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PREFACE

Today, the finite element method (FEM) has become a common tool for solving
engineering problems in industries for the obvious reasons of its versatility and
affordability. To expose an undergraduate student in engineering to this powerful
method, most of the universities have included this subject in the undergraduate
curriculum. This book contains materials applied to mechanical engineering,
civil engineering, electrical engineering, and physics. It is written primarily for
students and educators as a simple introduction to the practice of FEM analysis in
engineering and physics. This book contains many 1D and 2D problems solved by
the analytical method, by FEM using hand calculations, and by using ANSYS 11
academic teaching software and COMSOL. Results of all the methods have been
compared. This book compromises 10 chapters and 3 appendices.

Chapter 1 contains mathematical preliminaries needed for understanding the
chapters of the book. Chapter 2 provides a brief introduction to FEA, a theoretical
background, and its applications. Chapter 3 contains the linear static analysis of
bars of a constant cross-section, tapered cross-section, and stepped bar. In each
section, a different variety of exercise problems is given. Chapter 4 contains the
linear static analysis of trusses. Trusses problems are also selected in such a way
that each problem has different boundary conditions to apply. Chapter 5 provides
the linear static analysis of simply supported and cantilever beams. In Chapters 3
to 5, all the problems are considered as one dimensional in nature. Indeed, stress
analysis of a rectangular plate with a circular hole is covered in Chapter 6. In this
chapter, emphasis is given on the concept of exploiting symmetric geometry
and symmetric loading conditions. Also, stress and deformation plots are given.
Chapter 7 introduces the thermal analysis of cylinders and plates. Here both one
dimensional and two dimensional problems are considered. Chapter 8 contains

xiii



Xiv

PREFACE

the problems of potential flow distribution over a cylinder and over an airfoil.
Chapter 9 provides the dynamic analysis (modal and transient analysis) of bars and
beams. Chapter 10 provides the engineering electromagnetics analysis. The chapter
gives an overview of electromagnetics theory and provides the finite element
method analysis toward the electromagnetics, some models are demonstrated using
the COMSOL multiphysics application and also ANSYS.

The appendices are located on the companion disc in the back of the book.
Appendix A contains the introduction to Classic ANSYS and ANSYS Workbench.
Appendix B contains an overview of computational MATLAB. Appendix C
contains the color figures in the book.

Sarhan M. Musa
Houston, Texas
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MATHEMATICAL
Chapter PRELIMINARIES

1.1 INTRODUCTION

This chapter introduces matrix and vector algebra that is essential in the formulation
and solution of finite element problems. Finite element analysis procedures are
most commonly described using matrix and vector notations. These procedures
eventually lead to the solutions of a large set of simultaneous equations. This
chapter will be a good help in understanding the remaining chapters of the book.

1.2 MATRIX DEFINITION

A matrixis an array of numbers or mathematical terms arranged in rows (horizontal
lines) and columns (vertical lines). The numbers, or mathematical terms, in the
matrix are called the elements of the matrix. We denote the matrix through this book,
by a boldface-letter, a letter in brackets [], or a letter in braces {}. We sometimes use
{} for a column matrix. Otherwise, we define the symbols of the matrices.

Example 1.1

The following are matrices.

sind 0 0
0 1
A= » [B]=]0 cosd 0,
3 z
0 tand 0
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J. xdx

1=’ ,[D]z[af(x,y) Af (x,)

1 0x
f ydy

L 4 B
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:|,E:[e]

The size (dimension or order) of the matrices varies and is described by the
number of rows (m) and the number of columns (7). Therefore, we write the size
of a matrix as m X n (m by n). The sizes of the matrices in Example 1.1 are 2 X 2,

3%x3,2x1,1x2,and 1 X 1, respectively.

We use a;;to denote the element that occurs in row 7 and column j of matrix A.

In general, matrix A can be written

ay a, . . . 4
ay Ay ... Gy

A= [A] =
a, 4ap a;
ap Gy o o .Gy,

Example 1.2

Location of an element in a matrix.
i dyp dgs
Let A=|a,, a,, a,
a3 Az ds

Find (a) size of the matrix A
(b) location of elements a,;, a2, a3, and as;

mn

(1.1)
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Solution

(a) Size of the matrix Ais3 X 3

(b) ay,is element a at row 1 and column 1
a,1s element a at row 1 and column 2
as, is element a at row 3 and column 2
as3 is element a at row 3 and column 3

Note that, two matrices are equal if they have the same size and their corresponding
elements in the two matrices are equal. For example,

7z 0 e 0
let, [A]=[1 3 7],[3]:[ ],[c]:[

], then [A] # [B] since [A] and [B]
1 e

1 x

are not the same size. Also, [ B] # [ C] since the corresponding elements are not all equal.

1.3 TYPES OF MATRICES

The types of matrices are based on the number of rows (1) and the number of
columns (#) in addition to the nature of elements and the way the elements are
arranged in the m atrix.

(a) Rectangular matrixis a matrix of different number of rows and columns, that
is, m # n. For example, the matrix

1 2
[X]=|-3 5], is rectangular matrix.
7 0

(b) Square matrix is a matrix of equal number of rows and columns, that is,
m = n. For example, the matrix

[h kz] , ,
K]= , 1s square matrix.
kK

(¢) Row matrix is a matrix that has one row and has more than one column, that
is, m=1and n > 1. For example, the matrix

[Fl]=[x y z],isrow matrix.
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(d) Column matrix is a matrix that has one column and has more than one row,
thatis, n =1 and m > 1. For example, the matrix

0
N={N}=42¢,is column matrix.
4
(e) Scalar matrix is a matrix that has the number of columns and the number of
rows equal to 1, that is, m = 1 and n = 1. For example, the matrix

[M] = [7], is a scalar matrix; we can write it as 7 without bracket.

(f) Null matrix is a matrix whose elements are all zero. For example, the matrix

0 0 0
, 1s a null matrix.
0 0 0

(g) Diagonal matrix is a square matrix that has zero elements everywhere except
on its main diagonal. That is, for diagonal matrix a;; = 0 when i # j and not all
are zero for a; when i = j. For example, the matrix

, is a diagonal matrix.

Main diagonal

Main diagonal elements have equal row and column subscripts. The main
diagonal runs from the upper-left corner to the lower-right corner. The main
diagonal of the matrix here is a;;, a,,, and a;;.

(h) Identity (unit) matrix [I] or 1, is a diagonal matrix whose main diagonal
elements are equal to unity (1’s) for any square matrix. That is, if the elements
of an identity matrix are denoted as e;; then

e, = - (1.2)
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For example, the matrix

, is an identity matrix.

S o = O
S = O O
— o o O

(i) Banded matrix is a square matrix that has a band of nonzero elements parallel
to its main diagonal. For example, the matrix
a, a, 0 0 0
Ay Gy Ay 00
a,, as;; as 0 |, isabanded matrix.

0 0 Ay gy Gys

0 0 0 a5 as]

(j) Symmetric matrix is a square matrix whose elements satisfy the condition
a;;= ajifor i # j. For example, the matrix

a, 5 8
5 a,, 2 |,isasymmetric matrix.
8 2  ay

(k) Anti-symmetric (Skew-symmetric) matrixis a square matrix whose elements
a;j= —ajfor i# j, and a; = 0. For example, the matrix

0o 3 -7
-3 0 2|, isan anti-symmetric matrix.
7 =2 0

(1) Triangular matrix is a square matrix whose elements on one side of the main
diagonal are all zero. There are two types of triangular matrices; first, an upper
triangular matrix whose elements below the main diagonal are zero, that is,
a; = 0 for i> j; second, a lower triangular matrix whose elements above the
main diagonal are all zero, that is a; =0 for i < j. For example, the matrix

0 a, a,y|,Iisanupper triangular matrix.

0 0 ay
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While, the matrix
a, 0 0

a,, a, 0 |,isalower triangular matrix.
as; Gz ds

(m) Partitioned matrix (Super-matrix) is a matrix that can be divided into
smaller arrays (sub-matrices) by horizontal and vertical lines, that is, the
elements of the partitioned matrix are matrices. For example, the matrix

B
= C -+ D:" is partitioned matrix with four smaller matrices,

where

a4y Ayp s
A=[ay apl,B=[as], C= ,and D= . For example, the

matrix a1 4z as3

1 5
3 4= |:A B :|, is a partitioned matrix,
612 9

0 1 5
where A=| |, B= , C=[6],and D=[2 9].
8 3 4

1.4 ADDITION OR SUBTRACTION OF MATRICES

Addition and subtraction of matrices can only be performed for matrices of the
same size, that is, the matrices must have same number of rows and columns.
The addition is accomplished by adding corresponding elements of each matrix.
For example, for addition of two matrices A and B, can give C matrix, that is,
C = A +B implies that c;=a;+ b,-j. Where Ci» Ay and bij are typical elements of
the C, A, and B matrices, respectively.

Now, the subtraction of matrices is accomplished by subtracting corresponding
elements of each matrix. For example, for subtraction of two matrices A and B, can give
you C matrix, that is, C = A —B implies that ¢; = a; —b;. Note that, both A and B
matrices are the same size, m X 1, then the resulting matrix Cis also of size m X n.
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1 2 0 6
For example, let [A] = and[B]= , then
9 12

[1 271 [0 67 [1+0 2+6 ] [1 8
,and

(1 21 [0 67 [1-0 2-6] [ 1 —4
[Al-Bl=| ||| = .
5 7] |9 12| |5-9 7-12| |4 -5
Matrices addition and subtraction are associative; that is
A+B+C=(A+B)+C=A+(B+C) (13)
A+B-C=(A+B)-C=A+(B-C) '
For example,
1 3 2 5 9 8
let [A]= , [B]= ,and [C]= .
7 8 3 1 4 6
[1+2 3+5] [9 8 12 16
Then, ([A]+[B])+[C]= + =
7+3 8+1] |4 6] [14 15
1 3] [24+9 5+8] 12 16
[Al+(B]+[C])= + = .
7 8] [3+4 1+6] [14 15
Therefore, (A+B) + C=A+ (B+ C).
Matrices addition and subtraction are commutative; that is

A-B=-B+A

For example,

6 5] 3 2] 6 5 3 2 9 7
let [A]=[2 1 and [B]=|:l 5 , then [A]+[B]=[2 1:|+[1 5]:[3 6],

3 2:| [6 S:I (9 7]
and [B]+[A]= + = , therefore, [A] + [B] = [B] + [A].
3 6
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1.5 MULTIPLICATION OF A MATRIX BY SCALAR

A matrix is multiplied by a scalar, ¢, by multiplying each element of the matrix by
this scalar. That is, the multiplication of a matrix [ A] by a scalar ¢ is defined as

c[A]=[ca,j:|. (1.5)
The scalar multiplication is commutative.

For example,
-3 1 =15 5
Let [A] = , then 5[A]= .
4 2

20 10

1.6 MULTIPLICATION OF A MATRIX
BY ANOTHER MATRIX

The product of two matrices is C = AB, if and only if, the number of columns in
A is equal to the number of rows in B. The product of matrix A of size mxn and
matrix B of size nXr, the result in matrix C has size m Xr.

That is, [A]mxn [B]W =[C] s

(1.6)
must be equal
and ¢; = Z ayby (1.7)
k=1

where, the (7j)th component of matrix C is obtained by taking the dot product
Cij= (ith row of A). (jth column of B).

That is, to find the element in row i and column j of [A][B], you need
to single out row i from [A] and column j from [B], then multiply the
corresponding elements from the row and column together and add up the
resulting products.

For example,

1 3 3 2 4
let [A],, = and [Bl,,; = , then
7 8 -1 0 6
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1 37 3 2 4] [1x3+43x(-1) 1x2+3x%0
REN A |
7 8]l-1 0 6

0o 2 22
13 14 76

Size of [A][B] =2 x 3.

1.7 RULES OF MATRIX MULTIPLICATIONS

1X4+3%X6

7X3+8X(—1) 7X2+8X0 7X4+8x%6

Matrix multiplication is associative; that is
ABC=(AB)C=A(BC).
Matrix multiplication is distributive; that is
AB+C)=AB+AC
or
(A+B)C=AC+BC.
Matrix multiplication is not commutative; that is

AB # BA.

(1.8)

(1.9)

(1.10)

(1.11)

A square matrix multiplied by its identity matrix is equal to same matrix; that is

Al=TA=A.
A square matrix can be raised to an integer power #; that is

n
A"=AA..A.

(1.12)

(1.13)

A same square matrix multiplication with different integer power n and m can be

given as

A"A"=A"""and (A")" = A"".
Transpose of product of matrices rule is given as

(AB)" =(B"A"),(ABC)" =C"B"A".

(1.14)

(1.15)
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Example 1.3
Given matrices
(2] [6
4 4
{At=1 . [B]l=
1 8
3 0
(-1 1 0
[D]=] 2 3 -1
[ 4 0 5
Find the following:
a. [B]+[C]
b. [B]-[C]
c. 5{A}
d. [B]{A}
e.[D

f. show that [D][1]=[1][ D]

Solution

6 1 2-1
4-3 5 9

8-2 6 7

0 7-8 3]
(101 —1 1 ]

55 95

131 413

9 6-810]

1 2 -1
3 5 9
2 6 7
7 -8 3]
=[D]

(4 0-3 2]
1 8 44
5 32 6
9-1 0 7]

FiNITE ELEMENT ANALYSIS

4 0 -3 2
1 8 4 —4

,[C]= :
5 3 2 6
9 -1 0 7

[(6+4) (1+0) (2-3) (=1+2)]
(4+1) (=3+8) (5+4) (9—4)

(845) (=2+3) (6=2) (7+6)

[(0+9) (7-1) (-8+0) (3+7) |
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6 1 2-17 [4 0-3 2] [(6-4) (1-0) (2+3) (-1-2)]
4-3 5 9| [1 8 4-4| [(4-1) (-3-8) (5-4) (9+4)
b. [B]-[C]= - =
82 6 7| |5 32 6| |(8-5) (=2-3) (6+2) (7-6)
0 7-8 3] [9-1 0 7] [(0-9) (7+1) (-8-0) (3-7)
[ 2 1 5-3
3-11 1 13
- 3-5 8 1
9 8 -8 —4 |
2 (10]
4 20
c. 5{A} =57 ;=
1 5
3] |15]

6 1 2 —17[2] [(6x2)+(1x4)+(2x1)+(-1x3)] [13]

d 4 -3 5 9|4 (4x2)+(-3%x4)+(5x1)+(9%x3) 28
. B A = = F=
[BILA] 8 2 6 7|[1] [Bx2)+(-2x4)+(6x1)+(7x3)| |35

[0 7 -8 3]|3] [|(0x2)+(7x4)+(-8x1)+(3%x3)] [29]

-11 0][-11 o0
e.[D]’=[D][D]=| 23 -1]|| 23 -1

40 5 40 5
[(-1x=1)+(1%x2)+(0%x4) (—=1x1)+(1%x3)+(0%x0) (=1x0)+(1x—1)+(0%5)

=[(2x=-1)+(3%x2)+(-1x4) 2x1)+(3%x3)+(=1x0) 2x0)+(3x-1)+(-1x5)

[ (4x-1)+(0x2)+(5%x4) (4x1)+(0x3)+(5%0) (4x0)+(0x—1)+(5%5)
[3 2 -1

=(0 10 -8

(16 4 25
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[-11 0][100
f. [D][I]=| 23 -1||010

| 40 5]lo01
[(=1x1)+(1x0)+(0x0) (=1x0)+(1x1)+(0x0) (=1x0)+(1x0)+(0x1)

=] (2x1)+(3%0)+(-1%x0) (2x0)+(3x1)+(-1%x0) (2x0)+(3x0)+(-1x1)

| (4%1)+(0x0)+(5%0) (4%x0)+(0x1)+(5%0) (4x0)+(0x0)+(5x1)

[-11 0
=| 23 -1|=[D]
| 40 5
and
[100][-11 0

[1l[D]=|o 1 0|| 23 -1

001] 40 5
[(1x-1)+(0x2)+(0x4) (1x1)+(0x3)+(0x0) (1x0)+(0x—1)+(0%5)

=[(0x=1)+(1x2)+(0x4) (0x1)+(1x3)+(0x0) (0x0)+(1x—1)+(0x5)

| (0x—1)+(0%x2)+(1x4) (0x1)+(0x3)+(1x0) (0x0)+(0x-1)+(1x5)
[-11 0

=| 23 -1|=[D]

| 40 5

1.8 TRANSPOSE OF A MATRIX MULTIPLICATION

The transpose of a matrix A = [a;] is denoted as AT = [a;]. It is obtained
by interchanging the rows and columns in matrix A. Thus, if a matrix A is of order
m X n, then AT will be of order n X m.

For example,

01 3

-1 2 5

let [A],,, :[ :|, then [A]T3X2 =11 2.
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Note that it is valid that, (AB)"=B" A", (A+B)"=A"+B7", (B)"= B', and
(AT)T=A. Also note, if AT = A, then A is a symmetric matrix.

Example 1.4

1 2 -1 0 3
Consider that matrix [A]= and [B]= .
3 4 —4 =2 5

Show that ([A][B])"= [B]"[A]".

Solution
[12][-1 0 -3 (Ix-1)+(2%x—-4) (I1x0)+(2x-2) (1x=3)+(2x5)
([Al[B]) = ][ }[
34| -4 2 5] |(3x—=1)+(4x—4) (3x0)+(4x—-2) (3x—3)+(4x5)
(9 —47
__—19 -8 11]
[—9 —19
([A][B])" =|-4 -8
7 11
-1 —4
1 3
A [ ] -] 0 =
2 4
-3 5
-1 —4] (-1x1)+(—4x%x2) (=1x3)+(—4x4)
1 3
[B]'[A] =| 0 -2 =1 (0x1)+(-2x2) (0x3)+(-2x4)
2 4
-3 5| (-3x1)+(5x2) (-3x3)+(5%x4)
-9 —19]
=|-4 -8
7 11]

Therefore, ([A][B])"= [B]"[A]".
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1.9 TRACE OF A MATRIX

A trace of a matrix A, tr(A), is a square matrix and is defined to be the sum of the
elements on the main diagonal of matrix A.

3 5 8
For example, let,[A]=|5 7 2|,thentr(A)=3+7+(-1)=9.

8§ 2 -1

Example 1.5

Consider that matrix

Find the tr(A).

Solution
tr(A) =5+ 6=11.

1.10 DIFFERENTIATION OF A MATRIX

Differentiation of a matrix is differentiation of every element of the matrix
separately. For example, if the elements of the matrix A are a function of ¢, then

da.
A 1S (1.16)
dt dt

Example 1.6
3x

d[A]

Consider the matrix [A] = [ y
x

5 x2
, find the derivative
7x 6

Solution

dx 7 0

d[A] _ [ISx4 2x]
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1.11 INTEGRATION OF A MATRIX

Integration of a matrix is integration of every element of the matrix separately.
For example, if the elements of the matrix A are a function of t, then

[Ade=|[ayd). (1.17)

Example 1.7

ax’

2
Consider the matrix [A] = [ ] , find the derivative J[A] dx.

8x 1

Solution

I[A]dx _ [ x‘: 2x]

4x X

1.12 EQUALITY OF MATRICES

Two matrices are equal if they have the same sizes and their corresponding
elements are equal.

Example 1.8

1 —4 2x w
Let A= and B= .
5 3 z—2 k+1

If the matrices A and B are equal, find the value of x, w, z, and k.

Solution

1=2x—»x=1%
w=—4
z—2=5—p»z=7
3=k+1—» k=2
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1.13 DETERMINANT OF A MATRIX

The determinant of a square matrix A is a scalar number denoted by |A| or det [A]. It
is the sum of the products (~1)"/a;M;, where a;;are the elements along any one row or
column and Mj;are the deleted elements of ith row and jth column from the matrix [A].

For example, the value of the determinant of matrix [A] is @ and can be
obtained by expanding along the first row as:

dyp A 4 ayy
dy Gy Ay Ay
a=%1 9 G - dsy (1.18)
anl anZ an3 ann
=a, M, —a,M,, +a M, +..+(-1)""a, M
1l —ap i T a3l T ... 11,

where the minor M;jjis a (n — 1) X (n — 1) determinant of the matrix formed by
removing the ith row and jth column.
Also, the value a can be obtained by expanding along the first column as:

a=a, M, —a, M, +a;M,, +..+(=1)""a M. (1.19)

Now, the value of a second-order determinant of (2 X 2) matrix is calculated by

a a
1 G
a=det[ ]=
dy 4y

The value of a third-order determinate of (3 X 3) matrix is calculated by

4 4dp 1.20
= a118y, —ap,45- (1.20)

dy 4y

dy s Oy dy dp
=4y —dp +ay;
a3 G a3 ds; a3 ds

=y, (Ay 855 = 05305, ) = Ay (1053 — Ay3a5, ) + 15 (ay,05, —ayas,). (1.21)
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Example 1.9
Find the value, a, of the following determinants:
2 3
a.
-1 4
1 3 4
b.[-2 -1 2
5 —4 6
Solution
3
a. a= ) 4‘=(2><4)—(3><—1)=8+3=11
1 3 4
-1 2 -2 2 -2 -1
b. a=|-2 -1 2|=1x —-3x +4x
-4 6 5 6 5 —4
5 —4 6

=1(-6+8)—3(-12-10)+4(8+5)=2+66+52=120

An alternative method of obtaining the determinant of a (3 X 3) matrix is by using
the sign rule of each term that is determined by the first row in the diagram as
follows:

+ - +
— 4+ _|,orbyrepeating the first two rows and multiplying the terms diagonally as

+ - +

follows:

a22

=0105,033 1 05,03,0,3 F A3,0,,0y3 — 130,031 — Ay3ds;01) —A330,,0,;.
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1.14 DIRECT METHODS FOR LINEAR SYSTEMS

Many engineering problems in finite element analysis will result in a set of

simultaneous equations represented by [A]{X} = {B}.
For a set of simultaneous equations having the form

a,, X, +a,x, +a;x; +..+a,x, =b
Ay, X + Ay X, +ay3%5 +..+a,, X, =b,

Ay, X, + a3 X, +a55%; +..+ay,X, = b,
(1.22)

a,%, +a,,x,+a,;x;+..+a,x,=b,

where there are n unknown Xxj, X, X3,..., X,, to be determined. These equations can
be written in matrix form as

dp G O3 || %1 b,

Ay Gy Oy D || X2 b,

31 a3 O A || X5 b,
_anl anz an3 ann_ _xn_ _bn_d

This matrix equation can be written in a compact form as

AX =B, (1.23)
where A is a square matrix with order n X n, while X and B are column matrices
defined as

a, ay, a3 .. ay| X b,

Ay Gy Gy . Oy, X, b,

dy Gz 433 ... dj, X3 b,

A= S X = R B=]| .
_anl anZ an3 ann_J _xn_ _bn_

There are several methods for solving a set of simultaneous equations such
as by substitution, Gaussian elimination, Cramer’s rule, matrix inversion, and
numerical analysis.
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1.15 GAUSSIAN ELIMINATION METHOD

In the argument matrix of a system, the variables of each equation must be on the

left side of the equal sign (vertical line) and the constants on the right side. For
example, the argument matrix of the system

2x, —3x, =5

x, —4x, =38

2 =3|-5
is .
1 4| 8
The argument matrix is used in Gaussian elimination method. The Gaussian
elimination method is summarized by the following steps:

1. Write the system of equations in the argument matrix form.

2. Perform elementary row operations to get zeros below the main diagonal.
a. interchange any two rows
b.replace a row by a nonzero multiply of that row

c.replace a row by the sum of that row and a constant nonzero multiple of
some other row

3. Use back substitution to find the solution of the system.
We demonstrate the Gaussian elimination method in Example 1.10.
Example 1.10
Solve the linear system using the Gaussian elimination method.
x,tx;,—2=0
2x,+3x,—-5=0
X, +x,+x;,—-3=0
Solution
We use R; to represent the ith row. Write the argument matrix of the system as:
01 1|2
2 0 3|5]

1 1 13
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2 0 3|5

Interchange R, and R,, this gives:[0 1 1 [2].

1 1 113
1o 2|2
212
1 ..
—R,, thisgives:|0 1 1 [2].
2
1 1 1|3
Lo 212
212
—R; + R;, this gives:| 0 1 112].
11
01 —— |-
L 2124
Lo 212
2 2
—R, + R;, this gives:| 0 1 1 2 |.
01 2|3
L 2 2]
1o 2|2
212
2 .
—§R3, this gives:|0 1 1 |2].

R; gives x; = 1, substitute the value of x; in R, and Rs, this gives x, = 1, and
x1 = 1, respectively.
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1.16 CRAMER’S RULE

Cramer’s rule can be used to solve the simultaneous equations for x;, x,, %3, ..., X,, as

“H b5 % (1.24)

app dyp Gz - Gy 1 G A3 ay, a;p 0p 4 ayy,
Ay Gy Gyz e Oy, h Gy Gz e Oy, Ay 0y dy3 ... Gy,
a3 Az Q33 ... A3y 3 3 d33 a3, a3 03 di; s,
a= = yy = >
_anl anZ an3 ann_ _bn anZ an3 ann_ _anl bn an3 ann_
(1.25)
a, a, b P a Gy Gy b,
a4, a4, b D dy Gy Oy b,
a, ay b a3, a3 43 43y b,
a = yeenr Oy =
_anl an2 bn ann | _anl anZ an3 bn B

It is worth noting that a is the determinant of matrix A and a,, is the determi-
nant of the matrix formed by replacing the nth column of A by B. Also, Cramer’s
rule applies only when a # 0, but when a = 0, the set of questions has no unique
solution, because the equations are linearly dependent.
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Summary of Cramer’s Rule

1. Form the coefficient matrix of A and column matrix B.

2. Compute the determinant of matrix of A. If det[A] = 0, then the system has no

solution; otherwise, go to the next step.

3. Compute the determinant of the new matrix [A;], by replacing the ith matrix

with the column vector B.
4. Repeat Step 3 fori=1,2,...,n.

5. Solve for the unknown variable X; using

X. = %, fori=1,2,..,n.

1 |A

Example 1.11
Solve the simultaneous equations

2x, —5x, =13, 5x,+3x,=-14

Solution

The matrix form of the given equations is

N

The determinants are calculated as

2 -5
a= =(2x3)—-(-5%x5)=6+25=31
5
13 -5
= =(13%3)—(-5%x-14)=39-70=-31
-14 3
2 13
a, = =(2x-14)-(13x5)=-28-65=-93
5 —
Thus,
a 31 a =93

(1.26)
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Example 1.12

Solve the simultaneous equations

10x, —3x, —4x, =15, 2x,+5x, —2x,=0, —2x, +x,+6x;=0,

Solution
In matrix form, the given set of equations becomes
10 -3 —47[x] [15
2 5 =2|x (=0
2 1 6]lx] |o

The determinants are calculated as

10 -3 —4
a=|2 5 =2[=10[(5x6)—(-2x1)]-(=3)[(2%x6)—(-2x-2)]+(-4)[(2x1)—-(5%x-2)]
-2 1 6
=320+24—-48=296
15 -3 —4
aq =0 5 =2=15[(5%6)—(-2%x1)]-(=3)[(0x6)—(-2x0)]+(—4)[(0x1)—=(5%0)]
0 1 6
=480+0-0=480
10 15 -4
a=|2 0 =2/=10[(0x6)—(-2x0)]-(15)[(2x6)—(—2x—=2)]+(-4)[(2%x0)—(0x =2)]
-2 0 6
=0-120-0=-120
10 =3 15
a=| 2 50|=10[(5x0)—(0x1)]—(=3)[(2x0) = (0x—2)]+(15)[(2x1) = (5% =2)]
-2 10
=0-0+180=180
Thus,
5 =80 6 =B T g4y =B

296 a 296 ' a 296
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1.17 INVERSE OF A MATRIX

Matrix inversion is used in many applications including the linear system of

equations.
For the matrix equation AX = B, we can invert A to obtain X, that is,

X=A"'B (1.27)

where A~'is the inverse matrix of A. The inverse matrix satisfies

AAT=ATA=T (1.28)
where
o Adi Al (1.29)
Al

where Adj [A] is the adjoint of matrix A. The Adj [A] is the transpose of the
cofactors of matrix A. For example, let the nX #n matrix A be presented as

a; dp ay,
dy Adp Ay
A=
_anl an2 ann _

The cofactors of the matrix A are written in matrix F as

(S fo e S
fo foow

F=cof [A] =] o (1.30)
_fnl fn2 fnn_‘

where f; is the product of (=1)"/ and the determinant of the (n—1)x(n—1)
submatrix is obtained by removing the ith row and jth column from matrix A.
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For instance, by removing the first row and the first column of matrix A, we find
the cofactor fi; as

Gy Gz o Gy
as, as3 e Ay,

0 f= (1.31)
anZ an3 ann

Now the adjoint of matrix A can be obtained as

(fu fo o fu |
f21 f22 fln
_fnl fnZ fnn_
So, the inverse of A matrix can be written as
T
A7l = LF] (1.33)
|A|

A matrix that possesses an inverse is called invertible matrix (nonsingular matrix).
A matrix without an inverse is called a non-invertible matrix (singular matrix).
Consider a 2 X 2 matrix, if

a b
A= ,and ad—bc #0, then

c d
d -b
5 1 d -b 1 d —b ad—bc ad—bc
Al=—— = = . (1.34)
Al | —¢ a ad—bc| ¢ a —C a

ad—bc ad—-bc
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The inverse of product of matrices rule can be presented as

(AB)"' =(B"'A™"),(ABC)"' =C7'B'A™". (1.35)

Example 1.13
3 2

Let matrix, A =
2 1

:l, find its inverse matrix, A~

Solution

Example 1.14

2 1

Let matrix, A = ! ] , find its inverse matrix, A~.

-1 1

Solution
Using the concept of equation (1.27), we get

a b 2 1]fa b 1 0
A= ,then AA™' = =
c d -1 1|lc d 0 1

2a+c=1—P3a=1—Ppa=1/3
2b+d=0—P3b=-1—Ppb=-1/3
—a+c=0——pa=c=1/3
-b+d=1—pd=1+b=2/3

1/3 -1/3
A= .
1/3  2/3

Therefore,
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1.18 VECTOR ANALYSIS

A vector is a special case of a matrix with just one row or one column. A vector is a
quantity (mathematical or physical) that has both magnitude and direction. Examples
of vectors are force, momentum, acceleration, velocity, electric field intensity, and
displacement. A scalar is a quantity that has only magnitude. Examples of scalars are
mass, time, length, volume, distance, temperature, and electric potential.

A vector A has both magnitude and direction. A vector A in Cartesian
(rectangular) coordinates can be written as (A,, A,, A;) where A,, A, and A, are
components of vector A in the x, y, and z directions, respectively. The magnitude
of vector A is a scalar written as |A| or A and given as

|A|=,/A§+A§+Aj ) (1.36)

A unit vector a, along vector A is defined as a vector whose magnitude is unity
(i.e., 1) and its direction is along vector A, that is,

A=|Ala,, (1.37)
thus, (A,,A,,A,)=Aa, +Aa, +Aa, (1.38)

A Aa +Aa +Aa,
anda,=—= —.
Al Az Al Al

(1.39)

Figure 1.1 (a) illustrates the components of vector A and Figure 1.1 (b) shows
the unit vectors.

Figure 1.1. (a) Components of vector A (b) Unit vectors.
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(a) Vectors equality

Two vectors are equal if they are the same type (row or column) and their
corresponding elements are equal to each other.

(b) Vector addition and subtraction

Two vectors can be added or subtracted only if they are of the same type,
(i.e., both row vectors or both column vectors) and they are of the same number

of components (elements).
Two vectors A = (A, A, A;) and B = (B,, B,, B,) can be added together to give

another vector C, that is,
C=A+B (1.40)
C=(A,+B,)a,+(A,+B,)a,+(A,+B,)a,. (1.41)

Vector subtraction is similarly presented as
D=A-B=A+(-B) (1.42)
D=(A,—B,)a,+(A,—B,)a,+(A,—B,)a,. (1.43)

(c) Multiplication of a scalar by a vector

When a vector is multiplied by a scalar, each element is manipulated by the scalar.
Let, vector A= (A, A, A;) and scalar k, then

KA = (A, kA, KA,). (1.44)

There are three basic laws of algebra for given vectors A, B, and C when kand /
are scalars, summarized in Table 1.1.

Table 1.1 Three Basic Laws of Vector Algebra

Law Addition Multiplication
Commutative A+B=B+A kA=Ak
Associative A+(B+C)=(A+B)+C k(IA) = (k) A
Distributive k(A + B) =kB + kA

(d) Vector multiplication
There are two types of vector multiplication:

1. Scalar (dot) product, A-B
2. Vector (cross) product, AXB
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1. The dot product of two vectors A = (A,, A, A,) and B = (B,, B,, B,) written as
A-Bis defined as

A-B =|A||B| = cosl45, (1.45)

where 0,51s the smallest angle between vectors A and B. Also, the dot product
is defined as,

A-B=AB +AB +AB,. (1.46)
It is worth it to know that, two vectors A and B are perpendicular (orthogonal)

if and only if A-B = 0. Also, two vectors A and B are parallel if and only if B = kA.
For vectors A, B, C and k scalar, the following prosperities dot product hold:

(a) AB=B-A (1.47)
(b)A\B+C)=AB+A-C (1.48)
(c) A-A=|A]= A2 (1.49)
(d) k(A-B) = (kA)-B = A-(kB) (1.50)

e)a_a,=a, -a,=a_ -a_=0
()xy roE 2 (1.51)

2. The cross product of two vectors A= (A,, A,, A,) and B=(B,, B,, B,) written as
A X B, is defined as

A xB=|A|B| sin04pa,, (1.52)

where a, is a unit vector normal to the plane containing vectors A and B. The
direction of a, is taken as the direction of the right thumb when the fingers of
the right hand rotate from vector A to vector B as shown in Figure 1.2.

AxB

0
‘ AB > A

Figure 1.2. Right-hand rule for the direction of A x B and a,.
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Also, the cross product is defined as,

a, a, a,
AxB=|A, A, A|=(AB,—AB,)a,—(AB,—AB)a, +(AB,—AB,)a,.
B, B, B,

(1.53)

Because of the direction requirement of the cross product, the commutative law
does not apply to the cross product. Instead,

AxXB=-BXxA. (1.54)

Example 1.15
Given A= (3,-2,5) and A= (2, 4, —6), find
a. A+B
b. A-B
c. |[A-B|
Solution
a. A+B=(3+2)a +(-2+4)a, +(5-6)a,
A+B=5a +2a,-a,=(52,-1)
b. A-B=(3-2)a,+(-2-4)a, +(5+6)a,
A-B=a, —6ay +1la, =(1,-6,11)

c. |A=B|=\(3-2) +(-2-4) +(5+6)’
|A —B|=+v1+36+121 =158 =12.57

Example 1.16
Given A=3a,+2a,—a,and B=a,+a, find A-Band A xB.

Solution
AB=(3)(1)+(2)(1) +(-1)(0) =5
a, a, a,
AxB=3 2 -1 |=(2x0-(-1)x1)a,—(3x0—(-1)x1)a,+(3x1-2X1)a,
1 1 0

AxB=a —a +a,
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(e) The Del (V) operator
The Del (V) operator is a vector differential operator and known as gradient
operator.
We obtain V in Cartesian coordinates (x,y,z) as,
0 ) 0

V=a —+a,—+a, —. (1.55)
ox 'y dz

We obtain V in cylindrical coordinates (p,$,z) as,

7 dp XL 0z
We obtain V in spherical coordinates (1,0,0) as,
V=a i+a li+a L 9
"or "rad ’rsindog (1.57)

The Del (V) operator is useful in defining the following operations on a scalar
or a vector:

1. VAis the gradient of a scalar A (the result of this operation is a vector)

0A 0A 0A

(a) For Cartesian coordinates, VA=a , —+a, —+a, — (1.58)
ox ’dy 0z
(b) For cylindrical coordinates, VA=a , a—A+ a, la—A +a, a—A (1.59)
op p 0P 0z
(c) For spherical coordinates, VA=a B_A +a 104 1 o4 (1.60)

———ta,———.
Tor a0 rsind 0¢

Considering A and B are scalars and 7 is an integer, the following formulas are
true on gradient:

e V(A+B)=VA+VB (1.61)
e V(AB)= AVB+BVA (1.62)
(A) BVA-AVB (1.63)
[ ) V e —
B B?

e VA"=nA""VA (1.64)
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2. V- Ais the divergence of a vector A (the result of this operation is a scalar)

0A
(a) For Cartesian coordinates, V-A = 04, +—24 04, . (1.65)
ox dy oz
10 104, 0A
(b) For cylindrical coordinates, V. A = ( A )+ 0 T (1.66)
pap p 09  Jz
(c) For spherical coordinates,
10 1 9 8A¢
V- A=——(r"A )J+—— nd)+ (1.67)
r? ar(r r) rsinﬂaﬂ( ssind)+ rsmﬂ ol

Considering A and B are vectors and k is a scalar, the following formulas are
true on divergence of a vector:

e V(A+B)=V-A+V-B (1.68)
o V.(kA)=kV-A+A-Vk (1.69)

3. V X Ais the curl of a vector A (the result of this operation is a vector)

a, a, a,
. . o d 0
(a) For Cartesian coordinates, VXA =|— — — (1.70)
ox dy 0z
X y Az
or
0A 0A
VXA = 94, %% a, +(8A 04, )a + oAy 94, a,.
dy oz dz  odx /)’ \dx 9y (1.71)
ap ﬂa¢ az
(b) For cylindrical coordinates, VX A = 1 i i i (1.72)
plop d¢ 0z
A, pA, A

or

0A 0A, d(pA,) 0A
p oy 0z )7 9z 8/) s\ o ¢

(1.73)
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1 |0 9 d

(c) For spherical coordinates, VX A =

a, ra, rsinfa,

r’sind|or 90 8_¢)
A, 1A, rsindA,

or
VXA < 1 B(Aq,sinﬂ)_aAH ar+l 1 aAr_a(rAq,)
rsind ol o) r\sind d¢ Jr
NIEENR A
r\ or 30)°
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(1.74)

)a,, (1.75)

Considering A and B are vectors and k is a scalar, the following formulas are

true on curl of a vector:

e VX(A+B)=VxA+VxB

e Vx(AxB)=A(V-B)-B(V-A)+(B-VA)-(A-V)B
o Vx(kA)=kVxA+VkxA

e V. (VxA)=0

e VxVk=0

4. V?A-Laplacian of a scalar A (the result of this operation is a scalar)

’A 0°A  0°A
2 + 2 + 2"
ox* dy° oz

(a) For Cartesian coordinates, V?A =

(b) For cylindrical coordinates, V’A=——| p 3

pop
(c) For spherical coordinates,

2
Pal2(p0), D) 1o
r° or dr ) r7sind ol a0

The Laplacian of a vector A, can be defined as

VA=V (V-A)-VxVxA.

19( 0A) 1 9*°A 9J°A
+—2—2+—2.
P 09" 0z

r* sin’ ﬂw'

(1.76)
(1.77)
(1.78)
(1.79)

(1.80)

(1.81)

(1.82)

(1.83)

(1.84)
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Example 1.17

Find the gradient of the scalar field A =e™*sin3xcosh y.

Solution

VA =3¢ cos3xcoshya, +e “sin3xsinhya, —e “sin3xcosh ya,

1.19 EIGENVALUES AND EIGENVECTORS

Eigenvalues problems arises from many branches of engineering especially in
analysis of vibration of elastic structures and electrical systems.
The eigenvalue problem is presented in linear equations in the form

[A]-{X}-2{X}={0}. (1.85)

Where [A] is a square matrix; /4 is a scalar and called eigenvalue of matrix [A];
{X} is eigenvector of matrix [A] corresponding to A.
To find the eigenvalues of a square matrix [A] we rewrite the equation (1.55) as

[AH{X} = A[1]{X} (1.86)
[A-A]-{X}={0}. (1.87)

There must be a nonzero solution of equation (1.87) in order for 4 to be an
eigenvalue. However, equation (1.87) can have a nonzero solution if and only if
[AI-A|=0. (1.88)

Equation (1.88) is called the characteristic equation of matrix [A] and the scalars
satisfy the equation (1.88) are the eigenvalues of matrix [A]. If matrix [A] has the form

dyp Gp 43 e 4y
dy Gy Gy .. Oy,
s 4z Gz .. gy
A=| . . .. . |, then equation (1.88) can be written as
_anl anZ an,’: ann _
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ay—4 ap, i3 iy
ay Ay, — A ay A
a3 as; Ay, — 4 a3,
=0. (1.89)
anl anz an3 ann - j

The equation (1.89) can be expanded to a polynomial equation in 4 as
A+ A ++e, Atc, =0. (1.90)
Thus, the nth degree polynomial is
[A—Al=2"+c A" +..+c,  A+c,. (1.91)

Equation (1.91) is called a characteristic polynomial of n X n matrix [A]. Indeed,
the nth roots of the polynomial equation are the nth eigenvalues of matrix [A].
The solutions of equation (1.87) with the eigenvalues substituted on the equation
are called eigenvectors.

Example 1.18

Find the eigenvalues and eigenvectors of the 2 X 2 matrix A = |: 6 _3:|
-4 5

Solution

Since

T R RN A

the characteristic polynomial of matrix [A] is
A-6 3

— — —_ —_ et 2_
L= U(=5)-(xa)= £ -114+18,

|/ZI—A|:‘

and the characteristic equation of matrix [A] is
2—11A+18=0.
The solutions of this equation are 4; =2 and 4, =9; these values are the eigenvalues
of matrix [A].

The eigenvectors for each of the above eigenvalues are calculated using
equation (1.87).
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For 1, =2, we obtain
2-6 3 1[x] [0
4 2-5]|x,] of
The above equation yields to two simultaneous equations for x; and x,, as follows:
. 3
—4x,+3x, =0 gives x, = sz

4x,—3x, =0 gives x, zzxz.
3
Thus, choosing x, =4, we obtain the eigenvector x, =k{ ¢, where kisan
4

arbitrary constant.
9-6 3 [x] [0
4 9-5]|x] o]

For 1, =9, we obtain
The above equation yields to two simultaneous equations for x; and x,, as follows:
3x,+3x, =0 gives x, = —x,

4x, +4x, =0 gives x, = —x,.

-1
Thus, choosing x, = —1, we obtain the eigenvector x, = k{ } , where kis an
arbitrary constant. 1

1.20 USING MATLAB

MATLAB is a numerical computation and simulation tool that uses matrices
and vectors. Also, MATLAB enables users to solve wide analytical problems. The
majority of engineering systems are presented by matrix and vector equations.
Therefore, MATLAB becomes essential to reduce the computational workload.

All MATLAB commands or expressions are entered in the command window
at the MATLAB prompt “>”. To execute a command or statement, we must press
return or enter at the end. If the command does not fit on one line, we can continue
the command on the next line by typing three consecutive periods (...) at the end of
the first line. A semicolon (;) at the end of a command suppresses the screen output
and the command is carried out. Typing anything following a % is considered as
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comment, except when the % appears in a quote enclosed character string or certain
I/O format statements. Comment statements are not executable. To get help on a
topic (such as matrix), you can type the command helpmatrix. Here, we introduce
basic ideas of matrices and vectors operations. For more details, see Appendix B.

Elements of a matrix are enclosed in brackets and they are row-wise. The
consecutive elements of a row are separated by a comma or a space and are entered in
rows separated by a space or a comma, and the rows are separated by semicolons (;)
or carriage returns (enter).

A vector is entered in the MATLAB environment the same way as a matrix.

For example, matrix A,

A= [1 O] , is typed in MATLAB as
3 2

>>A=[10;3 2]
A=
1 0

3 2

The basic scalar operations are shown in Table 1.2. In addition to operating on
mathematical scalar, MATLAB allows us to work easily with vectors and matrices.
Arithmetic operations can apply to matrices and Table 1.3 shows extra common
operations that can be implemented to matrices and vectors.

Table 1.2 MATLAB Common Arithmetic Operators

Operators Symbols Descriptions
+ addition
- subtraction
* multiplication

. . a
right division (means — )

left division (means — )
a

A exponentiation (raising to a power)
converting to complex conjugate transpose

() specify evaluation order
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Table 1.3 Matrix Operations
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Operations

Descriptions

A
det (A)
inv (A)
eig (A)
diag (A)
rank (A)
cond (A)
eye (1)
eye (m, n)
trace (A)
zeros (m, n)
ones (m, n)
rand (m, n)
randn (m, n)
diag (A)
diag (A,1)
diag (u)
expm (A)
In (A)
svd (A)
qr (A)
min (A)
max (A)
sum (A)
std (A)
sort (A)
mean (A)
triu (A)
triu (A, T)
tril (A)
tril (A, 1)

Transpose of matrix A
Determinant of matrix A
Inverse of matrix A
Eigenvalues of matrix A
Diagonal elements of matrix A
Rank of matrix A
Condition number of matrix A
The n x n identity matrix (1’s on the main diagonal)
The m X nidentity matrix (1’s on the main diagonal)
Summation of diagonal elements of matrix A
The m X n matrix consisting of all zeros
The m X n matrix consisting of all ones
The m X n matrix consisting of random numbers
The m X n matrix consisting of normally distributed numbers
Extraction of the diagonal matrix A as vector
Extracting of first upper off-diagonal vector of matrix A
Generating of a diagonal matrix with a vector u on the diagonal
Exponential of matrix A
LU decomposition of matrix A
Singular value decomposition of matrix A
QR decomposition of matrix A
Minimum of vector A
Maximum of vector A
Sum of elements of vector A
Standard deviation of the data collection of vector A
Sort the elements of vector A
Means value of vector A
Upper triangular of matrix A
Upper triangular with zero diagonals of matrix A
lower triangular of matrix A

lower triangular with zero diagonals of matrix A
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Example 1.19

Given the following matrices:

1 2 3 0 -1 0
[A]=]4 5 6|,[B]=|2 -3 1|, and [C]
7 8 9 4 -5 3
Use MATLAB to perform the following operations:
a.[A] + [B]
b. [A] - [B]
c. 5[B]
d. [A][B]
e. [A][C]
f.[A]?
g [A]"
h. [B]™!
i.tr (A)
j- B
Solution
a.[A] + [B]
>>A=[123;456;789];
>>B=[0-10;2 -3 1;4 -5 3];
>> A+B
ans =
1 1
6 2 7
11 3 12
b. [A] - [B]

>>A=[123;456;789];
>>B=[0-10;2 -3 1;4 -5 3];
>>A-B

ans =

L W

1 3
2 5
3 13 6

2
0
4
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¢c. 5[B]

>>B=[0—-1 0;2 -3 1;4 -5 3];
>> 5%B
ans =

0 -5 0

10 —15 5

20 =25 15

>>A=[123;456;789];
>>B=[0-10;2-3 1;4 -5 3];
>> A*B
ans =

16 —22 11

34 —49 23

52 =76 35

>>A=[123;456;789];
>> C=[2;0;4];
>> A#C
ans =
14
32
50

>>A=[123;456;789];
>> ANA2
ans =

30 36 42

66 81 96

102 126 150

FINITE ELEMENT ANALYSIS
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g [A]"

h. [B]!

i.tr (A)

j- [B]

Example 1.20

>>A=[123;456;789];
>> A

ans =

1
2
3

AN U1
O ®© 3

>>B=[0-10;2 -3 1;4 -5 3];
>> inv(B)
ans =
—2.0000 1.5000 —-0.5000
—1.0000 0 0
1.0000 —2.0000 1.0000

>>A=[123;456;789];
>> trace(A)
ans =

15

>>B=[0-10;2 -3 1;4 =5 3];
>> det(B)
ans =

2

Solve the following system of three equations:

5x+y+2z=6
—x+4y+z=7
x—2y—z=-3

41
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using the following methods:

a. the matrix inverse
b. Gaussian elimination
c. Reverse Row Echelon Function

Solution

a. Since we know A™'A = 1, we can find the solution of the system of linear
equations AX =B by using X = A™'B.
Now, we write the system of equations by using the following matrices:

5 1 2 X 6
A=|-1 4 1|, X=|y|,B=| 7
1 -2 -1 z -3

>>A=[512;-141;1-2-1];
>>B=1[6;7;-3];
>> X =inv(A)*B
X =
0.8571
2.0000
—0.1429

Generally, using the matrix inverse to solve linear systems of equations should
be avoided due to the excessive round-off errors.

b. We use the left division operator in MATLAB X = A\B to solve linear systems of
equations using Gaussian elimination.

>>A=[512;-141;1-2-1];
>>B=[6;7;-3];
>>X=A\B
X =
0.8571
2.0000
—0.1429

c. The reduced row echelon function use, rref, to solve the system of linear
equations. The rreffunction requires an expanded matrix as input, representing
the coefficients and results. The last column in the output array represents the
solution of equations.
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Example 1.21

S>A=[512-141;1-2-1];

>>B=[6;7;-3];

>>C=[A,B];

>> rref(C)

ans =

1.0000 0 0 0.8571

0 1.0000 0 2.0000
0 0 1.0000 —0.1429

Solve the following set of equations using the Cramer’s rule:

Solution

5x,+x;+2x, =3
X +x,+3x;+x, =5

x tx,+2x, =1
X +x,+x;+x,=-1

>A=[5012;1131;1102;1111];
>> B =[3;5;1;—1];
>> Al =[BA(,[2:4])];
>> A2 =[A(,1) BA(,[3:4])];
>> A3 =[A(;[1:2]) BA(:,4)];
>> A4 =[A(:[1:3]) B];
>>x1 = det(Al)/det(A)
xl =
-2
>>x2 = det(A2)/det(A)
X2 =
-7
>>x3 = det(A3)/det(A)
X3 =
3
>> x4 = det(A4)/det(A)
x4 =
5

43
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PROBLEMS

1. Identify the size and the type of the given matrices. Identify if the matrix is a
square, column, diagonal, row, identity, banded, symmetric, or triangular.

m
-1 0 1
V4! 1 0 2 0
a. b.[7 5 3 1 e| 2 6 4| d e.
Z 0 1 0 4
7 5 2
LtA
(2 4 0 0 O]
(1 b ¢ d] [a 0 0 0]
1 3 0 39 -1 00
01 e 0 b 00
fls 6 4| g U nloa 82 0 i
0 01 a 0 0 ¢ O
2 0 7 00 6 7 3
0 0 0 1 0 0 0 d
- oo o1 5] * -
2 1 6 5 2 4 3

2. Given the matricesA=[{0 3 5(,B=|3 1 6/[,andC={2; find

1 -7 4 0 -2 1 1

a. A+B

b.A-B

c.4A

d.AB

e. A{C}

f. A?

& 1A 1 83 23 0
h.AI

3. Given the matricesA=|5 3 1[,B=|1 5 —6|,find the following:

0 -3 4 0 4 7

a. A"
b.B’"
c. |A]
d.|A[!
e. B!
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4. What is the 3 X 3 null matrix and the 5 X 5 identity matrix?

11.

12.

13.
14.

. Express the following systems of equations in matrix form AX = B.

a. 3x,+2x, =10, 3x +4x,=-8

b. 2x, +3x, +5x; =20, x,+3x, —5x; =0, 2x, —3x, —4x; =0,

. Solve the system using the Gaussian elimination method.

X +tx,+2x,=8
—x, —2x, +3x; =1
3x,—7x, +4x, =10

. Solve the simultaneous equations using Cramer’s rule.

2x,+3x, =38
3x, +4x, —5x;=2

X =X, +2x;,=1

. Showthat A-B=A B, +A B, +A,B,, knowthata,-a ,=a -a =a,a, =1

z7z?

. Given A=2a_+4a,—5a, and B=3a -a +a,, find A-B and AXB.

. Show that if A=5a,—4a,6—a, and B=a, +2a,+2a,, then they are

perpendicular or not.

Determine the gradient of the scalar fields A = X’y +xyz.

3 4
Find the eigenvalues and eigenvectors of the 2 X 2 matrix A = l: :I .
2 7

Solve problem 2 using MATLAB.
Solve problem 3 using MATLAB.
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INTRODUCTION TO
Chapter FINITE ELEMENT
METHOD

2.1 INTRODUCTION

Finite element analysis method is a numerical procedure that applies to many areas
in real-world engineering problems, including structural/stress analysis, fluid flow
analysis, heat transfer analysis, and electromagnetics analysis. Indeed, finite element
has several advantages and features such as the capability of solving complicated and
complex geometries, flexibility, strong mathematical foundation, and high-order
approximation. Therefore, finite element analysis (FEA) has become an important
method in the design and modeling of a physical event in many engineering
disciplines. The actual component in the FEA method is placed by a simplified
model that is identified by a finite number of elements connected at common points
called nodes, with an assumed response of each element to applied loads, and then
evaluating the unknown field variable (displacement) at these nodes.

2.2 METHODS OF SOLVING ENGINEERING
PROBLEMS

There are 3 common methods to solve any engineering problem:

1. Experimental method
2. Analytical method
3. Numerical method
47
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2.2.1 Experimental Method

This method involves actual measurement of the system response. This method
is time consuming and needs expensive set up. This method is applicable only
if physical prototype is available. The results obtained by this method cannot be
believed blindly and a minimum of 3 to 5 prototypes must be tested. Examples of
this method are strain photo elasticity, heat transfer for a gas turbine engine, static
and dynamic response for aircraft and spacecraft, amount of water which is lost
for groundwater seepage, etc.

2.2.2 Analytical Method

This is a classic approach. This method gives closed form solutions. The results
obtained with this method are accurate within the assumptions made. This
method is applicable only for solving problems of simple geometry and loading,
like cantilever and simply supported beams, etc. Analytical methods produce
exact solutions of the problem. Examples of this method are integral solutions
(such as Laplace and Fourier transforms), conformal mapping, perturbation
methods, separation of variables, and series expansion.

2.2.3 Numerical Method

This approximate method is resorted to when analytical method fails. This
method is applicable to real-life problems of a complex nature. Results obtained
by this method cannot be believed blindly and must be carefully assessed against
experience and the judgment of the analyst. Examples of this method are finite
element method, finite difference method, moment method, etc.

2.3 PROCEDURE OF FINITE ELEMENT ANALYSIS
(RELATED TO STRUCTURAL PROBLEMS)

Step (i). Discretization of the structure

This first step involves dividing the structure or domain of the problem into
small divisions or elements. The analyst has to decide about the type, size, and
arrangement of the elements.

Step (ii). Selection of a proper interpolation (or displacement) model

A simple polynomial equation (linear/quadratic/cubic) describing the variation
of state variable (e.g., displacement) within an element is assumed. This model
generally is the interpolation/shape function type. Certain conditions are to be
satisfied by this model so that the results are meaningful and converging.
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Step (iii). Derivation of element stiffness matrices and load vectors
Response of an element to the loads can be represented by element equation of the
form

[kl{a}={Q} (2.1)

where, [k] = Element stiffness matrix,
{qg} = Element response matrix or element nodal displacement vector, or
nodal degree of freedom,
{Q} = Element load matrix or element nodal load vector.

From the assumed displacement model, the element properties, namely
stiffness matrix and the load vector are derived. Element stiffness matrix [k]
is a characteristic property of the element and depends on geometry as well as
material. There are 3 approaches for deriving element equations. They are

(a) Direct approach,
(b) Variational approach,
(c) Weighted residual approach.

(a) Direct approach: In this method, direct physical reasoning is used to
establish the element properties (stiffness matrices and load vectors) in
terms of pertinent variables. Although this approach is limited to simple
types of elements, it helps to understand the physical interpretation of the
finite element method.

(b) Variational approach: This approach can be adopted when the variational
theorem (extremum principle) that governs the physics of the problem
is available. This method involves minimizing a scalar quantity known as
functional that is typical of the problem at hand (e.g., potential energy in
stress analysis problems).

(c) Weighted residual approach: This approach is more general in the sense
that it is applicable to all situations where the governing differential
equation of the problem is available. This method involves minimizing
error resulting from substituting trial solution in to the differential
equation.

Step (iv). Assembling of element equations to obtain the global equations
Element equations obtained in Step (iii) are assembled to form global equations
in the form of

[K] {r} = {R} (2.2)
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where, [K] is the global stiffness matrix,

{r} is the vector of global nodal displacements, and

{R} is the global load vector of nodal forces for the complete structure.
Equation (2.2) describes that the behavior of entire structure.

Step (v). Solution for the unknown nodal displacements

The global equations are to be modified to account for the boundary conditions of
the problem. After specifying the boundary conditions, the equilibrium equations
can be expressed as

[K,] {r}={R,}. (2.3)
For linear problems, the vector {r;} can be solved very easily.

Step (vi). Computation of element strains and stresses
From the known nodal displacements {r;}, the elements strains and stresses can be
computed by using predefined equations for structure.

The terminology used in the previous 6 steps has to be modified if we want
to extend the concept to other fields. For example, put the field variable in place
of displacement, the characteristic matrix in place of stiffness matrix, and the
element resultants in place of element strains.

2.4 METHODS OF PRESCRIBING BOUNDARY
CONDITIONS

There are 3 methods of prescribing boundary conditions.

2.4.1 Elimination Method

This method is useful when performing hand calculations. It poses difficulties in
implementing in software. This method has been used in this book for solving the
problems by finite element method using hand calculations and results in reduced
sizes of matrices thus making it suitable for hand calculations. The method is
explained below in brief. Consider the following set of global equations,

[k, ks ki ko [w] [R]
ky ky ks k|| _ b (2.4)
ky kyo ks kg ||w b
Lk Ky ks kg flu) LB
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Let u; be prescribed, i.e., u3=s.
This condition is imposed as follows:
1. Eliminate the row corresponding to u; (3 row).

2. Transfer the column corresponding to u; (3" column) to right-hand side

« »

after multiplying it by “s”. These steps result in the following set of modified
equations,

ki ky, Ky l|w I Ky

ky ko ky [Nt p =B sk e (2.5)
ky o ko k)l P, kys

This set of equations now may be solved for non-trivial solution.

2.4.2 Penalty Method

This is the method used in most of the commercial software because this method
facilitates prescribing boundary conditions without changing the sizes of the
matrices involved. This makes implementation easier.

2.4.3 Multipoint Constrains Method

This method is commonly used in functional analysis between nodes. For
example, there are many applications in trusses where the end supports are
on an inclined plane and do not coincide with the coordinate system used
to describe the truss. Another application of the method is the functional
relationship between the temperature at one node and temperature at one or
more other nodes.

2.5 PRACTICAL APPLICATIONS OF FINITE
ELEMENT ANALYSIS

There are 3 practical applications of finite element analysis:

e Analysis of new design
e Optimization projects
e Failure analysis
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2.6 FINITE ELEMENT ANALYSIS SOFTWARE PACKAGE

There are 3 main steps involved in solving an engineering problem using any
commercial software:

Step (i). Preprocessing

In this step, a CAD model of the system (component) is prepared and is meshed
(discretized). Boundary conditions (support conditions and loads) are applied to
the meshed model.

Step (ii). Processing

In this step, the software internally calculates the elements stiffness matrices,
element load vectors, global stiffness matrix, global load vector, and solves after
applying boundary conditions for primary unknowns (e.g., displacements/
temperatures etc.) and secondary unknowns (e.g., stress/strain/heat flux etc.).

Step (iii). Post-processing
Post-processing involves sorting and plotting the output to make the interpretation
of results easier.

2.7 FINITE ELEMENT ANALYSIS FOR STRUCTURE

There are several common methods in finite element analysis used for evaluating
displacements, stresses, and strains in any structure under different boundary
conditions and loads. They are summarized below:

1. Displacement Method: This method is the most commonly used method.
The structure is subjected to applied loads or/and specific displacements.
The primary unknowns are displacements found by using an inversion of the
stiffness matrix, and the derived unknowns are stresses and strains. Indeed,
the stiffness matrix for any element can be calculated by the variational
principle.

2. Force Method: The structure is subjected to applied loads or/and specific
displacements. The primary unknowns are member forces, found by using
an inversion of the flexibility matrix, and the derived unknowns are stresses
and strains. Indeed, the calculation of the flexibility matrix is possible only for
discrete structural elements (e.g., piping, beams, and trusses).

3. Mixed Method: The structure is subjected to applied loads or/and specific
displacements. This method uses very large stiffness coefficients and very small
flexibility coefficients in the same matrix.
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4. Hybrid Method: The structure is subjected to applied loads and stress boundary
conditions. This hybrid method has the merit of the FEA method, i.e., the
flexibility and sparse matrix of FEM for complicated inhomogeneous scatterers.

2.8 TYPES OF ELEMENTS

In general, the region in space is considered nonregular geometric. However, the
FEA method divides the nonregular geometric region to small regular geometric
regions. There are 3 types of elements in finite element.

1. One-Dimensional Elements: The objects are subdivided into short-line
segments. A one-dimensional finite element expresses the object as a function
of one independent variable such as one coordinate x. Finite elements use
one-dimensional elements to solve systems that are governed by ordinary
differential equations in terms of an independent variable. The number of
node points in an element can vary from 2 up to any value needed. Indeed,
increasing the number of nodes for an element increases the accuracy of
the solution, but it also increases the complexity of calculations. When the
elements have a polynomial approximation higher than first order, we call
that higher order elements. Figure 2.1 shows one-dimensional elements.
For example, the one-dimensional element is sufficient in dealing with heat
dissipation in cooling fins.

! !

(a) Two-node first order element (simplest)

t - !

(b) Three-node higher order element

t - - %

(c) Four-node higher order element

Figure 2.1. One-dimensional elements.

2. Two-Dimensional Elements: The objects can be divided into triangles, rectangles,
quadrilaterals, or other suitable subregions. A two-dimensional finite element
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expresses the object as a function of 2 variables such as the 2 coordinates x and y.
A finite element uses two-dimensional elements to solve systems that are governed
by partial differential equations. The simplest two-dimensional element is the
triangular element. Figure 2.2 shows two-dimensional elements. For example, a
two-dimensional element is sufficient in plane stress or plane strain.

(a) Three-node triangular element (simplest) (b) Four-node rectangular element
(c) Four-node quadrilateral element (d) Six-node curved triangular isoparametric element

Figure 2.2. Two-dimensional elements.

Three-Dimensional Elements: The objects can be divided into tetrahedral
elements, rectangular prismatic elements, pie-shaped elements, or other
suitable shapes of elements. A three-dimensional finite element expresses the
object as a function of 3 variables such as the 3 coordinates x, y, and z. A finite
element uses three-dimensional elements to solve systems that are governed
by differential equations. The simplest three-dimensional element is the
tetrahedral element. Figure 2.3 shows three-dimensional elements.

S pan

(a) Four-node tetrahedral element (simplest) (b) Eight-node rectangular solid element

(c) Eight-node hexahedral solid element (d) Ten-node curved tetrahedral solid isoparametric
element

Figure 2.3. Three-dimensional elements.

These three types of elements are applied and discussed in the electromagnetics

analysis chapter of this book.
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2.9 DIRECT METHOD FOR LINEAR SPRING

Here, we will use the direct method in a one-dimension domain to derive the
stiffness matrix for the linear spring element shown in Figure 2.4. Reference points
1 and 2 located at the ends of the linear spring element are the nodes. The symbols
fiand f, are local nodal forces (or axial loads) associated with the local axis x. The
symbols u; and u, are local nodal displacements (or degree of freedom at each
node) for the spring element. u;is the displacement of the spring due to a load f.
The symbol kis the stiffness of the spring (or spring constant). k is load required
to give the spring a unit displacement. The symbol L is the bar length. The local
axis x acts in the same direction of the spring that can lead to direct measurement
of forces and displacements along the spring.

Figure 2.4. Linear spring element.

The displacements can be defined related to forces as

u=u —u, (2.6)
fi=ku=k(u, —u,). (2.7)
The equilibrium of forces gives
fh,=—1f. (2.8)
Based on equation (2.7), the above equation becomes
£, =k(u, —u). (2.9)

By combining equations (2.7) and (2.9) and writing the resulting equations in

matrix form we get
k -k
{ﬁ}:[ ]{ul}' (2.10)
£ -k kflu,

{fit=[k{w} (2.11)

or

where

h
{f} = avector of internal nodal forces = { :
h
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k —k
[k] = the elemental stiffness matrix = [ ]
-k k

u
{u;} = a vector of nodal displacements = { 1}.

u,

For many interconnected spring elements, we can use the following:
{Q}=[K{u} (2.12)

where

{Qi} = a vector of external nodal forces = Z{f}

[K] = the structural stiffness matrix = X[ k]

{u} = avector of nodal displacements of the structure.

PROBLEMS

. Define finite element analysis?

. What are the advantages and features of finite element analysis?

. What are the 3 common methods to solve any engineering problem?

. What is procedure of finite element analysis (related to structural problems)?
. What are the 2 methods for prescribing the boundary conditions?

. Give the 3 practical applications of finite element analysis?

N O vin o WO N =

. What are the 3 main steps involved in solving an engineering problem using
any commercial software?

8. What are the 4 common methods in finite element analysis used for evaluating
displacements, stresses, and strains in any structure under different boundary
conditions and loads?

9. What is the primary variable in finite element method structural analysis?

10. Calculate the structural stiffness matrix of the system as shown in Figure 2.5.

1 K, ) , 3

—P.—/W% — x

fiou — —
v fz:uz f;’u3

Figure 2.5. Two springs in series structure.
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FINITE ELEMENT
Chapter ANALYSIS OF AXIALLY
LOADED MEMBERS

3.1 INTRODUCTION

In this chapter, we will use the bar element in the analysis of rod-like axially loaded
members. We start with the two popular bar elements using a two-node element
and a three-node element as well as bars of constant cross-section area, bars of
varying cross-section area, and the stepped bar.

Stress is an internal force that has been distributed over the area of the rod’s
cross section and it is defined as

o o (3.1)
where ¢ is the stress, Fis the force, and A is the cross-sectional area.

Thus, stress is a measure of force per unit area. When the stress tends to lengthen
the rod, the stress is called tension, and o > 0. When the stress tends to shortened
the rod, the stress is called compression, and o < 0. The orientations of forces in
tension and compression are shown in Figure 3.1.

Tension
F — —>»F

Compression
F———p]f J¢&—F

Figure 3.1. Directions of tensile and compressive forces.
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The derived unit of stress is the pascal (Pa), where pascal is equal to newtons
per square meter (N/m?), 1 Pa = 1 N/m? pascal is used in the SI units. The derived
unit of stress is the dimension pound-per-square-inch (psi), where 1 psi = 1 Ib/in*
Psiis used in the USCS (U.S. Customary) units. In stresses, calculations are generally
very large, therefore, they often use the prefixes kilo- (k), mega- (M), and giga- (G)
for factors of 10% 10°, and 10, respectively. Thus,

1kPa =10’ Pa, 1MPa=10° Pa, 1GPa=10’ Pa.

The numerical values for stresses unit conversion between the USCS and SI can
be presented as

1 psi = 6.895 x 10~ MPa.

Strain (¢) is the amount of elongation that occurs per unit of the rod’s original
length and is calculated as

&= T, (32)

where, AL is the change in length of the rod (elongation).

Strain is a dimensionless quantity and is generally very small.

For each individual rod, the applied force and elongation are proportional to
each other based on the following expression

F=kAL, (3.3)

where k is the stiffness.
Figure 3.2 shows force and elongation behaviors of rods at various cross-
sectional areas and lengths.

Shorter rods and loner
cross-sectional area

Longer rods and smaller
cross-sectional area

»
>

Figure 3.2. Force and elongation behaviors of rods at various cross-sectional areas and
lengths.
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Stress and strain are useful in mechanical engineering because they are scaled
with respect to the rod’s size.
Stress and strain are proportional to each other and presented as

o= Ee, (3.4)

where E is the elastic modulus (or Young’s modulus).

The elastic modulus has the dimensions of force per unit area. The elastic
modulus is a physical material property, and is the slope of the stress-strain curve
for low strain.

By combining equations (3.1) and (3.2), we get

ar=it (3.5)
EA

With the stiffness in equation (3.3), it can be written as

k=—. (3.6)
Each rod formed of same material has similar stress-strain behavior as
presented in Figure 3.3.

A All rods formed of same
material

&
Figure 3.3. All rods formed of same material have similar stress-strain behavior.

When a system is motionless or has constant velocity, then the system
has zero acceleration, and the system is to be in equilibrium. The static
equilibrium is used for a system at rest. For equilibrium, the resultant of all
forces and all moments acting on the system is balanced to zero resultant.
That is, the sum of all force vectors (F) acting upon a system is zero and the



62

FINITE ELEMENT ANALYSIS

sum of all moment vectors (M) acting upon a system is zero, and they can be

written as
D F=0 (3.7)
ZM =0. (3.8)
The total extension (or contraction) of a uniform bar in pure tension or

compression is defined as

s FL

= E (3.9)

The equation (3.9) does not apply to a long bar loaded in compression if there
is a possibility of bucking.

3.1.1 Two-Node Bar Element

o

15 U,
® e —» X
1 2

Figure 3.4. Two-node bar for rod-like axially loaded members.

This element has 2 end nodes and each node has 1 degree of freedom, namely
translation along its length. Its formulation is based on linear interpolation. It
gives accurate results only if loads are applied at nodes and the area is constant
over the element. However, required accuracy for practical purposes in other cases
can be obtained by taking a larger number of smaller elements. The interpolation
equation, element stiffness matrix, strain-displacement matrix, element strain,
and element stress for 2-node (linear) bar element are given by

{u}=[N, Nz]{ul} (3.10)

U,

{u}:[(sz—x) (x_Lxl)] (3.11)

[k]=£[ 1 _1] (3.12)
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[B]=%[—1 1] (3.13)
{e}=[Bl{q} (3.14)
{o} = E[B]{q} (3.15)

where
u; and u, = nodal (unknown) displacements (degree of freedom)at node 1 and
2, respectively
{u} = displacement matrix at the nodes
A = cross section of the area of the bar
L = x, — x; = length of the bar
E = Young’s modulus (modulus of elasticity)
AE

—— = bar constant

[k] = stiffness matrix of the element
[ B] = strain-displacement matrix
{e} = strain matrix

{o} = stress matrix.

Uniformly distributed load per unit length w acting on the element can be
converted into equivalent loads using,

N | —

Wr=wL? ¢, (3.16)

N | —

{ W} = the potential energy of load system.
Thermal loads due to a change in temperature AT can be converted into
equivalent nodal loads using

{Q}= EAa(AT){_l}, (3.17)
1

where
a is the coefficient of thermal expansion.
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3.1.2 Three-Node Bar Element

e e T By
'S ° e —» X
1 3 2

&=-1 £=0 £=1

Figure 3.5. Three-node bar for rod-like axially loaded members.

This element has a midside node, in addition to 2 end nodes. Each node has
1 degree of freedom, namely translation along its length. Its formulation is based
on quadratic interpolation and this element gives accurate results even with
distributed loads and a linearly varying cross-sectional area. Coarse mesh with
fewer of these elements can give the desired accuracy as compared to a fine mesh
of 2-node bar element. The interpolation equation, element stiffness matrix,
strain-displacement matrix, element strain, and element stress for the quadratic
bar element are given by,

&
_ |, .8 e
[u]=[N, N, N,]{u —[ Sty 5t 1 f:| (3.18)
Uy
7 1 -8
AE
[k]—3—L -8 (3.19)
-8 -8 16
_2[ 1-2¢ 1428
[B]_ L[ 2 > 2 > 25] (320)
{et=[Bl{q} (3.21)
{o}=E[B]{q}. (3.22)

Uniformly distributed load per unit length w, acting on the element, can be
converted into equivalent loads using,

1
{W}=w§ 1L (3.23)

4
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3.2 BARS OF CONSTANT CROSS-SECTION AREA

This section will demonstrate examples on bars of constant cross-sectional area
using FEA.

Example 3.1

Consider a 2 m long steel bar of 50 mm? cross-sectional areas as shown in Figure 3.6.
Use a two element mesh to model this problem. Find nodal displacements, element
stresses, and reaction.

, 10°N
Take Young’s modulus, E =2 X——, P=100 N.
mm
7]
s
7 ¢
Y 2m |

Figure 3.6. Bar with tip load for Example 3.1.

Solution
(1) Analytical method [Refer to Figure 3.6(a)]

X a

»
A\

F———»P

2m |

\ \\\l

Figure 3.6(a). Analytical method for bar with tip load for Example 3.1.
Displacement calculation
Displacement at section a—a,

_ Px  100x

=~ =" —1%107x
AE  50%2%10°

Displacement at node 2,

I, _ 1000 =1x107° %1000 =0.01 mm.
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Displacement at node 3,

J,

X

— 000 = 1X107° X 2000 = 0.02 mm.

Stress calculation P 100
Maximum stress in the bar = Z = _O =2 N/mm” (Constant).
Reaction calculation

For reaction calculation, z F. =0
R, +100=0
R, =-100 N (Direction is leftwards).

(1) FEM by hand calculations

Element 1 Element 2
™ e ®

Node1 Y1 Node2 L2 Node3
Figure 3.6(b). Finite element model for Example 3.1.

L =L, =1000 mm
A=A = A, =50 mm’
E=E, =E,=2x10° N/mm’

Stiffness matrix for element 1 is,

1 2
(1 -1 s[ 1 1] (1 -1]1

[kl]zAlEl _ 50x2x10  01X10°

L -1 1 1000 [-1 1] -1 1]

2 3

[ 1 -1 s[ 1 -1 (1 -1
[kz]:AzEz :50><2><10 —0.1x10°

L |-1 1 1000 | -1 1 -1 1
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Global equation is,

(K] {r} = {R} (3.24)
1 2 3
C J o | (D
—1I UTl ul Kl
0.1x10°| =1 1+1 —1|2 <Ju,¢=40 . (3.25)
-1 113 |uy) (100

Boundary conditions are, at node 1, u; = 0.
By using elimination method, the above matrix reduces to,

2 17 [u, 0
0.1x10° = .
-1 1] |u 100

By matrix multiplication, we get
0.1x10° (2X 1, —14;) =0 (3.26)
0.1x10° (=1, + ;) = 100. (3.27)

By solving equations (3.26) and (3.27), we get

u, =0.01 mm

u; =0.02 mm.

Stress (o) calculation

Stress for element 1 is,

(o)=L 1]{”1}=2X1°5[—1 1]{0 }:ZN/mmz.

L 1000 0.01

Stress for element 2 is,

{02}:L£[—1 1]{“2}=2X105[-1 1]{0'01}=2N/mm2.

u,] 1000 0.02
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Reaction calculation
From equation (3.25)

0.1x10° (1, —1,)=R,
0.1x10°(0-0.01)= R,
R, =-100 N.

(111) Software results

NODAL SOLUTION
STEP = 1

SUB 1

TIME = 1

USUM (AVG)
RSYS = 0

DMX .02

SMX .02

Y
k:nx MX

.002222 .00666 011111’ .01555

004444 .008889 013333 .017778
7 . 6 .02

Figure 3.6(c). Deflection pattern for a bar (refer to Appendix C for color figures).

Deflection values as node (Computer generated output)

The following degree of freedom results are in global coordinates:

NODE UX vy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.10000E-01 0.0000 0.0000 0.10000E-01
3 0.20000E-01 0.0000 0.0000 0.20000E-01
Maximum absolute values
NODE 3 0 0 3
VALUE 0.20000E-01 0.0000 0.0000 0.20000E-01
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1
ELEMENT SOLUTION

STEP = 1
SUB =1
TIME = 1
Ls1 (NOAVG)
DMX = .02
SMN = 2
SMX = 2
Y

|Z X MN

Figure 3.6(d). Stress pattern for a bar (refer to Appendix C for color figures).

Stress values at elements (Computer generated output)

STAT CURRENT
ELEM LS1

1 2.0000

2 2.0000

Reaction value (Computer generated output)

The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 —-100.00  0.0000

Answers for Example 3.1

Parameter Analytical FEM-hand Software
method calculations results
Displacement at node 2 0.01 mm 0.01 mm 0.01 mm
Displacement at node 3 0.02 mm 0.02 mm 0.02 mm
(Maximum displacement)
Maximum stress in element 1 2 N/mm? 2 N/mm? 2 N/mm?
Maximum stress in element 2 2 N/mm? 2 N/mm? 2 N/mm?

Reaction at fixed end —100 N —-100 N —-100 N




70 FINITE ELEMENT ANALYSIS

Example 3.2

Bar under distributed and concentrated forces. Consider the bar shown in
Figure 3.7 subjected to loading as shown below. Use 4 element mesh models and
find nodal displacements, element stresses, and reaction at the fixed end. Take
E=2x10° N/mm®, A=50mm?’, P=100N.

w =0.1 NNmm

y.4

> 100 N

250 mm 250 mm 250 mm 250 mm

NN

Figure 3.7. Bar under distributed and concentrated forces for Example 3.2.

Solution
(1) Analytical method [Refer Figure 3.7(a)]

x X
/ 100N
b A B - Psp © —
R 7.250mm c D E
X
Figure 3.7(a). Analytical method for the Bar under distributed and concentrated forces for

Example 3.2.

Reaction calculation
—R+w[L,+L,]+P=0

—R+(0.1)x[250+250]+100=0

R=150N
Stress calculation
OB :§:%:3N/mm2
Opg =£=@=2N/mm2

A 50
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To find opp, consider section XX

Py,  150—(x—250)x0.1 150—-0.1x+25 175-0.1x

ag =
o App 50 50 50
175—-0.1x250
Txx = Oxx [xco=——— =3 N/mm*
50
175-0.1x500
Txx lec=Oxx lymso=—"————=2.5 N/mm’
50
175—-0.1x750
Tyx lup= Oxx |y = 750= —————=2 N/mm’
50
Displacement calculation
Displacement at E,
O =0+ Ap, +Ap
750
5= TapLag N J’ (175—0.1x)dx+(a'DELDE)
’ E x=250 AE E
750
3x250 1 2 2%250
Jp=""—=+ 175x—00 5| 422
2x10° 50x2x10 5o 2X10

0z =0.00375+0.00625+0.0025 = 0.0125 mm

Displacement at B,

3%x250
O, =A,,=———=0.00375 mm
B AR %107

Displacement at D,

_ 3%250

Op = Ay + Ay === =0.00375+0.00625=0.01 mm
2x10

71
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Displacement at C,

500
O =AM, 5+
x=250

=0.0072 mm

(175-0.1x)dx
AE

=0.00375+

(1) FEM by hand calculations

(1) @ (3) (4)

1 L1 2 L2 3 L3 4 L4 5
Figure 3.7(b). Finite element model for Example 3.2.

L=L=L=1L,=250

50><z><105(

FINITE ELEMENT ANALYSIS

0.1x°

)500
250

mm

A=A =A =A,=A,=50 mm’

E=E =E,=E,=E, =2x10° N/mm’

Stiffness matrix for elements is,

(k= AE b=l soxaxior| 11
L |1 1 250 |1 1
[kz]:AzEzp b soxaxio’| T
L [-1 1 250 |1 1
[kg]:ASEg b1 soxaxio’| T
Ly [-1 1 250 (-1 1
(k= AL b soxaxao?| Bl
Ly -1 1 250 -1 1

1 2
1 171
=0.4%x10°
-1 12
2 3
] (1 -172
=0.4x10°
| -1 1] 3
3 4
] (1 -173
=0.4x10°
| -1 14
4 5
1 -114
=0.4x10’
-1 1|5
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Nodal load calculation for elements 2 and 3,

0.4x10°

Boundary conditions are at node 1, #; =0
By using the elimination method the above matrix reduces to,

0.4x10°

2 -1 0 0
-1 2 -1 0
0 -1 2 -1

L0 0 -1 1|u

By solving the above matrix and equations, we get

1, = 0.0038 mm
u; = 0.0072 mm
us = 0.01 mm

us = 0.0125 mm.

(12.5]

25

—WLZ‘ (0.1x250]
2 2 12.5]12
‘/\/1: = =
wL, 0.1x250 12.5|3
L 2 J 2
—WL3“ (0.1%250]
2 2 12.5]3
‘/Vz:  — =
wL, 0.1x250 12.5(4
[ 2 ] 2
(K] {r} ={R}
1 2 3 4 5
—t 1 V) V) o1t rul >R1
-1 141 -1 0 012 u, 12.5
-1 1+1 -1 0(3 Uy, p=412.5+12.5
-1 1+1 -114 u, 12.5
i 0o -1 1]5 LuS_ 100

125

100 |
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Stress (o) calculation

E i 2x10° 0
{o}=—[-1 1] = [-1 1] =3.04 N/mm’
L, u, 250 0.0038
u, 2><105 0.0038
{o,}=—[-1 1] = [-1 1] =2.72 N/mm*
) U 250 0.0072
Us 2)(105 0.0072
{o,}=—[-1 1] = [-1 1] =2.24 N/mm’
3 u, 250 0.01
E u | 2x10° 0.01
{a,}=—[-1 1] = [-1 1] =2 N/mm’
L, U, 250 0.0125
Reaction calculation: from equation (3.29)
0.4x10° (4, —u,)=R,
0.4x10° (0—0.0038) =R,
R =-152N
1
NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
USUM (AVG)
RSYS = 0
DMX = .0125
SMX = .0125
Y
by x MX
0 .002778 .005556 7.008333 L011111
.001389 .004167 .006944 .009722 .0125

Figure 3.7(c). Deflection pattern for a bar (refer to Appendix C for color figures).
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Deflection values at nodes (Computer generated output)

The following degree of freedom results are in global coordinates

NODE UX uy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.37500E-02 0.0000 0.0000 0.37500E-02
3 0.71875E-02 0.0000 0.0000 0.71875E-02
4 0.10000E-01 0.0000 0.0000 0.10000E-01
5 0.12500E-01 0.0000 0.0000 0.12500E-01
Maximum absolute value
NODE 5 0 0 5
VALUE  0.12500E-01 0.0000 0.0000 0.12500E-01
1
ELEMENT SOLUTION
STEP = 1
SUB =1
TIME = 1
LS1 (NOAVG)
DMX = .0125
SMN = 2
SMX = 3
Y
N X MX MN
2 2.222 2.444 2.667 2.889
2.111 2.333 2.556 2.778 3

Figure 3.7(d). Stress pattern for a bar (refer to Appendix C for color figures).

Stress values at elements (Computer generated output)

STAT CURRENT
ELEM LS1
1 3.0000

2 2.7500
3 2.2500
4 2.0000
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Reaction value (Computer generated output)
The following X, Y, Z SOLUTIONS are in global coordinates

NODE FX FY

1 —150.00  0.0000

Answers to Example 3.2

Parameter Analytical method  FEM-hand calculations  Software results
Displacement at node 2 0.00375 mm 0.0038 mm 0.00375 mm
Displacement at node 3 0.0072 mm 0.0072 mm 0.00719 mm
Displacement at node 4 0.01 mm 0.01 mm 0.01 mm
Displacement at node 5 0.0125 mm 0.0125 mm 0.0125 mm
Stress in element 1 3 N/mm? 3.04 N/mm? 3 N/mm?
Stress in element 2 3 N/mm’ to 2.72 N/mm?* 2.75 N/mm*

2.5 N/mm?*
Stress in element 3 2.5 N/mm* to 2.24 N/mm* 2.25 N/mm?
2 N/mm?
Stress in element 4 2 N/mm? 2 N/mm? 2 N/mm?
Reaction at fixed end -1.50 N -152N -150 N

Example 3.3

Aand P =80kN is applied as shown in Figure 3.8. Determine the nodal displacements,
element stresses, and support reactions in the bar. Take E =20 X 10° N/mm?.

300 mm?
1.2 mm
/)
/ Wall
; \ ——>p B B
7
; 200 mm 200 mm

Figure 3.8. Example 3.3.

Solution
(1) Analytical method [Refer to Figure 3.8(a)]

1.2 mm
/]
R, § R,
—j- D EQ———P Fe §—
A 200 mm 200 mm §

Figure 3.8(a). Analytical method for Example 3.3.
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Let R; be the reaction developed at the wall after contact.

Poel  PerL
AE  AE

1.2.

R, %200 . (=R,)x200
300%x20%10°  300x20x10°

=1.2. (3.30)

Y F.=0 = R+R,=P=80x10". (3.31)

Solving equations (3.30) and (3.31)

R =58018 N
R,=21982 N
R, 58018
Stresses are, o, = —="——=193.39 N/mm”’
A 0
R 21982
Ogp = ——>=————-=-7327 N/mm".
A 300
. L 193.39x200
Deflections are, o, =0, =App = Toe= _ -— =1.934 mm
E 2010
o, =1.2 mm.

(1) FEM by hand calculations

Element 1 Element 2

[ & L ]
Node1 L1 Node2 L2 Node3

Figure 3.8(b). Finite element model for Example 3.3.

L, =200 mm, L, =200 mm

First, we should check whether contact occurs between the bar and the wall. For
this, assume that the wall does not exist. The solution to the problem is as below.
(Consider the two element model.)
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Stiffness matrices are,

1 2
1 -1 s[ 1 -1 1 171
AE 300%x20x10
[k ]=—"+ = ~30x10°
L -1 1 200 -1 1 -1 1/2
2 3
1

1 -1 31 1 -1 -112
AE 300%x20x10
[k, ]=—>+ = =30%10° .
L [-1 1 200 -1 1 -1 1]3
Global equation is,

(K] {r} = {R} (3.32)

1 2 3

o

I 0T T, R
30x10°| =1 141 —1[2 <qu, =180%10%}.
q -1 13 |y

Boundary conditions are at node 1, u; = 0.
By using the elimination method, the above matrix reduces to,

2 1w, 80x10°
30%10° = )
-1 1| {u, 0

By matrix multiplication, we get
30x10% (2 X 1, —1x 1, ) =80x10° (3.33)
30%10° (=1Xu, +1X 1) =0 (3.34)

By solving equations (3.33) and (3.34), we get, 4, = 2.67 mm and u, = 2.67 mm.
Since displacement at node 3 is 2.67 mm (greater than 1.2 mm), we can say that
contact does occur. The problem has to be resolved since the boundary conditions
are now different. The displacement at B’ is specified to be 1.2 mm as shown in
Figure 3.8.
Global element equation is,

(K] {rf={R} (3.35)
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1 2 3
1=t oTr—fu (R
30x10°(—1]  1+1 —1{2 <u, r=480%10’
O =1 I3 {us] |0

Boundary conditions are at node 1, #; = 0 and at node 3, u, = 1.2.
By using the elimination method, the above matrix reduces to,

30x10°[2]{u, } = {80x10°}-1.2[ 30x10° x—1]
30x10° X2 x u, =80x10° +36x10°
u, =1.933 mm.

Stress (o) calculation: stress for element 1 is,

{al}{[—l 11{

“1}_20><103

0
[-1 1]{ }=193.3N/mm2.
200

i, 1.933

Stress for element 2 is,

(=L 1]{%}:20“03 [-1 1]{1'933}:—73.3 N/mm?.

L u, 200 1.2

Reaction calculation: from equation (3.36)
30x10° (1, —u,) = R,
30x10° (0—1.933) = R,
R, =-57990 N (Direction is leftwards).
We know that,
R +P+R, =0
—57990+80%10° + R, =0

R, =-22010 N (Direction is leftwards).

79

(3.36)
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(1) Software results

1
NODAL SOLUTION
STEP 1
SUB 1

TIME 1

USUM (AVG)
RSYS = 0

DMX = 1.933

SMX = 1.933

LN X MX

.42963 .859259 1.289 1.719
.214815 .644444 1.074 1.504 1.933

Figure 3.8(c). Deflection pattern for a bar (refer to Appendix C for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UX Uy UX USUM
1 0.0000 0.0000 0.0000 0.0000
2 1.9333 0.0000 0.0000 1.9333
3 1.2000 0.0000 0.0000 1.2000

Maximum absolute values

NODE 2 0 0 2

VALUE 1.9333 0.0000 0.0000 1.9333

1
ELEMENT SOLUTION

STEP = 1
SUB =1
TIME = 1
Ls1 (NOAVG)
DMX = 1.933
SMN = —73.333
SMX = 193.333
Y
|zn X MX MN
—73.333 —14.074 45.185 104.444 163.704
—43.704 15.556 74.815 134.074 193.333

Figure 3.8(d). Stress pattern for a bar (refer to Appendix C for color figures).
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Stress values at elements

STAT CURRENT
ELEM LS1

1 193.33

2 —73.333

Reaction value

The following X, Y, Z solutions are in global coordinates

NODE FX FY
1 —58000  0.0000
3 —22000

Answers to Example 3.3

Parameter Analytical method FEM-hand Software results
calculations

Displacement at node 2 1.934 mm 1.933 mm 1.933 mm
Displacement at node 3 1.2 mm 1.2 mm 1.2 mm
Stress in element 1 193.39 N/mm? 193.3 N/mm? 193.33 N/mm?
Stress in element 2 —73.27 N/mm* —73.3 N/mm* —73.333 N/mm?*
Reaction at fixed end 58.02 kN 57.94 kN —58 kN
Reaction at wall —21.98 kN —22.01 kN -22 kN

Example 3.4

A bar is subjected to self weight. Determine the nodal displacement for the bar
hanging under its own weight as shown in Figure 3.9. Use two equal length
elements. Let E=2 X 10" N/mm?, mass density p = 7800 kg/m’, Area A= 1000 mm?.
Consider length of rod L= 2 m.

yIIII4

2m

Figure 3.9. Bar under self weight for Example 3.4.
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Solution
(1) Analytical method [Refer Figure 3.9(a)]

yoyyvs ’/
A A
£ X
-
y|Bly
) W
£
-
v |C
o

Figure 3.9(a). Analytical method for Example 3.4.

I 7800x9.81%(2)
5 =g =8 _ )

oF 2 x 10" =7.6518x10"m

2 2\?2 2 2

81((2F (@

o"zzéB:J%dxzﬁ X S 7800x9811(2) () _ 5 7389107 m
AE T E\2 ) a2x10" (2 2

(1) FEM by hand calculations
19

ml L

2

2e

L
@f =

3e
Figure 3.9(b). Finite element model for Example 3.4.
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=1m

L
2

N |t

L=1L-=

The element stiffness matrices are,

For element 1,

1 -1 -3 m| 1 -1 1 -1]1

AE 1x107° %x2x%x10
[k]=2= = =2x10° .
Lil-1 1 1 -1 1 -1 1]2

For element 2,

A

1 -1 -3 ul[ 1 -1 1 -1])2

E 1x107° x2%10
[k, ]=— = =2x10° :
Lil-1 1 1 -1 1 -1 1]3

Nodal load vector due to weight is,

pAgL ] [7800x1x107° x9.81x1]
2 2 38.26|1
Pi: =
PAgL, 7800x1x107° x9.81x1 38.26] 2
2 2
pAgL ] [7800x1x107 x9.81x1]
2 2 38.26|2
P‘2= = .
pAgL, 7800x1x107° x9.81x1 38.26] 3
2 2
Global equation is,
[K] {r} = {R} (3.37)
] 2 3
1 -1 01T fu, | [3826]
2x10°| =1 1+1 —11{2 {u,;=176.52 (3.38)
q -1 13 |u, 38.26
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Boundary conditions are at node 1, u; = 0.
By using the elimination method, the above matrix reduces to,

2 —1[u, 76.52
2%x10° = .
-1 1 |u 38.26

By matrix multiplication, we get
2X10° (2X 1y —1X 13 ) =76.52 (3.39)
2x10° (=1X 1, +1X u; ) = 38.26. (3.40)

By solving equations (3.39) and (3.40),
we get

u, =5.739x107 m
u, =7.652x107 m.

(1) Software results

luomu, SOLUTION Y
STEP
SUB
TIME
UsuM (AVG)
RSYS = 0
DMX .765E—06
SMX .765E—06

1
1
1

MX

g -170E-06 -340E-6 4 .510E-06 .680E-06

.850E-07 .255E-06 25E-06 .595E-06 765E-06

Figure 3.9(c). Deflection pattern for a bar (refer to Appendix C for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UX 0) ¢ Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.57389E-06 0.0000 0.57389E-06

3 0.0000 0.76518E-06 0.0000 0.76518E-06
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NODE 0 3 0 3

VALUE 0.0000 0.76518E-06 0.0000 0.76518E-06

Maximum absolute values

Answers of Example 3.4

Parameter Analytical method  FEM-hand calculations  Software results
Displacement at node 2 5.7389 X 107 m 5.7389 X 107 m 5.7389 X 107 m
Displacement at node 3 7.6518 X 107 m 7.6518 X 107 m 7.6518 X 107 m

Example 3.5

A rod rotating at a constant angular velocity ® = 45 rad/sec is shown in Figure 3.10.
Determine the nodal displacements and stresses in the rod. Consider only the
centrifugal force. Ignore the bending of the rod. Use two quadratic elements. Take
A =350 mm?, E=70 GPa, Mass density p = 7850 kg/m’, Length of therod L =1 m.

(O]

®) 0]

i 1000 mm

—
-

Figure 3.10. Rod rotation at a constant angular velocity for Example 3.5.
Solution
(1) Analytical method [Refer to Figure 3.10(a)]

X a
A B c D E
® T s ®
1 2 3 4 5

Figure 3.10(a). Analytical method for rod rotation at a constant angular velocity for
Example 3.5.

L=1m
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Stress calculation: Stress at section a-a,

L-
mre? pPXAX(L- x)(x+( x))a) .
o= - 2 _7 (2 -2) (3.41)
Area A 2
? r 4 1
g, =0y,=0 szz) (L2—16 M() () =7.45 MPa

o,=0.=0 ; =596 MPa

x==
2

7, =0p=0 5= 3.48 MPa
4

o,=0,=0,,=7.95MPa.

Displacement at section a—a = change in length of x,

ip x 2012 2 2 3\*
Ax:J—xdx:Jpr (L x)dx:,oa) Px-X
AE

2AE 2E 3

0 0

d=0,=Ax,,=0

o, 2\ 78s0x(4sP(, LI
G=dy=Ad 1 =20 py X | SN b 2
. 2E 3 ), 2x70x10 4 64x3

7850 (45 1)
—()9 (__Q =2.78x107° m =0.0278 mm
2x70%10

2 4 192

0, =0z =Ax| _L =0.052 mm
2

0, = 0p = Ax| _3L =0.069 mm
4

0, =0y = Ax|__, =0.076 mm.

Reaction calculation

2
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ALl pa _ 3.5x107" (1) X7850 X (45)°

R =
! 2 2

—2781.84 N.

(1) FEM by hand calculations

P
*—]” © @
[ ]
1 2 3 4 5
500 mm 500 mm

Figure 3.10(b). Finite element model for Example 3.5 (with two quadratic elements).

A finite element model of the rod, with two quadratic elements, is shown in
Figure 3.10(b). The element stiffness matrices are,

L=L=L=05m

7 1 -8 7 1 -8
[k]::fﬁfi L7 g ::35x10‘4x70x109 . g
oL 3x0.5
-8 -8 16 -8 -8 16
1 3 2
7 1 -8 11

-8 -8 162
3 5 4
7 1 -8 |3

[k,]=163.33x10°| 1 7 -8 |5.
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Thus, the global stiffness matrix is,

1 2 3 5

[ 7 -8 1 01

-8 16 -8 012
[K]=163.33x10°| 1 -8 14 -8 113.

-8 16 -8 |4
| 1 -8 7]5
The centrifugal force or body force F, (kg/m’) is given by,
2
F=2% (3.42)
8

Note that Fis a function of the distance r from the pin. Taking the average values
of F over each element, we have,

_prad 7850%0.25% (45)°

g
g 9.81

=405103.2 kg/m’

P ot 7850%0.75% (45)°
) = =

=1215309.6 kg/m”.
g 9.81

Thus, the element body force vectors are,

1 1]
6 6
1 . 1
fi=AXL, XE 5 =3.5%x10"" x0.5x405103.2 5
2 2
3] [ 3]
_!
ol 1.815]1
1 Global dof
=70.89 g =411.815;2
z 4726 |3
3]
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1 1]
6 6
1 » 1
f,=AXL,XF P =3.5%x10" x0.5x1215309.6 .
2 2
13} L3}
1)
61 (35453
=212.68 é>= 35.45 {5 Global dof
2 141.79] 4
(3]
Assembling f; and f,, we obtain,
11.815] [115.91 )
47.26 463.62
F=147.26 $x9.81=1463.62 ¢ N.
141.79 1390.96
35.45 | 347.76 |
The global equation is,
(K] {r} = {R}
1 2 3 4 5
-8 I 01T fu,| [II5.9T |
-§ 16 -8 012 |u, 463.62
163.33x10°| 1 -8 14 -8  1(3 {u,r=1463.62
0 -8 16 -84 |u, 1390.96
| 3 1 -8 7]5 |u) [347.76 |

Boundary conditions are at node 1, u; = 0.

89

(3.43)

(3.44)
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By using the elimination method, the above matrix reduces to,

163.33x10°

16

-8

-8

14

0

-8

1] u,

0]|u,

[463.62 ]
463.62

1390.96|

347.76 |

By solving the above matrix and equations, we get

u, =2.661x10~° mm = 0.0266 mm
u; =0.0497 mm
u, =0.0657 mm
u; =0.0709 mm.

The stress at node 1 in element 1 is given by,

U, 0
2E 2x70%10°
g, =—[-15 =05 2]{u, t ==——[-1.5 —0.5 2]30.0497 { =7.924 MPa.
L 500
u, 0.0266

The stress at node 2 in element 1 is given by,

U 0
2F 2%x70%10°

g,=—[-05 05 0]{u,p=—"—"——r
L 500

i 0.0266

[-0.5 0.5 0]40.0497}=6.972 MPa.

The stress at node 3 in element 1 is given by,

u, 0

2E 2%x70x10°

g,=—[05 1.5 2u, ="
L, 500

i 0.0266

[0.5 1.5 —2]40.0497 ¢ =5.992 MPa.
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The stress at node 1 in element 2 is given by,

u, 0.0497
2E 2%x70x10°
oy, =—[-1.5 -05 2]qu,t=————[-1.5 -0.5 2]30.0709=5.992 MPa.
L, 500
u, 0.0657

The stress at node 2 in element 2 is given by,

i, 0.0497
_2E

2x70%10°
gy, =—[-05 05 0]Ju, p=—"——r
L, 500

U, 0.0657

[<0.5 0.5 0]40.0709 } =2.968 MPa.

The stress at node 3 in element 2 is given by,

i, 0.0497
_2E

2x70x10°
0'23—L—[0.5 1.5 —2] MS :T
2

i, 0.0657

[0.5 1.5 —2]{0.0709}=—0.056 MPa.

(1) Software results

While solving the problem using software, 4 linear bar elements are taken instead
of 2 quadratic elements.

NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
USUM (AVG)
RSYS = 0
DMX = .757E-04
SMX = .757E-04
Y
BN X I ' 4
.16BE-04 .336E-04 .505E-04 .673E-04
.841E-05 .252E-04  .421E-04 .589E=04 .757E=04

Figure 3.10(c). Deflection pattern for a rod (refer to Appendix C for color figures).
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Deflection values at nodes (in m)

The following degree of freedom results are in global coordinates

NODE UX (9) ¢ Uz USuUM
1 0.0000 0.0000 0.0000 0.0000
2 0.27795E-04 0.0000 0.0000 0.27795E-04
3 0.52041E-04 0.0000 0.0000 0.52041E-04
4 0.69191E-04 0.0000 0.0000 0.69191E-04
5 0.75696E-04 0.0000 0.0000 0.75696E-04

Maximum absolute values

NODE 5 0 0 5

VALUE 0.75696E-04 0.0000 0.0000 0.75696E-04

Reaction value

The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 —2781.8 -3.3691

Answers of Example 3.5

Parameter Analytical FEM-hand Software
method calculations results
Displacement at node 2 0.0278 mm 0.0266 mm 0.0278 mm
Displacement at node 3 0.052 mm 0.0497 mm 0.052 mm
Displacement at node 4 0.069 mm 0.0657 mm 0.069 mm
Displacement at node 5 0.076 mm 0.0709 mm 0.076 mm
Stress in node 1 of element 1 7.95 MPa 7.924 MPa ---
Stress in node 2 of element 1 7.45 MPa 6.972 MPa ---
Stress in node 3 of element 1 5.96 MPa 5.992 MPa -—-
Stress in node 1 of element 2 5.96 MPa 5.992 MPa ---
Stress in node 2 of element 2 3.48 MPa 2.968 MPa ---
Stress in node 3 of element 2 0 MPa —0.056 MPa ---

Reaction at fixed end —2781.84 N --- —2781.8 N




FINITE ELEMENT ANALYSIS OF AXIALLY LOADED MEMBERS 93

Each problem given in this book uses a different procedure for solving using
software. For familiarizing, procedure for one problem is given from each chapter
using software. Other problems are left to the user to explore the software for
solving the problems.

Procedure for solving the problem using ANSYS"® 11.0 academic teaching software
For Example 3.3

PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add >
Structural Link > 2D spar 1 > OK > Close

Only structural element types are shown
Library of Element Types

Element type reference number

x|

Figure 3.11. Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

'A‘ Real Constant Set Number 1, for LINK1

Element Type Reference No. 1

Real Constant Set No. [l—

Cross-sectional area  AREA |am—

Tnitial strain ISTRN r———'
o Apply concel | Hep |

Figure 3.12. Enter the cross-sectional area.

Cross-sectional area AREA > Enter 300 > OK > Close
Enter the material properties
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3. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural> Linear > Elastic > Isotropic
Enter EX=2E4 and PRXY=0.3 > OK
(Close the Define Material Model Behavior window.)
Create the nodes and elements. Create 3 nodes 2 elements.
4. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS
Enter the coordinates of node 1 > Apply
Enter the coordinate of node 2 > Apply
Enter the coordinates of node 3 > OK

Node locations

Node number X coordinate Y coordinate
1 0 0
2 200
3 400 0

%Y,Z Location in active CS |n |u |

THXY, THYZ, THZX.
Rotation angles (degrees) | | |

Figure 3.13. Enter the node coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered >
Thru node Pick the 1% and 2" node > Apply Pick 2" and 3™ node > OK

Elements from Nodes

@ Pick C Unpick

@ single ( Box

€ Yolygen € circle
 Loop

Count. =0
Maximum = 20
Hinimum = 1

Node Wo. =

@ List of Items

€ Min, Max, Inc

——
[ox ] _somr |

Reset Cancel

Pick AlL Help

Figure 3.14. Pick the nodes to create elements.
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Apply the displacement boundary conditions and loads.

6. Main Menu > Preprocessor > Loads > Apply > Structural > Displacement >
On Nodes Pick the 1* node > Apply > All DOF=0 > OK

7. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Nodes Pick the 3™ node > Apply > Select UX and enter
displacement value = 1.2 > OK

8. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Force/Moment > On Nodes Pick the 2" > OK > Force. Moment value =
80e3 > OK

Y
e . -

Figure 3.15. Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the solution.
First to be safe, save the model.

Solution

The interactive solution proceeds.

9. Main Menu > Solution > Solve > Current LS > OK
The STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close
In the Solve Current Load Step WINDOW, Select OK, and the solution is
complete, close the ‘Solution is Done!” window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Postproc > Plot Results > Contour Plot > Nodal
Solu > DOF Solution > Displacement vector sum > OK
The result is shown in Figure 3.8(c).
To find the axial stress, the following procedure is followed.
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11. Main Menu > General Postproc > Element Table > Define Table > Add

Currently Defined Data and Status:
Label Ttem Comp Time Stamp Status
Add... I Undatel Delete I
_gon | _teo |

Figure 3.16. Define the element table.

Select By sequence num and LS and type 1 after LS as shown in Figure 3.17.

m Define Additional Element Table ltems

[AVPRIN] Eff NU For EQV strain

[ETABLE] Define Additional Element Table Items
Leb  User label For kem

Ttem,Conp Resuks data kem

(For "By sequence num”, enter sequence
0. In Selection bax. See Table 4.xx-3
in Elaments Manual for saq. numbers.)

x|

Figure 3.17. Selecting options in element table.

OK > Close

12. Main Menu > General Postproc > Plot Results > Contour Plot > Elem
Table > Select > LS1 > OK

"‘Conmur Plot of Element Table Data

[PLETAB] Contour Element Tabie Data
Ttisb Ttem to be plotted

[ -]
Avglab Average s comman nodes? [No -donot avg =
x| ooy | corcel | no |

Figure 3.18. Selecting options for finding out axial stress.

The result is shown in Figure 3.8(d).



FINITE ELEMENT ANALYSIS OF AXIALLY LOADED MEMBERS 97

3.3 BARS OF VARYING CROSS-SECTION AREA

This section will demonstrate thorough examples explaining FEA on bars of
varying cross-section area.

Example 3.6

Solve for displacement and stress given in Figure 3.19 using 2 finite elements
model. Take Young’s modulus E = 200 GPa.

03m

AN

w =25kN/m

2m

_I 0.1m t=0.05m

200 kN
Figure 3.19. Example 3.6.

Solution
(1) Analytical method [Refer Figure 3.19(a)]

/////1//A//////

d 2 B a
bx

3 Cc
Figure 3.19(a). Analytical method for Example 3.6.

L=2m.
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Stress calculation

b, =O.1+(O.3—0.1)§=O.1+0.1x

A, =b, xt=(0.1+0.1x)0.05

X

! ~200x10° +25X10° X x
A (0.14+0.1x)0.05
200%10° +25%10° x2
a=0,=0,_,= =16.67 MPa
= (0.140.1x2)0.05
200%x10° +25%x10° x1
gy =0y=0,| _ = =22.5 MPa
= (0.1+0.1x1)0.05

200%10° +25%10° X0
gy =0.=0,| _,= =40 MPa.
(0.1+0.1x0)0.05

Displacement Calculation

Displacement at section a-a = change in length of (L-x)

L L 3 3
200x10° +25%10° x
o= j” = | = | dx
2 1(0.1+0.1x)0.05%x200x 10

0.14+0.1x) 0.05x200x%10° 0.14+0.1x) 0.05%200x%10°
=0.2423 mm

o .[( 200x10° +25%10° X x ) J( 200x10° +25%10° X x )

5o j- 200x10° +25%10° x x _j 200x10° +25%10° x x
2 \(0.140.1x)0.05x 200 x 10 (0.140.1x)0.05x 200 %10’
=0.096 mm.

(I1) FEM by hand calculations

Using 2 elements each of 1 m length, we obtain the finite element model as shown
in Figure 3.19(c). We can write the equivalent model as shown in Figure 3.19(b).
At the middle of the bar width is,

0.3+0.1
—( )=O.2 m
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WIS SIS P74
c (0.3+0.2)/2 = 0.25 m
£ - ~ (0.1402)2=0.15m

Figure 3.19(b). Equivalent model of Finite element model for Example 3.6.
1

Al (D
2
Ay [ 2

3
Figure 3.19(c). Finite element model for Example 3.6.

A, =0.25%0.05=0.0125 m’
A, =0.15x0.05=0.0075 m”
E, = E, =200x10° N/m’
L=L=1m.

Stiffness matrix for element 1 is,

1 -1 o[ 1 -1

AE 0.0125X200%10

[k1]=—£ 1! ]= ; [ ]=2.5><109{
1 | —1 1 — _

Stiffness matrix for element 2 is,

1

1 -1 o 1 -1
AE 0.0075% 200X 10
[k,]== 2[ ]= XX [ ]=1.5><109|:

99
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Distributes load calculation for elements 1 and 2,

[wx L] [25x1]

2 2 12.5]1
W, = = x10° = x 10’
wx L, 25%1 12.5)2
2 ] L2
[wxL,| [25x1]
2 2 12.5|2
W, = = x10° = x 10°.
wx L, 25%1 12.5)3
2 2

Global equation is,

[K{r}={R}. (3.45)
1 2 3
2.| -25 0 [T [u,| [125+R, |
10° | —2. 25+1.5 —15(2 qu,p=1425 x10°. (3.46)
0| -1.5 1.5[3 |u, 12.5+200

Boundary conditions are at node 1, u; = 0.
By using the elimination method, the above matrix reduces to,

4 -1.5][25
10° x10°,
-15 1.5||212.5

By matrix multiplication, we get
10° (4X u, =1.5X ;) = 25x10 (3.47)
10° (=1.5Xu, +1.5xu; ) = 212.5x10°. (3.48)
By solving equations (3.47) and (3.48), we get

#, =9.5x10~ m =0.095 mm
u, =2.37%x10™ m=0.237 mm.
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Stress (o) calculation

Stress in element 1,

101

E wl 2x10° 0
{a}="[-1 1] = -1 1] =19 MPa.
L, u,| 1000 0.095
Stress in element 2,
E u, 2)(]_05 0.095
{o,}==2[-1 1] = - =28.4 MPa.
L, u,| 1000 0.237
(11) Software results
1 NODAL SOLUTION Y
STEP = 1 L x
SUB =1
TIME = 1
USUM (AVG)
RSYS = 0
DMX = .236667
SMX = .236667
[MX
0 .052593 .105185 .157778 .21037
.026296 .078889 .131481 .184074 .236667

Figure 3.19(d). Deflection pattern for a tapered bar (refer to Appendix C for color figures).

Deflection values at node

The following degree of freedom results are in global coordinates

NODE UX Uy UX USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 —0.95000E-01 0.0000 0.95000E-01
3 0.0000 —-0.23667 0.0000 0.23667
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Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 ~0.23667 0.0000 0.23667

1
ELEMENT SOLUTION ¥
STEP = 1
SUB =1 i_"
TIME = 1
Ls1 (NOAVG)
DMX = .236667
SMN = 19 -
SMX = 28.333
MX
9 21.074 23.148 25.222 27.296
20.037 22.111 24.185 26.259 28.333

Figure 3.19(e). Stress pattern for a tapered bar (refer to Appendix C for color figures).

Stress values at elements

STAT CURRENT
ELEM LS1

3 19.000

4 28.333

Reaction value
The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 0.0000 0.25000E+06
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Answers of Example 3.6
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Parameter Analytical FEM-hand Software
method calculations results
Displacement at node 2 0.096 mm 0.095 mm 0.095 mm
Displacement at node 3 0.2423 mm 0.237 mm 0.23667 mm
Stress in element 1 16.67 MPa to 22.5 MPa 19 MPa 19 MPa
Stress in element 2 22.5 MPa to 40 MPa 28.4 MPa 28.33 MPa

In the above example, 2 elements are used for solving the problem by hand
calculation and by software. To get the convergence of the solution with the
analytical method a higher number of elements are to be used.

Example 3.7

Find the displacement and stress distribution in the tapered bar shown in
Figure 3.20 using 2 finite elements under an axial load of P = 100 N.

Cross-sectional area at fixed end = 22 mm?
Cross-sectional are at free end =100 mm?
Young’s modulus E = 200 GPa

P=100N

SAOANANNRNNNNN

Figure 3.20. Example 3.7

Solution
(1) Analytical method [refer to Figure 3.20(a)]

b=10mm

20 mm
h

-
N
w

P=100N

I
~
=

hy

ANl ANANANAN

50 mm 50 mm

Figure 3.20(a). Analytical method for Example 3.7.
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Assume, b = thickness = 10 mm
Area at section a-a=0b X h,

(e 22))

A, =bxh, =10(10+(2O_10

)x):10(10+0.1x).

Stress calculation

p 100
Jx ==
A, 10(10+0.1x)
100
O, = Op1o0 = =0.5 MPa
10(10+0.1x100)
100
0, =0, gy =—————=0.667 MPa
10(10+0.1X50)
100
0,=0,,=——————=1MPa.
10(10+0.1x0)
Displacement calculation
PL 100100 20
agzo“cz—ln£= 50 In=—=3.47x10" mm
Eb(h,—h) h, 2x10°x1020—10) 10

100 X 2
0050 1n—0=1.44><10*4 mm.

P 2%10°x1020-15) 15

2

(1) FEM by hand calculations

Using 2 elements each of 50 mm length, we obtain the finite element model as shown
in Figure 3.20(c). We can write the equivalent model as shown in Figure 3.20(b)

. . . (200+100
at the middle, area of cross- section of bar is g =150 mm”.
]

]

%

A A

’ 1 A,

7

2

1 50 mm 50 mm

~

Figure 3.20(b). Equivalent model of finite element model for Example 3.7.
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Element 1 Element 2

® @ <
Node1 L, Node2 L, Node3
Figure 3.20(c). Finite element model for Example 3.7.

200+150
=00 _ 175
2
150+100
A, =000 _ 15 e’
2
L =L, =50 mm

E, =E, =2x10° N/mm®.

Stiffness matrix for element 1 is,

1 -1 511 =1
AE 0.175x2x10
[kl]z—l 1 = :7)(105
L |-1 1 >0 -1 1 -

Stiffness matrix for element 2 is,

1 -1 s 1 -1
AE 125%2x1
[k,]=—=2 2[ ]=—O > 0 [ ]:5><105[

L 1.1 1 50 1 1

Global equation is,

[K{r}={R}
1 2 3
7 =7 0T f{u, | (R, |

10°(-7] 745 5|2 Ju, =40

-5 503 |uy] (100

Boundary conditions are at node 1, u#; =0.

By using the elimination method, the above matrix reduces to,

ol

105

(3.49)

(3.50)
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By matrix multiplication, we get
10° (12X u, =5X 1,) =0
10° (=5Xu, +5Xu, ) =100.
By solving equations (3.51) and (3.52), we get
u, =1.429%x10™* mm
u, =3.429x10™" mm.

Stress calculation

Stress in element 1,

U

|

2

_2x10°
50

{m}=%[—1 11{

0
-1 1]
1.429%107*

_2x10°
50

u

Stress in element 2,

(o= Pl 1]{2

3

(1) Software results

1.429%107*
[-1
3.429%107*

FINITE ELEMENT ANALYSIS

(3.51)
(3.52)

} =0.5716 MPa.

} =0.8 MPa.

1
NODAL SOLUTION

STEP = 1
SUB =1
TIME = 1
UsuM (AVG)
RSYS = 0

DMX = .343E-03
SMX = _343E-03

ZN X

+762E-04
+0381E-04

+152E-03
+114E-03 +190E-03

+229E-03
+267E-03

+305E-03
+343E-03

Figure 3.20(d). Deflection pattern for a tapered bar (refer to Appendix C for color figures).
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Deflection values at nodes

107

The following degree of freedom results are in global coordinates

NODE UX Uy Uz uUsum
1 0.0000 0.0000 0.0000 0.0000
2 0.14286E-03 0.0000 0.0000 0.14286E-03
3 0.34286E-03 0.0000 0.0000 0.34286E-03
1
ELEMENT SOLUTION
STEP = 1
SUB =1
TIME = 1
LSl (NOAVG)
DMX = .343E-03
SMN = .571429
SMX = .8
Y
Z X MN MX
S5T1429 g a5 6222220, 9616673016 60041572381 449506 774603

Figure 3.20(e). Stress pattern for a tapered bar (refer to Appendix C for color figures).

Stress values at elements

STAT CURRENT
ELEM LS1

1 0.57143

2 0.80000

Answer for Example 3.7

Parameter Analytical FEM-hand Software
method calculations results
Displacement at node 2 1.44 X 10* mm 1.429 X 10* mm 1.4286 X 10* mm
Displacement at node 3 3.47 x 10~ mm 3.429 x 10 mm 3.4286 X 10~ mm
Stress in element 1 0.5 MPa to 0.667 MPa 0.5716 MPa 0.57143 MPa
Stress in element 2 0.667 MPa to 1 MPa 0.8 MPa 0.8 MPa
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Example 3.8

Find the nodal displacements, element stresses, and reaction in the tapered
bar subjected to a load of 6000 N as shown in Figure 3.21. Further the member
experiences a temperature increase of 30°C. Use 3 equal length elements for finite
element model. Take E = 200 GPa, v=0.3,and a =7 x 107°/°C.

1500 mm
Figure 3.21. Example 3.8

Solution
(1) FEM by hand calculations

We obtain the finite element model as shown in Figure 3.21(b). We can write the
equivalent model as shown in Figure 3.21(a).

A o L -y

Figure 3.21(a). Equivalent model of the finite element model for Example 3.8.

AALAAANNNY

L L
L . * 2 * L °

Node 1 Node 2 Node 3 Node 4
Figure 3.21(b). Finite element model for Example 3.8.

L =L =L,=500 mm

AT =30°C
A, =2000 mm”
2000+1000
A, =——————=1500 mm”

A, =1000 mm”.
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Element stiffness matrices are,

1
[k]=2E
Ll _—1
(1
[k,]= 2E
Lz _—1
1
[k,]= 25
L3 -1

~1] 2000x2x10°
1 500

1 500

1 500

‘1} ~ 1000x2x10°

Nodal loads due to thermal effect are,

-1 -1
{Quumt= EAza(AT){ }: 2%10° x1500x7x107° ><30{ }: 63><103{
1

-1 -1
{QM,)}:EAW(AT){ }=2><105><1000><7><10‘6><30{ }:42><103{
1

Global forced vector

{R}=

[—84%10°
84x10° —63x10°

63x10° —42x10°

| 42x10°

—1}_ 1500x2x10°

|

-1 -1
{Qum}= EAla(AT){ }: 2Xx10% x2000X7x10™° xso{ }: 84x103{
1

-1

1 2
—1] 1 —-171
=8x10°
1] -1 12
2 3
—1] 1 -172
=6x10°
1] -1 1]3
3 4

1

1

1

[—84x10%] 1
21x10° |2

21x10° |3

| 42x10° | 4

109

1)1
1}2
~1]2
!
1] 3
1}4'
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Global equation is,

1l 2 3 4
o 0 0T [ | [~S&XICFR, |1
;|8 8+6 —6 02 |u, 21x10° 2
10 = , : (3.53)
Qq -6 6+4 —4(3 |u, 21x10 3
@ 0 4 414wy 42x10° +6000 | 4

Using the elimination method of applying boundary conditions, i.e., 1; = 0.
The equation (3.53) reduces to,

14 -6 0][u,] [21x10°
10°[-6 10 —4 [{u, t=121%10’

0 —4  4f[u,]) [48x10°

Solving the above matrix and equations, we get

u, =0.1125 mm
u, =0.2275 mm
u, =0.3475 mm.

Stress calculation

E u 2x10° 0
o= ) e Eear) = 2 1
L, U, 500 0.1125

—2x10°x7x10°x30=3 MPa

(72=L£[—1 1]{u2}—Ea(AT)=2XIOS[—1 1]{0'“25}

2 u, 500 0.2275

—2%x10°x7%x107° x30=4 MPa

7, = L£[—1 1]{u3}—Ea(AT) _2ao, 1]{0'2275}

3 u, 500 0.3475

—2x10°x7x107° %30 =6 MPa.
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Reaction calculation: from equation (3.53),

(111) Software

8x10°u, —8x10°u, = —84x10° + R,

results

R =-

6000 N.

1

NODAL SOLUTION
STEP = 1

SUB 1

TIME = 1

USUM (AVG)
RSYS = 0

DMX .3475
SMX = .3475

zr'i

.038611

077222
.115833

.193056

.231667

.270278

m:—

.154444 .308889

+3475

111

Figure 3.21(c). Deflection pattern for a tapered bar (refer to Appendix C for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UX Uy UX USumMm
1 0.0000 0.0000 0.0000 0.0000
2 0.11250 0.0000 0.0000 0.11250
3 0.22750 0.0000 0.0000 0.22750
4 0.34750 0.0000 0.0000 0.34750
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1
ELEMENT SOLUTION
STEP = 1
SUB =1
TIME = 1
Ls1 (NOAVG)
DMX = .3475
SMN = 3
SMX = 6

¥

X M x
3.667 4.333 ' 5.667
3.333 4.667 5.333 6

Figure 3.21(d). Stress pattern for a tapered bar (refer to Appendix C for color figures).

Stress values at elements

STAT CURRENT
ELEM LS1

1 3.0000

2 4.0000

3 6.0000

Reaction value

The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 —6000.0

0.0000
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Answers for Example 3.8

Parameter FEM-hand Software
calculations results
Displacement at node 2 0.1125 mm 0.1125 mm
Displacement at node 3 0.2275 mm 0.2275 mm
Displacement at node 4 0.3475 mm 0.3475 mm
Stress in node 1 of element 1 3 MPa 3 MPa
Stress in node 2 of element 1 4 MPa 4 MPa
Stress in node 3 of element 1 6 MPa 6 MPa
Reaction at fixed end —-6000 N —-6000 N

Procedure for solving the problem using ANSYS® 11.0 academic teaching
software

For Example 3.6

PROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit > Delete > Add >
Structural Link > 2D spar 1 > OK > Close

I\ Library of Element Types

Only structural element types are shown
Library of Element Types

Element type reference number

Figure 3.22. Element selection.
2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

Element Type Reference No. 1

Real Constant Set No. |1_

Cross-sectonalarea  AREA W

Initial strain ISTRN |o—
x | _mw | _cwd | b |

Figure 3.23. Enter the cross-sectional area of 1 element.
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Cross-sectional area > Enter 12500 > OK > Add > OK

VA‘ Real Constant Set Number 2, for LINK1

Element Type Reference No. 1
Real Constant Set No.

|
il

oK aoy | cancel |

Figure 3.24. Enter the cross-sectional area of 2" element.

Cross-sectional area AREA > Enter 7500 > OK > Close
Enter the material properties.

3. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX=200E3 and PRXY=0.3 > OK

(Close the Define Material Model Behavior window.)

Create the nodes and element. As stated in the example, use 2 element model.
Hence create 3 nodes and 2 elements.

4. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

Enter the coordinates of node 1 > Apply Enter the coordinates of node 2 >
Apply Enter the coordinates of node 3 > OK.

Node locations

Node number X coordinate Y coordinate

1 0 0
2 0 -1000
3 0 —2000

fA‘t reate Nodes in Active Coordinate System

[N] Create Nodes in Active Coordnate System
X,¥,Z Location in active CS |o |o |
THXY, THYZ, THEX
Rotation angles (degrees) [ [ [
x| oo _| coal_| o |

Figure 3.25. Enter the node coordinates.
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5. Main Menu > Preprocessor > Modeling > Create > Elements > Elem Attributes >
OK > Auto Numbered > Thru nodes Pick the 1* and 2" node > OK

Eolte s o ot . & pex  Onpiok
TR Bnert e ponker (TR | ® siagts Chix
[MAT] Materid rumber Iﬁ € dolyy e
[REAL] Poad coatant swt rmber l'—H oo ]
[ESYS) Elemert coordnats sys e 3 Rasimm = :-
[SETMUM] Secson umber [ | e
FEMACY et wommck a0 St e —> F Liex of Toems

© mim, Max, Ine

| ——

e

x| ancel | b | S| s

Figure 3.26. Assigning element attributes to element 1 and creating element 1.

Elem Attributes > change the Real constant set number to 2 > OK > Auto
Numbered > Thru nodes Pick the 2" and 3™ node > OK

I Element Attributes

Define attrkutes for dements @ piex € Dopick
(7] ot e T— - # o e
€ rotygon =
[MAT] Material rumber || & toop
[REAL] Roal constant set number I 2 .| Count = ©
Maxima = 20
[ESYS] Element coordnats sys o 4 Rindmin = 1
Noda No. =
[SECNUM] Section number hone defined A
[T3HAP] Target clomert shape. o ot
Sl - " Min, Mas, Inc
 E—
I 0% aunr|
Beser | e-oul
Halp
o | corcel | wo | ==

Figure 3.27. Assigning element attributes to element 2 and creating element 2.

Apply the displacement boundary conditions and loads.

6. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Nodes Pick the 1* node > Apply > All DOF=0 > OK

7. Main Menu > Preprocessor >Loads > Define Loads > Apply > Structural > Force/
Moment > On Nodes Pick the 2™ node > OK > Force/Moment value=—25€3 in
FY direction > OK > Force/Moment > On Nodes Pick the 1* node > OK > Force/
Moment value=—12.5e3 in FY direction > OK
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3

Figure 3.28. Model with loading and displacement boundary conditions.

The mode-building step is now complete, and we can proceed to the solution.
First to be safe, save the model.
Solution. The interactive solution proceeds.

8. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and
the Solve Current Load Step window. Select OK, and when the solution is
complete, close the ‘Solution is DONE!” window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
9. Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu >
DOF Solution > Displacement vector sum > OK
This result is shown in Figure 3.16(d).
To find the axial stress, the following procedure is followed.
10. Main Menu > General Postproc > Element Table > Define Table > Add

I\ Element Table Data

| Currently Defned Data and Status:
Label Ttem Time Status
Add. | Lpdate Ddelel
o | _t |

Figure 3.29. Defining the element table.
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Select By sequence num LS and type 1 after LS as shown in Figure 3.27.

'A‘UEIII]L‘ Additioneal Element Table ltems

[AVPRIN] EFF MU For EQY strain

[ETABLE] Define Additional Element Table Items
Lab  User label for Rem

Tten,Comp Resuks data item

(For "By sequence num", enter sequence
no. n Selection box, See Table 4.x-3
in Elements Manual for seq. numbers.)

o fonty | carcel | |

Figure 3.30. Selecting options in the element table.

OK
11. Main Menu > General PostProc > Plot Results > Contour Plot > Elem Table >
Select LS1 > OK

_ﬂ‘ Contour Plot of Element Table Data

[PLETAB] Contour Element Table Data

Itab Item to be plotted m

Avglab Average & common nodes? INo-donotavq ;I

oK Apcly Cancel | Hop |

Figure 3.31. Selecting options for finding out axial stress.

This result is shown in Figure 3.19(e).

3.4 STEPPED BAR

This section will demonstrate examples on stepped bar using FEA.

Example 3.9

Find the nodal displacements, stresses in each element, and reaction at the
fixed end for the Figure 3.32 shown below. Take A; =200 mm?, A, =200 mm?,
and E, = E, =200 GPa.
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AN

©
©)

AVAAAAR
-
8
S
z

Ra 500 N

B
A 200 mm 100 mm

Figure 3.32. Example 3.9

Solution
(1) Analytical method [refer to Figure 3.32]

Displacement calculation
~PysLay | Paclye _ =500x200 500100
AGE  AgE  200x2x10°  200x2x10°

do=-2.5%107+2.5x107 =0

de=Dyc=D,p+ Dy =

~P,,L ~500% 2
d,=D,,=—=28"48 - 200 005 =-2.5%x10"> mm.
AgE  200%2x10

Stress calculation

P =500 .
o =—22=——=-25MPa (Compressive)
Ay 200
P 500 .
Opc = —BC —Z_—_—5MPa (Tensile).
Ay 100

Reaction calculation

Y E =0
R, —1000+500 =0
R, =500 N.

(1) FEM by hand calculations
(1) @)

4 9
1 L, 2 L, 3

Figure 3.32(a). Finite element model for Example 3.9.

L, =200 mm
L, =100 mm.
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Displacement calculation

Stiffness matrices for elements 1 and 2 are,

1 2
1 -1 s 1 =1 1 —-171
AE 200%2%10
[k ]= == =2x10°
L -1 1 200 -1 1 -1 1]2
2 3

k| Ao b1 1o0xaxior| 1~ X 10° 1 -1)2
=22 —rs i
L, [-1 1 100 -1 1 -1 1]3

Global equation is,

1 2 3
1 nla [ 1 [ D
—1 Ull ul I(l

2x10°| -1 141 -1[2 {u,p=14-1000 . (3.54)
-1 13 |u, 500

Using the elimination method and applying boundary conditions at node 1, u; = 0.
The equation (3.54)reduces to

2 —17[u,] [-1000
2x10° = :
-1 1w 500
By solving the above matrix and equations,

we get,

u, =—2.5%x 107 mm

Uz = 0.
Stress calculations
E wl 2x10° 0
o ==1[-1 1] = [-1 1] =-2.5MPa (Compressive)
-3
L, u, 200 —2.5%10

E U, I%1 5 —2.5)(10_3
g, ==2[-1 1] = 0 [-1 1] =5MPa (Tensile).
Lz u3 0
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Reaction calculation

From equation (1)
2x10° (4, —1,)=R,
2x10°(0—(-2.5%107))= R,
R, =500 N.

(1) Software results

1 NODAL SOLUTION
STEP = 1

0 -556E-03 .001111 .001667 .002222
.278E-03  .B33E-03  .001389  .001944 0025

Figure 3.32(b). Deflection pattern for a stepped bar (refer to Appendix C for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UXx 19) ¢ Uz uUsumMm
1 0.0000 0.0000 0.0000 0.0000
2 —0.25000E-02 0.0000 0.0000 0.25000E-02
3 0.0000 0.0000 0.0000 0.0000
1ELEMENT SOLUTION
STEP = 1
SUB =1
TIME = 1
Ls1 (NOAVG)
DMX = .0025
SMN = -2.5
SMX =5
x o x
=2.5 -.833333 .833333 2.5 4.167

Figure 3.32(c). Stress for a stepped bar (refer to Appendix C for color figures).
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Stress value at elements

STAT CURRENT
ELEM LS1

1 -2.5000

3 5.0000

Reaction value

The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 500.00  0.0000

Answers for Example 3.9

121

Parameter

Analytical method

FEM-hand
calculations

Software

results

Displacement at node 2

—2.5x% 107 mm

—2.5X% 107 mm

—2.5% 107 mm

Displacement at node 3 0 0 0
Stress in element 1 —2.5 MPa —2.5 MPa —2.5 MPa
Stress in element 2 5 MPa —5 MPa 5 MPa
Reaction at fixed end 500 N 500 N 500 N

Example 3.10

Find the nodal displacements, stress in each element, and reaction of the fixed end
for Figure 3.33 shown below. Take E; =2 X 10° N/mm? and E, = 1 X 10° N/mm?.

1 mm
Wall
4 Steel Cast iron /
A A
I~
g £ B00KN £ N
(R_r ————— oS-~ T> """, <1 e [e—
A ] © < N Re
-1 = = I~
~ ‘ I~
- C N
-~ B [~
2A 1000 mm 2000 mm N

Figure 3.33. Example 3.10
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Solution
(1) Analytical method [refer to Figure 3.33]

Ay = %df = %(60)2 =2827.43 mm’

Age = fdf = %(40)2 =1256.64 mm”.

In the absence of the right wall,

P,. XL x10° x1
_ PapxLyp _ 800x10 000:1.415mm.

A XE, 2827.43x2x10°

A=Ay
Hence, the contact does occur with the right will since u; = 1.415 mm.
Let R4 and Rc be the reactions developed due to constraint.
R, +R.=800x10 (3.55)

Ry X Lyg " (=Rc)X Lyc -1
A XEup Apc X Epc

R, x(1000) N (=R.)*(2000) _q

2827.43x2x10°  1256.64x1x10°

1.7684><10_6><RA—1.5915><10_5><RC =1. (3.56)
By solving equations (3.55) and (3.56),
we get

R, =776547.49 N
R, =23452.51 N.

Displacement calculation

R, XL 776547.49 x1000
JB:AABZ R AP = S =1.373 mm
Ay XE,;  2827.43%X2x10

- =1 mm.
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Stress calculation

R, 776547.49
O =—2-= =274.65 MPa

A,  2827.43

—R.) —23452.51
Ope = (=Re) _ = —18.66 MPa.
Ape 1256.64

(1) FEM by hand calculations
) (] .

1L 2 L 3

Figure 3.33(a). Finite element model for Example 3.10.

L, =1000 mm
L, =2000 mm.

In this example, first determine whether contact occurs between the bar and
the wall. To do this, assume that the wall does not exist. Then the solution to the
problem is (consider the 2 element model),

Stiffness matrix for element 1 is,

1 2
1 -1 s[ 1 -1 1 -1
AE 2827.43%2%10
[k ]= 2 = =5.655%10° .
L [-1 1 1000 -1 1 -1 12
Stiffness matrix for element 2 is,
2 3
1 -1 s[ 1 -1 1 -172
AE 1256.64 X1x10
[k, ]=—"22 = =0.628x10° :
L, [-1 1 2000 -1 1 -1 1J3
Global equation is,
[K]{r}={R} (3.57)
1 2 3
(5655 —5.655 0T [ (R 1
10°[ 5655  5.655+0.628 —0.628 [2 Ju, f =1800%10° ;. (3.58)
0 -0.628 0.628 |3 |u, 0

Boundary conditions are at node 1, u; =0.
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By using the elimination method, the above matrix reduces to,
6.283 —0.6287[u, 80010’
10° = :
—0.628  0.628 | | u, 0
By matrix multiplication, we get

10° (6.283 X 1, —0.628 X 1, ) = 800X 10° (3.59)
10°(0.628 X 14, +0.628 X 14;) = 0 (3.60)

By solving equations (3.59) and (3.60)
we get

U =1.415 mm and u; =1.415 mm.
Since the displacement of node 3 is 1.415 mm, we can say that contact does occur.

The problem has to be resolved since the boundary conditions are now different.
The displacement at node 3 is given as 1 mm.

Global equation is,

1 2 3
[5.655 —5.655 0T fu ] (R
10°| -5.656  5.655+0.628 —0.628 |2 {u, +=1800%10°}. (3.61)
0 ~0.628 06283 |uy] |0

Boundary conditions at node 1, #; =0 and at node 3, u, =1 mm.
By using the elimination method, the above matrix reduces to,

10°[6.283]{u, } =[800x10° |- 1[10° x (<0.628) |
10°[6.283]{u, } =800x10° +0.628 X 10

u, =1.373 mm.

Stress calculation

o =B 1]{u1}=2><105 [-1 1]{O }:274.6MPa

1.373

U 5 1.373
JZ=£[_1 1]{ 2}=1X10 [—1 1]{ }=18.65MPa.

1
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Reaction calculation
From equation (3.60)

5.655%10° X 1, —5.655X10° X 1, = R,
0-5.655x10°x1.373=R,

R, =-776431.5 N (Direction is leftwards).
We know that,
R +P+R, =0
~776431.5+800x10° + R, =0
R, =-23568.5 N (Direction is leftwards).

(1) Software results

1NODAL SOLUTION

STEP = 1
SUB = 1
TIME = 1
USUM (AVG)
RSYS = 0
DMX = 1.373
SMX = 1.373
¥
BN X MX

! +305165 +610329 +915494 !.221
. 7 .76

.152582 45774 2912 1.068 1.373
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Figure 3.33(b). Deflection pattern for a stepped bar (refer to Appendix C for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UX Uy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 1.3732 0.0000 0.0000 1.3732
3 1.0000 0.0000 0.0000 1.0000
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LELEMENT SOLUTION

STEP = 1
SUB =1
TIME = 1
Lsl (NOAVG)
DMX = 1.373
SMN = -18.662
SMX = 274.648
¥
gx Mx )

—18.662 46.518 111.69! 176.878 242. !
13.928 79.108

05
144.288 209.468 274.648

FINITE ELEMENT ANALYSIS

Figure 3.33(c). Stress pattern for a stepped bar (refer to Appendix C for color figures).

Stress values at elements

STAT CURRENT
ELEM LS1

1 247.65

2 —18.662

Reaction value

The following X, Y, Z solutions are in global coordinates

NODE FX FY
1 —0.77655E +06 0.0000
3 —23451.

Answers for Example 3.10

Parameter Analytical FEM-hand Software
method calculations results
Displacement at node 2 1.373 mm 1.373 mm 1.3732 mm
Displacement at node 3 1 mm 1 mm 1 mm
Stress in element 1 274.65 MPa 274.65 MPa —274.65 MPa
Stress in element 2 —18.66 MPa —5 MPa 5 MPa
Reaction at fixed end —776.5 kN —776.4 kN —776.55 kN
Reaction at wall —23.45 kN —23.57 kN —23.451 kN
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Example 3.11

Find the nodal displacement, stress in each element, and reaction at fixed ends
for Figure 3.34 as shown below. If the structure is subjected to an increase in
temperature, AT = 75°C, P, =50 kN, P, =75 kN.

~1
N
-1 P, P, IN
A ~—>9 B 9 C D¢
7] N
~1
. N
“1 800 mm 600 mm 400 mm [N
Figure 3.34 Example 3.11
Bronze Aluminum Steel
A =2400 mm? 1200 mm? 600 mm?
E =83 GPa 70 GPa 200 GPa
a=18.9x107/°C 23 x 107°/°C 11.7 x 107¢/°C

Solution
(1) Analytical method [refer to Figure 3.34]

Problem can be solved by method of superposition by considering load and
temperature separately.

Step 1: Consider only the loads P;, P,, and neglect rise in temperature.
R +R, =125x10’ (R1 and R, are reactions due to P, and Pz) (3.62)

(—=P,3) %800 N (=Pyc ) X600 N (Pp)x400
2400%83x10°  1200x70x10° 600x200x10°

But P,, =R, P, =R, and P,. =R, —50x10’

(-R;)x800 (R, =50x10°)X600  (P.,)x400
- +
2400%83x10° 1200x70%10° 600%x200x10°

=0. (3.63)

Solving equations (3.61) and (3.62)
R, =53.39 kN
R, =71.61kN

. (-53.39%10°)
Opy = =-22.25MPa
2400
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~ —~(53.39x10° —50x10°)
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Opr = =-2.825 MPa
be 1200
(71.61><103)
Oy = ~————2=119.35 MPa
600
~22.25% 800
= ———————=-0.2144 mm
83x10
—2.825% 600
5o = —————=-0.0242 mm
70x10
119.35% 400
op = —————=0.2395 mm.
20010

Step 2: Consider only the rise in temperature and neglect P, and P,.
Free expansions due to AT=75°C are

(AL,y), = ax LX(AT)=18.9x107° x800x75=1.134 mm

(ALg.),; = ax LX(AT)=23x10"°x600x75=1.035 mm

(ALgp), = ax LX(AT)=11.7x10"° x400x75=0.351 mm

Total (AL), =1.134+1.035+0.351 = 2.52 mm.

For equilibrium

(-R/)x800  (=R/)x600 (=R, )x400
3 ; - =~ Total (AL),
2400x83x10°  1200x70x10°  600x200x10
(-R)x800  (—R/)x600  (=R,)x400 S5
2400x83x10°  1200x70x10°  600%x200x10°
Solving,
R, =173.89 kN
. 173890
Ty = —————=—-72.45 MPa
2400
. 173890
Tpo = —————=—-144.91 MPa

1200
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Oop = ~173890 _ _189.82 MPa
600
(ALAB)Loud = W =—0.698 mm
(ALye), = —_lii'illzfoo =-1.242 mm
(ALCD )Lmd = W =—-0.5796 mm

A’z =1.134-0.698 = 0.436 mm
Ay =1.035-1.242 = —0.207 mm
Arp =0.351—-0.5796 = —0.2286 mm.

Step 3: Use method of superposition and combine steps (1) and (2).

Stresses are, o,p = O'AB + a';;B =-22.45-72.45=-94.7 MPa.
Similarity, . = gy + 0y = —147.74 MPa

Ocp = O'/CD + aéD =-170.47 MPa.

Change in lengths are,

A=Az +A,;=-0.2144+0.436 = 0.2216 mm
Age = Aye + Ay =—0.0242-0.207 = —0.2312 mm
Acp = App +Aryy =0.2395-0.2286 =0.0109 mm
u,=A,;=02216 mm
uy, = Ayp =0.0109 mm.

Reactions are,

R =R +R, =53.39+173.89 = 227.28 kN
R, =R, +R, =71.61-173.89 = —102.28 kN.
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(1) FEMby hand calculations

(1) (2) )

[ " " <
1 L, 2 L 3 L, 4

Figure 3.34(a). Finite element model for Example 3.11.

L, =800 mm, L,=600mm, L;=400mm
A, =2400 mm°, A, =1200 mm’, A, =600 mm’
E, =83%10° N/mm*, E,=70x10’ N/mm?®, E,=200%10’ N/mm®

@, =18.9x107°/°C, @, =23x10"°/°C, a,=11.7x107°/°C.

Flement stiffness matrices are,

1 2
1 -1 s[ 1 -1 (1 -171
AE 2400 %83 %10
[k ]= = =249x10°
L |-1 1 800 -1 1 -1 12
2 3
1 -1 s[ 1 -1 (1 -172
AE 1200x70%10
[k,]=—22% = =140%10°
L -1 1 600 -1 1 -1 1]3
3 4
1 -1 5[ 1 -1 1 -1]3
AE 600200 %10
[ks]=—— = =300x10° ,
Ly |-1 1 400 -1 1 -1 1[4

Effect of temperature and thermal loads are,

_1 _1
{th)} =EAaq (AT){ } =83x10° x2400%x18.9%107° ><75{ }
1

1
-111
=282.37x10°
12
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-1 -1
}=7o><1o3 x1200%23x107° ><75{ }

{QZ(th)} =EAq (AT){ ) .

-1]2
=144.9%10°
13

-1 -1
{Qu }=EsAsa (AT){ } =200%10° x600x11.7x107° x 75{ }
1

1
-1]3
=105.3%10° )
1|4

Global Force vector

[—282.37x10° 11 [-282.37x10°|1
(R} 282.37%x10° —144.9%x10° | 2 137.47x10° | 2
R = = .
144.9%10° —=105.3%x10° |3 39.6x10° |3
| 105.3%10’ |4 | 105.3x10° |4
1 2 3 4
249 =249 0 0 T (4 —282.37+R,
—249 249 +140 —140 0 2 |u 137.47 =50
10° =10’ . (3.64)
0 —140 140 +300 —300 |3 |u, 39.6-75
[0 0 =300 300 [4  [u,] 1053+R, |

Using the elimination method and applying boundary conditions,
ie., U =uy=0.

The equation (3.63) reduces to,

389 —1407[u,] }(f{ 87.47
—140 440 ||uy| 7 |-354 |
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By solving the above matrix and equation,

we get 1, =0.2212mm and u;=-0.0101 mm.

Stress calculation

6= 11{”1}—1% (aT)

83%10° 0
- -1 1] —83%10° x18.9%10™° x75 = —94.7 MPa
0.2212

0, = i[_l 1]{%}_Ez% (AT)

L, Uy
70x10° 0.2212
= [-1 1 —70x10° x23x107° x75=—145.38 MPa
600 -0.0101
E Us
T3 :L_S[_l 1]{ }_Eac% (AT)
3 u,
200 x10° -0.0101
:W[_l 1]{ —200x10° x11.7x107° x75 = —170.45 MPa.
0

Reaction calculation

249%10° X1, —249%x10° Xu, = —282.37x10° +R,

0-249x10° x0.2212 = -282.37x10> + R,
R, =227.29 kN

—300%10° Xu; +300%x10° X1, =105.3x10° + R,

—-300x10° x(-0.0101)+0=105.3x10° +R,
R, =-102.27 kN.
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(1) Software results

MEMBERS

1 NODAL SOLUTION

STEP = 1
SUB = 1
TIME = 1
UsuM (AVG)
RSYS = 0

DMK = .221226
SMX = .221226

o x x

+049161 +098323
.024581 .073742 .122903

+147484 +196645
.172065

.221226
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Figure 3.34(b). Deflection pattern for a stepped bar (refer to Appendix C for color figures).

Deflection values at nodes

The following degree of freedom results are in global coordinates

NODE UXx Uy Uz UsumMm
1 0.0000 0.0000 0.0000 0.0000
2 0.22123 0.0000 0.0000 0.22123
3 —0.10064E-01 0.0000 0.0000 0.10064E-01
4 0.0000 0.0000 0.0000 0.0000
1ELEMENT SOLUTION
STEP = 1
sUB = 1
TIME = 1
Ls1 (NOAVG)
DMX = .221226
SMN = —170.468
SMX = —94.7
Y
X ux )

=170.468
—162.049

=153.631 ~136.793
—14 2

5.21

—128.375

~119.956

=103.119
—111.538 —9

4.7

Figure 3.34(c). Stress pattern for a stepped bar (refer to Appendix C for color figures).
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Stress values at elements

STAT CURRENT
ELEM LS1

1 -94.700

2 —147.73

3 —170.47

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY
1 0.22728E +06 0.0000
4 —0.10228E+06 0.0000

Answers for Example 3.11

Parameter Analytical FEM-hand Software
method calculations results

Displacement at node 2 0.2216 mm 0.2212 mm 0.22123 mm
Displacement at node 3 —0.0109 mm —0.0101 mm —0.010064 mm
Stress in element 1 —94.7 MPa —94.7 MPa —94.7 MPa
Stress in element 2 —147.74 MPa —145.38 MPa —147.73 MPa
Stress in element 3 —170.47 MPa —170.45 MPa —170.47 MPa
Reaction at fixed end 227.28 kN 227.2912 kN 227.28 kN
Reaction at wall —102.28 kN —102.27 kN —102.28 kN

Procedure for solving the example using ANSYS® 11.0 academic teaching
software
For Example 3.11

PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add >
Structural Link > 2D spar 1 > Ok > Close
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i) Library of Hlement Types
Only structural element types are shown
Library of Elamant Types

Figure 3.35. Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

I\ Real Constant Set Number 1, for LINK1

Element Type Reference No, 1
Real Constant Set No.

o« | Aoply | cancel |

Figure 3.36. Enter the cross-sectional area of 1+ element.

Cross-sectional area AREA > Enter 2400 > OK > Add > OK

ﬂ‘ Real Constant Set Number 2, for LINK1

Element Type Reference No. 1
Real Constant Set No.

Cross-sectional area  AREA
Initial strain ISTRN

il

oK Apply Concel |

Figure 3.37. Enter the cross-sectional area of 2™ element.

Cross-sectional area AREA > Enter 1200 > OK > Add> OK
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i\ Real Constant Set Number 3, for LINK1

Element Type Reference No. 1
Real Constant Set No.

|
Sl

o« | aoply | cancel |

Figure 3.38. Enter the cross-sectional area of 3 element.

Cross-sectional area AREA > Enter 600 > OK > Add > OK > Close
Enter the material properties.

. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1,

Click Structural > Linear > Elastic > Isotropic

Enter EX = 0.83E5 and PRXY =0.34 > OK

Enter the coefficient of thermal expansion o

Click Structural > Thermal Expansion > Secant coefficient > Isotropic

Enter ALPX - 18.9E-6 > OK

Then in the material model window click on Material menu > New Model > OK
Material Model Number 2,

Click Structural > Linear > Elastic > Isotropic

Enter EX =0.7E5 AND PRXY -0.35 > OK

Enter the coefficient of thermal expansion o

Click Structural > Thermal Expansion > Secant coefficient > Isotropic

Enter ALPX =23E-6 > OK

Then in the material model window click on Material menu > New Model > OK
Material Model Number 3,

Click Structural > Linear > Elastic > Isotropic

Enter EX =2E5 and PRXY = 0.3 > OK

Enter the coefficient of thermal expansion o

Click Structural > Thermal Expansion > Secant coefficient > Isotropic

Enter ALPX =11.7E-6 > OK

(Close the Define Material Model Behavior window.)

Create the nodes and elements. Use 3 element models. Hence create 4 nodes
and 3 elements.



FiNiITE ELEMENT ANALYSIS OF AXIALLY LOADED MEMBERS

137

4. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS Enter
the coordinates of node 1 > Apply Enter the coordinates of node > Apply Enter

the coordinates of node 3 > Apply > Enter the coordinates of node 4 > OK.

Node locations

Node number X COORDINATE Y COORDINATE
1 0 0
2 800 0
3 1400 0
4 1800 0

FiY Create Nodes in Active Coordinate System

[N] Create Nodes in Active Coordinate System
NODE Node number

THXY, THYZ, THZX

%,Y,Z Location in active C5 Io Iu

Rotation angles (degrees) I |

x|

v |

o |

Figure 3.39. Enter the node coordinates.

5. Main Menu > Preprocessor >Modeling > Create > Elements > Elem Attributes

> OK > Auto Numbered > Thru nodes Pick the 1% and 2" node >OK

|mm1¢d-u

| e et e rmte T -

o et e |

| (ReAL) Res constant sat rammber [+

(E5YS) Banart cordeate sy ]

|mam|s-m-u- [Nene defined -

| 3421 Teroet cement shape Straight e z
x| coca| |

Figure 3.40. Assigning element attributes to element 1 and creating element 1.

& picx ¢ Unpick

& singte O mox

€ volygon € Circle
€ Looy

Count. -
Haximum =
Hinimum =
Hode Mo. =

o
20
1

@ List of Ttems
€ Min, Bax, Inc
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Elem Attributes > change the material number to 2 > change the Real
constant set number to 2 > OK > Auto Numbered >Thru nodes Pick the 2™

and 4" node >OK

T\ Flement Atteibutes

Onvine atrbutes for slements

(W) Motaril mmbor = S|

(0 oo s —

[E5Y5] Blement coordnate 5ys o 5

[SECNUM] Section number [None: dafined -

[TSHAP] Target element shape [Resight e v)
x| cnce| |

Llements from Nodes

* pick € Unpick

@ singlsa O Box

€ rolygon (* circle
€ Loop

il

-
-
Node We. =

F List of Ttems
€ Min, Nax, Ine

—

[
Raset I Cancel I
Piek AIJI Halp |

Figure 3.41. Assigning element attributes to element 2 and creating element 2.

Elem Attributes > change the material number to 3 > change the Real
constant set number to 3 > OK > Auto Numbered > Thru nodes Pick the 3™

and 4" node > OK

LN flement Attributes

Defne sttrbutes for slements

(1E] oot type umber [T |

[wT] materalrurber s =

[REAL] Real constant set number = =

[ESYS] Bement cooedinate sy5 o =l

[SECNUM] Section rumber Nore defined ]

[TSH44P] Target elanent shipe Straght Ine =
o« cancel | |

Elements from Nodes

# pick € Dnpick

" Min, Hax, Inc

Figure 3.42. Assigning element attributes to element 3 and creating element 3.

Apply the displacement boundary conditions, load, and temperature.
6. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Nodes Pick the 1* and 4" node >Apply > Al DOF = 0.> OK
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7. Main Menu > preprocessor > Loads > Define Loads > Apply > Structural
> Force/Moment > On Nodes Pick the 2™ node > OK > Force/Moment
value = -50e3 in FX direction > OK > Force/Moment > On Nodes Pick the
3" node > OK > Force/Moment value =-75e3 in FX direction > OK

8. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Temperature > On Elements Pick the element, 2™ element and 3 element > OK
Enter Temperature atlocation N = 75 as shown in Figure 3.38.

FX Apply TEMP on Flems

[BFE] Apply Structural Temperatures (TEMP) on Elements
STLOC Starting location N
Apply as
If Constant value then:
VAL1 Temperature at location N

=

VAL2 Temperature at loc N+1
VAL3 Temperature at loc N+2
VAL4 Temperature at loc N+3

THTH]

oK Apply

]
P

Figure 3.43. Enter the rise in temperature on elements.

Y

- z o

Figure 3.44. Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the solution.
First to be safe, save the model.

Solution

The interactive solution proceeds.

9. Main Meni > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window and if all is OK, select FILE > CLOSE
In the Solve Current Load Step window, Select OK, and when the solution is
complete, close the ‘Solution is Done!” window.
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POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu >
DOF Solution > Displacement vector sum > OK
This result is shown in Figure 3.34(b).
To find the axial stress, the following procedure is followed.

11. Main Menu > General Postproc > Element Table > Define Table > Add

Currently Defined Data and Status:

Figure 3.45. Defining the element table.

Select By sequence num and LS and type 1 after LS as shown in Figure 3.43.

T\ Define Additional Element Table Items

[AVPRIN] EFf NU for EQY stran

[ETABLE] Define Additional Element Table Itams
Lab  User label for kem

Ttsm,Comp Results data kem

(For "By sequence num”, enter sequence
no. in Selection box. See Table 4.2x-3
in Elaments Manual for saq. numbers. )

_*x | e | o | b |

Figure 3.46. Selecting options in element table.

>0K
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12. Main Menu > General Postproc > Plot Results > Contour Plot > Elem Table >
Select LS1>OK

m Contour Plot of Element Table Data

[PLETAB] Contour Element Table Data

b Renotepite -

Avglab Average at common nodes? I"’ - donot avg ;'
oK aeely | cancel | ree |

Figure 3.47. Selecting options for finding out axial stress.

This result is shown in Figure 3.34(c).

PROBLEMS

1. Determine the nodal displacement and element stress for the bar shown in
Figure 3.48. Take 3 elements finite element model. Take E = 70 GPa.

25 kN/m 0.03 2

o

N

AAN3088488
\
\
TTTrTI7I777

1.5m

Figure 3.48. Problem 1

2. Determine the nodal displacements and stresses in the element for the axial
distributed loading shown in Figure 3.49. Take one element model. Take
E =200 GPa, A=5x%x10"*m?

W, = 100 N/m W, =200 N/'m

p//’_///

1m 1

A\

AAANAAY

Figure 3.49. Problem 2
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3. For the bar assembly shown in Figure 3.50, determine the nodal displacements,
stresses in each element, and reactions. Take E =210 GPa, A =5 X 10~ m?.

/ N\
/] 2 @ 3N\
/] 4m N\
A1 @ 2 20kN N

4m N
/ , ® N
/] / am \
/ << N
Rigid bar

Figure 3.50. Problem 3

4. Find the deflection at the free end under its own weight for a tapered bar
shown in Figure 3.51. Use 2 element models. Take E = 200 GPa, weight density
p =7800 kg/m”’.

SQ 120 mm

VANV

1200 mm

SQ 30 mm I

Figure 3.51. Problem 4

5. Determine the displacement, element stresses, and reactions for the tapered bar
shown in Figure 3.52. Use 2 elements finite element models. Take E = 200 GPa,
Al = 2000 mmz, Az = 4000 mm?.

P =50kN
—

Figure 3.52. Problem 5
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6. Consider the bar shown in Figure 3.53. An axial load P = 500 kN is applied as
shown. Determine the
(a) Nodal displacement  (b) Stresses in each material (c) Reaction forces.

/7

500 mm . 600 mm

PAVAVAVAVANANAN

/7777

Figure 3.53. Problem 6

Aluminum Steel
A; =300 mm? A, =1000 mm?
E, =70 GPa E, =200 GPa

7. In Figure 3.54, determine displacements at 2 and 3 stresses in the members and
reactions if the temperature is increased by 60°.

Z
-~
Z ? N
4 O ® N
ey N
vy 3 E
-
A1 2 N
A 90 mm P 80 mm | 70mm |
Figure 3.54. Problem 7
Member Area A Youngs modulus Thermal expansion
(mm?) E (GPa) coefficient a. (/°C)
1 1000 70 23x10°°
2 500 100 19x 10

3 300 200 12x10°¢
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8. For the vertical bar shown in Figure 3.55, for the deflection at 2 and 3 and stress
distribution. Take E = 25 GPa and density, p = 2100 kg/m’. Take self-weight of
the bar into consideration and solve the problem using 2 elements.

NOUONNNNN

1 A

Area = 0.3 m? - e

©

9

\
2 [

Area = 0.2 M——— £
3 \

Figure 3.55. Problem 8
9. Find displacement and stresses shown in Figure 3.56. Take E = 200 GPa.

2
250 mm’ 400 mm 3mm
—

Py
7 14
197 600 kN 700 kN
5 O [ e o
]
4
-
Py

150 | 150 300 100

Figure 3.56. Problem 9 (all dimensions are in mm).
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FINITE ELEMENT
Chapter ANALYSIS TRUSSES

4.1 INTRODUCTION

This chapter introduces the basic concepts in finite element formulation of trusses
and provides the illustration of its ANSYS program.

4.2 TRUSS

Truss, by definition, is a load bearing structure formed by connecting members
using pin joints. Truss element is used in the analysis of 2-D trusses.

Figure 4.1. A 2-D Truss.
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The element has two nodes, each having two degrees of freedom namely
translations along the x- and y-axes.
The element stiffness matrix and element stress for a truss element are given by,

cos’ & cos> Ixsinf —cos® 0 —cosdxsind
k]= AE|  cos Oxsind  sin® 0 —cosfxsind —sin® ¢ 1)
L |—cos’d —cosxsin cos” & cos #xsin f
—cosfxsind —sin® @ cosfxsind  sin’ @
¢ s —c* —cs
_AE| cs s —cs =5’
L ¢ - s
- —s° s s
ul
{o}= %[— cos —sind cosd sind){q}, where{q}= :1 (4.2)
2
V2

6 = angle of truss element at node 1 with positive x-axis (in degrees).

Example 4.1

Determine the nodal displacements, element stresses, and support reactions for
the 3 member truss shown in Figure 4.2. Take A = 800 mm? and E = 200 GPa for
all members.

12 kN

Figure 4.2. Example 4.1
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Solution
(1) Analytical method [refer to Figure 4.2]

AB=AC=4(2) +(1.5) =2.5m

sinfd=

N | W

4
, coslf=—.
5

Consider equilibrium of joint B,

12 kN

8 kN

0 Pgc

PAB
Figure 4.2(a). Analytical method for joint B in Example 4.1.

ZFX =0and sz =0
8—P,; cos+ Py cos /=0 (4.3)
—12—P,;sin— Py sind=0. (4.4)

Solving equations (4.3) and (4.4)

P,,=-5kNand P,. =-15kN (P,; and P,. are compressive).

Consider equilibrium of joint A,

Pag=5

Pac
R

y

Figure 4.2(b). Analytical method for joint A in Example 4.1.
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EFX =0and ZFy =0
—R, . +P,—P,;cos0=0 (4.5)
R, —P,psind=0.
Consider equilibrium of joint C,

Pec

Ry

Figure 4.2(c). Analytical method for joint C in Example 4.1.

D F,=0and ) F,=0

4

P,c zPBCcosHZISXEZIZ kN
. 3

R, =PBC31n€=15xg=9kN.

For equation (4.5)

4
R,=P, —P,;cos0= 12—5><§:8kN

Py  —5x10° .
=0, =28 = =—6.25 MPa (Compressive)
A, 800
Py —15x10° :
Ope =0, =25 = =-18.75 MPa (Compressive)
Ay 800
P 12x10°
Oy =0, =—25= =15 MPa (Tensile)
A, 800

P,,L —-5%10° x2500
A,y =448 = —=-0.078125 mm
AgEs  800x2x10
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PyLye  —15x10° %2500
ApcEpe 800%x2x10°

Ape = =-0.234375 mm

P,.L 12%x10° x 4000
AAC: AC AC 5 =0.3 mm.
A E. 800x2x10

Calculation of nodal displacements u,, v,, and u;

Figure 4.2(d). Analytical method for Calculation of nodal displacements u,, v,, and u; in
Example 4.1.

DB, =u,, BD=v, and CC, =u,
BBy = A

BB, = Age

CC, =uy;=A,,=0.3 mm

4
CC, =CC,cosfd=A,-cosl= O.SXE =0.24 mm.

From geometry [refer to Figure 4.2(d)].
BB, = A, = BDsin/— DB, cos /= v, sin /—u, cos (4.6)
BB, =BC-B,C=BC-(B,C,-CC,)=(BC-B,C,)+CC,
BB, = Ay +CC, = BDsin 0+ DB, cos ¢
Ay +CC, = v, sind+u, cos b. (4.7)

Substituting in equations (4.6) and (4.7)

3 4
0.078125 = v, X - =1 X (4.8)
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3 4
0.234375+0.24=v, Xg+ U, Xg

3 4
0.474375 = v, X~ 1t X . (4.9)

Solving equations (4.8) and (4.9), we get,
1, = 0.4604 mm (since point B moves downwards). Hence v, = —0.6404 mm.

(1) FEM by hand calculation [refer to Figure 4.2]

Elements Node numbers 0 cos 0 sin 0 L (mm)
Local 1 Local 2
1 1 3 0 1 0 4000
2 1 2 36.87 0.8 0.6 2500
3 2 3 -36.87 0.8 -0.6 2500

Angle calculation
For element 2

1.5
sinfd=—= 0=136.87".
2.5

2m

Figure 4.2(e). Angle calculation for element 2 in Example 4.1.

For element 3

1.5
sinf=—= #=-36.87".
2.5

<

1.5m

2m

Figure 4.2(f). Angle calculation for element 3 in Example 4.1.



FiNiITE ELEMENT ANALYSIS TRUSSES

Element stiffness matrix for element 1 is,

cos> 0 cos® Oxsinld —cos’ 0 —cosfxsin
[k ]= AE| cos Oxsind  sin® 0 —cosfxsind —sin® ¢
L |—cos* @ —cosdxsinl cos’ 0 cosxsin
—cosfxsind —sin® ¢ cos@xsind  sin> @
cos’* 0 cos’0xsin0 —cos’0 —cos0xsin0
[k ]= 800%200x10°| cosOxsin0  sin®0 —cos0xsin0 —sin”0
4000 —cos°0 —cos0xsin0  cos”0 cos0xsin0
—cos0Xsin0 —sin”0 cos0xsin0  sin®0

U vy Uz Vs

1 0 -1 Ofy

0 Ofv

[k, ]=40x10 L
-1 0 1 0fu

00 0 0],

Element stiffness matrix for element 2 is,

s =t —cs
[k, ]= AE| s & —cs -5
2 L|-* —s ¢ o
—s - ¢ s

(0.8)° 0.8x0.6 —(0.8)°  —0.8x0.6
_ 800%200x10°| 0.8x0.6 (0.6  —0.8x0.6 —(0.6)°
© 2500 |—(0.8)) -0.8x06 (0.8  0.8%0.6
—-0.8x0.6 —(0.6) 0.8x0.6 (0.6)
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Element stiffness matrix for element 3 is,

FINITE ELEMENT ANALYSIS

U, v, U, V3
I 0.64 —0.48 —0.64 0.48|u,
2 2
AE| c¢s s —cs - — 0.36 0.48 —-0.36|v
[k ]= == =64x10° ?
Ll-c2 —os & e ~0.64 048 0.64 —0.48 |u,
T 048 -0.36 —0.48  0.36]v,
Global stiffness matrix is,
u, v u, v, u, Vs
[ 40+40.96 30.72 —40.96 -30.72 —40 0 —ul
30.72 23.04 -30.72 —-23.04 0 0 v
[K] 10° —40.96 -30.72 40.96+40.96 30.72—30.72 —40.96 30.72 (u,
B -30.72 -23.04 30.72-30.72 23.04+23.04 30.72 —23.04 |v,
—40 0 —40.96 30.72 40+40.96 -30.72 |u,
L O 0 30.72 —-23.04 -30.72 23.04 v,
u, v, u, v, u, Vs
( 80.96 30.72 —-40.96 -30.72 -40 0 _ul
30.72 23.04 -30.72 -23.04 0 0 v
[K]—103 —-40.96 -30.72 81.92 0 —40.96 30.72 |u,
B -30.72 —=23.04 0 46.08 30.72 -23.04 (v,
—40 0 —40.96 30.72 80.96 —30.72 (u,
o 0 30.72 —23.04 —30.72  23.04]v,
Global equation is,
u, v, u, v, u, Vv,
—86:96—30-72——40:96——3072——40———6—Jrr{1; R
30.72 23.04 -30.72 -23.04 0 0 v, |V, 1y
; —-40.96 -30.72 81.92 O 4096  30.72 |u, |u, 8 ;
[K]=10 = x10°,
-30.72 -23.04 O 46.08 30.72 -23.04 (v, |v, -12
—40 0 —4096 30.72 8096 —30.72 (u; |u, 0
0 0 3072 =306 3072 2B3.04[v, [v;] | R, ]
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Using the elimination method for applying boundary conditions,
Uu=v=v= 0.

Then the above matrix reduces to,

81.92 0 —40.96 || u, 8
0 46.08 3072 || v, [=|-12 x}ﬂ{.
—40.96 30.72  80.96 || u, 0

Solving the above matrix and equations,

we get u, =0.2477 mm, v, =—-0.4604 mm, and v, = 0.3 mm.

Stress calculation

Stress in element 1 is,

Uy u,
E . v | 200x10° v
0, =—[-cosd —sind cosd sind] ! =" [ -s ¢ 5] 1
L Uy 4000 u,
V3 Vv,
0
200x10° 0
og=———[-1 0 1 0]| _|=15MPa.
4000 0.3
Stress in element 2 is,
U u,
E : v | 200x10° v
g,=—[-cosd —sind cosd sind]| '|="——[- —s ¢ 5] '
L u, 2500 i
V) v,
0
200%10° 0
g, =————[-08 —0.6 0.8 0.6] = —6.249 MPa.
2500 0.2477

—0.4604
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Stress in element 3 is,

u, , u,
E . . 200x10
o,=—|[-cosf —sind cost sind)] V2 ==———[- =s ¢ s3] "2
L uy |~ 2500 1
V3 Vs
0.2477
200%10° —0.
gy = —[—0.8 0.6 0.8 —0.6] 0.4604 =-18.752 MPa.
2500 0.3
0

Reaction calculation
From global equation,
~40.96X 14, —30.72X v, —40 X1, = R,

—40.96%0.2477 —30.72 X (~0.4604) — 40 X 0.3 = R,
R, =-8kN
~30.72%X1, ~23.04xv, =R,
~30.72x0.2477 —23.04 X (-0.4604) = R,
R, =3kN
~30.72 X1, —23.04 X v, —30.72 X1, = Ry,
~30.72x0.2477 —23.04 X (-0.4604) —30.72 X (0.3) = R;

R;, =9 kN.

(1) Software results

1
NODAL SOLUTION

STEP = 1
SUB = 1

TIME = 1

USUM (AVG)

RSYS = 0

DMX = .522797 Mx

SMX = .522797
Y
X

.116177 232354 -348532 .464709
74266 290443 .40662 .522797

)

.058089

Figure 4.2(g). Deflection pattern for a truss for Example 4.1 (refer to Appendix C for color
figures).
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Deflection value at nodes

The following degree of freedom results are in global coordinates

155

NODE UXx uy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.24766 —0.46042 0.0000 0.52280
3 0.30000 0.0000 0.0000 0.30000
Maximum absolute values
NODE 3 2 0 2
VALUE 0.30000 —0.46042 0.0000 0.52280
1
ELEMENT SOLUTION
STEP = 1
SUB =1
TIME = 1
LS1 (NOAVG)
DMX = .522797
SMN =-18.75
sMx =15
MN
Z_ X MX
—-18.75 _1s —11,25_7-5 -3.75 0 3.75 7.5 11.25 15

Figure 4.2(h). Stress pattern for a truss for Example 4.1 (refer to Appendix C for color

figures).

Stress values of elements

STAT CURRENT
ELEM LS1

1 15.000

2 —6.2500

3 —18.750

Reaction values

The following X, Y, Z solutions are in global coordinates

NODE FX FY

1 —8000.0 3000.0
3 9000.0
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Answers for Example 4.1

FINITE ELEMENT ANALYSIS

Parameter Analytical FEM-Hand Software

method calculations results

Displacement of node 2 in

x-direction 0.2477 mm 0.2477 mm 0.24766 mm

y-direction —0.4604 mm —0.4604 mm —0.46042 mm

Displacement of node 3 in

x-direction 0.3 mm 0.3 mm 0.3 mm

Stress in

Element 1 15 MPa 15 MPa 15 MPa

Element 2 —6.25 MPa —6.248 MPa —6.25 MPa

Element 3 —18.75 MPa —18.752 MPa —18.75 MPa

Reaction

At 1 in x-direction -8 kN -8 kN -8 kN

At 1 in y-direction 3 kN 3 kN 3 kN

At 3 in y-direction 9kN 9kN 9kN

Example 4.2

5m 5 m@
20 kN[ )4

Figure 4.3. Example 4.2

5m
1 30 kN @

<

For the truss shown in Figure 4.3, determine nodal displacements and stresses in
each member. All elements have E = 200 GPa and A = 500 mm?.
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Solution
E=2x10° N/mm?
A =500 mm?.
(1) FEM by hand calculation
Elements Node numbers 0 cos 0 sin 6 L (mm)
Local 1 Local 2
1 1 4 0 1 0 5000
2 1 45 0.707 0.707 5000
3 1 2 90 0 1 5000
Stiffness matrices for elements 1, 2, and 3 are,
c? s —c* —cs 1 0 =1 0
k] AE| s 55 - =s7| 500x2x10°| 0 0 0 O
DTS s 2 | 5000 |[-1 0 10
—cs —s* s s 0 0 0 0
U vy Uy vy
1 0 -1 0]y
0 0 0 |v
[k,]=20x10 :
-1 0 1 0|u
00 0 0]y,
Uy Vy U, V3
0.5 0.5 05 -0.5]y
0.5 -0.5 -05]|v
[k,]=20x10° !
—05 —05 05 0.5 |u
-0.5 -0.5 0.5 0.5]v,
u v U v
0 00 0]y
0 -1|v
[k,]=20x10 !
0 O0fu,
-1 0 v,
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Global stiffness matrix is,

u, v,ou, v, uy, vy U, v,
[ 1+0.5 0.5 0 0 —-05 -05 -1 0]y
0.5 05+1 0 -1 -05 -0.5 0 0|v
0 0 0 0 0 0 0 0fu,
[K]=20><103 0 -1 0 1 0 0 0 0w,
—0.5 —0.5 0 0 05 05 0 0fu,
-0.5 -0.5 0 0 05 05 0 0}y
-1 0 0 0 0 0 1 0]u,
| 0 0 0 0 0 0 0 Ofy,
u, ViU, Vv, U vy U, v,
1.5 05 0 0 -05 -05 -1 0y
0.5 150 -1 -05 =05 0 O |v
0 0 0 0 0 0 0 0 u,
[K]=20><103 0 -1 0 1 0 0 0 0 (v,
-05 05 0 0 05 05 0 0 |u
-05 05 0 0 05 05 0 0 ]v,
-1 0 0 0 0 0 1 0]y
Lo 0 0 0 0 0 0 0]y
Global equation is,
u, WU, vy uy vy ul oW,
1+0.5 03 @ 0 -0.5 —0.5 -1 Olu, [w,] [-20
0.5 03+1 @ -1 —0.5 —0.5 Q o[v, |v,| [-30
0 G d o o] 0 dlu |y R,,
N ] IR AW
=05 =05 q 0 05 05 0 0w | R,
—05 —04 4 d 0.5 05 d 0fv,|vs R,
-1 0 d d o] o 1 lu|u R,,
0 0 ¢ d o o qdfv,v.J [R,]
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Using the elimination method for applying boundary conditions,

Uy =v,=u;=v;=u, =v, =0.
Then the above matrix reduces to,
15 05w [-20
20 = .
05 1.5][v | [-30
Solving the above matrix and equations,
we get,

u; =—0.375 mm

y; =—0.875 mm.
Stress calculation
Stress in element 1 is,
Uy U
E ) ) 4 2x%10° %
0,=—[-cos# —sind cosd sind]| '|= [c =5 ¢ s]| '
L u, | 5000 U,
vy vy
—-0.375
2x10° -0.875
o, = [<1 0 1 0] =15 MPa.
5000 0
0
Stress in element 2 is,
u, u,
E ) . v | 2x10° v
g,=—[-cosd —sind cosd sind]| '|= [<c = ¢ s]| '
L uy | 5000 i,
V3 V3
—-0.375
2x10° -0.875
o, = [-0.707 —0.707 0.707 0.707] =35.352 MPa.
5000 0
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Stress in element 3 is,

FINITE ELEMENT ANALYSIS

o} Lt
E . v 2x10° 2
oy, =—[-cos —sind cosd sind] = [-c —=s ¢ 5]
L, u, | 5000 1,
16 Vs
-0.375
2x10° —0.875
o, = [0 -1 0 1] =35 MPa.
5000 0
0
() Software results
1
NODAL SOLUTION
STEP = 1
SUB =1
TIME = 1
usuM (AVG)
RSYS = 0
DMX = .951794
SMX = .951794
Y
Z/X MN
77777 I
0 .21151 .423019 .63452 .846039
.105755 -317265 .528774 .740284 -951794

Figure 4.3(a). Deflection pattern for a truss for Example 4.2 (refer to Appendix C for color

figures).

Deflection value at nodes

The following degree of freedom results are in global coordinates system

NODE UX Uy Uz USumMm
1 —0.37486 —0.87486 0.0000 0.95179
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
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1
ELEMENT SOLUTION
STEP =1
SUB =1
TIME=1
LSl (NOAVG)
DMX =.951794
SMN =14.995
sMx =35.363
Y
X
14.995 19.521
17.258 21.784

24

.047 28.574
26.31 30.837

"735.363

Figure 4.3(b). Stress pattern for a truss for Example 4.2 (refer to Appendix C for color

figures).

Stress values of elements

STAT CURRENT
ELEM LS1

1 14.995

2 35.363

3 34.995

Answers for Example 4.2

Parameter

FEM-hand calculations

Software results

Displacement of node 1 in
x-direction

y-direction

Stress in Element 1

Stress in Element 2

Stress in Element 3

—0.375 mm
—0.875 mm
15 MPa
35.352 MPa
35 MPa

—0.37486 mm
—0.87486 mm
14.995 MPa
35.363 MPa
34.995 MPa
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Example 4.3
The bar truss shown in Figure 4.4, determine the displacement of node 1 and the
axial stress in each member. Take E =210 GPa and A =600 mm?. Solve the problem

if node 1 settles an amount of 0 = 25 mm in the negative y-direction.

2

3000 mm

<
1 %‘3 @ 2000 kN
1 ;
4000 mm

Figure 4.4. Example 4.3

Solution
(1) FEM by hand calculation
Elements Node numbers (] cos 0 sin 0 L (mm)
Local 1 Local 2
1 3 1 0 1 0 4000
2 2 1 -36.87 0.8 -0.6 5000

Angle calculation
For 2" element,

3
sinf= H =0.6= #d=-36.87°.

3m 5m

4m
Figure 4.4(a). Angle calculation for 2" element for Example 4.3.
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Stiffness matrices for element 1 and 2 are,

C CS —C —CS 1 () —1 ()
] AE| s 55 —cs —s°| 600x210x10°| 0 0 0 0
D A P e e T 10 10
—CS —S2 [ S2 0 O O O
Uy vy U v
0 -1 0]u,
00 0 0|
[k,]=31.5%10 ’
-1 0 0|y,
00 0 0]y
& s —c* —cs 0.64 —0.48 —0.64
k] AE| e & —es —=s*| 600%x210x10°|—0.48 0.36 0.48
A R e 5000 —0.64 048 0.64
Ces = s § 0.48 —0.36 —0.48
U, v, U 12
0.64 —0.48 —0.64 0.48]u,
,|-048 036 048 -036|v,
[k,]=25.2x10 .
—0.64 048 0.64 —0.48]u
048 —036 —0.48  0.36 v,
Global stiffness matrix is,
U Yy U, v, Us V3
[ 31.5+16.13 —12.1 -16.13 121 -31.5 0]y
—12.1 91 121 -91 0 Ol
,|-16.13 121 1613 -121 0  0fu,
[K]=10
12.1 91 -121 91 0 O0lv,
-31.5 0 0 0 315 0 |u,
o 0 0 0 0 0],

163

0.48
—-0.36
—0.48

0.36



164

FINITE ELEMENT ANALYSIS

u, v u, Vv, U, vy
[ 47.63 —-12.1 -16.13 12.1 -31.5 0]y,
-12.1 9.1 12.1 9.1 0 0w,
;| —16.13 121 16.13 -121 O 0|u,
[K]=10
121 9.1 -12.1 9.1 0 01v,
=31.5 0 0 0 315 0]u,
o 0 0 0 0 0fv,
Global equation is,
u, v, u, v, uy v,
[ 4763 —12.1 —1613 11 315 Of]u,[u, | [~2000]
121 91 121 -91 o  o|v,|v R,
=1 -1613 121 1613 2T 0 Owfu | | R | )
/1 121 91 21 91 o of|v,|v, R, |/”
315 0 ( g 35 0[u,|u, R,
| 0 0 Q 0 ovslvs] | R,

Using the elimination method for applying boundary conditions,

1.e., h=n=u3=13=0.

Then the above matrix reduces to,
—12.17[w, ] [-2000
9.1 |[v, | R, |

We know that v, =—25 mm, substitute this in the above matrix,

then,
—12.17] u ] [-2000
9.1 ||-25] | R, |

Solving the above matrix and equations we get,

47.63
-12.1

47.63
-12.1

u, =—48.34 mm.
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Stress calculation

Stress in element 1 is,

165

Us Us
E . _lvs | 210x10° v
g,=—[-cos# —sind cosd sind]| > |="——[-c —-s ¢ s]|’
L U, 4000 u,
"1 "1
0
210x10°
og=———[-1 0 1 0] =-2537.85 MPa.
4000 —48.34
=25
Stress in element 2 is,
U, U,
E . v | 210x10° v
g, =—[-cos —sind cosd sind]| *|="—[-c -s ¢ s]| °
L, n 5000 n
"1 "1
0
210%x10°
o="""""[-08 06 08 —0.] = -994.22 MPa.
5000 —48.34
=25

(1) Software results

1
NODAL SOLUTION

STEP =1
suB =1
TIME=1
USUM  (AVG)
RSYS =0
DMX =54.423
sux =54.423

4.188

6.047 : 18.141 30.235 54.423

Figure 4.4(b). Deflection pattern for a truss for Example 4.3 (refer to Appendix C for color

figures).
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Deflection value at nodes

The following degree of freedom results are in global coordinates system

NODE UX Uy Uz USuUM
1 —48.341 —25.000 0.0000 54.423
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000

Maximum absolute values

NODE 1 1 0 1

VALUE —48.341 —25.000 0.0000 54.423

1
ELEMENT SOLUTION

STEP = 1

SUB =1
TIME=1

LS1  (NOAVG)
DMX =54.423
SMN =-2538
sMx =-994.268

Y

MN Lx

-2538 =2195 ~1852 -1509 -1166
—2366 -2023 -1680 -1337 —994.268

Figure 4.4(c). Stress pattern for a truss for Example 4.3 (refer to Appendix C for color
figures).

Stress values of elements

STAT CURRENT
ELEM LS1
1 —2537.9

2 —994.27
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Answers for Example 4.3
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Parameter

FEM-hand calculations

Software results

Displacement of node 1 in
x-direction

y-direction

Stress in Element 1

Stress in Element 2

—48.34 mm
—25 mm
—2537.85 MPa
—994.22 MPa

—48.341 mm
—=25 mm
—2537.9 MPa
—994.27 MPa

Procedure for solving the problems using ANSYS® 12.0

software
For Example 4.3

PREPROCESSING

academic teaching

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add >
Structural Link > 2D spar 1 > OK > Close

I\ Library of Element Types

Only structural element types are shown
Lbrary of Element Types

Element type reference number

Figure 4.5. Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

I\ Real Constant Set Number 1, for LINK1
Element Type Reference No. 1

Real Constant Set No. I\
Cross-sectional area  AREA Ieoo
Initial strain ISTRN I

Figure 4.6. Enter the cross-sectional area.

Cross-sectional area AREA > Enter 600 > OK > Close
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Enter the material properties.

3. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, Click Structural > Linear > Elastic > Isotropic
Enter EX =2.1E5 and PRXY = 0.3 > OK
(Close the Define Material Model Behavior window.)
Create the nodes and elements as shown in the figure.

4. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS
Enter the coordinates of node 1 > Apply Enter the coordinates of node 2 >
Apply Enter the coordinates of node 3 > OK

Node locations

Node number X-coordinate Y-coordinate
0 0
—4000 3000
—4000 0

Figure 4.7. Enter the node coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered >
Thru nodes Pick the 1t and 2" node > Apply Pick the 1* and 3" node > OK

Elements from Nodes

® pick " Unpick
@ Single  Bo
o c
s
Count = 0
Maximum = 20
Minimum = 1

=

Node No.

& List of Items

" Min, Nax, Inc

il

[
I Cancel
Pick hll Help I

Figure 4.8. Pick the nodes to create elements.
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Apply the displacement boundary conditions and loads.

6. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Nodes Pick the 2™ and 3™ node > Apply > All DOF=0 >
OK

7. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Nodes Pick the 1* node > Apply > UY=-25 > OK

8. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Force/Moment > On Nodes Pick the 1* node > OK > Force/Moment value=
-2000e3 > OK

2

B3
A

Figure 4.9. Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the solution.
First to be safe, save the model.

Solution

The interactive solution proceeds.

9. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close.
In the Solve Current Load Step window, select OK, and the solution is
complete, close the ‘Solution is Done!” window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu >
DOF Solution > Displacement vector sum > OK
This result is shown in Figure 4.4(b).
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To find the axial stress, the following procedure is followed.
11. MAIN Menu > General Postproc > Element Table > Define Table > Add

Figure 4.10. Defining the element table.

Select By sequence num and LS and type 1 after LS (as shown in Figure 4.11) >OK

i\ Define Additional Element Table ltems

[AYPRIN] Eff NU for EQY strain I
[ETABLE] Define Addtional Element Table Items
Lab  Usar label for kem

——
Item, Comg Resuks data ken [Soainelostc ’
| Stysin-thermal W
| Strain-plastic
l j
[Contact
l

[SMISC, A
LEPEL, B
LEPeL, o
ILS, 1

(For "By sequence num”, enter sequance
N0, In Selection box. See Table 4.0:-3
In Elements Manwal for 583, numbers.)

x| o _| anal_| |

Figure 4.11. Selecting options in element table.

12. Main Menu > General Postproc > Plot Results > Contour Plot > Elem Table
> Select LS1 > OK

Fi) Contour Plot of Element Table Data

[PLETAB] Contour Element Table Data

Ttsb Item to be plotted [ -]

Avglab Average at common nodes? |No - do ot avg =l

Figure 4.12. Selecting options for finding out axial stress.

This result is shown in Figure 4.4(c).
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PROBLEMS
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1. For a 5 bar truss shown in Figure 4.13, determine the following:
(a) nodal displacements
(b) stresses in each element
(c) reaction forces.

Take E = 200 GPa and Area A = 750 mm? for all elements.

750 mm

200 kN
4
100 kN
1 2
- 1500 mm ;%

Figure 4.13. Problem 1

2. For the 3 bar truss shown in Figure 4.14, determine the displacement of node 1
and the stresses in elements. Take A = 300 mm? and E = 210 GPa.

500 mm 500 mm

400 mm

A\

750 mm

lZO kN

Figure 4.14. Problem 2

3. Consider the truss shown in Figure 4.15, determine the nodal displacements,
element stresses, and reactions. Take E = 200 GPa. A, = A, = A; = 500 mm?,

P, =300 kN, P, =200 kN.
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45°

1.5m

45°

Figure 4.15. Problem 3

4. Consider the truss structure shown in Figure 4.16, determine the stresses of
the truss structure. Take all members have elastic modulus (E) of 210 GPa and
cross-sectional area (A) of 250 mm?.

AR > S00N
2 oY NNGI INNGY
! D 2 4 3
@
e - » N
3m 3m 3m
v
1500 N

Figure 4.16. Problem 4

5. Consider the truss structure shown in Figure 4.17, derive the finite element
matrix equations using 2 elements. Determine the displacements and the
stresses in the member. Assume all members have elastic modulus (E) of
200 GPa and cross-sectional area (A) of 300 mm?.

900N

300N

3m 3

m
Figure 4.17. Problem 5
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6. Consider the truss structure shown in Figure 4.18, determine the nodal
displacement and the element forces assuming that all elements have the same AE.

A

) 800 Ib
g 4 @ 3
/A [ Y
5

Z
z l 2 h 4
2
L 800 Ib

le

20 ft
Figure 4.18. Problem 6

7. Determine the nodal displacements, element stresses, and support reactions
for the 3 member truss shown in Figure 4.19. Take A; = 10 in%, A, = 15 in?,
A;=101in? and E = 20 msi for all members.

15 kips

Figure 4.19. Problem 7

8. Determine the nodal displacements, element stresses and support reactions
for the three member truss shown in Figure 4.20. Take A; = 1 in? A, = 2 in%,
As; =3 1in?% and E = 30 MIb/in? for all members.

20ft 290 ft

Figure 4.20. Problem 8
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9. Determine the nodal displacements, element stresses, and support reactions
for the 3 member truss shown in Figure 4.21. Take A; = 6 cm?, A, = 8 cm?,
A, =8 cm? and E =20 MN/cm? for all members.

50 cm 100 cm

7 % %

500N

Figure 4.21. Problem 9
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FINITE ELEMENT
Chapter ANALYSIS OF BEAMS

5.1 INTRODUCTION

Beam is very common structure in many engineering applications because of
its efficient load carrying capability. Beam by definition is a transversely loaded
structural member. Beam element is used in the analysis of beams.

El

~5 / 6,
D )

W3

Wy

Figure 5.1. Beam element.

This element has 2 end nodes each having 2 degrees of freedom, namely transverse
displacement and slope. Beam element gives accurate results if acted upon by nodal
forces and moments. A greater number of small elements will be necessary in the
case of a beam acted upon by distributed loads in order to get good results. The
interpolation equation and element stiffness matrix for beam element are given by

(5.1)
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12 6L -12 6L

EI| 6L 41> —-6L 2I?
[K]=— : (5.2)
’'|-12 -6L 12 —-6L

6L 2I) —6L AL’

5.2 SIMPLY SUPPORTED BEAMS

Example 5.1

For the beam shown in Figure 5.2, determine the nodal displacements, slope, and
reactions. Take E=210 GPaand I=4 x 10* m*.

: 5m | 5m

Figure 5.2. The beam for Example 5.1.

Solution

(1) Analytical method [refer to Figure 5.2]

L=10m
P =8 kN.
Deflection,
P’ 8x10° x(10)°
C:— = — 9( ) ) :_198X1073 m:_198 mm
48EI  48%210%10° x4x10
PI? 8x10° x(10)*
ASIVA 19) =5.95x10"" rad

T 16EI 16x210%10° x4x107*

6c=0, by symmetry.
Reaction,

R,=Ry,=-=4kN.
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(1) FEM by hand calculations [refer to Figure 5.2(a)]

L ®
T @ : © ¢
Figure 5.2(a). Finite element model for Example 5.1.
Element stiffness matrices are,
12 6L -—12 6L

EI| 6L 4> —-6L 2I*
’|-12 -6L 12 -6L

12 6(5) -12  6(5)
_210x10° x4x107 | 6(5) 451 -6(5) 2(5)
B (5)° -12 -6() 12 —6(5)

6(5) 2(5° -6(5) 4(5)

[k ]

w4 w, &,

12 30 -12 30 (w,
100 =30 50 |4

-12 =30 12 =30 |w,

30 50 =30 1004,

[k, ]=672%10

Due to symmetry,

1230 -12 30 w,

100 -30 50 |4,
-12 =30 12 =30 |w,
30 50 -30 1004,

[k,]=672x10

Global equation is,

[K{r}={R} (5.3)
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1 4 w, &, Ws Z
2 30 —12 30 o 0 (w, [w,] | R’
30 100 —30 50 o o |44 0
79 %10° 12 =30 12412 -30+30  —12 30 |w, Jw, | |-8x10’
30 50 —30+30 100+100 -30 50 |4, |4, 0
—12 =30 2 =30 [w, [w, R,
b o 30 50 -30 100[4, (4] | o

Using the elimination method for applying boundary conditions,

w; =w;=0.

The above matrix reduces to

G w0 0

100 =30 50 0 A 0
-30 24 0 30 ||w —-8x10°
672x10° 2= )
50 0 200 50 (|4 0
0 30 50 1004, 0

By solving the above equations, we get,
w, =—0.002 m = -2 mm,
¢, =—0.0006 rad, &, =0 rad, and &, = 0.0006 rad.
Reaction calculation
672x10° (30x 4, —12xw,) =R,
672x10° (30 (=0.0006) — 12 % (—0.002)) = R,
R, =4.032 kN
672x10° (12X w, —30X &, ) = R,
672%10% (12 % (—0.002)— 30X (0.0006)) = R,

R, = 4.032 kN.
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(1) Software results

1
NODAL SOLUTION

STEP = 1
SUB =1

TIME = 1

USUM  (AVG)
RSYS
DMX
SMX

.001984
.001984

N X

.441E-03 .882E—-03 .001323 .001764
.220E-03 .661E—03 .001102 .001543 .001984

179

Figure 5.2(b). Deflection pattern for a simply supported beam (refer to Appendix C for

color figures).

Deflection values at nodes (in meters)
The following degree of freedom results are in global coordinates

NODE UX Uy UX USuUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 —0.19841E-02 0.0000 —0.19841E-02
3 0.0000 0.0000 0.0000 0.0000

The following degree of freedom results are in global coordinates

NODE ROTZ
1 —0.59524E-03
2 0.0000
3 0.59524E-03

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY Mz

1 0.0000 4000.0
3 0.0000 4000.0
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Answers for Example 5.1

Parameter Analytical FEM-hand Software
method calculations results
Displacement at node 2 —1.98 mm —2 mm —1.9841 mm

Slope at node

1 -5.95 X 10 rad —0.0006 rad —0.59524 x 107 rad
2 0 0 0
3 -5.95 X 10 rad —0.0006 rad 0.59524 x 10~ rad
Reaction at node
1 4 kN 4.032 kN 4 kN
3 4 kN 4.032 kN 4 kN
Example 5.2

For the beam shown in Figure 5.3, determine displacements, slopes, reactions,
maximum bending moment, shear force, and maximum bending stress. Take
E =210 GPa and I = 2 x 10™* m*. The beam has rectangular cross-section of
depth h=1m.

5000 N/m

45m | 45m
oo o

Figure 5.3. The beam for Example 5.2.

Solution
(1) Analytical method [refer to Figure 5.3]

Reaction,
5000 X 9
R, =R, :Tzzzsoo N =22.5kN
5PL 5% 5000 % (9)*
Op =~ =— 5 ©) — =-0.0102 m =-10.2 mm

388EI] 384%x210x10" x2x10

P’ 5000%(9)

PARIA = ©) =3.62x107 rad

©24EI  24x210%10° x2x107*
6c =0, by symmetry.
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Maximum bending moment,

_Pr’ _ 5000x(9)’

max — =50625 N-m.
8
Shear force,
PL  5000x9
SF=—=—""-=22500 N.
2
Maximum bending stress,
M
fonax =77 X Vimax (5.4)
I
h 1
=—=—=0.5m
ymax 2 2
50625
fonax = —X0.5=126.56 MPa.
2x10
Mmax
A C B

Figure 5.3(a). Bending moment diagram.

Shear force

hear force
>
X

Figure 5.3(b). Shear force diagram.
(1) FEM by hand calculations [refer to Figure 5.3(c)]

1 @ 2 @ 3

Figure 5.3(c). Finite element model for Example 5.2.
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Stiffness matrices are,
12 6L -12 6L
EI| 6L 4 —6L 20
r|-12 -6L 12 -6L
6L 2! —6L 4L

12 6(4.5) -12 6(4.5)
210x10° x2x107*| 6(4.5) 4(4.5)° —6(4.5) 2(4.5)
[kl] = 3 _ _ _
(4.5) 12 6(45) 12 6(4.5)

6(4.5) 2(45) -6(45) 4(4.5)
w4 w, Z
12 27 -12 27 w
81 —27 405|4
-27 12 =27 |w,
27 405 -27 81 |4,

27
[k]=460905.35| °

Due to symmetry,

[k, ] = 460905.35

27 405 27 81 |4

Nodal force calculation
For element 1,

LR
2 2
] ) -
1 2
© PL’ PL:
12 12

Figure 5.3(d). Nodal force calculation for element 1 in Example 5.2.



FINITE ELEMENT ANALYSIS OF BEAMS

Nodal forces and moments for element 1 is,

{F}=

For element 2,

2 @ 3

[ PL) [ 5000x4.5
2 2
pr? 5000 (4.5 | [~11250 ] f,
12| 12 | -8437.5| m,
PL [ ] 5000x4.5 [ |-11250 [ f,"
2 2 8437.5| m,
P 5000 % (4.5)°
12 | 12
PL PL
2 2
pL® L
12 12

Figure 5.3(e). Nodal force calculation for element 2 in Example 5.2.

Due to symmetry,

183

{F1={E}
-11250 ) f,
—8437.5|m
1= 1250 f:'
8437.5) m,
Global equation is,
[K]{r}={R} (5.5)
w4 w, &, wy b
2 27 -—12 27 0O 0 w, [w, —11250+R1y
7 81 =27 40.5 0 O g 10 —8437.5
—12 =27 12+12 =27+27 12 27 |w, |w, —11250 —11250
460905.35 = .
D7 40.5 —27+27 81+81 —27 4056, | b, 8437.5 —8437.5
0 0 -12 27 1227 [w, |w;| |-11250 ¥R,
b o 27 405 -7 81 |4, 6] | 84375




184

FINITE ELEMENT ANALYSIS

Using the elimination method for applying boundary conditions,
Wy =ws = 0.
The above matrix reduces to

4 w6 b

81 =27 405 0 A —8437.5
-27 24 0 27 ||w —22500
460905.35 2=
405 0 162 40.5]]4, 0
0 27 40.5 81 o, 8437.5

By solving the above equations, we get,
w, =—0.0102 m,
¢, =—0.0036 rad, &, =0 rad, and &, = 0.0036 rad.

Reactions are calculated from 1** and 5" rows of global matrix.

460905.35[12 27 —12 27 0 0] =—-11250+R,,

11615=-11250 + R,
R,, = 22865 N = 22.865 kN.

Similarly from 5" row

R,, =22.865 kN.

(1) Software results

1
NODAL SOLUTION

STEP =1
SUB =1
TIME = 1
USUM  (AVG)
RSYS =0
DMX =.01017
sMx = .01017
N X
MX

0 .00226 .00452 .00678 .00904
.00113 .00339 .00565 .00791 .01017

Figure 5.3(f). Deflection pattern for a simply supported beam (refer to Appendix C for color

figures).
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Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

185

NODE UX vy UX USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 —0.10170E-01 0.0000 —0.10170E-01
3 0.0000 0.0000 0.0000 0.0000
Slope values at nodes
The following degree of freedom results are in global coordinates
NODE ROTZ
1 —0.36161E-02
2 0.0000
3 0.36161E-02
Reaction values
The following X, Y, Z solutions are in global coordinates
NODE FX FY MZ
1 0.0000 22500
3 0.0000 22500
Total values
VALUE 0.0000 45000 0.0000

1
LINE STRESS

STEP =1
SUB =1
TIME = 1
SMIS6

MIN =0

SMISs12

0 11250 22500 33750 45000
5625 16875 28125 39375

50625

Figure 5.3(g). Bending moment diagram for a simply supported beam (refer to Appendix C

for color figures).
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1
LINE STRESS

STEP =1

SUB =1
TIME =1

SMIS2 SMIS8
MIN =-22500
ELEM = 1

MAX =22500
ELEM =2

"

=22500 —=12500 —2500

17500 =7500 2500

7500 17500
12500 22500

FINITE ELEMENT ANALYSIS

Figure 5.3(h). Shear force diagram for a simply supported beam (refer to Appendix C for

color figures).

1
LINE STRESS

STEP =1

SUB =1

TIME = 1

1S3 LS6
MIN =0

ELEM = 1

MAX =.127E+09
ELEM =1

0 281E+08 .562E+08

.lﬂlE*OG’ .422E+08 .703

e T

.844E+08 .112E+09
E+08 <984E+08 .127E+09

Figure 5.3(i). Bending stress for a simply supported beam (refer to Appendix C for color figures).

Answers for Example 5.2

Parameter Analytical FEM-hand Software
method calculations results

Displacement at node 2 —0.0102 m —0.0102 m —0.01017 m
Slope at node

1 —3.62 x 10~ rad 0.0036 rad —0.36161 x 107 rad

2 0 0 0

3 3.62 X 107 rad 0.0036 rad 0.36161 x 10~? rad
Reaction at node

1 22500 N 22865 N 22500 N

3 22500 N 22865 N 22500 N
Maximum bending moment 50625 N-m ... 50625 N-m
Shear force 22500N Ll 22500 N
Maximum bending stress 126.56 MPa ... 127 MPa
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Example 5.3

For the beam shown in Figure 5.4, determine displacements, slopes, and reactions.

Take E=200 GPaand I =6.25 x 10™* m*.

50 kN/m
A m B

[+
4m | 4m

Figure 5.4. The beam for Example 5.3.

Solution
(1) Analytical method [refer to Figure 5.4]

Reaction,
PL 50x10° x8
R, = e - 66666.67 N = 66.67 kN
PL 50%x10°x8
Ry = S5 - 133333.33 N =133.33 kN
7Pl 7x50%10° x(8)’
0, =- = 5 (8) — =—0.00398 rad
360EI  360x200x10° X6.25%10
P’ 50%x10° x(8)°
Oy = (®) =0.00455 rad

C45EI 45%200x10° X6.25%10™*

1(PL , p 5 7Pl
c=—|—x — X — X
EI\ 36 120X L 360 ) L

2

1(PL (LY P LY 7P (L 1 (p* PI!
Op=—|—X|=| - X[ =1 - X(=||l=— ————-
EI{ 36 \2 120xL° \2 360 \2 EI\ 288 3840
PI! (40-3-112
do=—o | ———=
EI 11520

75PL' 75x50%10° x(8)*
11520EI 11520%200%10° x6.25x10~*

L(ﬂz P, 7PL3]
L

=-0.01067 m

C:

c = X" — X — X
EI\ 12 24X L 360
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P

1 (PL (L)2
G.=—| —=x[=] -
Erl12 "\ 2 24X L

_1.2153x107° xPL _ 1.2153x107° X50%(8)’

)

* 7pr

d
360

o
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(L_L_L)
48 384 360

4. =
¢ EI

200%10° x6.25x107*

=2.4889x107* rad.

(1) FEM by hand calculations [refer to Figure 5.4(a)]

1 ©) 2

®

3

Figure 5.4(a). Finite element model for Example 5.3.

Stiffness matrices are,

12 6L —-12 6L
[k]_g 6L 4’ 6L 2L | 200x10°x6.25x10™*
YU p|-12 -6L 12 —6L | (4)
6L 20’ 6L 4L’
w4 w, b
12 24 —12 247w,
24 64 24 324
[k, ]=195.3125x10* h.
12 24 12 —24|w,
24 32 24 64]0,
Due to symmetry,
[k]=[k]
12 6L -12 6L
[k]—ﬂ 6L 4L’ —6L 2L’ | 200x10°x6.25x10™*
U p|-12 -6L 12 -6L | (4)’
6L 2I' —6L 4I’
w, b wy G
12 24 -12 247w,
24 64 24 32|06
[k,]=195.3125%10* 2.
—12 24 12 —24|w,
24 32 24 64]6,

=12

-12

12 6(4) -12  6(4)
6(4) 4(4) —6(4) 2(4)
—6(4) 12 -6(4)

6(4) 2(4)7 —6(4) 4(4)

12 6(4) 12 6(4)
6(4) 4(4) -6(4) 2(4)
—6(4) 12 —6(4)
6(4) 2(4) —6(4) 4(4)
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Global stiffness matrix is,

wy 4, w, Z ws 2
[ 12 24 -12 24 0 0w
24 64 -24 32 0o 0|4
J-120 24 12412 24424 -12 24w,
[K]=195.3125%10 )
24 32 —24+424 64+64 24  32|4,
~12 24 12 24 |w,
I 24 32 24  64]0,
Load vector,
[ 7P +3P,
L
I 5(31’1+2Pz)
{F}=—
20| 3P +7P,
L
-—(2P+3P,)
[ 3 J
For element 1,
P =0, P,=-25kN/m, L=4m
e .
4 ~15kN ~15000 N
(o 301 o333 em| |-1333 Nem
Y00 |-175 " ]-35kN " 1-35000 N
4 20 kKN-m 2000 N-m
—5(—75)

For element 2,

Pl_
(—175-150
4
—(=75-100)
[B}=—t 3
120 |-75-350
4
_5(_50_150)

=-25kN/m, P, =-50 kN/m, L=4 m

—65000 N

—46667 N-m

—85000 N
53333 N-m

189
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Global load vector is,

FINITE ELEMENT ANALYSIS

[(—15000 |
—13333
—100000
{F}=
—26667
—85000
| 53333 |
Global equation is,
[K){r}={R) (5.6)
w4 W, % wy G,
2 24 12 24 0 w, (W, —T5000 +R,
P4 64 24 32 0 b 16 —13333
G120 240 12412 -24+24 -12 24 |\w, |w, —100000
195.3125 x10 =
D4 32 24424 64+64 24 32|40, |6 —26667
0 —12 2 12 24 [w, [wy| |—85000 + R,
D 24 32 24 646, |0, | 53333

Using the elimination method for applying boundary conditions,

g1 [-13333
w,|  |~100000
0, [~ |-26667
0, 53333

W= W3 = 0.
The above matrix reduces to
4 w0 6
64 -24 32 0
24 24 00 24
195.3125%10
0 128 32
0 24 32 64
By solving the above equations, we get,
4] [-0.00398 rad
w,| [-0.01067 m
4, 1-0.00025 rad|"
A 0.00455 rad
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Reaction calculation
1953125(12X w, + 24X 6, —12Xw, + 24X §,) = —15000+ R,
R, =66796.875 N = 66.79 kN

1953125 (~12(—0.01067) — 24 X (—0.00025) — 24 x (0.00455)) = —85000 + R,
R, =133515.63 N =133.52 kN.

(1) Software results

1
NODAL SOLUTION

STEP =1
SUB =1
TIME = 1

DMX =.010667
SMx =.010667
Y
N X
MX

.00237 .004741 .007111 .009481
.001185 .003556 .005926 .008296 .010667

Figure 5.4(b). Deflection pattern for a simply supported beam (refer to Appendix C for
color figures).

Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE UX Uy UX USsum
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 —0.10667E-01 0.0000 0.10667E-01
3 0.0000 0.0000 0.0000 0.0000

Maximum absolute values

NODE 0 2 0 2

VALUE 0.0000 —0.10667E-01 0.0000 0.10667E-01

Slope values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 —0.39822E-02
2 —0.24889E-03

3 0.45511E-02
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Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY Mz
1 0.0000 66667
3 0.0000 0.13333E +06

Total values

VALUE 0.0000 0.20000E + 06 0.0000

Answers for Example 5.3

Parameter Analytical FEM-hand Software
method calculations results

Displacement at node 2 —0.01067 m —0.01067 m —0.010667 m
Slope at node

1 —0.00398 rad —0.00398 rad —0.0039822 rad

2 —2.4889 x 10~ rad —0.00025 rad —0.00024889 rad

3 0.00455 rad 0.00455 rad 0.0045511 rad
Reaction at node

1 66.67 kN 66.79 kN 66.667 kN

3 133.33 kN 133.52 kN 133.33 kN

Example 5.4
Calculate the maximum deflection in the beam shown in Figure 5.5. Take E = 200 GPa.

200N
50 mm

0
mm 10 mm J 10 mm J'

! ! ] 10 mm 10 mm

& G|

100 mm

Figure 5.5. The beam for Example 5.4.

Solution
(1) Analytical method [refer Figure 5.5(a)]
E A l c B F
10 mm 10 mm
80 mm
100 mm

Figure 5.5(a). Analytical method for Example 5.4.
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3

[

12

3
_ 00LX(OOD” _ g 53351010
12
5 - PI* _ 200x(0.08)° _ 2.133x107° _ 2.133x10°°
¢ 48EI A8EI EI 200x10° x8.33x107"°

J.=-1.2803%x10" m =-0.0128 mm

g-=0
PI 200x(0.08 0 08 0.08 _
10,|=0,|= =- (0.08) —-=4.802x10"" rad
16EI 16EI EI ~ 200x10° x8.33x10
Oy = 0, = Uy XBF
J; =, =4.802x107* x10=4.802x10~> mm.
(1) FEM by hand calculations [refer to Figure 5.5(b)]
& °
O RN O
Figure 5.5(b). Finite element model for Example 5.4.
For beam,
o
12
10% (10’
1= 10XA0F _ 633 34 mm*,
For element 1 and 2, L =40 mm
12 6L —12 6L 12 6(40) — 6(40)
)= EL| o 4L’ —6L 20’ | 200x10°x833.34| 6(40) 4(40) —6(4) 2(40y°
U p|-12-6L 12 -6L | (40’ 12 —6(40) 12 —6(40)

6L 2I' —6L 4I 6(40) 2(40)° —6(40) 4(40)
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Wi 4 w, &,

12 240 —12 240 w,
240 6400 —240 32004,
12 -240 12 -240 |w,
240 3200 -240 64006,

[k,]=2604.1875

Due to symmetry,

[kl] = [kz]

12 6L —12 6L 12 6(40) -12  6(40)
L 4 —6L 2I' | 200x10° x833.34| 6(40) 4(40)° —6(4) 2(40)’
U p|-12 6L 12 —6L (40)° 12 -6(40) 12 —6(40)
6L 2I' —6L 4L’ 6(40) 2(40)° —6(40) 4(40)

w, 4, ws o,

12 240 —12 240 w,
240 6400 —240 3200 |4,
—-12 240 12 240 |w,
240 3200 —240 64006,

[k,]=2604.1875

Global stiffness matrix is,

W 4 w, &, LE 2
[ 12 240 12 240 0 0 |w
240 6400 24 3200 0 0 4,
—-12 =240 12+12 —240+240 —12 240 (w,
[K]=2604.1875 .
240 3200 —240+240 6400+6400 —-240 3200 | &,
0 0 —12 —240 12 240 |w,
| 0 0 240 3200 —240 6400 | 4,
Global load vector is,
(R
0
—-200
tF1=1"
R3
| 0
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Global equation is,

195

[K]{r}={R} (5.7)

Wy 4 W, & w &
T2 ——240—=12—240 00w {wi R

240 6400 —240 3200 0 0 4 16 0
—12 —240 24 0 -12 240 |\w, |w, —200

2604.1875

240 3200 0 12800 —240 3200 (|4, | &, 0

0 0 12 =240 12 =240 |, [w; R,
b o 240 3200 -240 64006, |4] | o

Using the elimination method for applying boundary conditions,

Wy =w; = 0.
The above matrix reduces to

G w6 0

6400 -240 3200 O
—240 24 0 240
2604.1
604.1875 3200 O 12800 3200
0 240 3200 6400
By solving the above equations, we get,

4, —4.8x107 rad
w, | _ )—0.0128 mm
g o
Z 4.8x107* rad

w,

Z

At 6, = 0, max deflection between supports is 0.0128 mm.
Deflection at ends (overhang) = 4.8 x 10~ X 10 = 4.8 X 10~ mm.

(1) Software results

1
NODAL SOLUTION

STEP =1
SUB =1
TIME =1
USUM  (AVG)
RSYS =0
DMX =.0128
sMx =.0128

Y
X
MX

.005689 008533
007111 )

0 .002844

.011378
.001422 .004267 56

099 .0128

Figure 5.5(c). Deflection pattern for a simply supported beam (refer to Appendix C for

color figures).
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Deflection values at nodes (in mm)

The following degree of freedom results are in global coordinates

NODE UX Uy UX USuUM
1 0.0000 0.48000E-02 0.0000 0.48000E-02
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 —0.12800E-01 0.0000 0.12800E-01
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.48000E-02 0.0000 0.48000E-02

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 —0.12800E-01 0.0000 0.12800E-01

Slope values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 —0.48000E-03
2 —0.48000E-03
3 0.0000
4 0.48000E-03
5 0.48000E-03

Answers for Example 5.4

Parameter Analytical FEM-hand Software
method calculations results
Deflection at applied load —0.0128 mm —0.0128 mm —0.0128 mm
Deflection at ends (overhang) 4.802 x 10 mm 4.8 x 10° mm 4.8 x 10° mm
Slope at hinged support —4.802 x 10~ rad —4.8 x 10 rad —4.8 x 10 rad
Slope at roller support 4.802 x 10™* rad 4.8 x 10~ rad 4.8 x 10 rad

Procedure for solving the problems using ANSYS® 11.0 academic teaching
software.
For Example 5.2
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PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add >
Beam > 2D elastic 3 > OK > Close

FiMibraryof Flement Types

Orly structussl slement types ar shown
Litvary of Elemant Types
)
tapered 54 ;i
frke st ain =
2rode 188
Inode 189 ~
|m-z 3
Elemant type reference number

x| e | o | e |

Figure 5.6. Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

"‘ Real Constants for HEAM]

Elemeant Type Referance No., 1
Real Constant Set No.

Cross-sectional area  AREA
Arsa moment of inertia 122
Tctal beam haight ~ HEIGHT
Shear deflection constant SHEARZ
Intial stran ISTRN

Added massfunk length  ADOMAS

SN

o | sooy | concel |

Figure 5.7. Enter the area, moment of inertia, and height of beam.

Cross-sectional area AREA > Enter 1

Area moment of inertia IZZ > Enter 2e-4

Total beam height HEIGHT > Enter 1 > OK > Close
Enter the material properties.

3. Main Menu > Preprocessor > MATERIAL Props > Material Models
Material Model Number 1, Click Structural > Linear > Elastic > Isotropic
Enter EX =210E9 and PRXY =0.3 > OK
(Close the define material model behavior window.)

Create the nodes and elements as shown in the table below and Figure 5.8.
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4. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

Enter the coordinates of node 1 > Apply Enter the coordinates of node 2 >
Apply Enter the coordinates of node 3 > OK.

Node locations

Node number  X-coordinate Y-coordinate

1 0 0
2 4.5 0
3 9 0

Figure 5.8. Enter the node coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered >
Thru nodes Pick the 1 and 2" node > Apply Pick the 2" and 3* node > OK

Elements from Nodes

® pick " Unpick

@ Single  Box

" Polygon (= circle

£ Loop

Count = 0
Maximum = 20
Minimum = 1
Node No. =

(* List of Items

(" Min, Max, Inc

Reset Cancel

Pick k1l Help

:

Figure 5.9. Pick the nodes to create elements.

Apply the displacement boundary conditions and loads.
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6. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Nodes Pick the 1* node and 3™ node > Apply > Select UX
and UY and Enter displacement value = 0 > OK

Fa Apply U ROT on Nodes

[D] Apply Displacsments (U,ROT) on Nodes
LabZ DOFs to be constrained (Al DOF Al
ROTZ E
iy
Apply as Corstant value >
TF Constant vakue then:
R —
o« | aooly | concel | vep |

Figure 5.10. Apply the displacement constraint.

7. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Pressure > On Beams Pick the 1* element > OK > Enter Pressure values at
node I=5000 > OK

Figure 5.11. Applying loads on element 1.

8. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Pressure > On Beams Pick the 2" element > OK > Enter Pressure value at
nodeI=5000> OK

Y

BA_Z X ¥2 3
7.\
Figure 5.12. Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the solution.
First, to be safe, save the model.
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Solution

The interactive solution proceeds.

9. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close.
In the Solve Current Load Step window, select OK, and when the solution is
complete, close the ‘Solution is Done!” window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu >
DOF Solution > Displacement vector sum > OK
This result is shown in figure 5.3(f).

11. Main Menu > General Postproc > List Results > Nodal Solution > Select
Rolation vector sum > OK

12. Main Menu > General Postproc > List Results > Reaction Solu > OK
To find the bending moment diagram, the following procedure is followed.

13. Main Menu > General Postproc > Element Table > Define Table > Add as
shown in Figure 5.13.

Currantly Defined Diats o Status:
Ram T i Statu
o, | poms | s |
| = |

Figure 5.13. Define the element table.
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14.

1S.

16.

Select By sequence num and SMISC and type 6 after SMISC (as shown in
Figure 5.14) > APPLY

[AvPmRIN) EF MU For EQ train
[ETaRE] Defie Addtonsl Demert Table Rees
Lol U label For Bam

T, Comg Rasuty data ben

[ Y

{For "By seguence nem”, anber ssquence
o In Selection box. See Table d.xx-3
i Pl d Miarnad b i) Pt |

_w | e | e | e |

Figure 5.14. Selecting options in element table.

Then again select By sequence num and SMISC and type 12 after SMISC > OK
Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem
Res > Select SMIS 6 and SMIS 12 in the rows of LabI and Lab] respectively as
shown in Figure 5.15 > OK

[PLLS] Plok Line-Element Rasuk
Labil Elee tabile o at rode | Im—;]
Lah B tm ke )
Pact Optional scale factor D

KUAD  Reens bo be plotted on

Figure 5.15. Selecting options for finding out bending moment.

This result is shown in Figure 5.3(g).

To find the shear force diagram the following procedure is followed.

Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and SMISC and type 2 after SMISC > APPLY

Then again select By sequence num and SMISC and type 8 after SMISC > OK
Main Menu > General Postproc > Plot Results > Contour Plot > Lone Elem
Res > Select SMIS 2 and SMIS 8 > OK

This result is shown in Figure 5.3(h).

To find the bending stress, the following procedure is followed.
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17. Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and LS and type 3 after LS > APPLY
Then again select By sequence num and LS and type 6 after LS > OK

18. Main Menu > General Postproc > Plot Results > Contour Plot > Line Flem
Res > Select LS 3and LS 6 > OK
This result is shown is Figure 5.3(i).

5.3 CANTILEVER BEAMS

Example 5.5

Beam subjected to concentrated load. For the beam shown in Figure 5.16,
determine the deflections and reactions. Let E = 210 GPa and I =2 X 10~ m*. Take

2 elements.
P=5kN

-1

Py

-~

1

Ve

7 2m 2m

Figure 5.16. Beam subjected to concentrated load for Example 5.5.

Solution
(1) Analytical method [refer to Figure 5.16(a)]
P=5kN P=3kN
R, 4 al N
" 9a B c c B P AR
1 _ —R
M, ’ e 2m | 2m 2m | 2mi R
X 13

Figure 5.16(a). Analytical method for Example 5.5.

The solution is obtained by Macaulay’s method. The number within the brackets
<> is to be neglected whenever it is less than zero.
At section a-a

Ely”=-P<x-2>

—P<x-2>*
my-bexm22 g
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-P<x-2>
Ely=++qx+(§2
Atx=4,y"=0=C,=2P

—20P

Atx:4,y=0:>C2:T

1 (-P<x-2>2
y =t ZEExm2>
EI 2

- -253 20P
)/:L(P<++2PX—T)

~ 2%5000
210%x10° x2x107*

2X 5000
=y _ =—(0+2P)=
Ye = Vim0 EI( ) 210%10° x2x107*

=2.381x107* rad

1
t=y. _,=—(0+2P
yB yx—Z EI( )

=2.381x107"* rad.

Similarly,
1 20P 2% 5000 20><5000)
V8= Vamz EI( 3 ) 210><109><2><104(
Vg =Y,y ==3.1746X10"" m
_ _L(_zop)_ 2x5000 (_20x5000)
Ye= Vo =\ 73 210%10° x2x107* 3

Vo = Voo =—7-9365x107" m
> F,=0=R =5kN
Z“M:0:M1 =10 kN —m.

(1) FEM by hand calculations

T @ 2 @ 3

Figure 5.16(b). Finite element model.
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Element stiffness matrix for element 1 is,

FiNITE ELEMENT ANALYSIS

12 6(2) -12  6(2)

—6L 2I'| 210x10°x2x107| 6(2) 4(2)" —6(2) 2(2)°

12 6L -12 6L
k] EI| 6L 4L
P |-12 6L 12 —6L (2)°
6L 20’ —6L AL’
w4 w, 2
12 12 -12  12]w,
16 —-12 8 |4
[k,]=5.25x10° h.
12 -12 12 -12|w,
12 8 -12 16]4,

Element stiffness matrix for element 2 is,

12 -6(2) 12 —6(2)

6(2) 22 -6(2) 4(2)

12 6L -12 6L 12 6(2) -12  6(2)
k=2 6L 4L' 6L 2I'| 210x10°x2x107*| 6(2) 4(2)° -6(2) 2(2)
P12 -6 12 —6L ) 12 -6(2) 12 -6(2)
6L 2I' —6L 4I’ 6(2) 22 -6(2) 42
w, O w, 2
12 12 -12 127w,
[k,]=5.25%10° 16 128 14
12 -12 12 —12|w,
12 8 -12 16/6,
Global stiffness matrix is,
Wy 4 W, 2 wy O
[ 12 12 -12 12 0 0w
12 16 -12 8 0 f
12 -12 12412 -12412 -12  12|w
[K]=5.25x10° 2
12 8 -—12+12 16416 —-12 8 |4,
-12 -12 12 -12|w,
| 12 8 -12 164,
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The global equations are,

[K{r}={R}
we o owy, G owy G

12 =12 120 Fw w0+ R
T 6 -2 8 0 047 ES
oo R 12240 12 120w fw | [-5x10°

1p 0 32 -12 8 |44 0

12 -12 12 =12 (wy |w, 0

I 2 8 -12 16]4, (4] | o

By using the elimination method for applying boundary conditions,

W1:91:0.

The above matrix reduces to,

By solving the above matrix and equations, we get,
Deflections and slopes as
w, =-0.3175x10" m
6, =-0.2381x107 rad
w, =—0.7937x107 m_
6, =—0.2381x107 rad

Reaction calculation

5.25x10° (12w, +126, —12w, +126,) = R,

5.25x10°(12X0+12x0-12(=0.3175x107" ) +12(-0.2381x107)) = R,

R, =5002.2 N ~5kN

205

(5.8)
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5.25x10°(~12w, +86,) = M,
5.25x10°(—12(=0.3175x107)+8(-0.238x107°)) = M,
M, =10002.3 N-m = 10 kN-m.

(1) Software results

1
NODAL SOLUTION

STEP = 1

SUB =1

TIME = 1

USUM  (AVG)
RSYS =0

DMX = .794E-03
SMX = .794E—03

Y
ZN X

.176E-03 +353E-0 .529E-03 .705E-03
.882E—04 +265E-03 +441E—03 .617E-03 +794E—03]

Figure 5.16(c). Deflection pattern for a cantilever beam (refer to Appendix C for color
figures).

Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE UX Uy Uz USuM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 —0.31746E-03 0.0000 0.31746E-03
3 0.0000 —0.79365E-03 0.0000 0.79365E-03

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 —0.79365E-03 0.0000 0.79365E-03

Rotational deflection values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 0.0000
2 —0.23810E-03

3 —0.23810E-03
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Reaction values

The following X, Y, Z solutions are in global coordinates

NODE FX FY [\ V4

1 0.0000 5000.0 10000.

Answers for Example 5.5

207

Parameter Analytical
method

FEM-hand
calculations

Software
results

Deflection at node
2 -3.1746 X 10* m
3 —7.9365 X 10* m

Rotational deflection at node

2 -2.381 x 10~ rad

3 -2.381 x 10~ rad
Reaction force at node 1 5kN
Reaction moment at node 1 10 kN-m

-0.3175x 10° m
—0.7937 x 10~ m

—0.2381 x 10~ rad
—0.2381 X 10 rad
5 kN
10 kN-m

—0.31746 X 10~ m
—0.79365 x 10~ m

—0.2381 x 10~ rad
—0.2381 x 107 rad
5 kN
10 kN-m

Example 5.6

Propped cantilever beam with distributed load. Find nodal displacements
and support reactions for the beam shown in Figure 5.17. Let E = 70 GPa and

I=6x10"m"

8 kN/m

3 4 m /l\ 4m -

ANNANNNANNN

Figure 5.17. Propped cantilever beam with distributed load for Example 5.6.
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Solution
(1) Analytical method [refer to Figure 5.17(a)]

8 kN/m

R,

C

1

AANAANNNANNN

R,
Figure 5.17(a). Analytical method for Example 5.6.

The solution is obtained by Macaulay’s method. The number within the brackets
<> is to be neglected whenever it is less than zero.

D F,=0= R =-R,+8x10’ x4 =32000-R,
D M=0= M, =4R, —(8x10’ x4)x6 = (4R, —192000) N-m.
At section a-a

8x10°

M, =M, +Rx+R, <x—4>— <x—4>

Ely” = (4R, —192000)+(32000—R,)x+ R, < x—4 > —4x10° < x —4 >

2 2
Ely’ = 4R,x —192000x +(32000><%) —(Rz x%)
(5.9)
4x10° <x—4>°
B g al +C,
2 3
2 2 3 3
Ely=| 4R, x> |-| 192000x = |+| 32000x = |- R, x =
2 2 6 6
R 4x10° <x—4>* 510
X <x—4>
+?2<x—4>3— 12x +Cx+C,.

Boundary conditions are,
Atx=0,y=0=C,=0
Atx=0,y’=0=C,=0
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Atx=4,y=0= R, =56008 N
R, =32000—R, = —24008 N
M, =4R, —192000 = 32032 N-m (Clockwise), (negative).

Substituting in equations (5.9) and (5.10)

2 2
Ely’ = 4% 56008x — 192000 + (32000 x %) —(56008 X %)

56008 , 4x10°<x—4>°
<x—4>" — 3

y'|._, =—0.00152 rad
y’|_ =—0.00355 rad

+

and

2 2 3 3
Ely = (4><56008><%)—(I%OOOX%)+(32000x%)—(56008x%)

56008 , 4x10° <x—4>*
+—<x—4> -
6 12

Yoog = Ve =y, =—0.0122 m

¥4 =y, =0and y, = y, =0 (Given boundary conditions).

(1) FEM by hand calculations

: @ 2 @ 3

Figure 5.17(b). Finite element model for Example 5.6.

E=70%10°> N/mm? and I=6x10® mm
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Stiffness matrix for element 1 is,

FiNITE ELEMENT ANALYSIS

12 6L -12 6L
EI| 6L 4 —-6L 2L
[k]=—
r'{-12 -6L 12 -6L
6L 2I' —6L 4L
12 6(4000) —12 6(4000)
[k]_70><103><6><108 6(4000)  4(4000)° —6(4000)  2(4000)
Y (4000) -12 -6(4000) 12 —6(4000)
6(4000)  2(4000)° —6(4000)  4(4000)*
Wy 4 W, 4,
12 24000 —12 24000 Ty,
24000  64x10° —24000 32x10° |4
[k,]=656.25 )
-12 —24000 12 —24000 |w,
24000  32x10° —24000 64x10° |4
Due to symmetry,
[kl]:[kz]
w, b, Wi 2
12 24000 12 24000 Ty,
24000  64x10° -24000 32x10° |4,
[k,]=656.25 )
- —24000 12 —24000 |w,
24000  32x10° —24000 64x10° |4
Nodal force calculation
For element 2,
PL PL
2 2
Y —
2 3
® BL BL
12 12

Figure 5.17(c). Nodal force calculation for element 2 in Example 5.6.
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P =8 N/mm
L= 4000 mm
PL _ 8X4000 _, 100 N
2
2 2
PL° _ 8x(4000) _ 0 667%10° N-mm.
12 12

The nodal forces and moments for element 2 is,

211

-
2
(] 12 ~10.667 x10° | m,
21 pL [ ]-16000 1,
2 -10.667 x10° | m,
PI’
12 ]
The global equations are,
[K{r}={R} (5.11)
wy 4 W, % W3 2
2 24000 —12 24000 0 0 "
24000 64 x10° —24000 32%x10° 0 0 7
56 25 —12  —24000 12+12 —24000 + 24000  —12 24000 |w,
' 24000 32x10° —24000 +24000 64 x10°+64x10° —24000 32x10° |4,
0 0 -12 —24000 12 —24000 |w,
| 0 0 24000 32x10° —24000 64x10 Pt
o0+ ]
4 0+ M,
14000
x W2 _ TUUUU Tl\z
A -10.667 x10°
w, —16000
(4] | 10.667x10°)

By using the elimination method for applying boundary conditions,

W1=91:W2:0.
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The above matrix reduces to

128x10° —24000  32x10° |[ 4, ~10.667 x10°
656.25| 24000 12 —24000  [{w, ¢ =1-16000
32x10°  —24000  64x10° || & 10.667 x10°

Solving the above matrix and equations, we get,
w, =—12.19 mm =-0.01219 m
4, = -0.00355 rad
4, =—0.00152 rad.

Reaction calculation

656.25(12w, +24000% ¢, —12w, +24000x &, ) = R,
656.25(12 X 0 +24000 X 0 —12 X 0+ 24000 X (—0.00152)) = R,
R, =-23.94 kN = —24 kN

656.25(24000w, +64 X10° X & —24000w, +32x10° X 4, ) = M,
656.25(24000 X0+ 64 X 10° X 0—24000 X 0+ 32X 10° X (~0.00152)) = M,
M, = -31.92 kN-m =~ —32 kN-m

656.25(—12w, —24000 X &, + 24w, +0X 6, —12w, +24000% £, ) = R, —16000
656.25(—12X 0 —24000 X 0+ 24 X0 +0x ¢, —12(=12.19)+24000 x (-0.00355))
= R, —16000.
R, =56.08 kN = 56 kN

(1) Software results

1
NODAL SOLUTION

STEP =1
SUB =1
TIME = 1
USUM  (AVG)
RSYS =0
DMX =.01219
sMx =.01219

Y
ku X
MX
0 1002709 £005418 7008127 .!omaa!
001354 004063 006772 009481 01219

Figure 5.17(d). Deflection pattern for a cantilever beam (refer to Appendix C for color figures).
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Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

213

NODE UX Uy Uz UsumMm
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.31746E-03
3 0.0000 —0.12190E-01 0.0000 0.12190E-01

Rotational deflection values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 0.0000
2 —0.15238E-02
3 —0.35556E-02

Reaction values

The following X, Y, Z solutions are in global coordinates

NODE FX FY Mz
1 0.0000 —24000  —-32000
2 0.0000 56000

Answer for Example 5.6

Parameter Analytical FEM-hand Software
method calculations results

Deflection at node 3 -0.0122 m -0.01219 m -0.01219 m
Rotational deflection at node

2 —0.00152 rad —0.00152 rad —0.001524 rad

3 —0.00355 rad —0.00355 rad —0.00355 rad
Reaction force at

1 —24 kN —24 kN —24 kN

2 56 kN 56 kN 56 kN
Reaction moment at node 1 —32kN-m —32 kN-m —32 kN-m
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Example 5.7

Propped cantilever beam with varying load. For the beam shown in Figure 5.18,
determine the nodal displacements, slopes, reactions, maximum bending moment,
shear force, and maximum bending stress. Take E = 200 GPa.

60 kN/m

165 mm

165 mm

AAANNANAY

3m A 3m
rhmr

Figure 5.18. Propped cantilever beam with varying load for Example 5.7.

Solution
(1) FEM hand calculations

SERURTREE

Figure 5.18(a). Finite element model for Example 5.7.

bh®  165%(165)°
[=—= 165x(165) _ 61766718.75 mm* =6.18 X107 m*.

12 12
Stiffness matrices for element 1 and 2 are,

12 6L -12 6L
EI| 6L 4! —eL 2I?

KI=F1.1 60 12 6L
6L 2! —6L 4
12 63) -12  6(3)
[kl]z200><109><6.18><10*5 6(3) 403 -6(3) 203

(3)° -12 -6(3) 12 -6(3)
6(3) 2(3) -6(3) 4(3)
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12 18 -12 18
200%10°x6.18x107° | 18 36 -18 18
B (3)° -12 -18 12 -18

18 18 -18 36

[k ]

w4 W, 4,

12 18 —12 18 (w,
18 36 -18 18(4
-12 -18 12 -18|w,
18 18 -18 364

[k, ]=457.78 x10°

Due to symmetry,

1218 —12 187w,
18 36 -18 184,
—12 18 12 -18|w,’
18 18 -18 364,

[k, ]=457.78 x10°

Nodal force calculation

For element 1,

1 ® 2

Figure 5.18(b). Nodal force calculation for element 1 for Example 5.7.

P,=0and P, =30 kN/m
L=3m.

The nodal forces and moments for element 1 is,

(—(7P,+3P,) ) [—(7x0+3x30x10°) | 3
L 3 | [Fsxae] g,
- L —g(3P1+2P2) ; —5(3><0+2><30><10) S9x10° | m
" 20|-(BR+7R) | 20|-(3x%0+7x30x10°) —31.5x10°| £,
L 3 m
3 (2R +3R) %(2><0+3><30><103) 13.5x107] 7



216 FINITE ELEMENT ANALYSIS

For element 2,

60 kN/m
30 kN/m

2 ®) 3

Figure 5.18(c). Nodal force calculation for element 2 for Example 5.7.

P, =30x10° N/m and P, =60x10° N/m
L=3m.

The nodal forces and moments for element 2 is,

(—(7P. +3P,) [—(7%30%10° +3x60%10°
1 2
I 3 -58.5x10°| f,
3 3
e —§(3P1+2Pz) I —§(3><30><10 +2x60%10°) | -315%10° | m,
*20|-(3R+7R) [ 20|-(3x30x10°+7x60x10°) ~76.5%10° | f5
L 3 3 |m
~ (2R +3p,) ~(2x30x10° +3x60x10°) 36107 ] 75
The combined nodal forces and moments matrix is,
[-13.5%10° 1 [-13.5%10°] f
-9x10° -9x10° | m,
(F]= (-31.5-58.5)x10° _ -90x10° | f,
(13.5-31.5)x 10’ —-18x10° | m,
~76.5x10° ~76.5%10° | f>
| 36x10° || 36x10° |
The global equations are,
w, |4 W, b, w, 0,
218 -12 I8 0 0 [w, [w] [—I35+R]]
I8 36 —18 I8 00 [0 (7 —9FM,

457 78 S| -12 18 12+121-18+18 —12 18 [w, [w, ;/63 —90+RKR,
/O X = X

W 18 |18 —1s+18| 36436 —18 18 4,16, -18
0 -12 |-18 12 -18 |w, |w, ~76.5
0 18 18 -18 364, |4, ] | 36
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By using the elimination method for applying boundary conditions, w; = 6, = w, =0.
The above matrix reduces to,

72 -18 18][4,| [-18
457.78| 18 12 —18 |{w, t=4-76.5".
18 -18  36]|4, 36

By solving the above matrix and equations, we get

¢, =—0.0128 rad, w; = —0.0811 m, and &, = —0.0319 rad.

Reaction calculation

457.78x10° (12w, +186, —12w, +186,) = —13.5x10° + R,

457.78x10° (12X 0+18x0—12X0+18x(-0.0128)) = —13.5x10° + R,
R, =-91972.5N

457.78x10° (18w, + 364, —18w, +1864,) = —9x10° + M,

457.78x10° (18X 0+36X0—18 x0+18 X (—0.0128)) = —9x10° + M,
M, = -96472.5 N-m

457.78x10° (=12w, —184, + 24w, +0x &, —12w, +186,) = —90x 10’ + R,
457.78x10° (12X 0—18X0+24 X 0+0x &, —12%(-0.0811)+18 X (—0.0319))
=-90x10° +R,.
R, =272654.22 N

(I1) Software results

1
NODAL SOLUTION

STEP = 1
SUB =1
TIME =1
USUM  (AVG)
RSYS = 0
DMX =.081098
sMx =.081098

Y
me

MX

.018022 .036044 .054066 .072087
.009011 .027033 .045055 .063076 .081098

Figure 5.18(d). Deflection pattern for a cantilever beam (refer to Appendix C for color figures).
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Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE UX Uy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 —0.81098E-01 0.0000 0.810898E-01

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 —0081098E-01 0.0000 0.81098E-01

Rotational deflection values at nodes

The following degree of freedom results are in global coordinates

NODE ROTZ
1 0.0000
2 —0.12834E-01
3 —0.31948E-01

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY Mz
1 0.0000 -92250 -96750
2 0.0000 0.27225E + 06

Total values

VALUE 0.0000 0.18000E + 06 -96750

1
LINE STRESS

STEP = 1

SUB =1

TIME =1

SMIS6 SMIS12
MIN =-225000
ELEM=1

MAX =96750
ELEM =1

1
225000 159550 153500117750 82000 46250 1050055550 62000 94750

Figure 5.18(e). Bending moment diagram for a propped cantilever beam (refer to Appendix C
for color figures).
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1
LINE STRESS

STEP =1
SUB =1
TIME =1
SMIS2 SMIS8
MIN =-135000

ELEM = 2
MAX =137250
ELEM=1 v
— O —
—=135000 —=74500 —=14000 46500 107000
—104750 —4425 16250 76750 137250
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Figure 5.18(f). Shear force diagram for a propped cantilever beam (refer to Appendix C for

color figures).

1
LINE STRESS

STEP = 1

SuB =1

TIME = 1

Ls3 1S6

MIN =—.300E+09
ELEM = 1

MAX =.129E+09
ELEM = 1

—.253E+09

.157E+09

.617E+08

-337B+08

=~.300E+09 —.2055009' —.1408005 —.814E+08

—.109E+09

.129E+09

Figure 5.18(g). Bending stress diagram for a propped cantilever beam (refer to Appendix C

for color figures).

1
LINE STRESS

STEP =1
SUB =1
TIME =1
NMIS1 NMIS3
MIN = .155E-06
ELEM =2
MAX = .300E+09
ELEM =1

<

+.155E—-06 .667E+08
.334E+08

.100E+0

.133E+0

8

9

.167E+0

.200E+0

9

9

.234E+

09

E+09
.300E+09

Figure 5.18(h). Maximum stress diagram for a propped cantilever beam (refer to Appendix C

for color figures).
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Answers for Example 5.7

FINITE ELEMENT ANALYSIS

Parameter FEM-hand calculations Software results
Deflection at node 3 —0.0811 m —0.081098 m
Rotational deflection at node

2 —0.0128 rad —0.012834 rad

3 —0.0319 rad —0.031948 rad
Reaction force at

1 -91.97 kN -92.25 kN

2 272.65 kN 272.25 kN
Reaction moment at node 1 —96.47 kN-m —96.75 kN-m
Maximum bending moment 96750 N-m
Shear force 137250 N
Maximum bending stress 129 MPa
Maximum stress 300 MPa

(bending stress + direct stress)

Example 5.8

Propped cantilever beam with stepped loading. Analyze the beam in Figure 5.19 by
finite element method and determine the reactions. Also, determine the deflections.

E=200GPaand I=5x 10 m*.

Given
24 kN/m
A 12 kN/m
JIREEREER
|
1
”
; 5m 5m

1%

Figure 5.19. Propped cantilever beam with stepped loading for Example 5.8.

Solution
(1) FEM by hand calculations

ARERRESRR.

1

®© 2 O

3

Figure 5.19(a). Finite element model for Example 5.8.
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Stiffness matrix for element 1 and 2 are,
12 6L -12 6L
(k]= EI| 6L 4L’ —6L 20
rl-12 -6L 12 -6L
6L 2I' —6L AL
12 6(5) -12 605
_200x10°x5%x107* [ 6(5) 4(5)° —6(5) 2(5)

(k] B 12 —6(5) 12 —6(5)
6(5) 2(5° -6(5) 4(5)
Wy 4 w, Z

1230 -12 30 Jw,

100 —30 50 |4
-12 =30 12 -30 |w,
30 50 -30 100]4,

[k, ]=800x10

W, 4, w; 0,

12 30 -12 30 |w,
30 100 -30 50 |4
-12 =30 12 =30 |w;
30 50 =30 100 5’3

[k, ]=800x10

Nodal force calculation

For element 1,

PL PL
2 2
1 2
® P P
12 12

Figure 5.19(b). Nodal force calculation for element 1 in Example 5.8.

P=12kN/m=12x10> N/m

L=5m
PL 12x10°>x5
TZTZSOXW N

PL’ _12x10° x(5)°
12 2

=25%10° N-m.
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The nodal forces and moments for element 1 is,

_PL]
2 3
P2 -30x10 f,
£ ]= T2 | ]-25%10° | m
Y| PL [ |sox10’| £
2 25%10° | ™
e
12
For element 2,
PL PL
2 2
) r —
2 3
® BL P
12 12

Figure 5.19(c). Nodal force calculation for element 2 in Example 5.8.

P =24 kN/m=24x%x10’> N/m

L=5m

PL 24x10°x5

— = T —60x10° N

2 2

P> 24x10°x(5)
E=f()=50x103 N-m.

The nodal forces and moments for element 2 is,

CpL
2 3
| [60x10°] 1,
12| |-50x10° [ m,
[E]= PL = 3 .
_PL —60x10° | f
2 50x10° | ™
PI
12
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The combined nodal forces and moments is,

[—30x10° 1 [-30%10°] f
-25x10° -25%10° |
(F]= -30x10° —60x10° _ —90x10’ fZ.
25x10° —50%10° -25%10° | m,
~60x10° —60x10° | f5

| 50x10° || s0x10®|"™

The global equations are,

[K]{r}={R} (5.12)

G v 2 wy G,

L NRT 20 00 TJu fu] [-30 x10° +R, |
30 1000 3 50 R R 255007 +-M

800 x 10° 12 -3 12[+12 =30 +30 12 30 |w, |w, _ =90 X10° +K,

30 50 —30(+30 100+100 -30 50 |4, |4 [ |-25x10°
D o] -12  -30 12 230 |wy [wy| |60 x10°

b o] 30 50 =30 100]4 (4] | 55,000

By using the elimination method for applying boundary conditions,

w=0,=w,=0,
the above matrix reduces to

200 =30 50 ][4 [-25%10°
800x10°[ 30 12 =30 |{w, =1{-60%10’
50 =30 100]|4, 50%10°

By solving the above matrix and equations, we get

Reaction calculation

800x10° (12w, +3064, —12w, +3064,) = -30x10” + R,

800x10° (12X 0+30X0—12Xx0+30%(—0.003438)) = —30x10° + R,
R =-52512N
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80010 (30w, +1004, —30w, +506,) = —25x10° + M,

800x10° (30X 0+100X0—30X0+50x (—0.003438)) = —25x10° + M,
M, =-112520 N-m

800x10° (—12w, =300, + 24w, +0X &, = 12w, +306,) = -90x10° + R,
457.78x10° (=12X0—30X0+24 X0+ 0x &, =12 X (—0.0035938) + 30 x (~0.008438))
=-90x10° +R,.
R, =232492.8 N

(1) Software results

1
NODAL SOLUTION

STEP = 1
SUB =1

TIME = 1

USUM  (AVG)
RSYS =0

DMX =.035937
sMx =.035937

MX

0 .007986 .015972 .023958 .031944
.003993 .011979 .019965 .027951 .035937

Figure 5.19(d). Deflection pattern for a cantilever beam (refer to Appendix C for color figures).

Deflection values at nodes (in meters)

The following degree of freedom results are in global coordinates

NODE UX Uy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 —0.35938E-01 0.0000 0.35938E-01

Maximum absolute values

NODE 0 3 0 3

VALUE 0.0000 —0.35938E-01 0.0000 0.35938E-01
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Rotational deflection values at nodes
The following degree of freedom results are in global coordinates

NODE ROTZ
1 0.0000
2 —0.34375E-02
3 —0.84375E-02

Reaction values
The following X, Y, Z solutions are in global coordinates

NODE FX FY Mz
1 0.0000 —52500 —0.11250E +06
2 0.0000 0.23250E + 06

Answers for Example 5.8

Parameter FEM-hand calculations Software results

Deflection at node 3 —0.035938 m —0.035938 m

Rotational deflection at node
—0.003438 rad —0.0034375 rad

2
3 —0.003438 rad —0.0034375 rad
Reaction force at
1 —52.512 kN —52.5kN
2 232.493 kN 232.25 kN
Reaction moment at node 1 —112.52 kN-m —112.5 kN-m

Procedure for solving the problems using ANSYS® 11.0 academic teaching

software.
For Example 5.7
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PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add >
Beam > 2D elastic 3 > OK > Close

oy i o Sevant Dyfers e thive
Ubewry of Blewart Types

Figure 5.20. Element selection.

2. Main Menu > Preprocessor > Sections > Beam > Common sections, following
dialog box appears

M Beam Tool

Name
Sub-Type

Offset To Centroid ~»
Offset-Y

h
I._
[w =
I“—
Offset-Z In_
_J: :
I.n_
Iu—

[y

B

H

Nb

Nh
ok | mey |
Close | Preview |
Help | Meshview |

Figure 5.21. Choose cross-section of the beam.

In that dialog box, select Sub-Type, choose Square Cross-Section, then Enter
value of B =0.165 and H = 0.165 as shown in Figure 5.21.

Click on Preview > OK

The following figure appears on the screen.
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SECTION PREVIEW
X = Centroid O = shear Center DATA SUMMARY

;

.0825

= .027225
Iyy

= .618E-04
Xy:- 0
04125 ":- .618E-04
Warping Constant

= .194E-08
Torsion Constant

= .106E-03
i) Centroid ¥

= .162B-17

Centroid 2

= .348E-17
Shear Center Y
—- 04125 = .729E-17
Shear Center Z
= —.911E-17
Shear Corr. YY
J.0825 Shear Corr. ¥z
—.0825 —.04125 .04125 .0825 = .933E-18
Shear Corr. 2z
= .842105

Figure 5.22. Details of geometrical properties of the beam.

From Figure 5.22, note down the values of Area A = 0.027225 m* and moment
of inertia I, = 0.681 x 10~ m*.
3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

'A.‘ Real Constants for BEAM3

| Element Type Reference No. 1
Real Corstant Set No.

| Cross-sectionalarea  AREA
Area moment of inertia 172
Total beam height ~ HEIGHT
Shear deflection constant SHEARZ
Iritial strain ISTRN
Added massfunk length  ADDMAS

L TITHY

x | _mow | _cwen |

Figure 5.23. Enter the area moment of inertia.

Cross-sectional area AREA > Enter 0.027225

Area moment of inertia I, > Enter 0.618e-4

Total beam height HEIGHT > Enter 0.165 > OK > Close
Enter the material properties.

4. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX =200E9 and RRXY =0.3 > OK
(Close the Define Material Model Behavior window.)

Create the nodes and elements as shown in the figure.
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5. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

Enter the coordinated of node 1 > Apply Enter the coordinates of node 2 >
Apply Enter the coordinate of node 3 > OK.

Node locations

Node number X-coordinate Y-coordinate

1 0 0
2 3 0
3 6 0

Figure 5.24. Enter the node coordinate.

6. Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered >
Thru nodes Pick the 1 and 2" node > Apply Pick the 2" and 3" node > OK

Elements from Nodes
@ pick " Unpick

@ single € Box

€ rolygon ¢ circie
€ Loop

Count
Haximum
Minimum

20

Node No.

' List of Ttems

(" Min, Max, Inc

—

B

Reset Cancel

Pick J-.ul Help

Figure 5.25. Pick the nodes to create elements.

Apply the displacement boundary conditions and loads.
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7.

8.

10.

Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural
> Displacement > On Nodes Pick the 1** node > Apply > All DOF = 0 > OK

Main Menu > Preprocessor > loads > Define Loads > Apply > Structural >
Displacement > On Nodes Pick the 2" node > Apply > Select UX and UY =0 > OK

I\ Apply UROT on Nodes

[D] Apply Displacements (U,ROT) on Nodes
LabZ DOFs to be constraned

IF Constant value then:
VALUE Displacement value

Figure 5.26. Applying boundary conditions on node 2.

. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural

> Pressure > On Beams Pick the 1% element > OK > Enter Pressure value at
node I = 0 and Pressure value at node ] = 30e3 > OK

'A‘ Apply PRIS on Beams

[SFBEAM] Apply Pressure (PRES) on Beam Elements
LKEY Load key

VALL Pressure value & node 1
VALY Pressure value at node J
(leave blank for uniform pressure)

Optional offsets for pressure load
IOFFST  Offset from 1 node

I

JOFFST  Offset from ) node
LENRAT Load offset in terms of

=

ength units <

o | Aty | cancel |

H

Figure 5.27. Applying loads on element 1.

Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Pressure > On Beams Pick the 2" element > OK > Enter Pressure value at
node I = 30e3 and Pressure value at node J = 60e3 > OK

1 % ]
“A “A

Figure 5.28. Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the solution.
First to be safe, save the model.
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Solution
The interactive solution proceeds.

11. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Control Load Step window is shown. Click the solution options in the
/STATUS window and if all is OK, select File > Close.
In the Solve Current Load Step window, select OK, and when the solution is
complete, close the “Solution is Done!” window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

12. Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu >
DOF Solution > Displacement vector sum > OK
This result is shown in Figure 5.18(d).

13. Main Menu > General Postproc > List Results > Nodal Solu > Select
Roatation vector sum > OK

14. Main Menu > General Postproc > List Results > Reaction Solu > PL
To find the bending moment diagram following procedure is followed.

15. Main Menu > General Postproc > Flement Table > Define Table > Add

Add... ' Updats ' &I
e | v |

Figure 5.29. Define the element table.

Select By sequence num and SMISC and type 6 after SMISC (as shown in
Figure 5.30) > APPLY
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16.

17.

18.

FidDetine Additional Element |able ltems

[AVPEIN] EFFNU For EQH shrain T
[ETALE] Define Addticnl Blement Table fbams
Lab  Uiserishel for fem
Ren, Comg Resuts dats tem Sr - slatic ~ -
Stran-thermal
Ed 5,
Stran-oeep
Str T,
Contact 3 b
L |9¢s:.s
(Fer By soquenca num”, snter sequence
10, 1 Selection bax, See Table 4.00-3
I Blaments Manual For sea. rumbess.)
x oo | carcel | Help

Figure 5.30. Selecting options in element table.

Then again select By sequence num and SMISC and type 12 after SMISC > OK
Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem
Res > Select SMIS 6 and SMIS 12 in the rows of LabI and Lab], respectively as
shown in Figure 5.31 > OK

Fil plot Line Element Results

[PLLS] Plct Line-Element Result

Lebl Elem table kem ot node I [smss =]
Leh) Elem table Rom ot rode ) -

s et ]

KUND Ttems to be plotted on

Figure 5.31. Selecting options for finding out bending moment.

This result is shown in Figure 5.18(e).

To find the shear force diagram following procedure is followed.

Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and SMISC and type 2 after SMISC > APPLY

Then again select By sequence num and SMISC and type 8 after SMISC >
OK > Close

Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem
Res > Select SMIS 2 and SMIS 8 > OK

This result is shown in Figure 5.18(f).

To find the bending stress the following procedure is followed.
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19.

20.

21.

22.
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Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and LS and type 3 after LS > APPLY

Then again select By sequence num and LS and type 6 after LS > OK

Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem Res >
Select LS 3and LS 6 > OK

This result is shown in Figure 5.18(g).

To find the maximum stress (direct stress + bending stress) following
procedure is followed.

Main Menu > General Postproc > Element Table > Define Table > Add
Select By sequence num and NMISC and type 1 after NMISC > APPLY
Then again select By sequence num and NMISC and type 3 after NMISC > OK
Main Menu > General Postproc > Plot Results > Contour Plot > Line Elem
Res > Select NMISC 1 and NIMS 3 > OK

PROBLEMS

1. For the bean shown in Figure 5.32, determine the deflection, slopes, reactions,

maximum bending moment, shear force, and maximum bending stress.
Take E=210GPaand I=7 x 10 m*.

10 kN
500 kN-m

3m 4m 3m

Figure 5.32. Problem 1

. Find the deflection, slopes, reactions, maximum bending moment, shear force,
and maximum bending stress for the aluminum beam shown in Figure 5.33.
Take E =200 GPaand I=3 x 10 m*.

3 kN/m
2 KN/m

4m 4m

Figure 5.33. Problem 2
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3. Find the deflection at the load and the slopes at the end for the shaft shown
in Figure 5.34. Also find the maximum bending moment, maximum bending
stress, and reactions developed in the bearings. Consider the shaft to be simply
supported at bearings A and B. Take E = 200 GPa.

5kN

4 4
1= 1x10° mm* I= 6x10 mm

\
A \ :

300 mm 150 mm 250 mm

Figure 5.34. Problem 3

4. Find the deflection of the bean shown in Figure 5.35 under self-weight.
Take E = 200 GPa and mass density p = 7800 kg/m”.

£
E
o
~

200 mm

Figure 5.35. Problem 4

5. Find the deflection and bending stress distribution for the cantilever beam
shown in Figure 5.36 under combined loading. Take E = 200 GPa.

F,=5kN
75 mm

-

o / F,=20kN

3 300 mm | M = 200 kN-mm

Figure 5.36. Problem 5

B 7d*

=2
[ 64

]
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6. For the beam shown in Figure 5.37, determine the deflection at nodes and
reaction. Also, plot the bending moment diagram, shear force diagram and
find the bending stress. Take E = 200 GPa and I =8 x 10~ m*.

35kN
60 kN Ve’
o 55 kN
60 .,
5 30
A &
”
-~
’
A
7 3m 3m 3m
-~

Figure 5.37. Problem 6

7. A cantilever beam is shown in Figure 5.38. Using 2 beam elements determine the
nodal deflection and reaction. Take E= 0.25 X 10° N/mm? and [ =8 x 10~ m*.

4 m

8 m

/ 7777777777777
Pmax

Figure 5.38. Problem 7

[P, = Xxgxh]
8. Determine the deflection, reaction, and bending stress for the beam shown
in Figure 5.39. Also, plot the bending moment and shear force diagram. Take
E =207 GPa, W = 150 N/mm, h = 800 mm, b = 400 mm, #; = 40 mm, # = 40 mm,
and 3 = 50 mm.
w

ANNAANNY

300 mm

900 mm

Figure 5.39. Problem 8
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9. Figure 5.40 presents a beam fixed at one end, supported by a cable at the other
end, subjected to a uniformly distributed load of 70 Ib/in. TakeE = 30 X 10° psi,
Beam cross-section = 4 in X 4 in, and cable cross-section = 1 in®. Determine the
finite element equilibrium equations of the system by using one finite element
for the beam and one finite element for the cable, the displacement of nodes 1
and 2, and the stress distribution in the beam and in the cable.

pII77II77II7977773
Cable
151n
: INEETRENRENENNEEY! )
‘\Beam
( 40 in ,
I |
Figure 5.40. Problem 9
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STRESS ANALYSIS
Chapter OF A RECTANGULAR

PLATE WITH A

CiRcuLAR HOLE

6.1 INTRODUCTION

Two dimensional problems in structural analysis are dealt with in this chapter.
Hand calculations, even with 2 elements, become too long and hence are not given
for these problems: only analytical method solutions and software solutions using
ANSYS have been provided.

Two dimensional problems can either be plane stress or plane strain problems.
Method of analysis is the same for both, except that stress strain matrix is different
in 2 cases.

Plane bodies that are flat and of constant thickness that are subjected to
in-plane loading fall under the category of plane stress problems. Stress
components 7,, 7,,, and 7,, assume zero values in these problems.

Some of the elements used in the analysis of 2 dimensional problems are
constant strain triangles (CST), linear strain triangle (LST), linear quadrilateral,
isoparametric quadrilateral, etc. Each of these elements has 2 degrees of freedom
per node namely the translation in x and y directions.

Stress within the element may be calculated using the equation,

{o} =[DI[Bl{q}. (6.1)
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6.2 A RECTANGULAR PLATE WITH
A CIRCULAR HOLE

The stress analysis of a rectangular plate with a circular hole problem is assumed
as a 2 dimensional plane stress problem. Plane stress is defined as a state of stress
in which the normal stress and the shear stress directed perpendicular to the plane
are assumed to be negligible.

The above problem can be categorized into 3 sub cases.

Sub Case 1

A rectangular plate with a very small circular hole at the center with one vertical
edge fixed and the other vertical edge is acted upon by a horizontal tensile load
in the form of pressure.

y

G

ANRRRNRRRRRRNN

Figure 6.1. Rectangular plate with a very small circular hole subjected to tensile load at one edge.

Sub Case 2

A rectangular plate with a small circular hole at the center and a horizontal tensile
force in the form of pressure is acting on both the vertical edges of the plate.

AY
e —
] ——
X

T Q
R —> p
e ey fre——-—
] E—

Figure 6.2. Rectangular plate with a hole subjected to tensile load at both the edges.
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The above problem is solved by exploiting the symmetric geometry and
symmetric loading boundary conditions. Now we can draw the above Figure 6.2
as below for the analysis purpose (refer Figure 6.3).

Place the origin of x—y coordinates at the center of the hole and pull on both
ends of the plate. Then points on the centerlines will not move perpendicular to
them but move along the centerlines. This indicated the appropriate displacement
conditions to use as shown in Figure 6.3.

m

B>
)=

A —
WA AN %\

Displacement restrain

Figure 6.3. Finite element model of one-quarter of the plate.

Sub Case 3

A rectangular plate with a large circular hole at the center and a uniform
pressure acts on the boundary of the hole.

Y

Y

Figure 6.4. Rectangular plate with a hole subjected to uniform pressure at the boundary of
the hole.
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The above problem can be solved considering one quarter of the plate and by
exploiting the symmetric geometry and loading conditions. The finite element
model is shown below.

>

y

/ X
Axis of /
symmetry
Symmetric boundary conditions

Figure 6.5. Finite element model of one-quarter of the plate.

Example 6.1

A rectangular plate of size 1000 mm x 500 mm is subjected to uniform pressure
as shown in Figure 6.6. The plate has a thickness of 10 mm and has a central
hole 50 mm in diameter. The material of the plate is steel with Young’s modulus
E =210 GPa and Poisson’s ratio, v = 0.3. Assume a case of plane stress. Plot the Von
Mises stress distribution and compare result with analytical method.

50 mm

=1Pa

T

AANANANNANNNAN

Figure 6.6. Rectangular plate with very small circular hole at the center of the plate.

Solution
(1) Analytical method

Comparing the above case with the infinite plate with a very small circular hole,
for this, the stress concentration factor is (SCF) = 3.
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Maximum stress

SCF =

Nominal stress

Hence,

Tensile force = Pressure x cross-sectional area
Tensile force = 1 x 0.5 x 0.01 = 0.005 N

. Tensile force
Nominal stress =

Cross-sectional area

0.005
Nominal stress = ——— = 1 N/m?

0.5x0.01

Maximum stress = SCF x Nominal stress =3 x 1 = 3 Pa.

(1) Software results

1
NODAL SOLUTION

STEP = 1
SUB =1

TIME =1

SEQV  (AVG)
DMX = .498E-11
SMN =.006736
sMx =3.172

I
.006736 .710061 1.413 2.117 2.82
.358398 1.062 1.765 2.468 3.172

241

(6.2)

(6.3)

(6.4)

Figure 6.6(a). Von Mises stress distribution pattern (refer to Appendix C for color figures).

From the software, we got, Maximum stress (Von Mises stress) = 3.172 Pa.

Answers for Example 6.1

Parameter Analytical method Software results

Percentage of error

Maximum stress 3 Pa 3.172 Pa

5.42
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Example 6.2

A rectangular plate with hole at the center is subjected to uniform pressure as
shown in Figure 6.7. The plate is under plane stress. Find the maximum deflection
and maximum stress distribution. Also find the deformed shape of the hole.

Assume plate thickness, =25 mm, E = 207 GPa, and v=0.3.

40Imm

p=14 MPa_

e
N

Figure 6.7. Rectangular plate with a hole with symmetrical loading.

Solution
(1) Analytical method

. Diameter of hole d
Geometric factor = ==

Width of plate ~ w

. 40
Geometric factor =——=0.4.
100

From the design data handbook,

d
for — of 0.4 the stress concentration factor (SCF) = 2.25
w

Maximum stress
SCF =

Nominal stress

Hence,

p=14 MPa

(6.5)

Tensile force = Pressure x Cross-sectional area = 14 x 100 x 25 = 35000 N
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. Tensile force Tensile force 35000
Nominal stress = : = =
Cross-sectional area (w—d)t (100-40)25
=23.33 MPa

Maximum stress = SCF x Nominal stress = 2.25 x 23.333 = 52.5 MPa.

(1) Software results
For the analysis using software, one quarter of the plate is modeled and analyzed.

1

DISPLACEMENT
STEP =1

SUB =1

TIME =1

DMX = .739E-05

Figure 6.7(a). Deformed shape of the hole (refer to Appendix C for color figures).

1
NODAL SOLUTION

SEQV {AVG)
DMX = .739E-05
SMN =« .4B2E+07

SMX =  533E+08

.482E+07 .156E+08 .264E+08 .371E+08 .479E+08
.102E+08 .210E+08 <317E+408 ~425E+0B .533E+DB

Figure 6.7(b). Von Mises stress distribution pattern (refer to Appendix C for color figures).

From the software, we got, maximum stress = 53.3 MPa.
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1
NODAL SOLUTION

STEP = 1

SUB =1

TIME = 1

USUM (AVG)
RSYS = 0

DMX = .739E—05
SMN = .252E—05
SMX = -739E—05

+252E-05 .360E—05 -468E-05 .576E—-05 -684E—05
.306E-05 .414E-05 .522E-05 .630E-05 . 739E-05

Figure 6.7(c). Deflection pattern (refer to Appendix C for color figures).

Answers for Example 6.2

Parameter Analytical Software Percentage
method results of error
Maximum stress 52.5 MPa 53.3 MPa 1.5
Maximum deflection ... 7.39 X 10A3 mm

Example 6.3

Determine the stress distribution and displacement for a rectangular plate with
a hole at the center of the plate with uniform thickness of 10 mm. A uniform
pressure of p = 10 MPa acts on the boundary of the hole as shown in Figure 6.8.
Assume Young’s modulus E = 120 GPa and the Poisson’s ratio is 0.28. Assume
plane stress condition.

]
150imm

20-0 mm

Figure 6.8. Rectangular plate with a hole subjected to uniform pressure at the boundary of
the hole.
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Solution
(1) Software results

245

For the analysis using software, one quarter of the plate is modeled and analyzed.

1
NODAL SOLUTION

STEP =

SUB =1
TIME = 1

s1 (AVG)
DMX =.036478

SMX =50.727

Y

5.636 16.909 28.182 39.455

g 11.273 | 22.545 33.818 _ !5.091

50.727

Figure 6.8(a). First principal stress distribution pattern (refer to Appendix C for color figures).

From the software, we got maximum stress = 50.727 MPa.

1
NODAL SOLUTION

STEP = 1
SUB =1
TIME = 1
USUM (AVG)
RSYS =0
DMX =.036478
SMN =.005671
sMx = -036478

094 .01594 .022786 .029632

.005671 2012517 .019363 .026209 .033055
.009

.036478

Figure 6.8(b). Deflection pattern (refer to Appendix C for color figures).
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Validation of the Results

The reactions at the supports must balance the applied forces. Therefore, from the
software, the total reaction force in the x-direction is — 7500 N.

Applied force = (pressure) x (projected distance in x-direction of the
line along which the constant pressure acts) x (thickness)
=pxrxt (6.6)

Applied force = 10 x 75 x 10 = 7500 N in positive x-direction.
So the reaction cancels out the applied force in the x-direction.

Answers for Example 6.3

Parameter Software results
Maximum stress 50.727 MPa
Maximum deflection 0.036478 mm

Procedure for solving the problem using ANSYS® 11.0 academic teaching
software.
For Example 6.2

PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add
> Structural Solid > Quad 4 node 42 > OK

"‘ Library of Llement Types

Library of Element Types

Element type reference number

x| e | cma | v |

Figure 6.9. Element selection.

Select the option where you define the plate thickness.
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2. Options (Element behavior K3) > Plane strs w/thk > OK > Close

L\ PLANE42 element type options

Options for PLANE42, Element Type Ref. No. 1

Elsment coord system defined K1 [Para to gobal ~|

Extra displacement shapes K2 |lndude .l
Bometbohavir K3 e s — I3

Extra stress output KS Im extra output ;l

Extra suface output Ké INo extra output l]
x| sl | e |

Figure 6.10. Element options.

114 \element Type for Real Constas

Defined Real Constant Sets Choose element type:

P

Add... | Ede. | celete |

_cbe | v | | _ox | _conca |

Figure 6.11. Real constants.

(Enter the plate thickness of 0.025 m) > Enter 0.025 > OK > Close

"‘I\'l_wl Constant Set Numbes 1, for PLANLZ
Element Type Reference No. |

Real Constant Set No, rx—
Real Constant for Plane Stress with Thkness (KEYOPT(2=3)

Figure 6.12. Enter the plate thickness.

Enter the material properties.

247

3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK
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4. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX = 2.07E11 and PRXY = 0.3 > OK (Close the Define Material Model
Behavior window.)

Create the geometry for the upper-right quadrant of the plate by subtracting a
0.04 m diameter circle from a 0.075 x 0.05 m rectangle. Generate the rectangle
first.

. Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By 2

Corners
Enter (lower left corner) WP X = 0.0, WPY = 0.0 and Width = 0.075, Height =
0.05> 0K

. Main Menu > Preprocessor > Modeling > Create > Areas > Circle > Solid

Circle Enter WP X =0.0, WPY = 0.0 and Radius = 0.02 > OK

Fi' Rectangle by 2 Corners Fi\ Solid Circular Area
# Pick ~ Unpick = Pick ~ Unpick
WP X - WP X -
¥ - '] -
Global X = Global % -
? - ¥ -
Z~- -

Heoight # —
oK | A1y |
oX | apply | Reset | Cancel |
Reset ] Cancel l Help
Help

Figure 6.13. Create areas.

Figure 6.14. Rectangle and circle.
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Now subtract the circle form the rectangle. (Read the messages in the window
at the bottom of the screen as necessary.)

7. Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract >
Areas
Pick the rectangle > OK, then pick the circle > OK

Y

Z_X

Figure 6.15. Geometry for quadrant of plate.

Create a mesh triangular element over the quadrant area.

8. Main Menu > Preprocessor > Meshing > Mesh Tool
The Mesh Tool dialog box appears. In that dialog box, click on the Smart Size
and move the slider available below the Smart Size to 2 (i.e., towards Fine side).
Then close the Mesh Tool box.

R =]’ s
o —
Giobed _Set | _Clem |
o ST
Lines Set | M

_Coms | _Fio |
Layer Set | Chul
L T —

Figure 6.16. Mesh tool box.
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10.

11.

12.
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. Main Menu > Preprocessor > Meshing > Mesh > Areas > Free Pick the
quadrant > OK

g X

Figure 6.17. Quad element mesh.

Apply the displacement boundary conditions and loads.

Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Lines Pick the left edge of the quadrant > OK>UX=0>OK

Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Lines pick the bottom edge of the quadrant > OK >
UY=0>0K

Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural
> Displacement > On Lines. Pick the right edge of the quadrant > OK >
Pressure = —-14E6 > OK

(A positive pressure would be a compressive load, so we use a negative
pressure. The pressure is shown as a single arrow.)

Figure 6.18. Model with loading and displacement boundary conditions.

The model-building step is now complete, and we can proceed to the solution.
First to be safe, save the model.
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Solution

The interactive solution proceeds

13

. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close.
In the Solve Current Load Step window, select OK, and when the solution
is complete close the ‘Solution is Done!” window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values. First
examine the deformed shape.

14

15.

16.

. Main Menu > General Posrproc > Plot Results > Deformed Shape > Def. +
Undeformed > OK

This result is shown in Figure 6.7(a).

Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu
> Stress > Von Mises stress > OK

This result is shown in Figure 6.7(b).

Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu
> DOF Solution > Displacement vector sum > OK

This result is shown in Figure 6.7(c).

PROBLEMS

1.

Find the maximum stress in the aluminum plate shown in Figure 6.19.
Consider an aluminum plate 10 mm thick with a hole at the center of the plate.
Assume plane stress condition. Take E = 70 GPa and v = 0.35. Also, calculate the
maximum stress by analytical method and compare the results.

p=4 MPa p=4 MPa

e |
e |
|
=
—

Figure 6.19. Problem 1
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2. Find the maximum stress for the plate shown in Figure 6.20 if the hole is located

halfway between the center line and the top edge as shown. Take E = 70 GPa and
v=0.35. Assume plane stress condition.

AN E
- @ 'g p=4 MPa

p=4 MPa g :

rwr ---n-u-u-u----!----n-n-n-n-- T -

456 mm
i
Figure 6.20. Problem 2

[ Model half of the plate by taking symmetry about y-axis.]

. For the plate shown in Figure 6.21, find the maximum stress. Take Young’s

modulus E = 210 GPa, Poisson’s ratio = 0.3. Assume plane stress condition.
Thickness of the plate = 10 mm with hole at the center of the plate.

15 MPa

15!\@& \

150 mm
H 5MPa

5 MPa 1
Figure 6.21. Problem 3

100imm

. For the plate shown in Figure 6.22, find the maximum stress. Plate is made up

of two materials.

For Material 1, E =210 GPa and v=0.3.

For Material 2, E = 70 GPa and v= 0.35.

Assume plane stress condition.

Thickness of the plate = 10 mm with a hole at the center of the plate.
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40 mm

100 mm

/ %//%&\\\& 7

150'mm
P=14 MPa | ! |
Material 1 ! Material 2
Figure 6.22. Problem 4

. For the plate with a hole at the center shown in Figure 6.23, find the maximum

stress. Take E = 210 GPa and v = 0.3, thickness of plate t = 10 mm. Assume
plane stress condition.

200 kN/m
200 kN/m v ———

200:mm

1
400;mm
1

Figure 6.23. Problem 5

[ To find the pressure, divide distributed load by thickness of plate.]

. Determine the stresses in the plate with the round hole subjected to the

tensile stresses in Figure 6.24. Find the maximum stress. Take E = 210 GPa
and v = 0.25, thickness of plate t = 10 mm. Assume plane stress condition.

40,mm

—— _,__,______, | P=2kN/m?

P=2kN/m? |

250:mm

Figure 6.24. Problem 6
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7. For the plate with a hole at the center shown in Figure 6.25, find the maximum

stress. Take E = 210 GPa and v = 0.3, thickness of plate t = 0.375 in. Assume
plane stress condition.

-
O.SIin. ——
P=1000 psi in. / \ P=1000 psi
\ D 10 i
>
i
1 —
|
8yin
1
1

Figure 6.25. Problem 7

. For the plate with a hole at the center shown in Figure 6.26, find the maximum

stress. Take E = 30 x 10° psi and v = 0.25, thickness of plate f = 0.1 in. Assume
plane stress condition.

P=10 ksi

P=10ksi _ _in] .._.._..-"_.._.._.._..
\ 8

Figure 6.26. Problem 8

. Find the maximum stress for the plate shown in Figure 6.27 if the hole

is located halfway between the center line and the top edge as shown. Take
E =20 x 10° N/cm? and v = 0.25. Assume plane stress condition.

|
3 Icm
h 5cm
P=120000 N 25 H

e -

cm :
[}

P=120000 N

45icm

Figure 6.27. Problem 9

[Model half of the plate by taking symmetry about y-axis.]
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THERMAL ANALYSIS

Chapter

7.1 INTRODUCTION

The computation of temperature distribution within a body will be used in this
chapter due to its importance in many engineering applications. Conduction (q)
is the transfer of heat through materials without any net motion of the mass of the
material. The rate of heat flow in x-direction by conduction (g) is given by

g=ka?L (7.1)
0x

where

k is the thermal conductivity of the material, A is the area normal to x-direction

through which heat flows, T'is the temperature, and x is the length parameter.
Convection is the process by which thermal energy is transferred between a

solid and a fluid surrounding it. The rate of heat flow by convection (g) is given by

q=hA(T-T.) (7.2)

where
h is the heat transfer coefficient, A is the surface area of the body through
which heat flows, T is the temperature of the surface of the body, and T, is the
temperature of the surrounding medium.

Thermal analysis is one of the scalar field problems. These problems have only
1 degree of freedom per node namely temperature. In this chapter, one-dimensional

257



258 FINITE ELEMENT ANALYSIS

and two-dimensional heat conduction problems are dealt with. In these problems,
a bar element with 2 end nodes each having temperature (7) as sole degree of
freedom is useful. Nodal heat flow rates (Q) or heat fluxes are analogous quantities
to nodal forces, in structural bar element.

The governing equation for this element is given by,

SRS o
L|l-1 1| 2L g
where,

q = heat generation rate per unit length

Ak

1 -1
i [ 1:| = element heat conductivity matrix.

1

7.2 PROCEDURE OF FINITE ELEMENT ANALYSIS
(RELATED TO THERMAL PROBLEMS)

Step 1. Select element type.

Step 2. Select temperature distribution function.

Step 3. Define the temperature gradient/temperature and heat flux/temperature
gradient relationships.

Step 4. Derive the element conduction matrix and heat flux matrix.

Step 5. Assemble the element equations to obtain the global equations and
introduce boundary conditions.

Step 6. Solve for the nodal temperatures.

Step 7. Solve for the element temperature gradients and heat fluxes.

7.3 ONE-DIMENSIONAL HEAT CONDUCTION

Example 7.1

A composite wall consists of 3 materials. The outer temperature is T, = 20°C.
Convection heat transfer takes place on the inner surface of the wall with T, = 800°C
and h = 25 W/m*C. Determine the temperature distribution in the wall. Take
ki =30 W/m°C, k; = 50 W/m°C, k; = 20 W/m°C.
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TO =20°C

— 03m _[o15mlotom_

Figure 7.1. A composite wall consists of 3 materials for Example 7.1.

Solution
(1) Analytical method
=/ \ N \NNAANN~ANN-0

Figure 7.1(a). Analytical method for Example 7.1.

Heat flow rate per unit area,

T.-T, 80020 ,

== = =12892.6 W/m’.

Q=717 I, L, 1 03 015 0.I5 fm
+ L+ R e et

L+ 24 3 +- 4 +
h k k, k25 30 50 20

Now,

Q=h(T.-T)= k(T,-T,) _ k, (T, -T;) _ k, (T, —T,)
w4 L I, L

12892.6 =25(800—T,) =

0.3 0.15 0.15
By solving the above, we get
T, =284.3°C
T, =155.37°C

T, =116.7°C.

30(L—T,) _50(T,~T,) _ 20(T,~20)

259
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(1) FEM by calculations [refer to Figure 7.1(b)]

d 2 3 4
Mel | T, @ T, ® T, 6 T,=20°C

Figure 7.1(b). Finite element model for Example 7.1.

Governing equation is,
k{1 -1T -Q
- =qq°t+ .
Ll-1 1]l +Q,
Since there is no heat generation specified, g = 0.
For element 1,
A e A
L{-1 1T +Q,

= [ S
e =0+ :
03l-1 1]|7, +Q,
AREN e Ry
= :q +
L|1-1 1|5 +Q,
e R e Y
015/ -1 1|l |+
R R X
L1 1]\ +Q,
2102
0.15| -1 1T, +Q,

N |

CH N I SR o

For element 2,

N N

[e]

For element 3,

L
2
Qb
2

FINITE ELEMENT ANALYSIS
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Global equation after assembly,

100 —100 0 0 T [-Q
~100  100+333.33 —333.33 0 T, 0
0 —333.33 333.33+133.33 —-133.33||T,[ | 0
[0 0 —133.33 13333 [(T,] [+Q,]

Boundary conditions are T, = 20°C and

Q= —h(TM _Tl)
—Q, =25(800—T;) =20000—25T,.

So modified equation,

100+25 -100 0 T 20000 0
—-100 433.33 —-333.33 KT, ;=140 +40
0 —333.33  466.66 | | T, 0 20x133.33
125 -100 0 T 20000 0
-100  433.33 -333.33 |\T, ;=40 +40
0 —333.33  466.66 | | T, 0 2666.6

After solving the matrix and simultaneous equations, we get,
T, =284.3°C
T, =155.37°C
T, =116.7°C.

(111) Software results
Temperature values

NODE TEMP

1 284.30
2 155.37
3 116.69
4 20.000
5 800.00
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1
NODAL SOLUTION

STEP =1
SUB =1
TIME =1
TEMP

RSYS =0
SMN =20
sMx =800

(AVG)

Y

w o N

66.667 540
453.333

20 193.333
280

106.667 626.667

13.333
80

0

Figure 7.1(c). Temperature distribution in a composite wall (refer to Appendix C for color

figures).

Answers for Example 7.1

Parameter Analytical method FEM-hand calculation Software results
Temperature
at node 1 284.3°C 284.3°C 284.3°C
at node 2 155.37°C 155.37°C 155.37°C
at node 3 116.7°C 116.7°C 116.69°C

Procedure for solving the problem using ANSYS® 11.0 academic teaching

software.
For Example 7.1

PREPROCESSING

1. Main Menu > Preferences, then select Thermal > OK
| e etoremces tor G pweton |

[REYWLPMETH] Praferances for GLI Fiterng
Inchvachial cheiplrads) e show in the Gl

S I
I~ Ansvs sl
I~ AOTRAN CFD

I Magratic-Model
™ Magratic-Edge
I #ech Pracuercy
e

Mote: If oo Indhichd cacidnes arm sotected they wil of shows.

OwcAne optone
& tathod
1 priethod Struct.
7 pathod Pty

e | _cea |

Figure 7.2. Selecting the preferences.
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2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Click
on Link > then on 2d conduction 32 > OK > Add > Click on Link > then on
3D convection 34 > OK > Close

rﬂl ibrary of Element Types
Orly thermal slsmert types are shown
Lirary of Bement Types

Element type reference number

F\ Library of Element Types

Oty thermal element types ore shown
Litrary of Bement Types [(Combination | |20 conduction 32
Thermal |_ 30 eonduction 33
Sobd [ radation 31
Shel |
Thermal Elsctric -
infirtsBoundary B[ convectone
Element typs reference nunber |z
o | ooy | Concel | rlp |

Figure 7.4. Selecting the element for convection.

3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add >

Click on Link 32 > OK
I Element Type for ... [= |D|[X

Choosa element type:

Type 2 LINK3M4

I Real Constant Set Number 1, for LINK32

o | _cona |

Figure 7.5. Enter the cross-sectional area for Link 32.

Enter cross-sectional area AREA > Enter 1 > OK
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Add > Click on Link 34 > OK
Enter cross-sectional area AREA > Enter 1 > OK > Close
[t emen e for - [ %]
oo eleret Ly r“ Real Constant Set Number 2, for LINK34
T Element Type Referance No. 2
Real Constant SetNo. lz_
Enpirical coeffidert BN l_
Irput constank cc '_
* | e |l | v |
=] o]

Figure 7.6. Enter the cross-sectional area for Link 34.

Enter the material properties.
4. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1,

click Thermal > Conductivity > Isotropic

Enter KXX =30>OK

Then in the material model window, click on Material menu > New
Model > OK

Material Model Number 2,

click Thermal > Conductivity > Isotropic

Enter KXX =50> OK

Then in the material model window, click on Material menu > New
Model > OK

Material Model Number 3,

click Thermal > Conductivity > Isotropic

Enter KXX =20>OK

Then in the material model window, click on Material menu > New
Model > OK

Material Model Number 4,

click Thermal > Convection or Film Coef.

Enter HF =25 > OK

(Close the Define Material Model Behavior window.)

Create the nodes and elements.

. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS Enter

the coordinates of node 1 > Apply Enter the coordinates of node 2 > Apply
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Enter the coordinates of node 3 > Apply Enter the coordinates of node 4 >

Apply Enter the coordinates of node 5> OK

Node Locations

Node number X coordinates Y coordinates

0
0.3
0.45
0.6
-0.1

(O S S
oS O o o o

"! Create Modes in Active Coordinate System

[N] Create Nodes in Active Coordinate System

NODE  Node rumber |1_

XY,Z Locationin active C5 |0 Io |
THXY, THYZ, THZX
Rotation angles (degrees) | | |

x| | e | |

Figure 7.7. Enter the node coordinates.

6. Main Menu > Preprocessor > Modeling > Create > Elements > Elem Attributes >

OK > Auto Numbered > Thru nodes Pick the 1* and 2™ node > OK

Define attrbutes for elemerts
(TPE) e e b TE— S—
[MAT] Material nunber T = % £
[REAL] Real constant set number | 1 - Come = O
s - Marimm = 20
[E5YS] Element coordinate sys 0 - Misima = 1
Wods Wo. =
[SECNUM] Section number [None defined >
& List of Items
© Min, Max, Ine
J—
e
& | ] M I Seset Cancel
|

Figure 7.8. Assigning element attributes to element 1 and creating element 1.
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Elem Attributes > change the material number to 2 > OK > Auto Numbered >
Thru nodes Pick the 2 and 3" node > OK

(I |
Lieow | Vet |
s B

Figure 7.9. Assigning element attributes to element 2 and creating element 2.

Elem Attributes > change the material number to 3 > OK > Auto Numbered >
Thru nodes Pick the 3" and 4" node > OK

Defre attrbutss for slements

(PE) St et E—

MAAT] Mabord rmber s =

[REAL] Real constant set rumber v =

[E57S) Element coordinets sys o =

(M) Secion rumber reprrp— |
x| ool | |

pusee | coment I
Fieh ALl Ml

Figure 7.10. Assigning element attributes to element 3 and creating element 3.

Elem Attributed > change the element type to Link 34 > change the material
number to 4 > change the Real constant set number to 2 > OK > Auto
Numbered > Thru nodes Pick the 1* and 5" node > OK

Fi\Element Attributes

[TYE] Eloment type rumber 2 UNCH -
[MAT) Moteral rumber E—
(REAL] Rasl constant set rumber T -]
[ESYS] Element coordnate sys s =l
[SECHM) Saction runber [T
x| cna | v |

® fingle £ Eex

€ iolygen € giecte

Figure 7.11. Assigning element attributes to element 4 and creating element 4.
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Apply the boundary conditions and temperature.

7. Main Menu > Preprocessor > Loads > Define Loads > Apply > Thermal >
Temperature > On Nodes Pick the 4" node > Apply > Click on TEMP and
Enter Value = 20 > OK

F Apply TEMP on Nodes
D] Apply TEMP on Nodes

Lab2 DOFs to be constrained ‘NDOF

Apply as Constant value -
IF Constant value then:
VALUE Load TEMP value IH_
x| ot _| concel_| o |

Figure 7.12. Applying temperature on node 4.

8. Main Menu > Preprocessor > Loads > Define Loads > Apply > Thermal >
Temperature > On Nodes Pick the 5" node > Apply > Click on TEMP and
Enter Value = 800 > OK

A Apply TEMP on Nodes
[D] Apply TEMP on Nodes

Lab2 DOFs to be constrained |AIDDF

Apply a5 [Constant vave ~
IF Constart vahus then:
VALUE Losd TEME value |.m_
x| ooty | concdl_| mo |

Figure 7.13. Applying temperature on node 5.

Solution

The interactive solution proceeds.

9. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close.
In the Solve Current Load Step window, select OK, and when the solution is
complete, close the ‘Solution is Done!” window.
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POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu
> DOF Solution > Temperature > OK
This result is shown in Figure 7.1(c).

11. Main Menu > General Postproc > List Results > Nodal Solu > Select
Temperature > OK

Example 7.2

Heat is generated in a large plate with k= 0.75 W/m°C at the rate 6000 W/m?. The
plate is 40 cm thick. The outside surfaces of the plate are exposed to fluid at 35°C
with a convective heat transfer coefficient of 15 W/m?**C. Determine temperature
distribution in wall. The 2 element model to be used for solution.

0.4 m

Figure 7.14. Example 7.2

Solution
(1) Analytical method

Governing equation is,

dZT:_ﬂ
dx? k
dTl _ qXx
dx koo
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dT _ —600x x
dx 0.75

2

T:—%%+cz = —4000x” +¢,. (7.5)

+0=-8000x (7.4)

Boundary conditions are,

Atx=1,

—kd—T =hT,-T.)
dx

—k(8000x x)=h(T, —T..)
—0.75(8000 ><0.2) = 15(T3 -35)=T, =115°C.

We know at x= 0.2, T5 = 115°C.
Substituting this in equation (7.5),

115=—4000(0.2)° +¢, = ¢, = 275.
Substituting ¢, in equation (7.5),

T = —4000 X x* +275
T, =T|, _,, =—4000(0.1)* +275=235°C

x=0.1 —

T, =T|,_, = 275°C.

(1) FEM by hand calculations [refer to Figure 7.14(a)]
!
I

i 0.2m

0] @)

01m | 0.1m

]
1
]
I
Figure 7.14(a). Symmetric finite element model for Example 7.2.

Given: t=40cm = 0.4 m, T,, = 35°C, h = 15 W/m?*°C, k= 0.75 W/m°C
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Governing equation is,

L
kK[ 1 -1 |2 -Q
AR R
2

For element 1,

For element 2,

2
075 1 -1][T, 0.05] [-Q,
- — +
I L s
2 3
1 -172 [T, 0.05] [-Q,
3l T e fomlont g
1 2 3
1 -1 o)1 [T 0.05 -Q,
Assembling=7.5| -1 1+1 —-1|2 4T, =600040.05+0.05;+4 0
0 -1 1]3 |1, 0.05 +Q,
Boundary conditions are, Q; =0 and Q; =—-h(T; — T,,) = Qs =—-15(T3 — 35) =

~15T; +525
1 -1 0] [T 0.05 0
75(-1 2 —1| 4T, +=600040.1 {+{ 0

0o -1 1] |1 0.05] [-15T, +525
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75 7.5 0 1[T] [300+0
75 15 —7.5|4T,t=14600+0
0 -75 75]|T,] |300-15T;+525

Now,
75 =75 0 T 300
-75 15 =75 T, p=4600;.
0 =75 75+15]|T; 825

By solving the above matrix and simultaneous equations, we have temperature
distribution as,

) (275

T,}=4235}.

T, |115
Therefore,

T, =275°C

T, = 235°C

T, =115°C.

(1) Software results

Due to symmetry of the geometry, only half of the finite element model is created
for software analysis.

1
NODAL SOLUTION
STEP =1
SUB =1
TIME =1
TEMP (AVG)
RSYS =0
SMN =35
sMx =275

Y

lzxx MN

35 88.333 141.667 195 248.333
61.667 115 168.333 221.667 275

Figure 7.14(b). Temperature distribution in a large plate (refer to Appendix C for color
figures).
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Temperature values

NODE TEMP

275.00
235.00
115.00
35.000

[ O

Answers for Example 7.2

FINITE ELEMENT ANALYSIS

Parameter Analytical method FEM-hand calculation Software results
Temperature
at node 1 275°C 275°C 275°C
at node 2 235°C 235°C 235°C
at node 3 115°C 115°C 115°C

Procedure for solving the problem using ANSYS® 11.0 academic teaching

software.
For Example 7.2

PREPROCESSING

1. Main Menu > Preferences, then select Thermal > OK
[

B e T )
i iyl 1) bt e 1 o 21

i)

™ S

L= —

™ e
™ ma— e

™ gt el
™ Sy i
™ viigh Framusecy
™ S

& e
T et Wear.
ittt Dt

e |

L]

Figure 7.15. Selecting the preferences.
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2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Click
on Link > then on 2D conduction 32 > OK > Add > Click on Link > then on
3D convection 34 > OK > Close

O thermsl slement types e 20w

Ubrary of et Typm

= e | | _w |

Figure 7.16. Selecting the element for conduction.

Oy twreul sl bypes are showr
Lbwary of Clemart Types [r———

Flrard 1w rof s e Fu g

—_
o | e | e | e |

Figure 7.17. Selecting the element for convection.

3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add >
Click on Link 32 > OK

= | _onal ]

Figure 7.18. Enter the cross-sectional area for Link 32.

Enter cross-sectional area AREA > Enter 1 > OK
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Add > Click on Link 34 > OK
Enter cross-sectional area AREA > Enter 1 > OK
1 et e s[5 ]
e Sy 'A.‘ Real Constant Set Number 2, for LINK34
P Element Type Reference No., 2
Real Constant SetNo. [z—
Convection surface area  AREA |'1|_'
Engirical coefficiert BN -
Irput constant c =
= | o |

Figure 7.19. Enter the cross-sectional area for Link 34.

Enter the material properties.
4. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1,

click Thermal > Conductivity > Isotropic

Enter KXX =0.75> OK

Then in the material model window, click on Material menu > New Model > OK
Material Model Number 2,

Click Thermal > Convection or Film Coef.

Enter HF =15 > OK

(Close the Define Material Model Behavior window.)

Create the nodes and elements. Due to geometric symmetry, only half of the
model is created.

. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS Enter

the coordinate of node 1 > Apply Enter the coordinates of node 2 > Apply Enter
the coordinates of node 3 > Apply Enter the coordinates of node 4 > OK

Node Locations

Node number X coordinates Y coordinates
1 0 0
2 0.1 0
3 0.0 0
4 0.3 0
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’L‘ Create Nodes in Active Coordinate System

[M] Create Nodes in Active Coordinate System
NODE  Nods number
%,¥,Z Location in active C5 |o |u |
THXY, THZ, THZX
Rotation angles (degreas) [ | |
*_| | cocel_| weo |

Figure 7.20. Enter the node coordinates.

6. Main Menu > Preprocessor > Modeling > Create > Elements > Elem
Attributes > OK > Auto Numbered > Thru nodes Pick the 1* and 2™ node >
Apply > then Pick the 2" and 3" node OK

L Hement Attributes

L

(1Y) et 50 b T— ]

[MAT) Maters rumber [+ =

[REAL] R constant sat mumber [_l—a

[ESTS] Elemant coordnate sy% o =]

[SEM] Secton rambar remmprers— -
[ ] sowr |

« | et | e | e | _coment |

Ziman| my |

Figure 7.21. Assigning element attributes to elements 1 and 2 and creating elements 1 and 2.

Elem Attributes > change the element type to Link 34 > change the material
number to 2 > change the Real constant set number to 2 > OK > Auto
Numbered > Thru nodes Pick the 3" and 4™ node > OK

P ftement Attribetes

Defre wtribates for slmrics

[TE] Element type rumber [2 e =]

[MAT) Material rmber [z—;l _

DR) Rttt b ——

[ESVS] Elemert coordnste sys e =

[SECMUM] Saction runber [Nore defined -
x| corcdl_| o |

Figure 7.22. Assigning elements attributes to element 3 and creating element 3.
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Apply the boundary conditions and temperature.

7. Main Menu > Preprocessor > Loads > Define Loads > Apply > Thermal >
Temperature > On Nodes Pick the 4™ node > Apply > Click on TEMP and
Enter Value = 35 > OK

FN Apply TEMP an Nodes

[D] Apply TEMP on Nodes
Lsb2 DOFs to be constrained All DOF
Apply as Constant value »
1f Constant value then:
VALUE Load TEMP value ra_
o o N

Figure 7.23. Applying temperature on node 4.

8. Main Menu > Preprocessor > Loads > Define Loads > Apply > Thermal >
Heat Generat > On Nodes Pick the 1%, 2", and 3™ nodes > Apply > Enter
HGEN Value = 6000 > OK

I Apply HGEN on nodes

[BF] Apply HGEN on nodes a5 & Constank value = |
IF Constant value then:

VALLE Load HGEN value IE

o | concel | Heo |

Figure 7.24. Assigning heat generation on nodes 1, 2, and 3.

Solution

The interactive solution proceeds.

9. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close.
In the Solve Current Load Step window, select OK, and when the solution is
complete, close the ‘Solution is Done!” window.
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POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

10. Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu >
DOF Solution > Temperature > OK
This result is shown in Figure 7.14(b).

11. Main Menu > General Postproc > List Results > Nodal Solu > Select
Temperature > OK

Example 7.3

Compute the temperature distribution in a long steel cylinder with an inner
radius of 125 mm and an outer radius of 250 mm. The interior of the cylinder
is kept at 300°K and heat is lost on the exterior by convection to a fluid whose
temperature is 280°K. The convection heat transfer coefficient h is 0.994 W/m?°K
and the thermal conductivity for steel k is 0.031 W/m°K.

h
T,=280°K

500 mm

Figure 7.25. Example 7.3

Solution
(1) Analytical method

Here the problem is solved considering heat flow in radial direction.

T, Ty T.

VAR

In [—] 1
—MiZ hA
2nkL
Figure 7.25(a). Analytical method for Example 7.3.

f, =250 mm = 0.25 m and ; =125 mm = 0.125 m
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Assume unit length of the cylinder

o= (G-T) _ (300-280) — 4762934 W.

In o In (250)
r) o1 125) 1

okl Al | 22x0.031x1 7 0.994(27x0.25)

Now,
T -T 300-T.
Q= (5 -1) = ( 2503) =4.762934 = T, =280.51°C.
ln(’b) ln()
n _ \125)
okl 27x0.031x1
Let

T =T, at r=187.5 mm, then
(300-T;)

( 250 )
In| ——
187.5

27x0.031x1

=4.762934 =T, =283.1°C.

(1) FEM by hand calculations

T T, Ty

125 mm ® ©)

187.5 mm

250 mm

Figure 7.25(b). Finite element model for Example 7.3.

1 =125 mm, r, =187.5 mm, and r, =250 mm
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Element matrices are,

I T,
27kL 1 -1 27x0.031x1[ 1 -1 1 —-1]|T
k=2 eilat bt ab = 0.48 !
) -1 1 1875\ | -1 1 -1 1|t
In| In( =22 2
n 125
TZ T3
27zkL | 1 —=1] 2zx0.031x1| 1 -1 1 -1|T
ko = 2 et ab =0.68 2,
. -1 1 250 -1 1 -1 1|T
In| & (-2~ 3
" 187.5
Global conduction matrix is,
0.48 —0.48 0 0.48 —0.48 0
[KC]= —0.48 0.48+0.68 —-0.68 [=|—0.48 1.16 —0.68 |.
0 —0.68 0.68 0 —0.68 0.68

Global equation is,

048 —048 0 (T [Q
-048 116 —0.68 T, +=1Q,¢.
0 —068 068]|T,] |Q

Applying boundary conditions, T} = 300°K and Q; =—hA, (T3 - T.,)
A, =271, =27%0.25=1.57 m’.

Therefore, Q, = —hA, (T, —T..) = —0.994x1.57 (T, —280) = —(1.56T, —437)

048 —048 0 [T, 0
048 1.16 —0.68|{T,+=4 0
0 —0.68 068]|T,] [-(1.56T,—437)

048 048 0 T
-048 1.16 -0.68 T, r=40
0 -0.68  0.68+1.56 | |T; 437

1.16 -0.68||T, 0 —0.48x 300 144
+ - = .
-0.68 224 ||T; 437 0 437

Solving the above equation, we get T5=283.16°K and T, = 290.13°K.

—
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(1) Software results

Due to the symmetry of the cylinder geometry, only a quarter of the geometry is
drawn for finite element analysis.

1
NODAL SOLUTION

STEP = 1

SUB =1
TIME =1
TEMP (AVG)
RSYS =0
SMN =280.004
SMX =300

MN
P
| N
280.004 284.447 288.891 293.335 297.778
282.225 286.669 291.113 295.556 300

Figure 7.25(c). Temperature distribution in a long cylinder (refer to Appendix C for color
figures).

The temperature in the interior is 300°K and on the outside wall, it is found to be
280.004°K.

Answers of Example 7.3

Parameter Analytical method FEM-hand calculation Software results
Temperature on the 300°K 300°K 300°K
interior surface
Temperature at 238.1°K 290.13°K 288.891°K
radius 187.5 mm
Temperature on the 280.51°K 283.16°K 280.004°K

outside wall

Procedure for solving the problem using ANSYS® 11.0 academic teaching
software.
For Example 7.3
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PREPROCESSING

1. Main Menu > Preferences, then select Thermal > OK

Imhﬁ-—hﬁ&n

et S 12 o e
]
.~ —
I~ nervs Al
T moma o

I magrencanie
I Magrese: e
™ Mgh Praguancy
T~ S

Puct i ekt s s seciod chey oll o e

Doy aptors
it
T et wran,
= gt ety

L | Caenl ot

Figure 7.26. Selecting the preferences.

2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Click
on Solid > then on Quad 8 node 77 > OK > Close

F\Library of Element Types

Oy therms element types arn shown
Litwary of Elemant Tyses -
Thermal Mass F
Lirik |
Shel J
Thermal Eloctric fd
(Supr elemart
InfirtaBoundary
Element type reference number 1
= | oo _| | = |

Figure 7.27. Selecting the element.

3. PLANE 77 does not require any real constant
Enter the material properties.
4. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1,
Click Thermal > Conductivity > Isotropic
Enter KXX =0.031 > OK
(Close the Define Material Model Behavior window.)
Recognize symmetry of the problem, and a quadrant of a section through the
cylinder is created.
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5. Main Menu > Preprocessor > Modeling > Create > Areas > Circles > Partial
Annulus
Enter the data as shown below.

m Part Annular Circ Area

@ Pick  Unpick
WP X -

v =
Global X =

oK |  apply |
Reset I Cancel I

Help

Figure 7.28. Create partial annular area.

Y
X

Figure 7.29. Quadrant of a cylinder.

6. Main Menu > Preprocessor > Meshing > Mesh Tool
The Mesh Tool dialog box appears. In that dialog box, click on the Smart Size
and move the slider available below the Smart Size to 2 (i.e., towards Fine side).
Then close the Mesh Tool box.
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Shape: < T = Quad
- WEE o mMappea
T =rded =
Mosh ] Clear |

Figure 7.30. Mesh tool box.

7. Main Menu > Preprocessor > Meshing > Mesh > Areas > Free. Pick the
quadrant > OK

zX

Figure 7.31. Quad element mesh.

8. Main Menu > Preprocessor > Loads > Define loads > Apply > Thermal >
Temperatures > On Lines
Select the line on the interior and set the temperature to 300.

'A‘A; yply TEMP on Lines

[0 Apply TEMP on Ines
Lab2 DOFs to be constrained

[m—
Apply &5 omnm -
IF Constant vabue then:
VALLE Load TEMP value [m_
KEPND Apoly TEMP to endpoints? Mo
*_| | cos | wo |

Figure 7.32. Setting the temperature on the interior of the cylinder.
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9. Main Menu > Preprocessor > Loads > Apply > Convection > On Lines
Select the lines defining the outer surface and set the convection coefficient to
0.994 and the fluid temp to 280.

[SFL] Apply Film Cosf on lnes |Constant value -
IF Constart vakue ther:
VAL P onfcet [
[SAL] Apply Buk Tenp on ines Constant value >
If Constant value then:
VAL21 Bulktempersture Ia
1f Constant value then:

Optional CONV values at end J of line

(Joave blank for uriform CONY )
VAL)  Filn cosfficent I
VAZ)  Buktemperature |_

o | cancal | wo |

Figure 7.33. Setting the convection coefficient on outer surface.

10. Main Menu > Preprocessor > Loads > Apply > Heat Flux > On Lines
To account for symmetry, select the vertical and horizontal lines of symmetry
and set the heat flux to zero.

Fi) Apply HFLUX on lines

[5FL] Apply HFLLE, on lines as a

If Constant valus then:

[corstartvae 7]
VALT Heat flux [H_
|—

Optional HFLLX values at end J of line
(learve blank for uniform HFLLX )
VALY Heat Fux

o | cancel | L]

Figure 7.34. Setting the heat flux.
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Figure 7.35. Model with boundary conditions.

Solution

The interactive solution proceeds.

11. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close.
In the Solve Current Load Step window, select OK, and when the solution is
complete, close the ‘Solution is Done!” window.

POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.

12. Main Menu > General Posrproc > Plot Results > Contour Plot > Nodal Solu >
DOF Solution > Temperature > OK
This result is shown in Figure 7.25(b).

13. Main Menu > General Postproc > List Results > Nodal Solu > Select
Temperature > OK

7.4 TWO-DIMENSIONAL PROBLEM WITH
CONDUCTION AND WITH CONVECTION
BOUNDARY CONDITIONS

Example 7.4

A body having rectangular cross-section is subjected to boundary conditions as
shown in Figure 7.36. The thermal conductivity of the body is 1.5 W/m°. On one
side of the body, it is insulated and on the other side, convection takes place with
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h = 50 W/m?*°C and T., = 35°C. The top and bottom sides are maintained at a
uniform temperature of 180°C. Determine the temperature distribution in the body.

T=180°C

h,
k=1.5 W/m°C T TTm =35°C

0.5m \

T=180°C
Figure 7.36. Example 7.4

Solution

(1) Software results

The temperature at the top and bottom edges is found to be 180°C and at the right
edge the temperature is found to be 46.802°C.

1
NODAL SOLUTION

STEP =1

SUB =1

TIME =1

TEMP (AVG)
RSYS =0

SMN =46.802
sMx =180

46.802 76.401 106.001 135.601 165.2
61.601 91.201 120.801 150.4 180

Figure 7.36(a). Temperature distribution in a body of rectangular cross-section (refer to
Appendix C for color figures).
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PROBLEMS

1. Define conduction and convection.

2. Write the formulas for the rate of heat flow in x-direction by conduction and
the rate of heat flow by convection.

3. Determine the temperature distribution for the two-dimensional body shown
in Figure 7.37, subjected to boundary conditions as shown in the figure. The
top and bottom edges are insulated. The left side of the body is maintained at
a temperature of 45°C. On the right side, the convection process takes place
with heat transfer coefficient h = 100 W/m?°C and T., = 20°C. The thermal
conductivity of the body is k = 45 W/m°C.

T=45°C
h=100 W/m®C
T,=20°C

750 mm

§HHH§

| 750 mm

Figure 7.37. Problem 3

4. Determine the temperature distribution for the two dimensional body shown
in Figure 7.38. The temperature of 200°C is maintained at the top and bottom
edges. The left and right edges are insulated. Heat is generated at the rate of
q=2000 W/m’ in a body as shown in the figure. Let k= 35 W/m°C.

T=200°C
/

3m
|
|

T=200°C
Figure 7.38. Problem 4
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5. Determine the temperature distribution for the two-dimensional body shown
in Figure 7.39, subjected to boundary conditions as shown in the figure. The
top and bottom edges are insulated. The left side of the body is maintained at
a temperature of 50°C. On the right side, the convection process takes place
with heat transfer coefficient h = 150 W/m?*°C and T, = 25°C. The thermal
conductivity of the body is k = 50 W/m°C.

—

200 | 4=150 Wim®'C
> 7, =25°C

E—
—>

| 800 mm
~

Figure 7.39. Problem 5

i 2

6. Determine the temperature distribution for the two dimensional body shown
in Figure 7.40. The temperature of 200°C is maintained at the top and bottom
edges. The left and right edges are insulated. Heat is generated at the rate of
q=2100 W/m’ in a body as shown in figure. Let k= 45 W/m°C.

T=200"C

|
4m _\q/_
/l\

T=200C
Figure 7.40. Problem 6

7. Determine the load matrix and the global load matrix for Figure 7.41. The top
and bottom edges are insulated.

k=60 Wim?'K
T,=15"C

g =120 W/em

Figure 7.41. Problem 7
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8. Consider the rectangular plate shown in Figure 7.42. The outer temperature is
T, = 30°C. Convection heat transfer takes place on the inner surface of the wall
with T,,= 80°C and h = 50 W/m?°K. Determine the temperature distribution in
the wall. Take the thermal conductivity value k= 160 W/m°K.

o

0.3m
Figure 7.42. Problem 8

9. Consider a composite wall consisting of 2 materials shown in Figure 7.43. The
outer temperature is Ty = 30°C. Convection heat transfer takes place on the inner
surface of the wall with T.,=80°C and h= 50 W/m?*°K. Determine the temperature
distribution in the wall. Take the thermal conductivity value k;= 40 W/m°C and

k, = 60 W/m°C.
hT,
1/
T, =30"C
0.3 m 15m

Figure 7.43. Problem 9
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8.1 INTRODUCTION

A substance (liquid or gas) that will deform continuously by applied surface
(shearing) stresses is called a fluid. The magnitude of shear stress depends on
the magnitude of angular deformation. Indeed, different fluids have different
relations between stress and the rate of deformation. Also, fluids are classified as
compressible (usually gas) and incompressible (usually liquid).

The terms of velocities and accelerations of fluid particles at different times and
different points throughout the fluid filled space are used to describe the flow field.
The fluid is called ideal when the fluid has zero viscosity and is incompressible.
A fluid is said to be incompressible if the volume change is zero (i.e., p = constant).

V.v=0,

where,
v is velocity vector.

Depending on the importance of the viscosity of the fluid in the analysis, a
flow can be termed as inviscid or viscous. An inviscid flow is a frictionless flow
characterized by zero viscosity, that is, there is no real fluid. In other words, a fluid
is called inviscid if the viscosity is zero (i.e., y=0).

A viscous flow is a flow in which the fluid is assumed to have nonzero viscosity.
An irrotational flow is a flow in which the particles of the fluid are not rotating,

291



292 FINITE ELEMENT ANALYSIS

the rotation is zero. In other words, an irrotational flow is a flow with negligible
angular velocity, if

Vxv=0.

On the other hand, a potential flow is an irrotational flow of an ideal fluid
(i.e., p = constant and ;= 0).

A line that connects a series of points in space at a given instant where all
particles falling on the line at that instant have velocities whose vectors are tangent
to the line is called a streamline.

The flow is steady which means that the flow pattern or streamlines do not
change over time and the streamlines represent the trajectory of the fluid’s
particles. But, when the flow is ideal that means that the fluid has zero velocity.

This chapter covers the finite element solution of ideal or potential flow
(inviscid, incompressible flow) problems. Typical examples of potential flow are
flow over a cylinder, flow around an airfoil, and flow out of an orifice.

The two-dimensional potential flow (irrotational flow) problems can be
formulated in terms of a velocity potential function (¢) or a stream function (V).
The selection between velocity and stream function formulations in the finite
element analysis depends on the ease of applying boundary conditions. If the
geometry is simple, any one function can be used.

Fluid elements (e.g., FLUID141) are used in the steady state or transient analysis
of fluid systems. Pressure, velocity, and temperature distributions can be obtained
using these elements.

Two-dimensional fluid elements are defined using 3 (triangular element) or
4 (quadrilateral element) nodes added by isotropic properties. Inputs to these
elements are nodal coordinates, real constants, material properties, surface and
body loads, etc. Outputs of interest are nodal values of pressure and velocity.

8.2 PROCEDURE OF FINITE ELEMENT ANALYSIS
(RELATED TO FLUID FLOW PROBLEMS)

Step 1. Select element type—the basic 3 node triangular element can be used.
Step 2. Choose a potential function.
Step 3. Define the gradient/potential and velocity/gradient relationships.

Step 4. Derive the element stiffness matrix and equations.
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Step 5. Assemble the element equations to obtain the global equations and
introduce boundary conditions.

Step 6. Solve for the nodal potentials.

Step 7. Solve for the element velocities and volumetric rates.

The finite element solution using software of potential flow problems is
illustrated below. Only potential function formulation is considered. Two cases
are considered in this chapter.

8.3 POTENTIAL FLOW OVER A CYLINDER

y | Plate-1
I/////////‘://///////l
— A 5
uo_‘"'i'" E—i X
— ! |

Cylinder Plate-2

Figure 8.1. Potential flow over a cylinder.

The previous figure depicts the steady-state irrotational flow of an ideal fluid over
a cylinder, confined between 2 parallel plates. We assume that, at the inlet, velocity
is uniform, say u. Here, we have to determine the flow velocities near the cylinder.

Flow past a fixed circular cylinder can be obtained by combining uniform flow
with a doublet.
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Figure 8.2. Superposition of a uniform flow and a doublet.

The superimposed stream function and velocity potential are given by,

in ¢
Y= ‘Puniform flow + \Pdoublet =UXrxsin ﬂ_ K% — (81)
r
and
cosd .
D= . iow T Paouber = U X7 Xc0s—K X , respectively, (8.2)

where, Uis velocity.
Because the streamline that passes through the stagnation point has a value of
zero, the stream function on the surface of the cylinder of radius ‘@’ is then given by,

¥=Uxaxsind-Kx327 g (8.3)
a
which gives the strength of the doublet as,
K=Uxa". (8.4)

The stream function and velocity potential for flow past a fixed circular cylinder

becomes
a 2
Y= er(l—(—) )siné’ (8.5)
r
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and

2
d=Ux r(l - (ﬁ) Jcos 0, respectively.

r

The plot of the streamlines is shown in Figure 8.3.

YA

Figure 8.3. Streamlines for flow past a fixed cylinder.

The velocity components can be determined by,

Vf’

Vo

1 0¥
:——:U
r a0
¥
:—:—U
ar

cost

sin 4.

295

(8.6)

(8.7)

(8.8)

Along the cylinder (r = a), the velocity components reduce to v, = 0 and

vp=—2Usin 0.

The radial velocity component is always zero along the cylinder while the
tangential velocity component varies from 0 at the stagnation point (0 =7) to a

maximum velocity of 2U at the top and bottom of the cylinder (#/= g or f= —g )
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8.4 POTENTIAL FLOW AROUND AN AIRFOIL

Free y Plate-1
Zﬁf,aeﬁ"ocny [////////g'////////l :
“0—_».._:.._ e .._.._.._{_,xcr
I [ !
— | ! : |
|

,'[////7///;;((// 777
/ /

Airfoil Plate-2
Figure 8.4. Potential flow around an airfoil.

The x- and y-components of fluid’s velocity respectively can be expressed in a
stream function W(x, y) as

¥ oY
v.=—and v, =——. 8.9
oy Y ox (8.9)
The x- and y-components of fluid’s velocity with irrotational flows respectively
can be expressed in a potential function ¢(x, y) as
te0) a9

v.=— and v, =—.
a aFy

8.10
. (8.10)

Example 8.1

Flow over a circular cylinder between 2 parallel plates is shown in Figure 8.5.
Assume unit thickness. Find the velocity distribution for the flow over a circular
cylinder. Consider the flow of a liquid over a circular cylinder. Take liquid as water.
Water density = 1000 kg/m® and viscosity = 0.001 N-s/m®.
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y

LSS SSSIJ S LSS S LS,

im

777777 777777777,

12m

Figure 8.5. Flow over a cylinder.

Solution

(I) Software results
Procedure for solving the problem using ANSYS® 11.0 academic teaching software.

PREPROCESSING
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1. Main Menu > Preferences, then select FLOTRAN CFD > OK

Figure 8.6.

I Sructed

I e

I mevs rat
LT T —

™ Magrecs Node
™ Magwnc-tige
I tagh Freguancy
I owax

Mot I 00 vl decpine are selected they wil d shom.

b e
™ pMethod Bk,
7 pMethod Dty

=] @ ow]| = |

Selecting the preferences.
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2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add >
FLOTRAN CFD > 2D FLOTRAN 141 > OK

Orly FLOTRAN OFD slament types are shown

Lirary of Elment Types rr
30 FLOTRAN 142

ZDROTRAN 141
Element typs reforonce number

_I_I_I_I

Figure 8.7. Element selection.

3. Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle >

By 2 Corners
Enter (lower left corner) WP X=0.0, WPY =0.0 and Width =2, Height=1 > OK

4. Main Menu > Preprocessor > Modeling > Create > Areas > Circle > Solid

Circle. Enter WP X=1,WPY =0.5 and Radius =200e-3 > OK

e T
L] - = Piek "~ Bapick
L] - NE B -
dlokal & = ¥ -
- Qlabal X =
E-= ¥=
P F— =
¥ F— NF X 1.7
Haight ] Rad i =
o | sy | oK fwly |
Reznt Cancal | Beset Cananl I
R st ]

Figure 8.8. Create areas.
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Y
X

Figure 8.9. Rectangle and circle.

Now subtract the circle from the rectangle. (Read the messages in the window
at the bottom of the screen as necessary.)
5. Main Menu > Preprocessor > Modeling > Operate > Booleans > Subtract >

Areas >
Pick the rectangle > OK, then pick the circle > OK

Figure 8.10. Geometry for the flow over a cylinder.

Create a mesh of quadrilateral elements over the area.

6. Main Menu > Preprocessor > Meshing > Mesh Tool
The Mesh Tool dialog box appears. Close the Mesh Tool box.

7. Main Menu > Preprocessor > Meshing > Mesh > Areas > Free Pick the area > OK

Y
ZX

Figure 8.11. Quadrilateral element mesh.
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Apply the velocity boundary conditions and pressure.

8.

10.

Main Menu > Preprocessor > Loads > Define Loads > Apply >
Fluid/CFD > Velocity

> On Lines Pick the left edge of the plate > OK > Enter VX =1 > OK

(VX =1 means an initial velocity of 1 m/s?)

. Main Menu > Preprocessor > Loads > Define Loads > Apply >

Fluid/CFD > Velocity

> On Lines Pick the edges around the cylinder > OK > Enter VX = 0 and
VY=0>O0K

Main Menu > Preprocessor > Loads > Define Loads > Apply > Fluid/CFD
> Pressure

DOF > On Lines Pick the top, bottom and right edges of the plate > OK > OK

Once all the boundary conditions are applied, the cylinder with plate will
look like Figure 8.12.

Y
Z X
Figure 8.12. Model with boundary conditions.

The model-building step is now complete, and we can proceed to the solution.
First, save the model.

Solution

The interactive solution proceeds.

11.

12.

13.

Main Menu > Solution > FLOTRAN Set Up > Fluid Properties > A dialog in
that select against density as liquid and against viscosity as liquid > OK

Then another dialog box appears and, in that, enter the value of
density = 1000 value = 0.001 > OK

Main Menu > Solution > FLOTRAN Set Up > Execution Ctrl > a dialog in
that Enter in the first row “Global iterations EXEC” =200

Main Menu > Solution > Run FLOTRAN

When the solution is complete, close the ‘Solution is Done!” window.
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POST-PROCESSING

We can now plot the results of this analysis and also list the computed values.
14. Main Menu > General Postproc > Read Results > Last Set

15. General Postproc > Plot Results > Contour Plot > Nodal Solu
Select DOF Solution and Fluid Velocity and click OK
This is what the solution should look like:

T

NODAL SOLUTION
STEP = 1

SUB =1

VSUM (AVG)
TEMP

RSYS =0

SMX =1.19

.264509 .529018 .793526 1.058
.132254 .396763 .661272 .925781 1.19

Figure 8.13. Velocity distribution over a cylinder (refer to Appendix C for color figures).

16

Next, go to Main Menu > General Postproc > Plot Results > Vector
Plot > Predefined. One window will appear then click OK

1
VECTOR
STEP =1
SUB =1
\'A
NODE = 14
MIN =0
MAX =1.19 R Al
/4_'
/
— N\ N\ N
N 1 x 4
==
Y \ —
zX ~
—_—— L = =
L
[] .264509 .529018 .793526 1.058
.132254 396763 .661272 .925781 1.19

Figure 8.14. Vector plot of the fluid velocity (refer to Appendix C for color figures).
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17. General Postproc > Plot Results > Contour Plot > Nodal Solu
Select DOF Solution and Pressure and Click OK

1

NODAL SOLUTION
STEP = 1

suB =1

PRES  (AVG)
RSYS =0

SMN =-186.377
MAX =614.282

— —
-186.377 —8.452 169.472 347.396 525.32
—-97.415 80.51 258.434 436.358 614.282

Figure 8.15. Pressure distribution over a cylinder (refer to Appendix C for color figures).

PROBLEMS

. Define a fluid, inviscid flow, viscous flow, and irrotational flow.

. What are the 2 fluid classifications?

. Define streamline in a graphic of fluid motion?

. What we mean when we say the flow is steady and ideal?

. Define irrotational flow and potential flow?

Compute and plot velocity distribution over the airfoil as shown in Figure 8.16.
Assume unit thickness. Take density of air = 1.23 kg/m’ and viscosity =
1.79 X 10°N-s/m?.

Free T y

S ity (LSS

air velocity +

SN A WN =

AL

I
!
i
Uy=2.5 WSZ—.R+.._.._.._.._..E§ S~ 4-----AXE

_,: L 2m |
I i £
| | 0
_)I |
1

,[’///////,igﬁ//////

Figure 8.16. Flow over an airfoil.
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7. Flow over a circular cylinder between 2 parallel plates is as shown in Figure 8.17.
Assume unit thickness. Find the velocity distribution for the flow over a circular
cylinder. Consider the flow of a liquid over a circular cylinder. Take liquid as
water. Water density = 1000 kg/m® and viscosity = 0.001 N-s/m?, u= 1y =2 m/s?,
h=2m,and L=4m.

y
1/////////.//////////

h
x

L J——

o ——— — ——

|//////’///'/////////

Figure 8.17. Flow over a circular cylinder between 2 parallel plates.

8. Compute and plot velocity distribution over the airfoil as shown in Figure 8.18.
Assume unit thickness. Take density of air = 1.23 kg/m® and viscosity = 1.79 X
10°N-s/m? L=4m, L, =20 m, h; =18 m,and u= uy=3 m/s’.

Free y
:ﬁaeﬂ"my [////////////////. :
e ]
uo—-H—:-- . JI_,).(:"
I ! e

Figure 8.18. Flow over an airfoil.
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. Flow over an elliptical cylinder between 2 parallel plates is shown in Figure 8.19.
Assume unit thickness. Find the velocity distribution for the flow over a circular
cylinder. Consider the flow of a liquid over a circular cylinder. Take liquid as
water. Water density = 1000 kg/m’ and viscosity = 0.001 N-s/m?, u= uy=1m/s’,
D=2m,b=1m,h=4m,and L=8 m.

T y | Plate-1

LLLLLLLLBI L LY,
D

— | ? |

/

Elliptical Plate-2

Figure 8.19. Flow over an elliptical cylinder between 2 parallel plates.
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Chapter

9.1 INTRODUCTION

A dynamic system is a system that has mass and components, or parts, that are
capable of relative motion. Structural dynamics encompass modal analysis,
harmonic response analysis, and transient response analysis. Modal analysis
consists of finding natural frequencies and corresponding modal shapes of
structures. Finding amplitude of vibration when the loads vary sinusoidal
with time is known as harmonic response analysis. Finding the structural
response to arbitrary time dependent loading is referred to as transient
response analysis.

In this chapter, one-dimensional problems relating to these topics are covered.
In vibration analysis, mass matrix and damping matrix will also be discussed in
addition to stiffness matrix.

Governing equation of undamped free vibration assumes the form,

([k]_wz [m]){q}: 0. (91)

The nontrivial solution of equation (9.1) is the determinate,

(k] [m])| =0 9.2)

where
o = radian (or natural) frequency.
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The solution of equation (9.2) gives natural frequencies (w). Substituting the
value of @ back into the governing equation gives modal shapes (or amplitudes of

the displacements) defined by {g}.
The governing equation for the complete structure in global coordinate is

((K]- [M]){q}=0.

Mass matrices for bar element and beam elements are given by,

1
[m],,, = pAL ? ? (9.3)
6 3
156 22L 54 —13L
22L 4  13L 30
[m]Be“'”Z% 54 13L 156 -22L| ©.4)

—13L -3} -22L 4’

where
p = density of the element material
A = cross-sectional area
L =length.

9.2 PROCEDURE OF FINITE ELEMENT ANALYSIS
(RELATED TO DYNAMIC PROBLEMS)

Step 1. Select element type.

Step 2. Select a displacement function.

Step 3. Define the strain/displacement and stress/strain relationships.

Step 4. Derive the element stiffness and mass matrices and equations.

Step 5. Assemble the element equations to obtain the global equations and
introduce boundary conditions.

Step 6. Solve for the natural requencies and mode shapes.
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9.3 FIXED-FIXED BEAM FOR NATURAL FREQUENCY

DETERMINATION

Example 9.1

Determine the first 2 natural frequencies for the fixed-fixed beam shown in
Figure 9.1. The beam is made of steel with modulus of elasticity E = 209 GPa,
Poisson’s ratio = 0.3, length L = 0.75 m, cross-section area A = 625 mm?, mass

density p = 7800 kg/m’, moment of inertia I = 34700 mm*.

A N
A N
A 0.75 m N
A N

Figure 9.1. Fixed-fixed beam for Example 9.1.

Solution
(1) Analytical method

22.4 |EI

=,

L \pA

22.4  [209%10° x34700x107"?

w, = - \/ ——— =1535.95 rad/s.
(0.75) 7800%625x10

Frequency,

_%

f1_27z

_ 1535.95
27

=244.45 Hz

h

61.7 |EI
W, =——,|—
L\ pA

61.7 [209%10° x34700x107"
W, = 5 \/ — =1535.95 rad/s.
(0.75) 7800%X625%10

Frequency,

-9
. 27

_4230.71
27

f, = 673.34 Hz.

(9.5)

(9.6)

(9.7)

(9.8)
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(1) FEM by hand calculations

L2 L2

O) ®

Figure 9.1(a). Finite element model.

‘ J

Mass matrices are,

FiNITE ELEMENT ANALYSIS

L LY]
156 22(—) 54 —13(—)
2 2
L LY L LY
paxt 23] 4(5) (5] (3
[M]= [0, ]=— S O
54 13(—) 156 —22(—)
2 2
2 2
a3(3) =(5) =(5) )
L 2 2 2 2) |
[ 156 11L 54  —6.5L ]
L2
11 I* 6.5L —3(1)
PXAXL
M, 1=[M,]= L
[M,]=[M,] 840 54 13(5) 156 —11L
L4
—-6.5L —3(—) -11L I’
- 4 -
Stiffness matrices are,
12 6(£) -12 6(£)
2 2
2 2
EI 4(%) _6@) 2(3)
[kl]:[kz]: 3 I
L
() 12 —6(—)
2 2
L 2
Symmetric 4(5)
12 3L —-12 3L
2
: )
L 12 -3L
Symmetric r
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Global mass matrix,

(M PAL 156+156 —11L+11L pAL 312 0
840 |-11L+11L  IP+I* | 840

Global stiffness matrix,

gpr[12+412  3L+-3L] ggr[24 0
K:?[3L+—3L P+ ]27[0 2L2]'
Governing equation is,
(K1~ [M]){q} =0,

8EI|24 O PAL 312 0

o el el g |ar=o

r [0 2C 840 |10 20

r 8EI[24 O AL|312 0
—x|| — , 2= , | [{at=0
8EI r [0 2r 840 |0 2L

24 0 wszLﬁ 312 0

S aPyreppe ) | [t} =0
0 2L°| 840x8EI|0 20

24-312a 0 B
([0 21 —2L2aD{q} =0

@’ pAL!
6720FI

where a=

For nontrivial solution,

(K1 [M])|=0
24-312a 0
[o 2r —2&1}

a=1 or a=0.076923

Solving, we get

2 4 2 4
1= @PAL 076923 = LA
6720El 6720E]

22.74 [EI 81.98 | EI
== o=
L PA L PA

o 20|

309
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Given:
E =209 GPa
A=625%10" m’
1=34700x10" m*
»="7800 kg/m’
L=0.75m.
Substituting, we get
22.74 [209x10° x34700x10""
W, = > \/ — =1559.26 rad/s.
(0.75) 7800 % 625% 10
Frequency,
1559.26
f=_ = 248.164 Hz
2z 2z
81.98 [209%10° x34700x107"°
w, = 5 \/ — =5621.29 rad/s.
(0.75) 7800%625%10
Frequency,
5621.29
f=22= = 894166 Hz.
2 2z
(1) Software results
1
NODAL SOLUTION
STEP =1
SUB =1
FREQ = 244.022
USUM (AVG)
RSYS =0
DMX =.830139
SMX =.830139
Y
N X
MX

Figure 9.1(b). Deflection pattern for a fixed-fixed beam for mode 1 (refer to Appendix C for

color figures).
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Frequency values (in Hz)

SET TIME/FREQ LOAD STEP SUB STEP CUMULATIVE
1 244.02 1 1 1
2 671.69 1 2 2

The following are the mode shapes:

1
DISPLACEMENT
STEP =1

SUB =1

FREQ = 244.022
DMX =.830139

Figure 9.1(c). Mode 1 for fixed-fixed beam (refer to Appendix C for color figures).

1
DISPLACEMENT
STEP = 1

SUB =2

FREQ = 671.692
DMX =.786022

Figure 9.1(d). Mode 2 for fixed-fixed beam (refer to Appendix C for color figures).

Answers for Example 9.1

. FEM-hand calculation Software results
Parameter Analytical method . g
(with 2 elements) (with 10 elements)
Natural frequency
fi 244.45 Hz 248.16 Hz 244.02 Hz
f 673.34 Hz 894.66 Hz 671.69 Hz

Procedure for solving the problem using ANSYS® 11.0 academic teaching software
For Example 9.1
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PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add >
Beam > 2D elastic 3 > OK > Close

I\ Library of EHlement Types

Only structural element types are shown
Library of Element Types

Element type reference number

= |

Figure 9.2. Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

FiY Real Constants for BEAM3

Element Type Reference No. 1
Real Constant Set No.

Cross-sectional area  AREA
Area moment of inertla 122
Total boam height ~ HEIGHT
Shear deflection constant SHEARZ
Initial strain ISTRN

Added massfunit length  ADDMAS

ST

o | apply | carcel |

Figure 9.3. Enter the area and moment of inertia.

Cross-sectional area AREA > Enter 625e-6

Area moment of inertia IZZ > Enter 34700e-12
Total beam height HEIGHT > Enter 1 > OK > Close
Enter the material properties.

3. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX =209E9 and PRXY =0.3 > OK
click Structural > Linear > Density
Enter DENS = 7800 > OK
(Close the Define Material Model Behavior window.)

Create the keypoints and lines as shown in the figure.
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4. Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS,
Enter the coordinates of keypoint 1 > Apply Enter the coordinates of keypoint

2>0K
Keypoint locations
Keypoint number X coordinate Y coordinate
1 0 0
2 0.75 0

Figure 9.4. Enter the keypoint coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Lines > Lines > Straight
Line, Pick the 1* and 2™ keypoint > OK

Create Straight Line

* Pick  Unpick

 Single ( Box
€ Polyyon ¢ cirele
f Loop

Count

Haximum
Hinimum
KeyP No.

¥ List of Icems
(" Min, Hax, Inc

-
_serty |

Rasat Cancal

Fick A1l Help

Figure 9.5. Pick the keypoints to create lines.
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6. Main Menu > Preprocessor > Meshing > Size Cntrls > Manual Size > Lines >
All Lines > Enter NDIV No. of element divisions = 10

T2 Element Sizes on Al Selected Lines

[LESIZE] Elemant sizms on ol selacted inec

SIZE  Elenent edgs length |

NOIV - No. of element divisions:

|ul
(NDIVis used only I SIZE is blark or 2r0)
KYNDIV SIZE,NDIV can be changed W Yes
SPACE  Spacing ratio I
Show more options: I No

x| _cea | e |

Figure 9.6. Specify element length.

7. Main Menu > Preprocessor > Meshing > Mesh > Lines > Click Pick All

& piok  Unpick

@ gingle ( Bex
 Polygon (" circle

* List of Items

 Min, Hax, Inc

——

J

Reset Cancel

Pick All Help

Figure 9.7. Create elements by meshing.

8. Main Menu > Solution > Analysis Type > New Analysis > Select Modal > OK

[ANTYPE] Type of analysis

" Stalic
 hoddl]

" Harmonk

€ Transiert

" Spectrun

" Bgen Buddng
€ Substruduring/CMS

x| e | e |

Figure 9.8. Define the type of analysis.
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9. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Nodes Pick the left most node and right most node >
Apply > Select All DOF > OK

I Apply U ROT on Nodes

[D] Apply Displacements (L,ROT) on Nodes
Lab2 DOFs to be constraned

If Constant value then:
VALUE Displacement valus

Figure 9.9. Apply the displacement constraint.

10. Main Menu > Solution > Analysis Type > Analysis Options > Select PCG
Lanczos option
Enter No. of modes to extract =2
NMODE No. of modes to expand = 2 > OK
After OK one more window will appear, for that also click OK

[HCDOPT] Mods extraction method
1 odk Lancaos
® P0G Lanceos
™ Reduced
1™ Unymmetric
" Davpedd
I~ R Damped
I Spwrnode
Mo of modes to extract |:|
(st be womct! L=
[roraam)
Epan mede shapss o
MMODE No. of modes bo expand EI
Closk Cokauatbe shem roouls? ~m
LUMPH) Liss lumped musss appro? rw
[PSRES] ing prestress affscist s
] ) LS

Figure 9.10. Select the number of modes to extract.
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Solution

The interactive solution proceeds.

11.

Main Menu > Solution > Solve > Current LS > OK

The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close.

In the Solve Current Load Step window, select OK, and when the solution is
complete, close the ‘Solution is Done!” window.

POST-PROCESSING

12.
13.
14.

15.
16.

Main Menu > General Postproc > Results Summary

This result is shown as frequency values in Hz.

Main Menu > General Postproc > Read Results > First Set

Main Menu > General Postproc > Plot Results > Deformed Shape > Click
Def + undeformed > OK

This result is the first mode shown in Figure 9.1(c).

Main Menu > General Postproc > Read Results > Next Set

Main Menu > General Postproc > Plot Results > Deformed Shape > Click
Def + undeformed > OK

This result is the second mode shown in Figure 9.1(d).

9.4 TRANSVERSE VIBRATIONS OF A CANTILEVER
BEAM

Example 9.2

Determine the first 4 natural frequencies for the cantilever beam shown in
Figure 9.11. The beam is made of steel with modulus of elasticity, E = 207 GPa,
Poisson’s ratio = 0.3, length L = 0.75 m, cross-section area A = 625 mm?, mass
density p = 7800 kg/m’, moment of inertia I = 34700 mm®*.

7
e
~

7

0.75m |

e

Figure 9.11. Cantilever beam for Example 9.2.
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Solution
(1) Analytical solution

352 [EI
L\ pA

2

3.52  [207x10° x34700%x107"2
= > \/ — =240 rad/s.
(0.75) 7800%X625%10

Frequency,
=%
2z

h

240
f,=——=38.197 Hz
27

2 [m
I\ pA

W,

=1501 rad/s.

2 \/207 x10° X 34700107
> (0.75) 7800% 625%107°

Frequency,

.
fi=

27

1501
f2 = 2— =238.89 Hz

T

61.7 |EI
Wy =———
L \pA

617 \/207><109 X 34700 X102
(0.75)° 7800% 625x107°

= 4210 rad/s.

,

Frequency,

.
fi=7>

27

4210
f, = ——— =670.04 Hz

27
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o =121 | EL
tp PA
12 \/207><1o9><34700><10‘12
*(0.75) 7800% 625X 107
Frequency,
Y
fi=
8257
f,=—2=1314.14 Hz
27

(1) FEM by hand calculations

L2 L2
: . l
@ @)

Figure 9.11(a). Finite element model.

Stiffness matrices are,

12
L
EI 6(5)
[kl]z[kz]z Iy
() 12
2
L
o5)
| 2
Global stiffness matrix,
[ 24 0 -12 3L
LZ
2
SE] 0 2L 3L 5
[K]=—-
L |-12 -3L 12 -3L
L2
3L — -3L I
L 2

[*))

|
N
N TN /N /N

=~

Do
NN NN =

Ne— — e ———

=136209.07

[\S] (3%
| |
(@) (@)

VY Vo
N | N |
N— N——

-12
2.25

FINITE ELEMENT ANALYSIS

= 8257 rad/s.

0 =12

1.125 -2.25
-2.25 12

0.28125 -2.25

2.25

0.28125
-2.25

0.5625
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Mass matrices are,

156 22(£)
2
2
L L L
peaxt] (3] a(3)
[A41]:[A42 = 420 2 L
54 13(——)
2
L LY
13| —| -3 —
| 2 2
[ 156 11L
1L I
PXAXL
M |=|M, |=4—— L
[M,]= [, )= 222
2
4
—6.5L —3(—
Global mass matrix is,
[ 312 0 54
0 r 6.5L
XAXL
[M]= 2200 L
840 54 13 ) 156
L4
—6.5L —3(—) —11L
| 4
312 0
S 1.125
[M]=4.352676 X10
54 4.875
—4.875 —-0.421875
Governing equation is,
@,
2 &,
(K1~ [M]){q} =1
3

156

o

54

L

2

-11L

LZ

—6.5L

319

L

off)
_3(£)2
=0

) G).

2

54

4.875

156
-8.25

—4.875

—0.421875

-8.25 '
0.5625
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For a nontrivial solution

Det ([K]-a*[M])=0=|([K]-’[M])|=0.

Substituting and solving, we get

@ 0.0006
e @5 | _ 1gF 0:0230
o 0.2630
o 2.2159
w, 245
@, =245 rad/s = f, = —=""-=38.993 Hz
2w 2@
1517
@, =1517 rad/s = f, :%=2—=241.44 Hz
T T
w, 5128
@, =5128 rad/s= f, =— = By 816.147 Hz
T

14885.9
w, =14885.9 rad/s = f, = 2 =
27

=2369.16 Hz.
2z

(1) Software results

1
NODAL SOLUTION

STEP = 1

SUB =1

FREQ = 38.178

USUM (AVG)

RSYS = 0

DMX = 1.046

SMX = 1.046

Y .3
. I

.232386 .464772 69715 .929544
.116193 .348579 .580965 .813351 1.046

Figure 9.11(b). Deflection pattern for a fixed-fixed beam for mode 1 (Refer to Appendix C
for color figures).
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Frequency values (in Hz)

321

SET TIME/FREQ SUB STEP CUMULATIVE
1 38.178 1 1
2 238.94 2 2
3 667.71 3 3
4 1305.2 4 4

The following are the mode shapes:

1

STEP
SUB
FREQ
DMX

DISPLACEMENT

1

1
38,178
1.046

Figure 9.11(c). Mode 1 for cantilever beam (refer to Appendix C for color figures).

STEP =
SUB
FREQ
DMX

1
DISPLACEMENT

1

2
238.937
1.044

Figure 9.11(d). Mode 2 for cantilever beam (refer to Appendix C for color figures).
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IDISPLACEHEHT
STEP 1
SUB 3
FREQ 667.7086
DMX 1.041

Figure 9.11(e). Mode 3 for cantilever beam (refer to Appendix C for color figures).

1DISPLACEMENT
STEP = 1
SUB = 4
FREQ = 1305

DMX = 1.038

Figure 9.11(f). Mode 4 for cantilever beam (refer to Appendix C for color figures).

Answers of Example 9.2

Parameter Analytical method FEM-hand calculation Software results
(with 2 elements) (with 10 elements)

Natural frequency

fi 38.197 Hz 38.993 Hz 38.178 Hz
f 238.89 Hz 24144 Hz 238.94 Hz
f 670.04 Hz 816.147 Hz 667.71 Hz

fa 1314.14 Hz 2369.16 Hz 1305.2 Hz
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9.5 FIXED-FIXED BEAM SUBJECTED TO FORCING

FUNCTION

Example 9.3

For the fixed-fixed beam subjected to the time dependent forcing function shown
in Figure 9.12, determine the displacement response for 0.2 seconds. Use time step
integration of 0.01 sec. Let E = 46 GPa, Poisson’s ratio = 0.35, length of beam
L = 5 m, cross-section area A = 1 m? mass density, p = 1750 kg/m?, moment of

inertial = 4.2 x 10 m*.

F(t)
F()
45kN

1 2 3 4 5
125m | 1.25m | 1.25m | 1.25m

tin sec

01 0.2

Figure 9.12. Fixed-fixed beam subjected to the time dependent forcing function for Example 9.3

Solution
(1) Software results

1posT26
uy_32

(X10%%—2)
1.7

Figure 9.12(a). Displacement response for 0.2 sec for node 2 (refer to Appendix C for

color figures).

1posr26
uy_3
(x10%*—2)
3.5
3
2.5 7 N
B v
VALU .
A AN

. . 120 016 .2
0 020 06°%%1 . .
TIME

Figure 9.12(b). Displacement response for 0.2 sec for node 3 (refer to Appendix C for

color figures).
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Displacement values (in meters) for node 2

TIME 2 VY
uy_2
0.0000 0.00000

0.10000E-01 0.421220E-05
0.20000E-01 0.284618E-03
0.50000E-01 0.602161E-02
0.80000E-01 0.121677E-01
0.10000 0.153042E-01
0.12000 0.148820E-01
0.15000 0.979873E-02
0.18000 0.868368E-04
0.20000 —0.649350E-02

Displacement values (in meters) for node 3

TIME 3 UY
uy_3
0.0000 0.00000

0.10000E-01 0.505126E-03
0.20000E-01 0.218959E-02
0.50000E-01 0.113766E-01
0.80000E-01 0.241211E-01
0.10000 0.286233E-01
0.12000 0.292504E-01
0.15000 0.183799E-01
0.18000 —0.205644E-03
0.20000 —-0.117477E-01

FINITE ELEMENT ANALYSIS

Procedure for solving the problem using ANSYS® 11.0 academic teaching

software.

For Example 9.3
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PREPROCESSING

325

1. Main Menu > Preferences > Select Structural > OK

1V roforences for G Tiltoring

[eErw[FMET] Preferences for GLI Filbering
Bradvichionl s 3) ber a1 Ghee ST

=T —
I Thwemal

™ Anss Fud

I~ ROTRAN OFD

™ Magnetic-fodsl
I~ Magretic-Edon
™ Hgh Fregquency
™ Bectric

Nots: I ro indvidual dischlines: are sslectad thay wil ol show.,

Disapire options
& heMothed
1 pMethod Srut.
1 prethed Dactr.

B O

Figure 9.13. Selecting the preferences.

2. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add >

Beam > 2D elastic 3 > OK > Close

h‘ Library of Liement Types

Only structural element types are shown
Library of Elerment Types:

Element type refersnce number

x| e | cu |

Figure 9.14. Element selection.
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3. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

'A‘ Real Constants for BEAM3

Element Type Reference No. 1
Real Constant Set No.

Cross-sectional area  AREA
Area moment of nertia 122 265
Total beam height HEIGHT
Shear deflection constant SHEARZ
Initial strain ISTRN

Added massfunit length  ADDMAS

SN

o | apoly | concel |

Figure 9.15. Enter the area and moment of inertia.

Cross-sectional area AREA > Enter 1

Area moment of inertia IZZ > Enter 4.2e-5

Total beam height HEIGHT > Enter 1 > OK > Close
Enter the material properties.

. Main Menu > Preprocessor > Material Props > Material Models

Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX = 46E9 and PRXY = 0.35 > OK

Click Structural > Linear > Density

Enter DENS = 1750 > OK

(Close the Define Material Model Behavior window.)

Create the nodes and elements as shown in the figure.

. Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

Enter the coordinates of node 1 > Apply > Enter the coordinates of node 2 >
Apply > Enter the coordinates of node 3 > Apply > Enter the coordinates of
node 4 > Apply Enter the coordinates of node 5 > OK

Node locations

Node number X coordinate Y coordinate

0
1.25
2.5
3.75

[0 B N S
oS o o o O
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P4 Create Nodes in Active Coordinate System
[N] Create Nodes in Active Coordinate Systen
NODE  Node number Il
X,Y,Z Location in adtive CS Jo [o |
THCY, THYZ, THZX
Rotation angles (degrees) | | |
« | oy | concal | o |

Figure 9.16. Enter the node coordinates.

6. Main Menu > Preprocessor > Modeling > Create > Elements > Auto
Numbered > Thru
Nodes Pick the 1* and 2" node > Apply > Pick the 2! and 3™ node > Apply >
Pick the 3™ and 4™ node > Apply > Pick the 4™ and 5 node > OK

Elements from Nodes

@ pick " Unpick

@ Single  Box

€ Polygon ( circle
€ Loop

Count = 0
Maximum = 20
Hinimum = 1

Node No. =

(¥ List of Items

(" Hin, Max, Inc

——

[ | wmay
Reset I Cancel
Pick p‘.ul Help I

Figure 9.17. Pick the nodes to create elements.

7. Main Menu > Solution > Analysis Type > New Analysis > Select Transient > OK

[ANTYPE] Type of analysis
 BRatic]
" Modd
" Harmonc
@ Transient
" Spectrun
" Bgen Bucking
" Substructuring/CMS

oK cance | Help

Figure 9.18. Define the type of analysis.
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then select > Reduced > OK

Fi) Transient Analysis
[TRNOPT] Solution method

C Ful

& Reduced

" Mode Superpos’n
[LUMPM] Use lumped mass approx? I No

x| e | e |

Figure 9.19. Define the type of transient analysis.

8. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >
Displacement > On Nodes > Pick the left most node and right most node >
Apply > Select All DOF > OK

I Apply UROT on Nodes

[D] Apply Displacements (U,ROT) on Nodes
Lab2 DOFs to be constrained

If Constant value then:
VALUE Displacement value

Figure 9.20. Apply the displacement constraint.

9. Main Menu > Solution > Master DOFs > User Selected > Define > Pick 29,
37, and 4™ node > Apply > Select UY from Lab 1 1* degree of freedom > OK

'A‘ Define Master DOFs
[M] Define User-Selected Master DOFs

Labl 15t dagree of Fraadom ﬁ
X
ROTZ
Help

L&b2-6 Additional DOFs

Figure 9.21. Defining master DOF.
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10. Main Menu > Solution > Load Step Opts > Time/Frequenc > Time-Time Step

Enter [TIME] Time at end of load step — 0
Enter [DELTIM] Time step size - 0.01 <OK
M
| (T3] T ot wrd of foud stwp P
| [0ELTIM] Tive ste sce o
| [KBC]  Steppad o ramped b.c.
 Ramoed
" Stepped
| AUTOTS] Atomatic e steppng
o
 oFF
& Prog Gosn
[DELTIM) Miriraum tims steg sizs [_
Maximm time sep Sze ,_
Use previous stap size? ¥ Yos
[TSRES] Time stap reset based on specific tms pants
| Tune poirks from ;
17 No resst
" Existing arvay
1 New amay
 Note: TSRES command is vk for thermal elsments, therms-slectric
eierarts, thermalsurface efect slenerts
o any combination thersaf,
o | Cancel |

Figure 9.22. Defining time step size.

11. Main Menu > Solution > Load Step Opts > Write LS File
Enter LSNUM Load step fine number n =1 > OK

I\ write Load Step File

[LSWRITE] Write Load Step Fie (Jobname.Sn)

LSNUM Load step file number n I;—

Figure 9.23. Creating LS file.
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12. Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment >
On Nodes > Pick the middle or 3" node Apply > Enter FY = 45e3 > OK

A Apply F/M on Nodes

[F] Apply Force/Moment on Nodes
Lab  Direction of forcejmom =
Apply as Constant value v
IF Constant vakue then:
VALUE Force/moment value Ir
x| ooy | canel | He |

Figure 9.24. Applying force on node.

13. Main Menu > Solution > Load Step Opts > Time/Frequenc > Time-Time Step

Enter [TIME] Time at end of load step — 0.01 > OK

i\ time and Time Step Opticas

Tt i Time Ster) Options: -]
[TIME] Time &t ond of loud step: 0.01] |
[DELTIM] Tims ctaps eise |m—
[KBC]  Stepped or ramped b.c.
& Ppvgesd
 Stepped
[ATOTS) Autamatic tma stapping
©on
" OFF
& Prog Cuse
[DELTIM] M tive sto size |_
Marimin tiss o0 e |—
U pravwious stap soe? F Yes
(1551wt ek o
Time points from
& Noresst
" Existing wr
T New array

MNoke: TSRES command bs valld For thermal elements, thernal-slectric
semants, hermal surface effect slements ind FILIDIEG,
o any combination thereof.

oK | Cancel I

Figure 9.25. Defining time at the end of 1° load step.

14. Main Menu > Solution > Load Step Opts > Write LS File

Enter LSNUM Load step fine number n =2 > OK
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15.

16.

17.

Figure 9.26. Creating LS file for 1* load step.

Similarly repeat Steps 13 and 14 for Time at end of load step of 0.02, 0.05, 0.08,
and 0.1 and each time create a LS file with next numbers (n), i.e., 3, 4, 5, and 6.
Main Menu > Solution > Define Loads > Delete > Structural > Force/
Moment > On Nodes > Pick the middle or 3™ node Apply > OK

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment >
On Nodes > Pick the middle or 3™ node Apply > Enter FY = 36e3 > OK

L) Apply FIM on Nodes

Figure 9.27. Applying force on node.

Main Menu > Solution > Load Step Opts > Time/Frequenc > Time-Time Step
Enter [TIME] Time at end of load step—0.12 > OK

Time ard Time Step Options 5‘
[77E] Tame ot end of load step 012

[DELTIM] Tine step s [oo—
[XBC)  Skepped or ranped b.c.
@ Ramped
 Sepped
[AUTOTS] Avtomatic tina stepping
o
ror
& Pog Chosen
[DELTIM] Mk time step size. [—
Mazmum e step size I
Use previous step size? W e
[TSRES] T step resst based o speckictne ports :
Tine poirks from :
1+ Noreset
 Exsting ama.
 Now array
v e R
clements, thermal susface ffect dements and FULIDI 16,
T —
= | _cnal |

Figure 9.28. Defining time at the end of 6" load step.
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18.

19.

20.

FiNITE ELEMENT ANALYSIS

Main Menu > Solution > Load Step Opts > Write LS File
Enter LSNUM Load step fine number n=7 > OK

i\ write Load Step File

[LSWRITE] Write Load Step File (Jobname.Sn)

LSNUM Load step file number n |7

x O N T

Figure 9.29. Creating LS file for 6 load step.

Repeat Step 15 and delete the force.

Then apply the force of 22.5 kN (i.e., 22.5¢3) and define the Time at end of
load step of 0.15 and create a LS file with number (#) = 8.

Again, repeat Step 15 and delete the force.

Then apply the force of 9 kN (i.e., 9¢3) and define the Time at end of load step
of 0.18 and create a LS file with number (1) = 9.

Again, repeat Step 15 and delete the force.

Define the Time at end of load step of 0.2 and create a LS file with number
(n) =10.

Main Menu > Solution > Solve > From LS Files

Enter LSMIN Starting LS file number = 1

Enter LSMAX Ending LS file number = 10

LSINC File number increment = 1

I\ Solve Load Step Files

[LSSOLVE] Solve by Reading Data from Load Step (LS) Files
LSMIN Starting LS file number

LSMAX Ending LS File number
LSINC File number increment

x| o | v |

1]

Figure 9.30. Solving from LS files.

Main Menu > Time Hist Post pro
The following dialog box will appear
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ﬁg' @l IS8 |
sl 1 _-|"
1]

E | El

oo | o |

el ]|

lel -]y

|ielEes| Ut

Figure 9.31. Time hist dialog box.

In that dialog box click on the first icon, i.e., on Add data, one more dialog box
will appear as shown below. Then click on DOF Solution > y-Component of
displacement > OK.

I\ Add Time History Variable %

Result Tiem

B Favorites =
@ Modal Soltion j
o DCF Solution
@ =-Componert of displacemert
=]

@ 2-Componert of rotation
g =

A 2
~ Result Ttem Properties
Variable Name |uv_2

ok | aek | come | hew

Figure 9.32. Selecting the displacement in y-direction.



334

FINITE ELEMENT ANALYSIS

Node for Data

' pick " Unpick

F single € Box

" Polygon € circle
" Loop

Count =
Maximum =
Minimum = 1
Node No. =

(% List of Itvems

" Hin, Max, Inc

|ox|a.pp.1.y|

Reset I Cancel I

Pick ALl | Help I

Figure 9.33. Selecting the node.

It asks for the node to pick, so pick the node 3 or middle node < OK.

Then, in the Time hist dialog box, click on 4™ icon, i.e., List Data (refer to
Figure 9.31).

This result is shown as displacement values for node 3 in the software results
of the problem. Then, in the Time hist dialog box, click on 3™ icon,i.e., Graph
Data (refer to Figure 9.31).

The result is shown in Figure 9.12(b) for node 3 in the software results of the
problem.

Maximum displacement values (in meters)

MName Element MNode |Result Ttzm |Minimum |Maximum |-Axis |
TIME Time 0 0.2 «
uy_2 Y-Companent of displacement -0,0054935 0,0153042 O

v 3

2
3

Y¥-Component of displacement -0.0117477

0.0292504

Figure 9.34. Values of displacement.
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9.6 AXIAL VIBRATIONS OF A BAR

Example 9.4

For the bar shown in Figure 9.35, determine the first 2 natural frequencies. Let
E = 207 GPa, Poisson’s ratio = 0.3, length L = 2.5 m, cross-section area A = 1 m?,
mass density p = 7800 kg/m”.

2.5m |

[
Figure 9.35. The Bar for Example 9.4.

AVARRARARRNANY

Solution
(1) Analytical method

157 [E

@ ==
Y,

1.57 [207x10°
— —  =3235.17 rad/s.

w, =—
2.5 7800
Frequency,
- %
fl 27
3235.17
fi = =514.89 Hz
27
471 |E
w,=—,|—
L \Np
4.71 [207x10°
@, = ——|———— =9705.52 rad/s.
2.5 7800
Frequency,
_9
. 27
9705.52
f, = =1544.68 Hz.

27
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(1) FEM by hand calculations

L/2 L/2

: . .
® ®

Figure 9.35(a). Finite element model.

Mass matrices are,

[Ml]:[Mz]:pA@[2 -

Stiffness matrices are,

A 2 1
PAL
[m]=22E
12
0 -1 2
Global stiffness matrix is,
EA 1 -1 0
2
[K]=—7| - 2 -1
L
0 -1 1
Governing equation,
1
(K- [M])qu, ¢ =[0]
Us
a1 LR
2
220 2 -t xZ25 1 4 1| b=o.
0 -1 1 0 -1 2])|u

Boundary conditions are, u; = 0.
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Applying boundary conditions and for a nontrivial solution,

2 -1 wszz 4 -1
-1 1| 24E |-1 2|

b

i.e.,
2 -1 4a a
— =0’
-1 1 a 2a
where
_ &’ pl’
© 24E
By solvi 2—4a -l-a 0
solving, =V, we et
Y & —1—a 1-2a 8
2 2 2 2
I
0=01081941= L5 or a=13203772= 2 PE
161 [E
w=—,|—
P

_ 161 [207x10’

W, = =3317.6 rad/s.
2.5 7800
Frequency,
_“
fl 27
3317.6
f, = =528.01 Hz
27
5.63 |E
w,=——|—
L \p
5.63 (207 x10°
@, = ——4|————— =11601.3 rad/s.
2.5 7800
Frequency,
_%
f2 27
11601.3
f,= =1846.4 Hz.

27
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(1) Software results
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1

NODAL SOLUTION
STEP = 1

SUB =1

FREQ = 515.685
USUM  (AVG)
RSYS = 0

DMX = .010148
SMX = .010148

F,Hﬂ
=
>

0 .002255
.001128 .003383

.00451

.005638

.005638

.007893

.009021
.010148

Figure 9.35(b). Deflection pattern for a bar (refer to Appendix C for color figures).

Frequency values (in Hz)

SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE
1 515.68 1 1
2 1559.8 2 2

Answers for Example 9.4

Parameter Analytical FEM-hand calculation Software results
method (with 2 elements) (with 10 elements)
Natural frequency
fi 514.89 Hz 528.01 Hz 515.68 Hz
f 1544.68 Hz 1846.4 Hz 1559.8 Hz

Procedure for solving the problem using ANSYS® 11.0 academic teaching

software.
For Problem 9.4
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PREPROCESSING

1. Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Link >
2D spar 1 > OK > Close

"‘t ibrary of Element Types

Only structural element types are shown
Library of Element Types

Figure 9.36. Element selection.

2. Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add > OK

I\ Real Constant Set Number 1, for LINK1

Figure 9.37. Enter the cross-sectional area.

Cross-sectional area AREA > Enter 1 > OK > Close
Enter the material properties.

3. Main Menu > Preprocessor > Material Props > Material Models
Material Model Number 1, click Structural > Linear > Elastic > Isotropic
Enter EX =207E9 and PRXY =0.3 > OK
Click Structural > Linear > Density
Enter DENS = 7800
(Close the Define Material Model Behavior window.)

Create the keypoints and lines as shown in the figure.
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4. Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active
CS Enter the coordinates of keypoint 1 > Apply Enter the coordinates of

keypoint 2 > OK
Keypoint locations
Keypoint number X coordinate Y coordinate
1 0 0
2 2.5 0

[K] Create Keypoints in Active Coordinate System

NPT Keypoint number ||_

%,Y,Z Location in active CS B [o [
x| aesty_ | concel_| nep_|

Figure 9.38. Enter the keypoint coordinates.

5. Main Menu > Preprocessor > Modeling > Create > Lines > Lines > Straight
Line Pick the 1** and 2" keypoint > OK

Create Straight Line

& pick (" Unpick

~ Single  Box

€ Polygon " Circle
f‘Loop

Count = 0
Haximum = 2
Hinimum = 2
Rey?P No. =

F List of Items

 Min, Hax, Inc

|0!|App.ly

Reset I Cancel

Pick ALl Help

Figure 9.39. Pick the keypoints to create lines.
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6. Main Menu > Preprocessor > Meshing > Size Cntrls > Manual Size > Lines >
All Lines > Enter NDIV No. of element divisions = 10

f“ Flement Sizes on All Selected Lines
[LESIZE] Bement szes on ol selected ines
SIZE Element edge length
NOTV  No. of slemant divisions

(NDIV is used only I SIZE is blank or 2em0)
KYNDIV SIZE,NDIV can be changed
SPACE Spacing ratio

1

Show more options

-
g

x| _ona |

!

Figure 9.40. Specify element length.

7. Main Menu > Preprocessor > Meshing > Mesh > Lines > Click Pick All

Mesh Lines

& pick " Drpick

# single (" Box

" Polygen [ circle
" Loop

Count - O
Faximum =
Bivimus = 1
Line Ho. =

@ List of Itaas

" Hin, Hax, Inc

[ox | _wm |

—

Pick L'U.I Help i

Figure 9.41. Create elements by meshing.
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8.

10.
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Main Menu > Solution > Analysis Type > New Analysis > Select Modal > OK

I New Analysis

[ANTYPE] Typeof analysis

" Static

]

" Harmonic
 Transient
 Spectrum

" EigenBucking

€ Substructuring/CMS

x| e | ke |

Figure 9.42. Define the type of analysis.

. Main Menu > Preprocessor > Loads > Define Loads > Apply > Structural >

Displacement > On Nodes Pick the left most node > Apply > Select All
DOF > OK

i\ Apply U ROT on Nodes

[D] Apply Displacements (U,ROT) on Nodes
Lab2 DOFs to be constrained

1f Constant value then:
VALUE Displacement value

Figure 9.43. Apply the displacement constraint.

Main Menu > Solution > Analysis Type > Analysis Options > Select
Reduced option

Enter No. of modes to extract =2

NMODE No. of modes to expand =2 > OK



343

DyNAMIC ANALYSIS

F Madal Analysis

[MODCPT] Mode sstraction method
™ Mock Lancros.

T POG Lancios
* Reduced
™ Unsymmetric
™ Damped
™ QR Damped

No. of modes to mxtract :]

{must be spacified for i methods except the Reduced method)

[MPanD)

Expand mede shapes W Yes
NMODE No. of modes 3o expand E
Ekakc Caluinte slem rsuks? I ne

[LUMPM] Lism umpad nass sppeax? I he
[PSTRES] Ind prastress effects? ™ No

x| e | e |

Figure 9.44. Select the number of modes to extract.

Enter FREQE Frequency range 0 2500 > OK

m Reduced Modal Analysis
[MODOFT] Options for Reduced Modal Analyss

FREQE,FREQE Frequency rangs - lD IZSDd
- for mode extraction
PRMODE No. of modes to print Iu
Nrmkay Normalkze mode shapes ]Tomusmﬂ:kx :I

x| e [ e |

Figure 9.45. Enter the frequency range.
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11. Main Menu > Solution > Master DOFs > User Selected > Define > Pick
all nodes except left most node > OK > Select UX from Lab 1 1** degree of
freedom > OK

"_‘ Define Master DOFs
[M] Define User-Selected Master DOFs

Lab2-6 Addtional DOFs

Lab1 st degree of freedom TR |
UX
Uy

o« | ey | cond Hob |

Figure 9.46. Defining the master degree of freedom.

Y

B— b B B B> B B B B B> b
Figure 9.47. Model with master DOF applied.

Solution

The interactive solution proceeds.

12. Main Menu > Solution > Solve > Current LS > OK
The /STATUS Command window displays the problem parameters and the
Solve Current Load Step window is shown. Check the solution options in the
/STATUS window and if all is OK, select File > Close.
In the Solve Current Load Step window, select OK, and when the solution is
complete, close the ‘Solution is Done!” window.

POST-PROCESSING

13. Main Menu > General Postproc > Results Summary
This result is shown as frequency values in Hz.

14. Main Menu > General Postproc > Read Results > First Set

15. Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu >
DOF Solution, click on Displacement vector sum > OK
This result is shown in Figure 9.35(b).
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9.7 BAR SUBJECTED TO FORCING FUNCTION

Example 9.5

The bar shown in Figure 9.48 is subjected to time dependent forcing function as shown,

determine the nodal displacements

for 5 time steps using 2 finite elements. Let E = 207

GPa, Poisson’s ratio = 0.3, length of beam L = 5 m, cross-section area A= 625 X 10—6 m?,
mass density p = 7800 kg/m’. Use time step of integration 0.00025 seconds.

2 33—
26m | 25m | T®

ANAANNNY
=

Figure 9.48. The bar for Example 9.5.

Solution
(1) Software results

F(t)

4500 Nf- - -

0.001 0.002 .
tin sec

1
POST26
Ux_2

(X10%%—4)

4

N
_2 (X10%%-3)

Figure 9.48(a). Displacement response for 0.00025 sec for node 2 (refer to Appendix C for

color figures).

1
POST26
Ux_3
(x10%**—4)

(X10%%-3)

Figure 9.48(b). Displacement response for 0.00025 sec for node 3 (refer to Appendix C for

color figures).
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Displacement values (in meters) for node 2

TIME 2 UX
UX_2
0.0000 0.00000
0.25000E-03 —0.467370E-06
0.50000E-03 —0.821457E-06
0.75000E-03 0.396081E-05
0.10000E—-02 0.210563E-04
0.12500E-02 0.535055E-04
0.15000E-02 0.950064E-04
0.17500E-02 0.128841E-03
0.20000E-02 0.138387E-03

Displacement values (in meters) for node 3

TIME 3 UX
UX_3
0.0000 0.00000
0.25000E-03 0.375512E-05
0.50000E-03 0.191517E-04
0.75000E-03 0.488709E-04
0.10000E-02 0.889759E-04
0.12500E-02 0.130597E-03
0.15000E-02 0.161991E-03
0.17500E-02 0.179673E-03
0.20000E-02 0.184097E-03

Maximum displacement values (in meters)

MName |Element__|Made |Result Item |Minimum |Maximum |%-iis
TIME Tme 1] 0.002 «
% z 2 ®-Component of displacement -5,214572-007  0.000138357 ("

I 3 #-Component of displacement 0.000154097

Figure 9.48(c). Values of displacement.
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PROBLEMS

N

. What is the governing equation of undamped free vibration and its nontrivial

solution?

. What are the mass matrices for bar element and beam elements?
. Determine the first 5 natural frequencies for the fixed-fixed beam shown in

Figure 9.49. The beam is made of steel with E = 200 GPa, Poisson’s ration = 0.3,
length = 2 m, cross-section area = 60 cm? mass density p = 7800 kg/m?, moment
if inertia I = 200 mm?*.

2m

JLLRRRANNAN
TTTTTITTTTT

Figure 9.49. Fixed-fixed beam for problem 3.

. For the bar shown in Figure 9.50, determine nodal displacements for the 5 time

finite elements. Let E = 70 GPa, p = 2700 kg/m?, A = 645 mm?,and L = 2.5 m.

F(t)
inN
9000 N

I F(t)

L | L |

ANAARRRARNY

0.5
tin seconds

Figure 9.50. The bar for problem 4.

. The beam shown in Figure 9.51 is subjected to the forcing functions shown,

determine the maximum deflections. Let E = 207 GPa, p = 7800 kg/m’,
A=0.0194 m? 1=8.2 X 10°m*, L = 6 m. Take time step of 0.05 seconds.

F(t) i’;(trzl

5kN

AVLARARANNY

8m |

tin seconds
Figure 9.51. The beam for problem 5.

. Determine the natural frequencies of vibrations for the cantilever beam shown

in Figure 9.52.

ANRARRANNAS

Figure 9.52. Cantilever beam for problem 6.
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EI|l 16 —6L ALl 156  =22L
Kl= - 5 M= p_ )
I |-6L 4L 420 | -22L 4L

7. For the bar shown in Figure 9.53, determine nodal displacements for the 5 time

finite elements. Let E = 210 GPa, p = 2800 kg/m*, A = 825 mm? and L = 3 m.

F(t)
inN
1000 F-----

| F(t)

L | L |

AN

tin seconds
Figure 9.53. The bar for problem 7.

. For the beam shown in Figure 9.54, determine the mode shapes. Let

E =310 x10°psi, p = 0.283 Ibf/in*, A = 1 in?, v=0.3,and L = 30 in.

- F(t)
F(t) in Ibf
90

AVRALRRRRRAY

30 in |

tin seconds
Figure 9.54. The beam for problem 8.

. For the bar shown in Figure 9.55, subjected to the forcing functions shown,

determine the nodal displacement, velocities, acceleration, and the maximum
deflections for 5 time steps using 2 finite elements. Let E = 2 X 10° psi,
p=21b-s*in*, A=21in%1=322.83in*, L=101in.

F(t)
inlb
3000

| F(t)

L | L |

ALRALLANRAY

0.5
tin seconds

Figure 9.55. The bar for problem 9.
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1 O ENGINEERING
Chapter ELECTROMAGNETICS

ANALYSIS

10.1 INTRODUCTION TO ELECTROMAGNETICS

Electromagnetics (EM) govern many applications in engineering such as
the transmission lines system. Therefore, it is essential to understand the
fundamental concepts of EM in order to properly design and model electrical
systems and devices using the finite element method (FEM). Furthermore,
EM becomes more useful in designing engineering systems with recent
technologies, especially due to the increasing speeds of digital devices and the
increased use of modern electronics circuits such as printed-circuit-board
and communications systems such as cellular phones. The most important
equations in EM theory are Maxwell’s equations, which are known as the
foundation of EM theory.

10.2 MAXWELL’S EQUATIONS AND CONTINUITY
EQUATION

In electromagnetic analysis on a macroscopic level, it is based on solving the
Maxwell’s equations issue on certain boundary conditions. Also, there is another
fundamental equation that can specify the conservation (indestructibility) of

351
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electric charge know as the equation of continuity. Maxwell’s equations and
continuity equation can be written in both differential and integral forms. We
choose to start here with the differential form because it leads to differential
equations that the finite element method (FEM) can handle.

10.2.1 Maxwell’s Equations and Continuity Equation in
Differential Form

Now, we can present the 4 Maxwell’s equations in differential form in time-varying
EM fields as:

VxH=], +aa_lt) (Ampere’s law) (10.1)

0B , . .
VXE= —E—]m (Faraday’s law of induction) (10.2)
V-D=p, (Gauss’slaw-for electric field) (10.3)
V-B=0 (Gauss’s law-for magnetic field) (10.4)

where

E = Electric field intensity, (in volt/meter) —V/m?

D = Electric flux density (or electric displacement), (in coulomb/meter?) —-C/m?

H = Magnetic field intensity, (in ampere/meter) —A/m?

B = Magnetic flux density, (in tesla or weber/meter?)—T or Wb/m?

J. = Electric Current density or charge flux (surface), (in ampere/meter?) —A/m?

J.. = The magnetic conductive current density, (in volt/meter?) —V/m?,
whereJ,,=o,,H

0, = The magnetic conductive resistivity (in ohm/meter) —Q/m

p»v = Electric charge density (volume), (in coulomb/meter?) —C/m?.

Now, the equation of continuity can be written in differential form as

V-] :_aaitv (Continuity equation). (10.5)

e

There are 3 independent equations from the above 5 equations. They are either
equations 1, 2, and 3, or equations 1, 2, and 5. The other two equations 4 and
5, or equations 3 and 4 can be derived from the independent equations, and
therefore are called dependent equations. Additionally, equation 5 can be derived
the divergence of equation 1 and using equation 3.
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10.2.2 Maxwell’s Equations and Continuity Equation in
Integral Form

Furthermore, let us now look to the 4 Maxwell’s equations and the continuity
equation in integral form in time-varying EM fields. The integrals are taken over
in an open surface S or its boundary contour L as shown in Figure 10.1, where Iis
the electric current that flows through the path L.

ds

L

Figure 10.1. The surface S and contour L for the integral form of Maxwell’s equations.

¢ H-d1=| (]e +a—D)~ds (Ampere’s law) (10.6)

L S ot

0B , . .
Cj} E-dl= —J —+]J,, |-dS (Faraday’s law of induction) (10.7)
L s\ ot
CJ-DSD -dS = q; 2,dv (Gauss’s law-for electric field) (10.8)
CﬁSB -dS=0 (Gauss’s law-for magnetic field) (10.9)
J' 0 o .

_ S]e -dS = gJ‘vadv (Continuity equation) (10.10)

where the surface S encloses the volume v, while the contour L encloses the
surface S. 1 is the line vector over the contour L and S is the surface vector.
Note that, the direction of dl must be consistent with the direction of the dS in
agreement with the right-hand rule.

10.2.3 Divergence and Stokes Theorems

Indeed, equations 6 through 10, the integral forms can be derived from the
differential forms or vice versa. This can be done by using either divergence
(Gauss’s) theorem or Stokes’s theorem,

CJ;SF -dS = J. V-Fdv (Divergence theorem) (10.11)

9SLF-d1= j VX F-dS (Stokes’s theorem), (10.12)

where F is any arbitrary vector field.
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10.2.4 Maxwell’s Equations and Continuity Equation in
Quasi-Statics Case

So far, we did the Maxwell’s equations in fully dynamic case. Now, we can express
Maxwell’s equations in quasi-statics case which the displacement current (D) is
neglected. That is,

VxH=],. (10.13)

Whereas equations (10.2), (10.3), and (10.4) remain the same. Also, we can
write the continuity equation (10.5) in quasi-statics case as

V-], =0. (10.14)

Indeed, the quasi-static approximation is mainly used for time-varying fields in
various conducting media. This is due to that, for good conductors, the conduction
current greatly exceeds the displacement current, D, for the frequencies.

10.2.5 Maxwell’s Equations and Continuity Equation in

Statics Case

In the statics field case, the displacement current term (B_D) and the time-varying

ot
magnetic flux density term (3_1;) are neglected (the field quantities do not vary
t

with time). Therefore, the Maxwell’s equations in static form are expressed as
VXE=0 (10.15)

whereas equations (10.3), (10.4), and (10.13) still hold. Also, the continuity
equation (10.14) remains the same.

To emphasize, there is no interaction between the electric and the magnetic fields.
Thus, the static case can be divided into 2 separate cases, electrostatic case and
magnetostatic case.

In electrostatic case, it can be described by equations (10.3) and (10.15), while, for
magnetostatic case, it can be described by equations (10.4) and (10.13).

10.2.6 Maxwell’s Equations and Continuity Equation in
Source-Free Regions of Space Case

The sources of the electromagnetic fields can be the volume charge density (p,)
and the electric current density (J,). In fact, these densities are localized in space.
Also, these sources can make the generated electric and magnetic fields to radiate
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away from them and they can make the generated electric and magnetic fields to
propagate to larger distances to the receiving destination. Therefore, Maxwell’s
equations can be written in source-free regions of space (away from the source) as:

oD

VxH=-" (10.16)
ot

VxE:—a—B (10.17)
ot

V.-D=0 (10.18)

whereas equation (10.4) remains the same. With this in mind, the continuity
equation (10.14) also remains the same.

10.2.7 Maxwell’s Equations and Continuity Equation in
Time-Harmonic Fields Case

So far, we considered the arbitrary time variation of electromagnetic fields. Here,
we consider only the steady-state (equilibrium) solution of electromagnetic fields
when produced by sinusoidal currents. The time-harmonic (sinusoidal steady-
state) field for Maxwell’s equations exists when the field quantities in the equations
are harmonically oscillating functions with a single sinusoidal frequency . The
time-harmonic fields case is the most regularly used in electrical engineering.
Now, an arbitrary time-dependent field F (x, y, z, ) or F (r, ) can be written as

F(r,t)=Re(F,(r)e™) (10.19)

where ¢ is the time convention, w is the angular frequency (rad/s) of the
sinusoidal excitation, F, (r) = F; (x, , 2) is the phasor form of F (r, #) and it is
in general complex, and Re ( ) indicates taking the real part of quantity in the
parenthesis. Furthermore, the electromagnetic field quantities can be expressed in
phasor notation as

H(r, 1) H(r)
E(r,t) E(r)
D(r,t)| | D(r)
B(r, t) B(r)

e, (10.20)

For example, the fields can be expresses in time dependent ™, as in equation
(10.20), H(r, t) = H(r) " and E(r, t) = E(r) ", etc.
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As a result, using the phasor representation can allow us to replace the time

derivations % by jw, because
t

= jewe’™. (10.21)

Therefore, the Maxwell’s equations can be expressed in time-harmonic as

VxH, =], +jwD, (10.22)

VXE, _ 9B, T, (10.23)
Jt

V.Ds :pvs (1024)

V-B, =0. (10.25)

Now, the continuity equation can be presented as
V'Ies =_jw/01/s' (1026)
On the other hand, a nonsinusoidal field can be presented as

F(r,t) = Re[ JE (r,t)ef’”fdw]. (10.27)

—oo

Therefore, the solutions to Maxwell’s equations for a nonsinusoidal field can be
found by assuming that all the Fourier components F; (r, @) over .

10.3 LORENTZ FORCE LAW AND CONTINUITY
EQUATION

The Lorentz Force F is the force on a charge g with a vector velocity u in the present
electric filed E and magnetic field B and can be obtained as

F=g(E+uxB). (10.28)

In addition, the volume charge p, and the current distribution J can be subjected
to the forces in the presence of fields. Thus, Lorentz Force F per unit volume acting
on the volume charge and the current distribution can be expressed as

F=pE+]JxB. (10.29)
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However, if the current distribution J occurs from the motion of the charges g
within the volume charge p,, then current distribution J can be formed as J = p,v.
This can make the Lorentz Force F as

F=p,(E+vxB). (10.30)

Moreover, the Lorentz Force law is essential to understand the interaction
between EM fields and matter. Indeed, the law is used in the design of many
electrical devices.

Furthermore, the continuity equation which expresses the conservation of
electric charge can be written as

vy=_% (10.31)
ot

Equation (10.31) is implicit in Maxell’s equations.

10.4 CONSTITUTIVE RELATIONS

In addition to the Maxwell’s equations and the continuity equation, there are
constitutive relations which describe the macroscopic properties of the medium
in which the fields exist. In other words, constitutive relations describe the
relationship between the EM fields through the properties of the medium. Indeed,
Maxwell’s equations and constitutive relations are used to obtain the solutions of
EM fields that exist in any microwave structures. The constitutive relations can be
presentenced in vacuum (free space) as

D=&E (10.32)
B=/,H (10.33)
Jo =0k (10.34)
Jw=0,M (10.35)

where

&o = the permittivity of vacuum
Uo = the permeability of vacuum
0. = the electrical conductivity
M = magnetization field.
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The numerical values of ¢y and p, are written as

1
& =8.854x107"? Farad/m = §X10_9 Elm, y4y =12.6x107" Henrylm (10.36)
pd
=47x10"7 H/m.

We can use these 2 quantities to define the speed of light (¢y) and the characteristic
impedances in vacuum (1],) as:

=3x10° mfsec., 7, = . |22 =377Q. (10.37)

1
NEY %

To emphasis, the constitutive relations are needed to solve for EM fields quantities
using Maxwell’s equations.

For simple homogenous isotropic dielectric and for magnetic material (linear
and isotropic media), the constitutive relations are given as

Cy =

D=¢E (10.38)
B=/E (10.39)

where as equations (10.34) and (10.35) remain the same.

Where, ¢ is the permittivity of the material, and u is the permeability of the
material.

For inhomogeneous media, the constitutive relations are functions of the
position.

The permittivity of the material ¢ and the permeability of the material i can be
presented as

(1
£=4(+%) (10.40)

/a:/aO(l-i_Xm)

where Y, is the electric susceptibility of the material which is the measure of the
electric polarization property of material (dimensionless scalar), and Y, is the
magnetic susceptibility of the material which is the measure of the magnetic
polarization property of material (dimensionless scalar).

Moreover, the speed of light in the material c and the characteristic impedance
of the material # is expressed as

CZL,VZ\/Z. (10.41)
Jeu ¢
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The relative permittivity ¢, of a material, the relative permeability z, of a material,
and the refractive index n of a material are formed as

&, :i:1+xe,,ar =ﬁ:1+xm,n=«/£,,a, —n'=eu. (10.42)
Ho

&

By using equation (10.41) and (10.42), we get

c=%°and 772@. (10.43)
P

r

It is good to know that for nonmagnetic material 4, = 1 or u, = g, and 7= vin
n

Now, the constitutive relations for time-harmonic fields in a simple media are:

D =¢g¢ (w)E = &w)E (10.44)
B = /4, ()H = fdc)H (10.45)
J, = o.(w)E. (10.46)

Furthermore, both the electric polarization P (Coulomb/m?) which describes how
the material is polarized when an electric field E is present and the magnetization
M (Ampere/m) which describes how the material is magnetized when a magnetic
field H can be included in the constitutive relations in any material as

D=¢E+P (10.47)
B= 4 (H+M) (10.48)
J,=0E (10.49)

J, =o,M (10.50)

where P = ¢, y.Eand M =y, H.
Next, for nonlinear material, the constitutive relationships can be presented as

D=¢&cE+D, (10.51)
B=/4/H+B, (10.52)
J.=0E+], (10.53)

where D, is the remanent displacement that is the displacement when the electric
field is not present, B,, is the remanent magnetic flux density that is the magnetic
flux density when the magnetic field is not present, and J,., is an externally
generated current.
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Itis beneficial to know that the Maxwell’s equations can be expressed in an approach
that ensures the contribution of the medium in terms of the fields E and B as

oE oP
VXB=£0ﬂ0¥+,aO(]+¥+VXM) (10.54)
Vxg=_98 (10.55)
ot
V.E=L1(s-V.P) (10.56)
%
V-B=0. (10.57)

Example 10.1

Given H = He/@'*#Ja_in free space, calculate E.

Solution
WeknowD =¢Eand VxH = %—D, therefore
t

oD o

— =~ He/“*/,
ot 0z Y
) ) R
E — ]ﬁHeJ(WHﬁ )ay
p=PH iy
o y

Ho
Ez—ﬁ ef(‘””ﬁz)ay.
e

10.5 POTENTIAL EQUATIONS

Often under certain circumstances, it can be essential to formulate EM problems
in terms of potential functions, that is, the scalar electric potential V, and vector
magnetic potential A. These potential functions are arbitrary and they are required
to satisfy Maxwell’s equations. They are described by

B=VxA (10.58)

E=-VV, ——. (10.59)
ot
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In fact, equation (10.55) is a direct consequence of the magnetic Gauss’ law and
equation (10.55) is a result from Faraday’s law. In the magnetostatic case (there are
no currents present), Ampere’s law reduces to

VxH=0. (10.60)

Indeed, when equation (10.57) holds, we can present the scalar magnetic potential
V.. by
H=-VV . (10.61)

m

It is clear that, equations (10.58) and (10.59) satisty the Maxwell’s equations (1.2)
and (1.4). Now, to relate the potential functions to other two Maxwell’s equations
(1.1) and (1.3), by assuming the Lorentz condition hold, that is,

oV,
V-A=- <. 10.62
ey ( )

These equations can be written in the case of linear and homogenous
medium as

o’V Y

V2V, —su i (10.63)
&
2
V2~A—gﬂaat‘:‘ =—/J. (10.64)

Equations (10.63) and (10.64) as wave equations and the integral solutions to
these equations are known as the retarded potential solutions, i.e.,

_rladav

vV, = j—MgR (10.65)
_(x)]dv

A= _[—MR (10.66)

where R is the distance from the source point to the field point at which the
potential is required, and the square brackets [ ] denote that p, and J are specified
atatime R\/; earlier than for which V, or A is being formed.
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10.6 BOUNDARY CONDITIONS

The material medium in which an electromagnetic field exists is usually
characterized by its constitutive parameters o, ¢, and u. If o, ¢, and u are
independent of E and H, the medium is linear. Also, if g, ¢, and u are dependent
of E and H, the medium is nonlinear. Now, if g, &, and u are functions of space
variables, the medium is inhomogeneous. But, if g, ¢, and u are not functions
of space variables, the medium is homogeneous. Additionally, if o, ¢, and u are
independent of direction (scalars), the medium is isotropic. If g, ¢, and u are
dependent of direction (vectors), the medium is anisotropic. Indeed, most of
substrates used in electronic circuits are homogenous, isotropic, and linear.

The boundary conditions at the interface separating 2 different media 1 and 2,
with parameters (&, 1, 01) and (&, i, ,), respectively, as shown in Figure 10.2.

Medium 2 (&-15.0,)

Figure 10.2. Interface between two media.

The boundary conditions for the EM fields across material boundaries are
derived from the integral form of Maxwell’s equations. They are given by

nx(E,~E,)=0or E, —E, =0 (10.67)
n(D,-D,)=p, or D, —D,, = p, (10.68)
nx(H,-H,)=J, or H, —H, =], (10.69)

n:(B,-B,)=00rB,,—B,,=0 (10.70)

where n is a unit normal vector directed from medium 1 to medium 2, subscript
tand n denote tangent and normal components of the fields, respectively, p, and
J; are surface electric charge density (coulomb/m?) and surface current density
(ampere/m), respectively. Furthermore, equations (10.67) and (10.70) state that
the tangential components of E and the normal components of B are continuous
across the boundary. But, equation (10.68) states that the discontinuity in the
normal component D is the same as the surface electric charge density p, on the
boundary. However, equation (1.69) states that the tangential component of H is
discontinuous by the surface current density J; on the boundary. In many interface
problems, only 2 of Maxwell’s equations are used, equations (10.68) and (10.70),
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when a medium is source free (J = 0, p, = 0), since the other 2 boundary conditions
are implied. In such a case, the boundaries conditions may be written as

E,=-E, (10.71)
D, =D,, (10.72)
H,, = H,, (10.73)
B, =B,,. (10.74)

Moreover, Maxwell’s equations under the source free condition are applicable
to passive microwave structures such as transmissions lines.

However, when one of the media is a perfect conductor, boundary conditions
are different. A perfect conductor has infinite electrical conductivity and thus no
internal electric field (full of free charges). Or else, it would produce an infinite
current density according to the third constitutive relations. When an EM field is
applied to a perfect conductor medium, the free charges which are pushed to the
applied EM field, move themselves in such a way that they produce an opposite EM
field that completely cancels the applied EM field. Indeed, this causes the creation
of the surface charges and currents on the boundary of the perfect conductor.
At an interface between a dielectric and a perfect conductor, the boundary
conditions for E and D fields are simplified. Now, assume that medium 1 is a
perfect conductor, then E; = 0 and D, = 0. Also, if it is a time-varying case, then
H, = 0 and B, = 0, and, in addition, as a correspondence of Maxwell’s equations.
Therefore, the boundary conditions for the fields in the dielectric medium for the
time-varying at the surface are

-nxE, =0 (10.75)
-n-D, =p, (10.76)
—nxH, =], (10.77)
-n-B, =0. (10.78)

Furthermore, we can apply the integral form of the continuity equation (10.10)
to the surface at the interface between lossy media (i.e., g, # 0, g, # 0) or lossy
dielectric (i.e., ) # g, and ¢; # &,), or perfect conductor (i.e., no fields inside the
media). Therefore, the interface condition for current density J can be obtained as

9,
ot

_9p
ot

Equation (10.79) states that the normal component J is continuous, except where
the time-varying surface electric charge density p; on the boundary may exist.

n(J,-J,)=- or (J,,~J,,)= (10.79)
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10.7 LAWS FOR STATIC FIELDS IN
UNBOUNDED REGIONS

Coulomb’s law and Biot-Savart’s law are the 2 fundamental laws governing the
static fields in unbounded regions.

10.7.1 Coulomb’s Law and Field Intensity

Coulomb’s law is an experimental law that deals with the force a point charge
exerts on another point charge. In other words, Coulomb’s law states that the force
F (in newtons) between two points charges Q; (in coulombs) and Q, is

QQ

F= >
47eyR

(10.80)

where R (in meter) is the distance between the 2 charges. We can define the
electrostatic field intensity E as the force Fapplied by 1 charge Q on a unit positive
point charge as

Qa,

E= >
47g R

(10.81)

Knowing that, the point at which the charge Q is located is called the source
point, and the point at which the electrostatic field intensity E is taken is called the
field point. Thus, here ay is the unite vector in the direction from the source point
toward the field point, and R is the distance between the source point and the field
point.

Now, it is possible to obtain a continuous charge along a line, on a surface, or in
a volume, respectively as

= [ L2 a1 (10.82)
L47zg R

E=[ 22 gs (10.83)
S 47eyR
lavaR

E= dv, (10.84)
J. v 47, R’

where L is the line along which the charge is distributed, S is the surface which the
charge is distributed, v is the volume enclosed by a surface S. p;, p,, and p,, are the
line, surface, and volume charge density, respectively.
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10.7.2 Bio-Savart’s Law and Field Intensity

The Bio-Savart’s law is a magnetostatic law used to express the static magnetic field
as a summation over elementary current sources. Now, we can obtain the Bio-
Savart law for the line current, surface current, and volume current, respectively in
terms of the distributed current sources as

_ [ ldIxa,
_JL s (10.85)
_[IdsxaR (10.86)
47R?
_ ], dvxa,
H= LMT’ ) ds (10.87)

where I is the line current density, J; is the surface charge density, J, is the
volume charge density, and ay is a unit vector pointing from the differential
elements of current to the point of interest. Indeed, the source elements are
related as

Idl=) ds=] dv. (10.88)

10.8 ELECTROMAGNETIC ENERGY
AND POWER FLOW

The electric energy W, is defined as

W, :jVGE.dDJ dv = j UE —dt] (10.89)

where D is the magnitude of electric displacement, and T'is the period.
The electrostatic energy present in an assembly of charges can be written as

1 n
W, =22.QY (10.90)
k=1

where V is the potential, and Q is the point charge. Now, instead of point
charges, the region has a continuous charge distribution, the summation
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equation (10.90) becomes integrations for line charge, surface charge, and
volume charge, respectively as

1

W, ZEJL”le (10.91)
1

W, —ELpSVdS (10.91)
1

W, = EL Vv, (10.93)

In the meantime, p, = V-D, E = -VV, and D = ¢(E, and by using the identity for
vector and scalar rules and applying divergence theorem, and knowing that in a
simple medium, whose constitutive parameters (u, ¢, and ¢) do not change with
time, we have

JD d(¢E) 10(¢E-E) 0 (1 2)
E—:E = —_ = — E . 1 . 4
ot ot 2 ot ot 28 (10.54)

We can obtain electrostatic energy as
1 1 ,
V\QzEID-E dv:Ej &E? dv. (10.95)

Also, the electrostatic energy density w, (in J/m?) can be obtained as

1 1 D’
w,=—D-E=—¢gF =—. (10.96)
2 2 26,

When a wave propagates in a medium, it carries the electric field and power.
However, the time derivatives of equation (10.89) is the electric power which is
written as

P = _[E —dv (10.97)

Furthermore, the magnetic energy can be defined as

W, =L@H-d3} dv = j UH —dtJ dv, (10.98)

where B is the magnitude of magnetic flux density, and T'is the period.
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The magnetostatic energy present in an assembly of currents k can be written as
1 n
W,==>» 1,® 10.99
2 ; kP ( )

where I} is the k™ current, and @ is k™ magnetic flux.
Note, knowing that in a simple medium, whose constitutive parameters
(1, &, and @) do not change with time, we have

oB o(xH) 10(xH-H) 8(1 2)
H—=H- =— =—|-uH" |. 10.100
ot ot 2 ot ar\ 2% ( )
We can obtain magnetostatic energy as
w =1f B-H dv:lj wH? dv (10.101)
co2d 20 ' '
Also, the magnetostatic energy density w,, (in J/m?) can be obtained as
Bz
W, ~1p. H_—ﬂH (10.102)
2 2/{

When a wave propagates in a medium, it carries the magnetic field and power.
However, the time derivatives of equation (10.98) is the magnetic power that is
written as

P, J-H —dv (10.103)

The instantaneous power density vector associated with the electromagnetic field
at a given point is known as the Poynting vector P, (in W/m?), which is written as

P =ExH. (10.104)

For more practical value than P,,, we determine the time-average instantaneous

2
Poynting vector (or power average density) (in W/m?) over the period T = Zas
@

Pn@)= [ B, (2t)dt (10.105)
ov-ave 4 _T 0 o 2 . .

In addition, for time-harmonic fields, we can defined a phasor Poynting vector as

P =E xH/' (10.106)
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Where H,* is the complex conjugate of H,. Now, for a phasor Poynting vector, we
can define the time-average power which is equivalent of equation (10.106) as

1
P e(2)= ERe(ES xH,¥) (10.107)

where Re( ) stands for the real part of a complex quantity. Furthermore, the total
time-average power crossing a given surface Sis given by

P = ReJ- (ExH)-dS = j  dS. (10.108)
The electric and magnetic powers quantities are related through Poynting’s
theorem as
oD
L(E o, tH —)d j] Edv+36 (ExH)-dS (10.109)
where

J- J-Edv is called resistive losses which result in heat dissipation in the material.
v

455 (ExH)-dS is called the radiative losses.

However, the Poynting’s theorem as presented in equation (10.109) can be written as

gSS(ExH)-ds_ aatj( B>+ /{H)d jaE dv (10.110)

where

q.)s (ExH)-dS is the total power leaving the volume.

0
ot

magnetic fields.

I ( eE* +— ,aH )dv is the rate of decrease in energy stored in electric and

—J oE’dv is the decrease in ohmic power density (dissipated).
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Indeed, under the material is linear and isotropic, it holds that

D _ . 3(sB) _10(sE-E)

E. 10.111
ot ot 2 ot ( )

H.a_B=lB.a_B=i(iB.B), (10.112)
ot wx Jdt Jt\2u

Therefore, based on equations (10.111) and (10.112), the equation (10.109) can
be written as

Now, by integrating the left-hand side of equation (10.113) is the total
electromagnetic energy density w,

1 1
Wt=w8+wm=—(£E-E+—B-B). (10.114)
2 4

10.9 LOSS IN MEDIUM

The electronic circuits have dielectrics that are always not perfect. Thus, there is
always loss in any practical nonmagnetic dielectrics that is known as dielectric loss.
This dielectric loss is due to a nonzero conductibility of the medium. Now, we
can write the time harmonic Maxwell’s equation (10.22), making use the time-
harmonic constitutive relations (10.44) and (10.46), as

VxH, :ng(1—ji)13 (10.115)
wé
or
VxH, = jwe(l-jtan O)E (10.116)
where
tano=-_. (10.117)
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Equation (10.117) is called the loss tangent of the medium, which is usually used
to characterize the medium’s loss. In addition, now we can define a complex
dielectric constant of a lossy medium Z as

é=¢e'—je” (10.118)

where the real part ¢ of the complex dielectric constant is the dielectric property
that contributes to the stored electric energy in the medium and it is defined as

&'=¢=¢g¢, (10.119)
and the imaginary part ¢” contains the finite conductivity and results in loss in the

medium which is defined as

&= = stand. (10.120)
w
For example, the loss tangent for GaAs material is 0.006 at frequency 10Ghz,
relative dielectric constant equal to 12.9, and temperature 25°C. Also, the loss
tangent for silicon material is 0.004 at frequency 10Ghz, relative dielectric constant
equal to 11.9, and temperature 25°C.

10.10 SKIN DEPTH

The measure of the depth to which the electromagnetic wave can penetrate
the medium is known as skin depth (or depth of penetration). Skin depth is
one of the most important parameters of a medium, because it presents the
distance from the medium surface over which the magnitude of the fields of
a wave traveling in the medium are reduced to ¢ (or 0.368) of those at the
medium’s surface. The skin depth ¢ of a good conductor is approximately
written as

g |2 -1 (10.121)

N

where @ = 2xf.
It is essential to know that the skin depth of good conductors is very small,
especially at high frequencies. Thus, it results a low conduction loss.
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Example 10.2

Calculate the skin depth, J, for aluminum in 1.6 X 10° Hz field (¢ = 38.2 X 10° §/m
andu =1).

Solution

2 1 1

a‘: = =
o Jafuo  \rx1.6x10° x1x38.2 x10°

=64.4 um.

10.11 POISSON’S AND LAPLACE’S EQUATIONS

Poisson’s and Laplace’s equations are derived from Gauss’s law (for a linear,
isotropic material medium)

V-D=V-¢E=p, (10.122)
and
E=-VV. (10.123)
By substituting equation (10.123) into equation (10.122), we get

V- (=eVV)=p, (10.124)

for an inhomogeneous medium. Equation (10.124) can be obtained for a
homogeneous medium as

vy =2 (10.125)
&

Equation (10.125) is known as Poisson’s equation.
Now, Laplace’s equation is a special case of Poisson’s equation when p, = 0
(i.e., for a charge free region), and it can be described as

V3V =0. (10.126)

Laplace’s equation is used to determine the static or quasi-static characteristic
impedance and effective relative dielectric constant of a transmission line.
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10.12 WAVE EQUATIONS

We used so far Maxwell’s equations and constitutive relations directly to determine
the EM fields. However, it can very convenient to obtain the EM fields by solving
wave equations.

When the electromagnetic wave is in a simple (linear, isotropic, and
homogenous) nonconducting medium (¢, 4, and ¢ = 0), the homogenous vector
wave equations can be presented as

1 0°E
VE-——==0 10.127
¢ ot? ( )
and
1 ’H
VH-— =0. (10.128)
2 ot?

On the other hand, the relation between scalar potential V and vector potential A is
called the Lorentz condition (or Lorentz gauge) for potentials that is expressed as

\%4
V-A+/{£a—=0. (10.129)
ot
The nonhomogenous wave equation for vector potential A is given by
0’A
V2A - pte—— = —/iJ. (10.130)
ot
But, the nonhomogenous wave equation for scalar potential V'is given by
2
\%4
vyl = 2 (10.131)
ot &

The time-harmonic wave equations for vector potential A and scalar potential
Vequations can be obtained, respectively as

VA+KA=—4]) (10.132)

and
Vv kv =-2 (10.133)
&

where

kzca\/,éT:2

¢ (10.134)
Equation (10.134) is called wave number, and equations (10.132) and (10.133) are
known as nonhomogenous Helmholtz’s equations.
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However, when the EM wave in a simple, nonconducting source free medium
(characterize by p = 0,]J = 0, o = 0) and the time-harmonic wave equations can be
obtained as

VE+K*’E=0 (10.135)
and
V*H+k*H =0. (10.136)

Equations (10.135) and (10.136) are known as the homogenous vector Helmholtz’s
equations.

10.13 ELECTROMAGNETIC ANALYSIS

Due to the cost effectiveness of experiments and testing, the development of
transmission lines in integrated circuit systems is time consuming. Today,
researchers, designers, and engineers used several numerical and analytical
methods to study and investigate the parameters variations and properties of
designing high-speed integrated circuits (microwave circuits) and electromagnetic
(EM) problems. The most common analytical methods used for exact solutions
in electromagnetic are conformal mapping, integral solutions, separation of
variables, and series expansion. Also, the most popular numerical methods used
for approximate solutions are methods called moment methods, methods of line,
finite difference methods, and finite element methods (FEM).

Finite element method has a great success in electromagnetic analysis compared
to other methods. In contrast to other numerical methods, it is very useful for
solving problems in complex geometries and inhomogeneous media. In this
chapter, we show an overview of the finite element method. FEM requires that any
problem involved in the geometrical region to be subdivided into finite number of
smaller regions or elements. An approximate solution for the partial differential
equation can be developed for each of these elements. In addition, the total solution
is generated by assembling together the individual solutions taking care in order
to ensure continuity at the interelement boundaries. Basically, there are four steps
used in FEM: first, creating and discretizing the solution region (domain) into a
finite number of subregions or elements; that is, divide the problem into nodes
and elements and assume a shape function to represent the physical behavior of
an element; second, developing equations for an element; third, assembling all the
elements to represent in solution region, constructing the global coefficient matrix
and applying boundary conditions and initial conditions; fourth, solving the system
of equations to obtain the important information of the problem.
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10.13.1 One-Dimensional Elements
10.13.1.1 The Approach to FEM Standard Steps Procedure

The first step is the discretization step, that is, the solution domain is divided into
finite elements. Figure 10.3 provides an example of elements employed in one
dimension. It shows the points of intersection of the lines that make up the sides
of the elements called nodes and the sides themselves are known as nodal lines.

Line element Node

Figure 10.3. Example of elements in one-dimensional (1D).

The second step is the development of equations to approximate the solution for
each element. It can be done by choosing an approximate function with unknown
coefficients that will be used to approximate the solution. We use a first-order
polynomial (straight line) as a linear variation of potential between the nodes over
element m, i.e.,

Vi (x)=a+bx, (10.137)

where V(x) is the dependent variable (potential function); a and b are constants;
x is the independent variable.

We can find the two constants a and b by using the two nodes to satisfy the
equation at the location of the two nodes as:

V" = a+bx, (10.138)

and

V,"" = a+bx, (10.139)

where V| = V" (x;) and V,'" = V" (x,). By using Cramer’s rule, we can solve
equations (10.138) and (10.139), i.e.,

V,\"x, -V,
o= % Valm)x, (10.140)
X, =X

_ Vz(ﬂl) _ ‘/1("1)

Xy =%

b (10.141)
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Equations (10.140) and (10.141) can be substituted into equation (10.137) to give
the approximate (or shape) function V (x) in terms of the interpolation functions,
H, and H, over element m, that is,

VP (x)= g™ (V"™ + g™ (x)V, ™" (10.142)
where
g™ (x)= 2% (10.143)
X, =%
@™ (x)= 2L (10.144)
X =X

Indeed, equation (10.142) is a first-order interpolating polynomial. In addition,
it provides a means to calculate intermediate values between the given values
V; and V, at the nodes.

The shape function, along with the corresponding interpolation functions, is
presented ir% Figure 10.4. Moreover, the sum of the interpolation functions, a; and

a,, that is, z a,=1.

i=1

Node 1 m Node 2 .
(@)
V](M)
) .
( ) Vz( )
m
[ * —» X
X ®) x
1
a, ™ (x)
° m —> x
g © &
1
a,"(x)
m . .
* @ ’

Figure 10.4. (a) a line element, (b) a linear approximation (or shape) function, (c) the
corresponding interpolation function a; (x) for V) (x), and (d) the corresponding
interpolation function a,™ (x) for V" (x).
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Furthermore, it follows that,

avm 4 (m) ", d (m) .
= =_le v, )+_‘;2x v, (10.145)
(m) _
dg ™ _ -1 (10.146)
dx  x,—x
and
(m)
do,™ 1 (10.147)
dx  x,—x
Thus,
(m) _y(m) (m)
v _ (VT ) (10.148)
dx X, =X
Now, the integral of V" is:
x, X, V(m) +V(m) X, —x
JV(m)dx=J(al('")Vl('”)+a2(’”)V2(’”))dx=( — JEam5) 1 149)

Now, we evaluate the coefficients so that the function approximates the
solution in a best approach. The most common methods used for this propose
are the variational approaches, the weighted residuals, and the direct approaches.
These methods can specify the relationships between the unknowns in equation
(10.142) that satisty the partial differential equation in an optimal approach. The
resulting element equations can be expressed in a set of linear equations in matrix
form, i.e.,

[c™ vy ={w. "} (10.150)

where
[C™] is element property (stiffness) matrix; {V."} is a column vector of
unknowns at the nodes over element m; and {y ™} is a column vector reflecting
the effect of any external influences applied at the node over element m.

Third, we assemble all the elements to represent in the solution region. The
solutions for closest elements are matched so that the unknown values at their
common nodes are equivalent. Therefore, the total sum will be continuous. Then,
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the assembled system need to be modified for its boundary condition. The system
can be expressed as:

[ v} ={¥.."} (10.151)

where
[C,™] is the assemblage element property (stiffness) matrix; {V, ™} is the
assemblage column vector of unknowns at the nodes over element m3; and {y, "}
is the assemblage column vector reflecting the effect of any external influences
applied at the node over element m.

Fourth, solving the system of equations (10.151) to obtain the important
information of the problem, it can be obtained by LU decomposition technique.

10.13.1.2 Application to Poisson’s Equation in One-Dimension

In this section, we solve the one-dimensional (1D) Poisson’s equation for the
potential distribution V (x)

2
4y’ (10.152)
dx? &

with boundary conditions (BCs) V(a) = v;, V(b) = ;.

Using the same essential four steps as in the previous section with FEM, we
focus here on the source term and only the major differences.

We will use the variational principle and the weighted residuals method to
obtain the solution of one-dimensional (1D) Poisson’s equation.

(1) Variational Approach

The deriving element governing equations step. We look for the potential
distribution V' (x) that can minimize an energy function F (V) as

b 2
F(V)zj(%(i—z) —/’—mV(x)] dx. (10.153)

&

Two nodal values of V' (x) are required to define uniquely a line variation of V'™ (x)
over an element (). Hence, the linear variation of V'™ (x) can be presented as

VO (x)= g (x)V, + a,(x)V, (10.154)
where the interpolation functions a,(x) and a,(x) are presented as

X=X

a(x)="2"% 4 (x)= (10.155)

X, =X X, =%
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The resulting element equation (10.154) can be expressed in a set of linear
equations in matrix form:

v
v =[a1,a2][vl]=[a]{Vc(””}~ (10.156)

2

The energy function can be written as

F(V)=Y F"(v™) (10.157)

m=1

where Nis the number of elements with the domain a< x< b.
Now, substituting equation (10.156) into (10.153) can give

x, V. T\ V. T\
F("’)(V(’”)):J-[%([%% ]I:VID /’;([ 1”“2][\/1]) )dx. (10.158)

By minimizing the F (V") with respect to the nodal values of V, we obtain the
following equations for an element ()

(m) %2 V.
OF 4(%[%&]{ 1]_&al)dx ~0 (10.159)
aV, . dx [ dx dx ]|V, &
and
m % Vv,
OF ZI(%[%%][ 1}_&%}# “o. (10.160)
oV, ! dx L dx dx 1|V, &
These equations can be expressed in matrix form as
[C(m)]{vc(m)} — {ch(M)} (10.161)
where

da, da1 da'™ da,"™

]j e x| g (10.162)
da2 ) da,"™ da,"™

dx dx dx dx
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(m)] _ i
{v. }_[Vj (10.163)
P
{w <m>}_T . d
¢ I= x (10.164)
X ——Vaz
&

where the elements of {y ™} are the nodal forcing functions. The equations in
(10.161) can give the characteristics of the Poisson’s equation in 1D. Indeed, in
spite of the type of element we choose to formulate the Poisson’s equation in 1D,
the element equations will have the form as equation (10.161). For the solution
of the Poisson’s equation in 1D, it is essential to derive the equations for all the
elements in the assemblage and then to assemble these algebraic equations.

(2) Weighted Residuals Method

In the variational approach for 1D Poisson equation with boundary condition,
we derive the element matrices [ C"] and {y ™} for a linear variation of potential
V (x) over element (m) with two nodes. Now, we will use Galerkin’s method with
weighting functions W, = g; to derive the element matrices. We approximate the
unknown exact solution V,, (x) by

V, ()= a(x)V,, (10.165)

where

Nis number of nodes (here N = 2), V,,;is the unknown nodal values, i =1, 2.
Note that, we do not consider the fixed boundary conditions at the element

level, but these are included after the assembly process as in the previous method.

Now, by applying Galerkin’s method we get:

Xy 2
J-(d v, +&) 4(x) dx=0, i=1,2 (10.166)
4

where
x; and x; are the coordinates of the end nodes of the line element.
By using integration by parts to the term with the derivatives of V,, (x), that is,

d v,
" odx

dv, da .
: de -t J' a(x) dx=0, i=1,2. (10.167)
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Taking the derivative of equation (2.29) as

vy, _ 3 % = % (m)
dx _g; dx me‘[dx]{vc } (10.168)

where
{V.m1 is the column vector of nodal unknowns for the element .
Thus, equation (2.30) becomes

[ tactvemt=age]

Furthermore, the first term on the right-hand side of equation (10.169) represents
natural boundary conditions for the element m. We obtain these as

+J'& a(x)dx, i=12. (10.169)
&

. de *) de de de
i=1, g T x}=%(XZ)E(X2)—%(X1)E(X1)= . (x;) (10.170)
because a;(x;) =0, a,(x;) =1,
and
. ® av, av
i=2, a—" =az(x2)—’“(x2)—a2(x1) ’“( )= ’"(xz) (10.171)
dx |, dx

because a,(x,) =1, ay(x,) =0
We use the end-point values of a; shown in Figure 10.4. Thus, the element
equations are presented as

dv

[ o R R
cm i || vm gy ) () .
where
[dada d da 2
c<m>]:J j;fz j:; j:; j;z dx and {\Pgm)}:J . dx.  (10.173)
e

dx dx dx dx
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The extension to an element with N nodes follows the same steps, but with
i=1,2,..., N. In addition, the matrices for an element with N nodes contain terms
similar to the equation (10.172), but with additional rows and columns to account
for N element equations.

10.13.1.3 Natural Coordinates in One-Dimension

We use natural (length) coordinates in deriving interpolation functions that can
be used to evaluate the integrals in the element equations. In addition, we use the
natural coordinate system in describing the location of a point inside an element
in terms of the coordinates associated with the nodes of the element. Let #; be the
natural coordinates, where i =1, 2,..., N; N is the number of external nodes of the
element. Knowing that, natural coordinates are functions of the global Cartesian
coordinate system in which the element is defined, the one coordinate is associated
with node 7 and has unit value there.

Figure 10.5 shows a line element with natural coordinates 7, 77, and location

point x;.
node 1 node 2

—— XX ——-»i

! 1

X =T Xy X

é ! ®

® ® —> X
% % x

Figure 10.5. Example of two-node line element in one-dimensional (1D) with global
coordinate x;.

The global coordinate x; can be expressed as
X =%, + 75X, (10.174)

We can interpret natural (length) coordinates #; and 7, as weighting functions
relating the coordinates of the end modes to the coordinate of any interior point.
As we know that,

m+n =1 (10.175)

although, the weighting functions are not independent. Let us consider x; = x and
solving for 7, and 77, from equations (10.174) and (10.175), we get

X, —X X=X

, 7(x) = (10.176)

X, =% Xy =X

7 (x) =

The linear interpolation used for the potential distribution variable V(x) in the
previous section, which can be written as

V(x)=Viy, +V,7,. (10.178)
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By differential of V(x) using the chain rule, we get

v _oVdy IV oy, (10.179)

dx dzy dx 9z, Odx

where

L S/ S (10.180)

b
0x x,—x, 0x X,—X

Now, taking the integration of length coordinates over the length of an element,
that is,

e ilil(x, —x,)
dx=——+=——- 10.181
J%% * (1+7+1)! ( )

where iand j are integer exponents.

10.13.2 Two-Dimensional Elements
10.13.2.1 Applications of FEM to Electrostatic Problems

It’s often known that FEM is a numerical method used to find the approximate
solutions either for partial differential equations or integral equations. These
equations are most involved in electromagnetic problems. We illustrate the four
steps above used to find the solution in FEM through three different types of
differential equations, Laplace’s equation, Poisson’s equation, and wave equation.

10.13.2.1.1 Solution of Laplace’s Equation V?V = 0 with FEM

To find the potential distribution, V(x, y), for the two-dimensional (2-D) solution
region, as shown in Figure 10.6. We illustrate the following steps to get the solution
of Laplace equation, V*V = 0.

y /' N
dS = the boundary
§ = surface (domain)
0 > x

Figure 10.6. The solution region of the problem showing domain for the 2-D boundary value.



ENGINEERING ELECTROMAGNETICS ANALYSIS 383

First step, using finite element discretization to find the potential distribution
for the two-dimensional solution, V(x, y) as shown in Figure 10.7, where the
solution region is subdivided into seven nonoverlapping finite elements of
triangles. It is always preferable in computation to have the same type of elements
through the solution region which in our case is the triangle.

Approximate Boundary
3 Actually Boundary

y A
Node Number
Element Number
0 > x

Figure 10.7. The finite element discretization of the solution.

We look for an approximation solution for the potential V,,(x, y) within an
element m and then interrelate the potential distribution in various elements such
that the potential is continuous across interelement boundaries. We can express
the approximation solution for the whole region as

Viey)= YV, (%), (10.182)

where N is the number of triangle elements into which the solution region is
divided.

The most common form of approximation for V,,(x, y) within an element is
polynomial approximation for a triangle element, that is,

V., (x,y)=a+bx+cy, (10.183)

where the constants a, b and c are to be determined. The potential V,,(x, y) in
general is nonzero within element m, but zero outside m. Furthermore, our
assumption of linear variation of potential within the triangle element as in
equation (2.46) is the same as assuming that the electric field is uniform within
the element, that is to say,

E,=-VV, =—(ba, +ca ). (10.184)
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Second step, developing equations for the element. Let us choose a typical
triangle element shown in Figure 10.8.

y4 V,,,;(xg,%)

Vm2 (xZ > y2)
Vo (%1 1)

0 > x
Figure 10.8. Typical triangle element; local node numbering 1-2-3 must proceed counter-
clockwise as indicated by the arrow.

The potential V,,(x1, 1), Via(%, 32), and V,;3(x3, y3) at nodes 1, 2, and 3,
respectively, are obtained using equation (10.183), namely

Vo L x, y||a
Vo =1 % 5] (10.185)
Vs L x5 ys]lc

The coefficients a, b, and care determined from equation (10.185) as

1

\%

N

L x y|

ml
bl=|1 %, y,| |Vl (10.186)
¢ 1 X, s Vs

Therefore, equation (10.183) can be rewritten by substituting for 4, b, and ¢, i.e.,

a L x y - Vo
V.=[1 x y|lb|=[1 x y)|l % »,| |Vl (10.187)
¢ 1 x5y, Vs

Equation (10.187) can be written as

3
V(6= 4,5, y)V, ;5 (10.188)

i=1
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where a; (x, y) is given by
1 .
ai(x,y):a(ai+b,-x+ciy), where1=1,2,3 (10.189)

and a;, b;, and c; are given by

a; = XY — %Y (10.190)
b=y, -7 (10.191)
;=X —X; (10.192)

where i, j, and kare cyclical, thatis, (i=1,j=2,k=3),(i=2,j=3,k=1),and (i= 3,
j=1,k=2).

Note that, by substituting equations (10.190), (10.191),and (10.192) into equation
(10.187) gives

(%2735 =%37,) (5, —x1y3) (59, =%,0) |[ Vi

Vm(x>y):[1 x J’]a (y2=ys) (ys=n) =) Vi |- (10.193)
(x5 —x,) (x, —x;) (x, =x,) Vs

Also, using equations (10.190), (10.191), and (10.192) into equation (10.188),

gives
1
al(x,y)=a[(x2y3—x3y2)+(y2—y3)x+(x3—xz)y], (10.194a)
1
%(x>y)=a[(xayl—x1y3)+(y3—yl)x+(xl—x3)y], (10.194b)
1
a3(x,y):a[(x1y2—x2y1)+(y1—yz)x+(x2—x1)y], (10.194c)
and A is given by
11 XN !
A:EI X, ¥, =5[(x1y2—x2y1)+(x3y1—x1y3)+(x2y3—x3y2)]
1 x5 ys
or
1
A=E[(x2—x1)(y3—yl)—(xg—xl)(yz—yl)] (10.195)

where A is the area of the element m.
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The value of A is positive if the nodes are numbered counterclockwise, starting
from any nodes, as shown by the arrow in Figure 10.5.

Furthermore, equation (10.188) gives the potential at any point (x;, y) within the
element provided that the potentials at the vertices are known. In addition, a;(x;, )
are linear interpolation functions. They are called the element shape functions
and they have the following properties:

oyy=i T (10.196a)
a\xX,y)= .o . a
iy 0, i#j
3
Y alx,y)=1. (10.196b)
i=1
The shape of functions a;(x, y), a,(x, y), and as(x, y), for example, are illustrated in
Figure 10.9.
_ 3 a(xy)
Sk i 1
5 2
ay(x,y) T
1

—

2
Figure 10.9. Shape functions a(x, y), a(x, y), and a3(x, y) for a triangle element.

The functional, W,,, corresponding to Laplace’s equation, which physically is the
energy per unit length associated with element m, is given by

1 2 1 2
W, :EJ£|EM| ds:5j5|vvm| ds. (10.197)
But from equation (10.188),

3
vV, =3V, Va. (10.198)
i=1

By substituting equation (10.198) into equation (10.197), gives

W = %ii V| [Va Vaas]v,. (10.199)

i=1j=1
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If we define the term in brackets as
(m) _
G = JVai Va,ds,

now, we can write equation (10.199) in matrix form as

1 m
Wm ZEg[Vm]t [C( )]{Vm}’
where the superscript t denotes the transpose of the matrix,

\%

m3]’

VoI =V V,

m2

le
{Vm}z VmZ 4
Vm

3
and
(m) (m) (m)
Ch G Cis
(m) | — (m) (m) (m)
[C ]— Gy O Gy |
(m) (m) (m)
C31 C32 C33

387

(10.200)

(10.201)

(10.202a)

(10.202b)

(10.202¢)

The matrix [C™] is usually called the element coefficient matrix (or stiffness matrix
in structural analysis). The element Ci(jm) of the coefficient matrix may be regarded
as the coupling between nodes i and j; its value is obtained from equations (10.194)

and (10.200). For instance,

cy' =[Va, Va,
1
4A

1
—a[(}’z =y3) (s =)+ (5 —x,) (%, _xs)]-

Similarly,

1
Cl(gn) :a[(yz =13) (0 = y2) (x5 —x,) (%, _xl)]’

C8’ =[5 = 1)1 =)+ (5 =3,) (0 =)

[(J’z = 13) (s = y)+ (x5 —x,)(x _xS)]IdS

(10.203a)

(10.203b)

(10.203¢)
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w1
=l 0n =3+ =), (10.203d)

1
' =l 0=+ -2’ ] (10.203¢)

1
' =0+ =)’ ] (10.203f)

Additionally,

Cy =Cy oy =C, Y =Gy (10.204)

Now, for the third step, after having considered a typical element, the next step is to
assemble all such elements in the solution region. The energy associated with the
assemblage of elements assuming that the whole solution region is homogeneous
so that ¢ is constant, i.e.,

N
1 ¢
W= W =—¢|V][C|{V}, 10.2
mZ:lmze[][]{} (10.205)
where
v
VZ
V3
wvi=| | (10.206)
_Vn_
where

n is the number of nodes, N is the number of elements, and [C] is called the over-
all or global coefficient matrix, which is the assemblage of individual element
coefficient matrices.

For an inhomogeneous solution region such as that shown in Figure 10.10,
the region is discretized with triangle elements such that each finite element is
homogeneous. In this case, equation (10.197) still holds, however, equation
(10.205) does not apply since ¢ (¢ = ¢, &) or simply &, varies from element to
element. To apply equation (10.205), we need to replace ¢ by ¢, and multiply the
integrand in equation (10.200) by &,.
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Ya Medium 2

<

Medium 1

0 >x

Figure 10.10. Discretization of an inhomogeneous solution region with triangle elements.

We use an example to illustrate the process by which individual element
coefficient matrices are assembled to obtain the global coefficient matrix. In this
example, we consider the finite element mesh consisting of three finite elements as
shown in Figure 10.11. Observe the numberings of the mesh.

2 4 5
& A ‘\ global

numbering

element
number

1-3-4

Figure 10.11. Assembly of three elements; i - j - k corresponding to local numbering (1-2-3)
of the element in Figure 10.5.

The numbering of nodes 1, 2, 3, 4, and 5 is called global numbering. The
numbering i — j— kis called local numbering, and it corresponds with 1-2-3 of
the element in Figure 10.5, the local numbering must be in counterclockwise
sequence starting from any node of the element. For element 1, we could
choose 2-1-4 instead of 1-4-2 to correspond with 1-2-3 of the element to
Figure 10.8. Thus, the numbering in Figure 10.8 is not unique. But whichever
numbering is used, the global coefficient matrix remains the same. Assuming
the particular numbering in Figure 10.11, the global coefficient matrix is
expected to have the form

:('3
SO
;G
:('3
GO

0o
—
)
o
[
Y
0o
W=
[ o
w

(10.207)

w
—_
w
o
w
@
w
~
w
w

-

Oﬁ('} O 0O
Oﬁﬁ a0
G&Q O 0O
O::O O 0O
O&Q SINS)

r

Ul
—
w1
Y
ul
)
wi
&~
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which is a 5 X 5 matrix since five nodes (n = 5) are involved. As we know,
Cij is the coupling between nodes i and j. The Cj can be obtained by using the
fact that the potential distribution must be continuous across interelement
boundaries. The contribution to the i, j position in [ C] comes from all elements
containing nodes i and j. For instance, in Figure 10.11, elements 1 and 2 have
node 1 in common; therefore

C,=CYV+C?. (10.208a)
Node 2 belongs to element 1 only; therefore
C,, =CY. (10.208b)
Node 4 belongs to element 1, 2, and 3; accordingly
C,=Cl+C¥+C. (10.208c¢)
Nodes 1 and 4 belong simultaneously to element 1 and 2; as a result
C,=C,=CY+C?, (10.208d)
Since there is no coupling (or direct link) between nodes 2 and 3; hence
C,, =C,, =0. (10.208e)

By continuing in this approach, we can obtain all the terms in the global coefficient
matrix by inspection of Figure 10.11 as

ch+c ol ap clecd 0]
GGy 0 C 0

[C]=| C¥ 0 CP+c?  cP+cy Y| (10.209)
Cil+C Gy C+CY CRl+Cil+Cy) C)
|0 U ) |

Note that element coefficient matrices overlap at nodes shared by elements and
that are 27 terms (9 for each of the 3 elements) in the global coefficient matrix [C].
Also note the following properties of the matrix [C]:

1. Itis symmetric (C;j = Cj) just as the element coefficient matrix.
2. Since Cj; = 0 if no coupling exists between nodes i and j, it is expected
that for a large number of elements [C] becomes sparse. Matrix [C] is
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also banded if the nodes are carefully numbered. It can be shown using
equation (10.203), i.e.,

3

3
(m) _ n— (m)
§ Cy _o_§ cy”. (10.210)
j=1

i=1

3. It is singular. Although this is not obvious, it can be shown using the finite
element coefficient matrix of equation (10.202c).

Finally, fourth step, by solving the resulting equations. It can be shown that,
from variational calculus, it is known that Laplace’s (or Poisson’s) equation is
satisfied when the total energy in the solution region is minimum. Therefore, we
require that the partial derivatives of W with respect to each nodal value of the
potential be zero; that is,

ov, 9V, v, =
or
a—W=o, k=1,2,..,n. (10.211)
AV,

. oW . . .
For instance, to get —— =0 for the finite element mesh of Figure 2.9, we substitute

1
equation (10.207) into equation (10.205) and take the partial derivative of Wwith

respect to V. We obtain

ow
0= e =2V,C,, +V,C,, +V,C; +V,C,, +V.C 5 +V,C, +V,C;5, +V,Cy + V.G,
1
or

0=V,C,, +V,C,, +V,C; +V,C,, +V.C,.. (10.212)

In general case, 8_‘3/ =0 leads to
k

0= ViCy, (10.213)
i=1

where 7 is the number of nodes in the mesh. By writing equation (10.213) for all
nodes k =1, 2, 3,.., n, we obtain a set of simultaneous equations from which the
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solution of the transpose matrix for the potential distribution, [V]'= [V} V, ... V,],
can be found. This can be done in two ways:

(1) Iteration Method

Suppose node 1 in Figure 10.11, for example, is a free node. The potential at node 1
can be obtained from equation (10.212) as

1 5
v, =—C—2V,CU. (10.214)

Thus, in general case, the potential at a free node k in a mesh with n nodes is
obtained from equation (10.213) as

1 n
V,=—— z V.C,. (10.215)
kk i=1,j#k

Since Ci; = 0 is not directly connected to node 7, only nodes that are directly linked
to node k contribute to V; in equation (10.215). Note equation (10.215) can be
applied iteratively to all the free nodes. The iteration process begins by setting the
potentials of fixed nodes (where the potentials are prescribed or known) to their
prescribed values and the potentials at the free nodes (where the potentials are
known) equal to zero or to the average potential

V=~ (V,
2

i Vo), (10.216)
where Vi, and Vi, are the minimum and maximum values of the prescribed
potentials at the fixed nodes, V, respectively. With these initial values, the
potentials at the free nodes are calculated using equation (10.215). At the
end of the first iteration, when the new values have been calculated for all
the free nodes, they become the old values for the second iteration. Indeed,
the procedure is repeated until the change between subsequent iteration is
negligible enough.

(2) Band Matrix Method

If all free nodes are numbered first and the fixed nodes last, equation (10.205) can
be written such that

1 Cy Cfp][vf]
w=-=clv. v , (10.217)
2 [ d p][cpf Cpp Vp
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where subscripts f and p, refer to nodes with free and fixed (or prescribed)
potentials, respectively. Since V), is constant (it consists of known, fixed values),
we only differentiate with respect to Vyso that applying equations (10.211) to

(10.217) which yields to
\%4
[Cﬁ’ Cfp]|:Vj;:| =0
or
(A LR A iA ] 10218)
This equation can be written as
[Al[V]=[B] (10.219a)
or
[V1=[A]"[B], (10.219b)

where [V] = [V/], [A] = [Cyl, [B] = —[Cp][V,]. Since, in general, nonsingular, the
potential at the free nodes can be found using equation (10.219). Note we can
solve for [V] in equation (10.219a) using Gaussian elimination technique. Also,
we can solve for [ V] in equation (10.219b) using matrix inversion if the size of the
matrix to be inverted is not large. v

In fact, it is sometimes necessary to impose the Neumann condition (% = 0)
as a boundary condition or at the line of symmetry when we take advantage of the
symmetry of the problem. Indeed, suppose that for concreteness, a solution region

is symmetric along the y—axis as in Figure 10.12. We impose condition (— = 0)
along the y—axis by making x

Vi=V,, V,=V,, V, =V, (10.220)

<
>
Ll
(8]
w
4

1

1

:

a4 5 6
]

I

:

17 8 9
YN

Figure 10.12. A solution region that is symmetric along the y—axis.
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With this in mind that as from equation (10.197) onward; the solution has been
restricted to a two-dimensional problem involving Laplace’s equation, V2V = 0.

10.13.2.1.2 Solution of Passion’s Equation V*V = _%’ with FEM

In this section, we solve the two-dimensional (2D) Poisson’s equations

vy =_2, (10.221)
&
using the same essential four steps as in previous section with FEM, we focus here
on the source term and only the major differences.

The deriving element governing equations step. We divide the solution region
into triangles, and then we approximate the potential distribution V,, (x, y) and
the source term p,,, over each triangle element by linear combinations of the local
interpolation polynomial a; namely,

3
V=D Vit (%, ), (10.222)
i=1
3
and Pom :meiai(x’y) (10223)
i=1

where
V..i is the values of V at vertex i of element m1; p,,; is the values of p, at vertex i of
element m. The values of p,,; are known since p, (x, y) is prescribed, while the
values of V,,,; are to be determined.

An energy functional which associated Euler equation with equation (10.221) is

E(V,)= %![(swmz ~2p,,V,,] s, (10.224)

where
1
F(V,,) is the total energy per length within element E¢s‘|VVm|2 is the energy

o . . 1 .
density in the electrostatic system and it is equal to ED-E; PLonVdS is the work

done in moving the charge p,,,dS to its location at potential V,,,.
Now, by substituting equations (10.222) and (10.223) into equation (10.224)
we get

F(V,)= %iigvmi [[Va-vaas|v, —iivm [[aads]p,. (10.225)
Pt i

Equation (10.225) can be applied to every element in the solution region.
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Also, it can be written in matrix form as
E(V,)= %g[vm]t [V, -V, ] [T ] 2] (10.226)
where
clm = _[Vai Va,ds (10.227)

we know that equation (10.226) is already defined in equation (10.203)
and

T = jaiajds. (10.228)

i
Also, T,](m) can be written as

) Al6, i=j
;" = . (10.229)
! Al12, i#]
where A is the area of the triangle element.
We can obtain the discredited functional for the whole solution region, with
N elements and 7 nodes, as the sum of the functional for the individual elements,
that is, from equation (10.229),

FV)= Y FV,) = VT [CIVI-[VT [T/] (10.230)

m=1

where
t is the transposition symbol. In equation (10.230), the column matrix [V]
consists of the values of V,,;, while the column matrix [p] contains #n values
of the source function, p,, at the nodes. The functional in equation (10.230)
is now minimized by differentiating with respect to V,,; and setting the result
equal to zero.

Now, we work on the solving the resulting equations step. We can solve the
resulting equations by using either the iteration method or the band matrix
method.
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(1) Iteration Methods

By considering the solution region in Figure 10.8 which has five nodes, n = 5 and
from the equation (10.230), we can get the energy functional as

FCM CIZ o Clsq—Vlﬂ
C21 sz o Czs Vz
F:_g[Vl V, Vs]
1G5 Cs, Css JLV5 (10.231)
T, T, T |[ 2
T, T, Tys || 2
_[Vl Vz Vs]
| T, - - T ]Lps
The energy can be minimized by applying
F
a—=O, k=12, - - n. (10.232)
aV,
. JoF
For example, from equation (10.231), we get —— =0, as
1
JoF
a—VZé’[VlC“+V2C21+~--+V5C51]—[T11p1+T21,02+'--+T51p5]=0
1
or
1 < 1 <
Vi=—— 2 ViCi+—D T.p. (10.233)
: Cy 1:22 ' eCy 1:21
Therefore, in general, for a mesh with n nodes
1 ” 1 <
Vo= 2 ViCu+——2 T, (10.234)

kk i=1izk kk i=1

where
node kis assumed to be a free node.
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By fixing the potential at the prescribed nodes and setting the potential at the
free nodes initially equal to zero, we apply equation (10.234) iteratively to all free
nodes until convergence is reached.

(2) Band Matrix Method

In this method, we let the free nodes be numbered first and the prescribed nodes
last. In doing this, equation (10.230) can be written as

U g M SV F
FV)=—¢|V, V -V, Vv (10.235)
28[ ! p][cpf Co JLV5 [ d P] T Ty |17

where
subscript f is the free node; subscript p is the prescribed node;
pris the submatrix containing the values of p at free node; p, is the submatrix
containing the values of p at the prescribed node.
Minimizing F (V) with respect to V; namely,

9F
an
gives
&(CyVy +CyV, ) =Ty + Ty, ) = 0
or

[e v 1=-[eo v, -5 o 1 Jln ) Goase)

Indeed, equation (10.236) can be written
[A][V]=][B] (10.237)

where

[A] = [Cyl, [V] = [V{], and [B] is the right-hand side of equation (10.236).
Equation (10.237) can be solved to determine [V] either by matrix inversion or
Gaussian elimination technique.
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10.13.2.1.3 Solution of Wave’s Equation V?® + k*® = g with FEM

A typical wave equation is the inhomogeneous scalar Helmholtz’s equation
VO+kd=g (10.238)

where

@ is the potential (for waveguide problem, ® = H, for TE mode or E, for TM mode)
to be determined, g is the source function, and k = a)\//z is the wave number
of the medium. The following three distinct special cases of equation (10.238)
should be noted:

1. k=0and g= 0; Laplace’s equation;
2. k= 0; Poisson’s equation; and
3. kisan unknown, g= 0; homogeneous, scalar Helmholtz’s equation.

It is known that the variational solution to the operator equation
[®=g (10.239)
is obtained by examining the functional
I(®)=<L,®d>-2<D,g> (10.240)

where L is an operator (differential, integral, or integro-differential), g is the
unknown excitation or source, and @ is the unknown function to be determined
(here is the potential).

Therefore, the solution of equation (10.238) is equivalent to satisfying the
boundary conditions and minimizing the functional

(@)= %”[chf —K®? +20g | dS. (10.241)

Note that, if other than the natural boundary conditions (i.e., Dirichlet of
homogenous Neumann conditions) must be satisfied, appropriate terms
must be added to the functional. The potential @ and the source function
g can be expressed now in terms of the shape functions a; over a triangle
element as

3
D, (x,y)= ) a®, (10.242)
i=1

where
@i is the value of @ at the nodal point i of element .
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And

3
gn(%,y)= Zaigmi (10.243)

i=1

Zmi1s the value of gat the nodal point 7 of element 1.
Substituting equations (10.242) and (10.243) into equation (10.241) gives

I(q)m):%iicpmid)ijV% Vo dS—%iid)micbmj”aiaj ds

i=1 j=1 i=1 j=1

3 3
+22‘Dm1’gmj” 4a; dS (10.244)

where
[q)m] = [(I)ml,(I)MZ,q)mS ]t ’[Gm ] = [gml,ng,gm3 ]t > and [C(m):l and I:T(m)] are deﬁned

in equations (10.158) and (10.185), respectively.
The equation (10.244) is for a single element, but it can be applied for all N
elements in the solution region. Therefore,

[(@)= ) I(®,,). (10.245)

m=1

From equations (10.244) and (10.245), I(®) can be expressed in matrix form as

(@)= %[CD]t [C][®] —%[CDT [T][®]+[@] [T][G] (10.246)

where
[@]=[®, ®,, . . . @], (10.247a)
[G]:[gv 8 - - ’gN]t (10.247b)

[C], and [T] are global matrices consisting of local matrices [C"™] and [T"],
respectively.
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Now, if free nodes are numbered first and the prescribed nodes last, and
considering the source function g= 0, we can write equation (2.109) as

1 Cy Cp K Ty Ty || P
o o2 2} o, 213 e

pp P

By setting % =0, gives

f
(o) (o)
f 2 f_
For TM modes, ®, = 0 and hence
2
[C,;-KT; |®, =0. (10.250)
Premultiplying equation (10.250) by TJ;, gives
-1 2 _
[1;'C,-KI]®, =0. (10.251)
By letting
T;'Cy=AkK =f®, =X, (10.252a)

and Uis a unit matrix,
we can obtain the standard eigenvalue problem

(A- fU)X =0. (10.252b)

any standard procedure may be used to obtain some or all of the eigenvalues
B> Pos..., Bur and eigenvectors Xi, X;,..., Xnf, where nfis the number of free nodes.
The eigenvalues are always real since Cand T are symmetric.

The solution of the algebraic eigenvalue problems in equation (10.252) furnishes
eigenvalues and eigenvectors, which form good approximations to the eigenvalues
and eigenfunctions of the Helmholtz problem, i.e., the cutoff wavelengths and field
distribution patterns of the various modes possible in a given waveguide.

The solution of the problem of equation (10.238) is summarized in equation
(10.251), and can be viewed as the finite element solution of homogeneous
waveguides. The idea can be extended to handle inhomogeneous waveguide
problems. However, in applying FEM to inhomogeneous problems, a serious
difficulty is the appearance of spurious, nonphysical solutions. There are several
techniques that have been proposed to overcome the difficulty.
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10.14 AUTOMATIC MESH GENERATION

It is a fact that, one of the major difficulties encountered in the finite element
analysis of continuum problems is the tedious and time-consuming effort required
in data preparation. Indeed, efficient finite element programs must have node and
element generating schemes, referred to collectively as mesh generators. Automatic
mesh generation minimizes the input data required to specify a problem. In fact, it
not only reduces the time involved in data preparation, it eliminates human errors
that are introduced when data preparation is preformed manually. Furthermore,
combining the automatic mesh generation program with computer graphics is
particularly valuable since the output can be monitored visually.

A number of mesh generation algorithms of varying degrees of automation
have been proposed. In this section, we focus on two types of domains, rectangular
domains and arbitrary domains.

10.14.1 Rectangular Domains

Since some applications of FEM to EM problems involve simple rectangular
domains, we consider the generation of simple meshes. Now, let us consider a
rectangular solution region of a size a X b as shown in Figure 10.13. The goal here
is to divide the region into rectangular elements, each of which is later divided into
two triangular elements.

VA
b

Ay”yI

Ay, 1

Ay, I

a

> ¢ > —» >
0 1 Axl 1 sz H ' Ax 1 X

nx

Figure 10.13. Discretization of a rectangular region into a nonuniform mesh.

Suppose n, and n, are the number of divisions in x and y directions, the total
number of elements and nodes are, respectively, given by

n, =2nmn,

ny=(n,+1)(n, +1). (10.253)

As aresult, it is easy to figure out from Figure 10.13 a systematic way of numbering
the elements and nodes. Indeed, to obtain the global coordinates (x, y) for each
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node, we need an array containing Ax;, i = 1, 2,..., n,and Ay;, j = 1, 2,..., n,, which
are, respectively, the distances between nodes in the xand y directions. If the order
of node numbering is from left to right along horizontal rows and from bottom to
top along the vertical rows, then the first node is the origin (0, 0). The next node is
obtained as x — x + Ax; while y = 0 remains unchanged. The following node x —
x4+ Ax,, y=0, and so on until Ax; are exhausted. We start the second next horizontal
row by starting with x = 0, y > y + Ay, and increasing x until Ax; are exhausted.
We repeat the process until the last node (71, + 1) (1, + 1) is reached, i.e., when Ax;
and Ay; are exhausted simultaneously.

The procedure presented here allows for generating uniform and
nonuniform meshes. A mesh is uniform if all Ax; are equal and all Ay, are equal;
it is nonuniform otherwise. A nonuniform mesh is preferred if it is known
in advance that the parameter of interest varies rapidly in some parts of the
solution domain. This allows a concentration of relatively small elements in the
regions where the parameter changes rapidly, particularly since these regions
are often of greatest interest in the solution. Additionally, without the
preknowledge of the rapid change in the unknown parameter, a uniform mesh
can be used. In that case, we set

Ax,=Ax,=. . .=h
Ay, =Ay,=. . .=h (10.224)

where
h.=a/n.and h,= a/n,.

In some cases, we also need a list of prescribed nodes. If we assume that all
boundary points have prescribed potentials, the number #, of prescribed nodes is
given by

n, =2(n, +ny). (10.255)

A simple way to obtain the list of boundary points is to enumerate points on the
bottom, right, top, and left of the rectangular region in that order.

10.14.2 Arbitrary Domains
The basic steps involved in a mesh generation are as follows:

A. subdivide solution region into few quadrilateral blocks,
B. separately subdivide each block into elements,
C. connect individual blocks.
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A. Definition of Blocks

The solution region is subdivided into quadrilateral blocks. Subdomains with
different constitutive parameters (g, i, ¢) must be represented by separate blocks.
As input data, we specify block topologies and the coordinates at eight points
describing each block. Each block is represented by an eight-node quadratic
isoparametric element. With natural coordinate system (), the x and y
coordinates are represented as

X&)=Y (G, (10.256)

i=1

Y& = a(&n)y, (10.257)

i=1

where a,({,n) is a shape function associated with node i, and (x; y;) are the
coordinates of node i defining the boundary of the quadrilateral block as shown
in Figure 10.14.

Figure 10.14. Typical quadrilateral block.

The shape functions are expressed in terms of the quadratic or parabolic
isoparametric elements shown in Figure 10.15.

VA

7=1 L1

7 6 5
4
=—108 >
g =1 é,
1 2 3
(-1,-1 ®
n=-1

Figure 10.15. Eight-node serendipity element.

They are given by:

a = i(1+g"§;)(1+/7i7i)((§+17i7i +1),i=1,3,5,7. (10.258)
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For corner nodes,
4= %4? (1+(§)(1—;72)+%;73 (+77+1)(1-),i=2,4,6,8.  (10.259)

For midside nodes, note the following properties of the shape functions:

1. They satisfy the conditions.

iai (Gy)=1 (10.260a)

1, i=j
a(¢)= 0 ix (10.260b)

2. They become quadratic along element edges({ = +1,7 = +1).

B. Subdivision of Each Block

Furthermore, for each block, we specify N DIV X and N DIV Y, the number of
element subdivisions to be made in the { and 5 directions, respectively. In addition,
we specify the weighting factors (W;); and (W,); allowing for graded mesh within
a block. It is essential to know that, in specifying N DIV X, N DIV Y, (W), and
(W,); care must be taken to ensure that the subdivision along block interfaces (for
adjacent blocks) are compatible. We initialize { and # to a value of —1 so that the
natural coordinates are incremented according to

§=£+—2(W()i (10.261)
" W/ xF
2(W,);
=g 2 10.262
h= W, xF ( )
where
N DIV X
wi= > (W), (10.263a)
j=1
N DIV X
T
W) = (w,), (10.263b)
j=1
and

{1, for linear elements

2, for quadratic elements’
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Now, there are three elements types permitted: (1) linear four-node quadrilateral
elements, (2) linear three-node triangle elements, and (3) quadratic eight-node
isoparametric elements.

C. Connection of Individual Blocks

After subdividing each block and numbering its nodal points separately, it is
necessary to connect the blocks and have each node numbered uniquely. This
is accomplished by comparing the coordinates of all nodal points and assigning
the same number to all nodes having identical coordinates. In other words, we
compare the coordinates of node 1 with all other nodes, and then node 2 with
other nodes, etc., until all repeated nodes are eliminated.

10.15 HIGHER ORDER ELEMENTS

Finite elements use higher order elements. The shape function or interpolation
polynomial of the order two or more is called higher order element. To emphasize,
the accuracy of a finite element solution can be improved by using finer mesh
or using higher order elements or both. Desai and Abel studied mesh refinement
versus higher order elements in [44]. Generally, fewer higher order elements are
needed to achieve the same degree of accuracy in the final results. Moreover,
the higher order elements are particularly useful when the gradient of the field
variable is expected to vary rapidly.

10.15.1 Pascal Triangle

High order triangular elements can be systematically developed with the aid of
the so-called Pascal triangle given in Figure 10.16. The family of finite elements
generated in this matter with distribution of nodes illustrated in Figure 10.17.
Note that in higher order elements, some secondary (side and/or interior) nodes
are introduced in addition to the primary (corner) nodes so as to produce exactly
the right number of nodes required to define the shape function of that order.

q Constant term, n =0
a,x a,y Linearterm, n=1
ax’ asxy a,y* Quadratic term, n=2
a,;x ax’y a xy’ a,y’ Cubicterm,n=3

Figure 10.16. The Pascal triangle (2D).
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Figure 10.17. Pascal triangle (2D) and the associated polynomial basis functions degree
n=1to 3.

Indeed, the Pascal triangle contains terms of the basic functions of various degrees
in variable x and y. An arbitrary function ®; (x, y) can be approximated in an
element in terms of a complete 7 th order polynomial as

@, (x,y)= Zaﬂ’i (10.264)

i=1

where
1
r=E(n+1)(n+2). (10.265)

ris the number of terms in complete polynomials (also the number of nodes in the
triangle). For example, for the third order (n = 3) or cubic (ten-node) triangular
elements,

®, (x,y)=a, +a,x+a,y+a,x’ +axy+ayy’ +a,x’ (10.266)
+agx’y+agxy’ +a,y’.

Equation (10.266) has ten coefficients, and hence the element must have ten
nodes. It is also complete through the third order terms. A systematic derivation of
the interpolation function a for the higher order elements involves the use of the
local coordinates.

10.15.2 Local Coordinates

Now, the triangular local coordinates (#;, #,, #5) are related to Cartesian
coordinates (x, y) as

X =7h% tipX, 75X, (10.267a)

Y= Ty, Y iBYs. (10.267D)
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The local coordinates are dimensionless with values ranging from 0 to 1.
Furthermore, by definition, #; at any point within the triangle is the ratio of the
perpendicular distance from the point to the side opposite to vertex i to the length
of the altitude drawn from vertex 7. Therefore, from Figure 10.18 the value of #; at
P, for example, is given by the ratio of the perpendicular distance d from the side
opposite vertex | to the altitude & of that side, namely,

d
n=s (10.268)

Alternatively, from Figure 10.15, 77; at P can be defined as

A
.t (10.269)
g A
so that
mrmp+y =1 (10.270)

Since A; + A, + A; = A. The local coordinates 7; in equation (10.269) are also
called area coordinates. The variation of (7, 775, #5) inside an element is shown in
Figure 10.19.

YA

1 exznyz)

0 X

Figure 10.19. Variation of local coordinates.
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Although the coordinates #,, 775, and 75 are used to define a point P, only two are
independent since they must satisfy equation (10.270). The inverted form of

equations (10.267) and (10.268) is

1
7; :a(ci +bx+a;y)

where
b, = Vi
G =X Vi

1
A = area of the triangle = E(bla2 -b,a,),

—-X.,

Yk

(10.271)
i
— XY
(10.272)

and (4, j, k) is an even permutation of (1, 2, 3). The differentiation and integration
in local coordinates are carried out using [47]:

L i —b, o (10.273a)
a7 ax ay
A +b, o (10.273b)
97, " 9x ay
B L( ) (10.273c¢)
x_ 2A a772 )
_—L( oy, a, ) (10.273d)
A 8 o7,
Ve
,”f ds=2A [J f s, d’71] dr, (10.273e)
iljlk!
[[ 77k as (—(l+]+k+2),Jx2A (10.2731)

dS=2Adydy,

(10.273g)
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10.15.3 Shape Functions

Now, we may express the shape function for higher order elements in terms of
local coordinates. Indeed, sometimes, it is convenient to label each point in the
finite elements in Figure 10.17 with three integers, i, j, and k from which its local
coordinates (13, 7, #73) can be found or vice versa. For instance, at each point Pj;

ik
(771,772,773)=(—,i,—). (10.274)
n nn

Thus, if a value of @, say @y, is prescribed at each point Pj, equation (10.264) can
be expressed as

D (1 757) = D, D i (1o 715 715) Py (10.275)

i=1 j=1
where

a4 = ,-jk=Pi(771)Pj(’72)Pk(773)> [=1,2,... (10.276)
Tl (1)
— 1l (ny-t), e>0

p.(7)=1eli=0 (10.277)

1, e=0

and e € (4, j, k). Further, p () may also be written as

p.(7)= (niy—ee +1)

Xp,,(7), €>0 (10.278)
where p, (17) = 1.

The relationships between the subscript g € {1, 2, 3} on #,, le {1, 2,..,7} on a;,
and e € {1, j, k} on p, and Pji in equations (10.276) to (10.278) are illustrated in
Figure 10.20 for n ranging from 1 to 3. Furthermore, point P;; will be written as
P, for conciseness.

(100)
1
(210)2/4----)\3 (20D
(12004 -~ 6 (102)
2 3 7 % 5 10
(010) (001) (030) (021) (012) (003)
(@n=1 B)yn=2 (c)n=3

Figure 10.20. Distribution of nodes over triangles for n = 1 to 3. The triangles are in
standard position.
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Notice from equations (10.277) or (10.278) that

2 (7)=1
p(p)=ny

p,(7)= %(M—l)nv (10.279)
ps(7)= é(fw—Z)(rW—l)nﬁ, etc.

Indeed, by substituting equation (10.279) into equation (10.276) gives the shape
functions a;for nodes [=1,2,..., r,as shown in Table 10.1 for n =1 to 3. In addition,
observe that each g; takes the value of 1 at node [/ and value 0 at all other nodes
in the triangle. It can be verified by using equation (10.274) in conjunction with
Figure 10.20.

Table 10.1. Polynomial Basic Functions g, (71, 772, #73) for First, Second, and Third

n=1 n=2 n=3

= = 27 —1 1
a4 =71 2] 771( 7 ) %:5771(3;71_2)(3;71_1)

“=" %= YN, & = %771 (3771 _1)772

= s = %=1 (C7RVVA

a, =727 -1 9
0 =727, ~1) a4=5771(3772—1)/72

a5 = 41,77, a5 = 27715775

ag =77, (277, —1 9
6 =15 (277;,=1) aﬁ:z%(B%_l)%

1
a; = 5772 (3772 _2)(3’72 _1)
9
ag 25772 (3772 _1)773
9
Gy :5772 (3’73_1)773

1
O = 5773 (37 _2)(3’73 - 1)
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10.15.4 Fundamental Matrices

The fundamental matrices [T] and [Q] for triangle elements can be derived using
the shape functions in Table 10.1. The matrix T'is defined as

T = [[ aads. (10.280)

From Table 10.1, we substitute ; in equation (10.280) and apply equations
(10.273f) and (10.273g) to obtain elements of T. For example, for n=1,

L1=7
T. =2AJ‘ f w15 dipda,. (10.281)

ij
0 0
Furthermore, when i # j, Tj; can be written as
_2A(1H@an(o!) _é

] i 10.282a
J 4! 12 ( )
but, when i = j,
2A20) A
T, = @)_4 (10.282b)
4! 6
Thus,
A 2 1 1
T==|1 2 1 (10.283)
12
1 1 2

Now, by following the same procedure, higher order T matrices can be obtained.
The T matrices for orders up to n = 3 are tabulated in Table 10.2 where the factor A,
the area of the element, has been expressed. The actual matrix elements are
obtained from Table 2.2 by multiplying the tabulated numbers by A and dividing
by the indicated common denominator. Indeed, the following properties of the
T matrix are worth knowing:

1. Tis symmetric with positive elements;
2. elements of Tall add up to the area of the triangle, that is, 2 ZT- = A, since

by definition 2 a; =1 at any point within the element; J

=1

3. elements for which the two triple subscripts from similar permutations are
equal, that is, Ty o0 = Tii eq = Thijepg = Ljieap = Likisgep = Ljik,qpes this should be

obvious from equations (2.280) and (10.276).

As a result, the above properties are not only useful in checking the matrix; they
have proved useful in saving computer time and storage.
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Table 10.2. Table of T Matrices forn =1 to 3

n=1 Common denominator = 12
2 1 1
T=[1 2 1
1 1 2

n=2 Common denominator = 180

6 0 o -1 -4 -1
0 32 16 0 16 -4
0 16 32 -4 16 0

=11 0 =4 6 0 -
—4 16 16 0 32 0
-1 4 0 -1 0 6]
n=3 Common denominator = 6720

[76 18 18 0 36 0 11 27 27 11]
18 540 270 -189 162 135 0 -135 -54 27
18 270 540 -135 162 —-189 27 —-54 -135 0

0 -189 -135 540 162 54 18 270 -135 27
36 162 162 162 1944 162 36 162 162 36
0 -135 -189 —-54 162 540 27 -135 270 18
11 0 27 18 36 27 76 18 0 11
27 -135 -54 270 162 —-135 18 540 -189 0

27 54 135 -135 162 270 0 -—-189 540 18
|11 27 0 27 36 18 11 0 18 76

In equation (10.227), elements of [ C] matrix are defined by

J'J' 94; , 94, 94, ds. (10.284)
ax 0x 8)/ ay '

By applying equations (10.273a) to (10.273d) to equation (2.147), it can be shown that:

1 < da. da; aa- da;
C.,=—) cotd - L | ds
! 2A Z qJ.J.[a”q+l a]7q 1 )(a”q+l a”qfl )

or

C. = ZQ@ cotd (10.285)
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where 0, is the include angle of vertex g € {1, 2, 3} of the triangle and

”( ]( o _ 94 J dnd (10.286)
Q haz,. .
] a;7q+l a/7q 1 a;7q+1 a”q 1 : g

It is clear that matrix C depends on the triangle shape, whereas the matrices Q¥
do not. The QY matrices for n =1 to 3 are tabulated in Table 10.3.
The following properties of Q matrices should be noted as:

1. they are symmetric;
2. therowand column sums of any Qmatrix are zero, that s, Z Q; @ == 2 Qfﬂ)
so that the C matrix is singular. i=1

Q% and Q¥ are easily obtained from Q" by row and column permutations so that
the matrix C for any triangular element is constructed easily if Q" is known.

Table 10.3. Table of O Matrices forn=1to 3

n=1 Common denominator = 2
0 0 0
Q=|0 1 -1
0 -1 1
n=2 Common denominator = 6
[0 0 0 0 0 0]
0 8§ -8 0 0 0
0=|0 & & 0 0 0
o 0o 0 3 —4 1
0 0 0 —4 8§ —4
K 0 0 1 -4 3]
n=3 Common denominator = 80
[ 0 0 0 0 0 0 0 0 0 1
135 -135 =27 0 27 3 0 0 -3
-135 135 27 0 -27 =3 0 0 3
27 27 135 -162 27 3 0 0 -3
0 0 —-162 324 -162 0 0 0 0
27 =27 27 —162 135 -3 0 0 3

3 -3 3 0 -3 34 -54 27 =7

/e
Il
cCcoocoocoocoococooo

0 0 0 0 0 -54 135 -108 27
0 0 0 0 0 27 -108 135 -54
-3 3 -3 0 3 -7 27 54 34

T
L
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For example, for n = 1, the rotation matrix is basically derived from Figure 10.21 as

0
R=]|1
0

—_— o O

1
0 (10.287)
0

where R;; = 1 node i is replaced by node j after one counterclockwise rotation, or
R;j = 0 otherwise.

1 3

VANSVAN

(a) (b)

Figure 10.21. One counterclockwise rotation of the triangle in (a) gives the triangle in (b).

Moreover, Table 10.4 presents the R matrices for #n = 1 to 3. Note that each row or
column of R has only one nonzero element since R is essentially a unit matrix with
rearranged elements.

Table 10.4. Table of R Matrices for n =1 to 3

3
Il
=
=
Il
SO = O
_— o O
S O =

1
coo~oo b—/}M—
]

S O~ O O O

S = O O O O
— O O O O O

=N ool =
S O O O O

r
L

S OO = OO O o oo
S O R OO O O o oo
SO O O O O O o oo
—_ O O O O O o o oo
S O OO = O OO OO

[ eleleolNeR=E o ==l
= elelolel =l =l =ho)
>N elelNeNeNoRol el =]
=N eleleole e =2 ==
=N eleleole el S
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Now, once the R is known, we can obtain Q® and Q® as
Q? =RQVR (10.288a)
Q¥ = RQYR' (10.288b)

where R'is the transpose of R.

10.16 THREE-DIMENSIONAL ELEMENT

In this section, we will discuss the finite element analysis of Helmholtz’s equation
in three dimensions, i.e.,

Vo+kd=g. (10.289)

First, we divide the solution region into tetrahedral or hexahedral (rectangular
prism) elements as in Figure 10.22.

1

3 1 2
(a) (b)

Figure 10.22. Three-dimensional elements: (a) Four-node or linear-order tetrahedral, (b) eight-
node or linear-order hexahedral.

Now, assuming a four-node tetrahedral element, the function @ is represented
within element by
O, =a+bx+cy+dz. (10.290)
The same applies to the function g. Since equation (10.290) must be satisfied at the
four nodes of the tetrahedral elements,
D, .=a+bx;,+cy,+dz;, 1=1,2,3,4. (10.291)

Therefore, we have four simultaneous equations with the potentials V,,;, V.2, V,.3
and V4 at nodes 1, 2, 3, and 4, respectively, i.e.,

Von L x y z||a
Vi |_|1 X% ¥y 2 ||D (10.292)
Vs L x; y; zf|c]
Vo 1 x, y, z]ld
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The coefficients a, b, ¢, and d are determined from equation (10.291)

L x »n z - Vi
L X, oy, oz \%
1
1

m2
. (10.293)
X3 V3 % V.

m3

QU O S

Xy Vi 2y V.

m4

The determinant of the system of equations is

L x »n z
1
det=|. > 2 Zl_gy, (10.294)
L x5 y; 2z
L x, y, 2z
where v is the volume of the tetrahedron. By finding g, b, ¢, and d, we can express
®d,, as,
4
o, = z a,(x,7)®,; (10.295)
i=1
where
1 x y =z
11 x, y, 2z
o =— > (10.296a)
ovil x5 y3 24
L x, y, 2
L x, y z
11
b =— oz > (10.296b)
ovil x5 ¥y 2z
1 %, y, 2
1L x y z
111
a=— 7 2 (10.296¢)
vl x vy =z
L x, y, 2
L x, » 7
111
a,=—| 2 2 = (10.296d)
ovil x5 y;3 2
1 x y =z
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Indeed, for higher order approximation, the matrices for as become large in
size and we resort to local coordinates. The existence of integration equations
for local coordinates can simplify the evaluation of the fundamental matrices
Tand Q.

Now, for the tetrahedral element, the local coordinates are 7, 77, #3, and 7y,
each perpendicular to a side. They are defined at a given point as the ratio of the
distance from that point to the appropriate apex to the perpendicular distance
from the side to the opposite apex. In addition, they can be interpreted as volume
ratios, that is, at a point P

g=i (10.297)
v

where v; is the volume bound by P and face i. It is evident that

4

7=1. (10.298)

Note that, the following properties are useful in evaluating integration involving
local coordinates:

dv = 6vdydy,dy,, (10.299a)

NES 6VJ(1I% (Wj‘% f d%}d%] dr,, (10.299b)
0

[[[dnind, av —H]i;c—%xw (10.299¢)

In terms of the local coordinates, an arbitrary function ® (x, y) can be approximated
within an element in terms of a complete nth order polynomial as

@, (x,y)= Zr,ai(x, NP, (10.300)

i1
1
where r = g(n +1)(n+2)(n+3) is the number of nodes in the tetrahedron or

number of terms in the polynomial. The terms in a complete three-dimensional
polynomial may be arrayed for polynomial basic functions degree n =1 to 3 as
shown in Figure 10.23.
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Figure 10.23. Pascal tetrahedral (3D) and the associated polynomial basic functions degree
n=1to3.

Each point in the tetrahedral element is represented by four integers, i, j, k, and
I' which can be used to determine the local coordinates (#y, 7, 73, #4). That is at
pOil’lt Pijkb

i 7 k1
(771>772>773)774):(—ai,—,—) (10.301)
nnnn
Thus, at each node,
a, = ayy = p; () p; 0n) P (75) 21 (7)) (10.302)

where g=1,2,..., rand p, is defined in equation (10.277) or (10.278). Figure 10.22
illustrates the relationship between the node numbers g and kI for the second
order tetrahedron (n = 2). The shape functions obtained by substituting equation
(10.277) into (10.293) are presented in Table 2.5 for n = 3.

(2000)
1

(0200) 5

6 8
(O110)  (gg20)

Figure 10.24. Numbering scheme for second-order tetrahedral.
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Table 10.5. Polynomial Basic Functions a, (71, 172, 773) for n =1 to 3

n=1 n=2 n=3
1
@ =7 @ =mn(2m-1) @=0h (37 =2)(3-1)
9
=1 o =4np B=Th B -n
9
a3 =173 a3 = 4773 &= G-z
9
ay =17y ay =4y W=7 B =17
9
as =1, (27, 1) as =E’71(3’73 _1)’72
a5 = 41775 s = 2710773
ay =41, ay =270,
9
ag =1, (277 -1) % =27 G =7
ag = 4177, ag = 271177574
9
o= 74277, 1) a0 25771(3’74 -7

1
1= B -1)(3/n-2)
9
%2 =7 G =3
9
a3 25772(3’/2 )7

9
By = 5772 (3’73 _1)’73
s =271)1737),

@6 = 2’72 G =17
a7 =51 (s =137 -2)
g =§/73(3773 ~17
@y = 3773 G =D

1
o = 5774 B =137, -2)
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The fundamental matrices [7] and [Q] are involved triple integration. For
Helmholtz equation, for example, equation (10.250) applies, namely,

[C, KT, @, =0 (10.303)

except that

- da; da; d
cim = jVa Va, dv= _[%ﬁ 06 9% 94 9% ) 4y, (10.304)
ox dx E)y dy 0dz 0z

T(’”) jaa dv = 6vj”aa dndn,dy;. (10.305)

v

10.17 FINITE ELEMENT METHODS FOR EXTERNAL
PROBLEMS

We can apply the finite element to exterior or unbounded problems such as
open-type transmission lines (e.g., microstrip). They pose certain difficulties.
In this section, we will consider three common approaches: first, the infinite
element method; second, the boundary element method; and third, the absorbing
boundary condition.

10.17.1 Infinite Element Method

Let us consider the solution region shown in Figure 10.25. We can divide the entire
domain into a near field region, which is bounded, and a far field region, which
is unbounded. The near field region is divided into finite triangular elements as
usual, while the far field region is divided into infinite elements. Knowing that,
each infinite element shares two nodes with a finite element. We mainly will be
focusing on the infinite elements.

Y A

e
|

Ground Plane

Figure 10.25. Division of solution region into finite and infinite elements.
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Now, consider the infinite element in Figure 10.26 with nodes 1 and 2 and radial
sides intersecting at point (X, ¥p).

A

y

L3 4

Figure 10.26. Typical infinite element.

We can relate triangular polar coordinates (p,#) to the global Cartesian coordinates
(x, ) as:

x=xy+ p((x, = x )+ 7(x, = x,)) (10.306)
y =5+ 21 =y0)+7(y. = 7))

where 1 < p <o, 0 < 7 < 1. The potential distribution within the element is
approximated by a linear variation as

V= Za.v. (10.307)

or
1
V=;(\’1(l—f7)+V/7)

where V; and V, are potentials at nodes 1 and 2 of the infinite elements, a; and a,
are the interpolation or shape functions, that is,

a=-—" q==" (10.308)
’ ’,

Moreover, the infinite element is compatible with the ordinary first order finite
element and satisfies the boundary condition at infinity. Indeed, with the shape
functions in equation (10.308), we can obtain the [C"™] and [T"] matrices.
We obtain solution for the exterior problem by using a standard finite element
program with the [C"™] and [ T"] matrices of the infinite elements added to the
[C] and [ T] matrices of the near field region.
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10.17.2 Boundary Element Method

The boundary element method is a finite element approach for handling
exterior problems. It involves obtaining the integral equation formulation of
the boundary value problem, and solving this by a discretization procedure
similar to that used in regular finite element analysis. But, since the boundary
element method is based on the boundary integral equivalent to the governing
differential equation, only the surface of the problem domain needs to be
modeled. Moreover, for the dimension of 2D problems, the boundary elements
are taken to be straight line segments, whereas for 3D problems, they are taken
as triangular elements.

10.17.3 Absorbing Boundary Conditions

To apply the finite element approach to open region problems, an artificial
boundary is introduced in order to bound the region and limit the number
of unknowns to a manageable size. It can be expected that, as the boundary
approaches infinity, the approximate solution tends to the exact one. However, the
closer the boundary to the modeled object, the less computer memory is required.
To avoid the error caused by this truncation, an absorbing boundary condition
(ABC) can be imposed on the artificial boundary S, as typically portrayed in
Figure 10.27.

|mmmmmmmmmmmm e Absorbing object, §

/

Figure 10.27. An object surrounded by an absorbing boundary.

Indeed, the ABC minimizes the nonphysical reflections from the boundary.
The major challenge of these ABCs is to bring the truncation boundary as close
as possible to the object without sacrificing accuracy and to absorb the outgoing
waves with little or no reflection.

—jkr = 1 Y/
q)(r,g’@z%zw

2y (10.309)
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Furthermore, the sequence of BGT operators can be obtained by the recursion
relation, i.e.,

|
Bl =(§+]k+;)

B, =(i+jk+2m_1
or

)Bm_l, m=2,3,.. (10.310)

Now, since @ satisfies the higher-order radiation condition

Bmd):O(;). (10.311)

(r)2m+1
By imposing the mth-order boundary condition
B,®=0, on$ (10.312)

will compel the solution @ to match the first 2m terms of the expansion in equation
(10.309). Equation (10.312) along with other appropriate equations is solved for
® using the FEM.

10.18 MODELING AND SIMULATION OF SHIELDED
MICROSTRIP LINES WITH COMSOL MULTIPHYSICS

In today’s fast-paced research and development culture, simulation power gives
you the competitive edge. COMSOL Multiphysics delivers the ideal tool to build
simulations that accurately replicate the important characteristics of your designs.
Its unparalleled ability to include all relevant physical effects that exist in the
real world is known as multiphysics. This approach delivers results—tangible
results that save precious development time and spark innovation. COMSOL
Multiphysics brings you this remarkable technology in an easy-to-use, intuitive
interface, making it accessible to all engineers including designers, analysts, and
researchers.

Today, electromagnetic propagation on multiple parallel transmission
lines has been a very attractive area in computational electromagnetics.
Multiple parallel transmission lines have been successfully applied and
used by designers in compact packaging, semiconductor device, high speed
interconnecting buses, monolithic integrated circuits, and other applications.
Microstrip lines are the most commonly used in all planar circuits despite
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the frequencies ranges of the applied signals. Microstrip lines are the most
commonly used transmission lines at high frequencies. Quasi-static analysis
of microstrip lines involves evaluating them as parallel plates transmission
lines, supporting a pure “TEM” mode. Development in microwave circuits
using rectangular coaxial lines as a transmission medium has been improving
over the past decades. Reid and Webster used rectangular coaxial transmission
lines to fabricate a 60 GHz branch line coupler. The finite difference time
domain method has been used for analyzing a satellite beamforming network
consisting of rectangular coaxial line.

Advances in microwave solid-state devices have stimulated interest in
the integration of microwave circuits. Today, microstrip transmission lines
have attracted great attention and interest in microwave integrated circuit
applications. This creates the need for accurate modeling and simulation
of microstrip transmission lines. Due to the difficulties associated with
analytical methods for calculating the capacitance of shielded microstrip
transmission lines, other methods have been applied. Such methods include
finite difference technique, extrapolation, point-matching method, boundary
element method, spectral-space domain method, finite element method,
conformal mapping method, transverse modal analysis, and mode-matching
method.

In this book, we consider systems of rectangular coaxial lines as well as single-
strip, double-strip, three-strip, six-strip, and eight-strip (multiconductor) shielded
microstrip lines. Using COMSOL, a finite element package, we performed the
simulation of these systems of microstrip lines. We compared the results with
other methods and found them to be in good agreement.

The rectangular coaxial line consists of a two-conductor transmission system
along which TEM wave propagates. The characteristic impedance of such a lossless
line is given by

(10.313)

h
T
3|~

L

C
where
Z = characteristic impedance of the line
L = inductance per unit length of the line

C = capacitance per unit length of the line
¢ = 3 x 10* m/s (the speed of light in vacuum).

As shown in Figure 10.28, a rectangular coaxial line consists of inner and outer
rectangular conductors with a dielectric material separating them.
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Y4
Hy
A Conducting material a
£, &
b Dielgctric material
0 = > X

Figure 10.28. Cross-section of the rectangular coaxial line.

Using COMSOL for each type of the rectangular lines involves taking the
following steps:

1. Develop the geometry of the inner and outer conductors, such as shown in
Figure 10.28(a).

R1

Figure 10.28(a). Geometry of the rectangular coaxial line model.

N

. Select both conductors/rectangle and take the difference.

3. We select the relative permittivity as 1 for the difference in Step 2. For the
boundary, we select the outer conductor as ground and inner conductor as port.

4. We generate the finite element mesh as in Figure 10.29.

Figure 10.29. Mesh of the rectangular coaxial line.
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5. We solve the model and obtain the potential shown in Figure 10.30.

‘Surface Electric potental (V) Max: 100
1

A o1

] oS o 3 1 15 2 25 3 35 O o
g3 M -120els

Figure 10.30. 2D for the potential distribution of the rectangular coaxial line.

6. As post-processing, we select Point Evaluation and choose capacitance element
11 to find the capacitance per unit length of the line.

We now consider the following three models.

10.18.1 Rectangular Cross-Section Transmission Line

For COMSOL, we use the following values.
Dielectric material:

&=1,u,=1,06=0S5/m (air)
Conducting material:
&=1,u,=1,0=>58x10"S/m (copper)

where

& = permittivity of free space = 1 x10~ =8.854x107"* F/m
&, = dielectric constant 367

1, = relative permeability

Lo = permeability of free space = 47 X 107 = 1.257 X 10°H/m
o = conductivity of the conductor

a = width of the inner conductor = 1 mm

b = height of the inner conductor = 0.8 mm

A = width of the outer conductor = 2.2 mm

B = height of the outer conductor = 2 mm
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From the COMSOL model, we obtained the capacitance per unit length (based
on the dimensions given above) as 72.94 pF/m. Using the finite difference (FD)
method, we obtained the capacitance per unit length of the line as 71.51 pF/m.
Table 10.6 shows the comparison of the characteristic impedance using equation
(10.313) of several models. It is evident from the table that the results are very close.

Table 10.6. Comparison of Characteristic Impedance
Values of Rectangular Coaxial Line

Name Z,
Zheng 45.789
Chen 45.759
Costamagna and Fanni 45.767
Lau 45.778
Finite difference (FD) 46.612
COMSOL 45.70

10.18.2 Square Cross-Section Transmission Line

This is only a special case of the rectangular line. We used the same values for the
dielectric and conducting materials. We used the following dimensions for the line.

a = width of the inner conductor =2 mm

b = height of the inner conductor = 2 mm
A = width of the outer conductor = 4 mm
B = height of the outer conductor =4 mm

From the COMSOL model, we obtained the capacitance per unit length as
90.696 pF/m. Using the finite difference (FD) method, we obtained the capacitance
per unit length of the line as 90.714 pF/m. Table 10.7 presents the comparison of
the characteristic impedance of several models. It is evident from the table that the
results are in good agreement.

Table 10.7. Comparison of Characteristic Impedance
Values of Square Coaxial Line

Name Z,
Zheng 36.79
Lau 36.81
Cockeroft 36.80
Bowan 36.81
Green 36.58

(Continued)
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Table 10.7. Comparison of Characteristic Impedance
Values of Square Coaxial Line (Continued)

Name Z,
Ivanov and Djankov 36.97
Costamagna and Fanni 36.81
Riblet 36.80
Finite difference (FD) 36.75
COMSOL 36.75

10.18.3 Rectangular Line with Diamondwise Structure

The geometry of the cross-section of this line is shown in Figure 10.31. The
same dielectric and conducting materials used for the rectangular line are used
for this line.

y4
A
Dielectric material
0
A £ &, |«— d -
|«— B/2—>
v R
< > X
0 B |
Figure 10.31. Cross-section of the Diamondwise (or Rhombus) structure with 45° offset
angle.

The following values are used for the COMSOL model of the line.

d=1mm
A = width of the outer conductor = 4 mm
B = height of the outer conductor =4 mm

For the COMSOL model, we obtained the capacitance per unit line as
57.393 pF/m.

Table 10.8 displays the comparison of the characteristic impedance of several
models. It is evident from the table that the results are in good agreement.
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Table 10.8. Comparison of Characteristic Im-
pedance Values of Diamondwise Structure

Name Z,
Zheng et al. 56.742
Bowan 56.745
Riblet 56.745
COMSOL 58.079

10.18.4 A Single-Strip Shielded Transmission Line

Figure 10.32 presents the cross-section of a single-strip shielded transmission line.

A
y T
air
b
—t

e w sl |
dielectric a7 £ =83 h
0/ a > | X

Figure 10.32. Cross-section of the Single-strip Shielded Transmission Line.

The following parameters are used in modeling the line. The characteristic
impedance of such a lossless line is given by

zo_ 1 (10.314)
c+/CC

0

where

Z = characteristic impedance of the line

C, = capacitance per unit length of the line when the substrate is replaced with air
C = capacitance per unit length of the line when the substrate is in place

¢ =3 x 10* m/s (the speed of light in vacuum).

For COMSOL, the simulation was done twice on Figure 10.32 (to find C,
and C) using the following values.
Air:

&E=Lu,=1,06=0S5m
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Dielectric material:
&=88,u,=1,6=05/m
Conducting material:
&=1u,=1,0=>5.8x10"S/m (copper)

w = width of the inner conductor = 1 mm

t = height of the inner conductor = 0.1 X 10* m
h = height of dielectric material = 1 mm

a = width of the outer conductor = 19 mm

b = height of the air-filled region = 9 mm

Using COMSOL for modeling and simulation of the lines involves taking the
following steps:

1. Develop the geometry of the line, such as shown in Figure 10.33.

Figure 10.33. Geometry of a Single-strip Shielded Transmission Line at Air.

2. We take the difference between the conductor and dielectric material.

3. We select the relative permittivity as 1 for the difference in Step 2.

4. For the boundary, we select the outer conductor as ground and inner conductor
as port.

5. We generate the finite element mesh, and then we solve the model and obtain
the potential.

6. As post-processing, we select Point Evaluation and choose capacitance element
11 to find the capacitance per unit length of the line.

7. We add a dielectric region under the inner conductor with relative
permittivity as 8.8, as in Figure 10.33. Then we take the same steps from 3 to
6 to generate the mesh as in Figure 10.34 and the potential distribution as in
Figure 10.35.



ENGINEERING ELECTROMAGNETICS ANALYSIS

XY

Figure 10.34. Mesh of a Single-strip Shielded Transmission Line.

Electric potential [V]
T

Arc-length
Figure 10.35. The potential distribution along y = 0.002.
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Table 10.9 shows the comparison between our method using COMSOL and other

methods. It is evident that the results are very close.

Table 10.9. Comparison of Capacitance Values for a Single-strip Shielded Transmission Line

Methods Co (pF/m) C (pF/m)
Finite difference method 26.79 1405.2
Extrapolation 26.88 1393.6
Analytical derivation 27.00 1400.9
COMSOL 26.87 1574.0
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10.19 MULTISTRIP TRANSMISSION LINES

Recently, with the advent of integrated circuit technology, the coupled microstrip
transmission lines consisting of multiple conductors embedded in a multilayer
dielectric medium have led to a new class of microwave networks. Multiconductor
transmission lines have been utilized as filters in the microwave region which
make it interesting in various circuit components. For coupled multiconductor
microstrip lines, it is convenient to write:

Q=YC,V; (i=1,2,...,m) (10.315)

where Q; is the charge per unit length, V; is the voltage of jth conductor with
reference to the ground plane, C; is the short circuit capacitance between ith
conductor and jth conductor. The short circuit capacitances can be obtained
either from measurement or from numerical computation. From the short circuit
capacitances, we obtain

Ci=Y.Cy (10.316)

j=1
where C; is the capacitance per unit length between the ith conductor and the
ground plane. Also,

C.=—C

ij sij >

j#i (10.317)

where Cj; is the coupling capacitance per unit length between the ith conductor
and jth conductor. The coupling capacitances are illustrated in Figure 10.36.

S T T S Gewd [

Figure 10.36. The Per-unit Length Capacitances of a General m-conductor Transmission Line.
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For m-strip line, the per-unit-length capacitance matrix is given by

C, G, - -G,
C= :_Cﬂ : Ca o :_CZm : (10.318)
_le _Cm2 o Cmm
Also, we can determine the characteristic impedance matrix for m-strip line by using
Zy Ly o Ly,
Z, = :Z” :Z“ :ZM (10.319)
Zml Zm2 T me

where Z, is the characteristic impedance per unit length.

Using COMSOL for modeling and simulation of the lines involves taking the
following steps:

1. Develop the geometry of the line.

2. We take the difference between the conductor and dielectric material.

3. We select the relative permittivity as 1 for the difference in Step 2.

4. We add a dielectric region under the inner conductors with specified relative
permittivity.

5. For the boundary, we select the outer conductor as ground and the inner
conductors as ports.

6. We generate the finite element mesh, and then we solve the model.

7. Aspost-processing, we select Point Evaluation and choose capacitance elements
to find the coupling capacitance per unit length of the line.

These steps were taken for the following four cases.

10.19.1 Double-strip Shielded Transmission Line

Figure 10.37 presents the cross-section of double-strip shielded transmission line,
which consists of two inner conductors.

A
y
air T
v e—w — b
t S—» t l
dielectric £.=2 _i_h
0|« a > | X

Figure 10.37. Cross-section of the Double-strip Shielded Transmission Line.
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For COMSOL, the simulation was done twice on Figure 10.36 (one for C, and
other for C) using the following values.
Air:

&=1Lu,=1,0=08m
Dielectric material:

&=2,1,=1,6=0S/m
Conducting material:

&=1,u,=1,0=>58x10"S/m (copper)

For the geometry (see Figure 10.37), we followed the following values:
w = width of each of the inner conductors = 3 mm
t = height (or thickness) of the inner conductors = 1 mm
s = distance between the inner conductors = 2 mm
h = height of dielectric material = 1 mm

a = width of the outer conductor = 11 mm
b = height of the air-filled region = 2.7 mm

From the COMSOL model, the simulation was done twice, one for the case in
which the line is air-filled (the dielectric was replaced by air) and the other case in
which the dielectric is in place as shown in Figure 10.37. Figure 10.38 shows the
finite element mesh while Figure 10.39 depicts the potential distribution for the
dielectric case. The potential distribution for y= 1 mm is portrayed in Figure 10.10.

Figure 10.38. Mesh the of Double-strip Shielded Transmission Line.

S N
SN—

Figure 10.39. Potential distribution.
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Figure 10.40. Potential distribution at y =1 mm.

We obtained the capacitances per unit length (C, and C) by taking steps enumerated
above for the single-strip transmission line. The results are shown in Table 10.9.
Table 10.10 is for the case which the line is air-filled, i.e., the dielectric in Figure 10.37
is replaced by air. Table 10.11 is for the case in which the dielectric is in place. The
results in Table 10.11 are compared with other methods and found to be close.

Table 10.10. Capacitance Values for Double-strip Air-filled Shielded Transmission Line

Methods C11 = C22 (PF/m) C12 = C21 (pF/m)
COMSOL 72.9 —4.591

Table 10.11. Comparison of Capacitance Values for Double-strip Shielded Transmission Line
Shown in Figure 10.36

Methods Ci1 = Cy; (pF/m) Ci2 = G (pF/m)
Spectral-space domain method 108.1 —4.571
Finite element method 109.1 —4.712
Point-matching method 108.8 —4.683
COMSOL 108.5 —4.618

10.19.2 Three-strip Line

Figure 10.40(a) shows the cross-section for three-strip transmission line. For
COMSOL, the simulation was done twice on Figure 10.40 (one for C, and other
for C) using the following values:

Air:

e&=1Lu=1,0=0S5m
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Dielectric material:
&=8.6,u,=1,0=0S5/m
Conducting material:
&=1u,=1,0=>5.8x10"S/m (copper)

For the geometry (see Figure 10.40(a)), we used the following values:

a = width of the outer conductor = 13 mm

b = height of the free space region (air) = 4 mm

h = height of the dielectric region = 2 mm

w = width of each inner strip = 2 mm

t = thickness of each inner strip = 0.01 mm

D = distance between the outer conductor and the first strip = 2.5 mm
s = distance between two consecutive strips = 1 mm

A
y
air T
vl vl e wdp] P
t S—p t T
hj_
dielectric (& =8.6) v .
0|« a > X i

Figure 10.40(a). Cross-section of the Three-strip Transmission Line.

Figure 10.41 shows the finite element mesh, while Figure 10.42 illustrates the
potential distribution along line y = h.

Figure 10.41. Mesh for the Three-strip Transmission Line.
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Electric potential [V]

Electric potential [V]

Figure 10.42. Potential distribution along the Air-dielectric interface (y = h) for the Three-strip
Transmission Line.

Table 10.12 shows the finite element results for the three-strip line. Unfortunately,
we could not find any work in the literature to compare our results.

Table 10.12. Capacitance Values (in pF/m) for Three-strip Shielded Microstrip Line

Methods Ciq Cy (&F

COMSOL 163.956 —27.505 —0.4301

10.19.3 Six-strip Line

Figure 10.43 shows the cross-section for six-strip transmission line. For COMSOL,
the simulation was done twice on Figure 10.42 (one for C, and other for C) using
the following values:

Air:

&=Lu,=1,6=0S5m
Dielectric material:

&=6,1,=1,0=0S/m
Conducting material:

&=1,u,=1,0=>5.8x10"S/m (copper)
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For the geometry (see Figure 10.43), we used the following values:

a = width of the outer conductor = 15 mm

b = height of the free space region (air) = 2 mm
h = height of the dielectric region = 8 mm

w = width of each inner strip = 1 mm
t = thickness of each inner strip = 0.01 mm
D = distance between the outer conductor and the first strip = 2 mm
s = distance between two consecutive strips = 1 mm

A

Yy
air l
b
w s | W

o FAE o |4
] X
dielectric (&=6) +h;
) — 2 > x

Figure 10.43. Cross-section of the Six-strip Transmission Line.

Figure 10.44 shows the finite element mesh, while Figure 10.45 depicts the
potential distribution along line y = h.

Figure 10.44. Mesh for the Six-strip Transmission Line.

Electric potential (V]

0012 0014

Figure 10.45. Potential distribution along the Air-dielectric Interface (y = h) for the Six-strip

Transmission Line.
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The capacitance values for six-strip shielded microstrip line are compared with
other methods as shown in Table 10.13, where “iterative” refers to an iterative
method and ABC refers to the asymptotic boundary condition. It is evident from
the table that the finite element methods based closely agree. The finite element
methods seem to be more accurate than the iterative and ABC techniques. (The
negative capacitances are expected from equation (10.318).)

Table 10.13. Capacitance Values (in pF/m) for Six-strip Shielded Microstrip Line

Methods C11 C21 C31 C41 C51 C51
Iterative 66.8 -27.9 -5.49 -2.08 -0.999 -0.704
Finite Element 84.8 -26.4 -3.71 -1.17 —-0.456 -0.812
ABC 68.6 -31.5 —6.00 -2.25 -0.792 —-0.602
COMSOL 80.4 -23.9 -3.61 -1.15 -0.451 -0.180

10.19.4 Eight-strip Line

Figure 10.46 shows the cross-section for eight-strip transmission line. For
COMSOL, the simulation was done twice on Figure 10.45 (one for C, and other
for C) using the following values:

Air:

&=1Lu,=1,0=0S5m
Dielectric material:
=129, u,=1,6=0S/m
Conducting material:
&=1,u,=1,0=>58x10"S/m (copper)

For the geometry (see Figure 10.46), we used the following values:

a = width of the outer conductor = 175 mm

b = height of the free space region (air) = 100 mm

h = height of the dielectric region = 16 mm

w = width of each inner strip = 1 mm

t = thickness of each inner strip = 0.01 mm

D = distance between the outer conductor and the first strip = 80 mm
s = distance between two consecutive strips = 1 mm
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Figure 10.46. Cross-section of the Eight-strip Transmission Line.

Figure 10.47 shows the finite element mesh, while Figure 10.48 depicts the
potential distribution along line y = 20 mm.
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Figure 10.47. Mesh for the Eight-strip Transmission Line.
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Figure 10.48. Potential distribution along the Air-dielectric interface (y = 20 mm) for the
Eight-strip Transmission Line.

The capacitance values for eight-strip shielded microstrip line are compared with
other methods as shown in Table 10.14, where other authors used the analytic
approach and Fourier series expansion. It is evident from the table that the results
from the finite element method (COMSOL) closely agree with the analytic
approach.
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Table 10.14. Capacitance Values (in pF/m) for Eight-strip Shielded Microstrip Line

Method Ciy C2 G Ca Cs, (& Cn Cs1

Analytic 127.776 —58.446 -13.024 -5.721 -3.104 -1.892 —-1.282 -1.211
Fourier series 126.149 -57.066 —12.927 -5.684 -3.086 —1.875 -1.264 —1.185
COMSOL 128.204 -58.759 -13.064 —5.739 -3.1206 -1.902 -1.290 -1.226

10.20 SOLENOID ACTUATOR ANALYSIS WITH ANSYS

We use Ansys to do magnetic analysis (linear static) of a solenoid actuator. A
solenoid actuator is to be analyzed as a 2D axisymmetric model as shown in
Figure 10.49. For the given current, we determine the force on the armature.

t,=0.75

gap = 0.25

Armature
(iron)

Back-iron
(iron)
Axis of symmetry
Coil
(copper)
650 turns,
1 amp/turn

t,=0.75

Figure 10.49. Cross-section of the Solenoid Actuator.

t, =015 t, =

The dimensions of the solenoid actuator are in centimeters. The armature is the
moving component of the actuator. The back-iron is the stationary iron component
of the actuator that completes the magnetic circuit around the coil. The stranded,
wound coil of 650 windings with 1 amp/turn supplies the predefined current. The
current per winding is 1 amp. The air-gap is the thin rectangular region of air
between the armature and the pole faces of the back-iron.

The magnetic flux produced by the coil current is assumed to be so small that
no saturation of the iron occurs. This allows a single iteration linear analysis.
The flux leakage out of the iron at the perimeter of the model is assumed to be
negligible. This assumption is made simple to keep the model small. The model
would normally be created with a layer of air surrounding the iron equal to or
greater than the maximum radius of the iron.
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The air gap is modeled so that a quadrilateral mesh is possible. A quadrilateral
mesh allows for an uniform thickness of the air elements adjacent to the armature
where the virtual work force calculation is performed. This is desirable for an
accurate force calculation. The program requires the current to be input in the
form of current density (current over the area of the coil). The assumption of no
leakage at the perimeter of the model means that the flux will be acting parallel to
this surface. This assumption is enforced by the “flux parallel” boundary condition
placed around the model. This boundary condition is used for models in which
the flux is contained in an iron circuit. Forces for the virtual work calculation are
stored in an element table and then summed. The force is also calculated by the
Maxwell Stress Tensor method and the two values are found to be relatively close.
Table 10.15 summarizes the parameters of the model for the actuator geometry.

Table 10.15. Parameters of the Model for the Actuator Geometry

Parameter Value
Number of turns in the coil; used in post-processing n =650
Current per turn 1=1.0
Thickness of inner leg of magnetic circuit t,=0.75
Thickness of lower leg of magnetic circuit t,=0.75
Thickness of outer leg of magnetic circuit t.=0.50
Armature thickness t;=0.75
Width of coil w,=1
Height of coil he=2
Air Gap gap = 0.25
Space around coil space = 0.25
Wy Wy = W, + 2% space
h hy=h.+0.75
Total width of model w=t,+ w,+t,
hy, hy =ty + hq
Total height of model h=h,+gap+t,
Coil area acoil = w.* h,

Current density of coil idens = n*i/acoil
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The below steps are a guideline in solving the above model.

1. Input the geometry of the model
We use the information in the problem description to make Figure 10.50.

Figure 10.50. The 2D geometry of the Solenoid Actuator model.

2. Define the materials
(a) Set preferences
You will now set preferences in order to filter quantities that pertain to this
discipline only.

1. Main Menu > Preferences
2. Check “Magnetic-Nodal” as in Figure 10.50(a)
3. OK

mpre!elences for GUI Filtering b

[KEYW][/PMETH] Preferences for GUI Filtering

Individual discipline(s) to show in the GUI
I~ Structural
I~ Thermal
I ANSYS Fluid
I~ FLOTRAN CFD

Electromagnetic:

v Megnetictodal |
I~ Magnetic-Edge
I~ High Frequency
I Electric

Note: If no individual disciplines are selected they will all show.

Discipline options
& h-Method
 p-Method Struct.
" p-Method Electr.

oK Cancel Help

Figure 10.50(a). Preferences for GUI filtering.
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(b) Specify material properties

Now specify the material properties for the magnetic permeability of air, back-
iron, coil, and armature. For simplicity, all material properties are assumed to
be linear. (Typically, iron is input as a nonlinear B-H curve.) Material 1 will be
used for the air elements. Material 2 will be used for the back-iron elements.
Material 3 will be used for the coil elements. Material 4 will be used for the
armature elements.

1. Main Menu > Preprocessor > Material Props > Material Models
. Double-click “Electromagnetics”, then “Relative Permeability”, then
“Constant”
“MURX” =1
OK
. Edit > Copy
. OK to copy Material Model Number 1 to become Material Model
Number 2.
7. Double-click “Material Model Number 27, then “Permeability (Constant)”
8. “MURX” = 1000 as shown in Figure 10.51
9. OK
10. Edit > Copy
11. “from Material Number” = 1
12. “to Material Number” = 3
13. OK
14. Edit > Copy
15. “from Material Number” = 2
16. “to Material Number” =4
17. OK
18. Double-click “Material Model Number 47, then “Permeability (Constant)”
19. “MURX” = 2000 as shown in Figure 10.52
20. OK
21. Material > Exit
22. Utility Menu > List > Properties > All Materials
23. Review the list of materials, then: as shown in Figure 10.53
File > Close (Windows)

N

oo pw
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Material Models Defined Material Models Available

(&8 Material Model Number 1 = @ Favorites

[ Faterial Model Number 2) B Electromagnetics

€ Permeabiity (constant) 8 Relative Permeabiity

o B

© Orthotropic
© BHCurve
(8 Coercive Force

I\ Permeability for Material Number 2

(88 Relative Permittivity
(&) Resistivity
T © Loss Tangent

—

Relative Permeability (Constant) for Material Number 2

Figure 10.51. Definition of material model behavior for Number 1 and 2.

I\ Define Material Model Behavior Q@@

Material Edit Favorite Help

Material Models Defined Material Models Available
(&3 Material Model Number 1 ;] (&3 Favorites ;]
(&) Material Model Number 2 &8 Electromagnetics
(&) Material Model Number 3 @8 Relative Permeability
s o ros | 0
€ Permeabiity (constant) & Orthotropic
£ BHCurve

& Coercive Force

(&3 Relative Permittivity
(83 Resistivity

€ Loss Tangent

7] 2]
il | il |

Figure 10.52. Definition of material model behavior for Number 1, 2, 3, and 4.

FMPLIST Command

File

|

EVALURTE MATERIAL PROPERTIES FOR MATERIALS 1T0 4 IN INCREMENTS OF 1
MATERIAL NUMBER = 1 EVALUATED AT TEMPERATURE OF ©.0000
MURX =  1.8000

MATERIAL NUMBER = 2 EVALUATED AT TEMPERATURE OF 0.0000
MURX = 1000.8

MATERIAL NUMBER = 3 EVALUATED AT TEMPERATURE OF 0.0000
MURR = 1.0000

MATERIAL NUMBER = 4 EUALUATED AT TEMPERATURE OF  ©.8000
MURX = 2000.0

Figure 10.53. Review the list of materials of the model.
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3. Generating the mesh
(a) Define element types and options
In this step, you will define element types and specify options associated with
these element types.
The higher-order element PLANE53 is normally preferred, but to keep the
model size small, use the lower-order element PLANE13.

. Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Add...

. “Magnetic Vector” (left column)

. “Vect Quad 4nod13 (PLANE13” (right column)

OK

. Options...

. (drop down) “Element behavior” = Axisymmetric, as shown in Figure 10.54
OK

. Close

CONOUAWNR=

m Element Types

ype 1 PLANE13

Options for PLANE13, Element Type Ref. No. 1

Element degrees of freedom K1 m

Extra shapes K2 Include ~

Element behavior K3

Element coord system defined K4 [Paraltogobal =]

Extra clement output K5 [oextraoupt ]
oK Cancel | Help I

Figure 10.54. Element type PLANE 13.
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(b) Assign material properties.
Now assign material properties to air gaps, iron, coil, and armature areas.

1. Main Menu > Preprocessor > Meshing > MeshTool

2. (drop down) “Element Attributes” = Areas; then [Set] as in Figure 10.55

3. Pick four areas of air gaps, A13, A14, A17,and A18 (the picking “hot spot” is
at the area number label).

MeshTool

i Element Attributes:

Areas % E

™ Smart Size

Ml B

Fine 6 Coarse

Size Controls:

Global Set Clear

Areas Set Clear

Lines Set Clear
i

Layer Set Clear

Keypts Set Clear

Mesh: ,A’e‘”—L]

Shape: " Tii @ Quad
@ Free (" Mapped©

j

Mesh Clear

Refine at: | Elements 'l
Refine

Cose | Hep |

Figure 10.55. Element attribute for MeshTool.

4, OK

5. (drop down) “Material number” = 1

6. Apply

7. Pick the five back-iron areas, A7, A8, A9, A11, A12 as in Figure 10.56
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8.

9.
10.
11.
12.
13.
14.
1S.
16.
17.
18.
19.

(c)

Figure 10.56. Five Back-iron areas, A7, A8, A9, A11, A12.

OK

(drop down) “Material number” = 2
Apply

Pick coil area, A4

OK

(drop down) “Material number” =3
Apply

Pick armature area, A10, A15,A16
OK

(drop down) “Material number” = 4
OK

Toolbar: SAVE_DB

Specify meshing-size controls on air gap

Adjust meshing size controls to get two element divisions through the air gap.

1.

wi b ODN

Main Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines
> Picked Lines

. Pick four vertical lines through air gap
. OK

. “No. of element divisions” = 2

. OK
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(d) Mesh the model using the MeshTool

1. “Size control global” = [Set]
2. “Element edge length” = 0.25
3. OKas in Figure 10.57
4. (drop down) “Mesh” = Areas
5. Mesh
6. PickAll
7. Close
PlotCtrls  WorkPlane Parameters Macro MepuClrls  Help
|2l 2| = | Z| %] MeshTool |
Element Attributes:
1| PowRGRPH (Areas v] set
4(3 I~ Smart Size
il i
Fine 6 Coarse
Size Controls:
a16 Global Clear
E3 Areas Set Clear
i Lines. Set Clear
Copy Flip
Layer Set Clear
Keypts Set Clear
Mesh [mesm =]
Shape: " Ti @ Quad
@ Fiee  Mapped
oot cene ot o
[ESIZE] Global element sizes and divisions (applies only
to "unsized” lines) Mesh Clear
SIZE Element edge length 0.25
NDIV No. of element divisions - \:’
- (used only if element edge length, SIZE, is blank or zero) Refine at: [Elements =
Refine
oK Cancel Help Close Help

Figure 10.57. Global element sizes.

8. Utility Menu > PlotCtrls > Numbering as in Figure 10.58
9. (drop down) “Elem / attrib numbering” = Material numbers as in Figure 10.59
10. OKas in Figure 10.60
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Figure 10.58. Numbering after PlotCtrls.

1

ELEME

Plot Numbering Controls

[/PNUM] Plot Numbering Controls

KP Keypoint numbers
LINE Line numbers
AREA Area numbers
YOLU Yolume numbers

NODE Node numbers

Elem { Attrib numbering
TABN Table Names

SYAL Numeric contour values

I~ Off
[~ Off
v On
I~ off

I~ Off

{Material numbers
[~ Off

I~ Off

FiNITE ELEMENT ANALYSIS

[/NUM] Numbering shown with

Colors & numbers v

[/REPLOT] Replot upon OKfApply?

Replot v

Cancel | Help

Figure 10.59. Plot numbering control.
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ELEMENTS

MAT NUM

Figure 10.60. Numbering of the model.

(e) Scale model to meters for solution
For a magnetic analysis, a consistent set of units must be used. In this tutorial,
MKS units are used, so you must scale the model from centimeters to meters.

Main Menu > Preprocessor > Modeling > Operate > Scale > Areas
Pick All

“RX,RY,RZ Scale Factors”=0.01,0.01, 1

(drop down) “Existing areas will be” = Moved

OK as in Figure 10.61

Toolbar: SAVE_DB

Qunpeb=

[ARSCALE] Scale Areas

RX,RY,RZ Scale factors - |o.o1 ||o.u1 ”1

- in the active coordinate system

KINC Keypoint increment I:l

NOELEM Items to be scaled Areas and mesh v
IMOVE Existing areas will be Moved 7

o | aoply | Cancel | Help

Figure 10.61. Scale area of the model.
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4. Apply Loads
(a) Define the armature as a component
The armature can conveniently be defined as a component by selecting its
elements.

1. Utility Menu > Select > Entities

2. (first drop down) “Elements”

3. (second drop down) “By Attributes”
4. “Min, Max, Inc” =4

5. OK as in Figure 10.62

Figure 10.62. The entities of the model.
6. Utility Menu > Plot > Elements as in Figure 10.63

Figure 10.63. The Armature as a component of the model.
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7. Utility Menu > Select > Comp/Assembly > Create Component
8. “Component name” = ARM
9. (drop down) “Component is made of” = Elements

10. OK

(b) Apply force boundary conditions to armature

1. Main Menu > Preprocessor > Loads > Define Loads > Apply > Magnetic >
Flag > Comp. Force/Torq

. (highlight) “Component name” = ARM

. OK

. Utility Menu > Select > Everything

. Utility Menu > Plot > Elements as in Figure 10.64

wnhODN

H
n

ERE EEEPPree

Figure 10.64. Plot of apply Force Boundary Conditions to Armature.

(c) Apply the current density

The current density is defined as the number of coil windings times the current,
divided by the coil area. This equals (650)(1)/2, or 325. To account for scaling
from centimeters to meters, the calculated value needs to be divided by .01**2.

1. Utility Menu > Plot > Areas

2. Main Menu > Preprocessor > Loads > Define Loads > Apply > Magnetic
> Excitation > Curr Density > On Areas

3. Pick the coil area, which is the area in the center
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4. OK

5. “Curr density value” = 325/.01**2

6. OK

Close any warning messages that appear.

(d) Obtain a flux parallel field solution

Apply a perimeter boundary condition to obtain a “flux parallel” field solution.
This boundary condition assumes that the flux does not leak out of the iron at the
perimeter of the model. Of course, at the centerline, this is true due to axisymmetry.

1. Utility Menu > Plot > Lines

2. Main Menu > Preprocessor > Loads > Define Loads > Apply > Magnetic >
Boundary > Vector Poten > Flux Par’l > On Lines

3. Pick all lines around perimeter of model (14 lines) as in Figure 10.65

LINES

MAT NUM

Figure 10.65. Plot of lines for Flux Parallel field of the model.

4. OK
5. Toolbar: SAVE_DB

5. Obtain solution

(a) Solve

1. Main Menu > Solution > Solve > Electromagnet > Static Analysis > Opt &
Solve

2. OK to initiate the solution

3. Close the information window when solution is done
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6. Review results
(a) Plot the flux lines in the model
Note that a certain amount of undesirable flux leakage occurs out of the
back-iron.

1. Main Menu > General Postproc > Plot Results > Contour Plot > 2D Flux
Lines
2. OK asin Figure 10.66

Figure 10.66. Contour Plot for 2D Flux Lines of the Model.

Your results may vary slightly from what is shown here due to variations in
the mesh.

(b) Summarize magnetic forces

1. Main Menu > General Postproc > Elec & Mag Calc > Component Based >
Force
2. (highlight) “Component name(s)” = ARM
3. OK
4. Review the information, then choose:
File > Close (Windows),
or
Close (X11/Motif) to close the window.
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(c) Plot the flux density as vectors

1. Main Menu > General Postproc > Plot Results > Vector Plot > Predefined
2. “Flux & gradient” (left column)

3. “Mag flux dens B” (right column)

4. OK as in Figure 10.67

Figure 10.67. Plot the Flux Density as Vectors of the model.

(d) Plot the magnitude of the flux density
Plot the magnitude of the flux density without averaging the results across

material discontinuities.

1. Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu
2. Choose “Magnetic Flux Density,” then “Magnetic flux density vector sum”
3. OK asin Figure 10.68
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Figure 10.68. Contour Plot of the model.

Next, you will see how the flux density is distributed throughout the entire
actuator. Up to this point, the analysis and all associated plots have used the
2D axisymmetric model, with the axis of symmetry aligned with the left
vertical portion of the device. ANSYS will continue the analysis on the 2D
finite element model, but will allow you to produce a three-quarter expanded
plot representation of the flux density throughout the device, based on the
defined axisymmetry. This function is purely graphical. No changes to the
database will be made when you produce this expanded plot.

4. Utility Menu > PlotCtrls > Style > Symmetry Expansion > 2D Axi-
Symmetric

5. (check) “3/4 expansion” as in Figure 10.69

6. OK as in Figure 10.70

I\ 20 Axi-Symmetric Expansion

[/EXPAND] 2D Axi-Symmetric Expansion
Select expansion amount

" 1/4 expansion

" 1f2 expansion

Q0

¢ Full expansion

(" No Expansion
Also reflect about x-z plane [~ No
oK | Apply l Cancel | Help l

Figure 10.69. 2D Axi-symmetric expansion with Amount %.
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JLUTION

TIME=1
E ANDED

Figure 10.70. 2D Axi-symmetric plot of the model.

7. Utility Menu > PlotCtrls > Pan, Zoom, Rotate, as in Figure 10.71
8. Iso
9. Close

23 anis¥'s Academiic Teaching Advanced Urilit T — g
Ble Select st Bt PlotCls Workblane Porameters Macro MepuCts Heb

Dlz|e 6|8 &2 & EIEIEE]

ABYS Toobar @
seve_os| pesum oo] qunr| pownaren

ANSYS Main Menu Pan Zoom Rotate
[ Preferences.
Preprocessor

@ Selution Wiw] ! —

O ot os ) — o] Fon
e ; [CY| =
B Plot Results

B Contour Plot ! phics RG]

5 Hem Table \ 2 Box Zoom| Win Zoon|
520 Flu Lines
@ Vector Plot
 Plot Path Item
59 Flow Trace
A Defi Trace Pt
7 List Trace Pt
A Dele Trace Pt
(& ime Interval
& Particle Trace
@ ThinFilm
@ List Results
 Query Results
5 Options for Outp
(5 Results Viewer
[ write PGR File
 Nodal Calcs
@ Element Table
 Path Operations
 Surface Operations
Load Case
 Check EHlem Shape

5 Nonlinear Diagnostics
B Reset

Figure 10.71. Rotation of the model.
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(e) Exit the ANSYS program

1. Toolbar: QUIT
2. (check) “Quit - No Save!”
3. OK

PROBLEMS

) D
1. Given H = He“"*#?a_ in free space, known that, VxH = E;— , ind E.
t

2. Calculate the skin depth, J, for a copper conductor in 50 Hz field (g = 56 xX10°
Sim).

3. EM problems and examples.

4. For the axisymmetric coaxial cable illustrated in Figure 10.71. Determine one
dimension finite element general solution based on the following:

a.

Obtain and solve the governing differential solution for the coaxial cable,

. d( do
h t:f—( —):_ .
o rdr rdr ’

. Obtain the boundary conditions and continuity conditions, hint: ¢, (r = a)

= ¢, ¢, (r=¢) = 0, and the electric potential and the electric displacement
are continuous at r = b.

Formulate the equations of part (b) as a matrix equation that can be solved
for the constants of integrations.

. Determine the shape functions for a general three-node quadratic element

in terms of x;, x,, and x;.

. Determine the shape functions for a general three-node quadratic element

when x; =—L, x, = 0,and x; = L.
Find the local stiffness matrix for an element of length 2L with coordinates
(-L,0,L).

>
S

Figure 10.71(a). Axisymmetric radial element.
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Figure 10.71(b). Coaxial cable.

0
0
d

A
\ 4

2
v

A 4

Figure 10.71(c). Three-node element.

5. Determine the variational function for two-dimensional axisymmetric heat
conduction in r, z coordinate and formulate the corresponding local finite
stiffness matrix using three-node triangular elements.

6. Use COMSOL in modeling of the four-conductor transmission lines with the
following parameters as in Figure 10.72:

&, = dielectric constant of the dielectric material = 4.2

&, = dielectric constant of the free space = 1.0

W = width of the dielectric material = 10 mm

w = width of a single conductor line = 1 mm

H, = distance of conductors 1 and 2 from the ground plane = 3 mm
H, = distance of conductor 4 from the ground plane = 1 mm

H; = distance of conductor 3 from the ground plane = 2 mm

s = distance between the two coupled conductors = 1 mm

t = thickness of the strips = 0.01 mm
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Figure 10.72. Cross-section of the four-conductor transmission lines.

The geometry is enclosed by a 10 x 10 mm shield. Find the capacitances
per unit length, Cy;, Ci», Ci3, Cig, Copy Cosy Cogy Gz, Cay, and Cyg.

7. Use COMSOL in modeling of the shielded two vertically coupled striplines
geometry is enclosed by a 3.4 X 1 mm shield with the following parameters as
in Figure 10.73:

H| g W, S &
———
H2 W2 | gr

H, A g,

Figure 10.73. Cross-section of the two shielded vertically coupled striplines embedded in

dielectric material.

&, = dielectric constant =1 and 7.5

W, = width of the stripline 1 = 1.4 mm

W, = width of the stripline 2 = 1 mm

H; = height from stripline 1 and stripline 2 to the upper side and lower side of
the shield respectively = 0.4 mm

H, = distance between the two striplines = 0.2 mm

S = distance between the stripline 1 and right/left side of the shield = 1 mm

a=(W,—W,)/2=0.2mm

t = thickness of the striplines = 0.01 mm

Find the capacitances per unit length, Cy;, Gy, and C,,.
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8. Use ANSYS Modeling of harmonic high-frequency electromagnetic of a

coaxial waveguide as shown in Figure 10.74. The properties of the model is
summarized as
Material property:
1=1.0,¢=1.0,

Geometric property:

r;=0.025m, rp=0.075m, I=0.375 m,
Load used
Port voltage = 1.0
Q=0.8 GHz

Driven port

Matched port

Figure 10.74. Cross-section of a coaxial waveguide.

Find Sll, SlZ, ZRea Zirm RL

. Use ANSYS Modeling of electrostatic of a shielded microstrip transmission

line consisting of a substrate, microstrip, and a shield. The strip is at potential
V), and the shield is at a potential V. Find the capacitance of the transmission
line as shown in Figure 10.75.

The properties of the model is summarized as

Material property:
Air:¢, =1

Substrate: ¢, = 12
Geometric property:
a=10cm

b=1cm

w=2cm

Loading property:
V=1V

V=10V
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Knowing that the electrostatic energy, W, is defined as
e

W, =%C(Vl -V, ).

Also, you need to type the following values in scalar parameters as:

C = (W*2)/((Vi=V,)"2) and C = ((C*2)*1el2).

« 4 >
|
| —x
[
I'Vo
. [ i
air | shield
[
[
! a
£, |
| strip Vo
[
L/
& ! substrate |[$b ¢

Vo

Figure 10.75. Cross-section of shielded microstrip line.
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Post-processing
axial vibrations, 344
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engineering problem, solving, 52
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Practical applications, 51
Preprocessing
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Processing
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See Stress analysis
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post-processing, 140-141
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post-processing, 251
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Three-dimensional element, 54, 415—420
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post-processing, 169—-170
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Two-dimensional elements, 53—54
band matrix method, 392-395, 397-400
FEM to electrostatic problems, 382—400
iteration method, 392, 396-397
Laplace’s equation, 382-392
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Variational approach, 49
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