

Artificial Intelligence
and

Expert Systems

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of
the Publisher. Duplication or dissemination of any text, code, simulations, images,
etc. contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner of the
content, etc., in order to reproduce or network any portion of the textual material (in
any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, or production of the companion disc, accompanying algo-
rithms, code, or computer programs (“the software”), and any accompanying Web site
or software of the Work, cannot and do not warrant the performance or results that
might be obtained by using the contents of the Work. The author, developers, and the
Publisher have used their best efforts to insure the accuracy and functionality of the
textual material and/or programs contained in this package; we, however, make no
warranty of any kind, express or implied, regarding the performance of these contents
or programs. The Work is sold “as is” without warranty (except for defective materials
used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book, and only at the discretion of the Publisher. The use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to the
purchaser of this product.

Artificial Intelligence
and

Expert Systems

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Itisha Gupta
&

Garima Nagpal

Copyright © 2020 by Mercury Learning and Information LLC.
All rights reserved.

Original title and copyright: Artificial Intelligence and Expert System.
Copyright ©2018 by Laxmi Publications Pvt. Ltd. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic
display or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

I. Gupta & G. Nagpal. Artificial Intelligence and Expert Systems.
ISBN: 978-1-68392-507-1

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2020935416

202122321	 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions,
corporations, etc. For additional information, please contact the Customer
Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital
vendors. The sole obligation of Mercury Learning and Information to the purchaser is to
replace the book, based on defective materials or faulty workmanship, but not based on the
operation or functionality of the product.

Preface� xiii

Chapter 1: Introduction to Artificial Intelligence� 1
	 1.1 The Turing Test� 2
	 1.2 Intelligent Agents� 5

1.2.1 Software Agents� 5
1.2.2 Physical Agents� 5

	 1.3 Approaches in Artificial Intelligence� 7
1.3.1 Acting Humanly: The Turing Test Approach� 7
1.3.2 Thinking Humanly: The Cognitive Modelling Approach� 8
1.3.3 Thinking Rationally: The Laws of Thought Approach� 8
1.3.4 Acting Rationally: The Rational Agent Approach� 9

	 1.4 Definitions of Artificial Intelligence� 10
1.4.1 Intelligent Behavior� 12
1.4.2 Interpretations of Artificial Intelligence� 12

	 1.5 AI Problems� 13
1.5.1 Tasks Under Artificial Intelligence� 14
1.5.2 Tasks Domains of Artificial Intelligence� 14

	 1.6 Features of AI Programs� 16
	 1.7 Importance of AI� 17
	 1.8 What Can Artificial Intelligence Systems Do?� 17
	 1.9 What Can Artificial Intelligence Systems Not Do Yet?� 18
	 1.10 Advantages of AI� 18
	 1.11 Disadvantages of Artificial Intelligence� 19
	 Exercises� 21

CONTENTS

vi • Contents

Chapter 2: Applications of Artificial Intelligence� 23
	 2.1 Finance � 23
	 2.2 Hospitals and Medicine� 23
	 2.3 Robotics� 24
	 2.4 Expert Systems� 24
	 2.5 Diagnosis� 25
	 2.6 Pattern Recognition� 25
	 2.7 Natural Language Processing� 26
	 2.8 Game Playing� 28
	 2.9 Image Processing� 28
	 2.10 Data Mining� 30
	 2.11 Big Data Mining� 30
	 Exercises� 31

Chapter 3: Introduction to the State Space Search� 33
	 3.1 State Space Search� 34

3.1.1 The Search Problem� 35
	 3.2 Search Techniques� 38

3.2.1 Basic Search Algorithm� 38
	 3.3 Types of Searching Techniques� 39

3.3.1 Uninformed Search (Blind Search)� 39
3.3.2 Avoiding Repeated States� 50

	 Exercises� 52

Chapter 4: Heuristic Search Strategies� 53
	 4.1 Types of Heuristic Search Techniques � 54

4.1.1 Generate and Test� 55
4.1.2 Best First Search� 55
4.1.3 Hill Climbing Search� 58
4.1.4 Simulated Annealing Search� 61
4.1.5 A* Algorithm� 62
4.1.6 AND-OR Graphs� 64

	 4.2 Properties of the Heuristic Search Algorithm� 65
	 4.3 Adversary Search� 66

4.3.1 The MINIMAX Algorithm� 67
	 Exercises� 69

Chapter 5: Expert Systems� 71
	 5.1 Definitions of Expert Systems� 71
	 5.2 Features of Good Expert Systems� 72
	 5.3 Architecture and Components of Expert Systems� 73

Contents • vii

5.3.1 User Interface� 74
5.3.2 Knowledge Base� 75
5.3.3 Working Storage (Database)� 79
5.3.4 Inference Engine� 79
5.3.5 Explanation Facility� 86
5.3.6 Knowledge Acquisition Facility� 86
5.3.7 External Interface� 86

	 5.4 Roles of the Individuals Who Interact with the System� 86
5.4.1 Domain Expert� 86
5.4.2 Knowledge Engineer� 87
5.4.3 Programmer� 87
5.4.4 Project Manager� 88
5.4.5 User� 88

	 5.5 Advantages of Expert Systems� 89
	 5.6 Disadvantages of Expert Systems� 90
	 Exercises� 93

Chapter 6: The Expert System Development Life Cycle� 95
	 6.1 Stages in the Expert System Development Life Cycle� 96

6.1.1 Problem Selection� 97
6.1.2 Conceptualization� 98
6.1.3 Formalization� 100
6.1.4 Prototype Construction� 101
6.1.5 Implementation� 106
6.1.6 Evaluation� 107

	 6.2 Sources of Error in Expert System Development� 109
6.2.1 Knowledge Errors� 110
6.2.2 Syntax Errors� 110
6.2.3 Semantic Errors� 110
6.2.4 Inference Engine Errors� 110
6.2.5 Inference Chain Errors� 110

	 Exercises� 111

Chapter 7: Knowledge Acquisition� 113
	 7.1 Knowledge Basics� 113
	 7.2 Knowledge Engineering� 115

7.2.1 Knowledge Acquisition� 116
7.2.2 Knowledge Engineer� 117
7.2.3 Difficulties in Knowledge Acquisition� 118

	 7.3 Knowledge Acquisition Techniques� 120
7.3.1 Natural Techniques� 121

viii • Contents

7.3.2 Contrived Techniques� 122
7.3.3 Modelling Techniques� 126

	 Exercises� 128

Chapter 8: Knowledge Representation� 129
	 8.1 Definitions of Knowledge Representation� 129
	 8.2 Characteristics of Good Knowledge Representation� 130
	 8.3 Basics of Knowledge Representation� 131
	 8.4 Properties of the Symbolic Representation of Knowledge� 132
	� 8.5 Properties for the Good Knowledge Representation Systems� 133
	 8.6 Categories of Knowledge Representation Schemes� 134
	 8.7 Types of Knowledge Representational Schemes� 135

8.7.1 Formal Logic� 135
8.7.2 Semantic Net� 172
8.7.3 Frames� 194
8.7.4 Scripts� 213
8.7.5 Conceptual Dependency (CD) � 225

	 Exercises� 242

Chapter 9: Neural Networks� 243
	 9.1 Neural Networks vs. Conventional Computers� 244
	 9.2 Neural Networks� 244

9.2.1 Neurons� 245
9.2.2 Types of Neural Networks� 245
9.2.3 Historical Background� 246

	 9.3 Biological Neural Networks� 247
9.3.1 Biological Neurons� 249

	 9.4 Artificial Neural Networks� 249
	� 9.5 Differences Between Biological and Artificial Neural Networks� 253
	 9.6 Architecture of a Neural Network� 253

9.6.1 Single Layer Feed-Forward Networks� 254
9.6.2 Multilayer Feed-Forward Network� 255
9.6.3 Recurrent Networks� 256
9.6.4 Feedback Networks� 256
9.6.5 Network Layers� 257

	 Exercises� 258

Chapter 10: The Learning Process� 259
	 10.1 Types of Learning in a Neural Network� 259

10.1.1 Supervised Learning� 259
10.1.2 Unsupervised Learning� 261
10.1.3 Reinforcement Learning� 262

	 10.2 Perceptron� 262

Contents • ix

10.2.1 The Representational Power of a Perceptron� 263
	 10.3 Backpropagation Networks� 264
	 10.4 Advantages of Neural Networks� 264
	 10.5 Limitations of Neural Networks� 265
	 10.6 Applications of Neural Networks� 266
	 Exercises� 269

Chapter 11: Fuzzy Logic� 271
	 11.1 Introduction to Fuzzy Logic� 271

11.1.1 Definition of Fuzzy Logic� 273
11.1.2 Features of Fuzzy Logic� 274
11.1.3 Advantages of Fuzzy Logic� 275
11.1.4 Disadvantages of Fuzzy Logic� 275

	 11.2 Crisp Set (Classical set) � 276
	 11.3 Fuzzy Set� 277

11.3.1 Linguistic Variables in a Fuzzy Set� 281
	 11.4 Membership Function of Crisp Logic� 287
	 11.5 Membership Function of the Fuzzy Set� 287
	 11.6 Fuzzy Set Operations� 291

11.6.1 Union� 291
11.6.2 Intersection� 291
11.6.3 Complement� 292
11.6.4 Equality of Two Fuzzy Sets� 293
11.6.5 Containment� 293
11.6.6 Normal Fuzzy Set� 294
11.6.7 Support of a Fuzzy Set� 294
11.6.8 α-Cut or α-Level Set� 294
11.6.9 Disjunctive Sum (Exclusive OR) � 294
11.6.10 Disjoint Sum� 296
11.6.11 Difference� 296
11.6.12 The Bounded Difference� 297

	 11.7 Properties of A Fuzzy Set� 297
	 11.8 Differences Between a Fuzzy Set and A Crisp Set� 298
	 11.9 Differences Between Boolean Logic and Fuzzy Logic� 302
	 Exercises� 305

Chapter 12: Fuzzy Systems� 307
	 12.1 Fuzzy Rule� 307

12.1.1 Fuzzy Rules as Relations� 311
12.1.2 Interpretation of Fuzzy Rules� 315

	 12.2 Fuzzy Reasoning� 316
	 Exercises� 320

x • Contents

Chapter 13: Fuzzy Expert Systems� 321
	 13.1 The Need for Fuzzy Expert Systems� 321
	 13.2 Operations on a Fuzzy Expert System� 324

13.2.1 Fuzzification (Fuzzy Input) � 326
13.2.2 Fuzzy Operator� 327
13.2.3 Fuzzy Inferencing (Implication) � 327
13.2.4 Aggregate All Output� 329
13.2.5 Defuzzification� 330

	 13.3 Fuzzy Inference Systems� 332
13.3.1 Mamdani Fuzzy Inference Method� 332
13.3.2 Sugeno Inference Method (TSK Fuzzy Model of Takagi,
Sugeno, and Kang) � 337
13.3.3 Choosing the Inference Method� 339

	 13.4 The Fuzzy Inference Process in a Fuzzy Expert System� 340
13.4.1 Monotonic Inference� 340
13.4.2 Non-Monotonic Inference� 341
13.4.3 Downward Monotonic Inference� 341

	 13.5 Types of Fuzzy Expert Systems� 341
13.5.1 Fuzzy Control� 341
13.5.2 Fuzzy Reasoning� 342

	 13.6 Fuzzy Controller� 342
13.6.1 Components of a Fuzzy Controller� 344
13.6.2 Application Areas of Fuzzy Controller� 356

	 Exercises� 357

Chapter 14: Logic Programming� 359
	 14.1 Introduction� 359
	 14.2 Difference Between C/C++ and Prolog� 360
	 14.3 How Does Prolog Work?� 361
	 14.4 A Little History� 362
	 14.5 Converting English to Prolog� 363
	 14.6 Goals� 363

14.6.1 How Prolog Satisfies Goals� 364
	 14.7 Queries� 365
	 14.8 Clauses� 367

14.8.1 Facts� 367
14.8.2 Rules� 368

	 14.9 Notation in Prolog for Building Blocks� 371
14.9.1 Atoms� 371
14.9.2 Variables� 371
14.9.3 Data Types and Structures� 372

Contents • xi

	 14.10 Arithmetic Operations� 379
	 14.11 Strings� 381
	 Exercises� 382

Chapter 15: Advanced Prolog� 383
	 15.1 Input and Output Predicates� 383

15.1.1 Terms and Character I/O� 384
15.1.2 File I/O� 385

	 15.2 Backtracking� 386
15.2.1 Problems with Backtracking� 389

	 15.3 Cut� 390
	 15.4 Fail� 393

15.4.1 Cut and Fail Combination� 394
	 15.5 Recursion� 394
	 15.6 Prolog Data Structure� 397

15.6.1 Terms� 397
15.6.2 Unification� 398

	 15.7 Dynamic Database� 401
	 15.8 Programs in Prolog� 402
	 15.9 Problems with Prolog� 404
	 Exercises� 405

Index� 407

Artificial Intelligence (AI) is a branch of computer and information science.
The goal of AI is to create a machine that behaves like an ordinary human
with an improved machine behavior in tackling complex tasks and to accom-
plish those tasks in such a way that they would be considered to display
“intelligence.”

Artificial Intelligence and Expert Systems is a book about the science of arti-
ficial intelligence. It is designed to help readers in learning about some of
the current applications and techniques of AI as an aid to solving problems
and accomplishing tasks. The book provides a general introduction to prob-
lems and techniques of AI. We have tried to explore the various branches
of AI, which encompass formal logic, reasoning, knowledge engineering,
expert system neural networks, fuzzy logic, etc. Thus, this book has been
structured into parts that benefit the reader in choosing from a variety of
paths to the chapters. This book is divided into five parts: problems and state
space, knowledge engineering, neural networks, fuzzy logic, and Prolog.

Part I provides introductory concepts on various problems that AI seeks
to solve. It introduces a coherent framework in which to understand AI.
It also includes a detailed explanation of various state space search algo-
rithms such as best first search, hill climbing, A* algorithms, and uniform
search techniques.

Reasoning is one of the important fields of AI that requires a great deal
of knowledge about the world in order to solve complex problems and

PREFACE

xiv • Preface

simulates the decision-making ability of man. Part II explores an important
application of AI, i.e. the field of expert systems which was among the first
truly successful forms of AI software, designed to solve complex problems
by reasoning, like an expert solving complex tasks. This part also introduces
the various methods of knowledge acquisition from human domain experts
and explores various knowledge representational schemes like predicate
logic, propositional logic, frames, scripts and semantic networks.

Part III describes another important branch of AI that is neural networks
which are simplified models of the biological neuron system. Neural net-
works are a parallel distributed processing system that is made by highly
interconnected computing elements, used to learn and thereby acquire
knowledge. This part provides a detailed explanation of the various forms
of artificial neural networks, e.g., single layer feed, forward neural networks,
multilayer networks, feed backward networks and various learning methods
including supervised, unsupervised, and reinforcement.

Part IV provides basic concepts on fuzzy logic introduced in 1930s by Jan
Lukasiewicz. Fuzzy logic is a problem-solving, control system methodology
that is used in systems ranging from simple, small, embedded micro-con-
trollers to large, networked, multi-channel PC or workstation-based data
acquisition and control systems. Fuzzy logic provides a simple way to arrive
at a definite conclusion based upon vague, ambiguous, imprecise, noisy, or
missing input information. It also explores the reasoning process in fuzzy
logic to derive conclusions from known facts and rules. Further, it provides
introductory concepts on a fuzzy expert system to deal with uncertainty and
ambiguities that are difficult to deal with in conventional expert systems.

Part V describes Prolog which is a programming language of AI with an ulti-
mate goal of developing code for solving AI problems. Prolog is a declara-
tive (descriptive) language, non-procedural in nature. The programs are
written in a way that not only defines how the computational process is to
be carried out, but also consists of several declarations representing signifi-
cant facts and rules. The solution to be mined is also expressed as a question
to be answered and a goal to be achieved.

C H A P T E R 1
INTRODUCTION TO
ARTIFICIAL INTELLIGENCE

We all know that computers are suitable for performing mechanical com-
putations using fixed programmed rules that allow machines to perform
simple monotonous tasks efficiently and reliably. Human beings get bored
very quickly with monotonous tasks. A computer cannot reason and lacks
common sense, and it is difficult for a computer to understand new situ-
ations and adapt itself. However, human beings can adapt themselves to
new situations since they have the ability to reason. Human beings see
through their eyes, and their brains interpret this input to extract the types
of objects in the scene. A human being hears a set of voice signals through
their ears, and the brain interprets it as a meaningful sentence. Thus, the
goal of Artificial Intelligence (AI) is to create a machine that behaves like
an ordinary human being and that is an improvement over current machine
behavior for tackling complex tasks.

Much of AI research has allowed us to understand our intelligent behav-
ior. Humans have an interesting approach to problem-solving that is based on
abstract thought, high-level deliberative reasoning, and pattern recognition.
AI can help us understand this process by recreating it, enabling us to enhance
our abilities. AI currently includes a huge variety of subfields, from general-
purpose areas such as perception and logical reasoning, to specific tasks, such as
playing chess, proving mathematical theorems, writing poetry, and
diagnosing diseases. Often, scientists in other fields move gradually

2 • Artificial Intelligence and Expert Systems

into artificial intelligence, where they find the tools and vocabulary
to systematize and automate the intellectual tasks on which they have been
working all their lives.

Although artificial intelligence as an independent field of study is rela-
tively new, it has some roots in the past. We can say that it started 2,400
years ago when the Greek philosopher Aristotle invented the concept of
logical reasoning. The effort to finalize the language of logic continued with
Leibniz and Newton. George Boole developed Boolean algebra in the nine-
teenth century, which laid the foundation of computer circuits. However,
the main idea of a thinking machine came from Alan Turing, who proposed
the Turing test. In 1950, Alan Turing proposed the Turing test, which pro-
vides a definition of intelligence in a machine. The term “artificial intelli-
gence” was first coined by John McCarthy in 1956.

1.1	 The Turing Test

The English mathematician Alan M. Turing devised a test to determine
whether a computer can be said to think like a human. The test was named
after Turing, who founded artificial intelligence during the 1940s and 1950s.
The original version of the test asked the question “Can machines think?”
According to this test, a computer is deemed to have artificial intelligence if
it can mimic human responses under specific conditions. In Turing’s test, if
the human conducting the test is unable to consistently determine whether
an answer has been given by a computer or by another human being, then
the computer is considered to have “passed” the test. In the basic Turing
test, there are three terminals. Two of the terminals are operated by humans,
and the third terminal is operated by a computer. Each terminal is physi-
cally separated from the other two. One human is designated as the ques-
tioner (interrogator). The other human and the computer are designated
the respondents. The questioner interrogates both the human respondent
and the computer according to a specified format, within a certain subject
area and context, and for a pre-set length of time (such as 10 minutes). The
test simply compares the intelligent behavior of a human being with that
of a computer. An interrogator asks a set of questions that are forwarded
to both the computer and the human. The interrogator receives two sets of
responses, but does not know which set comes from the human and which
set from the computer. After a careful examination of the two sets, if the
interrogator cannot definitely tell which set has come from the computer

Introduction to Artificial Intelligence • 3

and which from the human, the computer has passed the Turing test for
intelligent behavior. However, the test is not as straight-forward as it seems
because humans are superior to computers in creativity, common sense,
and reasoning. If the test uses any question that is related to these concepts,
then the human is sure beat the computer. Computers are more accurate
and faster at performing computations than humans. The Turing test is a
test that a machine should pass in order to be called intelligent.

FIGURE 1.1 An example of the Turing test, in which the Interrogator must determine
which respondent is the computer

There are some criticisms of the Turing test:

•	 A machine could pass the Turing test, but it is a different matter to
know what the level of proficiency the machine actually has.

•	 Searle proposed an argument called the “Chinese room argument” to
bring attention to a major flaw in the Turing test. According to this

4 • Artificial Intelligence and Expert Systems

argument, Searle did not know Chinese and was locked in room with
set of Chinese letters. He was given some writing in Chinese with
instructions in English that correlated to the first and second set of
symbols. He was also given a set of questions for answering (which
was supplemented by instructions in English). He claimed that he
could manipulate the Chinese symbols in a formal way and provide
a satisfactory answer to people outside the room that would create
the illusion that he knew Chinese. Searle argued that a machine that
passes the Turing test and is assumed to be intelligent actually behaves
in the same fashion (it manipulates formal symbols with a lack of
understanding).

•	 The Turing test has been criticized because the nature of the
questioning must be limited in order for a computer to exhibit human-
like intelligence. For example, a computer might score high when the
questioner formulates the queries so they have “Yes” or “No” answers
and pertain to a narrow field of knowledge, such as mathematical
number theory. If the responses to the questions are of a broad-based,
conversational nature, however, a computer would not be expected
to perform like a human being. This is especially true if the subject is
emotionally charged or socially sensitive.

•	 In some specialized instances, a computer may perform so much better
and faster than a human that the questioner can easily tell which is
which. Google and Yahoo are examples of computer applications that
outperform a human in a Turing test based on information searches.

These arguments highlight the deficiencies of the Turing test and raise the
question “What is intelligence?”

Intelligence: This is the ability to reason, develop new thoughts, per-
ceive, and learn. Psychologists have proposed various definitions, but there
is no consensus on any particular definition.

The term “thought” can be defined as a mechanism which

a)		 stimulates

•	 action

•	 information generation

•	 knowledge generation

Introduction to Artificial Intelligence • 5

b)		 is triggered by

•	 external stimulus

•	 internal stimulus

c)		 acts through

•	 present environment

•	 past memory

d)		 is stored as

•	 the charged/discharged state of neurons

•	 electromagnetic thought waves

1.2	 Intelligent Agents

An intelligent agent is a system that perceives its environment, learns from
it, and interacts with it intelligently. Intelligent agents can be divided into
two broad categories: software agents and physical agents.

1.2.1  Software Agents
A software agent is a set of programs that is designed to do particular tasks.
For example, a software agent can check the contents of received e-mails
and classify them into different categories (junk, less important, important,
very important, and so on). Another example of a software agent is a search
engine used to search the World Wide Web and find sites that can provide
information about a requested subject.

1.2.2 Physical Agents
A physical agent (robot) is a programmable system that can be used to per-
form a variety of tasks, e.g., simple robots can be used in manufacturing
industries for performing various routine jobs such as assembling, weld-
ing, or painting. Some organizations use mobile robots for performing rou-
tine delivery jobs, such as distributing mail or correspondence to different
rooms. Mobile robots are used underwater to prospect for oil.

AI is the branch of computer science which aims to make computers
behave like human beings. The term was coined in 1956 by John McCarthy
at the Massachusetts Institute of Technology. The various areas of artificial
intelligence include

6 • Artificial Intelligence and Expert Systems

•	 game playing: programming computers to play games, such as chess
and checkers

•	 expert systems: programming computers to make decisions in real-
life situations (for example, some expert systems help doctors diagnose
diseases based on symptoms)

•	 natural language: programming computers to understand natural
human languages

•	 neural networks: systems that simulate intelligence by attempting
to reproduce the types of physical connections that occur in animal
brains

•	 robotics: programming computers to see and hear and react to other
sensory stimuli.

There are many different approaches to artificial intelligence, none of
which are completely right or wrong. Through the years, new techniques
have emerged based on the state of mind of the researchers, funding oppor-
tunities, and the available computer hardware.

Over the past five decades, AI research has mostly focused on solv-
ing specific problems. Many solutions have been proposed, and there have
been improvements in the efficiency and reliability of these solutions. AI is
divided into many fields, ranging from pattern recognition to artificial life.
AI is a broad discipline that simulates human skills such as automatic pro-
gramming, case-based reasoning, neural networks, decision-making, expert
systems, natural language processing, pattern recognition, and speech
recognition. AI technologies bring more complex data analysis features to
existing applications.

Currently, no computers exhibit full artificial intelligence (a simula-
tion of human behavior). The greatest advances have occurred in the
field of game playing. The best computer chess programs are now capa-
ble of beating humans. In May, 1997, an IBM super-computer called
Deep Blue defeated world chess champion Gary Kasparov in a chess
match. Computers are now widely used in assembly plants, but they are
capable only of very limited tasks. Robots have great difficulty identify-
ing objects based on appearance or feel, and they still move and handle
objects clumsily.

Introduction to Artificial Intelligence • 7

There are several programming languages that are known as AI lan-
guages because they are used almost exclusively for AI applications. The
two most common are LISP and Prolog.

1.0  Artificial Intelligence Characteristics

Systems that act like humans Systems that act rationally

1.3	 Approaches in Artificial Intelligence

1.3.1  Acting Humanly: The Turing Test Approach
AI is a system that “thinks” like humans and can be explained using the Tur-
ing test. The Turing Test was designed to provide a satisfactory operational
definition of intelligence. Turing defined intelligent behavior as the ability
to achieve human-level performance in all cognitive tasks, sufficient to fool
an interrogator. The test he originally proposed is that the computer should
be interrogated by a human via a teletype, and the computer passes the test
if the interrogator cannot tell if there is a computer or a human at the other
end. The computer would need to possess the following capabilities to pass
the Turing test:

•	 natural language processing to enable it to communicate successfully
in English (or some other human language)

•	 knowledge representation to store information provided before or
during the interrogation

•	 automated reasoning to use the stored information to answer questions
and draw new conclusions

•	 machine learning to adapt to new circumstances and to detect and
extrapolate patterns

Turing’s test deliberately avoided direct physical interaction between the
interrogator and the computer because the physical simulation of a person
is unnecessary for intelligence. However, the Total Turing Test includes
a video signal so that the interrogator can test the subject’s perceptual
abilities, as well as the opportunity for the interrogator to pass physical
objects “through the hatch.” To pass the Total Turing Test, the computer
will need

8 • Artificial Intelligence and Expert Systems

•	 computer vision to perceive objects

•	 robotics to move them about

Within AI, there has not been a big effort to try to pass the Turing test. The
issue of acting like a human comes up primarily when AI programs have to
interact with people, as when an expert system explains how it came to its
diagnosis or a natural language processing system has a dialogue with a user.
These programs must behave according to certain normal conventions of
human interactions in order to make themselves understood. The underly-
ing representation and reasoning in such a system may or may not be based
on a human model.

1.3.2  Thinking Humanly: The Cognitive Modelling Approach
If we are going to say that a given program thinks like a human, we
must have some way of determining how humans think. We need to
get inside the actual workings of human minds. There are two ways
to do this: through introspection—trying to catch our own thoughts
as they go by—or through psychological experiments. Once we have a
sufficiently precise theory of the mind, it becomes possible to express
the theory as a computer program. If the program’s input/output and
timing behavior matches human behavior, that is evidence that some
of the program’s mechanisms may also be operating in humans. The
interdisciplinary field of cognitive science brings together computer
models from AI and experimental techniques from psychology to try to
construct precise and testable theories of the workings of the human
mind. Real cognitive science, however, is necessarily based on the
experimental investigation of actual humans or animals, and we assume
that the reader only has access to a computer for experimentation.
We will simply note that AI and cognitive science continue to enrich
each other, especially in the areas of vision, natural language, and
learning.

1.3.3  Thinking Rationally: The Laws of Thought Approach
The Greek philosopher Aristotle was one of the first to attempt to codify
“right thinking,” that is, unquestionable reasoning processes. His famous syl-
logisms provided patterns for argument structures that always gave correct
conclusions given correct premises. For example, “Socrates is a man; all men
are mortal; therefore, Socrates is mortal.” These laws of thought were sup-
posed to govern the operation of the mind and initiated the field of logic.

Introduction to Artificial Intelligence • 9

The development of formal logic in the late nineteenth and early twenti-
eth centuries, which we describe in more detail in the next chapters, provided
a precise notation for statements about all kinds of things in the world and
the relationships between them. By 1965, programs existed that could, given
enough time and memory, take a description of a problem in logical notation
and find the solution to the problem, if one existed. (If there is no solution,
the program might never stop looking for it.) There are two main obstacles
to this approach. First, it is not easy to take informal knowledge and state it
in the formal terms required by logical notation, particularly when the knowl-
edge is less than 100% certain. Second, there is a big difference between
being able to solve a problem in principle and doing so in practice.

1.3.4  Acting Rationally: The Rational Agent Approach
Acting rationally means acting so as to achieve one’s goals given one’s beliefs.
An agent is just something that perceives and acts. (This may be an unusual
use of the word, but you will get used to it.) In this approach, AI is viewed
as the study and construction of rational agents.

In the “laws of thought” approach to AI, the whole emphasis was on
correct inferences. Making correct inferences is sometimes part of being a
rational agent, because one way to act rationally is to reason logically to the
conclusion that a given action will achieve one’s goals, and then to act on
that conclusion. On the other hand, correct inference is not all of rational-
ity; because there are often situations where there is no provably correct
thing to do, yet something must still be done. There are also ways of acting
rationally that cannot be reasonably said to involve inference. For example,
pulling one’s hand off of a hot stove is a reflex action that is more successful
than a slower action taken after careful deliberation.

All the “cognitive skills” needed for the Turing test are there to allow
for rational actions. Thus, we need the ability to represent knowledge and
reason with it because this enables us to reach good decisions in a wide
variety of situations. We need to be able to generate comprehensible sen-
tences in natural language because saying those sentences helps us get by
in a complex society. We need learning not just for erudition, but because
having a better idea of how the world works enables us to generate more
effective strategies for dealing with it. We need visual perception not just
because seeing is fun, but in order to get a better idea of what an action
might achieve—for example, being able to see a tasty morsel helps one to
move toward it.

10 • Artificial Intelligence and Expert Systems

The study of AI as the design of a rational agent therefore has two advan-
tages. First, it is more general than the “laws of thought” approach because
correct inference is only a useful mechanism for achieving rationality, and
not a necessary one. Second, it is more amenable to scientific development
than approaches based on human behavior or human thought because the
standard of rationality is clearly defined and completely general. Human
behavior, on the other hand, is well-adapted for one specific environment
and is the product, in part, of a complicated and largely unknown evolution-
ary process that still may be far from achieving perfection.

1.4	 Definitions of Artificial Intelligence

A number of definitions have been proposed for AI:

•	 AI is a technology and a branch of computer science that studies and
develops intelligent machines and software.

•	 Software technologies that make a computer or robot perform equal
or better than normal human computational ability in accuracy,
capacity, and speed.

•	 Artificial intelligence is a branch of science which deals with helping
machines find solutions to complex problems in a human-like fashion.
This generally involves borrowing characteristics from human
intelligence and applying them as algorithms in a computer-friendly
way.

•	 Artificial intelligence is the study of programmed systems that can
simulate, to some extent, human activities such as perceiving, thinking,
learning, and acting.

•	 “The art of creating machines that perform functions that require
intelligence when performed by people.” (Kurzweil, 1990)

•	 “The study of how to make computers do things at which, at the
moment, people are better.” (Rich and Knight, 1991)

•	 “A field of study that seeks to explain and emulate intelligent behavior
in terms of computational processes.” (Schalkoff, 1990)

•	 “The branch of computer science that is concerned with the
automation of intelligent behavior.” (Luger and Stubblefield, 1993).

Introduction to Artificial Intelligence • 11

Artificial intelligence is concerned with the design of intelligence in an arti-
ficial device. The term was coined by McCarthy in 1956.

There are two ideas in the definition.

1.		 Intelligence

2.		 Artificial device

What is Intelligence?

•	 Intelligence is the computational part of the ability to achieve goals in
the world. Varying kinds and degrees of intelligence occur in people,
many animals, and some machines.

•	 The capacity to learn and solve problems
In particular,

•	 the ability to solve novel problems

•	 the ability to act rationally

•	 the ability to act like humans

♦♦ A system with intelligence is expected to behave as intelligently
as a human

♦♦ A system with intelligence is expected to behave in the best
possible manner

What is involved in intelligence?

•	 The ability to interact with the real world

♦♦ to perceive, understand, and act

♦♦ e.g., speech recognition and understanding and synthesis

♦♦ e.g., image understanding

♦♦ e.g., the ability to take actions, to have an effect

•	 Reasoning and Planning

♦♦ modeling the external world, given input

♦♦ solving new problems, planning, and making decisions

♦♦ the ability to deal with unexpected problems and uncertainties

12 • Artificial Intelligence and Expert Systems

•	 Learning and Adaptation

♦♦ We are continuously learning and adapting.

♦♦ Our internal models are always being “updated.”

♦♦ One example is a baby learning to categorize and recognize
animals.

1.4.1  Intelligent Behavior
Tasks and applications that constitute intelligent behavior are

•	 perception involving image recognition and computer vision

•	 reasoning

•	 learning

•	 understanding language involving natural language processing and
speech processing

•	 solving problems

•	 robotics

1.4.2  Interpretations of Artificial Intelligence
Different interpretations have been used by researchers for defining the
scope and view of AI.

a)	 �One view is that artificial intelligence is about designing systems
that are as intelligent as humans. This view means that we should try
to understand human thought and build machines that simulate the
human thought process. This view is the cognitive science approach
to AI.

b)	 �The second approach is best defined by the concept of the Tur-
ing test. The Turing test is a kind of imitation game, in which a
human being and a computer are interrogated under conditions
where the interrogator does not know which is machine and
which is human. The communications are carried out entirely via
text messages. Turing argued that if the interrogator could not
distinguish them by questioning, then it would be unreasonable
not to call the computer intelligent. Turing’s imitation game is
the Turing test.

Introduction to Artificial Intelligence • 13

c)	 �The third view of AI is that it is the study of rational agents. This
view deals with building machines that act rationally. The focus is on
how the system acts and performs, and not so much on the reason-
ing process. A rational agent is one that acts rationally, that is, is in
the best possible manner.

1.5	 AI Problems

While studying the typical range of tasks that we might expect an intelligent
entity to perform, we need to consider both common-place tasks as well as
expert tasks.

a)	�A lot of work in AI is focused on formal tasks such as game play-
ing and theorem proving. Samuel wrote a checker playing program
that not only plays the game with opponents, but also uses its ex-
perience to improve its later performance. Such types of tasks re-
quire intelligence, so people who do these tasks well are consid-
ered intelligent. It may seem like a computer could perform such
tasks well by exploring a large number of solution paths fast and
select best one. But this assumption is false, since no computer is
fast enough to overcome the combinatorial explosion generated by
most problems.

b)	�Another focus in AI is solving everyday tasks that require common
sense reasoning. This includes reasoning about physical objects and
their relationship to each other, as well as reasoning about actions
and consequences.

c)	�As AI research has progressed, techniques have been developed for
handling a large amount of knowledge. Progress was made in han-
dling more complex tasks such as perception, natural language un-
derstanding, and diagnosis problems.

d)	�Animal have less intelligence than humans, but have more sophisti-
cated visual perception. Perceptual tasks are difficult because they
involve analog signals (noisy signals).

e)	�Natural language understanding is a problem. In addition to these
mundane tasks, people may perform one or more specialized tasks
that require expertise, such as engineering design tasks, medical di-
agnosis, and scientific discovery tasks.

14 • Artificial Intelligence and Expert Systems

1.5.1  Tasks Under Artificial Intelligence
There are tasks done routinely by humans and animals. Examples of com-
mon-place tasks include

•	 recognizing people and objects

•	 communicating (through natural language)

•	 navigating around obstacles on the streets

Examples of expert tasks include

•	 medical diagnosis

•	 mathematical problem solving

•	 playing games like chess

Expert tasks cannot be done by all people; they can only be performed
by skilled specialists. Clearly tasks of the first type are easy for humans
to perform, and almost all are able to master them. The second range
of tasks requires skill development and/or intelligence. Only some
specialists can perform them well. The achievements of computer
systems include performing sophisticated tasks like making a medi-
cal diagnosis, performing symbolic integration, proving theorems, and
playing chess.

However, it has proven to be very difficult to make computer systems
perform many routine tasks that all humans and a lot of animals can do.
Examples of such tasks include navigating our way without running into
things, catching prey, and avoiding predators. Humans and animals are also
capable of interpreting complex sensory information. We are able to recog-
nize objects and people from the visual image that we receive. We are also
able to perform complex social functions.

1.5.2  Tasks Domains of Artificial Intelligence
Mundane Tasks

1.		 Perception

•	 Vision

•	 Speech

Introduction to Artificial Intelligence • 15

2.		 Natural Language

•	 Understanding

•	 Generation

•	 Translation

3.		 Common Sense Reasoning

4.		 Robot Control

Formal Tasks

1.		 Games

•	 Chess

•	 Backgammons

•	 Checkers-go

2.		 Mathematics

•	 Logic

•	 Geometric

•	 Integral calculus

Expert Tasks

1.		 Engineering

•	 Design

•	 Fault Finding

♦♦ Medical Diagnosis

♦♦ Financial Analysis

♦♦ Scientific Analysis

The fields of AI are domains that require specialized expertise without the
help of common sense reasoning.

16 • Artificial Intelligence and Expert Systems

Research into AI shows that intelligence requires knowledge. It is the
basic thrust behind every intelligent system. The properties of knowledge are

1.		 It is voluminous.

2.		 It is hard to characterize accurately.

3.		 It is constantly changing.

4.		 It is well organized and corresponds to the way it will be used.

The AI technique is a method that exploits knowledge that should be rep-
resented in such a way that

•	 Knowledge captures generalization. It is not necessary to represent
each individual situation separately. Situations that share important
properties are grouped together. Otherwise, a lot of memory and
updating would be required.

•	 It can be understood by the people who must provide it.

•	 It can be easily modified to correct errors.

•	 It can be used in many situations even if it is not totally accurate.

1.6	 Features of AI Programs

a)	 AI problems have combinatorial explosions of solutions.

b)	 �AI programs manipulate symbolic information to a large extent,
in contrast to conventional programs that deal with numeric
processing.

c)	�AI programs use heuristic search techniques to solve problems and
prune search trees. One of the techniques for solving problems in
artificial intelligence is searching. Searching can be described as
solving a problem using a set of states (a situation). A search proce-
dure starts from an initial state and goes through the intermediate
states until finally reaching a target state. For example, in solving
a puzzle, the initial state is the unsolved puzzle, the intermediate
states are the steps taken to solve the puzzle, and the target state is
the situation in which the puzzle is solved. The set of all states used
by a searching process is referred to as the search space.

Introduction to Artificial Intelligence • 17

d)	 �An AI program must have large quantities of knowledge that must
be represented in a form such that a system working on the knowl-
edge can easily manipulate it.

e)	 �AI programs deal with real life problems. AI programs help people
make the right decisions.

f)	 �AI programs have the ability to learn.

1.7	 Importance of AI

a)	 �Organizations that use AI applications become more diverse be-
cause these applications provide the ability to analyze data across
multiple variables, and can help with fraud detection and customer
relationship management. All such things are very important from a
competitive point of view.

b)	 �AI is a branch of science that deals with helping machines that find
solutions to complex problems in a human-like fashion by borrow-
ing characteristics from human intelligence and applying them as
algorithms in a computer-friendly way.

c)	 �AI is generally associated with computer science, but it has its roots
in variety of fields, such as math, psychology, cognition, biology, and
philosophy. Thus, combining knowledge from all these fields ben-
efits the development of an intelligent artificial being.

d)	 �AI is a machine that can behave like an ordinary human. One of the
meanings of the word “perception” is understanding what is received
through the senses—sight, hearing, touch, smell, and taste. A human
being sees a scene through the eyes, and the brain interprets it to extract
the type of objects in the scene. A human hears a set of voice signals
through the ears, and the brain interprets it as a meaningful sentence.

1.8	 What Can Artificial Intelligence Systems Do?

Today’s AI systems have been able to achieve limited success in some of
these tasks:

•	 In computer vision, the systems are capable of facial recognition.

•	 In robotics, we have been able to make vehicles that are mostly
autonomous.

18 • Artificial Intelligence and Expert Systems

•	 In natural language processing, we have systems that are capable of
simple machine translation.

•	 Today’s expert systems can carry out medical diagnoses in a narrow
domain.

•	 Speech understanding systems are capable of recognizing several
thousand words of continuous speech.

•	 Learning systems are capable of performing text categorization into
about 1,000 topics.

•	 AI systems can play games at the Grand Master level in chess (world
champion) and checkers.

1.9	 What Can Artificial Intelligence Systems Not Do Yet?

•	 Understand natural language robustly (e.g., read and understand
articles in a newspaper).

•	 Surf the web.

•	 Interpret an arbitrary visual scene.

•	 Learn a natural language.

•	 Construct plans in dynamic real-time domains.

•	 Exhibit true autonomy and intelligence.

1.10	 Advantages of AI

a)	 �AI is used in various areas like diagnosis, medicine, image process-
ing, and game playing; complex tasks in such fields can be per-
formed efficiently and reliably.

b)	 �AI can perform multiple tasks at once, such as tasks that would be
too difficult or time consuming when carried out by humans. These
tasks include mathematical equations that are used to design and
operate video games or autopilots used by airplanes to fly planes in
normal situations and aid the crew in emergencies.	

c)	 �AI helps in the mass production of industrial parts to make sure
parts are accurate and to specifications.

Introduction to Artificial Intelligence • 19

d)	 �AI makes life safer and more pleasurable for people at every stage
of modern life.

e)	 �AI machines help in the continuity of work in various fields, as the
machines can constantly monitor complex situations.

f)	 �AI can take on stressful and complex work that humans may strug-
gle with or cannot do. Machines have no need for sleep, they don’t
get ill, and there is no need for breaks. Doing tasks without getting
tired is a significant benefit offered by artificial intelligence. AI can
get a specific task finished without a coffee break or lunch break,
unlike humans, who require a break. A machine can also complete a
particular job almost instantly.

g)	 �AI can replace human beings in some specific jobs at stores and per-
form some of a household’s day-to-day activities, helping to address
manpower problems.

h)	 �AI can help hospitals providing food and medicines where hu-
mans may be exposed to disease. AI has its application in variety
of fields, such as robotics. Robots can be used in manufacturing
industries or other industries for doing tasks that are harmful to
humans.

i)	 �AI helps researchers in aeronautics better know the universe.

1.11	 Disadvantages of Artificial Intelligence

a)	 �It is true that AI has lot of advantages in various fields (such as in
chess, where a computer can beat a human). Expert systems assist
industry with a wide range of diagnostic software. Robots are used
to perform complex and dangerous work. Optical character recogni-
tion and speech recognition have advanced enough to have many
practical applications. AI has disadvantages, though. For example,
without a massive amount of storage, the simultaneous real-time
retrieval of multisensory data is out of reach. Natural language pro-
cessing suffers from this problem. It requires an understanding of
language, culture, history, and emotions to be able to translate a
sentence. A robot does not have the common sense and the rea-
soning power to understand a word like “outside.” Common sense
requires a large amount of knowledge.

20 • Artificial Intelligence and Expert Systems

b)	 �The main disadvantage of AI is that it lacks the pattern recogni-
tion tools needed to succeed. The study of AI began formally at
Dartmouth College in 1956 as an effort by a group of scientists to
evaluate and mechanically replicate human intelligence on the
assumption that “every aspect of learning or any other feature of intel-
ligence can be so precisely described that a machine can be made to
simulate it.” Their objective was to write computer programs, which
could finally create human level intelligence in computers and robots.
Those early scientists failed to realize that the mind uses pattern rec-
ognition and not computation. They also underestimated the memory
storage capacity required to achieve such an ambitious objective.

c)	 �Nature has provided a large memory capacity in humans to sustain
life on an unimaginable scale. The evolutionary process logically as-
sembled these in cell memories. The DNA of every living thing on
the planet has digital, error-correcting, and self-replicating codes.
These vast blueprints improved with each generation across mil-
lions of years. AI’s disadvantage is that it presently lacks the means
to store a comparable size of memory and also lacks a clear strategy
for instantly accessing this enormous memory store.

d)	 �Nature has assembled ascending levels of knowledge in the immune
system, the spinal cord, the reticular system, the limbic system, and the
prefrontal regions. Millions of potentially pathogenic organisms and
substances had to be neutralized. “Knowledge” in the spinal cord coor-
dinates the movements of muscles millisecond by millisecond. Memo-
ries for myriad smells enabled the reptilian systems to distinguish be-
tween prey and predator. “Knowledge” in the limbic system responded
suitably to a wide range of events, which trigger anger and fear, or jeal-
ousy and despair. The disadvantage of AI is that the computation capa-
bilities of a computer cannot manage the pattern sensing responses of
living things, who have assembled this knowledge over millions of years
of history and a lifetime of experience, play, and imagination.

e)	 �Human intelligence adds new levels to animal intelligence. The
great achievements in science and art are based on the stored
knowledge of millions of relationships between numerous fields.
A work of art is only possible through an immense number of in-
herited skills and through practice, training, and experience. AI has
barely touched on these complex pattern sensing tasks.

Introduction to Artificial Intelligence • 21

f)	 �The possibility of a breakdown is one of the most infamous disad-
vantages of artificial intelligence. It is like spending much of your
money on a car in order to get from one point to another and then
needing to deal with the breakdown of the car shortly after buying
it. It is the same way for artificial intelligence: it can easily perform a
task, but a malfunction can turn the whole thing into nothing.

g)	 �Aside from the possibility of a breakdown, there is also the possibil-
ity of losing your essential information. In some cases, because of
the malfunction of specific parts, an artificial mind can fall short in
keeping in its memory all the files that it must have. This can also
occur with humans. If the person who is responsible for maintaining
information and collecting data falls asleep on the job, it is accepted
that the failure is that person’s mistake. On the other hand, with an
artificial mind, it is not assumed, and this really makes the entire
difference. This then becomes an important issue. AI or computer
systems must be switched off on a daily basis for maintenance. This
could be a restraint to output and efficiency, as well as to the inter-
ests and benefits of the company in question.

h)	 �AI fails in the speed of knowledge retrieval. An animal mind stores
the equivalent of billions of pages of code. This data is evaluated and
acted on within milliseconds. The unconscious processes of your
immune system utilize internal code recognition systems to attack a
detected invader. The olfactory system, using an inbuilt knowledge
of smells, enables an animal to instantly recognize a scent and sense
danger.

	 AI cannot compete in the field of real time information retrieval
achieved by animals. To succeed, artificial intelligence requires myr-
iad pattern sensing algorithms and the ability to extract contextual
knowledge in real time from a vast amount of coded memories.

Exercises

Q1.  What is Artificial Intelligence?

Q2. � What are the various areas where AI (Artificial Intelligence) can be
used?

Q3. � Give an explanation of the difference between a strong AI and weak AI.

22 • Artificial Intelligence and Expert Systems

Q4. � Is intelligence a single thing, so that one can ask the “yes or no”
question “Is this machine intelligent or not?”

Q5.  Is AI about simulating human intelligence?

Q6. � What about other comparisons between human and computer
intelligence?

Q7.  What is the Turing test?

Q8.  What are the task domains of AI?

Q9.  What are intelligence and intelligent agents?

Q10.  What is the cognitive modeling approach?

C H A P T E R 2
APPLICATIONS OF
ARTIFICIAL INTELLIGENCE

There are many applications of AI, as it can be used in a variety of fields
for solving complex problems. Applications range from military uses (for
autonomous control and target identification) to the entertainment indus-
try (for computer games and robotic pets). AI has been used in medical
diagnosis, stock trading, robot control, law, remote sensing, scientific dis-
covery, and toys.

The various applications areas are as follows.

2.1	 Finance

Banks use artificial intelligence systems for organizing operations, invest-
ing in stocks, and managing properties. Financial institutions use artificial
neural network systems to detect charges or claims outside of the norm and
identify these for human investigation.

2.2	 Hospitals and Medicine

Hospitals use artificial intelligence systems to organize bed schedules, per-
form staff rotations, and provide medical information. Artificial neural net-
works are used for medical diagnosis.

24 • Artificial Intelligence and Expert Systems

Other tasks in medicine that can be performed by artificial intelligence
include the following:

a)	 �Artificial intelligence systems are used for analyzing medical images
to detect diseases. Such systems help scan digital images, such as
those from computed tomography. A typical application is the de-
tection of tumors.

b)	 Heart sound analysis

2.3	 Robotics

Robotics is the branch of technology that deals with the design, construc-
tion, operation, and application of robots, as well as computer systems for
their control, sensory feedback, and information processing. Some robots
are used in performing dangerous tasks in the manufacturing industry.

A robot is a mechanical or virtual agent, usually an electro-mechanical
machine, that is guided by a computer program or electronic circuitry. A
robot performs only those tasks for which it is programmed. However, an
intelligent robot has sensors, such as cameras, which allow it to respond to
changes in the environment.

2.4	 Expert Systems

An expert system is a computer program that simulates the judgment and
behavior of a human with expert knowledge and experience in a particular
field. Expert systems contain a knowledge base of accumulated experience
and a set of rules that are applied to each particular situation. Sophisticated
expert systems can be enhanced with additions to the knowledge base or to
the set of rules.

Expert systems are applications of AI that utilize human expertise.
Expert systems are used to solve complex problems with help of the
expertise stored in the database in rule form. To design an expert sys-
tem, we need a knowledge engineer, an individual who studies how
human experts make decisions and translates the rules into terms that
a computer can understand. Expert systems are also known as knowl-
edge-based systems, knowledge-based expert systems, and rule-based
systems. They are considered to be “applied artificial intelligence.” The
process of developing with an expert system is knowledge engineering.

Applications of Artificial Intelligence • 25

EMYCIN was one of the first “shells” for an expert system, which was
created from the MYCIN medical diagnosis system. A production rule
system is a rule engine that uses the rule-based approach to implement
an expert system.

Expert systems use knowledge representation languages to perform
tasks that normally need human expertise. For example, in medicine, an
expert system can be used to narrow down a set of symptoms to a likely
subset of causes, a task normally carried out by a doctor.

An expert system is built on predefined knowledge about a field of
expertise. An expert system in medicine, for example, is built on the knowl-
edge of a doctor specialized in the field for which the system is built: an
expert system is supposed to do the same job as the human expert.

2.5	 Diagnosis

Diagnosis deals with the development of algorithms and techniques that
are able to determine whether the behavior of a system is correct. If the sys-
tem is not functioning correctly, the algorithm should be able to determine,
as accurately as possible, which part of the system is failing, and which kind
of fault it is facing.

An example of making a diagnosis is the process a garage mechanic
uses with an automobile. The mechanic will first try to detect any abnormal
behavior based on the observations of the car and his knowledge of this type
of vehicle. If he finds out that the behavior is abnormal, the mechanic will
try to refine his diagnosis by using new observations and possibly testing
the system until he discovers the faulty component. The mechanic plays an
important role in the vehicle’s diagnosis.

2.6	 Pattern Recognition

Pattern recognition is the process of establishing a close match between
new stimuli and a previously stored pattern. Pattern recognition sys-
tems are used to classify objects based on their attributes and attribute
values.

In pattern recognition, a label is assigned to a given input value. An
example of pattern recognition is classification, which attempts to assign
each input value to one of a given set of classes (for example, determine

26 • Artificial Intelligence and Expert Systems

whether a given email is “spam” or “non-spam”). Pattern recognition algo-
rithms generally aim to provide a reasonable answer for all possible inputs
and to perform the “most likely” matching of the inputs, taking into account
their statistical variation.

Pattern recognition is generally categorized according to the type of
learning procedure used to generate the output value.

Supervised learning assumes that a set of training data (the training
set) has been provided, and it consists of a set of instances that have been
properly labeled by hand with the correct output.

Unsupervised learning assumes training data has not been hand-labeled,
and attempts to find inherent patterns in the data that can then be used to
determine the correct output value for new data instances. A combination
of the two is called semi-supervised learning, which uses a combination of
labeled and unlabeled data (typically a small set of labeled data combined
with a large amount of unlabeled data).

Pattern
Sensor

&
Preprocessing

Features
extraction Matching

Classification
rules

Classification

FIGURE 2.1 Pattern Recognition Process

2.7	 Natural Language Processing

Natural language processing (NLP) is used for analyzing and repre-
senting natural text at one or more levels of linguistic analysis to obtain
human-like language processing. NLP is related to human–computer
interactions.

NLP is a branch of artificial intelligence that deals with analyzing,
understanding, and generating the natural languages humans use. One of
the challenges in NLP is teaching computers to understand the way humans
learn and use language.

Applications of Artificial Intelligence • 27

For example, consider the sentence “Baby swallows fly.” This sim-
ple sentence has multiple meanings, depending on whether the word
“swallows” or the word “fly” is used as the verb, which also determines
whether “baby” is used as a noun or an adjective. In the case of human
communication, the meaning of the sentence depends on the context in
which it was communicated. This sentence presents problems for soft-
ware, which must first be programmed to understand the context and
linguistic structures.

Computers can’t understand natural language, so researchers are try-
ing to make them more intelligent. NLP is divided into following subfields:

a)	 natural language understanding

b)	 analysis of language to provide meaningful representation

c)	 natural language generation

d)	 production of language from representation

Steps in NLP:

a)	 �The first step in natural language processing is speech recognition.
In this step, a speech signal is analyzed and the sequence of words
it contains is extracted. The input to the speech recognition sub-
system is a continuous (analog) signal: the output is a sequence of
words. The signal needs to be divided into different sounds, some-
times called phonemes. The sounds then need to be combined into
words.

b)	 �The syntactic analysis step is used to define how words are to be
grouped in a sentence. This is a difficult task in a language like Eng-
lish, in which the function of a word in a sentence is not determined
by its position in the sentence. For example, consider the following
two sentences.

Mary rewarded John.

John was rewarded by Mary.

c)	 �It is always John who is rewarded, but in the first sentence, John
is in the last position and Mary is in the first position. A machine

28 • Artificial Intelligence and Expert Systems

that hears any of the above sentences needs to interpret them cor-
rectly and come to the same conclusion, no matter which sentence
is heard.

d)	 �The semantic analysis extracts the meaning of a sentence after it has
been syntactically analyzed. This analysis creates a representation of
the objects involved in the sentence, their relationships, and their
attributes. The analysis can use any of the knowledge representation
schemes. For example, the sentence “John has a dog” can be repre-
sented using predicate logic.

∃ xdog(x) has (John, x)

The three previous steps—speech recognition, syntax analysis, and seman-
tic analysis—can create a knowledge representation of a spoken sentence.
In most cases, another step, pragmatic analysis, is needed to further clarify
the purpose of the sentence and remove ambiguities.

2.8	 Game Playing

In 1960, Arthur Samuel built the first game playing program, which learned
from its mistakes and improved its performance. Game playing has great
role in AI because of the following:

•	 Rules are limited and little knowledge is required.

•	 Games provide structural tasks that are easy to measure as a success
or failure.

•	 Game playing simulates real-life situations.

2.9	 Image Processing

Image processing is any form of signal processing for which the input is an
image, such as photograph or video frame; the output of image processing
may be either an image or a set of characteristics or parameters related to
the image. Most image-processing techniques involve treating the image
as a two-dimensional signal and applying standard signal-processing tech-
niques to it.

Applications of Artificial Intelligence • 29

Image processor

Two-dimensional
images

Three-dimensional
characteristics of objects

Database of object
characteristics

FIGURE 2.2  The Components of an Image Processor

Image processing, or computer vision, is an area of AI that deals with
the perception of objects through the artificial eyes of an agent, such as a
camera. An image processor takes a two-dimensional image from the out-
side world and tries to create a description of the three-dimensional objects
present in the scene. This is an easy task for a human being, but a difficult
task for an artificial agent. The processor uses a database containing the
characteristics of objects for comparison.

Image processing usually refers to digital image processing, but optical
and analog image processing also are possible.

Image processing basically includes the following three steps:

•	 Importing the image with an optical scanner or by digital photography

•	 Analyzing and manipulating the image, which includes data
compression and image enhancement, and spotting patterns that are
not obvious to the human eyes (like satellite photographs)

•	 Output is the last stage in which a result can be an altered image or
report that is based on image analysis.

The purpose of image processing is

•	 Visualization: observe the objects that are not visible

•	 Image sharpening and restoration: to create a better image

•	 Image retrieval: seek for the image of interest

•	 Measurement of a pattern: measures various objects in an image

30 • Artificial Intelligence and Expert Systems

•	 Image recognition: distinguish the objects in an image

•	 Color correction, such as the brightness adjustment and contrast
adjustments.

2.10	 Data Mining

Data mining is a field of computer science that deals with the computa-
tional process of discovering patterns in large data sets. The overall goal of
the data mining process is to extract information from a data set and trans-
form it into an understandable structure for further use.

Data mining uses information from past data to analyze the outcome
of a particular problem or situation that may arise. Data mining works to
analyze the data stored in data warehouses, which are used to store the
data for analysis. That particular data may come from all parts of a busi-
ness, from production to management. Managers also use data mining to
decide upon marketing strategies for their product. They can use data to
make comparisons with competitors. Data mining interprets data using
real-time analysis; the results of the analysis can be used to increase sales,
promote new products, or eliminate products that are not adding value to
the company.

2.11	 Big Data Mining

Today’s advancements in technology, like cloud computing, sensors,
and data wireless networks, have dramatically increased the size of the
Internet, and societal transformation makes it possible to capture a large
amount of data (“big data”) that has the potential to reveal meaningful and
valuable information for fields like business, industry, healthcare, agricul-
ture, finance, weather forecasting, scientific research, astronomy, trans-
portation, and even societal development. There are a growing number
of ways to generate this data, such as sensors, automated processes, mul-
timedia, cameras, satellites, telescopes, transceivers, and mobile phones.
The exponential growth in the generation of data is bolstered by the Inter-
net, where everything is recorded. Each and every activity of a user on
the Internet is generating data. For example, when you do any surfing,
all of that activity is recorded. When shopping online, customer behav-
iors, buying patterns, items viewed by customers, and items discarded by

Applications of Artificial Intelligence • 31

customers are recorded; each and every detail, whether small or large, is
recorded. Through proper analysis, such captured data helps in predicting
trends and buying patterns so that the appropriate decisions can be made
and strategies can be developed. Google, Amazon, Twitter, and Facebook
are the first companies to face the exponential growth of data from the
Internet. They developed solutions for dealing with that enormous growth
of data. Big data is collection of extremely large data sets that helps in deci-
sion making through the proper analysis of patterns and trends.

Exercises

Q1.  What is the importance of artificial intelligence in expert systems?

Q2.  Explain pattern recognition.

Q3.  What is meant by image processing?

Q4.  Explain role of AI in big data mining.

C H A P T E R 3
INTRODUCTION TO THE
STATE SPACE SEARCH

The state-space search paradigm received early attention from Newell and
Simon, who developed a system called GPS (the General Problem Solver)
in 1960. Search is an integral component of numerous computer programs,
so search techniques are heavily studied in computer science. Search is
often used in AI within the context of the state space search. Let’s look at
this technique in detail.

A search algorithm takes a problem as input and returns a solution in
the form of an action sequence. The state space concept often provides the
framework.

8 Puzzle Space

To generate an intuitive understanding of the state space concept, let’s look
at a fairly simple example, the 8 puzzle. The fairly simple 8 puzzle can be
made more interesting by setting it in three dimensions instead of two.
Since it is not easy to represent a three-dimensional puzzle and, even then,
one cannot see all 27 blocks at once, it can be rendered as three two-dimen-
sional puzzles.

8 Puzzle State Space

It is easy to see that each move changes the configuration of the tiles. Each
such configuration is called a state. From any configuration, one can make
either two, three, or four moves. Of course, each move leads to a new

34 • Artificial Intelligence and Expert Systems

configuration. Thus, the states (configurations) are related to each other by
moves. At this point, we can build upon the concepts of discrete mathemat-
ics. Each state can be represented by a vertex and each move by an edge,
giving us an undirected graph. The graph is undirected since each move is
reversible.

The graph thus produced is called the state space. One further
note: computer scientists usually call the vertices “nodes” and the
edges “arcs.”

3.1	 State Space Search

We originate a problem as a state space search by viewing the legal problem
states, legal operators, and initial and goal states.

•	 A state is defined by the requirement of the values of all the attributes
of interest in the world.

•	 An operator changes one state into other; it has a pre-condition, which
is the value of certain attributes prior to the application of the operator,
and a set of effects, which are the attributes altered by the operator.

•	 The initial state is where you start.

•	 The goal state is the incomplete explanation of the solution.

State Space Search Representation

Let us begin by introducing certain terms.

Initial state: This is the description of the starting configuration of the
agent (the agent selects its action based on the goal it has. The agent must
choose a sequence of actions to achieve the desired goal).

Action or operator: This takes the agent from one state to another
state, which is called a successor state. A state contains a number of succes-
sor states. A plan is a series of actions. The cost of a plan is referred to as the
path cost. The cost of a plan is a positive number, and a frequent path cost
may be the sum of the cost of the steps in the path.

Now let us look at the idea of a search problem. Problem revolution
means choosing an applicable set of states to consider, and a feasible set of
operators for moving from one state to another.

Introduction to the State Space Search • 35

Search is the process of allowing for several possible sequences of oper-
ators to be applied to the initial state and finding a sequence that culmi-
nates in a goal state.

3.1.1	 The Search Problem
We are now ready to define a search problem. Any search problem consists
of the following:

S : full set of states

S0 : initial state

A : S → s is a set of operators

G : set of final states

Search problem: This involves finding a sequence of actions that
transforms the agent from the initial state to a goal state. A search problem
is represented by a 4 tuple {S,SO,A,G}. This sequence of actions is called a
solution path. It is a path from the initial state to a goal state S. Plan P is a
sequence of actions.

P = {a0, a1, a2, ... aN}

which leads to traversing a number of states {s0, s1, s2, ... sN + 1}.
A sequence of states is called a path. The cost of path is a positive number.
In many cases, the path cost is computed by taking the sum of the cost of
each action.

The representation of a search problem occurs when a search problem
is represented using a directed graph. States are represented as nodes. The
allowed actions are represented as arcs.

Searching process: This is the basic searching process. It can be very
basically described in terms of the following steps, which are repeated until
a solution is found or the state space is exhausted.

•	 Check the current node.

•	 Execute an allowable action to find the successor states.

•	 Pick one of the new states.

•	 Check if the new state is a solution state.

•	 If it is not, the new state becomes the current state and the process is
repeated.

36 • Artificial Intelligence and Expert Systems

Let’s take a look at an illustration of a search process We will now dem-
onstrate the searching process with the help of an example. Consider the
problem shown in the figure.

•	 S0 is the initial state

•	 The successor states are the adjacent states in the graph.

•	 There are three goal states.

•	 Two successor states of the initial state are generated.

•	 The successors of these states are picked and their successors are
generated.

•	 The successors of all these states are generated.

•	 The successors are generated.

•	 A goal state has been found.

The above example illustrates how we can start from a given state and follow
the successor to find the solution paths that lead to a goal state. The grey node
defines the search tree. Typically, the search tree is extended one node at a
time. The search strategy is used to find the order of the search tree.

Pegs and Disk

We will now illustrate the state space search with one more example, the
pegs and disk problem. We will illustrate a solution sequence, which, when
applied to the initial state, takes us to a goal state. Consider the following
problem. We have three pegs and three disks.

Operators: One may move the topmost disk on any needle to the top-
most position to any other needle. In the goal state, all the pegs are in
needle B, as shown in figure below.

The initial state is illustrated below.

Now, we will describe a sequence of actions that can be applied on the
initial state.

	 Step 1	 : move A → C

	 Step 2	 : move A → B

	 Step 3	 : move A → C

	 Step 4	 : move B → A

Introduction to the State Space Search • 37

	 Step 5	 : move C → B

	 Step 6	 : move A → B

	 Step 7	 : move C → B

8 Puzzle

21

543

876138

65

427

Start State Goal State

FIGURE 3.1 The Start and Goal States of the 8 Puzzle

In the 8 puzzle problem, we have a 3x3 square board and eight num-
bered tiles. The board has one blank position. The blocks can be slid to an
adjacent blank position. We can alternatively and equivalently look upon
this as the movement of the blank position up, down, left, or right. The
objective of this puzzle is to move the tiles starting from the initial position
and arriving at a given goal configuration.

The 15 puzzle problem is similar to the 8 puzzle problem. It has a 4x4
square board and 15 numbered tiles. The state space representation for this
problem is summarized below:

State: A state is a description of each of eight tiles in each location that
it can occupy.

Operators/actions: The blocks can be moved left, right, up, or down.

Goal test: The current state matches a certain state (for example, one
of the moves shown on the previous slide). Path cost: This is each move of
the blank cost.

An example of the state space of the 8 puzzle is shown. Note that we do
not need to generate all the states before the search begins. The states can
be generated when required.

38 • Artificial Intelligence and Expert Systems

3.2	 Search Techniques

Every AI program has to go through the process of searching because
the solution steps are not explicit in nature. The process of finding a
solution for AI problems involves searching the path from the start state
to the goal state. This is a very important aspect of problem solving
because the search technique not only helps in finding most feasible
path towards the goal state, but it also makes the entire process efficient
and economical.

The search technique is an algorithm that takes problems as input and
returns solution to the problem, usually after evaluating a number of pos-
sible solutions. The set of all possible solutions is called the search space.

Search: The searching mechanism through a state space involves the
following:

•	 a set of states

•	 operators and their cost

•	 start state

•	 a test to check for the goal state

3.2.1  Basic Search Algorithm
Let L be a list containing the initial state

Loop

If L is empty, then return failure

Node ← select(L)

If node is a goal

Then return node

Else generate all successors of node and merge the newly generated state
into L

End loop

The data structure for a node will keep track of not only the state, but also
the present state or the operator that was applied to get this state. The
search algorithm maintains a list of nodes.

Introduction to the State Space Search • 39

Which path to choose?

The objective of a search problem is to find a path from the initial state to
a goal state. If there are a number of paths, which path should be chosen?
Our intention could be to find any path or we may need to find the shortest
path.

What are the characteristics of different search algorithms and what
is their efficiency? We will look at following three factors to measure this:

1.		 Completeness: This is the strategy that finds a solution if one exists.

2.		 Optimality: Does the solution have a low cost or the minimal cost?

3.		� What is the search cost related with the time and memory necessary to
find a solution?

a)	 Time complexity: time taken to find a solution

b)	 Space complexity: space used by the algorithm.

3.3	 Types of Searching Techniques

a)	 Uninformed or blind search

b)	 Informed or heuristic search

3.3.1  Uninformed Search (Blind Search)
The uninformed searches do not have any domain specific knowledge. All
they need are the initial state, final state, and a set of legal operators. In this,
they do not use any extra information about the problem domain (no extra
information about the states).

Such a problem might relate to the problem space as a whole or to
only some states. It may be accessible a priori or only after a node has been
expanded.

In a worst case scenario, the only information available will be the
ability to distinguish the goal from the non-goal nodes. When no fur-
ther information is known, a priori, a search program must perform a
blind or uninformed search. It proceeds in a systematic way, exploring
nodes in some predetermined order or simply by selecting nodes at
random.

40 • Artificial Intelligence and Expert Systems

Search programs may be required to return only a solution value when
a goal is found or to record and return the solution path as well.

Uninformed searches are of several types:

a)	 breadth first search

b)	 depth first search

c)	 depth limited search

d)	 iterative deepening depth first search (DFID)

3.3.1.1  Breadth First Search

In the breadth first search (BFS), the searching process goes level by level.
An operator is employed to generate all possible children of a node. In this,
the root node is expanded first, then all the successors of the root node
are expanded next. In the next step, all the successors of every node are
expanded. This process continues until the goal state is achieved. BFS can
be implemented by calling TREE-SEARCH with empty fringe that is a
FIFO queue.

The node that is visited first will be expanded first. The FIFO queue
puts all newly generated successors at the end of the queue

Complete: if shallowest goal node n is at some finite depth d

Optimal: if the path cost is a non-decreasing function of the depth of
the node. Algorithm:

Step 1	 : Set the initial node on a list START.

Step 2	 : if START = empty or START = goal, terminate.

Step 3	: �Remove the first node from START. Identify this node
as A.

Step 4	 : If A = goal, terminate the search with success

Step 5	 : �Else if node A has a successor, generate all of them and add
them at the end of START.

Step 6	 : Go to Step 2.

Introduction to the State Space Search • 41

Example:

A

E
G H

B F
F

EG

G

B C

D E
D G

C

FIGURE 3.2 Breadth First Search

Step 1	 : Initially, it contains only one node.

 A

Step 2	 : �A is removed. The node is expanded, and its children B and C
are generated.

 B  C

Step 3	 : B is removed and is expanded; D and E are generated.

 C  D  E

Step 4	 : �C is removed and expanded. Its children D and G are gener-
ated.

 E  D  G

Step 5	 : D is removed, and its children C and F are generated.

 E  D  G  C  F

Step 6	 : E is removed, and it has no children.

 D  G  C  F

42 • Artificial Intelligence and Expert Systems

Step 7	 : D is expanded. B and F are added.

	 G  C  F  B  F

Step 8	 : �G is selected for growth. It is found to be a goal node. So, the
algorithm returns the path A C G by following the pointer of
the node corresponding to G.

Root

D E F G H I J

A B C

FIGURE 3.3 Order of Traversal in BFS

Properties: Complete Optimal

The algorithm has exponential time and space complexity:

1 + b + b2 + b3 + ... + bd

	 Time complexity = o(bd)

BFS has to remember every node it has generated. Since the procedure has
to keep track of all the children it has generated, the space complexity is
also function of d and b (the branching factor):

	 Space complexity = o(bd)

Memory requirements are a bigger problem with BFS than the execution
time. Few computers have the terabyte of main memory it would take.
However, there are other search strategies that require less memory. For
example, if depth = 12, it would take 35 years for BFS to find it. When
depth = 15, 0 to 14 have 10 children, and every node at depth 15 is a leaf
node o(1015) node →: If BFS expands 10000 nodes per second and each
node uses 1000 bytes of storage, BFS will take 3500 years to run, in the
worst case, and it will use 11100 terabytes of memory. In this regard, the
search space is quite small.

Introduction to the State Space Search • 43

Advantages of BFS

•	 In the situation where there are multiple solutions, BFS finds the
minimal solution (it requires a minimum number of steps).

•	 BFS is quite simple.

•	 It finds the path with the shortest length to the goal.

The travelling salesman problem can be solved by using BFS. With a small
number of cities, it works well. If we have a large number of cities, it fails
because the number of paths (and hence, the time taken to perform the
search) becomes too big to be controlled by this method efficiently.

Disadvantage: BFS requires the generation and storage of a tree
whose size is the exponent of the depth of the shallowest goal node.

Uniform cost search: This expands the node n with the lowest path
cost. It does not care about the number of steps a path has, but only about
the total cost.

The algorithm expands the nodes in the order of their cost from the
source. The operator is associated with the cost. The path cost is usually
taken to be sum of the step cost.

A newly generated node is put in the OPEN list according to the path
costs. This ensures that when a node is selected for an expansion, it is the
node with the cheapest cost.

Let g(n) = the cost of a path from the start node to the current node.
Sort the nodes by increasing the value of g.

•	 Complete

•	 Optimal

Exponential Time and Space Complexity: the Uninformed Cost Search

The BFS is optimal when all step costs are equal, as it expands the shallow-
est unexpanded node. BFS can be extended to mean “Instead of expanding
the shallowest node, expand the node with lowest path cost.” This extended
BFS is called the uniform cost search.

If all step costs are equal, then the uniform cost search is identical to
the BFS. The uniform cost search method expands the nodes in order of
the increasing path cost. In fact, the tree search applies the goal test only to
the nodes that are selected for expansion.

44 • Artificial Intelligence and Expert Systems

3.3.1.2  Depth First Search (DFS)

The depth first search is a very simple type of brute force search technique.
The search begins by raising the initial node, i.e., by using an operator, and
generating all the successors of the initial node and testing them.

This procedure finds whether the goal can be reached or not. However,
the path it has to pursue has not been mentioned.

DFS expands the deepest node in the current fringe of the search tree.
The search proceeds immediately to the deepest level of the search tree,
where the nodes have no successor. As those nodes are expanded, they are
dropped from the fringe.

This strategy can be implemented by TREE-SEARCH with LIFO, also
known as STACK. It needs to store only a single path from the root to a leaf
node, along with the remaining expanded sibling nodes for each node on the
path. Once the node has been expanded, it can be removed from memory.

A variant of DFS called the backtracking search uses less memory. In
backtracking, only one successor is generated at a time rather than all suc-
cessors, and each moderately expanded node remembers which successor
to generate next. In this, only o (m) memory is needed rather than o(bm).
It is a memory-saving and time-saving technique.

The idea is to generate a successor by modifying the current state
description directly rather than copying it first. This reduces the memory
requirement to just one state description and o(m) action.

a

c

gf

ki jh

d

b

e

Depth first search

FIGURE 3.4 Depth First Search

Introduction to the State Space Search • 45

Algorithm

Step 1	 : Put the initial node on a list START.

Step 2	 : If START = empty or START = goal, terminate search.

Step 3	 : Remove the first node from START, call this node a.

Step 4	 : If a= goal, terminate search with success.

Step 5	 : �Else if node has a successor, generate all of them and add
them at the beginning of the START.

Step 6	 : Go to Step 2.

Example:

Step 1	 : Initially the fringe contains only node A A

Step 2	 : �A is removed. A is expanded, and B and C are put in front of
the fringe.

	 B  C

Step 3	 : �B is removed, and D and E are pushed in front of the
fringe.

	 D  E  C

Step 4	 : �D is removed, and C and F are pushed in front of the
fringe.

	 C  F  E  C

Step 5	 : �C is removed, and its child G is pushed in front of the
fringe.

	 G  F  E  C

Step 6	 : �G is expanded and found to be a goal node. Solution path
A-B-D-C-G is returned.

Properties

The algorithm takes an exponential amount of time. If N is the maximum
depth of a node in the search space, in the worst case, the algorithm will
take o(bd). Space time is linear o(bN).

The time taken by an algorithm is related to the maximum depth of
the search tree. If a search tree has infinite depth, the algorithm may not

46 • Artificial Intelligence and Expert Systems

terminate. This can happen if the search space is infinite. It can also happen
if the search space contains cycle. The latter case can be handled by check-
ing for cycles in the algorithm. Then, DFS is not complete.

Advantages

•	 The DFS requires less space and less memory than the BFS since the
nodes on the current path are stored.

•	 It may find the solution without examining much of the search space
because we may get the desired solution in the very first try for a
problem where only one solution is considered sufficient.

		 1 + b + b2 + b3 + bd

		 Time complexity = o(bd)

The DFS stores only the current path it is pursuing; the space complexity is
a linear function of the depth o(d).

Disadvantages

The DFS is the determination of the depth unto which the search has to
proceed. This depth is called the cut off depth. The DFS, unlike the BFS,
may follow a single unfruitful path for a very long time. Theoretically, in the
situation when there are no successors, it will stop searching. In the prob-
lem, this occurs when the production rule forms a loop.

For example, in the water jug problem, there are a number of produc-
tion rules, and the problem can be solved by applying some rules in a par-
ticular sequence.

Suppose the DFS technique is applied to find the current path and
solution of the problem. In the tree, it starts searching a branch having
rules 1, 8, and 5. By applying these rules, a 4-liter jug will be filled, some
water from a 4-liter jug will be put into a 3-liter jug, and a 4-liter jug will
be emptied. The process is repeated, and we will never get a solution. The
DFS may not find the optimal solution because as soon as a solution is
found, it will stop the search. This solution may not be the optimal one. It
may find the answer in a greater number of steps by unnecessarily exploring
the wrong paths.

The BFS technique takes a lot of time. It is more suitable if a prob-
lem has more than one solution, and we have to find an optimal solution.

Introduction to the State Space Search • 47

For the problem having a single solution, it may take unnecessary time in
exploring the entire path in spite of getting the solution earlier.

A better approach requires the combination of the BFS and DFS.
Some strategies have been used to accomplish this.

3.3.1.3  Depth Limited Search

The depth limited search is a combination of the BFS and DFS. The node
at a certain level is considered as having no successor. Up to a certain depth,
the tree is explored by the DFS method, and the rest of the tree is explored
by the BFS. The DFS is a typical depth limited search method with a depth
equal to infinity.

The depth limited search solves the infinite path problem. A variation
of the DFS circumvents the above problem by keeping a depth bound.
Nodes are only expanded if they have a depth less than the bound. This
algorithm is known as the depth limited search.

Algorithm

Let the fringe(start) be a list containing the initial state

Loop

If the fringe is empty, then failure Node ← – – – – – remove-first(fringe) If
node is a goal

Then return the path from the initial state to the node

Else if the depth of node = limit return cut off

Else add generated nodes to the front of the fringe

End loop

The nodes at depth l are treated as if they have no successor (l < d)

	 Time complexity = o(bl)

	 Space complexity = o(bl)

The DFS can be viewed as a depth limited search with l=infinity.
Unfortunately, it also introduces an additional source of incompleteness.
If we choose l<d, the shallowest goal is beyond the depth limit. The depth
limited search will also non-optimal if we choose l>d.

l---- DFS with a predetermined depth limit l.

48 • Artificial Intelligence and Expert Systems

Sometimes the depth limit can be based on the knowledge of the prob-
lem. For example, there are 20 cities on the map of Romania. Therefore,
we know that if there is a solution, it must be of length 19 at the longest,
so l=19 is a possible choice. But, in fact, if we have studied the map care-
fully, we would discover that any city can be reached from any other city in
almost 9 steps. This number is known as the diameter of the state space,
and it gives us a better depth limit, which leads to a more efficient depth
limited search. For most problems, however, we will not know a good depth
limit until we have solved the problem.

Iterative deepening DFS: first perform the DFS to depth 0 (treat the
start node as having no successor), then if no solution is found, do the DFS
to depth 1 (and so on).

3.3.1.4  Iterative Deepening Depth First Search (IDDFS)

Until solution found do

DFS with depth cutoff c

	 C = c+1

Iterative deepening (ID) is a general strategy often used in combina-
tion with the DFS that finds the best depth limit. It does this by gradually
increasing the limit, first 0, then 1, and then 2, and so on, until a goal is
found. This will occur when the depth limit reaches d, the depth of the
shallowest goal node. ID combines the benefits of the DFS and BFS. Like
the DFS, its memory requirements are very modest (o(bd), to be precise).
Like the BFS, it is complete when the branching factor is finite and optimal
when the path cost is a non-decreasing function of the depth of the node.

The ID search (IDS) may seem wasteful because the states are generated
multiple times. It turns out this is not very costly. The reason is that in a search
tree with the same branching factor at each level, most of the nodes are at the
bottom level, so it does not matter much that the upper levels are generated
multiple times. In the ID search, the nodes on the bottom level are generated
twice and so on, up to the children of the root, which are generated d times.

The total number of nodes generated is

	 N(IDS)	= (d)b+(d – 1)b2+_ _ _ _ _(bd)

	 Time complexity = o(bd)

	 N(BFS) = b + b2 + b3 + ... + bd + (bd + 1 – b)

Introduction to the State Space Search • 49

The BFS generates some nodes at depth d + 1, but the IDS does not.

The IDS is actually faster than the BFS.

For example, if b=10, d=5

N(IDS)	 = 50 + 400 + 3000 + 20000 + 100,000 = 123450

N(BFS) = �10 + 100 + 1000 + 10,000 + 100,000 + 999,990 = 1,111,100

The IDS is analogous to the BFS in that it explores a complete layer of new
nodes at each iteration before going on to the next layer.

ID searches are performed as a form of repetitive DFS. They begin by
performing a DFS to a depth of one. It then discards all nodes generated
and starts over, doing a search to a depth of 2. If no goal has been found, it
discards all nodes generated and does a DFS to a depth of 3. This process
continues until a goal node is found.

Advantages

•	 finds the shortest path

•	 has the linear memory requirements of the DFS

•	 guaranteed to find the goal node of the minimal path

Disadvantages: It performs wasted computations before reaching a goal
depth.

Procedure: Successive DFSs are conducted, each with a depth bound
increasing by 1.

Properties: For a large d, the ratio of the number of nodes expanded
by the IDDFS compared to that of DFS is given by b/(b-1).

For BF = 10 and a deep goal, there is an 11% greater node expansion
in ID searches than in the BFS. The algorithm is

•	 Complete

•	 Optimal: if all operators have the same cost

The time complexity is a little worse than that of the BFS and DFS because
the nodes near the top of the search tree are guaranteed multiple times. In
addition, almost all of the nodes are near the bottom of the tree. The worst
case scenario for the time complexity is still the exponential o(bd) linear
space complexity o(bd).

50 • Artificial Intelligence and Expert Systems

This algorithm is generally performed for a large state space where the
solution depth is unknown.

BFS (completeness)

DFS (limited space and finds the longer path more quickly)

3.3.2  Avoiding Repeated States
In a search algorithm, there is always a possibility of wasting time by expand-
ing states that have already been encountered and expanded before. For
some problems, repeated states are unavoidable, i.e., where the actions are
reversible, such as route finding problems and sliding block puzzles. The
search trees for these problems are infinite.

By pruning some of the repeated states, the search tree can be cut down
to a finite size. In an extreme case, a state space of size d+1 exists because
of a tree with the second leaves.

A

B

C

D

FIGURE 3.5 A State Space in Which There are Two Possible Actions Leading from A to B

A

B

CCCC

B

FIGURE 3.6 The Corresponding Search Tree

Introduction to the State Space Search • 51

Algorithms that forget their history are doomed to repeat it.

•	 If an algorithm remembers every state that is has visited, then it can
be viewed as exploring the state space graph directly.

•	 This can be done by including a data structure called a closed list,
which stores every expanded node. The fringe of the unexpanded
node is called the open list.

•	 Thus, if the current node matches a node on the closed list, it is
disordered instead of being expanded.

A general graph search algorithm can be modified accordingly, as given
below:

Function graph – search (problem, fringe)

Returns a solution or failure

Begin

Closed ← []

Fringe ← insert (make node (initial_state [problem, fringe])

Loop do

	 Begin

	 If empty (fringe) then return failure

		 Node ← remove first (fringe)

		� If goal- TEST [problem] (state[node]) Then return
solution (node)

		 Is state[node] is not in closed then

		 Add state[node] to closed

		 Fringe ← insert_all (Expand(node, problem)fringe)

	 End

End

Example:

Give the BFS, DFS, Depth Limited Search (limit=2), and Iterative
Deepening Search results, and list the name of the nodes in order by the
algorithm for the search of node C in the search space as given below.

52 • Artificial Intelligence and Expert Systems

Solution

BFS: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O

DFS: A, B, D, H, I, E, J, K, C, F, L, M, G, N, O

DLS: A, B, D, E, C, F, G

IDDFS: It searches in the DLS manner until the goal is not reached.

Assuming the goal node is not specified in the given node tree, then the
IDDFS will search in the following manner:

Limit = 0	 A

Limit = 1	 A,  B,  C

Limit = 2	 A,  B,  D,  E,  C,  F,  G,

Limit = 3	� A,  B,  D,  H,  I,  E,  J,  K,  C,  F,  L,  M,  G, 
N,  O

Exercises

Q1. � What is the search process? What is needed for a search method
in AI?

Q2. � Explain searching for solutions.

Q3. � Explain the DFS and BFS in detail and differentiate between them.

Q4. � Give the comparisons of the uninformed search strategies.

Q5. � Show that the depth first technique is neither complete nor optimal.

Q6. � What are different parameters that are used to evaluate search
techniques?

C H A P T E R 4
HEURISTIC SEARCH
STRATEGIES

Heuristics are approximations used to minimize the searching process.
Generally, there are two categories of problems:

•	 problems for which no exact algorithm is known and one needs to
find an approximate and satisfying solution, e.g., computer vision and
speech recognition

•	 problems for which an exact solution is known, but is computationally
infeasible, e.g., chess. The heuristics needed for solving problems are
generally represented as a heuristic function, which maps the problem
state into numbers. These numbers are then approximately used to
guide the search. Some simple heuristic functions are as follows:

♦♦ In the famous 8 puzzle, the Hamming distance is a popular
heuristic function. It is an indicator of the number of tiles in the
positions they are in versus the goal positions.

♦♦ In a game like chess, the material advantage one has over the
opponent is an indicator.

A heuristic involves searching to find out. Heuristics are prescribed rules
applied to discover those branches in a state space that are most likely to
direct an acceptable and feasible solution of a given problem. To find the
solution of the same problem, a heuristic search might reduce the time and
effort needed to solve it.

54 • Artificial Intelligence and Expert Systems

Two applications of AI are game playing and theorem proving. These
applications need heuristics to discover the state space for searching for the
proper solution. When a human expert solves a problem, he or she defi-
nitely applies heuristics at some stage of the process. Experts normally use
a rule of thumb, which is also heuristic in nature. These heuristics are also
used in developing intelligent expert systems, which are extracted, coded,
and represented by an expert system designer for a variety of real-world
applications.

In a heuristic search, besides the normal production rules, additional
information or knowledge about the problem is given in the form of a clue.
All of these clues or extra information are also known as heuristics. The main
aim of heuristics is to provide the goal to lead the search in a precise direc-
tion. Hence, it improves the quality of the path that is explored, reduces the
search space, and efficiently obtains the solution of the problem.

Consider a situation in which one wants to search a particular house in
a city. There is much information about the house, but the only available
information that we know is the address of the house. To start the search,
we need to look at the addresses of all houses until the required house
is found. This search procedure is an example of a blind search. Now if
the person has additional information or a clue about the house we are
searching for (for example, it is a pink building), then finding the house
will require checking only pink buildings. Now the person who sees all
the houses and finds the house that matches the conditions will reject the
houses that do not match the criteria. All additional information reduces
the search space. Other clues that are given (such as “it is a pink, two-story
building”) will further reduce the search space. Heuristics are also used by
humans, using the same criteria.

4.1	 Types of Heuristic Search Techniques

•	 Generate and Test

•	 Best First Search

•	 Hill Climbing

•	 A∗

•	 AO∗

Heuristic Search Strategies • 55

4.1.1  Generate and Test
The generate and test method is the simplest approach. As the name
implies, this technique first generates a result and then tests whether it is
the desired solution of the given problem.

Algorithm: Generate and Test

These steps are repeated until a satisfactory solution is obtained or no
more solutions can be generated:

1.		 Generate a possible solution.

2.		 Test to see if this is a solution.

3.		 If a solution has been found, quit; otherwise, return to Step 1.

The generate and test approach can be compared with the DFS technique
because we would have to generate a complete solution of the problem
before it can be tested. In generate and test, two methods are used to com-
plete its task.

The first method would be to generate a random solution and test it. If a
solution is found, but it is wrong, create another solution and test it again. This
method provides you with a solution that is a first trial; however, it means in this
many chances, and there is a better chance that the solution is never found.

In second method, a systematic approach of generating a solution is
applied, and we are sure of ultimately getting a right solution if it exists. The
disadvantage of this method is that it might take lot of time if the problem
space is large.

For straightforward problems having a limited problem space, the gen-
erate and test technique can be successfully deployed to be an exhaustive
search; however, for problems with a bigger space, this method proves inef-
ficient.

4.1.2  Best First Search
This search procedure is an evaluation function variant of the BFS. The heu-
ristic function is used and is called an evaluation function; it is an indicator of
how far the node is from the goal node. The goal node has an evaluation func-
tion value of zero. The evaluation function’s value may be decided by cost or
the distance of the current node from the goal node. The decision of which
node should be expanded depends on the value of this evaluation function.

56 • Artificial Intelligence and Expert Systems

It is beneficial to search a graph instead of a tree to avoid the searching
duplicate paths. In this process, searching is done in a direct graph, where
each node represents a point in the problem space. This graph is known
as an OR graph. Each of branch of an OR graph represents an alternative
problem-solving path.

Two lists of nodes are used to implement a graph search procedure:

•	 OPEN: In open, there are only nodes that have been generated, but
have not been examined yet. A heuristic function is also applied to
these nodes.

•	 CLOSED: These are the nodes that have already been examined. If
we want to search a graph rather than a tree, examined nodes always
reside in memory because whenever a new node will be generated, we
will have to check whether it has been generated earlier.

In this graph, S is the start node that is expanded first. It has three chil-
dren, A, B, and C, with values 3, 6, and 5, respectively. These values just
about specify how far they are from the goal node. Now we choose the
node that has the minimum value, i.e., node A. Node A is expanded, and
its children are generated, which are D and E with values 9 and 8, respec-
tively. There are four nodes for searching, D, E, B, and C; D has a value of
9 and E has a value of 8, which are less than node B with a value of 6 and
node C with a value of 5. In all of these nodes, node C has the minimal
value, which is expanded to give node H with a value of 7. The available
nodes for the search are (D : 9), (E : 8), (B : 6), and (H : 7), in which B is
minimal. Hence, B is expanded: (F : 12) and (G :14).

FIGURE 4.1 A Sample Tree for the Best First Search

Heuristic Search Strategies • 57

At this juncture, the nodes available for the search are (D:9), (E:8),
(H:7), (F:12), and (G:14), out of which (H:7) is minimal and is expanded to
give (I:5) and (J:6). For searching, there are nodes now available for expan-
sion: (D:9), (E:8), (F:12), (G:14), (I:5), and (J:6). We find that the node with
the minimal value is (I: 5). Now this node is expanded to give the goal node.

Algorithm

Step 1	 :  Take an initial node and put this node on a list called START

Step 2	 : � Now check if START = empty or START = goal, then end
(terminate) the search

Step 3	 :  Remove the first node from START. Call this node a.

Step 4	 :  If a = goal, terminate the search with success.

Step 5	 : � Else if the node has a successor, generate all of its children.
Now from these nodes, find the goal node. When all the
children are generated, then sort all the children so far by
the remaining distance from the goal.

Step 6	 :  Name this list as START1.

Step 7	 :  Replace START with START1.

Step 8	 :  Go to Step 2.

The best first search combines the benefits of both the BFS and DFS. It
uses the DFS because it allows a solution to be found without completing
all the branches that have to be expanded. It uses the BFS because it does
not get trapped on the dead ends of paths. Hence, at each step, we select
the most promising node out of the successor nodes that have been gener-
ated so far.

Function of the Best First Search

•	 Here, a list is used, known as the open list, which contains just the
initial node. The best first search maintains this list.

•	 Until a goal is found or there are no nodes left in the open list, do the
following:

♦♦ Pick the best node from the open list.

♦♦ Many children are generated called successors, and for each
successor

58 • Artificial Intelligence and Expert Systems

♦♦ Check all its successors, and if it has not been generated before,
estimate (evaluate) it and add it to the open list and record its
parent.

♦♦ If it has been generated before and the new path is better than
the previous one, then change the parent.

A priority queue is used to implement the best first search.

4.1.3  Hill Climbing Search
The hill climbing search is another approach, and it is a discrete optimiza-
tion algorithm. This search uses a simple heuristic function that uses the
distance the node is from the goal node. The ordering of choices is a heu-
ristic measure of the remaining distance one has to traverse to reach the
goal node.

There is a category of problems where the path reporting is not impor-
tant, and only reporting the final state is important. This kind of application
includes circuit design, job shop scheduling, vehicle routing, and automatic
programming. To solve this type of problem, the hill climbing technique
is used. This type of technique works on the principle of the local search
algorithm (i.e., the local search algorithm is used). It operates using a single
current state, and it contains a loop that continuously moves in the direction
of increasing the value of the objective function.

It is simply a loop that continuously moves in the direction of the
increasing value; it is uphill, and it terminates when it reaches a peak where
no neighbor has a higher value. Only the current node data structure needs
to record the state and its objective function because this algorithm does
not maintain a search tree. This algorithm does not look ahead further than
the next neighbor of the current state.

The name of the hill climbing approach was derived from the simu-
lation of the situation where a person is climbing a hill. The person
makes every move towards the top of the hill. This person continues to
move up until he reaches a peak at which the value is no higher than the
other heuristic function, and that peak is known as the peak of the hill.
Hill climbing is an alternate (variant) of the generate and test approach,
in which feedback from a test procedure is used in deciding in which
direction the search should proceed. At each point in the search path,
a successor node that appears to reach the top of the hill most quickly

Heuristic Search Strategies • 59

is selected for exploration. It does not keep a search tree, and the cur-
rent node’s data structure requires the recording of only the state and
its objective function value. It does not look ahead further than its next
neighbor. The hill climbing algorithm addresses the pure optimization
problem, where the objective is to find the best state according to the
objective function.

C – 4 D – 6B – 4

A – 5

G – 4F – 5E – 5 H – 3

K L M N
0 – 2 P – 3

GOAL

Q F

S T

I J

FIGURE 4.2 A Sample Tree for Hill Climbing

Algorithm

Step 1	 :  Put the initial node on a list START

Step 2	 :  If START=empty or START=goal, terminate

Step 3	 :  Remove the first node from START. Call this node a.

Step 4	 :  If a=goal, terminate the search with success.

Step 5	 : � Else if the node has a successor, generate all of them. Find
out how far they are from the goal node. Sort them by the
remaining distance from goal and add them to beginning of
START.

Step 6	 :  Go to Step 2.

Limitations

1.	 �Local Maxima: This is a peak that is higher than each of its neighbor-
ing states, but lower than the global maximum. In this situation, once
point C is reached, the next calculation of the objective function is to

60 • Artificial Intelligence and Expert Systems

move downhill, so it will not be executed. Point C will be reported as
the solution, which is actually not a global maximum. A distant peak with
a greater height or higher value of the objective function is available.
It is also a state that is better than all its neighbors, but not so when com-
pared to states that are farther away.

2.	 �Ridge: This is special kind of local maxima with a very steep slope that
is difficult to trace in one calculation of the objective function (like D).
This is also a narrow elevation or raised part running along a surface.
This is an area in the path that must be traversed very carefully because
movement in any direction might maintain one at the same level or re-
sult in a fast descent.

3.	 �Plateau: This is a flat area of the search space in which all neighbors
have the same value (like E) where the next move does not give a bet-
ter solution than the present state. It becomes difficult to decide where
to move. A hill climbing search might be unable to find its way off the
plateau.

• Local maxima

• Plateaus

• Diagonal ridges

Hill Climbing Drawbacks

Solution to the Problem

1.	 �Backtrack to some earlier node and try going in a different direction.
To implement this strategy, maintain a list of paths almost taken and go
back to one of them if the path that was taken leads to a dead end. This is
a good way of dealing with the local maxima.

Heuristic Search Strategies • 61

2.	 �Make a by jump in some direction to try to get a new selection of the
search space. This is a good way of dealing with the plateau. It is the only
rule available in single small steps, and you apply them several times in
the same direction.

3.	 �Apply two or more rules before doing the test. This corresponds to
moving in several directions at once. This is a good way of dealing with
ridges.

4.1.4  Simulated Annealing Search
The problem of the local maxima is overcome in the simulated annealing
search. In a normal hill climbing search, the movements may be down-
wards, and so the hill is never made. In such an algorithm, the search may
get stuck at the local maxima. Thus, this search cannot guarantee a complete
solution. In contrast, a random search towards a successor chosen randomly
from the set of successors will be complete, but it will be extremely inef-
ficient. The combination of hill climbing and random search, which yields
both efficiency and completeness, is called simulated annealing.

Simulated annealing searches use the term “objective function” instead
of heuristic function. If the move improves the situation, it is accepted. Oth-
erwise, the algorithm accepts the move with some probability less than 1.

This probability is

	 P = e–E/Kt

where

	 E = a positive change in the energy level

	 T = temperature

	 K = Boltzman constant

As indicated by the equation, the probability decreases with “badness” of
the move. Annealing is a process used to harden metals and glass by heating
them to a high temperature and then gradually cooling them, thus allowing
the material to coalesce into a low energy crystalline state.

 Instead of picking the best move, this approach picks a random move.
Simulated annealing was first used extensively to solve the VLSI layout
problem in the early 1980s. It has been widely applied to factory schedul-
ing and other large scale optimization tasks.

62 • Artificial Intelligence and Expert Systems

The process has the following differences from the hill climbing
search:

•	 The annealing schedule is maintained.

•	 Moves to worse states are also accepted.

•	 In addition to the current state, the best state record is also maintained.

Algorithm

Step 1	 : � Evaluate the initial state. Mark it as the current state. Until
the current state is not a goal state, initialize the best state to
the current state. If the initial state is the best state, return it
and quit.

Step 2	 :  Initialize T according to the annealing schedule.

Step 3	 : � Repeat the following until a solution is obtained or there are
no operators left:

a)	 Apply the not-yet applied operators to produce a new state.

b)	 �For a new state, compute E = value of the current state – the value
of the new state. If the new state is the goal state, then stop, or if it
is better than the current state, make it the current state and record
it as the best state.

c)	 �If c is not better than the current state, then make it the current
state with a probability P.

d)	 Revise T according to the annealing schedule.

Step 4	 : Return the best state as the answer.

4.1.5  A∗ Algorithm
The A∗ algorithm is a variation of the best first search. The most widely
utilized form of the best first search is called the A∗ search. It evaluates the
node by combining g(n), the cost to reach the node h(n), to get from the
node to the goal.

	 F(n) = g(n) + h(n)

Here, g(n) gives the path cost from the start node to node n, and h(n) is
the estimated cost of the cheapest path from n to the goal.

	 F(n) = estimated cost of cheapest solution through n.

Heuristic Search Strategies • 63

If we are trying to find the cheapest solution, a reasonable thing to try
first is the node with the lowest value of g(n) + h(n).

This approach provides guidelines about how to estimate the goal dis-
tances for a general search graph. At each node along a path to the goal
node, the A∗ algorithm generates all the successor nodes and computes an
estimate of the distance (cost) from the start node to the goal node.

	 G(n) = the cost of the current node from the start node

	 H(n) = the cost of the current node from the goal node

Here, two functions are at work: the evaluation function and cost func-
tion. The cost function is how much of the resources, like time, energy, and
money, have been spent in reaching a particular node from the start node.
The evaluation function value deals with the future. The cost function value
deals with the path.

The sum of the evaluation function value and cost along the path lead-
ing to that state is called the fitness number.

Now there are three numbers associated with each node: the evaluation
function value, cost function value, and the fitness number. For example,
consider node k, when the fitness number is 20.

(evaluation function of k) + (cost function involved s to k)

	 = �1 + (cost function from s to c+ cost function from c to h + h to
I + I to k)

	 = 1 + 6 + 5 + 7 + 1 = 20

Algorithm

Step 1	 :  Put the initial node on a list START.

Step 2	 : � If START is empty or START is the goal, terminate the
search.

Step 3	 :  Remove the first node from START, and call this node a.

Step 4	 :  If a is the goal, terminate the search with success.

Step 5	 : � Else if node a has a successor, generate all of them. Estimate
the fitness number of the successor by totaling the evalua-
tion function value and cost function value. Sort the list by
the fitness number.

64 • Artificial Intelligence and Expert Systems

	 Step 6	 :  Name the new list as START1.

	 Step 7	 :  Replace START with START1.

	 Step 8	 :  Go to Step 2.

The A∗ algorithm maintains two lists. One stores the list of the open nodes,
and the other maintains the list of the already expanded nodes. The A∗
search is both complete and optimal. A∗ is an example of an optimal search
algorithm.

The optimality of A∗ is straightforward to analyze if it is used with the
TREE-SEARCH. In this case, A∗ is optimal, if h(n) is an admissible heuris-
tic, that is provided that h(n) never overestimates the cost to reach the goal.
Admissible heuristics are by nature optimistic because they think the cost
of solving the problem is less than it is, actually n. Since g(n) is the exact cost
to reach n, we find, as an immediate consequence, that f(n) never overesti-
mates the true cost of a solution through n.

An example of an admissible heuristic is the straight line distance hSLD
that we used in getting to Bucharest. The straight line distance is admis-
sible because the shortest path between any two points is a straight line, so
a straight line cannot be an overestimation.

4.1.6  AND-OR Graphs
AND-OR graphs are a problem reduction technique. There are certain types
of AI problems that can be decomposed into smaller problems. AND-OR
graphs are useful for finding the solution to such problems. The problem is
solved by breaking it into a set of smaller sub-problems, all of which must be
solved in order to solve the complete problem. In the tree representation of
the state space search, such sub-problems generated from a main problem
create the “AND” arc. One arc may point to any number of successor nodes,
all of which must be solved in order to get the complete solution. Here, the
solution of any one sub-problem works as the solution of the complete prob-
lem. Representations of such problems are done using an OR graph.

The Function of an AND-OR Graph

AND-OR graphs are applicable for parse tree generation in English:
type = “i”>

(i)	 S ← – → NPVP		 (ii)	 NP ← – → N

(iii)	 NP ← – → art N		 (iv)	 VP ← – → V

Heuristic Search Strategies • 65

(v)  VP ← – → VNP		 (vi)	 Art ← – → a

(vii)  Art ← – → then 		 (viii)	 N ← – → man

(ix)  N ← – → dog		 (x)	 V ← – → like

(xi)  V ← – → bites

The method of finding a solution using AND-OR problem reduction is
the AO∗ algorithm. It is simpler than the A∗ algorithm. As the AO∗ algo-
rithm works for the AND-OR graph, it identifies all the sub-trees that
must be solved, and it labels the traversed nodes in a tree as solved or
unsolved. To account for the AND node arcs in the solution process,
which requires the solution to all the successor nodes, the leveling of the
nodes is required. The solution of the problem is found when the start
node is labeled as solved.

Algorithm:

Step 1	 :  Place the start node S on an open list.

Step 2	 : � Using the search tree constructed so far, compute the most
promising solution.

Step 3	 : � Select a node n and remove n from open and place it on
closed.

Step 4	 : � If n is a terminal goal node, label n as solved if the solution
of n results in any of n’s ancestors being solved. Label all the
ancestors as solved if start node S is solved. Exit with suc-
cess. Remove from open all nodes with a solved ancestor.

4.2	 Properties of the Heuristic Search Algorithm

•	 Admissibility conditions: Any algorithm is called admissible if it is a
guaranteed to return an optimal solution. When one exists, a solution
is optimal if it generates the solution in the minimum number of steps.
A∗ is an admissible algorithm. Admissible heuristics are optimistic
because they assume the cost of solving a problem is less than the
actual cost.

•	 Completeness condition: The A∗ algorithm is complete if it always
terminates with a solution when one exists.

66 • Artificial Intelligence and Expert Systems

•	 Dominance property: This compares multiple algorithms created
for the solution of the same problem. Let A∗1 and A∗2 be admissible
algorithms with the heuristic estimation functions h1∗ and h2∗. A∗1 is
said to dominate A∗2 whenever h1∗(n) > h2∗(n) for all 1. A∗1 is also said
to be more informed than A∗2. This indicates how good a heuristic
function is.

•	 Consistent heuristic: A heuristic is said to be consistent if for every
node n and its successor nc (generated by action a), the estimated cost
of reaching the goal node from n is not greater than the step cost of
getting to nc, plus the estimated cost of reaching the goal from nc.

	 H(n) ⇐ c(n, an) + h(n’)

This is also known as monotonicity. It indicates that the search space is
locally consistent everywhere with the heuristic employed.

A heuristic function h is monotone if it satisfies the following two properties:

•	 For all states ni and nj, where nj is the descendent of ni

	 H(ni) – h(nj) ⇐ cost(ni, nj)

	 Actual cost of going from ni to nj

•	 The heuristic evaluation of the goal state is zero, h(goal)=0.

Time and space complexities: The time complexity indicates how much
time an algorithm takes to solve a problem. Space complexity indicates how
much memory an algorithm takes to solve a problem.

They are dependent of the following factors:

•	 branching factor

•	 maximum length of any path in state space

•	 depth of the shallowest goal node.

4.3	 Adversary Search

In this section, we will discuss a special type of search technique required in
a game playing between two opponents. The state space in this case is rep-
resented by a tree or graph and includes the possible turns of both players.
Each level of the search space in the present context denotes the possible
turns of one player only. We start with a simple algorithm called MINIMAX.

Heuristic Search Strategies • 67

4.3.1  The MINIMAX Algorithm
The MINIMAX algorithm considers the exhaustive possibility of the state
transition from a given state and consequently covers the entire space. The
algorithm thus is applicable to games having few possible state transitions
from a given trial state. One typical example that can be simulated with
MINIMAX is the NIM game. A NIM game is played between two players.

The game starts with an odd number of matchsticks, normally 7 or 9, placed
on a single row, called a pile. Each player, in his turn, has to break a single pile
into two piles of an unequal number of sticks greater than zero. The game will
come to an end when either of the two players cannot make a successful move;
the player who cannot make a successful first move will lose the game.

According to standard convention, we name the two players MINI-
MIZER and MAXIMIZER. NIM is a defensive game; consequently, the
opening player here is called the MINIMIZER. For a game such as tic-tac-
toe, where the opener always gets the benefit, the opening player is called
the MAXIMIZER. A graph space for the NIM is represented in the figure
below, demonstrating MAXIMIZER’s move and MINIMIZER’s move.

FIGURE 4.3 State Space for the NIM Game

In the MINIMAX algorithm, the following conventions will be used.
The MAXIMIZER’s success is denoted by +1, the MINIMIZER’s success
by -1, and a draw by 0. These values are attached to the moves of the players.

68 • Artificial Intelligence and Expert Systems

A question then normally arises: how do the players automatically learn about
their success or failure until the game is over? This is realized in the MINI-
MAX algorithm by the following principle: assign a number from {+1,0,-1}
at the leaves, depending on whether it is a success for the MAXIMIZER,
MINIMIZER, or a draw. Now, propagate the values up by checking whether
it is the MAXIMIZER’s move or MINIMIZER’s move. If it is the MAXI-
MIZER’s move, then its value will be the maximum value possessed by its
offspring. In case it is a MINIMIZER’s move, then its value will presume the
minimum of the values possessed by its offspring. If the values are propa-
gated up to the root node by the above principle, then each player can select
the better move in his turn. The computation process in a MINIMAX game
is illustrated below:

Algorithm:

Begin

1.		 Expand the entire state space below the starting node.

2.		� Assign values to the terminals of the state space from {-1,0,+1}, depend-
ing on the success of the MINIMIZER, a draw, or the success of the
MAXIMIZER.

3.		 For each node where all children possess values, do

Begin

If it is a MAXIMIZER node, then its value will be maximum of its children’s
value. If it is a MINIMIZER node, then its value will be the minimum of
its children.

Table 4.1  Comparison of Search Techniques

Criterion BFS UCS DFS DLS IDS BS

Time bd bd Bm Bl bd bd/2

Space bd bd bm bl bd bd/2

Optimal? Yes Yes No No Yes Yes

Complete? Yes Yes No Yes, If
l > = d Yes Yes

Heuristic Search Strategies • 69

Exercises

Q1. � What are heuristics, and what is their importance?

Q2. � Why is the heuristic search better than the blind search?

Q3. � Distinguish between heuristics and algorithms.

Q4. � Explain the best first search algorithm.

Q5. � Describe the A∗ algorithm. Prove that the A∗ algorithm is complete
and optimal.

Q6. � Explain the AO∗ algorithm.

Q7. � Describe the hill climbing algorithm.

Q8. � What is meant by the local maxima with respect to search techniques?

Q9. � When will the hill climbing search technique fail? Does the steepest
ascent always find solutions? How can some problems be overcome
in search?

Q10. � How does the depth first search get converted into hill climbing?

C H A P T E R 5
EXPERT SYSTEMS

The expert system is an application of AI that embodies human expertise.
The field of expert systems addresses the solutions to complex problems.
Artificial intelligence researchers achieved considerable success over the
last 50 years in developing expert system technology to solve complex, real-
time problems that are difficult to solve using traditional methods.

The first expert systems were created in the 1970s and then prolifer-
ated in the 1980s. Expert systems were among the first truly successful
forms of AI software. Expert systems are the result of a novel approach of
AI technology called the rule-based system. To design an expert system,
one needs a knowledge engineer, an individual who studies how human
experts make decisions and translates those rules into terms that a com-
puter can understand. Expert systems are also known as knowledge-based
systems, knowledge-based expert systems, and rule-based systems. They
are considered to be “applied artificial intelligence.” The process of devel-
oping with an expert system is called knowledge engineering. EMYCIN
was one of the first “shells” for an expert system, which was created from
the MYCIN medical diagnosis system. The production rule system is a rule
engine that uses the rule-based approach to implement an expert system.

5.1	 Definitions of Expert Systems

•	 An expert system is a computer system that simulates the decision-
making ability of a human expert. Expert systems are designed to
solve complex problems by reasoning about knowledge like an expert.

72 • Artificial Intelligence and Expert Systems

•	 An expert system is a computer program that simulates the judgment
and behavior of a human who has expert knowledge and experience in
a particular field. Typically, such a system contains a knowledge base
containing accumulated experience and a set of rules for applying
the knowledge base to each particular situation that is described to
the program. Sophisticated expert systems can be enhanced with
additions to the knowledge base or to the set of rules.

•	 An expert system is a computer system that performs a task that would
otherwise be performed by a human expert. For example, there are
expert systems that can diagnose human illnesses, make financial
forecasts, and schedule routes for delivery vehicles.

•	 Expert systems can also be defined as intelligent programs that have
the ability to provide expertise in solving problems by using the
domain-specific knowledge of a human expert.

5.2	 Features of Good Expert Systems

All good expert systems

•	 should be useful: They should be developed to meet a specific need.

•	 should be usable: They should be designed so that even a novice
computer user finds them easy to use.

•	 should be educational: An expert system may be used by non-experts
who can then increase their own expertise by using it.

•	 should be able to explain the given advice: Expert systems should be
able to explain the reasoning process.

•	 should be able to learn new knowledge: Expert systems should be able
to ask questions to gain additional knowledge.

•	 should exhibit a high performance: Expert systems should provide
high quality output, otherwise users will not be satisfied no matter
how fast the output is produced.

•	 should make timely decisions: Expert systems must be able to produce
decisions on time, otherwise, there is no point whether the output is
right or wrong if timely output is not produced.

Expert Systems • 73

•	 should use heuristics: Expert systems must use heuristics to narrow
the search area.

5.3	 Architecture and Components of Expert Systems

The most common form of architecture of expert systems is the ruled-
based system or production system. This type of system uses knowledge
written in the form of production rules, that is, using “IF…THEN” rules.
For example,

External Program

External
Database

Rule: IF-THEN Fact

DatabaseKnowledge Base

Inference Engine

Explanation Facilities

User Interface Developer
Interface

Knowledge Engineer

Expert

User

Expert System

FIGURE 5.1  Expert System Components with Members of the Development Team

Syntax: If Condition THEN Action

Example: If it is cold THEN take umbrella

Each rule represents a small piece of knowledge relating to a given area
of expertise. A set of related rules can lead from initially known facts to
some useful conclusions. When the fact matches with left side of the rule,
then the action is taken.

74 • Artificial Intelligence and Expert Systems

Rule: IF-THEN Fact

Inference Engine

Explanation Facilities

User Interface

User

Knowledge Base Database

FIGURE 5.2 Components of Expert Systems

Explanation
system

Knowledge
base editor

User interface

Inference engine

User

Knowledge
base

Fact
database

Expert system shell

FIGURE 5.3  The Architecture of an Expert System

Various components of expert systems are given in the next sections.

5.3.1  User Interface
The acceptability of an expert system depends on the quality of the user inter-
face. It provides for the communication exchange between the user and the
system. The user interface can be a text-oriented interface or graphical inter-
face, which is decided at the time when the expert system is designed. How-
ever, usually a graphical interface is chosen because it is more user friendly.

The user can enter commands and respond to questions. The system
responds to commands, and asks questions during the inferencing process.
Advanced interfaces make heavy use of various methods, such as pop-up

Expert Systems • 75

menus and windows. Through the user interface, the user can see into the
system to determine what conclusion has been reached so far, why that con-
clusion was reached, what the system is doing now, and why it is doing it.

5.3.2  Knowledge Base
The knowledge base is the heart of an expert system. It contains all the
knowledge of a domain expert obtained by the knowledge engineer through
knowledge acquisition techniques. It contains expert-level knowledge on
a particular subject stored in a knowledge representational form. It has
been said that knowledge may be defined as factsor skills that are obtained
through several years of experience.omain experts gather this knowledge,
such as what is learned from school and from several years of experience.
A domain expert is capable of expressing his knowledge in the form of rules
for solving problems. The knowledge base contains rules and knowledge
that are expressed in rule form.

An “ IF ... THEN” rule has two parts:

a)	 the IF part, also called the antecedent or premise (condition part)

b)	 �the THEN part, also called the consequent part or conclusion part
(action part).

Structure of a rule:

IF		 <antecedent>

THEN 		 <consequent>

For example:

antecedent (left-hand-side)

consequent
(right-hand-side)

IF ... THEN Rules

Rule: Red_Light

IF the light is red

THEN stop

Rule: Green_Light

IF the light is green

THEN go

antecedent
(left-hand-side)

consequent
(right-hand-side)

Production Rules

the light is red = = > stop

the light is green = = > go

76 • Artificial Intelligence and Expert Systems

Also, a rule can have multiple antecedent parts joined using connec-
tives like AND or OR, and this is called a compound rule.

The structure of compound rule is as follows:

(a)  IF		 <antecedent 1>

   AND	 <antecedent 2>

   •

   •

   •

   AND	 <antecedent n>

   THEN	 <consequent>

(b)  IF		 <antecedent 1>

   OR		 <antecedent 2>

   •

   •

   •

   OR		 <antecedent n>

   THEN	 <consequent>

Expert systems can also use mathematical operators in place of AND
and OR:

IF	 “age of the customer” < 18

AND	 “cash withdrawal” > 1000

THEN 	“signature of the parent” is required

Also, one important point to remember is that rules in the knowledge
base can represent any relation, heuristic, suggestion, or recommenda-
tion.

•	 Relation

IF the “fuel tank” is empty

THEN the car is dead

Expert Systems • 77

•	 Recommendation

IF the season is autumn

AND the sky is cloudy

AND the forecast is drizzle

THEN the advice is “take an umbrella”

•	 Directive

IF the car is dead

AND the “fuel tank” is empty

THEN the action is “refuel the car”

•	 Heuristic

IF the spill is liquid

AND the “spill pH” < 6

AND the “spill smell” is vinegar

THEN the “spill material” is “acetic acid”

Rules are the most common way of representing knowledge acquired from
an expert. Rules also provide a description of how to solve a particular prob-
lem. The knowledge represented by the production rules (IF….THEN) is
used for reasoning that is developed if the IF part of the rule is satisfied;
consequently, the THEN part can be concluded, or its problem-solving
action taken. Expert systems whose knowledge is represented in rule form
are called rule-based systems. There are other ways also for representing
knowledge, like frames and scripts, which we will discuss later.

A knowledge base also contains facts and questions, but a rule expresses
the expertise. It is the warehouse of the domain specific knowledge cap-
tured from human experts through the knowledge acquisition module. The
knowledge base is used by the inference engine component of an expert
system for evaluating the rule and drawing conclusions from it.

The knowledge base of an expert system has various types of
knowledge:

•	 Procedural Knowledge: The procedure refers to any task that
is related to the performance of some task and a processed form of

78 • Artificial Intelligence and Expert Systems

information. For example, if we have step-by-step information for
solving a problem, then it is called procedural knowledge.

•	 Factual Knowledge: This is the knowledge about the facts of a
particular task domain that are found inside textbooks and journals.
Such knowledge is shared widely.

•	 Heuristic Knowledge: This is the opposite of factual knowledge, as
it is not widely shared but discussed rarely and is less rigorous, largely
individualistic, and more experiential. Heuristic knowledge arises
from good practice and good judgment.

Five processes are needed for building a knowledge base:

1.		 Knowledge acquisition

2.		 Knowledge analysis and representation

3.		 Knowledge validation

4.		 Inference design

5.		 Explanation and justification

These are not stages that have to follow each other — some of them will run
concurrently, and this will be discussed later.

There are several advantages in representing knowledge through
rules:

1.		 �Acquisition & Maintenance: Since domain expert knowledge is
encoded in the form of rules in the knowledge base, a domain expert
can themselves define and maintain the rule.

2.		� Explanation: If knowledge can be represented in rule form, then
it is also possible to explain to users about the conclusion reached.
For example, consider a chain of inferences that led to a diagnosis.
We can then use these facts to explain how such a diagnosis was
reached.

Since the complexity of problems has increased, we need a complex knowl-
edge base and sophisticated knowledge representation techniques, like the
semantic net and frames.

Expert Systems • 79

5.3.3  Working Storage (Database)
The working storage contains facts that are used by the inference engine
for matching facts with the antecedent part of a rule to find a conclusion. It
contains the data that is specific to the problem being solved. It is a working
store that the inference engine can use to hold data while it is working on
problem. It holds all the data about the current task, such as

•	 user answers to questions

•	 any data from outside sources

•	 any intermediate result of reasoning

•	 any conclusions reached so far

There is difference between the knowledge base and the database. The
knowledge base contains knowledge and is used over and over again, but a
database contains data about a particular case.

5.3.4  Inference Engine
The inference engine is the reasoning component of an expert system, and
it is a rule interpreter. The inference engine is a computer program that
produces the reasoning for a rule. This engine is able to generate new infor-
mation from the knowledge contained in the rule base and data to be pro-
cessed. The brain of the rules system is an inference engine. The inference
engine matches facts and data against the production rules — also called
productions or just rules — to infer conclusions that result in actions. When
the IF (condition) part of the rule matches with a fact, then the rule is said
to be fired, and its THEN (action) part is executed.

This matching produces inference chains. The inference chain specifies
how to apply the rules to reach a conclusion.

Rule1: IF Y is true
AND D is true
THEN Z is true

Rule2: IF X is true
AND B is true
AND E is true
THEN Y is true

Rule3: IF A is true
THEN X is true

A X

B

E

Y

D
Z

FIGURE 5.4  The Inference Chain

80 • Artificial Intelligence and Expert Systems

Fact: A is x
Fact: B is y

Rule: IF A is x THEN B is y

Knowledge Base

Database

Match Fire

FIGURE 5.5  How the Inference Engine Works via the Match-Fire Procedure

The process of matching the new or existing facts against the produc-
tion rules is called pattern matching, which is performed by the inference
engine. It is the responsibility of the inference engine to prioritize the rules
and fire rules having the highest priority. The rules are stored in the pro-
duction memory and the facts that the inference engine matches against are
kept in the working memory (database). Facts are declared into the work-
ing memory, where they may then be modified.

There are two methods of execution for a rule system: forward chaining
and backward chaining. The systems that implement both are called hybrid
chaining systems.

5.3.4.1  Forward Chaining

Forward chaining is “data-driven” reasoning, and we move from facts to
conclusion. That is, we move forward with facts being asserted into the
working memory, which results in one or more rules being concurrently
true. In short, we start with a fact, it propagates, and we end in a conclusion.
In forward chaining, only the topmost rules are evaluated, and every firing
of a rule adds a new fact to the working memory. This process stops when
no more rules are left for firing.

Forward-Chaining Algorithm

•	 while (no new assertion made) and (unresolved)

•	 for each rule

(And for each possible binding)

•	 try to support rule’s conditions from known facts

•	 if all supported then assert consequent

Expert Systems • 81

For example: Consider the below rule base of a simple vehicle recognizer.

R1: If ?x has wings

Then ?x is a plane

R2: If ?x flies

Then ?x is a plane

R3: If ?x runs on tracks

Then ?x is a train-or-tram

R4: If ?x is a plane

?x can take off vertically

?x has rotors

Then ?x is a helicopter

R5: If ?x is a train-or-tram

?x stays underground

Then ?x is a subway car

Conflict
Resolution
Strategy

Determine
possible rules to

fire

Rule
Base

Working
Memory

Fire
Rule

Select
Rule to

Fire

Exit

No Rule
Found

Exit if specified by rule

Rule
Found

Conflict Set

FIGURE 5.6  Forward Chaining

82 • Artificial Intelligence and Expert Systems

R6: If ?x is a helicopter

?x is made in South Africa

Then ?x is a Rooivalk

Now, from the above rule base, we move from fact to conclusion. That is, if
one knows that a vehicle takes off vertically and has rotors, one can fire rule
R4 to show that it is a helicopter.

A B C D E A B C D E A B C D E A B C D E

ZYLXYLXLXX

Database Database Database Database

Match Fire Match Fire Match Fire Match Fire
Knowledge Base Knowledge Base Knowledge Base Knowledge Base

Y & D Z
X & B & E Y

A X
C L

L & M N

Y & D Z
X & B & E Y

A X
C L

L & M N

Y & D Z
X & B & E Y

A X
C L

L & M N

Y & D Z
X & B & E Y

A X
C L

L & M N

Cycle 1 Cycle 2 Cycle 3

FIGURE 5.7  An Example of Forward Chaining

The problem with forward chaining is that some rules get executed
even if they make no contribution to the goal. Thus, it is inefficient way of
reasoning if we want to conclude only one fact.

5.3.4.2  Backward Chaining

Backward chaining is “goal-driven,” that is, we start with a conclusion
that the engine then tries to satisfy. Expert systems have a goal, and the
inference engine in backward chaining tries to prove that goal. First, the
knowledge base is searched for a rule having that goal. If such a rule is
found, and it’s IF (condition) part also matches with the data in the data-
base, then that the rule is fired and the goal is proved. If it can’t find such
rule, then it searches for conclusions that it can satisfy; these are known
as sub-goals that will help satisfy some unknown part of the current goal.
Now, a new rule is searched in the knowledge base for proving that sub-
goal. This process continues until either the initial conclusion is proven or
there are no more sub-goals. Prolog is an example of a backward chaining
engine.

Expert Systems • 83

Backward-Chaining Algorithm

•	 while (no untried hypothesis) and (unresolved)

•	 for each hypothesis

♦♦ for each rule with the hypothesis as the consequent

♦♦ try to support the rule’s conditions from known facts or via
recursion (trying all possible buildings)

♦♦ if all are supported, then assert the consequent

For example, one may try to show that the vehicle is a Rooivalk by using rule
R6. The one fact—South African—is known, but it is not known whether
the vehicle is a helicopter. That may be done by rule R4. Two of the three
facts there are known, but it is not known that the vehicle is a plane. We can
then try rules R1 and R2. That is, we move backward.

Examine working memory
and goals to see if goals

are "known" true in
knowledge base

Working
Memory

Rule
Base

Goal

Retum
True

Do goals
match?

Retum
False

Determine next possible
rules to fire by checking
conclusions and goals

For each rule
condition, recursively

backchain with
condition as goal

Fire Rule Select Rule
to Fire

Conflict
Resolution

strategy

Exit

No Rule
Found

Rule
Found

All recursion
returns true?

Yes
true

One or more goals failed, Check next matching rule

No
(return false to recursive procedure)

Yes

re
cu

rs
iv

el
y

ba
ck

-c
ha

in
Ea

ch
co

nd
iti

on
of

fir
ed

ru
le

is
a

go
al

Goals found to be true, exist,
returning true

FIGURE 5.8  The Backward Chaining Process

84 • Artificial Intelligence and Expert Systems

A B C D E A B C D E A B C D E

Pass 1
Database

Pass 2
Database

Pass 3
Database

? ?

Z Y X
Knowledge Base Knowledge Base Knowledge Base

Y & D Z
X & B & E Y

A X
C L

L & M N

Y & D Z
X & B & E Y

A X
C L

L & M N

Y & D Z
X & B & E Y

A X
C L

L & M N

Goal: Z Sub-Goal: Y Sub-Goal: X

Pass 4
Database

Pass 5
Database

Pass 6
Database

Knowledge Base Knowledge Base Knowledge Base
Y & D Z

X & B & E Y
A X
C L

L & M N

Y & D Z
X & B & E Y

A X
C L

L & M N

Y & D Z
X & B & E Y

A X
C L

L & M N

A B C D E A B C D E A B C D E

X X Y X Y Z

Match Fire Match Fire Match Fire

Sub-Goal: X Sub-Goal: Y Sub-Goal: Z

FIGURE 5.9  An Example of Backward Chaining

Data Rules Conclusion

a = 1
b = 2 d = 4IF a = 1 & b = 2 THEN c = 3 IF c = 3 THEN d = 4

Forward Chaining

Sub-goals Rules Goal

a = 1
b = 2 d = 4IF a = 1 & b = 2 THEN c = 3 IF c = 3 THEN d = 4

Backward Chaining

FIGURE 5.10   Difference Between Forward and Backward Chaining

Expert Systems • 85

The forward chaining system starts with the data of a = 1 and b = 2 and
uses the rules to derive d = 4. The backward chaining system starts with
the goal of finding a value for d and uses the two rules to reduce that to the
problem of finding values for a and b.

Conflict resolution by the inference engine: Conflict occurs when two
or more rules are satisfied by the same fact. A system with a large number of
rules and facts may result in many rules being true for the same fact. These rules
are said to be in conflict, and the inference engine has to use a conflict resolution
strategy for managing the execution order of these conflicting rules.

Consider the following three rules in a knowledge base:

1.		 IF the “traffic light” is green
  THEN the action is go

2.		 IF the “traffic light” is red
  THEN the action is stop

3.		 IF the “traffic light” is red
  THEN the action is go

Now, it is clear the rules 2 and 3 have same conditional part, so if the condi-
tional part is satisfied by a fact from the database, then both rules will be fired.
This is called a conflict, and the set of conflict rules is called the conflict set. It is
the responsibility of the inference engine to determine which rule to fire from
the conflict set. The inference engine uses a conflict resolution strategy.

In the case of forward chaining, both rules would be fired. Since the
rule of forward chaining dictates that the topmost rule will be fired, rule 2
is fired first. The action takes the value “stop.” But rule 3 can also get fired
after rule 2, because its condition also matches, so now the action takes on
the new value “go.”

There are two conflict resolution strategies used by the inference
engine for conflict resolution:

•	 The first strategy is to assign priorities to each rule and store the rules
in the knowledge base in order of their priority. In the case of conflict,
the high priority rule is fired first.

•	 The second strategy is to fire the rule that possesses more information,
that is, the most specific rule is fired.

86 • Artificial Intelligence and Expert Systems

5.3.5  Explanation Facility
It is important to explain the reasoning of the system to a user. It is possible
for the system to provide those rules which were used during the inference
process to the user as a means for explaining the results. This type of expla-
nation can be very dramatic for some systems, such as the bird identifica-
tion system.

At other times, however, the explanations are relatively useless to the
user. This is because the rules of an expert system typically represent empir-
ical knowledge, and not a deep understanding of the problem domain. For
example, a car diagnostic system has rules that relate symptoms to prob-
lems, but no rules which describe why those symptoms are related to those
problems.

Explanations are always of extreme value to the knowledge engineer.
By looking at the explanations, the knowledge engineer can see how the
system is behaving, and how the rules and data are interacting.

5.3.6  Knowledge Acquisition Facility
This refers to an automatic way for the expert to enter knowledge in the
system rather than by having the knowledge engineer explicitly code the
knowledge.

5.3.7  External Interface
The user interface handles all data going to and from users, but sometimes
the expert system exchanges data with other sources, such as data files. The
inference engine calls the external interface to get the input it needs and to
transmit output to the proper destination.

5.4	 Roles of the Individuals Who Interact with the System

There are five members on the development team of an expert system:
the knowledge engineer, domain expert, end user, programmer, and project
manager. The success of their expert system entirely depends on how well
the members work together.

5.4.1  Domain Expert
A domain expert is an individual (or individuals) who is an expert at solving
the problems that the system is intended to solve. Domain experts have
a deep knowledge of facts and also have strong experience in a particular

Expert Systems • 87

domain. A domain expert is a skilled person with knowledge in a particu-
lar domain for solving problems in that domain. The expert knowledge of
a domain expert is captured through knowledge acquisition techniques.
The domain expert must be willing to participate in the knowledge acqui-
sition process.

Project Manager

Domain Expert ProgrammerKnowledge Engineer

Expert System

End-user

Expert System
Development Team

FIGURE 5.11  The Expert System Development Team

5.4.2  Knowledge Engineer
It is the knowledge engineer who obtains knowledge from various sources.
The knowledge engineer’s responsibility is to design, build, and test an
expert system. It is the knowledge engineer who interacts with the expert
and knowledge base.

The knowledge engineer, after acquiring knowledge, decides the rep-
resentational scheme for that knowledge and also decides on the program-
ming language for knowledge encoding. The knowledge engineer’s role
is not restricted to knowledge acquisition and representation. He is also
responsible for testing and revising the expert system.

5.4.3  Programmer
The programmer is responsible for using the programming language cho-
sen by knowledge engineer for encoding the knowledge. The AI program-
ming languages are LISP and PROLOG, so the programmer must have
strong skills in these languages, in addition with other languages like C,
C++, and Java.

88 • Artificial Intelligence and Expert Systems

5.4.4  Project Manager
The project manager is responsible for managing the overall expert system’s
development. He keeps the project on track and coordinates with the rest
of the team members.

5.4.5  User
The end user is the person who finally uses the developed expert system.
He is the person who will be consulting with the system to get advice which
would have been provided by the expert. The user must feel that the system
is user friendly.

Many expert systems are built with products called expert system shells.
The shell is a piece of software that contains the user interface, a format for
the declarative knowledge in the knowledge base, and an inference engine.
The knowledge engineer uses the shell to build a system for a particular
problem domain.

Expert systems are also built with shells that are custom developed for
particular applications. In this case, there is another key individual. The
system engineer builds the user interface, designs the declarative format
of the knowledge base, and implements the inference engine. Depending
on the size of the project, the knowledge engineer and the system engineer
might be the same person.

A major problem in building expert systems is the knowledge
engineering process (the entire process of building an expert
system is called knowledge engineering). The coding of the expertise
into the declarative rule format can be a difficult and tedious task.
One major advantage of a customized shell is that the format of the
knowledge base can be designed to facilitate the knowledge engineer-
ing process.

Thus, an expert system shell is a special purpose tool that is designed
using the requirements of its application. Users then supply the knowledge
base to the shell. The shell accomplishes the input and output. It then pro-
cesses the information which is given by the user, evaluates it according to
the knowledge contained in the knowledge base, and then finally provides
a solution for a particular problem.

Expert Systems • 89

5.5	 Advantages of Expert Systems

•	 Quick availability and opportunity to program itself

�As the rule base is in everyday language, an expert system can be writ-
ten much faster than a conventional program, by users or experts,
bypassing professional developers and avoiding the need to explain the
subject.

•	 Ability to exploit a considerable amount of knowledge

�The expert system uses a rule base, unlike conventional programs,
which means that the volume of knowledge to program is not a major
concern. Whether the rule base has 10 rules or 10,000, the engine oper-
ation is the same.

•	 Reliability and consistency

�The reliability of an expert system is the same as the reliability of a data-
base. It also depends on the size of the knowledge base. If the knowl-
edge base is set up with no ambiguity or subjectivity, then the expert
system (with the same input criteria) will always deliver the same out-
put. This is useful for expert systems used to make decisions that need
to have no bias, such as a loan decision expert system. As such, the loan
expert system will evaluate two different people with the same financial
history in the same manner, ensuring equal opportunity.

•	 Scalability

�Evolving an expert system means to add, modify, or delete rules. Since
the rules are written in plain language, it is easy to identify those that
should be removed or modified.

•	 Pedagogy

�The engines that are run by true logic are able to explain to the user in
plain language why they ask a question and how they arrived at each
deduction. In doing so, they show the knowledge of the expert con-
tained in the expert system. So, the user can learn this knowledge in
its context. Moreover, they can communicate their deductions step by
step. The user has information about their problem even before the
final answer is given by the expert system.

90 • Artificial Intelligence and Expert Systems

•	 Preservation and improvement of knowledge

�Valuable knowledge can disappear with the death, resignation, or retire-
ment of an expert. Recorded in an expert system, it becomes eternal.
To develop an expert system involves interviewing an expert and mak-
ing the system aware of their knowledge. In doing so, it reflects and
enhances the expert knowledge.

•	 Robust and effective

�An expert system is robust so it can operate with incomplete knowl-
edge, and it is effective because it can operate with reasonable perfor-
mance in a complex domain.

•	 Transparent

�An expert system is transparent, meaning it can explain or justify its
reasoning naturally. Knowledge can be represented in a declarative way
without affecting its use.

5.6	 Disadvantages of Expert Systems

•	 Every expert system has a major flaw, which explains their low success
rate despite the fact that the principles such systems are based have
existed for 70 years, such as knowledge collection and its interpretation
into rules, or knowledge engineering. Most developers have no
automated method to perform this task; instead they work manually,
increasing the likelihood of errors. Expert knowledge is generally not
well understood; for example, rules may not exist, be contradictory,
or be poorly written and unusable. Most expert systems use a
computational engine incapable of reasoning. As a result, an expert
system will often work poorly, and the project will be abandoned.
Correct development methodology can solve these problems.

•	 The disadvantages of using expert systems include that they usually
only cover a narrow spectrum. They are also expensive. Many expert
systems are menu-driven. This means they don’t handle ambiguity
well.

•	 Expert systems lack the common sense needed to make some
decisions.

Expert Systems • 91

•	 They cannot respond creatively, like a human expert would in unusual
circumstances.

•	 Domain experts are not always able to explain their logic and reasoning.

•	 Errors may occur in the knowledge base and lead to wrong decisions.

•	 They cannot adapt to changing environments unless the knowledge
base is changed.

•	 Expert systems can’t draw analogies from other sources to solve a
newly encountered problems like a human would; in other words,
they can’t be creative.

•	 Human experts automatically adapt to changing environments; expert
systems must be explicitly updated.

•	 Human experts have available to them a wide range of sensory
experiences; expert systems are currently dependent on symbolic input.

•	 Although inexpensive to operate, expert systems are expensive to
develop and maintain.

Table 5.1 � A Comparison of Expert Systems with Conventional Systems and
Human Experts

Human Experts Expert Systems Conventional
Programs

Use knowledge in the
form of rules of thumb or
heuristics to solve prob-
lems in a narrow domain.

Process knowledge
expressed in the form of
rules and use symbolic
reasoning to solve prob-
lems in a narrow domain.

Process data and use
algorithms, a series of
well-defined operations,
to solve general numeri-
cal problems.

In the human brain,
knowledge exists in a
compiled form.

Provide a clear separa-
tion of knowledge from
its processing.

Do not separate knowledge
from the control structure
to process this knowledge.

Capable of explaining a
line of reasoning and pro-
viding the details.

Trace the rules fired dur-
ing a problem-solving ses-
sion and explain how a
particular conclusion was
reached and why specific
data was needed.

Do not explain how a
particular result was
obtained and why input
data was needed.

92 • Artificial Intelligence and Expert Systems

Use inexact reasoning and
can deal with incomplete,
uncertain and fuzzy infor-
mation.

Permit inexact reasoning
and can deal with incom-
plete, uncertain and fuzzy
data.

Work only on problems
where data is complete
and exact.

Can make mistakes when
information is incom-
plete or fuzzy.

Can make mistakes when
data is incomplete or
fuzzy.

Provide no solution at all,
or a wrong one, when data
is incomplete or fuzzy.

Enhance the quality of
problem solving via years
of learning and practi-
cal training. This process
is slow, inefficient, and
expensive.

Enhance the quality
of problem solving by
adding new rules or
adjusting old ones in
the knowledge base.
When new knowledge
is acquired, changes are
easy to accomplish.

Enhance the quality
of problem solving by
changing the program
code, which affects
both the knowledge and
its processing, making
changes difficult.

Table 5.2  A Comparison of Conventional Programs and Expert Systems

Characteristics Conventional Program Expert System

Control by ... Statement order Inference engine

Control and Data Implicit integration Explicit separation

Control Strength Strong Weak

Solution by ... Algorithm Rules and Inference

Solution search Small or none Large

Problem solving Algorithm Rules

Input Assumed correct Incomplete, incorrect

Unexpected input Difficult to deal with Very responsive

Output Always correct Varies with the problem

Explanation None Usually

Applications Numeric, file and text Symbolic reasoning

Execution Generally sequential Opportunistic rules

Expert Systems • 93

Exercises

Q1.  What is an expert system?

Q2.  What are the advantages of expert systems over human experts?

Q3.  Define an inference engine used as part of an expert system.

Q4.  Describe expertise and its limits.

Q5.  What rules do expert systems use?

Q6.  What is a knowledge base?

Q7.  Describe the difference between forward and backward chaining.

Q8. � Explain the role of the various individuals who interact with an expert
system.

C H A P T E R 6
THE EXPERT SYSTEM
DEVELOPMENT LIFE CYCLE

Expert systems are an application of AI that embodies human expertise. In
recent years, expert systems have emerged as one of the most powerful tools
from the field of AI. Expert systems are designed for solving complex deci-
sion–making problems that simulate a human expert’s capability for making
decisions. Rosenman defined expert systems as “An automated reasoning sys-
tem that attempts to mimic the performance of the human expert.”

Expert systems can also be defined as intelligent programs that have
the ability to provide expertise in solving problems by using the domain-
specific knowledge of a human expert. The architecture of expert systems
was discussed in the previous chapter. As noted before, the following are
the components of expert systems:

•	 user interface

•	 knowledge base

•	 database

•	 inference engine

•	 explanation facility

•	 knowledge acquisition facility

expert system = knowledge base + inference engine

96 • Artificial Intelligence and Expert Systems

There are many examples of expert systems. MYCIN was used for med-
ical diagnosis (to identify a specific group of diseases). DENDRAL helped
to identify a molecule’s structure given its chemical formula and other data.

For conventional software, there is the software development life cycle
(SDLC). Similarly, for there is an expert system development life cycle for
developing expert systems. Most of the expert systems can be developed by
using conventional software engineering techniques, but with some modi-
fications in these techniques, since the conventional software development
life cycle is somewhat inadequate in satisfying expert system requirements.
Conventional techniques of software development are also based on the
assumption that the requirements are well defined.

For expert system development, the evolutionary and prototype
approaches must be used, where the system is developed in multiple stages
through the continuous and proper interaction between the knowledge
engineer and expert. The prototype approach is best suited for decision-
oriented applications. The expert system development life cycle involves
much more prototyping than conventional software development methods.

The expert system development life cycle goes through a number of
stages, starting from the problem definition and ending with the implemen-
tation and operation. In between these two stages are all the activities that
must follow an iterative cycle until the system’s desired stability is achieved.

6.1	 Stages in the Expert System Development Life Cycle

Strategic Design
and

Expert System
Selection

System
Architecture
& Paradigm
Formulation

Knowledge
Engineering &

Initial Prototype
Development

Prototype
Enhancement

and
Expansion

Formal
Specification &

Delivery System
Development

FIGURE 6.1  Stages in the Expert System Development Life Cycle (ESDLC)

The Expert System Development Life Cycle • 97

The following are the stages in the expert system development life
cycle.

6.1.1  Problem Selection
The first step is to identify the appropriate problem domain, which is to
define the problem that the client expects the expert system to solve. In
this stage, various features regarding the suitability of the expert system
are assessed. The various activities in the problem definition stage are as
follows:

•	 Determine the feasibility of the expert system.

•	 Determine whether an expert system is the right approach for solving
that problem.

•	 Properly identify and define the problem domain that the client wants
to solve.

•	 Identify domain experts (sources of knowledge) and the users of the
expert system.

•	 The domain expert must have enough knowledge of the subject matter
area and must have enough time for project completion.

•	 Identify the appropriate approach to the problem and discuss it with
the domain experts and users to obtain a proper understanding of the
purpose of the expert system.

•	 Interview experts and users and focus on their skills with respect to
the problem domain.

•	 Prepare a proper plan of the expert system that includes the timing
schedule and resource requirements.

•	 Since the prototype approach is used for expert system development, a
sub-set of the whole problem is selected for which the initial prototype
will be made for determining feasibility.

•	 Analyze various methods of knowledge representation to choose an
appropriate tool for prototype development.

•	 Perform the cost-benefit analysis.

98 • Artificial Intelligence and Expert Systems

The outcome of this phase is the initial requirement review report (IRR).
The IRR report must include following things:

•	 a description of problem, that is, what should be done by the expert
system

•	 the specifications of the list of skills that users must have in order to
work with the expert system

•	 a listing of the currently established requirements

•	 a tentative schedule for the initial prototype development

•	 time constraints
Table 6.1  Activities in the Problem Definition Stage

Task Objective

Feasibility assessment Determine if it is worthwhile to build the
system and if so, whether the expert systems’
technology should be used.

Resource management Assess resources such as people, time, money,
software, and hardware. Acquire and manage
the required resources.

Task phasing Specify the tasks and their order in the
stages.

Schedules Specify the starting and delivery dates of tasks
in the stages.

Preliminary functional layout Define what the system should accomplish
by specifying the high-level functions of the
system. This task specifies the purpose of the
system.

High-level requirements Describe in high-level terms how the functions
of the system will be accomplished.

6.1.2  Conceptualization
In this stage, the characterization of the situation and design of the
proposed program is done. That is, the intended system capability is
described, and the expertise needed for solving the proposed problem
is also determined. A discussion between the knowledge engineer and
expert helps in clarifying the scope of the system and its details, and helps

The Expert System Development Life Cycle • 99

in identifying sub-problems of the problem that can be implemented
quickly in the form of a prototype.

In this stage, knowledge acquisition is done, that is, acquiring knowl-
edge from the domain expert. Two tasks are done:

•	 knowledge source identification and selection

•	 knowledge acquisition, analysis, and extraction

Acquiring knowledge is the responsibility of the knowledge engineer. The
knowledge engineer has to identify various knowledge sources and select
the appropriate one. A knowledge engineer interviews the domain expert
many times and asks a lot of questions.

The following questions may be used by the knowledge engineer to
help understand what the expert does:

•	 Exactly what decisions does the expert make?

•	 What are the outcomes of the decisions?

•	 Which outcomes require greater exploration or interaction?

•	 What resources or inputs are required to reach a decision?

•	 What conditions are present when a particular outcome is decided?

Table 6.2  Knowledge Source Identification

Task Objective

Source identification Who and what are the knowledge sources, without
regard to availability?

Source importance Prioritized list of knowledge sources in order of
importance to development.

Source availability List of knowledge sources ranked in order of avail-
ability. The web, books, and other documents are
generally much more available than human experts.

Source selection Select the knowledge sources based on importance
and availability.

After selecting the appropriate knowledge source, knowledge acquisi-
tion is done by knowledge acquisition methods.

100 • Artificial Intelligence and Expert Systems

6.1.3  Formalization
In this stage, the program logic is designed. Formalization means organiz-
ing the knowledge obtained from the previous stages and organizing the
key concepts and sub-problems. Acquired knowledge is organized and clas-
sified into a hierarchical tree-like structure. Organizing knowledge using
knowledge representing schemes as knowledge representation is important
for a system’s trustworthiness.

•	 Construct a knowledge base (with rules) by obtaining knowledge from
domain experts.

•	 Identify and define the proper user interface between the expert
system and other external sources.

Table 6.3  Knowledge Definition Tasks

Task Objective

Knowledge
representation

Specify how knowledge will be represented, such as
the rules, frames, or logic. Dependent upon what the
expert systems tool will support.

Detailed control
structure

Specify three general control structures:

1. �If the system is embedded in the procedural code,
how it will be called;

2. �Control of the related groups of rules within an
executing system;

3. Meta-level control structures for rules.

Internal fact structure Specify the internal structure of facts in a consistent
manner to aid in understanding and good style.

Preliminary user
interface

Specify a preliminary user interface. Get feedback
from users about the interface.

Initial test plan Specify how the code will be tested. Define the test data,
test drivers, and how the test results will be analyzed.

Table 6.4  Detailed Design of the Knowledge Tasks

Task Objective

Design structure Specify how knowledge is logically organized in the
knowledge base and what is in the knowledge base.

Implementation strategy Specify how the system is to be implemented.

The Expert System Development Life Cycle • 101

Detailed user interface Specify the detailed user interface after receiving
user feedback from the preliminary user interface
design.

Design specifications and
report

Document the design.

Detailed test plan Specify exactly how the code will be tested and
verified.

Thus, knowledge refinement in the hierarchy and its relationship are impor-
tant in the formalization stage. The knowledge engineer also specifies infer-
ence rules and control strategies.

6.1.4  Prototype Construction
IEEE defines prototyping as “A type of development in which emphasis is
placed on developing prototypes early in the development process to per-
mit early feedback and analysis in support of the development process.”

A prototype is just a working model or an early model that is built for
demonstrating the proposed system’s feasibility. The prototype just contains
a sub-set of the functionality of the entire system and is built so that the
domain expert can obtain feedback from its ideas. The basic idea behind
the prototype approach is the development of a working model to under-
stand requirements rather than freezing requirements before design or
coding can proceed.

The rapid prototyping method is used for the development of an expert
system because it’s always better to find a proposed system’s feasibility (eco-
nomic, technical, and operational) by building a sub-problem prototype
instead of rejecting the whole system after investing lot of money, time, and
resources. It is cost-effective to make changes early in the expert system’s
development life cycle. Thus, prototyping is a risk reduction activity. Proto-
typing involves the iterative creation of a proposed system. The main focus
of the prototyping approach is the quick implementation of ideas so that
immediate feedback can be obtained either for modifying that prototype
or moving forward. One more advantage of developing a prototype is that
it helps the user get a better understanding of how the system will work
because the prototype will help build the user interface.

102 • Artificial Intelligence and Expert Systems

Establish
prototype
objectives

Define
prototype

functionality
Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report

FIGURE 6.2  The Prototyping Process

Activities in this phase are as follows:

•	 To build a working model (prototype), formalized knowledge is
mapped into the development tool framework.

•	 Implement the core of the prototype system (knowledge base,
inference engine, and database).

•	 After performing the above tasks, the initial prototype (working
model) is constructed. Since it’s just a working model, all features
are not included in it, so the knowledge and inferences are not fully
developed and left for expansion in the future.

•	 At last, the prototype is demonstrated to the domain expert to obtain
feedback and his ideas; it also helps to assess the feasibility of the
system by testing it with the selected test cases. It also helps in better
understanding the system. Errors are also corrected.

•	 Prototyping helps a domain expert in understanding what is expected
from him and also provides the knowledge engineer with better
insights of the whole procedure of the expert system development.
Both get information about previously undiscovered possibilities with
the help of the prototype.

Types of Prototypes

There are basically two types of prototypes.

6.1.4.1  Throw-Away Prototype

The throw-away prototype is built using little requirement analysis. As
its name suggests, the throw-away prototype is discarded, or thrown
away, after the needed requirements have been gathered and validated.
This prototype does not become part of the final expert system. We can

The Expert System Development Life Cycle • 103

say that the motive behind the throw-away prototype is to elicit and
validate the requirements. This process continues until all the require-
ments are validated. When the domain expert comes to know about its
expectations and has a better understanding of the system, then the
prototype is thrown away and the system development starts based on
the identified and validated requirements.

Thus, the throw-away prototype is used for reducing the risk of the
requirements. When the risk requirements are acceptably low, the proto-
type is thrown away. The throw-away prototype cannot be a part of a full
system because of the following:

•	 The throw-away prototype is unstructured and undocumented.

•	 It does not specify non-functional requirements.

There are various steps in throw-away prototyping:

•	 Gather the preliminary requirements.

•	 Design the prototype.

•	 Evaluate the prototype (users use the prototype and specify
requirements).

•	 Repeat the process, if necessary.

•	 Write the final requirements and throw away the prototype.

Establish
outline
specs

Develop
Prototype

Evaluate
Prototype

Specify
System

Design &
Implement

System
Validate
System

At this point the prototype
is thrown away

Development phase of the
actual system

FIGURE 6.3  The Process Used with the Throw-Away Prototype

104 • Artificial Intelligence and Expert Systems

6.1.4.2  Evolutionary Prototype

The evolutionary prototype is completely different from the throw-away
prototype, as it evolves into the final expert system through the iterative
domain expert feedback. The evolutionary prototype is not discarded, as
the main aim of the evolutionary prototype is to develop a robust prototype
in a proper, structured manner so that it can finally evolve into the final
expert system through refining and rebuilding it.

It is true that evolutionary prototypes do not have all the features
needed, but the aim is to expand the prototype through continuous refine-
ment by adding more knowledge until it becomes a final (finished) system
knowledge base.

Build
prototype

User tests
prototype

Final
product

Design

Feedback
provided

Refine
prototype

FIGURE 6.4  Evolutionary Prototyping

Where should the prototyping approach be used?

•	 when clients have a growing list of requirements

•	 web development

•	 application development

•	 when the software relies more heavily on the user input than on the
background data processing task

•	 user interface

The advantages of the prototyping approach are as follows:

•	 The prototyping approach for developing an expert system is cost
effective because making changes in the early stages is less costly than
making changes in software after a lot of work has been done.

The Expert System Development Life Cycle • 105

•	 This approach provides a better and clearer understanding of the
proposed system, and the domain expert understands better what is
expected from him.

•	 This approach prevents misunderstandings and miscommunication
between the user and expert as both get a clear picture of what is desired
so the final system will be more productive and have a good quality.

•	 The evaluation of the prototype gives an idea about the feasibility of
the proposed expert system.

•	 This approach provides more user interaction and helps a client better
understand the requirements of the proposed system.

•	 This approach also helps in finding incomplete and inconsistent
requirements and allows for quicker feedback to give a better solution.

•	 It reduces the failure risk of the proposed expert system.

The disadvantages of the prototyping approach are as follows:

•	 The user sometimes gets confused between the prototype and final
expert system. He starts thinking that a few modifications in the
prototype will give them the final proposed system. So, the user starts
expecting the developer to develop a prototype that accurately models
the final system.

•	 In the prototyping approach, the main focus is on the development
of the prototype, so a number of things are overlooked, like security
issues, the system backup, and recovery.

•	 Similarly, the documentation of the system is absent or incomplete, as
the focus is on prototype development.

•	 Since prototyping is a quick implementation of rough ideas, the quality
of the overall system suffers due to the need to hurry in developing
the prototype.

•	 The prototyping approach is a continuously iterative approach,
but sometimes too many changes can disturb the rhythm of the
development team.

•	 Developers may also get attached to the prototype, as they spend lot
of effort in developing it. They sometimes want to see the prototype
evolve into the final system.

106 • Artificial Intelligence and Expert Systems

6.1.5  Implementation
This stage is similar to the coding stage of conventional models. Implemen-
tation is just like expanded prototyping. It is a critical examination of the
initial prototype that is done with repeated debugging and expanding the
capability of the expert system to its full extent. This cycle is repeated until
the knowledge base is finished. The initial prototype has only a sub-set of
all the necessary features, so after the proper evaluation of the initial proto-
type, all the needed features are included in the system.

The knowledge base is expanded so as to cover whole aspects of a com-
plete problem. That is, we get a full expert system at the end of this phase,
with a proper documentation of the knowledge base as it is coded.

Activities are to

•	 ensure acceptance by users

•	 install, demonstrate, and deploy the system

•	 arrange the orientation and training for the users

•	 ensure security

•	 provide documentation

•	 arrange for integration and field testing

Table 6.5  Tasks in Implementation

Task Objective

Coding Implement coding.

Tests Test code using test data, test drivers, and test analysis
procedures.

Source listings Produce commented, documented source code.

User manual Produce the working user’s manual so experts and users
can provide feedback on the system.

Installation/opera-
tions guide

Document the installation/operation of the system for
users.

System description
document

Document the overall expert system functionality, limita-
tions, and problems.

The Expert System Development Life Cycle • 107

6.1.6  Evaluation
The final step in an expert system development life cycle is the evalu-
ation of the complete expert system. In this stage, all features of the
expert system, like the user interface and explanation facilities, are
tested properly. The performance verification of the expert system is a
must in this stage.

Testing (verification and validation) of an expert system is done by using
a number of test cases to identify errors or weak points in the knowledge
base and inference engine. It is necessary to generate a sufficient number
of test cases for testing expert systems that cover the entire domain. In case
errors (incompleteness and inconsistency) are present, then the knowl-
edge base (structure and content both are refined) and inference rules are
refined.

This stage includes the verification of the relationship, validation of
expert system performance, and evaluation of the utility of the developed
system, including evaluating the cost, benefit, accessibility, and acceptance
of the system.

During validation, the following areas are checked:

•	 consistency and completeness of the rules

•	 validating rules thoroughly in order to avoid any unanticipated
consequences of the interaction among the rules

•	 information appropriateness about how the conclusions are reached
and why certain information is required

•	 agreement of the computer program output with the domain expert’s
corresponding solutions

•	 After passing all the tests, the delivery of the expert system is done,
that is, connecting the expert system with the existing communication
network (and protecting the system from unauthorized access). Then
comes the maintenance stage. Maintenance tasks include correcting
bugs and updating the knowledge base after its delivery.

Knowledge acquisition is a continuous process in the expert system
development life cycle. This is required in all stages, but with a differ-
ent purpose. For example, in the conceptualization stage, knowledge
acquisition is done for gathering knowledge for building the database.

108 • Artificial Intelligence and Expert Systems

In the evaluation stage, knowledge acquisition is done for refining the
knowledge base.

The following figures show the cyclic development of the ESDLC.

Knowledge acquisition

Prototype critiquing Prototype development

FIGURE 6.5  Cyclic Development of the ESDLC

Knowledge acquisition

Prototype critiquing Prototype development

Preliminary
exploration of field-
initial knowledge
engineer, interviews

FIGURE 6.6  Cyclic Development of the ESDLC

Knowledge acquisition

Prototype critiquing Prototype development

Debug existing
features. Build a small
system with few features

FIGURE 6.7  Cyclic Development of the ESDLC

Knowledge acquisition

Prototype criticize Prototype development

Present the prototype to the
domain expert for him/her to
criticise and improve

FIGURE 6.8  Cyclic Development of the ESDLC

The Expert System Development Life Cycle • 109

Knowledge acquisition

Prototype critiquing Prototype development

Correct & expand the
knowledge on the basis of the
domain expert’s comments

FIGURE 6.9  Cyclic Development of the ESDLC

Knowledge acquisition

Prototype critiquing Prototype development

Add more features and debug
existing features Build a small
system containing a few of the
features

FIGURE 6.10  Cyclic Development of the ESDLC

Knowledge acquisition

Prototype criticize Prototype development

Present the prototype to the
domain expert for him/her to
criticise and improve

FIGURE 6.11  Cyclic Development of the ESDLC

6.2	 Sources of Error in Expert System Development

•	 Knowledge Errors

•	 Syntax Errors

•	 Semantic Errors

•	 Inference Engine Errors

•	 Inference Chain Errors

110 • Artificial Intelligence and Expert Systems

6.2.1  Knowledge Errors
A knowledge error occurs when the knowledge obtained from the domain
expert is incorrect. Since knowledge is the base of the expert system, it’s
necessary to provide a remedial measure for it. Otherwise, incorrect knowl-
edge can have serious consequences. For example, incorrect knowledge
will cause the wrong decision to be produced by the expert system. The
verification and validation of expert knowledge must be done to scrutinize
the expert knowledge.

6.2.2  Syntax Errors
A syntactical error occurs when the syntax is not followed by the rule or
facts required by the development tool because the knowledge engineer is
not familiar with the tool.

6.2.3  Semantic Errors
A semantic error arises when the knowledge obtained from the domain
expert is not properly and correctly encoded into the rules by the knowledge
engineer, so the rules do not reflect what is stated by the domain expert.

There may also be the possibility that the expert misinterprets the ques-
tions asked by the knowledge engineer. Formal protocols must be used for
knowledge elicitation.

6.2.4  Inference Engine Errors
Inference engine errors arise from the malfunctioning of the inference
component of an expert system, that is, there is an error in its rule interac-
tions or conflict resolution. Such errors have serious effects as the inference
engine evaluates the rules and fire rules, so incorrect solutions may be pro-
vided by the expert system.

6.2.5  Inference Chain Errors
Such errors arise by erroneous knowledge, inappropriate overall conclu-
sions, semantic errors, inference engine bugs, inappropriate priorities of
rule, and strange interactions among rules.

The Expert System Development Life Cycle • 111

Exercises

Q1.  What is meant by the expert system development life cycle?

Q2. � What are the various stages of the expert system development life
cycle?

Q3.  What is meant by formalization?

Q4.  Explain prototype construction.

Q5.  Explain the various sources of error in expert system development.

C H A P T E R 7
KNOWLEDGE ACQUISITION

Before explaining knowledge acquisition, it is necessary to understand the
meaning of knowledge. Knowledge evolves from data and information.
Refined data is information, and refined information is knowledge. People
who possess knowledge are called experts. Different people give different
meanings for knowledge.

7.1	 Knowledge Basics

•	 “Knowledge is processed information about a domain that is then used
for solving problem related to that domain.”

•	 “Knowledge may be defined as facts, information, or skills that are
obtained through several years of experience and education.”

•	 “Knowledge is the practical or theoretical understanding of a particular
domain obtained by learning, discovery, or perceiving.”

•	 “Knowledge is familiarity or awareness obtained by experience of facts
or situations.”

The following are some examples of pieces of knowledge:

•	 John is an employee of the ACTME Company.

•	 All employees of ACTME earn more than $25,000.

•	 All employees of ACTME know that they should have a good lifestyle.

114 • Artificial Intelligence and Expert Systems

•	 John doesn’t think that he has a good life style.

•	 Everybody who knows that he should have a good lifestyle and does
not think that he has a good lifestyle is disappointed.

The knowledge base of an expert system has various types of knowledge:

•	 Procedural knowledge: A procedure refers to any task, so it is
related to the performance of some task and a processed form of
information. For example, if we have step-by-step information for
solving a problem, then it is called procedural knowledge.

•	 Factual knowledge: This type of knowledge contains facts of a
particular task domain, and it is found inside textbooks and journals.
Such knowledge is shared widely.

•	 Heuristic knowledge: This is the opposite to factual knowledge, as
it is not widely shared and discussed rarely. It is less rigorous, largely
individualistic, and more experiential. Heuristic knowledge arises
from good practices and good judgment and through experience.

Knowledge plays an important role in expert systems, as the expert system’s
knowledge base stores domain expert knowledge in rule form. Such knowl-
edge is used for making decisions, which is the purpose of the expert system
(the decision-making capability). This means the expert system’s decision-
making capability is based on the quality of the knowledge acquired from a
domain expert.

We can say that knowledge is used for building an intelligent system
that can mimic human decision-making capabilities.

Knowledge

Information

Data

Signal

Knowledge

FIGURE 7.1  Knowledge = Facts + Rules + Control Strategy + (Sometimes) Faith

Knowledge Acquisition • 115

From Figure 7.1, it is clear that knowledge is derived from data and infor-
mation. We can define “data” as “a representation of simple components of
some basic element of discourse.” That is, data is a special case of knowl-
edge. Here are some examples of pieces of data:

•	 John is married to Sally.

•	 John works for the ACTME Company.

•	 The average salary of ACTME is $30,000.

The features of good knowledge are as follows:

•	 knowledge should be complete

•	 consistent

•	 voluminous

•	 correct and reliable

7.2	 Knowledge Engineering

“Knowledge engineering is the process of building an entire knowledge
base system from beginning to end.” Thus, knowledge engineering includes
the design, building, and then installation of an expert system. Knowledge
engineering’s entire process includes the following:

•	 acquisition of knowledge

♦♦ general knowledge or meta knowledge

♦♦ it comes from experts, books, documents, sensors, and files

•	 knowledge representation

♦♦ organized knowledge using representation techniques like rules
and frames

•	 knowledge validation and verification

•	 inferences

•	 explanation and justification capabilities

116 • Artificial Intelligence and Expert Systems

Knowledge
validation

(test cases)

Knowledge
base

Sources of knowledge
(experts, others)

Knowledge
representation

Encoding

Inferencing

Explanation,
justification

Knowledge
acquisition

FIGURE 7.2  Knowledge Engineering Process

It is clear that knowledge acquisition is the first step of the knowledge engi-
neering process. Knowledge representation will be explained in the next
chapter.

7.2.1  Knowledge Acquisition

•	 Knowledge acquisition is the process of obtaining or gathering
knowledge from a domain expert using various techniques.

•	 Knowledge acquisition is the process of obtaining knowledge and
transforming that knowledge into a representational form that then
can be used by the expert system for making decisions.

•	 Knowledge acquisition is the process of gathering knowledge for
forming the knowledge base of an expert system.

Knowledge is an important part of an expert system because the expert sys-
tem mimics the human decision-making capability through knowledge that
is stored in its knowledge base. Knowledge acquisition is obviously the most
important task in expert system development. However, acquiring knowl-
edge is the most difficult phase in knowledge engineering, and it has what
is known as the “knowledge acquisition bottleneck.” This bottleneck during
the development of an expert system is what causes most of the failures at
the time of knowledge acquisition.

Sources of knowledge for acquisition include

•	 documented sources: textbooks, journals, historical records, and databases

•	 an undocumented source: human expert knowledge

Knowledge Acquisition • 117

Generally, knowledge acquired from documented sources is always
insufficient for solving real-world problems because real-world problems
require heuristic knowledge that can only be obtained from a human
expert. The knowledge engineer is an important member of the devel-
opment team of an expert system. The knowledge engineer plays an
important role in knowledge acquisition. The thing that matters most in
knowledge acquisition is the selection of the domain expert, because the
domain expert is the source of knowledge for an expert system. A lot of
time and effort are needed to select an appropriate domain expert. The
following points must be kept in mind when a selecting domain expert for
knowledge acquisition:

•	 Basically, the expert that has domain expertise and heuristic knowledge
is selected for acquiring knowledge because acquiring heuristics
knowledge (knowledge comes with experience) is the main goal of the
knowledge acquisition process.

•	 The expert must have the capability of distributing his knowledge
to the project team, who may have little or no idea about that
domain.

•	 The expert must be able to communicate with his team properly and
must be able to explain his reasoning process.

•	 Knowledge acquisition is not a one-day process; it requires lot of time,
so the domain expert must be willing to devote his time and effort to
the knowledge acquisition process.

After selecting an expert, that domain expert must give some informa-
tion about the background of the domain to the knowledge engineer
because it is the knowledge engineer who acquires the knowledge from
the expert. The knowledge engineer must be able to understand the
ways in which a domain expert relates various things like relationships,
objects, and events.

7.2.2  Knowledge Engineer
The main task of a knowledge engineer is to acquire knowledge from a
domain expert or from other sources by using acquisition techniques and
then to map or encode the gathered knowledge into AI formalisms for com-
putational purposes.

118 • Artificial Intelligence and Expert Systems

Human
Expert

Knowledge
Engineer

Knowledge Base
of

Expert System

Dialog

Explicit Knowledge

FIGURE 7.3  The Responsibility of the Knowledge Engineer

Knowledge engineers do the following tasks for developing systems:

•	 knowledge elicitation

•	 interviewing experts and creating knowledge bases

•	 knowledge fusion

•	 fusing individual knowledge bases

•	 coding knowledge base

•	 testing and evaluation of the system

The knowledge engineer obtains knowledge from various sources. The
knowledge engineer’s responsibility is to design, build, and test an expert
system. It is the knowledge engineer who interacts between the expert and
the knowledge base.

A knowledge engineer, after acquiring knowledge, decides the repre-
sentational scheme for that knowledge and also decides on the program-
ming language for knowledge encoding. The knowledge engineer’s role
is not restricted to knowledge acquisition and representation. He is also
responsible for testing and revising the expert system.

7.2.3  Difficulties in Knowledge Acquisition
Knowledge acquisition is the most important task in knowledge engineer-
ing; it is also the most difficult one. Knowledge acquisition basically depends
on the domain expert from whom the knowledge is acquired. This process
depends on the expert’s capability, availability, and willingness to cooperate.

Knowledge Acquisition • 119

Expert
I

Knowledge
acquisition

Knowledge
base

Encoding

Computer
knowledge

base

Es tools

Client
I

Knowledge
engineerManage

encoding

Expert
II

Client
II

Train

Validate

Edit

Edit

Advise

Manage
acquisition

FIGURE 7.4  The Role of the Knowledge Engineer in Knowledge Acquisition

•	 The expert must be able to justify his reasoning or explain his
reasoning, otherwise, it will become a bottleneck in the knowledge
engineering process.

•	 The domain expert must be willing to cooperate with the team and
must be able to devote his time because the knowledge obtained the
from expert is the base of the expert system. An unwilling expert may
be the reason for the failure of the knowledge acquisition process.

•	 The expert is not able to describe all that he knows about his subject
domain.

•	 No expert knows everything.

•	 Experts have considerable implied knowledge that is difficult to describe.

Because of the above issues, it is necessary for knowledge acquisition tech-
niques to do the following:

•	 Knowledge acquisition techniques should be able to capture tacit
knowledge from the expert.

•	 They should be able to assemble knowledge from different experts.

120 • Artificial Intelligence and Expert Systems

•	 They should be able to validate the gathered knowledge.

•	 They should be able to focus on essential knowledge.

•	 They must allow non-experts to obtain an understanding of the knowledge.

7.3	 Knowledge Acquisition Techniques

There are varieties of knowledge acquisition techniques, which are also
called knowledge elicitation techniques. Knowledge elicitation means gath-
ering or obtaining the knowledge from the human domain expert. That
knowledge is then verified and validated for creating the knowledge base of
the expert system. The knowledge elicitation tasks focus on finding at least
one expert for the proposed domain who is

unstructured

semi-structured
interview

structured interview

observation techniques

group

questionnaire

card sorting

three card

rep grid technique

limited time

limited information
constrained tasks

20 questions

commenting

teach

laddering

process mapping

concept mapping

state diagram

modeling techniques

contrived techniques

KA techniques

natural techniques

interviews

FIGURE 7.5  The Classification of Knowledge Acquisition Techniques

Knowledge Acquisition • 121

•	 able to justify his knowledge

•	 able to devote time for knowledge sharing

•	 is willing to provide his tasks.

Expert knowledge contains the following information:

•	 facts and principles about the domain area of the expert

•	 strategies for solving problems

•	 reasoning or justification of solutions

•	 Meta knowledge: This is knowledge about knowledge, that is, it is
the knowledge of how to use particular knowledge.

Various knowledge acquisition techniques are discussed below. There are
various ways of classifying knowledge acquisition techniques. The direct
acquisition method focuses on explicit knowledge that the expert is able
to communicate verbally. Interviews, questionnaires, and task observation
are examples of the direct method.

Indirect methods of acquisition focus on the implicit knowledge of
the expert that is difficult for expert to verbalize. Implicit knowledge is
obtained through inference. Hierarchical clustering and multi-dimensional
scaling are examples of the indirect acquisition method. Another form of
classification depends on how the knowledge engineer interacts with the
domain expert.

7.3.1  Natural Techniques

7.3.1.1  Interviews

Interviews are a direct method of knowledge acquisition; these involve
face-to-face communication between the knowledge engineer and domain
expert. Interviews must be held away from the expert’s workplace to mini-
mize interruptions. Usually, it takes one month or longer to interview an
expert. The knowledge engineer asks questions from the expert relating to
its domain and how they perform the tasks. The success of the interview
depends on the quality of the questions asked and the answers given by the
expert. It is difficult to extract tacit knowledge from an expert through the
interview technique.

122 • Artificial Intelligence and Expert Systems

 The types of interviews are

•	 Structured interview: In the structured interview, there is a pre-
planned questionnaire that has to be completed by the domain expert.
It is a goal-oriented technique, and it deals with some particular
concept in the domain.

•	 Unstructured interview: This is just a random interview, as there
are no pre-planned questions from the knowledge engineer. Both the
knowledge engineer and domain expert can discuss the domain and
explore it fully; this is an inefficient way of acquisition. This type of
interview is done when the knowledge engineer has little knowledge
of the domain.

•	 Semi-structured interview: This is a combination of the structured
and unstructured types, because in it, some questions are pre-planned
and the knowledge engineer can ask some random questions to clarify
his understanding. This method is effective, as it helps the expert to
avoid unnecessary details.

•	 Problem solving interview: In this, the domain expert is provided
with a real-world problem. He is asked to solve it and describe each
step and the justification of each step.

•	 An audio recording is done for the interview for future reference.

7.3.1.2  Observation

In this technique, expert activities for solving a real problem are observed,
and a report is made based on the observations. It is good to make a video
recording of the observing activities. The knowledge engineer can also ask
questions after the completion of the observation task.

7.3.1.3  Questionnaire

The questionnaire method is basically used with other techniques, like
the interview. In this method, a question list is prepared by a knowledge
engineer when specific information is needed. This method is useful when
knowledge has to be elicited from different experts.

7.3.2  Contrived Techniques
Contrived techniques are specialized techniques for capturing tacit knowl-
edge. In such techniques, experts are asked to perform a task that they
normally would not do in their job.

Knowledge Acquisition • 123

7.3.2.1  Concept (Card) Sorting

Concept sorting is a way of finding out or determining how an expert com-
pares and orders concepts. It is a way of revealing tacit knowledge about
classes, relations, and properties. In this method, the domain name con-
cepts are written on cards for sorting by experts. After this, the cards are
presented to the domain experts by spreading the cards on the table. The
domain expert has to sort or arrange these cards so that each cluster of
cards has something important in common. Then, the domain expert has to
explain what principles he/she used for making such groupings or clusters
of cards. The cards are collected, and the same process is repeated until the
expert has nothing to sort.

7.3.2.2  The Three-Card Method

The three-card method is also used for capturing tacit knowledge and the
way in which an expert explains a concept in a domain. In this method,
experts are asked to select three cards randomly. He has to tell how two
cards are similar and how they are different from the third one. This
approach helps in determining the features of classes.

7.3.2.3  Repertory Grid Technique

The repertory grid technique is used to bring about attributes for a set of
concepts and then rate the concepts against the attributes using a numeri-
cal scale. It then uses statistical analysis to arrange and group similar con-
cepts and attributes. It allows the expert to provide a rating of each concept
for an attribute in concept sorting.

Attribute Orientation Ease of
Programming

Training
Time

Availability

Trait
Opposite

Symbolic (3)
Numeric (1)

High (3)
Low (1)

High (1)
Low (3)

High (3)
Low (1)

LISP 3 3 1 1

PROLOG 3 2 2 2

C++ 3 2 2 3

COBOL 1 2 1 3

FIGURE 7.6  The Repertory Grid

124 • Artificial Intelligence and Expert Systems

The repertory grid technique works as follows:

1st stage

•	 Concepts are selected (between 6 and 15).

•	 The set of approximately the same number of attributes is also
required.

•	 These should be such that the values can be rated on a continuous
scale (e.g., small to large).

•	 These should be chosen from knowledge previously elicited.

2nd stage

•	 The expert provides a rating for each concept against each attribute.

•	 A numerical scale is used.

3rd stage

•	 Ratings are applied to the cluster analysis to create a visual
representation of the ratings called a focus grid.

•	 Concepts with similar scores are grouped together, and attributes with
similar scores are grouped.

4th stage

•	 The engineer walks the expert through the results to gain feedback
and prompt further knowledge about the groupings.

•	 If needed, more concepts and attributes are rated and included in the
grid.

•	 In Figure 7.7, the domain elements are certain types of crime: petty
theft, burglary, drug-dealing, murder, mugging, and rape.

•	 This is one expert’s view on the issue.

•	 Consider carefully whether any pair of attributes is very similar by
comparing the horizontal lines in this grid.

•	 The closest is probably the personal/impersonal one and the major/
petty one.

•	 Beware when making this comparison, because the expert may have
inadvertently “inverted” the scale for just one of two similar constructs.

Knowledge Acquisition • 125

•	 For example, in the example, the major/petty construct has a value
of 5 for “major.” If the expert had chosen 1 instead, and 5 for “petty,”
then this construct and the personal/impersonal one would look very
different.

•	 Further analysis may lead you to omit one pairing of constructs.

•	 Following that, you would draw up a table showing how similar or
dissimilar each domain element is from the others.

7.3.2.4  Constrained Task

In this method, the expert has to perform a task with constraints. This is
useful for focusing the expert on essential knowledge and priorities.

7.3.2.5  20 Questions

In this method, the expert asks the knowledge engineer questions. The
expert is asked to imagine that the knowledge engineer also has the same
knowledge level of the concepts. The questions should be the “yes” or “no”
type of question. The knowledge engineer then notes down the questions,

2 1 1 1 1 5

2 1 1 2 3 5

2 5 1 1 4 5

5 3 1 2 5 4

3 2 2 5 5 5

2 2 1 5 4 5

1 3 1 5 4 5
1 1 2 5 5 5

women only

short sentence

common-place
spur of the moment

nasty for the victim

personal
major

violent

anybody

long sentence

sensational

premeditated

OK for the victim
impersonal

petty

non-violent

rape
mugging

murder
drug-dealing

burglary
petty theft

FIGURE 7.7 A grid showing how various constructs are being ranked on a scale of
1–5. It is not always the value on the left-hand side of a scale that corresponds to the
value 1.

126 • Artificial Intelligence and Expert Systems

and there is no need for a deep knowledge of the domain by the knowledge
engineer. He just has to answer “yes” or “no” randomly. This is a fast way of
getting insights into key aspects and properties of the domain. This method
is generally used for generating new concepts that are then added to the
knowledge base.

7.3.2.6  Commentary

In this method, the expert gives a running commentary on the performance
of a task that helps in the elicitation of valuable tacit knowledge.

7.3.3  Modelling Techniques

7.3.3.1  Laddering

The laddering method is used for acquiring concept knowledge. It finds
similarities and differences between groups of things. It uses various trees,
like the concept tree, attribute tree, and composition tree. The construc-
tion, validation, and modification of the trees are done in this method.

For example:

It is wholesome and complete Politicking
As opposed to

Preferred
because

Enables openness Political agendas
As opposed to

Preferred
because

Generates trust Uncertainty
As opposed to

Preferred
because

They are honest Deceitful
As opposed to

Similar
because

Colleague B & C are similar Colleague A is different
In which way are two colleagues similar to each other

and different from the third?

FIGURE 7.8  Laddering

Knowledge Acquisition • 127

7.3.3.2  Concept Tree

A concept tree is a hierarchical tree-like structure of concepts representing
classes and members. The activities used to create it are to

•	 move nodes (concepts) around the tree

•	 add new nodes

•	 delete nodes

•	 re-name nodes

With the knowledge acquisition process, the knowledge analysis process
occurs simultaneously. Knowledge analysis is the process of determin-
ing or identifying elements that are needed to build the knowledge base.
These are

•	 concepts

•	 things that constitute a domain

•	 main elements of the k-base

•	 attributes

•	 qualities or features belonging to a class of concepts

•	 values

•	 specific qualities or features of a concept that differentiate it from
other concepts

•	 relations

•	 the way in which concepts are associated with one another

Knowledge acquired from a domain expert is then represented using
knowledge representing techniques like frames, semantic nets, and produc-
tion rules, which we will study in the next chapter. These will improve the
knowledge engineer’s understanding of the subject domain.

128 • Artificial Intelligence and Expert Systems

Exercises

Q1.  What is meant by knowledge?

Q2.  Explain the various steps in knowledge engineering.

Q3.  Explain the knowledge acquisition role in knowledge engineering.

Q4.  Explain the various knowledge acquisition techniques.

C H A P T E R 8
KNOWLEDGE
REPRESENTATION

In the previous chapter, we discussed knowledge. Knowledge plays an
important role in AI. There is no intelligence without knowledge. To solve
the complex problems faced in artificial intelligence, a large amount of
knowledge is required. There must also be some way of representing and
manipulating the knowledge. Knowledge involves the fact or condition of
being aware of something or knowing something gained through experi-
ence. We can say that knowledge may be defined as facts, information, or
skills that are obtained through several years of experience and education.

8.1	 Definitions of Knowledge Representation

•	 “Knowledge representation is a substitute or a surrogate for knowledge
that helps in reasoning and deducing new facts and decision-making
ability.”

•	 Knowledge representation provides a computational medium or
environment where reasoning can be accomplished.

•	 Knowledge representation is a way of organizing information so that
the appropriate inference can be done.

•	 It is a set of ontological commitments, i.e., an answer to the question
“In what terms should I think about the world?”

130 • Artificial Intelligence and Expert Systems

•	 Knowledge consists of models that attempt to represent the
environment in such a way as to maximally simplify problem-solving.
It is assumed that no model can ever hope to capture all relevant
information.

•	 It is a fragmentary theory of intelligent reasoning, expressed in terms
of three components:

♦♦ the representation’s fundamental conception of intelligent
reasoning

♦♦ the set of inferences the representation sanctions

♦♦ the set of inferences it recommends

•	 Knowledge representation is an issue that arises in both cognitive
science and AI.

♦♦ In cognitive science, it is concerned with how people store and
process information.

♦♦ In AI, the primary aim is to store knowledge so that programs
can process it and achieve the verisimilitude of human
intelligence.

♦♦ AI researchers have borrowed representation theories from
cognitive science.

Knowledge representation (KR) is an important concern in both cognitive
science and artificial intelligence.

•	 In cognitive science, it deals with way people store and process
information.

•	 In AI, the main concern is about storing knowledge so that programs
can process it and achieve human-like intelligence.

8.2	 Characteristics of Good Knowledge Representation

•	 It should

♦♦ be able to represent the knowledge important to the problem

♦♦ reflect the structure of knowledge in the domain

Knowledge Representation • 131

•	 (Otherwise, our development is a constant process of distorting things
to make them fit.)

♦♦ capture knowledge at the appropriate level of granularity

♦♦ support incremental, iterative development

•	 It should not

♦♦ be too difficult to reason about

♦♦ require that more knowledge be represented than is needed to
solve the problem

8.3	 Basics of Knowledge Representation

Knowledge should be represented in the proper format to get its benefits.
Knowledge representation and its reasoning are central to AI. To represent
knowledge, it is necessary to understand the following two entities:

•	 Facts: These contain the truth that we want to represent

•	 Representation of Facts: This refers to representing facts in some
chosen format so that they can be used and manipulated easily.

These two entities can be structured at two levels:

•	 Knowledge Level: The description of facts occurs at this level

•	 Symbol Level: Facts are represented in terms of symbols

Facts

English generation

Reasoning Program

English

Understanding

Internal
Representation

English
Representation

FIGURE 8.1 Mapping Between Facts and Representations

The above figure shows that the focus is on facts, representations, and
two ways of mapping between them. Forward mapping is from fact to rep-
resentation, and backward mapping is from representation to facts. Facts
are represented in two ways in the above figure, that is, one is an internal

132 • Artificial Intelligence and Expert Systems

representation of fact that we use in programs and the other is a natural
language representation of the facts. There is mapping from the natural to
internal representation and vice-versa.

Consider the following example of an English sentence:

Dober is a dog.

We can represent this fact in logic as follows:

 Dog(Dober)

Suppose also we have a logical representation of the fact: all dogs have tails,
as shown on the next page.

	 “x: dog(x)→hastail(x)	

Using the deductive mechanisms of the logic, we may generate the new
representation object:

	 hastail(Dober)

Now using backward mapping, the English sentence can be generated:

Dober has a tail.

This newly generated fact can be used for deducing new facts or can be
used for taking some actions. It is important to note that the above mapping
is not a one-to-one relation; it is showing a many-to-many relation. Nor-
mally, many-to-many relations are found in the mapping of English repre-
sentations of facts. For example, consider two English sentences:

•	 All dogs have tails.

•	 Every dog has a tail.

It is clear that both sentences represent the same fact (“Every dog has at least
one tail.”), and that is a many-to-one relation. The symbolic representation of
knowledge should have the properties discussed in the next section.

8.4	 Properties of the Symbolic Representation of Knowledge

•	 Make references explicit: Since natural language is ambiguous, it’s
necessary to explicitly refer to the entities.

The stool was placed on the table.

It was broken.

Knowledge Representation • 133

The stool (r1) was placed on the table (r2).

It (r1) was broken.

(Now it becomes obvious what was broken.)

•	 Referential uniqueness refers to removing all the ambiguities related
to the entities in their internal representation.

“David should do it.”

“David who?”

�Now instead of using the same name multiple times, a unique name
must be given, like david-1 or david-2.

•	 Semantic uniqueness: the meaning of each symbol must be unique in
its internal representation

Jackie caught a ball. [Catch-object]

Jackie caught a cold. [Catch-illness]

•	 Functional uniqueness: the functional aspect must be unique in the
symbolic representation.

Peta catches the ball.

The ball Peta catches.

The ball is caught by Peta.

Who is the catcher? Who or what is the caught object?

8.5	� Properties for the Good Knowledge Representation
Systems

•	 Representational Adequacy: The system should have the ability
to represent all types of knowledge (such as procedural and factual
knowledge).

•	 Inferential Adequacy: The system should have ability to infer or
deduce new knowledge from old knowledge.

•	 Inferential efficiency: The system should have the ability to focus
the inferential mechanism in the most promising direction to achieve
good results.

134 • Artificial Intelligence and Expert Systems

•	 Acquisitional efficiency: This refers to the ability to acquire new
information easily.

There are various ways of representing the knowledge, but it’s necessary to
choose the knowledge representation mechanism very carefully, otherwise
project can fail. Knowledge representation schemes are divided into follow-
ing categories.

8.6	 Categories of Knowledge Representation Schemes

Logical Representation Schemes

This scheme of representations uses formal logic method to represent a
knowledge base, for example, formal logic.

Network Representation Schemes

A network representation scheme uses a hierarchical structure for repre-
senting knowledge, such as a graph in which the nodes represent objects
or concepts in the problem domain and the arcs represent the relations
or associations between them. It is used to represent the “is-a” relation-
ships, where a general type (for example, a ball) is linked to more specific
types (i.e., rubber, golf, baseball, or football) that inherit the basic proper-
ties of the general type. Inheritance benefits in a compact representation
of knowledge and an algorithm of reasoning can be applied at various levels
of granularity or abstraction. Semantic networks and conceptual graph are
examples of network representation schemes.

Structured Representation Schemes

A structured representation scheme is an extension of the network scheme.
That is, each node can be a complex data structure consisting of named
slots with attached values. Scripts and frames are examples of this scheme.

Procedural Representation Schemes

•	 Procedural schemes are used for representing knowledge as a set of
instructions for solving a problem. This differs from the declarative
representations provided by logic and semantic networks.

•	 A production rule system is an example of this approach in which the
“IF….THEN” rule is used to represent knowledge. In the previous
chapter, we already discussed how to represent knowledge using rules
and how to do reasoning on that.

Knowledge Representation • 135

One of the simplest ways of representing declarative knowledge is
through a database that shows a set of relations and objects and their attri-
butes.

Table 8.1  A Database Representing Knowledge

Player Height Weight Bats-Throws

Hank Aaron 6-0 180 Right-Right

Willie Mays 5-10 170 Right-Right

Babe Ruth 6-2 215 Left-Left

Ted Williams 6-3 205 Left-Right

The problem is that such a representation scheme has a weak reasoning
capability. It cannot answer questions like “Who is the heaviest player?,”
but such a scheme may act as input to some powerful inference engine and
can compute the answer if some procedure is provided.

8.7	 Types of Knowledge Representational Schemes

There are various types of knowledge representational schemes. These are

•	 Formal Logic

•	 Semantic Net

•	 Frames

•	 Scripts

•	 Conceptual Dependency

8.7.1  Formal Logic
Formal logic is basically used for representing inferential knowledge, or
knowledge from which new knowledge and the decision-making capabil-
ity can be inferred. Formal logic is a language that has its own syntax and
semantics, and it defines how to make a sentence and the conclusions that
can be drawn from that. Formal logic may be defined as

•	 a language with concrete rules

•	 having no ambiguity in representation

136 • Artificial Intelligence and Expert Systems

•	 that which allows unambiguous communication and processing

•	 is very unlike natural languages, e.g., English

Let us understand meaning of the syntax and semantics of a sentence before
going into further details of formal logic:

•	 Syntax

♦♦ means rules that should be used for constructing legal sentences
in the logic

♦♦ which symbols we can use (English: letters, punctuation)

♦♦ how we are allowed to combine symbols

•	 Semantics

♦♦ refers to the meaning of a sentence, that is, how to interpret
(read) sentences in the logic

♦♦ assigns a meaning to each sentence

Sentences
Entails

Sentences

Se
nt

en
ce

s

Se
nt

en
ce

s

Representation

World

Facts Facts
Follows

FIGURE 8.2  Mapping of sentences to facts

Figure 8.2 shows the mapping of sentences to facts; mapping deter-
mines which object is related to or referenced by which other object. The
way one fact follows another should be mirrored by the way one sentence
is entailed by another. For example, consider the sentence “All teachers are
seven feet tall.”

•	 This is a valid sentence (syntax).

•	 We can understand the meaning (semantics).

	 Formal Logic = Formal Language + Semantics

We can compare logic to natural languages (expressive, but context sensi-
tive) and programming languages (good for concrete data structures, but

Knowledge Representation • 137

not expressive). Logic combines the advantages of natural languages and
formal languages. Logic is

•	 concise

•	 unambiguous

•	 context insensitive

•	 expressive

•	 effective for inferences

Formal logic is used for representing facts in a precise and unambiguous
manner. Formal logics provides a powerful structure in which the relation-
ships among the values can be described. There are two types of formal logic.

8.7.1.1  Propositional Logic

Propositional logic is the simplest logic, but it is not very expressive. A prop-
osition is a statement that is either true or false, but it cannot be both at
same time, for example, “Ram is a boy” or “The sun rises in the east.” Basi-
cally, we use the symbols P and Q for representing a proposition (i.e., “P:
Ram is a boy.”). The symbols are in uppercase letters. Proposition symbols
are used for representing facts.

There are two types of proposition, simple and compound propositions.

Simple proposition: This cannot be further broken down (that is, it is
“atomic”), for example, “P: Darbe is a dog.”

Compound proposition: This contains another proposition as its part,
for example, “Ram is a boy and he is clever.” This statement contains more
than one proposition.

Formulas are used for representing propositions (P, Q, R) in formal
logic and some connectives can be used like a conjunction (AND), dis-
junction (OR), and implications (P implies q) for constructing a compound
statement.

Types of rules for compound propositions:

•	 Conjunction (and): (p ∧ q) indicates that p and q both must be true
for getting a true result.

•	 Disjunction (or): (p ∨ q) indicates that either p or q or both must be
true for getting true as a result.

138 • Artificial Intelligence and Expert Systems

•	 Implication (p ⇒ q) consists of a pair of sentences separated by the
⇒ operator and enclosed in parentheses. The sentence to the left of
the operator is called the antecedent, and the sentence to the right is
called the consequent.

•	 Equivalence (p ⇔ q) is a combination of an implication and a
reduction.

•	 Negation: ¬p indicates the opposite of p is a simple proposition (not
compound) because it contains only a single statement. A literal is an
atomic sentence or negated atomic sentence like p, ¬p.

Here are some examples of representing a sentence in proposition logic:

P: It is humid

P ⇒ Q: If it is humid, then it is hot.

P ∧ Q ⇒ R: If it is hot and humid, then it is raining.

Here are some formulas:

•	 If P is a sentence, then ¬ P is also a sentence (negation)

•	 If P1, P2 are sentences, then P1 ∧ P2 is also a sentence (conjunction)

•	 If P1, P2 are sentences, then P1 ∨ P2 is also a sentence (disjunction)

•	 If P1, P2 are sentences, then P1 ⇒ P2 is also a sentence (implication)

•	 If P1, P2 are sentences, then P1 ⇔ P2 is also a sentence (biconditional)

Tautology: It is a statement that is true only in every possible interpre-
tation.

For example, p V ¬p is a tautology.

“Men are mortal.”

Truth Table: This is a table that contains the symbols of propositions
indicating propositions like P and Q; each symbol can either take a true or
false value. Depending upon the formula used (that is, a conjunction or
disjunction, or something else) a result is obtained. Truth table rules for
compound propositions that specify truth values for a complex sentence can
be expressed as shown in Table 8.2.

Knowledge Representation • 139

Table 8.2 The Truth Table of Five Logic Connectives

P Q ¬P P ∧ Q P ∨ Q P ⇒ Q P ⇔ Q

false false true false false true true

false true true false true true false

true false false false true false false

true true false true true true true

Table 8.3 Various Properties or Rules Applicable to Propositions

Commutative E ∧ F ⇔ F ∧ E

E ∨ F ⇔ F ∨ E

Distributive E ∧ (F ∨ G) ⇔ (E ∨ F) ∨ (E ∧ G)

E ∨ (F ∧ G) ⇔ (E ∨ F) ∧ (E ∨ G)

Associative E ∧ (F ∧ G) ⇔ (E ∧ F) ∧ G

E ∨ (F ∨ G) ⇔ (E ∨ F) ∨ G

De Morgan’s C(E ∧ F) ⇔ ¬E ∨ ¬F

¬(E ∨ F) ⇔ ¬E ⇔ ¬F

Negation ¬(¬E) ⇔ E

Deduction in Proposition Logic

There are a number of inference systems for propositional logic. Most of
them are actually restrictions of inference systems for first-order logic. The
Hilbert-style inference system consists of the following axiom schemes
(Mendelson, 1997):

(A1)	 A ⇒ (B ⇒ A)

(A2)	 (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))

(A3)	 (¬ B ⇒ ¬ A) ⇒ ((¬ B ⇒ A) ⇒ B)

and the inference rule modus ponens: A, A ⇒ B Ͱ B.

A proof or a derivation in a Hilbert system is a finite sequence of for-
mulas such that each element is either an axiom or follows from earlier
formulas by the rule of inference.

140 • Artificial Intelligence and Expert Systems

A proof of a derivation from a set S of formulas is a finite sequence of
formulas such that each term is either an axiom, or is a member of S, or fol-
lows from earlier formulas by the rule of inference.

If there is a proof for A, then A is a theorem, and we denote that by A.
For example, it can be proved that A ⇒ A is a theorem, as follows:

1.		 (A ⇒ ((A ⇒ A) ⇒ A)) ⇒ ((A ⇒ (A ⇒ A)) ⇒ (A ⇒ A)) (instance of A2)

2.		 A ⇒ ((A ⇒ A) ⇒ A) (instance of A1)

3.		 (A ⇒ (A ⇒ A)) ⇒ (A ⇒ A) (from 1 and 2, by MP)

4.		 A ⇒ (A ⇒ A) (instance of A1)

5.		 A ⇒ A (from 3 and 4, by MP)

This may seem like a lot of work to prove that “A implies A,” but that’s the
nature of formal logic systems! Derivations are broken down into extremely
small steps that are rigorously mathematically justified. In a commonsense
inference, we tend to proceed in large leaps instead, at least on the conscious
level. But unconsciously, our brains are carrying out multitudes of small steps,
though the analogy between these small steps and the small steps in logical
proofs is a subject of debate in the AI and cognitive science community.

Strengths and Weaknesses of Propositional Logic

•	 Propositional logic is an easy way to represent real-world knowledge
that can be used for problem solving.

•	 Propositional logic is simple to use and to deal with, and it is
declarative.

•	 Propositional logic permits conjunctive/disjunctive/partial/negative
information.

•	 Real world facts can be written as well-formed formulas (well-formed
formulas), e.g.,

Socrates is a man.	 SOCRATESMAN

Ramesh is a man.	 RAMESHMAN

It is cold.	 COLD

•	 Propositional logic has a very limited expressive power. For example,
“search for a candle in all local shops” has a clear meaning to search all

Knowledge Representation • 141

shops in the locality for a candle. But propositional logic will require a
separate statement for each shop.

•	 Propositions can be deceptive or extremely difficult to use to draw
a meaningful conclusion, e.g., IRFANMAN and INZMAMMAN produce
totally different assertions.

•	 Propositional logic assumes the world is all full of facts, so it constitutes
well-formed formulas.

•	 It cannot represent the properties of an object.

•	 The facts like “Peter is a man,” “Paul is a man,” and “John is a man”
can be symbolized by P, Q, and R, respectively, in PL. We cannot
draw any conclusions about similarities between P, Q, and R. Better
representations of these facts can be done through predicate logic.

•	 Reasoning with propositional logic is difficult. For example, it is
impossible to represent this categorical syllogism in propositional
logic:

Every person is mortal

Tony Blair is a person

Therefore, Tony Blair is mortal

8.7.1.2  Predicate Logic

The weakness of propositions can be removed by using predicate logic, as
it is much more expressive than propositional logic. The components, ele-
ments, and terms used in predicate logic are

•	 Constants: Ramesh, Alysa, 2, 2013, March

•	 Functions: These are a total map that associates one single value to
the ordered collection of its arguments. For example: brotherof, gt,
and lt.

•	 Variables: x, y, z

•	 Predicates can have the values true or false.

•	 A predicate can take arguments, e.g., man(Ramesh) or gt(3,2)

•	 A predicate with one argument shows the property of the bracketed
argument or object, e.g., teacher(Mukesh)

142 • Artificial Intelligence and Expert Systems

•	 A predicate with two arguments relates the arguments with each
other, e.g., Brother(Mukesh, Suresh)

•	 A predicate without any argument is a proposition or zero order logic.

•	 Quantifiers: Universal ∀ (something is true for all objects) means for
all; ∀x: gt (y, x) means for all values of x; y will be greater than x.

♦♦ Remember that the upside-down A stands for “all.” Thus, in the
sentence “For all x, if x is a king, then x is a person,” the symbol
x is called a variable. By convention, variables are lowercase
letters, A variable is a term all by itself, and as such, it can also
serve as the argument of a function—for example, LeftLey(x).
A term with no variables is called a ground term.

♦♦ Intuitively, the sentence ∀x P, where P is any logical expression,
says that P is true for every object x. More precisely, ∀x P is true in
a given model if P is true in all possible extended interpretations
constructed from the interpretation given in the model.

•	 Existential Quantifier $ (something is true for at least one object)
means there exists at least one x, e.g., $x: eq(y, x) means there exists at
least one x for which y equals to x.

♦♦ Universal quantification makes statements about every object.
Similarly, we can make a statement about some object in the
universe without naming it by using an existential quantifier.

♦♦ For example, “King John has a crown on his head.”

♦♦ This sentence can be written as: $Crown(x)∧OnHead(x, John)

♦♦ $x is pronounced “There exists an x such that ...” or “For some x ...”

♦♦ Intuitively, the sentence $x P says that P is true for at least one
object x.

•	 Nested Quantifiers: For constructing complex sentences, multiple
quantifiers can be used in same sentence.

♦♦ The simplest case is where the quantifiers are of the same type.
For example, “Brothers are siblings” can be written as

∀x ∀y Brothers (x, y)=Sibling (z, y)

Knowledge Representation • 143

♦♦ Consecutive quantifiers of the same type can be written as
one quantifier with several variables. For example, to say that
siblinghood is a symmetric relationship, we can write

∀x, y Sibling (x, y), ⇔ -Sibling(y, x).

♦♦ In other cases, we will have mixtures. “Everybody loves
somebody” means that for every person, there is someone that
person loves:

∀x y Loves(x, y).

♦♦ On the other hand, to say “There is someone who is loved by
everyone,” we write

$x ∀y Loves(x, y).

•	 Atomic Sentence: This consists of a predicate symbol optionally
followed by terms in parentheses. For example: Brother (Mukesh,
Suresh). This predicate shows that Mukesh is the brother of Suresh.
An atomic sentence can consist of complex terms as arguments. For
example,

Married(Father (Richard), Mother (John))

The above states that “Richard,” a father, is married to “John’s” mother
(again, under a suitable interpretation).

•	 An atomic sentence is true in a given model if the relation referred to
by the predicate symbol holds among the objects referred to by the
arguments.

Predicate logic uses the concept of quantifiers for referring to a set of
objects. That is, it deals with objects, attributes of objects, and the relation-
ship between objects, so it is a good way to represent almost any type of
knowledge.

For example, consider following statements: “Ram likes apples” and
“Today is wet.”

This proposition can be represented using predicate logic:

Properties:	 is wet		 (today)

	 	 ↓		 ↓

		 predicate	 arguments

144 • Artificial Intelligence and Expert Systems

Relations: likes (Ram, apple)

That is “is wet” is an attribute or property and “like” is the relationship
between “Ram” and the “apple” object.

Let us discuss another example: “Thailand is cold in the winter” can be
represented in three single parameter using predicate logic: place (Thai-
land), temperature (cold), and season (winter). Or it can be represented a
single relation: cold (Thailand, winter) and winter (Thailand, cold).

Some examples of predicate logic are

•	 “x loves y” is represented as LOVE(x, y), which maps it to true or false
when x and y get instantiated to actual values.

•	 “John’s father loves John” is represented as LOVE(father(John), John).

− Here, “father” is a function that maps “John” to his father.

•	 x is greater than y is represented in predicate calculus as GT(x, y).

•	 It is defined as follows:

	 GT(x, y) = T, if x > y

 		 = F, otherwise

•	 Symbols like GT and LOVE are called predicates.

− Predicates have two terms and map to T or F depending upon the
values of their terms.

Translate the sentence “Every man is mortal” into a predicate formula.

•	 Represent the statement in predicate form

− “x is a man” and “MAN(x),

− x is mortal” by MORTAL(x)

•	 Every man is mortal:

(∀x) (MAN(x) → MORTAL(x))

Types of Predicate Logic: There are three types of predicate logic
depending upon the number of arguments:

♦♦ Zero Order Predicate Logic: This does not have any
arguments.

Knowledge Representation • 145

♦♦ First Order Predicate Logic or First Order Predicate
Calculus (FOPL or FOPC): This is more expressive than
proposition logic and has one argument only. For example, Man
(Ram) is a representation of “Ram is a Man,” a sentence in FOPL.

Some terms used in FOPL are

•	 constants, like the objects John, apples, and Ram

•	 predicates, which are properties and relations of objects like John and
apple

•	 Likes (John, apples) is an example of a predicate showing a relationship
and a mortal (person) showing the properties of the object “person.”
Other examples are person and king.

•	 Functions transform objects:

Likes (john, fruit of (apple _tree))

•	 variables, which represent any object: likes(X, apples)

•	 quantifiers, which qualify the values of variables

•	 true for all objects (Universal):	

∀X. likes(X, apples)

•	 having at least one object (existential): $X. likes(X, apples).

Consider the statement “Every Monday and Wednesday, I go to Ram’s
house for dinner.”

In FOPL, or simply predicate logic, this statement can be written as

∀X ((day_of_week (X, Monday) ∧day_of_week(X, weds)) (go_to (me,
house_of (john) ∨eat (me, dinner))).

Here, the symbols Monday, Wednesday, me, dinner, and John are all
constants, base-level objects in the world about which we want to talk.
The symbols day_of_week, go_to, and eat_meal are predicates that rep-
resent relationships between the arguments that appear inside the brack-
ets. For example, in eat_meal, the relationship specifies that a person
(first argument) eats a particular meal (second argument). In this case,
we have represented the fact that “me” eats dinner. The symbol X is a
variable, which can take on a range of values. This enables us to be more
expressive, and in particular, we can quantify X with the “for all” symbol,

146 • Artificial Intelligence and Expert Systems

so that our sentence of predicate logic talks about all possible X’s. Finally,
the symbol house_of is a function, and - if we can - we are expected to
replace house_of (John) with the output of the function (John’s house)
given the input to the function (John).

A model in first-order logic consists of a set of objects and an inter-
pretation that maps the constant symbols to objects, predicate symbols to
relations on those objects, and function symbols to the functions on those
objects.

Here is one more example of a statement written in predicate calculus:

Suppose that c stands for “the cat,” m stands for “the mat,” s stands for
“sits on,” b stands for “black,” f stands for “fat,” and h stands for “happy”.
The statement “If the fat black cat sits on the mat then it is happy” is written
in predicate logic as

	 (f(c) ∧ b(c) ∧ s(c, m)) ⇒ h(c)

Example of a statement written in predicate calculus using
quantifiers: Suppose that d stands for “is a day,” p stands for “is a person,”
mo stands for “is mugged on,” mi stands for “is mugged in,” S stands for
Soho, x stands for some unspecified day, and y stands for some unspecified
person. Then the statement “Someone is mugged in Soho everyday” is writ-
ten in predicate logic as

“∀x(d(x) ⇒ $y(p(y) ∧ mo(y, x) ∧ mi(y, S)))

Note that sentence “Someone is mugged in Soho everyday” is unambigu-
ous, but its corresponding predicate calculus representation is not ambiguous.

Using Predicates to Represent Relationships

In order to represent a relationship between individual objects, we can
use a predicate specifying the objects as its arguments.

•	 “Alison likes Richard and chocolate.”

•	 Representation using the predicate is likes(alison, richard) ∧
likes(alison, chocolate)

Using Predicates within a Rule

“If Richard is a friend of Alison, then Alison likes Richard.”

The above sentence is represented using a predicate like that:

friends(alison, richard) ⇒ likes(alison, richard)

Knowledge Representation • 147

Using Variables with Predicates to Capture Generalizations

We can capture generalizations by asserting that any instance of a given
class has the relevant property. For example,

•	 “Every elephant is grey.”

•	 ∀X: elephant(X) ⇒ grey(X)

Using Quantifiers and Variables

We can use quantification to distinguish general and specific assertions.

•	 “There is a white alligator:” $X: alligator(X) ∧ white(X)

•	 “Alison eats everything that she likes:” ∀X: likes(alison, X) ⇒ eats
(alison, X)

•	 “There is some bird that doesn’t fly:” $X: bird(X) ⇒ ¬flies(X).

•	 “Every person has something that they love:” X: person(X); Y:
loves(X, Y)

Representation of the following sentences in predicate logic

Suppose we want to convert following sentences into predicate logic:

1.		 Marcus was a man.

2.		 Marcus was a Pompeian.

3.		 All Pompeiians were Romans.

4.		 Caesar was a ruler.

5.		 All Pompeiians were either loyal to Caesar or hated him.

6.		 Everyone is loyal to someone.

7.		 People only try to assassinate rulers they are not loyal to.

8.		 Marcus tried to assassinate Caesar.

The conversion is as follows:

1.		 Man (Marcus)	

2.		 Pompeian (Marcus)	

3.		 ∀x: Pompeian(x) ⇒ Roman(x)

4.		 ruler(Caesar)	

148 • Artificial Intelligence and Expert Systems

5.		 ∀x: Roman(x) ∧ loyalto(x, Caesar) ∧ hate(x, Caesar)

6.		 ∀x:$ y: loyalto (x, y)

7.		 ∀x: ∀y: person(x) ∧ ruler(y) ∧ tryassassinate(x, y) ¬loyalto(x, y)

8.		 tryassassinate (Marcus, Caesar)

In FOPL there is an instance (object of class) and is-a relationship (class
inheritance). For example,

•	 Man (Marcus) shows an instance, that is, “Marcus” is an instance
of the class “man.” This can also be written like “instance (Marcus,
Man),” showing the same instance relationship.

•	 Is-a (Pompeiian, Marcus) shows the is-a relationship between the
Pompeiian and Marcus, that is, the Pompeiian subclass is derived
from the Marcus superclass.

The main problem with FOPL is that its expressiveness complicates the
process of inference. Also, in FOL you cannot construct sentences that make
assertions about other sentences. For example, you cannot say things like
“there exists a property such that...” For this task, you need higher-order logic.

•	 High order predicate logic: It is more expressive than the first
order predicate logic, as it allows quantification over functions and
predicates, as well as objects.

For example, “All our polynomials have a zero at 17” yields

f (f(17)=0).

This is important to AI, but is not often used, as it is harder to reason
through.

Deduction in predicate logic: Deduction in first-order logic is simi-
lar conceptually to its analogue in propositional logic, but more complex in
detail due to the presence of quantified variables. There are several different
deductive systems available; one of the first was developed by Hilbert in the
early 20th century and we will describe it now. In Hilbert’s system, formulas
are built using only the connectives ⇒ and ¬, and the quantifiers ∀(“for all”)
and $(“there exists”). The system consists of the following axiom schemes:

•	 (A1)	 A ⇒ (B ⇒ A)

•	 (A2)	 (A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C))

Knowledge Representation • 149

•	 (A3)	 (¬ B ⇒ ¬ A) ⇒ ((¬ B ⇒ A) ⇒ B)

•	 (A4)	 (∀x)A ⇒ A[x → t], while the term t is free for x in A

•	 (A5)	 (∀x)(A ⇒ B) ⇒ (A ⇒(∀x) B), while A does not involve free
occurrences of x and the following inference rules

Modus ponens: A, A ⇒ B ǁ B
Gen: A ǁ (∀x)A

A proof or a derivation in a Hilbert system is a finite sequence of for-
mulas such that each element is either an axiom or follows from earlier for-
mulas by one of the rules of inference. A proof of a derivation from a set S
of formulas is a finite sequence of formulas such that each formula is either
an axiom, or is a member of S, or follows from earlier formulas by one of
the rules of inference. If there is a proof for A, then A is a theorem and we
denote that by A. There is a link between the semantics of first order logic
and the above.

8.7.1.3  Introduction to Resolution

Resolution is a procedure or algorithm to produce proof for the facts (that
are represented by sentence) by virtue of contradiction. Resolution takes
two clauses having complementary literals (it is an atomic symbol or its
negation P, ¬ P) as an input and produces a new clause. The resolution rule
was discovered by Alan Robinson in the mid-1960s. For example, if you
want to prove that a certain theorem is true, then you have to prove that the
negation of that theorem is not true.

Let us understand the resolution: Suppose that we know the fol-
lowing two facts:

•	 not feathers (Tweety) or bird (Tweety)

•	 feathers (Tweety)

Sentence 1 shows that either Tweety does not have feathers or else
Tweety is a bird. Sentence 2 shows that Tweety has feathers. Now to prove
that Tweety is a bird, first we have to prove an assumption that is the nega-
tion of that predicate, giving sentence 3: not bird (Tweety).

In sentences 1 and 2, “not feathers (Tweety)” and “feathers (Tweety)”
cancel each other out. Resolving sentences 1 and 2 produces the resolvent,
sentence 4, which is added to our fact set: “bird (Tweety).”

150 • Artificial Intelligence and Expert Systems

So it’s clear that sentences 3 and 4 cannot both be true, either Tweety is
a bird or it is not. Thus, we have a contradiction. We have just proved that
our first assumption, “not bird (Tweety),” is false, and the alternative, “bird
(Tweety),” must be true.

Resolution takes clauses as an input and produces a new clause.

8.7.1.4  Conjunctive Normal Form

A clause must be in the conjunctive normal form, that is, a conjunction of
clauses where the clause is the disjunction of literals where the literal and its
complement cannot appear in same clause, like p ∨q ∨ r is a disjunction of lit-
erals. A single literal can also be considered as a disjunction of one literal only
that is called a unit clause. It is also important that the resolution algorithm
can only be applied to a clause only so the resolution is relevant only for the
knowledge base that has that clause only. If a clause is not in the conjunctive
or disjunctive normal form, then before applying that resolution, it’s neces-
sary to convert these clauses into the conjunctive or disjunctive form.

Any formula can be converted into the conjunctive normal form using
following equivalence:

•	 P ⇒ Q = (P ⇒ Q) ∧ (Q ⇒ P)

•	 P ⇒ Q = ¬P ∨ Q

•	 ¬(P ∧ Q)= ¬P ∨ ¬Q (De Morgen’s law)

•	 ¬(P ∨ Q)= ¬P ∧ ¬Q (De Morgen’s law)

•	 ¬ ¬ P = P (Negation rule)

•	 P ∨ Q ∧ R = (P ∨ Q) ∧ (P ∨ R) (Distributive law)

The following are the examples of clauses (disjunction of literals)

•	 p		 • ¬p

•	 p ∨ q		 • p ∨ ¬r ∨ ¬p

•	 ¬s ∨ t ∨ p

The following are the examples of CNF

•	 (A ∨ B) ∧ (¬B ∨ C ∨ ¬D) ∧ (D ∨ ¬E)

•	 A ∨ B

•	 A ∧ B

Knowledge Representation • 151

Conversion of axiom to conjunctive normal form (clausal form):

Every propositional formula can be converted into its equivalent conjunc-
tive normal form (CNF) by applying the rules of logical equivalence, like
the negation rule, De Morgen’s rule, and the distributive rule.

1.		 Eliminate implications.
Using the rule

	 A → B ≡ ¬A ∨ B

We may eliminate all occurrences of →.

Example:

	 p → ((q → r) ∨ ¬s) ≡ p → ((¬q ∨ r) ∨ ¬s)

		 	 ≡ ¬p ∨ ((¬q ∨ r) ∨ ¬s)

2.		 Move negations down to the atomic formulas.
Using De Morgan’s Laws and the double negation rule,

	 ¬(A ∨ B) ≡ ¬A ∧ ¬B

	 ¬(A ∧ B) ≡ ¬A ∨ ¬B

	 ¬¬A ≡ A

We push the negations down towards the atoms until we obtain a for-
mula that is formed from literals using only ∧ and ∨. For example:

¬(¬p ∧ (q ∨ ¬(r ∧ s)))

		 ≡ (¬¬p ∨ ¬(q ∨ ¬(r ∧ s)))

		 ≡ p ∨ (¬q ∨ ¬¬(r ∧ s))

		 ≡ p ∨ (¬q ∨ (r ∧ s))

3.		 Remove existential quantifiers.
To eliminate an independent existential quantifier, replace the vari-

able with a Skolem constant. This process is called Skolemization.

Example: $y: President (y)

Here “y” is an independent quantifier so we can replace “y” by
any name (say, George Bush). So, $y: President (y) becomes President
(George Bush).

152 • Artificial Intelligence and Expert Systems

To eliminate a dependent the existential quantifier, we replace its
variable by a Skolem function that accepts the value of “x” and returns
the corresponding value of “y”.

Example: ∀x : $y : father_of (x, y)

Here, “y” is dependent on “x,” so we replace “y” with S(x).

So, ∀x : $y : father_of (x, y) becomes ∀x : $y : father_of (x, S(x)).

The Skolem function, or Skolemization

•	 Replace each occurrence of its existentially quantified variable by a
Skolem function whose arguments are those universally quantified
variable function symbols.

•	 Create a Skolem function of no arguments.

•	 Skolem form: To eliminate all of the existentially quantified variables
from a well-formed formula, the proceeding procedure on each sub-
formula is used in turn. Eliminating the existential quantifiers from a
set of well-formed formulas produces what is called the Skolem form
of the set of formulas.

•	 The Skolem form of a well-formed formula is not equivalent to the
original well-formed formula.

What is true is that in a set of formulas, D is satisfiable if, and only if, the
Skolem form of D is. Or more usefully for purpose of resolution refutations,
D is unsatisfiable if and only if the Skolem form of D is unsatisfiable.

4.		 Rename variables if necessary.
For sentences like (∀xP(x)) ∨ ($xQ(x)), which use the same variable

name twice, change the name of one of the variables. This avoids confusion
later when dropping quantifiers later.

For example, ∀x[$y Animal(y) ∧ ¬Loves(x, y)] ∨ [$y Loves(y, x)] is
renamed to ∀x[$y Animal(y) ∧ ¬Loves(x, y)] ∨ [$z Loves (z, x)].

5.		 Move the universal quantifiers to the left.
Move the quantifiers outwards: repeatedly replace P ∧ (∀xQ(x))

with ∀x(P ∧ Q(x));

replace P ∨ (∀xQ(x)) with ∀x(P ∨ Q(x));

replace P ∨ ($xQ(x)) with $x(P ∨ Q(x));

replace P ∨ ($xQ(x)) with $x(P ∨ Q(x)).

Knowledge Representation • 153

These replacements preserve equivalence, since the previous variable
standardization step ensures that x doesn’t occur in P. After these replace-
ments, a quantifier may occur only in the initial prefix of the formula, but
never inside a ¬, ∧, or ∨.

Repeatedly replace ∀x1 ... xn $y P(y) with ∀x1 ... ∀xn P(f(x1, ..., xn)),
where f is a new n-ary function symbol, a Skolem function. This is the only
step that preserves only the satisfiability rather than the equivalence. It
eliminates all existential quantifiers.

6.		 Move the disjunctions down to the literals.

7.		 Eliminate the conjunctions.
a ∧ b splits the entire clause into two separate clauses, i.e., a and b.

(a ∨ b) ∧ c splits the entire clause into two separate clauses a ∨ b and c.

(a ∧ b) ∨ c splits the clause into two clauses i.e. a ∨ c and b ∨ c.

�To eliminate “∧,” break the clause into two; if you cannot break the
clause, distribute the OR “∨” and then break the clause.

8.		 Rename the variables, if necessary.

9.		 Purge or drop the universal quantifiers.

Consider the following example. Suppose we assert that “All music lovers
who enjoy Bach either dislike Wagner or think that anyone who dislikes any
composer is a philistine.” We shall use enjoy() for enjoying a composer, and
similarly for dislike.

“∀x[musiclover(x)enjoy(x, Bach) ⇒ dislike(x, Wagner) ∨
(“∀y[$z[dislike(y, z)] ⇒ think-philistine(x, y)])]

We now examine the recipe to reach the conjunctive normal form
needed in the resolution. It is rather long, but not difficult to follow, and it
should give confidence in handling expressions.

Step 1: Recall that E F E F, and thereby filter the expression to remove
the symbols.

“∀x[musiclover(x) enjoy(x, Bach) ⇒ dislike(x, Wagner) ∨
“∀y[“∀z[dislike(y, z)] ⇒ think-philistine(x, y)])]

154 • Artificial Intelligence and Expert Systems

Step 2: Filter using the following relationships:

¬(¬P) ⇔ P;

¬(a ∧ b) ⇔ ¬ a ∨ ¬b;

¬(a ∨ b) ⇔ ¬ a ∧ ¬b;

¬∀x P(x) ⇔ $x ¬P(x); and

¬$x P(x) ⇔ ∀x ¬P(x)

Our expression becomes

∀x[¬musiclover(x) ∨ ¬	enjoy(x, Bach) ∨ dislike(x, Wagner) ∨
“∀y[“∀z[¬dislike(y, z)] ∨ think- philistine (x, y)]].

Step 3: Standardize the variables so that each quantifier binds a unique
variable. This is already the case in our expression, but the following is an
example.

∀x Pred1(x) ∨ ∀x Pred2(x)

becomes

∀x Pred1(x) ∨ ∀y Pred2(y).

Step 4: Step 3 allows us to move all the quantifiers to the left in Step 4.
Our expression becomes

∀x∀y∀z[¬musiclover(x) ∨¬enjoy(x, Bach) ∨

dislike(x, Wagner) ∨¬dislike(y, z) think-philistine(x, y)].

This is called the prenex normal form. A well-formed formula in
prenex form consists of a string of quantifiers called a prefix followed by a
quantifier-free formula called a matrix.

For example:

(∀x)(∀y){¬P(x) ∨ {[¬P(y) ∨ P(f(x, y))] ∧ [Q(x, h(x)) ∧ ¬P(h(x))]}}

Step 5: This step will seem a bit of a fiddle. We eliminate the existen-
tial quantifiers, by arguing that if $y Composer(y) then if we could actually
find an object S1 to replace the variable x. This gets replaced simply by
Composer(S1).

Now, if existential quantifiers exist within the scope of the universal
quantifiers, we can’t merely use an object, but rather a function that returns
an object. The function will depend on the universal quantifier.

Knowledge Representation • 155

∀x$y tutor-of(y, x)

gets replaced by

∀x tutor-of(S2(x), x).

This process is called Skolemization, and S2 is a Skolem function.

Step 6: This step is merely to save writing. Any variable left must be
universally quantified out on the left, so don’t bother writing the quantifier.
Our expression becomes

 ¬musiclover(x) ∨ ¬enjoy(x, Bach) ∨ dislike(x, Wagner) ∨ ¬dislike(y, z)
∨ think-philistine(x, y).

Step 7: Convert everything into a conjunction of disjunctions using the
associative, commutative, and distributive laws. The form you want is like

(a ∨ b ∨ c ∨ d ∨ ...) ∧ (p ∨ q ∨ ...) ∧ ...

Step 8: Call each conjunction a separate clause. In order for the entire
well-formed formula to be true, each clause must be true separately.

Step 9: Standardize the variables in the set of clauses generated in
Steps 7 and 8. This requires renaming the variables so that no two clauses
make a reference to the same variable. Remember that all variables are
implicitly universally quantified to the left.

∀x P(x) ∧ Q(x) ⇔ ∀xP(x) ∧ ∀xQ(x) ⇔ ∀xP(x) ∧ ∀yQ(y)

This completes the recipe. After application to a set of well-formed
formulas, we end up with a set of clauses, each of which is a disjunction
of literals.

Resolution is based on the principle of proof by contradiction that
we already discussed above in the example. First, if a clause is not in
the conjunctive normal form, then convert it into that. After that, apply
the resolution to the resulting clause. Now we choose those pairs that
have complementary literals from a set of clauses to produce a new clause
called the resolvent clause and add that new one to the knowledge base
if it is not present already. This process continues until one of two things
happens:

•	 There are no new clauses that can be added to the knowledge base.

•	 The resolution of two clauses results in an empty one. An empty clause
(disjunction of no disjuncts) is considered to be false.

156 • Artificial Intelligence and Expert Systems

Resolution steps

•	 a conversion of axioms or formulas representing a sentence in
canonical or clause form

•	 use refutation, which means to show that the negation of the statement
produces a contradiction with the known statement (which is a fact).

If clauses are resolved in a systematic way, then if a contradiction exists, the
resolution is guaranteed to find the contradiction.

8.7.1.5  Resolution in Proposition Logic

Suppose a set of axioms (propositions) is given. Convert all propositions of
this set to clause form. The algorithm for propositional resolution

•	 converts all propositions to clause form

•	 negates P and converts the result to clause form; it adds it to the set of
clauses

•	 repeats until either a contradiction is found or no progress is possible

♦♦ Takes any two clauses as parent clauses

♦♦ Resolves these two clauses. The resulting clause is called the
resolvent.

♦♦ If the resolvent is an empty clause, then a contradiction is found.
If not, then add the resolvent to the set of clauses.

Example 1: Suppose the following propositions are given and we have
to prove R.

Now for proving R, we have to prove it by contradiction, and we start
with ¬R.

Given axioms
(Proposition)

Clause form No

P P (1)

(P ∧ Q) → R ¬P ∨ ¬Q ∨ R (2)

(S ∨ T) → Q ¬S ∨ Q (3)

Separate (3) in CF ¬T ∨ Q (4)

T T (5)

Knowledge Representation • 157

Now for proving R, we have to prove it by contradiction, and we start
with ¬R.

� P V Q R� � � R

� P V Q�
P

� Q� T V Q�

� T T

Contradiction

FIGURE 8.3  The Resolution of Clauses

We reach the contradiction, as the resolvent clause is now empty, so
process is stopped here. We started with the negation R and after applying
the resolution, we found our assumption is wrong because we got an empty
clause at the end. R is true as ¬R is false.

Example 2: Let’s say I’m given “P or Q,” “P implies R,” and “Q implies
R.” I would like to conclude R from these three axioms.

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

158 • Artificial Intelligence and Expert Systems

Step 1: We start by converting this first sentence into the conjunctive normal
form. We don’t actually have to do anything. It’s already in the right form.

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

Step 2: Now, “P implies R” turns into “not P or R.”

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

Step 3: Similarly, “Q implies R” turns into “not Q or R.”

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

Step 4: Now we want to add one more thing to our list of given statements.
What’s it going to be? Not R. Right? We’re going to assert the negation of
the thing we’re trying to prove. We’d like to prove that R follows from these
things. But what we’re going to do instead is say not R, and now we’re trying

Knowledge Representation • 159

to prove it false. If we manage to prove it false, then we will have a proof
that R is entailed by the assumptions.

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬ R Negated
conclusion

Step 5: We’ll draw a blue line just to divide the assumptions from the proof
steps. And now, we look for opportunities to apply the resolution rule.

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬ R Negated
conclusion

Step 6: We can apply the resolution to lines 1 and 2, and get “Q or R” by
resolving away P.

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬ R Negated conclusion

5 Q ∨ R 1, 2

160 • Artificial Intelligence and Expert Systems

Step 7: We can take lines 2 and 4, resolve away R, and get “not P.”

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬ R Negated conclusion

5 Q ∨ R 1, 2

6 ¬ P 2, 4

Step 8: Similarly, we can take lines 3 and 4, resolve away R, and get “not Q.”

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬ R Negated conclusion

5 Q ∨ R 1, 2

6 ¬ P 2, 4

7 ¬Q 3, 4

Step 9: By resolving away Q in lines 5 and 7, we get R.

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬ R Negated conclusion

5 Q ∨ R 1, 2

6 ¬ P 2, 4

7 ¬Q 3, 4

8 R 5, 7

Knowledge Representation • 161

Step 10: Finally, resolving away R in lines 4 and 8, we get the empty clause,
which is false. We’ll often draw this little black box to indicate that we’ve
reached the desired contradiction.

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬ R Negated conclusion

5 Q ∨ R 1, 2

6 ¬ P 2, 4

7 ¬Q 3, 4

8 R 5, 7

9 * 4, 8

Step 11: How did I do this last resolution? Let’s see how the resolution rule
is applied to lines 4 and 8. The way to look at it is that R is really “false or
R”, and that “not R” is really “not R or false.” (Of course, the order of the
disjuncts is irrelevant, because the disjunction is commutative). So, now we
resolve away R, getting “false or false,” which is false.

Propositional Resolution Example

Prove R

1 P ∨ Q

2 P → R

3 Q → R

False ∨ R

R false

false false

¬ ∨

∨

Step Formula Derivation

1 P ∨ Q Given

2 ¬P ∨ R Given

3 ¬Q ∨ R Given

4 ¬ R Negated conclusion

5 Q ∨ R 1, 2

6 ¬ P 2, 4

7 ¬Q 3, 4

8 R 5, 7

9 * 4, 8

162 • Artificial Intelligence and Expert Systems

8.7.1.6  Resolution Algorithm in Predicate Logic

•	 Convert all the propositions (axioms) of F to clause form.

•	 Negate P (conclusion) and convert the result to clause form. Add it to
the set of clauses obtained in 1.

•	 Repeat until either a contradiction is found, no progress can be made,
or a predetermined amount of effort has been expended.

♦♦ Select two clauses. Call these the parent clauses.

♦♦ Resolve them together. The resolvent will be the disjunction
of all the literals of both parent clauses with the appropriate
substitutions performed and with the following exception: If
there is one pair of literals T1 and ¬ T2 such that one of the
parent clauses contains T1 and the other contains ¬ T2 and
if T1 and T2 are unifiable, then neither T1 nor ¬ T2 should
appear in the resolvent. If there is more than one pair of
complementary literals, only one pair should be omitted from
the resolvent.

♦♦ If the resolvent is the empty clause, then a contradiction has been
found. If it is not, then add it to the set of clauses available to the
procedure.

Let us discuss some examples of resolutions in predicate logic.

Example 1: Consider the statement: “Every rich person owns a house.
Susan is rich. Susan is a person. Therefore, Susan owns a house.” So “Susan
own a house” is a conclusion. Let us prove that Susan owns a house. We
prove it by using a resolution algorithm.

1.		 First, convert the above sentence into predicate calculus.
∀x [(person(x) ∧ rich(x)) → $y(house(y) ∧ owns(x, y))].

rich(Susan).

person(Susan).

The conclusion:

$z(house(z) ∧ owns(Susan, z)).

Here, x, y, and z are variables.

Knowledge Representation • 163

2.		 Negate the conclusion.
This becomes: ¬$z(house(z) ∧ owns(Susan, z)).

3.		� Since above predicate form is not in CNF, before beginning resolution,
all clauses have to be converted into CNF.

a)	 �Eliminate implications, using the logical equivalence that a → b ↔
¬a ∨ b.
	 So the first statement becomes

	 ∀x [¬(person(x) ∧ rich(x)) ∨ $y(house(y) ∧ owns(x, y))].

b)	 �Move the negations inwards (i.e., ensure that no lines, or groups of
terms, begin with ¬). Use suitable logical equivalences such as
¬(¬a) ↔ a, ¬(a ∨ b) ↔ ¬a ∧ ¬b, ¬(a ∧ b) ↔ ¬a ∨ ¬b, ¬∀x P(x)

↔ $x ¬P(x), ¬$x P(x) ↔ ∀x ¬P(x). So the first statement becomes ∀x
[(¬person(x) ∨ ¬rich(x)) ∨ $y(house(y) ∧ owns(x, y))]. The conclu-
sion becomes: ∀z ¬(house(z) ∧ owns(Susan, z)) then ∀z ¬house(z) ∨
¬owns(Susan, z)) becomes ∀z ¬house(z) ∨ ¬owns(Susan, z)).

c)	 �Standardize the variables so that different quantifiers refer to differ-
ent variables.

d)	 �Eliminate all existential quantifiers (“Skolemization”). This is done by
substituting a different predicate name that is unique to the object in
question, but which relates to the universally-quantified class in which
it is found, rather than labelling it as an instance of a class of objects.
So the first statement becomes ∀x [(¬person(x) ∨ ¬rich(x)) ∨

(house(G(x)) ∧ owns(x, G(x))].

e)	 �Eliminate all universal quantifiers by assuming that all variables are
universally quantified.
	 The first statement becomes

	 (¬person(x) ∨ ¬rich(x)) ∨ (house(G(x)) ∧ owns(x, G(x)).

	 The conclusion becomes ¬house(z) ∧ ¬owns(Susan, z).

f)	 �Rewrite in the conjunctive normal form. This means groups of
terms joined by “and,” the groups themselves being terms joined by
“or.” Use the logical equivalence that
a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c).

164 • Artificial Intelligence and Expert Systems

The first statement becomes

(¬person(x) ∨ ¬rich(x) ∨ house (G(x))) ∧ (¬person(x) ∨ ¬rich(x) ∨
owns(x, G(x))).

g)	 �For statements produced as a result of (f), since the groups are
joined by “and,” they can become separate statements in their own
right.

The first statement becomes

¬person(x) ∨ ¬rich(x) ∨ house(G(x))

¬person(x) ∨ ¬rich(x) ∨ owns(x, G(x)).

h)	 �Change the variable names, so that each clause uses different vari-
ables.

We finish up with 5 clauses like this:

clause 1: ¬person(x) ∨ ¬rich(x) ∨ house(G(x))

clause 2: ¬person(y) ∨ ¬rich(y) ∨ owns(y, G(y))

clause 3: rich(Susan).

clause 4: person(Susan).

clause 5: ¬house(z) ∨ ¬owns(Susan, z)).

4.		� Now all clauses are in CNF, so we apply the resolution algorithm
now and pick up two clauses having complementary literals, and
these two clauses are called parent clauses and resolved to give a
third clause. If the resulting clause is empty, then the proof suc-
ceeded; otherwise, add the resulting clause to the set of clauses and
repeat the same process.
Resolving clauses: Pick 2 clauses that contain the same term, negated

in one case and not negated in the other.

Combine them to form a new clause, containing all the terms that
were in both the old ones, except that the term that is present as a and
¬a is eliminated; however, if in one case it contains an argument (or
arguments) that is a variable and in the other case a constant, substitute
the constant for the variable everywhere so that the constant appears
in the clause.

Knowledge Representation • 165

Empty clause: This is the result of resolving two clauses where each
only contained one term, so that nothing remains.

In our example, the process is as follows:

Resolving clauses 1 and 3 gives

¬person(Susan) ∨ house(G(Susan)).

Add this to the clauses as number 6.

Resolve 6 and 4 to give

House(G(Susan)).

Add this to the clauses as number 7.

Resolve 2 and 3 to give

¬person(Susan) ∨ owns(Susan, G(Susan)).	

Add this as number 8.

Resolve 8 and 4 to give

owns (Susan, G(Susan)).

Add this as number 9.

Resolve 7 and 5 to give

¬owns(Susan, G(Susan)).

Add this as number 10.

Resolve 10 and 9.

This gives an empty clause, so the proof has succeeded.

Example 2: Problem Statement:

1.		 Ravi likes all kind of food.

2.		 Apples and chicken are food.

3.		 Anything anyone eats and is not killed by is food.

4.		 Ajay eats peanuts and is still alive.

5.		 Rita eats everything that Ajay eats.

166 • Artificial Intelligence and Expert Systems

Prove by resolution that Ravi likes peanuts using resolution. Convert the
given statements into predicate/propositional logic.

Solution:

Step 1: Convert the given statements into predicate/propositional logic.

(i)	� ∀x : food(x) → likes (Ravi, x)

(ii)	 food (Apple) ∧ food (chicken)

(iii)	 ∀a : ∀b: eats (a, b) ∧ killed (a) → food (b)

(iv)	 ∀eats (Ajay, peanuts) ∧ alive (Ajay)

(v)	 ∀c : eats (Ajay, c) → eats (Rita, c)

(vi)	 ∀d: alive(d) → ¬ killed (d)

(vii)	 ∀e: ¬killed(e) → alive(e)

Conclusion: likes (Ravi, peanuts)

Step 2: Convert into CNF.

(i)	 ¬food(x) ∨ likes (Ravi, x)	

(ii)	 Food (apple)

(iii)	 Food (chicken)	

(iv)	 ¬ eats (a, b) ∨ killed (a) ∨ food (b)

(v)	 Eats (Ajay, peanuts)	

(vi)	 Alive (Ajay)

(vii)	 ¬eats (Ajay, c) ∨ eats (Rita, c)	

(viii)	 ¬alive (d) ∨ ¬ killed (d)

(ix)	 Killed (e) ∨ alive (e)

Conclusion: likes (Ravi, peanuts)

Step 3: Negate the conclusion.

¬ likes (Ravi, peanuts)

Step 4: Resolve using a resolution tree.

Knowledge Representation • 167

� Likes (Ravi, Peanuts) � food(x) v likes (Ravi, x)

x | peanuts

� food (peanuts) � east (a, b) v killed (a) v food (b)

b | peanuts

� east (a, peanuts) v killed (a) east (Ajay, peanuts)

a | Ajay

Killed (Ajay) � �alive(d) v killed (d)

d | Ajay

� alive (Ajay) alive(Ajay)

{Contradiction}

FIGURE 8.4  The Resolution Tree

Hence, we see that the negation of the conclusion has been proved as a
complete contradiction with the given set of facts.

Hence, the negation is completely invalid or false, or the assertion is
completely valid or true.

The Explanation of the Resolution Tree

•	 In the first step of the resolution tree, ¬ likes (Ravi, peanuts) and
likes (Ravi, x) getresolved (cancelled). So, we are only left with ~food
(peanuts). In this, “x” is replaced by peanuts, i.e., “x” is bound to
peanuts.

•	 In the second step of the resolution tree, ¬food(peanuts) and food
(b) get resolved, so we are left with ¬eats (a, peanuts) ∨ killed(a). In
this, “b” is bound to peanuts, thus, we replace every instance of “b” by
peanuts in that particular clause. Thus, now we are left with eats(a,
peanuts) ∨ killed (a).

•	 In the third step of the resolution tree, ¬eats (a, peanuts) and eats
(Ajay, peanuts) gets resolved. In this “a” is bound to “Ajay.” So, we
replace every instance of “a” by “Ajay.” Thus, we are now left with
killed (Ajay).

168 • Artificial Intelligence and Expert Systems

•	 In the fourth step of the resolution tree, killed (Ajay) and ¬killed (d)
get resolved. In this, “d” is bound to “Ajay,” thus every instance of “d”
is replaced by “Ajay.” Now we are left with ¬alive(Ajay).

•	 In the fifth step of the resolution tree, ¬Alive(Ajay) and Alive(Ajay)
get resolved, and we are only left with a null set.

Example 3. Suppose following axioms in clause form are given:

1.		 man(Marcus)	

2.		 Pompeian(Marcus)

3.		 ¬ Pompeian(x1) ∨ Roman(x1)	

4.		 Ruler(Caesar)

5.		 ¬ Roman(x2) ∨ loyalto (x2, Caesar) ∨ hate(x2, Caesar)

6.		 loyalto (x3, f1(x3))

7.		 ¬ man(x4) ∨ ¬ ruler(y1) ∨ ¬ tryassassinate (x4, y1) ∨ ¬ loyalto (x4, y1)

8.		 tryassassinate (Marcus, Caesar)

We have to prove that Marcus hated Caesar.

Variables in 3, 5, 6, and 7 (x1, x2, x3, and x4 y, respectively) have been
used to discriminate them from each other.

�hate(Marcus, Caesar) 5

Marcus/x2

�Roman(Marcus) V loyalto(Marcus, Caesar)

Marcus/x

�Pompeiian(Marcus) V loyalto(Marcus, Caesar)

3

loyalto(Marcus, Caesar)

Marcus/ , Caesar/y4 1

2

7

� � �man(Marcus) V ruler(Caesar) V tryassassinate (Marcus, Caesar)

� �ruler (Caesar) V tryassassinate(Marcus, Caesar)

1

4

�tryassassinate(Marcus, Caesar) 8

Contradication

FIGURE 8.5  A Proof by Resolution: Hate (Marcus, Caesar)

Knowledge Representation • 169

� loyalto(Marcus, Caesar) 5

� Roman(Marcus) V hate(Marcus, Caesar)

Marcus/x

3

� Pomperian (Marcus) V hate1 (Marcus, Caesar) 2

hate(Marcus, Caesar)

FIGURE 8.6  The Unsuccessful Attempt at Resolution of Marcus is Loyal to Caesar:
loyalto(Marcus, Caesar)

Uses of Resolution in Today’s World

•	 helps in the development of computer programs to automate
reasoning and theorem proving

•	 used widely in AI

•	 helps in forward and backward reasoning

•	 resolution is a proof by contradiction, which is even used in math
problems

8.7.1.7  Unification

Unification is a technique for taking two sentences in predicate logic and
finding a substitution that makes them look the same.

•	 A variable can be replaced by a constant.

•	 A variable can be replaced by another variable.

•	 A variable can be replaced with a predicate, as long as the predicate
does not contain that variable.

Let us understand unification through examples:

•	 We know that dog(Boxer) and ¬ dog(Boxer) is a contradiction, as
both cannot be true at the same time. However, dog(Boxer) and
¬dog(Jackie) is not a contradiction. To check a contradiction, there
must be some procedure to match literals and the possibility to make
them identical. This recursive procedure is called the unification
algorithm.

170 • Artificial Intelligence and Expert Systems

•	 We know that classmates(Ram, Ramesh) and beats(Ram, Ramesh)
cannot be unified, as both have different initial predicate symbols
(“classmates” and “beats,” which differ). If both predicate symbols
match, then we can only use the unification procedure.

Some simple examples are as follows:

•	 Unify Q(x) and P(x)	� fails as literals are different and cannot be
unified

•	 Unify Q(x) and Q(x)	� nil as literals are identical so no there is no
scope of unification

•	 Unify P(x) and P(x, y)	� fails as both literals have a different number of
arguments

•	 Unify P(x, x) and P(y, z)

Here, both initial predicate symbols are identical, P, so we check number
of arguments, which is also same. This means we can apply the unifica-
tion procedure to that. Substitute y/x to get P(y, y) and P(y, z) then take
z/y, which produces P(z, z), thus (z/y)(y/x) is the total substitution applied
to unify the two literals. Avoid a substitution like (x/y)(x/z), as they cause
inconsistency.

Given the following set of predicates, let’s explore how they can be unified:

1.		 Hates (X, Y)

2.		 Hates (George, broccoli)

3.		 Hates (Alex, spinach)

We could unify sentence 2 with 1 by binding George to variable X, and
broccoli to variable Y. Similarly, we could bind Alex to X and spinach to Y.
Note that if the predicate names were different, we could not unify these
predicates.

If we introduce a few more predicates, we can explore more complex
unifications:

4.		 hates(X, vegetable(Y))

5.		 hates(George, vegetable(Y))

6.		 hates(Z, broccoli)

Knowledge Representation • 171

We could unify sentence 6 with sentence 1 by replacing variable X with
variable Z and variable Y with the constant broccoli. Sentences 4 and 5
could be unified with George bound to X, and broccoli to variable Y.

Unification Algorithm

Unify(L1, L2) // unifies two literals, L1 and L2.

The steps are

1.		 If L1 or L2 is a variable or constant, then

a)	 If L1 and L2 are identical, then return NIL.

b)	 Else if L1 is a variable, then if L1 occurs in L2, then return FAIL,
else return {(L2/L1)}.

c)	 Else if L2 is a variable, then if L2 occurs in L1, then return FAIL,
else return {(L1/L2)}.

d)	 Else return FAIL.

2.		� If the initial predicate symbols in L1 and L2 are not identical, then re-
turn FAIL.

3.		 If L1 and L2 have a different number of arguments, then return FAIL.

4.		 Set SUBST to NIL.

5.		 For i 1 to a number of arguments in L1,

a)	 �Call Unify with the ith argument of L1 and the ith argument of
L2, putting the result in S.

b)	 If S = FAIL then return FAIL.

c)	 If S is not equal to NIL then
	 Apply S to the remainder of both L1 and L2.

	 SUBST: = APPEND(S, SUBST).

6.		 Return SUBST.
Another example is that hate(x, y) and hate (Marcus, z) can be unified

using (Marcus/x, z/y) or (Marcus/x, y/z):

♦♦ Unify(Knows (John, x), Knows (John, Jane)) = {x/Jane}

♦♦ Unify(Knows (John, x), Knows(y, Bill)) = {x/Bill, y/John}

172 • Artificial Intelligence and Expert Systems

♦♦ Unify(Knows(John, x), Knows(y, Mother(y))) = {y/John, x/
Mother (John)}

♦♦ Unify (Knows (John, x), Knows(x, Eliza)) = fail

The last unification fails because x cannot take on the values “John” and
“Eliza” simultaneously.

Because the variables are universally quantified, Knows(x, Eliza) means
that everyone knows Eliza. In that sense, we should be able to infer that
John knows Eliza.

Important Properties of Logical Systems

•	 Consistency: no theorem of the system contradicts another

•	 Soundness: The system’s rules of proof will never allow a false
inference from a true premise. If a system is sound and its axioms are
true, then its theorems are also guaranteed to be true.

•	 Completeness: There are no true sentences in the system that
cannot, at least in principle, be proved in the system.

Some logical systems do not have all three properties. Kurt Godel’s incom-
pleteness theorems show that no standard formal system of arithmetic can
be consistent and complete.

8.7.2  Semantic Net
Quillian devised the semantic net in 1968 as a model of the human memory.
This technique offered the possibility that computers might be able to use
words like humans did, following the failure of early machine translators.
The various definitions of semantic nets are

•	 It is one of the network representational schemes that use hierarchical
representation for knowledge. A semantic net is a graphical
representation of knowledge. Semantic nets are used to define the
meaning of a concept by its relationships to other concepts. A graph
data structure is used, with nodes used to hold concepts and links with
natural language labels used to show the relationships.

•	 A semantic network is often used as a form of knowledge
representation by connecting concepts together. It is a directed graph
consisting of vertices that represent concepts and edges that represent
the semantic relations between the concepts. In a semantic net,

Knowledge Representation • 173

knowledge is represented as a collection of concepts, represented by
nodes and connected together by relationships, represented by arcs.

•	 A semantic network or net is a graphic notation for representing
knowledge in patterns of interconnected nodes and arcs.

•	 Semantic networks are systems specially designed for organizing and
reasoning with categories.

•	 They provide

♦♦ graphical aids for visualizing a knowledge base

♦♦ efficient algorithms for inferring the properties of an object on
the basis of its category membership

A semantic network (Quillian, 1967) is a knowledge representation schema
that captures knowledge as a graph. The nodes denote objects or con-
cepts, their properties, and corresponding values. The arcs denote rela-
tionships between the nodes. Both nodes and arcs are generally labelled
(arcs have weights).

•	 A semantic net has a binary relation.

•	 Concepts are represented by nodes.

•	 Links between nodes represent the relationships.

•	 Examples of relationship labeled on arcs (notice that there is an
underscore) are as follows:

♦♦ is_a

♦♦ has_a

♦♦ has_part

Examples of concepts (nodes)

•	 bird

•	 person

•	 book

•	 famous

•	 intelligent

174 • Artificial Intelligence and Expert Systems

Let us discuss some examples and the semantic net in detail.

Feather Birds
has_covering has_property

Flies

is_a

Small Blue Birds
Size has_color

Blue

FIGURE 8.7  The Semantic Net Representing a Bird’s Properties

Question: Consider the below sentences and draw a semantic network
for them.

Lab is a room. Lab has a door. Lab has many computers. Printer is in
lab. Laser printer is a Printer.

Answer:

DOOR

ROOM

COMPUTERS

LASER_PRINTERPRINTERS

LAB

FIGURE 8.8  The Sematic Network for the Above Sentences

•	 Semantic nets are useful for representing inheritable knowledge.
Inheritable knowledge is the most useful for property inheritance, in
which elements of specific classes inherit attributes and values from
more general classes in which they are included. In order to support
property inheritance, objects must be organized into classes and classes
must be arranged in a generalization hierarchy. Inheritance provides
the cognitive economy, but there is a storage-space/processing-time
trade-off.

•	 This means that, if you adopt this technique, you will use less storage
space than if you don’t, but your system will take longer to find the
answers to questions.

Knowledge Representation • 175

Example 1

Person Right
handed

178

195

.252

.262

Adult
Male

Baseball-
Player

.106

Chicago-
Cubs

team
instance instance

Pitcher Fielder

Three-Finger
Brown

Pee-Wee-
Reese

Brooklyn
Dodgers

team

batting-averagebatting-average
is_a is_a

height

height

batsequal to
handed

is_a

is_a

batting-average

FIGURE 8.9  Baseball Knowledge Represented through the Semantic Net

Inheritance is a process by which the local information of a superclass
node is assumed by a class node, a subclass node, and an instance node. The
advantages of inheritance are as follows:

•	 It provides a natural tool for representing taxonomically structured
knowledge.

•	 It provides an economical means of expressing properties common to
a class of objects.

•	 It reduces the size of a knowledge base.

•	 It provides more compact code.

In these figures, nodes represent concepts (for example, person or right),
and each concept may be an object or class (collection of objects). Each
class has some properties and also a relation “is-a” showing inheritance, that
is, one class deriving features and properties from other class.

•	 Lines represent attributes: Boxed nodes represent objects and values
of attributes of objects. For example, the Adult Male class is derived from
the Person class, and the Pitcher class is derived from Baseball Player.

•	 The arc labelled with the instance showing the object of a class that is
Three-Finger-Brown is an object or instance of the Pitcher class.

•	 Other than instance and the is-a labelled arc, the rest of the arcs are
labelled with the properties of the class. For example, the Adult Male
object has a property height whose value is 195.

176 • Artificial Intelligence and Expert Systems

The correct deduction from Figure 8.9 could be that the height of
Three-Finger Brown is 195 cm. An incorrect deduction would be that the
height of Three-Finger Brown is 178 cm.

•	 Specific reasoning mechanisms can be established that allow us to
answer questions about the representation:

♦♦ Are two concepts related?

♦♦ What relates two concepts?

♦♦ Which is the closest concept that relates two other concepts?

•	 If richer semantics are defined for relations, more complex questions
can be answered about

♦♦ the taxonomy among the concepts (class and subclass and
instances)

♦♦ generalization/specialization

A semantic net should make a distinction between types and tokens. This
is why the diagram above uses “instance” arcs as well as “is-a” arcs. Indi-
vidual instances of objects have a token node. Categories of objects have a
type node. There is always at least one type node above a token node. The
information needed to define an item is (normally) is found attached to the
type nodes above it.

•	 Example 2:

red

opus

brown yellow white

value value value
color color color

has has
has

tweety

singcanary sound

sound

value

has
color

robin

penguin
is a

is a

is a

travel

is a

walk
travel

ostrich

wings

feathers bird

is a

part of

covering is a

fly
travel

head part of animal is a

covering
skin

fish travel swim

is a

FIGURE 8.10  Semantic Net with Various Relationships

Knowledge Representation • 177

•	 Example 3:

Fur

Animal

Mammal

Cat

Mat

Cream

Tom Bird

Ginger John

is_colored is_owned_by

is_a

caught

is_a

like

sat_on
is_a

has

is_a

FIGURE 8.11  The Relationships in a Semantic Net

FIGURE 8.11 represents the following data:

Tom is a cat.

Tom caught a bird.

Tom is owned by John.

Tom is ginger in color.

Cats like cream.

The cat sat on the mat.

A cat is a mammal.

A bird is an animal.

All mammals are animals.

Mammals have fur.

It is argued that this form of representation is closer to the way a human
structures knowledge by building mental links between things rather than
the predicate logic we studied earlier. Note in particular how all the infor-
mation about a particular object is concentrated on the node representing
that object, rather than being scattered around several clauses in the logic.

There is, however, some confusion here that comes from the imprecise
nature of semantic nets. A particular problem is that we haven’t distinguished

178 • Artificial Intelligence and Expert Systems

between the nodes representing classes of things, and the nodes representing
individual objects. So, for example, the node labelled “Cat” represents both
the single (nameless) cat who sat on the mat, and the whole class of cats to
which “Tom” belongs, which are mammals and which like cream. The is_a
link has two different meanings – it can mean that one object is an individual
item from a class, for example, Tom is a member of the class of cats, or that
one class is a subset of another, for example, the class of cats is a subset of the
class of mammals. This confusion does not occur in logic, where the use of
quantifiers, names and predicates makes it clear what we mean, so

“Tom is a cat” is represented by Cat(Tom).

“The cat sat on the mat” is represented by xy (Cat(x) ∧ Mat(y) ∧
sat_on(x, y)).

“A cat is a mammal” is represented by ∀x (Cat(X) → Mammal(x)).

We can clean up the representation by distinguishing between the nodes
representing the individuals or instances, and nodes representing classes.
The is_a link will only be used to show an individual belonging to a class.
The link representing one class being a subset of another will be labelled
a_kind_of, or ako for short. The names instance and subclass are often used
in the place of is_a and ako, but we will use these terms with a slightly dif-
ferent meaning in the coming section on frames.

Various types of relationships in a sematic net are (depicted by arc)

•	 IS-A	 	 •  PART-OF

•	 HAS	 	 •  VALUE

•	 LINGUISTIC

IS-A

Supertype – type (superclass – class)

Type – subtype (class – subclass)

Subtype – instance (subclass – instance)

PART-OF

Supertype – type (superclass – class)

Type – subtype (class –subclass)

HAS

Object – property

Knowledge Representation • 179

VALUE

Property –value

LINGUISTIC

Examples: likes, owns, travel, made of

8.7.2.1  Inheritance in Semantic Nets

Semantic networks can show and capture inheritance. Inheritance is a pro-
cess by which the local information of a superclass node is assumed by a class
node, a subclass node, and an instance node. The idea of this is that if an
object belongs to a class (indicated by an is_a link), it inherits all the proper-
ties of that class. So, for example, as we have a likes link between cats and
cream, meaning “all cats like cream,” we can infer that any object that has an
is_a link to cats will like cream. So, both Tom and Cat1 like cream. However,
the is_colored link is between Tom and ginger, not between cats and gin-
ger, indicating that being ginger is a property of Tom as an individual, and not
of all cats. We cannot say that Cat1 is ginger; for example, if we wanted to,
we would have to put another is_colored link between Cat1 and ginger.

Inheritance also applies across the a_kind_of links. For example, any
property of mammals or animals will automatically be a property of cats. So,
we can infer, for example, that Tom has fur, since Tom is a cat, a cat is a kind of
mammal, and mammals have fur. If, for example, we had another subclass of
mammals, say dogs, and we had, say, Fido is_a dog, Fido would inherit the
property “has fur” from mammals, but not the property “likes cream,” which
is specific to cats. This situation is shown in the diagram below:

Mammals

Fur
Cream

Cats Dogs

have

Like ako

Is_a

Tom Fido

Is_a

ako

FIGURE 8.12  Inheritance in a Semantic Net

180 • Artificial Intelligence and Expert Systems

Let us discuss another example of inheritance.

Penguin

Canary

yellow

Sing
can

is

has
has

can
Fly

Wings

Feathers

Birds

Animals
can

can
Breathe

Move

Animal properties are
inherited by bird and bird
properties are inherited by
a species called canary

FIGURE 8.13  Inheritance in a Semantic Net

Sometimes, inheritance may cause problems. “Penguin” through inher-
itance gets the property “fly” (in practice, it cannot).

To avoid this situation, all the specific properties of a node must be
attached to it through local nodes, so that when an answer is needed, it will
search all the local nodes first. If the answer is not available in the local
nodes, then the general nodes will be used.

For example, if we ask “How does a penguin travel?,” the reply will be
“it walks” (supposedly, that is already stored in the local node).

Example 1:

animal
is_a

reptile mammal

is_a
has_part

head

is_a

elephant

is_instance_of

Clyde

FIGURE 8.14  A Semantic Net Depicting Inheritance and Properties

Knowledge Representation • 181

Example 2:

“Is-a” shows a subset relation and the instance shows the membership
relation.

Living thing

Plant

BushTree

Animal

LivestockPet

Dog Cat

Poodle
German
Shepherd

Horse Oak

is_a is_a

is_ais_a is_a is_a

is_a

is_a is_a

is_a

is_a is_a

FIGURE 8.15  The “Is-A” Hierarchy

Example 3:

We can take the hierarchy all the way down to the atomic level with the
“is part” hierarchy.

Appendages

Dog

Tail

PawsLegs

BodyHead

Ears Nose Eyes Mouth

Retina

is_partis_part
is_part is_part is_part

is_part
is_part is_part is_part

FIGURE 8.16  The “Is Part” Hierarchy

Example 4:

Semantic networks are very good at representing simple events and
declarative sentences by basing them around the “event node.”

182 • Artificial Intelligence and Expert Systems

Give

Event107

Lecture

w6John

Student

agent

beneficiary

object

instanceinstance

FIGURE 8.17  A Semantic Net Representing Events and Declarative Sentences

 Example 5:

Person Right
handed

178

195

.252

.262

Adult
Male

Baseball-
Player

.106

Chicago-
Cubs

team
instance instance

Pitcher Fielder

Three-Finger
Brown

Pee-Wee-
Reese

Brooklyn
Dodgers

team

batting-averagebatting-average
is_a is_a

height

height

batsequal to
handed

is_a

is_a

batting-average

Here's the example of a
semantic Network from
Rich & Knight that we
looked at previously:

FIGURE 8.18  A Mixed Semantic Network

8.7.2.2  Inference in the Semantic Net

There are two ways of using an inference mechanism in a semantic net.

Intersection search: This is the earliest way that a semantic network
can use to find a relationship between objects, which is by spreading the
activation out of two nodes and finding their intersection; it finds relation-
ships among objects. This is achieved by assigning a special tag to each
visited node.

This search has many advantages, including entity-based organization
and fast parallel implementation. However, very structured questions need
highly structured networks.

Knowledge Representation • 183

Let us discuss some examples.

1.		 �Question: “What is the relation between the 1950 Chicago Cubs and
Brooklyn Dodgers?”
Answer: “They are teams of baseball players.”

.252

.262

Baseball-
Player

.106

Chicago-
Cubs

team
instance instance

Pitcher Fielder

Three-Finger
Brown

Pee-Wee-
Reese

Brooklyn
Dodgers

team

batting-averagebatting-average
is_a is_a

batting-
average

FIGURE 8.19  The Intersection Search in the Semantic Net

2.		 Question: “What is the relation between Liverpool and red?”
Answer: “Liverpool is a team name whose uniform color is red.”

Mammal

Person

Owen

Nose

LiverpoolRed

uniform
color team

has_part
is_a

instance

FIGURE 8.20

Inheritance: The concept of inheritance was discussed above. The
inheritance mechanism allows knowledge to be stored at the highest pos-
sible level of abstraction, which reduces the size of the knowledge base.

•	 It facilitates inferencing of the information associated with semantic nets.

•	 It is a natural tool for representing taxonomically structured
information and ensures that all the members and sub-concepts of a
concept share common properties.

•	 It also helps us to maintain the consistency of the knowledge base by
adding new concepts and members of existing ones.

184 • Artificial Intelligence and Expert Systems

•	 Properties attached to a particular object (class) are inherited by all
subclasses and members of that class.

The is-a and instance representation provide a mechanism to implement
this. Inheritance also provides a means of dealing with default reasoning.

A
is_a

B
is_a

C A
is_a

C

Clyde
is_a

Bird Bird Fly Clyde
Can

Fly
Can

 FIGURE 8.21  Inheritance

For example, we could represent the following sentences as a semantic net:

•	 Emus are birds.

•	 Typically, birds fly and have wings.

•	 Emus run.

fly

action

bird

instance

emu run

wings
has_part

action

FIGURE 8.22  Default Reasoning within Inheritance through a Semantic Net

Two important features of the semantic net are the default values of the
attributes and inheritance. Consider the following semantic net.

Person
height

163cm

is a

Man
height

178cm

Yes
has nose

Chess Player Baseball Player
height

195cm

is a
is a

FIGURE 8.23  A Semantic Net with Default Values

Knowledge Representation • 185

We can assign the expected default values of parameters (e.g., height,
has nose) and inherit them from higher up in the hierarchy. This is more
efficient than listing all the details at each level. We can also override the
defaults. For example, baseball players are taller than average, so their
default height overrides the default height for men.

8.7.2.3  Multiple Inheritances in a Semantic Net

With simple trees, inheritance is straightforward. However, when multiple
inheritances are allowed, problems can occur. For example, consider this
famous example.

Question: “Is Nixon a pacifist?”

NoRepublicanQuakerYes
pacifist pacifist

Nixon

instance instance

 FIGURE 8.24  Multiple Inheritance

Conflicts like this are common in the real world. It is important that
the inheritance algorithm reports the conflict, rather than just traversing
the tree and reporting the first answer it finds. In practice, we aim to build
semantic networks in which all such conflicts are either overridden, or
resolved appropriately.

Advantages of Semantic Nets

•	 Easy to visualize and understand

•	 The knowledge engineer can arbitrarily define the relationships.

•	 Related knowledge is easily categorized.

•	 Efficient in terms of space requirements

•	 Node objects are represented only once.

•	 Standard definitions of semantic networks have been developed.

186 • Artificial Intelligence and Expert Systems

Limitations of Semantic Nets

•	 Different formalisms exist, with different capabilities.

•	 There is no standard reasoning model.

•	 Many believe that the basic notion is a powerful one and has to
be complemented by, for example, logic, to improve the notion’s
expressive power and robustness.

•	 Others believe that the notion of semantic networks can be improved
by incorporating the reasoning used to describe events.

•	 Difficulties exist associated with the mechanisms of the property
inheritance: the values of properties inherited by different parent
nodes can be in conflict.

•	 It is difficult (but not impossible) to express disjunctions (and
therefore implications) and negations.

•	 Logical inadequacy – vagueness about what types and tokens really
mean

•	 Heuristic inadequacy – finding a specific piece of information could
be chronically inefficient

•	 Establishing negation is likely to lead to a combinatorial explosion.

•	 The “spreading activation” search is very inefficient because it is not
knowledge-guided.

•	 Binary relations are usually easy to represent, but sometimes can be
difficult. For example, try to represent the sentence “John caused
trouble at the party.”

John Cause Party
who where

Trouble

what

FIGURE 8.25

Knowledge Representation • 187

•	 Other problematic statements. . .

♦♦ negation: “John does not go fishing.”

♦♦ disjunction: “John eats pizza or fish and chips.”

•	 Quantified statements are very hard for semantic nets, e.g.:

♦♦ “Every dog has bitten a postman.”

♦♦ “Every dog has bitten every postman.”

♦♦ Solution: Partitioned semantic networks can represent
quantified statements

Now we are able to make a semantic network on our own. Let’s see how to
represent some sentences in a semantic network.

•	 Try to represent the following two sentences in the appropriate
semantic network diagram:

1.		
isa (person, mannal)
instance (Mike-Hall, person) all in graph
team (Mike-Hall, Cardiff)

2.		 score (Cardiff, Llanelli, 23-6)

3.		 John gave Mary the book.

•	 Solution for Problem 1: is_a(person, mammal), instance(Mike-Hall,
person), team(Mike- Hall, Cardiff)

Mammal

Person

Mike Hall

Head

Cardiff
team

has_part

is_a

is_a

FIGURE 8.26

188 • Artificial Intelligence and Expert Systems

•	 Solution for Problem 2: score(Spurs, Norwich, 3-1)

Spur Fixture-5 3 – 1
Away_team Score

Norwich

Home_team

Game

Ls_a

FIGURE 8.27

•	 Solution for Problem 3: John gave Mary the book.

John Event 1 Book_69
Agent Object

Mary

Patient

Gave Book

Action Instance

FIGURE 8.28

8.7.2.4  Partitioned Semantic Network

One of the limitations of the semantic network is that it cannot be used to
represent quantified statements (for all ∀ and there exist $) like

“Every dog has bitten a postman.”

“Every dog has bitten every postman.”

The solution to this problem is to use a partitioned semantic network.
Hendrix (1976: 21-49, 1979: 51-91) developed the so-called partitioned
semantic network to represent the difference between the description
of an individual object or process and the description of a set of objects.
The set description involves quantification.

Knowledge Representation • 189

Hendrix partitioned a semantic network; a semantic network, loosely
speaking, can be divided into one or more networks for the description of
an individual.

Partitioned semantic networks have the expressive power of predicate
calculus that we discussed previously. That is negation, conjunction, dis-
junction, and implication all can be represented using a partitioned seman-
tic network which otherwise is not possible with a semantic network. But
we cannot neglect the advantages of a semantic network, like two-way
indexing, direct set-subset element representation, and variable classifica-
tions according to types.

Partitioned Semantic Networks Allow For

•	 propositions to be made without commitment to truth

•	 expressions to be quantified

In it, the network is broken into spaces, which consist of groups of nodes
and arcs and regard each space as a node. Therefore, the central idea of
partitioning is to allow groups, nodes, and arcs to be bundled together into
units called spaces – fundamental entities in partitioned networks, on the
same level as nodes and arcs (Hendrix 1979:59).

•	 Every node and every arc of a network belongs to (or lies in/on) one or
more spaces.

•	 Some spaces are used to encode “background information” or generic
relations; others are used to deal with specifics called “scratch” space.

In a partitioned semantic network, the partition is used as a barrier. Since
the network is a sub-graph, a partitioned semantic network creates a sub-
graph that has two important advantages:

•	 Syntactic: It is useful to delimit that part of the network that
represents the results of specific inferences.

•	 Semantic: It is useful to delimit that part of the network that
represents knowledge about specific objects. Partitioning may then be
used to impose a hierarchy upon a flat structure of nodes.

Consider the following:

“Andrew believes that the earth is flat.” We can encode the proposition
“the earth is flat” in a space and within it have nodes and arcs to represent

190 • Artificial Intelligence and Expert Systems

the fact (see Figure 8.29). We can have nodes and arcs to link this space the
rest of the network to represent Andrew’s belief.

believes

instance

event 1Andrew
agent

space 1
event flat

object 1 prop 1

instance instance

has_property

object

FIGURE 8.29  The Partitioned Semantic Net for Andrew’s Proposition

Figure 8.29 shows a simple partitioned semantic network that does not have
any quantification, but in many cases, the sentences may not be as straight and
simple as seen in previous examples, especially when the scope of certain literals
of the sentence is quantified by ∀ (for all) and $ (at least one). In these situa-
tions, the sentences may be partly broken into segments so that each segment
has a specific scope. The networks where the scope of the variables in a sentence
are separately shown are called partitioned semantic networks.

Let us discuss some examples of how to make partitioned semantic net-
work for quantification.

a)	Suppose that we want to represent the following sentence using a
network scheme:

♦♦ “The dog bites the mail carrier.”

♦♦ Since there is not more than one dog/mail carrier, there is no
need of partitioning, and hence, that sentence can be represented
using an ordinary semantic network.

Mail carrierBiteDogs

d b m

is_a is_a is_a

assailant victim

FIGURE 8.30  Semantic Network

Knowledge Representation • 191

b)	“Every dog has bitten a mail carrier.”
In the above sentence, there is the use of every word that indicates a

need for all quantifiers ∀, so we need partitioning as there is a statement
that cannot be represented by a semantic network.

Every means ∀ (thus ∀d: $ m: dog (d) ∧ m(mail carrier → bit(d, m)).

GS Dogs Bite Mail carrier

g d b m

is_a is_a is_a SI

SA

is_a
form

A

assailant victim

FIGURE 8.31  A Partitioned Semantic Network

In Figure 8.31, the partitioned semantic network comprises two
partitions, SA and S1. Node g is an instance of the special class of gen-
eral statements about the world comprising link statement, form, and
one universal quantifier ∀.

c)	“Every dog has bitten the constable.”
Every dog bites the same constable, so the sentence has a

generic scope for dogs and not for constables (i.e., ∀d: dog (d) → bit
(d, constable)).

GS Dogs Bite Constables

cbdg

SA

is_a is_a

is_ais_a SI

A
form

Town-Dogs

assailant victim

FIGURE 8.32  A Partitioned Semantic Network

192 • Artificial Intelligence and Expert Systems

d)	“Every dog has bitten every mail carrier.”
In the above sentence, the scope of the sentence is for dogs as well

as for the mail carrier, so the ∀quantifier is connected to both, dogs and
the mail carrier (∀d: ∀ m:dog(d) ∧ m(mail carrier → bit(d, m)).

The sentences can have a form to envelop the scope of it and the
variables that are attached to quantifiers.

Dogs Bite Mail carrier SA

is_a is_a is_a SI

victim
assailant

d b m

AA

form

is_a
GS g

FIGURE 8.33  A Partitioned Semantic Network

e)	“Every parent loves their child.”
To represent this, we

•	 Create a general statement, GS, a special class.

•	 Make node g an instance of GS.

•	 Every element will have at least 2 attributes:

♦♦ a form that states which relation is being asserted

♦♦ one or more for all ∀ or exists $ connections—these represent
universally quantifiable variables in such statements e.g., x, y in
∀x parent(x) → $y: child(y) ∧ loves (x, y).

Here, we have to construct two spaces, one for each x, y.

NOTE: We can express variables as existentially qualified variables and
express the event of “love” having an agent p and receiver b for every parent
p, which could simplify the network.

If we change the sentence to “Every parent loves their child,” then
the node of the object being acted on (the child) lies outside the form of

Knowledge Representation • 193

the general statement. Thus, it is not viewed as an existentially qualified
variable whose value may depend on the agent. So, we could construct a
partitioned network as shown in Figure 8.34.

GS

parent child lovesgs 1

gs 2

c2 i3

p 1
space1

agent

space2 receiver

instanceinstance
form

exists
for all

form

instance

instance

instance

FIGURE 8.34  A Partitioned Semantic Network

f)	“John believes that pizza is tasty.”

believes

eventsjohn
agent

is_a

object

pizza tasty

object propertyhas
is_a is_a

spaces

FIGURE 8.35

Thus, the partitioning of a semantic network is

•	 logically adequate, in that one can distinguish between individuals and
sets of individuals,

•	 indirectly more heuristically adequate by way of controlling the search
space by explaining semantic networks.

194 • Artificial Intelligence and Expert Systems

8.7.3  Frames
The term “frame” was coined by Minsky in 1975. Frames are a more struc-
tured form of packaging knowledge. They are a version of the semantic
network that was proposed by Minsky. Frames can be viewed as a structural
representation of the semantic network. Frames organize our own knowl-
edge of the world. We adjust to new situations by calling up information
structured by past experience. We revise the details of the past experience
to represent individual differences for the new situation.

A frame is used to represent stereotypical information about an
object or concept, with descriptors (slots) and relations to other objects
or concepts. A frame is a data structure for representing a stereotyped
situation, like going to a child’s birthday party. Attached to each frame
are several kinds of information. Some of this information is about
how to use the frame. Some is about what one can expect to happen
next. Some is about what to do if these expectations are not confirmed.
Relations and slots have a structure, too, which helps to describe their
semantics. All the information relevant to a particular concept is stored
in a single complex entity, the frame. A single frame alone is rarely use-
ful, so we have to build a frame system from a collection of frames that
are connected with each other. Thus, frames are organized into hierar-
chies or a network of frames.

Frames also support inheritance, that is, low level frames can inherit
information from upper level frames.

“A frame is a collection of attributes (called slots) and associated values
(numeric, symbolic, and Boolean), and it is also called frame identification
information.” The frame describes some entity in the world, that is, it is the
object’s description.

Slots are similar to attributes in the object-oriented approach, but it can
contain declarative and procedural information.

The sources of attribute values are as follows:

•	 Initialize

•	 Database

•	 Procedure

•	 Expert System

Knowledge Representation • 195

•	 User

•	 Inheritance

•	 Other Frame (object)

A frame defines the state of an object and its relationship to other frames
(objects). But a frame is much more than just a record or data structure
containing data. The information is stored in frames with slots. Some of the
slots trigger actions, causing new situations.

Frames are templates

•	 that are to be filled-in in a situation

•	 filling them in causes an agent to undertake actions and retrieve other
frames

In AI, frames are called slot-filler data representations. A frame may have
any number of slots needed for describing an object, e.g., the faculty frame
may have the name, age, address, and qualification as slot names.

Each frame includes two basic elements: slots and facets.

Frame slots: These are slots with labels describing the attributes
and possible values for each attribute. Slots describe the characteristics of
frames. Their facets (e.g., the domain, range, cardinality, and default value)
define their semantics. They are where the demons are defined. Each slot
may contain one or more facets (called fillers or slot descriptors).

Slots in a frame can contain following:

•	 Frame identification information

♦♦ For example, a frame that stores knowledge about cars can have
a name “Car.”

•	 Relationships between this and other frames

♦♦ For example, a superclass of a frame “Car” is a frame “Vehicle.”

•	 Knowledge about an attribute of an object and its value

♦♦ A frame “Car” can have an attribute “Number of wheels” with a
value of 4.

•	 Procedures to carry out after various slots are filled

196 • Artificial Intelligence and Expert Systems

•	 Default information to use where input is missing.

♦♦ In situations where certain information required for the frame
is missing, the defaults can be specified. For instance, a table
may be assumed to be wooden until this information can be
ascertained. Default information is used in choosing actions until
more specific information is found.

♦♦ A frame “Car” can have a slot “Number of doors” with value 4,
however, there are cars with only 2 doors.

•	 Blank slots – left blank unless required for a task

♦♦ A frame “Car” can contain a slot “Color”, however, this slot
will be empty, because there are many different colors. When
knowledge about a particular car, for example, John’s car, will be
represented, then the slot “Color” will have a certain value.

•	 Other frames, which creates a hierarchy

A frame can have slots with

♦♦ Static values: the value of the slot does not change during the
operation of a system

♦♦ Dynamic values: the value of the slot changes during system
operation.

The General Structure of a Frame

Slot Name Slot value

For example,

	 BOOK
Title	 : Qualitative Reasoning
Author: Ken D.	 : Forbus
Publisher	 : Prentice-Hall
Year	 : 2000

FIGURE 8.36  A Frame Book with 4 Slots

Knowledge Representation • 197

Above figure shows a frame whose name is “book” as it stores knowl-
edge about a book. It has 4 slots and each slot represents an attribute
and value of each attribute, like the title, author, publisher, and year,
are the attributes or slot names. 2000 is the value of the attribute (slot)
year.

•	 Frame facets: A facet is extended knowledge about a frame’s
property. Facets provide additional control over the slot value by using
procedures and other things. Facets include following information:

♦♦ TYPE – Defines a type of value that can be associated with the
attribute

♦♦ DEFAULT – Defines a default value, i.e., an initial value for the
attribute

♦♦ CONSTRAINT – Defines the allowable value

♦♦ MINIMUM CARDINALITY – Establishes the minimum
number of values

♦♦ MAXIMUM CARDINALITY – Establishes maximum number
of values

♦♦ RANGE (indicates the range of integers or enumerated values a
slot can have),

♦♦ DEMONS (allow to obtain information about a frame or to make
operations about its characteristics and its relations. Demons
are attached to slots and invoked automatically when a slot is
accessed)

Demons can be of the following types:

♦♦ if-needed (They activate when the slot is read.)

♦♦ if-added (They activate when a value is added to the slot.)

♦♦ if-removed (They activate when a value is removed from the slot.)

♦♦ if-modified (if-changed) (They activate when a slot’s value is
modified.)

– �Other (may contain rules, other frames, semantic net or any type of other
information).

198 • Artificial Intelligence and Expert Systems

Name of a frame

Slots Slot values Facets

FIGURE 8.37  Structure of a Frame with Slots and Facets

Demons in a Frame

Demons are the methods attached to slots. A method is a procedure
attached to an object that will be executed whenever requested. We already
explained the types of demons and the methods that are executed when-
ever the slot is accessed.

Example (a)

Man

Married

Wife

Age

False
if-changed { If
Married=true then
acquire(Wife) }

John

Class

Married

Wife
Age

Man

True
Marry

27

FIGURE 8.38  A Frame System Having “If-Changed” Demons

Example (b)

Traveller

Discount

Avio-ticket

if-Added { if Traveller: Age>26
then discount=50% else
discount=0% }

Ticket305

class

Traveller

Discount

Avioticket

John

50%

John

Name

Age

"John"

24

FIGURE 8.39  A Frame System with “If-Added” Demons

Knowledge Representation • 199

A frame consists of a selection of slots that can be filled by values, or proce-
dures for calculating values, or pointers to other frames. Each frame describes
an object by embedding all the information about that object in slots.

•	 Slots are commonly known in programming terms as fields or
attributes with an associated value.

•	 A frame is similar to a database record.

•	 A frame describes typical instances of the concepts it represents.

hotel chair

is_a: chair
location: hotel room
height: 20-40cm
legs: 4
comfortable: yes
use: for sitting on

hotel room

is_a: room
location: hotel
contains: {hotel chair,

hotel bed,
hotel phone,
...}

FIGURE 8.40  Frames with Slots

The above figure shows that a hotel room is a frame having three slots:
is-a, location, and contains. The “contains” slot has pointers to other frames,
like a hotel chair, hotel bed, and hotel phone. Thus, the hotel chair and
hotel bed are the constituent parts of the frame “hotel room.”

Let us discuss an example of using frames. Suppose an agent is taking
notes at a lecture and wants to decide how much attention it should pay and
determine any other ways in which it should behave. It searches for frames
that match the given situation. It is in a meeting of some kind, so it retrieves
that frame. In the specializations slot of meetings is another frame, lecture,
which is more appropriate because the context for that is a large number of
students. It retrieves the lecture frame and starts filling in slots.

The first slot is the name of the course, which in this case, is the oper-
ating system. The next slot is the level of the course, and it’s difficult. This
fires the procedural rule: “If it’s a difficult course, pay attention,” so the
agent begins to pay more attention. The next slot is “lecturer,” and this is
a frame in itself, so the agent retrieves the lecturer frame and starts filling
in the slots on that frame. The first slot is “tolerance,” and this lecturer is

200 • Artificial Intelligence and Expert Systems

not tolerant. This fires more procedural rules, such as “If it’s an intolerant
lecturer, then turn off your mobile phone,” so the agent turns its phone
off. Having dealt with the lecturer frame, it returns to the lecture frame
and looks at the next slot, which is the room number. This is flagged to be
not important for the task of taking notes, so the agent doesn’t fill it in. The
frames in this example are portrayed in Figure 8.41.

Context: large number of
students

Lecturer

Specialisation of: meeting

Course: Op. Systems

Level: Difficult

If difficult, then
pay attention

Lecturer:

Room*:

Lecturer

Name : Prof. Jones

Tolerance: Intolerant

If intolerant, then
turn off mobile phone
If intolerant, then
pay attention

FIGURE 8.41  A Frame System

We can see how this scheme of retrieving frames, filling in slots, and
reacting to production rules in the slots can be used to make an agent act
rationally. Note that a search may be involved in order to use the frame
representation, both in order to find the correct frames for a situation and
as part of the procedures carried out when filling the slots.

So, the names of slots correspond to the links in semantic nets and the
values of the slots correspond to the nodes. Hence, each slot can be another
frame. Frames are often linked into a hierarchy to represent the has-part
and is-a relationships. Thus, in this view, each frame represents a class, sub-
class, or instance of class.

•	 Class: This is a collection of objects that share some common
properties (attributes).

A class frame contains

♦♦ a descriptive name of the concept

♦♦ a set of attributes that are characteristic of all its associated objects

♦♦ attribute values that are considered common to these objects

Knowledge Representation • 201

It may contain

1.		 an explicit reference to all of its associated subclasses

2.		 information describing the behavior of the concept

•	 Sub-class:

Sub-classes are classes that represent sub-sets of higher level classes.
Subclasses inherit the attributes of high level classes and also have their
own attributes.

There are three kinds of class relationships:

Generalization – “Kind of” relationship

Aggregation – “Part of” relationship

Association – “Semantic” relationship

•	 Instance: The instance is a specific object from a class of objects. For
example, “Ram” is an instance of class “Person.”

♦♦ Describes

•	 A specific object from its related class.

♦♦ Contains

•	 All of the characteristics of the class frame as well as a specific
information (specific features and property values).

So it’s clear now that we have three types of frames.

8.7.3.1  Class Frame

A class frame includes slots describing an attribute of a class of objects.
Typically, the slots of such frames have default information or unspecified
values that can be redefined at a lower level, that is, in the subclass frame. If
the class frame has an actual value facet, then decedent frames cannot mod-
ify that value. The value remains unchanged for subclasses and instances.
Slots of the class-level frame represent attributes that are common to all
members of that class. For example, class “vehicle” has 4 attributes and
is common for all classes, that is, members of that class (that is “car”) is a
subclass of “vehicle,” so all attributes of the “vehicle” frame are the same
for the “car” frame.

202 • Artificial Intelligence and Expert Systems

Class: Vehicle

Regno

Model

Producer

Owner

FIGURE 8.42  A Class Frame

8.7.3.2  Subclass Frames

A subclass derives attributes of the superclass and also has its own attributes.

Car

Class: Vehicle

Regno

Model

Producer

No. of doors 4

Owner

FIGURE 8.43  A Subclass Frame

Figure 8.43 shows a subclass “Car” that derives the attributes of the
class “Vehicle” and the subclass “Car”’s own attribute is “No. of doors.”

8.7.3.3  Instance Frames

The value of the attributes of the instance frame varies among all instances
of the class.

John’s Car

Class: Car

Regno 123

Model La78

Producer Toyota

No of door 4

Owner John

FIGURE 8.44  The Instance Frame

Knowledge Representation • 203

Figure 8.44 shows an instance frame: “John’s Car” is an instance or
object of the class “Car.” Each instance takes different values for the attri-
bute. The attribute is the same for all instances of the class “Car,” but the
value of the attribute is different for each instance.

Here is an example showing the class and instance frame:

Color

Wings

Flies

Unknown

2

False

BirdFrame Name:

Properties:
Class frame

Color

Wings

Flies

Unknown

2

False

Bird

Frame Name:

Properties:

Class:

Tweety

Instance frame

FIGURE 8.45  The Class and Instance Frames

An example showing all the frames that we discussed above:

Mammal
Sub-class:		 Animal
Warm_blooded:	 yes

Elephant
Sub-class:		 Mammal
*Color:		 grey
*Size:		 large

Clyde
Instance:		 Elephant
Color:		 pink
Owner:		 Fred

FIGURE 8.46  A Frame System with Different Types of Frames

204 • Artificial Intelligence and Expert Systems

Figure 8.46 shows that “Mammal” is a subclass of the class “Animal,” so
to derive the attributes of the class “Animal” and “Mammal,” the subclasses
must have their own attribute called warm_blooded with the value “yes.”
Similarly, “Elephant” is a subclass of “Mammal” and “Clyde” is an instance
frame, that is, “Clyde” is an instance of the “Elephant” subclass.

One important point to remember that there are two kinds of attributes
that are associated with a class. The first type of attribute belongs to only
that class itself, and the second type of attribute is that which is inherited by
all the instances of that class. The second type is indicated by an asterisk (*).
For example, in Figure 8.46, class “Elephant” has three attributes: subclass,
color, and size. Out of these three, the color and size attributes are marked
with an asterisk, so these two attributes are inherited by all the instances of
the class “Elephant.”

8.7.3.4  Relationships in Frames

An individual frame is of little use; there is a need of a frame system with a
number of frames that have some relationship with each other. There can be
any kind of relationship between the frames, such as a superclass-subclass
relationship or instance relationship. Relations allow connections between
frames. Relations have a description that defines their semantics and func-
tioning. Frames also support inheritance and slot inheritance is based on rela-
tions. Three types of relations connect frames within a frame system. Rela-
tionships are divided into two categories: taxonomic and non-taxonomic. Is-a,
instance, and a-part-of are taxonomic relations (predefined).

•	 “Is-a” relationship: This relates a subclass frame with a class frame or an
instance frame with a subclass or class frame. “Is-a” relation correspond
to the “subset” relation and “instance” relation is part of the “element
of” relation. In this case, a subclass frame or an instance frame inherits
all the slots from a class frame, but it can include a new slot.

Regon
Model

Producer
Owner

Regon
Model

Producer
Owner

No. of doors

Class: Vehicle

Ca r

Class: Vehicleis_a

4

FIGURE 8.47  A Frame System with the Is-A Relationship

Knowledge Representation • 205

Figure 8.47 shows two frames, “Vehicle” and “Car.” “Car” is a subclass
derived from the “Vehicle” superclass, so we derive all attributes of the
“Vehicle” class and have one slot of its own called “No. of doors.”

•	 “A-Part-Of” relationship: Relates the whole with its constituent
parts. That is, one frame becomes the values of the slot of another
frame.

Regno
Model

Producer
Owner

Dimension
Truck Basket

Part

5*2*1.5

FIGURE 8.48  A-Part-Of Relationship

Figure 8.48 shows that the frame “Basket” is part of the frame “Truck.”
The frame “Truck” has a slot name “Part” and the value of “Part” is a frame
itself. So, both frames are connected by the “a-part-of” relationship.

We now look at one more example of a frame system that shows the
“a-part-of” relationship.

hotel room
specialization of room
location: hotel
contains: (hotel chair

hotel phone
hotel bed)

hotel chair
specialization of: chair
height: 20–40 cm
legs: 4
use: sitting

hotel phone
specialization of: phone
use: (calling

room service

billing: through room

mattress
superclass: cushion
firmness: firm

hotel bed
superclass: bed
use: sleeping
size: king
part: (mattress frame)

FIGURE 8.49  A Frames System with Pointers to Other Frames

206 • Artificial Intelligence and Expert Systems

Regno
Model

Producer
No of door

Age
John's Car John

25Class: Car

123
La78

Toyota
4

Owner John

FIGURE 8.50  A Semantic Relationship

A complete frame-based representation will consist of a whole hier-
archy or network of frames connected together by the appropriate links
pointers.

Thus, the nodes in a frame system are connected using links viz.

•	 ako: links two class frames, one of which is a subclass of the other, e.g.,
the science_faculty class is ako of faculty class.

•	 is_a (subclass/class)/instance (instance/class) connects a particular
instance of a class frame, e.g., Renuka is_a science_faculty.

•	 a_part_of connects two class frames, one of which is contained in the
other, e.g., the faculty class a_part_of department class.

•	 The property link of the semantic net is replaced by SLOT fields.

Let us see various examples of the frame system with relationships.

Example (a)

In our example we have a general class of birds, and all birds have the
attributes “flying,” “feathered,” and “color.” The attributes “flying” and
“feathered” are Boolean values and are fixed to true at this level, which
means that for all birds, the attribute “flying” is true and the attribute
“feathered” is true. The attribute “color,” though defined at this level,
is not filled, which means that although all birds have a color, their
color varies. Two subclasses of birds, pet_canaries and ravens are
defined. Both have the “color” slot filled in, pet_canaries with yel-
low, ravens with black. The class pet_canaries has an additional slot,
owner, meaning that all pet canaries have an owner, though it is not
filled at this level since it is obviously not the case that all pet canaries
have the same owner. We can therefore say that any instance of the class
pet_canary has the attributes color yellow, feathered true,

Knowledge Representation • 207

flying true, and owner, the last of these varying among instances. Any
instance of class raven has color black, feathered true, and fly-
ing true, but no attribute owner. The two instances of pet_canary
shown, Tweety and Cheepy, have the owners John and Mary, who are
separate instances of the class Person, for simplicity, no attributes have
been given for the class Person. The instance of pet_canary Cheepy
has an attribute that is restricted to itself, Vet (since not all pet canaries
have their own vet), which is a link to another “Person” instance, but in
this case, we have a subclass of Person, Vet. The frame diagram for
this is as follows.

Flying

Feathered

Color

T

TBirds

Pet
canaries

Color
Owner

Yellow
Ravens Color Black

Tweety Owner Edgar

John
SallyCheepy

Vet

Owner

Mary

Person Veta_kind_of

is_a

is_a

owner

is_a

is_a
is_a

a_kind_ofa_kind_of

Vet

is_aowner

FIGURE 8.51  Frame System for Birds

Example (b)

In this frame system, there is a superclass called “Vehicle” with a slot named
“Wheels” and a value of the slot is “yes.” Automobile and cycle are sub-
classes inherited from “Vehicle.” The “Sports Car” class is inherited from
“Automobile” and the “Bicycle” class is a subclass of “Cycle” so the relation-
ship link is “is-a.” “Corvette” is an instance of the class “Sports Car,” so the
link is an “instance” link.

208 • Artificial Intelligence and Expert Systems

Vehicle
Wheels: Yes

Cycle
Wheels: <4

Automobile
Doors: Yes
Motor: Yes
Wheels: 4

Spots Car
Doors: 2
Size: Small

Corvette
License: xyz2

Bicycle
Motor: No
Wheels: 2

is_ais_a

is_a is_a

instance

FIGURE 8.52  A Frame System with Different Types of Relationships

Example (c)

In this example, “Animals” is a class frame with two slots, “Alive” and “Flies”
with the values T and F, respectively. “Birds” and “Mammals” are the sub-
classes of “Animals” as the link is “is-a” between the nodes. “Opus” is an object
or instance of the class “Penguin” as the link between them is “instance.”

Animals

Alive
Flies

T
F

Birds

Flies
Legs 2

T
Legs 4

Mammals

Penguins

Flies F

Cats Bats

Flies
Legs 2

T

instance

Opus Bill Pat

Name PatName
Friend

Name
Friend

BillOpus

isa

isa

 FIGURE 8.53  Frame System for Animals

Knowledge Representation • 209

8.7.3.5  Inheritance in Frames

Frames also support inheritance like the semantic network because frames
in a frame system are connected by links, like is_a, instance, and kind_of,
that show inheritance.

•	 Definition: Inheritance is the process by which the characteristics of
a parent frame are assumed by its child frame, and the child frame has
its own attribute also.

•	 Note: In general, a child frame will inherit information from its
parents, grandparents, and great-grandparents.

For example, in Figure 8.53, the frame “Car” is a child frame and a
subclass of the class “Vehicle” (the parent frame), so all the attributes
of the “Vehicle” class belong to the class “Car” also and it has its own
attributes. “No. of doors” is an attribute of the frame “Car” and the rest
of the attributes of the frame “Car” are inherited from the “Vehicle”
class.

Some points to remember about frame inheritance:

•	 If a slot is not defined for a given frame, we can look at the parent-
class slot with the same name. The class frame generally has default
values that can be re-defined at lower levels.

•	 If the class frame has actual value facets, then the decedent frames
(child frames) cannot modify that value.

•	 The value remains unchanged for subclasses and instances.

•	 In the case of taxonomic relations, inheritance (of slots and values) is
given by default.

•	 In the rest of the relations (non-taxonomic), it has to be explicitly
defined.

•	 There are slots inherently non-inheritable, e.g., the has-instance slot
can never be inherited.

In Figure 8.54, “department” and “hostel” are frames that are contained
within the frame “university” as the value of one of the slots of the “univer-
sity” frame as the relationship is a_part_of. “Nilgiri hostel” is a child frame
of the frame “hostel” as the relationship is is_a. Let us see how to represent
that frame system properly with slots and values as shown below.

210 • Artificial Intelligence and Expert Systems

science_faculty

renuka

nilgiri hostelfaculty

ako

a_part_of

department

a_part_of

university

hostel

is_a

is_a

FIGURE 8.54  Example of a Frame Network

f_name:
phone:
address:

university
(default: - 011686971

(default - IIT Delhi)

f_name:
a_part_of:
programme:

department
frame0

[Btech, Mtech, Ph.D]

f_name:
a_part_of:
room:

hostel
frame0

(default - 100)

f_name:
a_part_of:
age:
nationality:
qual:

faculty
frame1

range (25 - 60)
(default - Indian)

(default - Post graduate)

f_name:
is_a:
phone:

nilgiri
frame2

0116862345

f_name:
ako:
qual:

science faculty
frame11
(default - M.Sc)

f_name:
is_a:
qual:
age:
adrress:

renuka
frame12
Ph.D

45
Janak Puri

frame12 frame13

frame21frame11

frame1 frame2

frame 0

FIGURE 8.55  Detailed Representation of the Above Frame Network

From Figure 8.55, we can infer some knowledge is not given explicitly
in the frame network. Suppose we want to know the nationality or phone
number of an instance-frame frame 13 of Renuka.

Knowledge Representation • 211

This information is not given in this frame. The search will start from
frame 13 in the upward direction until we get our answer or have reached
the root frame.

Multiple inheritance: This means the child frame can inherit infor-
mation from more than one parent class frame. So, in multiple inheritance,
there is more than one parent frame for a child frame, which sometimes
causes ambiguity.

Some points to remember about multiple inheritance:

•	 If the taxonomy is a tree, the inheritance is simple.

•	 The inheritance is multiple if

♦♦ the taxonomy is a graph

♦♦ there are other (non-taxonomic) relations, which allow
inheritance

♦♦ If there is inheritance of the slots and values, there may be a
conflict of values.

•	 needs an algorithm for traversing the is_a hierarchy that guarantees
that specific knowledge will always dominate more general facts

•	 needs an inheritance algorithm that reports the ambiguity

Examples of multiple inheritance: (a)

Elephant

Big

Heavy

Grey

Royal
Elephant

Mini
Royal

Elephant

Clyde

White

Little

Color

Size

is_a
is_a

is_a

is_a

Weight
Size

Color

FIGURE 8.56  Multiple Inheritance

212 • Artificial Intelligence and Expert Systems

In Figure 8.56, the confusion is that “Clyde” inherits information from
both “Mini Royal Elephant” and “Elephant,” so there are two parent classes
for it. So, “Clyde” becomes both an elephant and mini royal elephant.

Example (b)

Animals

Alive
Flies

T
F

Birds

Flies
Legs 2

T
Legs 4

Mammals

Penguins

Flies F

Cats Bats

Flies
Legs 2

T

instance

Opus Bill Pat

Name PatName
Friend

Name
Friend

BillOpus

is_a

is_a

Multiple
inheritance

FIGURE 8.57

To deal with multiple inheritance, an inferential distance algorithm is
required. The inferential distance algorithm allows us to define from which
other frame a given frame inherits.

1.		� Create the set of frames from which the value of the slot can be explic-
itly inherited → Candidates.

2.		� Remove from “Candidates” all frames that are parents of other frames
of the set.

3.		 If the resulting number of candidates is

♦♦ 0 → The slot cannot be inherited.

♦♦ 1 → This is the value to be inherited.

♦♦ N > 1 → There is a multiple-inheritance problem if the slot’s
cardinality is not at least N.

Knowledge Representation • 213

8.7.3.6  Advantages of Frames

•	 A frame collects information about an object in a single place in an
organized fashion.

•	 By relating slots to other kinds of frames, a frame can represent the
typical structures involving an object; these can be very important for
reasoning based on limited information.

•	 Frames provide a way of associating knowledge with objects (via the
slot procedures).

•	 Frames may be a relatively efficient way of implementing AI applications
(direct procedure invocation versus search in a logic system).

•	 Frames allow data that are stored and computed to be treated in a
uniform manner.(e.g., AGE might be stored, or might be computed
from BIRTHDAY.)

•	 Object-oriented programming has much in common with frames.

•	 Expressive power

•	 Easy to set up slots for new properties and relations

•	 Easy to include default information

8.7.3.7  Disadvantages

•	 Difficult to program	 	 	 •  Difficult for inference

•	 Lack of inexpensive software	 	 •  Slot fillers must be “real” data.

•	 It is not possible to quantify over slots. For example, there is no way to
represent “Some student earned 100% on the exam.”

•	 It is necessary to repeat the same information to make it usable from
different viewpoints, since the methods are associated with slots or
particular object types.

8.7.4  Scripts
Knowledge representation researchers, particularly Roger Schank and his
associates, devised some interesting variations on the theme of structured
objects. In particular, they invented the idea of scripts (1973). Schank and his
co-workers developed a technique for reducing a story or a newspaper report
to conceptual primitives and their interrelations. The conceptual primitives

214 • Artificial Intelligence and Expert Systems

specify certain basic actions that people and objects can perform, for instance,
transferring a physical thing from one location to another, transferring a
mental idea from one mind to another, building new information from old,
grasping objects, focusing attention of a sense-organ on some occurrence,
ingesting some form of nourishment, and so on. Schank showed how complex
representations of the meaning of individual sentences could probably be
built up from these conceptual primitives. To represent a narrative composed
of a series of linked sentences, Schank proposed using frame-like structures,
called scripts, which record the normal sequence of events for a given type
of occurrence. A script is a way of representing specific knowledge, that is,
detailed knowledge about an event or situation. Scripts are used in natural
language understanding systems to organize a knowledge base in terms of
the situations that the system should understand. Script theory is primarily
intended to explain language processing and higher thinking skills.

Frames and scripts offer extremely rich and versatile methods for rep-
resenting organized clusters of knowledge about every day or specialized
occurrences. They reproduce a powerful feature of our own thinking pro-
cesses: the fact that our understanding of new situations is often driven by
stereotypes, which can be applied in a rough-and-ready way, avoiding the
need for extensive inferential processes in order to build up an understand-
ing from scratch. Often our initial attempts to make sense of a situation are
quite inappropriate, and we have to make improvisations and revisions as
we go along. Frame and script systems are able to incorporate such flex-
ibility. Although frame and scripts were developed independently (both
originating in the early 1970s), and are different in important ways, they
have sufficient similarities to be considered together. One influential pro-
ponent of frame-based systems is Marvin Minsky (1975); a champion of
script-based systems was Roger Schank (see Schank and Abelson, 1977).
The key idea involved in both frames and scripts is that our knowledge of
concepts, events, and situations is organized around the expectations of the
key features of those situations.

A script is a knowledge representation technique that is somewhat simi-
lar to frames: it uses inheritance and slots and portrays stereotyped situa-
tion (i.e., if the system isn’t told some detail of what’s going on, it assumes
the “default” information is true), but it is used for describing events in
terms of contexts, participants, and sub-events rather than just an object.
It is similar to a thought sequence or a chain of situations that could be
anticipated. It could be considered to consist of a number of slots or frames

Knowledge Representation • 215

but with more specialized roles. Scripts are used for interpreting stories.
Popular examples are script-driven systems that can interpret and extract
facts from newspaper stories.

Definition of a Script

•	 A script is a remembered precedent, consisting of tightly coupled,
expectation-suggesting primitive-action and state-change frames
[Winston, 1992]

•	 A script is a structured representation describing a stereotyped sequence
of events in a particular context [Luger and Stubblefield, 1998]

•	 A script is a structure that describes a stereotyped sequence of events
in a particular context

♦♦ closely resembles a frame, but with additional information about
the expected sequence of events and the goals/motivations of the
actors involved

♦♦ the elements of the script are represented using conceptual
dependency relationships (as when the actions are reduced to
conceptual primitives)

•	 A script is a data structure used to represent a sequence of events.

•	 A script is a structure that prescribes a set of circumstances which
could be expected to follow on from one another.

Why We Use Scripts

Real-world events follow stereotyped patterns. Human beings use previ-
ous experiences to understand verbal accounts; computers can use scripts
instead. When relating events, people use large amounts of assumed detail
out of their accounts. People don’t find it easy to converse with a system
that can’t fill in missing conversational details. A script predicts unobserved
events and can build a coherent account from disjointed observations.

Scripts have been used to

♦♦ interpret, understand, and reason about stories

♦♦ understand and reason about observed events

♦♦ reason about observed actions

♦♦ plan actions to accomplish tasks

216 • Artificial Intelligence and Expert Systems

Components of Scripts

•	 Entry Conditions

	 What are the descriptors of the world that must be true for the script
to be called?

•	 Props

	 What objects make up the content of the script?

•	 Roles

	 What actions are performed by the participants in the script?

•	 Scenes

	 Temporal decomposition of script into meaningful episodes

•	 Results

	 What are the outcomes following termination of the script?

Special symbols of actions are used for scripts.

Table 8.3 The Symbols for Script Actions

Symbol Meaning Example
ATRANS transfer a relationship give
PTRANS transfer the physical location of an object go
PROPEL apply physical force to an object push
MOVE move body part by owner kick
GRASP grab an object by an actor grasp
INGEST ingest an object by an animal eat
EXPEL expel from an animal’s body cry

MTRANS transfer mental information tell
MBUILD mentally make new information decide
CONC conceptualize or think about an idea think
SPEAK produce sound say
ATTEND focus sense organ listen

Knowledge Representation • 217

In each scene, one or more actors perform actions. The actors act
with the props. The script can be represented as a tree or network of
states driven by events. As with frames, scripts drive interpretation by
telling the system what to look for and where to look next. The script
can predict events.

Let us discuss an example of a restaurant script.

Script: RESTAURANT

Props: Tables		 Results:

	 Menu		 S has less money

	 F = Food	 O has more money

	 Bill		 S is not hungry

	 Money		 S is pleased (optional)

Roles:	 S = Customer	 Scenes:

	 W = Waiter	 Entering

	 C = Cashier	 Ordering

	 M = Cashier	 Eating

	 O = Owner	 Exiting

Entry conditions:

	 S is hungry

	 S has money

Scene 1: Entering

S PTRANS S into restaurant, S ATTEND eyes to tables, S MBUILD <
where to sit, S PTRANS S to table, S MOVE S to sitting position

Scene 2: Ordering

S PTRANS< menu to S (menu already on table), S MBUILD< choice of
food, S MTRANS< signal to waiter, waiter PTRANS to table, S MTRANS< ”I
want food” to waiter, waiter PTRANS to cook.

218 • Artificial Intelligence and Expert Systems

S MTRANS W to table
*S MBUILD choice of F
S MTRANS signal to W
W PTRANS W to table
S MTRANS 'I want F' to W

C MTRANS 'no F' to W
W PTRANS W to S
W MTRANS 'no F' to S
(go back to *) or
(go to scene 4 at no pay

W PTRANS W to table
W ATRANS menu to S

W PTRANS W to C
W MTRANS (ATRANS) to C

C DO (prepare F script) to
Scene 3

(S asks for menu)
S MTRANS signal to W
W PTRANS W to table

S MTRANS 'need menu' to W
W PTRANS W to menu

(menu on table) (W brings menu)
S PTRANS menu to S

FIGURE 8.58  An Ordering Scene

Besides the actions PTRANS (transfer of location) and ATRANS (transfer of
possession), this script uses two more of their primitive actions, namely, MTRANS
(transfer of information) and MBUILD (creating or combining thoughts).
CP(S) stands for S’s “conceptual processor” where the thought takes place,
and DO stands for a “dummy action,” d. The lines in the diagram show possible
alternative paths through the script. So, for example, if the menu is already on
the table, the script begins at the upper left-hand corner; otherwise it begins
at the upper right-hand corner. I believe most of the script is self-explanatory,
but I’ll explain what goes on in the middle. S brings the “food list” into its
central processor where it is able to mentally decide (build) a choice of food. S
then transfers information to the waiter to come to the table, which the waiter
does. Then, S transfers the information about his or her choice of food to the
waiter. This continues until either the cook tells the waiter that he does not
have the food that is ordered or the cook prepares the food.

Scene 3: Eating

Cook ATRANS food to waiter, waiter PTRANS food to S, S INGEST food

C ATRANS F to W
W ATRANS F to S
S INGEST F
(Option: Return to Scene 2 to order more;
otherwise go to Scene 4)

FIGURE 8.59  An Eating Scene

Knowledge Representation • 219

 Scene 4: Exiting

 waiter MOVE write check, waiter PTRANS to S, waiter ATRANS check to
S, S ATRANS money to waiter, S PTRANS out of restaurant

W MOVE (write check)
W PTRANS W to S
W ATRANS check to S
S ATRANS tip to W
S PTRANS S to M
S ATRANS money to M
S PTRANS S to out of restaurant

(No pay path)

S MTRANS to W
(W ATRANS check to S)

FIGURE 8.60  An Exiting Scene

There are many variations possible on this general script having to do
with different types of restaurants or procedures. For example, the script
above assumes that the waiter takes the money; in some restaurants, the
check is paid to a cashier. Such variations are opportunities for misunder-
standings or incorrect inferences.

Scripts help explain some of the reasoning we do automatically
when we hear a story. For example, if we hear that John went to a cof-
fee shop and ordered lasagna, we can reasonably assume that lasagna
was on the menu. If we later learn that John had to order something
else instead, we can assume that the coffee shop was out of lasagna.
Schank and Abelson gave unreliable evidence that even small children
build such scripts and that people must have a great number of scripts
to enable them to navigate through and reason about the situations they
encounter.

220 • Artificial Intelligence and Expert Systems

Script: RESTAURANT
Track: Coffee Shop
Props: Tables
Menu
F = Food
Check
Money

Scene 1: Entering

S PTRANS S into restaurant
S ATTENS eyes to tables
S MBUILD where to sit
S PTRANS S to table
S MOVE S to sitting position

Roles: S = Customer
W = Waiter
C = Cook
M = Cashier
O = Owner

Scene 2: Ordering

(Menu on table) (W brings menu)
S PTRANS menu to S

W PTRANS W to table
W ATRANS menu to S

S MTRANS food list to CP (s)
*S MBUILD choice of F
S MTRANS signal to W
W PTRANS W to table
S MTRANS 'I want F' to W

W PTRANS W to C
W MTRANS (ATRANS F) to C

(S asks for menu)
S MTRANS signal to W
W PTRANS W to table
S MTRANS 'need menu' to W
W PTRANS W to menu

Entry conditions: S is hungry.
S has money.

Results: S has less money
O has more money
S is not hungry
S is pleased (optional)

C MTRANS 'no F' to W
W PTRANS W to S
W MTRANS 'no F' to S
(go back to *) or
(go to Scene 4 at no pay path)

C DO (prepare F script
to Scene 3

Scene 3: Eating

C ATRANS F to W
W ATRANS F to S
S INGEST F

(Option: Return to Scene 2 to order more:
otherwise, go to Scene 4)

Scene 4: Exiting S MTRANS to W
(W ATRANS check to S)

W MOVE (write check)
W PTRANS W to S
W ATRANS check to S
S ATRANS tip to W
S PTRANS S to M
S ATRANS money to M
S PTRANS S to out of restaurant

(No pay path)

FIGURE 8.61  A Complete Restaurant Script

Knowledge Representation • 221

Let us discuss one more example of a script.

Scripts are useful in describing certain situations such as robbing a
bank. This might involve

•	 getting a gun	 	 •  holding up a bank

•	 escaping with the money

Here, the Props might be

•	 gun, G 		 •  loot, L

•	 bag, B 	 	 •  get-away car, C

The Roles might be

•	 robber, S		 •  cashier, M

•	 bank manager, O	 •  policeman, P

The Entry Conditions might be

•	 S is poor.	 	 •  S is destitute.

The Results might be

•	 S has more money.	 •  O is angry.

•	 M is in a state of shock. •  P is shot.

There are 3 scenes: obtaining the gun, robbing the bank, and making the
getaway.

Script: ROBBERY	 Track: Successful Snatch

Props:		 	   Roles:

	 G = Gun,				 R = Robber,

	 L = Loot,				 M = Cashier,

	 B = Bag,				 O = Bank Manager,

	 C = Get away car.			 P = Policeman.

Entry Conditions:		    Results:

	 R is poor.				 R has more money.

	 R is destitute.			 O is angry.

						 M is in a state of shock.

						 P is shot.

222 • Artificial Intelligence and Expert Systems

Scene 1: Getting a gun

		 R PTRANS R into Gun Shop

		 R MBUILD R choice of G

	 	 R MTRANS choice.

		 R ATRANS buys G

		 (go to scene 2)

Scene 2: Holding up the bank

		 R PTRANS R into bank

		 R ATTEND eyes M, O and P

		 R MOVE R to M position

		 R GRASP G

		 R MOVE G to point to M

		 R MTRANS “Give me the money or ELSE” to M

		 P MTRANS “Hold it Hands Up” to R

		 R PROPEL shoots G

		 P INGEST bullet from G

		 M ATRANS L to M

		 M ATRANS L puts in bag B

		 M PTRANS exit

		 O ATRANS raises the alarm

		 (go to scene 3)

Scene 3: Holding up the bank

		 M PTRANS C

FIGURE 8.62  A Complete Script for a Bank Robbery

Knowledge Representation • 223

The following table shows an example of a script.

Script: Play in theater Various Scenes

Track: Play in Theater

Props:

Scene 1: Going to theater

	 •  P PTRANS P into theater

	 •  P ATTEND eyes to ticket counter

	 •	 Tickets

	 •	 Seat

	 •	 Play

Roles:

	 • � Person (who wants to
see a play) – P

	 •  Ticket distributor – TD

	 •  Ticket checker – TC

Entry Conditions:

	 •  P wants to see a play

	 •  P has money

Results:

	 •  P saw a play

	 •  P has less money

	 • � P is happy (optional if he
liked the play)

Scene 2: Buying ticket

	 •  P PTRANS P to ticket counter

	 •  P MTRANS (need a ticket) to TD

	 •  TD ATRANS ticket to P

Scene 3: Going inside hall of theater and sit-
ting on a seat

	 •  P PTRANS P into Hall of theater.

	 •  TC Attend eyes on ticket POSS_BY P

	 •  TC MTRANS (showed seat) to P

	 •  P PTRANS P to sear

	 •  P Moves P to sitting position

Scene 4: Watching a play

	 •  P ATTEND eyes on play

	 •  P MBUILD (good moments) from play

Scene 5: Exiting

	 •  P PTRANS P out of Hall and theater

Script Invocation

•	 It must be activated based on its significance.

•	 If the topic is important, then the script should be opened.

•	 If a topic is just mentioned, then a pointer to that script could be held.

•	 For example, given “John enjoyed the play in theater,” a script “Play in
Theater” suggests the above is invoked.

•	 All implicit questions can be answered correctly.

224 • Artificial Intelligence and Expert Systems

•	 Here, the significance of this script is high.

♦♦ Did John go to theater?

♦♦ Did he buy a ticket?

♦♦ Did he have money?

•	 If we have a sentence like “John went to theater to pick his daughter,”
then invoking this script will lead to many wrong answers.

♦♦ Here, the significance of the script theater is less.

•	 Getting significance from the story is not straightforward. However,
some heuristics can be applied to get the value.

Some additional points to note on scripts:

•	 If a particular script is to be applied, it must be activated and the
activation depends on its significance.

•	 If a topic is mentioned in passing, then a pointer to that script could
be held.

•	 If the topic is important then the script should be opened.

•	 The danger lies in having too many active scripts much as one might
have too many windows open on the screen or too many recursive calls
in a program.

•	 Provided events follow a known trail, we can use scripts to represent
the actions involved and use them to answer detailed questions.

•	 Different trails may be allowed for different outcomes of scripts (e.g.,
The bank robbery goes wrong).

8.7.4.1  Advantages of Scripts

•	 Ability to predict events

•	 A single coherent interpretation may be built from a collection of
observations

8.7.4.2  Disadvantages of Scripts

•	 less general than frames

•	 may not be suitable to represent all kinds of knowledge

Knowledge Representation • 225

8.7.5  Conceptual Dependency (CD)
Conceptual Dependency (CD) theory was developed by Schank in 1973 to
1975 to represent the meaning of natural language sentences.

•	 It helps in drawing inferences.

•	 It is independent of the language.

•	 CD representation of a sentence is not built using words in the
sentence, rather, it is built using conceptual primitives which give the
intended meanings of words.

The main goal behind CD was to develop a representation of the concep-
tual base that underlies all natural languages. This goal required a small set
of primitive actions and a set of dependencies that connected the primitive
actions with each other and with their actors, objects, and instruments. The
claim was that this small set of representational elements could be used to
produce a canonical form representation for English sentences and other
natural languages. CD provides structures and a specific set of primitives
from which representation can be built.

Thus, CD is a theory of how to represent the meaning of natural lan-
guage sentences in a way so that

•	 it facilitates drawing inferences from the sentences

•	 the representation (CD) is independent of the language in which the
sentences were originally stated

Schank’s claim was that sentences can be translated into basic concepts
expressed as a small set of semantic primitives. Conceptual dependency
allows these primitives, which signify meanings, to be combined to repre-
sent more complex meanings.

Semantic Nets vs. Conceptual Dependency

•	 Semantic nets only provide a structure into which nodes representing
information can be placed.

•	 Conceptual Dependency representation, on the other hand,
provides both a structure and a specific set of primitives out of
which representations of particular pieces of information can be
constructed.

226 • Artificial Intelligence and Expert Systems

Building Blocks of Conceptual Dependency

•	 Primitive conceptualizations (conceptual categories)

•	 Conceptual dependencies (diagrammatic conventions)

•	 Conceptual cases

•	 Primitive acts

•	 Conceptual tenses

8.7.5.1  Primitive Conceptualization

Primitive conceptualization means analyzing a sentence at the conceptual
level. There are four primitive conceptualizations (conceptual categories):

•	 actions (ACT: actions)

•	 objects (PP: picture producers)

•	 modifiers of actions (AA: action aiders): “quickly” is a AA modifier
(e.g., He quickly runs.)

•	 modifiers of objects (PA picture aiders): “blue” is a PA modifier (e.g.,
a blue car)

First, it is necessary to understand what a concept in CD is used for in
regards to representing concepts.

Concept: a concept can be abstract or concrete

•	 Concrete concepts (objects), for instance, a cat, telephone, or book.
These concepts are characterized by our ability to form an image of
them in our minds. Concrete concepts include generic concepts such
as a cat or book along with concepts of specific cats and books.

•	 abstract concepts, for instance, beauty, loyalty, and love that do not
correspond to images in our minds

8.7.5.2  Conceptual Dependencies

Conceptual dependencies refer to relationships between conceptual cat-
egories (AA, ACT, PP, PA).

•	 In a dependency relation, one partner or item is dependent, and the
other is dominant or governing.

Knowledge Representation • 227

•	 A governing dependent is a partially ordered relationship

♦♦ A dependent must have a governor and it is understood in terms
of the governor.

♦♦ A governor may or may not have a dependent(s) and has an
independent existence.

♦♦ A governor can be a dependent.

♦♦ PP and ACT are inherently governing categories.

•	 PA and AA are inherently dependent.

•	 For a conceptualization to exist, there must be at least two governors:

For example, consider “Sally stroked her fat cat.”

PP :			 Sally, cat, her [Sally]

ACT :			 stroke

PA :			 fat

Governors :		 Sally, stroke, cat

Dependent :		 PP (cat) on ACT (stroke)

			 PA (fat) on PP (cat)

			 PP (cat) on PP (her[Sally])

Before going forward, we need to understand the conceptual graph. In
1984, John Sowa published his conceptual graph approach. This is some-
thing like the semantic net approach described earlier. It is more sophisti-
cated in the way in which it represents concepts. It is much more precise
regarding what the objects in the graphs mean in real-world terms.

Some conventions are

•	 Arrows indicate directions of dependency.

•	 Double arrow indicates two-way links between the actor and action.

Conceptual graph: A conceptual graph is a finite, connected, bipar-
tite graph. The nodes of the graph denote either concepts or conceptual
relations. Conceptual graphs do not use labelled arcs (a semantic net-
work uses labelled arcs). Instead, the conceptual relation nodes represent
relations between concepts. Concepts can only have arcs to conceptual

228 • Artificial Intelligence and Expert Systems

relations, and vice versa. Concepts are represented as boxes and conceptual
relations as ellipses.

•	 Conceptual relation nodes indicate a relation involving one or more
concepts. Some special relation nodes, namely, agent, recipient,
object, and experiencer, are used to link a subject and the verb.

•	 Conceptual graphs can represent the relations of any arity.

•	 A relation of arity n is represented by a conceptual relation node
having n arcs.

•	 Each conceptual graph represents a single proposition

•	 The knowledge base contains a set of conceptual graphs.

•	 Graphs may be arbitrarily complex, but must be finite.

Person: john agent eat

soupobject

instrument

hand

part

FIGURE 8.63  Conceptual Graph

Let us take an example that shows how to build a CD graph.

Consider the statement “Sally stroked her fat cat.”

This sentence can be represented in a CD graph by using various build-
ing blocks of CD.

•	 “Sally” and “stroking” are necessary for conceptualization: there is a
two-way dependency between each other:

 Sally ⇔ stroke

•	 “Sally’s cat” cannot be conceptualized without the ACT (set of
primitives) stroke ⇒ it has an objective dependency on stroke.

	 Sally ⇔	stroke ο cat

Knowledge Representation • 229

• The concept “cat” is the governor for the modifier “fat:”

Sally stroke cat

fat

O

• The concept PP(cat) is also governed by the concept PP(Sally) through
a prepositional dependency.

OSally stroke cat
�
Sally [her]

POSS-BY
fat

PP ACT� Indicates that an actor acts.
PP PA� indicates that an object has a certain attribute.

ACT PP� Indicates the object of an action.
O

PP

PP

R
ACT � Indicates the direction of an object within an action.

ACT � �
Indicates the instrumental conceptualization
for an action.

I
�

X

Y
�

Indicates that conceptualization X caused conceptualization Y.
When written with a C this form denotes that X COULD cause Y.

PA2

PA1
PP � Indicates a state change of an object.

PP1 PP2� Indicates that PP2 is either PART OF or the
POSSESSOR OF PP1.

FIGURE 8.64  Various Dependency Rules

Let us explain some of the dependency rules.

Rule 1: PP ⇔ ACT

• It describes the relationship between an actor and the event he or she
causes.

♦♦ This is a two-way dependency, since neither actor nor event can
be considered primary.

♦♦ The letter P in the dependency link indicates the past tense.

♦♦ Example: John ran.

			   p
	 John	 ⇔	 PTRANS

230 • Artificial Intelligence and Expert Systems

Rule 2: ACT ← PP

•	 It describes the relationship between the ACT and a PP (object) of
ACT.

♦♦ The direction of the arrow is toward the ACT since the context of
the specific ACT determines the meaning of the object relation.

♦♦ Example: John pushed the bike.

	 John	 ⇔	 PROPEL ←° bike

Rule 3: PP ↔ PP

•	 This describes the relationship between two PPs, one of which belongs
to the set defined by the other.

•	 Example: John is a doctor.

	 John	 ↔	 doctor

Rule 4: PP ← PP

•	 This describes the relationship between two PPs, one of which
provides a particular kind of information about the other.

♦♦ The three most common types of information to be provided in
this way are possession (shown as POSS-BY), location (shown as
LOC), and physical containment (shown as CONT).

♦♦ The direction of the arrow is again toward the concept being
described.

♦♦ Example: John’s dog

		 dog -poss by John

Rule 5: PP ⇔ PA

•	 It describes the relationship between a PP and a PA that is asserted to
describe it.

•	 PA represents states of PP such as height and health.

•	 Example: John is fat.

	 John	 ⇔	 weight (> 80)

Knowledge Representation • 231

Rule 6: PP ← PA

•	 This describes the relationship between a PP and an attribute that
already has been predicated.

♦♦ The direction is towards the PP being described.

♦♦ Example: Smart John

	 John	 ←	 smart

Rule 7: ACT ←
→ PP (to)

→ PP (from)

R

•	 This describes the relationship between an ACT and the source and
the recipient of the ACT.

•	 Example: John took the book from Mary.

John ⇔ ATRANS ←
→ John

→ Mary

R

book

↑

Rule 8: PP ←
→ PA

→ PA	
•	 This describes the relationship that describes the change in state.

•	 Example: Tree grows

Tree ←
→ size > C

→ size = C

Rule 9:
⇔ {x}

⇔ {y}
⇑

•	 This describes the relationship between one conceptualization and
another that causes it.

♦♦ Here, {x} is causes {y} i.e., if x then y

♦♦ Example: Bill shot Bob.

232 • Artificial Intelligence and Expert Systems

	 {x} : Bill shot Bob

		 ⇑
	 {y} : Bob’s health is poor.

Rule 10:

⇔ {x}

⇔ {y}
↓

•	 This describes the relationship between one conceptualization and
another that is happening at the time of the first.

♦♦ Here, {y} is happening while {x} is in progress.

♦♦ Example: While going home, I saw a snake.

		 I am going home.

			 ↓

		 I saw a snake.

8.7.5.3  Conceptual Cases

Dependents that are required by ACT are called conceptual cases:

There are four main conceptual cases:

•	 Objective Case (O)

•	 Recipient Case (R)

•	 Instrumental Case (I)

•	 Directive Case Relation (D)

♦♦ Objective Case (O): “John took the book.”

	 PP [John] ⇔ ACT [took] ο PP [book]

♦♦ Recipient Case (R): “John took the book from Mary.”

OPP [John] ACT [took] PP [book]

R
PP [John]

PP [Mary]

Knowledge Representation • 233

♦♦ Instrumental Case (I): “John ate the ice cream with a spoon.”

IPP [John] ACT [eat]

PP [John]

ACT [do]

PP [ice cream]

o

PP [spoon]

o

♦♦ Directive Case Relation (D): “John drove his car to London
from Guildford.”

PP [John] ACT [do]
PP [London]

PP [car] ACT [drove]

PP [John]

POSS-BY PP [Guildford]

D

8.7.5.4  Prepositional Dependency

•	 Possession

	 e.g., “This is Sally’s cat.”
Cat

Sally
POSS-BY⇑

•	 Location

	 e.g., “Sally is in London.”

	
London

Sally
LOC⇑

•	 Containment

	 e.g., “The glass contains water.”

	
Water

Glass
CONT⇑

234 • Artificial Intelligence and Expert Systems

8.7.5.5  Primitive Acts

These are used to represent action in the world.

Table 8.4 The Primitives Set

Primitive
Act Elaboration

ATRANS Transfer of an abstract relationship such as possession, owner-
ship, or control (give)

PTRANS Transfer of the physical location of an object (go)

PROPEL Application of a physical force to an object (push)

MOVE Movement of a body part of an animal by that animal (kick)

Grasp Grasping of an object by an actor (grasp)

INGEST Taking in of an object by an animal to the inside of that ani-
mal (eat)

EXPEL Expulsion of an object from the object of an animal into the
physical world (cry)

MTRANS Transfer of mental information between animals or within an
animal (tell)

MBUILD Construction by an animal of new information of old
information (decide)

CONC Conceptualize or think about an idea (think)

SPEAK Action of producing sounds (say)

ATTEND Action of attending or focusing a sense organ towards a stimu-
lus (listen)

 For example: “I gave a book to Sally.”

Knowledge Representation • 235

PP [I] ACT [gave] R
PP [Sally]

PP [I]
o

PP [book]

I ATRANS R
Sally

I
o

book
FIGURE 8.65  A CD Graph with a Primitive Set

8.7.5.6  Conceptual Tenses

Any conceptualization can be modified as a whole by a conceptual tense.

For example: John took the book. (John ⇔ took) can be denoted by
looking at the lemma “take” (from which the past tense took was derived):

	 p

 John  ⇔  ATRANS

Table 8.5   The Symbols for Conceptual Tenses

Symbol Elaboration
p Past
f Future
t Transition
ts Start Transition
tf Finished Transition
k Continuing
? Interrogative
/ Negative
Nil Present
delta Timeless
c Conditional

236 • Artificial Intelligence and Expert Systems

Various examples of conceptual tenses are

•	 “John will be taking the book.”

	 John  ⇔  taking

or   

		 f

	 John  ⇔  ATRANS

•	 “John is taking the book.”

	 John  ⇔  taking

or   

		 k

	 John  ⇔  ATRANS

Now, after understanding all the building blocks of CD, let us represent
a sentence using all building blocks of CD: “I took a book from Sally.”

I
p

ATRANS
R

I

Sally
o

book

Here is an explanation of the above CD graph:

•	 Primitive conceptualizations (conceptual categories):

♦♦ Objects (Picture Producers: PP): Sally, I, book

•	 Conceptual dependencies (diagrammatic conventions):

♦♦ Arrows indicate the direction of dependency

♦♦ The double arrow indicates a two-way link between the actor and
action.

•	 Conceptual cases

♦♦ “O” indicates object case relation

♦♦ “R” indicates recipient case relation

Knowledge Representation • 237

•	 Primitive acts

♦♦ ATRANS indicates transfer (of possession)

•	 Conceptual tenses

“p” indicates that the action was performed in the past.

Let us represent some sentences using conceptual dependency graph

a)	“John ran.”

John PTRANS
p

John DO
p

Mary ATRANS
c/

p

o
book

Bill

Mary

Let us see some examples of CD.

Sentences CD Representations

Jenny cried. ?

eyes

Jenny
�poss-by

d
Jenny EXPEL Tears��

op

Mike went to India. India

? (source is unknown)

d
Mike PTRANS�

p

Mary read a novel. CP (Mary)

novel

d
Mary MTRANS info��

op

novel

?

d
Mary ATTEND eyes��

op

i (instrument)

238 • Artificial Intelligence and Expert Systems

Sentences CD Representations

Since drugs can
kill, I stopped
taking them.

One

Mouth

r
One INGEST drugs←⇔

o

health = – 10

health > – 10
One

I

mouth

r
I INGEST drugs←⇔

o
c

tfp

Mike went to
India.

India

? (source is unknown)

d
Mike PTRANS�

p

b)	 “John is a doctor.”

John Doctor

c)	 “John’s dog”

dog

POSS-BY
John

d)	 “John pushed the cart.”

John PROPEL cart
p o

e)	 “Bill shot Bob.”

Bill PROPEL bullet
p o R Rob

gun
health(-10)

p
Bob

Knowledge Representation • 239

f) “John ate the egg.”

John INGEST
p o

egg

D
INSIDE

MOUTH

John

John

g) “John prevented Mary from giving a book to Bill.”

Sentence CD Representations

John warned Mike
about the dire
consequences.

John Do� 1

John MTRANS�
p �o r

Mike

John

f
State bad
� poss-by

Mike

i

Mike Do� 2

Mike MTRANS�
�

o

r

Poss-by
memory Mike�

John

f

Mike
� poss-by

State badJohn Do� 1

Inferences Associated with the Primitive Acts

• General inferences are stored with each primitive act, thus reducing
the number of inferences that need to be stored explicitly with each
concept.

• For example, from the sentence “John killed Mike,” we can infer that
“Mike is dead.”

240 • Artificial Intelligence and Expert Systems

•	 Let us take another example of the primitive act INGEST.

•	 The following inferences can be associated with it.

♦♦ The object ingested is no longer available in its original form.

♦♦ If the object is eatable, then the actor has less hunger.

♦♦ If the object is toxic, then the actor’s health is bad.

♦♦ The physical position of object has changed. So PTRANS is
inferred.

Example: The verbs {give, take, steal, donate} involve a transfer of the
ownership of an object.

♦♦ If any of them occurs, then inferences about who now has the
object and who once had the object may be important.

♦♦ In a CD representation, these possible inferences can be stated
once and associated with the primitive act ATRANS.

•	 Consider another sentence: “Bill threatened John with a broken nose.”

♦♦ Sentence interpretation is that Bill informed John that he (Bill)
will do something to break John’s nose.

♦♦ Bill did (said) so in order that John will believe that if he (John)
does some other thing (different from what Bill wanted), then
Bill will break John’s nose.

8.7.5.7  Advantages of CD

•	 The organization of knowledge in terms of the primitives (or “primitive
acts”) leads to fewer inference rules.

•	 Many inferences are already contained in the representation itself.

•	 The initial structure that is built to represent the information
contained in one sentence will have holes in it that has to be filled in.

♦♦ Holes serve as attention focusers for subsequent sentences.

8.7.5.8  Disadvantages of CD

•	 CD requires all knowledge to be broken down into the 12 primitives,
which is sometimes inefficient and sometimes impossible.

Knowledge Representation • 241

•	 CD is essentially a theory of the representation of events: though
it is possible to have an event-centered view of knowledge, it is not
a practical proposition for storing and retrieving knowledge.

•	 It may be difficult or impossible to design a program that will reduce
sentences to canonical form. (Probably not possible for monoids,
which are simpler than natural language.)

•	 It is computationally expensive to reduce all sentences to the 12
primitives.

•	 It is difficult to construct the original sentence from its corresponding
CD representation.

•	 CD representation can be used as a general model for knowledge
representation, because this theory is based on a representation of
events as well as all the information related to the events.

•	 Rules are to be carefully designed for each primitive action in order to
obtain a semantically correct interpretation.

•	 It is difficult to

♦♦ construct the original sentence from its corresponding CD
representation.

♦♦ CD representation can be used as a general model for
knowledge representation, because this theory is based on
representation of events as well as all the information related
to events.

•	 Many verbs may fall under different primitive acts, and it becomes
difficult to find the correct primitive act in the given context.

•	 The CD representation becomes complex, requiring a lot of storage
for many simple actions.

•	 For example, the sentence “John bet Mike that their team will
win the upcoming World Cup” would require an enormous CD
structure.

242 • Artificial Intelligence and Expert Systems

Exercises

Q1.  What is the relationship between belief and knowledge?

Q2.  What does first-order logic (predicate logic) consist of?

Q3.  What are the quantifiers in predicate logic and their meanings?

Q4.  Distinguish predicate logic from propositional logic.

Q5. � How would an agent use the expression Dog(fido) to solve a problem?

Q6.  What do semantic networks represent? How?

Q7.  How is knowledge given to and received from expert systems?

Q8. � Name the relationships that categories may have. How may several
category relationships be organized?

Q9. � What is a validity-maintaining procedure for deriving sentences from
other sentences in first-order logic?

Q10.  What is unification used for?

Q11.  Explain the different types of frames.

Q12.  What is a script and what are its components?

Q13.  What is meant by Conceptual Dependency?

C H A P T E R 9
NEURAL NETWORKS

A conventional computer asks a programmer what it is to do, and it can
be used for fast calculations. Conventional computers are not used for
assisting with noisy data, managing fault tolerance or huge parallelisms,
or adapting to conditions. A neural network system is used to formulate
algorithmic solutions or when we need to use lots of examples of the
behavior we require. Neural networks follow different examples for com-
puting. The von Neumann machine is based on the processing/memory
abstraction of human information processing. Neural networks are based
on the parallel architecture of biological neurons. Neural networks are
an outline of a multi-processor computer system with single processing
elements, a high degree of interconnection, and communication between
the elements.

Neural networks are used for complicated or imprecise data to derive
the meaning. They are also used in mining patterns and engaging in learn-
ing that is too complex to be observed by either humans or other computer
techniques. A trained neural network can be considered an “expert” when it
comes to analyzing a category of information. This expert can then be used
to provide projections, given new situations of interest, and answer “what
if” questions.

It provides other features such as

•	 knowledge acquisition under noise and uncertainty

•	 flexible knowledge representation

244 • Artificial Intelligence and Expert Systems

•	 efficient knowledge processing

•	 fault tolerance

•	 a learning capability

9.1	 Neural Networks vs. Conventional Computers

Neural networks and conventional computers complement each other.
There are many different tasks that are suitable for an algorithmic approach,
like arithmetic operations, and other tasks that are more suited to neural
networks. Conventional computers use an algorithmic approach, but neural
networks work like the human brain and learn by example.

Computer Neural Network

algorithmic approach learning approach

They are programmed for a
specific task.

They are not programmed for a
specific task.

work on a pre-defined set of
instructions

used in decision-making

operations are predictable operation is unpredictable

9.2	 Neural Networks

A neural network is a parallel distributed processing system that is made by
highly interconnected computing elements that are used for their ability to
learn and acquire knowledge and make it available for use. It is a simplified
model of the biological neuron system. A neural network is a powerful data
modeling tool that is able to capture and represent complex input/output
relationships. The technology that is used in a neural network performs
“intelligent” tasks that are also performed by the human brain. Several
classes of neural networks are used. The learning process is referred to as
training and the ability to solve a problem using the knowledge acquired is
called an inference.

Neural networks are simplified simulations of the central nervous sys-
tem and clearly require the kind of computing that is performed by the
human brain. The structural components of a human brain, the neurons,

Neural Networks • 245

perform computations, such as pattern recognition cognition, logical infer-
ence, and so on. Hence, the technology that is based on a simplified simula-
tion of computing by the neurons of a brain has been defined as Artificial
Neural System (ANS) technology, Artificial Neural Network (ANN), or
simply, a neural network.

9.2.1  Neurons
A neuron may be defined as a device that receives many inputs and pro-
duces one output. The neuron has two modes of operation, the training
mode and the using mode. In the training mode, the neuron can be trained
to fire (or not), for particular input patterns. In the using mode, when a
taught input pattern is detected at the input, its associated output becomes
the current output. If the input pattern does not belong in the taught list of
input patterns, the firing rule is used to determine whether to fire.

Teach/Use

Neuron
Output

Teaching Inputs

In
pu

ts

Xn

X2

X1

FIGURE 9.1  How a Neuron Works

Figure 9.1 represents a neuron that receives several inputs, such as
x1, x2 xn. When the input patterns are applied to this neuron, it takes
action and produces only one output.

9.2.2  Types of Neural Networks

•	 A fixed network is one in which the weights cannot be changed; we can
say that dw/dt = 0, where dw is the change in the weight with respect
to time. In such a network, the weights are fixed a priori according to
the problem that must be solved.

•	 An adaptive network is able to change its weight, i.e., dw/dt!=0.

246 • Artificial Intelligence and Expert Systems

9.2.3  Historical Background
In 1943, neurophysiologist Warren McCulloch and mathematician Walter
Pitts wrote a paper on how neurons might work. They found how neurons
work in the brain and are now recognized as the designers of the first neural
network. They modeled a simple neural network using electrical circuits.
They defined the original way in which an ANN operates and used a fixed
set of weights.

In 1949, Donald Hebb wrote the paper “The Organization of Behavior.”
It defined the concept about how humans learn. It is the first learning
rule about how humans easily learn. If two nerves fire at the same time,
the connection between them is enhanced.

In 1959, Bernard Widrow and Marcian Hoff of Stanford developed
models called ADALINE and MADALINE. These names come from their
use of the Multiple Adaptive Linear Elements. When reading streaming
bits from a phone line, it is necessary to predict the next bit. ADALINE was
developed for this purpose. MADALINE was the first neural network for
solving a real-world problem; it used an adaptive filter to eliminates noises
on phone lines.

In 1962, Widrow and Hoff developed a learning procedure. This
learning procedure was used to examine the value before the weight
adjusts it according to the following rule: Weight Change = (Pre-Weight
Line Value) ∗ (Error/(Number of Inputs)). The weight can be adjusted by
the value 0 or 1. Many researchers have also worked on Perceptron. In
this algorithm, the neural network model needs to verify and converge to
the correct weights in order to solve the problem. The weight adjustment
(learning algorithm) used in Perceptron was found to be more powerful
than the learning rules used by Hebb.

In the same time period, a paper was written that suggested there could
not be an extension from the single-layered neural network to a multilay-
ered neural network. In addition, many people in the field were using a
learning function that was fundamentally defective because it was not dif-
ferentiable across the entire line. As a result, research and funding went
down drastically.

In 1972, Kohonen and Anderson developed networks that were inde-
pendent of one another. To solve the problem and describe the ideas, they
used the matrix concept of mathematics. However, they did not conclude
the how to create an array of analog ADALINE circuits. In these networks,

Neural Networks • 247

neurons are used, but these neurons are supposed to activate a set of out-
puts instead of just one.

In 1975, the first multilayered network was developed. This network
was called an unsupervised network.

In 1982, John Hopfield of Caltech presented a paper to the National
Academy of Sciences. In this paper, he developed more useful machines
by using bidirectional lines. In these machines, the connection between
neurons was via two directions, but in earlier machines, the connections
between neurons was only one way.

Also in 1982, there was a joint US-Japan conference on Cooperative/
Competitive Neural Networks. Japan publicized a new Fifth Generation
effort on neural networks. This fifth-generation computing involves artifi-
cial intelligence. The first generation used switches and wires, the second
generation used the transistor, the third generation used solid-state tech-
nology like integrated circuits and higher level programming languages,
and the fourth generation involves using code generators.

In 1986, with multiple layered neural networks in the news, the problem
was how to extend the Widrow-Hoff rule to multiple layers. Three groups of
researchers worked independently but came up with similar ideas and at last
developed networks now called back propagation networks. Hybrid networks
use just two layers, while these back-propagation networks use many.

9.3	 Biological Neural Networks

A biological neural network may be defined as a collection of connected bio-
logical nerve cells. An example of a biological neural network is your brain.

The brain is mainly composed of about 10 billion neurons; each neuron
is connected to about 10,000 other neurons. All of these neurons are used
in processing information. It is a collection of several nerve cells. Each cell
works like a simple processor. In the brain, there is significant interaction
between these cells and their parallel processing, which makes the brain’s
abilities possible. Our entire brain is composed of these interconnected
electro-chemical transmitting neurons. When these simple processing units
are combined together to form extremely long units, then the brain can
perform complex tasks. These processing units are used in determining the
weighted sum of its input; if these inputs exceed a certain level, then a
binary signal is fired to perform the task.

248 • Artificial Intelligence and Expert Systems

 The neural system of the human body has three stages: receptors, a
neural network, and effectors. The receptors receive the stimuli either
internally or from the external world, and then pass the information to the
neurons in the form of electrical impulses. The neural network then pro-
cesses the inputs and makes the proper decision about outputs. Finally,
the effectors translate the electrical impulses from the neural network into
responses to the outside environment. Figure 9.2 shows the bidirectional
communication between the stages for feedback.

Biological neurons and their components

•	 The primary element of the neural network is called a neuron.

•	 The neuron’s cell body (soma) receives the incoming activations,
processes them, and then converts them into output activations.

•	 The neuron’s nucleus contains the genetic material in the form of
DNA. This exists in most types of cells, not just neurons.

•	 Dendrites are the tree-like structures that receive the signal from
the surrounding neurons, where each line is connected to one
neuron. Dendrites receive activations from other neurons. The soma
processes the incoming activations and converts them into output
activations.

•	 The axon is a thin cylinder that transmits the signal from one neuron
to others. At the end of axon, the contact to the dendrites is made
through a synapse. The axon acts as a transmission line to send
activations to other neurons.

•	 The junctions that allow signal transmission between the axons and
dendrites are called synapses. Synapses are the junctions that allow
signal transmissions between the axon and dendrites.

•	 The process of transmission is by the diffusion of chemicals called
neurotransmitters across the synaptic cleft.

Core of Neural
Network

Receptors Effectors

STLMULL RESPONSE

(From Outside
Environment)

(From Outside
Environment)

FIGURE 9.2  Three Stages of a Biological Neural System

Neural Networks • 249

[1]

[6]

[2]

[3]

[5]

[4]

1. Axon, 2. Nucleus, 3. Soma (Body), 4. Dendrite, 5. Axon Hillock, 6. Terminals (Synapses)

FIGURE 9.3  Biological Neural Network

9.3.1  Biological Neurons
Now, how can we explain how information flows in a neural cell? The dia-
gram in Figure 9.4 shows the input/output and propagation flow in a neural
cell. This is the structure of a neural cell in the human brain.

propagated action potentials
leave the soma-dendrite
complex to travel to
the axon terminals

axon branches

synapse 2

output

information
carried to
other cells

axon terminal

Hillock

synapse 1

information enters
nerve cell at the
synaptic site on
the dendrite

nucleus

dendrite

soma

input axon

FIGURE 9.4  A Biological Neural Network

9.4	 Artificial Neural Networks

A set of input connections brings in activation from other neurons. A pro-
cessing unit sums the input and then applies a non-linear activation func-
tion. An output line transmits the result to other neurons.

250 • Artificial Intelligence and Expert Systems

�

input 1

input 2

input 3

input n

Output

FIGURE 9.5  Artificial Neural Network

Artificial neural networks (ANNs) are based on mathematical concepts
and try to imitate the structure and functionalities of biological neurons. In
artificial neural network processing, elements are used besides neurons, for
example, summing its inputs and applying a threshold to the result to deter-
mine the output of that “neuron.” Such a model follows three simple sets
of rules: multiplication, summation, and activation. When artificial neurons
are entered, the input values associated with every input are multiplied with
their individual weights. In the middle section of an artificial neuron, the
sum function is used, which sums all the weighted inputs and bias. When
artificial neurons exit, then the activation function is used, in which the sum
of the previously weighted inputs and bias is passed through the activation
function. This activation function is also called a transfer function. A set of
input connections brings in activations from other neurons.

�

W0

W1

W2

y

�
ThresholdSynaptic Weights

Xn

X1

X2

i = 1

Activation Function

FIGURE 9.6  Basic Elements of an Artificial Linear Neuron

Functions: The function y = f(x) describes a relationship and input
output mapping from x to y.

Activation function controls when the unit is active or inactive. The
threshold or sign function sgn(x) is defined as

Neural Networks • 251

–4 –3 –2 –1 0 2 3 4
I/P

O/P

Sign (x)

1

.8

.6

.4

.2

0

1 if x > = 0
0 if x < 0Sign (x)

1

FIGURE 9.7  Sign Function

The threshold or sigmoid function sigmoid(x) is defined as a smoothed
(differentiable) form of the threshold function.

– 4 –3 –2 –1 0 1 2 3 4
I/P

O/P

Sign (x)

1

1 + e–xSigmoid (x) =

1

.8

.6

.4

.2

0

FIGURE 9.8  Sigmoid Function

The threshold activation function is either a binary type or a bipolar type.

The output of a binary threshold will produce

• 1 if the weighted sum of the input is positive

• 0 if the weighted sum of the input is negative

Y = f(I) = {1 if I > = 0

{0 if I < 0

Binary Threshold

I/P

1O/P

252 • Artificial Intelligence and Expert Systems

Bipolar Threshold: The output of the bipolar threshold function
produces

•	 1 if the weighted sum of the inputs is positive

•	 –1 if the weighted sum of the inputs is negative

Bipolar Threshold

I/P

1O/P

–1

Y = f(I) = {1 if I > = 0

{-1 if I < 0

Output = sgn(1
n
i=∑ input i – φ)

where φ is the neuron’s activation threshold.

If 1
n
i=∑ input i > φ then Output = 1

if 1
n
i=∑ input i < φ then Output = 0

Now, we can explain an artificial neural network using an example. In
this example, we have four inputs with their associated weights.

+1

+1

–1

+2

�

� = 0

Activation Function

y

I

Summing
Junction

Synaptic Weights Threshold

X = 11

X = 22

X = 52

X = 8n

FIGURE 9.9  An Artificial Neural Network

Neural Networks • 253

Explanation

The output I of the network prior to the activation function stage is

I = XT.W = [1 2 5 8].

1
1
1
2

+ 
 + 
 −
 
+ 

=14

The binary activation function the output of the neuron is

	 Y(threshold) = 1

9.5	� Differences Between Biological and Artificial Neural
Networks

Human (Biological NN) Artificial NN

Neuron Processing Element

Dendrites Combining Function

Cell Body Transfer Function

Axons Element Output

Synapses Weights

9.6	 Architecture of a Neural Network

A neural network is a data processing system that consists of a large number
of processing elements that are highly interconnected with each other, such
as artificial neurons in a network structure that can be represented using a
directed graph G, an ordered 2-tuple (V, E) consisting of a set V of vertices,
and a set E of edges.

V1 V3

V2 V4

V5

e5

e5

e1

e2

e3

FIGURE 9.10  Directed Graph

254 • Artificial Intelligence and Expert Systems

The vertices may represent neurons (input/output) and the edges may
represent synaptic links labeled by the weights attached.

Figure 9.10 shows a directed graph with the following:

Vertices	 V =	{v1, v2, v3, v4, v5}

Edges	 E =	{e1, e2, e3, e4, e5}
A neural network can be classified according to the following archi-
tectures:

•	 Connection types: The neural network architecture can consist of
two types

♦♦ static (feed-forward)

♦♦ dynamic (feed-backward)

•	 Topology: Three types of neural network architecture are as follows:

♦♦ single layer

♦♦ multilayer

♦♦ recurrent

•	 Learning methods: The three types of neural network architecture
are

♦♦ supervised

♦♦ unsupervised

♦♦ reinforcement

9.6.1  Single Layer Feed-Forward Networks
A single-layer feed-forward network consists of a single layer of weights,
where the inputs are directly connected to the outputs using a series of
weights. In this network, synaptic links that represent the edges are used to
carry the weights from every input to every output, but not every output to
every input. This way, it is considered a network of the feed-forward type.
At each neuron node, three sets of rules are applied. First, the sum of the
products of the weights and the inputs is calculated. Then, all values are
checked to determine the activation function. If the value is above some
threshold (0), the neuron fires and takes the activated value (typically 1);
otherwise, it takes the deactivated value (typically -1).

Neural Networks • 255

Feed-forward ANNs permit signals to travel one way only, from input
to output. There is no feedback (loops), i.e., the output of any layer does not
affect that same layer. Feed-forward ANNs are likely to be straight forward
networks that correlate inputs with outputs. This type of network is broadly
used in pattern recognition. This type of organization is also referred to as
bottom-up or top-down.

x1

x2

xn

y1

y2

ym

weights wij
w11

w21

w22

w12

w2m
w1m

wnm

wn1

Input xi output yj

Single layer

FIGURE 9.11  A Single-Layer Feed-Forward Network

9.6.2  Multilayer Feed-Forward Network
As the name suggests, a multilayer feed-forward network consists of mul-
tiple layers. The architecture of this class of network, besides having the
input and the output layers, and also has one or more intermediary layers
called hidden layers. In this network, input layers are connected with hid-
den layers and then these feed into several output layers. The computa-
tional units of the hidden layers are known as hidden neurons.

x1

x2

xe

y |m

y1

yn

y3

y2

y1

w12v21

w11

w1m

v1m

v2m vem

Hidden Layer
neurons yj

Input Layer
neurons xi Output Layer

neurons zk

Input
hidden layer
weights vij

v11

Output
hidden layer
weights wjk

w11

FIGURE 9.12  Multilayer Feed-Forward Network

256 • Artificial Intelligence and Expert Systems

9.6.3  Recurrent Networks
A recurrent network differs from the feed-forward architecture. A recur-
rent network has at least one feedback loop. There could be neurons
with self-feedback links; that is, the output of a neuron is the feedback
into itself as input. In a recurrent network, each processing element may
be any one of two states, either black active or white inactive. A positive
weighted connection indicates that two units tend to activate each other.
A negative connection allows an active unit to deactivate from a neigh-
boring unit.

Example:

x1

x2

y1

y1

y2

Ynym|

xe

Feedback
links

Input Layer
neurons xi

Hidden Layer
neurons yj

Output Layer
neurons zk

FIGURE 9.13  A  Recurrent Network

9.6.4  Feedback Networks
Feed-forward networks are used when the signal travels only in one direc-
tion. When the signal needs to travel in both directions, feedback networks
are used by introducing loops in the network. Feedback networks are very
powerful and can get vastly complicated. Feedback networks are dynamic;
their “state” is changing continuously until they reach an equilibrium point.
They remain at the equilibrium point until the input changes and a new
equilibrium needs to be found. Feedback architectures are also referred to
as interactive or recurrent, although the latter term is often used to denote
the feedback connections in single-layer organizations.

Neural Networks • 257

u2

u4

u8

u11

w8.11

w11.10

w9.10

w9.7u9

w9.9
u10

u7

u3

u6 w6.3

b1

b1

b1

u1

u5

w2.1

w9.1w2.5

w4.5

w1.9

w1.6 w3.6
a1

a2

a3

a4

Input
Neurons

Hidden
Neurons

Output
Neurons

FIGURE 9.14  An Example of a Complicated Network

9.6.5  Network Layers
There are three types of network layers used in network architecture. These
layers are also known as groups or units. The first layer is the input layer,
which is connected to a layer of hidden units, which is connected to a layer
of output units. The processing of these layers is as follows:

The movement of the input units represents the raw information that is
fed into the network. The movement of each hidden unit is determined by
the activities of the input units and the weights on the connections between
the input and the hidden units. The behavior of the output units depends
on the activity of the hidden units and the weights between the hidden and
output units. The weights between the input and hidden units determine
when each hidden unit is active, and so by modifying these weights, a hid-
den unit can choose what it represents.

We also distinguish between single-layer and multilayer architectures.
The single-layer organization, in which all units are connected to one
another, constitutes the most general case and has a greater potential com-
putational power than hierarchically structured multi-layer organizations.
In multilayer networks, units are often numbered by layer, instead of fol-
lowing global numbering.

258 • Artificial Intelligence and Expert Systems

Exercises

Q1.  What is the use of neural networks in AI?

Q2. � What are the advantages of neural networks over conventional com-
puters?

Q3.  Explain the neural network in detail.

Q4.  Discuss a neuron using a diagram.

Q5.  What are the types of neural networks?

Q6.  Explain the workings of a biological neural network.

Q7.  How does information flow in an artificial neural network?

Q8. � Differentiate between a biological neural network and an artificial
neural network.

Q9.  Explain all the types of architecture of neural networks.

Q10.  Define complicated neural networks using a suitable diagram.

C H A P T E R10
THE LEARNING PROCESS

There are various types of learning in neural networks that allow neural
networks to predict relationships and patterns.

Neural Network
Learning Algorithms

Supervised Learning
(Error-based)

Reinforced Learning
(Output-based) Unsupervised Learning

Stochastic Error Correction
Gradient Descent Hebbian Competitive

Back
Propagation

Least Mean
Square

FIGURE 10.1  Learning Algorithm Classification

10.1	  Types of Learning in a Neural Network

10.1.1  Supervised Learning
In supervised learning, a teacher is present during the learning process.
This machine learning technique sets the parameters of an artificial neu-
ral network from the training data. The function of this learning technique

260 • Artificial Intelligence and Expert Systems

is to set the values for any valid input value after having seen the output
value. Each output unit is told what its desired response to the input sig-
nal ought to be by an external teacher. During the learning process, global
information may be required. The errors that are generated are used to
change the network parameters, resulting in improved performance.
Paradigms of supervised learning include error correction learning, rein-
forcement learning, and stochastic learning. In supervised learning, an
important issue is the minimization of the error between the desired
and computed unit values, referred to as the problem of error conver-
gence. The aim is to determine a set of weights that minimize the error.
One well known method, which is common to many learning paradigms, is
the Least Mean Square (LMS) convergence. Supervised learning can also
be referred to as classification, where we have a broad range of classifiers,
such as the artificial neural networks’ Methodological Advances and Bio-
medical Applications suitable classifiers (like the multilayer perceptron,
Support Vector Machines, k-nearest neighbor algorithm, Gaussian mix-
ture model, Gaussian, naive Bayes, decision tree, and radial basis function
classifiers). In order to solve a given problem in supervised learning, vari-
ous steps must be considered.

In the first step, we have to determine the type of training examples.
In the second step, we need to gather a training data set that satisfactory
describes a given problem. In the third step, we need to describe the
training data set in a form that is understandable to the chosen artificial
neural network. In the fourth step, we do the learning, and after the
learning, we can test the performance of the learned artificial neural
network with the test (validation) data set. The test data set consists of
data that has not been introduced to the artificial neural network while
learning.

10.1.1.1  Stochastic

In the stochastic method, the weights are adjusted using a probabilistic
method. An example is simulated annealing, which is a learning mechanism
employed by Boltzman.

10.1.1.2  Error Correction Gradient Descent

The error correction gradient descent is based on the minimization of the
error, E, defined in terms of weights and the activation function of the
network. The activation function of the network must be differentiable,

The Learning Process • 261

because the update of the weights is dependent on the gradient of the error,
E. If wij is the weight update of the link connecting to the ith and jth neu-
ron of the two neighboring layers, then it is defined as

	 ∆wij	 =	η(∂E/∂wij)
where ἠ the is learning rate parameter and the error gradient with refer-
ence to the weight wij.

10.1.2  Unsupervised Learning
In unsupervised learning, no teacher is present. The expected or desired
output is not presented to the network. Unsupervised learning is a machine
learning technique that sets the parameters of an artificial neural network
based on the given data and a cost function, which is to be minimized. The
cost function can be any function, and it is determined by the task formula-
tion. It uses no external teacher and is based upon only local information.
It is also referred to as being self-organizing in the sense that it organizes
data presented to the network and detects their developing collective prop-
erties. The problem with unsupervised learning is that it is mostly used
in applications that are related to estimation problems, such as statistical
modeling, compression, filtering, blind source separation, and clustering.
In unsupervised learning, we seek to determine how the data is organized.
It differs from supervised learning and reinforcement learning in that the
artificial neural network is given only unlabeled examples. One common
form of unsupervised learning is clustering, where we try to categorize data
in different clusters by their similarity.

Hebbian Learning: Hebb proposed a rule based on the correlative
weight adjustment. In this rule, the input/output pattern pairs (Xi, Yi) are
associated by the weight matrix w, known as the correlation matrix, and are
computed as

w =
0

n

i i
i

X Y
=
∑

where YiT is the transpose of the associated output factory.

Competitive Learning: In this method, those neurons that respond
strongly to the input stimuli have their weights updated. When an input
pattern is presented, all neurons in the layer compete, and the winning
neuron undergoes a weight adjustment. This strategy is called the “winner-
takes-all.”

262 • Artificial Intelligence and Expert Systems

10.1.3  Reinforcement Learning
Reinforcement learning is a machine learning technique that sets the param-
eters of an artificial neural network, where the data is usually not given, but
is instead generated by interactions with the environment. Reinforcement
learning is concerned with how an artificial neural network ought to take
action in an environment so as to maximize some notion of a long-term
reward. Reinforcement learning is frequently used as a part of an artificial
neural network’s overall learning algorithm.

 After the return function that needs to be maximized is defined, rein-
forcement learning uses several algorithms to find the policy that produces
the maximum return. A naive brute force algorithm in the first step calcu-
lates the return function for each possible policy and chooses the policy
with the largest return. The obvious weakness of this algorithm occurs when
there is an extremely large or even infinite number of possible policies. This
weakness can be overcome by the value function approaches or direct pol-
icy estimation. The value function approaches attempt to find a policy that
maximizes the return by maintaining a set of estimates of expected returns
for one policy, usually either the current or the optimal estimates. These
methods converge to the correct estimates for a fixed policy and can also be
used to find the optimal policy.

Like the value function approaches, the direct policy estimation can
also find the optimal policy. It finds it by searching it directly in the policy
space, which greatly increases the computational cost.

Reinforcement learning is particularly suited to problems that include a
long-term versus short-term reward trade-off. It has been applied success-
fully to various problems, including the introduction to the artificial neural
networks of robotic control, telecommunications, games such as chess, and
other sequential decision-making tasks.

10.2	  Perceptron

One type of ANN is based on the unit called a perceptron. It takes a vector
of real-value inputs, calculates a linear combination of these inputs, and
then outputs 1 if the result is greater than some threshold and - 1 otherwise.
Perceptron is a term invented by Frank Rosenblatt. The perceptron is a
model in which a neuron with weighted inputs is used with some additional,
fixed pre-processing. This model is known as the MVC. In the perceptron

The Learning Process • 263

model, units labelled A1, A2, Aj, and Ap are called association units and
their task is to extract a specific feature from the input images. They are
mainly used in pattern recognition, even though their capabilities extend
to a lot more.

A1

A j

Ap

Wp

Wj

W1

F

Sun Threshold

FIGURE 10.2   How a Perceptron Works

10.2.1  The Representational Power of a Perceptron
We can view the perceptron as representing a hyperplane decision surface
in the n-dimensional space of instances. The perceptron outputs a 1 for
points lying on one side of the hyperplane and outputs a -1 for points lying
on the other side. The equation for this hyperplane is w.x=0. Some sets
of positive and negative examples cannot be separated by any hyperplane.
Those that can be separated are called linearly separable sets of examples.

�
�
i=0

n
w xi i �

i=0

n
I if w xi i > 0

-I otherwise
o =

w1
w2

wn
xn

x2

x1

w0

x0 = 1

FIGURE 10.3  The Power of a Perceptron

Perceptron Rules: How can we learn the weight for a single percep-
tron? There are many learning approaches to help determine the weight
vector that causes a perceptron to produce the correct +_1 output for each
member of a given training example.

264 • Artificial Intelligence and Expert Systems

10.3	  Backpropagation Networks

A backpropagation network is a general-purpose learning algorithm,
which is powerful but expensive in terms of its computational require-
ments for training. To train a network using backpropagation involves
three stages:

•	 feed forward of the input training network

•	 back propagation of the associated error

•	 adjustments of weight

In the feed-forward stage, every input unit receives an input signal and
sends the signals to each of the hidden units. Each output unit computes
its activation to form the response of the network for the given input pat-
tern.

While training, each output unit compares its computed activation with
its target value to determine the error associated with the pattern with that
unit. The mathematical basis for the backpropagation algorithm is the opti-
mization technique known as the gradient descent.

Choice of Activation Functions

An activation function for a backpropagation network has several important
characteristics. It should be continuous, differentiable, and monotonically
non-decreasing. It is very advantageous if its derivative is easy to compute.

10.4	  Advantages of Neural Networks

•	 A neural network can perform tasks that a linear program cannot.

•	 A neural network learns by example and does not need to be re-
programmed.

•	 It can be implemented in any application and without any problems.

•	 When an element of a neural network fails, it can continue functioning
because of its parallel nature.

•	 Neural networks are powerful so they can model complex functions.

•	 They can handle noisy and missing data.

The Learning Process • 265

•	 They provide general solutions with good predictive accuracy.

•	 They involve human-like thinking.

•	 They can work with large numbers of variables or parameters.

•	 They deal with non-linearity in the world in which we live.

10.5	  Limitations of Neural Networks

•	 Neural networks are too much of a black box.

�They are considered black box technology, since the knowledge of
their internal workings is never known. It is challenging to determine
how they are solving a problem, because they are opaque. Neural
networks are difficult to troubleshoot when they don’t work as you
expect, and when they do work, you will never really feel confident
that they will generalize well to data not included in your training set
because, fundamentally, you don’t understand how your network is
solving the problem.

•	 Neural networks are not probabilistic.

�For the most part, neural networks have few, if any, probabilistic
underpinnings, unlike their more statistical or Bayesian counterparts.
It’s extremely useful to know how confident your classifier is about its
answers because that information allows you to better manage the cost
of making errors by tuning your classifier. A neural network might give
you a continuous number as its output (e.g., a score), but translating
that into a probability is often difficult.

•	 Neural networks are not a substitute for understanding the
problem deeply.

�Applying a neural network for a human-related problem requires
time. You need to invest extra time in studying. You must analyze your
data first and then choose the best techniques that will allow you to
have the confidence that they will work well for your problem, instead
of investing your time throwing a neural net at the problem.

•	 They are just approximation of a desired solution and errors are
expected.

266 • Artificial Intelligence and Expert Systems

10.6	  Applications of Neural Networks

•	 Character Recognition

�Character Recognition is used in mapping the matrix of pixels into char-
acters and words. Artificial neural network theories are used in per-
forming character recognition. Character recognition is important for
handheld devices. Several types of characters can be used, but neural
networks can be used to recognize handwritten characters. In a neu-
ral network, expert knowledge can be defined into the architecture to
reduce the number of parameters determined by the training by exam-
ples. Neural networks provide this type of flexibility.

•	 Image Compression

�Neural networks are also used in image compression because they
can receive and process huge amounts of information at once. With
the explosion of the Internet and more sites using more images, using
neural networks for image compression is worth a look.

�In images, some redundant information is used. Data compression
techniques are used to remove this information. These images then
require less storage space and less time to transmit, so neural nets can
be used.

1

2

16

1

2

3

64

x1

x2

x3

x64 y64

y3

y2

y1

Z1

Z2

Z16

Input
(8 × 8 image)

Hidden
Layer

Output
Layer (8 × 8 image)

FIGURE 10.4  A Neural Network using Image Compression

�A neural net architecture can be used to solve the image compression
problem. This architecture is represented in Figure 10.5. In this type
of structure, many input layers are feeding into a small hidden layer,

The Learning Process • 267

which then feeds into a large output layer. This type of structure is
referred to as a bottleneck type network. The idea behind the design
of this type of architecture is as follows. Suppose that it had been
trained to implement an identity map. Then, a tiny image existing on
the network as input would appear exactly the same at the output
layer.

1

2

16

1

2

3

64 y64

y3

y2

y1

Z1

Z2

Z16

Z1

Z2

Z16

x3

x2

x1

x64

Quantize
&

Transmit

Receive
&

Decode

Noisy
Channel

FIGURE 10.5  Neural Net Archeticture for the Image Compression Problem.

�Now this neural net architecture can be broken into two parts so
that image compression techniques can be used. The first one is the
transmitter and the second one is the decoder. The use of a transmit-
ter encodes and then transmits the output of the hidden layer (only
16 values, as compared to the 64 values of the original image). The
receiver receives and decodes the 16 hidden outputs and generates
the 64 outputs. We already explained that this neural net architecture
is used to implement an identity map, and the output at the receiver is
an exact reconstruction of the original image.

•	 Stock Market Predictions

�Predicting the stock market is enormously complicated. There are
many factors that affect the stock market: sometimes it rises and
sometimes it falls. Neural networks can be used to predict stock prices
by examining a lot of information quickly. This problem can be sorted
out quickly via neural network.

•	 Traveling Salesman’s Problem

�Neural networks can solve the traveling salesman problem, but only to
a certain degree of approximation.

268 • Artificial Intelligence and Expert Systems

•	 Business Applications

�Neural networks are used in a variety of business applications. Neu-
ral networks are used in major fields of business applications, such as
financial operations, enterprise planning, trading, business analytics,
and product maintenance. Neural networks are also used in forecast-
ing and marketing research solutions. Neural networks can be applied
gainfully by all kinds of traders, so if you’re a trader and you haven’t yet
been introduced to neural networks, we’ll take you through this method
of technical analysis and show you how to apply it to your trading style.

•	 Diagnostics Systems

�In diagnostic systems, ANNs are used to detect heart problems and
cancer. Artificial neural networks are used because they are not
affected by factors such as fatigue, working conditions, and emotional
state.

•	 Biochemical Analysis

�Neural networks are also used in an extensive variety of critical chem-
istry applications. In medicine, ANNs have been used to analyze
blood and urine samples, track glucose levels in diabetics, determine
ion levels in body fluids, and detect pathological conditions, such as
tuberculosis.

•	 Image Analysis

�Artificial neural networks are used to analyze medical images. The
use of image analysis includes many areas, such as MRI (Magnetic
Resonance Images), classification of x-rays, tumor detection, deter-
mination of skeletal age, and the determination of brain maturation.

•	 Other Applications (Medicine, Electronic Nose, Security, and
Loan Applications)

�There are some applications that are in their proof-of-concept stage,
with the exception of a neural network that can decide whether to
grant a loan. The neural network is making this decision more success-
fully than many humans.

•	 Pattern Recognition

�Pattern recognition involves categorizing input data into certain
classes by the use of important feature attributes of the data (sample),

The Learning Process • 269

where the feature attributes are extracted from a background of irrel-
evant detail. Neural networks are used in pattern recognition because
of their ability to learn and store knowledge.

�Clustering: A neural network is used in clustering techniques. It is
used in grouping the same types of clusters. The best applications
include data compression and data mining.

�Function Approximation: The function approximation is used to
find an estimate of unknown functions subject to noise. It is used in
several scientific and engineering regulations.

Exercises

Q1. � What is the transfer function in an artificial neural network? Explain
the types of ANNs.

Q2.  Discuss the learning process in a neural network.

Q3.  Write the back propagation algorithm in detail.

Q4.  What are the pros and cons of neural networks?

Q5.  Discuss the various applications of neural networks.

C H A P T E R11
FUZZY LOGIC

11.1	  Introduction to Fuzzy Logic

Fuzzy or multivalued logic was introduced in the 1930s by Jan Lukasiewicz.
This kind of logic extended the range of truth values to all real numbers in
the interval between 0 and 1, e.g., it addressed ideas such as the possibility
that a man 181 cm tall (a “tall” man) might to be set to a value of 0.86. This
led to the inexact reasoning theory called the possibility theory.

Jan Lukasiewicz was a Polish logician and philosopher (Lukasiewicz,
1930). He studied the mathematical representation of fuzziness based on
terms such as “tall,” “old,” and “hot.” While classical logic operates with
only two values, 1 (true) and 0 (false), Lukasiewicz introduced logic that
extended the range of truth values to all real numbers in the interval
between 0 and 1. He used a number in this interval to represent the pos-
sibility that a given statement was true or false. For example, the possibility
that a man 181 cm tall is really tall might be set to a value of 0.86. (In this
case, it is likely that the man is considered tall.)

Later, in 1937, Max Black, a philosopher, published a paper called
“Vagueness: An Exercise in Logical Analysis” (Black, 1937). In this paper, he
argued that a continuum implies degrees. Imagine, he said, a line of count-
less chairs. At one end is a Chippendale. Next to it is a near-Chippendale,
in fact, one that is indistinguishable from the first item. Succeeding chairs
are less and less chair-like, until the line ends with a log. When does a chair
become a log? The concept “chair” does not permit us to draw a clear line
distinguishing “chair” from “not-chair.” Black stated that if a continuum is

272 • Artificial Intelligence and Expert Systems

discrete, a number can be allocated to each element. This number indicates
a degree. But the question is “A degree of what?” Black used the number to
show the percentage of people who would call an element in a line of chairs
a chair; in other words, he accepted vagueness as a matter of probability.
However, Black’s most important contribution was in the paper’s appendix.
There, he defined the first simple fuzzy set and outlined the basic ideas of
fuzzy set operations.

In 1965, Lotfi Zadeh published his famous paper “Fuzzy Set.” Zadeh
extended the work on possibility theory into a formal system of math-
ematical logic and introduced new logic. This new logic for representing
and manipulating fuzzy terms was called fuzzy logic. The concept of fuzzy
logic (FL) was conceived by Zadeh while he was a professor at the Univer-
sity of California at Berkley, and it was presented not as a control method-
ology, but as a way of processing data by allowing partial set membership
rather than crisp set membership or non-membership. This approach to
set theory was not applied to control systems until the 1970s due to insuf-
ficient computer capabilities prior to that time. Professor Zadeh reasoned
that people do not require precise, numerical information input, and yet
they are capable of highly adaptive control. If feedback controllers could
be programmed to accept noisy, imprecise input, they would be much
more effective and perhaps easier to implement. Unfortunately, US man-
ufacturers have not been so quick to embrace this technology while the
Europeans and Japanese have been aggressively building real products
around it.

Fuzzy logic provides mathematical rules and functions that permit
natural language queries. Fuzzy logic provides a means of calculating the
intermediate values between the absolute true and absolute false, with the
resulting values ranging between 0.0 and 1.0. Fuzzy logic calculates the
shades of gray between black/white and true/false.

Fuzzy logic is a super set of conventional (or Boolean) logic that
has been extended to handle the concept of partial truth and contains
similarities and differences with Boolean logic. Fuzzy logic is similar to
Boolean logic in that Boolean logic results are returned by fuzzy logic
operations when all fuzzy memberships are restricted to 0 and 1. Fuzzy
logic differs from Boolean logic in that it is permissive of natural lan-
guage queries and is more like human thinking; it is based on degrees
of truth.

Fuzzy Logic • 273

Truth values (in fuzzy logic) or membership values (in fuzzy sets) belong
to the range [0, 1], with 0 being absolute falseness and 1 being absolute
truth. Values between 0 and 1 deal with real world vagueness.

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
0 15 0 15Fuzzy logic Boolean logic

FIGURE 11.1  Difference between Fuzzy and Boolean Logic

A fuzzy set is a set whose elements have degrees of membership. That
is, a member of a set can be a full member (100% membership status) or
a partial member (e.g., less than 100% membership and greater than 0%
membership). To fully understand fuzzy sets, one must first understand
traditional sets.

Fuzzy logic deals with those imprecise conditions about which a true/
false value cannot be determined. Much of this has to do with the vague-
ness and ambiguity that can be found in everyday life. For example, the
question “Is it hot outside?” probably would lead to a variety of responses
from those asked. These are often labeled as subjective responses, where
no one answer is exact. Subjective responses are relative to an individual’s
experience and knowledge. Human beings are able to exert this higher level
of abstraction during the thought process. For this reason, fuzzy logic has
been compared to the human decision-making process. Conventional logic
(and computing systems, for that matter) is by nature related to Boolean
conditions (true/false). What fuzzy logic attempts to encompass is that area
where a partial truth can be established, that is, a gradient within the true/
false realm.

11.1.1  Definition of Fuzzy Logic
Fuzzy logic is a set of mathematical principles for knowledge representation
based on the degrees of membership rather than on the crisp membership
of classical binary logic. Fuzzy logic is a logic that is used to describe fuzzi-
ness or vagueness. Fuzzy logic is based on the idea that all things can be
viewed as having degrees, for example, “The motor is running really hot.”

274 • Artificial Intelligence and Expert Systems

Fuzzy logic is a problem-solving control system methodology that is
used in systems ranging from simple, small, embedded micro-controllers to
large, networked, multi-channel PC or workstation-based data acquisition
and control systems. It can be implemented in hardware, software, or a
combination of both. Fuzzy logic provides a simple way to arrive at a defi-
nite conclusion based upon vague, ambiguous, imprecise, noisy, or missing
input information. Fuzzy logic’s approach to control problems mimics how
a person would make decisions, only much faster.

Fuzzy logic is a form of multi-valued logic that deals with inexact rea-
soning. Computers can apply this logic to represent vague and imprecise
ideas, such as “hot,” “tall,” or “balding.” Fuzzy logic variables have range
between 0 and 1, and they are based on the degree of truth rather than the
true-or-false Boolean logic. This range includes 0 and 1 as the extreme cases
of truth, but also includes various states of truth in between. For example,
the result of a comparison between two things would not be tall or short,
but 0.38 of tallness.

Fuzzy theory provides a mechanism for representing linguistic con-
structs such as many, low, medium, or often.

Imprecise Data

Vague Statements

Fuzzy Logic System

Decision

Figure 11.2  A Fuzzy Logic System that Accepts Imprecise Data and Vague Statements
such as Low or Medium

11.1.2  Features of Fuzzy Logic

•	 In fuzzy logic, exact reasoning is viewed as a limiting case of
approximate reasoning.

•	 In fuzzy logic, everything is a matter of degree.

•	 It is suitable for approximate reasoning.

•	 It allows decision-making with estimated values using uncertain
information.

Fuzzy Logic • 275

•	 It is robust as it does not require precise, noise-free inputs and can be
programmed to fail safely if a feedback sensor is destroyed.

•	 Any reasonable number of inputs can be processed and numerous
outputs can be generated.

•	 Fuzzy logic is not limited to a few feedback inputs. Any sensor data
that provides some indication of a system’s action and reaction is
sufficient. This allows sensors to be inexpensive and imprecise, which
makes the overall system cost and complexity low.

•	 Fuzzy logic can control non-linear systems that would be difficult or
impossible to model mathematically.

11.1.3  Advantages of Fuzzy Logic

•	 Fuzzy logic is easy to understand, test, and maintain.

•	 It is flexible, meaning it is easy to layer on more functionality without
starting from scratch.

•	 It can tolerate imprecise data.

•	 It can model the non-linear functionality of arbitrary complexity.

•	 It is based on natural language.

•	 It is robust, meaning can operate when there is a lack of rules.

•	 It allows for rapid computation due to its parallel evaluation nature.

11.1.4  Disadvantages of Fuzzy Logic
Fuzzy logic has disadvantages:

•	 It needs a lot of tests and evaluation.

•	 It does not learn easily.

•	 It is highly abstract and heuristic.

•	 It has no precise mathematical model.

•	 It lacks the self-organization and self-tuning mechanism of a neural
network.

•	 It is difficult to establish correct rules.

276 • Artificial Intelligence and Expert Systems

11.2	  Crisp Set (Classical set)

The concept of a set is fundamental to mathematics.

Let X be the universe of discourse, and its element is denoted as x. In
classical set theory, a crisp set A of X is defined as the function FA(x), that is

FA(x) :X → {0,1} where () 1

0
A xF if x A

if x A

= ∈


∉

For any element x of X, FA(x) is equal to 1 if x is an element of set A and
equal to 0 if x is not an element of

A. Classical sets are called crisp sets: either an element belongs to a set
or not, i.e.,

x ∈ A   OR   x ∉ A

In classical set theory, the membership of elements in a set is assessed
in binary terms according to a bivalent condition: an element either belongs
or does not belong to the set. For example, for the set of integers, either an
integer is even or it is not (it is odd). Classical sets are also called crisp (sets).

Lists	 A = {apples, oranges, cherries, mangoes}

		 A = {a1, a2, a3 }

		 A = {2, 4, 6, 8, …}

Formulas	 A = {x | x is an even natural number}

		 A = {x | x = 2n, n is a natural number}

One more example is as follows:

P : the set of all people

Y : the set of all young people	

Young={y|y = age(x) ≤ 25, x ∈ P}

Y
P

FIGURE 11.3  A Pictorial Representation of a Classical Set

Fuzzy Logic • 277

11.3	  Fuzzy Set

Fuzzy set theory is different from classical set theory, as the elements of a
fuzzy set admit some degree of membership, meaning how much an ele-
ment belongs to set (for example, the set of tall men). What does it mean
to be tall? Height is all relative. As a descriptive term, “tall” is very subjec-
tive and relies on the context in which it is used. Even a 5’ 7” man can be
considered “tall” when he is surrounded by people shorter than he is. It is
impossible to give a classical definition for the subset of tall men. However,
we could establish to which degree a man can be considered tall. This can
be done using membership functions (µA(x)):

•	 µA(x) = y

♦♦ an individual x belongs to some extent (“y”) to subset A

♦♦ y is the degree to which the individual x is tall

•	 µA(x) = 0

♦♦ Individual x does not belong to subset A

•	 µA(x) =1

♦♦ Individual x definitely belongs to subset A

Some Points About Fuzzy Sets

•	 Fuzzy sets are sets whose elements have degrees of membership.

•	 Fuzzy sets were introduced by Lotfi A. Zadeh (1965) as an extension
of the classical notion of a set.

•	 Fuzzy set theory permits the gradual assessment of the membership
of elements in a set; this is described with the aid of a membership
function valued in the real unit interval [0,1].

•	 The fuzzy set theory can be used in a wide range of domains in which
information is incomplete or imprecise, such as bioinformatics.

•	 They are extensions of classical sets.

•	 They use not just the membership values of “in the set” and “out of
the set,” 1 and 0, but also partial membership values between 1 and 0.

278 • Artificial Intelligence and Expert Systems

A fuzzy set can be defined mathematically by assigning to each pos-
sible individual in the universe of discourse a value representing its grade
of membership in the fuzzy set.

For example, a fuzzy set representing our concept of “sunny” might
assign a degree of membership of 1 to a cloud cover of 0%, 0.8 to a cloud
cover of 20%, 0.4 to a cloud cover of 30%, and 0 to a cloud cover of 75%.

"Strong Fever"

41.4°C40.1°C

42.2°C

37.2°C

38°C 38.7°C

FIGURE 11.4  A Fuzzy Set

Definition of a Fuzzy Set

A fuzzy set is a pair (U, m) where U is a set and m : U → [0, 1].

For each x ∈ U, the value m(x) 	is called the grade of membership of x
in (U, m).

For a finite set U = {x1, ..., xn}, the fuzzy set (U, m) is often denoted by

{m(x1)/x1, ..., m(xn)/xn}.

Let x ∈ U. This called not included in the fuzzy set (U, m). If m(x) = 0,
x is called fully included. If m(x) = 1, it is called a fuzzy member if
0 < m(x) < 1.

The set {x ∈ U| m(x) > 0} is called the support of (U, m), and the set
{x ∈ U | m(x) = 1} is called its kernel. The function m is called the mem-
bership function of the fuzzy set (U, m).

OR

Fuzzy set A of universe X is defined by µA(x), called the membership
function of set A.

µA(x) : X → {0, 1} 	 where µA(x) = 1 if x is totally in A,

Fuzzy Logic • 279

	 µA(x) = 0 if x is not in A, and

	 0 < µA(x) < 1 if x is partly in A.

For any element x of universe X, the membership function µA(x) equals
the degree to which x is element of set A. These values between 0 and 1
represent degree of membership.

OR

If U is a collection of objects denoted generically by x, then a fuzzy set
A in U is defined as a set of ordered pairs:

	 A = {(x, µA(x))| x ∈ U}

	 where µA : U → [0, 1]

We have seen that a fuzzy set A of a set X(≠ φ) is characterized by the
membership function:

	 µA : X → [0, 1]

Thus, for any x ∈ X, the degree of belongingness of it in the fuzzy set
A is µA(x), when (0 < µA (x) < 1).

If X = {x1, x2, ..., xn}, then a fuzzy set A of X could be written as

A =	 {(x1, µA(x1)), (x2, µ2(x2)) ..., (xn, µA(xn))}

which sometimes we write in the following way symbolically:

A =
() () ()1 2, ...,
1 2

x x xnA A A
x x xn

  
 
  

µ µ µ

For example, consider a set of tall men. The elements of the fuzzy set
“tall men” are all men, but their degrees of membership depend on their
height, as shown in Table 11.1. Suppose, for example, Mark at 205 cm tall
is given a degree of 1, and Peter at 152 cm is given a degree of 0. All the
men of intermediate height have intermediate degrees of being tall. They
are partly tall. Obviously, different people may have different views as to
whether a given man should be considered as tall. However, our candidates
for tall men could have the memberships as shown in the table. It can be
seen that the crisp set asks the question ”Is the man tall?” and draws a line
at, say, 180 cm. Tall men are above this height and not tall men below. In
contrast, the fuzzy set asks ”How tall is the man?” The answer is given in the
partial membership in the fuzzy set (for example, Tom is 0.82 tall).

280 • Artificial Intelligence and Expert Systems

Table 11.1:  The Degree of Membership for Crisp and Fuzzy Sets Based on Height

Name Height, cm
Degree of Membership

Crisp Fuzzy

Chris 208 1 1.00

Mark 205 1 1.00

John 198 1 0.98

Tom 181 1 0.82

David 179 0 0.78

Mike 167 0 0.15

Bob 167 0 0.15

Steven 158 0 0.06

Bill 152 0 0.00

Peter 152 0 0.00

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

150 160 170 180 190 200 210

150 160 170 180 190 200 210

Degree of
Membership Crisp Sets

Height, cm
Degree of
Membership Fuzzy Sets

Height, cm

FIGURE 11.5  Crisp and Fuzzy Set Pictorial Representations

Fuzzy Logic • 281

In Figure 11.5, the horizontal axis represents the universe of discourse,
i.e., the range of all possible values applicable to a chosen variable. In our
case, the variable is human height. According to this representation, the
universe of men’s heights consists of all tall men.

Now let us discuss fuzzy variables or linguistic variables.
Very low Low Medium High Very high

Temperature, °CT1 T2

M
em

be
rs

hi
p

1

0

(a)

Very low Low Medium High Very high

Temperature, °CT1 T2

(b)

Temperature in the range {T , T } conceived as: (a) a fuzzy variable;
(b) a traditional (crisp) variable.

1 2

FIGURE 11.6  Traditional and Fuzzy Variables

11.3.1  Linguistic Variables in a Fuzzy Set

•	 A linguistic variable may be defined as variables whose values can be
phrases, words, etc. in a natural or artificial language.

•	 Fuzzy sets and linguistic variables can be used to quantify the meaning
of natural language, which can then be manipulated.

•	 Linguistic variables must have a valid syntax and semantics.

•	 Each linguistic variable may be assigned one or more linguistic
values, which are in turn connected to a numeric value through the
mechanism of membership functions.

•	 Linguistic variables are fuzzy variables.

282 • Artificial Intelligence and Expert Systems

For example, “John is tall” means the linguistic variable “John” takes the
linguistic value “tall.”

The range of all possible values of linguistic variables represent the uni-
verse of discourse of that variable. For the example, for the universe of dis-
course of the linguistic variable speed, we must include fuzzy subsets such as
“very slow,” “slow,” “medium,” and “fast”. A linguistic variable carries with it
the concept of fuzzy set qualifiers called hedges. Hedges modify shape of the
fuzzy set. They include adverbs such as “very,” “quiet,” “more,” and “less.”

very oldoldmiddleyoungvery
young

m

1

20 40 60 80 100
AGE

(Years)

FIGURE 11.7  An Example of Hedges and Linguistic Variables

A linguistic variable is characterized by a quintuple:

(x, U, T(x), G, M) in which

• x is the name of the variable.

• U is the universe of discourse.

• T(x) is the term set of x, that is, the set of names of linguistic values of
x with each value being a fuzzy number defined on U.

• G is a syntactic rule for generating the names of values of x.

• M is a semantic rule for associating with each value its meaning.

For example,

• age = {very young; young; middle; old; very old}

• blood glucose level = {�slightly increased; increased; significantly
increased; stronglyincreased}

• insulin doses = {none; low; medium; high}

Fuzzy Logic • 283

For example,

An Example of a Semantic Rule

M(old) = {(u, µold(u))|u ∈ [0, 100]}

 µold(u) = 12

0 [50, 100]

501 [50, 100]
5

u

u u
−−

∈
  − + ∈   

   

1.2

1

0.8

0.6

0.4

0.2

M
em

be
rs

hi
p

G
ra

de
s Young Middle Aged Old

Fuzzy partitions formed by the linguistic values:
“young”, “middle aged”, and “old”

FIGURE 11.8  A Fuzzy Set Partition

284 • Artificial Intelligence and Expert Systems

Fuzzy Set with a Discrete Universe:

Fuzzy set A = “sensible number of children”

	 X = {0, 1, 2, 3, 4, 5, 6} (discrete universe)

	 A = {(0, 1), (1, 3), (2, 7), (3, 1), (4, 6), (5, 2), (6, 1)}

4

1

0.8

0.6

0.4

0.2

6

M
em

be
rs

hi
p

G
ra

de
s

0 2
X = Number of Children

FIGURE 11.9  A Fuzzy Set with a Discrete Universe

Fuzzy Sets with Continuous Universes

Fuzzy set B = “about 50 years old”

	 X = Set of positive real numbers (continuous)

	 B = {(x, µA(x)|x in X)}

50 1000
X = Age

1

0.8

0.6

0.4

0.2

0

M
em

be
rs

hi
p

G
ra

de
s

FIGURE 11.10  A Fuzzy Set with a Continuous Universe

Fuzzy Logic • 285

Various examples for the illustration of fuzzy logic concepts are as follows.

Example 1

The whole concept can be illustrated with this example. Let’s talk about
people and “youthfulness.” In this case, the set S (the universe of discourse)
is the set of people. A fuzzy subset YOUNG is also defined, which answers
the question “to what degree is person x young?” To each person in the uni-
verse of discourse, we have to assign a degree of membership in the fuzzy
subset YOUNG. The easiest way to do this is with a membership function
based on the person’s age.

Young(x) =
1, () 20
(30 () /10, 20 () 30,)
0, () 30

if age x
age x if age x

if age x

 
 
 
 
 

< =
− < < =

>

A graph of this appears in Figure 11.11.

1

0.5

0 20 25 30 50 age

FIGURE 11.11  Graph Showing the Membership Function of a Fuzzy Set

Given this definition, here are some example values:

Person Age Degree of Youth

Johan 10 1.00

Edwin 21 0.90

Parthiban 25 0.50

Arosha 26 0.40

Chin Wei 28 0.20

Rajkumar 83 0.00

So given this definition, we’d say that the degree of truth of the state-
ment “Parthiban is YOUNG” is 0.50.

286 • Artificial Intelligence and Expert Systems

Example 2

For a set of tall men, we shall say that people taller than or equal to 6 feet
are tall. This set can be represented graphically as shown in Figure 11.12.

tall (= 1.0)�

not tall (= 0.0)�0.0

1.0

degree of
membership, �

sharp-edged
membership
function for

TALL

height

FIGURE 11.12  Crisp Set

The function shown above describes the membership of the “tall”
set: you are either in it or you are not in it. This sharp-edged member-
ship function works nicely for binary operations and mathematics, but it
does not work as nicely in describing the real world. The membership func-
tion makes no distinction between somebody who is 6’1” and someone who
is 7’1”, they are both simply tall. Clearly there is a significant difference
between the two heights.

The fuzzy set approach to the set of tall men provides a much better
representation of the tallness of a person. The set, shown below, is defined
by a continuously inclining function.

definitely a tall
person (= 0.95)�

really not very
tall at all (= 0.30)�

height

1.0

0.0

degree of
membership, �

continuous
membership
function for

TALL

FIGURE 11.13  The Fuzzy Set for Tall Men

Fuzzy Logic • 287

The membership function defines the fuzzy set for the possible values
underneath it on the horizontal axis. The vertical axis, on a scale of 0 to 1,
provides the membership value of the height in the fuzzy set. So, for the
two people shown in Figure 11.13, the first person has a membership of 0.3
and so he is not very tall. The second person has a membership of 0.95 and
so he is definitely tall. He does not, however, belong to the set of tall men
in the way that bivalent sets work; he has a high degree of membership in
the fuzzy set of tall men.

Now, let us discuss what the membership function is in crisp logic and
fuzzy logic.

11.4	  Membership Function of Crisp Logic

Crisp logic is concerned with absolutes: something is either true or false,
and there is no in-between. For example

•	 Rule:

¾¾ If the temperature is higher than 80°F, it is hot; otherwise, it is
not hot.

•	 Cases:

¾¾ Temperature = 100°F	 Hot

¾¾ Temperature = 80.1°F	 Hot

¾¾ Temperature = 79.9°F	 Not Hot

¾¾ Temperature = 50°F	 Not Hot

Hence, the classification of individuals can be done using an indicator or
characteristic function µA(x)=0 or 1

such that µA(x)=0 or 1.

11.5	  Membership Function of the Fuzzy Set

The membership function of a fuzzy set is a generalization of the indicator
function in classical sets. In fuzzy logic, it represents the degree of truth
as an extension of the valuation. Degrees of truth are often confused with
probabilities, although they are conceptually distinct, because fuzzy truth
represents membership in vaguely defined sets, not the likelihood of some

288 • Artificial Intelligence and Expert Systems

event or condition. Membership functions were introduced by Zadeh in the
first paper on fuzzy sets (1965).

For any set X, a membership function on X is any function from X to
the real unit interval [0,1]. Membership functions on X represent fuzzy sub-
sets of X. The membership function that represents a fuzzy set Ã is usually
denoted by µA. For an element x of X, the value µA(x) is called the member-
ship degree of x in the fuzzy set Ã. The membership degree µA(x) quantifies
the grade of the membership of the element x to the fuzzy set Ã. The value
0 means that x is not a member of the fuzzy set; the value 1 means that x is
fully a member of the fuzzy set. The values between 0 and 1 characterize
fuzzy members, which belongs to the fuzzy set only partially.

classical (crisp) set A

fuzzy set Ã

membership
function µ(x)

x
0.0

1.0

µ(x)

FIGURE 11.14  The Membership Function of Crisp and Fuzzy Logic

Definition: The membership function for a fuzzy set A on the uni-
verse of discourse X is defined as µA:X → [0,1], where each element of X
is mapped to a value between 0 and 1. This value, called the membership
value or degree of membership, quantifies the grade of membership of the
element in X to the fuzzy set A.

Membership functions allow us to graphically represent a fuzzy set. The
x axis represents the universe of discourse, whereas the y axis represents
the degrees of membership in the [0,1] interval. Simple functions are used
to build membership functions. Because we are defining fuzzy concepts,
using more complex functions does not add more precision.

•	 The membership function fully defines the fuzzy set.

•	 A membership function provides a measure of the degree of similarity
of an element to a fuzzy set.

Fuzzy Logic • 289

•	 Membership functions can take any form, but there are some common
examples that appear in real applications.

•	 Membership functions represent distributions of possibility rather
than probability. For instance, the fuzzy set “Young” expresses the
possibility that a given individual is young. Membership functions
often overlap with each other. A given individual may belong to
different fuzzy sets (with different degrees).

•	 Membership functions can

¾¾ either be chosen by the user arbitrarily, based on the user’s
experience (membership functions chosen by two users could be
different depending upon their experiences and perspectives)

¾¾ be designed using machine learning methods (e.g., artificial
neural networks or genetic algorithms)

For example, the fuzzy set approach to the set of tall men provides a much
better representation of the tallness of a person. The set, shown below, is
defined by a continuously inclining function.

definitely a tall
person (= 0.95)�

really not very
tall at all (= 0.30)�

height

1.0

0.0

degree of
membership, �

continuous
membership
function for

TALL

FIGURE 11.15  Fuzzy Set Tall Men Representation

The membership function defines the fuzzy set for the possible values
underneath it on the horizontal axis. The vertical axis, on a scale of 0 to 1,
provides the membership value of the height in the fuzzy set. So, for the
two people shown in Figure 11.15, the first person has a membership of
0.3 and is not very tall. The second person has a membership of 0.95, and
he is definitely tall. He does not, however, belong to the set of tall men in
the way that bivalent sets work; he has a high degree of membership in the
fuzzy set of tall men.

290 • Artificial Intelligence and Expert Systems

 Here is another example.

–10
Cold

0
Cool

10
Warm

20
Hot

30

°C

0

1

Membership
Function

FIGURE 11.16  Fuzzy Set Characterizing the Temperature of a Room

There are different shapes of membership functions, such as triangular,
trapezoidal, piecewise-linear, Gaussian, and bell-shaped.

1

0.8

0.6

0.4

0.2

0

trianguler MF

0 50 100
x

m
em

be
rs

hi
p

va
lu

e

1

0.8

0.6

0.4

0.2

0

trianguler MF

0 50 100
x

m
em

be
rs

hi
p

va
lu

e

1

0.8

0.6

0.4

0.2

0

Gaussian MF

0 50 100
x

m
em

be
rs

hi
p

va
lu

e

1

0.8

0.6

0.4

0.2

0

Bell MF

0 50 100
x

m
em

be
rs

hi
p

va
lu

e

(a) (b)

(c) (d)

FIGURE 11.17  Different Shapes of the Fuzzy Membership Function

Fuzzy Logic • 291

11.6	  Fuzzy Set Operations

A fuzzy set operation is an operation on fuzzy sets. These operations are
a generalization of crisp set operations. There is more than one possible
generalization. The most widely used operations are called standard fuzzy
set operations. In fuzzy logic, there are three basic operations on fuzzy sets:
union, intersection, and complement.

11.6.1  Union
Let µA and µB be membership functions that define the fuzzy sets A and B,
respectively, on the universe X. The union of fuzzy sets A and B is a fuzzy
set defined by the membership function:

	 µAUB(x)	=	 Max (µA(x),µB(x))

BA

x

1

µ(x)

µ (x)A

µ (x)B

FIGURE 11.18  A Union Fuzzy Operation

For example, given two fuzzy sets A and B,

	 A = 0.4/1+0.6/2+0.7/3+0.8/4

	 B = 0.3/1+0.65/2+0.4/3+0.1/4

The union of the fuzzy sets A and B

		 = 0.4/1+0.65/2+0.7/3+0.8/4

11.6.2  Intersection
Let µA and µB be the membership functions that define the fuzzy sets A y B,
respectively, on the universe X. The intersection of fuzzy sets A and B is a
fuzzy set defined by the membership function

	 µA∩B(x) = Min (µA(x),µB(x))

292 • Artificial Intelligence and Expert Systems

µ (x)A

µ (x)B

1

µ(x)

A

B

x

FIGURE 11.19  An Intersection Fuzzy Operation

For example, given two fuzzy sets A and B

	 A = 0.4/1+0.6/2+0.7/3+0.8/4

	 B = 0.3/1+0.65/2+0.4/3+0.1/4

The intersection of the fuzzy sets A and B = 0.3/1+0.6/2+0.4/3+0.1/4.

11.6.3  Complement
Let µA be a membership function that defines the fuzzy set A, on the
universe X. The complement of A is a fuzzy set defined by the following
membership function:

	 µÃ(x) = 1 - µA(x)
µ (x)A

µ (x)B

1

µ(x)

A

x

Ã

FIGURE 11.20  A Complement Operation

Fuzzy Logic • 293

For example, given fuzzy set A

	 A = 0.4/1+0.6/2+0.7/3+0.8/4

The complement of the fuzzy set = 0.6/1+0.4/2+0.3/3+0.2/4.

Other operations in the fuzzy set are discussed next.

11.6.4  Equality of Two Fuzzy Sets
Let A and B be two fuzzy sets of X (≠ φ) with membership functions of µA
and µB. We say that A and B are equally written by A = B, if and only if

	 µA(x) = µB(x)∀x∈X

Example

Suppose X = {1,2,3}. Consider the fuzzy sets A, B, and C of X given by

	 A = 1 2 3, ,
2 7 0

 
 
 

,

	 B = 2 1 3, ,
4 2 0

 
 
 

, and

	 C = 2 3 1, ,
7 0 2

 
 
 

and	 A = C, A ≠ B, B ≠ C

11.6.5  Containment
Let X be a set (≠ φ) and A and B are two fuzzy sets of X with membership
function µA and µB respectively. We say that the fuzzy set A is contained in
the fuzzy set B if and only if

µA(x) ≤ µB(x)	 ∀x∈X.

We may say that A is a fuzzy subset of B, denoted by A ⊆ B.

For example, if X = {1, 2, 3} and A, B, and C are three fuzzy sets given by

	 A = 1 5 1, ,
1 2 3
 
 
 

, B = 1 4 9, ,
1 2 3
 
 
 

, and

	 C = 1 6 1, ,
1 2 3
 
 
 

, then B ⊆ A, C ⊆ A.

294 • Artificial Intelligence and Expert Systems

11.6.6  Normal Fuzzy Set
A fuzzy set A of set X is called a normal set if and only if

	 max

	 x ∈ X	 µA
 (x) = 1

i.e., µA(x) = 1 for the least one x ∈ X.

For example, if x = {1,2,3} and A = 1 2 3, ,
2 1 0

 
 
 

 is a fuzzy set of X, then
A is normal fuzzy.

11.6.7  Support of a Fuzzy Set
The support of a fuzzy set A of the set X is the classical set

	 {x ∈ X : µA(x) > 0}.

denoted by support (A). For example, in the previous example, support
(A) = {1, 2}.

11.6.8  α-Cut or α-Level Set
The α-cut or α-level set of fuzzy set A of the set X is the following crisp (i.e.,
conventional) set given by

	 Aα = {x ∈ X : µA (x) ≥ α}

For example, suppose X = {2, 1, 4, 3}. Consider the fuzzy set A of X
given by

A = 5 1 1 8, , ,
2 1 4 3

 
 
 

Clearly,	A1 = {1, 2, 3, 4}.
	 A6 = {3, 4}, 	 A0 = {1, 2, 3, 4}
	 A1 = {4}, 	 A3 = φ
Clearly, if α ≥ β, Aα Aβ. Also, A0 = X and Aα = φ, ∀α > 1.

11.6.9  Disjunctive Sum (Exclusive OR)
	 A ⊕ B	 =	 () ()A B A B∩ ∪ ∩

A B

FIGURE 11.21  A Disjunctive Sum

Fuzzy Logic • 295

	 ()A xµ 	 = 1 – µA(x), ()B xµ = 1 – µB(x)

	 ()A B x∩µ = Min[µA(x), 1 – µB(x)]

	 ()A B x∩µ = Min[1 – µA(x), µB(x)]

	 A ⊕ B = () ()A B A B∩ ∪ ∩ , then

	� µA ⊕ B (x) = Max {Min[µA(x), 1 – µB(x)], Min[1 – µA(x),
µB(x)]}

	 A =	 {(x1, 0.2), (x2, 0.7), (x3, 1), (x4, 0)}

	 B =	 {(x1, 0.5), (x2, 0.3), (x3, 1), (x4, 0.1)}

	 A =	 {(x1, 0.8), (x2, 0.3), (x3, 0), (x4, 1)}

	 B = 	 x1, 0.5), (x2, 0.7), (x3, 0), (x4, 0.9)}

	 A ∩ B 	= {(x1, 0.2), (x2, 0.7), (x3, 0), (x4, 0)}

	 A ∩ B	= {(x1, 0.5), (x2, 0.3), (x3, 0), (x4, 0.1)}

and as a consequence,

	 A ⊕ B	 = () ()A B A B∩ ∪ ∩ = {(x1, 0.5), (x2, 0.7), (x3, 0),
(x4, 0.1)}

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

x1 x2 x3 x4

0
0.1

0.3
0.2

0.5

0.7

0.1 Set A B⊕
Set B
Set A

FIGURE 11.22  A Disjunctive Sum

296 • Artificial Intelligence and Expert Systems

11.6.10  Disjoint Sum
	 µA∆B(x) = () ()A Bx xµ −µ

	 A = {(x1, 0.2), (x2, 0.7), (x3, 1), (x4, 0)}

	 b = {(x1, 0.5), (x2, 0.3), (x3, 1), (x4, 0.1)}

	 A ∆ B = {(x1, 0.3), (x2, 0.4), (x3, 0), (x4, 0.1)}

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

x1 x2 x3 x4

0

0.1
0.3

0.2

0.5

0.7

1.0 Set A B shaded area�
Set B
Set A

FIGURE 11.23  A Disjoint Sum

11.6.11  Difference
	 A = {(x1, 0.2), (x2, 0.7), (x3, 1), (x4, 0)}

	 B = {(x1, 0.5), (x2, 0.3), (x3, 1), (x4, 1)}

	 B = {(x1, 0.5), (x2, 0.7), (x3, 0), (x4, 0.9)}

	 A – B = A ∩ B = {(x1, 0.2), (x2, 0.7), (x3, 0), (x4, 0)}

x1 x2 x3 x4

0.2

0.7

B

A

1

0.7

0.5

0.3

0.2
0.1

Simple difference A–B:
shaded area

Set B

Set A

FIGURE 11.24  A Difference of Two Fuzzy Sets

Fuzzy Logic • 297

11.6.12  The Bounded Difference
	 µAθB(x) = Max[0, µA(x)] – µB(x)

	 A = {(x1, 0.2), (x2, 0.7), (x3, 1), (x4, 0)}

	 B = {(x1, 0.5), (x2, 0.3), (x3, 1), (x4, 0.1)}

	 A θ B = {(x1, 0), (x2, 0.4), (x3, 0), (x4, 0)}

x1 x2 x3 x4

0.4
B

A

1

0.7

0.5

0.3

0.2
0.1

Bounded difference : shaded area

Set B

Set A

FIGURE 11.25  The Bounded Difference of Fuzzy Sets

11.7	  Properties of A Fuzzy Set

	 • Involution A = A

	 • Commutativity  A ∪ B = B ∪ A

			 A ∩ B = B ∩ A

	 • Associativity	 (A ∪ B) ∪ C = A ∪ (B ∪ A)

			 (A ∩ B) ∩ C = A ∩ (B ∩ A)

	 • Distributivity	A ∩(B ∪ C) = (A ∩ B) ∪ (A ∩ C)

			 A ∪(B ∩ C) = (A ∪ B) ∩ (A ∪ C)

	 • Idempotent	 A ∪ A = A

			 A ∩ A = A

	 • Absorption	 A ∪ (A ∩ B) = A

			 A ∩ (A ∪ B) = A

	 • De Morgan’s Law A B∩ = A B∪

 			     A B∩ = A B∪

298 • Artificial Intelligence and Expert Systems

11.8	  Differences Between a Fuzzy Set and A Crisp Set

1.	

•	 A crisp set is also called a classical set. In the case of a crisp set, either
an element belongs to the set or it does not. For example, for the set of
integers, either an integer is even or it is not (it is odd).

•	 For example A = {apples, oranges, cherries, mangoes} is a crisp set
because each element of set A either belongs to A or not.

•	 Fuzzy set theory is different from classical set theory as the elements
of a fuzzy set admit some degree of membership, which means how
much an element belongs to a set. In fuzzy set theory, we assume that
all are members, e.g., all belong to the set up to a certain extent. Some
elements may belong at 80% and some 30%, which gives the measure
of belongingness or the degree of belongingness.

2.	

•	 Crisp set: Let X be the universe of discourse, and its element is
denoted as x. In classical set theory, crisp set A of X is defined as
function FA(x) that is

FA(x) :X → {0,1} where FA(x) =
1
0

if x A
if x A

∈
∉

For any element x of X, FA(x) is equal to 1 if x is an element of set A
and equal to 0 if x is not an element of A. Classical sets are called crisp sets:
either

OR

x ∈ A x ∉ A

•	 Fuzzy set: Fuzzy set A of universe X is defined by µA(x), which is
called a membership function of set A.

	 µA(x) : x → {0,1} where µA(x) = 1 if x is totally in A

	 µA(x) = 0 if x is totally in A

	 0<µA(x)<1 if x is partly in A

For any element x of universe X, the membership function equals the
degree to which x is an element of set A. These values between 0 and 1
represent the degrees of membership.

Fuzzy Logic • 299

For example, fuzzy set A = “sensible number of children”

	 X = {0, 1, 2, 3, 4, 5, 6} (discrete universe)

	 A = {(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)}

3.	

•	 Crisp set: In classical set theory, the membership of elements in a
set is assessed in binary terms according to a bivalent condition: an
element either belongs or does not belong to the set.

•	 Fuzzy set: The fuzzy set membership of an element is not assessed
in binary terms, as fuzzy logic is a form of multi-valued logic since
membership of an element of a fuzzy set can be 0,1, or between 0
and 1.

4.	

•	 Crisp Set: Consider a set X that contains all the real numbers
between 0 and 10 and a subset A of the set X that contains all
the real numbers between 5 and 8. Subset A is represented in the
figure below.

1

0 5 8 x

In the figure, the interval on the x-axis between 5 and 8 has the y-value
of 1. This indicates that any number in this interval is a member of the sub-
set A. Any number that has a y-value of 0 is considered to be a non-member
of the subset A.

Fuzzy Set

•	 Here is an example describing a set of young people using fuzzy
sets. In general, young people range in age from 0 to 20. But, if we
use this strict interval to define young people, then a person on his
20th birthday is still young (still a member of the set). But on the day
after his 20th birthday, this person is now old (not a member of the

300 • Artificial Intelligence and Expert Systems

young set). However, we can relax the boundary between the strict
separation of young and old. The figure below graphically illustrates a
fuzzy set of young and old people.

1

0.5

0 20 25 30 50 age

FIGURE 11.26  A Fuzzy Set of Young and Old People

Notice in the figure that people whose ages are >= 0 and <= 20 are
complete members of the young set (that is, they have a membership value
of 1). Also note that people whose ages are > 20 and < 30 are partial mem-
bers of the young set. For example, a person who is 25 would be young to
the degree of 0.5. Finally, people whose ages are >= 30 are non-members
of the young set.

5.	
For example, consider a set of tall men. The elements of the fuzzy set “tall
men” are all men, but their degrees of membership depend on their height,
as shown in Table 11.2. Suppose, for example, Mark at 205 cm tall is given
a degree of 1, and Peter at 152 cm is given a degree of 0. All men of inter-
mediate height have intermediate degrees. They are partly tall. Obviously,
different people may have different views as to whether a given man should
be considered as tall. However, our candidates for tall men could have the
memberships presented in table below.

It can be seen that the crisp set asks the question “Is the man tall?”
and draws a line at, say, 180 cm. Tall men are above this height and not
tall men are below it. In contrast, the fuzzy set asks “How tall is the man?”
The answer is the partial membership in the fuzzy set, for example, Tom
is 0.82 tall.

Fuzzy Logic • 301

Table 11.2  Degree of Membership of Tall Men

Name Height, cm
Degree of Membership

Crisp Fuzzy

Chris 208 1 1.00

Mark 205 1 1.00

John 198 1 0.98

Tom 181 1 0.82

David 179 0 0.78

Mike 172 0 0.24

Bob 167 0 0.15

Steven 158 0 0.06

Bill 155 0 0.01

Peter 152 0 0.00

1.0

0.8

0.6

0.4

0.2

0.0
150 160 170 180 190 200 210

Degree of
Membership Crisp Sets

Height, cm

1.0

0.8

0.6

0.4

0.2

0.0
150 160 170 180 190 200 210

Degree of
Membership Fuzzy Sets

Height, cm

FIGURE 11.27  The Difference Between Crisp and Fuzzy Logic

302 • Artificial Intelligence and Expert Systems

In this figure, the horizontal axis represents the universe of discourse,
that is, the range of all possible values applicable to a chosen variable. In
our case, the variable is the human height. According to this representation,
the universe of men’s heights consists of all tall men.

1

µ
µs µs

c µs µs
c1

S

SC SC

S

Crisp Fuzzy

FIGURE 11.28  Fuzzy and Crisp Sets

11.9	  Differences Between Boolean Logic and Fuzzy Logic

1.	

•	 Boolean Logic: This is a kind of logic with two values, 0 and 1.

•	 Fuzzy Logic: This is a form of multi-valued logic that can take the
values 0, 1, or between 0 and 1.

2.	

•	 Boolean Logic: Here, variables may take on true or false values.
Boolean logic only allows true or false values. An example of this could
be a computer game. A person is standing in a doorway while a thing
explodes. The character is hit or not hit if Boolean logic is used. For
example, for the set of integers, either an integer is even or it is not (it
is odd). Either you are in the US or you are not.

•	 Fuzzy logic: Fuzzy logic allows all things in between. In it, variables
may have a truth value that ranges in degree between 0 and 1. Fuzzy
logic has been extended to handle the concept of partial truth, where
the truth value may range between completely true and completely
false. Furthermore, when linguistic variables are used, these degrees
may be managed by specific functions. Fuzzy logic variables have a

Fuzzy Logic • 303

range between 0 and 1. Fuzzy logic is based on the degree of truth
rather than true or false Boolean logic. It includes 0 and 1 as extreme
cases of truth, but it also includes various states of truth in between
those values.

•	 For example, let a 100 ml glass contain 30 ml of water. We may consider
two concepts: empty and full. The meaning of each of them can be
represented by a certain fuzzy set. One might define the glass as being
0.7 empty and 0.3 full. Note that the concept of emptiness would be
subjective and thus would depend on the observer or designer. Another
designer might equally design a set membership function where the
glass would be considered full for all values down to 50 ml.

3.	

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
0 15 0 15Fuzzy logic Boolean logic

FIGURE 11.29  Differences Between Fuzzy and Boolean Logic

4.		

•	 Boolean Logic: In this, a crisp set is a well-defined collection of
elements in which an element either belongs to a set or not. For
example, A = {x | x is an even natural number}, so the element is either
even or not.

•	 Fuzzy Logic: Here, a fuzzy set provides the means to model the
uncertainty associated with vagueness, imprecision, and a lack of
information regarding a problem. Fuzzy sets contain elements that
have degrees of membership. For example,

♦♦ The motor is running really hot.

♦♦ Tom is a very tall guy.

♦♦ Electric cars are not very fast.

304 • Artificial Intelligence and Expert Systems

5.		

•	 Boolean Logic: This cannot represent vague concepts, and therefore
fails to give the answers for paradoxes.

•	 Fuzzy Logic: This refers to inexact reasoning. It is used to describe
fuzziness and represent vague concepts.

6.		

•	 Boolean Logic: It asks the question whether an element belongs to
set or not. It can be seen that the crisp set asks the question ”Is the
man tall?” and draws a line at, say, 180 cm. Tall men are above this
height and not tall men are below it.

•	 Fuzzy Logic: It asks how much an element belongs to a set. The
classical example in the fuzzy set theory is that of tall men. The
elements of the fuzzy set “tall men” are all men, but their degrees
of membership depend on their height. Different people may have
different views as to whether a given man should be considered tall.

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

150 160 170 180 190 200 210

150 160 170 180 190 200 210

Degree of
Membership Crisp Sets

Height, cm
Degree of
Membership Fuzzy Sets

Height, cm

FIGURE 11.30  Fuzzy Logic and Boolean Logic Differences in Graphical Form

Fuzzy Logic • 305

7.	

•	 Boolean Logic: Boolean or conventional logic uses sharp distinctions.
It forces us to draw lines between members of a class and non-
members. It makes us draw lines in the sand. For instance, we may
say, “The maximum range of an electric vehicle is short,” regarding a
range of 300 km or less as short, and a range greater than 300 km as
long. By this standard, any electric vehicle that can cover a distance
of 301 km (or 300 km and 500 m or even 300 km and 1 m) would be
described as long-range.

•	 Fuzzy Logic: Fuzzy logic reflects how people think. It attempts to
model our sense of words, our decision making, and our common
sense. As a result, it is leading to new, more human-like, intelligent
systems. For example, we say “Tom is tall” because his height is 181
cm. If we drew a line at 180 cm, we would find that David, who is
179 cm, is small. Is David really a small man or have we just drawn an
arbitrary line in the sand? Fuzzy logic makes it possible to avoid such
absurdities.

Exercises

Q1. Differentiate between fuzzy and Boolean logic.

Q2. What is a membership function of a fuzzy set?

Q3. Can a fuzzy membership be true and false at the same time?

Q4. Name three strengths and three weaknesses of fuzzy expert systems.

Q5. What is a linguistic variable?

Q6. What is the main difference between probability and fuzzy logic?

Q7. What types of operations can be performed on or with fuzzy sets?

Q8. Differentiate between a fuzzy set and a crisp set.

C H A P T E R12
FUZZY SYSTEMS

A fuzzy system is also called a rule-based system that is constructed from
a collection of linguistic rules. It involves non-linear mapping from input
to output. A fuzzy-rule-based system is most useful in modeling a complex
system that can be observed by humans.

12.1	  Fuzzy Rule

The fuzzy rule is the basic unit for capturing knowledge in a fuzzy system.
It is the backbone of a fuzzy inference system, and it is the most important
modeling tool based on fuzzy set theory. In 1973, Lotfi Zadeh published
his second most influential paper (Zadeh, 1973). This paper outlined a new
approach to the analysis of complex systems, in which Zadeh suggested cap-
turing human knowledge in fuzzy rules.

Antecedent

(IF Part)
Consequent
(THEN Part)

A Fuzzy rule has two parts

308 • Artificial Intelligence and Expert Systems

The antecedent describes the conditions and consequents that describe
the conclusion drawn when a condition gets satisfied. A fuzzy rule can be
defined as a conditional statement in the following form:

IF x is A

THEN y is B

Here, “x is A” is called the antecedent or premise.

“y is B” is called the consequence or conclusion.

In this example, x and y are linguistic variables; A and B are the linguis-
tic values determined by fuzzy sets on the universe of discourses X and Y,
respectively. An example is as follows:

Rule 1:

IF height is tall

THEN weight is heavy

Rule 2:	

IF pressure is high

THEN volume is small

The value of the output or a truth membership grade of the rule con-
sequent can be estimated directly from a corresponding truth member-
ship grade in the antecedent. The antecedent of a fuzzy rule can have
multiple parts. As a production rule, a fuzzy rule can have multiple
antecedents, combined using the connectives AND, OR, and NOT. For
example,

Rule 1:	

IF project_duration is long

AND

project_staffing is large

AND

project_funding is inadequate

THEN risk is high

Fuzzy Systems • 309

Rule 2:

IF service is excellent

OR food is delicious

THEN tip is generous

All parts of the antecedent are calculated simultaneously and resolved in a
single number using fuzzy set operations.

The consequent of a fuzzy rule can have multiple parts. The conse-
quent of a fuzzy rule can also include multiple parts, for instance,

 IF temperature is hot

 THEN hot_water is reduced;

 cold_water is increased

In this case, all parts of the consequent are affected equally by the anteced-
ent. The linguistic knowledge for a problem is given in the form of fuzzy
rules.

•	 If the blood pressure is above the target and decreasing slowly, then
reduce the drug infusion.

•	 If the pressure is high, then the volume is small.

•	 If the road is slippery, then driving is dangerous.

•	 If a tomato is red, then it is ripe.

Fuzzy rules are represented in matrix form, e.g., consider the following
fuzzy rules:

•	 If Angle is Zero and Angular vel is Zero

♦♦ then output Zero velocity

•	 If Angle is SP and Angular vel is Zero

♦♦ then output SN velocity

•	 If Angle is SN and Angular vel is Zero

♦♦ then output SP velocity

310 • Artificial Intelligence and Expert Systems

Table 12.1  A Representation of Fuzzy Rules in Matrix Form

Angle Vel Angle LN SN ZE SP LP

LN MP

SN SP

ZE ZE

SP SN

LP MN

What is the difference between classical and fuzzy rules?

A classical IF-THEN rule uses binary logic, for example,

Rule: 1

IF speed is > 100

THEN stopping_distance is long

Rule: 2

IF speed is < 40

THEN stopping_distance is short

The variable speed can have any numerical value between 0 and 220
km/h, but the linguistic variable stopping_distance can take either the value
“long” or “short.” In other words, classical rules are expressed in the black-
and-white language of Boolean logic.

However, we can also represent the stopping distance rules in a fuzzy
form:

Rule: 1

IF speed is fast

THEN stopping_distance is long

Rule: 2

IF speed is slow

THEN stopping_distance is short

Fuzzy Systems • 311

Here, the linguistic variable speed also has the range (the universe of
discourse) between 0 and 220 km/h, but this range includes fuzzy sets, such
as slow, medium, and fast. The universe of discourse of the linguistic vari-
able stopping_distance can be between 0 and 300 m and may include such
fuzzy sets as short, medium, and long. Thus, fuzzy rules relate to fuzzy sets.
Fuzzy expert systems merge the rules and consequently cut the number of
rules by at least 90%.

Before employing fuzzy rules to a model and analyzing a system, first
we have to formalize what is meant by the expression “if x is A, then y is B.”
This is sometimes abbreviated as

	 Α	 →	 Β

A fuzzy implication like A → B describes a relation between two vari-
ables, x and y. This suggests that a fuzzy IF-THEN rule be defined as a
binary fuzzy relation R on the product space X × Y.

12.1.1  Fuzzy Rules as Relations
A fuzzy rule can be defined as a binary relation with a membership
function.

	
R

A B→ = If x is A, then y is B.

	
(,) (,)R A B

Depends on how
to interpret A B

x y x y→

→

µ = µ


Fuzzy relation R is a 2D membership function, A, and the binary fuzzy
relation R is an extension of the classical Cartesian product, where each
element (x, y) ε X × Y.

	 R = { }((), ()) | ()Rx, y x, y x, y X Yµ ε ×

Examples
•	 x is close to y (x and y are numbers)

•	 x depends on y (x and y are events)

•	 x and y look alike (x and y are persons or objects)

•	 If x is large, then y is small (x is an observed instrument reading and
y is a corresponding control action)

312 • Artificial Intelligence and Expert Systems

40

30

20

10

0

Y

40

30

20

10

0

Y

0 5 10 0 5 10
x x

A CRISP RELATION A FUZZY RELATION

FIGURE 12.1  Crisp and Fuzzy Relations Showing X Close to Y

12.1.1.1  The Max-Min Composition

The max-min composition of two fuzzy relations R1 (defined on X and Y)
and R2 (defined on Y and Z) are as follows:

R : fuzzy relation defined on X and Y.

S	 : fuzzy relation defined on Y and Z.

. .R S : the composition of R and S.

A fuzzy relation defined on X and Z

X Y Z

Figure 12.2  Showing Max-min Composition of Relations R1 and R2

To compute the max-min composition,

	 µRas (x,z) = maxy min (µR (x, y), µs(y,z))

   = vy (µR (x, y)^ µs (µ, z))

Fuzzy Systems • 313

Here is an example of the max-min composition.

1 0.1 0.2 0.0 1.0
2 0.3 0.3 0.0 0.2
3 0.8 0.9 1.0 0.4

R a b c d

0.9 0.0 0.3
0.2 1.0 0.8
0.8 0.0 0.7
0.4 0.2 0.3

S a y
a
b
c
d

β

0.1 0.2 0.0 1.0
min 0.9 0.2 0.8 0.4
max 0.1 0.2 0.0 0.4

.

1 0.4 0.2 0.3
2 0.3 0.3 0.3
3 0.8 0.9 0.8

R S a Yβ

Properties of the Max-Min Composition

•	 Associativity:

	 R °(S °T) = (R ° S) ° T

•	 Distributivity over union:

	 R ° (S ∪ Τ) = (R ° S)∪ (R ° T)

•	 Weak distributivity over the intersection:

	 R ° (S ∩Τ) ⊆ (R ° S) (R ° S) ∩ (R ° T)

•	 Monotonicity:

 	 S ⊆ T ⇒ (R ° S) ⊆ (R ° T)

The max-min composition is not mathematically tractable; therefore,
other compositions, such as the max-product composition, have been pro-
posed.

314 • Artificial Intelligence and Expert Systems

12.1.1.2 Max-Product Composition

R : a fuzzy relation defined on X and Y

S : a fuzzy relation defined on Y and Z

. .R S : The composition of R and S.

A fuzzy relation defined on X and Z.

X Y Z

FIGURE 12.3  The Max-Product Composition

µRas (x,z) = max y (µr(x,y)µs (y,z))

In general, we have max ∗ compositions:

µR1.R2 (x,z) = 1 2[() ()]V
y R Rx, y y,z∗µ µ

Example – Max ∗ Compositions

R1: x is relevant to y

y = a y = β y = y y = δ

x = 1 0.1 0.3 0.5 0.7

x = 2 0.4 0.2 0.8 0.9

x = 3 0.6 0.8 0.3 0.2

R2: y is relevant to z

z = a z = b

y = a 0.9 0.1

y = β 0.2 0.3

y = y 0.5 0.6

y = δ 0.7 0.2

Fuzzy Systems • 315

How relevant is x = 2 to z = a?

	 X		 Y 	 Z

1

2

3

�

�

�

�

a

b

 µR1.R2 (R,a) = 0.7 (max - min composition)

 µR1.R2 (2,a)= 0.63 (max - product composition)

12.1.2  Interpretation of Fuzzy Rules
There are two ways to interpret fuzzy rules, that is, one is coupling and the
other is entailing.

y

B

A
x

y

B

A coupled with B A entails B

Two Ways to Interpret “If x is A, then y is B

A
x

FIGURE 12.4  Coupling and Entailing

Here is an example showing the difference between coupling and
entailing. Consider the fuzzy rule

If (profession is athlete) then (fitness is high).

Coupling: Athletes, and only athletes, have high fitness.

The “if” statement (antecedent) is a necessary and sufficient condition.

Entailing: Athletes have high fitness, and non-athletes may or may not
have high fitness.

The “if” statement (antecedent) is a sufficient but not necessary condition.

316 • Artificial Intelligence and Expert Systems

12.1.2.1  Coupling (A with B)

If we interpret a fuzzy implication F = A → B as “A coupled B” then

R = A → B = A × B = () () | ()BA
x y x, yµ ∗µ∫

where ∗ is a t-norm.

For example,

	 µR (x,y) = min (µA(x), µB(y))

12.1.2.2  Entails (Not A or B)

If we interpret a fuzzy implication F = A → B as “A entails B,” then it can
be written as four different formulas:

•	 Material implication

	 R = A → B = – A ∪ B		 µR (x, y) = max (1–µA (x), µB (x))

•	 Propositional calculus

	 R = A → B = – A ∪ (A ∩ B)	 �µR (x, y) = max (1–µA(x),
min (µA(x), µB(x)))

•	 Extended propositional calculus

	 R = A → B = (–A ∩ –B) ∪ B 	 µR (x, y) = �max (�1–max(µA(x),
µB(x)), µB(x))

•	 Generalization of modus ponens

12.2	  Fuzzy Reasoning

Fuzzy reasoning is an inference procedure that derives conclusions from
a set of fuzzy rules and known facts. For fuzzy reasoning, we have to first
study the compositional rule of inference, which plays key role in fuzzy
reasoning. Using the compositional rule of inference, we can formalize an
inference procedure, called fuzzy reasoning, upon a set (bank) of fuzzy IF-
THEN rules.

The basic rule of inference in traditional two-valued logic is the modus
ponens, according to which we can infer the truth of a proposition B from
the truth of A and the implication A ® B.

Fuzzy Systems • 317

For example (modus ponus),

	 Premise 1 (fact):x is A,

	 Premise 2 (rule):if x is A, then y is B,

	 Consequence (Conclusion):y is B.

If A is identified with “the tomato is red” and B with “the tomato is ripe,”
then if it is true that “the tomato is red,” it is also true that “the tomato is ripe.”

But in the case of human reasoning or fuzzy logic, the modus ponus is
applied in an approximate manner. For example, if we have same implica-
tion rule “IF tomato is red THEN it is ripe” and we know that “tomato is
more or less red,” then we may infer that “tomato is more or less ripe.”
This can be illustrated with help of the generalized modus ponus (it has the
modus ponus as a special case).

The generalized modus ponens (GMP) or fuzzy reasoning or approxi-
mate reasoning is as follows:

Premise 1 (fact) : x is A, then y is B,

Premise 2 (rule) : if x is A, then y is B,

Consequence (Conclusion) : y is B’

where A’ is close to A and B’ is close to B.

Let us discuss rules with different parts and how they are reasoned.

A Single Rule with a Single Antecedent

	 Rule : if x is A, then y is B

	 Fact : x is A’

	 Conclusion : y is B’

Here, there is only one rule with one antecedent part so the membership
function of the conclusion is calculated from the fact and rule. The proce-
dure is described below.

Max-Min Composition

	 µB’ (y) = maxx min (µA’(x), µR (x, y))

		 = ∨x (µA (x) ∧ µR (x, y))

		 = ∨x (µA’ (x) ∧µA (x) ∧µB (y))

		 = [∨x (µA’ (x) ∧µA (x))] ∧µB (y)

318 • Artificial Intelligence and Expert Systems

Firing
strength

A A�

B�

B

x

Firing Strength B = A º (A B)�� �

x
FIGURE 12.5  Approximate Reasoning for a Single Rule with a Single Antecedent

A Single Rule with Multiple Antecedents

	 Rule : if x is A and y is B, then z is C

	 Fact : x is A’ and y is B’

	 Conclusion : z is C’

µ(x) µ(y) µ(z)

A A�
B� B C

C� ?

zyx

FIGURE 12.6  A Single Rule with Multiple Antecedents

	 R	 = A × B → C

	 µR (x,y,z) = µ(A × B) × C (x, y, z)

		 = µA (x)^ µB(y)^µc (z)

The resulting expression is 	 C’ = (A’×B’) ° (A×B → C)

Thus the max-min composition is

	 µC′ (y) = maxx, y min (µA′ , B′ (x, y), µR (x, y, z))

	 	 = ∨x, y (µA′ , B′ (x, y) ∧µR(x, y, z))

		 = ∨x, y(µA′ (x) ∧µB′ (y) ∧µA(x) ∧µB(y) ∧µC(z))

		 = [∨x(µA(x) ∧µA′ (x))] ∧ [∨y (µB(y) ∧µB′ (y))] ∧µC(z)

Fuzzy Systems • 319

Firing Strength

µ(x) µ(y) µ(z)

A A�
B� B C

C� ?

zyx

FIGURE 12.7  Approximate Reasoning for a Single Rule with Multiple Antecedents

Multiple Rules with Multiple Antecedents

The interpretation of multiple rules is usually taken as the union of the
fuzzy relations corresponding to the fuzzy rules.

Rule 1:

if x is A1 and y is B1, then z is C1

Rule 2:

if x is A2 and y is B2, then z is C2

	 Fact : x is A’ and y is B’

	 Conclusion : z is C’

µ(x) µ(y) µ(z)

µ(x) µ(y) µ(z)

B1
C1A1A�

B�

zyx

B2 B�A2
A� C2

zyx C = ?�

FIGURE 12.8  Multiple Rules with Multiple Antecedents

We can employ fuzzy reasoning as an inference procedure to derive the
resulting output fuzzy set.

	 C’ = (A’ × B’) ° (R1 ∪ R2)

	 = [(A’ × B’) ° R1] ∪ [(A’ × B’) ° R2]

	 = C’1 ∪ C’2

320 • Artificial Intelligence and Expert Systems

µ(x) µ(y) µ(z)

µ(x) µ(y) µ(z)

µ(z)

A�

A�

A1

A2

B1 B�

B2 B�

C�1

C1

zyx

zyx

z

C�2

C2

M
ax

C = (A × B) º (R R)
= [(A × B) R] [(A × B) R]
= C C

�
�

1 2

1 2

1 2

� � �
� � � �
� � �

º º C = C C� � � �1 2

FIGURE 12.9  Approximate Reasoning for Multiple Rules with Multiple Antecedents

Thus, the overall process of fuzzy reasoning is divided into four steps:

•	 Degree of compatibility

Compare the known facts with the antecedent of the rule to find the degree
of compatibility with respect to each antecedent’s membership function.

•	 Firing strength

Combine the degree of compatibility with respect to the membership func-
tion in a rule using the fuzzy AND/OR operator to form a firing strength that
indicates the degree to which the antecedent part of the rule is satisfied.

•	 Qualified (induced) consequent membership functions

Apply the firing strength to the consequent membership function of a rule
to generate a qualified consequent membership function.

•	 Overall output membership function

Aggregate all qualified consequent membership functions to obtain the
overall output membership function.

Exercises

Q1.  What is a fuzzy rule?

Q2.  What are fuzzy relations, and does fuzzy logic support them?

Q3.  What are two ways of interpreting fuzzy relations?

Q4.  Explain fuzzy reasoning.

Q5.  What is entailment?

C H A P T E R13
FUZZY EXPERT SYSTEMS

13.1	  The Need for Fuzzy Expert Systems

Expert systems are computer programs that are designed to make use some
of the skills of an expert to non-experts. Such programs attempt to emulate,
in some way, an expert’s thinking patterns. For example, DENDRAL was
the first expert system developed in 1965, and it determined the molecular
structure from mass spectrometer data. MYCIN is an expert system used
for medical diagnosis. There are a number of approaches for simulating the
expertise of an expert: the rule-based approach, semantic nets, frames, and
neural networks. Of these, the most important are the rule-based system
and neural network.

In neural nets, there is no need to explicitly specify the thinking pat-
terns of an expert. Instead, two sets of data are required from the real
world. These data include all the inputs to the system, and the correct out-
puts correspond to these input values. The first set of data, the training set,
is used to train the neural network so that the correct outputs are produced
for each set of input values. The second set of data, the validation set, is
used after the neural net has been trained so that the correct answers are
produced using different input data. A disadvantage of the neural network
approach is that a lot of training sets are required.

In rule-based systems, it is necessary to explicitly specify the expert’s
knowledge and thinking patterns. Two people are needed for developing a
rule-based system. The first is the domain expert, who has the knowledge of
how to solve problems, but little idea of computer programming. The second

322 • Artificial Intelligence and Expert Systems

is a knowledge engineer, who is trained on the computer technology involved
and expert systems, but has little or no knowledge of the problem at hand.
Obtaining such knowledge and writing that knowledge in proper rules is
called the knowledge acquisition phase. The advantage of rule-based systems
(expert systems) is that there is no need for a large training set. However,
fuzzy expert systems have overtaken conventional expert systems.

Fuzzy expert systems are needed because of the flaws in conventional
expert systems, as a conventional expert system is insufficient in emulating
human thought patterns. Humans are able to deal with uncertainty and
ambiguities, but it is difficult for conventional expert systems to deal with
such things. Fuzzy logic (a fuzzy set) deals with imprecise data, vagueness,
and uncertainties. Fuzzy expert systems can replace conventional expert
systems by incorporating fuzzy concepts into the expert system. A fuzzy
system can emulate an expert’s rigid thinking patterns better than a con-
ventional expert system.

A fuzzy expert system is used under following circumstances:

•	 when there is no large training set

•	 when we are interested in how the output is derived from the input

•	 when we have a domain expert and knowledge engineer

A fuzzy expert system is a collection of membership functions, facts, and
rules (instead of Boolean logic) that are used to reason about data. A fuzzy
expert system is also called a fuzzy inference system (FIS). A fuzzy expert
system uses fuzzy logic concepts for making decisions rather than Boolean
logic concepts.

In the case of a fuzzy expert system, the knowledge engineer should be
familiar with fuzzy logic concepts and data-driven non-procedural languages.
Conventional languages like C and Fortran are procedural languages, that
is, the execution of the program statements occur in the order in which they
are written unless explicit transfers of control are executed. In data-driven
non-procedural rule-based programs, the firing of the rules does not follow
a sequence: the rules are fired when the data permits it. If the data satisfy
more than one rule at once, then a rule-conflict algorithm decides which rule
should be fired first. If some fireable rules are not picked for firing, then
such rules are placed on a stack for firing later. That is, a selected rule is first
fired, and then the program goes back looking for newly fireable rules. One
important advantage of a fuzzy expert system is that a fuzzy rule can be writ-

Fuzzy Expert Systems • 323

ten in natural language that is easily understandable by an expert. That is, we
can write a fuzzy rule in a fuzzy expert system using words like “very tall” or
“somewhat.” A fuzzy expert system provides a proper structured way to deal
with uncertainties and ambiguities by using these types of words in fuzzy
rules. For example, a fuzzy rule might include the idea “if height is very tall.”

The syntax of fuzzy rules in a fuzzy expert system is as follows:

	 IF x is A and y is B, THEN z is C

Here, x is A, y is B, and z is C; they are fuzzy statements. x and y are input
variables; z is an output variable; and A, B, and C are fuzzy sets. A,B, and C
are the linguistic values determined by the fuzzy sets on the universe of
discourses that were described in a previous chapter.

•	 The IF part of the rule “x is A and y is B” is called the antecedent
or premise, while the THEN part of the rule “z is C” is called the
consequent or conclusion. The antecedent describes the conditions
and the consequents describe the conclusion drawn when the
condition gets satisfied, that is, the antecedent part of the rule
describes to what degree the rule applies.

•	 Mostly, there is more than one conclusion per rule in a fuzzy expert
system, and the set of rules in a fuzzy expert system is known as the
knowledge base of the fuzzy expert system.

•	 One important feature of a fuzzy expert system is the concurrent
execution of fireable rules that causes a parallel operation. A parallel
system runs faster than a sequential system, but a sequential system
also has some advantages, so it’s necessary that fuzzy expert system
should utilize both modes, i.e., the parallel and sequential modes.

Fuzzification

Inference
Engine

Defuzzification

Knowledge
Base

Crisp Value

Crisp value

FIGURE 13.1  Structure of a Fuzzy Expert System

324 • Artificial Intelligence and Expert Systems

A fuzzy expert system requires two types of knowledge in its knowledge
base:

•	 Domain Knowledge: This is the knowledge of the human expert that
is stored in the knowledge base in the form of fuzzy rules and facts.

•	 Meta Knowledge: This is the knowledge of how to use that domain
knowledge, that is, how to use methods like the type of t-norm, s-norm,
implication and inference engine, and method of defuzzification.

There are three ways of obtaining domain knowledge:

•	 Incorporating human expert knowledge: The first method
of obtaining domain knowledge is incorporating human expert
knowledge into a knowledge base in the form of fuzzy IF….THEN
rules.

•	 Learning from examples: In this, a set of input–output data pairs
are used to train a system and then the resulting fuzzy system is used
as a fuzzy model of the main system. It is expected to have the same
input-output mapping. There are various ways of learning, such as
fuzzy clustering and table look-up schemes.

•	 Automatic optimization methods: In these methods, we obtain
domain knowledge by a search and optimization method, that is, we
search the available knowledge and then use optimization techniques
to find the appropriate knowledge for the knowledge base. There are
various optimization techniques, such as the genetic algorithm and
genetic programming.

13.2	  Operations on a Fuzzy Expert System

Here, we are going to explain the whole process of a fuzzy inference system
by using an example. There are three rules in the knowledge base of a fuzzy
expert system.

•	 Rules

♦♦ 1. If the service is poor or food is bad, then the tip is cheap.

♦♦ 2. If the service is good, then the tip is average.

♦♦ 3. If the service is excellent or the food is delicious, then the tip
is generous.

Fuzzy Expert Systems • 325

Crisp Input

Fuzzification

Fuzzy Input

Rule Evaluation

Fuzzy Output

Defuzzification

Crisp Output

Input Membership
Function

Rules/Inferences

Output Membership
Function

FIGURE 13.2  How a Fuzzy Expert System Works

•	 Input variables

♦♦ Service: represented by poor, good, or excellent

♦♦ Food: represented by bad or delicious

•	 Output Variable:

♦♦ Tip: represented by cheap, average, or generous

If the service is poor of food is
“bad” The “result” is a crisp.Rule 1

If service is excellent or food is
delicious then tip is generous.Rule 3

Rule 2 If service is good, then tip is
average.

Input 1
Service (0-10)

Input 2
Food (0-10)

Output
Tip (5-25%)

The inputs are crisp
(non-fuzzy) numbers
limited to a specific
range.

All rules are
evaluated in parallel
using fuzzy
reasoning.

The results of the rules
are combined and
distilled (defuzzified).

The resut is a crisp
(non-fuzzy) number.

Dinner for two
a 2 input, 1 out put, 3 rule system

�

FIGURE 13.3  A Complete Description of a Fuzzy Expert System

326 • Artificial Intelligence and Expert Systems

13.2.1  Fuzzification (Fuzzy Input)
Fuzzification is the first step for fuzzy reasoning in a fuzzy expert system,
and it is the base of the fuzzy system. In this step, the input and output of
the system are identified, the appropriate fuzzy rules are defined, and raw
data is used for deriving a membership function.

•	 The first step is to provide crisp inputs (non-fuzzy numbers), and,
by applying the appropriate membership functions, determine the
degree to which an input belongs to the fuzzy set.

•	 In the antecedent part of a fuzzy rule, the fuzzy statements are resolved
to a degree of membership between 0 and 1, that is, the output of the
fuzzification step is a fuzzy membership function that becomes the
input to the fuzzy inference engine.

♦♦ In the case of multiple parts of the antecedent, fuzzy operators
are applied and the antecedent is resolved to a single number
between 0 and 1.

•	 The antecedent can be joined using fuzzy operators like OR and AND.

♦♦ For OR – max

♦♦ For AND – min

For example, let the crisp input be “food=8;” then, this crisp input is fuzzi-
fied to each member of the linguistic set, like the “service is good,” “food is
bad,” and “service is poor.” That is, fuzzification returns to what extent the
food is delicious.

FIGURE 13.4  The Fuzzification of Input

The output of this fuzzification step is µ = 0.7 for the “delicious” mem-
bership function.

Fuzzy Expert Systems • 327

13.2.2  Fuzzy Operator
If the antecedent part of a fuzzy rule has more than one part, then we apply
the fuzzy operator to the result of the fuzzification, that is, we apply the
fuzzy operator to the membership function. After fuzzification, we came to
know about the degree to which each rule antecedent part has been satis-
fied. So, after applying the fuzzy operator, we get a single truth value for an
entire antecedent of each rule. There are varieties of fuzzy operators, like
AND (min), OR (max), and complement.

0.0 0.0

0.7

Result

0.7

food = 8service = 3

service is excellent food is deliciousor
Antecedent
of the rule

1. Fuzzify
inputs

2. Apply OR
operator (max)

Input 1 Input 2

excellent delicious

FIGURE 13.5  Application of a Fuzzy Operator

In this example, two crisp inputs are provided.

•	 Input 1

�Service=3, and the fuzzification step gives an output of 0.0 (member-
ship function values) for the “service is excellent” part of the antecedent.

•	 Input 2

�Food=8, and the fuzzification step gives an output of 0.7 (membership
function value) for the “food is delicious” part of the antecedent.

•	 Since both parts of the antecedent are joined using OR, the fuzzy logic
OR operator is applied to the values of 0.0 and 0.7, and it selects the
maximum of the two values (that is, 0.7). The final rule for the third
part of the entire antecedent gives a value of 0.7, which is then applied
to the consequent part of the rule in further steps.

13.2.3  Fuzzy Inferencing (Implication)
In fuzzy inferencing, the first thing that we need to keep in mind is that
there is a weight of every rule. In general, the weight is 1, but there is a
need to revise the weight of the rule from time to time to make it other than

328 • Artificial Intelligence and Expert Systems

1 relative to other rules. Inferencing is only done after the weight of each
rule is properly assigned.

In the inference method,

♦♦ The truth value of the entire antecedent (0.7 in the previous
step) of each rule is computed, and that is applied to the
conclusion part of each rule (that is, the rules are evaluated).

♦♦ This results in one fuzzy set for each rule. The output fuzzy
set is truncated depending on the degree of the “truth” of the
antecedent part of rule by using the implication method.

♦♦ The output of the implication method is a fuzzy set, and it is done
for each rule.

♦♦ If the consequent of a rule has many parts, then all parts
of the consequents are equally affected by the result of the
antecedent.

♦♦ Either we scale the fuzzy set or truncate it. For the scaling prod
(PRODUCT), the implication method is used and for truncating,
the min (minimum) implication method is used.

♦♦ The MIN and PRODUCT are two most important inference
methods or inference rules. In the MIN method of inferencing,
we clip off the output membership function at a height according
to the premise’s rule computed degree of truth. In the PRODUCT
method of inferencing, we scaled the output membership function
according to the premise’s rule computed degree of truth.

generous

deliciousexcellent

food = 8service = 3

Result of
implication

if service is excellent or food is delicious then tip is generous

1. Fuzzify
inputs

2. Apply OR
operator (max)

3. Apply implication
operator (min.)

Antecedent Consequent

Input 1 Input 2

FIGURE 13.6  Fuzzy Implication (Inference)

Fuzzy Expert Systems • 329

In Figure 13.6, Rule 3 is evaluated, that is, the result of antecedent of
rule (0.7) is applied to the consequent part of the rule (“tip is generous”).
The obtained result is then truncated using the min implication method,
and this results in a truncated fuzzy set.

13.2.4  Aggregate All Output
In this step, we combine the result of the implication of each rule. Aggre-
gation is the process of combining the output of each rule (fuzzy set) into a
single fuzzy set. The aggregation step is done once only before the final step
(defuzzification). The input into the aggregation process is the list of truncated
or scaled output functions (output of the implication process for each rule)
and the output of the aggregation is the fuzzy set for each output variable.

The most commonly used aggregation operators are

♦♦ the maximum: point-wise maximum overall of the fuzzy sets

♦♦ the sum: (point-wise sum overall of the fuzzy sets)

♦♦ the probabilistic sum.

1. Fuzzify
inputs

2. Apply OR
operator (max)

3. Apply implication
operator (min.)

25%0

25%0

25%0

0

0

0

0 25%

25%

service = 3 food = 8

Input 1 Input 2

Result of
aggregation

4. Apply
aggregation

method (max)

1.

2.

3.

if service is poor or food is rancid then tip is cheap

if service is good then tip is average

if service is excellent or food is delicious then tip is generous

25%

25%

rule 2 has no
dependancy
on input 2

FIGURE 13.7  An Aggregation of a Fuzzy Set of Each Rule to a Single Fuzzy Set

330 • Artificial Intelligence and Expert Systems

13.2.5  Defuzzification
After the completion of the reasoning step, the defuzzification step is
used to present the output of fuzzy reasoning in a form understandable to
humans. There are basically two categories of defuzzification: arithmetic
defuzzification and linguistic approximation.

In arithmetic defuzzification, we use a mathematical method to extract
a single crisp value in the universe of discourse. This category of defuzzi-
fication is used in areas of control engineering where there is a need for a
crisp result.

The second category of defuzzification is linguistic approxima-
tion, in which the consequent variable’s term set is compared against
the actual output set in a variety of combinations until the “best”
representation is obtained in natural language. Linguistic approxi-
mation defuzzification is used in expert system advisory applications
where human users view the output. Mostly, we use arithmetic defuzzi-
fication.

In arithmetic defuzzification, the output of the aggregation step acts
as the input (aggregated fuzzy set) and gives a single crisp number as an
output. This process is complex since it is not possible to directly translate
a fuzzy set into a crisp value.

x1 x2 x3 x4 x5 x6 x7 x8 x9

25%

u(x)1

0

u(x)2 u(x)3

u(x)4 u(x)5

u(x)6 u(x)7 u(x)8

u(x)9

tip = 16.7%

Result of
defuzzification

Defuzzify the
aggregate output

(centroid)

x · u(x)i i�
i = 1

9

u(x)i�
i = 1

9g = = 16.7

FIGURE 13.8  The Centroid Defuzzification Method

Fuzzy Expert Systems • 331

•	 Commonly used defuzzification methods are the centroid and
maximum.

♦♦ In the centroid method, the crisp value of the output variable is
computed by finding the variable value of the center of gravity of
the membership function for the fuzzy value.

♦♦ In the maximum method, one of the variable values at which the
fuzzy set has its maximum truth value is chosen as the crisp value
for the output variable.

•	 Some other methods for defuzzification are the bisector, middle
of maximum (mom) (the average of the maximum value of
the output set), largest of maximum (lom), and smallest of
maximum (som).

then

then

and

and

2. if

1. if

input 1 input 2

output

Interpreting the
Fuzzy Inference

Diagram

FIGURE 13.9  Fuzzy Inference Diagram Showing the Whole Inference Process

In Figure 13.9, the flow of data goes up from the inputs on the lower
left, then across each row, or rule, and then down the rule outputs to finish
on the lower right.

Fuzzy inference systems have a variety of applications, such as in auto-
matic control, medical applications, science, data classification, decision
analysis, expert systems, and computer vision.

332 • Artificial Intelligence and Expert Systems

13.3	  Fuzzy Inference Systems

There are two types of fuzzy inference systems. Both methods have the
same steps that were explained above.

13.3.1 Mamdani Fuzzy Inference Method
In the Mamdani inference method, the rules are of the following form: IF
x is A and y is B, and THEN z is C.

Here, A, B, and C are fuzzy sets, x and y are input variables, and y is the
output variable. The Mamdani system finally output one or more fuzzy sets,
which are then defuzzified to obtain the crisp output.

Mamdani’s fuzzy inference technique is the most commonly used tech-
nique. Mamdani’s method was proposed in 1975 by Ebrahim Mamdani for con-
trolling a steam engine and boiler combination by developing a set of linguistic
control rules. The rules were obtained from the human operators’ experiences.

The Mamdani inference method is used in applications where the
fuzzy rules are a direct result of the human expert’s advice, which are then
expressed in the form of fuzzy rules.

Steps in the Mamdani Inference Method

•	 Fuzzification

•	 Rule evaluation

•	 Aggregation of rule output

•	 Defuzzification

Let us explain whole process using three fuzzy rules:

•	 Rule: 1				 Rule: 1

IF x is A3 OR y is B1 THEN z C1	� IF project _funding is ade-
quate OR

					� project_staffing is small THEN
risk is low

•	 Rule: 2				 Rule: 2

IF x is A2 AND y is B2 THEN z is C2	� IF project_funding is marginal
AND project_staffing is large
THEN risk is normal

Fuzzy Expert Systems • 333

•	 Rule: 3				 Rule: 3

IF x is A1 THEN z is C3		� IF project _funding is inad-
equate THEN risk is high	

•	 Rules

1.	IF project_funding is adequate OR project_staffing is small,
THEN risk is low.

2.	IF project_funding is marginal AND project_staffing is large,
THEN risk is normal.

3.	IF project_funding is inadequate, THEN risk is high,

•	 Input variables

♦♦ Project_funding: represented by adequate, inadequate, and
marginal

♦♦ Project_staffing: represented by small and large

•	 Output Variable:

♦♦ Risk: represented by low, normal, and high

Fuzzification

The first step is to provide crisp inputs (non-fuzzy numbers) and by apply-
ing the appropriate

•	 membership functions, determine the degree to which an input
belongs to a fuzzy set.

Crisp Input
x1

Crisp Input
y1

A1 A2 A3 B1 B2
1

0.5
0.2

0 0
0.1

0.7
1

Yy1Xx1
µ(x = A1) = 0.5
µ(x = A2) = 0.2

µ(y = B1) = 0.1
µ(y = B2) = 0.7

FIGURE 13.10  Fuzzification

334 • Artificial Intelligence and Expert Systems

In Figure 13.10, two crisp inputs are provided, x1 and x2 (project_fund-
ing, project_staffing), to determine how much these inputs belong to fuzzy
sets A1, A2 and B1, B2. The outputs of the fuzzification step are the mem-
bership function values (0.5, 0.2, 0.1, and 0.7 are all membership function
values obtained from the crisp inputs).

Apply Fuzzy Logic Operators

•	 Fuzzy logic operators are only applied if a fuzzy rule has multiple parts
of antecedents. Since the above fuzzy rules have multiple antecedents,
there is a need to apply a fuzzy operator (AND or OR) to obtain a
single number.

The union of the fuzzy sets A and B (using the OR operator) is a fuzzy
set defined by the membership function: µAUB(x) = Max (µA(x),µB(x)). The
intersection of fuzzy sets A and B(AND operator) is a fuzzy set defined by
the membership function:

	 µA ∩B(x) = Min(µA(x),µB(x))

•	 In Rule 1, the operator OR is used and in Rule 2, the operator AND is
used. In Rule 1, we find maximum of the membership function values
and in Rule 2, we find minimum of the membership function values
to obtain a single number that represents the entire antecedent result.

•	 The second step is to take the fuzzified inputs,	 µ(x=A1) = 0.5, µ(x=A2) =
0.2, µ(y=B1) = 0.1, and µ(y=B 2) = 0.7, and apply operators to obtain a single
number.

1 1 1

0 0 0

0.10.0

0.20.2

1 1 1

x1 X y1 Y Z

OR
(max)

C1 C2 C3

C1 C2 C3

B1A3

0 0 0x1 X y1 Y Z

B2A2 AND
(min)

A1 C1 C2 C30.5 0.5
1

0 Z

1

0 x1 X

Rule 1: IF x is A3 (0.0) OR y is B1 (9.1) THEN z is C1 (0.1)

Rule 2: IF x is A2 (0.2) AND y is B2 (0.7) THEN z is C2 (0.2)

Rule 3: IF x is A1 (0.5) THEN z is C3 (0.5)

0.1

0.7

FIGURE 13.11  Application of Fuzzy Operators

Fuzzy Expert Systems • 335

Fuzzy Implication (Inference)

•	 The truth value of the entire antecedent of each rule is computed and
that is applied to the conclusion part of each rule (that is, the rules are
evaluated).

•	 This results in one fuzzy set for each rule. The output fuzzy set is
truncated depending on the degree of the “truthfulness” of the
antecedent part of the rule by using the implication method.

•	 The output of the implication method is a fuzzy set, and it is done for
each rule.

•	 If the consequent of a rule has many parts, then all parts of the
consequents are equally affected by the result of the antecedent.

•	 Either we scale the fuzzy set or truncate (clipping) it. For scaling prod
(Product), the implication method is used and for truncating, the MIN
(minimum) implication method is used.

•	 In case of clipping, the clipped fuzzy set loses some information but
clipping is still preferred because it is less complex.

C2 C2

0.2

0.0

0.2

0.0
Z Z

1.0 1.0
Degree of Membership Degree of Membership

FIGURE 13.12

Aggregation of All Output

In this step, we combine result of the implication of each rule. Aggrega-
tion is the process of combining the output of each rule (fuzzy set) into a
single fuzzy set. The aggregation step is done once only before the final step
(defuzzification). The input to the aggregation process is the list of trun-
cated or scaled output functions (the output of the implication process for
each rule) and the output of the aggregation is a fuzzy set for each output
variable.

336 • Artificial Intelligence and Expert Systems

C1 C2 C3
1 1 1

0.1
0 0 0 0 ZZZZ

0.2
0.5 0.5

0.1
0.2

z is C1 (0.1) z is C2 (0.2) z is C3 (0.5) �
FIGURE 13.13  Aggregation of the Rule Output

Defuzzification

In defuzzification, the output of the aggregation step acts as input
(aggregated fuzzy set) and gives a single crisp number as an output. This
process is complex, since it is not possible to directly translate a fuzzy set
into a crisp value.

There are several defuzzification methods, but the most popular one is
the centroid technique. It finds the point where a vertical line would slice
the aggregate set into two equal masses. The center of gravity (COG) can
be calculated as follows:

COG =
()

()

b

xdA
a
b

A
a

x

x d

µ

µ

∫

∫





Center of Gravity (COG)

(0 10 20) 0.1 (30 40 50 60) 0.2 (70 80 90 100) 0.5COG =
0.1 0.1 0.1 0.2 0.2 0.2 0.

2 0.5 0.5 0.5 0.

7.
5

6 4+ + × + + + + × + + + + ×
+ + + + + + +

=
+ + +

1.0

0.8

0.6

0.4

0.2

0.0
0 10 20 30 40 50 60 70 80 90 100

Z67.4

Degree of
Membership

FIGURE 13.14  The Calculation of the COG

Fuzzy Expert Systems • 337

In Figure 13.14, the crisp output is obtained by applying the Mamdani
method of inference to the above defined three rules.

13.3.2 � Sugeno Inference Method (TSK Fuzzy Model of Takagi,
Sugeno, and Kang)

In Mamdani-style inference, there is a need to apply the centroid method
of defuzzification to find the centroid of a two-dimensional shape, but this
is not efficient from a computation point of view. Michio Sugeno suggested
another method of inference. A single spike, called a singleton, is used as
the membership function of the rule consequent. In the Sugeno method,
the rule is in the following form:

IF x is A and y is B THEN z = f (x,y)

Here, A and B are the fuzzy set in the antecedent and x and y are the input
variables (linguistic variables), while z = f (x, y) is a crisp function in the
consequent part of the rule.

The Sugeno method and Mamdani method rules differ in their conse-
quent part. In the Mamdani method, the rules have a fuzzy set in the con-
sequent part of rule, but in the Sugeno method, a mathematical function of
the input variables is used in the rule’s consequent part.

In the Sugeno method, z = f(x, y) is a polynomial in x and y. The order
of the TSK model is defined by the order of the polynomial.

•	 In zero-order TSK models, z is a constant.

	 Sugeno Type 1

•	 If X is small and Y is small, then z = – x + y + 1 (Rule)

	 Sugeno Type 0

•	 In a zero-order Sugeno fuzzy model, the fuzzy rule is in the following
form:

		 IF x is A AND	 y is B, THEN z is k

where k is a constant.

In this case x, y, and z are linguistic variables and A and B are fuzzy sets;
the output of each fuzzy rule is constant. All consequent membership func-
tions are represented by singleton spikes. For example,

IF X is small and Y is small, THEN z = 5 (rule)

338 • Artificial Intelligence and Expert Systems

In the Sugeno method, the central average defuzzifier is used.

Steps in the Sugeno Inference Method

•	 Fuzzification

•	 Rule evaluation

•	 Aggregation of rule output

•	 Defuzzification

That means the Sugeno method also follows four steps, as in the Mam-
dani method, for inferencing. Let us explain the Sugeno method of infer-
ence by taking an example of the rules.

Rule 1: IF x is A3 OR y is B1 THEN z is k1

Rule 2: IF x is A2 AND y is B2 THEN z is k2

Rule 3: IF x is A1 THEN z is k3

Here, x and y are input variables, A1, A2, A3, B1, and B2 are fuzzy sets.

Z is the output variable and k1, k2, and k3 are constants.

1 1 1

0 0 0

0.10.0

0.20.2

1 1 1

x1 X y1 Y Z

OR
(max)

B1A3

0 0 0x1 X y1 Y Z

B2A2 AND
(min)

A1 0.5 0.5
1

0 Z

1

0 x1 X

Rule 1: IF x is A3 (0.0) OR y is B1 (0.1) THEN z is k1 (0.1)

Rule 2: IF x is A2 (0.2) AND y is B2 (0.7) THEN z is k2 (0.2)

Rule 3: IF x is A1 (0.5) THEN z is k3 (0.5)

k1

k2

k3

0.7

FIGURE 13.15  The Sugeno Style Rule Evaluation

Figure 13.15 shows the fuzzification of the crisp input, fuzzy operator,
and fuzzy implications, but in the Mamdani method, the fuzzy set is the
output of the fuzzy implication step.

Fuzzy Expert Systems • 339

In the Sugeno method, the output of the fuzzy implication step is not
a fuzzy set.

z is k1 (0.1) �z is k2 (0.2) z is k3 (0.5)

0 k1 Z 0 k2 Z 0 k3 Z 0 k3 Zk2k1
0.1 0.2

0.5 0.5 0.2
0.1

111 1

FIGURE 13.16  The Aggregation of All Rules’ Output

	 WA =
1 1 2 2 3 3

1 2 3
k k k k k k

k k k
µ()× + µ()× + µ()×

µ() + µ() + µ()

	 = 0.1 20 0.2 50 0.5 80
0.1 0.2 0.5

× + × + ×
+ +

 = 65

0 z1 Z

Crisp Output
z1

FIGURE 13.17  The Weighted Average Calculation and Defuzzification Step for
Obtaining Crisp Output

13.3.3 Choosing the Inference Method
If non-numeric information is required in the result, then we use the Mam-
dani method. The Mamdani method is the most commonly used method, as
fuzzy rules are the direct result of the human expert’s advice, which are then
expressed in the form of fuzzy rules. That is, human expertise is described
in a human understandable manner. However, the Mamdani method is not
computationally effective, that is, it has the burden of computation.

The Sugeno method is a good choice for control problems as it is a
computationally effective method of inference. If processing speed and
memory usage matter, then the Sugeno method is a good choice.

340 • Artificial Intelligence and Expert Systems

13.4	  The Fuzzy Inference Process in a Fuzzy Expert System

The general meaning of inferences is to extract or draw some con-
clusions from the existing data. Fuzzy inference also means the same
thing, that is, it is about drawing some conclusion from the existing data
(input values and truth values) by using fuzzy logic concepts under the
condition of uncertainties and ambiguities. Such inferred conclusions
are then used in making decisions. So, fuzzy inference means mapping
from a given input to an output using fuzzy logic concepts. Fuzzy infer-
ence in a fuzzy expert system differs from conventional logical infer-
ence, as in fuzzy inference, the modification of data is done by using
fuzzy rules.

e.g., IF (P) THEN (B’ = B)

Here, P is the antecedent part of the rule, B is the existing data; B’ is
the revised data, with a different truth value.

There are possible three types of inference in a fuzzy expert system.

13.4.1 Monotonic Inference
In monotonic inference, the truth value of the conclusion part may
increase or remain the same, but it can’t decrease, e.g., let the grade of
membership of a fuzzy set B be 0.9. Now, a rule fires with the antecedent
confidence of 0.4. In monotonic inference, this new information should
be discarded and the rule would fail. The grade of membership of B
would remain at 0.9.

The formula for B’, the new truth value of B’, using monotonic infer-
ence is B’ = P OR B, where P is the antecedent truth value.

•	 If A and A’ represent single-valued data (integers, floats, strings), with
the same value but different truth values A and A’, then

	 P = max(A, A’)

•	 If A and A’ are discrete fuzzy sets, fuzzy numbers, or membership
functions,

	 P = max(A(x), A’(x)) for every x in A, A’

Monotonic reasoning is useful when modifying values of scalar data or
grades of membership of discrete fuzzy sets.

Fuzzy Expert Systems • 341

13.4.2 Non-Monotonic Inference
In non-monotonic inference, the truth value of the conclusion part may
increase, decrease, or remain unchanged. For example, let the grade of
membership of a fuzzy set B be 0.9. Now, a rule fires with the antecedent
confidence of 0.4. In non-monotonic inference, the rule would not fail
and the grade of membership of B would decrease to 0.4. But if the new
rule fires with a confidence of 1.0, we would increase the truth value of
B to 1.0

•	 For single-valued data, a formula for B’, using non-monotonic
inference is

	 B’ = P

•	 If B and B’ are not single-valued data, the formula for B’, using non-
monotonic inference is

	 B’j(x) = A’ (x) AND A(x)

Non-monotonic reasoning is useful when modifying truth values
directly.

13.4.3  Downward Monotonic Inference
In downward monotonic inference, the truth value of the conclusion part
may decrease or remain the same, but it can’t increase. A formula for B’, the
new truth value of B, using downward monotonic inference is

	 B’ = P AND B

Downward monotonic reasoning is useful when combining the grade of
membership of a linguistic variable with its membership function prior to
defuzzification.

13.5	  Types of Fuzzy Expert Systems

13.5.1  Fuzzy Control
Fuzzy control has been widely accepted, first in Japan and then through-
out the world, after fuzzy process control was first successfully achieved by
Mamdani. A fuzzy control system follows the same steps of inference as
described above (fuzzification, fuzzy implications, aggregation of rule out-
put, and defuzzification), that is, it accepts crisp numbers as input, then the
fuzzification step translates the input numbers into linguistic terms such as

342 • Artificial Intelligence and Expert Systems

slow, medium, and fast (fuzzification). The rules then map the input lin-
guistic terms onto similar linguistic terms describing the output. Finally, the
output linguistic terms are translated into a crisp output number (defuzzifi-
cation). A typical fuzzy control rule might be

IF input1 is High AND input2 is Low THEN output is Zero

A fuzzy control system only deals with numeric data because the domain
of a fuzzy control system is well defined.

13.5.2  Fuzzy Reasoning
Fuzzy reasoning can deal with both numeric and non-numeric data, as the
domain is not clearly defined. The fuzzy reasoning system also has the same
four steps of reasoning. Here is the syntax for rules of the fuzzy reasoning
system:

IF symptom is Depressive and duration is about 6 THEN
diagnosis is Major_depression

This rule is different from fuzzy control rules, as in fuzzy control
rules, the input symbol can only be numeric. In the case of fuzzy reason-
ing, the symptom is a set of linguistic terms. “Depressive” is a member of
the linguistic term set. Similarly, “diagnosis” in the fuzzy control rule must
have a scalar value, but in fuzzy reasoning, “diagnosis” is a set of linguistic
terms.

13.6	  Fuzzy Controller

A fuzzy control system is that system in which fuzzy logic is embedded
into a control system that makes it different from conventional control sys-
tems. We know that human beings have the knowledge of how to control
a control system, so by converting human knowledge into rules, a fuzzy
control system can be made. Fuzzy control systems provide a technique for
representing, manipulating, and implementing a human’s heuristic knowl-
edge about how to control a system. In a fuzzy control system, human expert
knowledge in the form of fuzzy rules is used in designing the controller to
control a complex process. That is, fuzzy rules, approximate reasoning, and
fuzzy linguistic variables are used in designing a fuzzy controller. The con-
cepts of fuzzy logic provide a way that is efficient and resourceful to solve
complex control processes.

Fuzzy Expert Systems • 343

In fuzzy control, fuzzy linguistic variables are combined with fuzzy
logic. A fuzzy controller is strongly based on fuzzy logic concepts and also
uses differential equations, while differential equations are only the base of
a conventional control system. In fuzzy control, more focus is on using heu-
ristics, that is, a focus on the use of rules to represent how to control a plant
rather than ordinary differential equations (ODE). This approach has some
advantages in that the representation of knowledge in rules seems more
eloquent and natural to some people. A fuzzy controller is fuzzy code that
is designed for controlling complex real time processes. Fuzzy controllers
can be incorporated into anything, from small circuits to large mainframe
computers. Fuzzy controllers are used for temperature control and in anti-
brake systems.

Understand Physical System
and Control Requirements

Develop a Linear Model of
Plant Sensors and Actuators

Determine a Simplified
Controller from Control Theory

Develop an Algorithm
for the Controller

Simulate, Debug, and
Implement Design

Understand Physical System
and Control Requirements

Design the Control for
Using Fuzzy Rules

Simulate, Debug, and
Implement Design

Conventional controller Fuzzy controller

FIGURE 13.18  The Difference Between a Conventional Control System and Fuzzy
Controller

Inference
mechanism

Rule–base

Process

Inputs
u(t)

Outputs
y(t)

Reference input
r(t)

Fu
zz

ifi
ca

tio
n

D
ef

uz
zi

fic
at

io
n

Fuzzy Controller

FIGURE 13.19  Fuzzy Controller Architecture

344 • Artificial Intelligence and Expert Systems

y(t) is the plant output, u(t) is the process input, and the reference
input to the fuzzy controller is denoted by r(t).

Figure 13.19 clearly shows that a fuzzy controller works in a closed loop
system. That is, the fuzzy controller gathers plant output data y(t), com-
pares it to the reference input r(t), and then decides what the plant input
u(t) should be to ensure that the performance objectives will be met.

It is the control engineer who gathers information on how the fuzzy
controller should act in the closed-loop system. There are two ways of get-
ting information: either obtain the needed information from a human expert
or, sometimes, the control engineer will write down the rules for the fuzzy
controller without any expert help. These “rules” basically say, “If the plant
output and reference input are behaving in a certain manner, then the plant
input should be some value.” Then, a whole set of such “IF-THEN” rules
are loaded into the rule-base, and an inference strategy is chosen. The sys-
tem is then ready to be tested to see if the closed-loop specifications are met.

13.6.1 Components of a Fuzzy Controller
There are four components of fuzzy controllers: rule base, inference mech-
anism, fuzzification interface, and defuzzification interface.

13.6.1.1 Rule Base

The rule base is a depository of the fuzzy IF–THEN rules that are used
for making decisions. Knowledge of how to control a process is stored in
the rule base in the form of rules. That knowledge can be obtained from a
human expert by the control engineer or the control engineer can develop
control rules by studying the plant’s dynamics. For example, in the cruise
control problem, knowledge can be obtained from a human expert, or if
someone has experience in driving, then he can write the rule himself with-
out expert help. For instance, one rule that a human driver may use from
his driving experience is “If the speed is lower than the set-point, then press
down further on the accelerator pedal.” A rule that would represent even
more detailed information about how to regulate the speed would be “If
the speed is lower than the set-point AND the speed is approaching the
set-point very fast, then release the accelerator pedal by a small amount.”

This second rule characterizes our knowledge about how to make sure
that we do not overshoot our desired goal (the set-point speed). It is better
to load very detailed expertise into the rule base to enhance our chances of

Fuzzy Expert Systems • 345

obtaining better system performance. To write rules for the rule base, the
control engineer will use a linguistic description of natural language that is
used by an expert for describing how to best control the plant. After writing
all the rules using linguistic variables, these are loaded into the rule base.

The syntax of a control rule is as follows:

IF x is A and y is B THEN z is C

Here x, y, and z are linguistic variables representing process state vari-
ables and control variables, and A, B, and C are linguistic values of the
linguistic variables.

For example, “IF angle is Z and angular velocity is NL THEN speed is
NL.”

Another form of the control rule is as follows:

Ri: IF x is Ai, …. AND y is Bi THEN z = fi (x, …,y)

where fi (x, …,y) is a function of the process state variables x, …, y.

Both fuzzy control rules have linguistic values as inputs and either lin-
guistic values or crisp values as the output.

Consider the inverted pendulum control problem. Here, y denotes the
angle that the pendulum makes with the vertical (in radians), l is the half-
pendulum length (in meters), and u is the force input that moves the cart (in
Newtons). We have the user denote the desired angular position of the pen-
dulum. The goal is to balance the pendulum in the upright position (i.e., r =
0), when it initially starts with some non-zero angle off the vertical (i.e., y ≠ 0).

u

21

y

FIGURE 13.20  An Inverted Pendulum

346 • Artificial Intelligence and Expert Systems

Let us assume that the expert says that she or he will use

	 e(t) = r(t) – y(t) and d
dt

 e(t)

as the variables on which to base decisions for controlling the pendu-
lum on the cart.

Now, the control engineer, by using linguistic description, can convert
these equations into rules. For the inverted pendulum,

“error” describes e(t)

“change-in-error” describes d
dt

 e(t)

“force” describes u(t).

Now, let us assume for the pendulum example that “error,” “change-
in-error,” and “force” take on the following values, called linguistic values.

“neglarge”

“negsmall”

“zero”

“possmall”

“poslarge”

We are using “negsmall” as an abbreviation for “negative small in size” and so on
for the other variables. Such abbreviations help us keep the linguistic descrip-
tions short yet precise. For an even shorter description, we could use integers:

“-2” to represent “neglarge”

“-1” to represent “negsmall”

“0” to represent “zero”

“1” to represent “possmall”

“2” to represent “poslarge”

Now we will use the above linguistic quantification to specify a set of rules
(a rule-base) that captures the expert’s knowledge about how to control the
plant. For example,

IF error is neglarge and change-in-error is neglarge THEN force is
poslarge

Fuzzy Expert Systems • 347

A convenient way to list all possible rules for the case where there are
not too many inputs to the fuzzy controller is to use a tabular representation.

13.6.1.2  Fuzzification

This interface modifies the inputs so that they can be interpreted and com-
pared to the rules in the rule-base. The fuzzifier transforms crisp measured
data (e.g., the speed is 10 mph) into suitable linguistic values (i.e., in the
fuzzy sets, for example, the speed is too slow).

It converts the controller inputs into a fuzzy set that the inference
mechanism can easily use to activate and apply rules. In this step, we have
to use fuzzified the data and create membership values for that data and put
them into the fuzzy set. For example, in the case of the inverted pendulum
problem, fuzzification is defined as follows:

The fuzzification process is the act of obtaining a value of an input
variable (e.g., e(t)) and finding the numeric values of the membership
function(s) that are defined for that variable.

For example, if e(t) = π/4 and d
dt

 e(r) = π/16

then the fuzzification process is used to find how much these inputs belong
to their fuzzy set. It finds out the membership function values, which are
then used in the fuzzy inference process for rule evaluation.

13.6.1.3  Inference Mechanism (Inference Engine)

In the inference mechanism, the control rules stored in the rule base are
evaluated to determine which control rules are relevant at the current time
and what should be the input to the plant. In this, the mechanism’s expert
decision-making capability for controlling a system is emulated. In approxi-
mate reasoning, the generalized modus pones plays an important role. The
generalized modus pones can be rewritten as

Premise 1: IF x is A, THEN y is B. Premise 2: x is A’

Conclusion: y is B’

where A, A’, B, and B’ are fuzzy predicates (fuzzy sets or relations) in
the universal sets U, U’, V

and V’, respectively. In general, a fuzzy control rule (e.g., Premise 1) is
a fuzzy relation.

348 • Artificial Intelligence and Expert Systems

According to the compositional rule of the inference conclusion, B’ can
be obtained by taking the composition of fuzzy set A’ and the fuzzy relation
(here, the fuzzy relation is a fuzzy implication) A B.

How Do We Decide Which Rules to Use?

The inference process generally involves two steps:

•	 The premises or antecedents of all the rules are compared to the
controller inputs to determine which rules apply to the current
situation. Basically, the rules that are more certain to apply to the
current situation are chosen.

•	 After choosing the rules, a conclusion is determined. The conclusions
are characterized with a fuzzy set (or sets) that represents the certainty
that the input to the plant should take on various values.

♦♦ For doing the inference, we need to quantify the premise of each
of the rules with fuzzy logic.

♦♦ We use fuzzy logic to quantify the meaning of the linguistic
variables, linguistic values, and linguistic rules that are specified
by the expert. A rule can have multiple parts in the premise, so
we need to quantify the meaning of the premises of the rules that
are composed of several parts, each of which involves a fuzzy
controller’s input.

For example: IF error is zero AND change-in-error is possmall
THEN force is negsmall.

In the above rule, there are two parts of the antecedent combined using
the AND operator. By applying fuzzy logic and the operator, we first quan-
tify the meaning of the whole antecedent.

�
4

–
�
4

�
16

�
8

�
4

d
dt

e(t), (rad/sec)
e(t). (rad,)

µzero"zero" µpossmall

"possmall"

1

0

quantified with

"error is zero" and Change–in–error is possmall

1.0

0.5

quantified with

FIGURE 13.21  Membership Functions of the Premise Terms

Fuzzy Expert Systems • 349

Figure 13.21 clearly shows that we have quantified the meaning of the
linguistic terms “error is zero” and “change-in-error is possmall” via the
membership functions. Then, after quantifying the meaning of each part of
the antecedent, we apply fuzzy logic and the operator to the membership
function values of both terms that we obtained in order to get a single value.

Let us take an example to show how to quantify the AND operation, by
supposing that

	 e(t) = π/8 and d
dt

 e(r) = π/32

so that using above figure we see that

	 µzero (e(t)) = 0.5

	 µposmall ()d e t
dt

 
 
 

 = 0.25

Now, let us denote the premise of rule “error is zero and change-in-
error is possmall” by µpremise.

After quantifying each antecedent, the next thing to do is to apply the
AND operator. There are actually several ways to define it:

♦♦ Minimum: Define µpremise = min {0.5, 0.25} = 0.25, that is, using
the minimum of the two membership values.

♦♦ Product: Define	 µpremise = (0.5)(0.25) = 0.125, that is, using the
product of the two membership values.

Determine Which Rules Are On

The next step after quantifying the meaning of the antecedent of the
rule is to determine which rule is on.

We say that a rule is “on at time t” if its premise membership is as follows:

function µpremise premise (), ()de t e t
dt

 µ  
 

 >0

Hence, the inference mechanism determines which rules are on to find out
which rules are relevant to the current situation. In the next step, the infer-
ence mechanism will seek to combine the recommendations of all the rules
to come up with a single conclusion to get the implied fuzzy set. Let us look
at an example for showing how to reach a conclusion.

350 • Artificial Intelligence and Expert Systems

Consider the conclusion reached by the following rule:

IF error is zero and change-in-error is zero THEN force is zero

Using the minimum to represent the premise, we have

	 µpremise(1) = min {0.25, 1} = 0.25

This means we are 0.25 certain that this rule applies to the current situa-
tion. The rule indicates that if its premise is true, then the action indicated
by its consequent should be taken.

For the above rule, the consequent is “force is zero.” The membership func-
tion for the conclusion reached by rule, which we denote by µ(1) is as follows:

	 µ(1) = min {0.25, µzero (u)}

Notice that the membership function µ(1) (u) is a function of u and that the
minimum operation will generally “chop off the top” of the µzero (u) mem-
bership function to produce µ(1) (u).

We will do the same for every rule, that is, go on and find out the con-
clusions reached so far.

Thus, the input to the inference process is the set of rules that are on,
and its output is the set of implied fuzzy sets that represent the conclusions
reached by all the rules that are on.

13.6.1.4  Defuzzification

Defuzzification is the interface that is the last and final component of a
fuzzy controller. It used the conclusions obtained from the inference mech-
anism (the implied fuzzy set) and converts the conclusions reached by the
inference mechanism into the inputs to the plant.

Thus, we can say like that defuzzification works on the implied fuzzy
sets that are produced by the inference mechanism and combines their
effects to provide the “most certain” controller output (plant input). In
defuzzification control, the output refers to the control action.

There are many defuzzification methods, out of which the COG (Cen-
ter of Gravity) and mean of the maxima (MOM) are the most commonly
used methods of defuzzification.

Center of Gravity

	 µcrisp = ()

()

i i i

i i

b∑ µ

∑ µ
∫
∫

Fuzzy Expert Systems • 351

This is the formula for computing the center of gravity.

()iµ∫ denotes the area under the membership function. bi denotes the

center of the membership function.

░░░░░░░░░░
░░░░░░░░░░

–30 –20 –10 10 20 30 u(t), (N)

0
"zero"

–1
"negsamll"

FIGURE 13.22  The Implied Fuzzy Set Produced by the Inference Mechanism

Now, by putting values into the above equation, we get the crisp output:

	 µcrisp = (0)(4.375) (10)(9.375)
4.375 9.375

+ −
+

 = – 6.81

This value of – 6.81 acts as input to the pendulum for the given e(t)

and ()d e t
dt

 
 
 

 .

░░░░░░░░░░░░
░░░░░░░░░░░░

░░░░░░░░░░░░
░░░░░░░░░░░░

�
4

–
�
4

e(t)
�
8

–
�
8

�
16

d
dt

e(t) –10 10 u(t), (N)

0.25

"zero""zero""zero"

p
4

–
p
4

e(t)
p

16
p
8

p
4

d
dt

e(t) –20 –10 u(t), (N)

0.75
"zero" "possmall"

"negsamll"

–20 –10 10 u(t), (N)

u = – 6.81
erisp

"negsm ll"a
"zero"

If error is zero and chang–in–error is zero Then force is zero

If error is zero and chang–in–error is possmall Then force is negsm lla

FIGURE 13.23  Graphic Representation of Fuzzy Controller Operations

352 • Artificial Intelligence and Expert Systems

Fuzzy Rules
IF A AND B THEN L

*
*

Defuzzification

fire_rules();

find_output();

Output

Fuzzy Control
Inputs

FIGURE 13.24

Steps in Building a Fuzzy Controller

•	 Define the input and output variables.

•	 Decide on the fuzzy partition of the input and output spaces and
choose the membership functions for the input and output linguistic
variables.

•	 Decide on the types and the derivation of the fuzzy control rules.

•	 Design the inference mechanism, which includes a fuzzy implication
and a compositional operator, and the interpretation of the sentence
connectives (AND).

•	 Choose the defuzzification method.

•	 Let us take an example that shows how to build a fuzzy controller:

•	 The temperature of a room equipped with a fan/air-conditioner
should be controlled by adjusting the motor speed of the fan/air-
conditioner.

Figure 13.25 describes the control of the room temperature. In this
example, the goal is to design a motor speed controller for a fan.

Fuzzy Expert Systems • 353

Input Fuzzifier Fuzzy System Defuzzifier output

It is too hot!

Turn the fan on high

Set the fan at
90% speed90 Degree F.

(To build a fuzzy controller)

FIGURE 13.25  Controlling the room temperature.

Building a Fuzzy Controller

•	 Step 1: Assign input and output variables.

Let X be the temperature in Fahrenheit and Y be the motor speed of
the fan.

•	 Step 2: Pick fuzzy sets (Fuzzification).

45° 50° 55° 60° 65° 70° 75° 80° 85° 90°
0

1 Cold Coo
l

Ju
st

Ri
gh

t

W
ar

m

Hot

Temperature in Degrees Fahrenheit

Input Fuzzy sets

(To build a fuzzy controller)

10 20 30 40 50 60 70 80 90 100
0

1 Stop Sl
ow

M
ed

iu
m

Fa
st

Blast

Motor Speed

Output Fuzzy sets

(To build a fuzzy controller)

FIGURE 13.26  Choosing fuzzy sets(A).

354 • Artificial Intelligence and Expert Systems

Define the linguistic terms of the linguistic variables temperature (X) and
motor speed (Y) and associate them with fuzzy sets. For example, five lin-
guistic terms/fuzzy sets on X may be “Cold,” “Cool,” “Just Right,” “Warm,”
and “Hot.” Let the five linguistic terms/fuzzy sets on Y be “Stop,” “Slow,”
“Medium,” “Fast,” and “Blast.”

(a) (To build a fuzzy controller)

Ai
rM

ot
or

Sp
ee

d

100
90
80
70
60
50
40
30
20
10
0

0

Temperature in Degrees Fahrenneit

1

0
45° 50° 55° 60° 65° 70° 75° 80° 85° 90°

COLD COOL

JU
ST

RI
G

HT

WARM

HOT

BLAST
FAST

MEDIUM
SLOW

STOP

IF HOT
THEN
BLASTIF WARM,

THEN FAST
IF JUST
RIGHT,

THEN MEDIUM

IF COOL,
THEN
SLOW

IF COLD,
THEN
STOP

(b)

45° 50° 55° 60° 65° 70° 75° 80° 85° 90°

Hot
Warm

Just
RightCool

Cold

0

1

Temperature in Degrees Fahrenheit

0

1

10 20 30 40 50 60 70 80 90 100

BlackFastMediumStop
Slow

Motor Speed

If temperature is then motor speed isjust right medium

(To build a fuzzy controller)

FIGURE 13.27  Motor speed as “blast.” Building a Fuzzy Controller

Step 3: Assign a motor speed set to each temperature set (rule
or fuzzy controller)

•	 If the temperature is cold, then the motor speed is stop.

•	 If the temperature is cool, then the motor speed is slow.

Fuzzy Expert Systems • 355

•	 If the temperature is just right, then the motor speed is medium.

•	 If the temperature is warm, then the motor speed is fast.

•	 If the temperature is hot, then motor speed is blast.

45° 50° 55° 60° 65° 70° 75° 80° 85° 90°

Hot
WarmJust

Right
Cool

Cold

1

0

63°

• If temperature is cool then motor speed is slow
• If temperature is just right then motor speed is medium

Temperature in Degrees Fahrenheit

(To build a fuzzy controller)

(a)

45° 50° 55° 60° 65° 70° 75° 80° 85° 90°

HotWarmJust
RightCool

Cold

0
15%

80%
1

63°
Temperature in Degrees Fahrenheit

0
15%

80%
1

Medium

10 20 30 40 50 60 70 80 90 100
Motor Speed

(To build a fuzzy controller)

Slow

(b)

FIGURE 13.28  Choosing fuzzy sets(B).

356 • Artificial Intelligence and Expert Systems

10 20 30 40 50 60 70 80 90 100
42

1
80%

15%
0

Average Value of Curve
Motor Speed

In this example crisp
input is X = 63 F°
and crisp output is
Y = 42%

zz*

1
µ

z' =
�µ (z) · z dz

µ (z) dz
c

c� ·

Step 4: Defuzzification

(To build a fuzzy controller)

FIGURE 13.29  Choosing fuzzy sets(C).

13.6.2 Application Areas of Fuzzy Controller
Fuzzy systems have been used in a wide variety of applications in engineer-
ing, science, business, medicine, psychology, and other fields. In engineer-
ing some potential application areas include the following:

•	 Aircraft/spacecraft: Flight control, engine control, avionics systems,
failure diagnosis, navigation, and satellite attitude control

•	 Automated highway systems: Automatic steering, braking, and throttle
control for vehicles

•	 Automobiles: Brakes, transmission, suspension, and engine control

•	 Autonomous vehicles: Ground and underwater

•	 Power industry: Motor control, power control/distribution, and load
estimation

•	 Process control: Temperature, pressure, and level control, failure
diagnosis, distillation column control, and desalination processes

•	 Robotics: Position control and path planning

Fuzzy Expert Systems • 357

Why We Should Use Fuzzy Controllers

•	 can be easily modified

•	 can use multiple input and output sources

•	 much simpler than their predecessors (linear algebraic equations)

•	 very quick and cheap to implement

Exercises

Q1.  Provide examples of how fuzzy systems are used?

Q2.  What are two types of knowledge in a fuzzy systems knowledge base?

Q3.  Define “defuzzification.”

Q4.  What are some practical applications of fuzzy controllers?

C H A P T E R14
LOGIC PROGRAMMING

14.1	  Introduction

To represent problem operations, symbol patterns are used so that an intel-
ligent action is executed. When these patterns are used, several potential
solutions are generated, and among these solutions, a specific search is
selected. The language that is used for an AI representation must

•	 handle qualitative knowledge

•	 permit new knowledge to be contingent on facts and rules

•	 allow the illustration of all-purpose principles

•	 capture complex semantic meaning.

In the study of AI , two programming languages are mainly used,

•	 LISP (List Processing): This is the basic language that is used for AI
problems, and it is used in a functional manner.

•	 Prolog (Programming in Logic): This is used in a declarative
manner to solve AI problems.

Prolog allows for programming in a logical language that utilizes symbolic
or non-numeric computation. It is often used in AI where the exploitation
of symbols and deductions can be manipulated in a simple way. The main
aim of this this language is to explain the characteristics of objects and cor-
relations between objects, and define the IF-THEN rules related with the
properties and relations. In artificial intelligence, a number of problems

360 • Artificial Intelligence and Expert Systems

can be addressed when the solution of these problems involves the imple-
mentation of Prolog. The language can help achieve a certain goal in a cer-
tain situation and specifies what the situation and the goal are.

14.2	  Difference Between C/C++ and Prolog

C/C++, Java, and Pascal are imperative languages in which a program is a spec-
ification of a sequence of instructions to be executed one after the other to
solve a problem. The explanation of the problem is integrated completely with
this specification., Typically, it is not used to distinguish between the clarifica-
tion of the problem and the technique used for its solution. However, in logic
programming, the clarification of the problem and the method for solving it are
obviously separated from each other. Kowalski proposed an equation to define
this separation and solve the problem. This equation can be expressed as

	 Algorithm = Logic + Control

In this equation, the term “logic” specifies the descriptive component of
the algorithm, i.e., the explanation of the problem, and the term “control”
specifies the component that tries to provide a solution with the help of
the description of the problem. The logic component identifies what the
algorithm is supposed to do; the control component indicates how it should
be done.

FIGURE 14.1  The Relationship between Prolog and Logic Programming

The difference between C and Prolog is that in C, the programmer tells the
computer what to do, but in Prolog, the programmer tells the computer
how to do it. Prolog is based on facts and rules: the programmer might start
by using the facts (telling the computer the facts) and providing the rules.
A Prolog program could then be used to ask the computer about the facts

Logic Programming • 361

already given and the computer would be able to give answers in the form
of rules. When executing the program, the user asks a question and the
solution is obtained. When the user asks a question to the computer, the
runtime system searches through the database of facts and rules to deter-
mine (by logical deduction) the answer.

Prolog is a declarative (descriptive) language. A descriptive language is non-
procedural in its logic. A program written in this way not only defines exactly
how the computational process is to be carried out, but consists of several
declarations representing significant facts and rules. The solution to be mined
is also expressed as a question to be answered and a goal to be achieved.

14.3	  How Does Prolog Work?

To do work with Prolog, a Prolog program is run. It uses a database of facts
and rules that define the relations between objects. Prolog programs are
based on the Horn clause, which is a theory written in a subset of a predi-
cate (or we can say that it is first order logic). A Horn clause consists of a
result (headH, consequent) and a body (termsBi):

	 H ← B1, B2,…, Bn

The deduction in Prolog is based on the modus ponens syllogism (if-then)

If P(x) then Q(x)

P(a)

Therefore Q(a)

For example,

•	 If human(X) then mortal (X).

•	 human (socrates)

•	 Therefore: mortal(socrates)

•	 A pie is good = good (pie)

In Prolog, a relation’s name is called a functor. In this example, “good” is a
functor. A relation may include many arguments after the functor. All of these
objects and relations are applicable for this language. When they are identi-
fied, they must be made precise by the facts and rules used for the objects
and their interrelationships. When all the facts and rules are known, then a

362 • Artificial Intelligence and Expert Systems

definite problem may be turned into an ASA query relating to the objects and
relationships between objects. We specify all the facts and rules to obtain this
solution (for the objects and relationship between the objects).

Steps To Write a Prolog Program

•	 The program is a text file, and it is also sometimes called a database.
This text file contains the facts, rules, and relations needed to describe
the problem. The extension of the text file is ∗.pl.

•	 A window appears for you to run the facts and rules in a program;
this is known as the query mode window. This window is represented
by the “? – prompt.” In this window, you ask questions related to the
problem that describe the relations.

•	 When Prolog is started, the query mode window (?-) appears,
indicating that you are in query mode. Now, you can load the program
by writing the commands in Prolog. This is referred to as a file. This
file is represented by file.pl, which contains your programs that are
executable. When all of these are done, you can use all the facts and
rules that are described in the program.

14.4	  A Little History

In 1970, Colmerauer, Kowalski, Van Emden, and Marseille invented the logic
programming language. In 1972, a professor of computer science at the Uni-
versity of Aix-Marseille in France, Alain Colmerauer, invented the first Prolog
interpreter, which was used to compile Prolog programs. After the invention
of the interpreter, a number of software products that used in Prolog were
launched in 1982. All of these were insufficient for Prolog programming, so an
extended version of Prolog was developed, known as CLP (Constraint Logic
Programming) in 1995. CLP is defined as a language that represents knowl-
edge in the form of facts and rules. Until the end of the 1970s, there was a very
limited use of Prolog, but now it is more common. However, it was not often
used in the academic world. After developing the compiler and interpreter,
this programming language became more influential throughout the world, as
well as in academia. The Prolog interpreter and compiler were invented by
Warren and Pereira at the University of Edinburgh. Researchers mainly use
Prolog because it permits the development of complex and general (extensive)
programs in a shorter period of time than that needed to develop a C or Java
program with a comparable functionality. Prolog is now used in many fields.

Logic Programming • 363

Main Applications

•	 Artificial intelligence: Prolog is used for expert systems and natural
language processing.

•	 Databases: Prolog is used in databases for query languages and data
mining.

•	 Mathematics: theorem proving and symbolic packages

•	 Compiler construction

•	 Work in the area of computer algebra

•	 The development of (parallel) computer architectures

14.5	  Converting English to Prolog

Now, we will discuss how to convert a simple English statement into
Prolog. In English statements, a simple sentence includes a noun, verb,
and object. In Prolog only the facts, rules, and relationships among
objects are used. To explain the relationship between an English state-
ment and Prolog, we can say that a verb or adjective is replaced by the
facts used in Prolog and the related noun written in parenthesis. Now,
we let the computer know about these facts. English statements can be
converted into Prolog.

14.6	  Goals

A goal is a statement starting with a predicate, most likely followed by its
arguments. A goal is valid when a number of arguments is the same as the
fact and rules (means predicate) that appear in the consulted program. A
goal can be an atom or a functor pursued by some arguments. All atoms are
enclosed in parentheses and a comma is used to separate two or more than
two atoms. For example, a(X, Y).

When a Prolog interpreter is running, you may see the prompt “?-” on the
screen. The user types the goal or query at this prompt, which is totally
based on the facts and rules that are used in the program. The main aim of
this step to find out whether the statement represented by the goal is true
according to the facts and rules that are used in the knowledge database
(i.e., the consulted program).

364 • Artificial Intelligence and Expert Systems

14.6.1  How Prolog Satisfies Goals
When a user asks questions to a computer, it looks in the database where
the facts are stored. Note that the computer knows only the information
loaded into it. Goals are used to find a match. Prolog will give a list of facts
that are already loaded into it. It generates the goals to satisfy a question. To
explain how goals work, let’s use an example. We have a Prolog statement
“eats(naman, pizza).” This statement is already loaded in the database (as
mentioned above), and when it is fulfilled by finding it as a fact, Prolog will
give the answer “yes” or “true.” Now suppose this statement is provided
in query mode; then, the sentence is written as “eats(X, pizza).” It is also
fulfilled by finding facts about someone who eats pizza, The Prolog answer
to this query relates to the who satisfies it and provides the name of the
variable X. Now, suppose another statement is “Delhi is a city,” and the user
asks it for this query. First, the program looks in the database, and matches
this statement with all other statements that are loaded into the database.
If no match is found, it will report “fail” or “no.”

A goal is a combination of several terms, such as a1, a2, ... to the an term.
The Prolog inference engine first selects the leftmost term in the goal to
satisfy the goal. In this case, a1 is the leftmost term, and this term matches
with the clause that is used in the database. It then checks the database to
find the clause. If this clause is found, then the leftmost term (a1) in the
goal is substituted with the body of the clause. Now, the final goal becomes
b1, b2, b3, a2, ... bn.

A Prolog goal is also used to represent the flow of control. It has four ports
that are used in the representation of the goal. The four ports are call, exit,
redo, and fail. First, the goal is called. When this goal is matched in our
database, i.e., a successful match occurs, then it is in the “exit” state. If this
match is not found, i.e., a failure occurs, then it is in the “fail” state. When
a semicolon is used, then the goal is retired and it enters the “redo” state.
A goal and its ports are represented in Figure 14.2.

goal
exit

redo

call

fail

FIGURE 14.2  The Ports of a Prolog Goal

Logic Programming • 365

Call: This is the initial port in which the searching is done. To search the
clause, a goal is called.

Exit: When the goal is satisfied, then the exit port is defined. It sets a place
indicator at the clause and combines the variables properly.

Redo: When the goal is retired, then the redo port is used. It unbinds the
variables and restarts the search at the place indicator.

Fail: When no match is found, i.e., a clause matches with the goal, then this
state occurs.

14.7	  Queries

English Prolog

Ram is the father of Mohan. father(ram, mohan).

Seeta is the wife of Ram. wife(seeta, ram).

Sohan eats an apple. eats(sohan,apple).

Naman eats pizza. eats(naman, pizza).

Ram bought pizza for Mohan. bought (ram,pizza,mohan).

Ram is tired. tired(ram).

Notice that we aren’t using capital letters to start the names; we reserve
capital letters or terms starting with them for variables.

Now, we write these facts and load them into Prolog. The Prolog
language uses a query mode window known as a “prompt,” and it is
represented by “?-.” We know that Prolog provides question/answer
statements, so on this prompt, the user can ask any question related to
the problem. Note that some statements are in question form in Eng-
lish. In these statements, the user can ask a question to Prolog. All the
statements (questions) asked by user are matched with the database
(Prolog program), which contains these facts (already in the form of
a statement); if a match is found, then the answer given by Prolog is
“true,” otherwise, it is “fail.”

366 • Artificial Intelligence and Expert Systems

English question Prolog (at query
mode, prompt ?-)

Prolog responds

Is Ram the father of
Mohan?

father(ram, mohan). yes (or true)

Is Ram tired? tired(ram). yes

Is Seeta tired? tired(seeta). no (or fail)

Who is tired? tired(X). X = ram

Who is the wife of
Ram?

husband (X,ram). X = seeta

All these English statements are loaded into the database when we ask
Prolog about Ram being the father of Mohan, and then it searches the data-
base of the above statement. We do not have to change the form of the
Prolog statement we used to tell Prolog that Ram is the father of Mohan.
The statement containing “who” means that the user asks a question to the
computer. For this, a variable is used, which is represented by “X.” The
variable X is used to define the “who” statement.

In Prolog, a query mode window is used to write the query. It is a
prompt and represented by “?.” When the user asks a query, this query is
related with the facts and rules. Prolog can provide a solution to this query.
This process is known as querying the system. A query is also written as a
statement initialized with a predicate and followed by its arguments. To
represent a query, a variable X is used that defines “who.” A query is valid
when the number of arguments and at least one fact or rule in the query
is the same as that from the consulted program. A query refers to asking
a question about what values are used to make the given statements true.

The following examples represent how goals and queries are evaluated.

?- parent (ram,mohan)

This is a goal proving that “Ram is the parent of Mohan.” Now this Pro-
log statement is checked in the database where all the facts are stored (as
mentioned above). These facts are searched in the database when a match
is found, and then Prolog will respond “true.”

?-parent (ram,mary)

This is a goal showing that “Ram is the parent of Mary”. Now this type
of fact is searched in the database. But in our database, this type of fact is

Logic Programming • 367

not found because we have a database that does not contain this type of
statement, so Prolog responds “no,” i.e., “fail.”

?-parent (X, mohan)

This is a query defined as asking for the person who is the parent of
Mohan. For this query, the fact and rule related with this query are stored
in our database, i.e., the statement “Ram is the parent of Mohan” is already
loaded in the database. Now this query is compared with this fact and it is
matched, so Prolog will give an answer this query. Prolog will report “yes.”

?-mama (shyam,X)

In this Prolog statement also, the X variable is used. It means this is a
query asking for the person who calls Shyam “mama.” To match this query
with any facts or rules already stored in our database, Prolog checks the
database. If a match is found, then the response will be “yes.” But in our
database, no such query is found, so it will report “fail” or “no.”

14.8	  Clauses

There are two types of clauses:

•	 Facts

•	 Rules

14.8.1  Facts
A fact consists of a particular item or relation between items. To represent
a fact, a predicate is used in Prolog. It is written in the form of its atomic
value, where the predicate is a name that is given to the relation and the
atom is a constant value (written in lowercase letters). For example, Pari
eats pizza, would be “eats (pari, pizza).”

A relationship is written first (typically, the predicate of the sen-
tence), and it is always written in lowercase letters. To represent several
objects in Prolog, a comma is inserted between two or more objects, such
as pari and pizza (the two objects in the above example). It is always
written in small brackets (round brackets). To end the statement (fact), a
full stop (.) is used at the end. Facts also contain simple rules of syntax.
Facts consist of a letter or number combination, and a special character
underscore (_).

368 • Artificial Intelligence and Expert Systems

14.8.2  Rules
To infer facts from other facts, rules are used. The programmer describes
rules similarly to the facts. Rules are also represented in the form of predi-
cates, such as predicate(Var1,…):- predicate1(…), predicate2(…), … where
Var1 is a variable, usually beginning with an uppercase letter.

For example, “Vishal likes bikes if they are blue” = likes(vishal, bikes):-
blue(bikes). In Prolog, “:-“ is pronounced “if.”

Now, we will discuss how to represent facts and to query them. We will
also discuss rules. Rules allow us to make conditional statements about our
world. Each rule can have many variations, known as clauses. These clauses
are used to provide us with different choices about how to perform infer-
ences about our world. Let’s take an example that tells how to represent
facts and rules.

“All men are mortal.”

This fact can be stated by the following Prolog rule: mortal(X)
:-human(X).

The clause can be read in two ways (called either a declarative or a pro-
cedural interpretation). The declarative explanation is “For a given X, X is
mortal if X is human.” The procedural explanation is “prove both the goal
and subgoal. The main goal is X is mortal and the subgoal is X is human.”

Rule 1:

To explain another rule in Prolog language with the same example used
above, now consider the fact “Ashoka is human;” our program now looks
as follows:

mortal (X) : human(X).human (ashoka).

If we now create the question in Prolog

?- mortal(ashoka)

The Prolog interpreter would give the answer as follows:

yes

Rule 2:

To solve the query “?-mortal(ashoka),” a rule has to be defined that proves
someone is mortal, so we had to prove them to be human. Now our
aim is to find the subgoal also, so Prolog produces the subgoal, such as

Logic Programming • 369

“human(ashoka).” Facts and rules are generated by a matching process. In
the matching process, facts are matched with the database that stores some
statements. If we have facts, it means the matching is done (found), and
then Prolog will generate the answer “yes,” otherwise, it will report “fail.”

Rule 3

Rule 3 explains the query. A query is defined by a variable that means
“who.” In a query, X is always used to represent the “who” statement. To
explain the above example, we might want to see if there is somebody who
is mortal. This query is represented by the following line.

?- mortal(X)

The Prolog interpreter responds.

X = ashoka yes

This line shows that Prolog has proved the goal by binding the variable
X to ashoka. This also proves the goal and subgoal. The goal is proved by
someone being mortal by proving, in the subgoal, that they are human.
Prolog will respond to the answer by asking either if there was a human
or not. All of these actions are done by the matching process. This process
matches the clause “human(ashoka)” if it is found in our database, and then
a variable X is bound with ashoka. This is the parent goal, which defines the
binding, and the response is written in the form of a printout.

Rule 4

Sometimes, we may want to identify abnormal (unusual) ways of proving
a particular thing. This is done by using different rules and facts with the
same name. Let’s take an example that defines Rule 4. We can represent
the sentence “Something is fun if it’s a green toy or a cherry car or it is ice
cream” as follows:

fun(X) :

green(X),	 toy(X).

fun(X) :

cherry(X),

car(X).

fun(ice_cream).

370 • Artificial Intelligence and Expert Systems

This is a rule in which we have three ways of finding out if something
is fun. This is done if it is a green and a toy or cherry and a car, or if it is ice
cream. All facts (options) are represented by different clauses in Prolog. All
of these clauses are done by predicates, such as “fun.” Prolog will start from
the first clause (be it a rule or fact) of “fun” and try that. If that does not
succeed, it will try the next clause. A “fail” will be generated when there is
no more success.

Rule 5

All identically-named variables within a particular rule (e.g., all occurrences
of, say, X in the first “fun” rule below) are constrained to have one and the
same instantiation for each solution to a particular query. The name of the
same variable in separate rules is not completely dependent on the others,
so different variable names have been used. Let us consider an example
program:

fun(X) :-

red(X), car(X).

fun(X) :- blue(X),

bike(X).

Looks to Prolog Like

fun(X_1) :-

	 red(X_1),

	 car(X_1).

fun(X_2) :-

	 blue(X_2),

	 bike(X_2).

The scope of the variable name is the per-individual rule, which is
known as a clause. In this program, the same variable emerges in differ-
ent clauses of a rule. These rules are used with different names. These
rules are treated as something specific to some situation each time. In
this example, only the X variable occurs several times, but it is used as a
different requirement.

Logic Programming • 371

14.9	  Notation in Prolog for Building Blocks

Several notations are used to design the building blocks of Prolog, such as
atoms and variable structures. These basic building blocks of Prolog make it
easy to write programs in Prolog that users can easily understand.

14.9.1  Atoms
Atoms are the fundamental building blocks of Prolog. Atoms are represented
as character strings syntactically but as integer values internally. That’s why
Prolog can be used in the unification (comparing) of atom values. Constants
are used that characterize particular objects and particular relationships in
Prolog. Two types of these constraints are used: numbers and atoms.

Numbers: These are defined by how numbers are represented in Pro-
log. They are demonstrated through the following examples of the repre-
sentation of numbers: 2, 8, 0, 100.4e2, and -7.58.

Atoms: In Prolog, atoms are illustrated by

•	 character values or a collection of characters (string) plus the symbol,
digit, underscore, and dollar sign.

•	 math symbols and graphics symbols, such as symbols like “?-” and “:-,”
are also atoms in Prolog.

For example, ram, monkey, ram$seeta, cats_and_dogs, ;; , +, and america
are valid atoms in Prolog. But some notations are not valid atoms (such as
-ram-and-seeta, ;; $ = , Ram, ram and seta) because – and $ are not graphic
symbols, and a capital letter and space are not allowed in Prolog.

Atoms are also used as part of the query format.

atom(ram) yes

atom(123) no

atomic (45) yes (because it is an integer)

atomic (“45”) yes (because is an atom)

14.9.2  Variables
The variables used in Prolog are referred to as logical variables. These
logical variables are totally different from those variables that are used in
conventional programs. Logical variables may be defined as wild cards for

372 • Artificial Intelligence and Expert Systems

pattern matching (unification). These variables are also used in combina-
tion with other Prolog terms that take other values.

To understand variables in Prolog, let’s use an example: born(—, delisha).

In Prolog, variables are represented by a string and sequence of letters,
digits, and an underscore. Only the special symbol underscore (_) is used in
variables, which is known as an anonymous variable.

For example, let us consider a fact. In this fact, we want to know who
likes Ram. A special symbol is used, which is known as the underscore vari-
able:

?-like(_, mohan)

In Prolog, how can we determine a query (“who”)? Two special types of
variables are used for determining this. The first one is variable X and other
one is the _ (underscore) variable. These two types of variables are differ-
entiated by using two distinct queries.

First, a query is given in the form of variable X:

?-like(X,X)

The two occurrences of X denote the same person, hence, if the first X
occurs with any name associated with Rakesh, then the second occurrence
of X is automatically associated with Rakesh(any name). Thus, the above
declaration in this case says “Rakesh like himself.”

Second, a query is given in the form of the _ (underscore) variable

?-likes(-,-)

This query clarifies the search is for who likes someone. In this query, two
underscores are used for different occurrences, i.e., the second occurrence
(someone) is dissimilar from the first occurrence. The result will be pro-
vided by Prolog as “Rakesh likes Rajiv,” where the first someone is Rakesh
and the second someone is Rajiv.

14.9.3  Data Types and Structures
There are two elementary data types in Prolog: atoms and numbers, as
noted earlier. We have also already discussed how atoms and numbers are
represented in Prolog.

Now we will discuss the relations between these numbers, the opera-
tions on numbers, and the statements about numbers. All discussions are

Logic Programming • 373

represented with symbolic processing instead of numeric processing, based
on the facts used in Prolog. This is the most important aim of Prolog, which
is used to explain how symbolic data is structured using two elementary
data types.

The data structures are of two types:

•	 Structures

•	 Lists

14.9.3.1  Structures

Structures are the primary data types of Prolog. A structure is defined by its
name and is also known as a functor. Its arguments are where the functor is
an atom and the arguments, which include other structures that may be any
Prolog terms. Structures are written in the following form:

name (arg1, arg2, ... , argn)

There are some restrictions for writing structures, such as the fact
that there is no space between the name and the opening parenthesis
“(.” In this example, several arguments are used. The arguments are used
in a structure called an arity. An atom is actually a degenerate structure
of arity 0. The range of the arity in a structure is 0 to 4095, which is the
maximum arity.

Here are some examples of structures whose names include the likes
and the number of arguments is two, which defines the arity.

likes(ram, cake)

likes(pari, pizza)

likes(Everyone, biscuits)

In Prolog, structures are used as the head and goal of the bodies of a Prolog
clause. Let’s examine an example:

brothers (X, Y) likes(X, Something), likes (Y, Some-
thing)

A fact is represented in Prolog by just putting a full stop at the end of a suit-
able structure. Similarly, a rule or a query can be obtained from a suitable
structure. A list of terms is described in a structure in which a term itself
may be a structure. A structure is used for simple as well as complex data,

374 • Artificial Intelligence and Expert Systems

in which the record structure of other programming structures are used.
Several terms are defined in a structure, such as the following:

Employee (name, age, designation, address, gross-pay)

The name designation and age are also structures. The name term is used as
a complex structure which may become further structures, such as

Name (first-name, middle-name, last-name)

Further, first-name may be described as

(first-name, tarun)

You can write any name with first-name. All of these structures are complex
and contain information about an employee whose name is tarun, which
may be written as a fact in Prolog.

Employee (name (first-name, tarun), (middle-name,
kumar), Last-name, sharma)), (designation, assistant-reg-
istrar). (age, 28), (gross-pay, 45000), (address, Bombay).

Similarly, the address may be represented as a complex structure, which is
further structured as

address(h.no 3638), (street no 8) (area chandni-chowk)
(city delhi)).

In the structure, a query is defined to find the gross pay of employee whose
name is tarun in the form as:

?_employee(name(tarun),_,_),_,_) (gross-pay X)).

This will return 45000. In the above query, the underscores are used to
represent various variables.

Example 1: Give the information about the book Artificial Intelli-
gence, Third Edition, by Elaine Rich Knight by McGraw Hill Education
in the year 2009 as a structure in Prolog so we can know the name of the
author, assuming the author’s name is not given.

Solution:

book (title artificial_intelligence), (edition third),
(author (first_name elaine), (middle_initial rich),
(last_name knight)) (year 2009), (publisher mcgraw_hill_
education)).

Logic Programming • 375

For the following query, write:

?_book ((title artificial_intelligence), (edition
third), X, (year 2009), (publisher mcgraw_hill_educa-
tion)).

The system returns the name of the author as (author ((first_name
elaine), (middle_initial rich), (last_name knight)).

Example 2: Consider a simple sentence: “Monika eats an apple.”

This may be represented in Prolog as

Sentence((noun monika), (verb_phrase (verb eats),
(noun apple))).

In general, the structure of a sentence of the form given above may be
expressed in Prolog as

Sentence((noun N1), (verbphrase (verb v), (noun N2)).

It is represented in the form of a query as

?_sentence ((nounmonika), (verbphrase (verb eats),
(noun X))

Which tells us about what Monika eats.

Example 3

Is_small(vishal) ^ is_richer(shyam, bhim)

Now this statement has to be expressed as two different Prolog statements,
defined as Is_small(vishal).

Is_richer(shyam,bhim).

Note that at the end of every statement, there is a period (.).

14.9.3.2 Lists

The other data types in Prolog are lists. The list is a common data structure
that is built into almost all programming languages that represents nonnu-
meric processing. A list is an ordered sequence of elements, and it can have
any length. The difference between an array and a list is that an array has
a fixed length, but a list has any length. In a list, terms are used to define
the elements (such as constants and variables). Thus, a list is a recursive
concept. Lists are represented by square brackets [].

376 • Artificial Intelligence and Expert Systems

A list in Prolog may be defined recursively as follows:

•	 [], representing an empty list, is a list.

•	 [e1, e2—en] is a list where e1, e2 and the others are several terms

Examples of Lists

•	 [] – empty list

•	 [1, 2, 3] – single element in a list

•	 [1,[2, 3]]– a list with two elements

•	 [3, X,[a, [b, X + Y]]] – is a list, provided that X + Y is defined. For
example, X and Y are numbers, and then, as we shall see later, X + Y
is a valid expression (it is a sequence of terms and operators formed
according to the syntactic rules of the language, X-Y/Z).

•	 [_,_,Y] – This represents a list of three elements, out of which first two
are “don’t care” or anonymous variables.

•	 [f(1), [2, a], X]– This is a list that contains three elements in which
the first is a structure (arity 1), the second is a sublist containing two
elements, and the last element is a variable, X.

Logically, a list can be measured to have two elements:

•	 HEAD – the first element of the list

•	 TAIL – a list of the remaining elements in the list

At each level of recursion, the HEAD can be used, and the TAIL passed
down to the next level of recursion. It is vital to keep in mind that the TAIL
is always used as another list.

To represent a pattern in Prolog, a vertical bar is used: [HEAD | TAIL].
To unify this pattern, we can use a list. Now, let’s see how it works:

?- [HEAD|TAIL] = [a, b, c, d].

HEAD = a

TAIL = [b, c, d]

In this, only one element is specified in the head, but more than one
element is also specified, such as

?- [FIRST, SECOND|TAIL] = [a, b, c, d].

Logic Programming • 377

FIRST = a

SECOND = b

TAIL = [c, d]

This represents a list in which there is no tail.

?- [W, X, Y, Z|TAIL] = [a,b,c,d].

	 W = a

	 X = b

	 Y = c

	 Z = d

TAIL = []

[] is then a useful element for recognizing that a recursive list predicate
has reached the end of the list. Now we want to represent each element
of a list on a new line. To represent a new line, the “nl” term is used. For
example,

write_list([]). empty list, end.

write_list([A|Z]) :-

write(A), write the head nl,

write_list(Z). recurse with the tail

Using it:

?- write_list([mango,banana,litchi,grapes]).

mango

banana

litchi

grapes

yes

While lists are stored more efficiently than structures, lists are also used as a
nested structure of arity two or more. If a list has a structure of arity two in
which first argument is the head, the second argument is the same structure
representing the rest of the list. In this, a special atom is used, represented
by [], which indicates the end of the nesting. This character (nature) of lists

378 • Artificial Intelligence and Expert Systems

can be observed using the display/1 predicate, where a period (.) is used as
the functor of the structure.

?- display([a, b, c]).

.(a, .(b, .(c, [])))

Character Lists

Character lists are those lists whose elements are character codes. Charac-
ter lists are mainly used in parsing applications. Prolog identifies a particu-
lar syntax to make this use more expedient.

A string of characters enclosed in double quotes (“) is converted into
a list of character codes. Let us take an example (using member/2 from
the list library) that illustrates how to use the character list and shows
the predicates for converting between the character lists and atoms and
strings.

For example:

	 ?- X = “abc”.

	 X = [0w0061, 0w0062, 0w0063]

	 yes

?- member(0’b, “abc”).

yes

?- atom_codes(abc, X).

	 X = [0w0061, 0w0062, 0w0063]

yes

?- atom_codes(A, “abc”). A = abc

yes

?- string_list(S, “abc”). S= abc

yes

?- string_list(`abc`, L).

	 L = [0w0061, 0w0062, 0w0063]

yes

Logic Programming • 379

14.10	   Arithmetic Operations

Prolog is not used for only symbolic representations of AI applications, but
also used for numeric representations. In Prolog, there are several arithme-
tic predicates that take a number of arguments on which many operations
are performed as in the usual mathematical expressions, such as “+” (for
addition), “-” (for subtraction), “∗” (for multiplication), and “/” (for division).
Frequently, before executing an arithmetical predicate, every variable that
is used in the expressions on its left-hand side and right-hand side has to
be instantiated to terms only containing numbers and operators. The argu-
ments will be evaluated before the test specified by the predicate is per-
formed.

In Prolog, the following arithmetical relational predicates are most
often used:

	 X > Y.

	 X < Y.

	 X > = Y.

	 X = < Y. X = : = Y. (equality)

	 X = \ = Y. (inequality)

It may be noted that in Prolog, the expression “3 + 7” will not give the result
of addition (that is, “10”). The operation of “+” does not execute automati-
cally. To execute an arithmetic operation, Prolog provides a special type of
operator, “is”: ? -X is 3 + 7. This will give a result of 10, which is the
same as the result of the arithmetic operation.

?- X is Y.

Only the right side Y has to be instantiated to an arithmetical expression.
Note that the difference between the predicate “=:=” and the matching
predicate “=;” In case of “=:=,” both X and Y have to be instantiated to
arithmetical expressions. In the case of a matching predicate, neither X nor
Y has to be instantiated.

Example: Consider the following queries and answers that illustrate the
differences and similarities between the predicates =, =:=, and is:

(i)		 ? – 8 = 5 + 3

	 no

380 • Artificial Intelligence and Expert Systems

(ii)		 ? – 8 is 5 + 3.

	 yes

(iii)	 ? – 8 = : = 5 + 3.
	 yes

(iv)	 ? – 3 + 4 = 3 + 4.

	 yes

(v)	? – 3 + 4 = : = 3 + 4.
	 yes

(vi)	 ? – 3 + 4 is 3 + 4.

	 no

(vii)	 ? – 4 + 3 = 3 + 4.

	 no

(viii)	 ? – 4 + 3 = : = 3 + 4.

 	 yes

The following examples describe the behavior of these predicates when the
left side is an uninstantiated variable. Prolog shows the computed instantia-
tion:

	 ? – X is 5 + 3.

	 X = 8

	 ? – X = 5 + 3.

	 X = 5 + 3

We have left out the example of ? – X = : = 5 + 3, since it is not
permitted to have a uninstantiated variable as an argument to = : =. 8 The
predicates are = : = . These may only be useful to arithmetical arguments.
The predicate =, however, also applies to non-arithmetical arguments,

For example, ? – X = [a,b]. directs to the instantiation of the vari-
able X to the list [a, b]. when we use is predicate and = : =predicate in Pro-
log language then Prolog interpreter will return a signaled error.

To understand this, let us explain a Prolog program for a factorial:

Factorial (0,1)

Logic Programming • 381

Factorial (Number, Result):-Number > 0, new is number
–1, factorial (new, partial), Result is Number ∗ partial.

Here is an explanation of the Prolog program for a factorial. If the given
number is 0, then its factorial is 1. Additionally, the result of the computation
for a factorial of any number, Number, will be associated with the variable,
Result, and the goal can be achieved through the following four subgoals:

•	 Number > 0 should be true.

•	 In the second subgoal, the operator “is” is used to calculate the
number “Number –1” and is associated with the variable “New.”

•	 The factorial of the number “Number -10” through the operator “is,”
i.e., of the number “New,” is recursively calculated and the result of
the calculation is associated with the variable partial.

•	 Finally, the operator “is” is used as the product of the number with a
partial, which is the result of the factorial of “New” (i.e., to calculate
the number –1; it is associated with “Result”).

14.11	   Strings

A string is an exchange way to represent a text. To represent an integer
(terms), a string is also used. A string represents an integer in the form of a
table, and a string can also be represented as a string itself. Strings are useful
for textual information that is for display purposes only. To combine strings,
the system uses a character-by-character basis and with atoms. A string is
signified by the text enclosed in matching backquotes (`). Strings may also
have fixed (embedded) formatting characters, like atoms. For example:

`This is a long string used for\ndisplay purposes`

Two backquotes are used for representing this string.

Strings are mainly used to represent text that is being used for I/O, and
they are not used for unification. To understand this, let us look at an exam-
ple of “customers,” which is represented as a clause that might have the
customer name as an atom. Now, the string is used for fast unification, such
as the customer’s address information as a string just for output purposes.

Internally, all strings are stored as Unicode (wide) character strings. In
Prolog source code, when reading and displaying any information, this full
wide (Unicode) character set can be used.

382 • Artificial Intelligence and Expert Systems

Strings do not occupy space in the atom table, and the space they
occupy is automatically collected and reused by the system once the string
is no longer needed. As a result, strings can be more memory-efficient for
large quantities of textual information.

Exercises

Q1.  What is Prolog? How it is different from other languages?

Q2. � How do we differentiate between a Prolog and a simple English
sentence?

Q3.  Define facts and rules.

Q4.  How many types of rules are there? Explain them.

Q5.  What are the notations for building blocks in Prolog?

Q6.  How does Prolog satisfy goals?

Q7.  Write a program in Prolog using structures.

Q8.  Write a program in Prolog using lists.

Q9.  Define a data structure for Prolog.

Q10.  Write a program in Prolog using arithmetic operations.

C H A P T E R15
ADVANCED PROLOG

15.1	  Input and Output Predicates

In Prolog, there are mainly two types of input and output predicates. The
input and output predicates are the most important predicates, in which a
user reads from files and writes to files. The basic input and output predi-
cates are shown in Table 15.1.

Table 15.1  I/O Predicates

Predicate Explanation

write(X) Write the term X on the current output stream.

nl Start a new line on the current output stream.

read(X) Read a term (finished by a full stop) from the current input
stream and unify it with X.

put(N) Write the ASCII character code N. N can be a string of length one.

get(N) Read the next character code and unify its ASCII code with N.

see(File) File becomes the current input stream.

seeing(File) The current input stream is File.

Seen Close the current input stream.

tell(File) File becomes the current output stream.

telling(File) The current output stream is File.

Told Close the current output stream.

384 • Artificial Intelligence and Expert Systems

15.1.1  Terms and Character I/O
We can read input and write output in two ways: terms and characters. A term
for input and output predicates is defined as being delimited by a full stop. It
is used in the ordinary Prolog sense. ASCII characters are used for defining a
character. The predicates used are demonstrated in the table below.

Input Output

Term read/1write/1

Character get0/1put/1 get/1

What happens when we write predicates like this? Let’s use an example
from a Prolog terminal to help us understand how these predicates work.

| ? – write(hello).

hello

yes

| ? – write(‘hello world’).

hello world

yes

| ? – X = hello, write(X).

hello

X = hello ?

yes

This example shows how different Prolog is from other languages! In
every programming language, the first program you write is the “Hello
World” program. With read/1, Prolog goes somewhere else (by default to
the terminal, in which case the |: prompt appears (also by default) to tell the
user where to type the term) to find something that ends with a full stop.
Anything that it finds is unified with the variable you give it.

| ?- read(X).

|: ‘hello ana’.

‘hello ana’.

X = ‘hello ana’ ?

yes

Advanced Prolog • 385

If we want to write a term with input as spaces from the terminal, then
we must use quotes to write it. You can use the value of what Prolog reads
in (X in the example above) in a while goal, such as

| ?- read(X),name(X,L).

|: hello.

hello.

L = [104,101,108,108,111], X =

hello ?

yes

Put and get0 are the same as write and read, but they use a single ASCII
character for writing or reading. The ASCII character is used so its argu-
ment becomes a list of single ASCII numbers. get0 and get are used, in
which get0 reads everything and get binds its argument to the next printed
character, spaces are removed, and new lines and control characters are
found in the input stream.

Another procedure useful for producing output is nl/0. It creates a new
line and always accomplishes this exactly once.

15.1.2  File I/O
By default, input is taken from the keyboard and output is sent to the
screen. These include a virtual file, which is known as user (you can read
more about this in the manual). In spite of these files, we can also handle
other files using predefined commands to

•	 ask which file you are currently taking input from/sending output to

•	 tell Prolog to take input from/send output to a specific file

•	 tell Prolog to stop taking input/sending output to the file it is currently
dealing with

These predicates are shown in the table below.

Input File Output File

Determine current seeing/1telling/1

Change to new see/1tell/1

Close current seen/0told/0

386 • Artificial Intelligence and Expert Systems

If you want to save the output of a program to a file, you can use tell/1
and told/0. Say that you want to analyze the data generated by the file pari.
pl, and save the output to pari.dat. Then you can use the following code (the
command which generates the data is called run):

| ?- consult([pari]).

{consulting /homedir/pari/Prolog/pari.pl...}

{/homedir/pari/Prolog/pari.pl consulted, 150 msec 13776 bytes}

yes

| ?- tell(‘pari.txt’), run, told.

Yes`

15.2	  Backtracking

Backtracking is defined as the process to re-satisfy a goal. It is used by Prolog.
It works when a goal cannot be satisfied; then, Prolog makes an effort to dis-
cover an alternative clause for that goal. When a subgoal or goal fails, it makes
an effort to re-satisfy the goal. Variables, which are used in facts or rules in
Prolog, are also used in backtracking. These variables are used to find their
original values. In backtracking, when a previous search has been stopped,
then a new solution can be found for the goal by beginning another search.

We can say that backtracking refers to going back over the steps you fol-
lowed. In the search tree, you go back up the branches you followed, back
up to the previously untraversed branches, so no untraversed branches are
left. All branches must be visited once.

To understand the concept of backtracking, let’s look at an example:

f(x) :- fail ? f(1)

f(1) /\

fail Yes

Steps followed:

•	 Go from f(1) to fail.

•	 Go back from fail to f(1). This is the backtracking step.

•	 Go from f(1) to yes.

Advanced Prolog • 387

Backtracking is an influential tool in searching option directions when one
of the directions being followed for finding a solution leads to a failure.
This is of great importance in Prolog. When a query is entered and many
solutions are provided at one time, backtracking is also useful. First, we
demonstrate the concept through an example and then explain the general
idea of backtracking.

Example

Consider the following query for the database:

?-is_sister (aditi), is_sister(Y, riddhi)

First, the query is translated into a simple (English) sentence and it
becomes the following: find the names (denoted by Y) of all those persons
for whom Aditi is a sister and who (denoted by Y) is a sister of Riddhi.

In order to answer the above query, the, first solution the Prolog system
comes up with after searching the database is as follows: “Associate Aditi with
Y,” i.e., Aditi is one possible answer to this query (which is the conjunct of two
proposition). In other words, associate Y with Aditi, which is, according to
the facts and rules given in the database, satisfies is _ sister (Aditi, Aditi) and
is_sister (Aditi, Riddhi). If we are interested in more than one answer, which
is possible in this case. After obtaining the answer “Aditi,” the user should
type the symbol “;” (i.e., type a semi-colon). Typing a semi-colon followed by
a return serves as a direction to the Prolog system to search the database from
the beginning once again for an alternative solution.

In order to prevent the Prolog system from attempting to find the same
answer (Aditi) again, the system puts marker-one on the rule and after that
on the fact.

Once the instruction from the user through the semi-colon is received
to find another solution, the system proceeds to satisfy the rules from the
facts. Then, through the facts for the first occurrence of Y, Aman is associ-
ated. The variable X is already associated with constant Aditi. Then Aman
replaces Y in the rule. Next, the Prolog system attempts to satisfy the sec-
ond subgoal which, at present, is of the form

is _ sister (aman x z, riddhi)

To satisfy this goal, the Prolog system searches the database from the
top again. Again, a rule is used. To satisfy the left-hand side of the subgoal,
the right-hand side needs to be satisfied. The first subgoal on the right-
hand side is to satisfy the fact (female(aman)), which is not satisfied.

388 • Artificial Intelligence and Expert Systems

At this stage, the Prolog system goes back to the association, i.e.,
Aman to Y and removes this association of Y with Aman. Next, the Pro-
log system attempts to associate some other value to Y, further from
the point where Y was associated with Aman. This is what is meant by
backtracking.

Next, through a fact, Riddhi is associated with Y and Aditi is already
associated with X, thus, the subgoal to be searched becomes is _sister (rid-
dhi, riddhi). This goal can be satisfied because the three subgoals for this
goal, viz., female (riddhi), parents (riddhi, M, F) (where Riddhi is associ-
ated with X), and parents (riddhi, M, F) (where Riddhi is associated with
Y), can be easily seen to be satisfiable from the database. Hence, the second
answer the system gives is “Riddhi.”

Again, the user may seek for another answer to the query by typing
“;.” The system has already marked the fact in the database while finding
the answer “Riddhi.” Therefore, for another answer, the Prolog system
starts from the next statement, i.e., from fact to search. It can be easily
seen that the Prolog system will not find any more answers. Hence, it
returns “fail” or “no.”

Another use of backtracking is to compute the permutation of a
given list. For this, we want to write a predicate that is built in. The
implementation of a permutation uses a built-in predicate, which takes
a list as its second argument and matches the first argument with an
element from that list. In the third argument, the variable position will
then be matched with the rest of the list after having removed the cho-
sen element.

Now, to find a possible solution of the permutation, there is one pos-
sible way: an empty list. An empty list is one possible permutation. In this, if
the input list has obtained elements, then the goal or subgoal that has been
selected will be successful. After this, it combines the variable element to
an element that is used in an input list. After the combination, this element
becomes the head of the output list and recursively calls the permutation
again with the rest of the elements (those elements that are not used in the
output list) of the input list. Now many answers are generated, but the first
answer of the query will be used to reproduce the input list because the rest
of the elements will be assigned to the value of the head of the output list.
If further substitutions are requested, then backtracking is used, where the
selected goal or subgoal takes place. Backtracking is used because it will

Advanced Prolog • 389

generate all possible orders of selecting the elements from the input list, in
other words, it will generate all permutations of the input list. How can the
input list generate the output list using backtracking in a permutation? Let’s
look at an example:

? - permutation([1, 2, 3], X).

X = [1, 2, 3] ;

X = [1, 3, 2] ;

X = [2, 1, 3] ;

X = [2, 3, 1] ;

X = [3, 1, 2] ;

X = [3,2,1];

 No

15.2.1  Problems with Backtracking
Backtracking is one of the most qualitative features of Prolog. Some of the
problems in backtracking can lead to inefficiency. For example, Prolog
can waste time discovering possibilities that lead nowhere, and we can say
that controlling backtracking is very difficult. This can be explained by an
example.

Example

member(X, [X|_]).

member(X, [_|T]) :- member(X, T).

?- member(fred, [chirag, fred, kushal, fred]).

yes

?- member(X, [chirag, fred, kushal, fred]).

	 X = chirag;

	 X = fred;

	 X = kushal;

	 X = fred;

	    no

390 • Artificial Intelligence and Expert Systems

The Problem of Controlling Backtracking

color (cherry, red).

color (banana, yellow).

color (apple, red).

color (apple, green).

color (orange, orange).

color (X, unknown).

?- color (banana, X).

	 X = yellow

?- color(physalis, X).

	 X = unknown

?- color(cherry, X).

	 X = red;

	 X = unknown;

	 no

Now, there are some solutions that can control this problem. It would
be pleasant to have some control over this quality of its behavior. Two pos-
sible ways to control the problem are shifting the order of rules and chang-
ing the order of the conjuncts in the body of rules.

Another possible solution of this problem is the built-in predicate
known as “cut.” This is the best solution for controlling the problem of
backtracking, and is better than the two ways mentioned above.

15.3	  Cut

“Cut” is basically a special atom that we can use when writing clauses. It
used for logical properties as well as used for its effects. It always succeeds.
It is represented by the exclamation mark (!). Let’s look at an example.

	 p(X) : b(X), c(X),!, d(X), e(X).

This example explains the absolute rule of Prolog that defines cut. What
does cut refer to? It is a goal, or we can say that it is a parent goal that always
succeeds. Let us assume that this goal makes use of the clause. Cut is used

Advanced Prolog • 391

to assign any choices to Prolog that were made, since the parent goal was
unified with the left-hand side of the rule.

If p(X) matches, goals b(X) and c(X) may backtrack among themselves.
If it is p(X), another goal will be attempted. But as soon as the cut is crossed,
Prolog commits to the current choice. All other choices are discarded.

To understand how cut works, let’s look at an example that defines a
(cut-free) predicate max/3, which takes integers as arguments and succeeds
if the third argument is the maximum of the first two. For example, the
queries

max (2, 3, 3)

and

max (3, 2, 3)

and

max (3, 3, 3)

should succeed, and the queries

max (2, 3, 2)

and

max(2, 3, 5)

should fail. Of course, we also want the program to work when the third
argument is a variable. That is, we want the program to be able to find the
maximum of the first two arguments for us:

? - max (2,3, Max).

Max = 3

Yes

?- max (2, 1, Max).

Max = 2

Yes

Now, it is easy to write a program that does this. Here’s a first attempt:

max (X, Y, Y) :- X = < Y.

max (X, Y, X) :- X > Y.

392 • Artificial Intelligence and Expert Systems

This program works well, but it’s not good enough. What’s the problem?
There is a possible inefficiency. Suppose this definition is used as part of a
larger program, and somewhere along the way, max (3, 4, Y) is called. The
program is correct when Y = 4. But now consider what happens if, at some
stage, backtracking is forced. The program will try to re-satisfy max (3, 4,
Y) using the second clause. And of course, this is completely pointless: the
maximum of 3 and 4 is 4, and that’s that. There is no second solution to
find. To put it another way, the two clauses in the above program are mutu-
ally exclusive. If the first succeeds, the second must fail and vice versa.
Attempting to re-satisfy this clause is a complete waste of time.

With the help of cut, this is easy to fix. We need to insist that Prolog
should never try both clauses, and the following code does this:

max (X, Y, Y) :- X = < Y,!.

max (X, Y, X) :- X >Y.

Note how this works. Prolog will reach the cut if max (X, Y, Y) is called
and X = < Y succeeds. In this case, the second argument is the maximum,
and that’s that, and the cut commits us to this choice. On the other hand, if
X = < Y fails, then Prolog goes onto the second clause instead.

Note that this cut does not change the meaning of the program. Our
new code gives exactly the same answers as the old one, it’s just a bit more
efficient. In fact, the program is exactly the same as the previous version,
except for the cut, and this is a pretty good sign that the cut is a sensible
one. Cuts like this, which don’t change the meaning of a program, have a
special name: they’re called green cuts.

But there is another kind of cut: cuts that do change the meaning of
a program. These are called red cuts, and these are usually best avoided.
Here’s an example of a red cut. Yet another way to write the max predicate
is as follows:

max (X, Y, Y) :- X = < Y,!.

max (X, Y, X).

This is the same as our earlier green cut max, except that we got rid of
the > test in the second clause. This is bad sign: it suggests that we’re chang-
ing the underlying logic of the program. And indeed we are: this program
works by relying on cut. How good is it?

Advanced Prolog • 393

Well, for some kinds of queries, it’s fine. In particular, it answers correctly
when we pose queries in which the third argument is a variable. For example:

? - max (100,101,X).

X = 101

Yes

and

? - max (3,2,X).

X = 3

Yes

Nonetheless, it’s not the same as the green cut program: the meaning
of max has changed. Consider what happens when all three arguments are
instantiated. For example, consider the query max (2, 3, 2).

Obviously, this query should fail. But in the red cut version, it will suc-
ceed! Why? Well, this query simply won’t match the head of the first clause,
so Prolog goes straight to the second clause. The query will match with the
second clause, and (trivially) the query succeeds! Oops! Getting rid of that
> test wasn’t quite so smart after all...

This program is a classic red cut. It does not truly define the max predi-
cate, rather, it changes its meaning and only gets things right for certain
types of queries.

15.4	  Fail

When a rule is used in Prolog but fails due to some inefficiency, the fail
predicate is used for forced backtracking. Its subgoal is found but all of the
subgoals defined after fail will never be executed. Hence, a predicate fail
should always be used as the last subgoal in a rule. It is to be noted that a
rule containing a fail predicate will not produce any solution.

Consider an example to demonstrate the use of a fail predicate.

	 listing(Name, Address) :- emp(Name, Address).

 emp (divya, maths).

emp (monika, cse).

emp (seeta, mechanical).

394 • Artificial Intelligence and Expert Systems

Goal: ?- listing(Name, Address).

When above goals are executed by backtracking, then all possible solu-
tions are attained. All of these solutions are described as follows:

Name=	divya, Address = maths; Name = monika , Address = cse;

Name=	seeta, Address = mechanical;

listing:-	write(‘Name‘), write(‘ Address’), nl,

emp (Name, Address), write (Name), write (‘’) write (‘Address‘) nl, fail.

emp (divya, maths).

emp(monika, cse).

emp(seeta, mechanical).

Goal: ?- listing

Name	 Address

divya	 maths

monika	cse

seeta	 mechanical

15.4.1  Cut and Fail Combination
The cut and fail combination is useful for expressing negative facts.

Consider the example “Vishal does not like lions,” which could be expressed
by the following rule and fact.

like(vishal, lions):-	 !, fail.

like(vishal, X).

This rule and fact define that “Vishal likes everything except lions,”
which means that “Vishal does not like lions”.

Goal: ?- like(vishal, lion).	 Answer: no

Goal: ?- like(vishal, snake).	 Answer: yes

15.5	  Recursion

Recursion is used where many problems (class of problems) are generated
and solving them in some way involves using parameters. Usually, param-
eters are used to determine the complexity of a problem that are numbers

Advanced Prolog • 395

or items in a Prolog list (rather than length). Now, we must make sure that
every recursion step will really transform the problem into the next simpler
case and that the base case will ultimately be reached.

Let’s think about an example of how recursion is used in the factorial
of a number.

The first argument is striving towards 1; in the len/2-example, the first
argument is striving towards the empty list. The recursion principle itself
is very simple and is applicable to many problems. Despite the simplicity
of the principle, the actual execution tree of a recursive program might
become rather complicated. This example recursion is performed in Java
and Prolog. To find the factorial of a number in Java by recursion, we write
the following code:

public int factorial(int n) {

if (n == 1) {

return 1; // base case

} else {

return factorial(n-1) ∗ n; // recursion step

}

}

Now the recursion is used in Prolog to find the factorial of a number
“Recursion” in Prolog. We include a definition of a Prolog predicate to
compute factorials:

factorial(1, 1). % base case

factorial(N, Result) :- % recursion step

N > 1,

N1 is N - 1, factorial(N1, Result1), Result is Result1 ∗ N.

Recursion 1

As is usually the case in many programming tasks, we frequently wish
to repeatedly perform some operation either over a whole data structure or
until a certain point is reached. This is done by recursion in Prolog because
it provides the best way to perform this action. Recursion can be defined as
a program that calls itself, usually until some final point is reached. But in

396 • Artificial Intelligence and Expert Systems

Prolog, it is defined in terms of the facts or rules. Suppose that we have a
first fact that acts as some stopping condition, followed up by some rule(s)
that performs some operation before re-invoking itself.

Recursion 2

on_route (miami).

on_route (Place):- move (Place,Method,New Place),

on_route (New Place).

move(home,car,railway station).

move(railway station, train, airport).

move(airport, plane, miami).

on_route is a recursive predicate. This program sees if it is possible
to travel to Miami from a particular place. The first clause sees if we have
already reached Miami, in which case, we stop. The second clause sees if
there is a move from the current place to somewhere new, and then the
recursive sees if the New Place is on_route to Miami. The database of
moves that we can make is on the right.

Let’s now consider what happens when we pose the query ?- on_
route(home). This matches clause two of on_route (it can’t match clause one
because home and Miami don’t unify). The second on_route clause consists
of two subgoals. The first asks whether you can move from home to some
new location, i.e., move(home,Method,New Place). This succeeds with
Method = taxi, New Place = railway station. This says that yes, we can move
from home by taking a taxi to the railway station. Next, we recursively see if
we can find a route from railway station to Miami by doing the same thing
again. This is done by executing the new subgoal on_route(railway station).

Recursion 3

on_route (miami).

on_route (Place):- move (Place,Method, New Place),

on_route (New Place).

move(home,taxi,railway station).

move(railway station,train,airport).

move(airport,plane,miami).

Advanced Prolog • 397

The goal on_route (railway station) will fail to unify on clause one, so
again we’ll use the recursive clause two and find some new place to go to.
Hence, we try the goal move(railway station,Method,New Place). This suc-
ceeds because we can catch a train from a railway station to the airport.
Hence, Method = train, and New Place = airport. As a result, we then try
the recursive call on_route(airport), i.e., we see if there is a move from the
airport which will get us to Miami.

We now try on_route(airport), and again this only unifies with the sec-
ond clause. As a result, we try the move clause again, this time with the
“Place” bound to “airport.” This query will match the third clause of the
move database. The results in Method = plane, New Place = miami. Next,
we try the recursive goal on_route(miami). This now matches clause one of
on_route. This is just a fact and succeeds. As a result, all the other on_route
goals in turn succeed. Thus, finally our first goal ?- on_route(home) suc-
ceeds and Prolog responds “yes.”

15.6	  Prolog Data Structure

A data structure is defined as the process of organizing the facts or rules.
But in Prolog, it is of three types: terms, unification, and operators.

[terms] [unification] [operators]

15.6.1  Terms
A term is a basic data structure in Prolog. A term is defined as everything
that is used in a program and the data. Everything can be represented in
the form of terms. There are four basic types of terms in Prolog: variables,
compound terms, atoms, and numbers.

term	

|– var (X, Y)

| – nonvar (a, 1, f(a), f(X))

|– compound (f(a), f(X))

| – atomic (a,1)

|– atom (a)

| – number (1)

398 • Artificial Intelligence and Expert Systems

15.6.2  Unification
Another type of data structure is unification. Unification is an engine of
Prolog. One powerful feature of Prolog is pattern matching, in which uni-
fication is used. It tries to find most general substitution of variables in two
terms such that after applying this substitution to both terms, the terms
become the same. If we want to unify two terms, A and B, one can easily
invoke the built-in unification A = B. This is defined as a recursive defini-
tion to handle data structures. To understand the concept of unification, we
will introduce the built-in predicate =, which means when two arguments
unify, then it will be successful (yes), otherwise it will fail when the two
arguments do not unify. It can be written in operator syntax as follows.

	 arg1 = arg2

which is equivalent to

	 = (arg1, arg2)

Note that the equal sign (=) does not define as assignment operator as
in most programming languages. It causes Prolog unification.

The unification between two sides of an equal sign (=) is exactly the
same as the unification that occurs when Prolog tries to match goals with
the heads of clauses. When backtracking, the variable bindings are undone,
just as they are when Prolog backtracks through clauses.

Unification occurs in its simplest form when no variable is used. It
occurs only between two structures. It works as if these structures are
identical; then, it will respond “true” (succeeds), otherwise, it return “fail,”
meaning that the unification failed.

	 ?- a = a. yes

	 ?- a = b. no

	 ?- location (knife, kitchen)=location(knife kitchen).

			 yes

	 ?- location(knife, kitchen)=location(knife, room).

			 no	

	 ?- a(b,c(d,e(f,g))) = a(b,c(d,e(f,g))).

			 yes

	 ?- a(b,c(d,e(f,g))) = a(b,c(d,e(g,f))).

			 no

Advanced Prolog • 399

Unification occurs in another form also, between a variable and a struc-
ture (primitive). Unification succeeds when the variable takes on a value.

	 ?- X = a.

	 X = a

	 ?- 4 = Y.

	 Y = 4

	 ?- location(knife, kitchen)=location(knife, X). X = kitchen

In other cases, multiple variables are simultaneously bound to values.

	 ?- location (X, Y) = location (apple, kitchen).

	 X = apple

	 Y = kitchen

	 ?- location(apple, X) = location (Y, kitchen).

	 X = kitchen

	 Y = apple

Prolog remembers the fact that the variables are bound together and
will reflect this if either is later bound.

	 ? - X = Y, Y = hello.

	 X = hello

	 Y = hello

	 ? - X = Y, a (Z) = a(Y), X = hello.

	 X = hello

	 Y = hello

	 Z = hello

The last example is critical to a good understanding of Prolog and illus-
trates a major difference between unification with Prolog variables and the
assignment with variables found in most other languages. Note carefully the
behavior of the following queries.

	 ?- X = Y, Y = 3, write(X).

		 3

400 • Artificial Intelligence and Expert Systems

	 X = 3

	 Y = 3

	 ?- X = Y, tastes _ yucky(X), write(Y).

		 broccoli

	 X = broccoli

	 Y = broccoli

Even in these more complex examples, the relationships between the
variables are remembered and updated as new variable bindings occur.

	 ? - a (b,X) = a (b,c (Y,e)), Y = hello.

	 X = c (hello, e)

	 Y = hello

?- food (X,Y)=	 Z, write(Z), nl, tastes _ yucky(X), edible(Y), write(Z).

food(_01,_02)

food(broccoli, apple)

	 X = broccoli

	 Y = apple

	 Z = food(broccoli, apple)

If a new value assigned to a variable in later goals conflicts with the pat-
tern set earlier, the goal fails.

	 ?- a(b,X) = a(b,c(Y,e)), X = hello.

	 	 no

The second goal failed, since there is no value of Y that will allow “hello”
to unify with c(Y,e). The following will succeed.

	 ?- a(b,X) = a(b,c(Y,e)), X = c(hello, e).

	 X = c(hello, e)

	 Y = hello

If there is no possible value the variable can take on, the unification fails.

	 ?- a(X) = a(b,c).

		 no

Advanced Prolog • 401

	 ?- a(b,c,d)	 =	 a(X,X,d).

			 no

The last example failed because the pattern asks that the first two argu-
ments be the same, and they aren’t.

	 ?- a(c,X,X)	 =	 a(Y,Y,b). no

Did you understand why this example fails? Matching the first argument
binds Y to c. The second argument causes X and Y to have the same value, in
this case, c. The third argument asks that X bind to b, but it is already bound
to c. No value of X and Y will allow these two structures to unify.

The anonymous variable (_) is a wild variable, and it does not bind to
values. Multiple occurrences of it do not imply equal values.

	 ?- a(c,X,X) = a(_,_,b).

	 X = b

Unification occurs explicitly when the equal (=) built-in predicate is
used, and implicitly when Prolog searches for the head of a clause that
matches a goal pattern.

15.7	  Dynamic Database

Databases are of two types: the static database and dynamic database. If
programmer wants to modify the content of the database at runtime, then
a Prolog system provides a dynamic database.

The main feature of this database is the addition to clauses of two types
of predicates, asserta and assertz. Both predicates take one argument. If
this argument has been instantiated to a term before the procedure call is
executed, asserta adds its argument as a clause to the database before all
(possibly) present clauses that specify the same functor in their conclusions.
On the other hand, assertz adds its argument as a clause to the database just
after all other clauses concerning the functor.

Example Consider the Prolog database containing the following clauses.

fact(a).

fact(b).

yet _ another _ fact(c).

402 • Artificial Intelligence and Expert Systems

and _ another _ fact(d).

We enter the following query to the system:

?- asserta (yet _ another _ fact(e)).

After execution of the query the database will have been modified as
follows:

fact(a).

fact(b).

yet _ another _ fact(e).

yet _ another _ fact(c).

and _ another _ fact(d).

The execution of the procedure call is as follows:

?- assertz(fact(f)).

which modifies the contents of the database as follows:

fact(a).

fact(b).

fact(f).

yet _ another _ fact(e).

yet _ another _ fact(c).

and _ another _ fact(d).

By means of the one-placed predicate take back, the first clause having
both the conclusion and conditions matching with the argument is removed
from the database.

15.8	  Programs in Prolog

•	 Example 1

If John feels hungry, then he eats quickly. If he eats quickly, he gets
heartburn. If he gets heartburn, he takes medicine. John feels hungry.

Conclusion: Given the above facts, what can we conclude about John
taking medicine? Does he or doesn’t he?

Advanced Prolog • 403

The above argument is a sorites argument, or it can be interpreted as a
series of modus ponens arguments. This one is easy! Of course, John takes
medicine. Now, can you get Prolog to tell you this?

Answer : Give Prolog the following facts:

	 eats(john,quickly) :- feels (john,hungry).

	 gets(john,heartburn) :- eats (john,quickly).

	 takes(john,medicine) :- gets(john,heartburn).

	 feels(john,hungry).

Ask Prolog “takes(john,medicine).” The answer should be “yes.”

•	 Example 2

John is dating Nancy, but right now he is wondering if he must leave
the country. Now John will take a vacation in either of two circumstances:
if the IRS is after him or if he is doomed. He is also dating Susan. If he is
dating both of them, then Nancy knows this. Now John is, in fact, doomed
if both Nancy and Susan know he is dating both of them. If John will
take a vacation, then he must leave the country. So, must John leave the
country?

Conclusion:

What do you think? This one is a little more difficult.

Answer: Give Prolog the following facts:

dates(john, nancy).

takes(john,vacation) :- (after(irs,john) ; is(john,doomed)).

dates(john, susan).

knows(nancy, (dates(john,nancy) , dates(john,susan))):- (dates(john,nan
cy),dates(john,susan)).

is(john,doomed):-

(knows(nancy, (dates(john, nancy) , dates(john, susan))) , knows(susan,
(dates(john, nancy) , dates(john,susan)))). leaves(john, country) :- takes(john,
country).

Ask Prolog “leaves(john, country).” The answer should be “no” because
the computer hasn’t been told that Susan knows that John is dating both

404 • Artificial Intelligence and Expert Systems

Nancy and Susan, and so it interprets this statement as “fail” (unproved)
and so the inference doesn’t go through.

Can you get Prolog to compute these answers? 4 + 5 ∗ 10

	 (4 + 5) ∗ 10

Answers: Type

	 X is 4 + 5 ∗ 10.

Prolog responds: X is 54

Type

	 X is (4 + 5) ∗ 10.

Prolog responds:

X 90

15.9	  Problems with Prolog

•	 To be purely declarative, a programmer should not be required to
affect the control flow for program success.

♦♦ It should be a consequent of the DFS search strategy.

♦♦ A left recursion often leads to incorrect results.

•	 Prolog uses a closed world assumption (and nonmonotonic reasoning);
Prolog is a true-fail system, not a true-false system. There is no
mechanism in Prolog by which to assert facts that are assumed to
be “fails.” Prolog relies on pure positive logic. This is another reason
why there is no logical “not.” As a result, not(P) can succeed simply
because Prolog cannot prove P is true.

•	 Horn clauses are not expressive enough to capture all knowledge in
first-order predicate calculus (e.g., the propositions in clausal form
with a disjunction of more than one non-negated term, such as every
“positive natural number is either even or odd,” even(N) ∨ odd(N)
Ì natural(N), negation as failure (a reflection of Prolog’s limitation
to Horn clauses) odd(N) :- natural(N), not(even(N)). even(N)
:- natural(N), not(odd(N)). More negation issues are as follows:
not(transmission(X,manual)) means ¬ $X (transmission (X,manual))
or “There are no cars with manual transmissions” rather than

Advanced Prolog • 405

•	 $X (¬transmission(X,manual)) or “Not all cars have a manual
transmission” (example inspired by [PLP] p. 582). As a result, the
goalnot(transmission(X,manual)) fails even if we have transmission
(accord,manual) in our database. This causes the occurs-check
problem.

Exercises

Q1.  What are input output predicates in Prolog?

Q2. � Differentiate between file input output and character input
output.

Q3.  Write a program in Prolog using any type of predicate.

Q4.  What is backtracking?

Q5.  What are the disadvantages of backtracking?

Q6.  Why are cut and fail used in Prolog?

Q7.  What are the advantages and disadvantages of Prolog?

Q8.  Why is Prolog used in artificial intelligence?

A
Add new node, 127
Antecedent, 75, 76, 79, 138, 308, 309, 315,
317-319, 326, 327, 349

Arbitrary visual scene, 18
Arithmetic defuzzification, 330
Artificial intelligence, 1, 2, 5-7, 10, 11, 12,
14, 16-19, 21, 23, 24, 26, 31, 71, 129, 130,
247, 359, 363, 374, 375, 405

Artificial neural network, 23, 245, 249, 250,
252, 253, 258-262, 266, 268, 269, 289

Automatic optimization methods, 324

B
Backward chaining, 80, 82, 83, 85, 93
Biomedical applications, 260
Bisector, 331
Boolean algebra, 2
Boolean logic, 272, 274, 302-305, 310, 322

C
Center of gravity, 331, 336, 350, 351
Centroid, 330, 331, 336, 337
Centroid defuzzification method, 330
Character code, 378, 383
Class frame, 200-202, 204, 206, 209, 211
Cognitive modelling approach, 8
Concept (card) sorting, 123
Concept tree, 126, 127
Conceptual dependency (CD), 225
Consequence or conclusion, 308
Consequent, 67, 75-77, 80, 83, 138, 308,
309, 311, 320, 323, 327, 328, 330, 335, 337,
350, 361, 404

Crisp value, 330, 331, 336, 345

D
Debug, 106,
Defuzzification, 324, 329-332, 335-339, 341,
342, 344, 350, 352, 357

Depth first search (DFS), 44
Depth limited search (DLS), 40, 47, 48, 51
Discourses x, 308
Domain expert, 75, 78, 86-88, 91, 97,
99-105, 107, 110, 114, 116-123, 127, 321, 322

Domain knowledge, 324

E
Error correction gradient descent, 260
Expert systems, 6, 18, 19, 24, 25, 31, 54,
71-74, 76, 77, 82, 88-93, 95, 96, 107, 114,
242, 305, 311, 321-324, 331, 341, 363,

F
Feedback networks, 256
Finance field, 23, 30
Firing strength, 320
Formal logic, 9, 134-137, 140
Forward chaining, 80, 82, 85
Frames, 77, 78, 115, 127, 134, 135, 178,
194-197, 199, 200, 201, 202, 203, 204, 205,
206, 209, 212, 213,214, 215, 217, 224, 242,
321

Fuzzification, 324, 326, 327, 329,
330-338, 341, 342, 344, 347, 350, 352,
353, 357

Fuzzy expert systems, 305, 311, 321, 322,
341

Fuzzy input, 326
Fuzzy logic, 271-275, 285, 287, 291, 299,
302, 303-305, 317, 320, 322, 327, 334, 340,

INDEX

408 • Artificial Intelligence and Expert Systems

342, 343, 348, 349
Fuzzy reasoning, 316, 317, 319, 320, 326,
330, 342

Fuzzy set, 272, 273, 277-279, 281-284,
286-289, 291-294, 297-300, 303-305, 307-
309, 311, 319, 322, 323, 326, 328, 329-332,
333, 334-341, 347, 348-350, 353, 354

G
Game playing, 6, 13, 18, 28, 54, 66

I
Inference chain errors, 109, 110
Inference engine, 77, 79, 80, 82, 85, 86, 88,
93, 95, 102, 107, 109, 110, 135, 324, 326,
347, 364,

Inference engine errors, 109, 110
Input, 1, 8, 11, 25-28, 33, 38, 86, 88, 89, 99,
104, 149, 196, 244, 250, 275, 307, 321, 326,
331, 340, 383, 384, 388, 389, 405

Instance frame, 202-204, 210
Intelligent agent, 5, 22
Iterative deepening depth first search, 40,
48

K
Knowledge base, 24, 72, 75, 77-79, 82, 85,
87-89, 91, 95, 100, 102, 104, 106-108,
114-116, 118, 120, 126-127, 134, 150, 155,
173, 175, 183, 214, 228, 323, 324

Knowledge engineer, 24, 71, 75, 86-88, 90,
96, 98, 99, 101-102, 110, 117, 118, 121,
122, 125, 126, 185, 322

Knowledge error, 110

L
Laddering, 126
Least mean squares, 260
Linguistic rules, 307, 348
Linguistic variable in fuzzy set, 281
Linguistic variables, 281-282, 302, 308, 337,
342-343, 345, 348, 352, 354

M
Mamdani inference, 332
Meta knowledge, 115, 121, 324
Methodological advances, 260
Monotonic inference, 340, 341
Move nodes, 127

N
Natural language, 6-9, 12-15, 18-19, 26, 27,
132, 136, 137, 172, 214, 225, 241, 272, 275,
281, 323, 330, 345, 363

Network layers, 257
Neural network, 6, 23, 243-255
Neuron, 244, 245, 250, 253-254, 256, 261,
262

Non-linear mapping, 307

O
Ordering, 58, 217
Output predicate, 383, 384

P
Partitioned semantic network, 187-193
Pattern recognition, 1, 6, 20, 25-26, 31, 245,
255, 263, 268, 269

Predicate logic, 28, 141, 143-148, 162, 168,
177

Premise, 75, 172, 308, 317, 323, 347-350
Primitive conceptualization, 226, 236
Propositional logic, 136, 139-141, 148, 166

R
Resolution, 149-150, 152-153, 155-164,
166-169

Robotics, 6, 8, 12, 17, 19, 24, 356
Rule evaluation, 332, 338, 347
Rule-based systems 24, 71, 77

S
Script action, 216
Scripts, 77, 134, 135, 213-217, 219, 221, 224

INDEX • 409

Search problem, 34, 35, 39
Semantic errors, 109, 110
Semantic net, 78, 127, 135, 172-174, 176,
182, 184, 185, 225

Simulate, 6, 10, 12, 20, 95
Skolem form, 152
Skolem function, 152, 153, 155
Software agent, 5
State space search, 33-37, 64

Stochastic, 260
Subclass frame, 201, 202, 204
Sugeno inference method, 337-338
Syntax errors, 109-110

T
Thinking machine, 2
Three-card method, 123
Turing test, 2-4, 7-9, 12

	AI and Expert Systems_FM_uncrop
	AI and Expert Systems
	AI and Expert Systems_Chapter 1
	AI and Expert Systems_Chapter 2
	AI and Expert Systems_Chapter 3
	AI and Expert Systems_Chapter 4
	AI and Expert Systems_Chapter 5 (1)
	AI and Expert Systems_Chapter 6
	AI and Expert Systems_Chapter 7
	AI and Expert Systems_Chapter 8
	AI and Expert Systems_Chapter 9
	AI and Expert Systems_Chapter 10
	AI and Expert Systems_Chapter 11
	AI and Expert Systems_Chapter 12
	AI and Expert Systems_Chapter 13
	AI and Expert Systems_Chapter 14
	AI and Expert Systems_Chapter 15

	AI and Expert Systems_Index (2)
	Blank Page

