 = 1, and  
x1 = 1, respectively.



Mathematical Preliminaries	 21

1.16 Cramer’s Rule

Cramer’s rule can be used to solve the simultaneous equations for x1, x2, x3, …, xn as

	
x x x xn

n
1

1
2

2
3

3= = = =a
a

a
a

a
a

a
a

, , ,...,
	

(1.24)

where the a’s are the determinations expressed as

a =

a a a a

a a a a

a a a a

n

n

n

11 12 13 1

21 22 23 2

31 32 33 3

...

...

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

...

,

...

a a a a

b a a a

n n n nn1 2 3

1

1 12 13



























=a

11

2 22 23 2

3 32 33 3

2 3

n

n

n

n n n

b a a a

b a a a

b a a a

...

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... nnn

n

n

a b a a

a b a a

a





























=,

...

...

a2

11 1 13 1

21 2 23 2

331 3 33 3

1 3

b a a

a b a a

n

n n n nn

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...





























,

� (1.25)

a3

11 12 1 1

21 22 2 2

31 32 3 3

=

a a b a

a a b a

a a b a

n

n

n

...

...

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

,...,

a a b a

a a

n n n nn

n

1 2

11 1

































=a

22 13 1

21 22 23 2

31 32 33 3

1

a b

a a a b

a a a b

a an n

...

...

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

22 3a bn n...



































.

It is worth noting that a is the determinant of matrix A and an is the determi
nant of the matrix formed by replacing the nth column of A by B. Also, Cramer’s 
rule applies only when a ≠ 0, but when a = 0, the set of questions has no unique 
solution, because the equations are linearly dependent. 
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Summary of Cramer’s Rule

1.	 Form the coefficient matrix of A and column matrix B.

2.	Compute the determinant of matrix of A. If det[A] = 0, then the system has no 
solution; otherwise, go to the next step.

3.	Compute the determinant of the new matrix [Ai], by replacing the ith matrix 
with the column vector B.

4.	Repeat Step 3 for i = 1, 2, …, n.

5.	Solve for the unknown variable Xi using

	
Xi

i i n= =
A
A

, , , ..., . for 1 2
	

(1.26)

Example 1.11
Solve the simultaneous equations 

	 2 5 13 3 141 2 1 2x x x x- = + = -,    5 �

Solution
The matrix form of the given equations is 

	

2 5

5 3

13

14

1

2

-























=
-













x

x
.

�

The determinants are calculated as 

	

a

a

=
-

= ×( ) - - ×( ) = + =

=
-

-
= ×( ) - - × -( ) =

2 5

5 3
2 3 5 5 6 25 31

13 5

14 3
13 3 5 14 391 -- = -

=
-

= × -( ) - ×( ) = - - = -

70 31

2 13

5 14
2 14 13 5 28 65 932a

�

Thus,

	
x x1

1
2

231

31
1

93

31
3= = - = - = = - = -a

a
a
a

,   
�
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Example 1.12
Solve the simultaneous equations 

	 10 3 4 15 5 2 0 6 01 2 3 1 2 3 1 2 3x x x x x x x x x- - = + - = - + + =, , ,   2   2 �

Solution
In matrix form, the given set of equations becomes

	

10 3 4

2 5 2

2 1 6

15

0

0

1

2

3

- -

-

-





































=















x

x

x





.

�

The determinants are calculated as

a =
- -

-
-

= ×( ) - - ×( )[ ]- -( ) ×( ) - - × -( )[ ]+ -( )
10 3 4

2 5 2

2 1 6

10 5 6 2 1 3 2 6 2 2 4 22 1 5 2

320 24 48 296

15 3 4

0 5 2

0 1 6

15 5 6 21

×( ) - × -( )[ ]

= + - =

=
- -

- = ×( ) - -

  

a ××( )[ ]- -( ) ×( ) - - ×( )[ ]+ -( ) ×( ) - ×( )[ ]

= + - =

1 3 0 6 2 0 4 0 1 5 0

480 0 0 48   00

10 15 4

2 0 2

2 0 6

10 0 6 2 0 15 2 6 2 22a =
-
-

-
= ×( ) - - ×( )[ ]- ( ) ×( ) - - × -( )[ ]+ -44 2 0 0 2

0 120 0 120

10 3 15

2 5 0

2 1 0

10 5 03

( ) ×( ) - × -( )[ ]

= - - = -

=
-

-
= ×( )

   

a -- ×( )[ ]- -( ) ×( ) - × -( )[ ]+ ( ) ×( ) - × -( )[ ]

= - +

0 1 3 2 0 0 2 15 2 1 5 2

0 0 180   == 180

Thus,

	
x x x1

1
2

2
3

3480

296
1 62

120

296
0 41

180

296
0= = = = = - = - = = =a

a
a
a

a
a

. , . , .  661
�
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1.17 Inverse of a Matrix

Matrix inversion is used in many applications including the linear system of 
equations.

For the matrix equation AX = B, we can invert A to obtain X, that is, 

	 X = A-1B	 (1.27)

where A-1 is the inverse matrix of A. The inverse matrix satisfies 

	 AA A A I- -= =1 1
	

(1.28)

where

	
A

A
-1 Adj 

  
= [ ]A

,
	

(1.29)

where Adj A[ ]  is the adjoint of matrix A. The Adj A[ ]  is the transpose of the 
cofactors of matrix A. For example, let the n n×  matrix A be presented as

	

A =












a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2

...

...

. . . .

...

.

.

.

.

.

.

.

.












.

		
		

The cofactors of the matrix A are written in matrix F as

	

F = cof [A] =

 

f f f

f f f

f f f

n

n

n n nn

11 12 1

21 22 2

1 2

...

...

. . . .

...

.

.

.

.

.

.

.

.























	 (1.30)

where fij is the product of -( ) +1 i j  and the determinant of the n n-( )× -( )1 1  
submatrix is obtained by removing the ith row and jth column from matrix A. 
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For instance, by removing the first row and the first column of matrix A, we find 
the cofactor f11 as

	

-( ) =1 2
11

22 23 2

32 33 3

2 3

f

a a a

a a a

a a a

n

n

n n nn

...

...

. . . .

...

.

.

.

.

.

.

.

.
.	 (1.31)

Now the adjoint of matrix A can be obtained as

	

Adj A F

f f f

f f f

f f

T

n

n

n n

[ ] = [ ] =  

11 12 1

21 22 2

1 2

...

...

. . . .

...

.

.

.

.

.

.

.

.

ffnn

T






















. 	 (1.32)

So, the inverse of A matrix can be written as

	
A

A
-1  

  
= [ ]F T

. 	 (1.33)

A matrix that possesses an inverse is called invertible matrix (nonsingular matrix). 
A matrix without an inverse is called a non-invertible matrix (singular matrix).

Consider a 2 × 2 matrix, if

	

A =












a b

c d
, and ad bc- ≠ 0 , then�

	
A

A
-1 1

  
=

-

-













=
-

-

-













=
-

-
-

-

d b

c a ad bc

d b

c a

d

ad bc

b

ad bc1

cc

ad bc

a

ad bc- -



















. 	 (1.34)
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The inverse of product of matrices rule can be presented as

	
AB B A ABC C B A( ) = ( ) ( ) =- - - - - - -1 1 1 1 1 1 1, .	 (1.35)

Example 1.13

Let matrix, A =












3 2

2 1
, find its inverse matrix, A-1.�

Solution

	

A
A

-1 1

  
=

-

-













=
-

-

-













=
-

-













1 2

2 3

1

3 4

1 2

2 3

1 2

2 3 �

Example 1.14

Let matrix,A =
-













2 1

1 1
, find its inverse matrix, A-1.�

Solution
Using the concept of equation (1.27), we get

	

A- =












1
a b

c d
, then AA- =

-

























=












1
2 1

1 1

1 0

0 1

a b

c d �

	 2a + c =1		  3a = 1		  a = 1/3�

	 2b + d = 0		  3b = -1		 b = -1/3�

	 -a + c = 0		  a = c = 1/3�

	 -b + d = 1		  d = 1 + b = 2/3�

Therefore,

	

A- =
-











1
1 3 1 3

1 3 2 3

/ /

/ /
.

�
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1.18 Vector Analysis

A vector is a special case of a matrix with just one row or one column. A vector is a 
quantity (mathematical or physical) that has both magnitude and direction. Examples 
of vectors are force, momentum, acceleration, velocity, electric field intensity, and 
displacement. A scalar is a quantity that has only magnitude. Examples of scalars are 
mass, time, length, volume, distance, temperature, and electric potential.

A vector A has both magnitude and direction. A vector A in Cartesian 
(rectangular) coordinates can be written as (Ax, Ay, Az) where Ax, Ay, and Az are 
components of vector A in the x, y, and z directions, respectively. The magnitude 
of vector A is a scalar written as |A| or A and given as 

	
A = + +A A Ax y z

2 2 2 .	 (1.36)

A unit vector aA along vector A is defined as a vector whose magnitude is unity 
(i.e., 1) and its direction is along vector A, that is, 

	 A A a= A , 	 (1.37)

	
thus, A A A A A Ax y z x x y y z z, ,( ) = + +a a a 	 (1.38)

	

and a A
A

a a a
A

x x y y z z

x y z

A A A

A A A
= =

+ +

+ +2 2 2
. 	 (1.39)

Figure 1.1 (a) illustrates the components of vector A and Figure 1.1 (b) shows 
the unit vectors.

Figure 1.1.  (a) Components of vector A (b) Unit vectors.

y y

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

Ayay ay

ax
Axax

Azaz

z (a) (b)

A

x

z

x
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(a) Vectors equality
Two vectors are equal if they are the same type (row or column) and their 
corresponding elements are equal to each other.

(b) Vector addition and subtraction
Two vectors can be added or subtracted only if they are of the same type, 
(i.e., both row vectors or both column vectors) and they are of the same number 
of components (elements).

Two vectors A = (Ax, Ay, Az) and B = (Bx, By, Bz) can be added together to give 
another vector C, that is,

	 C = A + B	 (1.40)

	
C a a a= +( ) + +( ) + +( )A B A B A Bx x x y y y z z z . 	 (1.41)

Vector subtraction is similarly presented as 

	 D = A - B = A + (-B) 	 (1.42)

	
D a a a= -( ) + -( ) + -( )A B A B A Bx x x y y y z z z . 	 (1.43)

(c) Multiplication of a scalar by a vector
When a vector is multiplied by a scalar, each element is manipulated by the scalar. 
Let, vector A = (Ax, Ay, Az) and scalar k, then

	
k kA kA kAx y zA = ( , , ). 	 (1.44)

There are three basic laws of algebra for given vectors A, B, and C when k and l 
are scalars, summarized in Table 1.1. 

Table 1.1  Three Basic Laws of Vector Algebra

Law Addition Multiplication

Commutative A + B = B + A k A = A k

Associative A + (B + C) = (A + B) + C k(l A) = (kl) A

Distributive k(A + B) = kB + kA

(d) Vector multiplication
There are two types of vector multiplication:

1.	 Scalar (dot) product, A⋅B
2.	Vector (cross) product, A × B
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1. � The dot product of two vectors A = (Ax, Ay, Az) and B = (Bx, By, Bz) written as 
A⋅B is defined as 

	 A⋅B = |A||B| = cosqAB,	 (1.45)

where qAB is the smallest angle between vectors A and B. Also, the dot product 
is defined as,

	
A B⋅ = + +A B A B A Bx x y y z z . 	  (1.46)

�It is worth it to know that, two vectors A and B are perpendicular (orthogonal) 
if and only if A⋅B = 0. Also, two vectors A and B are parallel if and only if B = kA.
For vectors A, B, C and k scalar, the following prosperities dot product hold:

	 (a) A⋅B = B⋅A� (1.47)

	 (b) A⋅(B + C) = A⋅B + A⋅C� (1.48)

	 (c) A⋅A = |A|2 = A2� (1.49)

	 (d) k(A⋅B) = (kA)⋅B = A⋅(kB)� (1.50)

	 (e) a a a a a a

a a a a a a
x y y z z x

x x y y z z

⋅ = ⋅ = ⋅ =

⋅ = ⋅ = ⋅ =

0

1
� (1.51)

2. � The cross product of two vectors A = (Ax, Ay, Az) and B = (Bx, By, Bz) written as  
A × B, is defined as 

	 A × B = |A||B| sinqAB an,	 (1.52)

where an is a unit vector normal to the plane containing vectors A and B. The 
direction of an is taken as the direction of the right thumb when the fingers of 
the right hand rotate from vector A to vector B as shown in Figure 1.2.

Figure 1.2.  Right-hand rule for the direction of A × B and an.

A × B

B

A

an

θAB
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Also, the cross product is defined as,

A B
a a a

a a× = = -( ) - -( ) + -
x y z

x y z

x y z

y z z y x x z z x y x y yA A A

B B B

A B A B A B A B A B A BBx z( )a .

� (1.53)

Because of the direction requirement of the cross product, the commutative law 
does not apply to the cross product. Instead, 

	 A × B = -B × A.	 (1.54)

Example 1.15
Given A = (3, -2, 5) and A = (2, 4, -6), find
a.  A + B
b.	 A - B
c.	 |A - B|

Solution
a. A B a a a

A B a a a

+ = +( ) + - +( ) + -( )
+ = + - = -

3 2 2 4 5 6

5 2 5 2 1

x y z

x y z ( , , )

b.

 

A B a a a

A B a a a

- = -( ) + - -( ) + +( )
- = - + = -

3 2 2 4 5 6

6 11 1 6 11

x y z

x y z ( , , )

c.

 

A B

A B

- = -( ) + - -( ) + +( )
- = + + = =

3 2 2 4 5 6

1 36 121 158 12 57

2 2 2

.

Example 1.16
Given A = 3ax + 2ay - az and B = ax + ay, find A⋅B and A × B.�

Solution
	 A⋅B = (3)(1) + (2)(1) + (-1)(0) = 5�

A B
a a a

a a a× = - = × - - ×( ) - × - - ×( ) + × - ×( )
x y z

x y3 2 1

1 1 0

2 0 1 1 3 0 1 1 3 1 2 1( ) ( ) zz

x y z  = A B a a a× - +

�
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(e)  The Del (∇) operator
	� The Del (∇) operator is a vector differential operator and known as gradient 

operator.
	 We obtain ∇ in Cartesian coordinates (x,y,z) as, 

	
∇ = ∂

∂
+ ∂

∂
+ ∂

∂
a a ax y zx y z

.	 (1.55)

	 We obtain ∇ in cylindrical coordinates (r,f,z) as, 

	
∇ = ∂

∂
+ ∂

∂
+ ∂

∂
a a ar fr r f

1
z z

.	 (1.56)

	 We obtain ∇ in spherical coordinates (r,q,f) as, 

	
∇ = ∂

∂
+ ∂

∂
+ ∂

∂
a a ar r r rq fq q f

1 1

sin
.
	 (1.57)

	� The Del (∇) operator is useful in defining the following operations on a scalar 
or a vector:

1.	 ∇A is the gradient of a scalar A (the result of this operation is a vector)

(a) For Cartesian coordinates, ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

A
A

x

A

y

A

zx y za a a .	 (1.58)

(b) For cylindrical coordinates, ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

A
A A A

zza a ar fr r f
1

.	 (1.59)

(c) For spherical coordinates, ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

A
A

r r

A

r

A
ra a aq fq q f

1 1

sin
. 	 (1.60)

Considering A and B are scalars and n is an integer, the following formulas are 
true on gradient:

• ∇ +( ) = ∇ + ∇A B A B � (1.61)

• ∇( ) = ∇ + ∇AB A B B A � (1.62)

• ∇



 = ∇ - ∇A

B

B A A B

B2

� (1.63)

• ∇ = ∇-A nA An n 1 � (1.64)
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2.	∇ ⋅ A is the divergence of a vector A (the result of this operation is a scalar)

(a) For Cartesian coordinates, ∇⋅ =
∂
∂

+
∂
∂

+
∂
∂

A
A

x

A

y

A

z
x y z .	 (1.65)

(b) For cylindrical coordinates, ∇⋅ = ∂
∂

( )+
∂
∂

+
∂
∂

A 1 1

r r
r

r fr
f

A
A A

z
z .	 (1.66)

(c) For spherical coordinates,

	
∇⋅ = ∂

∂
( )+ ∂

∂
( )+

∂
∂

A 1 1 1
2

2

r r
r A

r
A

r

A
r sin

sin
sinq q

q
q fq

f .	 (1.67)

Considering A and B are vectors and k is a scalar, the following formulas are 
true on divergence of a vector:

     • ∇⋅ +( ) = ∇⋅ + ∇⋅A B A B � (1.68)

     • ∇⋅( ) = ∇⋅ + ⋅∇k k kA A A � (1.69)

3.	∇ × A is the curl of a vector A (the result of this operation is a vector)

(a)  For Cartesian coordinates, ∇ × = ∂
∂

∂
∂

∂
∂

A

a a ax y z

x y z

x y z

A A A

	 (1.70)

or

	
∇ × =

∂
∂

-
∂
∂







+
∂
∂

-
∂
∂





 +

∂
∂

-
∂
∂







A a a
A

y

A

z

A

z

A

x

A

x

A

y
z y

x
x z

y
y x

 a z .
	 (1.71)

(b)  For cylindrical coordinates, ∇ × = ∂
∂

∂
∂

∂
∂

A

a a a

1

r

r

r f

r

r f

r f

z

z

z

A A A

	 (1.72)

or

	

∇ × =
∂
∂

-
∂
∂







+
∂
∂

-
∂
∂







+
∂( )

∂
-

∂
A a a1 1

r f r r
r
r

f
r

r
f

fA A

z

A

z

A A
z z

AA
z

r

f∂






a .

�
(1.73)
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(c)  For spherical coordinates, ∇ × = ∂
∂

∂
∂

∂
∂

A

a a a

1
2r

r r

r

A rA r A

r

r

sin

sin

sin

q

q

q f

q

q f

q f

 

� (1.74)

or

	

∇ × =
∂( )

∂
-

∂
∂







+

∂
∂

-
∂( )

∂


A a1 1 1

r

A A

r

A rA

rr
r

sin

sin

sinq
q

q f q f
f q f






+
∂( )

∂
-

∂
∂







a

a

q

q
fq

1

r

rA

r

Ar .

	 (1.75)

Considering A and B are vectors and k is a scalar, the following formulas are 
true on curl of a vector:

• ∇ × +( ) = ∇ × + ∇ ×A B A B � (1.76)

• ∇ × ×( ) = ∇⋅( ) - ∇⋅( )+ ⋅∇( ) - ⋅∇( )A B A B B A B A A B 	 (1.77)

• ∇ × ( ) = ∇ × + ∇ ×k k kA A A � (1.78)

• ∇⋅ ∇ ×( ) =A 0 � (1.79)

• ∇ × ∇ =k 0 � (1.80)

4.	∇2A-Laplacian of a scalar A (the result of this operation is a scalar)

(a) For Cartesian coordinates, ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

2
2

2

2

2

2

2
A

A

x

A

y

A

z
. 	 (1.81)

(b) For cylindrical coordinates, ∇ = ∂
∂

∂
∂







+ ∂
∂

+ ∂
∂

2
2

2

2

2

2

1 1
A

A A A

zr r
r

r r f
. 	 (1.82)

(c) For spherical coordinates, 

	
∇ = ∂

∂
∂
∂





 + ∂

∂
∂
∂





 + ∂

∂
2

2
2

2 2 2

2

2

1 1 1
A

r r
r

A

r r

A

r

A

sin
sin

sinq q
q

q q f
.. 	 (1.83)

The Laplacian of a vector A, can be defined as

	 ∇ = ∇ ∇⋅( ) - ∇ × ∇ ×2A A A. 	 (1.84)
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Example 1.17
Find the gradient of the scalar field A e x yz= - sin cosh .3

Solution
∇ = + -- - -A e x y e x y e x yz

x
z

y
z

z3 3 3 3cos cosh sin sinh sin cosha a a

1.19 Eigenvalues and Eigenvectors

Eigenvalues problems arises from many branches of engineering especially in 
analysis of vibration of elastic structures and electrical systems. 

The eigenvalue problem is presented in linear equations in the form 

	 A X X[ ]⋅{ } - { } = { }l 0 . 	 (1.85)

Where [A] is a square matrix; l is a scalar and called eigenvalue of matrix  [A]; 
{X} is eigenvector of matrix [A] corresponding to l.

To find the eigenvalues of a square matrix [A] we rewrite the equation (1.55) as

	 A X I X[ ]{ } = [ ]{ }l 	 (1.86)

or

	 lI A-[ ]⋅{ } = { }X 0 .� (1.87)

There must be a nonzero solution of equation (1.87) in order for l to be an 
eigenvalue. However, equation (1.87) can have a nonzero solution if and only if 

	 lI A- = 0 .	 (1.88)

Equation (1.88) is called the characteristic equation of matrix [A] and the scalars 
satisfy the equation (1.88) are the eigenvalues of matrix [A]. If matrix  [A] has the form 

	

A =

a a a a

a a a a

a a a a

n

n

n

11 12 13 1

21 22 23 2

31 32 33 3

...

...

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

...a a a an n n nn1 2 3





























, then equation (1.88) can be written as�
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a a a a
a a a a
a a a a

n

n

n

11 12 13 1

21 22 23 2

31 32 33 3

-
-

-

l
l

l

...

...

...
.
.
.

.

.

.

.

..

.

.

.

.

.

.

.
...

.

a a a an n n nn1 2 3

0

-

=

l

�

(1.89)

The equation (1.89) can be expanded to a polynomial equation in l as 

	 l l ln n
n nc c c+ + + + =-

-1
1

1 0... . 	 (1.90)

Thus, the nth degree polynomial is

	 l l l lI A- = + + + +-
-

n n
n nc c c1

1
1... . 	 (1.91)

Equation (1.91) is called a characteristic polynomial of n × n matrix [A]. Indeed, 
the nth roots of the polynomial equation are the nth eigenvalues of matrix [A]. 
The solutions of equation (1.87) with the eigenvalues substituted on the equation 
are called eigenvectors.

Example 1.18

Find the eigenvalues and eigenvectors of the 2 × 2 matrix A =
-

-






6 3

4 5

Solution
Since

	
l l

l
l

I A-[ ] = 





-
-

-






=
-

-






1 0

0 1

6 3

4 5

6 3

4 5
,
�

the characteristic polynomial of matrix [A] is 

	
l

l
l

l l l lI A- =
-

-
= -( ) -( ) - ×( ) = - +

6 3

4 5
6 5 3 4 11 182 .

�

and the characteristic equation of matrix [A] is

	 l2 - 11l + 18 = 0.�

The solutions of this equation are l1 = 2 and l2 = 9; these values are the eigenvalues 
of matrix [A].

The eigenvectors for each of the above eigenvalues are calculated using 
equation (1.87).
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For l1 = 2, we obtain

	

2 6 3

4 2 5

0

0
1

2

-
-















= 







x

x
. �

The above equation yields to two simultaneous equations for x1 and x2, as follows:

	 - + =4 3 01 2x x  gives
 
x x1 2

3

4
=

	 4 3 01 2x x- =  gives
 
x x1 2

3

4
= .

Thus, choosing x2 4= ,  we obtain the eigenvector x2

3

4
=












k , where k is an 

arbitrary constant.
For l2 = 9, we obtain

	

9 6 3

4 9 5

0

0
1

2

-
-















= 







x

x
.
�

The above equation yields to two simultaneous equations for x1 and x2, as follows:

	 3 3 01 2x x+ =  gives x x1 2= - �

	 4 4 01 2x x+ =  gives x x1 2= - . �

Thus, choosing x1 1= - , we obtain the eigenvector x1

1

1
=

-










k , where k is an 

arbitrary constant.

1.20 Using MATLAB

MATLAB is a numerical computation and simulation tool that uses matrices 
and vectors. Also, MATLAB enables users to solve wide analytical problems. The 
majority of engineering systems are presented by matrix and vector equations. 
Therefore, MATLAB becomes essential to reduce the computational workload. 

All MATLAB commands or expressions are entered in the command window 
at the MATLAB prompt “>>”. To execute a command or statement, we must press 
return or enter at the end. If the command does not fit on one line, we can continue 
the command on the next line by typing three consecutive periods (…) at the end of 
the first line. A semicolon (;) at the end of a command suppresses the screen output 
and the command is carried out. Typing anything following a % is considered as 
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comment, except when the % appears in a quote enclosed character string or certain 
I/O format statements. Comment statements are not executable. To get help on a 
topic (such as matrix), you can type the command helpmatrix. Here, we introduce 
basic ideas of matrices and vectors operations. For more details, see Appendix B.  

Elements of a matrix are enclosed in brackets and they are row-wise. The 
consecutive elements of a row are separated by a comma or a space and are entered in 
rows separated by a space or a comma, and the rows are separated by semicolons (;) 
or carriage returns (enter).

A vector is entered in the MATLAB environment the same way as a matrix. 
For example, matrix A,

	
A = 





1 0

3 2
, is typed in MATLAB as

�

	

>> A = [1  0; 3  2]

A =

     1     0

    3     2
�

The basic scalar operations are shown in Table 1.2. In addition to operating on 
mathematical scalar, MATLAB allows us to work easily with vectors and matrices. 
Arithmetic operations can apply to matrices and Table 1.3 shows extra common 
operations that can be implemented to matrices and vectors.

Table 1.2  MATLAB Common Arithmetic Operators

Operators Symbols Descriptions

+ addition

- subtraction

* multiplication

/
right division (means 

a

b
)

\
left division (means 

b

a
)

^  exponentiation (raising to a power)

‘ converting to complex conjugate transpose 

( ) specify evaluation order
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Table 1.3  Matrix Operations

Operations Descriptions

A' Transpose of matrix A

det (A) Determinant of matrix A

inv (A) Inverse of matrix A

eig (A) Eigenvalues of matrix A

diag (A) Diagonal elements of matrix A 

rank (A) Rank of matrix A

cond (A) Condition number of matrix A

eye (n) The n × n identity matrix (1’s on the main diagonal)

eye (m, n) The m × n identity matrix (1’s on the main diagonal)

trace (A) Summation of diagonal elements of matrix A

zeros (m, n) The m × n matrix consisting of all zeros

ones (m, n) The m × n matrix consisting of all ones

rand (m, n) The m × n matrix consisting of random numbers

randn (m, n) The m × n matrix consisting of normally distributed numbers

diag (A) Extraction of the diagonal matrix A as vector

diag (A,1) Extracting of first upper off-diagonal vector of matrix A 

diag (u) Generating of a diagonal matrix with a vector u on the diagonal

expm (A) Exponential of matrix A

ln (A) LU decomposition of matrix A

svd (A) Singular value decomposition of matrix A

qr (A) QR decomposition of matrix A

min (A) Minimum of  vector A

max (A) Maximum of  vector A

sum (A) Sum of elements of vector A

std (A) Standard deviation of the data collection of vector A

sort (A) Sort the elements of vector A

mean (A) Means value of vector A

triu (A) Upper triangular of matrix A

triu (A, I) Upper triangular with zero diagonals of matrix A

tril (A) lower triangular of matrix A

tril (A, I) lower triangular with zero diagonals of matrix A
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Example 1.19
Given the following matrices:

	

A B C[ ] =














[ ] =
-
-
-















[ ] =
1 2 3
4 5 6
7 8 9

0 1 0
2 3 1
4 5 3

2
0, ,  and 
44











 �
Use MATLAB to perform the following operations:

a. [A] + [B]
b. [A] - [B]
c. 5[B]
d. [A][B]
e. [A][C]
f. [A]2

g. [A]T

h. [B]-1

i. tr (A)
j. |B |

Solution
a. [A] + [B]

	

>> A=[1 2 3;4 5 6;7 8 9];

>> B=[0 -1 0;2 -3 1;4 -5 3];

>> A+B

ans =

    1      1    3

    6      2    7

    11    3    12
�

b. [A] - [B]

	

>> A=[1 2 3;4 5 6;7 8 9];

>> B=[0 -1 0;2 -3 1;4 -5 3];

>> A-B

ans =
     1    3     3

     2    8     5

     3    13   6
�



40	 Finite Element Analysis

c. 5[B]

	

>> B=[0 -1 0;2 -3 1;4 -5 3];

>> 5*B

ans =
    0     -5       0

    10   -15     5

    20   -25     15
�

d. [A][B]

	

>> A=[1 2 3;4 5 6;7 8 9];

>> B=[0 -1 0;2 -3 1;4 -5 3];

>> A*B

ans =
    16   -22    11

    34   -49    23

    52   -76    35
�

e. [A][C]

	

>> A=[1 2 3;4 5 6;7 8 9];

>> C=[2;0;4];

>> A*C

ans =
    14

    32

    50
�

f. [A]2

	

>> A=[1 2 3;4 5 6;7 8 9];

>> A^2

ans =
   30    36    42

   66    81    96

   102  126  150
�
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g. [A]T

	

>> A=[1 2 3;4 5 6;7 8 9];

>> A'

ans =
     1     4     7

     2     5     8

     3     6     9
�

h. [B]-1

	

>> B=[0 -1 0;2 -3 1;4 -5 3];

>> inv(B)

ans =
   -2.0000     1.5000   -0.5000

   -1.0000     0               0

     1.0000   -2.0000     1.0000
�

i. tr (A)

	

>> A=[1 2 3;4 5 6;7 8 9];

>> trace(A)

ans =
    15

�

j. |B |

	

>> B=[0 -1 0;2 -3 1;4 -5 3];

>> det(B)

ans =

     2
�

Example 1.20
Solve the following system of three equations: 

	

5 2 6

4 7

2 3

x y z

x y z

x y z

+ + =
- + + =

- - = - �
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using the following methods:

a. the matrix inverse
b. Gaussian elimination
c. Reverse Row Echelon Function

Solution
a. � Since we know A-1A = 1, we can find the solution of the system of linear 

equations AX = B by using X = A-1B.
Now, we write the system of equations by using the following matrices:

	

A X B= -
- -















=














=
-















5 1 2
1 4 1
1 2 1

6
7
3

, ,  
x
y
z �

	

>> A = [5 1 2; -1 4 1; 1 -2 -1];

>> B = [6; 7; -3];

>> X = inv(A)*B

X =
     0.8571

     2.0000

   -0.1429
�

�Generally, using the matrix inverse to solve linear systems of equations should 
be avoided due to the excessive round-off errors.

b. � We use the left division operator in MATLAB X = A\B to solve linear systems of 
equations using Gaussian elimination.

	

>> A = [5 1 2; -1 4 1; 1 -2 -1];

>> B = [6; 7; -3];

>> X = A\B

X =
     0.8571

     2.0000

   -0.1429
�

c. � The reduced row echelon function use, rref, to solve the system of linear 
equations. The rref function requires an expanded matrix as input, representing 
the coefficients and results. The last column in the output array represents the 
solution of equations.
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>> A = [5 1 2; -1 4 1; 1 -2 -1];

>> B = [6; 7; -3];

>> C = [A,B];

>> rref(C)

ans =
    1.0000         0         0    0.8571

         0    1.0000         0    2.0000

         0         0    1.0000   -0.1429
�

Example 1.21
Solve the following set of equations using the Cramer’s rule:

	

5 2 3
3 5

2 1
1

1 3 4

1 2 3 4

1 2 4

1 2 3 4

x x x
x x x x

x x x
x x x x

+ + =
+ + + =

+ + =
+ + + = - �

Solution

	

>> A = [5 0 1 2;1 1 3 1; 1 1 0 2;1 1 1 1];

>> B = [3;5;1;-1];

>> A1 = [B A(:,[2:4])];

>> A2 = [A(:,1) B A(:,[3:4])];

>> A3 = [A(:,[1:2]) B A(:,4)];

>> A4 = [A(:,[1:3]) B];

>> x1 = det(A1)/det(A)

x1 =
    -2

>> x2 = det(A2)/det(A)

x2 =
    -7

>> x3 = det(A3)/det(A)

x3 =
     3

>> x4 = det(A4)/det(A)

x4 =
     5

�



44	 Finite Element Analysis

Problems 

1.	 Identify the size and the type of the given matrices. Identify if the matrix is a 
square, column, diagonal, row, identity, banded, symmetric, or triangular.

	

a. 

x

y

z

t

1

1

1

























  

b. 7 5 3 1[ ]   c. 

-

















1 0 1

2 6 4

7 5 2

  d.

 

1 0

0 1













 

e. 
2 0

0 4













      f. 

1 3 0

5 6 4

2 0 7



















  g. 

1

0 1

0 0 1

0 0 0 1

b c d

e f

a























  h. 

2 4 0 0 0

3 9 1 0 0

0 4 8 2 0

0 0 6 7 3

0 0 0 1 5

-



























  i. 

a

b

c

d

0 0 0

0 0 0

0 0 0

0 0 0























2.	Given the matrices A =

-



















2 1 6

0 3 5

1 7 4

, B =

-



















5 2 4

3 1 6

0 2 1

, and C =



















3

2

1

 find

 

   	

a. A+B

	

b. 

 

A-B

	

c. 

 

4A

	

d. 

 

AB
	 e. 

 

A{C}
	 f. 

 

A2

	 g. 

 

IA
	 h. 

 

AI
3.	Given the matrices A =

-



















1 8 3

5 3 1

0 3 4

, B = -



















2 3 0

1 5 6

0 4 7

, find the following:

	 a. AT

	 b. BT

	 c. |A|
	 d. |A|-1

	 e. |B|-1
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4.	What is the 3 × 3 null matrix and the 5 × 5 identity matrix?

5.	Express the following systems of equations in matrix form AX = B.

	 a. 3 2 10 4 81 2 1 2x x x x+ = + = -,    3

	 b. 2 3 5 20 3 5 0 3 4 01 2 3 1 2 3 1 2 3x x x x x x x x x+ + = + - = - - =, , ,     2

6.	Solve the system using the Gaussian elimination method.

	

x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

2 8

2 3 1

3 7 4 10

+ + =
- - + =

- + =

7.	Solve the simultaneous equations using Cramer’s rule.

	

2 3 8

4 5 2

2 1

1 2

1 2 3

1 2 3

x x

x x x

x x x

+ =
+ - =
- + =

 3  

8.	 Show that A B⋅ = + +A B A B A Bx x y y z z ,  know that a a a a a ax x y y z z⋅ = ⋅ = ⋅ = 1.

9.	Given A a a a= + -2 4 5x y z  and B a a a= - +3 x y z ,  find A B⋅  and A B× .

10.	Show that if A a a a= - -5 4x y z  and B a a a= + +x y z2 2 ,  then they are 
perpendicular or not.

11.	 Determine the gradient of the scalar fields A x y xyz= +3 .

12.	Find the eigenvalues and eigenvectors of the 2 × 2 matrixA =












3 4

2 7
.

13.	Solve problem 2 using MATLAB.
14.	Solve problem 3 using MATLAB.
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Chapter

Introduction to 
Finite Element 
Method

2

2.1 Introduction

Finite element analysis method is a numerical procedure that applies to many areas 
in real-world engineering problems, including structural/stress analysis, fluid flow 
analysis, heat transfer analysis, and electromagnetics analysis. Indeed, finite element 
has several advantages and features such as the capability of solving complicated and 
complex geometries, flexibility, strong mathematical foundation, and high-order 
approximation. Therefore, finite element analysis (FEA) has become an important 
method in the design and modeling of a physical event in many engineering 
disciplines. The actual component in the FEA method is placed by a simplified 
model that is identified by a finite number of elements connected at common points 
called nodes, with an assumed response of each element to applied loads, and then 
evaluating the unknown field variable (displacement) at these nodes.

2.2 Methods of Solving Engineering 
Problems

There are 3 common methods to solve any engineering problem:

1.	 Experimental method 

2.	Analytical method

3.	Numerical method
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2.2.1 Experimental Method
This method involves actual measurement of the system response. This method 
is time consuming and needs expensive set up. This method is applicable only 
if physical prototype is available. The results obtained by this method cannot be 
believed blindly and a minimum of 3 to 5 prototypes must be tested. Examples of 
this method are strain photo elasticity, heat transfer for a gas turbine engine, static 
and dynamic response for aircraft and spacecraft, amount of water which is lost 
for groundwater seepage, etc. 

2.2.2 Analytical Method
This is a classic approach. This method gives closed form solutions. The results 
obtained with this method are accurate within the assumptions made. This 
method is applicable only for solving problems of simple geometry and loading, 
like cantilever and simply supported beams, etc. Analytical methods produce 
exact solutions of the problem. Examples of this method are integral solutions 
(such as Laplace and Fourier transforms), conformal mapping, perturbation 
methods, separation of variables, and series expansion.

2.2.3 Numerical Method
This approximate method is resorted to when analytical method fails. This 
method is applicable to real-life problems of a complex nature. Results obtained 
by this method cannot be believed blindly and must be carefully assessed against 
experience and the judgment of the analyst. Examples of this method are finite 
element method, finite difference method, moment method, etc. 

2.3 Procedure of Finite Element Analysis 
(Related to Structural Problems)

Step (i). Discretization of the structure
This first step involves dividing the structure or domain of the problem into 
small divisions or elements. The analyst has to decide about the type, size, and 
arrangement of the elements. 

Step (ii). Selection of a proper interpolation (or displacement) model
A simple polynomial equation (linear/quadratic/cubic) describing the variation 
of state variable (e.g., displacement) within an element is assumed. This model 
generally is the interpolation/shape function type. Certain conditions are to be 
satisfied by this model so that the results are meaningful and converging. 
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Step (iii). Derivation of element stiffness matrices and load vectors
Response of an element to the loads can be represented by element equation of the 
form 

	 k q Q[ ]{ } = { } � (2.1)

where, [k]   = Element stiffness matrix,
	 {q}   = �Element response matrix or element nodal displacement vector, or 

nodal degree of freedom,
	 {Q} = Element load matrix or element nodal load vector.

From the assumed displacement model, the element properties, namely 
stiffness matrix and the load vector are derived. Element stiffness matrix [k] 
is a characteristic property of the element and depends on geometry as well as 
material. There are 3 approaches for deriving element equations. They are 

(a)	 Direct approach,

(b)	 Variational approach,

(c)	 Weighted residual approach.

(a)	 Direct approach: In this method, direct physical reasoning is used to 
establish the element properties (stiffness matrices and load vectors) in 
terms of pertinent variables. Although this approach is limited to simple 
types of elements, it helps to understand the physical interpretation of the 
finite element method.

(b)	 Variational approach: This approach can be adopted when the variational 
theorem (extremum principle) that governs the physics of the problem 
is available. This method involves minimizing a scalar quantity known as 
functional that is typical of the problem at hand (e.g., potential energy in 
stress analysis problems). 

(c)	 Weighted residual approach: This approach is more general in the sense 
that it is applicable to all situations where the governing differential 
equation of the problem is available. This method involves minimizing 
error resulting from substituting trial solution in to the differential 
equation.

Step (iv). Assembling of element equations to obtain the global equations
Element equations obtained in Step (iii) are assembled to form global equations 
in the form of

	 [K] {r} = {R}	 (2.2)
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where, [K] is the global stiffness matrix,
	 {r}   is the vector of global nodal displacements, and 
	 {R} is the global load vector of nodal forces for the complete structure.
Equation (2.2) describes that the behavior of entire structure.

Step (v). Solution for the unknown nodal displacements
The global equations are to be modified to account for the boundary conditions of 
the problem. After specifying the boundary conditions, the equilibrium equations 
can be expressed as 

	 [K ] r = R1 1 1{ } { } .	 (2.3)

For linear problems, the vector {r1} can be solved very easily.

Step (vi). Computation of element strains and stresses
From the known nodal displacements {r1}, the elements strains and stresses can be 
computed by using predefined equations for structure.

The terminology used in the previous 6 steps has to be modified if we want 
to extend the concept to other fields. For example, put the field variable in place 
of displacement, the characteristic matrix in place of stiffness matrix, and the 
element resultants in place of element strains. 

2.4 Methods of Prescribing Boundary 
Conditions

There are 3 methods of prescribing boundary conditions.

2.4.1 Elimination Method
This method is useful when performing hand calculations. It poses difficulties in 
implementing in software. This method has been used in this book for solving the 
problems by finite element method using hand calculations and results in reduced 
sizes of matrices thus making it suitable for hand calculations. The method is 
explained below in brief. Consider the following set of global equations,

	

k k k k

k k k k

k k k k

k k k k

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

















































=

























u

u

u

u

P

P

P

P

1

2

3

4

1

2

3

4




	 (2.4)
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Let u3 be prescribed, i.e., u3 = s.
This condition is imposed as follows:

1.	 Eliminate the row corresponding to u3 (3rd row).

2.	Transfer the column corresponding to u3 (3rd column) to right-hand side 
after multiplying it by “s”. These steps result in the following set of modified 
equations,

	

k k k

k k k

k k k

u

u

u

11 12 14

21 22 24

41 42 44

1

2

4





































=



















-



















P

P

P

s

k

k

k

1

2

4

13

23

43

.	 (2.5)

This set of equations now may be solved for non-trivial solution.

2.4.2 Penalty Method
This is the method used in most of the commercial software because this method 
facilitates prescribing boundary conditions without changing the sizes of the 
matrices involved. This makes implementation easier. 

2.4.3 Multipoint Constrains Method
This method is commonly used in functional analysis between nodes. For 
example, there are many applications in trusses where the end supports are 
on an inclined plane and do not coincide with the coordinate system used 
to describe the truss. Another application of the method is the functional 
relationship between the temperature at one node and temperature at one or 
more other nodes. 

2.5 Practical Applications of Finite  
Element Analysis

There are 3 practical applications of finite element analysis:

•• Analysis of new design 
•• Optimization projects
•• Failure analysis
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2.6 Finite Element Analysis Software Package

There are 3 main steps involved in solving an engineering problem using any 
commercial software:

Step (i). Preprocessing
In this step, a CAD model of the system (component) is prepared and is meshed 
(discretized). Boundary conditions (support conditions and loads) are applied to 
the meshed model. 

Step (ii). Processing
In this step, the software internally calculates the elements stiffness matrices, 
element load vectors, global stiffness matrix, global load vector, and solves after 
applying boundary conditions for primary unknowns (e.g., displacements/
temperatures etc.) and secondary unknowns (e.g., stress/strain/heat flux etc.).

Step (iii). Post-processing
Post-processing involves sorting and plotting the output to make the interpretation 
of results easier. 

2.7 Finite Element Analysis for Structure

There are several common methods in finite element analysis used for evaluating 
displacements, stresses, and strains in any structure under different boundary 
conditions and loads. They are summarized below:

1.	 Displacement Method: This method is the most commonly used method. 
The  structure is subjected to applied loads or/and specific displacements. 
The primary unknowns are displacements found by using an inversion of the 
stiffness matrix, and the derived unknowns are stresses and strains. Indeed, 
the stiffness matrix for any element can be calculated by the variational 
principle. 

2.	Force Method: The structure is subjected to applied loads or/and specific 
displacements. The primary unknowns are member forces, found by using 
an inversion of the flexibility matrix, and the derived unknowns are stresses 
and strains. Indeed, the calculation of the flexibility matrix is possible only for 
discrete structural elements (e.g., piping, beams, and trusses).

3.	Mixed Method: The structure is subjected to applied loads or/and specific 
displacements. This method uses very large stiffness coefficients and very small 
flexibility coefficients in the same matrix.
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4.	Hybrid Method: The structure is subjected to applied loads and stress boundary 
conditions. This hybrid method has the merit of the FEA method, i.e., the 
flexibility and sparse matrix of FEM for complicated inhomogeneous scatterers. 

2.8 Types of Elements

In general, the region in space is considered nonregular geometric. However, the 
FEA method divides the nonregular geometric region to small regular geometric 
regions. There are 3 types of elements in finite element.

1.	 One-Dimensional Elements: The objects are subdivided into short-line 
segments. A one-dimensional finite element expresses the object as a function 
of one independent variable such as one coordinate x. Finite elements use 
one-dimensional elements to solve systems that are governed by ordinary 
differential equations in terms of an independent variable. The number of 
node points in an element can vary from 2 up to any value needed. Indeed, 
increasing the number of nodes for an element increases the accuracy of 
the solution, but it also increases the complexity of calculations. When the 
elements have a polynomial approximation higher than first order, we call 
that higher order elements. Figure 2.1 shows one-dimensional elements. 
For example, the one-dimensional element is sufficient in dealing with heat 
dissipation in cooling fins.

(a) Two-node �rst order element (simplest)

(b) �ree-node higher order element

(c) Four-node higher order element

Figure 2.1.  One-dimensional elements.

2.	 Two-Dimensional Elements: The objects can be divided into triangles, rectangles, 
quadrilaterals, or other suitable subregions. A two-dimensional finite element 
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expresses the object as a function of 2 variables such as the 2 coordinates x and y.  
A finite element uses two-dimensional elements to solve systems that are governed 
by partial differential equations. The simplest two-dimensional element is the 
triangular element. Figure 2.2 shows two-dimensional elements. For example, a 
two-dimensional element is sufficient in plane stress or plane strain.

3.	Three-Dimensional Elements: The objects can be divided into tetrahedral 
elements, rectangular prismatic elements, pie-shaped elements, or other 
suitable shapes of elements. A three-dimensional finite element expresses the 
object as a function of 3 variables such as the 3 coordinates x, y, and z. A finite 
element uses three-dimensional elements to solve systems that are governed 
by differential equations. The simplest three-dimensional element is the 
tetrahedral element. Figure 2.3 shows three-dimensional elements. 

(a) �ree-node triangular element (simplest) (b) Four-node rectangular element

(c) Four-node quadrilateral element (d) Six-node curved triangular isoparametric element

Figure 2.2.  Two-dimensional elements.

(a) Four-node tetrahedral element (simplest) (b) Eight-node rectangular solid element

(c) Eight-node hexahedral solid element (d) Ten-node curved tetrahedral solid isoparametric
      element 

Figure 2.3.  Three-dimensional elements.

These three types of elements are applied and discussed in the electromagnetics 
analysis chapter of this book. 
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2.9 Direct Method for Linear Spring

Here, we will use the direct method in a one-dimension domain to derive the 
stiffness matrix for the linear spring element shown in Figure 2.4. Reference points 
1 and 2 located at the ends of the linear spring element are the nodes. The symbols 
f1 and f2 are local nodal forces (or axial loads) associated with the local axis x. The 
symbols u1 and u2 are local nodal displacements (or degree of freedom at each 
node) for the spring element. ui is the displacement of the spring due to a load fi. 
The symbol k is the stiffness of the spring (or spring constant). k is load required 
to give the spring a unit displacement. The symbol L is the bar length. The local 
axis x acts in the same direction of the spring that can lead to direct measurement 
of forces and displacements along the spring.

The displacements can be defined related to forces as

	 u u u= -1 2 	 (2.6)

	 f ku k u u1 1 2= = -( ). 	 (2.7)

The equilibrium of forces gives 

	 f f2 1= - . 	 (2.8)

Based on equation (2.7), the above equation becomes

	 f k u u2 2 1= -( ). 	 (2.9)

By combining equations (2.7) and (2.9) and writing the resulting equations in 
matrix form we get

	

f

f

k k

k k

u

u

1

2

1

2












=

-

-
























. 	 (2.10)

or

	 f k ui i{ } = [ ]{ } 	 (2.11)

where

{fi}  = a vector of internal nodal forces = 
f

f

1

2













Figure 2.4.  Linear spring element.
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[k]  = the elemental stiffness matrix = 
k k

k k

-

-













{ui} = a vector of nodal displacements = 
u

u

1

2












.

For many interconnected spring elements, we can use the following:

	 Q K ui i{ } = [ ]{ } 	 (2.12)

where
{Qi} = a vector of external nodal forces = Σ{fi}
[K]  = the structural stiffness matrix = Σ[k]
{u}   = a vector of nodal displacements of the structure.

Problems

1.	 Define finite element analysis?

2.	 What are the advantages and features of finite element analysis?

3.	 What are the 3 common methods to solve any engineering problem?

4.	 What is procedure of finite element analysis (related to structural problems)?

5.	 What are the 2 methods for prescribing the boundary conditions?

6.	 Give the 3 practical applications of finite element analysis?

7.	 What are the 3 main steps involved in solving an engineering problem using 
any commercial software?

8.	 What are the 4 common methods in finite element analysis used for evaluating 
displacements, stresses, and strains in any structure under different boundary 
conditions and loads?

9.	 What is the primary variable in finite element method structural analysis?

10.	Calculate the structural stiffness matrix of the system as shown in Figure 2.5.

Figure 2.5.  Two springs in series structure.
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Chapter

Finite Element 
Analysis of Axially 
Loaded Members

3

3.1 Introduction

In this chapter, we will use the bar element in the analysis of rod-like axially loaded 
members. We start with the two popular bar elements using a two-node element 
and a three-node element as well as bars of constant cross-section area, bars of 
varying cross-section area, and the stepped bar.

Stress is an internal force that has been distributed over the area of the rod’s 
cross section and it is defined as 

	
s = F

A
,
�

(3.1)

where s is the stress, F is the force, and A is the cross-sectional area.
Thus, stress is a measure of force per unit area. When the stress tends to lengthen 

the rod, the stress is called tension, and s > 0. When the stress tends to shortened 
the rod, the stress is called compression, and s < 0. The orientations of forces in 
tension and compression are shown in Figure 3.1.

Figure 3.1.  Directions of tensile and compressive forces.

F F

F F
Compression

Tension
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The derived unit of stress is the pascal (Pa), where pascal is equal to newtons 
per square meter (N/m2), 1 Pa = 1 N/m2, pascal is used in the SI units. The derived 
unit of stress is the dimension pound-per-square-inch (psi), where 1 psi = 1 lb/in2.  
Psi is used in the USCS (U.S. Customary) units. In stresses, calculations are generally 
very large, therefore, they often use the prefixes kilo- (k), mega- (M), and giga- (G) 
for factors of 103, 106, and 109, respectively. Thus,

	 1 1 1 kPa = 10  Pa,  MPa = 10  Pa,  GPa = 10  Pa.3 6 9

�

The numerical values for stresses unit conversion between the USCS and SI can 
be presented as

	 1 psi = 6.895 × 10–3 MPa.�

Strain (e) is the amount of elongation that occurs per unit of the rod’s original 
length and is calculated as 

	
e = ∆L

L
,
�

(3.2)

where, ∆L is the change in length of the rod (elongation).
Strain is a dimensionless quantity and is generally very small. 
For each individual rod, the applied force and elongation are proportional to 

each other based on the following expression

	 F k L= ∆ , � (3.3)

where k is the stiffness.
Figure 3.2 shows force and elongation behaviors of rods at various cross-

sectional areas and lengths.

Figure 3.2.  Force and elongation behaviors of rods at various cross-sectional areas and 
lengths.
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Stress and strain are useful in mechanical engineering because they are scaled 
with respect to the rod’s size.

Stress and strain are proportional to each other and presented as

	 s e= E , � (3.4)

where E is the elastic modulus (or Young’s modulus). 
The elastic modulus has the dimensions of force per unit area. The elastic 

modulus is a physical material property, and is the slope of the stress-strain curve 
for low strain. 

By combining equations (3.1) and (3.2), we get 

	
∆ =L

FL

EA
.
�

(3.5)

With the stiffness in equation (3.3), it can be written as 

	
k

EA

L
= .

�
(3.6)

Each rod formed of same material has similar stress-strain behavior as 
presented in Figure 3.3.

Figure 3.3.  All rods formed of same material have similar stress-strain behavior.

When a system is motionless or has constant velocity, then the system 
has zero acceleration, and the system is to be in equilibrium. The static 
equilibrium is used for a system at rest. For equilibrium, the resultant of all 
forces and all moments acting on the system is balanced to zero resultant. 
That is, the sum of all force vectors (F) acting upon a system is zero and the 
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sum of all moment vectors (M) acting upon a system is zero, and they can be 
written as 

	
F∑ = 0

�
(3.7)

	
M∑ = 0.

�
(3.8)

The total extension (or contraction) of a uniform bar in pure tension or 
compression is defined as

	
d = FL

AE
.
�

(3.9)

The equation (3.9) does not apply to a long bar loaded in compression if there 
is a possibility of bucking.

3.1.1 Two-Node Bar Element

Figure 3.4.  Two-node bar for rod-like axially loaded members.

This element has 2 end nodes and each node has 1 degree of freedom, namely 
translation along its length. Its formulation is based on linear interpolation. It 
gives accurate results only if loads are applied at nodes and the area is constant 
over the element. However, required accuracy for practical purposes in other cases 
can be obtained by taking a larger number of smaller elements. The interpolation 
equation, element stiffness matrix, strain-displacement matrix, element strain, 
and element stress for 2-node (linear) bar element are given by

	

u N N
u

u
{ } = [ ]












1 2

1

2 �

(3.10)

	
u

x x

L

x x

L
{ } =

-( ) -( )





2 1

�
(3.11)

	

k
AE

L
[ ] =

-

-













1 1

1 1 �

(3.12)
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B

L
[ ] = -[ ]1

1 1
�

(3.13)

	 e{ } = [ ]{ }B q � (3.14)

	 s{ } = [ ]{ }E B q � (3.15)

where
u1 and u2 = nodal (unknown) displacements (degree of freedom)at node 1 and  

2, respectively
{u} = displacement matrix at the nodes
A = cross section of the area of the bar
L = x2 - x1 = length of the bar
E = Young’s modulus (modulus of elasticity)
AE

L
 = bar constant

[k] = stiffness matrix of the element
[B] = strain-displacement matrix
{e} = strain matrix
{s} = stress matrix.

Uniformly distributed load per unit length w acting on the element can be 
converted into equivalent loads using, 

	

W wL{ } =



















1

2

1

2

,

�

(3.16)

{W} = the potential energy of load system.
Thermal loads due to a change in temperature ∆T can be converted into 

equivalent nodal loads using 

	

Q EA T{ } = ∆( )
-











a

1

1
,

�

(3.17)

where
a is the coefficient of thermal expansion.



64	 Finite Element Analysis

3.1.2 Three-Node Bar Element

Figure 3.5.  Three-node bar for rod-like axially loaded members.

This element has a midside node, in addition to 2 end nodes. Each node has  
1 degree of freedom, namely translation along its length. Its formulation is based 
on quadratic interpolation and this element gives accurate results even with 
distributed loads and a linearly varying cross-sectional area. Coarse mesh with 
fewer of these elements can give the desired accuracy as compared to a fine mesh 
of 2-node bar element. The interpolation equation, element stiffness matrix, 
strain-displacement matrix, element strain, and element stress for the quadratic 
bar element are given by,

	

u N N N

u

u

u

[ ] = [ ]


















= - + + -






1 2 3

1

2

3

2 2
2

2 2 2 2
1

x x x x x

�

(3.18)

	

k
AE

L
[ ] =

-

-

- -



















3

7 1 8

1 7 8

8 8 16 �

(3.19)

	
B

L
[ ] = - - + -





2 1 2

2

1 2

2
2

x x x, ,  
�

(3.20)

	 e{ } = [ ]{ }B q � (3.21)

	 s{ } = [ ]{ }E B q . �
(3.22)

Uniformly distributed load per unit length w, acting on the element, can be 
converted into equivalent loads using,

	

W w
L{ } =



















6

1

1

4

.

�

(3.23)
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3.2 Bars of Constant Cross-Section Area

This section will demonstrate examples on bars of constant cross-sectional area 
using FEA.

Example 3.1
Consider a 2 m long steel bar of 50 mm2 cross-sectional areas as shown in Figure 3.6. 
Use a two element mesh to model this problem. Find nodal displacements, element 
stresses, and reaction. 

Take Young’s modulus, E
N= ×2

105

2mm
,  P = 100 N.

Figure 3.6.  Bar with tip load for Example 3.1.

Solution
(I) Analytical method [Refer to Figure 3.6(a)]

Figure 3.6(a).  Analytical method for bar with tip load for Example 3.1.  

Displacement calculation
Displacement at section a–a,

	
d = =

* *
= * -Px

AE

x
x

100

50 2 10
1 10

5
5 .

�

Displacement at node 2,

	 dx   1000  mm.=
-= × × =1 10 1000 0 015 .
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Displacement at node 3,

	 dx   2000  mm.=
-= × × =1 10 2000 0 025 . �

Stress calculation
Maximum stress in the bar = 

P

A
= =100

50
2 N/mm2  (Constant).

Reaction calculation
For reaction calculation, Fx∑ = 0

R1 + 100 = 0
R1 = -100 N (Direction is leftwards).

(II) FEM by hand calculations

	 L L1 2 1000= =  mm �

	 A A A= = =1 2 50 mm2

�

	 E E E= = = ×1 2
52 10  N/mm2

�

Stiffness matrix for element 1 is, 

	

1 2

1 1

1 1

50 2 10

1000

1 1

1 1
0 11

1 1

1
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A E
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1 1

1 1

1

2

5
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2 3

1 1

1 1

50 2 10
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1 1

1 1
0 12
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2

5
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A E
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-

-





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


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1 1
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3

5

�

Figure 3.6(b).  Finite element model for Example 3.1.
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Global equation is, 

	 [K] {r} = {R}� (3.24)
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
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
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












R1

0

100

.

�

(3.25)

Boundary conditions are, at node 1, u1 = 0.
By using elimination method, the above matrix reduces to,

	

0 1 10
0

100

5 2

3

. .×
-

-
























=













2 1

1 1
 

u

u �

By matrix multiplication, we get

	 0 1 10 2 05
2 3. × × -( ) =u u � (3.26)

	 0 1 10 1005
2 3. .× - +( ) =u u � (3.27)

By solving equations (3.26) and (3.27), we get

	 u2 0 01= .  mm �

	 u3 0 02= .  mm. �

Stress (s) calculation
Stress for element 1 is,

	

s1
1

1

2

5

1 1
2 10

1000
1 1

0

0 01
{ } = -[ ]












= × -[ ]












=E

L

u

u .
22 N/mm2.

Stress for element 2 is,

	

s2
2

2

3

5

1 1
2 10

1000
1 1

0 01

0 02
{ } = -[ ]












= × -[ ]









E

L

u

u

.

. 
= 2 N/mm2.

�
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Reaction calculation
From equation (3.25)

	 0 1 105
1 2 1. × -( ) =u u R �

	 0 1 10 0 0 015
1. .× -( ) = R �

	 R1 100= -  N. �

(III) Software results

Figure 3.6(c).  Deflection pattern for a bar (refer to Appendix C for color figures).

Deflection values as node (Computer generated output)
The following degree of freedom results are in global coordinates:

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.10000E-01 0.0000 0.0000 0.10000E-01

3 0.20000E-01 0.0000 0.0000 0.20000E-01

Maximum absolute values

NODE 3 0 0 3

VALUE 0.20000E-01 0.0000 0.0000 0.20000E-01
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Figure 3.6(d).  Stress pattern for a bar (refer to Appendix C for color figures).

Stress values at elements (Computer generated output)

STAT CURRENT

ELEM LS1

1 2.0000

2 2.0000

Reaction value (Computer generated output)

The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 –100.00 0.0000

Answers for Example 3.1

Parameter Analytical  
method

FEM-hand  
calculations 

Software 
results

Displacement at node 2 0.01 mm 0.01 mm 0.01 mm

Displacement at node 3
(Maximum displacement)

0.02 mm 0.02 mm 0.02 mm

Maximum stress in element 1 2 N/mm2 2 N/mm2 2 N/mm2

Maximum stress in element 2 2 N/mm2 2 N/mm2 2 N/mm2

Reaction at fixed end -100 N -100 N -100 N
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Example 3.2
Bar under distributed and concentrated forces. Consider the bar shown in 
Figure 3.7 subjected to loading as shown below. Use 4 element mesh models and 
find nodal displacements, element stresses, and reaction at the fixed end. Take
E = ×2 105  N/mm2 ,  A = 50 mm2 ,  P = 100 N.

Figure 3.7.  Bar under distributed and concentrated forces for Example 3.2.

Solution
(I) Analytical method [Refer Figure 3.7(a)]

Figure 3.7(a).  Analytical method for the Bar under distributed and concentrated forces for 
Example 3.2.

Reaction calculation

	 - + +[ ]+ =R w L L P2 3 0 �

	 - + ( )× +[ ]+ =R 0 1 250 250 100 0. �

	 R = 150 N �

Stress calculation

	
sAB

P

A
= = =150

50
3 N/mm2

�

	
sDE

P

A
= = =100

50
2 N/mm2

�
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To find sBD, consider section XX

	
sXX

BD

BD

P

A

x x x= = - -( )× = - + = -150 250 0 1

50

150 0 1 25

50

175 0 1

50

. . .

�

	
s sXX XX| |

.
at B x = 250

2 N/mm= = - × =175 0 1 250

50
3

�

	
s sXX XX| |

.
.at C x = 500

2 N/mm= = - × =175 0 1 500

50
2 5

�

	
s sXX XX| |

.
at D x = 750

2 N/mm= = - × =175 0 1 750

50
2

�

Displacement calculation
Displacement at E,

	 dE AB BD DE= ∆ + ∆ + ∆ �

	

d s s
E

AB AB

x

DE DEL

E

x dx

AE

L

E
= + -( ) + 





=
∫ 175 0 1

250

750
.

�

	

dE x
x= ×

×
+

× ×
-







+ ×
×

3 250

2 10

1

50 2 10
175 0 1

2

2 250

2 105 5

2

250

750

5
.

�

	 dE = + + =0 00375 0 00625 0 0025 0 0125. . . .  mm �

Displacement at B,

	
dB AB= ∆ = ×

×
=3 250

2 10
0 00375

5
.  mm

�

Displacement at D,

	
dD AB BD= ∆ + ∆ = ×

×
= + =3 250

2 10
0 00375 0 00625 0 01

5
. . .  mm

�
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Displacement at C,

dC AB

x

x dx

AE

x= ∆ + -( ) = +
× ×

-
=
∫ 175 0 1

0 00375
1

50 2 10
175

0 1

2
250

500

5

2.
.

.





=
250

500

0 0072.  mm

(II) FEM by hand calculations

Figure 3.7(b).  Finite element model for Example 3.2.

	 L L L L1 2 3 4 250= = = =  mm

	 A A A A A= = = = =1 2 3 4 50 mm2

	 E E E E E= = = = = ×1 2 3 4
52 10  N/mm2

Stiffness matrix for elements is, 
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Nodal load calculation for elements 2 and 3, 
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Global equation is,

	 [K] {r} = {R}� (3.28)
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Boundary conditions are at node 1, u1 = 0
By using the elimination method the above matrix reduces to, 
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By solving the above matrix and equations, we get

	 u2 = 0.0038 mm�
	 u3 = 0.0072 mm�
	 u4 = 0.01 mm�
	 u5 = 0.0125 mm.�
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Stress (s) calculation
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Reaction calculation: from equation (3.29)

	 0 4 105
1 2 1. × -( ) =u u R 	

	 0 4 10 0 0 00385
1. .× -( ) = R �

	 R1 = -152 N�

Figure 3.7(c).  Deflection pattern for a bar (refer to Appendix C for color figures).



Finite Element Analysis of Axially Loaded Members	 75

Deflection values at nodes (Computer generated output)
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.37500E-02 0.0000 0.0000 0.37500E-02

3 0.71875E-02 0.0000 0.0000 0.71875E-02

4 0.10000E-01 0.0000 0.0000 0.10000E-01

5 0.12500E-01 0.0000 0.0000 0.12500E-01

Maximum absolute value

NODE 5 0 0 5

VALUE 0.12500E-01 0.0000 0.0000 0.12500E-01

Figure 3.7(d).  Stress pattern for a bar (refer to Appendix C for color figures).

Stress values at elements (Computer generated output)

STAT CURRENT

ELEM LS1

1 3.0000

2 2.7500

3 2.2500

4 2.0000
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Reaction value (Computer generated output)
The following X, Y, Z SOLUTIONS are in global coordinates

NODE FX FY

1 -150.00 0.0000

Answers to Example 3.2

Parameter Analytical method FEM-hand calculations Software results

Displacement at node 2 0.00375 mm 0.0038 mm 0.00375 mm

Displacement at node 3 0.0072 mm 0.0072 mm 0.00719 mm

Displacement at node 4 0.01 mm 0.01 mm 0.01 mm

Displacement at node 5 0.0125 mm 0.0125 mm 0.0125 mm

Stress in element 1 3 N/mm2 3.04 N/mm2 3 N/mm2

Stress in element 2 3 N/mm2 to  
2.5 N/mm2

2.72 N/mm2 2.75 N/mm2

Stress in element 3 2.5 N/mm2  to  
2 N/mm2

2.24 N/mm2 2.25 N/mm2

Stress in element 4 2 N/mm2 2 N/mm2 2 N/mm2 

Reaction at fixed end –1.50 N –152 N –150 N

Example 3.3
A and P = 80 kN is applied as shown in Figure 3.8. Determine the nodal displacements, 
element stresses, and support reactions in the bar. Take E = 20 × 103 N/mm2.

Figure 3.8.  Example 3.3.

Solution
(I) Analytical method [Refer to Figure 3.8(a)]

Figure 3.8(a).  Analytical method for Example 3.3.
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Let R3 be the reaction developed at the wall after contact.

	

P L

AE
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AE
DE EF+ = 1 2. .

�

	

R R1
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+
-( )×
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= . .

�
(3.30)

	
F R R Px = ⇒ + = = ×∑ 0 80 101 3

3     .
�

(3.31)

Solving equations (3.30) and (3.31)

	 R1 58018=  N �

	 R3 21982=  N �

Stresses are,	 sDE

R

A
= = =1 58018

300
193 39.  N/mm2

�

	
sEF

R

A
= - = - = -3 21982

300
73 27. . N/mm2

�

Deflections are,  d d s
2 3

193 39 200

20 10
1 934= = ∆ = = ×

×
=E DE

DE L

E

.
.  mm

�

	 d3 1 2= .  mm.

(II) FEM by hand calculations

Figure 3.8(b).  Finite element model for Example 3.3.

	 L1 200=  mm,  L2 200=  mm �

First, we should check whether contact occurs between the bar and the wall. For 
this, assume that the wall does not exist. The solution to the problem is as below. 
(Consider the two element model.)
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Stiffness matrices are,
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Global equation is,

	 [K] {r} = {R}� (3.32)
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Boundary conditions are at node 1, u1 = 0.
By using the elimination method, the above matrix reduces to,
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By matrix multiplication, we get 

	 30 10 2 1 80 103
2 3

3× × - ×( ) = ×u u 	
(3.33)

	 30 10 1 1 03
2 3× - × + ×( ) =u u 	

(3.34)

By solving equations (3.33) and (3.34), we get, u2 = 2.67 mm and u2 = 2.67 mm.
Since displacement at node 3 is 2.67 mm (greater than 1.2 mm), we can say that 

contact does occur. The problem has to be resolved since the boundary conditions 
are now different. The displacement at B′ is specified to be 1.2 mm as shown in 
Figure 3.8.

Global element equation is,

	 [K] {r} = {R}� (3.35)
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Boundary conditions are at node 1, u1 = 0 and at node 3, u2 = 1.2.
By using the elimination method, the above matrix reduces to,
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Stress (s) calculation:  stress for element 1 is,
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Stress for element 2 is, 
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Reaction calculation:  from equation (3.36)
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1 2 1× -( ) =u u R �
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	 R1 57990= -  N  (Direction is leftwards).�

We know that,

	 R P R1 3 0+ + = �
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80	 Finite Element Analysis

(III) Software results

Figure 3.8(c).  Deflection pattern for a bar (refer to Appendix C for color figures).

Deflection values at nodes
The following degree of freedom results are in global coordinates

NODE UX UY UX USUM

1 0.0000 0.0000 0.0000 0.0000

2 1.9333 0.0000 0.0000 1.9333

3 1.2000 0.0000 0.0000 1.2000

Maximum absolute values

NODE 2 0 0 2

VALUE 1.9333 0.0000 0.0000 1.9333

Figure 3.8(d).  Stress pattern for a bar (refer to Appendix C for color figures).
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Stress values at elements

STAT CURRENT

ELEM LS1

1 193.33

2 -73.333

Reaction value
The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 -58000 0.0000

3 -22000

Answers to Example 3.3

Parameter Analytical method FEM-hand  
calculations 

Software results

Displacement at node 2 1.934 mm 1.933 mm 1.933 mm

Displacement at node 3 1.2 mm 1.2 mm 1.2 mm

Stress in element 1 193.39 N/mm2 193.3 N/mm2 193.33 N/mm2

Stress in element 2 -73.27 N/mm2 -73.3 N/mm2 -73.333 N/mm2

Reaction at fixed end 58.02 kN 57.94 kN -58 kN

Reaction at wall -21.98 kN -22.01 kN -22 kN

Example 3.4
A bar is subjected to self weight. Determine the nodal displacement for the bar 
hanging under its own weight as shown in Figure 3.9. Use two equal length 
elements. Let E = 2 × 1011 N/mm2, mass density r = 7800 kg/m3, Area A = 1000 mm2. 
Consider length of rod L= 2 m.

Figure 3.9.  Bar under self weight for Example 3.4.
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Solution
(I) Analytical method [Refer Figure 3.9(a)]

Figure 3.9(a).  Analytical method for Example 3.4.

	

d d r
3

2 2

11
7

2

7800 9 81 2

2 2 10
7 6518 10= = = × × ( )

× ×
= × -

C

gL

E

.
. m

�

	

d d r r
2

1

2 2

1

2

11

2 2

2

7800 9 81

2 10

2

2

1= = =






= ×
×

( ) - ( )∫B

xA g

AE
dx

g

E

x .

22
5 7389 10 7





= × -. m

�

(II) FEM by hand calculations

Figure 3.9(b).  Finite element model for Example 3.4.
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The element stiffness matrices are,
For element 1,
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For element 2,
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Nodal load vector due to weight is,
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Global equation is, 

	 [K] {r} = {R}� (3.37)

	

1 2 3

2 10
1 1 0
1 1 1 1
0 1 1

1
2
3

3
8

1

2

3

×
−

− + −
−




























=    

u
u
u

88 26
76 52
38 26

.

.

.












�

(3.38)



84	 Finite Element Analysis

Boundary conditions are at node 1, u1 = 0.
By using the elimination method, the above matrix reduces to,
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By matrix multiplication, we get

	 2 10 2 1 76 528
2 3× × - ×( ) =u u . � (3.39)

	 2 10 1 1 38 268
2 3× - × + ×( ) =u u . . � (3.40)

By solving equations (3.39) and (3.40),
we get

	 u2
75 739 10= × -.  m �

	 u3
77 652 10= × -.  m. �

(III) Software results

Figure 3.9(c).  Deflection pattern for a bar (refer to Appendix C for color figures).

Deflection values at nodes
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.57389E-06 0.0000 0.57389E-06

3 0.0000 0.76518E-06 0.0000 0.76518E-06
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NODE 0 3 0 3

VALUE 0.0000 0.76518E-06 0.0000 0.76518E-06

Maximum absolute values

Answers of Example 3.4

Parameter Analytical method FEM-hand calculations Software results

Displacement at node 2 5.7389 × 10–7 m 5.7389 × 10–7 m 5.7389 × 10–7 m

Displacement at node 3 7.6518 × 10–7 m 7.6518 × 10–7 m 7.6518 × 10–7 m

Example 3.5
A rod rotating at a constant angular velocity ω = 45 rad/sec is shown in Figure 3.10. 
Determine the nodal displacements and stresses in the rod. Consider only the 
centrifugal force. Ignore the bending of the rod. Use two quadratic elements. Take  
A = 350 mm2, E = 70 GPa, Mass density r = 7850 kg/m3, Length of the rod L = 1 m. 

Figure 3.10.  Rod rotation at a constant angular velocity for Example 3.5.

Solution
(I) Analytical method [Refer to Figure 3.10(a)]

Figure 3.10(a).  Analytical method for rod rotation at a constant angular velocity for 
Example 3.5.

	 L = 1 m�
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Stress calculation: Stress at section a-a,

	
s w r w rw= =

× × -( ) + -( )
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Displacement at section a–a = change in length of x,
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Reaction calculation 
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(II) FEM by hand calculations

Figure 3.10(b).  Finite element model for Example 3.5 (with two quadratic elements).

A finite element model of the rod, with two quadratic elements, is shown in 
Figure 3.10(b). The element stiffness matrices are,

	 L L L= = =1 2 0 5.  m �
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Thus, the global stiffness matrix is, 
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The centrifugal force or body force Fc (kg/m3) is given by,

	
F
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gc = r w2

.
�

(3.42)

Note that F is a function of the distance r from the pin. Taking the average values 
of F over each element, we have,
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Thus, the element body force vectors are,
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Assembling f1 and f2, we obtain,
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The global equation is,
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Boundary conditions are at node 1, u1 = 0.

Global dof
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By using the elimination method, the above matrix reduces to, 
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By solving the above matrix and equations, we get

	 u2
52 661 10= × -.  mm = 0.0266 mm

	 u3 0 0497= .  mm

	 u4 0 0657= .  mm

	 u5 0 0709= .  mm.

The stress at node 1 in element 1 is given by,
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The stress at node 2 in element 1 is given by,
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The stress at node 3 in element 1 is given by,
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The stress at node 1 in element 2 is given by,
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The stress at node 2 in element 2 is given by,
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The stress at node 3 in element 2 is given by,
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(III) Software results
While solving the problem using software, 4 linear bar elements are taken instead 
of 2 quadratic elements.

Figure 3.10(c).  Deflection pattern for a rod (refer to Appendix C for color figures).
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Deflection values at nodes (in m)
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.27795E-04 0.0000 0.0000 0.27795E-04

3 0.52041E-04 0.0000 0.0000 0.52041E-04

4 0.69191E-04 0.0000 0.0000 0.69191E-04

5 0.75696E-04 0.0000 0.0000 0.75696E-04

Maximum absolute values

NODE 5  0 0 5

VALUE 0.75696E-04 0.0000 0.0000 0.75696E-04

Reaction value
The following X, Y, Z solutions are in global coordinates 

NODE FX FY

1 -2781.8 -3.3691

Answers of Example 3.5

Parameter Analytical  
method 

FEM-hand  
calculations

Software  
results

Displacement at node 2 0.0278 mm 0.0266 mm 0.0278 mm

Displacement at node 3 0.052 mm 0.0497 mm 0.052 mm

Displacement at node 4 0.069 mm 0.0657 mm 0.069 mm

Displacement at node 5 0.076 mm 0.0709 mm 0.076 mm

Stress in node 1 of element 1 7.95 MPa 7.924 MPa ---

Stress in node 2 of element 1 7.45 MPa 6.972 MPa ---

Stress in node 3 of element 1 5.96 MPa 5.992 MPa ---

Stress in node 1 of element 2 5.96 MPa 5.992 MPa ---

Stress in node 2 of element 2 3.48 MPa 2.968 MPa ---

Stress in node 3 of element 2 0 MPa -0.056 MPa ---

Reaction at fixed end -2781.84 N --- -2781.8 N
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Each problem given in this book uses a different procedure for solving using 
software. For familiarizing, procedure for one problem is given from each chapter 
using software. Other problems are left to the user to explore the software for 
solving the problems.
Procedure for solving the problem using ANSYS® 11.0 academic teaching software
For Example 3.3

Preprocessing 

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > 
Structural Link > 2D spar 1 > OK > Close

Figure 3.11.  Element selection.

2.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 3.12.  Enter the cross-sectional area.

Cross-sectional area AREA > Enter 300 > OK > Close 
Enter the material properties 
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3.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural> Linear > Elastic > Isotropic
Enter EX= 2E4 and PRXY=0.3 > OK
(Close the Define Material Model Behavior window.)
Create the nodes and elements. Create 3 nodes 2 elements.

4.	Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS 
Enter the coordinates of node 1 > Apply 
Enter the coordinate of node 2 > Apply 
Enter the coordinates of node 3 > OK

Node locations

Node number X coordinate Y coordinate 

1 0 0

2 200 0

3 400 0

Figure 3.13.  Enter the node coordinates.

5.	 Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > 
Thru node Pick the 1st and 2nd node > Apply Pick 2nd and 3rd node > OK

Figure 3.14.  Pick the nodes to create elements.
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Apply the displacement boundary conditions and loads.
6.	Main Menu > Preprocessor > Loads > Apply > Structural > Displacement > 

On Nodes Pick the 1st node > Apply > All DOF=0 > OK
7.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 

Displacement > On Nodes Pick the 3rd node > Apply > Select UX and enter 
displacement value = 1.2 > OK

8.	 Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Force/Moment > On Nodes Pick the 2nd > OK > Force. Moment value =  
80e3 > OK

Figure 3.15.  Model with loading and displacement boundary conditions.

�The model-building step is now complete, and we can proceed to the solution. 
First to be safe, save the model.

Solution
The interactive solution proceeds.

9.	Main Menu > Solution > Solve > Current LS > OK
�The STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the  
/STATUS window and if all is OK, select File > Close
�In the Solve Current Load Step WINDOW, Select OK, and the solution is 
complete, close the ‘Solution is Done!’ window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

10.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Nodal  
Solu > DOF Solution > Displacement vector sum > OK
The result is shown in Figure 3.8(c).
To find the axial stress, the following procedure is followed.
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11.	 Main Menu > General Postproc > Element Table > Define Table > Add

Figure 3.16.  Define the element table.

Select By sequence num and LS and type 1 after LS as shown in Figure 3.17.

Figure 3.17.  Selecting options in element table.

OK > Close
12.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Elem 

Table > Select > LS1 > OK 

Figure 3.18.  Selecting options for finding out axial stress.

The result is shown in Figure 3.8(d).
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3.3 Bars of Varying Cross-Section Area

This section will demonstrate thorough examples explaining FEA on bars of 
varying cross-section area.

Example 3.6
Solve for displacement and stress given in Figure 3.19 using 2 finite elements 
model. Take Young’s modulus E = 200 GPa.

Figure 3.19.  Example 3.6.

Solution
(I) Analytical method [Refer Figure 3.19(a)]

Figure 3.19(a).  Analytical method for Example 3.6.

	 L = 2 m.�
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Stress calculation
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x
= = × + × ×

+( )
200 10 25 10

0 1 0 1 0 05

3 3

. . .

	
s s s1 2

3 3200 10 25 10 2

0 1 0 1 2 0 05
16 67= = = × + × ×

+ ×( )
==A x x . . .

.  MPa

	
s s s2 1

3 3200 10 25 10 1

0 1 0 1 1 0 05
22 5= = = × + × ×

+ ×( )
==B x x . . .

.  MPa

	
s s s3 0

3 3200 10 25 10 0

0 1 0 1 0 0 05
40= = = × + × ×

+ ×( )
==C x x . . .

 MPa.

Displacement Calculation
Displacement at section a-a = change in length of (L-x)

	

d s
= = = × + × ×

+( ) × ×∫ ∫
-

x x

xL x

L

E

P

A E
dx

x

x
 

200 10 25 10

0 1 0 1 0 05 200 10

3 3

. . . 99







-
∫

L x

L

dx 

d d3

3 3

9

2

2
200 10 25 10

0 1 0 1 0 05 200 10
= = × + × ×

+( ) × ×






-
∫C

L

x

x
dx

. . .
 == × + × ×

+( ) × ×






=

∫ 200 10 25 10

0 1 0 1 0 05 200 10

0 2423

3 3

9

0

2
x

x
dx

. . .

.   mm

d d2

3 3

9

1

2
200 10 25 10

0 1 0 1 0 05 200 10
= = × + × ×

+( ) × ×






-
∫B

L

x

x
dx

. . .
 == × + × ×

+( ) × ×






=

∫ 200 10 25 10

0 1 0 1 0 05 200 10

0 096

3 3

9

1

2
x

x
dx

. . .

.  mmm.

(II) FEM by hand calculations
Using 2 elements each of 1 m length, we obtain the finite element model as shown 
in Figure 3.19(c). We can write the equivalent model as shown in Figure 3.19(b). 
At the middle of the bar width is,

	

0 3 0 1

2
0 2

. .
.

+( ) =  m.
�
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	 A1 0 25 0 05 0 0125= × =. . .  m2

�

	 A2 0 15 0 05 0 0075= × =. . .  m2

�

	 E E1 2
9200 10= = ×  N/m2

	

	 L L1 2 1= =  m. 	

Stiffness matrix for element 1 is,

	

1 2

1 1

1 1

0 0125 200 10

1

1 1

1 1
1

1 1

1

9

k
A E

L
[ ] =

-

-













= × × -

-













=.
22 5 10

1 1

1 1

1

2

9. .×
-

-











 �

Stiffness matrix for element 2 is,

	

2 3

1 1

1 1

0 0075 200 10

1

1 1

1 1
2

2 2

2

9

k
A E

L
[ ] =

-

-













= × × -

-













=.
11 5 10

1 1

1 1

2

3

9. .×
-

-











 �

Figure 3.19(b).  Equivalent model of Finite element model for Example 3.6.

Figure 3.19(c).  Finite element model for Example 3.6.
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Distributes load calculation for elements 1 and 2,

	

W

w L

w L
1

1

1

32

2

25 1

2

25 1

2

10
1

=

×

×



















=

×

×



















× =
22 5

12 5

1

2

.

.












×  103

�

	

W

w L

w L
2

2

2

32

2

25 1

2

25 1

2

10
1

=

×

×



















=

×

×



















× =
22 5

12 5

2

3

.

.
.












×  103

�

Global equation is,

	 K r R[ ]{ } = { }. � (3.45)

	

1 2 3

10
2 5 2 5 0
2 5 2 5 1 5 1 5
0 1 5 1 5

1
2
3

9
1

2

3

. .

. . . .
. .

−
− + −

−

















  
u
u
u












=

+

+












×

12 5
25
12 5 200

10
1

3
.

.
.

R

�

(3.46)

Boundary conditions are at node 1, u1 = 0.
By using the elimination method, the above matrix reduces to,

	

10
4 1 5

1 5 1 5

25

212 5
109 3

-

-
























×

.

. . .
.

�

By matrix multiplication, we get

	 10 4 1 5 25 109
2 3

3× - ×( ) = ×u u. � (3.47)

	 10 1 5 1 5 212 5 109
2 3

3- × + ×( ) = ×. . . .u u �
(3.48) 

By solving equations (3.47) and (3.48), we get

	 u2
59 5 10 0 095= × =-. . m  mm �

	 u3
42 37 10 0 237= × =-. . m  mm. �
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Stress (s) calculation
Stress in element 1, 

	

s1
1

1

1

2

5

1 1
2 10

1000
1 1

0

0 095
{ } = -[ ]












= × -[ ]













E

L

u

u . 
= 19 MPa.

�

Stress in element 2,

	

s2
2

2

2

3

5

1 1
2 10

1000
1 1

0 095

0 237
{ } = -[ ]












= × -[ ]







E

L

u

u

.

.






= 28 4.  MPa.

�

(III) Software results

Figure 3.19(d).  Deflection pattern for a tapered bar (refer to Appendix C for color figures).

Deflection values at node
The following degree of freedom results are in global coordinates

NODE UX UY UX USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 -0.95000E-01 0.0000 0.95000E-01

3 0.0000 -0.23667 0.0000 0.23667
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Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 -0.23667 0.0000 0.23667

Figure 3.19(e).  Stress pattern for a tapered bar (refer to Appendix C for color figures).

Stress values at elements

STAT CURRENT

ELEM LS1

3 19.000

4 28.333

Reaction value
The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 0.0000 0.25000E+06
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Answers of Example 3.6

Parameter Analytical  
method

FEM-hand  
calculations 

Software  
results

Displacement at node 2 0.096 mm 0.095 mm 0.095 mm

Displacement at node 3 0.2423 mm 0.237 mm 0.23667 mm

Stress in element 1 16.67 MPa to 22.5 MPa 19 MPa 19 MPa

Stress in element 2 22.5 MPa to 40 MPa 28.4 MPa 28.33 MPa

In the above example, 2 elements are used for solving the problem by hand 
calculation and by software. To get the convergence of the solution with the 
analytical method a higher number of elements are to be used.

Example 3.7
Find the displacement and stress distribution in the tapered bar shown in 
Figure 3.20 using 2 finite elements under an axial load of P = 100 N.

Cross-sectional area at fixed end = 22 mm2

Cross-sectional are at free end =100 mm2

Young’s modulus E = 200 GPa

Figure 3.20.  Example 3.7

Solution
(I) Analytical method [refer to Figure 3.20(a)]

Figure 3.20(a).  Analytical method for Example 3.7.
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Assume, b = thickness = 10 mm
Area at section a-a = b × hx

	
h h

h h

L
xx = + -









2

1 2

�

	
A b h x xx x= × = + -









 = +( )10 10

20 10

100
10 10 0 1. .

�

Stress calculation

	
sx

x

P

A x
= =

+( )
100

10 10 0 1. �

	
s s1 100

100

10 10 0 1 100
0 5= =

+ ×( )
==x .

.  MPa
�

	
s s2 50

100

10 10 0 1 50
0 667= =

+ ×( )
==x .

.  MPa
�

	
s s3 0

100

10 10 0 1 0
1= =

+ ×( )
==x .

 MPa.
�

Displacement calculation

	
d d3

1 2

1

2
5

100 100

2 10 10 20 10

20

10
3 47= =

-
= ×

× × -
= ×C

PL

Eb h h

h

h( )
ln

( )
ln . 110 4-  mm

�

	
d d2 5

4100 50

2 10 10 20 15

20

15
1 44 10= = ×

× × -
= × -

B
( )

ln .  mm.
�

(II) FEM by hand calculations
Using 2 elements each of 50 mm length, we obtain the finite element model as shown 
in Figure 3.20(c). We can write the equivalent model as shown in Figure 3.20(b)  

at the middle, area of cross- section of bar is 
200 100

2
150

+( ) =  mm2.

Figure 3.20(b).  Equivalent model of finite element model for Example 3.7.
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A1

200 150

2
175= +( ) =  mm2

�

	
A2

150 100

2
125= +( ) =  mm2

�

	 L L1 2 50= =  mm �

	 E E1 2
52 10= = ×  N/mm2. �

Stiffness matrix for element 1 is,

	

1 2

1 1

1 1

0 175 2 10

50

1 1

1 1
71

1 1

1

5

k
A E

L
[ ] =

-

-













= × × -

-













= ×.
110

1 1

1 1

1

2

5
-

-













.

�

Stiffness matrix for element 2 is,

	

2 3

1 1

1 1

0 125 2 10

50

1 1

1 1
52

2 2

2

5

k
A E

L
[ ] =

-

-













= × × -

-













= ×.
110

1 1

1 1

2

3

5
-

-













.

�

Global equation is,

	 K r R[ ]{ } = { } � (3.49)

	

1 2 3

10
7 7 0
7 7 5 5
0 5 5

1
2
3

0
10

5
1

2

3

1−
− + −

−




























=

u
u
u

R

00












.

�

(3.50)

Boundary conditions are at node 1, u1 = 0. 
By using the elimination method, the above matrix reduces to,

	

10
12 5

5 5

0

100

5 1

2

-

-
























=













u

u
.

�

Figure 3.20(c).  Finite element model for Example 3.7.
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By matrix multiplication, we get

	 10 12 5 05
2 3× - ×( ) =u u � (3.51)

	 10 5 5 1005
2 3- × + ×( ) =u u . � (3.52)

By solving equations (3.51) and (3.52), we get

	 u2
41 429 10= × -.  mm �

	 u3
43 429 10= × -.  mm. �

Stress calculation
Stress in element 1,

	

s1
1

1

1

2

5

4
1 1

2 10

50
1 1

0

1 429 10
{ } = -[ ]












= × -[ ]

×








-

E

L

u

u .




= 0 5716.  MPa.

�

Stress in element 2,

	

s2
2

2

2

3

5 4

1 1
2 10

50
1 1

1 429 10

3 429 1
{ } = -[ ]












= × -[ ]

×

×

-
E

L

u

u

.

. 00
0 8

4-












= .  MPa.

�

(III) Software results

Figure 3.20(d).  Deflection pattern for a tapered bar (refer to Appendix C for color figures).
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Deflection values at nodes
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.14286E-03 0.0000 0.0000 0.14286E-03

3 0.34286E-03 0.0000 0.0000 0.34286E-03

Figure 3.20(e).  Stress pattern for a tapered bar (refer to Appendix C for color figures).

Stress values at elements

STAT CURRENT 

ELEM LS1

1 0.57143

2 0.80000

Answer for Example 3.7

Parameter Analytical  
method

FEM-hand  
calculations 

Software  
results

Displacement at node 2 1.44 × 10–4 mm 1.429 × 10–4 mm 1.4286 × 10–4 mm

Displacement at node 3 3.47 × 10–4 mm 3.429 × 10–4 mm 3.4286 × 10–4 mm

Stress in element 1 0.5 MPa to 0.667 MPa 0.5716 MPa 0.57143 MPa

Stress in element 2 0.667 MPa to 1 MPa 0.8 MPa 0.8 MPa
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Example 3.8
Find the nodal displacements, element stresses, and reaction in the tapered 
bar subjected to a load of 6000 N as shown in Figure 3.21. Further the member 
experiences a temperature increase of 30°C. Use 3 equal length elements for finite 
element model. Take E = 200 GPa, v = 0.3, and a = 7 × 10–6/°C.

Figure 3.21.  Example 3.8

Solution
(I) FEM by hand calculations
We obtain the finite element model as shown in Figure 3.21(b). We can write the 
equivalent model as shown in Figure 3.21(a).

Figure 3.21(a).  Equivalent model of the finite element model for Example 3.8.

Figure 3.21(b).  Finite element model for Example 3.8.

	 L L L1 2 3 500= = =  mm �

	 ∆ =T 30o C �

	 A1 2000=  mm2

�

	
A2

2000 1000

2
= +

=1500 mm2

�

	 A3 1000=  mm2. �
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Element stiffness matrices are,

	

1 2

1 1

1 1

2000 2 10

500

1 1

1 1
8 11

1

1

5

k
A E

L
[ ] =

-

-













= × × -

-













= × 00
1 1

1 1

1

2

5
-

-











 �

	

2 3

1 1

1 1

1500 2 10

500

1 1

1 1
6 12

2

2

5

k
A E

L
[ ] =

-

-













= × × -

-













= × 00
1 1

1 1

2

3

5
-

-











 �

	

3 4

1 1

1 1

1000 2 10

500

1 1

1 1
4 13

3

3

5

k
A E

L
[ ] =

-

-













= × × -

-













= × 00
1 1

1 1

3

4

5
-

-













.

�

Nodal loads due to thermal effect are,

	

Q EA Tth1 1
5 6

1

1
2 10 2000 7 10 30

1

1
( ){ } = ∆( )

-










= × × × × ×

-




-a








= ×

-










84 10

1

1

1

2

3

�

	

Q EA Tth2 2
5 6

1

1
2 10 1500 7 10 30

1

1
( ){ } = ∆( )

-










= × × × × ×

-




-a








= ×

-










63 10

1

1

2

3

3

�

	

Q EA Tth3 3
5 6

1

1
2 10 1000 7 10 30

1

1
( ){ } = ∆( )

-










= × × × × ×

-




-a








= ×

-










42 10

1

1

3

4

3 .

�

Global forced vector

	

R{ } =

- ×

× - ×

× - ×

×























84 10
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42 10

3

3 3

3 3

3





=

- ×

×

×

×



























1

2

3

4

84 10

21 10

21 10

42 10

1

2

3

4

3

3

3

3

.

�
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Global equation is,

	

1 2 3 4

10

8 8 0 0
8 8 6 6 0
0 6 6 4 4
0 0 4 4

1
2
3
4

5

1

2

3

−
− + −

− + −
−



















  

u
u
u
u44

3
1

3

3

3

84 10
21 10
21 10
42 10 6000



















=

− × +

×

×

× +











R









1
2
3
4

.

�

(3.53)

Using the elimination method of applying boundary conditions, i.e., u1 = 0.
The equation (3.53) reduces to,

	

10

14 6 0

6 10 4

0 4 4

21 10

25

2

3

4

3-

- -

-





































=

×u

u

u

11 10

48 10

3

3

×

×



















.

�

Solving the above matrix and equations, we get

	 u2 0 1125= .  mm �

	 u3 0 2275= .  mm �

	 u4 0 3475= .  mm. �

Stress calculation

	

s a1
1

1

2

5

1 1
2 10

500
1 1

0

0 1125
= -[ ]












- ∆( ) = × -[ ]







E

L

u

u
E T

.







- × × × × =-2 10 7 10 30 35 6  MPa �

	

s a2
2

2

3

5

1 1
2 10

500
1 1

0 1125

0 2275
= -[ ]












- ∆( ) = × -[ ]E

L

u

u
E T

.

.













- × × × × =-2 10 7 10 30 45 6  MPa �

	

s a3
3

3

4

5

1 1
2 10

500
1 1

0 2275

0 3475
= -[ ]












- ∆( ) = × -[ ]E

L

u

u
E T

.

.













- × × × × =-2 10 7 10 30 65 6  MPa. �
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Reaction calculation: from equation (3.53),

	 8 10 8 10 84 105
1

5
2

3
1× - × = - × +u u R �

	 R1 6000= -  N. �

(III) Software results

Figure 3.21(c).  Deflection pattern for a tapered bar (refer to Appendix C for color figures).

Deflection values at nodes
The following degree of freedom results are in global coordinates

NODE UX UY UX USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.11250 0.0000 0.0000 0.11250

3 0.22750 0.0000 0.0000 0.22750

4 0.34750 0.0000 0.0000 0.34750
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Stress values at elements

STAT CURRENT

ELEM LS1

1 3.0000

2 4.0000

3 6.0000

Reaction value
The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 -6000.0 0.0000

Figure 3.21(d).  Stress pattern for a tapered bar (refer to Appendix C for color figures).
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Answers for Example 3.8

Parameter FEM-hand  
calculations

Software  
results

Displacement at node 2 0.1125 mm 0.1125 mm

Displacement at node 3 0.2275 mm 0.2275 mm

Displacement at node 4 0.3475 mm 0.3475 mm

Stress in node 1 of element 1 3 MPa 3 MPa

Stress in node 2 of element 1 4  MPa 4  MPa

Stress in node 3 of element 1 6 MPa 6 MPa

Reaction at fixed end -6000 N -6000 N

Procedure for solving the problem using ANSYS® 11.0 academic teaching 
software 
For Example 3.6

PROCESSING

1.	 Main Menu > Preprocessor > Element Type > Add/Edit > Delete > Add > 
Structural Link > 2D spar 1 > OK > Close

Figure 3.22.  Element selection.

2.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 3.23.  Enter the cross-sectional area of 1st element.
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Cross-sectional area > Enter 12500 > OK > Add > OK

Figure 3.24.  Enter the cross-sectional area of 2nd element.

Cross-sectional area AREA > Enter 7500 > OK > Close
Enter the material properties.

3.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX=200E3 and PRXY=0.3 > OK
(Close the Define Material Model Behavior window.)
Create the nodes and element. As stated in the example, use 2 element model.
Hence create 3 nodes and 2 elements.

4.	Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS 
Enter the coordinates of node 1 > Apply Enter the coordinates of node 2 > 
Apply Enter the coordinates of node 3 > OK.

Node locations

Node number X coordinate Y coordinate

1 0 0

2 0 -1000

3 0 -2000

Figure 3.25.  Enter the node coordinates.



Finite Element Analysis of Axially Loaded Members	 115

5.	 Main Menu > Preprocessor > Modeling > Create > Elements > Elem Attributes > 
OK > Auto Numbered > Thru nodes Pick the 1st and 2nd node > OK

Figure 3.26.  Assigning element attributes to element 1 and creating element 1.

�Elem Attributes > change the Real constant set number to 2 > OK > Auto 
Numbered > Thru nodes Pick the 2nd and 3rd node > OK

Figure 3.27.  Assigning element attributes to element 2 and creating element 2.

Apply the displacement boundary conditions and loads.
6.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 

Displacement > On Nodes Pick the 1st node > Apply > All DOF=0 > OK
7.	 Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > Force/

Moment > On Nodes Pick the 2nd node > OK > Force/Moment value=-25e3 in 
FY direction > OK > Force/Moment > On Nodes Pick the 1st node > OK > Force/
Moment value=-12.5e3 in FY direction > OK
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�The mode-building step is now complete, and we can proceed to the solution. 
First to be safe, save the model.
Solution. The interactive solution proceeds.

8.	Main Menu > Solution > Solve > Current LS > OK
�The /STATUS Command window displays the problem parameters and 
the Solve Current Load Step window. Select OK, and when the solution is 
complete, close the ‘Solution is DONE!’ window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
9.	 Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > 

DOF Solution > Displacement vector sum > OK
This result is shown in Figure 3.16(d).
To find the axial stress, the following procedure is followed.

10.	Main Menu > General Postproc > Element Table > Define Table > Add

Figure 3.28.  Model with loading and displacement boundary conditions.

Figure 3.29.  Defining the element table.
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Select By sequence num LS and type 1 after LS as shown in Figure 3.27.

Figure 3.30.  Selecting options in the element table.

OK
11.	 �Main Menu > General PostProc > Plot Results > Contour Plot > Elem Table > 

Select LS1 > OK

Figure 3.31.  Selecting options for finding out axial stress.

This result is shown in Figure 3.19(e).

3.4 Stepped Bar

This section will demonstrate examples on stepped bar using FEA.

Example 3.9
Find the nodal displacements, stresses in each element, and reaction at the 
fixed end for the Figure 3.32 shown below. Take A1 = 200 mm2, A2 = 200 mm2, 

and E1 = E2 = 200 GPa.
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Solution
(I) Analytical method [refer to Figure 3.32]

Displacement calculation

	

d D D D
P L

A E

P L

A EC AC AB BC
AB AB

AB

BC BC

BC

= = + = - + = - ×
× ×

+500 200

200 2 10

50
5

00 100

200 2 10

2 5 10 2 5 10 0

5

3 3

×
× ×

= - × + × =- -dC . . �

	
d D

P L

A EB AB
AB AB

AB

= = - = - ×
× ×

= - × -500 200

200 2 10
2 5 10

5
3.  mm.

�

Stress calculation

	
sAB

AB

AB

P

A
= = - = -500

200
2 5.  MPa  (Compressive)

�

	
sBC

BC

BC

P

A
= = =500

100
5 MPa  (Tensile).

�

Reaction calculation

	
Fx∑ = 0

�

	 RA - + =1000 500 0 �

	 RA = 500 N. �

(II) FEM by hand calculations

Figure 3.32.  Example 3.9

Figure 3.32(a).  Finite element model for Example 3.9.

	 L1 200=  mm �

	 L2 100=  mm. �



Finite Element Analysis of Axially Loaded Members	 119

Displacement calculation
Stiffness matrices for elements 1 and 2 are,

	

1 2

1 1

1 1

200 2 10

200

1 1

1 1
2 11

1 1

1

5

k
A E

L
[ ] =

-

-













= × × -

-













= × 00
1 1

1 1

1

2

5
-

-











 �

	

2 3

1 1

1 1

100 2 10

100

1 1

1 1
2 12

2 2

2

5

k
A E

L
[ ] =

-

-













= × × -

-













= × 00
1 1

1 1

2

3

5
-

-













.

�

Global equation is,

	

1 2 3

2 10
1 1 0
1 1 1 1
0 1 1

1
2
3

5
1

2

3

1

×
−

− + −
−




























=

u
u
u

R
−−












1000
500

.

�

(3.54)

Using the elimination method and applying boundary conditions at node 1, u1 = 0.
The equation (3.54)reduces to

	

2 10
2 1

1 1

1000

500

5 2

3

×
-

-
























=

-











u

u
.

�

By solving the above matrix and equations,
we get,

	 u2 = -2.5 × 10–3 mm�
	 u3 = 0.�

Stress calculations

	

s1
1

1

1

2

5

3
1 1

2 10

200
1 1

0

2 5 10
= -[ ]












= × -[ ]

- ×











-

E

L

u

u . 
= -2 5.  MPa (Compressive)

�

s2
2

2

2

3

5 3

1 1
2 10

100
1 1

2 5 10

0
= -[ ]












= × -[ ]

- ×









-
E

L

u

u

.


= 5 MPa  (Tensile).

�
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Reaction calculation
From equation (i)

	 2 105
1 2 1× -( ) =u u R �

	
2 10 0 2 5 105 3

1× - - ×( )( ) =-. R
�

	 R1 500=  N. �

(III) Software results

Figure 3.32(b).  Deflection pattern for a stepped bar (refer to Appendix C for color figures).

Deflection values at nodes
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 -0.25000E-02 0.0000 0.0000 0.25000E-02

3 0.0000 0.0000 0.0000 0.0000

Figure 3.32(c).  Stress for a stepped bar (refer to Appendix C for color figures).
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Stress value at elements

STAT CURRENT

ELEM LS1

1 -2.5000

3 5.0000

Reaction value
The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 500.00 0.0000

Answers for Example 3.9

Parameter Analytical method FEM-hand  
calculations

Software  
results

Displacement at node 2 -2.5 × 10–3 mm -2.5 × 10–3 mm -2.5 × 10–3 mm

Displacement at node 3 0 0 0

Stress in element 1 -2.5 MPa -2.5 MPa -2.5 MPa

Stress in element 2 5 MPa -5 MPa 5 MPa

Reaction at fixed end 500 N 500 N 500 N

Example 3.10
Find the nodal displacements, stress in each element, and reaction of the fixed end 
for Figure 3.33 shown below. Take E1 = 2 × 105 N/mm2 and E2 = 1 × 105 N/mm2.

Figure 3.33.  Example 3.10
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Solution
(I) Analytical method [refer to Figure 3.33]

	
A dAB = = ( ) =p p

4 4
60 2827 431

2 2 .  mm2

�

	
A dBC = = ( ) =p p

4 4
40 1256 641

2 2 . . mm2

�

In the absence of the right wall,

	
∆ = ∆ = ×

×
= × ×

× ×
=L AB

AB AB

AB AB

P L

A E

800 10 1000

2827 43 2 10
1 415

3

5.
.  mm.

�

Hence, the contact does occur with the right will since u3 = 1.415 mm.
Let RA and RC be the reactions developed due to constraint.

	 R RA C+ = ×800 103

� (3.55)

	

R L

A E

R L

A E
A AB

AB AB

C BC

BC BC

×
×

+
-( )×

×
= 1

�

	

R RA C×
× ×

+
-( )× ( )

× ×
=( )

. .

1000

2827 43 2 10

2000

1256 64 1 10
1

5 5
�

	 1 7684 10 1 5915 10 16 5. . .× × - × × =- -R RA C � (3.56)

By solving equations (3.55) and (3.56),
we get

	 RA = 776547 49.  N �

	 RC = 23452 51.  N. �

Displacement calculation

	
dB AB

A AB

AB AB

R L

A E
= ∆ = ×

×
= ×

× ×
=776547 49 1000

2827 43 2 10
1 373

5

.

.
.  mm

�

	 dC = 1 mm. �
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Stress calculation

	
sAB

A

AB

R

A
= = =776547 49

2827 43
274 65

.

.
.  MPa

�

	
sBC

C

BC

R

A
=

-( ) = - = -23452 51

1256 64
18 66

.

.
.  MPa.

�

(II) FEM by hand calculations

Figure 3.33(a).  Finite element model for Example 3.10.

	 L1 1000=  mm �

	 L2 2000=  mm. �

In this example, first determine whether contact occurs between the bar and 
the wall. To do this, assume that the wall does not exist. Then the solution to the 
problem is (consider the 2 element model),
Stiffness matrix for element 1 is,

	

1 2

1 1

1 1

2827 43 2 10
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Stiffness matrix for element 2 is,
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Global equation is,

	 K r R[ ]{ } = { } � (3.57)

	

1 2 3
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5 655 5 655 0
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0 0 628 0 628
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u
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R
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(3.58) 

Boundary conditions are at node 1, u1 = 0.
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By using the elimination method, the above matrix reduces to,

	

10
6 283 0 628

0 628 0 628

800 10

0

5 2
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3. .

. .

-

-


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
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u


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
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.

�

By matrix multiplication, we get

	 10 6 283 0 628 800 105
2 3

3. .× - ×( ) = ×u u � (3.59)

	 10 0 628 0 628 05
2 3. .× + ×( ) =u u � (3.60)

By solving equations (3.59) and (3.60)
we get

	 u2 = 1.415 mm and u3 = 1.415 mm.�

Since the displacement of node 3 is 1.415 mm, we can say that contact does occur. 
The problem has to be resolved since the boundary conditions are now different. 
The displacement at node 3 is given as 1 mm.
Global equation is,

	

1 2 3

10
5 655 5 655 0
5 655 5 655 0 628 0 628
0 0 628 0 628
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. .
. . . .

. .

−
− + −
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
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
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
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
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1
2
3

800 10
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3   

u
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R
.

�

(3.61)

Boundary conditions at node 1, u1 = 0 and at node 3, u2 = 1 mm.
By using the elimination method, the above matrix reduces to,

	
10 6 283 800 10 1 10 0 6285

2
3 5. .[ ]{ } = ×  - × -( ) u

�

	 10 6 283 800 10 0 628 105
2

3 5. .[ ]{ } = × + ×u �

	 u2 1 373= .  mm. �

Stress calculation

	

s1
1

1

1

2

5

1 1
2 10

1000
1 1

0

1 373
= -[ ]



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

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
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u .
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�

	

s2
2

2

2

3

5

1 1
1 10

2000
1 1

1 373

1
= -[ ]












= × -[ ]












=E

L

u

u

.
118 65.  MPa.

�
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Reaction calculation
From equation (3.60)

	 5 655 10 5 655 105
1

5
2 1. .× × - × × =u u R �

	 0 5 655 10 1 3735
1- × × =. . R �

	 R1 776431 5= - ( ). . N Direction is leftwards �

We know that,

	 R P R1 3 0+ + = �

	 - + × + =776431 5 800 10 03
3. R �

	 R3 23568 5= - .  N (Direction is leftwards). �

(III) Software results

Figure 3.33(b).  Deflection pattern for a stepped bar (refer to Appendix C for color figures).

Deflection values at nodes
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 1.3732 0.0000 0.0000 1.3732

3 1.0000 0.0000 0.0000 1.0000
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Stress values at elements

STAT CURRENT

ELEM LS1

1 247.65

2 -18.662

Reaction value
The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 -0.77655E +06 0.0000

3 -23451.

Answers for Example 3.10

Parameter Analytical  
method 

FEM-hand  
calculations

Software  
results

Displacement at node 2 1.373 mm 1.373 mm 1.3732 mm

Displacement at node 3 1 mm 1 mm 1 mm

Stress in element 1 274.65 MPa 274.65 MPa -274.65 MPa

Stress in element 2 -18.66 MPa -5 MPa 5 MPa

Reaction at fixed end -776.5 kN -776.4 kN -776.55 kN

Reaction at wall -23.45 kN -23.57 kN -23.451 kN

Figure 3.33(c).  Stress pattern for a stepped bar (refer to Appendix C for color figures).
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Example 3.11
Find the nodal displacement, stress in each element, and reaction at fixed ends 
for Figure 3.34 as shown below. If the structure is subjected to an increase in 
temperature, ∆T = 75°C, P1 = 50 kN, P2 = 75 kN.

Figure 3.34  Example 3.11

Bronze Aluminum Steel

A = 2400 mm2 1200 mm2 600 mm2

E = 83 GPa 70 GPa 200 GPa

a = 18.9 × 10–6/°C 23 × 10–6/°C 11.7 × 10–6/°C

Solution
(I) Analytical method [refer to Figure 3.34]
Problem can be solved by method of superposition by considering load and 
temperature separately.

Step 1: Consider only the loads P1, P2, and neglect rise in temperature.

	 R R R R P P1 2
3

1 2 1125 10′ ′ ′ ′+ = ×    and  are reactions due to  and 22( ) � (3.62)

	

-( )×
× ×

+
-( )×

× ×
+ ( )×

×
P P PAB BC CD800

2400 83 10

600

1200 70 10

400

600 23 3 000 10
0

3×
= .

�

But P R P RAB CD= =1 2
′ ′,  and P RBC = - ×1

350 10′

	

-( )×
× ×

-
- ×( )×

× ×
+ ( )×R R PCD1

3

1
3

3

800

2400 83 10

50 10 600

1200 70 10

40
′ ′

00

600 200 10
0

3× ×
= .

�
(3.63)

Solving equations (3.61) and (3.62)

	 R1 53 39′ = .  kN �

	 R2 71 61′ = .  kN �

	
∴ =

- ×( )
= -sAB

′ 53 39 10

2400
22 25

3.
.  MPa

�
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∴ =

- × - ×( )
= -sBC

′ 53 39 10 50 10

1200
2 825

3 3.
.  MPa

	

	
∴ =

×( )
=sCD

′ 71 61 10

600
119 35

3.
.  MPa

�

	
    mm∆ = - ×

×
= -AB

′ 22 25 800

83 10
0 2144

3

.
.

�

	
    mm∆ = - ×

×
= -BC

′ 2 825 600

70 10
0 0242

3

.
.

�

	
    mm.∆ = ×

×
=CD

′ 119 35 400

200 10
0 2395

3

.
.

�

Step 2: Consider only the rise in temperature and neglect P1 and P2.
Free expansions due to ∆T = 75°C are

	
∆( ) = × × ∆( ) = × × × =-L L TAB T a 18 9 10 800 75 1 1346. .  mm

	

	
∆( ) = × × ∆( ) = × × × =-L L TBC T a 23 10 600 75 1 0356 .  mm

�

	
∆( ) = × × ∆( ) = × × × =-L L TCD T a 11 7 10 400 75 0 3516. .  mm

�

	 Total ∆( ) = + + =L T 1 134 1 035 0 351 2 52. . . .  mm.

For equilibrium

	

-( )×
× ×

+
-( )×

× ×
+

-( )×
×

R R R1

3

1

3

1800

2400 83 10

600

1200 70 10

400

600

″ ″ ″

2200 103×
= - ∆( ) Total L T

�

	

-( )×
× ×

+
-( )×

× ×
+

-( )×
×

R R R1

3

1

3

1800

2400 83 10

600

1200 70 10

400

600

″ ″ ″

2200 103×
= -2.52.

�

Solving,

	 R1 173 89″ = .  kN �

	
sAB

″ = - = -173890

2400
72 45.  MPa

�

	
sBC

″ = - = -173890

1200
144 91.  MPa

�
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sCD

″ = - = -173890

600
289 82.  MPa

�

	
∆( ) = - ×

×
= -LAB Load

72 45 800

83 10
0 698

3

.
.  mm

�

	
∆( ) = - ×

×
= -LBC Load

144 91 600

70 10
1 242

3

.
.  mm

�

	
∆( ) = - ×

×
= -LCD Load

289 82 400

200 10
0 5796

3

.
.  mm

�

	 ∆ = - =AB
″ 1 134 0 698 0 436. . .  mm �

	 ∆ = - = -BC
″ 1 035 1 242 0 207. . .  mm �

	 ∆ = - = -CD
″ 0 351 0 5796 0 2286. . .  mm. �

Step 3: Use method of superposition and combine steps (1) and (2).

	 Stresses are  MPa., . . .s s sAB AB AB= + = - - = -′ ″ 22 45 72 45 94 7 �

	 Similarity  MPa, .s s sBC BC BC= + = -′ ″ 147 74 �

	 s s sCD CD CD= + = -′ ″ 170 47.  MPa. �

Change in lengths are,

	 ∆ = ∆ + ∆ = - + =AB AB AB
′ ″ 0 2144 0 436 0 2216. . .  mm 	

	 ∆ = ∆ + ∆ = - - = -BC BC BC
′ ″ 0 0242 0 207 0 2312. . .  mm �

	 ∆ = ∆ + ∆ = - =CD CD CD
′ ″ 0 2395 0 2286 0 0109. . .  mm �

	 u AB2 0 2216= ∆ = .  mm �

	 u CD3 0 0109= ∆ = .  mm. �

Reactions are,

	 R R R1 1 1 53 39 173 89 227 28= + = + =′ ″ . . .  kN �

	 R R R2 2 2 71 61 173 89 102 28= + = - = -′ ″ . . .  kN. �
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(II) FEMby hand calculations

Figure 3.34(a).  Finite element model for Example 3.11.

	 L L L1 2 3800 600 400= = = mm,  mm,  mm �

	 A A A1 2 32400 1200 600= = = mm  mm  mm2 2 2, , �

	 E E E1
3

2
3

3
383 10 70 10 200 10= × = × = × N/mm  N/mm  N/mm2 2 2, , �

	 a a a1
6

2
6

3
618 9 10 23 10 11 7 10= × = × = ×- - -. , , . ./ / /o o oC C C �

Element stiffness matrices are,

	

1 2

1 1

1 1

2400 83 10

800

1 1

1 1
21

1 1

1

3

k
A E

L
[ ] =

-

-













= × × -

-













= 449 10
1 1

1 1

1

2

3×
-

-











 �

	

2 3

1 1

1 1

1200 70 10

600

1 1

1 1
12

2 2

2

3

k
A E

L
[ ] =

-

-













= × × -

-













= 440 10
1 1

1 1

2

3

3×
-

-











 �

	

3 4

1 1

1 1

600 200 10

400

1 1

1 1
33

3 3

3

3

k
A E

L
[ ] =

-

-













= × × -

-













= 000 10
1 1

1 1

3

4

3×
-

-













.

�

Effect of temperature and thermal loads are,

Q E A Tth1 1 1 1
3 6

1

1
83 10 2400 18 9 10 75( ) .{ } = ∆( )

-


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
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
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






.



Finite Element Analysis of Axially Loaded Members	 131
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Global Force vector

	

R{ } =

- ×

× - ×

× - ×

282 37 10

282 37 10 144 9 10

144 9 10 105 3 10

105

3

3 3

3 3

.

. .

. .

.33 10

1

2

3

4

282 37 10

137 47 10

39 6 10

3

3

3

3

×



























=

- ×

×

×

.

.

.

1105 3 10

1

2

3

43.

.

×

























 �

	

1 2 3 4

10

249 249 0 0

249 249 140 140 0

0 140 140 300 300

0 0 300 300

3

−

− + −

− + −

−

















































=

−1

2

3

4

10

2821

2

3

4

3   

u

u

u

u

.337

137 47 50

39 6 75

105 3

1

4

+

−

−

+



























R

R

.

.

.

.

�

(3.64)

Using the elimination method and applying boundary conditions, 

i.e.,	 u1 = u4 = 0.

The equation (3.63) reduces to,
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By solving the above matrix and equation,

we get	 u2 = 0.2212 mm  and  u3 = -0.0101 mm.�

Stress calculation
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Reaction calculation
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(III) Software results

Figure 3.34(b).  Deflection pattern for a stepped bar (refer to Appendix C for color figures).

Deflection values at nodes
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.22123 0.0000 0.0000 0.22123

3 -0.10064E-01 0.0000 0.0000 0.10064E-01

4 0.0000 0.0000 0.0000 0.0000

Figure 3.34(c).  Stress pattern for a stepped bar (refer to Appendix C for color figures).
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Stress values at elements

STAT CURRENT

ELEM LS1

1 -94.700

2 -147.73

3 -170.47

Reaction values 
The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 0.22728E +06 0.0000

4 -0.10228E+06 0.0000

Answers for Example 3.11

Parameter Analytical  
method 

FEM-hand  
calculations

Software  
results

Displacement at node 2 0.2216 mm 0.2212 mm 0.22123 mm

Displacement at node 3 -0.0109 mm -0.0101 mm -0.010064 mm

Stress in element 1 -94.7 MPa -94.7 MPa -94.7 MPa

Stress in element 2 -147.74 MPa -145.38 MPa -147.73 MPa

Stress in element 3 -170.47 MPa -170.45 MPa -170.47 MPa

Reaction at fixed end 227.28 kN 227.2912 kN 227.28 kN

Reaction at wall -102.28 kN -102.27 kN -102.28 kN

Procedure for solving the example using ANSYS® 11.0 academic teaching 
software
For Example 3.11

Preprocessing

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > 
Structural Link > 2D spar 1 > Ok > Close
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2.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 3.35.  Element selection.

Figure 3.36.  Enter the cross-sectional area of 1st element.

Cross-sectional area AREA > Enter 2400 > OK > Add > OK

Figure 3.37.  Enter the cross-sectional area of 2nd element.

Cross-sectional area AREA > Enter 1200 > OK > Add> OK
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Cross-sectional area AREA > Enter 600 > OK > Add > OK > Close
Enter the material properties.

3.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1,
Click Structural > Linear > Elastic > Isotropic
Enter EX = 0.83E5 and PRXY = 0.34 > OK
Enter the coefficient of thermal expansion α
Click Structural > Thermal Expansion > Secant coefficient > Isotropic
Enter ALPX – 18.9E-6 > OK
Then in the material model window click on Material menu > New Model > OK
Material Model Number 2,
Click Structural > Linear > Elastic > Isotropic
Enter EX = 0.7E5 AND PRXY -0.35 > OK
Enter the coefficient of thermal expansion α
Click Structural > Thermal Expansion > Secant coefficient > Isotropic
Enter ALPX = 23E-6 > OK
Then in the material model window click on Material menu > New Model > OK
Material Model Number 3,
Click Structural > Linear > Elastic > Isotropic
Enter EX =2E5 and PRXY = 0.3 > OK
Enter the coefficient of thermal expansion α
Click Structural > Thermal Expansion > Secant coefficient > Isotropic
Enter ALPX = 11.7E-6 > OK
(Close the Define Material Model Behavior window.)
�Create the nodes and elements. Use 3 element models. Hence create 4 nodes 
and 3 elements.

Figure 3.38.  Enter the cross-sectional area of 3rd element.
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4.	 Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS Enter 
the coordinates of node 1 > Apply Enter the coordinates of node > Apply Enter 
the coordinates of node 3 > Apply > Enter the coordinates of node 4 > OK.

Node locations

Node number X COORDINATE Y COORDINATE

1 0 0

2 800 0

3 1400 0

4 1800 0

Figure 3.39.  Enter the node coordinates.

5.	 Main Menu > Preprocessor > Modeling > Create > Elements > Elem Attributes 
> OK > Auto Numbered > Thru nodes Pick the 1st and 2nd node >OK

Figure 3.40.  Assigning element attributes to element 1 and creating element 1.
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�Elem Attributes > change the material number to 2 > change the Real 
constant set number to 2 > OK > Auto Numbered >Thru nodes Pick the 2nd 
and 4th node >OK

Figure 3.41.  Assigning element attributes to element 2 and creating element 2.

�Elem Attributes > change the material number to 3 > change the Real 
constant set number to 3 > OK > Auto Numbered > Thru nodes Pick the 3rd 
and 4th node > OK

Figure 3.42.  Assigning element attributes to element 3 and creating element 3.

Apply the displacement boundary conditions, load, and temperature.
6.	 Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 

Displacement > On Nodes Pick the 1st and 4th node >Apply > All DOF = 0. > OK
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7.	Main Menu > preprocessor > Loads > Define Loads > Apply > Structural 
> Force/Moment > On Nodes Pick the 2nd node > OK > Force/Moment 
value = -50e3 in FX direction > OK > Force/Moment > On Nodes Pick the 
3rd node > OK > Force/Moment value =-75e3 in FX direction > OK

8.	 Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Temperature > On Elements Pick the element, 2nd element and 3rd element > OK
Enter Temperature at location N = 75 as shown in Figure 3.38.

Figure 3.43.  Enter the rise in temperature on elements.

�The model-building step is now complete, and we can proceed to the solution. 
First to be safe, save the model.

Solution
The interactive solution proceeds.

9.	Main Meni > Solution > Solve > Current LS > OK
�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window and if all is OK, select FILE > CLOSE
�In the Solve Current Load Step window, Select OK, and when the solution is 
complete, close the ‘Solution is Done!’ window.

Figure 3.44.  Model with loading and displacement boundary conditions.
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POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
10.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > 

DOF Solution > Displacement vector sum > OK
This result is shown in Figure 3.34(b).
To find the axial stress, the following procedure is followed.

11.	 Main Menu > General Postproc > Element Table > Define Table > Add

Figure 3.45.  Defining the element table.

Select By sequence num and LS and type 1 after LS as shown in Figure 3.43. 

Figure 3.46.  Selecting options in element table.

>OK
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12.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Elem Table > 
Select LS1 > OK

Figure 3.47.  Selecting options for finding out axial stress.

This result is shown in Figure 3.34(c).

Problems

1.	 Determine the nodal displacement and element stress for the bar shown in 
Figure 3.48. Take 3 elements finite element model. Take E = 70 GPa.

Figure 3.48.  Problem 1

2.	Determine the nodal displacements and stresses in the element for the axial 
distributed loading shown in Figure 3.49. Take one element model. Take  
E = 200 GPa, A = 5 × 10–4 m2.

Figure 3.49.  Problem 2
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3.	For the bar assembly shown in Figure 3.50, determine the nodal displacements, 
stresses in each element, and reactions. Take E = 210 GPa, A = 5 × 10–4 m2.

Figure 3.50.  Problem 3

4.	Find the deflection at the free end under its own weight for a tapered bar 
shown in Figure 3.51. Use 2 element models. Take E = 200 GPa, weight density 
r = 7800 kg/m3.

Figure 3.51.  Problem 4

5.	 Determine the displacement, element stresses, and reactions for the tapered bar 
shown in Figure 3.52. Use 2 elements finite element models. Take E = 200 GPa, 
A1 = 2000 mm2, A2 = 4000 mm2.

Figure 3.52.  Problem 5
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6.	Consider the bar shown in Figure 3.53. An axial load P = 500 kN is applied as 
shown. Determine the
(a) Nodal displacement  (b) Stresses in each material  (c) Reaction forces.

Figure 3.53.  Problem 6

Aluminum	 Steel
A1 = 300 mm2	 A2 = 1000 mm2

E1 = 70 GPa	 E2 = 200 GPa

7.	 In Figure 3.54, determine displacements at 2 and 3 stresses in the members and 
reactions if the temperature is increased by 60°.

Figure 3.54.  Problem 7

Member Area A  
(mm2)

Youngs modulus  
E (GPa)

Thermal expansion  
coefficient a (/°C)

1 1000 70 23 × 10–6

2 500 100 19 × 10–6

3 300 200 12 × 10–6
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8.	For the vertical bar shown in Figure 3.55, for the deflection at 2 and 3 and stress 
distribution. Take E = 25 GPa and density, r = 2100 kg/m3. Take self-weight of 
the bar into consideration and solve the problem using 2 elements.

Figure 3.55.  Problem 8

9.	Find displacement and stresses shown in Figure 3.56. Take E = 200 GPa.

Figure 3.56.  Problem 9 (all dimensions are in mm).
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Chapter

Finite Element 
Analysis Trusses4

4.1 Introduction

This chapter introduces the basic concepts in finite element formulation of trusses 
and provides the illustration of its ANSYS program.

4.2 Truss

Truss, by definition, is a load bearing structure formed by connecting members 
using pin joints. Truss element is used in the analysis of 2-D trusses.

Figure 4.1.  A 2-D Truss.
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The element has two nodes, each having two degrees of freedom namely 
translations along the x- and y-axes.

The element stiffness matrix and element stress for a truss element are given by, 
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c 22 2

2 2

-

- -





















cs c cs

cs s cs s �

(4.1)

	

s q q q q{ } = - -[ ]{ } { } =













E

L
q q

u

v

u

v

cos sin cos sin , where

1

1

2

2 



.

�

(4.2)

q = angle of truss element at node 1 with positive x-axis (in degrees).

Example 4.1
Determine the nodal displacements, element stresses, and support reactions for 
the 3 member truss shown in Figure 4.2. Take A = 800 mm2 and E = 200 GPa for 
all members.

Figure 4.2.  Example 4.1
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Solution
(I) Analytical method [refer to Figure 4.2]

	 AB AC= = ( ) + ( ) =2 1 5 2 52 2. .  m �

	
sin , cos .q q= =3

2

4

5
 

�

Consider equilibrium of joint B,

Figure 4.2(a).  Analytical method for joint B in Example 4.1.

	
F Fx y= =∑ ∑0 0 and   

�

	 8 0- + =P PAB BCcos cosq q � (4.3)

	 - - - =12 0P PAB BCsin sin .q q � (4.4)

Solving equations (4.3) and (4.4)

	 P P P PAB BC AB BC= - = - ( )5 15 kN and  kN   and   are compressive . �

Consider equilibrium of joint A,

Figure 4.2(b).  Analytical method for joint A in Example 4.1.
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F Fx y= =∑ ∑0 0 and   

�

	 - + - =R P Px AC AB1 0cosq � (4.5)

	
R Py AB1 0- =sin .q

�

Consider equilibrium of joint C,

Figure 4.2(c).  Analytical method for joint C in Example 4.1.

	
F Fx y= =∑ ∑0 0 and   

�

	
P PAC BC= = × =cosq 15

4

5
12 kN

�

	
R PBC3 15

3

5
9= = × =sinq  kN.

�

For equation (4.5)

	
R P Px AC AB1 12 5

4

5
8= - = - × =cosq  kN

�

	
s sAB

AB

AB

P

A
= = = - × = - ( )2

35 10

800
6 25.  MPa  Compressive

�

	
s sBC

BC

BC

P

A
= = = - × = - ( )3

315 10

800
18 75.  MPa  Compressive

�

	
s sAC

AC

AC

P

A
= = = × = ( )1

312 10

800
15 MPa  Tensile

�

	
∆ = = - × ×

× ×
= -AB

AB AB

AB AB

P L

A E

5 10 2500

800 2 10
0 078125

3

5
.  mm

�
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∆ = = - × ×

× ×
= -BC

BC BC

BC BC

P L

A E

15 10 2500

800 2 10
0 234375

3

5
.  mm

�

	
∆ = = × ×

× ×
=AC

AC AC

AC AC

P L

A E

12 10 4000

800 2 10
0 3

3

5
.  mm.

�

Calculation of nodal displacements u2, v2, and u3

Figure 4.2(d).  Analytical method for Calculation of nodal displacements u2, v2, and u3 in 
Example 4.1.

	

DB u BD v CC u

BB

BB

CC u

AB

BC

AC

1 2 2 1 3

3

2

1 3 0 3

= = =
= ∆
= ∆
= = ∆ =

,    and 

 mm

C

.

CC  mm.2 = = ∆ = × =CC AC1 0 3
4

3
0 24cos cos . .q q

�

From geometry [refer to Figure 4.2(d)].

	 BB BD DB v uAB3 1 2 2= ∆ = - = -sin cos sin cosq q q q � (4.6)

	 BB BC B C BC B C CC BC B C CC2 2 2 2 2 2 2 2= - = - -( ) = -( )+ �

	 BB CC BD DBBC2 2 1= ∆ + = +sin cosq q �

	 ∆ + = +BC CC v u2 2 2sin cos .q q � (4.7)

Substituting in equations (4.6) and (4.7)

	
0 078125

3

5

4

52 2. = × - ×v u
�

(4.8)
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0 234375 0 24

3

5

4

52 2. .+ = × + ×v u
�

	
0 474375

3

5

4

52 2. .= × + ×v u
�

(4.9)

Solving equations (4.8) and (4.9), we get,

	 v2 = 0.4604 mm (since point B moves downwards). Hence v2 = -0.6404 mm.�

(III) FEM by hand calculation [refer to Figure 4.2]

Elements Node numbers q cos q sin q L (mm)

Local 1 Local 2

1 1 3 0 1 0 4000

2 1 2 36.87 0.8 0.6 2500

3 2 3 -36.87 0.8 -0.6 2500

Angle calculation
For element 2

	
sin

.

.
. .q q= ⇒ =1 5

2 5
36 87

�

Figure 4.2(e).  Angle calculation for element 2 in Example 4.1.

For element 3

	
sin

.

.
. .q q= ⇒ = -1 5

2 5
36 87

�

Figure 4.2(f).  Angle calculation for element 3 in Example 4.1.
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Element stiffness matrix for element 1 is,

	

k
AE

L1

2 2 2

2

[ ] =

× - - ×

× -

cos cos sin cos cos sin

cos sin sin cos

q q q q q q

q q q q ×× -

- - × ×

- × -

sin sin

cos cos sin cos cos sin

cos sin sin

q q

q q q q q q

q q q

2

2 2

2 ccos sin sinq q q×



















2

�

k1

3

2 2 2

800 200 10

4000

0 0 0 0 0 0

0
[ ] = × ×

× - - ×

×

cos cos sin cos cos sin

cos sinn sin cos sin sin

cos cos sin cos cos sin

cos

0 0 0 0 0

0 0 0 0 0 0

2 2

2 2

- × -

- - × ×

- 00 0 0 0 0 02 2× - ×



















sin sin cos sin sin

	

u v u v

k

u

v

u

v

1 1 3 3

1
3

1

1

3

3

40 10

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

[ ] = ×

-

-



















.

�

Element stiffness matrix for element 2 is,

	

k
AE

L

c cs c cs

cs s cs s

c cs c cs

cs s cs s

2

2 2

2 2

2 2

2 2

[ ] =

- -

- -

- -

- -





















= × ×

( ) × -( ) - ×

×800 200 10

2500

0 8 0 8 0 6 0 8 0 8 0 6

0 8 0 6 03

2 2. . . . . .

. . .66 0 8 0 6 0 6

0 8 0 8 0 6 0 8 0 8 0 6

0 8 0 6 0

2 2

2 2

( ) - × -( )
-( ) - × ( ) ×

- × -

. . .

. . . . . .

. . .. . . .6 0 8 0 6 0 62 2( ) × ( )





















�

	

u v u v

k

1 1 2 2

2
364 10

0 64 0 48 0 64 0 48

0 48 0 36 0 48 0 36

0
[ ] = ×

- -
- -

-

. . . .

. . . .

.664 0 48 0 64 0 48

0 48 0 36 0 48 0 36

1

1

2

2

-
- -



















. . .

. . . .

.

u

v

u

v �
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Element stiffness matrix for element 3 is,

u v u v

k
AE

L

c cs c cs

cs s cs s

c cs c cs

cs s cs s

2 2 3 3

3

2 2

2 2

2 2

2 2

[ ] =

- -

- -

- -

- -





















= ×

- -
- -
-

64 10

0 64 0 48 0 64 0 48

0 48 0 36 0 48 0 36

0
3

. . . .

. . . .

.. . . .

. . . .

.
64 0 48 0 64 0 48

0 48 0 36 0 48 0 36

2

2

3

3

-
- -



















u

v

u

v

Global stiffness matrix is,

u v u v u v

K

1 1 2 2 3 3

310

40 40 96 30 72 40 96 30 72 40 0

30 72 23 04

[ ] =

+ - - -. . . .

. . -- -
- - + - -

30 72 23 04 0 0

40 96 30 72 40 96 40 96 30 72 30 72 40 96 30

. .

. . . . . . . .772

30 72 23 04 30 72 30 72 23 04 23 04 30 72 23 04

40 0 40 96

- - - + -
- -

. . . . . . . .

. 330 72 40 40 96 30 72

0 0 30 72 23 04 30 72 23 04

. . .

. . . .

+ -
- -

























u

v

u

v

u

v

1

1

2

2

3

3

u v u v u v

K

1 1 2 2 3 3

310

80 96 30 72 40 96 30 72 40 0

30 72 23 04 30

[ ] =

- - -
-

. . . .

. . .. .

. . . . .

. . .

72 23 04 0 0

40 96 30 72 81 92 0 40 96 30 72

30 72 23 04 0 46 0

-
- - -
- - 88 30 72 23 04

40 0 40 96 30 72 80 96 30 72

0 0 30 72 23 04 30 72

. .

. . . .

. . .

-
- - -

- - 223 04

1

1

2

2

3

3.

.

























u

v

u

v

u

v �

Global equation is,

u v u v u v

K

1 1 2 2 3 3

310

80 96 30 72 40 96 30 72 40 0
30 72 23 04 30

[ ] =

− − −
−

. . . .

. . .. .

. . . . .

. . .

72 23 04 0 0
40 96 30 72 81 92 0 40 96 30 72
30 72 23 04 0 46 0

−
− − −
− − 88 30 72 23 04

40 0 40 96 30 72 80 96 30 72
0 0 30 72 23 04 30 72

. .
. . . .
. . .

−
− − −

− − 223 04

1

1

2

2

3

3

1

1

2

2

3

3.







































u
v
u
v
u
v

u
v
u
v
u
v













=
−





























×

R
R

R

x

y

y

1

1

3

38
12
0

10 .
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Using the elimination method for applying boundary conditions,

	 u1 = v1 = v3 = 0.�

Then the above matrix reduces to,

	

10
81 92 0 40 96
0 46 08 30 72
40 96 30 72 80 96

3
2

2

3

. .
. .

. . .

−

−

















u
v
u

















= −
















×
8
12
0

103.

�

Solving the above matrix and equations,

we get	 u v v2 2 30 2477 0 4604 0 3= = - =. . . mm,   mm, and  mm. �

Stress calculation
Stress in element 1 is,

	

s q q q q1
1

1

1

3

3

3200 10

4000
= - -[ ]



















= ×E

L

u

v

u

v

cos sin cos sin -- -[ ]



















= × -[ ]





c s c s

u

v

u

v

1

1

3

3

1

3200 10

4000
1 0 1 0

0

0

0 3

0

s
.















= 15 MPa.

�

Stress in element 2 is,

	

s q q q q2
2

1

1

2

2

3200 10

2500
= - -[ ]



















= ×E

L

u

v

u

v

cos sin cos sin -- -[ ]



















= × - -[

c s c s

u

v

u

v

1

1

2

2

2

3200 10

2500
0 8 0 6 0 8 0 6s . . . . ]]

-



















= -

0

0

0 2477

0 4604

6 249
.

.

. .MPa

�
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Stress in element 3 is,

	

s q q q q2
3

2

2

3

3

3200 10

2500
= - -[ ]

















= × -E

L

u
v
u
v

ccos sin cos sin --[ ]
















= × - -[ ]

s c s

u
v
u
v

2

2

3

3

3

3200 10

2500
0 8 0 6 0 8 0 6

0 2

s . . . .

. 4477
0 4604
0 3
0

18 752
-

















= -.
.

. .MPa

�

Reaction calculation
From global equation,

	 - × - × - × =40 96 30 72 402 2 3 1. .u v u R x �

	 - × - × - - × =40 96 0 2477 30 72 0 4604 40 0 3 1. . . ( . ) . R x �

	 R x1 8= - kN �

	
- × - × =30 72 23 042 2 1. .u v R y �

	
- × - × -( ) =30 72 0 2477 23 04 0 4604 1. . . . R y �

	
R y1 3= kN

�

	
- × - × - × =30 72 23 04 30 722 2 3 3. . .u v u R y �

	
- × - × - - × =30 72 0 2477 23 04 0 4604 30 72 0 3 3. . . ( . ) . ( . ) R y �

	
R y3 9= kN.

�

(III) Software results

Figure 4.2(g).  Deflection pattern for a truss for Example 4.1 (refer to Appendix C for color 
figures).
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Deflection value at nodes
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.24766 -0.46042 0.0000 0.52280

3 0.30000 0.0000 0.0000 0.30000

Maximum absolute values 

NODE 3 2 0 2

VALUE 0.30000 -0.46042 0.0000 0.52280

Figure 4.2(h).  Stress pattern for a truss for Example 4.1 (refer to Appendix C for color 
figures).

Stress values of elements

STAT CURRENT

ELEM LS1

1 15.000

2 -6.2500

3 -18.750

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 -8000.0 3000.0

3 9000.0
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Answers for Example 4.1

Parameter Analytical  
method

FEM-Hand  
calculations

Software  
results

Displacement of node 2 in 

x-direction 0.2477 mm 0.2477 mm 0.24766 mm

y-direction -0.4604 mm -0.4604 mm -0.46042 mm

Displacement of node 3 in

x-direction 0.3 mm 0.3 mm 0.3 mm

Stress in

Element 1 15 MPa 15 MPa 15 MPa

Element 2 -6.25 MPa -6.248 MPa -6.25 MPa

Element 3 -18.75 MPa -18.752 MPa -18.75 MPa

Reaction

At 1 in x-direction -8 kN -8 kN -8 kN

At 1 in y-direction 3 kN 3 kN 3 kN

At 3 in y-direction 9 kN 9 kN 9 kN

Example 4.2
For the truss shown in Figure 4.3, determine nodal displacements and stresses in 
each member. All elements have E = 200 GPa and A = 500 mm2.

Figure 4.3.  Example 4.2
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Solution
	 E = 2 × 105 N/mm2�

	 A = 500 mm2.�

(I) FEM by hand calculation

Elements Node numbers q cos q sin q L (mm)

Local 1 Local 2

1 1 4 0 1 0 5000

2 1 3 45 0.707 0.707 5000

3 1 2 90 0 1 5000

Stiffness matrices for elements 1, 2, and 3 are,

	

k
AE

L

c cs c cs

cs s cs s

c cs c cs

cs s cs s

1

2 2

2 2

2 2

2 2

[ ] =

- -

- -

- -

- -





















= × ×
-

-



















500 2 10

5000

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

5

�

	

u v u v

k

u

v

u

v

1 1 4 4

1
3

1

1

4

4

20 10

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

[ ] = ×

-

-



















�

	

u v u v

k

1 1 3 3

2
320 10

0 5 0 5 0 5 0 5

0 5 0 5 0 5 0 5

0 5 0 5 0 5
[ ] = ×

- -
- -

- -

. . . .

. . . .

. . . 00 5

0 5 0 5 0 5 0 5

1

1

3

3

.

. . . .- -



















u

v

u

v �

	

u v u v

k

u

v

u

v

1 1 2 2

3
3

1

1

2

2

20 10

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

[ ] = ×
-

-



















.

�
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Global stiffness matrix is,

	

u v u v u v u v

K

1 1 2 2 3 3 4 4

320 10

1 0 5 0 5 0 0 0 5 0 5 1 0

0 5 0 5 1 0 1

[ ] = ×

+ - - -
+ -

. . . .

. . -- -

-
- -
- -

0 5 0 5 0 0

0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

0 5 0 5 0 0 0 5 0 5 0 0

0 5 0 5 0 0 0

. .

. . . .

. . .55 0 5 0 0

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

1

1

2

2

3

.

-































u

v

u

v

u

vv

u

v

3

4

4 �

	

u v u v u v u v

K

1 1 2 2 3 3 4 4

320 10

1 5 0 5 0 0 0 5 0 5 1 0

0 5 1 5 0 1 0 5

[ ] = ×

- - -
- -

. . . .

. . . --

-
- -
- -

0 5 0 0

0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

0 5 0 5 0 0 0 5 0 5 0 0

0 5 0 5 0 0 0 5 0 5

.

. . . .

. . . . 00 0

1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

1

1

2

2

3

3

4-































u

v

u

v

u

v

u

vv4

.

�

Global equation is,

u v u v u v u v1 1 2 2 3 3 4 4

320 10
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Using the elimination method for applying boundary conditions, 

	 u v u v u v2 2 3 3 4 4 0= = = = = = . �

Then the above matrix reduces to,
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Solving the above matrix and equations,
we get,

	 u1 = -0.375 mm�

	 v1 = -0.875 mm.�

Stress calculation
Stress in element 1 is,
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Stress in element 2 is,

	

s q q q q2
2

1

1

3

3

52 10

5000
= - -[ ]



















= × -E

L

u

v

u

v

ccos sin cos sin --[ ]



















= × - -

s c s

u

v

u

v

1

1

3

3

2

52 10

5000
0 707 0 707 0 707 0s . . . .7707

0 375

0 875

0

0

35 352[ ]

-
-



















=

.

.
. MPa.

�



160	 Finite Element Analysis

Stress in element 3 is,
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(II) Software results

Figure 4.3(a).  Deflection pattern for a truss for Example 4.2 (refer to Appendix C for color 
figures).

Deflection value at nodes
The following degree of freedom results are in global coordinates system

NODE UX UY UZ USUM

1 -0.37486 -0.87486 0.0000 0.95179

2 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000

4 0.0000 0.0000 0.0000 0.0000
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Stress values of elements

STAT CURRENT

ELEM LS1

1 14.995

2 35.363

3 34.995

Answers for Example 4.2

Parameter FEM-hand calculations Software results

Displacement of node 1 in 

x-direction -0.375 mm -0.37486 mm

y-direction -0.875 mm -0.87486 mm

Stress in Element 1 15 MPa 14.995 MPa

Stress in Element 2 35.352 MPa 35.363 MPa

Stress in Element 3 35 MPa 34.995 MPa

Figure 4.3(b). Stress pattern for a truss for Example 4.2 (refer to Appendix C for color 
figures).
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Example 4.3
The bar truss shown in Figure 4.4, determine the displacement of node 1 and the 
axial stress in each member. Take E = 210 GPa and A = 600 mm2. Solve the problem 
if node 1 settles an amount of d = 25 mm in the negative y-direction.

Figure 4.4.  Example 4.3

Solution
(I) FEM by hand calculation

Elements Node numbers q cos q sin q L (mm)

Local 1 Local 2

1 3 1 0 1 0 4000

2 2 1 -36.87 0.8 -0.6 5000

Angle calculation
For 2nd element,

	
sin . . .q q= = ⇒ = -3

5
0 6 36 87°

�

Figure 4.4(a).  Angle calculation for 2nd element for Example 4.3.
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Stiffness matrices for element 1 and 2 are,
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Global stiffness matrix is,
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Global equation is,

u v u v u v

K

1 1 2 2 3 3

310

47 63 12 1 16 13 12 1 31 5 0
12 1 9 1 12 1

[ ] =

− − −
− −

. . . . .
. . . 99 1 0 0

16 13 12 1 16 13 12 1 0 0
12 1 9 1 12 1 9 1 0 0
31 5 0 0 0 31 5

.
. . . .
. . . .
. .

− −
− −

− 00
0 0 0 0 0 0

1

1

2

2

3

3

1

1

2

2

3

3




































u
v
u
v
u
v

u
v
u
v
u
v













=

−

























2000

10

1

2

2

3

3

3

R
R
R
R
R

y

x

y

x

y

.

Using the elimination method for applying boundary conditions,

i.e.,	 u2 = v2 = u3 = v3 = 0.

Then the above matrix reduces to,
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We know that v1 = –25 mm, substitute this in the above matrix,
then,
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Solving the above matrix and equations we get,

	 u1 48 34= - .  mm. �



Finite Element Analysis Trusses	 165

Stress calculation
Stress in element 1 is,
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Stress in element 2 is,
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(II) Software results

Figure 4.4(b). Deflection pattern for a truss for Example 4.3 (refer to Appendix C for color 
figures).
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Deflection value at nodes
The following degree of freedom results are in global coordinates system

NODE UX UY UZ USUM

1 -48.341 -25.000 0.0000 54.423

2 0.0000 0.0000 0.0000 0.0000

3 0.0000 0.0000 0.0000 0.0000

Maximum absolute values

NODE 1 1 0 1

VALUE -48.341 -25.000 0.0000 54.423

Figure 4.4(c).  Stress pattern for a truss for Example 4.3 (refer to Appendix C for color 
figures).

Stress values of elements

STAT CURRENT

ELEM LS1

1 -2537.9

2 -994.27
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Answers for Example 4.3

Parameter FEM-hand calculations Software results

Displacement of node 1 in 

x-direction -48.34 mm -48.341 mm

y-direction -25 mm -25 mm

Stress in Element 1 -2537.85 MPa -2537.9 MPa

Stress in Element 2 -994.22 MPa -994.27 MPa

Procedure for solving the problems using ANSYS® 12.0 academic teaching 
software 
For Example 4.3

Preprocessing

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > 
Structural Link > 2D spar 1 > OK > Close

Figure 4.5.  Element selection.

2.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 4.6.  Enter the cross-sectional area.

Cross-sectional area AREA > Enter 600 > OK > Close
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Enter the material properties.
3.	Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1, Click Structural > Linear > Elastic > Isotropic
Enter EX = 2.1E5 and PRXY = 0.3 > OK
(Close the Define Material Model Behavior window.)
Create the nodes and elements as shown in the figure.

4.	Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS 
Enter the coordinates of node 1 > Apply Enter the coordinates of node 2 > 
Apply Enter the coordinates of node 3 > OK

Node locations

Node number X-coordinate Y-coordinate

1 0 0

2 -4000 3000

3 -4000 0

Figure 4.7.  Enter the node coordinates.

5.	 Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > 
Thru nodes Pick the 1st and 2nd node > Apply Pick the 1st and 3rd node > OK

Figure 4.8.  Pick the nodes to create elements.
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Apply the displacement boundary conditions and loads.
6.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 

Displacement > On Nodes Pick the 2nd and 3rd node > Apply > All DOF=0 > 
OK

7.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Displacement > On Nodes Pick the 1st node > Apply > UY=-25 > OK

8.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Force/Moment > On Nodes Pick the 1st node > OK > Force/Moment value= 
-2000e3 > OK

Figure 4.9.  Model with loading and displacement boundary conditions.

�The model-building step is now complete, and we can proceed to the solution. 
First to be safe, save the model.

Solution
The interactive solution proceeds.
9.	Main Menu > Solution > Solve > Current LS > OK

�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the  
/STATUS window and if all is OK, select File > Close.
�In the Solve Current Load Step window, select OK, and the solution is 
complete, close the ‘Solution is Done!’ window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
10.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > 

DOF Solution > Displacement vector sum > OK
This result is shown in Figure 4.4(b).
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To find the axial stress, the following procedure is followed.
11.	 MAIN Menu > General Postproc > Element Table > Define Table > Add

Figure 4.10.  Defining the element table.

Select By sequence num and LS and type 1 after LS (as shown in Figure 4.11) >OK

Figure 4.11.  Selecting options in element table.

12.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Elem Table 
> Select LS1 > OK

Figure 4.12.  Selecting options for finding out axial stress.

This result is shown in Figure 4.4(c).



Finite Element Analysis Trusses	 171

Problems

1.	 For a 5 bar truss shown in Figure 4.13, determine the following:
	(a) nodal displacements
	(b) stresses in each element
	(c) reaction forces.

	Take E = 200 GPa and Area A = 750 mm2 for all elements.

Figure 4.13.  Problem 1

2.	For the 3 bar truss shown in Figure 4.14, determine the displacement of node 1 
and the stresses in elements. Take A = 300 mm2 and E = 210 GPa.

Figure 4.14.  Problem 2

3.	Consider the truss shown in Figure 4.15, determine the nodal displacements, 
element stresses, and reactions. Take E = 200 GPa. A1 = A2 = A3 = 500 mm2,  
P1 = 300 kN, P2 = 200 kN.
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4.	Consider the truss structure shown in Figure 4.16, determine the stresses of 
the truss structure. Take all members have elastic modulus (E) of 210 GPa and 
cross-sectional area (A) of 250 mm2.

Figure 4.15.  Problem 3

Figure 4.16.  Problem 4

5.	Consider the truss structure shown in Figure 4.17, derive the finite element 
matrix equations using 2 elements. Determine the displacements and the 
stresses in the member. Assume all members have elastic modulus (E) of  
200 GPa and cross-sectional area (A) of 300 mm2.

Figure 4.17.  Problem 5
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6.	 Consider the truss structure shown in Figure 4.18, determine the nodal 
displacement and the element forces assuming that all elements have the same AE.

Figure 4.18.  Problem 6

7.	Determine the nodal displacements, element stresses, and support reactions 
for the 3 member truss shown in Figure 4.19. Take A1 = 10 in2, A2 = 15 in2,  
A3 = 10 in2 and E = 20 msi for all members.

Figure 4.19.  Problem 7

8.	Determine the nodal displacements, element stresses and support reactions  
for the three member truss shown in Figure 4.20. Take A1 = 1 in2, A2 = 2 in2,  
A3 = 3 in2, and E = 30 Mlb/in2 for all members.

Figure 4.20.  Problem 8
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9.	Determine the nodal displacements, element stresses, and support reactions 
for the 3 member truss shown in Figure 4.21. Take A1 = 6 cm2, A2 = 8 cm2,  
A2 = 8 cm2, and E = 20 MN/cm2 for all members.

Figure 4.21. Problem 9
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Chapter

Finite Element 
Analysis of Beams5

5.1 Introduction

Beam is very common structure in many engineering applications because of 
its efficient load carrying capability. Beam by definition is a transversely loaded 
structural member. Beam element is used in the analysis of beams.

Figure 5.1.  Beam element.

This element has 2 end nodes each having 2 degrees of freedom, namely transverse 
displacement and slope. Beam element gives accurate results if acted upon by nodal 
forces and moments. A greater number of small elements will be necessary in the 
case of a beam acted upon by distributed loads in order to get good results. The 
interpolation equation and element stiffness matrix for beam element are given by
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5.2 Simply Supported Beams

Example 5.1
For the beam shown in Figure 5.2, determine the nodal displacements, slope, and 
reactions. Take E = 210 GPa and I = 4 × 10–4 m4.

Figure 5.2.  The beam for Example 5.1.

Solution
(I) Analytical method [refer to Figure 5.2]

	

L

P

=
=

10

8

 m

 kN. �

Deflection,

	
dC

PL

EI
= - = - × × ( )

× × × ×
= - × = --

-
3 3 3

9 4
3

48

8 10 10

48 210 10 4 10
1 98 10 1. . m 998 mm

�

	
q qC B

PL

EI
= = = × × ( )

× × × ×
= ×-

-
2 3 2

9 4
4

16

8 10 10

16 210 10 4 10
5 95 10.  rad

�

qC = 0, by symmetry.
Reaction,

	
R RA B= = =8

2
4 kN.

�
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(II) FEM by hand calculations [refer to Figure 5.2(a)]

Figure 5.2(a).  Finite element model for Example 5.1.

Element stiffness matrices are,

	

k
EI

L

L L

L L L L

L L

L L L L

[ ] =

-

-
- - -

-













3

2 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4 







[ ] = × × ×
( )

( ) - ( )
( ) ( ) - ( )-

k1

9 4

3

2
210 10 4 10

5

12 6 5 12 6 5

6 5 4 5 6 5 2 55

12 6 5 12 6 5

6 5 2 5 6 5 4 5

2

2 2

( )
- - ( ) - ( )

( ) ( ) - ( ) ( )



















 �

	

w w

k

1 1 2 2

1
3672 10

12 30 12 30

30 100 30 50

12 30 12 30

30 50 30 1

q q

[ ] = ×

-
-

- - -
- 000

1

1

2

2



















w

w

q

q

.

�

Due to symmetry,

	 k k1 2[ ] = [ ] �

	

w w

k

2 2 3 3

2
3672 10

12 30 12 30

30 100 30 50

12 30 12 30

30 50 30 1

q q

[ ] = ×

-
-

- - -
- 000

2

2

3

3



















w

w

q

q

.

�

Global equation is,

	 K r R[ ]{ } = { } � (5.3)
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w w w1 1 2 2 3 3

3672 10

12 30 12 30 0 0
30 100 30 50 0 0
12 30 12 12 30 3

q q q

×

−
−

− − + − + 00 12 30
30 50 30 30 100 100 30 50
0 0 12 30 12 30
0 0 30 50 30 100

−
− + + −
− − −

−





















































=

w

w

w

w

w

w

1

1

2

2

3

3

1

1

2

2

3

3

q

q

q

q

q

q

RR

R

1

3

3

0
8 10
0

0

− ×





























.

Using the elimination method for applying boundary conditions,

	 w1 = w3 = 0.�

The above matrix reduces to 

	

q q q1 2 2 3

3672 10

100 30 50 0
30 24 0 30
50 0 200 50
0 30 50 100

w

×

-
-





































= - ×


















q

q
q

1

2

2

3

3

0

8 10
0
0

w
.

�

By solving the above equations, we get,

	 w2 0 002 2= - -.  m =  mm, �

	 q q q1 2 30 0006 0 0 0006= - = =. . rad,  rad, and  rad. �

Reaction calculation

	 672 10 30 123
1 2 1× × - ×( ) =q w R �

	 672 10 30 0 0006 12 0 0023
1× × -( ) - × -( )( ) =. . R �

	 R1 4 032= .  kN �

	 672 10 12 303
2 3 3× - × - ×( ) =w Rq �

	 672 10 12 0 002 30 0 00063
3× - × -( ) - × ( )( ) =. . R �

	 R3 4 032= .  kN. �



Finite Element Analysis of Beams	 179

(III) Software results

Figure 5.2(b).  Deflection pattern for a simply supported beam (refer to Appendix C for 
color figures).

Deflection values at nodes (in meters)
The following degree of freedom results are in global coordinates

NODE UX UY UX USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 -0.19841E-02 0.0000 -0.19841E-02

3 0.0000 0.0000 0.0000 0.0000

The following degree of freedom results are in global coordinates

NODE ROTZ

1 -0.59524E-03

2 0.0000

3 0.59524E-03

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ

1 0.0000 4000.0

3 0.0000 4000.0
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Answers for Example 5.1

Parameter Analytical 
method

FEM-hand  
calculations

Software  
results

Displacement at node 2 -1.98 mm -2 mm -1.9841 mm

Slope at node 

1 –5.95 × 10–4 rad -0.0006 rad –0.59524 × 10–3 rad

2 0 0 0

3 –5.95 × 10–4 rad -0.0006 rad 0.59524 × 10–3 rad

Reaction at node

1 4 kN 4.032 kN 4 kN

3 4 kN 4.032 kN 4 kN

Example 5.2
For the beam shown in Figure 5.3, determine displacements, slopes, reactions, 
maximum bending moment, shear force, and maximum bending stress. Take 
E = 210 GPa and I = 2 × 10–4 m4. The beam has rectangular cross-section of 
depth h = 1 m.

Figure 5.3.  The beam for Example 5.2.

Solution
(I) Analytical method [refer to Figure 5.3]
Reaction,

	
R RA B= = × =5000 9

2
22500 N = 22.5 kN

�

	
dC

PL

EI
= - = - × × ( )

× × × ×
= - = --

5

388

5 5000 9

384 210 10 2 10
0 0102 10

4 4

9 4
.  m ..2 mm

�

	
q qA B

PL

EI
= = = × ( )

× × × ×
= ×-

-
3 3

9 4
3

24

5000 9

24 210 10 2 10
3 62 10.  rad

�
qC = 0, by symmetry.�
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Maximum bending moment,

	
M

PL
max = = × ( ) =

2 2

8

5000 9

8
50625 N-m.

�

Shear force,

	
SF

PL= = × =
2

5000 9

2
22500 N.

�

Maximum bending stress,

	
f

M

I
ymax

max
max= ×

�
(5.4)

	

y
h

f

max

max

.

. .

= = =

=
×

× =-

2

1

2
0 5

50625

2 10
0 5 126 56

4

 m

 MPa.
�

Figure 5.3(a).  Bending moment diagram.

Figure 5.3(b).  Shear force diagram.

(II) FEM by hand calculations [refer to Figure 5.3(c)]

Figure 5.3(c).  Finite element model for Example 5.2.
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Stiffness matrices are,

	

k
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L L

L L L L

L L

L L L L
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-
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





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
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6 2 6 4 


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
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9 4

3

210 10 2 10

4 5

12 6 4 5 12 6 4 5

6 4 5 4 4

.

. .

. .55 6 4 5 2 4 5

12 6 4 5 12 6 4 5

6 4 5 2 4 5 6 4 5

2 2

2

( ) - ( ) ( )
- - ( ) - ( )

( ) ( ) - ( )

. .

. .

. . . 44 4 5 2.( )



















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w w

k

1 1 2 2

1 460905 35

12 27 12 27

27 81 27 40 5

12 27 12 27

27 40

q q

[ ] =

-
-

- - -
.

.

.55 27 81

1

1

2

2-



















w

w

q

q

.

�

Due to symmetry,

	 k k1 2[ ] = [ ] �

	

w w

k

2 2 3 3

2 460905 35

12 27 12 27

27 81 27 40 5

12 27 12 27

27 40

q q

[ ] =

-
-

- - -
.

.

.55 27 81

2

2

3

3-



















w

w

q

q

.

�

Nodal force calculation
For element 1,

Figure 5.3(d).  Nodal force calculation for element 1 in Example 5.2.
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Nodal forces and moments for element 1 is,

	

F

PL

PL

PL

PL

1

2

2

2

12

2

12

5000 4 5

2

{ } =

-

-

-







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
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-
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
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
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
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
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







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


11250

8437 5

11250

8437 5

1

1

2

2

.

.

.

f

m

f

m

�

For element 2,

Figure 5.3(e).  Nodal force calculation for element 2 in Example 5.2.

Due to symmetry,

	 F F1 2{ } = { } �

	

F

f

m

f

m

2

2

2

3

3

11250

8437 5

11250

8437 5
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-
-
-
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



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










.

.

.

�

Global equation is,

	 K r R[ ]{ } = { } � (5.5)

w w w1 1 2 2 3 3

460905 35
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27 81 27 40 5 0 0
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
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

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

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

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



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

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
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Using the elimination method for applying boundary conditions,

	 w1 = w3 = 0.�
The above matrix reduces to 

	

q q q1 2 2 3

460905 35

81 27 40 5 0
27 24 0 27
40 5 0 162 40 5
0 27 40 5 81

w

.

.

. .
.

-
-






















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
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
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-
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






q

q
q

1

2

2

3

8437 5
22500
0
8437 5

w
.

.










.

�
By solving the above equations, we get,

	 w2 0 0102= - .  m, �

	 q q q1 2 30 0036 0 0 0036= - = =. . rad,  rad, and  rad. �
Reactions are calculated from 1st and 5th rows of global matrix.

	

460905 35 12 27 12 27 0 0 1125

1

1

2

2

3

3

. -[ ]



























= -

w

w

w

q

q

q

00 1+ R y

�

	
∴ = - +             11615 11250 1R y �

	
∴ =             N = 22.865 kN.R y1 22865

�
Similarly from 5th row 

	
R y3 22 865= .  kN.

�

(III) Software results

Figure 5.3(f).  Deflection pattern for a simply supported beam (refer to Appendix C for color 
figures).
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Deflection values at nodes (in meters)
The following degree of freedom results are in global coordinates

NODE UX UY UX USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 -0.10170E-01 0.0000 -0.10170E-01

3 0.0000 0.0000 0.0000 0.0000

Slope values at nodes
The following degree of freedom results are in global coordinates

NODE ROTZ

1 -0.36161E-02

2 0.0000

3 0.36161E-02

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ

1 0.0000 22500

3 0.0000 22500

Total values

VALUE 0.0000 45000 0.0000

Figure 5.3(g).  Bending moment diagram for a simply supported beam (refer to Appendix C 
for color figures).
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Figure 5.3(h).  Shear force diagram for a simply supported beam (refer to Appendix C for 
color figures).

Figure 5.3(i).  Bending stress for a simply supported beam (refer to Appendix C for color figures).

Answers for Example 5.2

Parameter Analytical  
method

FEM-hand  
calculations

Software  
results

Displacement at node 2 -0.0102 m -0.0102 m -0.01017 m

Slope at node 

1 –3.62 × 10–3 rad 0.0036 rad –0.36161 × 10–2 rad

2 0 0 0

3 3.62 × 10–3 rad 0.0036 rad 0.36161 × 10–2 rad

Reaction at node

1 22500 N 22865 N 22500 N

3 22500 N 22865 N 22500 N

Maximum bending moment 50625 N-m …… 50625 N-m

Shear force 22500 N ……. 22500 N

Maximum bending stress 126.56 MPa ……. 127 MPa
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Example 5.3
For the beam shown in Figure 5.4, determine displacements, slopes, and reactions. 
Take E = 200 GPa and I = 6.25 × 10–4 m4.

Figure 5.4.  The beam for Example 5.3.

Solution
(I) Analytical method [refer to Figure 5.4]
Reaction,

	
R

PL
A = = × × = =

6

50 10 8

6
66666 67 66 67

3

. . N  kN
�

	
R

PL
B = = × × = =

3

50 10 8

3
133333 33 133 33

3

. . N  kN
�

	
qA
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EI
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360

7 50 10 8
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9 4.
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 =

1

36 120

7

360
3 5

3

2 �
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L PL L
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= × 



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×
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

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
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
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
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�
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qC EI

PL L P

L

L PL L PL

E
= × 



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×
× 
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
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7
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
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�
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PL
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1 2153 10 1 2153 10 50 8
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3 3 3 3

9
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×× ×
= ×-

-

6 25 10
2 4889 10

4
4

.
.  rad.

(II) FEM by hand calculations [refer to Figure 5.4(a)]

Figure 5.4(a).  Finite element model for Example 5.3.

Stiffness matrices are,
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Due to symmetry,
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Global stiffness matrix is,
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Load vector,
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Global load vector is,
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Global equation is,

	 K r R[ ]{ } = { } �
(5.6)

w w w1 1 2 2 3 3

4195 3125 10

12 24 12 24 0 0
24 64 24 32 0 0
12 24 12 12

q q q

. ×

−
−

− − + −224 24 12 24
24 32 24 24 64 64 24 32
0 0 12 24 12 24
0 0 24 32 24 64

+ −
− + + −
− − −

−





















































w

w

w

w

w

w

1

1

2

2

3

3

1

1

2

2

3

3

q

q

q

q

q

q

==

− +
−
−
−
− +























15000
13333
100000
26667
85000
53333

1

3

R

R






.

Using the elimination method for applying boundary conditions,

	 w1 = w3 = 0.�

The above matrix reduces to 
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By solving the above equations, we get,
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Reaction calculation
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(III) Software results

Figure 5.4(b).  Deflection pattern for a simply supported beam (refer to Appendix C for 
color figures).

Deflection values at nodes (in meters)
The following degree of freedom results are in global coordinates

NODE UX UY UX USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 -0.10667E-01 0.0000 0.10667E-01

3 0.0000 0.0000 0.0000 0.0000

Maximum absolute values

NODE 0 2 0 2

VALUE 0.0000 -0.10667E-01 0.0000 0.10667E-01

Slope values at nodes
The following degree of freedom results are in global coordinates

NODE ROTZ

1 -0.39822E-02

2 -0.24889E-03

3 0.45511E-02
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Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ

1 0.0000 66667

3 0.0000 0.13333E +06

Total values

VALUE 0.0000 0.20000E + 06 0.0000

Answers for Example 5.3

Parameter Analytical  
method

FEM-hand  
calculations

Software  
results

Displacement at node 2 -0.01067 m -0.01067 m -0.010667 m

Slope at node 

1 -0.00398 rad -0.00398 rad -0.0039822 rad

2 –2.4889 × 10–4 rad -0.00025 rad -0.00024889 rad

3 0.00455 rad 0.00455 rad 0.0045511 rad

Reaction at node

1 66.67 kN 66.79 kN 66.667 kN

3 133.33 kN 133.52 kN 133.33 kN

Example 5.4
Calculate the maximum deflection in the beam shown in Figure 5.5. Take E = 200 GPa.

Figure 5.5.  The beam for Example 5.4.

Solution
(I) Analytical method [refer Figure 5.5(a)]

Figure 5.5(a).  Analytical method for Example 5.4.
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(II) FEM by hand calculations [refer to Figure 5.5(b)]

Figure 5.5(b).  Finite element model for Example 5.4.
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Due to symmetry,
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Global stiffness matrix is,
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Global load vector is,
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Global equation is, 

	 K r R[ ]{ } = { } � (5.7)
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Using the elimination method for applying boundary conditions,

	 w1 = w3 = 0.�
The above matrix reduces to
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By solving the above equations, we get,
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�
At q2 = 0, max deflection between supports is 0.0128 mm.
Deflection at ends (overhang) = 4.8 × 10–4 × 10 = 4.8 × 10–3 mm.

(III) Software results

Figure 5.5(c).  Deflection pattern for a simply supported beam (refer to Appendix C for  
color figures).
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Deflection values at nodes (in mm)
The following degree of freedom results are in global coordinates

NODE UX UY UX USUM

1 0.0000 0.48000E-02 0.0000 0.48000E-02

2 0.0000 0.0000 0.0000 0.0000

3 0.0000 -0.12800E-01 0.0000 0.12800E-01

4 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.48000E-02 0.0000 0.48000E-02

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 -0.12800E-01 0.0000 0.12800E-01

Slope values at nodes
The following degree of freedom results are in global coordinates

NODE ROTZ

1 -0.48000E-03

2 -0.48000E-03

3 0.0000

4 0.48000E-03

5 0.48000E-03

Answers for Example 5.4

Parameter Analytical  
method

FEM-hand  
calculations

Software  
results

Deflection at applied load -0.0128 mm -0.0128 mm -0.0128 mm

Deflection at ends (overhang) 4.802 × 10–3 mm 4.8 × 10–3 mm 4.8 × 10–3 mm

Slope at hinged support –4.802 × 10–4 rad –4.8 × 10–4 rad –4.8 × 10–4 rad

Slope at roller support 4.802 × 10–4 rad 4.8 × 10–4 rad 4.8 × 10–4 rad

Procedure for solving the problems using ANSYS® 11.0 academic teaching 
software.
For Example 5.2
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Preprocessing

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > 
Beam > 2D elastic 3 > OK > Close

Figure 5.6.  Element selection.

2.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 5.7.  Enter the area, moment of inertia, and height of beam.

Cross-sectional area AREA > Enter 1
Area moment of inertia IZZ > Enter 2e-4
Total beam height HEIGHT > Enter 1 > OK > Close
Enter the material properties.

3.	Main Menu > Preprocessor > MATERIAL Props > Material Models
Material Model Number 1, Click Structural > Linear > Elastic > Isotropic
Enter EX = 210E9 and PRXY = 0.3 > OK
(Close the define material model behavior window.)
Create the nodes and elements as shown in the table below and Figure 5.8.
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4.	Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS 
Enter the coordinates of node 1 > Apply Enter the coordinates of node 2 > 
Apply Enter the coordinates of node 3 > OK.

Node locations

Node number X-coordinate Y-coordinate

1 0 0

2 4.5 0

3 9 0

Figure 5.8.  Enter the node coordinates.

5.	 Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > 
Thru nodes Pick the 1st and 2nd node > Apply Pick the 2nd and 3rd node > OK

Figure 5.9.  Pick the nodes to create elements.

Apply the displacement boundary conditions and loads.
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6.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Displacement > On Nodes Pick the 1st node and 3rd node > Apply > Select UX 
and UY and Enter displacement value = 0 > OK

Figure 5.10.  Apply the displacement constraint.

7.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Pressure > On Beams Pick the 1st element > OK > Enter Pressure values at 
node I = 5000 > OK

Figure 5.11.  Applying loads on element 1.

8.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Pressure > On Beams Pick the 2nd element > OK > Enter Pressure value at 
node I = 5000 > OK

Figure 5.12.  Model with loading and displacement boundary conditions.

�The model-building step is now complete, and we can proceed to the solution. 
First, to be safe, save the model.
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Solution
The interactive solution proceeds.
9.	Main Menu > Solution > Solve > Current LS > OK

�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the  
/STATUS window and if all is OK, select File > Close.
�In the Solve Current Load Step window, select OK, and when the solution is 
complete, close the ‘Solution is Done!’ window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
10.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > 

DOF Solution > Displacement vector sum > OK
This result is shown in figure 5.3(f ).

11.	 �Main Menu > General Postproc > List Results > Nodal Solution > Select 
Rolation vector sum > OK

12.	Main Menu > General Postproc > List Results > Reaction Solu > OK
To find the bending moment diagram, the following procedure is followed.

13.	 �Main Menu > General Postproc > Element Table > Define Table > Add as 
shown in Figure 5.13.

Figure 5.13.  Define the element table.
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Then again select By sequence num and SMISC and type 12 after SMISC > OK
14.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem 

Res > Select SMIS 6 and SMIS 12 in the rows of LabI and LabJ respectively as 
shown in Figure 5.15 > OK

Figure 5.14.  Selecting options in element table.

�Select By sequence num and SMISC and type 6 after SMISC (as shown in 
Figure 5.14) > APPLY

Figure 5.15.  Selecting options for finding out bending moment.

This result is shown in Figure 5.3(g).
To find the shear force diagram the following procedure is followed.

15.	Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and SMISC and type 2 after SMISC > APPLY 
Then again select By sequence num and SMISC and type 8 after SMISC > OK

16.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Lone Elem 
Res > Select SMIS 2 and SMIS 8 > OK
This result is shown in Figure 5.3(h).
To find the bending stress, the following procedure is followed.
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17.	Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and LS and type 3 after LS > APPLY 
Then again select By sequence num and LS and type 6 after LS > OK 

18.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem 
Res > Select LS 3 and LS 6 > OK
This result is shown is Figure 5.3(i).

5.3 Cantilever Beams

Example 5.5
Beam subjected to concentrated load. For the beam shown in Figure 5.16, 
determine the deflections and reactions. Let E = 210 GPa and I = 2 × 10–4 m4. Take 
2 elements.

Figure 5.16.  Beam subjected to concentrated load for Example 5.5.

Solution
(I) Analytical method [refer to Figure 5.16(a)]

Figure 5.16(a).  Analytical method for Example 5.5.

The solution is obtained by Macaulay’s method. The number within the brackets 
<> is to be neglected whenever it is less than zero.
At section a-a
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(II) FEM by hand calculations

Figure 5.16(b).  Finite element model.
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Element stiffness matrix for element 1 is,

k
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Element stiffness matrix for element 2 is,
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Global stiffness matrix is, 
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The global equations are,

	 K r R[ ]{ } = { } � (5.8)
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By using the elimination method for applying boundary conditions,

	 w1 = q1 = 0.�

The above matrix reduces to,

	

w w2 2 3 3
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By solving the above matrix and equations, we get,
Deflections and slopes as
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Reaction calculation
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(III) Software results

Figure 5.16(c).  Deflection pattern for a cantilever beam (refer to Appendix C for color 
figures).

Deflection values at nodes (in meters)
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 -0.31746E-03 0.0000 0.31746E-03

3 0.0000 -0.79365E-03 0.0000 0.79365E-03

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 -0.79365E-03 0.0000 0.79365E-03

Rotational deflection values at nodes
The following degree of freedom results are in global coordinates

NODE ROTZ

1 0.0000

2 -0.23810E-03

3 -0.23810E-03
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Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ

1 0.0000 5000.0 10000.

Answers for Example 5.5

Parameter Analytical  
method

FEM-hand  
calculations

Software  
results

Deflection at node 

2 –3.1746 × 10–4 m –0.3175 × 10–3 m –0.31746 × 10–3 m

3 –7.9365 × 10–4 m –0.7937 × 10–3 m –0.79365 × 10–3 m

Rotational deflection at node

2 –2.381 × 10–4 rad –0.2381 × 10–3 rad –0.2381 × 10–3 rad

3 –2.381 × 10–4 rad –0.2381 × 10–3 rad –0.2381 × 10–3 rad

Reaction force at node 1 5 kN 5 kN 5 kN

Reaction moment at node 1 10 kN-m 10 kN-m 10 kN-m

Example 5.6
Propped cantilever beam with distributed load. Find nodal displacements 
and support reactions for the beam shown in Figure 5.17. Let E = 70 GPa and 
I = 6 × 10–4 m4.

Figure 5.17.  Propped cantilever beam with distributed load for Example 5.6.
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Solution
(I) Analytical method [refer to Figure 5.17(a)]

Figure 5.17(a).  Analytical method for Example 5.6.

The solution is obtained by Macaulay’s method. The number within the brackets 
<> is to be neglected whenever it is less than zero.
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(5.10)

Boundary conditions are, 

	 At x y C= = ⇒ =0 0 02, �

	 At x y C= = ⇒ =0 0 01, ′ �
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At  Nx y R= = ⇒ =4 0 560082,

�

	 ∴ = - = -     NR R1 232000 24008 �

	 M R1 24 192000 32032= - =  N-m (Clockwise), (negative). �

Substituting in equations (5.9) and (5.10)
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(II) FEM by hand calculations

Figure 5.17(b).  Finite element model for Example 5.6.

	 E I= × = ×70 10 6 103 8 N/mm   and    mm2 4
�
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Stiffness matrix for element 1 is,
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Nodal force calculation
For element 2,

Figure 5.17(c).  Nodal force calculation for element 2 in Example 5.6.
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The nodal forces and moments for element 2 is,
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The global equations are,

	 K r R[ ]{ } = { } � (5.11)
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By using the elimination method for applying boundary conditions,

	 w1 = q1 = w2 = 0.�
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The above matrix reduces to
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Solving the above matrix and equations, we get,

	 w2 12 19 0 01219= - = -. . mm  m 	

	 q3 0 00355= - .  rad �
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(III) Software results

Figure 5.17(d).  Deflection pattern for a cantilever beam (refer to Appendix C for color figures).
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Deflection values at nodes (in meters)
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.31746E-03

3 0.0000 -0.12190E-01 0.0000 0.12190E-01

Rotational deflection values at nodes
The following degree of freedom results are in global coordinates

NODE ROTZ

1 0.0000

2 -0.15238E-02

3 -0.35556E-02

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ

1 0.0000 -24000 -32000

2 0.0000 56000

Answer for Example 5.6

Parameter Analytical 
method

FEM-hand  
calculations

Software  
results

Deflection at node 3 -0.0122 m -0.01219 m -0.01219 m

Rotational deflection at node 

2 -0.00152 rad -0.00152 rad -0.001524 rad

3 -0.00355 rad -0.00355 rad -0.00355 rad

Reaction force at 

 1 -24 kN -24 kN -24 kN

2 56 kN 56 kN 56 kN

Reaction moment at node 1 -32 kN-m -32 kN-m -32 kN-m
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Example 5.7
Propped cantilever beam with varying load. For the beam shown in Figure 5.18, 
determine the nodal displacements, slopes, reactions, maximum bending moment, 
shear force, and maximum bending stress. Take E = 200 GPa.

Figure 5.18.  Propped cantilever beam with varying load for Example 5.7.

Solution
(I) FEM hand calculations

Figure 5.18(a).  Finite element model for Example 5.7.
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Stiffness matrices for element 1 and 2 are,
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Due to symmetry,
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Nodal force calculation
For element 1,

Figure 5.18(b).  Nodal force calculation for element 1 for Example 5.7.
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The nodal forces and moments for element 1 is,
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For element 2,

Figure 5.18(c).  Nodal force calculation for element 2 for Example 5.7.
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The nodal forces and moments for element 2 is,
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The combined nodal forces and moments matrix is,
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The global equations are,
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By using the elimination method for applying boundary conditions, w1 = q1 = w2 = 0. 
The above matrix reduces to,
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By solving the above matrix and equations, we get
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Reaction calculation
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(II) Software results

Figure 5.18(d).  Deflection pattern for a cantilever beam (refer to Appendix C for color figures).
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Deflection values at nodes (in meters)
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000

3 0.0000 -0.81098E-01 0.0000 0.810898E-01

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 -0081098E-01 0.0000 0.81098E-01

Rotational deflection values at nodes
The following degree of freedom results are in global coordinates

NODE ROTZ

1 0.0000

2 -0.12834E-01

3 -0.31948E-01

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ

1 0.0000 -92250 -96750

2 0.0000 0.27225E + 06

Total values

VALUE 0.0000 0.18000E + 06 -96750

Figure 5.18(e).  Bending moment diagram for a propped cantilever beam (refer to Appendix C 
for color figures).
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Figure 5.18(f).  Shear force diagram for a propped cantilever beam (refer to Appendix C for 
color figures).

Figure 5.18(g).  Bending stress diagram for a propped cantilever beam (refer to Appendix C 
for color figures).

Figure 5.18(h).  Maximum stress diagram for a propped cantilever beam (refer to Appendix C 
for color figures).
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Answers for Example 5.7

Parameter FEM-hand calculations Software results

Deflection at node 3 -0.0811 m -0.081098 m

Rotational deflection at node

2 -0.0128 rad -0.012834 rad

3 -0.0319 rad -0.031948 rad

Reaction force at

1 –91.97 kN –92.25 kN

 2 272.65 kN 272.25 kN

Reaction moment at node 1 -96.47 kN-m -96.75 kN-m

Maximum bending moment ….. 96750 N-m

Shear force ….. 137250 N

Maximum bending stress ….. 129 MPa

Maximum stress
(bending stress + direct stress)

….. 300 MPa

Example 5.8
Propped cantilever beam with stepped loading. Analyze the beam in Figure 5.19 by 
finite element method and determine the reactions. Also, determine the deflections.

Given	 E = 200 GPa and I = 5 × 10–4 m4.�

Figure 5.19.  Propped cantilever beam with stepped loading for Example 5.8.

Solution
(I) FEM by hand calculations

Figure 5.19(a).  Finite element model for Example 5.8.
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Stiffness matrix for element 1 and 2 are,
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Nodal force calculation
For element 1,

Figure 5.19(b).  Nodal force calculation for element 1 in Example 5.8.
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The nodal forces and moments for element 1 is,
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For element 2,

Figure 5.19(c).  Nodal force calculation for element 2 in Example 5.8.
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The nodal forces and moments for element 2 is,
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The combined nodal forces and moments is,
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The global equations are,
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By using the elimination method for applying boundary conditions,

	 w1 = q1 = w2 = 0,	

the above matrix reduces to 
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By solving the above matrix and equations, we get

Reaction calculation
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(II) Software results

Figure 5.19(d).  Deflection pattern for a cantilever beam (refer to Appendix C for color figures).

Deflection values at nodes (in meters)
The following degree of freedom results are in global coordinates

NODE UX UY UZ USUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.0000 0.0000 0.0000

3 0.0000 -0.35938E-01 0.0000 0.35938E-01

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 -0.35938E-01 0.0000 0.35938E-01
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Rotational deflection values at nodes
The following degree of freedom results are in global coordinates

NODE ROTZ

1 0.0000

2 -0.34375E-02

3 -0.84375E-02

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY MZ

1 0.0000 -52500 -0.11250E +06

2 0.0000 0.23250E + 06

Answers for Example 5.8

Parameter FEM-hand calculations Software results

Deflection at node 3 -0.035938 m -0.035938 m

Rotational deflection at node 

2 -0.003438 rad -0.0034375 rad

3 -0.003438 rad -0.0034375 rad

Reaction force at 

 1 -52.512 kN -52.5 kN

2 232.493 kN 232.25 kN

Reaction moment at node 1 -112.52 kN-m -112.5 kN-m

Procedure for solving the problems using ANSYS® 11.0 academic teaching 
software.
For Example 5.7
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PREPROCESSING

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > 
Beam > 2D elastic 3 > OK > Close 

Figure 5.20.  Element selection.

2.	Main Menu > Preprocessor > Sections > Beam > Common sections, following 
dialog box appears

Figure 5.21.  Choose cross-section of the beam.

�In that dialog box, select Sub-Type, choose Square Cross-Section, then Enter 
value of B = 0.165 and H = 0.165 as shown in Figure 5.21.
Click on Preview > OK
The following figure appears on the screen.
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�From Figure 5.22, note down the values of Area A = 0.027225 m2 and moment 
of inertia Izz = 0.681 × 10–4 m4.

3.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 5.22.  Details of geometrical properties of the beam.

Figure 5.23.  Enter the area moment of inertia.

Cross-sectional area AREA > Enter 0.027225
Area moment of inertia IZZ > Enter 0.618e-4
Total beam height HEIGHT > Enter 0.165 > OK > Close
Enter the material properties.

4.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX = 200E9 and RRXY = 0.3 > OK
(Close the Define Material Model Behavior window.)
Create the nodes and elements as shown in the figure.
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5.	Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS 
Enter the coordinated of node 1 > Apply Enter the coordinates of node 2 > 
Apply Enter the coordinate of node 3 > OK.

Node locations

Node number X-coordinate Y-coordinate

1 0 0

2 3 0

3 6 0

Figure 5.24.  Enter the node coordinate.

6.	 Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > 
Thru nodes Pick the 1st and 2nd node > Apply Pick the 2nd and 3rd node > OK

Figure 5.25.  Pick the nodes to create elements.

Apply the displacement boundary conditions and loads.
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7.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural 
> Displacement > On Nodes Pick the 1st node > Apply > All DOF = 0 > OK

8.	 Main Menu > Preprocessor > loads > Define Loads > Apply > Structural > 
Displacement > On Nodes Pick the 2nd node > Apply > Select UX and UY = 0 > OK

Figure 5.26.  Applying boundary conditions on node 2.

9.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural 
> Pressure > On Beams Pick the 1st element > OK > Enter Pressure value at 
node I = 0 and Pressure value at node J = 30e3 > OK

Figure 5.27.  Applying loads on element 1.

10.	 �Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Pressure > On Beams Pick the 2nd element > OK > Enter Pressure value at 
node I = 30e3 and Pressure value at node J = 60e3 > OK

Figure 5.28.  Model with loading and displacement boundary conditions.

�The model-building step is now complete, and we can proceed to the solution. 
First to be safe, save the model.
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Solution
The interactive solution proceeds.

11.	 Main Menu > Solution > Solve > Current LS > OK
�The /STATUS Command window displays the problem parameters and the 
Solve Control Load Step window is shown. Click the solution options in the  
/STATUS window and if all is OK, select File > Close.
�In the Solve Current Load Step window, select OK, and when the solution is 
complete, close the “Solution is Done!’ window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

12.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > 
DOF Solution > Displacement vector sum > OK
This result is shown in Figure 5.18(d).

13.	 �Main Menu > General Postproc > List Results > Nodal Solu > Select 
Roatation vector sum > OK

14.	Main Menu > General Postproc > List Results > Reaction Solu > PL
To find the bending moment diagram following procedure is followed.

15.	Main Menu > General Postproc > Element Table > Define Table > Add

Figure 5.29.  Define the element table.

�Select By sequence num and SMISC and type 6 after SMISC (as shown in 
Figure 5.30) > APPLY
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Then again select By sequence num and SMISC and type 12 after SMISC > OK
16.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem 

Res > Select SMIS 6 and SMIS 12 in the rows of LabI and LabJ, respectively as 
shown in Figure 5.31 > OK

Figure 5.30.  Selecting options in element table.

Figure 5.31.  Selecting options for finding out bending moment.

This result is shown in Figure 5.18(e).
To find the shear force diagram following procedure is followed.

17.	Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and SMISC and type 2 after SMISC > APPLY
�Then again select By sequence num and SMISC and type 8 after SMISC > 
OK > Close

18.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem 
Res > Select SMIS 2 and SMIS 8 > OK
This result is shown in Figure 5.18(f).
To find the bending stress the following procedure is followed.



232	 Finite Element Analysis

19.	Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and LS and type 3 after LS > APPLY
Then again select By sequence num and LS and type 6 after LS > OK

20.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem Res >
Select LS 3 and LS 6 > OK
This result is shown in Figure 5.18(g).
�To find the maximum stress (direct stress + bending stress) following 
procedure is followed.

21.	 Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and NMISC and type 1 after NMISC > APPLY
Then again select By sequence num and NMISC and type 3 after NMISC > OK 

22.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem 
Res > Select NMISC 1 and NIMS 3 > OK

Problems

1.	 For the bean shown in Figure 5.32, determine the deflection, slopes, reactions, 
maximum bending moment, shear force, and maximum bending stress. 
Take E = 210 GPa and I = 7 × 10–4 m4.

Figure 5.32.  Problem 1

2.	Find the deflection, slopes, reactions, maximum bending moment, shear force, 
and maximum bending stress for the aluminum beam shown in Figure 5.33. 
Take E = 200 GPa and I = 3 × 10–4 m4.

Figure 5.33.  Problem 2
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3.	Find the deflection at the load and the slopes at the end for the shaft shown 
in Figure 5.34. Also find the maximum bending moment, maximum bending 
stress, and reactions developed in the bearings. Consider the shaft to be simply 
supported at bearings A and B. Take E = 200 GPa.

Figure 5.34.  Problem 3

4.	Find the deflection of the bean shown in Figure 5.35 under self-weight.
Take E = 200 GPa and mass density r = 7800 kg/m3.

Figure 5.35.  Problem 4

5.	Find the deflection and bending stress distribution for the cantilever beam 
shown in Figure 5.36 under combined loading. Take E = 200 GPa.

Figure 5.36.  Problem 5

[ ]I
d= p 4

64
Hint: 
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7.	 A cantilever beam is shown in Figure 5.38. Using 2 beam elements determine the 
nodal deflection and reaction. Take E = 0.25 × 105 N/mm2 and I = 8 × 10–4 m4.

6.	For the beam shown in Figure 5.37, determine the deflection at nodes and 
reaction. Also, plot the bending moment diagram, shear force diagram and 
find the bending stress. Take E = 200 GPa and I = 8 × 10–4 m4.

Figure 5.37.  Problem 6

Figure 5.38.  Problem 7

[ ]maxP g h= × ×r

8.	Determine the deflection, reaction, and bending stress for the beam shown  
in Figure 5.39. Also, plot the bending moment and shear force diagram. Take  
E = 207 GPa, W = 150 N/mm, h = 800 mm, b = 400 mm, t1 = 40 mm, t2 = 40 mm, 
and t3 = 50 mm.

Hint: 

Figure 5.39.  Problem 8
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9.	Figure 5.40 presents a beam fixed at one end, supported by a cable at the other 
end, subjected to a uniformly distributed load of  70 lb/in. TakeE = 30 × 106 psi, 
Beam cross-section = 4 in × 4 in, and cable cross-section = 1 in2. Determine the 
finite element equilibrium equations of the system by using one finite element 
for the beam and one finite element for the cable, the displacement of nodes 1 
and 2, and the stress distribution in the beam and in the cable.

Figure 5.40.  Problem 9
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Chapter

Stress Analysis 
of a Rectangular 
Plate with a 
Circular Hole

6

6.1 Introduction 

Two dimensional problems in structural analysis are dealt with in this chapter. 
Hand calculations, even with 2 elements, become too long and hence are not given 
for these problems: only analytical method solutions and software solutions using 
ANSYS have been provided.

Two dimensional problems can either be plane stress or plane strain problems. 
Method of analysis is the same for both, except that stress strain matrix is different 
in 2 cases.

Plane bodies that are flat and of constant thickness that are subjected to  
in-plane loading fall under the category of plane stress problems. Stress 
components s t tz xz yz, ,  and  assume zero values in these problems.

Some of the elements used in the analysis of 2 dimensional problems are 
constant strain triangles (CST), linear strain triangle (LST), linear quadrilateral, 
isoparametric quadrilateral, etc. Each of these elements has 2 degrees of freedom 
per node namely the translation in x and y directions.

Stress within the element may be calculated using the equation,

	 s{ } = [ ][ ]{ }D B q . 	 (6.1)
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Sub Case 2
A rectangular plate with a small circular hole at the center and a horizontal tensile 
force in the form of pressure is acting on both the vertical edges of the plate.

6.2 A Rectangular Plate with  
a Circular Hole

The stress analysis of a rectangular plate with a circular hole problem is assumed 
as a 2 dimensional plane stress problem. Plane stress is defined as a state of stress 
in which the normal stress and the shear stress directed perpendicular to the plane 
are assumed to be negligible. 

The above problem can be categorized into 3 sub cases.

Sub Case 1
A rectangular plate with a very small circular hole at the center with one vertical 
edge fixed and the other vertical edge is acted upon by a horizontal tensile load 
in the form of pressure.

Figure 6.1.  Rectangular plate with a very small circular hole subjected to tensile load at one edge.

Figure 6.2.  Rectangular plate with a hole subjected to tensile load at both the edges.
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The above problem is solved by exploiting the symmetric geometry and 
symmetric loading boundary conditions. Now we can draw the above Figure 6.2 
as below for the analysis purpose (refer Figure 6.3).

Place the origin of x–y coordinates at the center of the hole and pull on both 
ends of the plate. Then points on the centerlines will not move perpendicular to 
them but move along the centerlines. This indicated the appropriate displacement 
conditions to use as shown in Figure 6.3.

Figure 6.3.  Finite element model of one-quarter of the plate.

Sub Case 3
A rectangular plate with a large circular hole at the center and a uniform 
pressure acts on the boundary of the hole.

Figure 6.4.  Rectangular plate with a hole subjected to uniform pressure at the boundary of 
the hole.
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Example 6.1
A rectangular plate of size 1000 mm × 500 mm is subjected to uniform pressure  
as shown in Figure 6.6. The plate has a thickness of 10 mm and has a central 
hole 50 mm in diameter. The material of the plate is steel with Young’s modulus  
E = 210 GPa and Poisson’s ratio, v = 0.3. Assume a case of plane stress. Plot the Von 
Mises stress distribution and compare result with analytical method.

The above problem can be solved considering one quarter of the plate and by 
exploiting the symmetric geometry and loading conditions. The finite element 
model is shown below.

Figure 6.5.  Finite element model of one-quarter of the plate.

Figure 6.6.  Rectangular plate with very small circular hole at the center of the plate.

Solution
(I) Analytical method
Comparing the above case with the infinite plate with a very small circular hole, 
for this, the stress concentration factor is (SCF) = 3.
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SCF

Maximum stress

Nominal stress
= .

�
(6.2)

Hence,

	 Tensile force = Pressure × cross-sectional area� (6.3)
	 Tensile force = 1 × 0.5 × 0.01 = 0.005 N�

	
Nominal stress

Tensile force

Cross-sectional area
=

�
(6.4)

	
Nominal stress

0.005

0.5 0.01
 1 N/m2=

×
=

�
	 Maximum stress = SCF × Nominal stress = 3 × 1 = 3 Pa.

(II) Software results

Figure 6.6(a).  Von Mises stress distribution pattern (refer to Appendix C for color figures).

From the software, we got, Maximum stress (Von Mises stress) = 3.172 Pa.

Answers for Example 6.1 

Parameter Analytical method Software results Percentage of error

Maximum stress 3 Pa 3.172 Pa 5.42



242	 Finite Element Analysis

Example 6.2 
A rectangular plate with hole at the center is subjected to uniform pressure as 
shown in Figure 6.7. The plate is under plane stress. Find the maximum deflection 
and maximum stress distribution. Also find the deformed shape of the hole. 
Assume plate thickness, t = 25 mm, E = 207 GPa, and v = 0.3.

Figure 6.7.  Rectangular plate with a hole with symmetrical loading. 

Solution
(I) Analytical method

	
Geometric factor =

Diameter of hole

Width of plate
= d

w �
(6.5)

	
Geometric factor =

40

100
= 0 4. .

�

From the design data handbook,

for 
d

w
 of 0.4 the stress concentration factor (SCF) = 2.25

	
SCF

Maximum stress

Nominal stress
= .

Hence,

	 Tensile force = Pressure × Cross-sectional area = 14 × 100 × 25 = 35000 N
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Figure 6.7(a).  Deformed shape of the hole (refer to Appendix C for color figures).

Figure 6.7(b).  Von Mises stress distribution pattern (refer to Appendix C for color figures).

	

Nominal stress
Tensile force

Cross-sectional area

Tensile f= = oorce

 MPa

w d t-( )
=

-( )
=

35000

100 40 25

23 33.

Maximum stress = SCF × Nominal stress = 2.25 × 23.333 = 52.5 MPa.

(II) Software results
For the analysis using software, one quarter of the plate is modeled and analyzed.

From the software, we got, maximum stress = 53.3 MPa.
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Figure 6.7(c).  Deflection pattern (refer to Appendix C for color figures).

Answers for Example 6.2

Parameter Analytical 
method

Software  
results

Percentage  
of error

Maximum stress 52.5 MPa 53.3 MPa 1.5

Maximum deflection …… 7.39 × 10^3 mm …..

Example 6.3
Determine the stress distribution and displacement for a rectangular plate with 
a hole at the center of the plate with uniform thickness of 10 mm. A uniform 
pressure of p = 10 MPa acts on the boundary of the hole as shown in Figure 6.8. 
Assume Young’s modulus E = 120 GPa and the Poisson’s ratio is 0.28. Assume 
plane stress condition.

Figure 6.8.  Rectangular plate with a hole subjected to uniform pressure at the boundary of 
the hole.
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Solution
(I) Software results
For the analysis using software, one quarter of the plate is modeled and analyzed.

Figure 6.8(a).  First principal stress distribution pattern (refer to Appendix C for color figures). 

Figure 6.8(b).  Deflection pattern (refer to Appendix C for color figures).

From the software, we got maximum stress = 50.727 MPa. 
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Validation of the Results
The reactions at the supports must balance the applied forces. Therefore, from the 
software, the total reaction force in the x-direction is – 7500 N.

	� Applied force = �(pressure) × (projected distance in x-direction of the  
line along which the constant pressure acts) × (thickness)

	 = p × r × t� (6.6)

Applied force = 10 × 75 × 10 = 7500 N in positive x-direction.
So the reaction cancels out the applied force in the x-direction.

Answers for Example 6.3

Parameter Software results

Maximum stress 50.727 MPa

Maximum deflection 0.036478 mm

Procedure for solving the problem using ANSYS® 11.0 academic teaching 
software.
For Example 6.2

PREPROCESSING

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add  
> Structural Solid > Quad 4 node 42 > OK

Figure 6.9.  Element selection.

Select the option where you define the plate thickness.



Stress Analysis of a Rectangular Plate with a Circular Hole	 247

2.	Options (Element behavior K3) > Plane strs w/thk > OK > Close

Figure 6.10.  Element options.

3.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 6.11.  Real constants.

(Enter the plate thickness of 0.025 m) > Enter 0.025 > OK > Close

Figure 6.12.  Enter the plate thickness.

Enter the material properties.
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4.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
�Enter EX = 2.07E11 and PRXY = 0.3 > OK (Close the Define Material Model 
Behavior window.)
�Create the geometry for the upper-right quadrant of the plate by subtracting a 
0.04 m diameter circle from a 0.075 × 0.05 m rectangle. Generate the rectangle 
first.

5.	Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By 2 
Corners
�Enter (lower left corner) WP X = 0.0, WP Y = 0.0 and Width = 0.075, Height = 
0.05 > OK

6.	Main Menu > Preprocessor > Modeling > Create > Areas > Circle > Solid 
Circle Enter WP X = 0.0, WP Y = 0.0 and Radius = 0.02 > OK

Figure 6.13.  Create areas.

Figure 6.14.  Rectangle and circle.
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�Now subtract the circle form the rectangle. (Read the messages in the window 
at the bottom of the screen as necessary.)

7.	Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract > 
Areas
Pick the rectangle > OK, then pick the circle > OK

Figure 6.15.  Geometry for quadrant of plate.

Create a mesh triangular element over the quadrant area.
8.	Main Menu > Preprocessor > Meshing > Mesh Tool

�The Mesh Tool dialog box appears. In that dialog box, click on the Smart Size 
and move the slider available below the Smart Size to 2 (i.e., towards Fine side). 
Then close the Mesh Tool box.

Figure 6.16.  Mesh tool box.
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9.	Main Menu > Preprocessor > Meshing > Mesh > Areas > Free Pick the 
quadrant > OK

Figure 6.17.  Quad element mesh.

Figure 6.18.  Model with loading and displacement boundary conditions.

Apply the displacement boundary conditions and loads.

10.	 Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Displacement > On Lines Pick the left edge of the quadrant > OK > UX = 0 > OK

11.	 Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >  
Displacement > On Lines pick the bottom edge of the quadrant > OK >  
UY = 0 > OK

12.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural 
> Displacement > On Lines. Pick the right edge of the quadrant > OK > 
Pressure = -14E6 > OK
�(A positive pressure would be a compressive load, so we use a negative 
pressure. The pressure is shown as a single arrow.)

�The model-building step is now complete, and we can proceed to the solution. 
First to be safe, save the model.
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Solution
The interactive solution proceeds

13.	Main Menu > Solution > Solve > Current LS > OK
�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the 
/STATUS window and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the solution 
is complete close the ‘Solution is Done!’ window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values. First 
examine the deformed shape.

14.	Main Menu > General Posrproc > Plot Results > Deformed Shape > Def. + 
Undeformed > OK
This result is shown in Figure 6.7(a).

15.	Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu 
> Stress > Von Mises stress > OK
This result is shown in Figure 6.7(b).

16.	Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu 
> DOF Solution > Displacement vector sum > OK
This result is shown in Figure 6.7(c). 

Problems

1.	 Find the maximum stress in the aluminum plate shown in Figure 6.19. 
Consider an aluminum plate 10 mm thick with a hole at the center of the plate. 
Assume plane stress condition. Take E = 70 GPa and v = 0.35. Also, calculate the 
maximum stress by analytical method and compare the results.

Figure 6.19.  Problem 1
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4.	For the plate shown in Figure 6.22, find the maximum stress. Plate is made up 
of two materials.
For Material 1, E = 210 GPa and v = 0.3.
For Material 2, E = 70 GPa and v = 0.35.
Assume plane stress condition.
Thickness of the plate = 10 mm with a hole at the center of the plate.

2.	 Find the maximum stress for the plate shown in Figure 6.20 if the hole is located 
halfway between the center line and the top edge as shown. Take E = 70 GPa and 
v = 0.35. Assume plane stress condition.

Figure 6.20.  Problem 2

Figure 6.21.  Problem 3

[Model half of the plate by taking symmetry about y-axis.]

3.	For the plate shown in Figure 6.21, find the maximum stress. Take Young’s 
modulus E = 210 GPa, Poisson’s ratio = 0.3. Assume plane stress condition. 
Thickness of the plate = 10 mm with hole at the center of the plate.

Hint: 
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5.	For the plate with a hole at the center shown in Figure 6.23, find the maximum 
stress. Take E = 210 GPa and v = 0.3, thickness of plate t = 10 mm. Assume 
plane stress condition.

Figure 6.22.  Problem 4

Figure 6.23.  Problem 5

[To find the pressure, divide distributed load by thickness of plate.]

6.	Determine the stresses in the plate with the round hole subjected to the 
tensile stresses in Figure 6.24. Find the maximum stress. Take E = 210 GPa 
and v = 0.25, thickness of plate t = 10 mm. Assume plane stress condition.

Hint: 

Figure 6.24.  Problem 6
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7.	For the plate with a hole at the center shown in Figure 6.25, find the maximum 
stress. Take E = 210 GPa and v = 0.3, thickness of plate t = 0.375 in. Assume 
plane stress condition.

8.	For the plate with a hole at the center shown in Figure 6.26, find the maximum 
stress. Take E = 30 × 106 psi and v = 0.25, thickness of plate t = 0.1 in. Assume 
plane stress condition.

9.	Find the maximum stress for the plate shown in Figure 6.27 if the hole  
is located halfway between the center line and the top edge as shown. Take  
E = 20 × 106 N/cm2 and v = 0.25. Assume plane stress condition.

Figure 6.25.  Problem 7

Figure 6.26.  Problem 8

Figure 6.27.  Problem 9

[Model half of the plate by taking symmetry about y-axis.]Hint: 
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Chapter

Thermal Analysis7
7.1 Introduction

The computation of temperature distribution within a body will be used in this 
chapter due to its importance in many engineering applications. Conduction (q) 
is the transfer of heat through materials without any net motion of the mass of the 
material. The rate of heat flow in x-direction by conduction (q) is given by 

	
q kA

T

x
= ∂

∂ �
(7.1)

where
k is the thermal conductivity of the material, A is the area normal to x-direction 
through which heat flows, T is the temperature, and x is the length parameter.

Convection is the process by which thermal energy is transferred between a 
solid and a fluid surrounding it. The rate of heat flow by convection (q) is given by

	 q hA T T= -( )∞ � (7.2)

where
h is the heat transfer coefficient, A is the surface area of the body through 
which heat flows, T is the temperature of the surface of the body, and T∞ is the 
temperature of the surrounding medium. 

Thermal analysis is one of the scalar field problems. These problems have only  
1 degree of freedom per node namely temperature. In this chapter, one-dimensional 
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and two-dimensional heat conduction problems are dealt with. In these problems, 
a bar element with 2 end nodes each having temperature (T) as sole degree of 
freedom is useful. Nodal heat flow rates (Q) or heat fluxes are analogous quantities 
to nodal forces, in structural bar element. 

The governing equation for this element is given by,

	

Ak

L

T

T

q L

L

Q

Q

1 1

1 1 2
1

2

1

2
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-
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where,
q = heat generation rate per unit length

	

Ak

L

1 1

1 1

-
-







= element heat conductivity matrix.
�

7.2 Procedure of Finite Element Analysis 
(Related to Thermal Problems)

Step 1. Select element type.
Step 2. Select temperature distribution function.
Step 3. �Define the temperature gradient/temperature and heat flux/temperature 

gradient relationships.
Step 4. Derive the element conduction matrix and heat flux matrix.
Step 5. �Assemble the element equations to obtain the global equations and 

introduce boundary conditions.
Step 6. Solve for the nodal temperatures.
Step 7. Solve for the element temperature gradients and heat fluxes.

7.3 One-Dimensional Heat Conduction

Example 7.1
A composite wall consists of 3 materials. The outer temperature is T0 = 20°C. 
Convection heat transfer takes place on the inner surface of the wall with T∞ = 800°C 
and h = 25 W/m2°C. Determine the temperature distribution in the wall. Take  
k1 = 30 W/m°C, k2 = 50 W/m°C, k3 = 20 W/m°C.
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Solution
(I) Analytical method

Figure 7.1.  A composite wall consists of 3 materials for Example 7.1.

Figure 7.1(a).  Analytical method for Example 7.1.

Heat flow rate per unit area,
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By solving the above, we get
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(II) FEM by calculations [refer to Figure 7.1(b)]

Figure 7.1(b).  Finite element model for Example 7.1.

Governing equation is,
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Since there is no heat generation specified, q = 0.
For element 1,
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For element 2,
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For element 3,
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Global equation after assembly,
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Boundary conditions are T4 = 20°C and 
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So modified equation,
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After solving the matrix and simultaneous equations, we get,
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(III) Software results
Temperature values

NODE TEMP

1 284.30

2 155.37

3 116.69

4 20.000

5 800.00
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Answers for Example 7.1

Parameter Analytical method FEM-hand calculation Software results

Temperature

at node 1 284.3°C 284.3°C 284.3°C

at node 2 155.37°C 155.37°C 155.37°C

at node 3 116.7°C 116.7°C 116.69°C

Procedure for solving the problem using ANSYS® 11.0 academic teaching 
software.
For Example 7.1

PREPROCESSING

1.	 Main Menu > Preferences, then select Thermal > OK

Figure 7.1(c).  Temperature distribution in a composite wall (refer to Appendix C for color 
figures).

Figure 7.2.  Selecting the preferences.
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2.	Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Click 
on Link > then on 2d conduction 32 > OK > Add > Click on Link > then on 
3D convection 34 > OK > Close

Figure 7.3.  Selecting the element for conduction.

3.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > 
Click on Link 32 > OK

Figure 7.4.  Selecting the element for convection.

Figure 7.5.  Enter the cross-sectional area for Link 32.

Enter cross-sectional area AREA > Enter 1 > OK
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Add > Click on Link 34 > OK
Enter cross-sectional area AREA > Enter 1 > OK > Close

Figure 7.6.  Enter the cross-sectional area for Link 34.

Enter the material properties.
4.	Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1,
click Thermal > Conductivity > Isotropic
Enter KXX = 30 > OK
�Then in the material model window, click on Material menu > New 

Model > OK
Material Model Number 2,
click Thermal > Conductivity > Isotropic
Enter KXX = 50 > OK
�Then in the material model window, click on Material menu > New 

Model > OK
Material Model Number 3,
click Thermal > Conductivity > Isotropic
Enter KXX = 20 > OK
�Then in the material model window, click on Material menu > New 

Model > OK
Material Model Number 4,
click Thermal > Convection or Film Coef.
Enter HF = 25 > OK
(Close the Define Material Model Behavior window.)
Create the nodes and elements.

5.	 Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS Enter 
the coordinates of node 1 > Apply Enter the coordinates of node 2 > Apply 
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Enter the coordinates of node 3 > Apply Enter the coordinates of node 4 > 
Apply Enter the coordinates of node 5 > OK

Node Locations 

Node number X coordinates Y coordinates

1 0 0

2 0.3 0

3 0.45 0

4 0.6 0

5 -0.1 0

Figure 7.7.  Enter the node coordinates.

6.	 Main Menu > Preprocessor > Modeling > Create > Elements > Elem Attributes > 
OK > Auto Numbered > Thru nodes Pick the 1st and 2nd node > OK

Figure 7.8.  Assigning element attributes to element 1 and creating element 1.
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�Elem Attributes > change the material number to 2 > OK > Auto Numbered > 
Thru nodes Pick the 2nd and 3rd node > OK

Figure 7.9.  Assigning element attributes to element 2 and creating element 2.

�Elem Attributes > change the material number to 3 > OK > Auto Numbered > 
Thru nodes Pick the 3rd and 4th node > OK

Figure 7.10.  Assigning element attributes to element 3 and creating element 3.

�Elem Attributed > change the element type to Link 34 > change the material 
number to 4 > change the Real constant set number to 2 > OK > Auto 
Numbered > Thru nodes Pick the 1st and 5th node > OK

Figure 7.11.  Assigning element attributes to element 4 and creating element 4.
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Apply the boundary conditions and temperature.
7.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Thermal > 

Temperature > On Nodes Pick the 4th node > Apply > Click on TEMP and 
Enter Value = 20 > OK

Figure 7.12.  Applying temperature on node 4.

8.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Thermal > 
Temperature > On Nodes Pick the 5th node > Apply > Click on TEMP and 
Enter Value = 800 > OK

Figure 7.13.  Applying temperature on node 5.

Solution
The interactive solution proceeds.
9.	Main Menu > Solution > Solve > Current LS > OK

�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the  
/STATUS window and if all is OK, select File > Close.
�In the Solve Current Load Step window, select OK, and when the solution is 
complete, close the ‘Solution is Done!’ window.
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POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
10.	 �Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu 

> DOF Solution > Temperature > OK
This result is shown in Figure 7.1(c).

11.	 �Main Menu > General Postproc > List Results > Nodal Solu > Select 
Temperature > OK

Example 7.2
Heat is generated in a large plate with k = 0.75 W/m°C at the rate 6000 W/m3. The 
plate is 40 cm thick. The outside surfaces of the plate are exposed to fluid at 35°C 
with a convective heat transfer coefficient of 15 W/m2°C. Determine temperature 
distribution in wall. The 2 element model to be used for solution. 

Figure 7.14.  Example 7.2

Solution
(I) Analytical method
Governing equation is,
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Boundary conditions are,
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We know at x = 0.2, T3 = 115°C.
Substituting this in equation (7.5),
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Substituting c2 in equation (7.5),
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�

	
T T x1 0 275= == °C.

�

(II) FEM by hand calculations [refer to Figure 7.14(a)]

Figure 7.14(a).  Symmetric finite element model for Example 7.2.

Given: t = 40 cm = 0.4 m, T∞ = 35°C, h = 15 W/m2°C, k = 0.75 W/m°C
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Governing equation is,
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For element 1,
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For element 2,
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Boundary conditions are, Q1 = 0 and Q3 = -h(T3 - T∞) ⇒ Q3 = -15(T3 - 35) = 
-15T3 + 525
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By solving the above matrix and simultaneous equations, we have temperature 
distribution as,
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(III) Software results
Due to symmetry of the geometry, only half of the finite element model is created 
for software analysis.

Figure 7.14(b).  Temperature distribution in a large plate (refer to Appendix C for color 
figures).
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Temperature values

NODE TEMP

1 275.00

2 235.00

3 115.00

4 35.000

Answers for Example 7.2

Parameter Analytical method FEM-hand calculation Software results

Temperature

at node 1 275°C 275°C 275°C

at node 2 235°C 235°C 235°C

at node 3 115°C 115°C 115°C

Procedure for solving the problem using ANSYS® 11.0 academic teaching 
software.
For Example 7.2 

PREPROCESSING

1.	 Main Menu > Preferences, then select Thermal > OK 

Figure 7.15.  Selecting the preferences.
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2.	 �Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Click 
on Link > then on 2D conduction 32 > OK > Add > Click on Link > then on 
3D convection 34 > OK > Close

Figure 7.16.  Selecting the element for conduction.

Figure 7.17.  Selecting the element for convection.

3.	 �Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > 
Click on Link 32 > OK

Figure 7.18.  Enter the cross-sectional area for Link 32.

Enter cross-sectional area AREA > Enter 1 > OK
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Add > Click on Link 34 > OK
Enter cross-sectional area AREA > Enter 1 > OK

Figure 7.19.  Enter the cross-sectional area for Link 34.

Enter the material properties.
4.	Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1,
click Thermal > Conductivity > Isotropic
Enter KXX = 0.75 > OK
Then in the material model window, click on Material menu > New Model > OK
Material Model Number 2, 
Click Thermal > Convection or Film Coef.
Enter HF = 15 > OK
(Close  the Define Material Model Behavior window.)
�Create the nodes and elements. Due to geometric symmetry, only half of the 
model is created.

5.	 Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS Enter 
the coordinate of node 1 > Apply Enter the coordinates of node 2 > Apply Enter 
the coordinates of node 3 > Apply Enter the coordinates of node 4 > OK

Node Locations 

Node number X coordinates Y coordinates 

1 0 0

2 0.1 0

3 0.0 0

4 0.3 0
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6.	Main Menu > Preprocessor > Modeling > Create > Elements > Elem 
Attributes > OK > Auto Numbered > Thru nodes Pick the 1st and 2nd node > 
Apply > then Pick the 2nd and 3rd node OK

Figure 7.20.  Enter the node coordinates.

Figure 7.21.  Assigning element attributes to elements 1 and 2 and creating elements 1 and 2.

�Elem Attributes > change the element type to Link 34 > change the material 
number to 2 > change the Real constant set number to 2 > OK > Auto 
Numbered > Thru nodes Pick the 3rd and 4th node > OK

Figure 7.22.  Assigning elements attributes to element 3 and creating element 3.
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Apply the boundary conditions and temperature.
7.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Thermal > 

Temperature > On Nodes Pick the 4th node > Apply > Click on TEMP and 
Enter Value = 35 > OK

Figure 7.23.  Applying temperature on node 4.

8.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Thermal > 
Heat Generat > On Nodes Pick the 1st, 2nd, and 3rd nodes > Apply > Enter 
HGEN Value = 6000 > OK

Figure 7.24.  Assigning heat generation on nodes 1, 2, and 3.

Solution
The interactive solution proceeds.
9.	Main Menu > Solution > Solve > Current LS > OK

�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the  
/STATUS window and if all is OK, select File > Close.
�In the Solve Current Load Step window, select OK, and when the solution is 
complete, close the ‘Solution is Done!’ window.
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POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
10.	 �Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu > 

DOF Solution > Temperature > OK
This result is shown in Figure 7.14(b).

11.	 �Main Menu > General Postproc > List Results > Nodal Solu > Select 
Temperature > OK

Example 7.3
Compute the temperature distribution in a long steel cylinder with an inner 
radius of 125 mm and an outer radius of 250 mm. The interior of the cylinder 
is kept at 300°K and heat is lost on the exterior by convection to a fluid whose 
temperature is 280°K. The convection heat transfer coefficient h is 0.994 W/m2°K 
and the thermal conductivity for steel k is 0.031 W/m°K.

Figure 7.25.  Example 7.3

Solution
(I) Analytical method
Here the problem is solved considering heat flow in radial direction.

Figure 7.25(a).  Analytical method for Example 7.3.

	 r r0 1250 125= = mm = 0.25 m and  mm = 0.125 m �
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Assume unit length of the cylinder
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(II) FEM by hand calculations

Figure 7.25(b).  Finite element model for Example 7.3.

	 r r r1 2 3125 187 5 250= = = mm,  mm, and  mm. �
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Element matrices are,
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Global conduction matrix is,
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Applying boundary conditions, T1 = 300°K and Q3 = –hA0 (T3 – T∞)
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Solving the above equation, we get T3 = 283.16°K and T2 = 290.13°K.
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(III) Software results
Due to the symmetry of the cylinder geometry, only a quarter of the geometry is 
drawn for finite element analysis.

Figure 7.25(c).  Temperature distribution in a long cylinder (refer to Appendix C for color 
figures).

The temperature in the interior is 300°K and on the outside wall, it is found to be 
280.004°K.

Answers of Example 7.3

Parameter Analytical method FEM-hand calculation Software results 

Temperature on the 
interior surface

300°K 300°K 300°K

Temperature at 
radius 187.5 mm

238.1°K 290.13°K 288.891°K

Temperature on the 
outside wall

280.51°K 283.16°K 280.004°K

Procedure for solving the problem using ANSYS® 11.0 academic teaching 
software.
For Example 7.3
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PREPROCESSING

1.	 Main Menu > Preferences, then select Thermal > OK

Figure 7.26.  Selecting the preferences.

2.	Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Click 
on Solid > then on Quad 8 node 77 > OK > Close

Figure 7.27.  Selecting the element.

3.	PLANE 77 does not require any real constant
Enter the material properties.

4.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1,
Click Thermal > Conductivity > Isotropic
Enter KXX = 0.031 > OK
(Close the Define Material Model Behavior window.)
�Recognize symmetry of the problem, and a quadrant of a section through the 
cylinder is created.
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5.	Main Menu > Preprocessor > Modeling > Create > Areas > Circles > Partial 
Annulus
Enter the data as shown below.

Figure 7.28.  Create partial annular area.

Figure 7.29.  Quadrant of a cylinder.

6.	Main Menu > Preprocessor > Meshing > Mesh Tool
�The Mesh Tool dialog box appears. In that dialog box, click on the Smart Size 
and move the slider available below the Smart Size to 2 (i.e., towards Fine side). 
Then close the Mesh Tool box.
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7.	Main Menu > Preprocessor > Meshing > Mesh > Areas > Free. Pick the 
quadrant > OK

Figure 7.30.  Mesh tool box.

Figure 7.31.  Quad element mesh.

8.	Main Menu > Preprocessor > Loads > Define loads > Apply > Thermal > 
Temperatures > On Lines
Select the line on the interior and set the temperature to 300.

Figure 7.32.  Setting the temperature on the interior of the cylinder.
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9.	Main Menu > Preprocessor > Loads > Apply > Convection > On Lines
�Select the lines defining the outer surface and set the convection coefficient to 
0.994 and the fluid temp to 280.

Figure 7.33.  Setting the convection coefficient on outer surface.

10.	Main Menu > Preprocessor > Loads > Apply > Heat Flux > On Lines
�To account for symmetry, select the vertical and horizontal lines of symmetry 
and set the heat flux to zero.

Figure 7.34.  Setting the heat flux.
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Solution
The interactive solution proceeds.
11.	 Main Menu > Solution > Solve > Current LS > OK

�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the 
/STATUS window and if all is OK, select File > Close.
�In the Solve Current Load Step window, select OK, and when the solution is 
complete, close the ‘Solution is Done!’ window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
12.	 �Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu > 

DOF Solution > Temperature > OK
This result is shown in Figure 7.25(b).

13.	 �Main Menu > General Postproc > List Results > Nodal Solu > Select 
Temperature > OK

7.4 Two–Dimensional Problem with 
Conduction and with Convection 
Boundary Conditions

Example 7.4
A body having rectangular cross-section is subjected to boundary conditions as 
shown in Figure 7.36. The thermal conductivity of the body is 1.5 W/m°. On one 
side of the body, it is insulated and on the other side, convection takes place with  

Figure 7.35.  Model with boundary conditions.
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h = 50 W/m2°C and T∞ = 35°C. The top and bottom sides are maintained at a 
uniform temperature of 180°C. Determine the temperature distribution in the body.

Figure 7.36.  Example 7.4

Solution
(I) Software results
The temperature at the top and bottom edges is found to be 180°C and at the right 
edge the temperature is found to be 46.802°C.

Figure 7.36(a).  Temperature distribution in a body of rectangular cross-section (refer to 
Appendix C for color figures).
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Problems

1.	 Define conduction and convection.
2.	Write the formulas for the rate of heat flow in x-direction by conduction and 

the rate of heat flow by convection.
3.	Determine the temperature distribution for the two-dimensional body shown 

in Figure 7.37, subjected to boundary conditions as shown in the figure. The 
top and bottom edges are insulated. The left side of the body is maintained at 
a temperature of 45°C. On the right side, the convection process takes place 
with heat transfer coefficient h = 100 W/m2°C and T∞ = 20°C. The thermal 
conductivity of the body is k = 45 W/m°C.

Figure 7.37.  Problem 3

4.	Determine the temperature distribution for the two dimensional body shown 
in Figure 7.38. The temperature of 200°C is maintained at the top and bottom 
edges. The left and right edges are insulated. Heat is generated at the rate of  
q = 2000 W/m3 in a body as shown in the figure. Let k = 35 W/m°C.

Figure 7.38.  Problem 4
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5.	Determine the temperature distribution for the two-dimensional body shown 
in Figure 7.39, subjected to boundary conditions as shown in the figure. The 
top and bottom edges are insulated. The left side of the body is maintained at 
a temperature of 50°C. On the right side, the convection process takes place 
with heat transfer coefficient h = 150 W/m2°C and T∞ = 25°C. The thermal 
conductivity of the body is k = 50 W/m°C.

Figure 7.39.  Problem 5

6.	Determine the temperature distribution for the two dimensional body shown 
in Figure 7.40. The temperature of 200°C is maintained at the top and bottom 
edges. The left and right edges are insulated. Heat is generated at the rate of  
q = 2100 W/m3 in a body as shown in figure. Let k = 45 W/m°C.

Figure 7.40.  Problem 6

7.	Determine the load matrix and the global load matrix for Figure 7.41. The top 
and bottom edges are insulated.

Figure 7.41.  Problem 7
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8.	Consider the rectangular plate shown in Figure 7.42. The outer temperature is 
T0 = 30°C. Convection heat transfer takes place on the inner surface of the wall 
with T∞ = 80°C and h = 50 W/m2°K. Determine the temperature distribution in 
the wall. Take the thermal conductivity value k = 160 W/m°K.

Figure 7.42.  Problem 8

9.	 Consider a composite wall consisting of 2 materials shown in Figure 7.43. The 
outer temperature is T0 = 30°C. Convection heat transfer takes place on the inner 
surface of the wall with T∞ = 80°C and h = 50 W/m2°K. Determine the temperature 
distribution in the wall. Take the thermal conductivity value k1= 40 W/m°C and  
k2 = 60 W/m°C.

Figure 7.43.  Problem 9

References

1.	 L. Segrlind, “Applied Finite Element Analysis, Second Edition,” Jon Wiley and 
Sons, 1984.

2.	 S. Moaveni, “Finite Element Analysis: Theory and Application with ANSYS, Third 
Edition,” Prentice Hall, 2008.

3.	 D. L. Logan, “A First Course in the Finite Element Method, Fifth Edition,” Cengage 
Learning, 2012.



290	 Finite Element Analysis

4.	 F. P. Incropera and D. P. DeWitt, “Fundamentals of Heat and Mass Transfer, Fourth 
Edition,” Wiley, 1996.

5.	 F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, “Introduction to Heat 
Transfer, Fifth Edition,” Wiley, 2007.

6.	 S. S. Rao, “The Finite Element Method in Engineering, Fifth Edition,” Butterworth-
Heinemann, 2011.



Chapter

291

8 Fluid Flow 
Analysis

8.1 Introduction

A substance (liquid or gas) that will deform continuously by applied surface 
(shearing) stresses is called a fluid. The magnitude of shear stress depends on 
the magnitude of angular deformation. Indeed, different fluids have different 
relations between stress and the rate of deformation. Also, fluids are classified as 
compressible (usually gas) and incompressible (usually liquid).  

The terms of velocities and accelerations of fluid particles at different times and 
different points throughout the fluid filled space are used to describe the flow field. 
The fluid is called ideal when the fluid has zero viscosity and is incompressible. 
A fluid is said to be incompressible if the volume change is zero (i.e., r = constant).

	 ∇ · v = 0,

where,
v is velocity vector.

Depending on the importance of the viscosity of the fluid in the analysis, a 
flow can be termed as inviscid or viscous. An inviscid flow is a frictionless flow 
characterized by zero viscosity, that is, there is no real fluid. In other words, a fluid 
is called inviscid if the viscosity is zero (i.e., µ = 0).

A viscous flow is a flow in which the fluid is assumed to have nonzero viscosity. 
An irrotational flow is a flow in which the particles of the fluid are not rotating, 
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the rotation is zero. In other words, an irrotational flow is a flow with negligible 
angular velocity, if 

∇ × v = 0.

On the other hand, a potential flow is an irrotational flow of an ideal fluid 
(i.e., r = constant and m = 0).

A line that connects a series of points in space at a given instant where all 
particles falling on the line at that instant have velocities whose vectors are tangent 
to the line is called a streamline.

The flow is steady which means that the flow pattern or streamlines do not 
change over time and the streamlines represent the trajectory of the fluid’s 
particles. But, when the flow is ideal that means that the fluid has zero velocity. 

This chapter covers the finite element solution of ideal or potential flow 
(inviscid, incompressible flow) problems. Typical examples of potential flow are 
flow over a cylinder, flow around an airfoil, and flow out of an orifice.

The two-dimensional potential flow (irrotational flow) problems can be 
formulated in terms of a velocity potential function (j) or a stream function (Ψ). 
The selection between velocity and stream function formulations in the finite 
element analysis depends on the ease of applying boundary conditions. If the 
geometry is simple, any one function can be used.

Fluid elements (e.g., FLUID141) are used in the steady state or transient analysis 
of fluid systems. Pressure, velocity, and temperature distributions can be obtained 
using these elements.

Two-dimensional fluid elements are defined using 3 (triangular element) or 
4 (quadrilateral element) nodes added by isotropic properties. Inputs to these 
elements are nodal coordinates, real constants, material properties, surface and 
body loads, etc. Outputs of interest are nodal values of pressure and velocity.

8.2 Procedure of Finite Element Analysis 
(Related to Fluid Flow Problems)

Step 1. Select element type—the basic 3 node triangular element can be used.

Step 2. Choose a potential function.

Step 3. Define the gradient/potential and velocity/gradient relationships.

Step 4. Derive the element stiffness matrix and equations.
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Step 5. �Assemble the element equations to obtain the global equations and 
introduce boundary conditions.

Step 6. Solve for the nodal potentials.

Step 7. Solve for the element velocities and volumetric rates.

The finite element solution using software of potential flow problems is 
illustrated below. Only potential function formulation is considered. Two cases 
are considered in this chapter.

8.3 Potential Flow Over a Cylinder

Figure 8.1.  Potential flow over a cylinder.

The previous figure depicts the steady-state irrotational flow of an ideal fluid over 
a cylinder, confined between 2 parallel plates. We assume that, at the inlet, velocity 
is uniform, say u0. Here, we have to determine the flow velocities near the cylinder.

Flow past a fixed circular cylinder can be obtained by combining uniform flow 
with a doublet.
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The superimposed stream function and velocity potential are given by,

	
Ψ Ψ Ψ= + = × × - ×uniform flow doublet U r K

r
sin

sinq q
	

(8.1)

and

F F F= + = × × - ×uniform flow doublet , respectively,U r K
r

cos
cosq q

� (8.2)

where, U is velocity.
Because the streamline that passes through the stagnation point has a value of 

zero, the stream function on the surface of the cylinder of radius ‘a’ is then given by,

	
Ψ = × × - × =U a K

a
sin

sinq q
0 	 (8.3)

which gives the strength of the doublet as,

	 K U a= × 2. 	 (8.4)

The stream function and velocity potential for flow past a fixed circular cylinder 
becomes

	
Ψ = × - 











U r
a

r
1

2

sinq 	 (8.5)

Figure 8.2.  Superposition of a uniform flow and a doublet.
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and

	
F = × - 
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The plot of the streamlines is shown in Figure 8.3.

Figure 8.3.  Streamlines for flow past a fixed cylinder.

The velocity components can be determined by,
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Along the cylinder (r = a), the velocity components reduce to vr = 0 and  
vq = –2U sin q.

The radial velocity component is always zero along the cylinder while the 
tangential velocity component varies from 0 at the stagnation point (q = p) to a 

maximum velocity of 2U at the top and bottom of the cylinder (q p=
2

 or q p= -
2

).
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8.4 Potential Flow Around an Airfoil

Figure 8.4.  Potential flow around an airfoil.

The x- and y-components of fluid’s velocity respectively can be expressed in a 
stream function Ψ(x, y) as

	
v

yx = ∂
∂
Ψ

 
and

 
v

xy = - ∂
∂
Ψ

.	 (8.9)

The x- and y-components of fluid’s velocity with irrotational flows respectively 
can be expressed in a potential function f(x, y) as

	
v

xx = ∂
∂

f
 
and

 
v

yy = ∂
∂
f

.	 (8.10)

Example 8.1
Flow over a circular cylinder between 2 parallel plates is shown in Figure 8.5. 
Assume unit thickness. Find the velocity distribution for the flow over a circular 
cylinder. Consider the flow of a liquid over a circular cylinder. Take liquid as water. 
Water density = 1000 kg/m3 and viscosity = 0.001 N-s/m2.
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Solution
(I) Software results
Procedure for solving the problem using ANSYS® 11.0 academic teaching software.

PREPROCESSING

1.	 Main Menu > Preferences, then select FLOTRAN CFD > OK

Figure 8.5.  Flow over a cylinder.

Figure 8.6.  Selecting the preferences.
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2.	Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > 
FLOTRAN CFD > 2D FLOTRAN 141 > OK

Figure 8.7.  Element selection.

3.	Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle >  
By 2 Corners

	 Enter (lower left corner) WP X = 0.0, WP Y = 0.0 and Width = 2, Height = 1 > OK

4.	Main Menu > Preprocessor > Modeling > Create > Areas > Circle > Solid 
Circle. Enter WP X = 1, WP Y = 0.5 and Radius = 200e-3 > OK

Figure 8.8.  Create areas.
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	 Now subtract the circle from the rectangle. (Read the messages in the window 
at the bottom of the screen as necessary.)

5.	Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract > 
Areas >

	 Pick the rectangle > OK, then pick the circle > OK

Figure 8.9.  Rectangle and circle.

Figure 8.10.  Geometry for the flow over a cylinder.

Create a mesh of quadrilateral elements over the area.

6.	Main Menu > Preprocessor > Meshing > Mesh Tool
	 The Mesh Tool dialog box appears. Close the Mesh Tool box.

7.	 Main Menu > Preprocessor > Meshing > Mesh > Areas > Free Pick the area > OK

Figure 8.11.  Quadrilateral element mesh.
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Apply the velocity boundary conditions and pressure.

8.	Main Menu > Preprocessor > Loads > Define Loads > Apply >  
Fluid/CFD > Velocity

	 > On Lines Pick the left edge of the plate > OK > Enter VX = 1 > OK
	 (VX = 1 means an initial velocity of 1 m/s2)

9.	Main Menu > Preprocessor > Loads > Define Loads > Apply >  
Fluid/CFD > Velocity

	 > On Lines Pick the edges around the cylinder > OK > Enter VX = 0 and  
VY = 0 > OK

10.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Fluid/CFD 
> Pressure

	 DOF > On Lines Pick the top, bottom and right edges of the plate > OK > OK
	 Once all the boundary conditions are applied, the cylinder with plate will 

look like Figure 8.12.

Figure 8.12.  Model with boundary conditions.

�The model-building step is now complete, and we can proceed to the solution. 
First, save the model.

Solution
The interactive solution proceeds.

11.	 Main Menu > Solution > FLOTRAN Set Up > Fluid Properties > A dialog in 
that select against density as liquid and against viscosity as liquid > OK

	 Then another dialog box appears and, in that, enter the value of  
density = 1000 value = 0.001 > OK

12.	Main Menu > Solution > FLOTRAN Set Up > Execution Ctrl > a dialog in 
that Enter in the first row “Global iterations EXEC” = 200

13.	Main Menu > Solution > Run FLOTRAN
	 When the solution is complete, close the ‘Solution is Done!’ window.
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POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

14.	Main Menu > General Postproc > Read Results > Last Set

15.	General Postproc > Plot Results > Contour Plot > Nodal Solu
	 Select DOF Solution and Fluid Velocity and click OK
	 This is what the solution should look like:

Figure 8.13.  Velocity distribution over a cylinder (refer to Appendix C for color figures).

16.	Next, go to Main Menu > General Postproc > Plot Results > Vector
Plot > Predefined. One window will appear then click OK

Figure 8.14.  Vector plot of the fluid velocity (refer to Appendix C for color figures).
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Problems

1.	 Define a fluid, inviscid flow, viscous flow, and irrotational flow.
2.	What are the 2 fluid classifications?
3.	Define streamline in a graphic of fluid motion?
4.	What we mean when we say the flow is steady and ideal?
5.	Define irrotational flow and potential flow?
6.	 Compute and plot velocity distribution over the airfoil as shown in Figure 8.16. 

Assume unit thickness. Take density of air = 1.23 kg/m3 and viscosity =  
1.79 × 10–5N-s/m2.

17.	General Postproc > Plot Results > Contour Plot > Nodal Solu
Select DOF Solution and Pressure and Click OK

Figure 8.15.  Pressure distribution over a cylinder (refer to Appendix C for color figures).

Figure 8.16.  Flow over an airfoil.
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7.	Flow over a circular cylinder between 2 parallel plates is as shown in Figure 8.17. 
Assume unit thickness. Find the velocity distribution for the flow over a circular 
cylinder. Consider the flow of a liquid over a circular cylinder. Take liquid as 
water. Water density = 1000 kg/m3 and viscosity = 0.001 N-s/m2, u = u0 = 2 m/s2, 
h = 2 m, and L = 4m.

8.	Compute and plot velocity distribution over the airfoil as shown in Figure 8.18. 
Assume unit thickness. Take density of air = 1.23 kg/m3 and viscosity = 1.79 × 
10–5N-s/m2, L = 4 m, L1 = 20 m, h1 = 18 m, and u = u0 = 3 m/s2.

Figure 8.17.  Flow over a circular cylinder between 2 parallel plates.

Figure 8.18.  Flow over an airfoil.
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9.	Flow over an elliptical cylinder between 2 parallel plates is shown in Figure 8.19. 
Assume unit thickness. Find the velocity distribution for the flow over a circular 
cylinder. Consider the flow of a liquid over a circular cylinder. Take liquid as 
water. Water density = 1000 kg/m3 and viscosity = 0.001 N-s/m2, u = u0 = 1 m/s2, 
D = 2 m, b = 1 m, h = 4 m, and L = 8 m.

Figure 8.19.  Flow over an elliptical cylinder between 2 parallel plates.



305

Dynamic Analysis9Chapter

9.1 Introduction

A dynamic system is a system that has mass and components, or parts, that are 
capable of relative motion. Structural dynamics encompass modal analysis, 
harmonic response analysis, and transient response analysis. Modal analysis 
consists of finding natural frequencies and corresponding modal shapes of 
structures. Finding amplitude of vibration when the loads vary sinusoidal 
with time is known as harmonic response analysis. Finding the structural 
response to arbitrary time dependent loading is referred to as transient 
response analysis.

In this chapter, one-dimensional problems relating to these topics are covered. 
In vibration analysis, mass matrix and damping matrix will also be discussed in 
addition to stiffness matrix.

Governing equation of undamped free vibration assumes the form,

	
k m q[ ]- [ ]( ){ } =w2 0.

� (9.1)

The nontrivial solution of equation (9.1) is the determinate,

	
k m[ ]- [ ]( ) =w2 0

� (9.2)

where
w = radian (or natural) frequency.
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The solution of equation (9.2) gives natural frequencies (w). Substituting the 
value of w back into the governing equation gives modal shapes (or amplitudes of 
the displacements) defined by {q}.

The governing equation for the complete structure in global coordinate is

	
K M q[ ]- [ ]( ){ } =w2 0.

	

Mass matrices for bar element and beam elements are given by,

	

m ALBar[ ] =



















r

1

3

1

6
1

6

1

3 	

(9.3)

	

m
AL

L L

L L L L

L L

L L

Beam[ ] =

-

-
-

- -

r
420

156 22 54 13

22 4 13 3

54 13 156 22

13 3

2 2

22 222 4-



















L L

,

	

(9.4)

where
	 r = density of the element material�
	 A = cross-sectional area �
	 L = length. �

9.2 Procedure of Finite Element Analysis 
(Related to Dynamic Problems)

Step 1. Select element type.
Step 2. Select a displacement function.
Step 3. Define the strain/displacement and stress/strain relationships.
Step 4. Derive the element stiffness and mass matrices and equations.
Step 5. �Assemble the element equations to obtain the global equations and 

introduce boundary conditions.
Step 6. Solve for the natural requencies and mode shapes.
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9.3 Fixed-Fixed Beam for Natural Frequency 
Determination 

Example 9.1
Determine the first 2 natural frequencies for the fixed-fixed beam shown in 
Figure 9.1. The beam is made of steel with modulus of elasticity E = 209 GPa, 
Poisson’s ratio = 0.3, length L = 0.75 m, cross-section area A = 625 mm2, mass 
density r = 7800 kg/m3, moment of inertia I = 34700 mm4.

Figure 9.1.  Fixed-fixed beam for Example 9.1.

Solution
(I) Analytical method

	
∴ =   w

r1 2

22 4.

L

EI

A �
(9.5)

	
w1 2

9 12

6

22 4

0 75

209 10 34700 10

7800 625 10
1535 95=

( )
× × ×

× ×
=

-

-
.

.
.  rad//s.

�
Frequency,

	
f1

1

2
= w

p � (9.6)

	
f1

1535 95

2
244 45= =.

.
p

 Hz
�

	
∴ =   w

r2 2

61 7.

L

EI

A � (9.7)

	
w2 2

9 12

6

61 7

0 75

209 10 34700 10

7800 625 10
1535 95=

( )
× × ×

× ×
=

-

-
.

.
.  rad//s.

�
Frequency,

	
f2

2

2
= w

p �
(9.8)

	
f2

4230 71

2
673 34= =.

.
p

 Hz.
�
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(II) FEM by hand calculations

Figure 9.1(a).  Finite element model.

Mass matrices are,

	

M M
A

L

L L

L L

1 2

2

2
420

156 22
2

54 13
2

22
2

4
2

1
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
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�
Stiffness matrices are,

	

k k
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L L L
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Global mass matrix,

	
M

AL L L

L L L L

AL

L
[ ] =

+ - +

- + +








 =r r
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�

Global stiffness matrix,
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.
�

Governing equation is,

	
K M q[ ]- [ ]( ){ } =w2 0,
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For nontrivial solution,

	
K M[ ]- [ ]( ) =w2 0

�
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Solving, we get

	 a a= =1 0 076923    or  . �
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Given:
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=
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Substituting, we get 
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(III) Software results

Figure 9.1(b).  Deflection pattern for a fixed-fixed beam for mode 1 (refer to Appendix C for 
color figures).
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Frequency values (in Hz)

SET TIME/FREQ LOAD STEP SUB STEP CUMULATIVE

1 244.02 1 1 1

2 671.69 1 2 2

The following are the mode shapes:

Figure 9.1(c).  Mode 1 for fixed-fixed beam (refer to Appendix C for color figures).

Answers for Example 9.1

Parameter Analytical method 
FEM–hand calculation 

(with 2 elements)
Software results  

(with 10 elements)

Natural frequency

f1 244.45 Hz 248.16 Hz 244.02 Hz

f2 673.34 Hz 894.66 Hz 671.69 Hz

Procedure for solving the problem using ANSYS® 11.0 academic teaching software
For Example 9.1

Figure 9.1(d).  Mode 2 for fixed-fixed beam (refer to Appendix C for color figures).
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PREPROCESSING

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > 
Beam > 2D elastic 3 > OK > Close

Figure 9.2.  Element selection.

2.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 9.3.  Enter the area and moment of inertia.

Cross-sectional area AREA > Enter 625e-6
Area moment of inertia IZZ > Enter 34700e-12
Total beam height HEIGHT > Enter 1 > OK > Close
Enter the material properties.

3.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX = 209E9 and PRXY = 0.3 > OK
click Structural > Linear > Density
Enter DENS = 7800 > OK
(Close the Define Material Model Behavior window.)
Create the keypoints and lines as shown in the figure.
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4.	Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS, 
Enter the coordinates of keypoint 1 > Apply Enter the coordinates of keypoint 
2 > OK

Keypoint locations

Keypoint number X coordinate Y coordinate

1 0 0

2 0.75 0

Figure 9.4.  Enter the keypoint coordinates.

5.	Main Menu > Preprocessor > Modeling > Create > Lines > Lines > Straight 
Line, Pick the 1st and 2nd keypoint > OK

Figure 9.5.  Pick the keypoints to create lines.
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6.	Main Menu > Preprocessor > Meshing > Size Cntrls > Manual Size > Lines > 
All Lines > Enter NDIV No. of element divisions = 10

Figure 9.6.  Specify element length.

7.	Main Menu > Preprocessor > Meshing > Mesh > Lines > Click Pick All

Figure 9.7.  Create elements by meshing.

8.	Main Menu > Solution > Analysis Type > New Analysis > Select Modal > OK

Figure 9.8.  Define the type of analysis.
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9.	 Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Displacement > On Nodes Pick the left most node and right most node > 
Apply > Select All DOF > OK

Figure 9.9.  Apply the displacement constraint.

10.	 �Main Menu > Solution > Analysis Type > Analysis Options > Select PCG 
Lanczos option
Enter No. of modes to extract = 2
NMODE No. of modes to expand = 2 > OK
After OK one more window will appear, for that also click OK

Figure 9.10.  Select the number of modes to extract.
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Solution
The interactive solution proceeds.
11.	 Main Menu > Solution > Solve > Current LS > OK

�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the 
/STATUS window and if all is OK, select File > Close.
�In the Solve Current Load Step window, select OK, and when the solution is 
complete, close the ‘Solution is Done!’ window.

POST-PROCESSING

12.	Main Menu > General Postproc > Results Summary
This result is shown as frequency values in Hz.

13.	Main Menu > General Postproc > Read Results > First Set
14.	 �Main Menu > General Postproc > Plot Results > Deformed Shape > Click 

Def + undeformed > OK
This result is the first mode shown in Figure 9.1(c).

15.	Main Menu > General Postproc > Read Results > Next Set
16.	 �Main Menu > General Postproc > Plot Results > Deformed Shape > Click 

Def + undeformed > OK
This result is the second mode shown in Figure 9.1(d).

9.4 Transverse Vibrations of a Cantilever 
Beam

Example 9.2
Determine the first 4 natural frequencies for the cantilever beam shown in  
Figure 9.11. The beam is made of steel with modulus of elasticity, E = 207 GPa, 
Poisson’s ratio = 0.3, length L = 0.75 m, cross-section area A = 625 mm2, mass 
density r = 7800 kg/m3, moment of inertia I = 34700 mm4.

Figure 9.11.  Cantilever beam for Example 9.2.
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Solution
(I) Analytical solution
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(II) FEM by hand calculations

Figure 9.11(a).  Finite element model.

Stiffness matrices are,
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Global stiffness matrix,
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Mass matrices are,
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For a nontrivial solution
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(III) Software results

Figure 9.11(b).  Deflection pattern for a fixed-fixed beam for mode 1 (Refer to Appendix C 
for color figures).
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Frequency values (in Hz)

SET TIME/FREQ LOAD STEP SUB STEP CUMULATIVE

1 38.178 1 1 1

2 238.94 1 2 2

3 667.71 1 3 3

4 1305.2 1 4 4

The following are the mode shapes:

Figure 9.11(c).  Mode 1 for cantilever beam (refer to Appendix C for color figures).

Figure 9.11(d).  Mode 2 for cantilever beam (refer to Appendix C for color figures).
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Answers of Example 9.2

Parameter Analytical method FEM–hand calculation  
(with 2 elements)

Software results  
(with 10 elements)

Natural frequency

f1 38.197 Hz 38.993 Hz 38.178 Hz

f2 238.89 Hz 241.44 Hz 238.94 Hz

f3 670.04 Hz 816.147 Hz 667.71 Hz

f4 1314.14 Hz 2369.16 Hz 1305.2 Hz

Figure 9.11(e).  Mode 3 for cantilever beam (refer to Appendix C for color figures).

Figure 9.11(f).  Mode 4 for cantilever beam (refer to Appendix C for color figures).
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9.5 Fixed-Fixed Beam Subjected to Forcing 
Function

Example 9.3
For the fixed-fixed beam subjected to the time dependent forcing function shown 
in Figure 9.12, determine the displacement response for 0.2 seconds. Use time step 
integration of 0.01 sec. Let E = 46 GPa, Poisson’s ratio = 0.35, length of beam  
L = 5 m, cross-section area A = 1 m2, mass density, r = 1750 kg/m3, moment of 
inertia I = 4.2 × 10–5 m4.

Figure 9.12.  Fixed-fixed beam subjected to the time dependent forcing function for Example 9.3

Solution
(I) Software results

Figure 9.12(a).  Displacement response for 0.2 sec for node 2 (refer to Appendix C for 
color figures).

Figure 9.12(b).  Displacement response for 0.2 sec for node 3 (refer to Appendix C for 
color figures).
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Displacement values (in meters) for node 2

TIME 2 UY

UY_2

0.0000 0.00000

0.10000E–01 0.421220E–05

0.20000E–01 0.284618E–03

0.50000E–01 0.602161E–02

0.80000E–01 0.121677E–01

0.10000 0.153042E–01

0.12000 0.148820E–01

0.15000 0.979873E–02

0.18000 0.868368E–04

0.20000 –0.649350E–02

Displacement values (in meters) for node 3

TIME 3 UY

UY_3

0.0000 0.00000

0.10000E–01 0.505126E–03

0.20000E–01 0.218959E–02

0.50000E–01 0.113766E–01

0.80000E–01 0.241211E–01

0.10000 0.286233E–01

0.12000 0.292504E–01

0.15000 0.183799E–01

0.18000 –0.205644E–03

0.20000 –0.117477E–01

Procedure for solving the problem using ANSYS® 11.0 academic teaching 
software.
For Example 9.3
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PREPROCESSING

1.	 Main Menu > Preferences > Select Structural > OK

Figure 9.13.  Selecting the preferences.

2.	Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > 
Beam > 2D elastic 3 > OK > Close

Figure 9.14.  Element selection.
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3.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 9.15.  Enter the area and moment of inertia.

Cross-sectional area AREA > Enter 1
Area moment of inertia IZZ > Enter 4.2e–5
Total beam height HEIGHT > Enter 1 > OK > Close
Enter the material properties.

4.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX = 46E9 and PRXY = 0.35 > OK
Click Structural > Linear > Density
Enter DENS = 1750 > OK
(Close the Define Material Model Behavior window.)
Create the nodes and elements as shown in the figure.

5.	Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS 
Enter the coordinates of node 1 > Apply > Enter the coordinates of node 2 > 
Apply > Enter the coordinates of node 3 > Apply > Enter the coordinates of 
node 4 > Apply Enter the coordinates of node 5 > OK

Node locations

Node number X coordinate Y coordinate

1 0 0

2 1.25 0

3 2.5 0

4 3.75 0

5 5 0
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6.	Main Menu > Preprocessor > Modeling > Create > Elements > Auto 
Numbered > Thru
�Nodes Pick the 1st and 2nd node > Apply > Pick the 2nd and 3rd node > Apply > 
Pick the 3rd and 4th node > Apply > Pick the 4th and 5th node > OK

Figure 9.16.  Enter the node coordinates.

Figure 9.17.  Pick the nodes to create elements.

7.	 Main Menu > Solution > Analysis Type > New Analysis > Select Transient > OK

Figure 9.18.  Define the type of analysis.
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then select > Reduced > OK

Figure 9.19.  Define the type of transient analysis.

8.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural > 
Displacement > On Nodes > Pick the left most node and right most node > 
Apply > Select All DOF > OK

Figure 9.20.  Apply the displacement constraint.

9.	Main Menu > Solution > Master DOFs > User Selected > Define > Pick 2nd, 
3rd, and 4th node > Apply > Select UY from Lab 1 1st degree of freedom > OK

Figure 9.21.  Defining master DOF.
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10.	 Main Menu > Solution > Load Step Opts > Time/Frequenc > Time-Time Step
Enter [TIME] Time at end of load step	 –	 0
Enter [DELTIM] Time step size	 –	 0.01	 < OK

Figure 9.22.  Defining time step size.

11.	 Main Menu > Solution > Load Step Opts > Write LS File
Enter LSNUM Load step fine number n = 1 > OK

Figure 9.23.  Creating LS file.
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12.	 �Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment > 
On Nodes > Pick the middle or 3rd node Apply > Enter FY = 45e3 > OK

Figure 9.24.  Applying force on node.

13.	 Main Menu > Solution > Load Step Opts > Time/Frequenc > Time-Time Step
Enter [TIME] Time at end of load step – 0.01 > OK

Figure 9.25.  Defining time at the end of 1st load step.

14.	Main Menu > Solution > Load Step Opts > Write LS File
Enter LSNUM Load step fine number n = 2 > OK
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�Similarly repeat Steps 13 and 14 for Time at end of load step of 0.02, 0.05, 0.08, 
and 0.1 and each time create a LS file with next numbers (n), i.e., 3, 4, 5, and 6.

15.	 �Main Menu > Solution > Define Loads > Delete > Structural > Force/
Moment > On Nodes > Pick the middle or 3rd node Apply > OK

16.	 �Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment > 
On Nodes > Pick the middle or 3rd node Apply > Enter FY = 36e3 > OK

Figure 9.26.  Creating LS file for 1st load step.

Figure 9.27.  Applying force on node.

17.	 Main Menu > Solution > Load Step Opts > Time/Frequenc > Time-Time Step
Enter [TIME] Time at end of load step– 0.12 > OK

Figure 9.28.  Defining time at the end of 6th load step.



332	 Finite Element Analysis

18.	Main Menu > Solution > Load Step Opts > Write LS File 
Enter LSNUM Load step fine number n = 7 > OK

Figure 9.29.  Creating LS file for 6th load step.

Repeat Step 15 and delete the force.
�Then apply the force of 22.5 kN (i.e., 22.5e3) and define the Time at end of 
load step of 0.15 and create a LS file with number (n) = 8.
Again, repeat Step 15 and delete the force.
�Then apply the force of 9 kN (i.e., 9e3) and define the Time at end of load step 
of 0.18 and create a LS file with number (n) = 9.
Again, repeat Step 15 and delete the force.
�Define the Time at end of load step of 0.2 and create a LS file with number  
(n) = 10.

19.	Main Menu > Solution > Solve > From LS Files
Enter LSMIN Starting LS file number = 1
Enter LSMAX Ending LS file number = 10
LSINC File number increment = 1

Figure 9.30.  Solving from LS files.

20.	Main Menu > Time Hist Post pro
The following dialog box will appear
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�In that dialog box click on the first icon, i.e., on Add data, one more dialog box 
will appear as shown below. Then click on DOF Solution > y-Component of 
displacement > OK.

Figure 9.31.  Time hist dialog box.

Figure 9.32.  Selecting the displacement in y-direction.
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It asks for the node to pick, so pick the node 3 or middle node < OK.
�Then, in the Time hist dialog box, click on 4th icon, i.e., List Data (refer to 
Figure 9.31).
�This result is shown as displacement values for node 3 in the software results 
of the problem. Then, in the Time hist dialog box, click on 3rd icon,i.e., Graph 
Data (refer to Figure 9.31).
�The result is shown in Figure 9.12(b) for node 3 in the software results of the 
problem.

Maximum displacement values (in meters)

Figure 9.33.  Selecting the node.

Figure 9.34.  Values of displacement.
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9.6 Axial Vibrations of a Bar

Example 9.4
For the bar shown in Figure 9.35, determine the first 2 natural frequencies. Let  
E = 207 GPa, Poisson’s ratio = 0.3, length L = 2.5 m, cross-section area A = 1 m2, 
mass density r = 7800 kg/m3.

Figure 9.35.  The Bar for Example 9.4.

Solution
(I) Analytical method
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(II) FEM by hand calculations

Figure 9.35(a).  Finite element model.

Mass matrices are,
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Boundary conditions are, u1 = 0.
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Applying boundary conditions and for a nontrivial solution,
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(III) Software results

Figure 9.35(b).  Deflection pattern for a bar (refer to Appendix C for color figures).

Frequency values (in Hz)

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE

1 515.68 1 1 1

2 1559.8 1 2 2

Answers for Example 9.4

Parameter Analytical  
method

FEM–hand calculation  
(with 2 elements)

Software results  
(with 10 elements)

Natural frequency

f1 514.89  Hz 528.01 Hz 515.68 Hz

f2 1544.68 Hz 1846.4 Hz 1559.8 Hz

Procedure for solving the problem using ANSYS® 11.0 academic teaching 
software.
For Problem 9.4
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PREPROCESSING

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Link > 
2D spar 1 > OK > Close

Figure 9.36.  Element selection.

2.	Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Figure 9.37.  Enter the cross-sectional area.

Cross-sectional area AREA > Enter 1 > OK > Close
Enter the material properties.

3.	Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX = 207E9 and PRXY = 0.3 > OK
Click Structural > Linear > Density
Enter DENS = 7800
(Close the Define Material Model Behavior window.)
Create the keypoints and lines as shown in the figure.
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4.	Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active 
CS Enter the coordinates of keypoint 1 > Apply Enter the coordinates of  
keypoint 2 > OK

Keypoint locations

Keypoint number X coordinate Y coordinate

1 0 0

2 2.5 0

Figure 9.38.  Enter the keypoint coordinates.

5.	Main Menu > Preprocessor > Modeling > Create > Lines > Lines > Straight 
Line Pick the 1st and 2nd keypoint > OK

Figure 9.39.  Pick the keypoints to create lines.
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6.	Main Menu > Preprocessor > Meshing > Size Cntrls > Manual Size > Lines > 
All Lines > Enter NDIV No. of element divisions = 10

Figure 9.40.  Specify element length.

7.	Main Menu > Preprocessor > Meshing > Mesh > Lines > Click Pick All

Figure 9.41.  Create elements by meshing.
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8.	 Main Menu > Solution > Analysis Type > New Analysis > Select Modal > OK

Figure 9.42.  Define the type of analysis.

9.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >  
Displacement > On Nodes Pick the left most node > Apply > Select All  
DOF > OK

Figure 9.43.  Apply the displacement constraint.

10.	 �Main Menu > Solution > Analysis Type > Analysis Options > Select 
Reduced option
Enter No. of modes to extract = 2
NMODE No. of modes to expand = 2 > OK
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Enter FREQE Frequency range 0 2500 > OK

Figure 9.44.  Select the number of modes to extract.

Figure 9.45.  Enter the frequency range.
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11.	 �Main Menu > Solution > Master DOFs > User Selected > Define > Pick 
all nodes except left most node > OK > Select UX from Lab 1 1st degree of 
freedom > OK

Figure 9.46.  Defining the master degree of freedom.

Solution
The interactive solution proceeds.
12.	Main Menu > Solution > Solve > Current LS > OK

�The /STATUS Command window displays the problem parameters and the 
Solve Current Load Step window is shown. Check the solution options in the 
/STATUS window and if all is OK, select File > Close.
�In the Solve Current Load Step window, select OK, and when the solution is 
complete, close the ‘Solution is Done!’ window.

POST-PROCESSING

13.	Main Menu > General Postproc > Results Summary
This result is shown as frequency values in Hz.

14.	Main Menu > General Postproc > Read Results > First Set
15.	 �Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > 

DOF Solution, click on Displacement vector sum > OK
This result is shown in Figure 9.35(b).

Figure 9.47.  Model with master DOF applied.
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9.7 Bar Subjected to Forcing Function

Example 9.5
The bar shown in Figure 9.48 is subjected to time dependent forcing function as shown, 
determine the nodal displacements for 5 time steps using 2 finite elements. Let E = 207 
GPa, Poisson’s ratio = 0.3, length of beam L = 5 m, cross-section area A= 625 × 10–6 m2, 
mass density r = 7800 kg/m3. Use time step of integration 0.00025 seconds.

Figure 9.48.  The bar for Example 9.5.

Solution
(I) Software results

Figure 9.48(a).  Displacement response for 0.00025 sec for node 2 (refer to Appendix C for 
color figures).

Figure 9.48(b).  Displacement response for 0.00025 sec for node 3 (refer to Appendix C for 
color figures).
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Displacement values (in meters) for node 2

TIME 2 UX

UX_2

0.0000 0.00000

0.25000E–03 –0.467370E–06

0.50000E–03 –0.821457E–06

0.75000E–03   0.396081E–05

0.10000E–02   0.210563E–04

0.12500E–02   0.535055E–04

0.15000E–02   0.950064E–04

0.17500E–02   0.128841E–03

0.20000E–02   0.138387E–03

Displacement values (in meters) for node 3

TIME 3 UX

UX_3

0.0000 0.00000

0.25000E–03 0.375512E–05

 0.50000E–03 0.191517E–04

 0.75000E–03 0.488709E–04

 0.10000E–02 0.889759E–04

0.12500E–02 0.130597E–03

0.15000E–02 0.161991E–03

0.17500E–02 0.179673E–03

0.20000E–02 0.184097E–03

Maximum displacement values (in meters)

Figure 9.48(c).  Values of displacement.
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Problems

1.	 What is the governing equation of undamped free vibration and its nontrivial 
solution?

2.	What are the mass matrices for bar element and beam elements?
3.	 Determine the first 5 natural frequencies for the fixed-fixed beam shown in 

Figure 9.49. The beam is made of steel with E = 200 GPa, Poisson’s ration = 0.3, 
length = 2 m, cross-section area = 60 cm2, mass density r = 7800 kg/m3, moment 
if inertia I = 200 mm4.

Figure 9.49.  Fixed-fixed beam for problem 3.

4.	For the bar shown in Figure 9.50, determine nodal displacements for the 5 time 
finite elements. Let E = 70 GPa, r = 2700 kg/m3, A = 645 mm2, and L = 2.5 m.

Figure 9.50.  The bar for problem 4.

5.	The beam shown in Figure 9.51 is subjected to the forcing functions shown, 
determine the maximum deflections. Let E = 207 GPa, r = 7800 kg/m3,  
A = 0.0194 m2, I = 8.2 × 10–5 m4, L = 6 m. Take time step of 0.05 seconds.

Figure 9.51.  The beam for problem 5.

6.	Determine the natural frequencies of vibrations for the cantilever beam shown 
in Figure 9.52.

Figure 9.52.  Cantilever beam for problem 6.
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7.	For the bar shown in Figure 9.53, determine nodal displacements for the 5 time 
finite elements. Let E = 210 GPa, r = 2800 kg/m3, A = 825 mm2 and L = 3 m.

Hint: 

Figure 9.53.  The bar for problem 7.

8.	For the beam shown in Figure 9.54, determine the mode shapes. Let  
E = 310 ×106 psi, r = 0.283 lbf/in3, A = 1 in2, v = 0.3, and L = 30 in.

Figure 9.54.  The beam for problem 8.

9.	For the bar shown in Figure 9.55, subjected to the forcing functions shown, 
determine the nodal displacement, velocities, acceleration, and the maximum 
deflections for 5 time steps using 2 finite elements. Let E = 2 × 106 psi,  
r = 2 lb-s2 in4, A = 2 in2, I = 322.83 in4, L = 10 in.

Figure 9.55.  The bar for problem 9.
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Chapter 10

10.1 Introduction to Electromagnetics

Electromagnetics (EM) govern many applications in engineering such as 
the transmission lines system. Therefore, it is essential to understand the 
fundamental concepts of EM in order to properly design and model electrical 
systems and devices using the finite element method (FEM). Furthermore, 
EM becomes more useful in designing engineering systems with recent 
technologies, especially due to the increasing speeds of digital devices and the 
increased use of modern electronics circuits such as printed-circuit-board 
and communications systems such as cellular phones. The most important 
equations in EM theory are Maxwell’s equations, which are known as the 
foundation of EM theory. 

10.2 Maxwell’s Equations and Continuity 
Equation

In electromagnetic analysis on a macroscopic level, it is based on solving the 
Maxwell’s equations issue on certain boundary conditions. Also, there is another 
fundamental equation that can specify the conservation (indestructibility) of 
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electric charge know as the equation of continuity. Maxwell’s equations and 
continuity equation can be written in both differential and integral forms. We 
choose to start here with the differential form because it leads to differential 
equations that the finite element method (FEM) can handle.

10.2.1 Maxwell’s Equations and Continuity Equation in 
Differential Form

Now, we can present the 4 Maxwell’s equations in differential form in time-varying 
EM fields as:

	
∇ × = + ∂

∂
H J D

e t
(Ampere s law)’

�
(10.1)

	
∇ × = - ∂

∂
-E B

t mJ (Faraday s law of induction)’
�

(10.2)

	 ∇⋅ =D rv (Gauss s law-for electric field)’ � (10.3)

	 ∇⋅ =B 0 (Gauss s law-for magnetic field)’ � (10.4)

where

E = Electric field intensity, (in volt/meter) –V/m2

D = Electric flux density (or electric displacement), (in coulomb/meter2) –C/m2

H = Magnetic field intensity, (in ampere/meter) –A/m2

B = Magnetic flux density, (in tesla or weber/meter2)–T or Wb/m2

Je = Electric Current density or charge flux (surface), (in ampere/meter2) –A/m2

Jm = �The  magnetic  conductive  current  density,  (in  volt/meter2)  –V/m2,   
where Jm = sm H

sm = The magnetic conductive resistivity (in ohm/meter) –W/m

rn = Electric charge density (volume), (in coulomb/meter2) –C/m2.

Now, the equation of continuity can be written in differential form as

	
∇⋅ = -

∂
∂

Je
v

t

r
(Continuity equation).

�
(10.5)

There are 3 independent equations from the above 5 equations. They are either 
equations 1, 2, and 3, or equations 1, 2, and 5. The other two equations 4 and 
5, or equations 3 and 4 can be derived from the independent equations, and 
therefore are called dependent equations. Additionally, equation 5 can be derived 
the divergence of equation 1 and using equation 3. 
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10.2.2 Maxwell’s Equations and Continuity Equation in 
Integral Form

Furthermore, let us now look to the 4 Maxwell’s equations and the continuity 
equation in integral form in time-varying EM fields. The integrals are taken over 
in an open surface S or its boundary contour L as shown in Figure 10.1, where I is 
the electric current that flows through the path L.

Figure 10.1.  The surface S and contour L for the integral form of Maxwell’s equations.

dS

dI

S
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H l J D S

L
e

S
d

t
d

∫ ∫⋅ = + ∂
∂





 ⋅ (Ampere s law)’

�
(10.6)

	
E B⋅ = - ∂

∂
+



 ⋅∫ ∫d

t
d

L
m

S
l J S



(Faraday s law of induction)’
	

(10.7)

	
D S

S
v

v
d dv

 ∫ ∫⋅ = r (Gauss s law-for electric field)’
�

(10.8)

	
B S

S
d

∫ ⋅ = 0 (Gauss s law-for magnetic field)’
�

(10.9)

	
- ⋅ = ∂

∂∫ ∫J Se
S

v
v

d
t

dvr (Continuity equation)
�

(10.10)

where the surface S encloses the volume n, while the contour L encloses the 
surface S. l is the line vector over the contour L and S is the surface vector. 
Note that, the direction of dl must be consistent with the direction of the dS in 
agreement with the right-hand rule.

10.2.3 Divergence and Stokes Theorems
Indeed, equations 6 through 10, the integral forms can be derived from the 
differential forms or vice versa. This can be done by using either divergence 
(Gauss’s) theorem or Stokes’s theorem,

	
F S F

S v
d dv

∫ ∫⋅ = ∇⋅ (Divergence theorem)
�

(10.11)

	
F l F S

L v
d d

∫ ∫⋅ = ∇ × ⋅ (Stokes s theorem),’
�

(10.12)

where F is any arbitrary vector field.
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10.2.4 Maxwell’s Equations and Continuity Equation in  
Quasi-Statics Case

So far, we did the Maxwell’s equations in fully dynamic case. Now, we can express 
Maxwell’s equations in quasi-statics case which the displacement current (D) is 
neglected. That is,

	 ∇ × =H Je . � (10.13)

Whereas equations (10.2), (10.3), and (10.4) remain the same. Also, we can 
write the continuity equation (10.5) in quasi-statics case as

	 ∇⋅ =Je 0. � (10.14)

Indeed, the quasi-static approximation is mainly used for time-varying fields in 
various conducting media. This is due to that, for good conductors, the conduction 
current greatly exceeds the displacement current, D, for the frequencies.

10.2.5 Maxwell’s Equations and Continuity Equation in  
Statics Case

In the statics field case, the displacement current term ∂
∂







D
t

 and the time-varying 

magnetic flux density term ∂
∂







B
t

 are neglected (the field quantities do not vary 

with time). Therefore, the Maxwell’s equations in static form are expressed as

	 ∇ × =E 0 � (10.15)

whereas equations (10.3), (10.4), and (10.13) still hold. Also, the continuity 
equation (10.14) remains the same.
To emphasize, there is no interaction between the electric and the magnetic fields. 
Thus, the static case can be divided into 2 separate cases, electrostatic case and 
magnetostatic case.
In electrostatic case, it can be described by equations (10.3) and (10.15), while, for 
magnetostatic case, it can be described by equations (10.4) and (10.13).

10.2.6 Maxwell’s Equations and Continuity Equation in 
Source-Free Regions of Space Case

The sources of the electromagnetic fields can be the volume charge density (rn) 
and the electric current density (Je). In fact, these densities are localized in space. 
Also, these sources can make the generated electric and magnetic fields to radiate 
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away from them and they can make the generated electric and magnetic fields to 
propagate to larger distances to the receiving destination. Therefore, Maxwell’s 
equations can be written in source-free regions of space (away from the source) as:

	
∇ × = ∂

∂
H D

t �
(10.16)

	
∇ × = - ∂

∂
E B

t �
(10.17)

	 ∇⋅ =D 0 � (10.18)

whereas equation (10.4) remains the same. With this in mind, the continuity 
equation (10.14) also remains the same.

10.2.7 Maxwell’s Equations and Continuity Equation in  
Time-Harmonic Fields Case

So far, we considered the arbitrary time variation of electromagnetic fields. Here, 
we consider only the steady-state (equilibrium) solution of electromagnetic fields 
when produced by sinusoidal currents. The time-harmonic (sinusoidal steady-
state) field for Maxwell’s equations exists when the field quantities in the equations 
are harmonically oscillating functions with a single sinusoidal frequency w. The 
time-harmonic fields case is the most regularly used in electrical engineering. 
Now, an arbitrary time-dependent field F (x, y, z, t) or F (r, t) can be written as

	
F r F r( , ) Re ( )t es

jwt= ( )
�

(10.19)

where ejwt is the time convention, w is the angular frequency (rad/s) of the 
sinusoidal excitation, Fs (r) = Fs (x, y, z) is the phasor form of F (r, t) and it is 
in general complex, and Re (  ) indicates taking the real part of quantity in the 
parenthesis. Furthermore, the electromagnetic field quantities can be expressed in 
phasor notation as 

	

H r
E r
D r
B r

H r
E r
D r
B r

( , )

( , )

( , )

( , )

( )

( )

( )

( )

t

t

t

t



















=



















e jwt.

�

(10.20)

For example, the fields can be expresses in time dependent ejwt, as in equation 
(10.20), H(r, t) = H(r)ejwt and E(r, t) = E(r)ejwt, etc.
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As a result, using the phasor representation can allow us to replace the time 

derivations 
∂
∂t

 by jw, because

	

∂
∂

=e

t
j e

j t
j t

w
ww .

�
(10.21)

Therefore, the Maxwell’s equations can be expressed in time-harmonic as

	 ∇ × = +H J Ds es sjw � (10.22)

	
∇ × = -

∂
∂

-E
B

s
s

mst
J

�
(10.23)

	 ∇⋅ =Ds vsr � (10.24)

	 ∇⋅ =Bs 0. � (10.25)

Now, the continuity equation can be presented as

	 ∇⋅ = -Jes v sjwr . �
(10.26)

On the other hand, a nonsinusoidal field can be presented as

	

F r F r( , ) Re ( , ) .t t e ds
j t=






-∞

∞

∫ w w
�

(10.27)

Therefore, the solutions to Maxwell’s equations for a nonsinusoidal field can be 
found by assuming that all the Fourier components Fs (r, w) over w.

10.3 Lorentz Force Law and Continuity 
Equation

The Lorentz Force F is the force on a charge q with a vector velocity u in the present 
electric filed E and magnetic field B and can be obtained as 

	 F E u B= + ×q( ). � (10.28)

In addition, the volume charge rn and the current distribution J can be subjected 
to the forces in the presence of fields. Thus, Lorentz Force F per unit volume acting 
on the volume charge and the current distribution can be expressed as

	 F E J B= + ×rv . � (10.29)
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However, if the current distribution J occurs from the motion of the charges q 
within the volume charge rn, then current distribution J can be formed as J = rnv. 
This can make the Lorentz Force F as

	 F E v B= + ×( )rv . � (10.30)

Moreover, the Lorentz Force law is essential to understand the interaction 
between EM fields and matter. Indeed, the law is used in the design of many 
electrical devices.

Furthermore, the continuity equation which expresses the conservation of 
electric charge can be written as

	
∇⋅ = -

∂
∂

J
rv

t
.
�

(10.31)

Equation (10.31) is implicit in Maxell’s equations. 

10.4 Constitutive Relations

In addition to the Maxwell’s equations and the continuity equation, there are 
constitutive relations which describe the macroscopic properties of the medium 
in which the fields exist. In other words, constitutive relations describe the 
relationship between the EM fields through the properties of the medium. Indeed, 
Maxwell’s equations and constitutive relations are used to obtain the solutions of 
EM fields that exist in any microwave structures. The constitutive relations can be 
presentenced in vacuum (free space) as

	 D E= e0 � (10.32)

	 B H= m0 � (10.33)

	 J Ee e= s � (10.34)

	 J Mm m= s � (10.35)

where

e0 = the permittivity of vacuum
m0 = the permeability of vacuum
se = the electrical conductivity
M = magnetization field.
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The numerical values of e0 and m0 are written as

	

e
p

m

p

0
12 9

0
78 854 10

1

36
10 12 6 10

4

= × ≅ × = ×

= ×

- - -. / / , . /Farad m F m Henry m

110 7- H m/ . �

(10.36)

We can use these 2 quantities to define the speed of light (c0) and the characteristic 
impedances in vacuum (h0) as:

	

c m0
0 0

8
0

0

0

1
3 10 377= = × = = W

e m
h m

e
/sec., .

�

(10.37)

To emphasis, the constitutive relations are needed to solve for EM fields quantities 
using Maxwell’s equations.

For simple homogenous isotropic dielectric and for magnetic material (linear 
and isotropic media), the constitutive relations are given as

	 D E= e � (10.38)

	 B E= m � (10.39)

where as equations (10.34) and (10.35) remain the same.
Where, e is the permittivity of the material, and m is the permeability of the 

material.
For inhomogeneous media, the constitutive relations are functions of the 

position.
The permittivity of the material e and the permeability of the material m can be 

presented as

	 e e= +0 1( )ce � (10.40)

	 m m= +0 1( )cm
�

where ce is the electric susceptibility of the material which is the measure of the 
electric polarization property of material (dimensionless scalar), and cm is the 
magnetic susceptibility of the material which is the measure of the magnetic 
polarization property of material (dimensionless scalar).

Moreover, the speed of light in the material c and the characteristic impedance 
of the material h is expressed as

	
c = =1

em
h m

e
, .

�
(10.41)
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The relative permittivity er of a material, the relative permeability mr of a material, 
and the refractive index n of a material are formed as

	
e e

e
m m

m
e m e mr r r r r rn n= = + = = + = → =

0 0

21 1c ce m, , .
�

(10.42)

By using equation (10.41) and (10.42), we get

	
c

c
n

n

r

= =0 0and h h
e

.
�

(10.43)

It is good to know that for nonmagnetic material mr = 1 or mr = m0, and h h
= 0

n
.

Now, the constitutive relations for time-harmonic fields in a simple media are:

	 D E E= =e e w e w0 r ( ) ( ) � (10.44)

	 B H H= =m m w m w0 r ( ) ( ) � (10.45)

	 J Ee e= s w( ) . � (10.46)

Furthermore, both the electric polarization P (Coulomb/m2) which describes how 
the material is polarized when an electric field E is present and the magnetization  
M (Ampere/m) which describes how the material is magnetized when a magnetic 
field H can be included in the constitutive relations in any material as

	 D E P= +e0 � (10.47)

	 B H M= +m0( ) � (10.48)

	  J Ee e= s � (10.49)

	 J Mm m= s � (10.50)

where P = e0 ceE and  M = cm H.
Next, for nonlinear material, the constitutive relationships can be presented as 

	 D E D= +e e0 r re � (10.51)

	 B H B= +m m0 r re � (10.52)

	 J E Je e ex= +s � (10.53)

where Dre is the remanent displacement that is the displacement when the electric 
field is not present, Bre is the remanent magnetic flux density that is the magnetic 
flux density when the magnetic field is not present, and Jex is an externally 
generated current.



360	 Finite Element Analysis

It is beneficial to know that the Maxwell’s equations can be expressed in an approach 
that ensures the contribution of the medium in terms of the fields E and B as

 	
∇ × = ∂

∂
+ + ∂

∂
+ ∇ ×



B E J P Me m m0 0 0t t �

(10.54)

	
∇ × = - ∂

∂
E B

t �
(10.55)

	
∇⋅ = - ∇⋅( )E P1

0e
rv

�
(10.56)

	 ∇⋅ =B 0. � (10.57)

Example 10.1
Given H = Hej(wt + bz)ax in free space, calculate E.

Solution
We know D = eE and ∇ × = ∂

∂
H D

t
,  therefore

	

∂
∂

= ∂
∂

+D a
t z

He j t z
y

( )w b

�

	

∂
∂

= +D a
t

j He j t z
yb w b( )

�

	
D a= +b

w
w bH

e j t z
y

( )

�

	
E a= +b

ew
w bH

e j t z
y

( ) .
�

10.5 Potential Equations

Often under certain circumstances, it can be essential to formulate EM problems 
in terms of potential functions, that is, the scalar electric potential Ve and vector 
magnetic potential A. These potential functions are arbitrary and they are required 
to satisfy Maxwell’s equations. They are described by

	 B A= ∇ × � (10.58)

	
E A= -∇ - ∂

∂
V

te .
�

(10.59)
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In fact, equation (10.55) is a direct consequence of the magnetic Gauss’ law and 
equation (10.55) is a result from Faraday’s law. In the magnetostatic case (there are 
no currents present), Ampere’s law reduces to

	 ∇ × =H 0. � (10.60)

Indeed, when equation (10.57) holds, we can present the scalar magnetic potential 
Vm by 

	 H = -∇Vm . � (10.61)

It is clear that, equations (10.58) and (10.59) satisfy the Maxwell’s equations (1.2) 
and (1.4). Now, to relate the potential functions to other two Maxwell’s equations 
(1.1) and (1.3), by assuming the Lorentz condition hold, that is,

	
∇⋅ = -

∂
∂

A em V

t
e .

�
(10.62)

These equations can be written in the case of linear and homogenous 
medium as 

	
∇ ⋅ -

∂
∂

= -2
2

2
V

V

t
e

e vem r
e �

(10.63)

	
∇ ⋅ - ∂

∂
= -2

2

2
A A Jem m

t
.
�

(10.64)

Equations (10.63) and (10.64) as wave equations and the integral solutions to 
these equations are known as the retarded potential solutions, i.e.,

	
V

dv

Re
v= [ ]∫ r
pe4 �

(10.65)

	
A J= [ ]∫ m

p
dv

R4 �
(10.66)

where R is the distance from the source point to the field point at which the 
potential is required, and the square brackets [  ] denote that rn and J are specified 
at a time R em earlier than for which Ve or A is being formed.
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10.6 Boundary Conditions

The material medium in which an electromagnetic field exists is usually 
characterized by its constitutive parameters s, e, and m. If s, e, and m are 
independent of E and H, the medium is linear. Also, if s, e, and m are dependent 
of E and H, the medium is nonlinear. Now, if s, e, and m are functions of space 
variables, the medium is inhomogeneous. But, if s, e, and m are not functions 
of space variables, the medium is homogeneous. Additionally, if s, e, and m are 
independent of direction (scalars), the medium is isotropic. If s, e, and m are 
dependent of direction (vectors), the medium is anisotropic. Indeed, most of 
substrates used in electronic circuits are homogenous, isotropic, and linear.

The boundary conditions at the interface separating 2 different media 1 and 2, 
with parameters (e1, m1, s1) and (e2, m2, s2), respectively, as shown in Figure 10.2.

Figure 10.2.  Interface between two media.

The boundary conditions for the EM fields across material boundaries are 
derived from the integral form of Maxwell’s equations. They are given by

	 n E E× -( ) = - =1 2 1 20 0 or E Et t � (10.67)

	 n D D⋅ -( ) = - =1 2 1 2r rs n n sD D or � (10.68)

	 n H H J× -( ) = - =1 2 1 2s t t sH H J or � (10.69)

	 n B B⋅ -( ) = - =1 2 1 20 0 or B Bn n 	 (10.70)

where n is a unit normal vector directed from medium 1 to medium 2, subscript 
t and n denote tangent and normal components of the fields, respectively, rs and 
Js are surface electric charge density (coulomb/m2) and surface current density 
(ampere/m), respectively. Furthermore, equations (10.67) and (10.70) state that 
the tangential components of E and the normal components of B are continuous 
across the boundary. But, equation (10.68) states that the discontinuity in the 
normal component D is the same as the surface electric charge density rs on the 
boundary. However, equation (1.69) states that the tangential component of H is 
discontinuous by the surface current density Js on the boundary. In many interface 
problems, only 2 of Maxwell’s equations are used, equations (10.68) and (10.70), 
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when a medium is source free (J = 0, rn = 0), since the other 2 boundary conditions 
are implied. In such a case, the boundaries conditions may be written as 

	 E Et t1 2= - � (10.71)

	 D Dn n1 2= � (10.72)

	 H Ht t1 2= � (10.73)

	 B Bn n1 2= . � (10.74)

Moreover, Maxwell’s equations under the source free condition are applicable 
to passive microwave structures such as transmissions lines.

However, when one of the media is a perfect conductor, boundary conditions 
are different. A perfect conductor has infinite electrical conductivity and thus no 
internal electric field (full of free charges). Or else, it would produce an infinite 
current density according to the third constitutive relations. When an EM field is 
applied to a perfect conductor medium, the free charges which are pushed to the 
applied EM field, move themselves in such a way that they produce an opposite EM 
field that completely cancels the applied EM field. Indeed, this causes the creation 
of the surface charges and currents on the boundary of the perfect conductor. 
At an interface between a dielectric and a perfect conductor, the boundary 
conditions for E and D fields are simplified. Now, assume that medium 1 is a 
perfect conductor, then E1 = 0 and D1 = 0. Also, if it is a time-varying case, then 
H1 = 0 and B1 = 0, and, in addition, as a correspondence of Maxwell’s equations. 
Therefore, the boundary conditions for the fields in the dielectric medium for the 
time-varying at the surface are

	 - × =n E2 0 � (10.75)

	 - ⋅ =n D2 rs � (10.76)

	 - × =n H J2 s � (10.77)

	 - ⋅ =n B2 0. � (10.78)

Furthermore, we can apply the integral form of the continuity equation (10.10) 
to the surface at the interface between lossy media (i.e., s1 ≠ 0, s2 ≠ 0) or lossy 
dielectric (i.e., s1 ≠ s2 and e1 ≠ e2), or perfect conductor (i.e., no fields inside the 
media). Therefore, the interface condition for current density J can be obtained as

	
n J J⋅ -( ) = -

∂
∂

-( ) = -
∂
∂1 2 1 2

r rs
n n

s

t
J J

t
 or .

�
(10.79)

Equation (10.79) states that the normal component J is continuous, except where 
the time-varying surface electric charge density rs on the boundary may exist.



364	 Finite Element Analysis

10.7 Laws for Static Fields in  
Unbounded Regions

Coulomb’s law and Biot-Savart’s law are the 2 fundamental laws governing the 
static fields in unbounded regions. 

10.7.1 Coulomb’s Law and Field Intensity
Coulomb’s law is an experimental law that deals with the force a point charge 
exerts on another point charge. In other words, Coulomb’s law states that the force 
F (in newtons) between two points charges Q1 (in coulombs) and Q2 is 

	
F

Q Q

R
= 1 2

0
24pe �

(10.80)

where R (in meter) is the distance between the 2 charges. We can define the 
electrostatic field intensity E as the force F applied by 1 charge Q on a unit positive 
point charge as 

	
E

a
=

Q

R
R

4 0
2pe

.
�

(10.81)

Knowing that, the point at which the charge Q is located is called the source 
point, and the point at which the electrostatic field intensity E is taken is called the 
field point. Thus, here aR is the unite vector in the direction from the source point 
toward the field point, and R is the distance between the source point and the field 
point.

Now, it is possible to obtain a continuous charge along a line, on a surface, or in 
a volume, respectively as

	
E

a
= ∫ r

pe
l R

L R
dl

4 0
2

 
�

(10.82)

	
E

a
= ∫ r

pe
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4 0
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(10.83)

	
E

a
= ∫ r

pe
v R

v R
dv

4 0
2

 ,
�

(10.84)

where L is the line along which the charge is distributed, S is the surface which the 
charge is distributed, n is the volume enclosed by a surface S. rl, rs, and rn, are the 
line, surface, and volume charge density, respectively.
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10.7.2 Bio-Savart’s Law and Field Intensity
The Bio-Savart’s law is a magnetostatic law used to express the static magnetic field 
as a summation over elementary current sources. Now, we can obtain the Bio-
Savart law for the line current, surface current, and volume current, respectively in 
terms of the distributed current sources as

	
H

I a
=

×∫ Id

R
R

L 4 2p
 

�
(10.85)

	
H

J a
=

×∫ s R
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dS

R4 2p
 
�

(10.86)

	
H

J a
J=

×∫ v R

v
s

dv

R
ds

4 2p
,

�
(10.87)

where I is the line current density, Js is the surface charge density, Jn is the 
volume charge density, and aR is a unit vector pointing from the differential 
elements of current to the point of interest. Indeed, the source elements are 
related as 

	 Id ds dvs vI J J≡ ≡ . � (10.88)

10.8 Electromagnetic Energy  
and Power Flow

The electric energy We is defined as
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v

T

v
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



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= ⋅ ∂

∂





∫∫ ∫∫E D E D

0 0

  

�

(10.89)

where D is the magnitude of electric displacement, and T is the period.
The electrostatic energy present in an assembly of charges can be written as 

	

W Q Ve k
k

n

k=
=

∑1

2 1 �

(10.90)

where V is the potential, and Q is the point charge. Now, instead of point 
charges, the region has a continuous charge distribution, the summation 
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equation (10.90) becomes integrations for line charge, surface charge, and 
volume charge, respectively as

	
W Vdle l

L
= ∫1

2
r

�
(10.91)

	
W VdSe s

S
= ∫1

2
r

�
(10.91)

	
W Vdve v

v
= ∫1

2
r .

�
(10.93)

In the meantime, rn = ∇⋅D, E = –∇V, and D = e0E, and by using the identity for 
vector and scalar rules and applying divergence theorem, and knowing that in a 
simple medium, whose constitutive parameters (m, e, and s) do not change with 
time, we have

	
E D E E E E⋅ ∂
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(10.94)

We can obtain electrostatic energy as

	
W dv dve

v v
= ⋅ =∫ ∫1

2
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2 0D E  E  2e .
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(10.95)

Also, the electrostatic energy density we (in J/m2) can be obtained as
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D
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(10.96)

When a wave propagates in a medium, it carries the electric field and power. 
However, the time derivatives of equation (10.89) is the electric power which is 
written as

	
P

t
dve

v
= ⋅ ∂

∂∫ E D
.
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(10.97)

Furthermore, the magnetic energy can be defined as 
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where B is the magnitude of magnetic flux density, and T is the period.
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The magnetostatic energy present in an assembly of currents k can be written as 

	

W Im k
k
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2 1

F
�

(10.99)

where Ik is the kth current, and Fk is kth magnetic flux. 
Note, knowing that in a simple medium, whose constitutive parameters  

(m, e, and s) do not change with time, we have
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We can obtain magnetostatic energy as

	
W dv H dve

v v
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Also, the magnetostatic energy density wm (in J/m2) can be obtained as
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When a wave propagates in a medium, it carries the magnetic field and power. 
However, the time derivatives of equation (10.98) is the magnetic power that is 
written as

	
P

t
dvm

v
= ⋅ ∂

∂∫ H B
.
�

(10.103)

The instantaneous power density vector associated with the electromagnetic field 
at a given point is known as the Poynting vector Pov (in W/m2), which is written as

	 P E Hov = × . � (10.104)

For more practical value than Pov, we determine the time-average instantaneous 

Poynting vector (or power average density) (in W/m2) over the period T = 2p
w

as

	
Pov-ave ovP( ) , .z

T
z t dt

T
= ( )∫1

0 �
(10.105)

In addition, for time-harmonic fields, we can defined a phasor Poynting vector as

	 P E Hovs = × *
s s � (10.106)
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Where Hs* is the complex conjugate of Hs. Now, for a phasor Poynting vector, we 
can define the time-average power which is equivalent of equation (10.106) as

	
P E Hov-ave( ) Re *z s s= ×( )1

2 �
(10.107)

where Re( ) stands for the real part of a complex quantity. Furthermore, the total 
time-average power crossing a given surface S is given by

	
P E H S P Stave
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�
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The electric and magnetic powers quantities are related through Poynting’s 
theorem as
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∂
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
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where

J E⋅∫ dv
v

is called resistive losses which result in heat dissipation in the material.

E H S×( )⋅∫ d
S

is called the radiative losses.

However, the Poynting’s theorem as presented in equation (10.109) can be written as
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where

E H S×( )⋅∫ d
S

is the total power leaving the volume.

- ∂
∂

+
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E H dv
v

1

2

1

2
2 2e m is the rate of decrease in energy stored in electric and 

magnetic fields.

-∫ sE dv
v

2 is the decrease in ohmic power density (dissipated).



Engineering Electromagnetics Analysis	 369

Indeed, under the material is linear and isotropic, it holds that
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Therefore, based on equations (10.111) and (10.112), the equation (10.109) can 
be written as
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Now, by integrating the left-hand side of equation (10.113) is the total 
electromagnetic energy density wt
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10.9 Loss in Medium

The electronic circuits have dielectrics that are always not perfect. Thus, there is 
always loss in any practical nonmagnetic dielectrics that is known as dielectric loss. 
This dielectric loss is due to a nonzero conductibility of the medium. Now, we 
can write the time harmonic Maxwell’s equation (10.22), making use the time-
harmonic constitutive relations (10.44) and (10.46), as

	
∇ × = -



H Es j jwe s

we
1

�
(10.115)

or

	 ∇ × = -( )H Es j jwe d1 tan � (10.116)

where
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we
=

�
(10.117)
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Equation (10.117) is called the loss tangent of the medium, which is usually used 
to characterize the medium’s loss. In addition, now we can define a complex 
dielectric constant of a lossy medium e  

as

	 ê e e= -¢ ≤j � (10.118)

where the real part e′ of the complex dielectric constant is the dielectric property 
that contributes to the stored electric energy in the medium and it is defined as 

	 e e e e¢ = = 0 r � (10.119)

and the imaginary part e″ contains the finite conductivity and results in loss in the 
medium which is defined as

	
e s

w
e d¢ = = tan .

�
(10.120)

For example, the loss tangent for GaAs material is 0.006 at frequency 10Ghz, 
relative dielectric constant equal to 12.9, and temperature 25oC. Also, the loss 
tangent for silicon material is 0.004 at frequency 10Ghz, relative dielectric constant 
equal to 11.9, and temperature 25oC.

10.10 Skin Depth

The measure of the depth to which the electromagnetic wave can penetrate 
the medium is known as skin depth (or depth of penetration). Skin depth is 
one of the most important parameters of a medium, because it presents the 
distance from the medium surface over which the magnitude of the fields of 
a wave traveling in the medium are reduced to e–1 (or 0.368) of those at the 
medium’s surface. The skin depth d of a good conductor is approximately 
written as

	
d

wms p ms
= =2 1

f �
(10.121)

where w = 2pf.
It is essential to know that the skin depth of good conductors is very small, 

especially at high frequencies. Thus, it results a low conduction loss.
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Example 10.2
Calculate the skin depth, d, for aluminum in 1.6 × 106 Hz field (s = 38.2 × 106 S/m 
and m = 1).

Solution

	
d

wms p ms p
m= = =

× × × × ×
=2 1 1

1 6 10 1 38 2 10
64 4

6 6f
m

. .
. .

�

10.11 Poisson’s and Laplace’s Equations

Poisson’s and Laplace’s equations are derived from Gauss’s law (for a linear, 
isotropic material medium)

	 ∇⋅ = ∇⋅ =D Ee rv � (10.122)

and

	 E = -∇V . � (10.123)

By substituting equation (10.123) into equation (10.122), we get

	 ∇⋅ - ∇( ) =e rV v �
(10.124)

for an inhomogeneous medium. Equation (10.124) can be obtained for a 
homogeneous medium as

	
∇ = -2V vr

e
.
�

(10.125)

Equation (10.125) is known as Poisson’s equation. 
Now, Laplace’s equation is a special case of Poisson’s equation when rn = 0  

(i.e., for a charge free region), and it can be described as

	 ∇ =2 0V . � (10.126)

Laplace’s equation is used to determine the static or quasi-static characteristic 
impedance and effective relative dielectric constant of a transmission line.
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10.12 Wave Equations

We used so far Maxwell’s equations and constitutive relations directly to determine 
the EM fields. However, it can very convenient to obtain the EM fields by solving 
wave equations.

When the electromagnetic wave is in a simple (linear, isotropic, and 
homogenous) nonconducting medium (e, m, and s = 0), the homogenous vector 
wave equations can be presented as
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1
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and
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On the other hand, the relation between scalar potential V and vector potential A is 
called the Lorentz condition (or Lorentz gauge) for potentials that is expressed as
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�
(10.129)

The nonhomogenous wave equation for vector potential A is given by 
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But, the nonhomogenous wave equation for scalar potential V is given by 
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The time-harmonic wave equations for vector potential A and scalar potential 
V equations can be obtained, respectively as

	 ∇ + = -2 2A A Jk m �
(10.132)

and

	
∇ + = -2 2V k V

r
e �

(10.133)

where

	
k

c
= =w me w

.
� (10.134)

Equation (10.134) is called wave number, and equations (10.132) and (10.133) are 
known as nonhomogenous Helmholtz’s equations.
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However, when the EM wave in a simple, nonconducting source free medium 
(characterize by r = 0, J = 0, s = 0) and the time-harmonic wave equations can be 
obtained as 

	 ∇ + =2 2 0E Ek � (10.135)

and

	 ∇ + =2 2 0H Hk . � (10.136)

Equations (10.135) and (10.136) are known as the homogenous vector Helmholtz’s 
equations. 

10.13 Electromagnetic Analysis

Due to the cost effectiveness of experiments and testing, the development of 
transmission lines in integrated circuit systems is time consuming. Today, 
researchers, designers, and engineers used several numerical and analytical 
methods to study and investigate the parameters variations and properties of 
designing high-speed integrated circuits (microwave circuits) and electromagnetic 
(EM) problems. The most common analytical methods used for exact solutions 
in electromagnetic are conformal mapping, integral solutions, separation of 
variables, and series expansion. Also, the most popular numerical methods used 
for approximate solutions are methods called moment methods, methods of line, 
finite difference methods, and finite element methods (FEM).

Finite element method has a great success in electromagnetic analysis compared 
to other methods. In contrast to other numerical methods, it is very useful for 
solving problems in complex geometries and inhomogeneous media. In this 
chapter, we show an overview of the finite element method. FEM requires that any 
problem involved in the geometrical region to be subdivided into finite number of 
smaller regions or elements. An approximate solution for the partial differential 
equation can be developed for each of these elements. In addition, the total solution 
is generated by assembling together the individual solutions taking care in order 
to ensure continuity at the interelement boundaries. Basically, there are four steps 
used in FEM: first, creating and discretizing the solution region (domain) into a 
finite number of subregions or elements; that is, divide the problem into nodes 
and elements and assume a shape function to represent the physical behavior of 
an element; second, developing equations for an element; third, assembling all the 
elements to represent in solution region, constructing the global coefficient matrix 
and applying boundary conditions and initial conditions; fourth, solving the system 
of equations to obtain the important information of the problem.
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10.13.1 One-Dimensional Elements
10.13.1.1 The Approach to FEM Standard Steps Procedure

The first step is the discretization step, that is, the solution domain is divided into 
finite elements. Figure 10.3 provides an example of elements employed in one 
dimension. It shows the points of intersection of the lines that make up the sides 
of the elements called nodes and the sides themselves are known as nodal lines. 

Figure 10.3.  Example of elements in one-dimensional (1D).

Line element Node

The second step is the development of equations to approximate the solution for 
each element. It can be done by choosing an approximate function with unknown 
coefficients that will be used to approximate the solution. We use a first-order 
polynomial (straight line) as a linear variation of potential between the nodes over 
element m, i.e., 

	 V x a bxm( )( ) ,= + � (10.137)

where V(x) is the dependent variable (potential function); a and b are constants;  
x is the independent variable. 

We can find the two constants a and b by using the two nodes to satisfy the 
equation at the location of the two nodes as:

	 V a bxm
1 1
( ) = + � (10.138)

and

	 V a bxm
2 2

( ) = + � (10.139)

where V1
(m) = V(m) (x1) and V2

(m) = V(m) (x2). By using Cramer’s rule, we can solve 
equations (10.138) and (10.139), i.e.,
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Equations (10.140) and (10.141) can be substituted into equation (10.137) to give 
the approximate (or shape) function V (x) in terms of the interpolation functions, 
H1 and H2 over element m, that is,

	 V x x V x Vm m m m m( ) ( ) ( ) ( ) ( )( ) ( ) ( )= +a a1 1 2 2 � (10.142)

where
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2
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x x

x x
= -

- �
(10.144)

Indeed, equation (10.142) is a first-order interpolating polynomial. In addition, 
it provides a means to calculate intermediate values between the given values  
V1 and V2 at the nodes.

The shape function, along with the corresponding interpolation functions, is 
presented in Figure 10.4. Moreover, the sum of the interpolation functions, a1 and 

a2, that is, ai
i

=
=
∑ 1

1

2

.

Figure 10.4.  (a) a line element, (b) a linear approximation (or shape) function, (c) the 
corresponding interpolation function a1

(m) (x) for V(m) (x), and (d) the corresponding 
interpolation function a2

(m) (x) for V(m) (x).
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Furthermore, it follows that,
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and
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Now, the integral of V(m) is:
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Now, we evaluate the coefficients so that the function approximates the 
solution in a best approach. The most common methods used for this propose 
are the variational approaches, the weighted residuals, and the direct approaches. 
These methods can specify the relationships between the unknowns in equation 
(10.142) that satisfy the partial differential equation in an optimal approach. The 
resulting element equations can be expressed in a set of linear equations in matrix 
form, i.e., 

	
C Vm m

c c
m( ) ( ) ( ) { } = { }Ψ

�
(10.150)

where
[C(m)] is element property (stiffness) matrix; {Vc

(m)} is a column vector of 
unknowns at the nodes over element m; and {yc

(m)} is a column vector reflecting 
the effect of any external influences applied at the node over element m.

Third, we assemble all the elements to represent in the solution region. The 
solutions for closest elements are matched so that the unknown values at their 
common nodes are equivalent. Therefore, the total sum will be continuous. Then, 
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the assembled system need to be modified for its boundary condition. The system 
can be expressed as:

	
C Va

m
ac

m
ac

m( ) ( ) ( ) { } = { }Ψ
�

(10.151)

where
[Ca

(m)] is the assemblage element property (stiffness) matrix; {Vac
(m)} is the 

assemblage column vector of unknowns at the nodes over element m; and {yac
(m)} 

is the assemblage column vector reflecting the effect of any external influences 
applied at the node over element m.

Fourth, solving the system of equations (10.151) to obtain the important 
information of the problem, it can be obtained by LU decomposition technique.

10.13.1.2 Application to Poisson’s Equation in One-Dimension
In this section, we solve the one-dimensional (1D) Poisson’s equation for the 
potential distribution V (x)
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with boundary conditions (BCs) V(a) = v1, V(b) = v2.
Using the same essential four steps as in the previous section with FEM, we 

focus here on the source term and only the major differences.
We will use the variational principle and the weighted residuals method to 

obtain the solution of one-dimensional (1D) Poisson’s equation.

(1) Variational Approach
The deriving element governing equations step. We look for the potential 
distribution V (x) that can minimize an energy function F (V) as
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Two nodal values of V (x) are required to define uniquely a line variation of V(m) (x) 
over an element (m). Hence, the linear variation of V(m) (x) can be presented as

	 V x x V x Vm( )( ) ( ) ( )= +a a1 1 2 2 � (10.154)

where the interpolation functions a1(x) and a2(x) are presented as
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The resulting element equation (10.154) can be expressed in a set of linear 
equations in matrix form:
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The energy function can be written as
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where N is the number of elements with the domain a ≤ x ≤ b.
Now, substituting equation (10.156) into (10.153) can give
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By minimizing the F(m) (V(m)) with respect to the nodal values of V, we obtain the 
following equations for an element (m) 
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and
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These equations can be expressed in matrix form as
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where
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where the elements of {yc
(m)} are the nodal forcing functions. The equations in 

(10.161) can give the characteristics of the Poisson’s equation in 1D. Indeed, in 
spite of the type of element we choose to formulate the Poisson’s equation in 1D, 
the element equations will have the form as equation (10.161). For the solution 
of the Poisson’s equation in 1D, it is essential to derive the equations for all the 
elements in the assemblage and then to assemble these algebraic equations.

(2) Weighted Residuals Method
In the variational approach for 1D Poisson equation with boundary condition, 
we derive the element matrices [C(m)] and {yc

(m)} for a linear variation of potential 
V (x) over element (m) with two nodes. Now, we will use Galerkin’s method with 
weighting functions Wi = ai to derive the element matrices. We approximate the 
unknown exact solution Vm (x) by 

	

V x x Vm i mi
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where
N is number of nodes (here N = 2), Vmi is the unknown nodal values, i = 1, 2.

Note that, we do not consider the fixed boundary conditions at the element 
level, but these are included after the assembly process as in the previous method.
Now, by applying Galerkin’s method we get:
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where
x1 and x2 are the coordinates of the end nodes of the line element.
By using integration by parts to the term with the derivatives of Vm (x), that is,
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Taking the derivative of equation (2.29) as
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where
{Vc

(m)} is the column vector of nodal unknowns for the element m.
Thus, equation (2.30) becomes 
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Furthermore, the first term on the right-hand side of equation (10.169) represents 
natural boundary conditions for the element m. We obtain these as
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because a1(x2) = 0, a1(x1) = 1,
and
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because a2(x2) = 1, a2(x2) = 0.
We use the end-point values of ai shown in Figure 10.4. Thus, the element 

equations are presented as
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where
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The extension to an element with N nodes follows the same steps, but with  
i = 1, 2,…, N. In addition, the matrices for an element with N nodes contain terms 
similar to the equation (10.172), but with additional rows and columns to account 
for N element equations.

10.13.1.3 Natural Coordinates in One-Dimension
We use natural (length) coordinates in deriving interpolation functions that can 
be used to evaluate the integrals in the element equations. In addition, we use the 
natural coordinate system in describing the location of a point inside an element 
in terms of the coordinates associated with the nodes of the element. Let hi be the 
natural coordinates, where i = 1, 2,…, N; N is the number of external nodes of the 
element. Knowing that, natural coordinates are functions of the global Cartesian 
coordinate system in which the element is defined, the one coordinate is associated 
with node i and has unit value there.

Figure 10.5 shows a line element with natural coordinates h1, h2 and location 
point xl.

Figure 10.5.  Example of two-node line element in one-dimensional (1D) with global 
coordinate xl.

The global coordinate xl can be expressed as

	 x x xl = +h h1 1 2 2 . � (10.174)

We can interpret natural (length) coordinates h1 and h2 as weighting functions 
relating the coordinates of the end modes to the coordinate of any interior point. 
As we know that,

	 h h1 2 1+ = � (10.175)

although, the weighting functions are not independent. Let us consider xl = x and 
solving for h1 and h2 from equations (10.174) and (10.175), we get
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The linear interpolation used for the potential distribution variable V(x) in the 
previous section, which can be written as

	 V x V V( ) .= +1 1 2 2h h � (10.178)
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By differential of V(x) using the chain rule, we get
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where
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Now, taking the integration of length coordinates over the length of an element, 
that is,
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where i and j are integer exponents.

10.13.2 Two-Dimensional Elements
10.13.2.1 Applications of FEM to Electrostatic Problems

It’s often known that FEM is a numerical method used to find the approximate 
solutions either for partial differential equations or integral equations. These 
equations are most involved in electromagnetic problems. We illustrate the four 
steps above used to find the solution in FEM through three different types of 
differential equations, Laplace’s equation, Poisson’s equation, and wave equation.

10.13.2.1.1 Solution of Laplace’s Equation ∇2V = 0 with FEM

To find the potential distribution, V(x, y), for the two-dimensional (2-D) solution 
region, as shown in Figure 10.6. We illustrate the following steps to get the solution 
of Laplace equation, ∇2V = 0.

Figure 10.6.  The solution region of the problem showing domain for the 2-D boundary value.
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First step, using finite element discretization to find the potential distribution 
for the two-dimensional solution, V(x, y) as shown in Figure 10.7, where the 
solution region is subdivided into seven nonoverlapping finite elements of 
triangles. It is always preferable in computation to have the same type of elements 
through the solution region which in our case is the triangle.

Figure 10.7.  The finite element discretization of the solution.

We look for an approximation solution for the potential Vm(x, y) within an 
element m and then interrelate the potential distribution in various elements such 
that the potential is continuous across interelement boundaries. We can express 
the approximation solution for the whole region as

	

V x y V x ym
m

N

( , ) ( , ),≈
=

∑
1 �

(10.182)

where N is the number of triangle elements into which the solution region is 
divided. 

The most common form of approximation for Vm(x, y) within an element is 
polynomial approximation for a triangle element, that is,

	 V x y a bx cym ( , ) ,= + + � (10.183)

where the constants a, b and c are to be determined. The potential Vm(x, y) in 
general is nonzero within element m, but zero outside m. Furthermore, our 
assumption of linear variation of potential within the triangle element as in 
equation (2.46) is the same as assuming that the electric field is uniform within 
the element, that is to say,

	
Em m x yV b c= -∇ = - +( ).a a

�
(10.184)
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Second step, developing equations for the element. Let us choose a typical 
triangle element shown in Figure 10.8.

Figure 10.8.  Typical triangle element; local node numbering 1-2-3 must proceed counter-
clockwise as indicated by the arrow.

The potential Vm1(x1, y1), Vm2(x2, y2), and Vm3(x3, y3) at nodes 1, 2, and 3, 
respectively, are obtained using equation (10.183), namely
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The coefficients a, b, and c are determined from equation (10.185) as
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Therefore, equation (10.183) can be rewritten by substituting for a, b, and c, i.e.,
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Equation (10.187) can be written as
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where ai (x, y) is given by

	
ai i i ix y

A
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and ai, bi, and ci are given by
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where i, j, and k are cyclical, that is, (i = 1, j = 2, k = 3), (i = 2, j = 3, k = 1), and (i = 3, 
j = 1, k = 2).
Note that, by substituting equations (10.190), (10.191), and (10.192) into equation 
(10.187) gives
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Also, using equations (10.190), (10.191), and (10.192) into equation (10.188), 
gives
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and A is given by
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where A is the area of the element m.
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The value of A is positive if the nodes are numbered counterclockwise, starting 
from any nodes, as shown by the arrow in Figure 10.5.

Furthermore, equation (10.188) gives the potential at any point (x, y) within the 
element provided that the potentials at the vertices are known. In addition, ai(x, y) 
are linear interpolation functions. They are called the element shape functions 
and they have the following properties:

	
ai x y

i j

i j
( , )

,

,
,=

=
≠





1

0 �
(10.196a)

	

ai
i

x y( , ) .=
=
∑ 1

1

3

�

(10.196b)

The shape of functions a1(x, y), a2(x, y), and a3(x, y), for example, are illustrated in 
Figure 10.9.

Figure 10.9.  Shape functions a1(x, y), a2(x, y), and a3(x, y) for a triangle element.

The functional,Wm, corresponding to Laplace’s equation, which physically is the 
energy per unit length associated with element m, is given by
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But from equation (10.188),
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By substituting equation (10.198) into equation (10.197), gives
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If we define the term in brackets as 
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now, we can write equation (10.199) in matrix form as
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where the superscript t denotes the transpose of the matrix,
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and
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The matrix [C(m)] is usually called the element coefficient matrix (or stiffness matrix 
in structural analysis). The element Cij

m( )  of the coefficient matrix may be regarded 
as the coupling between nodes i and j; its value is obtained from equations (10.194) 
and (10.200). For instance,   
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Similarly,
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Additionally,
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Now, for the third step, after having considered a typical element, the next step is to 
assemble all such elements in the solution region. The energy associated with the 
assemblage of elements assuming that the whole solution region is homogeneous 
so that e is constant, i.e.,
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where
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where
n is the number of nodes, N is the number of elements, and [C] is called the over-
all or global coefficient matrix, which is the assemblage of individual element 
coefficient matrices.

For an inhomogeneous solution region such as that shown in Figure 10.10, 
the region is discretized with triangle elements such that each finite element is 
homogeneous. In this case, equation (10.197) still holds, however, equation 
(10.205) does not apply since e (e = er e0) or simply er varies from element to 
element. To apply equation (10.205), we need to replace e by e0 and multiply the 
integrand in equation (10.200) by er.
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We use an example to illustrate the process by which individual element 
coefficient matrices are assembled to obtain the global coefficient matrix. In this 
example, we consider the finite element mesh consisting of three finite elements as 
shown in Figure 10.11. Observe the numberings of the mesh.

Figure 10.10.  Discretization of an inhomogeneous solution region with triangle elements.

Figure 10.11.  Assembly of three elements; i – j – k corresponding to local numbering (1-2-3) 
of the element in Figure 10.5.

The numbering of nodes 1, 2, 3, 4, and 5 is called global numbering. The 
numbering i – j – k is called local numbering, and it corresponds with 1-2-3 of 
the element in Figure 10.5, the local numbering must be in counterclockwise 
sequence starting from any node of the element. For element 1, we could 
choose 2-1-4 instead of 1-4-2 to correspond with 1–2–3 of the element to 
Figure 10.8. Thus, the numbering in Figure 10.8 is not unique. But whichever 
numbering is used, the global coefficient matrix remains the same. Assuming 
the particular numbering in Figure 10.11, the global coefficient matrix is 
expected to have the form 
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(10.207)



390	 Finite Element Analysis

which is a 5 × 5 matrix since five nodes (n = 5) are involved. As we know,  
Cij is the coupling between nodes i and j. The Cij can be obtained by using the 
fact that the potential distribution must be continuous across interelement 
boundaries. The contribution to the i, j position in [C] comes from all elements 
containing nodes i and j. For instance, in Figure 10.11, elements 1 and 2 have 
node 1 in common; therefore 

	 C C C11 11
1

11
2= +( ) ( ). � (10.208a)

Node 2 belongs to element 1 only; therefore

	 C C22 33
1= ( ). � (10.208b)

Node 4 belongs to element 1, 2, and 3; accordingly 

	 C C C C44 22
1

33
2

33
3= + +( ) ( ) ( ). � (10.208c)

Nodes 1 and 4 belong simultaneously to element 1 and 2; as a result 

	 C C C C14 41 12
1

13
2= = +( ) ( ). � (10.208d)

Since there is no coupling (or direct link) between nodes 2 and 3; hence 

	 C C23 32 0= = . � (10.208e)

By continuing in this approach, we can obtain all the terms in the global coefficient 
matrix by inspection of Figure 10.11 as
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Note that element coefficient matrices overlap at nodes shared by elements and 
that are 27 terms (9 for each of the 3 elements) in the global coefficient matrix [C]. 
Also note the following properties of the matrix [C]:

1.	 It is symmetric (Cij = Cji) just as the element coefficient matrix.
2.	Since Cij = 0 if no coupling exists between nodes i and j, it is expected 

that for a large number of elements [C] becomes sparse. Matrix [C] is 



Engineering Electromagnetics Analysis	 391

also banded if the nodes are carefully numbered. It can be shown using 
equation (10.203), i.e.,

	

C Cij
m

i
ij
m

j

( ) ( ).
= =
∑ ∑= =

1

3

1

3

0

�

(10.210)

3.	 It is singular. Although this is not obvious, it can be shown using the finite 
element coefficient matrix of equation (10.202c).

Finally, fourth step, by solving the resulting equations. It can be shown that, 
from variational calculus, it is known that Laplace’s (or Poisson’s) equation is 
satisfied when the total energy in the solution region is minimum. Therefore, we 
require that the partial derivatives of W with respect to each nodal value of the 
potential be zero; that is,

	

∂
∂

= ∂
∂

= ⋅ ⋅ ⋅ = ∂
∂

=W

V

W

V

W

Vn1 2

0    ,
�

or

	

∂
∂

= =W

V
k n

k

0 1 2, , ,..., .
�

(10.211)

For instance, to get 
∂
∂

=W

V1

0  for the finite element mesh of Figure 2.9, we substitute 

equation (10.207) into equation (10.205) and take the partial derivative of W with 
respect to V1. We obtain

0 2
1

1 11 2 12 3 13 4 14 5 15 2 21 3 31 4 41= ∂
∂

= + + + + + + + +W

V
V C V C V C V C V C V C V C V C V55 51C ,

or

	 0 1 11 2 12 3 13 4 14 5 15= + + + +V C V C V C V C V C . � (10.212)

In general case, 
∂
∂

=W

Vk

0  leads to

	

0
1

=
=
∑V Ci ik
i

n

,

�

(10.213)

where n is the number of nodes in the mesh. By writing equation (10.213) for all 
nodes k = 1, 2, 3,.., n, we obtain a set of simultaneous equations from which the 
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solution of the transpose matrix for the potential distribution, [V]t = [V1 V2 … Vn], 
can be found. This can be done in two ways:

(1) Iteration Method
Suppose node 1 in Figure 10.11, for example, is a free node. The potential at node 1 
can be obtained from equation (10.212) as 

	

V
C

V Ci
i

i1
11 2

5

1

1= -
=
∑ .

�

(10.214)

Thus, in general case, the potential at a free node k in a mesh with n nodes is 
obtained from equation (10.213) as

	

V
C

V Ck
kk

i
i j k

n

ik= -
= ≠
∑1

1,

.

�

(10.215)

Since Cki = 0 is not directly connected to node i, only nodes that are directly linked 
to node k contribute to Vk in equation (10.215). Note equation (10.215) can be 
applied iteratively to all the free nodes. The iteration process begins by setting the 
potentials of fixed nodes (where the potentials are prescribed or known) to their 
prescribed values and the potentials at the free nodes (where the potentials are 
known) equal to zero or to the average potential

	
V V Vave = +( )1

2 min max ,
�

(10.216)

where Vmin and Vmax are the minimum and maximum values of the prescribed 
potentials at the fixed nodes, V, respectively. With these initial values, the 
potentials at the free nodes are calculated using equation (10.215). At the 
end of the first iteration, when the new values have been calculated for all 
the free nodes, they become the old values for the second iteration. Indeed, 
the procedure is repeated until the change between subsequent iteration is 
negligible enough.  

(2) Band Matrix Method
If all free nodes are numbered first and the fixed nodes last, equation (10.205) can 
be written such that 
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(10.217)
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where subscripts f and p, refer to nodes with free and fixed (or prescribed) 
potentials, respectively. Since Vp is constant (it consists of known, fixed values), 
we only differentiate with respect to Vf so that applying equations (10.211) to 
(10.217) which yields to

	
C C

V

Vff fp

f

p

 








 = 0

�

or

	
C V C Vff f fp p    = -     .

�
(10.218)

This equation can be written as

	 A V B[ ][ ] = [ ] � (10.219a)

or

	 V A B[ ] = [ ] [ ]-1 , � (10.219b)

where [V] = [Vf], [A] = [Cff], [B] = –[Cfp][Vp]. Since, in general, nonsingular, the 
potential at the free nodes can be found using equation (10.219). Note we can 
solve for [V] in equation (10.219a) using Gaussian elimination technique. Also, 
we can solve for [V] in equation (10.219b) using matrix inversion if the size of the 
matrix to be inverted is not large. 

In fact, it is sometimes necessary to impose the Neumann condition 
∂
∂

=





V

n
0  

as a boundary condition or at the line of symmetry when we take advantage of the 
symmetry of the problem. Indeed, suppose that for concreteness, a solution region 

is symmetric along the y–axis as in Figure 10.12. We impose condition 
∂
∂

=





V

x
0  

along the y–axis by making 

	 V V V V V V1 2 4 5 7 8= = =, , .    � (10.220)

Figure 10.12.  A solution region that is symmetric along the y–axis.
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With this in mind that as from equation (10.197) onward; the solution has been 
restricted to a two-dimensional problem involving Laplace’s equation, ∇2V = 0.

10.13.2.1.2 Solution of Passion’s Equation ∇ =2V v-
r
e  with FEM

In this section, we solve the two-dimensional (2D) Poisson’s equations

	
∇ = -2V vr

e
,
�

(10.221)

using the same essential four steps as in previous section with FEM, we focus here 
on the source term and only the major differences. 

The deriving element governing equations step. We divide the solution region 
into triangles, and then we approximate the potential distribution Vm (x, y) and 
the source term rvm over each triangle element by linear combinations of the local 
interpolation polynomial ai, namely,

	

V V x ym mi i
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∑ a ( , ),

1
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(10.222)

	

and r r avm mi i
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x y=
=
∑ ( , )

1

3

�

(10.223)

where
Vmi is the values of V at vertex i of element m; rmi is the values of rv at vertex i of 
element m. The values of rmi are known since rv (x, y) is prescribed, while the 
values of Vmi are to be determined.

An energy functional which associated Euler equation with equation (10.221) is

	

F V V V dSm m vm m

S

( ) ,= ∇ - ∫1

2
22e r  

�

(10.224)

where
F(Vm) is the total energy per length within element m; 

1

2
2e ∇Vm  is the energy 

density in the electrostatic system and it is equal to 
1

2
D E⋅ ; rvm mV dS  is the work 

done in moving the charge rvmdS to its location at potential Vm.
Now, by substituting equations (10.222) and (10.223) into equation (10.224) 

we get
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(10.225)

Equation (10.225) can be applied to every element in the solution region.
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Also, it can be written in matrix form as 

	
F V V C V V Tm m

t m
m m

t m
m( ) ( ) ( )= [ ]  [ ]-[ ]  [ ]1

2
e r

�
(10.226)

where
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m
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( ) = ∇ ⋅∇∫ a a
�

(10.227)

we know that equation (10.226) is already defined in equation (10.203)
and

	
T dSij

m
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�

(10.228)

Also, Tij
m( )  can be written as
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A i j

A i jij
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=
≠




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12 �
(10.229)

where A is the area of the triangle element.
We can obtain the discredited functional for the whole solution region, with 

N elements and n nodes, as the sum of the functional for the individual elements, 
that is, from equation (10.229),

	

F V F V V C V V Tm
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N
t t( ) ( )= = [ ] [ ][ ]-[ ] [ ][ ]

=
∑

1

1

2
e r

�

(10.230)

where
t is the transposition symbol. In equation (10.230), the column matrix [V] 
consists of the values of Vmi, while the column matrix [r] contains n values 
of the source function, rn, at the nodes. The functional in equation (10.230) 
is now minimized by differentiating with respect to Vmi and setting the result 
equal to zero.

Now, we work on the solving the resulting equations step. We can solve the 
resulting equations by using either the iteration method or the band matrix 
method.
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(1) Iteration Methods
By considering the solution region in Figure 10.8 which has five nodes, n = 5 and 
from the equation (10.230), we can get the energy functional as
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The energy can be minimized by applying
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For example, from equation (10.231), we get 
∂
∂
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Therefore, in general, for a mesh with n nodes
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where
node k is assumed to be a free node.
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By fixing the potential at the prescribed nodes and setting the potential at the 
free nodes initially equal to zero, we apply equation (10.234) iteratively to all free 
nodes until convergence is reached.

(2) Band Matrix Method
In this method, we let the free nodes be numbered first and the prescribed nodes 
last. In doing this, equation (10.230) can be written as 

	
F V V V

C C

C C

V

V
V V

T T
f p

ff fp

pf pp

f

p
f p

ff f
( ) =  



















 -  

1

2
e pp

pf pp

f

pT T





















r
r

�
(10.235)

where
subscript f  is the free node; subscript p is the prescribed node;
rf is the submatrix containing the values of r at free node; rp is the submatrix 
containing the values of r at the prescribed node.

Minimizing F (V) with respect to Vf, namely,
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Indeed, equation (10.236) can be written 

	 A V B[ ][ ] = [ ] � (10.237)

where
[A] = [Cff], [V] = [Vf], and [B] is the right-hand side of equation (10.236). 
Equation (10.237) can be solved to determine [V] either by matrix inversion or 
Gaussian elimination technique.
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10.13.2.1.3 Solution of Wave’s Equation ∇2F + k2F = g with FEM

A typical wave equation is the inhomogeneous scalar Helmholtz’s equation

	 ∇ + =2 2F Fk g �
(10.238)

where
F is the potential (for waveguide problem, F = Hz for TE mode or Ez for TM mode) 
to be determined, g is the source function, and k = w me  is the wave number 
of the medium. The following three distinct special cases of equation (10.238) 
should be noted:

1.	 k = 0 and g = 0; Laplace’s equation;
2.	k = 0; Poisson’s equation; and
3.	k is an unknown, g = 0; homogeneous, scalar Helmholtz’s equation.

It is known that the variational solution to the operator equation

	 L gF = � (10.239)

is obtained by examining the functional 

	 I L g( ) , ,F F F=< > - < >2 � (10.240)

where L is an operator (differential, integral, or integro-differential), g is the 
unknown excitation or source, and F is the unknown function to be determined 
(here is the potential).

Therefore, the solution of equation (10.238) is equivalent to satisfying the 
boundary conditions and minimizing the functional

	
I k g dS( ) .F F F F= ∇ - + ∫∫1

2
22 2 2  

�
(10.241)

Note that, if other than the natural boundary conditions (i.e., Dirichlet of 
homogenous Neumann conditions) must be satisfied, appropriate terms 
must be added to the functional. The potential F and the source function 
g can be expressed now in terms of the shape functions ai over a triangle 
element as
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where
fmi is the value of F at the nodal point i of element m.
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And
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gmi is the value of g at the nodal point i of element m.
Substituting equations (10.242) and (10.243) into equation (10.241) gives
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where

F F F Fm m m m
t

m m m m
t

G g g g[ ] = [ ] [ ] = [ ]1 2 3 1 2 3, , , ,, ,  and  C m( )   and  T m( )   are defined 

in equations (10.158) and (10.185), respectively.
The equation (10.244) is for a single element, but it can be applied for all N 

elements in the solution region. Therefore,
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From equations (10.244) and (10.245), I(F) can be expressed in matrix form as
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where

	 F F F F[ ] = [ ]1 2, , . . . , ,N
t

�
(10.247a)

	 G g g g N
t[ ] = [ ]1 2, , . . . , � (10.247b)

[C], and [T] are global matrices consisting of local matrices [C(m)] and [T(m)], 
respectively.
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Now, if free nodes are numbered first and the prescribed nodes last, and 
considering the source function g = 0, we can write equation (2.109) as
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By setting 
∂
∂

=I

ff
0,  gives
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For TM modes, Fp = 0 and hence

	
C k Tff ff f-  =2 0F .

�
(10.250)

Premultiplying equation (10.250) by Tff
-1,  gives

	
T C k Iff ff f
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�

(10.251)

By letting

	
T C A k Xff ff f

- = = =1 2, , ,b F
�

(10.252a)

and U is a unit matrix,
we can obtain the standard eigenvalue problem

	 A U X-( ) =b 0. � (10.252b)

any standard procedure may be used to obtain some or all of the eigenvalues  
b1, b2,..., bnf  and eigenvectors X1, X2,…, Xnf, where nf is the number of free nodes. 
The eigenvalues are always real since C and T are symmetric.

The solution of the algebraic eigenvalue problems in equation (10.252) furnishes 
eigenvalues and eigenvectors, which form good approximations to the eigenvalues 
and eigenfunctions of the Helmholtz problem, i.e., the cutoff wavelengths and field 
distribution patterns of the various modes possible in a given waveguide.

The solution of the problem of equation (10.238) is summarized in equation 
(10.251), and can be viewed as the finite element solution of homogeneous 
waveguides. The idea can be extended to handle inhomogeneous waveguide 
problems. However, in applying FEM to inhomogeneous problems, a serious 
difficulty is the appearance of spurious, nonphysical solutions. There are several 
techniques that have been proposed to overcome the difficulty.
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10.14 Automatic Mesh Generation

It is a fact that, one of the major difficulties encountered in the finite element 
analysis of continuum problems is the tedious and time-consuming effort required 
in data preparation. Indeed, efficient finite element programs must have node and 
element generating schemes, referred to collectively as mesh generators. Automatic 
mesh generation minimizes the input data required to specify a problem. In fact, it 
not only reduces the time involved in data preparation, it eliminates human errors 
that are introduced when data preparation is preformed manually. Furthermore, 
combining the automatic mesh generation program with computer graphics is 
particularly valuable since the output can be monitored visually.

A number of mesh generation algorithms of varying degrees of automation 
have been proposed. In this section, we focus on two types of domains, rectangular 
domains and arbitrary domains.

10.14.1 Rectangular Domains
Since some applications of FEM to EM problems involve simple rectangular 
domains, we consider the generation of simple meshes. Now, let us consider a 
rectangular solution region of a size a × b as shown in Figure 10.13. The goal here 
is to divide the region into rectangular elements, each of which is later divided into 
two triangular elements.

Figure 10.13.  Discretization of a rectangular region into a nonuniform mesh.

Suppose nx and ny are the number of divisions in x and y directions, the total 
number of elements and nodes are, respectively, given by

	
n n nm x y= 2

�

	
n n nd x y= + +( )( ).1 1

�
(10.253)

As a result, it is easy to figure out from Figure 10.13 a systematic way of numbering 
the elements and nodes. Indeed, to obtain the global coordinates (x, y) for each 
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node, we need an array containing Dxi, i = 1, 2,..., nx and Dyj, j = 1, 2,..., ny, which 
are, respectively, the distances between nodes in the x and y directions. If the order 
of node numbering is from left to right along horizontal rows and from bottom to 
top along the vertical rows, then the first node is the origin (0, 0). The next node is 
obtained as x → x + Dx1 while y = 0 remains unchanged. The following node x →  
x + Dx2, y = 0, and so on until Dxi are exhausted. We start the second next horizontal 
row by starting with x = 0, y → y + Dy1 and increasing x until Dxi are exhausted. 
We repeat the process until the last node (nx + 1) (ny + 1) is reached, i.e., when Dxi 
and Dyi are exhausted simultaneously.

The procedure presented here allows for generating uniform and 
nonuniform meshes. A mesh is uniform if all Dxi are equal and all Dyi are equal; 
it is nonuniform otherwise. A nonuniform mesh is preferred if it is known 
in advance that the parameter of interest varies rapidly in some parts of the 
solution domain. This allows a concentration of relatively small elements in the 
regions where the parameter changes rapidly, particularly since these regions  
are often of greatest interest in the solution. Additionally, without the 
preknowledge of the rapid change in the unknown parameter, a uniform mesh 
can be used. In that case, we set

	 ∆ = ∆ = =x x hx1 2 . . . �

	
∆ = ∆ = =y y hy1 2 . . .

�
(10.224)

where
hx = a/nx and hy = a/ny.

In some cases, we also need a list of prescribed nodes. If we assume that all 
boundary points have prescribed potentials, the number np of prescribed nodes is 
given by

	
n n np x y= +2( ).

�
(10.255)

A simple way to obtain the list of boundary points is to enumerate points on the 
bottom, right, top, and left of the rectangular region in that order. 

10.14.2 Arbitrary Domains
The basic steps involved in a mesh generation are as follows:

A.	subdivide solution region into few quadrilateral blocks,
B.	separately subdivide each block into elements,
C.	connect individual blocks.
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A. Definition of Blocks
The solution region is subdivided into quadrilateral blocks. Subdomains with 
different constitutive parameters (s, m, e) must be represented by separate blocks. 
As input data, we specify block topologies and the coordinates at eight points 
describing each block. Each block is represented by an eight-node quadratic 
isoparametric element. With natural coordinate system (z,h), the x and y 
coordinates are represented as

	

x xi i
i

( , ) ( , )z h a z h=
=
∑

1

8

�

(10.256)

	

y yi i
i

( , ) ( , )z h a z h=
=
∑

1

8

�

(10.257)

where ai(z,h) is a shape function associated with node i, and (xi, yi) are the 
coordinates of node i defining the boundary of the quadrilateral block as shown 
in Figure 10.14.

Figure 10.14.  Typical quadrilateral block.

1 2 3

4

56
7

8

The shape functions are expressed in terms of the quadratic or parabolic 
isoparametric elements shown in Figure 10.15.

Figure 10.15.  Eight-node serendipity element.

They are given by:

	
a zz hh zz hhi i i i i i= +( ) +( ) + +( ) =1

4
1 1 1 1 3 5 7, , , , .

�
(10.258)
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For corner nodes,

	
a z zz h h hh zi i i i i i= +( ) -( )+ + +( ) -( ) =1

2
1 1

1

2
1 1 1 2 4 6 82 2 2 2 , , , , .

�
(10.259)

For midside nodes, note the following properties of the shape functions:

1.	 They satisfy the conditions.

	

a z hi
i

n

,( ) =
=
∑

1

1

�

(10.260a)

	
a z hi j j

i j

i j
,

,

,
( ) =

=
≠





1

0 �
(10.260b)

2.	They become quadratic along element edges(z = ±1, h = ±1).

B. Subdivision of Each Block
Furthermore, for each block, we specify N DIV X and N DIV Y, the number of 
element subdivisions to be made in the z and h directions, respectively. In addition, 
we specify the weighting factors (Wz)i and (Wh)i allowing for graded mesh within 
a block. It is essential to know that, in specifying N DIV X, N DIV Y, (Wz)i and 
(Wh)i care must be taken to ensure that the subdivision along block interfaces (for 
adjacent blocks) are compatible. We initialize z and h to a value of –1 so that the 
natural coordinates are incremented according to 

	

z z z

z
i i

i

T

W

W F
= +

×
2( )

�

(10.261)

	

h h h

h
i i

i

T

W

W F
= +

×
2( )

�

(10.262)

where

	

W WT

j
j

N DIV X

z z= ( )
=

∑
1

  

�

(10.263a)

	

W WT

j
j

N DIV X

h h= ( )
=

∑
1

  

�

(10.263b)

and

	
F = 




1

2

,

,
.

for linear elements     

for quadratic elements �



Engineering Electromagnetics Analysis	 405

Now, there are three elements types permitted: (1) linear four-node quadrilateral 
elements, (2) linear three-node triangle elements, and (3) quadratic eight-node 
isoparametric elements.

C. Connection of Individual Blocks
After subdividing each block and numbering its nodal points separately, it is 
necessary to connect the blocks and have each node numbered uniquely. This 
is accomplished by comparing the coordinates of all nodal points and assigning 
the same number to all nodes having identical coordinates. In other words, we 
compare the coordinates of node 1 with all other nodes, and then node 2 with 
other nodes, etc., until all repeated nodes are eliminated.

10.15 Higher Order Elements

Finite elements use higher order elements. The shape function or interpolation 
polynomial of the order two or more is called higher order element. To emphasize, 
the accuracy of a finite element solution can be improved by using finer mesh 
or using higher order elements or both. Desai and Abel studied mesh refinement 
versus higher order elements in [44]. Generally, fewer higher order elements are 
needed to achieve the same degree of accuracy in the final results. Moreover, 
the higher order elements are particularly useful when the gradient of the field 
variable is expected to vary rapidly. 

10.15.1 Pascal Triangle
High order triangular elements can be systematically developed with the aid of 
the so-called Pascal triangle given in Figure 10.16. The family of finite elements 
generated in this matter with distribution of nodes illustrated in Figure 10.17. 
Note that in higher order elements, some secondary (side and/or interior) nodes 
are introduced in addition to the primary (corner) nodes so as to produce exactly 
the right number of nodes required to define the shape function of that order. 

Figure 10.16.  The Pascal triangle (2D).
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Indeed, the Pascal triangle contains terms of the basic functions of various degrees 
in variable x and y. An arbitrary function Fi (x, y) can be approximated in an 
element in terms of a complete n th order polynomial as

	

F Fi i i
i

r

x y( , ) =
=
∑a

1 �

(10.264)

where

	
r n n= + +1

2
1 2( )( ).

�
(10.265)

r is the number of terms in complete polynomials (also the number of nodes in the 
triangle). For example, for the third order (n = 3) or cubic (ten-node) triangular 
elements,

	

Fm x y a a x a y a x a xy a y a x

a x y a xy a y

( , )

.

= + + + + + +

+ + +
1 2 3 4

2
5 6

2
7

3

8
2

9
2

10
3

�

(10.266)

Equation (10.266) has ten coefficients, and hence the element must have ten 
nodes. It is also complete through the third order terms. A systematic derivation of 
the interpolation function a for the higher order elements involves the use of the 
local coordinates.

10.15.2 Local Coordinates
Now, the triangular local coordinates (h1, h2, h3) are related to Cartesian 
coordinates (x, y) as

	 x x x x= + +h h h1 1 2 2 3 3 � (10.267a)

	 y y y y= + +h h h1 1 2 2 3 3. � (10.267b)

Figure 10.17.  Pascal triangle (2D) and the associated polynomial basis functions degree  
n = 1 to 3.
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The local coordinates are dimensionless with values ranging from 0 to 1. 
Furthermore, by definition, hi at any point within the triangle is the ratio of the 
perpendicular distance from the point to the side opposite to vertex i to the length 
of the altitude drawn from vertex i. Therefore, from Figure 10.18 the value of hi at 
P, for example, is given by the ratio of the perpendicular distance d from the side 
opposite vertex l to the altitude h of that side, namely,

	
h1 = d

h
.
�

(10.268)

Alternatively, from Figure 10.15, hi at P can be defined as 

	
hi

iA

A
=

�
(10.269)

so that

	 h h h1 2 3 1+ + = � (10.270)

Since A1 + A2 + A3 = A. The local coordinates hi in equation (10.269) are also 
called area coordinates. The variation of (h1, h2, h3) inside an element is shown in 
Figure 10.19.

Figure 10.18.  Definition of local coordinates.

Figure 10.19.  Variation of local coordinates.
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Although the coordinates h1, h2, and h3 are used to define a point P, only two are 
independent since they must satisfy equation (10.270). The inverted form of 
equations (10.267) and (10.268) is

	
hi i i iA

c b x a y= + +( )1

2 �
(10.271)

where

	
a x xi k j= - ,

�

	
b y yi j k= -

�

	
c x y x yi j k k j= -

�

	
A b a b a= = -( )area of the triangle

1

2 1 2 2 1 ,
�

(10.272)

and (i, j, k) is an even permutation of (1, 2, 3). The differentiation and integration 
in local coordinates are carried out using [47]: 

	

∂
∂

= ∂
∂

- ∂
∂

f
a

f

x
b

f

yh1
2 2

�
(10.273a)

	

∂
∂

= - ∂
∂

+ ∂
∂

f
a

f

x
b

f

yh2
1 1

�
(10.273b)

	

∂
∂

= ∂
∂

+ ∂
∂





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f

x A
b

f
b

f1

2 1
1

2
2h h �

(10.273c)

	

∂
∂

= ∂
∂

+ ∂
∂





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f

y A
a

f
a

f1

2 1
1

2
2h h �

(10.273d)

	

f dS A f d d  = ( )










-

∫∫∫∫ 2 1 2 1

0

1

2

0

1 2

h h h h
h

,

�

(10.273e)

	
h h h1 2 3 2

2i j k dS
i j k

i j k
A∫∫ =

+ + +






× 
! ! !

( )! �
(10.273f)

	 dS Ad d= 2 1 2h h � (10.273g)
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10.15.3 Shape Functions
Now, we may express the shape function for higher order elements in terms of 
local coordinates. Indeed, sometimes, it is convenient to label each point in the 
finite elements in Figure 10.17 with three integers, i, j, and k from which its local 
coordinates (h1, h2, h3) can be found or vice versa. For instance, at each point Pijk

	
h h h1 2 3, , , , .( ) = 





i

n

j

n

k

n �
(10.274)

Thus, if a value of F, say Fijk, is prescribed at each point Pijk, equation (10.264) can 
be expressed as 

	

F Fh h h a h h h1 2 3
11

1 2 3, , , ,( ) = ( )
=

-

=
∑∑ ijk
j

r i

i

r

ijk

�

(10.275)

where

	
a a h h hl ijk i j kp p p l= = =( ) ( ) ( ), , ,...1 2 3 1 2   

�
(10.276)

	

p e
n t e

e
e t

e

h
h( ) =

∏ -( ) >

=






=

-1
0

1 0
0

1

!
,

, �

(10.277)

and e ∈(i, j, k). Further, pe(h) may also be written as

	
p

n e

e
pe e( ) ( ),h h h= - +( ) × -

1
1     e>0

�
(10.278)

where p0 (h) = 1.
The relationships between the subscript q ∈ {1, 2, 3} on hq, l∈ {1, 2,..,r} on al, 

and e ∈ {i, j, k} on pe and Pijk in equations (10.276) to (10.278) are illustrated in 
Figure 10.20 for n ranging from 1 to 3. Furthermore, point Pijk will be written as  
Pn for conciseness.

Figure 10.20.  Distribution of nodes over triangles for n = 1 to 3. The triangles are in 
standard position.
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Notice from equations (10.277) or (10.278) that 

	

p

p n

p n n

p n n n

0

1

2

3

1

1

2
1
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2 1

( )
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h h

h h h

h h h h

=
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= -( )

= -( ) -( ) , etc..
�

(10.279)

Indeed, by substituting equation (10.279) into equation (10.276) gives the shape 
functions al for nodes l = 1,2,…, r, as shown in Table 10.1 for n = 1 to 3. In addition, 
observe that each al takes the value of 1 at node l and value 0 at all other nodes 
in the triangle. It can be verified by using equation (10.274) in conjunction with 
Figure 10.20.

Table 10.1.  Polynomial Basic Functions al (h1, h2, h3) for First, Second, and Third

n ==1 n == 2 n == 3

a h1 1= a h h1 1 12 1= -( ) a h h h1 1 1 1

1

2
3 2 3 1= -( ) -( )

a h2 2= a h h2 1 24= a h h h2 1 1 2

9

2
3 1= -( )

a h3 3= a h h3 1 34= a h h h3 1 1 3

9

2
3 1= -( )

a h h4 2 22 1= -( ) a h h h4 1 2 2

9

2
3 1= -( )

a h h5 2 34= a h h h5 1 2 327=
a h h6 3 32 1= -( ) a h h h6 1 3 3

9

2
3 1= -( )

a h h h7 2 2 2

1

2
3 2 3 1= -( ) -( )

a h h h8 2 2 3

9

2
3 1= -( )

a h h h9 2 3 3

9

2
3 1= -( )

a h h h10 3 3 3

1

2
3 2 3 1= -( ) -( )
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10.15.4 Fundamental Matrices
The fundamental matrices [T] and [Q] for triangle elements can be derived using 
the shape functions in Table 10.1. The matrix T is defined as

	
T dSij i j= ∫∫ a a .

�
(10.280)

From Table 10.1, we substitute al in equation (10.280) and apply equations 
(10.273f) and (10.273g) to obtain elements of T. For example, for n = 1,

	

T A d dij i j=
-

∫∫2
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1

0
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1 2

2

h h h h
h

 .

�

(10.281)

Furthermore, when i ≠ j, Tij can be written as

	
T

A A
ij = ( )( )( ) =2 1 1 0

4 12

! ! !

!
,
�

(10.282a)

but, when i = j, 

	
T

A A
ij = ( ) =2 2

4 6
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!
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(10.282b)

Thus,
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Now, by following the same procedure, higher order T matrices can be obtained. 
The T matrices for orders up to n = 3 are tabulated in Table 10.2 where the factor A, 
the area of the element, has been expressed. The actual matrix elements are 
obtained from Table 2.2 by multiplying the tabulated numbers by A and dividing 
by the indicated common denominator. Indeed, the following properties of the  
T matrix are worth knowing:

1.	 T is symmetric with positive elements;
2.	elements of T all add up to the area of the triangle, that is, T Aij

j

r

i

r

∑∑ = ,  since 

by definition al
l

r

=
∑ =

1

1  at any point within the element;

3.	elements for which the two triple subscripts from similar permutations are 
equal, that is, T T T T T Tijk peq ikj peq kij epq kji eqp jki qep jik qpe, , , , , , ;= = = = =  this should be 

obvious from equations (2.280) and (10.276).

As a result, the above properties are not only useful in checking the matrix; they 
have proved useful in saving computer time and storage.
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Table 10.2.  Table of T Matrices for n = 1 to 3

n = 1	 Common denominator = 12

	

T =












2 1 1
1 2 1
1 1 2

n = 2	 Common denominator = 180

	

T =

- - -
-

-
- - -
-
- - -

6 0 0 1 4 1
0 32 16 0 16 4
0 16 32 4 16 0
1 0 4 6 0 1
4 16 16 0 32 0
1 4 0 1 0 66























n = 3	 Common denominator = 6720

	

T =

- - - -
-

76 18 18 0 36 0 11 27 27 11
18 540 270 189 162 135 0 135 54 27
18 270 540 1135 162 189 27 54 135 0
0 189 135 540 162 54 18 270 135 27
36 162 162

- - -
- - - -

1162 1944 162 36 162 162 36
0 135 189 54 162 540 27 135 270 18
11 0 27 18 3

- - - -
66 27 76 18 0 11

27 135 54 270 162 135 18 540 189 0
27 54 135 135 162 27

- - - -
- - - 00 0 189 540 18

11 27 0 27 36 18 11 0 18 76
-

































In equation (10.227), elements of [C] matrix are defined by
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By applying equations (10.273a) to (10.273d) to equation (2.147), it can be shown that:
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where qq is the include angle of vertex q ∈ {1, 2, 3} of the triangle and
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It is clear that matrix C depends on the triangle shape, whereas the matrices Q(q) 
do not. The Q(1) matrices for n = 1 to 3 are tabulated in Table 10.3. 
The following properties of Q matrices should be noted as:

1.	 they are symmetric;
2.	 the row and column sums of any Q matrix are zero, that is, Q Qij

q

i

r

ij
q

j

r
( ) ( )

= =
∑ ∑= =

1 1

0
so that the C matrix is singular.

Q(2) and Q(3) are easily obtained from Q(1) by row and column permutations so that 
the matrix C for any triangular element is constructed easily if Q(1) is known.

Table 10.3.  Table of Q Matrices for n = 1 to 3

n = 1	 Common denominator = 2

	

Q = -
-













0 0 0
0 1 1
0 1 1

n = 2	 Common denominator = 6
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-
-

-
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

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0 8 8 0 0 0
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0 0 0 4 8 4
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


n = 3	 Common denominator = 80

	

Q =

- - -
- - -
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0 0 0 0 0 0 0 0 0 0
0 135 135 27 0 27 3 0 0 3
0 135 135 27 0 27 3 0 0 3
0 27 27 1355 162 27 3 0 0 3
0 0 0 162 324 162 0 0 0 0
0 27 27 27 162 135 3 0 0 3
0 3 3 3 0

- -
- -

- - -
- -33 34 54 27 7

0 0 0 0 0 0 54 135 108 27
0 0 0 0 0 0 27 108 135 54
0 3 3 3 0 3 7 2

- -
- -

- -
- - - 77 54 34-
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
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

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

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For example, for n = 1, the rotation matrix is basically derived from Figure 10.21 as

	

R =












0 0 1
1 0 0
0 1 0 �

(10.287)

where Rij = 1 node i is replaced by node j after one counterclockwise rotation, or 
Rij = 0 otherwise.

Figure 10.21.  One counterclockwise rotation of the triangle in (a) gives the triangle in (b).

1 22

1 3

3
(a) (b)

Moreover, Table 10.4 presents the R matrices for n = 1 to 3. Note that each row or 
column of R has only one nonzero element since R is essentially a unit matrix with 
rearranged elements. 

Table 10.4.  Table of R Matrices for n = 1 to 3

n = 1,	 R =












0 0 1
1 0 0
0 1 0
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
















0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

n = 1,	 R =

0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 00 1 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
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Now, once the R is known, we can obtain Q(2) and Q(3) as 

	 Q RQ Rt( ) ( )2 1= � (10.288a)

	 Q RQ Rt( ) ( )3 2= � (10.288b)

where Rt is the transpose of R.

10.16 Three-Dimensional Element

In this section, we will discuss the finite element analysis of Helmholtz’s equation 
in three dimensions, i.e.,

	 ∇ + =2 2F Fk g . �
(10.289)

First, we divide the solution region into tetrahedral or hexahedral (rectangular 
prism) elements as in Figure 10.22.

Figure 10.22.  Three-dimensional elements: (a) Four-node or linear-order tetrahedral, (b) eight-
node or linear-order hexahedral.

(a) (b)
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Now, assuming a four-node tetrahedral element, the function F is represented 
within element by

	 Fm a bx cy dz= + + + . � (10.290)

The same applies to the function g. Since equation (10.290) must be satisfied at the 
four nodes of the tetrahedral elements, 

	 Fmi i i ia bx cy dz i= + + + =, , , , .1 2 3 4 � (10.291)

Therefore, we have four simultaneous equations with the potentials Vm1, Vm2, Vm3, 
and Vm4 at nodes 1, 2, 3, and 4, respectively, i.e.,
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(10.292)
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The coefficients a, b, c, and d are determined from equation (10.291)
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The determinant of the system of equations is

	

det ,= =

1
1
1
1
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1 1 1

2 2 2

3 3 3

4 4 4
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v
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(10.294)

where n is the volume of the tetrahedron. By finding a, b, c, and d, we can express 
Fm as,

	

F Fm i mi
i

x y=
=
∑a ( , )

1

4

�

(10.295)

where
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Indeed, for higher order approximation, the matrices for as become large in 
size and we resort to local coordinates. The existence of integration equations 
for local coordinates can simplify the evaluation of the fundamental matrices 
T and Q.

Now, for the tetrahedral element, the local coordinates are h1, h2, h3, and h4, 
each perpendicular to a side. They are defined at a given point as the ratio of the 
distance from that point to the appropriate apex to the perpendicular distance 
from the side to the opposite apex. In addition, they can be interpreted as volume 
ratios, that is, at a point P

	
hi

iv

v
=

�
(10.297)

where ni is the volume bound by P and face i. It is evident that 

	

hi
i=
∑ =

1

4

1.

�

(10.298)

Note that, the following properties are useful in evaluating integration involving 
local coordinates:

	 dv vd d d= 6 1 2 3h h h , � (10.299a)
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(10.299c)

In terms of the local coordinates, an arbitrary function F (x, y) can be approximated 
within an element in terms of a complete nth order polynomial as

	

F Fm i mi
i

r

x y x y( , ) ( , )=
=
∑a

1 �

(10.300)

where r n n n= +( ) +( ) +( )1

6
1 2 3  is the number of nodes in the tetrahedron or 

number of terms in the polynomial. The terms in a complete three-dimensional 
polynomial may be arrayed for polynomial basic functions degree n = 1 to 3 as 
shown in Figure 10.23.
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Each point in the tetrahedral element is represented by four integers, i, j, k, and 
l which can be used to determine the local coordinates (h1, h2, h3, h4). That is at 
point Pijkl,

	
h h h h1 2 3 4, , , , , , .( ) = 





i

n

j

n

k

n

l

n �
(10.301)

Thus, at each node,

	
a a h h h hq ijkl i j k lp p p p= = ( ) ( ) ( ) ( )1 2 3 4 �

(10.302)

where q = 1, 2,…, r and pe is defined in equation (10.277) or (10.278). Figure 10.22 
illustrates the relationship between the node numbers q and ijkl for the second 
order tetrahedron (n = 2). The shape functions obtained by substituting equation 
(10.277) into (10.293) are presented in Table 2.5 for n = 3.

Figure 10.23.  Pascal tetrahedral (3D) and the associated polynomial basic functions degree 
n = 1 to 3.

Figure 10.24.  Numbering scheme for second-order tetrahedral.
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Table 10.5.  Polynomial Basic Functions aq (h1, h2, h3) for n = 1 to 3

n ==1 n == 2 n == 3

a h1 1= a h h1 1 12 1= -( ) a h h h1 1 1 1
1

2
3 2 3 1= -( ) -( )

a h2 2= a h h2 1 24= a h h h2 1 1 2
9

2
3 1= -( )

a h3 3= a h h3 1 34= a h h h3 1 1 3
9

2
3 1= -( )

a h4 4= a h h4 1 44= a h h h4 1 1 4
9

2
3 1= -( )

a h h5 2 22 1= -( ) a h h h5 1 3 2
9

2
3 1= -( )

a h h6 2 34= a h h h6 1 2 327=

a h h7 2 44= a h h h7 1 2 427=

a h h8 2 32 1= -( ) a h h h8 1 3 3
9

2
3 1= -( )

a h h9 3 44= a h h h9 1 3 427=

a h h10 4 42 1= -( ) a h h h10 1 4 4
9

2
3 1= -( )

a h h h11 2 2 2
1

2
3 1 3 2= -( ) -( )

a h h h12 2 2 3
9

2
3 1= -( )

a h h h13 2 2 4
9

2
3 1= -( )

a h h h14 2 3 3
9

2
3 1= -( )

a h h h15 2 3 427=

a h h h16 2 3 3
9

2
3 1= -( )

a h h h17 3 3 3
1

2
3 1 3 2= -( ) -( )

a h h h18 3 3 4
9

2
3 1= -( )

a h h h19 3 4 4
9

2
3 1= -( )

a h h h20 4 4 4
1

2
3 1 3 2= -( ) -( )



420	 Finite Element Analysis

The fundamental matrices [T] and [Q] are involved triple integration. For 
Helmholtz equation, for example, equation (10.250) applies, namely,

	
C k Tff ff f-  =2 0F

�
(10.303)

except that
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10.17 Finite Element Methods for External 
Problems

We can apply the finite element to exterior or unbounded problems such as 
open-type transmission lines (e.g., microstrip). They pose certain difficulties. 
In this section, we will consider three common approaches: first, the infinite 
element method; second, the boundary element method; and third, the absorbing 
boundary condition.

10.17.1 Infinite Element Method
Let us consider the solution region shown in Figure 10.25. We can divide the entire 
domain into a near field region, which is bounded, and a far field region, which 
is unbounded. The near field region is divided into finite triangular elements as 
usual, while the far field region is divided into infinite elements. Knowing that, 
each infinite element shares two nodes with a finite element. We mainly will be 
focusing on the infinite elements.

Figure 10.25.  Division of solution region into finite and infinite elements.
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Now, consider the infinite element in Figure 10.26 with nodes 1 and 2 and radial 
sides intersecting at point (x0, y0).

Figure 10.26.  Typical infinite element.

We can relate triangular polar coordinates (r, h) to the global Cartesian coordinates 
(x, y) as:

	

x x x x x x

y y y y y y
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r h
r h �

(10.306)

where 1 ≤ r < ∞, 0 ≤ h ≤ 1. The potential distribution within the element is 
approximated by a linear variation as

	

V Vi
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(10.307)

or

	
V V V= - +( )1

11 2r
h h( )

�

where V1 and V2 are potentials at nodes 1 and 2 of the infinite elements, a1 and a2 
are the interpolation or shape functions, that is,

	
a h

r
a h

r1

1= - =, .  2

�
(10.308)

Moreover, the infinite element is compatible with the ordinary first order finite 
element and satisfies the boundary condition at infinity. Indeed, with the shape 
functions in equation (10.308), we can obtain the [C(m)] and [T(m)] matrices. 
We obtain solution for the exterior problem by using a standard finite element 
program with the [C(m)] and [T(m)] matrices of the infinite elements added to the 
[C] and [T] matrices of the near field region.
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10.17.2 Boundary Element Method
The boundary element method is a finite element approach for handling 
exterior problems. It involves obtaining the integral equation formulation of 
the boundary value problem, and solving this by a discretization procedure 
similar to that used in regular finite element analysis. But, since the boundary 
element method is based on the boundary integral equivalent to the governing 
differential equation, only the surface of the problem domain needs to be 
modeled. Moreover, for the dimension of 2D problems, the boundary elements 
are taken to be straight line segments, whereas for 3D problems, they are taken 
as triangular elements.

10.17.3 Absorbing Boundary Conditions
To apply the finite element approach to open region problems, an artificial 
boundary is introduced in order to bound the region and limit the number 
of unknowns to a manageable size. It can be expected that, as the boundary 
approaches infinity, the approximate solution tends to the exact one. However, the 
closer the boundary to the modeled object, the less computer memory is required. 
To avoid the error caused by this truncation, an absorbing boundary condition 
(ABC) can be imposed on the artificial boundary S, as typically portrayed in 
Figure 10.27.

Figure 10.27.  An object surrounded by an absorbing boundary.

Indeed, the ABC minimizes the nonphysical reflections from the boundary. 
The major challenge of these ABCs is to bring the truncation boundary as close 
as possible to the object without sacrificing accuracy and to absorb the outgoing 
waves with little or no reflection.
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Furthermore, the sequence of BGT operators can be obtained by the recursion 
relation, i.e.,
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Now, since F satisfies the higher-order radiation condition
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By imposing the mth-order boundary condition

	 B SmF = 0, on � (10.312)

will compel the solution F to match the first 2m terms of the expansion in equation 
(10.309). Equation (10.312) along with other appropriate equations is solved for  
F using the FEM. 

10.18 Modeling and Simulation of Shielded 
Microstrip Lines with COMSOL Multiphysics

In today’s fast-paced research and development culture, simulation power gives 
you the competitive edge. COMSOL Multiphysics delivers the ideal tool to build 
simulations that accurately replicate the important characteristics of your designs. 
Its unparalleled ability to include all relevant physical effects that exist in the 
real world is known as multiphysics. This approach delivers results—tangible 
results that save precious development time and spark innovation. COMSOL 
Multiphysics brings you this remarkable technology in an easy-to-use, intuitive 
interface, making it accessible to all engineers including designers, analysts, and 
researchers.

Today, electromagnetic propagation on multiple parallel transmission 
lines has been a very attractive area in computational electromagnetics. 
Multiple parallel transmission lines have been successfully applied and 
used by designers in compact packaging, semiconductor device, high speed 
interconnecting buses, monolithic integrated circuits, and other applications. 
Microstrip lines are the most commonly used in all planar circuits despite 
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the frequencies ranges of the applied signals. Microstrip lines are the most 
commonly used transmission lines at high frequencies. Quasi-static analysis 
of microstrip lines involves evaluating them as parallel plates transmission 
lines, supporting a pure “TEM” mode. Development in microwave circuits 
using rectangular coaxial lines as a transmission medium has been improving 
over the past decades. Reid and Webster used rectangular coaxial transmission 
lines to fabricate a 60 GHz branch line coupler. The finite difference time 
domain method has been used for analyzing a satellite beamforming network 
consisting of rectangular coaxial line. 

Advances in microwave solid-state devices have stimulated interest in 
the integration of microwave circuits. Today, microstrip transmission lines 
have attracted great attention and interest in microwave integrated circuit 
applications. This creates the need for accurate modeling and simulation 
of microstrip transmission lines. Due to the difficulties associated with 
analytical methods for calculating the capacitance of shielded microstrip 
transmission lines, other methods have been applied. Such methods include 
finite difference technique, extrapolation, point-matching method, boundary 
element method, spectral-space domain method, finite element method, 
conformal mapping method, transverse modal analysis, and mode-matching 
method.

In this book, we consider systems of rectangular coaxial lines as well as single-
strip, double-strip, three-strip, six-strip, and eight-strip (multiconductor) shielded 
microstrip lines. Using COMSOL, a finite element package, we performed the 
simulation of these systems of microstrip lines. We compared the results with 
other methods and found them to be in good agreement.

The rectangular coaxial line consists of a two-conductor transmission system 
along which TEM wave propagates. The characteristic impedance of such a lossless 
line is given by

	
Z

L

C cC
= = 1

�
(10.313)

where

Z = characteristic impedance of the line 
L = inductance per unit length of the line  
C = capacitance per unit length of the line 
c = 3 × 108 m/s (the speed of light in vacuum). 

As shown in Figure 10.28, a rectangular coaxial line consists of inner and outer 
rectangular conductors with a dielectric material separating them.
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�Using COMSOL for each type of the rectangular lines involves taking the 
following steps:

1.	 Develop the geometry of the inner and outer conductors, such as shown in 
Figure 10.28(a).

Figure 10.28.  Cross-section of the rectangular coaxial line.

Figure 10.28(a).  Geometry of the rectangular coaxial line model.

2.	Select both conductors/rectangle and take the difference.
3.	 We select the relative permittivity as 1 for the difference in Step 2. For the 

boundary, we select the outer conductor as ground and inner conductor as port.
4.	We generate the finite element mesh as in Figure 10.29.

Figure 10.29.  Mesh of the rectangular coaxial line.
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5.	We solve the model and obtain the potential shown in Figure 10.30.

Figure 10.30.  2D for the potential distribution of the rectangular coaxial line.

6.	As post-processing, we select Point Evaluation and choose capacitance element 
11 to find the capacitance per unit length of the line.

We now consider the following three models.

10.18.1 Rectangular Cross-Section Transmission Line
For COMSOL, we use the following values.
Dielectric material:

	 er = 1, mr = 1, s = 0 S/m (air)�

Conducting material:

	 er = 1, mr = 1, s = 5.8 × 107 S/m (copper)�

where

e0 = permittivity of free space = 
1

36
10 8 854 109 12

p
× = ×- -.  F/m�

er = dielectric constant�
mr = relative permeability�
m0 = permeability of free space = 4p × 10–7 = 1.257 × 10–6H/m�
s = conductivity of the conductor�
a = width of the inner conductor = 1 mm�
b = height of the inner conductor = 0.8 mm�
A = width of the outer conductor = 2.2 mm�
B = height of the outer conductor = 2 mm�
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From the COMSOL model, we obtained the capacitance per unit length (based 
on the dimensions given above) as 72.94 pF/m. Using the finite difference (FD) 
method, we obtained the capacitance per unit length of the line as 71.51 pF/m. 
Table 10.6 shows the comparison of the characteristic impedance using equation 
(10.313) of several models. It is evident from the table that the results are very close.

Table 10.6.  Comparison of Characteristic Impedance 
Values of Rectangular Coaxial Line

Name Z0

Zheng 45.789

Chen 45.759

Costamagna and Fanni 45.767

Lau 45.778

Finite difference (FD) 46.612

COMSOL 45.70

10.18.2 Square Cross-Section Transmission Line
This is only a special case of the rectangular line. We used the same values for the 
dielectric and conducting materials. We used the following dimensions for the line.

a = width of the inner conductor = 2 mm
b = height of the inner conductor = 2 mm
A = width of the outer conductor = 4 mm
B = height of the outer conductor = 4 mm

From the COMSOL model, we obtained the capacitance per unit length as 
90.696 pF/m. Using the finite difference (FD) method, we obtained the capacitance 
per unit length of the line as 90.714 pF/m. Table 10.7 presents the comparison of 
the characteristic impedance of several models. It is evident from the table that the 
results are in good agreement.

Table 10.7.  Comparison of Characteristic Impedance 
Values of Square Coaxial Line

Name Z0

Zheng 36.79

Lau 36.81

Cockcroft 36.80

Bowan 36.81

Green 36.58

(Continued)
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Table 10.7.  Comparison of Characteristic Impedance 
Values of Square Coaxial Line (Continued)

Name Z0

Ivanov and Djankov 36.97

Costamagna and Fanni 36.81

Riblet 36.80

Finite difference (FD) 36.75

COMSOL 36.75

10.18.3 Rectangular Line with Diamondwise Structure
The geometry of the cross-section of this line is shown in Figure 10.31. The 
same dielectric and conducting materials used for the rectangular line are used 
for this line.

Figure 10.31.  Cross-section of the Diamondwise (or Rhombus) structure with 45o offset 
angle.

The following values are used for the COMSOL model of the line.

d = 1 mm
A = width of the outer conductor = 4 mm
B = height of the outer conductor = 4 mm

For the COMSOL model, we obtained the capacitance per unit line as  
57.393 pF/m.

Table 10.8 displays the comparison of the characteristic impedance of several 
models. It is evident from the table that the results are in good agreement.
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Table 10.8.  Comparison of Characteristic Im-
pedance Values of Diamondwise Structure

Name Z0

Zheng et al.  56.742

Bowan 56.745

Riblet 56.745

COMSOL 58.079

10.18.4 A Single-Strip Shielded Transmission Line
Figure 10.32 presents the cross-section of a single-strip shielded transmission line. 

Figure 10.32.  Cross-section of the Single-strip Shielded Transmission Line.

The following parameters are used in modeling the line. The characteristic 
impedance of such a lossless line is given by

	

Z
c CCo

= 1

�

(10.314)

where

Z = characteristic impedance of the line
Co = capacitance per unit length of the line when the substrate is replaced with air  
C = capacitance per unit length of the line when the substrate is in place
c = 3 × 108 m/s (the speed of light in vacuum).

For COMSOL, the simulation was done twice on Figure 10.32 (to find Co  
and C) using the following values.
Air:

	 er = 1, mr = 1, s = 0 S/m�
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Dielectric material: 

	 er = 8.8, mr = 1, s = 0 S/m�

Conducting material:

	 er = 1, mr = 1, s = 5.8 × 107 S/m (copper)�

w = width of the inner conductor = 1 mm
t = height of the inner conductor = 0.1 × 10-4 m 
h = height of dielectric material = 1 mm 
a = width of the outer conductor = 19 mm
b = height of the air-filled region = 9 mm

Using COMSOL for modeling and simulation of the lines involves taking the 
following steps:

1.	 Develop the geometry of the line, such as shown in Figure 10.33.

Figure 10.33.  Geometry of a Single-strip Shielded Transmission Line at Air.

2.	We take the difference between the conductor and dielectric material.
3.	We select the relative permittivity as 1 for the difference in Step 2. 
4.	For the boundary, we select the outer conductor as ground and inner conductor 

as port.
5.	We generate the finite element mesh, and then we solve the model and obtain 

the potential. 
6.	As post-processing, we select Point Evaluation and choose capacitance element 

11 to find the capacitance per unit length of the line.
7.	We add a dielectric region under the inner conductor with relative 

permittivity as 8.8, as in Figure 10.33. Then we take the same steps from 3 to 
6 to generate the mesh as in Figure 10.34 and the potential distribution as in 
Figure 10.35. 
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Table 10.9 shows the comparison between our method using COMSOL and other 
methods. It is evident that the results are very close.

Table 10.9.  Comparison of Capacitance Values for a Single-strip Shielded Transmission Line

Methods C0 (pF/m) C (pF/m)

Finite difference method 26.79 1405.2

Extrapolation 26.88 1393.6

Analytical derivation 27.00 1400.9

COMSOL 26.87 1574.0

Figure 10.34.  Mesh of a Single-strip Shielded Transmission Line.

Figure 10.35.  The potential distribution along y = 0.002.
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10.19 Multistrip Transmission Lines

Recently, with the advent of integrated circuit technology, the coupled microstrip 
transmission lines consisting of multiple conductors embedded in a multilayer 
dielectric medium have led to a new class of microwave networks. Multiconductor 
transmission lines have been utilized as filters in the microwave region which 
make it interesting in various circuit components. For coupled multiconductor 
microstrip lines, it is convenient to write:

	

Q C Vi sij j
j

m

=
=
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1

(  = 1, 2, ....., )i m

�

(10.315)

where Qi is the charge per unit length, Vj is the voltage of jth conductor with 
reference to the ground plane, Csij  is the short circuit capacitance between ith 
conductor and jth conductor. The short circuit capacitances can be obtained 
either from measurement or from numerical computation. From the short circuit 
capacitances, we obtain

	

C Cii sij
j

m

=
=

∑
1 �

(10.316)

where Cii is the capacitance per unit length between the ith conductor and the 
ground plane. Also,

	
C C j iij sij= - ≠,

�
(10.317)

where Cij is the coupling capacitance per unit length between the ith conductor 
and jth conductor. The coupling capacitances are illustrated in Figure 10.36.

Figure 10.36.  The Per-unit Length Capacitances of a General m-conductor Transmission Line.
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For m-strip line, the per-unit-length capacitance matrix is given by
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Also, we can determine the characteristic impedance matrix for m-strip line by using

	

Z

Z Z Z
Z Z Z

Z Z Z

o

m

m

m m mm

=

















11 12 1

21 22 2

1 2

�
�

� � �
� �

(10.319)

where Zo is the characteristic impedance per unit length.

Using COMSOL for modeling and simulation of the lines involves taking the 
following steps:

1.	 Develop the geometry of the line.
2.	We take the difference between the conductor and dielectric material. 
3.	We select the relative permittivity as 1 for the difference in Step 2. 
4.	We add a dielectric region under the inner conductors with specified relative 

permittivity.  
5.	For the boundary, we select the outer conductor as ground and the inner 

conductors as ports.
6.	We generate the finite element mesh, and then we solve the model. 
7.	As post-processing, we select Point Evaluation and choose capacitance elements 

to find the coupling capacitance per unit length of the line.

These steps were taken for the following four cases.

10.19.1 Double-strip Shielded Transmission Line
Figure 10.37 presents the cross-section of double-strip shielded transmission line, 
which consists of two inner conductors.

Figure 10.37.  Cross-section of the Double-strip Shielded Transmission Line.
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For COMSOL, the simulation was done twice on Figure 10.36 (one for Co and 
other for C) using the following values.
Air:

	 er = 1, mr = 1, s = 0 S/m�

Dielectric material:

	 er = 2, mr = 1, s = 0 S/m�

Conducting material:

	 er = 1, mr = 1, s = 5.8 × 107 S/m (copper)�

For the geometry (see Figure 10.37), we followed the following values:

w = width of each of the inner conductors = 3 mm
t = height (or thickness) of the inner conductors = 1 mm
s = distance between the inner conductors = 2 mm
h = height of dielectric material = 1 mm 
a = width of the outer conductor = 11 mm
b = height of the air-filled region = 2.7 mm

From the COMSOL model, the simulation was done twice, one for the case in 
which the line is air-filled (the dielectric was replaced by air) and the other case in 
which the dielectric is in place as shown in Figure 10.37. Figure 10.38 shows the 
finite element mesh while Figure 10.39 depicts the potential distribution for the 
dielectric case. The potential distribution for y = 1 mm is portrayed in Figure 10.10. 

Figure 10.38.  Mesh the of Double-strip Shielded Transmission Line.

Figure 10.39.  Potential distribution.
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We obtained the capacitances per unit length (Co and C) by taking steps enumerated 
above for the single-strip transmission line. The results are shown in Table 10.9. 
Table 10.10 is for the case which the line is air-filled, i.e., the dielectric in Figure 10.37 
is replaced by air. Table 10.11 is for the case in which the dielectric is in place. The 
results in Table 10.11 are compared with other methods and found to be close.

Table 10.10.  Capacitance Values for Double-strip Air-filled Shielded Transmission Line

Methods C11 = C22 (pF/m) C12 = C21 (pF/m)

COMSOL 72.9 -4.591

Table 10.11.  Comparison of Capacitance Values for Double-strip Shielded Transmission Line 
Shown in Figure 10.36

Methods C11 = C22 (pF/m) C12 = C21 (pF/m)

Spectral-space domain method 108.1 -4.571

Finite element  method 109.1 -4.712

Point-matching method 108.8 -4.683

COMSOL 108.5 -4.618

10.19.2 Three-strip Line
Figure 10.40(a) shows the cross-section for three-strip transmission line. For 
COMSOL, the simulation was done twice on Figure 10.40 (one for Co and other 
for C) using the following values:
Air:

	 er = 1, mr = 1, s = 0 S/m�

Figure 10.40.  Potential distribution at y =1 mm.
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Dielectric material: 

	 er = 8.6, mr = 1, s = 0 S/m�

Conducting material:

	 er = 1, mr = 1, s = 5.8 × 107 S/m (copper)�

For the geometry (see Figure 10.40(a)), we used the following values:

a = width of the outer conductor = 13 mm
b = height of the free space region (air) = 4 mm
h = height of the dielectric region = 2 mm
w = width of each inner strip = 2 mm
t = thickness of each inner strip = 0.01 mm
D = distance between the outer conductor and the first strip = 2.5 mm
s = distance between two consecutive strips = 1 mm

Figure 10.40(a).  Cross-section of the Three-strip Transmission Line.

Figure 10.41 shows the finite element mesh, while Figure 10.42 illustrates the 
potential distribution along line y = h. 

Figure 10.41.  Mesh for the Three-strip Transmission Line.
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Table 10.12 shows the finite element results for the three-strip line. Unfortunately, 
we could not find any work in the literature to compare our results.

Table 10.12.  Capacitance Values (in pF/m) for Three-strip Shielded Microstrip Line

Methods C11 C21 C31

COMSOL 163.956 -27.505 -0.4301

10.19.3 Six-strip Line
Figure 10.43 shows the cross-section for six-strip transmission line. For COMSOL, 
the simulation was done twice on Figure 10.42 (one for Co and other for C) using 
the following values:

Air:

	 er = 1, mr = 1, s = 0 S/m�

Dielectric material: 

	 er = 6, mr = 1, s = 0 S/m�

Conducting material:

	 er = 1, mr = 1, s = 5.8 × 107 S/m (copper)�

Figure 10.42.  Potential distribution along the Air-dielectric interface ( y = h) for the Three-strip 
Transmission Line.
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For the geometry (see Figure 10.43), we used the following values:

a = width of the outer conductor = 15 mm
b = height of the free space region (air) = 2 mm
h = height of the dielectric region = 8 mm
w = width of each inner strip = 1 mm
t = thickness of each inner strip = 0.01 mm
D = distance between the outer conductor and the first strip = 2 mm
s = distance between two consecutive strips = 1 mm

Figure 10.43.  Cross-section of the Six-strip Transmission Line.

Figure 10.44 shows the finite element mesh, while Figure 10.45 depicts the 
potential distribution along line y = h.

Figure 10.44.  Mesh for the Six-strip Transmission Line.

Figure 10.45.  Potential distribution along the Air-dielectric Interface ( y = h) for the Six-strip 
Transmission Line.



Engineering Electromagnetics Analysis	 439

The capacitance values for six-strip shielded microstrip line are compared with 
other methods as shown in Table 10.13, where “iterative” refers to an iterative 
method and ABC refers to the asymptotic boundary condition. It is evident from 
the table that the finite element methods based closely agree. The finite element 
methods seem to be more accurate than the iterative and ABC techniques. (The 
negative capacitances are expected from equation (10.318).)

Table 10.13.  Capacitance Values (in pF/m) for Six-strip Shielded Microstrip Line

Methods C11 C21 C31 C41 C51 C61

Iterative 66.8 –27.9 –5.49 –2.08 –0.999 –0.704

Finite Element 84.8 –26.4 –3.71 –1.17 –0.456 –0.812

ABC 68.6 –31.5 –6.00 –2.25 –0.792 –0.602

COMSOL 80.4 –23.9 –3.61 –1.15 –0.451 –0.180

10.19.4 Eight-strip Line
Figure 10.46 shows the cross-section for eight-strip transmission line. For 
COMSOL, the simulation was done twice on Figure 10.45 (one for Co and other 
for C) using the following values:
Air:

	 er = 1, mr = 1, s = 0 S/m�

Dielectric material: 

	 er = 12.9, mr = 1, s = 0 S/m�

Conducting material:

	 er = 1, mr = 1, s = 5.8 × 107 S/m (copper)�

For the geometry (see Figure 10.46), we used the following values:

a = width of the outer conductor = 175 mm
b = height of the free space region (air) = 100 mm
h = height of the dielectric region = 16 mm
w = width of each inner strip = 1 mm
t = thickness of each inner strip = 0.01 mm
D = distance between the outer conductor and the first strip = 80 mm
s = distance between two consecutive strips = 1 mm
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Figure 10.47 shows the finite element mesh, while Figure 10.48 depicts the 
potential distribution along line y = 20 mm.

Figure 10.46.  Cross-section of the Eight-strip Transmission Line.

Figure 10.47.  Mesh for the Eight-strip Transmission Line.

Figure 10.48.  Potential distribution along the Air-dielectric interface ( y = 20 mm) for the 
Eight-strip Transmission Line.

The capacitance values for eight-strip shielded microstrip line are compared with 
other methods as shown in Table 10.14, where other authors used the analytic 
approach and Fourier series expansion. It is evident from the table that the results 
from the finite element method (COMSOL) closely agree with the analytic 
approach.
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Table 10.14.  Capacitance Values (in pF/m) for Eight-strip Shielded Microstrip Line

Method C11 C21 C31 C41 C51 C61 C71 C81

Analytic 127.776 -58.446 -13.024 -5.721 -3.104 -1.892 -1.282 -1.211

Fourier series 126.149 -57.066 -12.927 -5.684 -3.086 -1.875 -1.264 -1.185

COMSOL 128.204 -58.759 -13.064 -5.739 -3.1206 -1.902 -1.290 -1.226

10.20 Solenoid Actuator Analysis with ANSYS

We use Ansys to do magnetic analysis (linear static) of a solenoid actuator. A 
solenoid actuator is to be analyzed as a 2D axisymmetric model as shown in 
Figure 10.49. For the given current, we determine the force on the armature.

Figure 10.49.  Cross-section of the Solenoid Actuator.

The dimensions of the solenoid actuator are in centimeters. The armature is the 
moving component of the actuator. The back-iron is the stationary iron component 
of the actuator that completes the magnetic circuit around the coil. The stranded, 
wound coil of 650 windings with 1 amp/turn supplies the predefined current. The 
current per winding is 1 amp. The air-gap is the thin rectangular region of air 
between the armature and the pole faces of the back-iron. 

The magnetic flux produced by the coil current is assumed to be so small that 
no saturation of the iron occurs. This allows a single iteration linear analysis. 
The flux leakage out of the iron at the perimeter of the model is assumed to be 
negligible. This assumption is made simple to keep the model small. The model 
would normally be created with a layer of air surrounding the iron equal to or 
greater than the maximum radius of the iron. 
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The air gap is modeled so that a quadrilateral mesh is possible. A quadrilateral 
mesh allows for an uniform thickness of the air elements adjacent to the armature 
where the virtual work force calculation is performed. This is desirable for an 
accurate force calculation. The program requires the current to be input in the 
form of current density (current over the area of the coil). The assumption of no 
leakage at the perimeter of the model means that the flux will be acting parallel to 
this surface. This assumption is enforced by the “flux parallel” boundary condition 
placed around the model. This boundary condition is used for models in which 
the flux is contained in an iron circuit. Forces for the virtual work calculation are 
stored in an element table and then summed. The force is also calculated by the 
Maxwell Stress Tensor method and the two values are found to be relatively close. 
Table 10.15 summarizes the parameters of the model for the actuator geometry.

Table 10.15.  Parameters of the Model for the Actuator Geometry

Parameter Value

Number of turns in the coil; used in post-processing n = 650

Current per turn I = 1.0

Thickness of inner leg of magnetic circuit ta = 0.75

Thickness of lower leg of magnetic circuit tb = 0.75

Thickness of outer leg of magnetic circuit tc = 0.50

Armature thickness td = 0.75

Width of coil wc = 1

Height of coil hc = 2

Air Gap gap = 0.25

Space around coil space = 0.25

ws ws = wc + 2* space

hs hs = hc + 0.75

Total width of model w = ta + ws + tc

hb hb = tb + hs

Total height of model h = hb + gap + td

Coil area acoil = wc * hc

Current density of coil idens = n*i/acoil
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The below steps are a guideline in solving the above model.

1.	 Input the geometry of the model 
We use the information in the problem description to make Figure 10.50.

Figure 10.50.  The 2D geometry of the Solenoid Actuator model.

2.	Define the materials
(a) Set preferences
�You will now set preferences in order to filter quantities that pertain to this 
discipline only.

1.	 Main Menu > Preferences
2.	Check “Magnetic-Nodal” as in Figure 10.50(a)
3.	OK

Figure 10.50(a).  Preferences for GUI filtering.

mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/glossary.html#tutg.Preferences
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(b) Specify material properties
�Now specify the material properties for the magnetic permeability of air, back-
iron, coil, and armature. For simplicity, all material properties are assumed to 
be linear. (Typically, iron is input as a nonlinear B-H curve.) Material 1 will be 
used for the air elements. Material 2 will be used for the back-iron elements. 
Material 3 will be used for the coil elements. Material 4 will be used for the 
armature elements.

1.	 Main Menu > Preprocessor > Material Props > Material Models
2.	Double-click “Electromagnetics”, then “Relative Permeability”, then 

“Constant”
3.	“MURX” = 1
4.	OK
5.	Edit > Copy
6.	OK to copy Material Model Number 1 to become Material Model 

Number 2.
7.	Double-click “Material Model Number 2”, then “Permeability (Constant)”
8.	“MURX” = 1000 as shown in Figure 10.51
9.	OK

10.	 Edit > Copy
11.	 “from Material Number” = 1
12.	 “to Material Number” = 3
13.	 OK
14.	 Edit > Copy
15.	 “from Material Number” = 2
16.	 “to Material Number” = 4
17.	 OK
18.	 Double-click “Material Model Number 4”, then “Permeability (Constant)”
19.	 “MURX” = 2000 as shown in Figure 10.52
20.	 OK
21.	 Material > Exit
22.	 Utility Menu > List > Properties > All Materials
23.	 Review the list of materials, then: as shown in Figure 10.53

File > Close (Windows) 

mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/glossary.html#tutg.Mat.Prop
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Figure 10.51.  Definition of material model behavior for Number 1 and 2.

Figure 10.52.  Definition of material model behavior for Number 1, 2, 3, and 4.

Figure 10.53.  Review the list of materials of the model.
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3.	Generating the mesh
(a) Define element types and options
�In this step, you will define element types and specify options associated with 
these element types.
The higher-order element PLANE53 is normally preferred, but to keep the 

model size small, use the lower-order element PLANE13.

1.	 Main Menu > Preprocessor > Element Type > Add/Edit/Delete
2.	Add...
3.	“Magnetic Vector” (left column)
4.	“Vect Quad 4nod13 (PLANE13” (right column)
5.	OK
6.	Options...
7.	 (drop down) “Element behavior” = Axisymmetric, as shown in Figure 10.54
8.	OK
9.	Close

Figure 10.54.  Element type PLANE 13.

mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/glossary.html#tutg.E.Used
mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/glossary.html#tutg.E.Options
mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/glossary.html#tutg.Higher.Order
mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/Hlp_E_PLANE53.html
mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/Hlp_E_PLANE13.html
mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/Hlp_E_PLANE13.html
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(b) Assign material properties.
Now assign material properties to air gaps, iron, coil, and armature areas.

1.	 Main Menu > Preprocessor > Meshing > MeshTool
2.	 (drop down) “Element Attributes” = Areas; then [Set] as in Figure 10.55
3.	Pick four areas of air gaps, A13, A14, A17, and A18 (the picking “hot spot” is 

at the area number label).

Figure 10.55.  Element attribute for MeshTool.

4.	OK
5.	 (drop down) “Material number” = 1
6.	Apply
7.	Pick the five back-iron areas, A7, A8, A9, A11, A12 as in Figure 10.56

mk:@MSITStore:C:\Program Files\ANSYS Inc\v110\commonfiles\help\en-us\ansyshelp.chm::/glossary.html#tutg.Mat.Prop
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8.	OK
9.	 (drop down) “Material number” = 2

10.	 Apply
11.	 Pick coil area, A4
12.	 OK
13.	 (drop down) “Material number” = 3
14.	 Apply
15.	 Pick armature area, A10, A15, A16
16.	 OK
17.	 (drop down) “Material number” = 4
18.	 OK
19.	 Toolbar: SAVE_DB

(c) Specify meshing-size controls on air gap
Adjust meshing size controls to get two element divisions through the air gap.

1.	 Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines 
> Picked Lines

2.	Pick four vertical lines through air gap
3.	OK
4.	“No. of element divisions” = 2
5.	OK

Figure 10.56.  Five Back-iron areas, A7, A8, A9, A11, A12. 
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(d) Mesh the model using the MeshTool

1.	 “Size control global” = [Set]
2.	 “Element edge length” = 0.25
3.	 OK as in Figure 10.57
4.	 (drop down) “Mesh” = Areas
5.	 Mesh
6.	 Pick All
7.	 Close

Figure 10.57.  Global element sizes.

8.	 Utility Menu > PlotCtrls > Numbering as in Figure 10.58
9.	 (drop down) “Elem / attrib numbering” = Material numbers as in Figure 10.59

10.	 OK as in Figure 10.60
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Figure 10.58.  Numbering after PlotCtrls.

Figure 10.59.  Plot numbering control.
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(e) Scale model to meters for solution
�For a magnetic analysis, a consistent set of units must be used. In this tutorial, 
MKS units are used, so you must scale the model from centimeters to meters.

1.	 Main Menu > Preprocessor > Modeling > Operate > Scale > Areas
2.	Pick All
3.	“RX,RY,RZ Scale Factors” = 0.01, 0.01, 1
4.	 (drop down) “Existing areas will be” = Moved
5.	OK as in Figure 10.61
6.	Toolbar: SAVE_DB

Figure 10.60.  Numbering of the model.

Figure 10.61.  Scale area of the model.
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4.	Apply Loads
(a) Define the armature as a component
�The armature can conveniently be defined as a component by selecting its 
elements.

1.	 Utility Menu > Select > Entities
2.	 (first drop down) “Elements”
3.	 (second drop down) “By Attributes”
4.	“Min, Max, Inc” = 4
5.	OK as in Figure 10.62

Figure 10.62.  The entities of the model.

6.	Utility Menu > Plot > Elements as in Figure 10.63

Figure 10.63.  The Armature as a component of the model.
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7.	Utility Menu > Select > Comp/Assembly > Create Component
8.	“Component name” = ARM
9.	 (drop down) “Component is made of” = Elements

10.	 OK

(b) Apply force boundary conditions to armature

1.	 Main Menu > Preprocessor > Loads > Define Loads > Apply > Magnetic > 
Flag > Comp. Force/Torq

2.	 (highlight) “Component name” = ARM
3.	OK
4.	Utility Menu > Select > Everything
5.	Utility Menu > Plot > Elements as in Figure 10.64

Figure 10.64.  Plot of apply Force Boundary Conditions to Armature.

(c) Apply the current density
�The current density is defined as the number of coil windings times the current, 
divided by the coil area. This equals (650)(1)/2, or 325. To account for scaling 
from centimeters to meters, the calculated value needs to be divided by .01**2.

1.	 Utility Menu > Plot > Areas
2.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Magnetic 

> Excitation > Curr Density > On Areas
3.	Pick the coil area, which is the area in the center
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4.	OK
5.	“Curr density value” = 325/.01**2
6.	OK
Close any warning messages that appear.

(d) Obtain a flux parallel field solution
�Apply a perimeter boundary condition to obtain a “flux parallel” field solution. 
This boundary condition assumes that the flux does not leak out of the iron at the 
perimeter of the model. Of course, at the centerline, this is true due to axisymmetry.

1.	 Utility Menu > Plot > Lines 
2.	Main Menu > Preprocessor > Loads > Define Loads > Apply > Magnetic > 

Boundary > Vector Poten > Flux Par’l > On Lines
3.	Pick all lines around perimeter of model (14 lines) as in Figure 10.65

Figure 10.65.  Plot of lines for Flux Parallel field of the model.

4.	OK
5.	Toolbar: SAVE_DB

5.	Obtain solution
(a) Solve

1.	 Main Menu > Solution > Solve > Electromagnet > Static Analysis > Opt & 
Solve

2.	OK to initiate the solution
3.	Close the information window when solution is done
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6.	Review results
(a) Plot the flux lines in the model
�Note that a certain amount of undesirable flux leakage occurs out of the 
back-iron.

1.	 Main Menu > General Postproc > Plot Results > Contour Plot > 2D Flux 
Lines

2.	OK as in Figure 10.66

Figure 10.66.  Contour Plot for 2D Flux Lines of the Model.

�Your results may vary slightly from what is shown here due to variations in 
the mesh.

(b) Summarize magnetic forces

1.	 Main Menu > General Postproc > Elec & Mag Calc > Component Based > 
Force

2.	 (highlight) “Component name(s)” = ARM
3.	OK
4.	Review the information, then choose: 

File > Close (Windows), 
or 
Close (X11/Motif) to close the window.
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(c) Plot the flux density as vectors

1.	 Main Menu > General Postproc > Plot Results > Vector Plot > Predefined
2.	“Flux & gradient” (left column)
3.	“Mag flux dens B” (right column)
4.	OK as in Figure 10.67

Figure 10.67.  Plot the Flux Density as Vectors of the model.

(d) Plot the magnitude of the flux density
�Plot the magnitude of the flux density without averaging the results across 
material discontinuities.

1.	 Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu
2.	Choose “Magnetic Flux Density,” then “Magnetic flux density vector sum”
3.	OK as in Figure 10.68
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�Next, you will see how the flux density is distributed throughout the entire 
actuator. Up to this point, the analysis and all associated plots have used the 
2D axisymmetric model, with the axis of symmetry aligned with the left 
vertical portion of the device. ANSYS will continue the analysis on the 2D 
finite element model, but will allow you to produce a three-quarter expanded 
plot representation of the flux density throughout the device, based on the 
defined axisymmetry. This function is purely graphical. No changes to the 
database will be made when you produce this expanded plot. 

4.	Utility Menu > PlotCtrls > Style > Symmetry Expansion > 2D Axi-
Symmetric

5.	 (check) “3/4 expansion” as in Figure 10.69
6.	OK as in Figure 10.70

Figure 10.68.  Contour Plot of the model.

Figure 10.69.  2D Axi-symmetric expansion with Amount ¾.
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7.	Utility Menu > PlotCtrls > Pan, Zoom, Rotate, as in Figure 10.71
8.	 Iso
9.	Close

Figure 10.70.  2D Axi-symmetric plot of the model.

Figure 10.71.  Rotation of the model.
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(e) Exit the ANSYS program

1.	 Toolbar: QUIT
2.	 (check) “Quit - No Save!”
3.	OK

Problems

1.	 Given H = Hej(wt+2bz)ax in free space, known that, ∇ × = ∂
∂

H
D

t
,  find E.

2.	Calculate the skin depth, d, for a copper conductor in 50 Hz field (s = 56 ×106 
S/m).

3.	EM problems and examples.
4.	For the axisymmetric coaxial cable illustrated in Figure 10.71. Determine one 

dimension finite element general solution based on the following:

a.	 Obtain and solve the governing differential solution for the coaxial cable, 

hint: 
e r
r

d

dr
r

d

dr

f



 = - .

b.	Obtain the boundary conditions and continuity conditions, hint: f1 (r = a) 
= fa, f2 (r = c) = 0, and the electric potential and the electric displacement 
are continuous at r = b.

c.	 Formulate the equations of part (b) as a matrix equation that can be solved 
for the constants of integrations.

d.	Determine the shape functions for a general three-node quadratic element 
in terms of x1, x2, and x3.

e.	 Determine the shape functions for a general three-node quadratic element 
when x1 = –L, x2 = 0, and x3 = L.

f.	 Find the local stiffness matrix for an element of length 2L with coordinates 
(-L, 0, L).

Figure 10.71(a).  Axisymmetric radial element.
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5.	Determine the variational function for two-dimensional axisymmetric heat 
conduction in r, z coordinate and formulate the corresponding local finite 
stiffness matrix using three-node triangular elements.

6.	Use COMSOL in modeling of the four-conductor transmission lines with the 
following parameters as in Figure 10.72:

er1 = dielectric constant of the dielectric material = 4.2
er2 = dielectric constant of the free space = 1.0
W = width of the dielectric material = 10 mm
w = width of a single conductor line = 1 mm
H1 = distance of conductors 1 and 2 from the ground plane = 3 mm
H2 = distance of conductor 4 from the ground plane = 1 mm
H3 = distance of conductor 3 from the ground plane = 2 mm
s = distance between the two coupled conductors = 1 mm
t = thickness of the strips = 0.01 mm

Figure 10.71(b).  Coaxial cable.

Figure 10.71(c).  Three-node element.
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The geometry is enclosed by a 10 × 10 mm shield. Find the capacitances  
per unit length, C11, C12, C13, C14, C22, C23, C24, C33,   C34, and C44.

7.	Use COMSOL in modeling of the shielded two vertically coupled striplines 
geometry is enclosed by a 3.4 × 1 mm shield with the following parameters as 
in Figure 10.73:

Figure 10.72.  Cross-section of the four-conductor transmission lines.

Figure 10.73.  Cross-section of the two shielded vertically coupled striplines embedded in 
dielectric material.

er = dielectric constant = 1 and 7.5
W1 = width of the stripline 1 = 1.4 mm
W2 = width of the stripline 2 = 1 mm
H1 = �height from stripline 1 and stripline 2 to the upper side and lower side of 

the shield respectively = 0.4 mm
H2 = distance between the two striplines = 0.2 mm
S = distance between the stripline 1 and right/left side of the shield = 1 mm
a = (W1-W2)/2 = 0.2 mm
t = thickness of the striplines = 0.01 mm
Find the capacitances per unit length, C11, C21, and C22.
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8.	Use ANSYS Modeling of harmonic high-frequency electromagnetic of a 
coaxial waveguide as shown in Figure 10.74. The properties of the model is 
summarized as
Material property:

mr = 1.0, er = 1.0,
Geometric property:

ri = 0.025 m, r0 = 0.075 m, I = 0.375 m,
Load used
Port voltage = 1.0
Ω = 0.8 GHz

Figure 10.74.  Cross-section of a coaxial waveguide.

Find S11, S12, ZRe, Zim, RL
9.	Use ANSYS Modeling of electrostatic of a shielded microstrip transmission 

line consisting of a substrate, microstrip, and a shield. The strip is at potential 
V1, and the shield is at a potential V0. Find the capacitance of the transmission 
line as shown in Figure 10.75.
The properties of the model is summarized as

Material property:
Air: er = 1
Substrate: er = 12
Geometric property:
a = 10 cm
b = 1 cm
w = 2 cm
Loading property:
V0 = 1 V
V1 = 10 V
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Knowing that the electrostatic energy, We is defined as

	
W C V Ve = -( )1

2 1 0
2.

�

Also, you need to type the following values in scalar parameters as:

	 C = (w*2)/((V1-V0)**2) and C = ((C*2)*1e12).�

Figure 10.75.  Cross-section of shielded microstrip line.
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Experimental method, 48
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FEA. See Finite element method
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practical applications of, 51
prescribing boundary conditions, 50–51
procedure of, 48–50
software package, 52
solving engineering problems, 47–48
structural problems, procedure of,  

48–50
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thermal problems, procedure of, 258
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Force method, 52
Forcing function, bar

displacement values, 346
maximum displacement values, 346
software results, 345–346

Forcing function, fixed-fixed beam
maximum displacement values, 334
preprocessing, 325–334
software results, 322–324

Four-conductor transmission lines, 461
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Gauss’s law, 371
Global stiffness matrix, 152
Gradient operator, 31
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Hand calculations, FEM by
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214–217, 220–225
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318–320
constant cross-section area, 66–68, 72–76, 
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181–184, 188–191, 193–195
stepped bar, 118–121, 123–125, 130–132
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104–106, 108–111

Higher order elements
fundamental matrices, 411–415
local coordinates, 406–408
pascal triangle, 405–406
shape functions, 409–410
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Hybrid method, 53
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Identity (unit) matrix, 4–5
Incompressible fluid, 291
Infinite element method, 420–421
Inhomogeneous, 362
Integration of matrix, 15
Inverse of matrix, 24–26
Invertible matrix (nonsingular matrix), 25
Irrotational flow, 291–292

L
Laplace’s equations, 371
Linear spring element, 55–56
Linear systems, direct methods for, 19
Lorentz force law and continuity  

equation, 356–357
Loss tangent, 370

M
Magnetostatic energy, 367
MATLAB, 36–43
MATLAB (Matrix Laboratory)

calculations, 505–512
differentiating symbolic expressions, 516
integrating symbolic expressions, 517
limits symbolic expressions, 517
simplifying symbolic expressions, 515
sums symbolic expressions, 518
symbolic computation, 512–514
symbolic expressions, solving  

equations, 519–520
Taylor series symbolic expressions, 518
windows, 503–505

Matrix
addition of, 6–7
Cramer’s rule, 21–23
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differentiation of, 14
eigenvalues and eigenvectors, 34–36
equality of, 15
Gaussian elimination method, 19–20
integration of, 15
inverse of, 24–26
linear systems, direct methods for, 19
MATLAB, 36–43
multiplication of, 8–9
multiplied by scalar, 8
operations, 38
rules of multiplications, 9–12
subtraction of, 6–7
trace of, 14
transpose of, 12–13
types of, 3–6
vector analysis, 27–34

Matrix Laboratory. See MATLAB
Matrix multiplications

by another matrix, 8–9
rules of, 9–12
by scalar, 8

Maximum bending moment, 232–233
Maxwell’s equations and continuity equation

differential form, 352
divergence and Stokes theorems, 353
integral form, 353
quasi-statics case, 354
space case, source-free regions of,  

354–355
statics case, 354
time-harmonic fields case, 355–356

Mixed method, 52
Multipoint constrains method, 51
Multistrip transmission lines, 432–441

N
Natural frequency determination

analytical method, 307
FEM by hand calculations, 308–310
post-processing, 316

preprocessing, 312–316
software results, 310–311

Nodal displacements, 50, 141, 142, 149, 156
Nodal lines, 374
Nodes, 47
Non-invertible matrix (singular matrix), 25
Nonsingular matrix, 25
Null matrix, 4
Numerical method, 48

O
One-dimensional elements, 53

FEM standard steps procedure, 374–377
natural coordinates, 381–382
Poisson’s equation, 377–381
variational approach, 377–379
weighted residuals method, 379–381

One-dimensional heat conduction  
problems, 257, 258–262

analytical method, 259
FEM by calculations, 260–261
post-processing, 268–272, 277–280, 285
preprocessing, 262–267, 272–277, 281–285
software results, 261–262, 280

P
Partitioned matrix (Super-matrix), 6
Penalty method, 51
Plot velocity distribution, 303
Poison’s and Laplace’s equations, 371
Poisson’s equation, 377–381
Post-processing

axial vibrations, 344
cantilever beams, 230–232
constant cross-section area, 95–96
engineering problem, solving, 52
natural frequency determination, 316
simply supported beams, 200–202
stepped bar, 140–141
stress analysis, rectangular plate with 

circular hole, 251
truss, 169–170
varying cross-section area, 116–117
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Potential equations, 360–361
Poynting’s theorem, 368
Poynting vector, 367
Practical applications, 51
Preprocessing

axial vibrations, 339–344
cantilever beams, 226–230
constant cross-section area, 93–95
engineering problem, solving, 52
natural frequency determination, 312–316
simply supported beams, 197–200
stepped bar, 134–139
stress analysis, rectangular plate with 

circular hole, 246–251
truss, 167–169

Prescribing boundary conditions
elimination method, 50–51
multipoint constrains method, 51
penalty method, 51

Processing
engineering problem, solving, 52
varying cross-section area, 113–116

R
Rectangular cross-section transmission  

line, 426–427
Rectangular line, with diamondwise  

structure, 428–429
Rectangular matrix, 3
Rectangular plate with circular hole.  

See Stress analysis
Row matrix, 3

S
Scalar matrix, 4
Simply supported beams

analytical method, 176, 180–181,  
187–188, 192–193

deflection values at nodes, 179, 185,  
191, 196

FEM by hand calculations, 177–178,  
181–184, 188–191, 193–195

nodal force calculation, 182–184

post-processing, 200–202
preprocessing, 197–200
reaction calculation, 178, 191
reaction values, 179, 185, 192
slope values at nodes, 185, 191, 196
software results, 179–180, 184–187,  

191–192, 195–196
total values, 185–186, 192

Single-strip shielded transmission  
line, 429–431

Singular matrix, 25
Six-strip line, 437–439
Skew-symmetric matrix, 5
Skin depth, 370–371
Software package, finite element  

analysis, 52
Software results

airfoil, potential flow, 296
axial vibrations, 338
cantilever beams, 206–207, 212–214, 

217–220
cantilever beam, transverse vibrations of, 

320–322
constant cross-section area, 68–70, 80–81, 

84–85, 91–93
forcing function, bar, 345–346
forcing function, fixed-fixed beam,  

323–324
natural frequency determination, 310–311
one-dimensional heat conduction 

problems, 261–262, 280
simply supported beams, 179–180,  

184–187, 191–192, 195–196
stepped bar, 125–127, 133–134
stress analysis, rectangular plate with 

circular hole, 241–242, 243–245
truss, 160–162, 165–167
varying cross-section area, 106–108, 

111–113
Solenoid actuator analysis, with  

ANSYS, 441–459
Square cross-section transmission  

line, 427–428
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Square matrix, 3
Static equilibrium, 61
Stepped bar

analytical method, 118, 122–123,  
127–129

deflection values at nodes, 120,  
125–126, 133

displacement calculation, 118, 119, 122
FEM by hand calculations, 118–121,  

123–125, 130–132
nodal displacements, 117
post-processing, 140–141
preprocessing, 134–139
reaction calculation, 118, 120, 125, 132
reaction value, 121, 126
reaction values, 134
software results, 125–127, 133–134
stress calculation, 118, 119, 123, 124, 132
stress value at elements, 121, 126, 134

Stiffness matrix, 72, 99
Stokes theorems, 353
Strain, 60
Streamline, 292
Stress, 59
Stress analysis, rectangular plate with  

circular hole
analytical method, 240–241, 242–243
boundary of hole, 239
center of plate, 240
deflection pattern, 245
element options, 247
first principal stress distribution, 245
one-quarter of plate, 239, 240
plate thickness, 247
post-processing, 251
preprocessing, 246–251
real constants, 247
software results, 241–242, 243–245
sub cases, 238–240
tensile load at both edges, 238
tensile load at one edge, 238
validation of results, 246
Von Mises stress distribution, 243

Stress calculation
constant cross-section area, 66, 67, 70–71, 

74, 79, 86
stepped bar, 118, 119, 123, 124, 132
truss, 153–154, 159–160, 165
varying cross-section area, 98, 101, 104, 

106, 110
Stress-strain behavior, 61
Structural problems

direct approach, 49
discretization of, 48
element stiffness matrices and  

load vectors, 49
element strains and stresses, 50
nodal displacements, 50
proper interpolation, 48
variational approach, 49
weighted residual approach, 49–50

Super-matrix, 6
Symbolic expressions, MATLAB

differentiating symbolic expressions, 516
integrating symbolic expressions, 517
limits symbolic expressions, 517
simplifying symbolic expressions, 515
sums symbolic expressions, 518
symbolic expressions, solving  

equations, 519
taylor series symbolic expressions, 518

Symmetric matrix, 5

T
Temperature distribution, 286–289
Tensile forces, 59
Tension, 59
Thermal analysis

one-dimensional heat conduction 
problems, 257, 258–262

procedure of FEM, 258
two-dimensional heat conduction 

problems, 258, 285–286
Three-dimensional element, 54, 415–420
Three-node bar element, 64
Three-node element, 460
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Three-strip line, 435–437
Triangular matrix, 5–6
Truss

analytical method, 147–150
angle calculation, 150–153, 162–164
definition, 145
deflection value at nodes, 155,  

160–161, 166
2-D trusses, 145
element stiffness matrix, 146
element stress, 146
FEM by hand calculation, 150–160, 162–165
nodal displacements, 146
post-processing, 169–170
preprocessing, 167–169
reaction calculation, 154
software results, 160–162, 165–167
stress calculation, 153–154, 159–160, 165
stress values of elements, 155–156,  

161–162, 166–167
Two-dimensional elements, 53–54

band matrix method, 392–395, 397–400
FEM to electrostatic problems, 382–400
iteration method, 392, 396–397
Laplace’s equation, 382–392

Two-dimensional problem, 285–286
Two-node bar element, 62–63

V
Variational approach, 49
Varying cross-section area

analytical method, 97–98, 103–104
deflection values at node, 101, 107, 111–112

displacement and stress, 97
displacement calculation, 98, 104
equivalent model, 99
FEM by hand calculations, 98–103,  

104–106, 108–111
post-processing, 116–117
processing, 113–116
reaction calculation, 111
reaction value, 102, 112
software results, 106–108, 111–113
stress values, 102, 107, 112
Young’s modulus, 97

Vector
addition and subtraction, 28
algebra, 28
components of, 27
Del (∇) operator, 31–34
equality, 28
multiplication, 29–30
multiplication of scalar, 28
right-hand rule, 29
unit, 27

Vector analysis, 27–34
Von Mises stress distribution, 243

W
Wave equations, 372–373
Weighted residual approach, 49

Y
Young’s modulus

constant cross-section area, 65
varying cross-section area, 97
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