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CHAPTER   1


Approximations and Errors in Computation

In This Chapter

 


	Introduction

	Accuracy of numbers

	Errors

	Useful rules for estimating errors

	Error propagation

	Error in the approximation of a function

	Error in a series approximation

	Order of approximation

	Growth of error

	Objective type of questions



1.1Introduction

 

The limitations of analytical methods in practical applications have led scientists and engineers to evolve numerical methods. We know that exact methods often fail in drawing plausible inferences from a given set of tabulated data or in finding roots of transcendental equations or in solving non-linear differential equations. There are many more such situations where analytical methods are unable to produce desirable results. Even if analytical solutions are available, these are not amenable to direct numerical interpretation. The aim of numerical analysis is therefore, to provide constructive methods for obtaining answers to such problems in a numerical form.

With the advent of high speed computers and increasing demand for numerical solution to various problems, numerical techniques have become indispensible tools in the hands of engineers and scientists.

The input information is rarely exact since it comes from some measurement or the other and the method also introduces further error. As such, the error in the final result may be due to an error in the initial data or in the method or both. Our effort will be to minimize these errors, so as to get the best possible results. We therefore begin by explaining various kinds of approximations and errors which may occur in a problem and derive some results on error propagation in numerical calculations.

1.2Accuracy of Numbers

 

	Approximate numbers. There are two types of numbers: exact and approximate. Exact numbers are 2, 4, 9, 13, 7/2, 6.45,... etc. But there are numbers such as 4/3 ( = 1.33333...), [image: image] (= 1.414213...) and  ( = 3.141592...) which cannot be expressed by a finite number of digits. These may be approximated by numbers 1.3333, 1.4142 and 3.1416, respectively. Such numbers which represent the given numbers to a certain degree of accuracy are called approximate numbers.

	Significant figures. The digits used to express a number are called significant digits (figures). Thus each of the numbers 7845, 3.589, and 0.4758 contains four significant figures while the numbers 0.00386, 0.000587, and 0.0000296 contain only three significant figures since zeros only help to fix the position of the decimal point. Similarly the numbers 45000 and 7300.00 have two significant figures only.

	Rounding off. There are numbers with large number of digits, e.g., 22/7 = 3.142857143. In practice, it is desirable to limit such numbers to a manageable number of digits such as 3.14 or 3.143. This process of dropping unwanted digits is called rounding off.

	Rule to round off a number to n significant figures:

	Discard all digits to the right of the nth digit. 

	If this discarded number is

	less than half a unit in the nth place, leave the nth digit unchanged;

	greater than half a unit in the nth place, increase the nth digit by unity;

	exactly half a unit in the nth place, increase the nth digit by unity if it is odd other wise leave it unchanged.






For instance, the following numbers rounded off to three significant figures are:

[image: image]

Also the numbers 6.284359, 9.864651, and 12.464762 are rounded off to four places of decimal at 6.2844, 9.8646, 12.4648; respectively.




	[image: image]
	
	Obs. The numbers thus rounded off to n significant figures (or n decimal places) are said to be correct to n significant figures (or n decimal places).




1.3Errors

 

In any numerical computation, we come across the following types of errors:

	Inherent errors. Errors which are already present in the statement of a problem before its solution, are called inherent errors. Such errors arise either due to the given data being approximate or due to the limitations of mathematical tables, calculators, or the digital computer. Inherent errors can be minimized by taking better data or by using high precision computing aids.

	Rounding errors arise from the process of rounding off the numbers during the computation. Such errors are unavoidable in most of the calculations due to the limitations of the computing aids. Rounding errors can, however, be reduced:
	by changing the calculation procedure so as to avoid subtraction of nearly equal numbers or division by a small number; or

	by retaining at least one more significant figure at each step than that given in the data and rounding off at the last step.



	Truncation errors are caused by using approximate results or on replacing an infinite process by a finite one. If we are using a decimal computer having a fixed word length of four digits, rounding off 13.658 gives 13.66 whereas truncation gives 13.65.
For example, if [image: image]

is replaced by [image: image], then the truncation error is X  Xʹ.

Truncation error is a type of algorithm error.


	Absolute, Relative, and Percentage errors. If X is the true value of a quantity and Xʹ is its approximate value, then |X  Xʹ | i.e, |Error| is called the absolute error Ea..


The relative error is defined by [image: image]

and the percentage error is [image: image]

If X be such a number that [image: image] then X is an upper limit on the magnitude of absolute error and measures the absolute accuracy.




	[image: image]
	
	Obs. 1. The relative and percentage errors are independent of the units used while absolute error is expressed in terms of these units.
Obs. 2. If a number is correct to n decimal places then the error [image: image] For example, if the number is 3.1416 correct to 4 decimal places, then the error [image: image]




1.4Useful Rules for Estimating Errors

 

To estimate the errors which creep in when the numbers in a calculation are truncated or rounded off to a certain number of digits, the following rules are useful.

If the approximate value of a number X having n decimal digits is Xʹ, then

	Absolute error due to truncation to k digits
[image: image]


	Absolute error due to rounding off to k digits
[image: image]


	Relative error due to truncation to k digits
[image: image]


	Relative error due to rounding off to k digits
[image: image]






	[image: image]
	
	Obs. 1. If a number is correct to n significant digits, then the maximum relative error [image: image] If a number is correct to d decimal places, then the absolute error [image: image]
Obs. 2. If the first significant figure of a number is k and the number is correct to n significant figures, then the relative error < 1/(k × 10n−1).




Let us verify this result by finding the relative error in the number 864.32 correct to five significant figures.

Here k = 8, n = 5 and

Absolute error 0.01   = 0.005

∴ Relative error

[image: image]

Hence the result is verified.

Example 1.1

Round off the numbers 865250 and 37.46235 to four significant figures and compute Ea, Er, Ep in each case.

Solution: 

(i) Number rounded off to four significant figures = 865200

[image: image]

(ii) Number rounded off to four significant figures = 37.46

[image: image]

EXAMPLE 1.2

Find the absolute error if the number X = 0.00545828 is


	truncated to three decimal digits.

	rounded off to three decimal digits.


Solution: We have X = 0.00545828 = 0.545828 × 10−2


	After truncating to three decimal places, its approximate value Xʹ = 0.545 × 10−2
∴ Absolute error = |X − Xʹ | = 0.000828 × 10−2

= 0.828 x 10-5 < 10−2−3

This proves rule (1).


	After rounding off to three decimal places, its approximate value Xʹ = 0.546 × 10−2
∴ Absolute error = |X − Xʹ|

= | 0.545828 − 0.546 | × 10−2

= 0.000172 × 10−2 = 0.172 × 10−5

which is < 0.5 × 10−2−3. This proves rule (2).



EXAMPLE 1.3

Find the relative error if the number X = 0.004997 is


	truncated to three decimal digits 

	rounded off to three decimal digits.


Solution: We have X = 0.004997 = 0.4997 × 10−2


	After truncating to three decimal places, its approximate value X = 0.499 × 10−2.
[image: image]

This proves rule (3).


	After rounding off to three decimal places, the approximate value of the given number
Xʹ = 0.500 x 10-2 

[image: image]

which is less than 0.5 × 10-3+1. This proves rule (4).



Exercises 1.1

 

	Round off the following numbers correct to four significant figures: 3.26425, 35.46735, 4985561, 0.70035, 0.00032217, and 18.265101.

	Round off the number 75462 to four significant digits and then calculate the absolute error and percentage error.

	If 0.333 is the approximate value of 1/3, find the absolute and relative errors.

	Find the percentage error if 625.483 is approximated to three significant figures.

	Find the relative error in taking n = 3.141593 as 22/7.

	The height of an observation tower was estimated to be 47 m, whereas its actual height was 45 m. Calculate the percentage relative error in the measurement.

	Suppose that you have a task of measuring the lengths of a bridge and a rivet, and come up with 9999 and 9 cm, respectively. If the true values are 10,000 and 10 cm, respectively, compute the percentage relative error in each case.

	Find the value of ex using series expansion [image: image] for x = 0.5 with an absolute error less than 0.005.

	[image: image] and [image: image] correct to 4 significant figures. Find the relative errors in their sum and difference.

	 Given: a = 9.00 ± 0.05, b = 0.0356 ± 0.0002, c = 15300 ± 100, d = 62000 ± 500. Find the maximum value of absolute error in a + b + c + d.

	 Two numbers are 3.5 and 47.279 both of which are correct to the significant figures given. Find their product.

	 Find the absolute error and the relative error in the product of 432.8 and 0.12584 using four digit mantissa.

	 The discharge Q over a notch for head H is calculated by the formula Q = kH5/2 where k is a given constant. If the head is 75 cm and an error of 0.15 cm is possible in its measurement, estimate the percentage error in computing the discharge.

	If the number p is correct to 3 significant digits, what will be the maximum relative error?



1.5Error Propagation

 

A number of computational steps are carried out for the solution of a problem. It is necessary to understand the way the error propagates with progressive computation.

If the approximate values of two numbers X and Y be Xʹ and Y, respectively, then the absolute error

[image: image]


	Absolute error in addition operation
[image: image]

[image: image]

Thus the absolute error in taking (Xʹ + Yʹ) as an approximation to (X + Y) is less than or equal to the sum of the absolute errors in taking Xʹ as an approximation to X and Yʹ as an approximation to Y.


	Absolute error in subtraction operation
[image: image]

Thus the absolute error in taking (Xʹ - Yʹ) as an approximation to (X - Y) is less than or equal to the sum of the absolute errors in taking Xʹ as an approximation to X and Yʹ as an approximation to Y.


	Absolute error in multiplication operation
To find the absolute error Ea in the product of two numbers X and Y, we write
Ea =(X + Eax) (Y + Eay) − XY

where Eax and Eay are the absolute errors in X and Y, respectively. Then

Ea = XEay + YEax + EaxEay

Assuming Eax and Eay are reasonably small so that Eax Exy can be ignored. Thus Ea = XEay + YEax approximately.


	Absolute error in division operation
Similarly the absolute error Ea in the quotient of two numbers X and Y is given by
[image: image]




EXAMPLE 1.4

Find the absolute error and relative error in [image: image] correct to 4 significant digits.

Solution:

[image: image]

Then the absolute error Ea in S, is

[image: image]

This shows that S is correct to 3 significant digits only. Therefore, we take S = 7.92 Then the relative error Er is

[image: image]

EXAMPLE 1.5

The area of cross-section of a rod is desired up to 0.2% error. How accurately should the diameter be measured?

Solution:

If A is the area and D is the diameter of the rod, then [image: image]

Now error in area A is 0.2%, i.e., 0.002 which is due to the error in the product D × D.

We know that if Ea is the absolute error in the product of two numbers X and Y, then

[image: image]

Here, X = Y = D and EaX = EaY = ED, therefore

[image: image]

Thus, Ed = 0.001/D, i.e., the error in the diameter should not exceed 0.001 D−1.

EXAMPLE 1.6

Find the product of the numbers 3.7 and 52.378 both of which are correct to given significant digits.

Solution:

Since the absolute error is greatest in 3.7, therefore we round off the other number to 3 significant figures, i.e., 52.4.

∴ Their product P = 3.7 × 52.4 = 193.88 = 1.9388 × 102.

Since the first number contains only two significant figures, therefore retaining only two significant figures in the product, we get

[image: image]

1.6Error in the Approximation of a Function

 

Let y = f(x1, x2) be a function of two variables x1, x2. If δx1, δx2 be the errors in x1, x2, then the error δy in y is given by

[image: image]

Expanding the right hand side by Taylors series, we get

[image: image]

If the errors δx1, δx2 are so small that their squares and higher powers can be neglected, then (i) gives

[image: image]

In general, the error δy in the function y = f(x1, x2, … xn) corresponding to the errors δxi in xi (i = 1, 2, … n) is given by

[image: image]

EXAMPLE 1.7

If u = 4x2y3/z4 and errors in x, y, z are 0.001, compute the relative maximum error in u when x = y = z = 1.

Solution:

[image: image]

[image: image]

Since the errors δx, δy, δz may be positive or negative, we take the absolute values of the terms on the right side, giving

[image: image]

Hence the maximum relative error = (δu)max/u = 0.036/4 = 0.009.

EXAMPLE 1.8

Find the relative error in the function [image: image].

Solution:

We have logy = log a + m1 log x1 + m2 log x2 + ⋯ + mn log xn

[image: image]

Since the errors δx1, δx2,…, δxn may be positive or negative, we take the absolute values of the terms on the right side. This gives:

[image: image]

Thus the relative error of a product of n numbers is approximately equal to the algebraic sum of their relative errors.

1.7Error in a Series Approximation

 

We know that the Taylors series for f(x) at x = a with a remainder after n terms is

[image: image]

If the series is convergent, Rn(x) → 0 as n → ∞ and hence if f(x) is approximated by the first n terms of this series, then the maximum error will be given by the remainder term Rn(x). On the other hand, if the accuracy required in a series approximation is preassigned, then we can find n, the number of terms which would yield the desired accuracy.

EXAMPLE 1.9

Find the number of terms of the exponential series such that their sum gives the value of ex correct to six decimal places at x = 1.

[image: image]

Thus we need 10 terms of the series (i) in order that its sum is correct to six decimal places.

EXAMPLE 1.10

The function f(x) = tan−1 x can be expanded as

[image: image]

Find n such that the series determine tan−1 x correct to eight significant digits at x = 1.

Solution:

If we retain n terms in the expansion of tan-1 x, then (n + 1)th term

[image: image]

To determine tan−1 (1) correct to eight significant digits accuracy

[image: image]

1.8Order of Approximation

 

We often replace a function f(h) with its approximation (h) and the error bound is known to be μ(hn), n being a positive integer so that

[image: image]

Then we say that (h) approximates f(h) with order of approximation O(hn) and write f(h) = (h) + O(hn).

[image: image]

to the 4th order of approximation.

Similarly [image: image]

to the 6th order of approximation becomes

[image: image]

The sum of (i) and (ii) gives

[image: image]

∴ (iii) takes the form [image: image] which is of the 4th order of approximation.

Similarly the product of (i) and (ii) yields

[image: image]

∴ (iv) is reduced to [image: image] which is of the 4th order of approximation.

1.9Growth of Error

 

Let e(n) represent the growth of error after n steps of a computation process.

If |e(n) |  n ε, we say that the growth of error is linear.

If |e(n) |  δn ε, we say that the growth of error is exponential.

If δ > 1, the exponential error grows indefinitely as n → , and

if 0 < δ < 1, the exponential error decreases to zero as n → .

Exercises 1.2

 


	Find the smaller root of the equation x2 − 400x + 1 = 0, correct to four decimal places.

	If r = h(4h5  5), find the percentage error in r at h = 1, if the error in h is 0.04.

	If R = 10 x3y2z2 and errors in x, y, z are 0.03, 0.01 and 0.02, respectively at x = 3, y = 1, z = 2. Calculate the absolute error and % relative error in evaluating R.

	If R = 4xy2/z3 and errors in x, y, z are 0.001, show that the maximum relative error at x = y = z = 1 is 0.006.

	If [image: image] and the error in V is at the most 0.4%, find the percentage error allowable in r and h when r = 5.1 cm and h = 5.8 cm.

	Find the value of [image: image] correct to four decimal places.

	Using the series [image: image] evaluate sin 25 with an accuracy of 0.001.

	Determine the number of terms required in the series for log (1 + x) to evaluate log 1.2 correct to six decimal places.

	Use the series [image: image] to compute the value of log (1.2) correct to seven decimal places and find the number of terms retained.

	Find the order of approximation for the sum and product of the following expansions:
[image: image]


	Given the expansions:
[image: image]

Determine the order of approximation for their sum and product.




1.10Objective Type of Questions

 

Exercises 1.3

 

Select the correct answer or fill up the blanks in the following questions:


	If x is the true value of a quantity and x1 is its approximate value, then the relative error is
[image: image]


	The relative error in the number 834.12 correct to five significant figures is …

	If a number is rounded to k decimal places, then the absolute error is
[image: image]


	If  is taken = 3.14 in place of 3.14156, then the relative error is	

	Given x = 1.2, y = 25.6, and z = 4.5, then the relative error in evaluating w = x2 + y/z is…

	Round off values of 43.38256, 0.0326457, and 0.2537623 to four significant digits: …

	Round relative maximum error in 3x2y/z when dx = dy = dz = 0.001 at x = y = z = 1: …

	If both the digits of the number 8.6 are correct, then the relative error is…

	If a number is correct to n significant digits, then the relative error is
[image: image]


	If [image: image] is rounded to four significant digits, then the absolute error is	

	[image: image] correct to three significant figures is…

	Approximate values of 1/3 are given as 0.3, 0.3, and 0.34. Out of these the best approximation is …

	The relative error if 2/3 is approximated to 0.667, is…

	If the first significant digit of a number is p and the number is correct to n significant digits, then the relative error is …
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Solution of Algebraic and
Transcendental Equations
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2.1Introduction

 

An expression of the form f(x) = a0 xn + a1 xn−1 + ⋯ + an−1 x + an

where as are constants (a0 ≠ 0) and n is a positive integer, is called a polynomial in x of degree n. The polynomial f(x) = 0 is called an algebraic equation of degree n. If f(x) contains some other functions such as trigonometric, logarithmic, exponential etc., then f(x) = 0 is called a transcendental equation.

Def. The value  of x which satisfies f(x) = 0 (1)

is called a root of f(x) = 0. Geometrically, a root of (1) is that value of x where the graph of y = f(x) crosses the x-axis.

The process of finding the roots of an equation is known as the solution of that equation. This is a problem of basic importance in applied mathematics.

If f(x) is a quadratic, cubic, or a biquadratic expression, algebraic solutions of equations are available. But the need often arises to solve higher degree or transcendental equations for which no direct methods exist. Such equations can best be solved by approximate methods. In this chapter, we shall discuss some numerical methods for the solution of algebraic and transcendental equations.

2.2Basic Properties of Equations

 

 I.If f(x) is exactly divisible by x − , then  is a root of f(x) = 0.

II.Every equation of the nth degree has only n roots (real or imaginary).

 Conversely if 1, 2, ..., n are the roots of the nth degree equation f(x) = 0, then

[image: image]

where A is a constant.




	[image: image]
	
	Obs. If a polynomial of degree n vanishes for more than n values of x, it must be identically zero.




EXAMPLE 2.1

Solve the equation 2x3 + x2 − 13x + 6 = 0.

Solution: By inspection, we find x = 2 satisfies the given equation.

[image: image]

Figure 2.1

∴ 2 is its root, i.e., x − 2 is a factor of 2x3 + x2 − 13x + 6.

Dividing this polynomial by x − 2, we get the quotient 2x2 + 5x − 3

and remainder 0.

Equating this quotient to zero, we get 2x2 + 5x − 3 = 0.

Solving this quadratic, we get

[image: image]

Hence the roots of the given equation are 2, − 3, 1/2.

III. Intermediate value property. If f(x) is continuous in the interval [a, b] and f(a), f(b) have different signs, then the equation f(x) = 0 has at least one root between x = a and x = b.

Since f(x) is continuous between a and b, so while x changes from a to b, f(x) must pass through all the values from f(a) to f(b) [Figure 2.1]. But one of these quantities f(a) or f(b) is positive and the other negative, it follows that at least for one value of x (say ) lying between a and b, f(x) must be zero. Then  is the required root.

IV. In an equation with real coefficients, imaginary roots occur in conjugate pairs, i.e., if  + i is a root of the equation f(x) = 0, then  − i must also be its root.

Similarly if [image: image] is an irrational root of an equation, then [image: image] must also be its root.




	[image: image]
	
	Obs. Every equation of the odd degree has at least one real root.




This follows from the fact that imaginary roots occur in conjugate pairs.

EXAMPLE 2.2

Solve the equation 3x3 − 4x2 + x + 88 = 0, one root being 2 + √7i.

Sol. Since one root is [image: image], the other root must be [image: image].

∴ The factors corresponding to these roots are [image: image] and [image: image]

[image: image]

∴ Division of (i) by x2 − 4x + 11 gives 3x + 8 as the quotient.

Thus the depressed equation is 3x + 8 = 0. Its root is − 8/3.

Hence the roots of the given equation are [image: image].

V. Descartes rule of signs. The equation f(x) = 0 cannot have more positive roots than the changes of signs in f(x); and more negative roots than the changes of signs in f(−x).

For instance, consider the equation f(x) = 2x7  x5 + 4x3  5 = 0(i)

[image: image]

Clearly f(x) has 3 changes of signs (from + to  or  to +).

Thus (i) cannot have more than 3 positive roots.

[image: image]

This shows that f(x) has 2 changes of signs.

Thus (i) cannot have more than 2 negative roots.




	[image: image]
	
	Obs. Existence of imaginary roots. If an equation of the nth degree has at the most p positive roots and at the most q negative roots, then it follows that the equation has at least n − (p + q) imaginary roots.


	
	
	Evidently (i) above is an equation of the 7th degree and has at the most 3 positive roots and 2 negative roots. Thus (i) has at least 2 imaginary roots.





VI. Relations between roots and coefficients. If 1, 2 3 …, n are the roots of the equation

[image: image]

EXAMPLE 2.3

Solve the equation x3  7x2 + 36 = 0, given that one root is double of another.

Solution:

Let the roots be , ,  such that  = 2.

[image: image]

Solving (i) and (ii), we get  = 2,  =  2.

[The values  = 0,  = 7 are inadmissible, as they do not satisfy (iii)].

Hence the roots are 3, 6 and  2.

EXAMPLE 2.4

Solve the equation x4  2x3 + 4x2 + 6x  21 = 0, given that the sum of two its roots is zero.

Solution:

Let the roots be , , , δ such that  +  = 0.

Also  +  +  + δ = 2

∴   + δ = 2

Thus the quadratic factor corresponding to ,  is of the form x2 − 0x + p and that corresponding to , δ is of the form of x2  2x + q.
 
[image: image]

Equating coefficients of x2 and x from both sides of (i), we get

4 = p + q 6 = − 2p

p = 3, q = 7.

Hence the given equation is equivalent to

[image: image]

EXAMPLE 2.5

Find the condition that the cubic x3  lx2 + mx − n = 0 should have its roots in

(a) Arithmetical progression(b) Geometrical progression.

Solution:


	Let the roots be a  d, a, a + d so that the sum of the roots = 3a = l i.e., a = l/3.
Since a is the root of the given equation a3  la2 + ma  n = 0

Substituting a = l/3, we get 2l3  9lm + 27n = 0 which is the required condition.


	Let the roots be a/r, a, ar, then the product of the roots = a3 = n.
Since a is a root of the given equation

a3  la2 + ma  n = 0

Putting a = (n)1/3, we get n − ln2/3 + mn1/3 − n = 0 or m = ln1/3

Cubing both sides, we get m3 = l3n



which is the required condition.

EXAMPLE 2.6

If , ,  are the roots of the equation x3 + px + q = 0, find the value of

(a) Σ2, (b) Σ4.

Solution:

[image: image]

(a) Multiplying (i) and (ii), we get

2 + 2 + 2 + 2 + 2 + 2 + 3 = 0

or Σ2 = − 3 = 3q [by (iii)]

(b) Multiplying the given equation by x, we get

x4 + px2 + qx = 0

Putting x = , ,  successively and adding, we get

Σ4 + pΣ2 + qΣ = 0orΣ4 = − pΣ2 − q(0).(iv)

Now squaring (i), we get

2 + 2 + 2 + 2( +  + ) = 0orΣ2 = − 2p[by (ii)]

Hence, substituting the value of Σ2 in (iv), we obtain

Σ4 = − p(− 2p) = 2p2

Exercises 2.1

 

	Form the equation of the fourth degree whose roots are 3 + i and [image: image]

	Solve the equation:

(i) x3 + 6x + 20 = 0, one root being 1 + 3i.

(ii) x4 − 2x3 − 22x2 + 62x − 15 = 0 given that [image: image] is a root.

	Show that x7 − 3x4 + 2x3  1 = 0 has at least four imaginary roots.

	The equation x4 - 4x3 + ax2 + 4x + b = 0 has two pairs of equal roots. Find the values of a and b.
Solve the equations (57):


	2x4  3x3  9x2 + 15x- 5 = 0, given that the sum of two of its roots is zero.

	x3  4x2  20x + 48 = 0 given that the roots  and  are connected by the relation  + 2 = 0.

	x3  12x2 + 39x − 28 = 0, roots being in arithmetical progression.

	O, A, B, C are the four points on a straight line such that the distances of A, B, C from O are the roots of equation ax3 + 3bx2 + 3cx + d = 0. If B is the middle point of AC, show that a2d  3abc + 2b3 = 0.

	If , ,  are the roots of the equation x3 + 4x  3 = 0, find the value of −1 + −1 + −1.



2.3Transformation of Equations

 

	To find an equation whose roots are m times the roots of the given equation, multiply the second term by m, third term by m2 and so on (all missing terms supplied with zero coefficients).
For instance, let the given equation be

3x4 + 6x3 + 4x2 − 8x + 11 = 0(i)

To multiply its roots by m, put y = mx (or x = y/m) in (i). Then

3(y/m)4 + 6(y/m)3 + 4(y/m)2 − 8(y/m) + 11 = 0

or multiplying by m4, we get

3y4 + m(6y3) + m2(4y2)  m3(y) + m4(11) = 0

This is same as multiplying the second term by m, third term by m2, and so on in (i).


Cor. To find an equation whose roots are with opposite signs to those of the given equation, change the signs of every alternative term of the given equation beginning with the second.

Changing the signs of roots of (i) is same as multiplying its roots by − 1.

∴ The required equation will be

3x4 + (− 1)6x3 + (− 1)24x2 − (− 1)3 8x + (− 1)4 11 = 0

or  3x4 − 6x3 + 4x3 + 8x + 11 = 0

which is (i) with signs of every alternate term changed beginning with the second.




	To find an equation whose roots are reciprocal of the roots of the given equation, change x to 1/x.
EXAMPLE 2.7

Solve 6x3−11x2 − 3x + 2 = 0, given that its roots are in harmonic progression.

Solution:

Since the roots of the given equation are in H.P., the roots of the equation having reciprocal roots will be in A.P.

∴ The equation with reciprocal roots is

6(1/x)3  11(1/x)2  3(1/x) + 2 = 0

or  2x3 − 3x2 − 11x + 6 = 0(i)

Since the roots of the given equation are in H.P., therefore, the roots of (i) are in A.P.

Let the roots be a  d, a, a + d. Then 3a = 3/2 and a(a2  d2) =  3.

Solving these equations, we get a = 1/2, d = 5/2. Thus the roots of (i) are −2, 1/2, 3.

Hence the roots of the given equation are 1/2, 2, 1/3.

EXAMPLE 2.8

If , ,  be the roots of the cubic x3  px2 + qx - r = 0, form the equation whose roots are y + 1/,  + 1/,  + 1/.

Solution:

If x is a root of the given equation and y, a root of the required equation, then

[image: image]

Thus x = (r + 1)/y.

Substituting this value of x in the given equation, we get

[image: image]

which is the required equation.


	Reciprocal equations. If an equation remains unaltered on changing x to be 1/x, it is called a reciprocal equation.
Such equations are of the following types:


	A reciprocal equation of an odd degree having coefficients of terms equidistant from the beginning and end equal. It has a root =  1.

	A reciprocal equation of an odd degree having coefficients of terms equidistant from the beginning and end equal but opposite in sign. It has a root = 1.

	A reciprocal equation of an even degree having coefficients of terms equidistant from the beginning and end equal but opposite in sign. Such an equation has two roots = 1 and 1.

	The substitution x + 1/x = y reduces the degree of the equation to half its former degree.




EXAMPLE 2.9

Solve: (i) 6x5  41x4 + 97x3  97x2 + 41x  6 = 0

(ii) 6x6  25x5 + 31x4  31x2 + 25x  6 = 0.

Solution:

(i) This is a reciprocal equation of odd degree with opposite signs.

∴ x = 1 is a root.

Dividing L.H.S. by x  1, the equation reduces to

[image: image]

Hence the roots are [image: image]

(ii) This is a reciprocal equation of even degree with opposite signs.

∴ x = 1, − 1 are its roots.

Dividing L.H.S. by x − 1 and x + 1, the given equation reduces to

6x4 − 25x3 + 37x2 − 25x + 6 = 0.

[image: image]

2.4Synthetic Division of a Polynomial by A Linear Expression

 

The division of the polynomial f(x) = a0xn + a1xn−1 + a2xn−2 + ⋯ + an−1 x + an by a binomial x −  is affected compactly by synthetic division as follows:

[image: image]

Hence quotient = b0xn−1 + b1xn−2 + ⋯ + bn−1 and remainder = R

Explanation:


	Write down the coefficients of the powers of x (supplying missing powers of x by zero coefficients) and write  on extreme right.

	Put a0 (= b0) as the first term of 3rd row and multiply it by a and write the product under a1 and add, giving a1 + ab0 (= b1).

	Multiply b1 by a and write the product under a2 and add, giving a2 + ab1 (= b2) and so on.

	Continue this process until we get R.


	To diminish the roots of an equation f(x) = 0 by h, divide f(x) by x  h successively. Then with the successive remainders, determine the coefficients of the required equation.
Let the given equation be

a0xn + a1xn−1 + ⋯ + an−1 x + an = 0(i)

To diminish its roots h, put y = x  h (or x = y + h) in (i) so that

a0 (y + h)n + a1 (y + h)n−1 + ⋯ + an = 0(ii)

On simplification, it takes the form

A0yn + A1yn-1 + ⋯ + An = 0(iii)

Its coefficients A0, A1, ⋯, An can easily be found with help of synthetic division. For this, we put y = x  h in (iii) so that

A0(x − h)n + A1(x − h)n-1 + ⋯ + An = 0

Clearly (i) and (iv) are identical. If we divide L.H.S. of (iv) by x  h, the remainder is An and the quotient Q = A0 (x  h)n-1 + A1 (x  h)n-1 + ⋯ + An−1. Similarly if we divide Q by x  h, the remainder is An−1 and the quotient is Q1 (say). Again dividing Q1 by x  h, An−2 will be obtained and so on.




	[image: image]
	
	Obs. To increase the roots by h, we take h negative.




EXAMPLE 2.10

Transform the equation x3  6x2 + 5x + 8 = 0 into another in which the second term is missing.

Solution:

Sum of the roots of the given equation = 6.

Due to the fact that the second term in the transformed equation is missing, the sum of the roots will be zero.

Since the equation has 3 roots, if we decrease each root by 2, the sum of the roots of the equation will become zero. To diminish the roots by 2, we divide x3 − 6x2 + 5x + 8 by x − 2 successively.

[image: image]

Thus the transformed equation is x3  7x + 2 = 0.


	Synthetic division of a polynomial by a quadratic expression. The division of the polynomial f(x) by the quadratic x2  x   is carried out by the following synthetic scheme:
[image: image]

Hence the quotient = b0 xn 2 + b1 xn3 + ⋯ + bn−2 and the remainder = bn1 x + bn.




EXAMPLE 2.11

Divide 2x5  3x4 + 4x3  5x2 + 6x - 9 by x2  x + 2 synthetically.

Solution: 

[image: image]

Hence the quotient = 2x3 − x2 − x − 4 and the remainder = 4x − 1.

Exercises 2.2

 

	Find the equation whose roots are 3 times the roots of x3 + 2x2  4x + 1 = 0.

	Change the sign of the roots of the equation x7 + 3x5 + x3  x2 + 7x + 1 = 0.

	Find the equation whose roots are the negative reciprocals of the roots of x4 + 7x3 + 8x29x + 10 = 0.

	Solve the equation 81x3  18x2  36x + 8 = 0, given that its roots are in H.P.

	Solve: (i) 6x5 + x4  43x3  43x2 + x + 6 = 0. 

(ii) 4x4  20x3 + 33x2  20x + 4 = 0.

	Find the equation whose roots are the roots of: x4 + x3  3x2  x + 2 = 0 each diminished by 3.

	Show that the equation x4  10x3 + 23x2  6x  15 = 0 can be transformed into a reciprocal equation by diminishing the roots by 2. Hence solve the equation.

	Find the equation of squared differences of the roots of the cubic x3 + 6x2 + 7x + 2 = 0.

	If , ,  are the roots of the equation 2x3 + 3x2 − x 1 = 0, form the equation whose roots are (1  )1, (1  )1, and (1  )1.

	Divide 15x7  16x6 + 30x5  3x4  5x3  2x2 + 5x + 8 by x2  x + 1 synthetically.



2.5Iterative Methods

 

The limitations of analytical methods for the solution of equations have necessitated the use of iterative methods. An iterative method begins with an approximate value of the root which is generally obtained with the help of Intermediate value property of the equation (Section 2.2). This initial approximation is then successively improved iteration by iteration and this process stops when the desired level of accuracy is achieved. The various iterative methods begin their process with one or more initial approximations. Based on the number of initial approximations used, these iterative methods are divided into two categories: Bracketing Methods and Open-end Methods.

Bracketing methods begin with two initial approximations which bracket the root. Then the width of this bracket is systematically reduced until the root is reached to desired accuracy. The commonly used methods in this category are:

	Graphical method

	Bisection method

	Method of False position.


Open-end methods are used on formulae which require a single starting value or two starting values which do not necessarily bracket the root. The following methods fall under this category:

	Secant method

	Iteration method

	Newton-Raphson method

	Mullers method

	Horners method

	Lin-Bairstow method.



2.6Graphical Solution of Equations

 

Let the equation be f(x) = 0.

 (i) Find the interval (a, b) in which a root of f(x) = 0 lies.

 (ii) Write the equation f(x) = 0 as φ (x) = ψ (x)

where ψ(x) contains only terms in x and the constants.

(iii) Draw the graphs of y = φ (x) and y = φ (x) on the same scale and with respect to the same axes.

(iv) Read the abscissae of the points of intersection of the curves y = φ (x) and y = ψ 

These are the initial approximations to the roots of f(x) = 0.

Sometimes it may not be convenient to write the given equation f(x) = 0 in the form φ (x) = ψ (x). In such cases, we proceed as follows:

 (i) Form a table for the value of x and y = f(x) directly.

 (ii) Plot these points and pass a smooth curve through them.

(iii) Read the abscissae of the points where this curve cuts the x-axis.

These are rough approximations to the roots of f(x) = 0.

EXAMPLE 2.12

Find graphically an approximate value of the root of the equation

3 x = ex1.

Solution:

Let f(x) = ex1 + x  3 = 0(i)

  f(1) = 1 + 1  3 =  ve and

 f(2) = e + 2  3 = 2.718  1 = + ve

 A root of (i) lies between x = 1 and x = 2.

Let us write (i) as ex1 = 3  x.

The abscissa of the point of intersection of the curves

y = ex1(ii)

andy = 3  x(iii)

will give the required root.

To plot (ii), we form the following table of values:

[image: image]

Taking the origin at (1, 1) and 1 small unit along either axis = 0.02, we plot these points and pass a smooth curve through them as shown in Figure 2.2.

To draw the line (iii), we join the points (1, 2) and (2, 1) on the same scale and with the same axes.

From the figure, we get the required root to be x = 1.44 nearly.

[image: image]

Figure 2.2

EXAMPLE 2.13

Obtain graphically an approximate value of the root of x = sin x + /2.

Solution:

Let us write the given equation as sin x = x − /2.

The abscissa of the point of intersection of the curve y = sin x and the line y = x  /2 will give a rough estimate of the root.

To draw the curve y = sin x, we form the following table:

[image: image]

Taking 1 unit along either axis = /4 = 0.8 nearly, we plot the curve as shown in Figure 2.3.

Also we draw the line y = x  /2 to the same scale and with the same axes. From the graph, we get x = 2.3 radians approximately.

[image: image]

Figure 2.3

EXAMPLE 2.14

Obtain graphically an approximate value of the lowest root of cos x cosh x =  1.

Solution:

Let f(x) = cos x cosh x + 1 = 0(i)

∴ f(0) = + ve, f(/2) = + veand =  ve.

∴ The lowest root of (i) lies between x = /2 and x = .

Let us write (i) as cos x =  sech x.

The abscissa of the point of intersection of the curves

y = cos x(ii)

and y =  sech x (iii)

will give the required root.

To draw (ii), we form the following table:

[image: image]

Taking the origin at (1.57, 0) and 1 unit along either axis = /8, = 0.4 nearly, we plot the cosine curve as shown in Figure 2.4.

[image: image]

Figure 2.4

To draw (iii), we form the following table:

[image: image]

Then we plot the curve (iii) to the same scale with the same axes.

From the above figure, we get the lowest root to be approximately x = 1.57 + 0.29 = 1.86.

Exercises 2.3

 

Find the approximate value of the root of the following equations graphically (14):

	x3 − x  1 = 0 

	x3  6x2 + 9x 3 = 0

	tan x = 1.2 x

	x = 3 cos (x  /4).



2.7Rate of Convergence

 

Let x0, x1, x2, ....... be the values of a root () of an equation at the 0th, 1st, 2nd ....... iterations while its actual value is 3.5567. The values of this root calculated by three different methods, are as given below:

[image: image]

The values in the 1st method do not converge toward the root 3.5567. In the 2nd and 3rd methods, the values converge to the root after 6th and 4th iterations, respectively. Clearly 3rd method converges faster than the 2nd method. This fastness of convergence in any method is represented by its rate of convergence.

If e be the error then ei =  − xi = xi+1 − xi.

If ei+1/ei is almost constant, convergence is said to be linear, i.e., slow.

If ei+1/ei is nearly constant, convergence is said to be of order p, i.e., faster.




2.8Bisection Method

 

This method is based on the repeated application of the intermediate value property. Let the function f(x) be continuous between a and b. For definiteness, let f(a) be negative and f (b) be positive. Then the first approximation to the root is [image: image]

[image: image]

Figure 2.5

If f (x1) = 0, then x1 is a root of f (x) = 0. Otherwise, the root lies between a and x1 or x1 and b according as f (x1) is positive or negative. Then we bisect the interval as before and continue the process until the root is found to desired accuracy.

In the Figure 2.4, f(x1) is + ve, so that the root lies between a and x1. Then the second approximation to the root is [image: image] If f (x2) is  ve, the root lies between x1 and x2. Then the third approximation to the root is [image: image] and so on. 




	[image: image]
	
	Obs. 1. Since the new interval containing the root, is exactly half the length of the previous one, the interval width is reduced by a factor of [image: image] at each step. At the end of the nth step, the new interval will therefore, be of length (b  a)/2n. If on repeating this process n times, the latest interval is as small as given ε then (b a)/2n  ε


	
	
	orn  [log (b  a)  log ε]/log 2.



	
	
	This gives the number of iterations required for achieving an accuracy ε.



	
	
	In particular, the minimum number of iterations required for converging to a root in the interval (0, 1) for a given ε are as under:



	
	
	ε:102103104



	
	
	n: 71014





Rate of Convergence. As the error decreases with each step by a factor of [image: image] the convergence in the bisection method is linear.

EXAMPLE 2.15 


	Find a root of the equation x3  4x  9 = 0, using the bisection method correct to three decimal places.

	Using bisection method, find the negative root of the equation x3  4x + 9 = 0.


Solution:

(a) Let f(x) = x3 − 4x − 9

Since f(2) is  ve and f(3) is + ve, a root lies between 2 and 3.

∴ First approximation to the root is

[image: image]

∴ The root lies between x1 and 3. Thus the second approximation to the root is

[image: image]

∴ The root lies between x1 and x2. Thus the third approximation to the root is

[image: image]

The root lies between x2 and x3. Thus the fourth approximation to the root is

[image: image]

Repeating this process, the successive approximations are

x5 = 2.71875,x6 = 2.70313,x7 = 2.71094

x8 = 2.70703, x9 = 2.70508,x10 = 2.70605

x11 = 2.70654, x12 = 2.70642

Hence the root is 2.7064.

(b) If , ,  are the roots of the given equation, then  ,  ,   are the roots of ( x)3  4( x) + 9 = 0

 The negative root of the given equation is the positive root of x3  4x 9 = 0 which we have found above to be 2.7064.

EXAMPLE 2.16

Using the bisection method, find an approximate root of the equation sin x = 1/x, that lies between x = 1 and x = 1.5 (measured in radians). Carry out computations up to the 7th stage

Solution:

Let f(x) = x sin x − 1. We know that 1r = 57.3.

Sincef(1) = 1 × sin(1) − 1 = sin (57.3) − 1 = − 0.15849

andf(1.5) = 1.5 × sin (1.5)r − 1 = 1.5 × sin (85.95) − 1 = 0.49625;

a root lies between 1 and 1.5.

∴ First approximation to the root is x1 = [image: image](1 + 1.5) = 1.25

Then f(x1) = (1.25) sin (1.25) − 1 = 1.25 sin (71.625) − 1 = 0.18627 and f(1) < 0.

∴ A root lies between 1 and x1 = 1.25.

Thus the second approximation to the root is x2 = [image: image](1 + 1.25) = 1.125.

Then f(x2) = 1.125 sin (1.125) − 1 = 1.125 sin (64.46) − 1 = 0.01509 and f(1) < 0.

∴ A root lies between 1 and x2 = 1.125.

Thus the third approximation to the root is x3 = [image: image](1 + 1.125) = 1.0625.

Then f(x3) = 1.0625 sin (1.0625) − 1 = 1.0625 sin (60.88) − 1 = − 0.0718 < 0 and f(x2) > 0, i.e., now the root lies between x3 = 1.0625 and x2 = 1.125.

∴ Fourth approximation to the root is x4 = [image: image](1.0625 + 1.125) = 1.09375

Thenf(x4) = − 0.02836 < 0 and f(x2) > 0,

i.e., The root lies between x4 = 1.09375 and x2 = 1.125.

∴ Fifth approximation to the root is x5 = [image: image] (1.09375 + 1.125) = 1.10937

Then f(x5) = − 0.00664 < 0and f(x2) > 0.

∴The root lies between x5 = 1.10937 and x2 = 1.125.

Thus the sixth approximation to the root is

[image: image]

Thenf(x6) = 0.00421 > 0.

Butf(x5) < 0.

∴The root lies between x5 = 1.10937 and x6 = 1.11719.

Thus the seventh approximation to the root is

[image: image]

Hence the desired approximation to the root is 1.11328.

EXAMPLE 2.17

Find the root of the equation cos x = xex using the bisection method correct to four decimal places.

Solution:

Let f(x) = cos x − xex.

Since f(0) = 1 and f(1) = − 2.18, so a root lies between 0 and 1.

∴ First approximation to the root is x1 = [image: image](0 + 1) = 0.5

Now f(x1) = 0.05 and f(1) = − 2.18, therefore the root lies between 1 and x1 = 0.5.

∴ Second approximation to the root is x2 = [image: image](0.5 + 1) = 0.75

Now f(x2) = − 0.86 and f(0.5) = 0.05, therefore the root lies between 0.5 and 0.75.

∴ Third approximation to the root is x3 = [image: image](0.5 + 0.75) = 0.625

Now f(x3) = − 0.36 and f(0.5) = 0.05, therefore the root lies between 0.5 and 0.625.

∴ Fourth approximation to the root is x4 = [image: image] (0.5 + 0.625) = 0.5625

Now f(x4) = − 0.14 and 0.5 = 0.05, therefore the root lies between 0.5 and 0.5625.

∴ Fifth approximation is x5 = 1[image: image] (0.5 + 0.5625) = 0.5312

Now f(x5) = − 0.04 and f(0.5) = 0.05, therefore the root lies between 0.5 and 0.5312.

∴ Sixth approximation is x6 = [image: image](0.5 + 0.5312) = 0.5156

Hence the desired approximation to the root is 0.5156.

EXAMPLE 2.18

Find a positive real root of x log10 x = 1.2 using the bisection method.

Solution:

Let f(x) = x log10x − 1.2.

Since f(2) = − 0.598 and f(3) = 0.231, so a root lies between 2 and 3.

∴ First approximation to the root is x1 = [image: image](2 + 3) = 2.5.

Now f(2.5) = − 0.205 and f(3) = 0.231, therefore a root lies between 2.5 and 3.

∴ Second approximation to the root is x2 = 1 [image: image] (2.5 + 3) = 2.75.

Now f(2.75) = 0.008 and f(2.5) = − 0.205, therefore, a root lies between 2.5 and 2.75.

∴ Third approximation to the root is x3 = [image: image](2.5 + 2.75) = 2.625

Now f(2.625) = − 0.1 and f(2.75) = 0.008, therefore a root lies between 2.625 and 2.75.

∴ Fourth approximation to the root is x4 = [image: image](2.625 + 2.75) = 2.687

Hence the desired root is 2.687.

2.9Method of False Position or Regula-Falsi Method or Interpolation Method

 

This is the oldest method of finding the real root of an equation f(x) = 0 and closely resembles the bisection method.

Here we choose two points x0 and x1 such that f(x0) and f(x1) are of opposite signs i.e., the graph of y = f(x) crosses the x-axis between these points (Figure 2.6). This indicates that a root lies between x0 and x1 and consequently f (x0) f (x1) < 0.

Equation of the chord joining the points A[x0, f(x0)] and B[x1, f(x1)] is

[image: image]

[image: image]

Figure 2.6

The method consists in replacing the curve AB by means of the chord AB and taking the point of intersection of the chord with the x-axis as an approximation to the root. So the abscissa of the point where the chord cuts the x-axis (y = 0) is given by

[image: image]

which is an approximation to the root.

If now f (x0) and f (x2) are of opposite signs, then the root lies between x0 and x2. So replacing x1 by x2 in (1), we obtain the next approximation x3. (The root could as well lie between x1 and x2 and we would obtain x3 accordingly). This procedure is repeated until the root is found to the desired accuracy. The iteration process based on (1) is known as the method of false position.

Rate of Convergence. This method has linear rate of convergence which is faster than that of the bisection method.

EXAMPLE 2.19

Find a real root of the equation x3 − 2x − 5 = 0 by the method of false position correct to three decimal places.

Solution:

Let  f(x) = x3 − 2x − 5

so that f(2) = − 1 and f (3) = 16,

i.e., A root lies between 2 and 3.

∴ Taking x0 = 2, x1 = 3, f (x0) = − 1, f(x1) = 16, in the method of false position, we get

[image: image]

Now f(x2) = f (2.0588) = − 0.3908

i.e.,The root lies between 2.0588 and 3.

∴ Taking x0 = 2.0588, x1 = 3, f(x0) = − 0.3908, f(x1) = 16, in (i), we get

[image: image]

Repeating this process, the successive approximations are

x4 = 2.0862, x5 = 2.0915, x6 = 2.0934,

x7 = 2.0941, x8 = 2.0943 etc.

Hence the root is 2.094 correct to three decimal places.

EXAMPLE 2.20

Find the root of the equation cos x = xex using the regula-falsi method correct to four decimal places.

Solution:

Letf(x) = cos x − xex = 0

so thatf(0) = 1, f (1) = cos 1 − e = − 2.17798

i.e., the root lies between 0 and 1.

∴ Taking x0 = 0, x1 = 1, f (x0) = 1 and f (x1) = − 2.17798 in the regula-falsi method, we get

[image: image]

Now f(0.31467) = 0.51987 i.e., the root lies between 0.31467 and 1.

∴ Taking x0 = 0.31467, x1 = 1, f(x0) = 0.51987, f(x1) = − 2.17798 in (i), we get

[image: image]

Now f(0.44673) = 0.20356 i.e., the root lies between 0.44673 and 1.

∴ Taking x0 = 0.44673, x1 = 1, f (x0) = 0.20356, f(x1) = − 2.17798 in (i), we get

[image: image]

Repeating this process, the successive approximations are

x5 = 0.50995,x6 = 0.51520,x7 = 0.51692

x8 = 0.51748,x9 = 0.51767,x10 = 0.51775 etc.

Hence the root is 0.5177 correct to four decimal places.

EXAMPLE 2.21

Find a real root of the equation x log10x = 1.2 by regula-falsi method correct to four decimal places.

Solution:

Let f(x) = x log10 x − 1.2

so thatf(1) = − ve, f(2) = − ve and f(3) = + ve.

∴ A root lies between 2 and 3.

Taking x0 = 2 and x1 = 3, f(x0) = − 0.59794 and f(x1) = 0.23136, in the method of false position, we get

[image: image]

Repeating this process, the successive approximations are

x4 = 2.74024, x5 = 2.74063 etc.

Hence the root is 2.7406 correct to 4 decimal places.

EXAMPLE 2.22

Use the method of false position, to find the fourth root of 32 correct to three decimal places.

Solution:

Let x = (32)1/4 so that x4 − 32 = 0

Take f(x) = x4 − 32. Then f(2) = − 16 and f(3) = 49, i.e., a root lies between 2 and 3.

∴ Taking x0 = 2, x1 = 3, f(x0) = − 16, f(x1) = 49 in the method of false position, we get

[image: image]

Now f(x2) = f(2.2462) = − 6.5438 i.e., the root lies between 2.2462 and 3.

∴ Taking x0 = 2.2462, x1 = 3, f(x0) = − 6.5438, f(x1) = 49 in (i), we get

[image: image]

Now f(x3) = f(2.335) = − 2.2732 i.e., the root lies between 2.335 and 3.

∴ Taking x0 = 2.335 and x1 = 3, f(x0) = − 2.2732 and f(x1) = 49 in (i), we obtain

[image: image]

Repeating this process, the successive approximations are x5 = 2.3770, x6 = 2.3779 etc. Since x5 = x6 upto three decimal places, we take (32)1/4 = 2.378.

2.10Secant Method

 

This method is an improvement over the method of false position as it does not require the condition f(x0) f(x1) < 0 of that method (Figure 2.5). Here also the graph of the function y = f (x) is approximated by a secant line but at each iteration, two most recent approximations to the root are used to find the next approximation. Also it is not necessary that the interval must contain the root.

Taking x0, x1 as the initial limits of the interval, we write the equation of the chord joining these as

[image: image]

Then the abscissa of the point where it crosses the x-axis (y = 0) is given by

[image: image]

which is an approximation to the root. The general formula for successive approximations is, therefore, given by

[image: image]

Rate of Convergence. If at any interation f(xn) = f(xn-1), this method fails and shows that it does not converge necessarily. This is a drawback of secant method over the method of false position which always converges. But if the secant method once converges, its rate of convergence is 1.6 which is faster than that of the method of false position.

EXAMPLE 2.23 

Find a root of the equation x3 − 2x − 5 = 0 using the secant method correct to three decimal places.

Solution:

Let f(x) = x3 − 2x − 5 so that f(2) = − 1 and f(3) = 16.

∴ Taking initial approximations x0 = 2 and x1 = 3, by the secant method, we have

[image: image]

Now f(x2) = − 0.390799

[image: image]

Hence the root is 2.094 correct to three decimal places

EXAMPLE 2.24

Find the root of the equation xex = cos x using the secant method correct to four decimal places.

Solution:

Let f(x) = cos x − xex = 0.

Taking the initial approximations x0 = 0, x1 = 1

so that f (x0) = 1, f (x1) = cos 1 − e = − 2.17798

Then by the secant method, we have

[image: image]

Repeating this process, the successive approximations are x5 = 0.51690, x6 = 0.51775, x7 = 0.51776 etc.

Hence the root is 0.5177 correct to four decimal places.




	[image: image]
	
	Obs. Comparing Examples 2.18 and 2.21, we notice that the rate of convergence in the secant method is definitely faster than that of the method of false position




2.11Iteration Method

 

To find the roots of the equation f(x) = 0(i)

by successive approximations, we rewrite (i) in the form x = φ(x)(ii)

The roots of (i) are the same as the points of intersection of the straight line y = x and the curve representing y = φ(x).Figure 2.7 illustrates the working of the iteration method which provides a spiral solution.

Let x = x0 be an initial approximation of the desired root . Then the first approximation x1 is given by x1 = φ(x0)

Now treating x1 as the initial value, the second approximation is x2 = φ(x1)

Proceeding in this way, the nth approximation is given by xn = φ(xn−1)

[image: image]

Figure 2.7

Sufficient condition for convergence of iterations. It is not certain whether the sequence of approximations x1, x2,..., xn always converges to the same number which is a root of (1) or not. As such, we have to choose the initial approximation x0 suitably so that the successive approximations x1, x2,..., xn converge to the root . The following theorem helps in making the right choice of x0:

Theorem:

If (i)  be a root of f (x) = 0 which is equivalent to x = φ(x),

(ii) I, be any interval containing the point x = ,

(iii) |φʹ(x) | < 1 for all x in I,

then the sequence of approximations x0, x1, x2,..., xn will converge to the root  provided the initial approximation x0 is chosen in I.

Proof. Since  is a root of x = φ(x), we have  = φ()

If xn−1 and xn be 2 successive approximations to , we have xn = φ(xn−1)

[image: image]

As n → , the R.H.S. tends to zero, therefore, the sequence of approximations converges to the root . 




	[image: image]
	
	Obs. 1. The smaller the value of φʹ(x), the more rapid will be the convergence.


	
	
	2. This method of iteration is particularly useful for finding the real roots of an equation given in the form of an infinite series.





Acceleration of convergence. From (2), we have

| xn −  |  k | xn−1 −  |, k < 1.

It is clear from this relation that the iteration method is linearly convergent. This slow rate of convergence can be improved by using the following method:

Aitkens 2 method. Let xi−1, xi, xi+1 be three successive approximations to the desired root  of the equation x = φ(x). Then we know that

[image: image]

But in the sequence of successive approximations, we have

[image: image]

which yields successive approximations to the root .

EXAMPLE 2.25

Find a real root of the equation cos x = 3x − 1 correct to three decimal places using

(i) Iteration method

(ii) Aitkens 2 method.

Solution:

(i) We have f(x) = cos x − 3x + 1 = 0

  f(0) = 2 = + ve and f(/2) = − 3 /2 + 1 = − ve

∴ A root lies between 0 and /2.

Rewriting the given equation as x = [image: image] (cos x + 1) = φ(x), we have

[image: image]

Hence the iteration method can be applied and we start with x0 = 0. Then the successive approximations are,

[image: image]

[image: image]

Hence x5 and x6 being almost the same, the root is 0.607 correct to three decimal places. (ii) We calculate x1, x2, x3 as above. To use Aitkens method, we hav

[image: image]

which corresponds to six iterations in normal form.

Thus the required root is 0.607.

EXAMPLE 2.26

Using iteration method, find a root of the equation x3 + x2 − 1 = 0 correct to four decimal places.

Solution:

We have f(x) = x3 + x2 − 1 = 0

Since f(0) = − 1 and f(1) = 1, a root lies between 0 and 1.

Rewriting the given equation as x = (x + 1)−1/2 = φ(x), we have φʹ(x) =  [image: image] (x + 1)−3/2 and | φʹ(x) | < 1 for x < 1. Hence the iteration method can be applied. Starting with x0 = 0.75, the successive approximations are

[image: image]

Hence x4 and x5 being almost the same, the root is 0.7548 correct to four decimal places.

EXAMPLE 2.27

Apply iteration method to find the negative root of the equation x3 − 2x + 5 = 0 correct to four decimal places.

Solution:

If , ,  are the roots of the given equation, then − , − , −  are the roots of

(− x)3 − 2 (− x) + 5 = 0

∴ The negative root of the given equation is the positive root of

f (x) = x3 − 2x − 5 = 0.(i)

Since f(2) = − 1 and f (3) = 16, a root lies between 2 and 3.

Rewriting (i) as x = (2x + 5)1/3 = φ(x),

we have φʹ(x) = [image: image] (2x + 5)−2/3. 2 and | φʹ(x) | < 1 for x < 3.

∴ The iteration method can be applied:

Starting with x0 = 2. The successive approximations are

x1 = φx0) = (2x0 + 5)1/3 = 2.08008

x2 = φ(x1) = 2.09235,x3 = 2.09422

x4 = 2.09450,x5 = 2.09454

Since x4 and x5 being almost the same, the root of (i) is 2.0945 correct to four decimal places.

Hence the negative root of the given equation is − 2.0945.

EXAMPLE 2.28

Find a real root of 2x − log10 x = 7 correct to four decimal places using the iteration method.

Solution:

We have f(x) = 2x − log10 x − 7

  f(3) = 6 − log103 − 7 = 6 − 0.4771 − 7 = − 1.4471

  f(4) = 8 − log104 − 7 = 8 − 0.602 − 7 = 0.398

∴ A root lies between 3 and 4.

Rewriting the given equation as x = [image: image](log10x + 7) = φ(x), we have

[image: image]

Since | f(4)| < | f(3)|, the root is near to 4.

Hence the iteration method can be applied. Taking x0 = 3.6, the successive approximations are

x1 = φ (x0) = [image: image](log10 3.6 + 7) = 3.77815

x2 = φ (x1) = [image: image](log10 3.77815 + 7) = 3.78863

x3 = φ (x2) = [image: image](log 3.78863 + 7) = 3.78924

x4 = φ (x3) = [image: image](log 3.78924 + 7) = 3.78927

Hence x3 and x4 being almost equal, the root is 3.7892 correct to four decimal places.

EXAMPLE 2.29

Find the smallest root of the equation

[image: image]

Solution:

Writing the given equation as

[image: image]

Omitting x2 and higher powers of x, we get x = 1 approximately.

Taking x0 = 1, we obtain

[image: image]

Similarly    x3 = 1.38, x4 = 1.409, x5 = 1.425

x6 = 1.434, x7 = 1.439, x8 = 1.442.

The values of x7 and x8 indicate that the root is 1.44 correct to two decimal places.

Exercises 2.4

 

	Find a root of the following equations, using the bisection method correct to three decimal places:
(i) x3 − x − 1 = 0 (ii) x3 − x2 − 1 = 0

(iii) 2x3 + x2 − 20x + 12 = 0 (iv) x4 − x − 10 = 0.


	Evaluate a real root of the following equations by bisection method:
(i) x − cos x = 0 (ii) e−x − x = 0

(iii) ex = 4 sin x.


	Find a real root of the following equations correct to three decimal places, by the method of false position:
(i) x3 − 5x + 1 = (ii) x3 − 4x − 9 = 0

(iii) x6 − x4 − x3 − 1 = 0.


	Using the regula falsi method, compute the real root of the following equations correct to three decimal places:
(i) xex = 2 (ii) cos x = 3x − 1

(iii) xex = sin x (iv) x tan x = − 1

(v) 2x − log x = 7

(vi) 3x + sin x = ex.


	Find the fourth root of 12 correct to three decimal places by the interpolation method.

	Locate the root of f (x) = x10 − 1 = 0, between 0 and 1.3 using the bisection method and method of false position. Comment on which method is preferable.

	Find a root of the following equations correct to three decimal places by the secant method:
(i) x3 + x2 + x + 7 = 0 (ii) x − e−x = 0

(iii) x log10x = 1.9.


	Use the iteration method to find a root of the equations to four decimal places:
(i) x3 + x2 − 100 = 0(ii) x3 − 9x + 1 = 0

(iii) x = + sin x(iv) tan x = x

(v) ex = 5x(vi) 2x − x − 3 = 0 which lies between (− 3, − 2).


	Evaluate [image: image] by (i) secant method (ii) iteration method correct to four decimal places.

	Find the root of the equation 2x = cos x + 3 correct to three decimal places using (i) iteration method, (ii) Aitkens 2 method.

	Find the real root of the equation 
[image: image]

correct to three decimal places using iteration method




2.12Newton-Raphson Method

 

Let x0 be an approximate root of the equation f(x) = 0. If x1 = x0 + h be the exact root, then f(x1) = 0.

∴ Expanding f(x0 + h) by Taylors series [image: image]

Since h is small, neglecting h2 and higher powers of h, we get f(x0) + h f ʹ(x0) = 0

[image: image]

∴ A closer approximation to the root is given by

[image: image]

Similarly starting with x1, a still better approximation x2 is given by

[image: image]

which is known as the Newton-Raphson formula or Newtons iteration formula.




	[image: image]
	
	Obs. 1. Newtons method is useful in cases of large values of f ʹ(x) i.e., when the graph of f(x) while crossing the x-axis is nearly vertical.



	
	
	For if f ʹ(x) is small in the vicinity of the root, then by (1), h will be large and the computation of the root is slow or may not be possible. Thus this method is not suitable in those cases where the graph of f(x) is nearly horizontal while crossing the x-axis.



	
	
	Obs. 2. Geometrical interpretation. Let x0 be a point near the root  of the equation f(x) = 0 (Figure 2.8). Then the equation of the tangent at A0[x0, f(x0)] is



	
	
	[image: image]




	
	
	which is a first approximation to the root . If A1 is the point corresponding to x1 on the curve, then the tangent at A1 will cut the x-axis at x2 which is nearer to  and is, therefore, a second approximation to the root. Repeating this process, we approach the root  quite rapidly. Hence the method consists in replacing the part of the curve between the point A0 and the x-axis by means of the tangent to the curve at A0.



	
	
	
[image: image]

Figure 2.8





	
	
	Obs. 3. Newtons method is generally used to improve the result obtained by other methods. It is applicable to the solution of both algebraic and transcendental equations.




Convergence of Newton-Raphson Method. Newtons formula converges provided the initial approximation x0 is chosen sufficiently close to the root.

If it is not near the root, the procedure may lead to an endless cycle. A bad initial choice will lead one astray. Thus a proper choice of the initial guess is very important for the success of Newtons method.

Comparing (2) with the relation xn+1 = φ(xn) of the iteration method, we get

[image: image]

Since the iteration method (Section 2.10) converges if | φ ʹ(x) | < 1

∴ Newtons formula will converge if | f(x) f ″(x) | < |f ʹ(x) |2 in the interval considered. Assuming f(x), f ʹ(x) and f ″(x) to be continuous, we can select a small interval in the vicinity of the root , in which the above condition is satisfied. Hence the result.

Newtons method converges conditionally while the regula-falsi method always converges. However when the Newton-Raphson method converges, it converges faster and is preferred.

Newtons method has a quadratic convergence.

Suppose xn differs from the root  by a small quantity εn so that

x0 =  + εn and xn+1 = + εn+1.

Then (2) becomes

[image: image]

[image: image]

This shows that the subsequent error at each step is proportional to the square of the previous error and as such the convergence is quadratic. Thus the Newton-Raphson method has second order convergence.

EXAMPLE 2.30

Find the positive root of x4 − x = 10 correct to three decimal places, using the Newton-Raphson method.

Solution:

Let  f(x) = x4 − x − 10

so that f(1) = − 10 = − ve, f(2) = 16 − 2 − 10 = 4 = + ve.

∴A root of f(x) = 0 lies between 1 and 2.

Let us take x0 = 2

Also fʹ(x) = 4x3 − 1

Newton-Raphsons formula is

[image: image]

Putting n = 0, the first approximation x1 is given by

[image: image]

Putting n = 1 in (i), the second approximation is

[image: image]

Putting n = 2 in (ii), the third approximation is

[image: image]

Here x2 = x3. Hence the desired root is 1.856 correct to three decimal places.

EXAMPLE 2.31

Find by Newtons method, the real root of the equation 3x = cos x + 1, correct to four decimal places.

Solution:

Let f(x) = 3x − cos x − 1

f(0) = − 2 = − ve, f(1) = 3 − 0.5403 − 1 = 1.4597 = + ve.

So a root of f(x) = 0 lies between 0 and 1. It is nearer to 1. Let us take x0 = 0.6.

Alsof ʹ(x) = 3 + sin x

∴ Newtons iteration formula gives

[image: image]

Putting n = 0, the first approximation x1 is given by

[image: image]

Putting n = 1 in (i), the second approximation is

[image: image]

Here x1 = x2. Hence the desired root is 0.6071 correct to four decimal places.

EXAMPLE 2.32

Using Newtons iterative method, find the real root of x log10 x = 1.2 correct to five decimal places.

Solution:

Let f(x) = x log10 x − 1.2

f(1) = − 1.2 = − ve, f(2) = 2 log10 2 − 1.2 = 0.59794 = − ve

andf(3) = 3 log10 3 − 1.2 = 1.4314 − 1.2 = 0.23136 = + ve.

So a root of f(x) = 0 lies between 2 and 3. Let us take x0 = 2.

[image: image]

∴ Newtons iteration formula gives

[image: image]

 Putting n = 0, the first approximation is

[image: image]

Similarly putting n = 1, 2, 3, 4 in (i), we get

[image: image]

Here x4 = x5. Hence the required root is 2.74065 correct to five decimal places.

2.13Some Deductions From Newton-Raphson Formula

 

We can derive the following useful results from the Newtons iteration formula:

(1) Iterative formula to find 1/N is xn + 1 = xn(2 − Nxn)

(2) Iterative formula to find [image: image]

(3) Iterative formula to find [image: image]

(4) Iterative formula to find [image: image]

Proofs. (1) Let x = 1/Nor1/x − N = 0

Taking f(x) = 1/x − N, we have f ʹ(x) = − x−2.

Then Newtons formula gives

[image: image]

(2) Let [image: image]

Taking f(x) = x2 − N, we have f ʹ(x) = 2x.

Then Newtons formula gives

[image: image]

(3) Let [image: image]

Taking f(x) = x2 − 1/N, we have f ʹ(x) = 2x.

 Then Newtons formula gives

[image: image]

(4) Let [image: image]

Taking f(x) = xk − N, we have f ʹ(x) = kxk−1

Then Newtons formula gives

[image: image]

EXAMPLE 2.33

Evaluate the following (correct to four decimal places) by Newtons iteration method:

(i) 1/31 (ii) [image: image](iii) [image: image] (iv) 24 3

(v) (30)−1/5.

Solution:

(i) Taking N = 31, the above formula (1) becomes

xn + 1 = xn(2 − 31xn)

Since an approximate value of 1/31 = 0.03, we take x0 = 0.03.

Then x1 = x0(2 − 31x0) = 0.03(2 − 31 × 0.03) = 0.0321

x2 = x1(2 − 31x1) = 0.0321(2 − 31 × 0.0321) = 0.032257

x3 = x2(2 − 31x2) = 0.032257(2 − 31 × 0.032257) = 0.03226

Since x2 = x3 upto four decimal places, we have 1/31 = 0.0323.

(ii) Taking N = 5, the above formula (2), becomes [image: image]

Since an approximate value of [image: image] = 2, we take x0 = 2.

[image: image]

Since x2 = x3 upto four decimal places, we have [image: image] = 2.2361.

(iii) Taking N = 14, the above formula (3), becomes [image: image]

Since an approximate value of [image: image] we take x0 = 0.25,

[image: image]

Since x2 = x3 upto four decimal places, we take [image: image]

(iv) Taking N = 24 and k = 3, the above formula (4) becomes

[image: image]

Since an approximate value of (24)1/3 = (27)1/3 = 3, we take x0 = 3.

[image: image]

Since X2 = X3 up to four decimal places, we take (24)1/3 = 2.8845.

(v) Taking N = 30 and k = − 5, the above formula (4) becomes

[image: image]

Since an approximate value of (30)−1/5 = (32)−1/5 = 1/2, we take x0 = 1/2

[image: image]

Since x2 = x3 up to four decimal places, we take (30)−1/5 = 0.5065.

Exercises 2.5

 

	Find by Newton-Raphson method, a root of the following equations correct to three decimal places:
(i) x3 − 3x + 1 = 0 (ii) x3 − 2x − 5 = 0

(iii) x3 − 5x + 3 = 0 (iv) 3x3 − 9x2 + 8 = 0.


	Using Newtons iterative method, find a root of the following equations correct to four decimal places:
(i) x4 + x3 − 7x2 − x + 5 = 0 which lies between 2 and 3.

(ii) x5 − 5x2 + 3 = 0.


	Find the negative root of the equation x3 − 21x + 3500 = 0 correct to 2 decimal places by Newtons method.

	Using Newton-Raphson method, find a root of the following equations correct to three decimal places:
(i) x2 + 4 sin x = 0

(ii) x sin x + cos x = 0 or x tanx + 1 = 0

(iii) ex = x3 + cos 25x which is near 4.5

(iv) x log10 x = 12.34, start with x0 = 10.

(v) cos x = xex (vi) 10x + x − 4 = 0.


	The equation [image: image] has two roots greater than − 1. Calculate these roots correct to five decimal places.

	The bacteria concentration in a reservoir varies as C = 4e−2t + e−0.1t. Using the Newton Raphson (N.R.) method, calculate the time required for the bacteria concentration to be 0.5.

	Use Newtons method to find the smallest root of the equation ex sin x = 1 to four decimal places.

	 The current i in an electric circuit is given by i = 10e−t sin 2t where t is in seconds. Using Newtons method, find the value of t correct to three decimal places for i = 2 amp.

	 Find the iterative formulae for finding [image: image] where N is a real number, using the Newton-Raphson formula.
Hence evaluate: 
(a) [image: image]

(b) [image: image]

(c) the cube-root of 17 to three decimal places.

	Develop an algorithm using the N.R. method, to find the fourth root of a positive number N and hence find [image: image]

	Evaluate the following (correct to three decimal places) by using the Newton-Raphson method.

(i) 1/18 (ii) [image: image] (iii) (28)−1/4.

	 Obtain Newton-Raphson extended formula
[image: image]

for the root of the equation f(x) = 0.

Hence find the root of the equation cos x = xex correct to five decimal places.

Solution:

Expanding f(x) in the neighborhood of x0 by Taylors series; we have[image: image] to first approximately.

Hence the first approximation to the root is given by

x1 − x0 = − f(x0)/f ʹ(x)(i)

Again by Taylors series to the second approximation, we get

[image: image]

Since x1 is an approximation to the root, f(x1) = 0

[image: image]

whence follows the desired formula. [This is known as the Chebyshev formula of third order.]




2.14Mullers Method

 

	This method is a generalization of the secant method as it doesnt require the derivative of the function. It is an iterative method that requires three starting points. Here, y = f(x) is approximated by a second degree parabola passing through these three points (xi − 2, yi − 2), (xi − 1, yi − 1) and (xi, yi) in the vicinity of the root. Then a root of this quadratic is taken as the next approximation xi + 1 to the root of f(x) = 0.

	Let xi − 2, xi − 1, xi be three approximations to the root  of the equation f(x) = 0 and yi − 2, yi − 1, yi be the corresponding values of f(x).


Assuming the equation of the parabola through the points (xi − 2, yi − 2), (xi − 1, yi − 1) and (xi, yi) to be

[image: image]

Figure 2.9

[image: image]

Eliminating a, b, c from (1) and (2), we obtain

[image: image]

which can be written as

[image: image]

[image: image]

Then (3) simplifies to

[image: image]

Now to find a better approximation to the root, we need the unknown quantity . To determine , we put y = 0 in (5) giving

[image: image]

Dividing throughout by i2 and solving for 1/*, we get

[image: image]

Since x is close to xi,  should be small in magnitude. Therefore the sign should be so chosen to make the numerator largest in magnitude. Then (6) gives a better approximation to the root.




	[image: image]
	
	Obs. This method is iterative and converges for almost all initial approximations quadratically. In case no better approximations are known, we take, xi − 2 = − 1, xi − 1 = 0, and Xi = 1.




EXAMPLE 2.34

Apply Mullers method to find the root of the equation cos x = xex which lies between 0 and 1.

Solution:

Lety = cos x − xex

Taking the initial approximations as

xi − 2 = − 1, xi − 1 = 0, xi = 1

We obtain yi − 2 = cos 1 + e−1, yi − 1 = 1, yi = cos 1 − e

 = x − 1, i = 1, δi = 2

and μi = (cos 1 + e−1) − 4 + 3(cos 1 − e).

∴ From (7), we get two values of −1.(i)

We choose the −ve sign so that the numerator in (i) is largest in magnitude and obtain  = − 0.5585.

∴ The next approximation to the root is given by (6) as

xi + 1 = xi + (xi − xi − 1) = 1 − 0.5585 = 0.4415.

Repeating the above process, we get

xi + 2 = 0.5125, xi + 3 = 0.5177, xi + 4 = 0.5177

Hence the root is 0.518 correct to three decimal places.

Exercises 2.6

 

Using Mullers method, find a root of the following equations, correct to three decimal places:

1. x3 − 2x − 1 = 02. x3 − x2 − x − 1 = 0.

3. x3 + 2x2 + 10x − 20 = 0 taking x0 = 0, x1 = 1 and x2 = 2.

4. log x = x − 3 taking x0 = 0.25, x1 = 0.5 and x2 = 1.

2.15Roots of Polynomials Equations

 

The methods so far discussed for finding the roots of equations can also be applied to polynomials. These methods, however, do not work well when the polynomial equations contain multiple or complex roots. We now discuss methods for finding all the real and complex roots of polynomials. These methods are especially designed for polynomials and cannot be applied to transcendental equations. We begin with Horners method which is the best for finding the approximate values of real roots of a numerical polynomial equation.

Approximate Solution of Polynomial EquationsHorners Method

This method consists in diminution of the roots of an equation by successive digits occurring in the roots.

If the root of an equation lies between a and a + 1, then the value of this root will be a.bcd......, where b, c, d...... are digits in its decimal part. To obtain these, we proceed as follows:


	Diminish the roots of the given equation by a so that the root of the new equation is o. bcd......

	Then multiply the roots of the transformed equation by 10 so that the root of the new equation is b. cd......

	Now diminish the root by b and multiply the roots of the resulting equation by 10 so that the root is c.d......

	Next diminish the root by c and so on. By continuing this process, the root may be evaluated to any desired degree of accuracy digit by digit. The method will be clear from the following example:


EXAMPLE 2.35

Find by Horners method, the positive root of the equation x3 + x2 + x − 100 = 0 correct to three decimal places.

Solution:

Step I. Letf(x) = x3 + x2 + x − 100

By Descartes rule of signs, there is only one positive root. Also f(4) = − ve and f (5) = +ve, therefore, the root lies between 4 and 5.

Step II. Diminish the roots of given equation by 4 so that the transformed equation is

x3 + 13x2 + 57x − 16 = 0(i)

Its root lies between 0 and 1. (We draw a zig-zag line above the set of figures 13, 57,− 16 which are the coefficients of the terms in (i) as shown below.) Now multiply the roots of (i) by 10 for which attach one zero to the second term, two zeros to the third term, and three zeros to the fourth term. Then we get the equation

f1(x) = x3 + 130x2 + 5700x − 16000 = 0(ii)

[image: image]

Its root lies between 0 and 10.

Clearlyf1(2) = −ve, f1(3) = +ve.

∴ The root of (ii) lies between 2 and 3, i.e,. first figure after the decimal is 2.

 Step III. Diminish the roots of f1(x) = 0 by 2 so that the next transformed equation is

x3 + 136x2 + 6232x − 4072 = 0.(iii)

Its root lies between 0 and 1. (We draw the second zig-zag line above the set of figures 136, 6232, − 4072). Multiply the roots of (iii) by 10, i.e., attach one zero to second term, two zeros to the third term, and three zeros to the fourth term. Then the new equation is

f2(x) = x3 + 1360x2 + 623200x − 4072000 = 0

Its root lies between 0 and 10, which is nearly [image: image]

Hence the second figure after the decimal place is 6.

Step IV. Diminish the roots of f2(x) = 0 by 6, so that the transformed equation is

x3 + 1378x2 + 639628x − 283624 = 0.

Its root lies between 0 and 1. (We draw the third zig-zag line above the set of figures 1378, 639628, − 283624.) As before multiply its roots by 10, i.e., attach one zero to the second term, two zeros to the third term, and three zeros to the fourth term. Then the equation becomes

f3(x) = x3 + 13780x2 + 63962800x − 283624000 = 0

Its root lies between 0 and 10, which is nearly [image: image] Thus the roots of f3(x) = 0 are to be diminished by 4, i.e., the third figure after the decimal place is 4. But there is no need to proceed further as the root is required correct to three decimal places only.

Hence the root is 4.264.

Obs. 1. After two steps of diminishing, we apply the principle of trial divisor in which we divide the last coefficient by the last but one coefficient to get the next integer by which the roots are to be diminished. These last two coefficients should have opposite signs.

Obs. 2. At any stage if the trial divisor suggests the next integer to be zero, then we should again multiply the roots by 10 and write zero in the decimal place of the root.

EXAMPLE 2.36

Find the cube root of 30 correct to three decimal places, using Horners method.

Solution:

Step I. Let [image: image]

Now f(3) = − 3 (−ve), f(4) = 34 (+ve)

∴ The root lies between 3 and 4.

Step II. Diminish the roots of the given equation by 3 so that the transformed equation is

x3 + 9x2 + 27x − 3 = 0 (i)

Its roots lies between 0 and 1. (We draw a zig-zag line above the set of numbers 9, 27, − 3 which are the coefficients of the terms in (i)). Now multiply the roots of (i) by 10 for which attach one zero to the second term, two zeros to the third term, and three zeros to the fourth term. Then we get the equation

f1(x) = x3 + 90x2 + 2700x − 3000 = 0(ii)

Its roots lies between 0 and 10.

Clearlyf1(1) = −ve,f2(2) = +ve

∴ The root of (ii) lies between 1 and 2, i.e., first figure after the decimal place is 1.

 Step III. Diminish the roots of f1(x) = 0 by 1, so that the next transformed equation is

 x3 + 93x2 + 2883x − 209 = 0.(iii)

Its root lies between 0 and 1. (We draw a second zig-zag line above the set of figures 93, 2883, − 209). Multiply the roots of (iii) by 10, i.e., attach one zero to second term, two zeros to the third term, and three zeros to the fourth term. Then the new equation is

f2(x) = x3 + 930x2 + 288300x − 209000 = 0.

Its root lies between 0 and 10, which is nearly = 209000/288300 = 0.724 > 0 and < 1.

Hence second figure after the decimal place is 0.

[image: image]

Step IV. Diminish the root of f2(x) = 0 by 0 and then multiply its roots by 10 so that

f3(x) = x3 + 9300x2 + 28830000x − 209000000 = 0

Its root lies between 0 and 10, which is nearly

= 209000000/28830000 = 7.2 > 7 and < 8.

Thus the roots of f3(x) = 0 are to be diminished by 7, i.e., the third figure after the decimal is 7.

Hence the required root is 3.107.

Exercises 2.7

 

	Find by Horners method, the root (correct to three decimal places) of the equations (i) x3 − 3x + 1 = 0 which lies between 1 and 2. (ii) x3 + x − 1 = 0. (iii) x3 − 3x2 + 2.5 = 0 which lies between 1 and 2.

	Using Horners method, find the largest real root of x3 − 4x + 2 = 0 correct to three decimal places.

	Show that a root of the equation x4 + x3 − 4x2 − 16 = 0 lies between 2 and 3. Find its value correct up to two decimal places by Horners method.

	Find the negative root of the equation x3 − 9x2 + 18 = 0 correct to two decimal places by Horners method.

	Find the cube root of 25, correct to four decimal places, using Horners method



2.16Multiple Roots

 

If  is a root of f(x) = 0 of order m, then f() = 0, f ʹ() = 0,⋯, fm − 1() = 0 and fm () ≠ 0. Such an equation can be written as f(x) = (x − )m φ(x) = 0. In other words, if  is a root of f(x) = 0 repeated m times, then it is also a root of f ʹ(x) = 0 repeated (m − 1) times, of f ″(x) = 0 repeated (m − 2) times and so on.

Multiple roots by Newtons method. Let  be a root of the polynomial equation f(x) = 0 which is repeated m times, If x0, x1, x2,⋯, xn + 1, be its successive approximations then on the lines of Newtons iterative method,

[image: image]

which is called the generalized Newtons formula. It reduces to Newton-Raphson formula for m = 1.




	[image: image]
	
	Obs. 1. If initial approximation x0 is sufficiently close to the root , then the expressions


	
	
	[image: image]




	
	
	will have the same value.



	
	
	Obs. 2. Generalized Newtons formula has a second order convergence for determining a multiple root. (see Example 2.38).




EXAMPLE 2.37

Find the double root of the equation x3 − x2 − x + 1 = 0.

Solution:

Let f(x) = x3 − x2 − x + 1

so thatf ʹ(x) = 3x2 − 2x − 1, f ″(x) = 6x − 2

Starting with x0 = 0.9, we have

[image: image]

The closeness of these values implies that there is a double root near x = 1.

∴ Choosing x1 = 1.01 for the next approximation, we get

[image: image]

This shows that there is a double root at x = 1.0001 which is quite near the actual root x = 1.

EXAMPLE 2.38

Show that the generalized Newtons formula xn + 1 = xn − 2f(xn)/f ʹ(xn) gives a quadratic convergence when the equation f(x) = 0 has a pair of double roots in the neighborhood of x = xn.

Solution:

Suppose x =  is a double root near x = xn.

Then f() = 0, f ʹ() = 0 (i)

[image: image]

Expanding f( + ε) and f ʹ( + ε) in powers of εn and using (i), we get

[image: image]

which shows that εn + 1∝ εn2 and so the convergence is of second order.

2.17Complex Roots

 

We know that the complex roots of an equation occur in conjugate pairs, i.e., if  + i is a root of f(x) = 0,  − i is also its root. In other words, [x − ( + i)] and [x − ( − i)] are factors of f(x) or (x −  − i) (x −  + i) = x2 − 2x + 2 + 2 is a factor of f(x). This implies that we should try to isolate complex roots by finding the appropriate quadratic factors of the original polynomial. A method which is often used for finding such quadratic factors of polynomials is the Lin-Bairstows method. However Newtons method can also be used to find the complex roots of a polynomial equation which we illustrate below:

EXAMPLE 2.39

Solve x4 − 5x3 + 20x2 − 40x + 60 = 0, by Newtons method given that all the roots of the given equation are complex.

Solution:

Letf(x) = x4 − 5x3 + 20x2 − 40x + 60 = 0(i)

so thatfʹ(x) = 4x3 − 15x2 + 40x − 40

∴ Newton-Raphson method gives

[image: image]

Putting n = 0 and taking x0 = 2(1 + i) by trial, we get

[image: image]

Similarly

[image: image]

Since complex roots occur in conjugate pairs so the roots of (i) are 1.915 ±1.908i up to three places of decimals. Assuming that the other pair of roots of (i) is  ± i, we have

Sum of the roots = ( + i) + ( − i) + (1.915 + 1.908i) + (1.915 − 1.908i) = 5

i.e.,2 + 3.83 = 5 or  = 0.585.

Also the product of roots = (2 + 2) {(1.915)2 + (1.908)2} = 60

which gives  = 2.805. Hence the other two roots are 0.585±2.805i.

2.18Lin-Bairstows Method

 

This method is often used for finding the complex roots of a polynomial equation with real coefficients, such as

f(x) = xn + a1 xn−1 + a2 xn−2 + ⋯ + an−1 x + an = 0.(1)

Since complex roots occur in pairs as ± i , each pair corresponds to a quadratic factor

{x − ( + i )} {x − ( − i )} = x2 − 2 x + 2 + 2

which is of the form x2 + px + q.

If we divide f(x) by x2 + px + q, we obtain the quotient Qn−2 = xn−2 + b1 xn−3 + ⋯ + bn−2 and the remainder Rn = Rx + S.

Thus f(x) = (x2 + px + q) (xn−2 + b1 xn−3 + ⋯ + bn−2) + Rx + S.(2)

If x2 + px + q divides f(x) completely, the remainder Rx + S = 0, i.e., R = 0, S = 0. Obviously R and S both depend upon p and q. So our problem is to find p and q such that

R (p, q) = 0, S (p, q) = 0.(3)

Let p + p, q + q be the actual values of p and q which satisfy (3). Then

R (p + p, q + q) = 0, S (p + p, q + q) = 0.(4)

To find the corrections  p,  q, we expand these by Taylors series and neglect second and higher order terms.

[image: image]

We solve these simultaneous equations for p and q and then the procedure is repeated with the corrected values for p and q. Now to compute the coefficients bi, R, and S, we compare the coefficients of like powers of x in (2) giving

[image: image]

R = an−1 − pbn−2 − qbn−3, S = an − qbn−2

We now introduce bn−1 and bn and define

bi = ai  − p bi −1 − q bi −2, i = 1, 2, ⋯ n(7)

where b0 = 1, b−1 = 0 = b−2

Comparing the last two equations with those of (6), we get

bn−1 = an−1 − p bn−2 − q bn−3 = R

bn = an − p bn−1 − q bn−2 = S − p bn−1

giving  R = bn−1 and S = bn + p bn−1(8)

Substituting these values in (5), we get

[image: image]

Multiplying the first of these equations by p and subtracting from the second, we get

[image: image]

Now differentiating (7) w.r.t. p and q partially and noting that all ais are constants and all bis are functions of p and q, we have

[image: image]

Also from (6), we get

[image: image]

Thus we have [image: image]

By mathematical induction, we shall prove that [image: image]

[image: image]

This shows that [image: image] the result is true for i = r + 1. But it is for i = 1 and should this be i = 2. Hence by induction, it is true for all values of i.

[image: image]

the equations in (10) can be expressed as

ci−1 = bi−1 − p ci−2 − q ci−3, ci−2 = bi−2 − p ci−3 − q ci−4

These can be compressed into a single equation

ci = bi − p ci−1 − q ci−2

withc0 = 0, c−1 = 0, i = 1, 2,..., (n − 1)(13)

Thus ci is computed from bi in exactly the same way as bi from ai in (7).

Differentiating the relations in (8) and using (12), we get

[image: image]

Substituting these in (5), we get

[image: image]

After finding the values of bis and cis from (7) and (13) and putting in (14), we obtain the approximate values of p and q, say p0 and q0. If p0, q0 are the initial approximations then their improved values are p1 = p0 + p0, q1 = q0 + q0. Now taking p1 and q1 as the initial values and repeating the process, we can get better values of p and q.




	[image: image]
	
	Obs. The values of bis and cis are found by the following (synthetic division) scheme:




[image: image]

EXAMPLE 2.40

Solve x4 − 5x3 + 20x2 − 40x + 60 = 0, given that all the roots of f(x) = 0 are complex, by using the Lin-Bairstow method

Solution:

Starting with the values p0 = − 4, q0 = 8, we hav

[image: image]

Corrections p0 and q0 are given by

 cn−2 p0 + cn−3 q0 = bn−1 i.e., 12 p0 + 3 q0 = 0

(cn−1 − bn−1) p0 + cn−2 q0 = bn i.e., 24 p0 + 12 q0 = − 4

Solving, we get p0 = 0.1667, q0 = − 0.6667

∴p1 = p0 + p0 = − 3.8333

q1 = q0 + q0 = 7.333

Now repeating the same process, i.e., dividing f(x) by x2 − 3.8333x + 7.3333, we get

[image: image]

Corrections p1 and q1 are given by

11.083 p1 + 2.6666 q1 = − 0.0326

22.9295 p1 + 11.083 q1 = − 0.217

Solving, we get p1 = 0.0033 and q1 = − 0.0269

p2 = p1 + p1 = − 3.83, q2 = q1 + q1 = 7.3064.

So one of the quadratic factors of f(x) is

x2 − 3.83 x + 7.3064.(i)

If  ± i  be its roots, then 2 = 3.83, 2 + 2 = 7.3064 giving  = 1.9149 and  = 1.9077.

Hence a pair of roots is 1.9149 ± 1.9077 i

To find the remaining two roots of f(x) = 0, we divide f(x) by (i) as follows [by Section 2.5 (3)]:

[image: image]

∴ The other quadratic factor is x2 − 1.17x + 8.2125.

If  ±i δ be its roots, then 2 δ = 1.17, 2 + δ2 = 8.2125 giving  = 0.585 and δ = 2.8054.

Hence the other pair of roots is 0.585 ± 2.8054 i.

2.19Graeffes Root Squaring Method

 

This method has an advantage over the other methods in that it does not require any prior information about the roots. But it is applicable to polynomial equations only and is capable of giving all the roots. Consider the polynomial equation

xn + a1 xn−1 + a2 xn−2 + ⋯ + an−1 x + an = 0 (1)

Separating the even and odd powers of x and squaring, we get

(xn + a2 xn−2+ a4 xn−4 +⋯)2 = (a1 xn−1 + a3 xn−3 + ⋯)2

Putting x2 = y and simplifying, the new equation becomes

[image: image]

If 1, 2, ⋯ n be the roots of (1) then the roots of (2) are 12, 22, ⋯ n2.

After m squarings, let the new transformed equation be

zn + c1 zn−1 + ⋯ + cn−1 z + cn = 0(4)

whose roots 1, 2, ⋯, n are such that i = i2m, i = 1, 2,⋯ n.

Assuming that | 1 | > | 2 | > ⋯ > | n |, then | 1 | >> | 2 | >>⋯ >> | n | where >> stands for much greater than.

Thus [image: image] are negligible as compared to unity. (5)

Also i being an even power of i is always positive. 

∴ From (4), we have

[image: image]

Thus we can determine 1, 2, ... n, the roots of (1).




	[image: image]
	
	Obs. 1. Double root. If the magnitude of ci is half the square of the magnitude of the corresponding coefficient in the previous equation after a few squarings, then it shows that i is a double root of (1). We find this double root as follows:


	
	
	[image: image]





This gives the magnitude of the double root and substituting in (1), we can find its sign.




	[image: image]
	
	Obs. 2. Complex roots. If r and r+1 form a complex pair r e±iφ r, then the coefficients of xn-r in successive squarings would fluctuate both in magnitude and sign by an amount 2rm cos mφr.




For m sufficiently large r and φr can be determined by

[image: image]

If (1) has only one pair of complex roots say: r e±iφr = ξ + i , then we can find all the real roots. Thereafter ξ is given by

[image: image]

EXAMPLE 2.41

Find all roots of the equation x3 − 2x2 − 5x + 6 = 0 by Graeffes method, squaring three times

Solution:

Let f(x) = x3 − 2x2 − 5x + 6 = 0(i)

+−−+

By Descartes rule of signs, there being two changes of sign, (i) has two positive roots.

Also f(− x) = − x3 − 2x2 + 5x + 6

−− ++

i.e., one change in sign, there is one negative root.

Rewriting (i) as x3 − 5x = 2x2 − 6 and squaring,

we get y (y − 5)2 = (2y − 6)2 where y = x2

ory (y2 + 49) = 14 y2 + 36...(ii)

Squaring again and putting y2 = z, we obtain z (z + 49)2 = (14 z + 36)2

orz(z2 + 1393) = 98 z2 + 1296(iii)

Squaring once again and putting z2 = u,

we get u (u + 1393)2 = (98 u + 1296)2

oru3 − 6818 u2 + 1686433 u − 1679616 = 0(iv)

If the roots of (iv) are 1, 2, 3, then 1 = − c1 = 6818,

[image: image]

If 1, 2, 3 be the roots of (i), then

| 1 | = (1)1/8 = 3.014443 ≈ 3

| 2 | = (2)1/8 = 1.991425 ≈ 2

| 3 | = (3)1/8 = 0.999499 ≈ 1

The sign of a root is found by substituting the root in f(x) = 0. We find f(3) = 0, f(− 2) = 0, f(1) = 0.

Hence the roots are 3, − 2, 1.

EXAMPLE 2.42

Apply Graeffes method to find all the roots of the equation x4 − 3x + 1 = 0.

Solution:

We havef(x) = x4 − 3x + 1 = 0(i)

+− +

∴ There being two changes in sign, (i) has two positive real roots and no negative real root.

Thus the remaining two roots are complex.

Rewriting (i) as x4 + 1 = 3x, and squaring, we get (y2 + 1)2 = 9y where y = x2.

Squaring again and putting y2 = z, we obtain

(z + 1)4 = 81zor, z4 + 4z3 + 6z2 − 77z + 1 = 0(ii)

orz4 + 6z2 + 1 = − z(4z2 − 77)

Squaring once again and putting z2 = u, we get (u2 + 6u + 1)2 = u(4u − 77)2

oru4 − 4u3 + 654u2 − 5917u + 1 = 0(iii)

If 1, 2, 3, 4 be the roots of (i), then the roots of (iii) are 18, 28, 38, 48. Thus (iii) gives

[image: image]

From (ii) and (iii), we observe that the magnitudes of the coefficients c1 and c4 have become constant. This indicates that 1 and 4 are the real roots whereas 2 and 3 are a pair of complex roots.

∴ The real roots 1 = 1.1892 and 4 = 0.3379.

Now let us find the complex roots 2e±iφ2 = ξ + i.

From (iii), its magnitude is given by

[image: image]

Hence the complex roots are − 0.7636 ± 1.381 i.

Exercises 2.8

 

	Find a double root of the equation x3 − 5x2 + 8x − 4 = 0 which is near 1.8.

	Find the multiplicity and the multiple root of the equation x4 − 11x3 + 36x2 − 16x − 64 = 0 which is near 3.9.

	Apply theNewtons method to find a pair of complex roots of the equation x4 + x3 + 5x2 + 4x + 4 = 0 starting with x0 = i.

	Apply Lin-Bairstow method to find a quadratic factor of the equation x4 + 5x3 + 3x2 − 5x − 9 close to x2 + 3x − 5.

	Find the roots of the equation x4 + 9x3 + 36x2 + 51x + 27 = 0 to three decimal places using the Bairstow iterative method.

	Find the quadratic factors of the equation x4 − 8x3 + 39x2 − 62x + 50 = 0 by using the Lin-Bairstow method (up to the third iteration) starting with p0 = 0, q0 = 0.

	Solve x3 − 8x2 + 17x − 10 = 0 by Graeffes method.

	Apply Graeffes method to find all the roots of the equation x3 − 6x2 + 11x − 6 = 0.

	Solve the equation x3 − 5x2 − 17x + 20 = 0 by Graeffes method, squaring three times.

	Find all the roots of the equation x3 − 4x2 + 5x − 2 = 0 by Graeffes method, squaring thrice.

	Determine all roots of the equation x3 − 9x2 + 18x − 6 = 0 by Graeffes method.



2.20Comparison of Iterative Methods

 

	Convergence in the case of the bisection method is slow but steady. It is, however, the simplest method and it never fails.

	The method of false position is slow and it is first order convergent. Convergence however, is guaranteed. Most often, it is found superior to the bisection method.

	The secant method is not guaranteed to converge. But its order of convergence being 1.62, it converges faster than the method of false position. This method is considered most economical giving reasonably rapid convergence at a low cost.

	Of all the above methods, Newton-Raphson method has the fastest rate of convergence. The method is quite sensitive to the starting value. Also it may diverge if f ʹ(x) is near zero during the iterative cycle.

	For locating the complex roots, Newtons method can be used. Mullers method is also effective for finding complex roots.

	If all the roots of the given equation are required then the Lin-Bairstow method is recommended. After a quadratic factor has been found, then the Lin-Bairstow method must be applied on the reduced polynomial. If the location of some roots is known, first find these roots to a desired accuracy and then apply the Lin-Bairstow method on the reduced polynomial.

	If the roots of the given polynomial are real and distinct then Graeffes root squaring method is quite useful.



2.21Objective Type of Questions

 

Exercises 2.9

 

Select the correct answer or fill up the blanks in the following questions:

	The order of convergence in the Newton-Raphson method is
(a) (b) 3(c) 0 (d) none.


	The Newton-Raphson algorithm for finding the cube root of N is...........

	The bisection method for finding the roots of an equation f(x) = 0 is..........

	In theRegula-falsi method, the first approximation is given by.............

	If f(x) = 0 is an algebraic equation, the Newton-Raphson method is given by xn+1 = xn − f (xn)/?
(a) f (xn−1) (b) f ʹ(xn−1)(c) f ʹ(xn) (d) f ″ (xn).


	In the Regula-falsi method of finding the real root of an equation, the curve AB is replaced by......

	Newtons iterative formula to find the value of [image: image] is..............

	A root of x3 − x + 4 = 0 obtained using the bisection method correct to two places, is........ .

	Newton-Raphson formula converges when............ .

	In the case of bisection method, the convergence is
(a) linear(b) quadratic(c) very slow.


	Out of the method of false position and the Newton-Raphson method, the rate of convergence is faster for............ .

	Using Newtons method, the root of x3 = 5x − 3 between 0 and 1 correct to two decimal places, is........ .

	The Newton-Raphson method fails when
(a) f ʹ(x) is negative (b) f ʹ(x) is too large

(c) f ʹ(x) is zero (d) Never fails.


	The condition for the convergence of the iteration method for solving x = φ(x) is......

	While finding a root of an equation by the Regula-falsi method, the number of iterations can be reduced......... .

	Newtons method is useful when the graph of the function while crossing the x-axis is nearly vertical. (True or False)

	The difference between a Transcendental equation and polynomial equation is......... .

	The interval in which a real root of the equation x3 − 2x − 5 = 0 lies is....... .

	The iterative formula for finding the reciprocal of N is xn + 1 =......... .

	While finding the root of an equation by the method of false position, the number of iterations can be reduced...... .




CHAPTER   3


Solution of Simultaneous
Algebraic Equations

Chapter Objectives

 


	Introduction to determinants

	Introduction to matrices

	Solution of linear simultaneous equations

	Direct methods of solution: Cramers rule, Matrix inversion method, Gauss elimination method, Gauss-Jordan method, Factorization method

	Iterative methods of solution: Jacobis method, Gauss-Seidal method, Relaxation method

	Ill-conditioned equations

	Comparison of various methods

	Solution of non-linear simultaneous equationsNewton-Raphson method

	Objective type of questions



3.1Introduction t to Determinants

 

1. Definition. The expression [image: image] is called a determinant of the second order and stands for a1b2  a2b1. It contains four numbers a1, b1, a2, b2 (called elements) which are arranged along two horizontal lines (called rows) and two vertical lines (called columns).

[image: image]

is called a determinant of the third order. It consists of nine elements which are arranged in three rows and three columns.

In general, a determinant of the nth order is of the form

[image: image]

which is a block of n2 elements in the form of a square along n rows and n columns. The diagonal through the left- hand top corner which contains the elements a11, a22, a33, …, ann is called the leading diagonal.

Expansion of a determinant. The cofactor of an element in a determinant is the determinant obtained by deleting the row and the column which intersect at that element, with the proper sign. The sign of an element in the ith row and jth column is (1) i+j. The cofactor of an element is usually denoted by the corresponding capital letter.

For instance, the cofactor of b3 in (i) is [image: image]

A determinant can be expanded in terms of any row or column as follows:

Multiply each element of the row (or column) in terms of which we intend expanding the determinant, by its cofactor and then add up all these products.

∴ Expanding (i) by R1(i.e. 1st row),

[image: image]

Similarly expanding by C2 (i.e. 2nd column),

[image: image]

EXAMPLE 3.1

[image: image]

Solution:

Since there are two zeros in the second row, therefore, expanding by R2, we get

[image: image]

Basic properties. The following properties enable us to simplify and evaluate a given determinant without expanding it:

I. A determinant remains unaltered by changing its rows into columns and columns into rows. 

II. If two parallel lines of a determinant are interchanged, the determinant retains its numerical value but changes in sign. 

III. A determinant vanishes if two of its parallel lines are identical. 

IV. If each element of a line is multiplied by the same factor, the whole determinant is multiplied by that factor. 

V. If each element of a line consists of m terms, the determinant can be expressed as the sum of m determinants. 

VI. If to each element of a line there can be added equi-multiples of the corresponding elements of one or more parallel lines, the determinant remains unaltered. 

[image: image]

Rule for multiplication of determinants:

[image: image]

i.e., the product of two determinants of the same order is itself a determinant of that order.

 EXAMPLE 3.2.

If [image: image] in which a, b, c are different, show that abc = 1.

Solution:

As each term of C3 in the given determinant consists of two terms, we express it as a sum of two determinants.

[image: image]

[Taking common a, b, c from R1, R2, R3, respectively of the first determinant and  1 from C3 of the second determinant]

[image: image]

[Passing C3 over C2 and C1 in the second determinant]

[image: image]

Hence abc = 1, since [image: image] as a, b, c are all different.

EXAMPLE 3.3

Solve the equation [image: image]

Solution:

Operating R3  (R1 + R2), we get

[image: image]

To bring one more zero in C1, operate R1  R2.

[image: image]

Now expand by C1.

∴  (x + 1)(x + 2)(3x + 8  5) = 0 or  3(x + 1)(x + 2)(x + 1) = 0.

Thus x =  1,  1,  2.

EXAMPLE 3.4

Prove that [image: image]

Solution:

Let  be the given determinant.

Taking a, b, c, d common from R1, R2, R3, R4 respectively, we get

[image: image]

[Operate R1 + (R2 + R3 + R4) and take out the common factor from R1]

[image: image]

[image: image]

EXAMPLE 3.5

[image: image]

Solution:

By the rule of multiplication of determinants, the resulting determinant

[image: image]

Exercises 3.1

 

	If [image: image],then prove, without expansion, that xyz =  1 where x, y, z are unequal.
Prove the following results: (2 and 3)

	[image: image]

	[image: image] is a perfect square.

	[image: image]

	Solve the equation [image: image]

	Find the value of the determinant (M) if M = 3A2 + AB + B2
[image: image]

without evaluating A and B independently.




3.2Introduction to Matrices

 

Definition. A system of mn numbers arranged in a rectangular array of m rows and n columns is called an m × n matrix. Such a matrix is denoted by

[image: image]

Special matrices

	Row and column matrices. A matrix having a single row is called a row matrix while a matrix having a single column is called a column matrix.

	Square matrix. A matrix having n rows and n columns is called a square matrix. A square matrix is said to be singular if its determinant is zero otherwise it is called non-singular.
The elements aii in a square matrix form the leading diagonal and their sum Σaii is called the trace of the matrix.

	Unit matrix. A diagonal matrix of order n which has unity for all its diagonal elements is called a unit matrix of order n and is denoted by In.

	Null matrix. If all the elements of a matrix are zero, it is called a null matrix.

	Symmetric and skew-symmetric matrices. A square matrix [aij] is said to be symmetric when aij = aji for all i and j.

If aij =  aji for all i and j so that all the leading diagonal elements are zero, then the matrix is called skew-symmetric. Examples of symmetric and skew-symmetric matrices are respectively
[image: image]


	Triangular matrix. A square matrix all of whose elements below the leading diagonal are zero is called an upper triangular matrix. A square matrix all of whose elements above the leading diagonal are zero is called a lower triangular matrix.



Operations on matrices

	Equality of matrices. Two matrices A and B are said to be equal if and only if (i) they are of the same order,
and (ii) each element of A is equal to the corresponding element of B.


	Addition and subtraction of matrices. If A and B are two matrices of the same order, then their sum A + B is defined as the matrix each element of which is the sum of the corresponding elements of A and B.

Similarly A  B is defined as the matrix whose elements are obtained by subtracting the elements of B from the corresponding elements of A.

	Multiplication of a matrix by a scalar. The product of a matrix A by a scalar k is a matrix whose each element is k times the corresponding elements of A.

	Multiplication of matrices. Two matrices can be multiplied only when the number of columns in the first is equal to the number of rows in the second. Such matrices are said to be conformable. Thus if A and B be (m × n) and (n × p) matrices, then their product C = AB is defined and will be a (m × p) matrix. The elements of C are obtained by the following rule: Element cij of C = sum of the products of corresponding elements of the ith row of A with those of the jth column of B.


[image: image]




	[image: image]
	
	Obs. 1. In general AB ≠ BA even if both exist.

2. If A be a square matrix, then the product AA is defined as A2. Similarly A.A2 = A3 etc.





EXAMPLE 3.6

Evaluate 3A  4B, where [image: image]

Solution:

[image: image]

EXAMPLE 3.7

If [image: image], form the product AB. Is BA Defined?

Solution:

Since the number of columns of A = the number of rows of B (each being = 3). The product AB is defined and

[image: image]

Again since the number of columns of B ≠ the number of rows of A.

∴ The product BA is not defined.

EXAMPLE 3.8.

If [image: image] find the matrix B, such that [image: image]

Solution:

[image: image]

Equating corresponding elements, we get

 3l + 2p + 2u = 3, l + 3p + u = 1,  5l + 3p + 4u = 5 (i)

3m + 2q + 2v = 4, m + 3q + v = 6, 5m + 3q + 4v = 6(ii)

 3n + 2r + 2w = 2, n + 3r + w = 1, 5n + 3r + 4w = 4(iii)

Solving the equations (i), we get l = 1, p = 0, u = 0

Similarly equations (ii) give m = 0, q = 2, v = 0

and equations (iii) give n = 0, r = 0, w = 1

Thus

Related matrices

I. Transpose of a matrix. The matrix obtained from a given matrix A, by interchanging rows and columns, is called the transpose of A and is denoted by A¢.




	[image: image]
	
	Obs. 1. For a symmetric matrix, A¢ = A and for a skew-symmetric matrix, A¢ =  A.
2. The transpose of the product of two matrices is the product of their transposes taken in the reverse order

i.e.,(AB)ʹ = BʹAʹ.

3. Any square matrix A can be written as

[image: image]

i.e., B is a symmetric matrix

[image: image]

i.e.,. C is a skew-symmetric matrix.

Thus every square matrix can be expressed as the sum of a symmetric and a skew-symmetric matrix.





II. Adjoint of a square matrix A is the transposed matrix of cofactors of A and is written as adj A. Thus the adjoint of the matrix

[image: image]

III. Inverse of a matrix. If A is a non-singular square matrix of order n, then a square matrix B of the same order such that AB = BA = I, is then called the inverse of A, I being a unit matrix.
 
The inverse of A is written as A−1 so that A A−1 = A−1 A = I

[image: image]




	[image: image]
	
	Obs. 1. Inverse of a matrix, when it exists, is unique.

2. (A−1)−1 = A.

3. (AB)−1 = B−1 A−1.





EXAMPLE 3.9

Find the inverse of [image: image]

Solution:

[image: image]

Note: For other methods of finding the inverse of a matrix refer to chapter 4.

Rank of a matrix. If we select any r rows and r columns from any matrix A, deleting all other rows and columns, then the determinant formed by these r × r elements is called the minor of A of order r. Clearly there will be a number of different minors of the same order, got by deleting different rows and columns from the same matrix.

Def. A matrix is said to be of rank r when

I. it has at least one non-zero minor of order r, and

II. every minor of order higher than r vanishes.

Elementary transformations of a matrix. The following operations, three of which refer to rows and three to columns are known as elementary transformations:

I. The interchange of any two rows (columns).

II. The multiplication of any row (column) by a non-zero number.

III. The addition of a constant multiple of the elements of any row (column) to the corresponding elements of any other row (column).

Notation. The elementary row transformations will be denoted by the following symbols:

(i) Rij for the interchange of the ith and jth rows.

(ii) kRi for multiplication of the ith row by k.

(iii) Ri + pRj for addition to the ith row, p times the ith row.

The corresponding column transformation will be denoted by writing C in place of R. These transformations, being precisely those performed on the rows (columns) of a determinant, need no explanation.




	[image: image]
	
	Obs. 1. Elementary transformations do not change either the order or rank of a matrix. While the value of the minors may get changed by the transformations I and II, their zero or non-zero character remains unaffected.




Equivalent matrix. Two matrices A and B are said to be equivalent if one can be obtained from the other by a sequence of elementary transformations. Two equivalent matrices have the same order and the same rank. The symbol ∼ is used for equivalence.

Elementary matrix. An elementary matrix is that, which is obtained from a unit matrix, by subjecting it to any of the elementary transformations.

Normal form of a matrix. Every non-zero matrix A of rank r, can be reduced by a sequence of elementary transformations, to the form [image: image] which is called the normal form of A.

EXAMPLE 3.10

Determine the rank of the following matrices:

[image: image]

Solution:

(i) Operate R2  R1 and R3  2R1 so that the given matrix

[image: image]

Obviously, the third order minor of A vanishes. Also its second order minors formed by its second and third rows are all zero. But another second order minor is

[image: image]

Hence R(A), the rank of the given matrix, is 2.

(ii) Given matrix

[image: image]

Obviously, the fourth order minor of A is zero. Also every third order minor of A is zero.

But, of all the second order minors, only [image: image]

Hence R(A), the rank of the given matrix, is 2.

Consistency of a system of linear equations. Consider the system of m linear equations in n unknowns

[image: image]

To determine whether these equations are consistent or not, we find the ranks of the matrices

[image: image]

A is the coefficient matrix and K is called the augmented matrix.

If R(A) ≠ R(K), the equations (i) are inconsistent, i.e., have no solution.

If R(A) = R(K) = n, the equations (i) are consistent and have a unique solution.

If R(A) = R(K) < n, the equations are consistent but have an infinite number of solutions.

System of linear homogeneous equations. Consider the homogeneous linear equations

[image: image]

Find the rank r of the coefficient matrix A by reducing it to the triangular form by elementary row operations.

I. If r = n, the equations (i) have only a trivial solution x1 = x2 = ... = xn = 0.

If r < n, the equations have (n  r) independent solutions. (r cannot be > n) The number of linearly independent solutions of (i) is (n  r) means, if arbitrary values are assigned to (n  r) of the variables, the values of the remaining variables can be uniquely found.

II. When m < n (i.e., the number of equations is less than the number of variables) the solution is always other than x1 = x2 = ... = xn = 0.

III. When m = n (i.e., the number of equations = the number of variables) the necessary and sufficient condition for solutions other than x1 = x2 = ... = xn = 0 is that | A | = 0 (i.e., the determinant of the coefficient matrix is zero).

EXAMPLE 3.11

Test for consistency and solve

5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5.

Solution:

[image: image]

In the last set of equations, the number of non-zero rows in the coefficient matrix is two, and its rank is two. Also the number of non-zero rows in the augmented matrix being, its rank of two.

Now, the ranks of coefficient matrix and augmented matrix being equal, the equations are consistent. Also the given system is equivalent to

[image: image]

where z is a parameter.

Hence [image: image] and z = 0 is a particular solution.

EXAMPLE 3.12

Examine the system of equations 3x + 3y + 2z = 1, x + 2y = 4, 10y + 3z =  2, 2x  3y  z = 5 for consistency and then solve it.

Solution:

[image: image]

Now in the last set of equations, the number of non-zero rows in the coefficient matrix is three, and its rank is three.

Also the number of non-zero rows in the augmented matrix is three, and its rank is three.

Since the ranks of the coefficient and the augmented matrices are equal, the given equations are consistent.

Also number of unknowns = rank of the coefficient matrix.

Hence the given equations have a unique solution given by

[image: image]

These equations show z =  4, y = 1, x = 2.

EXAMPLE 3.13

Investigate the values of  and μ so that the equations

2x + 3y + 5z = 9, 7x + 3y  2z = 8, 2x + 3y + z = μ,

have (i) no solution, (ii) a unique solution, and (iii) an infinite number of solutions.

Solution:

[image: image]

The system admits a unique solution if and only if, the coefficient matrix has the rank of 3.This requires that

[image: image]

Thus for a unique solution  ≠ 5 and μ may have any value. If  = 5, the system will have no solution for those values of μ for which the matrices

[image: image]

are not of the same rank. But A has the rank 2 and K does not have the rank of 2 unless μ = 9. Thus if = 5 and μ ≠ 9, the system will have no solution.

If  = 5 and μ = 9, the system will have an infinite number of solutions.

EXAMPLE 3.14

Solve the equations

4x + 2y + z + 3w = 0, 6x + 3y + 4z + 7w = 0, 2x + y + w = 0.

Solution:

Rank of the coefficient matrix

[image: image]

is 2 which is less than the number of variables.

∴ The number of independent solutions = 4  2 = 2.

Also the given system is equivalent to

[image: image]

EXAMPLE 3.15

Find the values of k for which the system of equations (3k  8) x + 3y + 3z = 0, 3x + (3k  8)y + 3z = 0, 3x + 3y + (3k  8) z = 0 has a non-trivial solution.

Solution

For the given system of equations to have a non-trivial solution, the determinant of coefficient matrix should be zero.

[image: image]

Exercises 3.2

 

	Find x, y, z and w given that [image: image]

	If [image: image] compute AB, BA and show that AB ≠ BA.

	Express the matrix [image: image] as the sum of symmetric and skew-symmetric matrices.

	If [image: image] find adj A and A1.

	If [image: image] prove that A−1 = Aʹ.

	Factorize the matrix [image: image] into the form LU, where L is the lower triangular and U is the upper triangular matrix.

	Determine the ranks of the following matrices:
[image: image]


	Examine for consistency the following equations and then solve these:

(i) x + 2y = 1, 7x + 14y = 12.

(ii) 2x  3y + 7z = 5, 3x + y  3z = 13, 2x + 19y  47z = 32.

(iii) x + 2y + z = 3, 2x + 3y + 2z = 5, 3x  5y + 5z = 2, 3x + 9y  z = 4.

	Investigate for what values of  and μ the simultaneous equations x + y + z = 6, x + 2y + 3z= 10, x + 2y +z = μ, have (i) no solution, (ii) a unique solution, (iii) an infinite number of solutions.

	Determine the values of  for which the following set of equations may possess non-trivial solutions
3x1 + x2  x3 = 0, 4x1  2x2  3x3 = 0, 2x1 + 4x2 + x3 = 0.

For each permissible value of , determine the general solution.




3.3Solution of Linear Simultaneous Equations

 

Simultaneous linear equations occur quite often in engineering and science. The analysis of electronic circuits consisting of invariant elements, analysis of a network under sinusoidal steady-state conditions, determination of the output of a chemical plant, and finding the cost of chemical reactions are some of the Exercises which depend on the solution of simultaneous linear algebraic equations. The solution of such equations can be obtained by Direct or Iterative methods. We describe below some such methods of solution.

3.4Direct Methods of Solution

 

(1) Method of determinantsCramers rule. Consider the equations

[image: image]

If the determinant of coefficients is

[image: image]

The equations (2), (3), and (4) giving the values of x, y, z constitute the Cramers rule1 which reduces the solution of the linear system (1) to a problem in evaluation of determinants.




	[image: image]
	
	Obs. 1. Cramers rule fails for  = 0.




2. This method is quite general but involves a lot of labor when the number of equations exceeds four. For a 10 × 10 system, Cramers rule requires about 70,000,000 multiplications. We shall explain another method which requires only 333 multiplications, for the same 10 × 10 system. As such, Cramers rule is not at all suitable for large systems.

EXAMPLE 3.16

Apply Cramers rule to solve the questions

3x + y + 2z = 3, 2x  3y  z =  3, x + 2y + z = 4.

Solution:

[image: image]

(2) Matrix inversion method. Consider the equations

[image: image]

[image: image]

then the equations (1) are equivalent to the matrix equation

AX = D.(2)

Multiplying both sides of (2) by the inverse matrix A−1, we get

[image: image]

where A1, B1, etc. are the cofactors of a1, b1, etc. in the determinant | A |.

Hence equating the values of x, y, z to the corresponding elements in the product on the right side of (3) we get the desired solution.




	[image: image]
	
	Obs. This method fails when A is a singular matrix, i.e., | A | = 0. Although this method is quite general, it is not suitable for large systems since the evaluation of A−1 by cofactors becomes very cumbersome. We shall now explain some methods which can be applied to any number of equations.




EXAMPLE 3.17

Solve the equations 3x + y + 2z = 3; 2x  3y  z =  3; x + 2y + z = 4 by matrix inversion method.(cf. Example 3.16)

Solution:

[image: image]

Hence x = 1, y = 2, z =  1.

Gauss elimination method. In this method, the unknowns are eliminated successively and the system is reduced to an upper triangular system from which the unknowns are found by back substitution. The method is quite general and is well-adapted for computer operations. Here we shall explain it by considering a system of three equations for the sake of clarity.

Consider the equations

[image: image]

Step I. To eliminate x from the second and third equations.

Assuming a1 ≠ 0, we eliminate x from the second equation by subtracting (a2/a1) times the first equation from the second equation. Similarly we eliminate x from the third equation by eliminating (a3/a1) times the first equation from the third equation. We thus, get the new system

Assuming a1 ≠ 0, we eliminate x from the second equation by subtracting (a2/a1) times the first equation from the second equation. Similarly we eliminate x from the third equation by eliminating (a3/a1) times the first equation from the third equation. We thus, get the new system

[image: image]

Here the first equation is called the pivotal equation and a1 is called the first pivot.

Step II. To eliminate y from third equation in (2).

Assuming   0, we eliminate y from the third equation of (2), by subtracting multiplied by times the second equation from the third equation. We thus, get the new system

[image: image]

Here the second equation is the pivotal equation and is the new pivot.

Step III. To evaluate the unknowns.

The values of x, y, z are found from the reduced system (3) by back substitution.




	[image: image]
	
	Obs. 1. On writing the given equations as

[image: image]

this method consists in transforming the coefficient matrix A to the upper triangular matrix by elementary row transformations only. 

2. Clearly the method will fail if any one of the pivots a1, b2, c3 or becomes zero. In such cases, we rewrite the equations in a different order so that the pivots are non-zero.

3. Partial and complete pivoting. In the first step, the numerically largest coefficient of x is chosen from all the equations and brought as the first pivot by interchanging the first equation with the equation having the largest coefficient of x. In the second step, the numerically largest coefficient of y is chosen from the remaining equations (leaving the first equation) and brought as the second pivot by interchanging the second equation with the equation having the largest coefficient of y. This process is continued until we arrive at the equation with the single variable. This modified procedure is called partial pivoting.





If we are not keen about the elimination of x, y, z in a specified order, then we can choose at each stage the numerically largest coefficient of the entire matrix of coefficients. This requires not only an interchange of equations but also an interchange of the position of the variables. This method of elimination is called complete pivoting. It is more complicated and does not appreciably improve the accuracy.

EXAMPLE 3.18

Apply Gauss elimination method to solve the equations x + 4y  z =  5; x + y  6z =  12; 3x  y  z = 4.

Solution:

Check sum

We have x + 4y  z =  5  1(i)

x + y  6z =  12  16(ii)

3x  y  z = 45(iii)

Step I. To eliminate x, operate (ii)  (i) and (iii)  3(i):

Check sum

 3y  5z =  7  15(iv)

 13y + 2z = 19 8 (v)

Step II. To eliminate y, operate [image: image]
[image: image]

Step III. By back-substitution, we get

[image: image]

Hence, x = 1.6479, y =  1.1408, z = 2.0845.

Note. A useful check is provided by noting the sum of the coefficients and terms on the right, operating on those numbers as on the equations and checking that the derived equations have the correct sum.

[image: image]

[image: image]

Thus, we have z = 148/71 = 2.0845,

3y = 7  5z = 7  10.4225 =  3.4225, i.e., y =  1.1408

and x =  5  4y + z =  5 + 4 (1.1408) + 2.0845 = 1.6479

Hence x = 1.6479, y =  1.1408, z = 2.0845.

EXAMPLE 3.19

Solve 10x  7y + 3z + 5u = 6,  6x + 8y  z  4u = 5, 3x + y + 4y + 11u = 2, 5x  9y  2z + 4u = 7 by the Gauss elimination method.

Solution:

[image: image]

Step I. To eliminate x, operate

[image: image]

[image: image]

Step IV. By back-substitution, we get

u = 1, z =  7, y = 4 and x = 5.

EXAMPLE 3.20

Using the Gauss elimination method, solve the equations: x + 2y + 3z  u = 10, 2x + 3y  3z  u = 1, 2x  y + 2z + 3u = 7, 3x + 2y  4z + 3u = 2.

Solution:

[image: image]

[image: image]

Gauss-Jordan method. This is a modification of the Gauss elimination method. In this method, elimination of unknowns is performed not in the equations below but in the equations above also, ultimately reducing the system to a diagonal matrix form, i.e., each equation involving only one unknown. From these equations, the unknowns x, y, z can be obtained readily.

Thus in this method, the labor of back-substitution for finding the unknowns is saved at the cost of additional calculations.




	[image: image]
	
	Obs. For a system of 10 equations, the number of multiplications required for the Gauss-Jordan method is about 500 whereas for the Gauss elimination method we need only 333 multiplications. This shows that though the Gauss-Jordan method appears to be easier but requires 50 percent more operations than the Gauss elimination method. As such, the Gauss elimination method is preferred for large systems.




EXAMPLE 3.21

Apply the Gauss-Jordan method to solve the equations

x + y + z = 9; 2x  3y + 4z = 13; 3x + 4y + 5z = 40.

Solution:

We have x + y + z = 9 (i)

2x  3y + 4z = 13 (ii)

3x + 4y + 5z = 40 (iii)

Step I. To eliminate x from (ii) and (iii), operate (ii)  2(i) and (iii)  3(i):

x + y + z = 9 (iv)

 5y + 2z =  5 (v)

y + 2z = 13(vi)

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]




	[image: image]
	
	Obs. Here the process of elimination of variables amounts to reducing the given coefficient metric to a diagonal matrix by elementary row transformations only.




EXAMPLE 3.22

Solve the equations 10x  7y + 3z + 5u = 6;  6x + 8y  z  4u = 5; 3x +y + 4z + 11u = 2; and 5x  9y  2z + 4u = 7 by the Gauss-Jordan method.

(cf. Example 3.19)

Solution:

We have 10x  7y + 3z + 5u = 6(i)

 6x + 8y  z  4u = 5(ii)

3x + y + 4z + 11u = 2 (iii)

5x  9y  2z + 4u = 7(iv)

Step I. To eliminate x, operate

[image: image]

Step II. To eliminate y, operate

[image: image]

Step III. To eliminate z, operate

[image: image]

Step IV. From the last equation u = 1 nearly.

Substitution of u = 1 in the above three equations gives x = 5, y = 4, z =  7.

Factorization method2. This method is based on the fact that every square matrix A can be expressed as the product of a lower triangular matrix and an upper triangular matrix, provided all the principal minors of A are non-singular, i.e., if A = [aij], then

[image: image]

Also such a factorization if it exists, is unique.

Now consider the equations

[image: image]

[image: image]

[image: image]

which is equivalent to the equations v1 = b1, l21v1 + v2 = b2, l31v1 + l32v2 + v3 = b3

Solving these for v1, v2, v3, we know V. Then, (4) becomes

u11x1 + u12x2 + u13x3 = v1, u22x2 + u23x3 = v2, u33x3 = v3,

from which x3, x2, and x1 can be found by back-substitution.

To compute the matrices L and U, we write (2) as

[image: image]

Multiplying the matrices on the left and equating corresponding elements from both sides, we obtain

[image: image]

Thus we compute the elements of L and U in the following set order:

(i) First row of U, (ii) First column of L,

(iii) Second row of U,(iv) Second column of L,

(v) Third row of U.

This procedure can easily be generalized.




	[image: image]
	
	Obs. This method is superior to the Gauss elimination method and is often used for the solution of linear systems and for finding the inverse of a matrix. The number of operations involved in terms of multiplications for a system of 10 equations by this method is about 110 as compared with 333 operations of the Gauss method. Among the direct methods, the factorization method is also preferred as the software for computers.




EXAMPLE 3.23

Apply the factorization method to solve the equations:

3x + 2y + 7z = 4; 2x + 3y + z = 5; 3x + 4y + z = 7.

Solution:

[image: image]

[image: image]

[image: image]

Writing UX = V, the given system becomes

[image: image]

Solving this system, we have v1 = 4,

[image: image]

Hence the original system becomes

[image: image]

By back-substitution, we have

z =  1/8, y = 9/8andx = 7/8.

EXAMPLE 3.24

Solve the equations 10x  7y + 3z + 5u = 6;  6x + 8y  z  4u = 5; 3x + y + 4z + 11u = 2; 5x  9y  2z + 4u = 7 by factorization method.

(cf. Example 3.19)

Solution:

[image: image]

so that

(i) R1 of U: u11 = 10, u12 =  7, u13 = 3, u14 = 5

(ii) C1 of L: l21 =  0.6, l31 = 0.3, l41 = 0.5

(iii) R2 of U: u22 = 3.8, u23 = 0.8, u24 =  1

(iv) C2 of L: l32 = 0.81579, l42 =  1.44737

(v) R3 of U: u33 = 2.44737, u34 = 10.31579

(vi) C3 of L: l43 =  0.95699

(vii) R4 of U: u44 = 9.92474

[image: image]

Writing UX = V, the given system becomes

[image: image]

Solving this system, we get

v1 = 6, v2 = 8.6, v3 =  6.81579, v4 = 9.92474.

Hence the original system becomes

[image: image]

i.e.,10x  7y + 3z + 5u = 6, 3.8y + 0.8z  u = 8.6,

2.44737z + 10.31579u =  6.81579, u = 1.

By back-substitution, we get

u = 1, z =  7, y = 4, x = 5.

Exercises 3.3

 

Solve the following equations by Cramers rule:

	x + 3y + 6z = 2; 3x  y + 4z = 9; x  4y + 2z = 7.

	x + y + z = 6.6; x  y + z = 2.2; x + 2y + 3z = 15.2.

	x2z3/y = e8; y2z/x = e4; x3y/z4 = 1.

	2vw  wu + uv = 3uvw; 3vw + 2wu + 4uv = 19uv; 6vw + 7wu  uv = 17uvw.

	3x + 2y  z + t = 1; x  y  2z + 4t = 3; 2x  3y + z  2t =  2; 5x 2y + 3z + 2t = 0. 
Solve the following equations by the matrix inversion method:


	x + y + z = 3; x + 2y + 3z = 4; x + 4y + 9z = 6.

	x + y + z = 1; x + 2y + 3z = 6; x + 3y + 4z = 6. 

	2x  y + 3z = 8; x  2y  z =  4; 3x + y  4z = 0. 

	2x1 + x2 + 2x3 + x4 = 6; 4x1 + 3x2 + 3x3  3x4 =  1; 6x1  6x2 + 6x3 + 12x4 = 36, 2x1 + 2x2 x3 + x4 = 10.

	In a given electrical network, the equations for the currents i1, i2, and i3 are
3i1 + i2 + i3 = 8; 2i1  3i2  2i3 =  5; 7i1 + 2i2  5i3 = 0.

Calculate i1 and i3 by (a) Cramers rule, (b) matrix inversion.

Solve the following equations by the Gauss elimination method:


	x + y + z = 9; 2x  3y + 4z = 13; 3x + 4y + 5z = 40 

	2x + 2y + z = 12; 3x + 2y + 2z = 8; 5x + 10y  8z = 10. 

	2x  y + 3z = 9; x + y + z = 6; x  y + z = 2. 

	2x1 + 4x2 + x3 = 3; 3x1 + 2x2  2x3 =  2; x1  x2 + x3 = 6. 

	5x1 + x2 + x3 + x4 = 4; x1 + 7x2 + x3 + x4 = 12; x1 + x2 + 6x3 + x4 =  5; x1 + x2 + x3 + 4x4 =  6. 
Solve the following equations by the Gauss-Jordan method:


	2x + 5y + 7z = 52; 2x + y  z = 0; x + y + z = 9. 

	 2x  3y + z =  1; x + 4y + 5z = 25; 3x  4y + z = 2.

	x + y + z = 9; 2x + y  z = 0; 2x + 5y + 7z = 52. 

	x + 3y + 3z = 16; x + 4y + 3z = 18, x + 3y + 4z = 19

	2x1 + x2 + 5x3 + x4 = 5; x1 + x2  3x3 + 4x4 =  1;

	3x1 + 6x2  2x3 + x4 = 8; 2x1 + 2x2 + 2x3  3x4 = 2.
Solve the following equations by the factorization method:


	2x + 3y + z = 9; x + 2y + 3z = 6; 3x + y + 2z = 8.

	10x + y + z = 12; 2x + 10y + z = 13; 2x + 2y + 10z = 14.

	10x + y + 2z = 13; 3x + 10y + z = 14; 2x + 3y + 10z = 15.

	2x1  x2 + x3 =  1; 2x2  x3 + x4 = 1; x1 + 2x3  x4 =  1; x1 + x2 + 2x4 = 3.



3.5Iterative Methods of Solution

 

The preceding methods of solving simultaneous linear equations are known as direct methods, as these methods yield the solution after a certain amount of fixed computations. On the other hand, an iterative method is that in which we start from an approximation to the true solution and obtain better and better approximations from a computation cycle repeated as often as may be necessary for achieving a desired accuracy. Thus in an iterative method, the amount of computation depends on the degree of accuracy required.

For large systems, iterative methods may be faster than the direct methods. Even the round-off errors in iterative methods are smaller. In fact, iteration is a self correcting process and any error made at any stage of computation gets automatically corrected in the subsequent steps.

Simple iterative methods can be devised for systems in which the coefficients of the leading diagonal are large as compared to others. We now describe three such methods:

(1) Jacobis iteration method. Consider the equations

[image: image]

If a1, b2, c3 are large as compared to other coefficients, solve for x, y, z, respectively.

Then the system can be written as

[image: image]

Let us start with the initial approximations x0, y0, z0 for the values of x, y, z, respectively. Substituting these on the right sides of (2), the first approximations are given by

[image: image]

Substituting the values x1, y1, z1 on the right sides of (2), the second approximations are given by

[image: image]

This process is repeated until the difference between two consecutive approximations is negligible.




	[image: image]
	
	Obs. In the absence of any better estimates for x0, y0, z0, these may each be taken as zero.




EXAMPLE 3.25

Solve, by Jacobis iteration method, the equations

20x + y  2z = 17; 3x + 20y  z =  18; 2x  3y + 20z = 25.

Solution:

We write the given equations in the form

[image: image]

We start from an approximation x0 = y0 = z0 = 0.

Substituting these on the right sides of the equations (i), we get

[image: image]

Putting these values on the right sides of the equations (i), we obtain

[image: image]

Substituting these values on the right sides of the equations (i), we have

[image: image]

Substituting these values, we get

[image: image]

Putting these values, we have

[image: image]

Again substituting these values, we get

[image: image]

The values in the fifth and sixth iterations being practically the same, we can stop. Hence the solution is

x = 1, y =  1, z = 1.

EXAMPLE 3.26

Solve by Jacobis iteration method, the equations 10x + y  z = 11.19, x + 10y + z = 28.08,  x + y + 10z = 35.61, correct to two decimal places.

Solution:

Rewriting the given equations as

[image: image]

We start from an approximation, x0 = y0 = z0 = 0.

First iteration

[image: image]

Second iteration

[image: image]

Third iteration

[image: image]

Fourth iteration

[image: image]

Fifth iteration

[image: image]

EXAMPLE 3.27

Solve the equations

 10x  2x2  x3  x4 = 3

  2x1 + 10x2  x3  x4 = 15

  x1  x2 + 10x3  2x4 = 27

  x1  x2  2x3 + 10x4 =  9, by the Gauss-Jacobi iteration method.

Solution:

Rewriting the given equation as

[image: image]

We start from an approximation x1 = x2 = x3 = x4 = 0.

First iteration

x1 = 0.3, x2 = 1.5, x3 = 2.7, x4 =  0.9.

Second iteration

[image: image]

Proceeding in this way, we get

Third iterationx1 = 0.9, x2 = 1.908, x3 = 2.916, x4 =  0.108

Fourth iterationx1 = 0.9624, x2 = 1.9608, x3 = 2.9592, x4 =  0.036

Fifth iterationx1 = 0.9845, x2 = 1.9848, x3 = 2.9851, x4 =  0.0158

Sixth iterationx1 = 0.9939, x2 = 1.9938, x3 = 2.9938, x4 =  0.006

Seventh iterationx1 = 0.9939, x2 = 1.9975, x3 = 2.9976, x4 =  0.0025

Eighth iterationx1 = 0.999, x2 = 1.999, x3 = 2.999, x4 =  0.001

Ninth iterationx1 = 0.9996, x2 = 1.9996, x3 = 2.9996, x4 =  0.004

Tenth iterationx1 = 0.9998, x2 = 1.9998, x3 = 2.9998, x4 =  0.0001

Hence x1 = 1, x2 = 2, x3 = 3, x4 = 0.

Gauss-Seidal iteration method. This is a modification of Jacobis method. As before the system of equations:

[image: image]

Here also we start with the initial approximations x0, y0, z0 for x, y, z, respectively which may each be taken as zero. Substituting y = y0, z = z0 in the first of the equations (2), we get

[image: image]

Then putting x = x1, z = z0 in the second of the equations (2), we have

[image: image]

Next substituting x = x1, y = y1 in the third of the equations (2), we obtain

[image: image]

and so on, i.e., as soon as a new approximation for an unknown is found, it is immediately used in the next step.

This process of iteration is repeated until the values of x, y, z are obtained to a desired degree of accuracy.




	[image: image]
	
	Obs. 1. Since the most recent approximations of the unknowns are used while proceeding to the next step, the convergence in the Gauss-Seidal method is twice as fast as in Jacobis method.

2. Jacobi and Gauss-Seidal methods converge for any choice of the initial approximations if in each equation of the system, the absolute value of the largest co-efficient is almost equal to or is at least one equation greater than the sum of the absolute values of all the remaining coefficients.





EXAMPLE 3.28

Apply the Gauss-Seidal iteration method to solve the equations 20x + y  2z = 17; 3x + 20y  z =  18; 2x  3y + 20z = 25. (cf. Example 3.25)

Solution:

We write the given equations in the form

[image: image]

First iteration

[image: image]

Third iteration, we get

[image: image]

The values in the second and third iterations being practically the same, we can stop.

Hence the solution is x = 1, y =  1, z = 1.

EXAMPLE 3.29

Solve the equations 27x + 6y  z = 85; x + y + 54z = 110; 6x + 15y + 2z = 72 by the Gauss-Jacobi method and the Gauss-Seidel method.

Solution:

Rewriting the given equations as

[image: image]

(a) Gauss-Jacobis method

We start from an approximation x0 = y0 = z0 = 0

First iteration

[image: image]

Second iteration

[image: image]

Third iteration

[image: image]

Fourth iteration

[image: image]

Fifth iteration

[image: image]

Repeating this process, the successive iterations are:

x6 = 2.423, y6 = 3.570, z6 = 1.926

x7 = 2.426, y7 = 3.574, z7 = 1.926

x8 = 2.425, y8 = 3.573, z8 = 1.926

x9 = 2.426, y9 = 3.573, z9 = 1.926

Hence x = 2.426, y = 3.573, z = 1.926

(b) Gauss-Seidal method

First iteration

[image: image]

Second iteration

[image: image]

Third iteration

[image: image]

Fourth iteration

[image: image]




	[image: image]
	
	Obs. We have seen that the convergence is quite fast in the Gauss-Seidal method as compared to the Gauss-Jacobi method.




EXAMPLE 3.30

Apply the Gauss-Seidal iteration method to solve the equations: 10x1  2x2  x3  x4 = 3;  2x1 + 10x2  x3  x4 = 15;  x1  x2 + 10x3 + 2x4 = 27;  x1  x2  2x3 + 10x4 =  9. (cf. Example 3.27)

Solution:

Rewriting the given equations as

x1 = 0.3 + 0.2x2 + 0.1x3 + 0.1x4 (i)

x2 = 1.5 + 0.2x1 + 0.1x3 + 0.1x4 (ii)

x3 = 2.7 + 0.1x1 + 0.1x2 + 0.2x4 (iii)

x4 =  0.9 + 0.1x1 + 0.1x2 + 0.2x3 (iv)

First iteration

Putting x2 = 0, x3 = 0, x4 = 0 in (i), we get x1 = 0.3

Putting x1 = 0.3, x3 = 0, x4 = 0 in (ii), we obtain x2 = 1.56

Putting x1 = 0.3, x2 = 1.56, x4 = 0 in (iii), we obtain x3 = 2.886

Putting x1 = 0.3, x2 = 1.56, x3 = 2.886 in (iv), we get x4 =  0.1368.

Second iteration

Putting x2 = 1.56, x3 = 2.886, x4 =  0.1368 in (i), we obtain x1 = 0.8869

Putting x1 = 0.8869, x3 = 2.886, x4 =  0.1368 in (ii), we obtain x2 = 1.9523

Putting x1 = 0.8869, x2 = 1.9523, x4 =  0.1368 in (iii), we have x3 = 2.9566

Putting x1 = 0.8869, x2 = 1.9523, x3 = 2.9566 in (iv), we get x4 =  0.0248.

Third iteration

Putting x2 = 1.9523, x3 = 2.9566, x4 =  0.0248 in (i), we obtain x1 = 0.9836

Putting x1 = 0.9836, x3 = 2.9566, x4 =  0.0248 in (ii), we obtain x2 = 1.9899

Putting x1 = 0.9836, x2 = 1.9899, x4 =  0.0248 in (iii), we get x3 = 2.9924

Putting x1 = 0.9836, x2 = 1.9899, x3 = 2.9924 in (iv), we get x4 =  0.0042.

Fourth iteration. Proceeding as above

x1 = 0.9968, x2 = 1.9982, x3 = 2.9987, x4 =  0.0008.

Fifth iteration is x1 = 0.9994, x2 = 1.9997, x3 = 2.9997, x4 =  0.0001.

Sixth iteration is x1 = 0.9999, x2 = 1.9999, x3 = 2.9999, x4 =  0.0001

Hence the solution is x1 = 1, x2 = 2, x3 = 3, x4 = 0.

(3) Relaxation method3. Consider the equations

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

We define the residuals Rx, Ry, Rz by the relations

[image: image]

To start with we assume x = y = z = 0 and calculate the initial residuals. Then the residuals are reduced step by step, by giving increments to the variables. For this purpose, we construct the following operation table:

[image: image]

We note from the equations (1) that if x is increased by 1 (keeping y and z constant), Rx, Ry, and Rz decrease by a1, a2, a3, respectively. This is shown in the above table along with the effects on the residuals when y and z are given unit increments. (The table is the transpose of the coefficient matrix).

At each step, the numerically largest residual is reduced to almost zero. To reduce a particular residual, the value of the corresponding variable is changed; e.g., to reduce Rx by p, x should be increased by p/a1.

When all the residuals have been reduced to almost zero, the increments in x, y, z are added separately to give the desired solution.




	[image: image]
	
	Obs. 1. As a check, the computed values of x, y, z are substituted in (1) and the residuals are calculated. If these residuals are not all negligible, then there is some mistake and the entire process should be rechecked.


2. Relaxation method can be applied successfully only if the diagonal elements of the coefficient matrix dominate the other coefficients in the corresponding row, i.e., if in the equations (1)





[image: image]

where > sign should be valid for at least one row.

EXAMPLE 3.31

Solve, by the Relaxation method, the equations:

9x  2y + z = 50; x + 5y  3z = 18;  2x + 2y + 7z = 19.

Solution:

The residuals are given by

Rx = 50  9x + 2y  z;

Ry = 18  x  5y + 3z;

Rz = 19 + 2x  2y  7z

The operations table is

[image: image]

The relaxation table is

[image: image]

[Explanation. In (i), the largest residual is 50. To reduce it, we give an increment δx = 5 and the resulting residuals are shown in (ii). Of these Rx = 29 is the largest and we give an increment δz = 4 to get the results in (iii). In (vi) Ry =  4 is the (numerically) largest and we give an increment δy =  4/5 =  0.8 to obtain the results in (vii). Similarly the other steps have been carried out.]

EXAMPLE 3.32 

Solve the equations:

10x  2y  3z = 205;  2x + 10y  2z = 154;  2x  y + 10z = 120 by Relaxation method.

Solution:

The residuals are given by

Rx = 205  10x + 2y + 3z;

Ry = 154 + 2x  10y + 2z;

Rz = 120 + 2x + y  10z.

The operations table is

[image: image]

The relaxation table is

[image: image]

Exercises 3.4

 

	Solve by Jacobis method, the equations: 5x  y + z = 10; 2x + 4y = 12; x + y + 5z =  1; starting with the solution (2, 3, 0).

	Solve by Jacobis method the equations:
13x + 5y  3z + u = 18; 2x + 12y + z  4u = 13; x  4y + 10z + u = 29; 2x + y  3z + 9u = 31.


	Solve the equations 27x + 6y  z = 85; x + y + 54z = 40; 6x + 15y + 2z = 72 by
(a) Jacobis method (b) Gauss-Seidal method.

Solve the following equations by Gauss-Seidal method:

	2x + y + 6z = 9; 8x + 3y + 2z = 13; x + 5y + z = 7.

	28x + 4y  z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35 

	10x + y + z = 12; 2x + 10y + z = 13; 2x + 2y + 10z = 14. 

	7x1 + 52x2 + 13x3 = 104; 83x1 + 11x2  4x3 = 95; 3x1 + 8x2 + 29x3 = 71.

	3x1  0.1x2  0.2x3 = 7.85; 0.1x1 + 7x2  0.3x3 =  19.3; 0.3x1  0.2x2 + 10x3 = 71.4.

Solve, by the Relaxation method, the following equations:

	3x + 9y  2z = 11; 4x + 2y + 13z = 24; 4x  4y + 3z =  8. 

	10x  2y  2z = 6;  x + 10y  2z = 7;  x  y + 10z = 8. 

	 9x + 3y + 4z + 100 = 0; x  7y + 3z + 80 = 0; 2x + 3y  5z + 60 = 0.

	54x + y + z = 110; 2x + 15y + 6z = 72;  x + 6y + 27z = 85 



3.6Ill-Conditioned Equations

 

A linear system is said to be ill-conditioned if small changes in the coefficients of the equations result in large changes in the values of the unknowns. On the contrary, a system is well-conditioned if small changes in the coefficients of the system also produce small changes in the solution. We often come across ill-conditioned systems in practical applications. Ill-conditioning of a system is usually expected when the determinant of the coefficient matrix is small. The coefficient matrix of an ill-conditioned system is called an ill-conditioned matrix.

While solving simultaneous equations, we also come across two forms of instabilities: Inherent and Induced. Inherent instability of a system is a property of the given problem and occurs due to the problem being ill-conditioned. It can be avoided by reformulation of the problem suitably. Induced instability occurs because of the incorrect choice of method.

(2) Iterative method to improve accuracy of an ill-conditioned system. Consider the system of equations

[image: image]

Let xʹ, yʹ, zʹ be an approximate solution. Substituting these values on the left-hand sides, we get new values of d1, d2, d3 as d1ʹ, d2ʹ, d3ʹ so that the new system is

[image: image]

Subtracting each equation in (2) from the corresponding equations in (1), we obtain

[image: image]

where xe = x  xʹ, ye = y  yʹ, ze = z  zʹ and ki = di  diʹ

We now solve the system (3) for xe, ye, ze giving x = xʹ + xe, y = yʹ + ye and z = zʹ + ze,which will be better approximations for x, y, z. We can repeat the procedure for improving the accuracy.

EXAMPLE 3.33

Establish whether the system 1.01x + 2y = 2.01; x + 2y = 2 is well conditioned or not?

Solution:

Its solution is x = 1 and y = 0.5.

Now consider the system x + 2.01y = 2.04 and x + 2y = 2

which has the solution x =  6 and y = 4.

Hence the system is ill-conditioned.

EXAMPLE 3.34

An approximate solution of the system 2x + 2y  z = 6; x + y + 2z = 8;  x + 3y + 2z = 4 is given by x = 2.8, y = 1, and z = 1.8. Using the above iterative method, improve this solution.

Solution:

Substituting the approximate values xʹ = 2.8, yʹ = 1, zʹ = 1.8 in the given equations, we get

[image: image]

Subtracting each equation in (i) from the corresponding given equations, we obtain

[image: image]

where xe = x  2.8, ye = y  1, ze = z  1.8.

Solving the equations (ii), we get xe = 0.2, ye = 0, ze = 0.2.

This gives the better solution x = 3, y = 1, z = 2, which incidently is the exact solution.

Exercises 3.5

 

	Establish whether the system of equations
10x + 8y + 9z + 6w = 33,

6x + 7y + 5z + 5w = 23,

8x + 10y + 7z + 7w = 32,

9x + 7y + 10z + 5w = 31

is well-conditioned or not?


	An approximate solution of the equations x + 4y + 7z = 5; 2x + 5y + 8z = 7; 3x + 6y + 9.1z= 9.1 is given by x = 1.8, y =  1.2, z = 1. Improve this solution by using the iterative method.



3.7Comparison of Various Methods

 

Direct and iterative methods have their advantages and disadvantages and a choice of method depends on a particular system of equations. The direct methods yield a solution in a finite number of steps for any non-singular set of equations, while in an iterative method the amount of computation depends on the accuracy desired. In general, it is preferable to use a direct method for the solution of a linear system. However for large systems, an iterative method yields the solution faster and should therefore be preferred.

Gauss elimination method requires more of recording and is quite time consuming for operations. As such it is more expensive from the programming point of view. Among the direct methods, Crouts triangularization method is used more often for the solution of a linear system and as software for computers.

The rounding off errors also get propagated in the elimination method whereas in the iteration techniques only the rounding off errors committed in the final iteration have any effect. In general, the iteration methods have smaller round-off errors for iteration since it is a self- correcting technique. Thus the use of an iterative method for ill-conditioned system is preferable.

On the other hand, an iterative method may not always converge. When it converges, the iterative method is definitely better than the direct methods.

We come across two types of instabilities while solving a linear system of equations, i.e.,

Inherent instability and Induced instability.

Inherent instability occurs due to the set of equations being ill-conditioned and as such is a property of the problem itself. It can, however, be avoided by a suitable reformulation of the problem.

On the other hand, induced instability occurs due to an incorrect choice of the method of solution.

3.8Solution of Non-Linear Simultaneous Equations

 

Newton-Raphson method. Consider the equations

f(x, y) = 0, g(x, y) = 0 (1)

If an initial approximation (x0, y0) to a solution has been found by a graphical method or otherwise, then a better approximation (x1, y1) can be obtained as follows:

Let x1 = x0 + h, y1 = y0 + k, so that

f(x0 + h, y0 + k) = 0, g(x0 + h, y0 + k) = 0(2)

Expanding each of the functions in (2) by Taylors series to first degree terms, we get approximately

[image: image]

Solving the equations (3) for h and k, we get a new approximation to the root as

x1 = x0 + h, y1 = y0 + k.

This process is repeated until we get the values to the desired accuracy.




	[image: image]
	
	Obs. 1. This method will not converge unless the starting values of the roots chosen are close to the actual roots.

2. The method can be extended to three equations in three variables. But it is very cumbersome to obtain a meaningful solution unless the entire information about the equations and their physical context is available.





Otherwise. Whenever it is possible, one of the variables may be eliminated from the given equations giving a single polynomial equation in the other variable. Then find this variable to a desired degree of accuracy by the Newton-Raphson method. Sometimes the above polynomial equation is seen to have a root by trial. If so, reduce this equation to the next lower degree equation and find its other root by the Newton-Raphson method. Having found this variable to a required degree of accuracy, the other variable can at once, be found from one of the given equations.

EXAMPLE 3.35

Solve the system of non-linear equations:

x2 + y = 11, y2 + x = 7.

Solution:

An initial approximation to the solution is obtained from a rough graph of (1), as x0 = 3.5 and y0 =  1.8.

We have f = x2 + y  11 and g = y2 + x  7 so that

[image: image]

Then Newton-Raphsons equations (3) above will be

7h + k = 0.55, h  3.6k = 0.26.

Solving these, we get h = 0.0855, k =  0.0485

∴ The better approximation to the root is

x1 = x0 + h = 3.5855, y1 = y0 + k =  1.8485.

Repeating the above process, replacing (x0, y0) by (x1, y1), we obtain x2 = 3.5844, y2 =  1.8482.

Otherwise. Eliminating y from the given equations, we get

x4  22x2 + x + 114 = 0

By trial, x = 3 is its root.

∴ The reduced equation is x3 + 3x2  13x  38 = 0

To find the other root, we apply the Newton-Raphson method to

f(x) = x3 + 3x2  13x  38.

Taking x0 = 3.5, we get x2 = 3.5844.

Thus y = 11  x2 gives y =  1.848 for x = 3.5844

Also y =  2 for x = 3.

EXAMPLE 3.36

Solve the equations 2x2 + 3xy + y2 = 3, 4x2 + 2xy + y2 = 30 correct to three decimal places, using Newton-Raphson method, given that x0 =  3 and y0 = 2.

Solution:

[image: image]

Then Newton-Raphson equations (3) above will be

20h + 2k =  2; 6h + 5k = 1

Solving these equations, we get h =

∴ The better approximation is

x1 = x0 + h =  3  0.1364 =  3.1364

y1 = y0 + k = 2 + 0.3636 = 2.3636

Repeating the above process and replacing (x0, y0) by (x1, y1), we obtain x2 =  3.131, y2 = 2.362

Again proceeding as above and replacing (x1, y1) by (x2, y2), we obtain x3 =  3.1309, y3 = 2.3617

Since the values x2, y2 and x3, y3 are approximately equal, the solution correct to three decimal places is x =  3.131, y = 2.362.

Exercises 3.6

 

	Solve the equations x2 + y = 5, y2 + x = 3.

	Solve the non-linear equations x = 2(y + 1), y2 = 3xy  7 correct to three decimals.

	Find a root of the equations xy = x + 9, y2 = x2 + 7.

	Use the Newton-Raphson method to solve the equations x = x2 + y2, y = x2  y2 correct to two decimals, starting with the approximation (0.8, 0.4).

	Solve the non-linear equations x2  y2 = 4, x2 + y2 = 16 numerically with x0 = y0 = 2.828 using the Newton-Raphson method. Carry out two iterations.



3.9Objective Type of Questions

 

Exercises 3.7

 

Select the correct answer or fill up the blanks in the following questions: 

	As soon as a new value of a variable is found by iteration, it is used immediately in the following equations, this method is called
(a) Gauss-Jordan method (b) Gauss-Seidal method

(c) Jacobis method (d) Relaxation method.


	The difference between direct and iterative method of solving simultaneous linear equations is ............ 

	In solving simultaneous equations by the Gauss-Jordan method, the coefficient matrix is reduced to ............ matrix.

	The condition for the convergence of the Gauss-Seidal matrix is that in each equation of the system ............ .

	A matrix in which aij = 0 for i ≠ j is called ............ .

	Solutions of simultaneous non-linear equations can be obtained using
(a) Method of iteration (b) Newton-Raphson method

(c) None of the above.


	To which form is the coefficient matrix is transformed when AX = B is solved by Gauss elimination method?

	Guass-Seidal iteration converges only if the coefficient matrix is diagonally dominant.(True or False)

	What is partial pivoting and complete pivoting in the solution of linear simultaneous equations.

	The convergence in the Gauss-Seidal method is ...... than that in Jacobis method:
(a) more fast (b) more slow

(c) slow (d) equal.


	By the Gauss elimination method, solve x + y = 2 and 2x + 3y = 5.



Footnotes

 

1. Gabriel Cramer (1704-1752), was a Swiss mathematician.

2. Another name given to this decomposition is Triangulization method.

3. This method was originally developed by R.V. Southwell in 1935, for application to structural engineering Exercises
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4.1Introduction

 

There are two main numerical exercises which arise in connection with the matrices. One of these is the problem of finding the inverse of a matrix. The other problem is that of finding the eigenvalues and the corresponding eigenvectors of a matrix. When a student first encounters an eigenvalue problem, it appears to him somewhat artificial and theoretical only. In fact the computation of eigenvalues is required in many engineering and scientific problems. For instance, the frequencies of the vibrations of beams are the eigenvalues of a matrix. Eigenvalues are also required while finding the frequencies associated with

 (i) the vibrations of a system of masses and springs,

 (ii) the symmetric vibrations of an annular membrane,

(iii) the oscillations of a triple pendulum,

(iv) the torsional oscillations of a uniform cantilever,

 (v) the torsional oscillations of a multi-cylinder engine etc.

Once the physical formulation in any of the above situations is completed, all these Exercises have the same mathematical approach: that of finding an eigenvalue for a numerical matrix.

4.2Matrix Inversion

 

In Section 3.2(4), we have already defined the inverse of a non-singular square matrix A, to be another matrix B of the same order such that AB = BA = I, I being a unit matrix of the same order.

The inverse of a matrix A is written as A−1 so that AA−1 = A−1A = I.

Thus the inverse of a matrix exists if and only if it is a non-singular square matrix. Also inverse of a matrix, when it exists is unique.

There are several methods of finding the inverse of a matrix. Of these, the method of obtaining the inverse with the help of an adjoint has already been illustrated by Example 3.9. But it requires a lot of calculations. As such, we shall now, describe some other methods which require less of computational labor and can be easily extended to matrices of higher order.

4.3Gauss Elimination Method

 

The method involves the same procedure as explained in Section3.4(3). Here we take a unit matrix of the same order as the given matrix A and write it as AI.

Now making simultaneous row operations on AI, we try to convert A into an upper triangular matrix and then to a unit matrix. Ultimately when A is transformed into a unit matrix, the adjacent matrix (emerged out from the transformation of I) gives the inverse of A. To increase the accuracy, the largest element in A is taken as the pivot element for performing the row operations.

4.4Gauss-Jordan Method

 

This is similar to the Gauss elimination method except that instead of first converting A into upper triangular form, it is directly converted into the unit matrix.

In practice, the two matrices A and I are written side by side and the same row transformations are performed on both. As soon as A is reduced to I, the other matrix represents A1.

EXAMPLE 4.1

Using Gauss-Jordan method, find the inverse of the matrix

[image: image]

Solution:

Writing the given matrix side by side with the unit matrix of order 3, we have

[image: image]

[image: image]

Hence the inverse of the given matrix is [image: image]

EXAMPLE 4.2

Using Gauss-Jordan method, find the inverse of the matrix [image: image]

Solution:

Writing the given matrix side by side with the unit matrix of order 3, we have

[image: image]

[image: image]

Hence the inverse of the given matrix is [image: image]

4.5Factorization Method

 

In this method, we factorize the given matrix as A = LU (1)

where L is a lower triangular matrix with unit diagonal elements and U is an upper triangular matrix

[image: image]

To find L−1, let L−1 = X, where X is a lower triangular matrix.

[image: image]

Multiplying the matrices on the L.H.S. and equating the corresponding elements, we have

 x11 = 1, x22 = 1, x33 = 1(3)

l21x11 + x21 = 0, l31x11 + l32x21 + x31 = 0

and  l32x22 + x32 = 0(4)

(3) givesx11 = x22 = x33 = 1

(4) x21 =  l21x11, x31 =  (l31 + l32x21) and x32 =  l32

Thus L−1 = X is completely determined.

To find U−1, let U−1 = Y, where Y is an upper triangular matrix.

[image: image]

Multiplying the matrices on the L.H.S. and then equating the corresponding elements, we have

[image: image]

EXAMPLE 4.3

Using the factorization method, find the inverse of the matrix

[image: image]

[image: image]

To find L−1, let L−1 = X. Then LX = I

[image: image]

To find U−1, let U−1 = Y. Then YU = I

[image: image]

[image: image]

4.6Partition Method

 

According to this method, if the inverse of a matrix An of order n is known, then the inverse of a matrix An+1 of order (n + 1) can be determined by adding (n + 1)th row and (n + 1)th column to An.

[image: image]

where A2, X2 are column vectors and A3ʹ, X3ʹ are row vectors (i.e., transposes of column vectors A3, X3) and , x are ordinary numbers.

Also we assume that A1−1 is known. Actually A3 and X3 are column vectors since their transposes are row vectors.

[image: image]

and using this, (3) gives (  A3ʹA1−1 A2)x3= A3ʹA1−1 (8)

whence X3ʹ and then X1 are determined.

Thus, having found X1, X2,X3 and x, A−1 is completely known.




	[image: image]
	
	Obs. The partition method is also known as the Escalator method.




EXAMPLE 4.4

[image: image]

[image: image]

EXAMPLE 4.5

If A and C are non-singular matrices, then show that

[image: image]

Solution:

Let the given matrix be [image: image] and its inverse be [image: image] both in the portioned form where A, B, C, P, Q, R, S are all matrices.

[image: image]

 ∴ Equating corresponding elements, we have

AP + 0R = I, AQ + 0S = 0, BP + CR = 0, BQ + CS = I.

Second relation gives AQ = 0 i.e. Q = 0 as A is non-singular.

First relation gives AP = I, i.e. P = A−1.

First third equation, BP + CR = 0, i.e., CR =  BP =  BA−1

∴C−1 CR =  C−1BA−1orIR =  C−1 BA−1 or R =  C−1 BA−1

From fourth equation, BQ + CS = I, or CS = I or S = C−1

[image: image]

4.7Iterative Method

 

Suppose we wish to compute A−1 and we know that B is an approximate inverse of A. Then the error matrix is given by E = AB  I

or AB = I + E

∴ (AB)−1 = (I + E)−1 i.e. B−1 A1 = (I + E)−1

or A−1 = B(I + E)−1 = B(I  E + E2 ......),

provided the series converges.

Thus we can find further approximations of A−1, by using A−1 = B(1  E + E2 ...)

EXAMPLE 4.6

Using the iterative method, find the inverse of

[image: image]

Solution:

[image: image]

To the second approximation, we have

[image: image]

Exercises 4.1

 

Use Gauss-Jordan method to find the inverse of the following matrices:

[image: image]

[image: image]

Use factorization method, to find the inverse of the following matrices:

[image: image]

Apply the partition method to obtain the inverse of the following matrices:

[image: image]

10. Using iterative method, find the inverse of the matrix [image: image] taking [image: image] 

11. Apply iterative method to find more accurate inverse of [image: image] assuming the initial inverse matrix to be [image: image]

4.8Eigenvalues and Eigenvectors

 

If A is any square matrix of order n with elements aij, we can find a column matrix X and a constant  such that AX = X or AX  IX = 0 or [A  I]X = 0.

This matrix equation represents n homogeneous linear equations

[image: image]

which will have a non-trivial solution only if the coefficient determinant vanishes, i.e.,

[image: image]

 On expansion, it gives an nth degree equation in , called the characteristic equation of the matrix A. Its roots i (i = 1, 2,..... n) are called the eigenvalues or latent roots and corresponding to eacheigenvalue, the equation (2) will have a non-zero solution

X = [x1, x2,........, xn]ʹ

which is known as the eigenvector. Such an equation can ordinarily be solved easily. However for larger systems better methods are to be applied.

Cayley-Hamilton theorem. Every square matrix satisfies its own characteristic equations i.e., if the characteristic equation for the nth order square matrix A is

| A  I | = ( 1)n n + k1 n−1 + ⋯... + kn = 0

then ( 1)n An + k1 An−1 + kn = 0.

EXAMPLE 4.7

Find the eigenvalues and eigenvectors of the matrix [image: image]

Solution:

The characteristic equation is [A  I] = 0

[image: image]

Thus the eigenvalues are 6 and 1.

If x, y be the components of an eigenvector corresponding to the eigenvalue , then

[image: image]

which gives only one independent equation  x + 4y = 0

[image: image]

EXAMPLE 4.8

Find the eigenvalues and eigenvectors of the matrix

[image: image]

Solution:

The characteristic equation is

[image: image]

[image: image]

Thus the eigenvalues of A are 0, 3, 15.

If x, y, z be the components of an eigenvector corresponding to the eigenvalue , we have

[image: image]

Putting l = 0, we have 8x  6y + 2z = 0,  6x + 7y  4z = 0, 2x  4y + 3z = 0.

These equations determine a single linearly independent solution which may be taken as (1, 2, 2) so that every non-zero multiple of this vector is an eigenvector corresponding to  = 0.(ii)

Similarly, the eigenvectors corresponding to  = 3 and  = 15 are the arbitrary nonzero multiples of the vectors (2, 1,  2) and (2,  2, 1) which are obtained from (i).

Hence the three eigenvectors may be taken as (1, 2, 2), (2, 1,  2), (2,  2, 1).




	[image: image]
	
	Obs. The eigenvector [x, y, z]ʹ such that x2 + y2 + z2 = 1 is said to be normalized. In particular, if we choose x = 1/3, y = 2/3, z = 2/3 in (ii), the corresponding normalized eigenvector will be (1/3, 2/3, 2/3).




EXAMPLE 4.9

Using the Cayley-Hamilton theorem, find the inverse of the matrix

[image: image]

Solution:

(i) The characteristic equation of the matrix is

[image: image]

By Cayley-Hamilton theorem, we have A2  4A  5 = 0

Multiplying by A−1, we get A  4I  5A−1 = 0

[image: image]

(ii) The characteristic equation of the matrix is

[image: image]

By the Cayley-Hamilton theorem, we have A3  5A2 + 7A  3I = 0(i)

Multiplying (i) by A−1, we get

[image: image]

4.9Properties of Eigenvalues

 

We now state, some of the important properties of eigenvalues for ready reference:

I. The sum of the eigenvalues of matrix A is the sum of the elements of its principal diagonal.

II. If  is an eigenvalue of matrix A, then 1/ is the eigenvalue of A−1.

III.If  is an eigenvalue of an orthogonal matrix, then 1/ is also its eigenvalue.

IV. If 1, 2,......, n are the eigenvalues of matrix A, then Am has the eigenvalues 1m, 2m,......, nm (m being a positive integer).

V. If a square matrix A has n linearly independent eigenvectors, then a matrix P can be found such that P1 AP is a diagonal matrix whose diagonal elements are the eigenvalues of A.

The transformation of A by a non-singular matrix P to P−1 AP is called a similarity transformation.

 VI. Any similarity transformation applied to a matrix leaves its eigenvalues unchanged.

4.10Bounds for Eigenvalues

 

If  is an eigenvalue of matrix A, then for some k (1 ≤ k ≤ n),

[image: image]

i.e., all the eigenvalues of A lie in the union of the n circles with centers akk and radii k.

Proof. Let  be an eigenvalue of an arbitrary square matrix A and X be the corresponding eigenvector. Then AX = X

ora11 x1 + a12 x2 + ⋯... + a1n xn = x1

.....................................................

ak1 x1 + ak2 x2 + ⋯... + akn xn =  xk

....................................................

an1 x1 + an2 x2 + ⋯... + ann xn=  xn

If xk be the largest component of X, then | xm/xk | ≤ 1 (m = 1, 2, ..., n)...(1)

Dividing the kth equation by xk, we obtain

ak1 (x1/xk) + ⋯... + ak, k1 (xk1/xk) + akk + ... + akn(xn/xk) = 

or  akk = ak1 (x1/xk) + ... + ak, k1 (xk1/xk) + ... + akn(xn/xk)

Taking absolute values on both sides and using the theorem | a + b | ≤ | a | + | b |, we obtain

|   akk | ≤ |ak1 | + ... + | ak, k1 |+ ... + |akn | = k (say) [by (1)]

This shows that all the eigenvalues of A lie within or on the union of the circles with centers akk and radii k.

As A and Aʹ have the same eigenvalues, the above theorem is also true for columns. These circles are called the Gerschgorin circles

The bounds thus obtained being all independent all the eigenvalues of A must lie in the intersection of these bounds. These bounds are called the Gerschgorin bounds.

The above theorem gives us the possible location of the eigenvalues and also helps us to estimate their bounds. If any of the Gerschgorin circles is isolated, then it contains exactly one eigenvalue.

EXAMPLE 4.10

Using Gerschgorin circles, determine the limits of the eigenvalues of the matrix [image: image]

Solution:

The three Gerschgorin circles are

(a) | z  1 | = | 3 | + | 2 | = 5

(b) | z  4 | = | 3 | + | 6 | = 9

(c) | z  1 | = | 2 | + | 6 | = 8

One eigenvalue lies within the circle having the center at (1, 0) and radius 5.

Second eigenvalue lies within the circle having the center at (4, 0) and radius 9.

Third eigenvalue lies within the circle having the center at (1, 0) and radius 8.

Since the circle (a) lies within the circles (b) and (c), therefore all the eigenvalues of A lie within the region defined by (b) and (c). thus  5 ≤  ≤ 13 and  7 ≤  ≤ 9.

Hence the limits to the eigenvalues are given by  7 ≤  ≤ 13.

4.11Power Method

 

In many engineering problems, it is required to compute the numerically largest eigenvalue and the corresponding eigenvector. In such cases, the following iterative method is quite convenient which is also well-suited for machine computations.

If X1, X2 ... Xn are the eigenvectors corresponding to the eigenvalues 1, 2, ... n, then an arbitrary column vector can be written as

 X = k1X1 + k2X2 + ... + knXn

Then AX = k1 AX1 + k2 AX2 + ... + kn AXn

= k1 1X1 + k2 2X2 + ... + kn nXn

Similarly A2X = k112X1 + k222X2 + ... + knn2Xn

and ArX = k1 1 rX1 + k2 2 rX2 + ⋯. + kn n rXn

If | 1 | > | 2 | > ... > | n |, then 1 is the largest root and the contribution of the term k11rX1 to the sum on the right increases with r and, therefore, every time we multiply a column vector by A, it becomes nearer to the eigenvector X1. Then we make the largest component of the resulting column vector unity to avoid the factor k1.

Thus we start with a column vector X which is as near the solution as possible and evaluate AX which is written as (1) X(1) after normalization. This gives the first approximation (1) to the eigenvalue and X(1) to the eigenvector. Similarly we evaluate AX(1) = (2) X(2) which gives the second approximation. We repeat this process until [X(r)  X(r1)] becomes negligible. Then (r) will be the largest eigenvalue and X(r), the corresponding eigenvector.

This iterative procedure for finding the dominant eigenvalue of a matrix is known as

Rayleighs power method.




	[image: image]
	
	Obs. Rewriting AX = X as A−1 AX =  A−1 X or X = A−1X.

[image: image]

If we use this equation, then the above method yields the smallest eigenvalue.





EXAMPLE 4.10

Determine the largest eigenvalue and the corresponding eigenvector of the matrix [image: image]

Solution:

Let the initial approximation to the eigenvector corresponding to the largest

[image: image]

So the first aporoximation to the eigenvalue is (1) = 5 and the corresponding eigenvector is X(1)

[image: image]

Thus the second aporoximation to the eigenvalue is (2) = 5.8 and the corresponding eigenvector is [image: image] repeating the above process, we get 

[image: image]

Clearly (5) = (6) and X(5) = X(6) upto 3 decimal places. Hence the largest eigenvalue is 6 and the corresponding eigenvector is [image: image]

EXAMPLE 4.11

Find the largest eigenvalue and the corresponding eigenvector of the Matrix [image: image] using the power method. Take [1, 0, 0]T as the initial eigenvector.

Solution:

Let the initial approximation to the required eigenvector be X = [1, 0, 0]ʹ.

[image: image]

So the first approximation to the eigenvalue is 2 and the corresponding eigenvector

[image: image]

Repeating the above process, we get

[image: image]

Clearly (6) = (7) and X(6) = X(7) approximately.

Hence the largest eigenvalue is 3.41 and the corresponding eigenvector is [0.74,  1, 0.67]ʹ

EXAMPLE 4.12

Obtain by the power method, the numerically dominant eigenvalue and eigenvector of the matrix

[image: image]

Solution:

Let the initial approximation to the eigenvector be X = [1, 1, 1]ʹ. Then

[image: image]

So the first approximation to eigenvalue is  18 and the corresponding eigenvector is [ 0.444, 0.222, 1]ʹ.

[image: image]

∴ The second approximation to the eigenvalue is  10.548 and the eigenvector is [1,  0.105,  0.736]ʹ.

Repeating the above process

[image: image]

Since (7) = (8) and X(7) = X(8) approximately, therefore the dominant eigenvalue and the corresponding eigenvector are given by

[image: image]

Hence the dominant eigenvalue is 20 and eigenvector is [ 1, 0.5, 1]ʹ.

Exercises 4.2

 

	Find the eigenvalues and eigenvectors of the matrices.
[image: image]


	Find the latent root and the latent vectors of the matrices
[image: image]


	Using the Cayley-Hamilton theorem, find the inverse of
[image: image]


	Using Gerschgorim circles, find the limits of the eigenvalues of the
[image: image]


	Find, by power method, the larger eigenvalue of the following matrices:
[image: image]


	Find the largest eigenvalue and the corresponding eigenvector of the matrices:
[image: image]

(c) [image: image] taking [1, 0, 0]T as initial eigenvector.







	[image: image]
	
	Obs. The iteration method is a special method as it gives the largest or the smallest eigenvalue only. Now we shall describe three modern methods for finding all the eigenvalues of a real symmetric matrix A.


	
	
	The eigenvalues of A are given by the diagonal elements when A is reduced to either the diagonal matrix D or the lower triangular matrix L or the upper triangular matrix U. Thus the methods of finding eigenvalues of A are based on reducing A to D or L or U.





4.12Jacobis Method

 

Let A be a given real symmetric matrix. Its eigenvalues are real and there exists a real orthogonal matrix B such that B−1 AB is a diagonal matrix D. Jacobis method consists of diagonalizing A by applying a series of orthogonal transformations B1, B2,..., Br such that their product B satisfies the equation B−1 AB = D.

For this purpose, we choose the numerically largest non-diagonal element aij and form a 2 × 2 submatrix [image: image]

Where aij = aji, which can easily be diagonalized.

[image: image]

Now this matrix will reduce to the diagonal form, if aij cos 2θ + [image: image](ajj  aii) sin 2θ = 0

i.e., if

[image: image]

This equation gives four values of θ, but to get the least possible rotation, we choose  /4 ≤ θ ≤ /4.

Thus (1) reduces to a diagonal matrix.

As a next step, the largest non-diagonal element (in magnitude) in the new rotated matrix is found and the above procedure is repeated using the orthogonal matrix B2.

In this way, a series of such transformations are performed so as to annihiliate the non-diagonal elements. After making r transformations, we obtain

[image: image]

As r → , B−1 AB approaches a diagonal matrix whose diagonal elements are the eigenvalues of A.

Also the corresponding columns of B = B1B2...Br, are the eigenvectors of A.

EXAMPLE 4.13

Using Jacobis method, find all the eigenvalues and the eigenvectors of the matrix

[image: image]

Solution:

Here the largest non-diagonal element is a13 = a31 = 2. Also a11 = 1 and a33 = 1

[image: image]

∴ The first transformation gives

[image: image]

Now the largest non-diagonal element is a12 = a21 = 2. Also a11 = 3 and a22 = 3.

[image: image]

∴ The second transformation gives

[image: image]

Hence the eigenvalues of the given matrix are 5, 1,  1 and the corresponding eigenvectors are the columns of

[image: image]




	[image: image]
	
	A disadvantage of Jacobis method is that the element annihiliated by a transformation, may not remain zero during the subsequent transformations. Givens suggested a reduction which does not disturb zeros already formed. But instead of leading to a diagonal matrix as in Jacobis method, the Givens method leads to a tri-diagonal matrix. The eigenvalues and eigenvectors of the original matrix have to be found from those of the tri-diagonal matrix.





EXAMPLE 4.14

Obtain using Jacobis method, all the eigenvalues and eigenvectors of the matrix

[image: image]

Solution:

Here the largest non-diagonal element is a12 = 1.

Also a11 = 1, a22 = 1.

[image: image]

∴ The first transformation is

[image: image]

Now the largest non-diagonal element of + D1 is [image: image]. Also, 11 = 2, 33 = 2.

[image: image]

∴ The second transformation gives

[image: image]

Repeating the above steps, we obtain

[image: image]

Hence the eigenvalues of A are 2.536,  0.006, 1.469 approximately and the corresponding eigenvectors are the columns of

[image: image]

4.13Givens Method

 

If A is a real symmetric matrix, then Givens method consists of the following steps:

Step I. To reduce A to a tri-diagonal symmetric matrix:

To begin with, consider the matrix [image: image] (1)


and the orthogonal rotation matrix B1 in the plane (2, 3) as

[image: image]

[image: image]

In the resulting matrix, (1, 3) element =  a12 sin θ + a13 cos θ. It will be zero, if  a12 sin θ + a13 cos θ = 0, i.e., if tan θ = a13/a12. (2)

Thus with this value of θ, the above transformation gives zeros in (1, 3) and (3, 1) positions.

Now we perform rotation in the plane (2, 4) and put the resulting element (1, 4) = 0. This would not affect the zeros obtained earlier. Proceeding in this way, the transformations are applied to the matrix so as to annihilate the elements (1, 3), (1, 4), (1, 5),..., (1, n), (2, 4), (2, 5),..., (2, n) in this order. Finally we arrive at the tri-diagonal matrix

[image: image]

Step II. To find the eigenvalues of a tri-diagonal matrix.

Let the resulting tri-diagonal matrix after first transformation be

[image: image]

Then the eigenvalues of (1) and (3) are the same. To obtain the eigenvalues of (3), we have

[image: image]

Expanding f3() in terms of the third row, we get

[image: image]

In general, the recurrence formula is

fk() = (kk  ) fk1()  ( k1, k)2 fk2(), 2 ≤ k ≤ n(5)

The equation fk() = 0 is the characteristic equation which can be solved by any standard method. Thus the roots of (5) will be the eigenvalues of the given symmetric matrix.

Step III. To find the eigenvectors of the tri-diagonal matrix.

If Y is an eigenvector of the tri-diagonal matrix P and if B1, B2,... Bj are the orthogonal matrices employed in reducing the matrix A to the form P, then the corresponding eigenvector of A is given by X = B1B2... Bj Y.




	[image: image]
	
	Obs. 1. The number of rotations required for the Givens method are equivalent to the number of non-tri-diagonal elements of the matrix. In the case of a 3 × 3 matrix, only one rotation is required; whereas for a 4 × 4 matrix, three rotations are needed and so on.


	
	
	The amount of computation goes on decreasing from one rotation to the next, as the order of the matrix for computation also starts reducing.



	
	
	Obs. 2. The sequence of functions f0(λ), f1(λ), f2(λ),... fk(λ) is called the Strum sequence. A table of this sequence for various values of  is prepaired and the number of changes in sign of the Strum sequence is calculated. Then the difference between these number of changes of sign for consecutive values of  gives an approximate location of the eigenvalues. Once the location of the eigenvalues is known, their exact values can be found by any iterative method, e.g., Newton-Raphson method.




EXAMPLE 4.15

Using Givens method, reduce the following matrix to the tri-diagonal form:

[image: image]

Solution:

There being only one non-tri-diagonal element a13(= 3) which has to be reduced to zero, only one rotation is required.

To annihilate a13, we define the orthogonal matrix in the plane (2, 3) as:

[image: image]

where θ is found from the formula

[image: image]

Note. An alternative procedure for reduction of a symmetric matrix to the tri-diagonal form has been suggested by Householder. This method, though more complicated, requires half as much computation, as the Givens method. In any case, it is a substantial improvement on the Givens procedure since it reduces an entire row and column by a single transformation. In this method, the matrix is reduced to tri-diagonal form using elementary orthogonal transformations
 
4.14House-Holders Method

 

Consider an nth order real symmetric matrix A = [aij]. This method consists in pre and post-multiplying A by a real symmetric orthogonal matrix P such that PAP reduces to the tridiagonal form.

Let the matrix P be of the form P = I  2wwʹ(1)

wwʹ = w12 + w22 + ... + wn2 = 1(2)

Then Pʹ = (I  2wwʹ)ʹ = I  2wwʹ = P

And PʹP = (I  2wwʹ)ʹ (I  2wwʹ)

 = I  4wwʹ + 4wwʹ. wwʹ = I[by (2)

Thus P is a symmetric orthogonal matrix.

Now take w with first (k  1) zero components, so that

 wkʹ = [0, 0,..., 0, xk, ..., x+n](3)

Since wkʹwk = 1, we have xk2 + xk + 12 + ... xn2 = 1

Then Pk−1APk = PkʹAPk = PkAPk

We now form successively Ak = PkAk1 Pk; k = 2, 3,..., n  1.

As a first transformation, we determine xs so that zeros are created in the positions

(1, 3), (1, 4),..., (1, n) and (3, 1), (4, 1),..., (n, 1)

 As a second transformation, we find xs so that zeros are created in the positions (2, 4), (2, 5),..., (2, n) and (4, 2), (5, 2),..., (n, 2).

After (n  2) such transformations, we arrive at a tri-diagonal matrix.

EXAMPLE 4.16

Using House-holders method, reduce the following matrix to the tridiagonal form:

[image: image]

Solution:

[image: image]

[image: image]

Now the element (1, 3) of PAP can become zero only if the corresponding element in AP is zero. The first row elements of AP are a11, a12  2p1x2, a13  2p1x3 where p1 = a12 x2 + a13 x3.

∴ We require that a13  2p1x3 = 0(i)

Since the sum of the squares of the elements in any row is invariant under an orthogonal transformation, we have

[image: image]

For the given matrix, (i) and (ii) become

[image: image]

Multiplying (iii) by x3 and (iv) by x2 and adding, we get

[image: image]

Substituting in (iv), we obtain 4  2 (5x2)x2 = ± 5

[image: image]

Since x3 contains x2 in the denominator, we obtain best accuracy if x2 is large

[image: image]

[image: image]

which is the required tri-diagonal matrix.

Exercises 4.3

 

	Using Jacobis method, find all the eigenvalues and the eigenvectors of the matrices:
[image: image]


	Reduce the matrix [image: image] to the tri-diagonal form, using the Householders method

	Apply Householders method, to find the eigenvalues of the matrix
[image: image]


	Transform the matrix [image: image] to the tri-diagonal form using Givens method. Hence find the largest eigenvalue and the corresponding eigenvector of the tri-diagonal matrix.

	Find the eigenvalues of the matrix [image: image]



4.15Objective Type of Questions

 

Select the correct answer or fill up the blanks in the following questions:

	The eigenvalues of a triangular matrix are..........

	Inverse of [image: image] is..........

	The most suitable initial eigenvector out of [image: image] to find the larger eigenvalue of the matrix [image: image] in one iteration, is..........

	Two eigenvalues of the matrix [image: image] re equal to 1 each, then the eigenvalues of A−1 are..........

	Eigenvalues of [image: image] are..........

	If  is an eigenvalue of a matrix A, then 1/ is the eigenvalue of..........

	The product of two eigenvalues of the matrix [image: image] is 16, then the third eigenvalue is..........

	The Power method works satisfactorily only if the matrix A has a...... eigenvalue.

	Eigenvalues of the matrix [image: image] are..........

	If  is an eigenvalue of an orthogonal matrix, then 1/ is also its..........

	Dominant eigenvalues of [image: image] by the Power method are..........

	The eigenvalues of an idempotent matrix are..........

	If the eigenvalues of a matrix A are  4, 3, 1, then the dominant eigenvalue of A is.......

	If [image: image] then A−1 =..........

	The eigenvalue that can the obtained by using the Power method is.......

	If  is the largest eigenvalue of the matrix A, then the relation giving the smallest eigenvalue is.......




CHAPTER   5


Empirical Laws and
Curve-Fitting

Chapter Objectives
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	Principle of least squares

	Method of least squares 

	Fitting a curve of the type y = a + bx2, etc.

	Fitting of other curves

	Most Plausible values

	Method of group averages

	Laws containing three constants

	Method of moments 

	Objective type of questions.



5.1Introduction

 

In many branches of Applied Mathematics, it is required to express a given data, obtained from observations, in the form of a law connecting the two variables involved. Such a law inferred by some scheme, is known as the empirical law. For example, it may be desirable to obtain the law connecting the length and the temperature of a metal bar. At various temperatures, the length of the bar is measured. Then, by one of the methods explained below, a law is obtained that represents the relationship existing between temperature and length for the observed values. This relation ship can then be used to predict the length at an arbitrary temperature.

Scatter diagram. To find a relationship between the set of paired observations x and y, we plot their corresponding values on the graph, taking one of the variables along the x-axis and other along the y-axis, i.e., (x1, y1), (x2, y2)…, (xn, yn). The resulting diagram showing a collection of dots is called a scatter diagram. A smooth curve that approximates the above set of points is known as the approximating curve.

Curve fitting. Several equations of different types can be obtained to express the given data approximately. But the problem is to find the equation of the curve of best fit which may be most suitable for predicting the unknown values. The process of finding such an equation of best fit is known as curve-fitting.

If there are n pairs of observed values then it is possible to fit the given data to an equation that contains n arbitrary constants, and we can solve n simultaneous equations for n unknowns. If we desired to obtain an equation representing these data but have less then n arbitrary constants, then we can have recourse to any of these four methods: Graphical method, method of least-squares, method of group averages, and method of moments. The graphical method and the method of averages fail to give the values of the unknown constants uniquely and accurately, while the other methods do. The method of least squares is probably the best to fit a unique curve to a given data. It is widely used in applications and can be easily implemented on a computer.

5.2Graphical Method

 

When the curve representing the given data is a linear law y = mx + c; we proceed as follows:

 (i) Plot the given points on the graph paper taking a suitable scale.

 (ii)Draw the straight line of best fit such that the points are evenly distributed about the line.

(iii) Taking two suitable points (x1, y1) and (x2, y2) on the line, calculate m, the slope of the line and c, its intercept on the y-axis.

When the points representing the observed values do not approximate to a straight line, a smooth curve is drawn through them. From the shape of the graph, we try to infer the law of the curve and then reduce it to the form y = mx + c. 

5.3Laws Reducible to the Linear Law

 

We give below some of the laws in common use, indicating the way these can be reduced to the linear form by suitable substitutions:

	When the law is y = mxn + c

Taking xn = X and y = Y, the above law becomes Y = mX + c

	When the law is y = axn.

Taking logarithms of both sides, it becomes log10y = log10a + n log10x

Putting log10x = X and log10y = Y, it reduces to the form

Y = nX + c, where c = log10a.

	When the law is y = axn + b log x.

Writing it as [image: image] and taking xn/log x = X and y/log x = Y, the given law becomes, Y = aX + b.

	When the law is y = aebx.

Taking logarithms, it becomes log10 y = (b log10 e)x + log10a.

Putting x = X and log10 y = Y, it takes the form Y = mX + c

where m = b log10e and c = log10a.

	When the law is xy = ax + by.

Dividing by x, we have [image: image].

Putting y/x = X and y = Y, it reduces to the form Y = bX + a.



EXAMPLE 5.1

R is the resistance to motion of a train at speed V; find a law of the type R = a + bV2 connecting R and V, using the following data:

[image: image]

Solution:

Given law is R = a + bV2(i)

Taking V2 = x and R = y,

(i) becomes, y = a + bx (ii)

which is a linear law.

Table for the values of x and y is as follows:

[image: image]

Plot these points. Draw the straight line of best fit through these points (Figure 5.1).

[image: image]

Figure 5.1

Slope of this line (= b)

[image: image]

Since L(900, 15) lies on (ii),

∴15 = a + 0.0085 × 900,

where a = 15  7.65 = 7.35 nearly.

EXAMPLE 5.2

The following values of x and y are supposed to follow the law y = ax2 + b log10x. Find graphically the most probable values of the constants a and b.

[image: image]

Solution:

[image: image]

Putting x2/log10 x = X and y/ log10x = Y,

(i) becomesY = aX + b(ii)

This is a linear law.

Table for the values of X and Y is as follows:

[image: image]

Plot these points and draw the straight line of best fit through these points (Figure 5.2).

[image: image]

Figure 5.2

[image: image]

Since P3 lies on (ii), therefore,

52.50 = 0.99 × 32.49 + b

where  b = 20.2

Hence (i) becomes y = (0.99) x2 + (20.2) log10x.

EXAMPLE 5.3

The values of x and y obtained in an experiment are as follows:

[image: image]

The probable law is y = aebx. Test graphically the accuracy of this law and if the law holds good, find the best values of the constants.

Solution:

Given law is y = aebx(i)

Taking logarithms to base 10, we have

log10y = log10a + (b log10e) x

Putting x = X and log10y = Y, it becomes

y = (b log10e) X + log10a(ii)

Table for the values of X and Y is as under:

[image: image]

Scale:1 small division along x-axis = 0.1

10 small divisions along y-axis = 0.1.

Plot these points and draw the line of best fit. As these points are lying almost along a straight line, the given law is nearly accurate (Figure 5.3).

[image: image]

Since the point L (4, 1.71) lies on (ii), therefore,

1.71 = 0.12 × 4 + log10 a where a = 17 nearly.

Hence the curve of best fit is y = 17 e0.276 x.

[image: image]

Figure 5.3

Exercises 5.1

 

	If p is the pull required to lift the weight by means of a pulley block, find a linear law of the form p = a + bw, connecting p and w, using the following data:
[image: image]

Compute p, when w = 150 lb.


	Convert the following equations to their linear forms:
(i) y = ax + bx2(ii) y = b/[x(x  a)].


	The resistance R of a carbon filament lamp was measured at various values of the voltage V and the following observations were made:
[image: image]

Assuming a law of the form [image: image] find by graphical method the best values of a and b.


	Verify if the values of x and y, related as shown in the following table, obey the law [image: image] If so, find graphically the values of a and b.
[image: image]


	The following table gives the pressure p and the volume v at various instants during the expansion of steam in a cylinder. Show that the equation of the expansion is of the form pvn = c and find the values of n and c approximately.
[image: image]


	The following values of T and l follow the law T = aln. Test if this is so and find the best values of a and n.
[image: image]

Fit the curve y = aebx to the following data:

[image: image]

The following are the results of an experiment on friction of bearings. The speed being kept constant, corresponding values of the coefficient of friction and the temperature are shown in the table:

[image: image]

If μ and t are given by the law μ = aebt, find the values of a and b by plotting the graph for μ and t.




5.4Principle of Least Squares

 

The graphical method has the obvious drawback of being unable to give a unique curve of fit. The principle of least squares, however, provides an elegant procedure of fitting a unique curve to a given data.

Let the curve y = a + bx + cx2 + … + kxm

be fitted to the set of data points (x1, y1), (x2, y2),…, (xn, yn).

[image: image]

Figure 5.4

Now we have to determine the constants a, b, c,... k such that they represents the curve of best fit. In the case of n = m, when substituting the values (xi, yi) in (1), we get n equations from which a unique set of n constants can be found. But when n > m, we obtain n equations which are more than the m constants and hence cannot be solved for these constants. So we try to determine the values of a, b, c, … k which satisfy all the equations as nearly as possible and thus may give the best fit. In such cases, we apply the principle of least squares.

At x = xi, the observed (experimental) value of the ordinate is yi and the corresponding value on the fitting curve (1) is a + bxi + cxi2 + … + kxim ( = i, say) which is the expected (or calculated) value (Figure 5.4). The difference of the observed and the expected values, i.e., yi  i( = ei) is called the error (or residual) at x = xi. Clearly some of the errors e1, e2,…, en will be positive and others negative. Thus to give equal weightage to each error, we square each of these and form their sum, i.e., E = e12 + e22 + … + en2.

The curve of best fit is that for which es are as small as possible, i.e., the sum of the squares of the errors is a minimum. This is known as the principle of least squares and was suggested by a French mathematician Adrien Marie Legendre in 1806.




	[image: image]
	
	Obs. The principle of least squares does not help us to determine the form of the appropriate curve which can fit a given data. It only determines the best possible values of the constants in the equation when the form of the curve is known before hand. The selection of the curve is a matter of experience and practical considerations.




5.5Method of Least Squares

 

For clarity, suppose it is required to fit the curve y = a + bx + cx2 to a given set of observations (x1, y1), (x2, y2), …, (x5, y5). For any xi, the observed value is yi and the expected value is i = a + bxi + cxi2 so that the error ei = yi  i.

∴ The sum of the squares of these errors is

[image: image]

For E to be minimum, we have

[image: image]

Equation (1) simplifies to

[image: image]

Equation (2) becomes

[image: image]

Similarly (3) simplifies to

[image: image]

The equations (4), (5) and (6) are known as normal equations and can be solved as simultaneous equations in a, b, c. The values of these constants when substituted in (1) give the desired curve of best fit.




	[image: image]
	
	Obs. On calculating [image: image] and substituting the values of a, b, c just obtained, we will observe that each is positive, i.e,. E is a minimum.




Working procedure

(a) To fit the straight line y = a + bx

 (i) Substitute the observed set of n values in this equation.

 (ii) Form normal equations for each constant, i.e., Σy = na + bΣx, Σxy = aΣx + bΣx2.

[The normal equation for the unknown a is obtained by multiplying the equations by the coefficient of a and adding. The normal equation for b is obtained by multiplying the equations by the coefficient of b (i.e. x) and adding.]

(iii) Solve these normal equations as simultaneous equations for a and b.

 (iv) Substitute the values of a and b in y = a + bx, which is the required line of best fit.

(b) To fit the parabola: y = a + bx + cx2

(i) Form the normal equations Σy = na + bΣx + cΣx2

Σxy = aΣx + bΣx2 + cΣx3 and Σx2y = aΣx2 + bΣx3 + cΣx4

 [The normal equation for c has been obtained by multiplying the equations by the coefficient of c (i.e., x2) and adding.]

 (ii) Solve these as simultaneous equations for a, b, c.

 (iii) Substitute the values of a, b, c in y = a + bx + cx2, which is the required parabola of best fit.

(c) In general, the curve y = a + bx + cx2 + … + kxm−1 can be fitted to a given data by writing m normal equations.

EXAMPLE 5.4

If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form P = mW + c connecting P and W, using the following data:

P = 12152125

W = 5070100120

where P and W are taken in kg-wt. Compute P when W = 150 kg.

Solution:

The corresponding normal equations are

[image: image]

The values of ΣW etc. are calculated by means of the following table:

[image: image]

∴ The equations (i) become 73 = 4c + 340m and 6750 = 340c + 31800m

i.e., 2c + 170m = 365(ii)

and 34c + 3180m = 675 (iii)

Multiplying (ii) by 17 and subtracting from (iii), we get m = 0.1879

∴ from (ii),c = 2.2785

Hence the line of best fit is P = 2.2759 + 0.1879 W

When W = 150 kg, P = 2.2785 + 0.1879 × 150 = 30.4635 kg.

EXAMPLE 5.5

Fit a straight line to the following data:

[image: image]

Solution:

Let the straight line be y = ax + b.

Then the normal equations are Σy = aΣx + 9b

Σxy = aΣx2 + bΣx (i)

The values of Σx, Σy etc. are calculated below:

[image: image]

∴ The equations (i) become 36 = 72a + 9b and 282 = 588a + 72b

i.e.,  8a + b = 4 (ii)

 98a + 12b = 47(iii)

Multiplying (ii) by 12 and subtracting from (iii), we get a =  0.5.

From (ii), b = 8.

Hence the required line of best fit is y =  0.5x + 8.

EXAMPLE 5.6

Fit a second degree parabola to the following data:

[image: image]

Solution:

Let u = x  2 and v = y so that the parabola of fit y = a + bx + cx2 becomes

v = A + Bu + Cu2

The normal equations are

[image: image]

Solving these as simultaneous equations, we get

 A = 1.48, B = 1.13, C = 0.55

∴ (i) becomes;v = 1.48 +1.13u + 0.55u2

 y = 1.48 + 1.13(x − 2) + 0.55(x − 2)2

Hencey = 1.42 − 1.07x +0.55x2




	[image: image]
	
	Obs. For the sake of convenience and ease in calculations, it is sometimes advisable to change the origin and scale with the substitutions X = (x  A)/h and Y = (y  B)/h, where A and B are the assumed means (or middle values) of x and y series, respectively and h is the width of the interval.




EXAMPLE 5.7

Fit a second degree parabola to the following data:

x = 1.01.52.02.53.03.54.0

y = 1.11.31.62.02.73.44.1 

Solution:

We shift the origin to (2.5, 0) and take 0.5 as the new unit. This amounts to changing the variable x to X, by the relation X = 2x  5.

Let the parabola of fit be y = a + bX + cX2.

The values of ΣX etc. are calculated as below:

[image: image]

The normal equations are

7a + 28c = 16.2, 28b = 14.3, 28a + 196c = 69.9

Solving these as simultaneous equations, we get

a = 2.07, b = 0.511, c = 0.061.

∴y = 2.07 + 0.511X + 0.061 X2

Replacing X by 2x  5 in the above equation, we get

y = 2.07 + 0.511 (2x  5) + 0.061 (2x  5)2

which simplifies to y = 1.04  0.198x + 0.244x2

This is the required parabola of best fit.

EXAMPLE 5.8

Fit a second degree parabola to the following data:

[image: image]

Solution:

Taking u = x  1993 and v = y  357, the equation y = a + bx + cx2 becomes

[image: image]

The normal equations are

[image: image]

[image: image]

Exercises 5.2

 

	By the method of least squares, find the straight line that best fits the following data:
[image: image]


	In some determinations of the value v of carbon dioxide dissolved in a given volume of water at different temperatures θ, the following pairs of values were obtained:
[image: image]

Obtain by the method of least squares, a relation of the form v = a + bθ which best fits to these observations.


	A simply supported beam carries a concentrated load P(lb) at its mid-point. Corresponding to various values of P, the maximum deflection Y (in) is measured. The data are given below:
[image: image]

Find a law of the form Y = a + bP.


	The result of measurement of electric resistance R of a copper bar at various temperatures t C are listed below:
[image: image]

Find a relation R = a + bt when a and b are constants to be determined by you.


	A chemical company, wishing to study the effect of extraction time (t) on the efficiency of an extraction operation (e) obtained the data shown in the following table:
[image: image]

Fit a straight line to the given data by the method of least squares.


	Find the parabola of the form y = a + bx + cx2 which fits most closely with the observations:
[image: image]


	By the method of least squares, fit a parabola of the form y = a + bx + cx2, to the following data:
[image: image]

Fit a parabola y = a + bx + cx2 to the following data:

[image: image]


	The velocity V of a liquid is known to vary with temperature T according to a quadratic law V = a + b T + CT2. Find the best values of a, b, c for the following table:
[image: image]


	The following table gives the results of the measurements of train resistance, V is the velocity in miles per hour, R is the resistance in pounds per ton:
[image: image]

If R is related to V by the relation R = a + bV + cV2, find a, b and c.




5.6Fitting A Curve of the Type

 

(1) y = a + bx2(2) y = ax + bx2

(3) y = ax + b/x (4) ax2 + b/x.

(1) y = a + bx2

Putting x2 = X, we have y = a + bX (i)

which is a linear equation. Its normal equations are

Σy = na + bΣX; ΣyX = aΣX + bΣX2

Solving these, we get a and b. Substituting these values of a, b and replacing X by x2 in (i), we obtain the desired equation of best fit.

(2) y = ax + bx2

Rewriting this equation as y/x = a + bx and putting y/x = Y, we have

Y = a + bx(i)

Its normal equations are

ΣY = na + bΣx; ΣYx = aΣx + bΣx2

Solving these we get a and b. Replacing Y by y/x in (i), we obtain the desired equation of best fit.

(3) y = ax + b/x

Rewriting this equation as xy = ax2 + b

and putting x2 = X and xy = Y, we have Y = b + aX(i)

Its normal equations are

ΣY = nb + ΣX; ΣXY = bΣX + aΣX2

Solving these equations, we get a and b. Replacing X by x2 and Y by xy in (i), we obtain the desired equation of best fit.

(4) y = ax2 + b/x

Rewriting this equation as xy = ax3 + b and putting x3 = X and xy = Y, we have

Y = b + aX(i)

Its normal equations are

ΣY = bn + aΣX; ΣXY = bΣX + X2

Solving these equations, we get a and b. Replacing X by x3 and Y by xy, we obtain the desired equation of best fit.

EXAMPLE 5.9

Find the least squares fit of the form y = a0 + a1x2 to the following data

[image: image]

Solution:

Putting x2 = X, we have y = a0 + a1X(i)

∴ The normal equations are

Σy = 4a + a1ΣX; ΣXy = a0ΣX + a1ΣX2.

The values of ΣX, ΣX2 etc. are calculated below:

[image: image]

∴ The normal equations become 10 = 400 + 6a1; 5 = 600 + 18a1

Solving these equations we get, a0 = 4.167, a1 =  1.111.

Hence the curve of best fit is

y = 4.167  1.111X i.e., y = 4.167  1.111x2.

EXAMPLE 5.10 

Using the method of least squares, fit the curve y = ax2 + b/x to the following data:

[image: image]

Solution:

Rewriting the given equation as xy = ax3 + b and putting x3 = X and xy = Y, we get

Y = aX + b(i)

∴ The normal equations are

ΣY = aΣX + 4b; ΣXY = aΣX2 + bΣX

The values of ΣX, ΣY etc. are calculated below:

[image: image]

∴ The normal equations become

42.75 = 100a + 4b

2289.57 = 4890a + 100b

Solving these equations, we get a = 0.51, b =  2.06

Hence the curve of best-fit is Y = 0.51X ÷ 2.06

[image: image]

5.7Fitting of Other Curves

 

(1) y = axb

Taking logarithms, log10 y = log10 a + blog10x

i.e., Y = A + bX(i)

where X = log10 x, Y = log10 y and A = log10 a.

∴ The normal equations for (i) are

ΣY = nA + bΣX, ΣXY = AΣX + bΣX2

from which A and b can be determined. Then a can be calculated from A = log10 a.

(2) y = aebx  (Exponential curve)

Taking logarithms, log10 y = log10 a + bx log10 e

i.e.,Y = A + Bx where Y = log10 y, A = log10 a and B = b log10 e

Here the normal equations are ΣY = nA + BΣx, ΣxY = AΣx + BΣx2 from which A, B can be found and consequently a, b can be calculated.

(3) xya = b (or pv = k) (Gas equation)

Taking logarithms, log10 x + a log10 y = log10 b

[image: image]

This is of the form Y = A + BX

[image: image]

Here also the problem reduces to finding a straight line of best fit through the given data.

EXAMPLE 5.11

An experiment gave the following values:

[image: image]

It is known that v and t are connected by the relation v = atb. Find the best possible values of a and b.

Solution:

We have log10 v = log10 a + b log10 t

or Y = A + bX where X = log10t, Y = log10 v, A = log10 a.

∴ The normal equations are

ΣY = 4A + bΣX (i)

ΣXY = AΣX + bΣX2(ii)

Now ΣX etc. are calculated as in the following table:

[image: image]

∴ Equations (i) and (ii) become

4A + 4.46b = 10.623; 4.46A + 6.075b = 11.658

Solving these, A = 2.845, b =  0.1697

∴ a = antilog A = antilog 2.845 = 699.8.

EXAMPLE 5.12

Predict the mean radiation dose at an altitude of 3000 feet by fitting an exponential curve to the given data:

[image: image]

Solution:

Let y = abx be the exponential curve.

Then log10y = log10a + x log10b

or Y = A + Bx where Y = log10 y, A = log10 a, B = log10 b

∴ The normal equations are

ΣY = 7A + B Σx(i)

Σx Y = AΣx + B Σx2(ii)

Now Σx etc., are calculated as follows:

[image: image]

∴ Equations (i) and (ii) become

 11.295579 = 7A + 16980B

29502.305 = 16980A + 72743400B

Solving these equations, we get A = 1.4521015, B = 0.0000666289

∴ log10 y = Y = 1.4521015 + 0.0000666289 x

Hence y(at x = 3000) = 44.874 i.e., 44.9 approx.

EXAMPLE 5.13

Fit a curve of the form y = aebx to the following data:

[image: image]

Solution:

Taking logarithms of both sides, the given equation becomes

 log10 y = log10 a + bx log10 e

i.e., Y = A + bx where Y = log10 y, A = log10 a, B = b log10 e

∴ The normal equations are

ΣY = 4A + BΣx; ΣxY = AΣx + BΣx2.

Now Σx, ΣY etc. are calculated as in the table below:

[image: image]

Substituting these values in the normal equations, we get

4A + 6B = 1.848; 6A + 14B = 4.2505.

Solving these equations, A = 0.0185, B = 0.2956

∴  = antilog A = 1.0186, b = B/log10 e = 0.6806

Hence the required curve of best fit is y = 1.0186 e0.6806x.

EXAMPLE 5.14

The pressure and volume of a gas are related by the equation pVγ = k,  and k being constants. Fit this equation to the following set of observations:

[image: image]

Solution:

[image: image]

∴ The normal equations are

ΣY = 6A + BΣX(i)

ΣXY = AΣX + BΣX2 (ii)

Now ΣX etc. are calculated as follows:

[image: image]

∴ Equations (i) and (ii) become

6A + 1.0511B =  0.7442; 1.0511A + 0.5981B =  0.4214

Solving these, we get A = 0.0132, B =  0.7836.

∴ =  1/B = 1.276

and k = antilog (A) = antilog (0.0168) = 1.039.

Hence the equation of best fit is pV1.276 = 1.039.

5.8Most Plausible Values of Unknowns

 

Consider m linear equations in n unknowns:

[image: image]

When m = n, we can find a set of values of the unknowns uniquely.

When m > n, i.e., the number of equations is greater than the number of unknowns, it may not be possible to find these values uniquely. Then we find those values of x1, x2,…xn which satisfy (1) as nearly as possible. Applying the principle of least squares, these values

can be obtained by minimizing [image: image] using the conditions of minima, i.e.,

[image: image]

we get n equations. Solving these equations, we get most plausible values of x1, x2,… xn.

EXAMPLE 5.15

Find the most plausible values of x, y, and z from the equations x  3y  3z =  14, 4x + y + 4z = 21, 3x + 2y  5z = 5 and x  y + 2z = 3, by forming the normal equations.

Solution:

Let E = (x  3y  3z + 14)2 + (4x + y + 4z  21)2

+ (3x + 2y  5z  5)2 + (x  y + 2z  3)2

The most plausible values of x, y, z will be those which make E minimum. These will be given by

[image: image]

Solving (i), (ii), and (iii) we get the desired values x = 2.47, y = 3.55, z = 1.92.

Exercises 5.3

 

	If V (km/hr) and R(kg/ton) are related by a relation of the type R = a + bV2, find by the method of least squares a and b with the help of the following table:
[image: image]


	Using the method of least squares fit the curve y = ax + bx2 to following observations:
[image: image]


	
Fit the curve y = ax + b/x to the following data:
[image: image]


	stimate y at x = 2.25 by fitting the indifference curve of the form xy = Ax + B to the following data:
[image: image]


	Fit a least square geometric curve y = axb to the following data:
[image: image]


	Predict y at x = 3.75, by fitting a power curve y = axb to the given data:
[image: image]


	Obtain a relation of the form y = kxm for the following data by the method of least squares:
[image: image]


	Fit the exponential curve y = aebx to the following data:
[image: image]


	Fit the curve of the form y = aebx to the following data:
[image: image]


	Growth of bacteria (N) in a culture after t hrs. is given in the following table:
[image: image]

Fit a curve of the form N = abt and estimate N when t = 7.

	The voltage v across a capacitor at time t seconds is given by the following table:
[image: image]

Use the method of least squares to fit a curve of the form v = aekt to this data.

	Obtain the least square fit of the form f(t) = ae3t + be2t for the data:
[image: image]


	Find the most plausible values of x and y from the equa-tions x + 3y = 7.03, x + y = 3.01, 2x  y = 0.03, 3x + y = 4.97, by forming the normal equations.

	Obtain the most plausible values of x, y and z from the equations:
x + 2y + z = 1,  x + y + 2z = 3, 2x + y + z = 4, 4x + 2y  5z =  7




5.9Method of Group Averages

 

Let the straight line y = a + bx(1)

fit the set of n observations (x1, y1), (x2, y2), …, (xn, yn) quite closely. (Figure 5.5).

[image: image]

Figure 5.5

When x = x1, the observed (or experimental) value of y = y1 = L1P1 and from (1), y = a + bx1 = L1M1, which is known as the expected (or calculated) value of y at L1.

Then e1 = observed value at L1 expected value at L1

= y1  (a + bx1) = M1P1,

which is called the error (or residual) at x1. Similarly the errors for the other observations are

e2 = y2  (a + bx2) = M2P2

…………………..

en = yn  (a + bxn) = MnPn

Some of these errors may be positive and others negative.

The method of group averages is based on the assumption that the sum of the residuals is zero. To find the constants a and b in (1), we require two equations. As such we divide the data into two groups: the first containing k observations (x1, y1), (x2, y2)… (xk, yk); and the second group having the remaining n  k observations (xk+1, yk+1), (xk+2, yk+2),…,(xn, yn).

Assuming that the sum of the errors in each group is zero, we get

{y1  (a + bx1)} + {y2  (a + bx2)} + … + {yk  (a + bxk)} = 0

{yk+1  (a + bxk+1)} + {yk+2  (a + bxk+2)} + … + {yn  (a + bxn)} = 0

On simplification, we obtain

[image: image]

In (2), [image: image] are simply the average values of xs and ys of the first group. Hence the equations (2) and (3) are obtained from (1) by replacing x and y by their respective averages of the two groups. Solving (2) and (3), we get a and b.




	[image: image]
	
	Obs. The main drawback of this method is that a different grouping of the observations will give different values of a and b. In practice, we divide the data in such a way that each group contains almost an equal number of observations.




EXAMPLE 5.16

The latent heat of vaporization of steam r, is given in the following table at different temperatures t:

[image: image]

For this range of temperature, a relation of the form r = a + bt is known to fit the data. Find the values of a and b by the method of group averages.

Solution:

Let us divide the data into two groups each containing four readings. Then we hav

[image: image]

Substituting the averages of ts and rs of the two groups in the given relation, we get

[image: image]

Solving (i) and (ii), we obtain

a = 1090.26, b =  0.534.

EXAMPLE 5.17

The observations in the following table fit a law of the form y = axn. Estimate a and n by the method of group averages

[image: image]

Solution:

We havey = axn

Taking logarithms, log10 y = log10 a + n log10 x

i.e.  Y = A + nX(i)

where  X = log10 x, Y = log10 y, A = log10 a

Divide the data into two groups each containing four pairs of values, so tha

[image: image]

Substituting the averages of Xs and Ys of the two groups in (i), we get

[image: image]

(iii)  (ii) gives 0.1526 = 0.455 n i.e., n = 0.3354

From (ii), A =  0.3142 i.e., log10 a =  0.3142

where a = antilog (  0.3142) = 0.4851

5.10Laws Containing Three Constants

 

We have so far applied the above method to fit the data to laws involving two constants only. But at times we come across laws of the form

y = a + bx + cx2, y = a + bxcandy = a + becx

each of which contains three constants. To fit such laws to a set of observations, we devise the following procedures to reduce these to laws previously discussed.

(1) Equation y = a + bx + cx2

Let (x1, y1) be a point on the curve satisfying the given data so that

[image: image]

Putting x + x1 = X and (y  y1)/(x  x1) = Y, it takes the linear form Y = b + cX.

Now b and c can be found by the graphical method or the method of averages.

(2) Equation y = a + bxc

It can be rewritten as y  a = bxc(1)

To find a, let (x1, y1), (x2, y2), (x3, y3) be three particular points on the curve (1) such that x1, x2, x3 are in geometric progression

[image: image]

which gives a. Now (1) reduces to a law containing two constants b and c only.

Taking logarithms, (1) becomes

 log10(y  a) = log10 b + c log10 x

or  Y = B + cX (3)

where X = log10 x, Y = log10 (y  a), B = log10 b.

Hence we can find b and c as before from (3).

(3) Equation y = a + becx

It can be written as y  a = becx(1)

To find a, let (x1, y1), (x2, y2), (x3, y3) be three particular points on the curve (1) such that x1, x2, x3 are in arithmetic progression

i.e., x1 + x3 = 2x2(2)

Then 

or 

which gives a. Now (1) reduces to a law containing two constants b and c only.

Taking logarithms, (1) becomes

log10 (y  a) = log10 b + cx log10 e

or Y = B + Cx(3)

where Y = log10 (y  a), B = log10 b, C = c log10 e.

Hence we can find b and c as before from (3).

EXAMPLE 5.18

The corresponding values of x and y are given by the following table:

[image: image]

Fit a parabola of the form y = a + bx + cx2, by the method of group averages.

Solution:

Taking x = 84, y = 283 as a particular point on y = a + bx + cx2, we get

[image: image]

Now we have the following table of values:

[image: image]

Substituting the averages of X and Y in (ii), we get

[image: image]

(iv)  (iii) gives c = 0.0014

and (iii) gives b = 2.0967 i.e., 2.1 nearly

From (i), we get a = 96.9988 i.e., 97 nearly.

Hence the parabola of fit is y = 97 + 2.1x + 0.0014x2

EXAMPLE 5.19

The train resistance R (lbs/ton) is measured for the following values of its velocity V (km/hr):V:

[image: image]

If R is related to V by the formula R = a + bVn, find a, b, and n.

Solution:

To find a, we take the following three values of v which are in G.P.:

v1 = 20, v2 = 40, v3 = 80

Then R1 = 5, R2 = 9, R3 = 25

[image: image]

Thus R  3.67 = bVn or log10 (R  3.67) = log10 b + n log10 V

Y = k + nX(i)

where X = log10 V, Y = log10 (R  3.67), k = log10 b.

Now we have the following table of values:

[image: image]

Substituting the averages of Xs and Ys in (1), we obtain

[image: image]

Solving (ii) and (iii), we get n = 2.04, k =  2.56 approx.

∴ b = antilog k = antilog ( 2.56) = 0.0028.

Exercises 5.4

 


	Fit a straight line of the form y = a + bx to the fol-lowing data by the method of group averages:
[image: image]


	Apply the method of group averages to work out Example 4.13.

	The weights of a calf taken at weekly intervals are given below:
[image: image]

Find a straight line of best fit.


	Work out Example 5.1, by the method of group averages.

	The head of water H (ft) and the quantity of water Q(ft3) flowing per second are related by the law Q = CHn. Find the best values of C and n by the method of group averages for the following data:
[image: image]


	Using the method of averages, fit a parabola y = ax2 + bx + c to the following data:
[image: image]


	While testing a centrifugal pump, the following data is obtained. It is assumed to fit the equation y = a + bx + cx2, where x is the discharge in liter/sec and y, head in meter of water. Find the values of the constants a, b, c by the method of group averages.
[image: image]


	By the method of averages, fit a curve of the form y = aebx to the following data:
[image: image]


	In an experiment, the voltage v is observed for the following values of the current i:
[image: image]

If v and i are connected by the relation v = a + bik, find a, b, and k.


	The variables s and t are connected by the relation s = a + bent and their corresponding values are given in the following table:
[image: image]

Find the best possible values of a, b, and n.



5.11Method of Moments

 

Let (x1, y1), (x2, y2), …, (xn, yn) be the set of n observations such that

x2  x1 = x3  x2 =… = xn  xn1 = h (say)

We define the moments of the observed values of y as follows:

m1, the 1st moment = hΣy

m2, the 2nd moment = hΣxy

m3, the third moment = hΣx2y and so on.

Let the curve fitting the given data be y = f(x). Then the moments of the calculated values of y are

μ1, the 1st moment = ∫ ydx

μ2, the 2nd moment = ∫ xy dx

μ3, the 3rd moment = ∫ x2y dx and so on.

This method is based on the assumption that the moments of the observed values of v are respectively equal to the moments of the calculated values of y, i.e., m1 = μ1, m2 = μ2, m3 = μ3 etc. These equations (known as observation equations) are used to determine the constants in f(x).

ms are calculated from the tabulated values of x and y while μs are computed as follows:

In Figure 5.6, y1 the ordinate of P1(x = x1), can be taken as the value of y at the mid-point of the interval (x1 h/2, x1 + h/2). Similarly yn, the ordinate of Pn(x = xn), can be taken as the value of y at the mid-point of the interval (xn  h/2, xn + h/2). If A and B be the points such that

[image: image]

[image: image]

Figure 5.6

EXAMPLE 5.20

Fit a straight line y = a + bx to the following data by the method of moments:x:1234y: 16192326

[image: image]

Solution:

Since only two constants a and b are to be found, it is sufficient to calculate the first two moments in each case. Here h = 1.

m1 = hΣy = 1(16 + 19 + 23 + 26) = 84

m2 = hΣxy = 1(1 × 16 + 2 × 19 + 3 × 22 + 4 × 26) = 227.

To compute the moments of calculated values of y = a + bx, the limits of integration will be 1  h/2 and 4 + h/2, i.e., 0.5 and 4.5.

[image: image]

Thus, the observation equations mr = r (r = 1, 2) are

[image: image]

Solving these, a = 13.02 and b = 3.19.

Hence the required equation is y = 13.02 + 3.19x.

EXAMPLE 5.21

Given the following data:

[image: image]

find the parabola of best fit by the method of moments.

Solution:

Let the parabola of best fit be y = a + bx + cx2(i)

Since three constants are to be found, we calculate the first three moments in each case. Here h = 1.

m1 = hΣy = 1(1 + 5 + 10 + 22 + 38) = 76

m2 = hΣxy = 1(0 + 5 + 20 + 66 + 152) = 243

m3 = hΣx2y = 1(0 + 5 + 40 + 198 + 608) = 851

For computing the moments of calculated values of (i), the limits of integration will be 0  h/2 and 4 + h/2, i.e.,  0.5 and 4.5.

[image: image]

Thus the observation equations mr = μr (r = 1, 2, 3) are

5a + 10b + 30.4c = 76

 10a + 30.4b + 102.5c = 243

30.4a + 102.5b + 369.1c = 851

Solving these equations, we get a = 0.4, b = 3.15, c = 1.4.

Hence the parabola of best fit is y = 0.4 + 3.15x + 1.4x2.

Exercises 5.5


	Use the method of moments to fit the straight line y = a + bx to the data:
[image: image]


	Fit a straight line to the following data, using the method of mo-ments:
[image: image]


	Fit a parabola of the form y = a + bx + cx2 to the data:
[image: image]

by the method of moments.


	By using the method of moments, fit a parabola to the following data:
[image: image]




5.12Objective Type of Questions

 

Exercises 5.6

 

Select the correct answer or fill up the blanks in the following questions:


	The method of group averages is based on the assumption that the sum of the residuals is…

	y = axb + c in linear form is…..

	To fit the straight line y = mx + c to n observations, the normal equations are
(i) Σy = nΣx + Σcm, Σxy = c Σx2 + cΣn.

(ii) Σy = mΣx + nc, Σxy = mΣx2 + cΣx.

(iii) Σy = cΣx + mΣn, Σxy = cΣx2 + mΣx.


	To fit y = abx by least square method, normal equations are…

	The observation equations for fitting a straight line by method of moments are…

	The principle of least squares states that…

	y = ax2 + b log10 x reduced to linear law takes the form….

	Given [image: image] then the straight line of best fit is….

	The method of moments is based on the assumption that….

	In y = a + bx, Σx = 50, Σy = 80, Σxy = 1030, Σx2 = 750, and n = 10, then a =…, b =…..

	The gas equation pvr = k can be reduced to y = a + bx where a = … . b =… .

	[image: image] in linear form is…

	If y = kemx, then the first normal equation is Σlog10 y =…
(a) kn + mΣx

(b) kΣx + mΣx2

(c) n log10 k + m log10eΣx

(d) kΣlog10y + mΣx.


	If y = a + bx + cx2 and
[image: image]

then the first normal equation is
(a) 15 = 5a + 10b + 29c

(b) 15 = 5a + 10b + 31c

(c) 12.9 = 5a + 10b + 30c

(d) 34 = 5a + 10b + 27c.


	If y = 2x + 5 is the best fit for 8 pairs of values of (x, y) by the method of least squares, and Σy = 120, then Σx =…
(a) 35(b) 40

(c) 45 (d) 30.


	If y = a + bx2 and n is the number of observations, then the first normal equations is Σy =…
(a) na + bΣx2 

(b) na Σx + bΣx2

(c) na + bΣx3 

(d) na Σy + bΣyx2.
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6.1Introduction

 

The calculus of finite differences deals with the changes that take place in the value of the function (dependent variable), due to finite changes in the independent variable. Through this, we also study the relations that exist between the values assumed by the function, whenever the independent variable changes by finite jumps whether equal or unequal. On the other hand, in infinitesimal calculus, we study those changes of the function which occur when the independent variable changes continuously in a given interval. In this chapter, we shall study the variations in the function when the independent variable changes by equal intervals.

6.2Finite Differences

 

Suppose that the function y = f(x) is tabulated for the equally spaced values x = x0, x0 + h, x0 + 2h,…,x0 + nh giving y = y0,y1,y2,¼,yn.To determine the values of f(x) or f ʹ(x) for some intermediate values of x, the following three types of differences are found useful:

Forward differences. The differences y1 − y0, y2 − y1,¼, yn − yn − 1when denoted by Δy0, Δy1,¼, Δyn − 1 respectively are called the first forward differences where Δ is the forward difference operator. Thus the first forward differences are Δyr = yr + 1 − yr.

Similarly these second forward differences are defined by Δ2yr = Δyr + 1 − Δyr.

In general, Δpyr = Δp−1yr+1 − Δp−1yr defines the pth forward differences. These differences are systematically set out in Table 6.1.

In a difference table, x is called the argument and y the function or the entry. y0, the first entry, is called the leading term and Δy0, Δ2y0,Δ3y0 etc. are called the leading differences.

Table 6.1Forward Difference Table

[image: image]




	[image: image]
	
	Obs. 1. Any higher order forward difference can be expressed in terms of the entries. 




We haveD2y0 = Dy1 − Dy0 = (y2 − y1) − (y1 − y0) = y2 − 2y1 + y0

 3y0 = 2y1 − 2y0 = (y3 − 2y2 + y1) − (y2 − 2y1 + y0)

 = y3 − 3y2 + 3y1 − y0

 4y0 = 3y1 − 3y0

 = (y4 − 3y3 + 3y2 − y1) − (y3 − 3y2 + 3y1 − y0)

 = y4 − 4y3 + 6y2 − 4y1 + y0

The coefficients occurring on the right-hand side being the binomial coefficients, we have in general,

ny0 = yn − nc1 yn− 1 + nc2 yn − 2 − ... + ( − 1)n y0.




	[image: image]
	
	Obs.2.The operator  obeys the distributive, commutative, and index laws




i.e., 	(i)	[f(x)±φ(x)] = f(x)± φ(x).

	(ii)	[cf(x)] = cf(x),c being a constant.

	(iii)	m n f(x) = m + n f(x), m and n being positive integers. In view of (i) and (ii),  is a linear operator.

But [f(x).φ(x)]≠f(x).φ (x).

Backward differences. The differences y1 − y0, y2 − y1,...,yn − yn − 1 when denoted by ∇y1, ∇y2,..., ∇yn respectively, are called the first backward differences where Δ

Table 6.2Backward Difference Table

[image: image]

is the backward difference operator. Similarly we define higher order backward differences. Thus we have ∇yr = yr − yr − 1, ∇2yr = ∇yr − ∇yr − 1, ∇3yr = ∇2yr − ∇2r − 1, etc.

These differences are exhibited in the Table 6.2.

Central differences. Sometimes it is convenient to employ another system of differences known as central differences. In this system, the central difference operator δ is defined by the relations:

y1 − y0 = δy1/2, y2 − y1 = δy3/2, ..., yn − yn − 1 = δyn − 1/2

Similarly, higher order central differences are defined as

δy3/2 − δy1/2 = δ2y1, δy5/2 − δy3/2 = δ2y2, ...,δ2y2 − δ2y1 = δ3y3/2 and so on.

These differences are shown in Table 6.3.

Table 6.3Central Difference Table

[image: image]

We see from this table that the central differences on the same horizontal line have the same suffix. Also the differences of odd order are known only for half values of the suffix and those of even order for only integral values of the suffix.

It is often required to find the mean of adjacent values in the same column of differences. We denote this mean by μ.

[image: image]




	[image: image]
	
	Obs. The reader should note that it is only the notation which changes and not the differences. e.g. 


	
	
	y1 − y0 = ∇y0 = y1 = δy1/2.




	
	
	Of all the formulae, those involving central differences are most useful in practice as the coefficients in such formulae decrease much more rapidly.





EXAMPLE 6.1

Evaluate (i)  tan− 1x(ii) (exlog 2x)(iii) (x2/cos 2x)(iv)( nCr + 1).

Solution:

[image: image]

[image: image]

[image: image]

EXAMPLE 6.2

[image: image]

Interval of differencing being unity

Solution

[image: image]

(ii) 2 cos2x = {cos2(x + h) − cos2x}

 = cos2(x + h) − cos2x

 = [cos2(x + 2h) − cos2(x + h)] − [cos2(x + h) − cos2x]

= − 2sin(2x + 3h)sinh + 2sin(2x + h)sinh

= − 2sinh[sin(2x + 3h) − sin(2x + h)]

= − 2sinh[2cos(2x + 2h)sinh] = − 4sin2hcos(2x + 2h).

(iii)(abcx) = a(bcx) = a[bc(x + 1) − bcx] = abcx(bc − 1)

 2(abcx) = [(abcx)] = a(bc − 1)(bcx)

 = a(bc − 1) (bc(x + 1) − bcx) = a[bc − 1]2bcx

(iv) ex = ex + 1 − ex = (e − 1)ex

  2ex = (ex) = [(e − 1)ex]

 = (e − 1)ex = (e − 1)(e − 1)ex = (e − 1)2ex

Similarly 3ex = (e − 1)3ex,4ex = (e − 1)4ex,

and nex = (e − 1)nex.

EXAMPLE 6.3

If y = a(3)x+ b(− 2)x and h = 1, prove that (2 +  − 6)y = 0.

Solution:

We have y = a(3)x + b( − 2)x

∴	y = [a(3)x + 1 + b( − 2)x + 1] − [a(3)x + b( − 2)x]

 = 2a(3)x − 3b( − 2)x

and	2y = [2a(3)x + 1 − 3b( − 2)x + 1] − [2a(3)x − 3b( − 2)x]

 = 4a(3)x + 9b( − 2)x

Hence(2 +  − 6)y = [4a(3)x + 9b( − 2)x] + (2a(3)x − 3b( − 2)x]

	− 6[a(3)x + b( − 2)x] = 0

EXAMPLE 6.4

Find the missing yx values from the first differences provided:

[image: image]

Solution:

Let the missing values be y1, y2, y3, y4, y5. Then we have

[image: image]

∴y1 − 0 = 1, y2 − y1 = 2, y3 − y2 = 4, y4 − y3 = 7, y5 − y4 = 11

i.e.,y1 = 1, y2 = 2 + y1 = 3, y3 = 4 + y2 = 7, y4 = 7 + y3 = 14,

y5 = 11 + y4 = 25.

6.3Differences of A Polynomial

 

The nth differences of a polynomial of the nth degree are constant and all higher order differences are zero.

Let the polynomial of the nth degree in x, be

f(x) = axn + bxn − 1 + cxn − 2 + ... + kx + l

∴f(x) = f(x + h) − f(x)

= a[(x + h)n − xn] + b[(x + h)n − 1 − xn − 1] + ... + kh

= anhxn − 1 + bʹxn − 2 + cʹxn − 3 + ... + kʹx + lʹ(1)

where bʹ, cʹ, ...,lʹ are the new constant co−efficients.

Thus the first differences of a polynomial of the nth degree is a polynomial of degree (n − 1).

Similarly

2f(x) = [f(x + h) − f(x)] = f(x + h) − f(x)

= anh[(x + h)n − 1 − xn − 1] + bʹ[(x + h)n − 2 − xn − 2] + ... + kʹh

= an(n − 1)h2xn − 2 + b″xn − 3 + c″xn − 4 + ... + k″,by(1)

∴The second differences represent a polynomial of degree (n − 2)

Continuing this process, for the nth differences we get a polynomial of degree zero i.e.

Δnf(x) = an(n − 1)(n − 2)...1.hn = an !hn(2)

which is a constant. Hence the (n + 1)th and higher differences of a polynomial of nth degree

will be zero.




	[image: image]
	
	Obs. The converse of this theorem is also true, i.e., if the nth differences of a function tabulated at equally spaced intervals are constant, the function is a polynomial of degree n. This fact is important in numeric alanalysis as it enables us to approximate a function by a polynomial of nth degree, if it s nth order differences become nearly constant.




EXAMPLE 6.5

Evaluate Δ10[(1 − ax)(1 − bx2)(1 − cx3)(1 − cx3)(1 − dx4)].

Solution:

Δ10[(1 − ax)(1 − bx2)(1 − cx3)(1 − dx4)] = Δ10[abcdx10 + ( )x9 + ( )x8 + ... + 1]

= abcd Δ10(x10)[∴ Δ10(xn) = 0 for n<10]

= abcd(10!)[by(2)above]

Exercises 6.1

 


	Write forward difference table if
[image: image]


	Construct the table of differences for the data below:
[image: image]

Evaluate Δ3f(2).


	If u0 = 3, u1 = 12,u2 = 81,u3 = 2000, u4 = 100, calculate Δ4u0.

	Show that Δ3yi = yi + 3 − 3yi + 2 + 3yi + 1 − yi.

	If y = x3 + x2 − 2x + 1,evaluate the values of y for x = 0,1, 2, 3, 4, 5 from the difference table. Find the value of y at x = 6 by extending the table and verify that same value is obtained by substitution.

	Form a table of differences for the function f(x) = x3 + 5x − 7 for x = − 1, 0, 1, 2, 3, 4, 5.
Continue the table to obtain f(6).


	Extend the following table to two more terms on either side by con-structing the difference table:
[image: image]


	Show that
[image: image]


	Evaluate (taking interval of differencing as unity)
[image: image]


	Evaluate:
[image: image]


	If f(x) = eax + b, show that its leading differences form a geometric progression

	Prove that
(i) y3 = y2 + y1 + 2y0 + 3y0(ii)Δ2y8 = y8 − 2y7 + y6

(iii) δ2y5 = y6 − 2y5 + y4.


	Evaluate:
(i)4 [(1 − x)(1 − 2x)(1 − 3x)(1 − 4x)],(h = 1).

(ii)10[(1 − x)(1 − 2x2)(1 − 3x3)(1 − 4x4)], if the interval of differencing is 2.




6.4Factorial Notation

 

A product of the form x(x − 1)(x − 2)...(x − r + 1) is denoted by [x]r and is called a factorial.

In particular [x] = x,[x]2 = x(x − 1),[x]3 = x(x − 1)(x − 2),etc.

In general [x]n = x(x − 1)(x − 2) .....(x − n + 1)

If the interval of differencing is h, then [image: image] which is called a factorial polynomial or function of degree n.

The factorial notation is of special utility in the theory of finite differences. It helps in finding the successive differences of a polynomial directly by simple rule of differentiation.

To show that n[x]n = n! and n + 1[x]n = 0

We have

[image: image]

Similarly 2[x]n = {nh[x]n − 1} = nh[x]n − 1

Replacing n by n − 1 in (i),

we get 2[x]n = nh.(n − 1)h[x]n − 2 = n(n − 1)h2[x]n − 2

Proceeding in this way, we obtain n − 1[x]n = n(n − 1)...2hn − 1x

∴n[x]n = n(n − 1)...2.hn − 1x

= n(n − 1)...2.1.hn − 1(x + h − x)

= n!hn(ii)

Also n + 1[x]n = n!hn − n!hn = 0

In particular, when h = 1,we have

[x]n = n[x]n − 1andn[x]n = n!(iii)

Similarly r[ax + b]n = n(n − 1)...(n − r + 1)arhr[ax + b]n − r

Thus we have an important result:

[x]n = n[x]n − 1; [ax + b]n = an[ax + b]n − 1 (iv)

i.e., the result of differencing [x]n is analogous to that of differentiating xn.




	[image: image]
	
	Obs.1. As it is easier to find x[x]n than r xn, xn must always be expressed as a factorial polynomial before finding x.


	
	
	Obs.2. Every polynomial of degree n can be expressed as a factorial polynomial of the same degree and vice versa.




EXAMPLE 6.6

Express y = 2x3 − 3x2 + 3x − 10 in factorial notation and hence show that 3y = 12.

Solution:

First method: Let y = A[x]3 + B[x]2 + C[x] + D.

Using the method of synthetic division (p.29), we divide by x, x − 1, x − 2, etc. successively. Then

[image: image]

Hencey = 2[x]3 + 3[x]2 + 2[x] − 10

∴y = 2 × 3[x]2 + 3 × 2[x] + 2

2y = 6 × 2[x] + 6

3y = 12, which shows that the third differences of y are constant, as they should be. 




	[image: image]
	
	Obs. The coefficient of the highest power of x remains unchanged while transforming a polynomial to factorial notation.




Second method (Direct method):

Lety = 2x3 − 3x2 + 3x − 10

 = 2x(x − 1)(x − 2) + Bx (x − 1) + Cx + D

Puttingx = 0, − 10 = D.

Putting x = 1, 2 − 3 + 3 − 10 = C + D

∴ C = − 8 − D = − 8 + 10 = 2

Putting x = 2, 16 − 12 + 6 − 10 = 2B + 2C + D

[image: image]

Hencey = 2x(x − 1)(x − 2) + 3x(x − 1) + 2x − 10

= 2[x]3 + 3[x]2 + 2[x] − 10

∴ y = 2×3[x]2 + 3 × 2[x] + 2,2y = 6 × 2[x] + 6, 3y = 12.

EXAMPLE 6.7

Express u = x4 − 12x3 + 24x2 − 30x + 9 and its successive differences in factorial notation. Hence show that 5u = 0.

Solution:

Let u = A[x]4 + B[x]3 + C[x]2 + D[x] + E.

Using the method of synthetic division, we divide by x, x − 1, x − 2, x − 3 successively.

Then

[image: image]

Henceu = [x]4 − 6[x]3 − 5[x]2 − 17[x] + 9

∴ u = 4[x]3 − 18[x]2 − 10[x] − 17

 2u = 12[x]2 − 36[x] − 10

 3u = 24[x] − 36

4u = 24and5u = 0.

EXAMPLE 6.8

If f(x) = (2x + 1)(2x + 3)(2x + 5)...(2x + 15), find the value of 4f(x)

Solution:

[image: image]

[image: image]

6.5Reciprocal Factorial Function

 

The function [image: image] is denote d by [x]n and is called a reciprocal factorial function.

If the interval of differencing is h, then

[image: image]

Which is called a reciprocal factorial function of order n

Differences of

[image: image]

Similarly 2[x]−n = ( − 1)2n(n + 1)h2[x] − (n + 2)

In general, x[x]−h = ( − 1)rn(n + 1)...(n + r + 1)hr[x]−(n + r)(ii)

In particular when h = 1,r[x] − n = ( − 1)rn(n + 1)...(n + r + 1)(x)−(n + r)

Similarly r[ax + b]−n = ( − 1)rn(n + 1) ... (n + r − 1)arhr[ax + b]−(n + r)(iii)

Thus we have an important result:

[image: image]

6.6Inverse Operator of Δ

 

The process of finding yx when yx is given is known as inverse finite difference operation.

i.e., If  yx = ux then yx =  − 1ux

The symbol  − 1 or1/ is called the inverse of the operator .

Thus we have two important results

[image: image]

i.e.,  − 1 is analogous to D − 1or integration in calculus.

EXAMPLE 6.9

Obtain the function whose first difference is 2x3 − 3x2 + 3x − 10.

Solution:

Let f(x) be the function whose first difference is given.

We first express Δf(x) as a factorial polynomial. Referring to Example 6.6, we have

[image: image]

EXAMPLE 6.10

If [image: image] evaluate Δ2y. Also find Δ−1y.

Solution:

[image: image]

[image: image]

6.7Effect of an Error on a Difference Table

 

Suppose there is an error ε in the entry y5 of a table. As higher differences are formed, this error spreads out and is considerably magnified. Let us see, how it effects the difference table.

The below table shows that:

(i)The error increases with the order of differences.

(ii)The coefficients of εs in any column are the binomial coefficients of (1 − ε)n. Thus the errors in the fourth difference column are ε, − 4ε, 6ε, − 4ε, ε.

(iii)The algebraic sum of the errors in any difference column is zero.

(iv)The maximum error in each column, occurs opposite to the entry containing the error, i.e., .y5.

The above facts enable us to detect errors in a difference table

[image: image]

EXAMPLE 6.11

One entry in the following table is incorrect and y is a cubic polynomial in x. Use the difference table to locate and correct the error.

[image: image]

Solution:

The difference table is as under:

[image: image]

y being a polynomial of the third degree, 3y must be constant, i.e., .the same. The sum of the third differences being 15, each entry under 3y must be 15/5, i.e., 3. Thus the four entries under 3y are in error which can be written as

3 + (  1), 3  3(  1), 3 + 3(  1),3  (  1)

Taking ε = − 1, we find that the entry corresponding to x = 3 is in error.

∴y + ε = 18

Thus the true value of y = 18 − ε = 18 − (− 1) = 19.

EXAMPLE 6.12

Assuming that the following values of y belong to a polynomial of degree 4, compute the next three values:

[image: image]

Solution:

We construct the difference table from the given data

[image: image]

Since the values of y belong to a polynomial of degree 4, the fourth differences must be constant. But 4y = 16.

∴ The other fourth order differences must also be 16. Thus,

4y1 = 16 = 3y2 − 3y1

i.e.,3y2 = 3y1 + 4y1 = 8 + 16 = 24

2y3 = 2y2 + 3y2 = 4 + 24 = 28

y4 = y3 + 2y3 = 2 + 28 = 30

andy5 = y4 + y4 = 1 + 30 = 31

Similarly starting with 4y2 = 16,

we get 3y3 = 40, 2y4 = 68, y5 = 98, y6 = 129.

Starting with 4y3 = 16,

we obtain 3y4 = 56, 2y5 = 124, y6 = 222, y7 = 351.

Exercises 6.2

 

	Express x3 − 2x2 + x − 1into factorial polynomial. Hence show that 4f(x) = 0.

	Express 3x4 − 4x3 + 6x2 + 2x + 1 as a factorial polynomial and find differences of all orders.

	Find the first and second differences of x4 − 6x3 + 11x2 − 5x + 8 with h = 1. Show that the fourth difference is constant.

	Obtain the function whose first difference is (i) 2x3 + 3x2 − 5x + 4. (ii) x4 − 5x3 + 3x + 4.

	Show that [x(x + 1)(x + 2)(x + 3)] = 4(x + 1)(x + 2)(x + 3).

	Find 4f(x)when f(x) = (2x + 1)(2x + 3)(2x + 5)...(2x + 19). 

	If [image: image] find Δ2y and Δ−1y.

	Givenlog100 = 2, log101 = 2.0043, log103 = 2.0128, log104 = 2.0170, find log 102.

	Find the first term of the series whose second and subsequent terms are 8, 3, 0, − 1,0.

	Write down the polynomial of lowest degree which satisfies the following set of numbers: 0, 7, 26, 63, 124, 215, 342, 511



6.8Other Difference Operators

 

We have already introduced the operators , Δ, and δ. Besides these, there are the operators E and , which we define below:

Shift operator E is the operation of increasing the argument x by h so that E f(x) = f(x + h), E2f(x) = f(x + 2h), E3f(x) = f(x + 3h) etc.

The inverse operator E − 1is defined by E − 1f(x) = f(x − h)

If yx is the function f(x), then Eyx = yx + h,E − 1yx = yx − h,Enyx = yx + nh, where n may be any real number.

Averaging operator is defined by the equation [image: image]




	[image: image]
	
	Obs. In the difference calculus E is regarded as the fundamental operator and ,∇, δ,  can be expressed in terms of E.




6.9Relations Between the Operators

 

We shall now establish the following identities:

 (i)  = E − 1(ii) Δ = 1 − E−1

(iii) δ = E1/2 − E−1/2(iv)

 (v)  = EΔ = ΔE = δE1/2(vi) E = ehD.

Proofs.(i)yx = yx + h − yx = Eyx − yx = (E − 1)yx

This shows that the operators  and E are connected by the symbolic relation

 = E − 1orE = 1 + .




	[image: image]
	
	Obs. These relations imply that the effect of operator E on yx is the same as that of the operators (1 + ) on yx.The operators E and  do not have any existence as separate entities.




(ii) Δyx = yx − yx − h = yx − E − 1yx = (1 − E − 1)yx

∴Δ = 1 − E − 1

[image: image]

[image: image]

[image: image]




	[image: image]
	
	A table showing the symbolic relations between the various operators is given below for ready reference To prove such relations between the operators, always express each operator in terms of the fundamental operator E.




Relations between the various operators

[image: image]

EXAMPLE 6.13

Prove that [image: image], the interval of differencing being h.

EXAMPLE 6.14

Prove with the usual notations, that

 (i) hD = log(1 + Δ) = − log(1 − ∇) = sinh−1(μδ)

 (ii) (E1/2 + E −1/2)(1 + Δ)1/2 = 2 + Δ

(iii) Δ − ∇ = Δ∇ = δ2

(iv) Δ3y2 = Δ3y5.

Solution:

(i)We know that ehD = E = 1 + Δ

∴ hD = log(1 + Δ)

Also hD = log E = − log(E−1) = − log(1 − ∇)[∴ E−1 = 1 − ∇]

[image: image]

[image: image]

HencehD = log(1 + Δ) = − log(1 − Δ) = sinh − 1(μδ).

(ii) (E1/2 + E−1/2)(1 + Δ)1/2

 = (E1/2 + E−1/2)E1/2 = E + 1 = 1 + Δ + 1 = 2 + Δ.

We know that Δ = E − 1, ∇ = 1 − E−1andΔ = E1/2 − E−1/2

∴ Δ − ∇ = E − 2 + E−1 = (E1/2 − E−1/2)2 = δ2

AlsoΔ∇ = (E − 1)(1 − E−1) = E + E−1 − 2

 = (E1/2 − E−1/2)2 = δ2.

HenceΔ − ∇ = Δ∇ = δ2.

(iv) Δ3y2 = (E − 1)3y2[∵ Δ = E − 1]

 = (E3 − 3E2 + 3E − 1)y2

 = y5 − 3y4 + 3y3 − y2(1)

 Δ3y5 = (1 − E − 1)3y5[∵ = 1 − E−1]

 = (1 − 3E−1 + 3E−2 − E−3)y5

 = y5 − 3y4 + 3y3 − y2(2)

From (1) and (2) 3y2 = 3y5

EXAMPLE 6.15

Prove that

[image: image]

Solution:

[image: image]

[image: image]

[image: image]

Hence from (1) and (2), we get

[image: image]

EXAMPLE 6.16

Prove that [image: image]

Solution:

[image: image]

6.10To Find One or More Missing Terms

 

When one or more values of y = f(x) corresponding to the equidistant values of x are missing, we can find these using any of the following two methods:

First method: We assume the missing term or terms as a, b etc. and form the difference table. Assuming the last difference as zero, we solve these equations for a, b. These give the missing term/terms.
 
Second method: If n entries of y are given, f(x) can be represented by a(n − 1)th degree polynomial, i.e., Δn y = 0. Since Δ = E − 1, therefore (E − 1)n y = 0. Now expanding (E − 1)n and substituting the given values, we obtain the missing term/terms.

EXAMPLE 6.17

Find the missing term is the table:

[image: image]

Solution:

Let the missing value be a. Then the difference table is as follows:

[image: image]

We know that 4y = 0, i.e., 240.2 − 4a = 0.

Hence a = 60.05.

Otherwise. As only four entries y0,y1,y2,y3 are given ,therefore y = f(x) can be represented by a third degree polynomial.

∴Δ3y = constantor4y = 0, i.e., (E − 1)4y = 0

i.e.,(E4 − 4E3 + 6E2 − 4E + 1) y = 0ory4 − 4y3 + 6y2 − 4y1 + y0 = 0

Let the missing entry y3 be a so that

67.4  4a + 6(54.1)  4(49.2) + 45 = 0or  4a =  240.2

Hencea = 60.05.

EXAMPLE 6.18

Find the missing values in the following data:

[image: image]

Solution:

Let the missing values be a, b. Then the difference table is as follows:

[image: image]

As only three entries y0, y2, y4 are given, y can be represented by a second degree polynomial having third differences as zero.

∴3y0 = 0 and 3y1 = 0

i.e.,3a + b = 9, a + 3b = 3.6

Solving these, we get a = 2.925, b = 0.225.

Otherwise. As only three entries y0 = 3, y2 = 2, y4 = − 2.4 are given, y can be represented by a second degree polynomial having third differences as zero.

∴3y0 = 0 and 3y1 = 0

i.e., (E − 1)3y0 = 0 and (E − 1)3y1 = 0

i.e.,(E3 − 3E2 + 3E − 1)y0 = 0; (E3 − 3E2 + 3E − 1).y1 = 0

or y3 − 3y2 + 3y1 − y0 = 0; y4 − 3y3 + 3y2 − y1 = 0

or y3 + 3y1 = 9; 3y3 + y1 = 3.6

Solving three, we get y1 = 2.925, y2 = 0.225.

EXAMPLE 6.19

The following table gives the values of y which is a polynomial of degree five. It is known that f(3)is in error. Correct the error.

[image: image]

Solution:

Let the correct value of y when x = 3 be a. Then the difference table is as follows:

[image: image]

Since y is a polynomial of fifth degree, the sixth difference 6y = 0

i.e.,4880 − 20a = 0

Hence a = 244.

Otherwise. As y is a polynomial of fifth degree, the sixth difference 6y = 0

i.e.,  (E − 1)6y = 0

or(E6 − 6E5 + 15E4 − 20E3 + 15E2 − 6E + 1)y0 = 0

or y6 − 6y5 + 15y4 − 20y3 + 15y2 − 6y1 + y0 = 0

i.e.,7777 − 6(3126) + 15(1025) + 20y3 + 15 (33) − 6 (2) + 1 = 0

∴4880 = 20y3∴y3 = 244

Hence the error = 254 − 244 = 10.

EXAMPLE 6.20

If y10 = 3, y11 = 6, y12 = 11, y13 = 18, y14 = 27, find y4.

Solution:

Taking y14 as u0, we are required to find y4, i.e., .u− 10.Then the difference table is

[image: image]

EXAMPLE 6.21

If yx is a polynomial for which fifth difference is constant and y1 + y7 = − 784, y2 + y6 = 686, y3 + y5 = 1088, find y4.

Solution:

Starting with y1instead of y0, we note that 6y1 = 0[∵ 5y1 is constant]

[image: image]

EXAMPLE 6.22

Using the method of separation of symbols, prove that

[image: image]

Solution:

[image: image]

[image: image]

Exercises 6.3

 

	Explain the difference between [image: image].

	Evaluate taking h as the interval of differencing:
[image: image]


	With the usual notations, show that
[image: image]


	Prove that
[image: image]


	Show that 
[image: image]


	Show that
[image: image]


	Prove that
[image: image]


	Prove that 2y5 = y6 2y5 + y4.

	Prove with usual notations, that
[image: image]


	Estimate the missing term in the following table:
[image: image]


	Find the missing terms in the following table:
[image: image]


	Find the missing values in the following table:
[image: image]


	Estimate the production for 2004 and 2006 from the following data:
[image: image]


	If [image: image]

	Evaluate y4 from the following data (stating the assumptions you make)
[image: image]




Using the method of separation of symbols, prove that

[image: image]

6.11Application to Summation of Series

 

The calculus of finite differences is very useful for finding the sum of a given series. The inverse operator Δ−1(Section 6.6) is especially useful to find the sum of a series. This is explained below:

[image: image]

The method is best illustrated by the following examples

EXAMPLE 6.23

Find the sum to n terms of the series

[image: image]

Solution:

[image: image]

[image: image]

[image: image]

EXAMPLE 6.24 

Sum the following series 13 + 23 + 33 + ... + n3

Solution:

Denoting by 13, 23, 33 , ... , n3 by u0, u1, u2, ... respectively, the required sum

[image: image]

Now u0 = u1 − u0 = 23 − 13 = 7, 2u0 = u2 − 2u1 + u0 = 33 − 2.23 + 13 = 12,

3u0 = u3 − 3u2 + 3u1 − u0 = 43 − 3.33 + 3.23 − 13 = 6

and 4u0,5u0,...are all zero as ur = r3 is a polynomial of third degree

[image: image]

EXAMPLE 6.25 

Prove Montmorts theorem that

[image: image]

Hence find the sum of the series 1.2 + 2.3x + 3.4x2 + ... +

Solution:

[image: image]

Now let us construct the difference table for the coefficients of the given series:

[image: image]

This shows that u0 = 2,Δu0 = 4, Δ2u0 = 2, Δ3u0 = Δ4u0 etc. all = 0.

Thus1.2 + 2.3x + 3.4x2 + ... +

= u0 + u1x + u2x2 + ... +

[image: image]

Exercises 6.4

 

Using the method of finite differences, sum the following series:

[image: image]

Hence sum the series

[image: image]

7. Using Montmorts theorem find the sum of the series

[image: image]

8. show that [image: image]

Hence evaluate 14 + 24 + 34 + ... + n4.

9. Sum the series 1.2Δxn − 2.3Δ2xn + 3.4Δ3xn − 4.5Δ4xn + ...to n terms

10. Show that [image: image] to n terms = (x + 1/2)n  (x  1/2)n 

6.12Objective Type of Questions

 

Exercises 6.5

 

Select the correct answer or fill up the blanks in the following questions:


	Δ∇ = 
(a) ∇Δ(b) ∇ + Δ(c) ∇ − Δ.


	Which one of the following results is correct:
(a) Δxn = nxn − 1(b) Δx(n) = nx(n − 1)

(c) Δnex = ex(d) Δ cosx = − sinx.


	If f(x) = 3x3 − 2x2 + 1, then Δ3f(x) = ...

	The relationship between the operators E and D is....

	The (n + 1)th order difference of the nth degree polynomial is...

	If y(x) = x(x − 1) (x − 2), then Δy(x) = .... .

	x3 − 2x2 + x − 1 in factorial form = ......

	Taking has the interval of differencing, Δ2x3 = ...

	In terms of E,Δ = ....

	The form of the function tabulated at equally spaced intervals with sixth differences constant, is...

	If the interval of differencing is unity, then Δ4[(1 − x)(1 − 2x)(1 − 3x)] = ...

	Taking the interval of differencing as unity, the first difference of x4 − 3x3 + 2x − 1 is ... .

	The missing values of y in the following data:
[image: image]


	Δ3[(1 − x)(1 − 3x)(1 − 5x)] = ...(interval of differencing being 1)

	Δtan−1 x = ....

	If y = x2 − 2x + 2, taking interval of differencing as unity,Δ2y = ....

	Relation between Δ and E is given by.....

	The kth difference of a polynomial of degree k is...

	Δryk in terms of backward differences = ....

	The value of (Δ2/E)ex = ....

	The relation between the shift operator E and second order back-ward difference operator Δ2 is...

	The value of Δn(ex) = ...(intervalofdifferencingbeing1).

	Relationship between E, Δ and Δ is...

	If the fifth and higher order differences of a function vanish, then the func-tion represents a polynomial of degree....

	The value of E− 1Δ = ....

	If E2ux = x2 and h = 1, then ux = ....

	Given y0 = 2, y1 = 4, y2 = 8, y4 = 32,then y3 = ....

	y0 = 1, y1 = 5, y2 = 8, y3 = 3, y4 = 7, y5 = 0, then Δ5y6 = 
(a) 61(b) − 62

(c) 62(d) − 61.


	Given x = 1 2 3
f (x) = 3 815, then 2f (1) = 

(a) 3(b) 4

(c) 2(d) 1


	(E1/2 + E1/2)(1+)1/2 =
(a)  + 1(b)   1

(c)  + 2(d)   2.


	Which one is incorrect?
(a) E = 1 +   (b) (5) = 0

(c) (f1 + f2) =  f1 +  f2(d) (f1 . f2) = f1 + f2.


	  ∇ = δ2.(True or False)

	 + ∇ = E +E1.  (True or False)

	E = ehD .   (True or False)

	If f(x) = ex,then 6ex = (eh  1)6ex.(True or False)

	n = δnEn/2(True or False)

	(1 + )(1  ∇) = 1.(True or False)

	With the usual notations, match the items on right hand side with those in left hand side:
(i) E∇(a) ( + ∇)

 (ii) hD(b)  − ∇

(iii) ∇(c)  

(iv) μδ(d) − log(1 − ∇)
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7.1Introduction

 

Suppose we are given the following values of y = f(x) for a set of values of x:

[image: image]

Then the process of finding the value of y corresponding to any value of x = xi between x0 and xn is called interpolation. Thus interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable while the process of computing the value of the function outside the given range is called extrapolation. The term interpolation however, is taken to include extrapolation.

If the function f(x) is known explicitly, then the value of y corresponding to any value of x can easily be found. Conversely, if the form of f(x) is not known (as is the case in most of the applications), it is very difficult to determine the exact form of f(x) with the help of tabulated set of values (xi, yi). In such cases, f(x) is replaced by a simpler function φ(x) which assumes the same values as those of f(x) at the tabulated set of points. Any other value may be calculated from φ(x) which is known as the interpolating function or smoothing function. If φ(x) is a polynomial, then it called the interpolating polynomial and the process is called the polynomial interpolation. Similarly when φ(x) is a finite trigonometric series, we have trigonometric interpolation. But we shall confine ourselves to polynomial interpolation only.

The study of interpolation is based on the calculus of finite differences. We begin by deriving two important interpolation formulae by means of forward and backward differences of a function. These formulae are often employed in engineering and scientific investigations.

7.2Newtons Forward Interpolation Formula

 

Let the function y = f(x) take the values y0, y1, ..., yn corresponding to the values x0, x1, ..., xn of x. Let these values of x be equispaced such that xi = x0 + ih (i = 0, 1, ...). Assuming y(x) to be a polynomial of the nth degree in x such that We can write

[image: image]

Putting x = x0, x1, ..., xn successively in (1), we get

[image: image]

and so on.

[image: image]

Substituting these values in (1), we obtain

[image: image]

Now if it is required to evaluate y for x = x0 + ph, then

[image: image]

It is called Newtons forward interpolation formula as (3) contains y0 and the forward differences of y0

Otherwise: Let the function y = f(x) take the values y0, y1, y2,... corresponding to the values x0, x0 + h, x0 + 2h, ... of x. Suppose it is required to evaluate f(x) for x = x0 + ph, where p is any real number.

For any real number p, we have defined E such that

[image: image]

[Using binomial theorem]

[image: image]

If y = f(x) is a polynomial of the nth degree, then Δn+1y0 and higher differences will be zero.

Hence (4) will become

[image: image]

Which is same as (3)




	[image: image]
	
	Obs. 1. This formula is used for interpolating the values of y near the beginning of a set of tabulated values and extrapolating values of y a little backward (i.e., to the left) of y0.


	
	
	Obs. 2. The first two terms of this formula give the linear interpolation while the first three terms give a parabolic interpolation and so on.




7.3Newtons Backward Interpolation Formula

 

Let the function y = f(x) take the values y0, y1, y2, … corresponding to the values x0, x0 + h, x0 + 2h, ... of x. Suppose it is required to evaluate f(x) for x = xn + ph, where p is any real number. Then we have

[image: image]

[image: image]

It is called Newtons backward interpolation formula as (1) contains yn and backward differences of yn 




	[image: image]
	
	Obs. This formula is used for interpolating the values of y near the end of a set of tabulated values and also for extrapolating values of y a little ahead (to the right) of yn




EXAMPLE 7.1

The table gives the distance in nautical miles of the visible horizon for the given heights in feet above the earths surface:

[image: image]

Find the values of y when

(i) x = 160 ft.(ii) x = 410.

Solution:

The difference table is as under:

[image: image]

(i) If we take x0 = 160, then y0= 13.03, Δy0 = 2.01, Δ2y0 =  0.24, Δ3 = 0.08, Δ4 y0 =  0.05

[image: image]

∴Using Newtons forward interpolation formula, we get

[image: image]

y160 = 13.03 + 0.402 + 0.192 + 0.0384 + 0.00168 = 13.46 nautical miles

(ii) Since x = 410 is near the end of the table, we use Newtons backward interpolation formula.

[image: image]

Using the line of backward difference

yn= 21.27, ∇ yn= 1.37, ∇2 yn=  0.11, ∇3 yn= 0.02 etc.

∴ Newtons backward formula gives

[image: image]

EXAMPLE 7.2

From the following table, estimate the number of students who obtained marks between 40 and 45:

[image: image]

Solution:

First we prepare the cumulative frequency table, as follows:

[image: image]

Now the difference table is

[image: image]

We shall find y45, i.e., the number of students with marks less than 45.

Taking x0= 40, x = 45, we have

[image: image]

∴Using Newtons forward interpolation formula, we get

[image: image]

The number of students with marks less than 45 is 47.87, i.e., 48. But the number of students with marks less than 40 is 31.

Hence the number of students getting marks between 40 and 45 = 48  31 = 17.

EXAMPLE 7.3

Find the cubic polynomial which takes the following values:

[image: image]

Hence or otherwise evaluate f(4).

Solution:

The difference table is

[image: image]

∴ Using Newtons forward interpolation formula, we get

[image: image]

which is the required polynomial.

[image: image]




	[image: image]
	
	Obs. Using Newtons backward interpolation formula, we get
[image: image]




	
	
	which is the same value as that obtained by substituting x = 4 in the cubic polynomial above.



	
	
	The above example shows that if a tabulated function is a polynomial, then interpolation and extrapolation give the same values.





EXAMPLE 7.4

Using Newtons backward difference formula, construct an interpolating polynomial of degree 3 for the data: f ( 0.75) =  0.0718125, f ( 0.5) =  0.02475, f ( 0.25) = 0.3349375, f (0) = 1.10100. Hence find f ( 1/3).

Solution:

The difference table is

[image: image]

We use Newtons backward difference formula

[image: image]

[image: image]

EXAMPLE 7.5

In the table below, the values of y are consecutive terms of a series of which 23.6 is the 6th term. Find the first and tenth terms of the series:

[image: image]

Solution:

The difference table is

[image: image]

To find the first term, use Newtons forward interpolation formula with x0 = 3, x = 1, h = 1, and p =  2. We have

[image: image]

To obtain the tenth term, u se Newtons backward interpolation formula with xn= 9, x = 10, h = 1, and p = 1.This gives

[image: image]

EXAMPLE 7.6

Using Newtons forward interpolation formula show

[image: image]

Solution:

[image: image]

Since the first term of the given series is 1, therefore taking n = 1, s1= 1, Δ s1 = 8, Δ2 s1 = 19, Δ3s1 = 18, Δ4 s1= 6.

Substituting these in the Newtons for war d interpolation formula, i.e.,

[image: image]

Exercises 7.1

 

	Using Newton s forward formula, find the value of f(1.6), if
[image: image]


	From the following table find y when x = 1.85 an d 2.4 by Newtons interpolation formula:
[image: image]


	Express the value of θ in terms of x using the following data:
[image: image]

Also find θ at x = 43.

	Given sin 45 = 0.7071, sin 50 = 0.7660, sin 55 = 0.8192, sin 60 = 0.8660, find sin 52 using Newtons forward formula.

	From the following table:
[image: image]

find f(0.7) approximately.

	The area A of a circle of diameter d is given for the fol-lowing values:
[image: image]

Calculate the area of a circle of diameter 105

	From the following table:
[image: image]

Calculate cos 25 and cos 73 using the Gregory-1 Newton formula.

	A test performed on a NPN transistor gives the following re-sult:
[image: image]

Calculate (i) the value of the collector current for the base cur-rent of 0.005 mA.

(ii) the value of base current required for a collector correct of 4.0 mA.


	Find f(22) from the following data using Newtons backward formulae.
[image: image]


	Find the number of men getting wages between Rs. 10 and 15 from the following data:
[image: image]


	From the following data, estimate the number of persons having incomes between 2000 and 2500:
[image: image]


	Construct Newtons forward interpolation polynomial for the follow-ing data:
[image: image]

Hence evaluate y for x = 5.

	Find the cubic polynomial which takes the following values:
y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10.

Hence or otherwise, obtain y(4).


	Construct the difference table for the following data:
[image: image]

Evaluate f (0.6)


	Apply Newtons backward difference formula to the data below, to obtain a polynomial of degree 4 in x:
[image: image]


	The following table gives the population of a town during the last six cen-suses. Estimate the increase in the population during the period from 1976 to 1978:
[image: image]


	In the following table, the values of y are consecutive terms of a se-ries of which 12.5 is the fifth term. Find the first and tenth terms of the series.
[image: image]


	Using a polynomial of the third degree, complete the record given below of the export of a certain commodity during five years:
[image: image]


	Given u1= 40, u3 = 45, u5 = 54, find u2 and u4.

	If u−1 = 10, u1 = 8, u2 = 10,u4 = 50, find u0 and u3.

	Given y0 = 3, y1 = 12, y2 = 81, y3 = 200, y4 = 100, y5 = 8, without forming the difference table, find Δ5y0.



7.4Central Difference Interpolation Formulae

 

In the preceding sections, we derived Newtons forward and backward interpolation formulae which are applicable for interpolation near the beginning and end of tabulated values. Now we shall develop central difference formulae which are best suited for interpolation near the middle of the table.

If x takes the values x0  2h, x0  h, x0, x0 + h, x0 + 2h and the corresponding values of y = f(x) are y2, y1, y0, y1, y2, then we can write the difference table in the two notations as follows:

[image: image]


7.5Gausss Forward Interpolation Formula 

 

The Newtons forward interpolation formula is

[image: image]

Substituting for Δ2 y0, Δ3 y0, Δ4 y0 from (2), (3), (4)..in (1), we get

[image: image]

which is called Gausss forward interpolation formula.

Cor. In the central differences notation, this formula will be

[image: image]




	[image: image]
	
	Obs. 1. It employs odd differences just below the central line and even difference on the central line as shown below:
[image: image]




	
	
	Obs. 2. This formula is used to interpolate the values of y for p (0 < p < 1) measured forwardly from the origin.




7.6Gausss Backward Interpolation Formula

 

The Newtons forward interpolation formula is

[image: image]

Substituting for Δ y0, Δ2 y0, Δ3 y0,... from (2), (3), (4) in (1), we get

[image: image]

which is called Gausss backward interpolation formula.

Cor. In the central differences notation, this formula will be

[image: image]




	[image: image]
	
	Obs. 1. This formula contains odd differences above the central line and even differences on the central line as shown below:
[image: image]




	
	
	Obs. 2. It is used to interpolate the values of y for a negative value of p lying between  1 and 0.


	
	
	Obs. 3. Gausss forward and backward formulae are not of much practical use. However, these serve as intermediate steps for obtaining the important formulae of the following sections.




7.7Stirlings Formula

 

Gausss forward interpolation formula is

[image: image]

Gausss backward interpolation formula is

[image: image]

Taking the mean of (1) and (2), we obtained

[image: image]

Which is called Stirlings formula.

Cor. In the central difference notation, (3) takes the form

[image: image]




	[image: image]
	
	Obs. This formula involves means of the odd differences just above and below the central line and even differences on this line as shown below:
[image: image]






7.8Bessels Formula

 

Gausss forward interpolation formula is

[image: image]

Now (1) can be written as

[image: image]

[image: image]

Which is known as Bessels formula.

Cor. In the central difference notation, (4) becomes

[image: image]




	[image: image]
	
	Obs. This is a very useful formula for practical purposes. It involves odd differences below the central line and means of even differences of and below this line as shown below 
[image: image]






7.9Laplace-Everetts Formula

 

Gausss forward interpolation formula is

[image: image]

We eliminate the odd differences in (1) by using the relations

[image: image]

[image: image]

To change the terms with negative sign, putting p = 1  q, we obtain

[image: image]

This is known as Laplace-Everetts formula.




	[image: image]
	
	Obs. 1. This formula is extensively used and involves only even differences on and below the central line as shown below:
[image: image]




	
	
	Obs. 2. There is a close relationship between Bessels formula and Everetts formula and one can be deduced from the other by suitable rearrangements. It is also interesting to observe that Bessels formula truncated after third differences is Everetts formula truncated after second differences.





7.10Choice of an Interpolation Formula

 

So far we have derived several interpolation formulae such as Newtons forward, Newtons backward, Gausss forward, Gausss backward, Stirlings, Bessels and Everetts formulae for calculating yp from equispaced values which are called classical formulae. Now, we have to see which formula yields most accurate results in a particular problem.

The coefficients in the central difference formulae are smaller and converge faster than those in Newtons formulae. After a few terms, the coefficients in the Stirlings formula decrease more rapidly than those of the Bessels formula and the coefficients of Bessels formula decrease more rapidly than those of Newtons formula. As such, whenever possible, central difference formulae should be used in preference to Newtons formulae.

The right choice of an interpolation formula however, depends on the position of the interpolated value in the given data.

The following rules will be found useful:

	To find a tabulated value near the beginning of the table, use Newtons forward formula.

	To find a value near the end of the table, use Newtons backward formula.

	To find an interpolated value near the center of the table, use either Stirlings or Bessels or Everetts formula.



If interpolation is required for p lying between [image: image] prefer Stirlings formula

If interpolation is desired for p lying between [image: image] use Bessels or Everetts formula.

EXAMPLE 7.7

Find f(22) from the Gauss forward formula:

[image: image]

Solution:

Taking x0 = 25, h = 5, we have to find the value of f(x) for x = 22.

[image: image]

The difference table is as follows:

[image: image]

Gauss forward formula is

[image: image]

EXAMPLE 7.8

Use Gausss forward formula to evaluate y30, given that y21 = 18.4708, y25= 17.8144, y29 = 17.1070, y33 = 16.3432 and y37 = 15.5154.

Solution

Taking x0 = 29, h = 4, we require the value of y for x = 30

[image: image]

The difference table is given below:

[image: image]

Gausss forward formula is

[image: image]

EXAMPLE 7.9

Using Gauss backward difference formula, find y (8) from the following table.

[image: image]

Solution:

Taking x0 = 10, h = 5, we have to find y for x = 8, i.e., for

[image: image]

The difference table is as follows:

[image: image]

Gauss backward formula is

[image: image]

EXAMPLE 7.10

Interpolate by means of Gausss backward formula, the population of a town for the year 1974, given that:

[image: image]

Solution:

Taking x0 = 1969, h = 10, the population of the town is to be found for

[image: image]

The Central difference table is

[image: image]

Gausss backward formula is

[image: image]

EXAMPLE 7.11

Employ Stirlings formula to compute y12.2 from the following table (yx = 1 + log10sinx):

[image: image]

Solution:

Taking the origin at x0 = 12, h = 1 and p = x  12, we have the following central difference table:

[image: image]

At x = 12.2, p = 0.2. (As p lies between [image: image] the use of Strings formula will be Quite suitable.)

Stirlings formula is

[image: image]

EXAMPLE 7.12

Given

[image: image]

Using Stirlings formula, estimate the value of tan16.

Solution:

Taking the origin at [image: image] we have the following central difference table:

[image: image]

Stirlings formula is

[image: image]

EXAMPLE 7.13

Apply Bessels formula to obtain y25, given y20 = 2854, y24 = 3162, y28 = 3544, y32 = 3992.

Solution:

Taking the origin at x0 = 24, h = 4, we have p = (x  24).

∴ The central difference table is

[image: image]

Bessels formula will yield accurate results)

Bessels formula is

[image: image]

EXAMPLE 7.14

Apply Bessels formula to find the value of f (27.5) from the table:

[image: image]

Solution:

Taking the origin at x0 = 27, h = 1, we have p = x  27

The central difference table is

[image: image]

At x = 27.5, p = 0.5 (As p lies between 1/4 and 3/4, the use of Bessels formula will yield an accurate result),

Bessels formula is

[image: image]

EXAMPLE 7.15

Using Everetts formula, evaluate f(30) if f(20) = 2854, f(28) = 3162, f(36) = 7088, f(44) = 7984

Solution:

Taking the origin at x0 = 28, h = 8, we have [image: image] The central table is

[image: image]

Everetts formula is

[image: image]

EXAMPLE 7.16

Given the table

[image: image]

find the value of log 337.5 by Everetts formula.

Solution:

Taking the origin at x0 = 330 and h = 10, we have [image: image]

∴ The central difference table is

[image: image]

(As p > 0.5 and =0.75, Everetts formula will be quite suitable)

Everetts formula is

[image: image]

Exercises 7.2

 


	Find they (25), given that y20 = 24, y24 = 32, y28 = 35, y32 = 40, using Gauss for ward difference formula.

	Using Gausss forward formula, fin d a polynomial of de-gree four which takes the following values of the function f (x):
[image: image]


	Using Gausss forward formula, evaluate f(3.75) from the table:
[image: image]


	From the following table:
[image: image]

Find e1.17, using Gauss forward formula.

	Using Gausss backward formula, estimate the number of persons earning wages between Rs. 60 and Rs. 70 from the following data:
[image: image]


	Apply Gausss backward formula to find sin 45 from the following table:
[image: image]


	Using Stirlings formula find y35, given y20 = 512, y30 = 439, y40 = 346, y50 = 243, where yx represents the number of persons at age x years in a life table.

	The pressure p of wind corresponding to velocity v is given by the following data. Estimate p when v = 25.
[image: image]


	Use Stirlings formula to evaluate f(1.22), given
[image: image]


	Calculate the value of f (1.5) using Bessels interpolation formula, from the table 
[image: image]


	Use Bessels formula to obtain y25, given y20 = 24, y24 = 32, y28 = 35, y32 = 40.

	Employ Bessels formula to find the value of F at x = 1.95, given that
[image: image]

Which other interpolation formula can be used here? Which is more ap-propriate? Give reasons.

	From the following table:
[image: image]

Find f(34) using Everetts formula.

	Apply Everetts formula to obtain u25, given u20 = 2854, u24 = 3162, u28 = 3544, u32 = 3992.

	Given the table:
[image: image]


	Find the value of log 337.5 by Gauss, Stirling, Bessel, and Everetts formulae.
If y0, y1, y2, y3, y4, y5 (y5 being constant) are given, prove that

[image: image]

[HINT: Use Bessels formula taking p = 1/2.]




7.11Interpolation with Unequal Intervals

 

The various interpolation formulae derived so far possess the disadvantage of being applicable only to equally spaced values of the argument. It is, therefore, desirable to develop interpolation formulae for unequally spaced values of x. Now we shall study two such formulae:

 (i) Lagranges interpolation formula

(ii) Newtons general interpolation formula with divided differences.

7.12Lagranges Interpolation Formula

 

If y = f(x) takes the value y0, y1,......, yn corresponding to x = x0,x1,..., xn, then

[image: image]

This is known as Lagranges interpolation formula for unequal intervals.

Proof: Let y = f(x) be a function which takes the values (x0, y0), (x1, y1),..., (xn, yn). Since there are n + 1 pairs of values of x and y, we can represent f(x) by a polynomial in x of degree n. Let this polynomial be of the form

[image: image]

Putting x = x0, y = y0, in (2), we get

[image: image]

Similarly putting x = x1, y = y1 in (2), we have

[image: image]

Proceeding the same way, we find a2, a3...... an.

Substituting the values of a0, a1,..., an  in (2), we get (1)




	[image: image]
	
	Obs. Lagranges interpolation formula (1) for n points is a polynomial of degree (n  1) which is known as the Lagrangian polynomial and is very simple to implement on a computer.


	
	
	This formula can also be used to split the given function into partial fractions.



	
	
	For on dividing both sides of (1) (x  x0)(x  x1)...(x  xn) by we get
[image: image]






EXAMPLE 7.17

Given the values

[image: image]

evaluate f(9), using Lagranges formula

Solution:

(i) Here x0 = 5, x1 = 7, x2 = 11, x3= 13, x4 = 17

andy0 = 150, y1 = 392, y2 = 1452, y3 = 2366, y4 = 5202.

Putting x = 9 and substituting the above values in Lagranges formula, we get

[image: image]

EXAMPLE 7.18

Find the polynomial f (x) by using Lagranges formula and hence find f(3) for

[image: image]

Solution:

Herex0 = 0, x1 = 1, x2 = 2, x3=5

andy0 = 2, y1 = 3, y2 = 12, y3=147.

Lagranges formula is

[image: image]

EXAMPLE 7.19

A curve passes through the points (0, 18), (1, 10), (3, 18) and (6, 90). Find the slope of the curve at x = 2.

Solution:

[image: image]

Since the values of x are unequally spaced, we use the Lagranges formula:

[image: image]

[image: image]

EXAMPLE 7.20

Using Lagranges formula, express the function [image: image] as a sum of partial fractions.

Solution:

Let us evaluate y = 3x2 + x + 1 for x = 1, x = 2 and x = 3

These values are

[image: image]

Lagranges formula is

[image: image]

Substituting the above values, we get

[image: image]

EXAMPLE 7.21

Find the missing term in the following table using interpolation:

[image: image]

Solution:

Since the given data is unevenly spaced, therefore we use Lagranges interpolation formula:

[image: image]

EXAMPLE 7.22

Find the distance moved by a particle and its acceleration at the end of 4 seconds, if the time verses velocity data is as follows:

[image: image]

Solution:

Since the values of t are not equispaced, we use Lagranges formula:

[image: image]

Exercises 7.3

 


	Use Lagranges interpolation formula to find the value of y when x = 10, if the following values of x and y are given:
[image: image]


	The following table gives the viscosity of oil as a function of tempera-ture. Use Lagranges formula to find the viscosity of oil at a tem-perature of 140.
[image: image]


	Given log10654 = 2.8156, log10 658 = 2.8182, log10 659 = 2.8189, log10661 = 2.8202, find by using Lagranges formula, the value of log10 656.

	The following are the measurements T made on a curve recorded by oscilograph representing a change of current I due to a change in the conditions of an electric current.
[image: image]

Using Lagranges formula, find I and T = 1.6.

	Using Lagranges interpolation, calculate the profit in the year 2000 from the following data:
[image: image]


	Use Lagranges formula to find thee form of f(x), given
[image: image]


	If y(1) =  3, y(3) = 9, y(4) = 30, y(6) = 132, fin d the Lagranges interpolation polynomial that takes the same values as y at the given point s.

	Given f(0) =  18, f(1) = 0, f(3) = 0, f(5) =  248, f(6) = 0, f(9) = 13104, find f(x).

	Find the missing term in the following table using interpolation
[image: image]


	Using Lagranges formula, express the function [image: image] as a sum of partial fractions.

	Using Lagranges formula, express the function [image: image] as a sum of partial fractions.
[Hint. Tabulate the values of f(x) = x2 + 6x  1 for x =  1, 1, 4, 6 and apply Lagranges formula.]


	Using Lagranges formula, prove that 
[image: image]

[Hint: Here x0 =  3, x1 =  1, x2 = 1, x3 = 3.]




7.13Divided Differences

 

The Lagranges formula has the drawback that if another interpolation value were inserted, then the interpolation coefficients are required to be recalculated. This labor of recomputing the interpolation coefficients is saved by using Newtons general interpolation formula which employs what are called divided differences. Before deriving this formula, we shall first define these differences.

If be given points, then the first divided difference for the arguments x0, x1 is defined by the relation [x0, x1] or

[image: image]

The second divided difference for x0, x1, x2 is defined as

[image: image]

The third divided difference for x0, x1, x2, x3 is defined as

[image: image]

Properties of Divided Differences

I. The divided differences are symmetrical in their arguments, i.e,. independent of the order of the arguments. For it is easy to write

[image: image]

II. The nth divided differences of a polynomial of the nth degree are constant.

Let the arguments be equally spaced so that

x1  x0 = x2  x1 = ... = xn  xn−1= h. Then

[image: image]

If the tabulated function is a nth degree polynomial, then Δny0 will be constant. Hence the nth divided differences will also be constant

III. The divided difference operator  is linear

[image: image]

In general [image: image] This property is also true for higher order differences.

7.14Newtons Divided Difference Formula

 

Let y0, y1,...,yn be the values of y = f(x) corresponding to the arguments x0, x1,..., xn. Then from the definition of divided differences, we have

[image: image]

Substituting this value of [x, x0] in (1), we get

[image: image]

Substituting this value of [x, x0, x1] in (2), we obtain

[image: image]

Proceeding in this manner, we get

[image: image]

which is called Newtons general interpolation formula with divided differences.

7.15Relation Between Divided and Forward Differences

 

[image: image]

[image: image]

This is the relation between divided and forward differences.

EXAMPLE 7.23

Given the values

[image: image]

evaluate f(9), using Newtons divided difference formula

Solution:

The divided differences table is

[image: image]

Taking x = 9 in the Newtons divided difference formula, we obtain

f(9) = 150 + (9  5) × 121 + (9  5)(9  7) × 24 + (9  5)(9  7)(9  11) × 1

 = 150 + 484 + 192  16 = 810.

EXAMPLE 7.24

Using Newtons divided differences formula, evaluate f(8) and f(15) given:

[image: image]

Solution:

The divided differences table is

[image: image]

Taking x = 8 in the Newtons divided difference formula, we obtain

f(8) = 48 + (8  4) 52 + (8  4) (8  5) 15 + (8  4) (8  5) (8  7) 1

 = 448.

Similarly f(15) = 3150.

EXAMPLE 7.25

Determine f(x) as a polynomial in x for the following data:

[image: image]

Solution:

The divided differences table is

[image: image]

Applying Newtons divided difference formula

[image: image]

EXAMPLE 7.26

Using Newtons divided difference formula, find the missing value from the table:

[image: image]

Solution:

The divided difference table is

[image: image]

[image: image]

Newtons divided difference formula is

[image: image]

Putting x = 5, we get

[image: image]

Hence missing value is 3

Exercises 7.4

 


	Find the third divided difference with arguments 2, 4, 9, 10 of the func-tion f (x) = x3 2x.

	Obtain the Newton s divided difference interpolating poly-nomial and hence find f(6):
[image: image]


	Using Newtons divided differences interpolation, find u(3), given that u(1) =  26, u(2) = 12, u(4) = 256, u(6) = 844.

	A thermocouple gives the following output for rise in temperature
[image: image]

Find the output of thermocouple for 37C temperature using New-tons divided difference formula.

	Using Newton s divided difference interpolation, find the poly-nomial of the given data:
[image: image]


	For the following table, find f(x) a s a polynomial in x using Newtons divided difference formula:
[image: image]


	Using the following data, find f(x) a s a polynomial in x:
[image: image]


	The observed values of a function are respectively 168, 120, 72, and 63 at the four positions 3, 7, 9, and 10 of the independent variable. What is the best estimate value of the function at the position 6?

	Find the equation of the cubic curve which passes through the point s (4,  43), (7, 83), (9, 327), and (12, 1053).

	Find the missing term in the following table using Newtons di-vided difference formula.
[image: image]




7.16Hermites Interpolation Formula

 

This formula is similar to the Lagranges interpolation formula. In Lagranges method, the interpolating polynomial P(x) agrees with y(x) at the points x0, x1,......, xn, whereas in

Hermites method P(x) and y(x) as well as Pʹ(x) and yʹ(x) coincide at the (n + 1) points, i.e.,

P(xi) = y(xi) and Pʹ(xi) = yʹ(xi); i = 0, 1,......, n(1)

As there are 2(n + 1) conditions in (1), (2n + 2) coefficients are to be determined.

Therefore P(x) is a polynomial of degree (2n + 1).

We assume that P(x) is expressible in the form

[image: image]

where Ui (x) and Vi (x) are polynomials in x of degree (2n + 1). These are to be determined. Using the conditions (1), we get

[image: image]

We now write

[image: image]

Since [Li(x)]2 is of degree 2n and Ui(x), Vi(x) are of degree (2n + 1), therefore Ai(x) and Bi(x) are both linear functions

[image: image]

Solving these equations, we obtain

[image: image]

Now putting the above values in (4), we get

[image: image]

Finally substituting Ui(x) and Vi(x) in (2), we obtain

[image: image]

This is the required Hermites interpolation formula which is sometimes known as osculating interpolation formula.




	[image: image]
	
	Obs. In comparison to Lagranges interpolation formula, the Hermite interpolation formula is computationally uneconomical




EXAMPLE 7.27

For the following data:

[image: image]

Find the Hermite interpolating polynomial.

Solution:

[image: image]

Hermites interpolation formula in this case, is

[image: image]

EXAMPLE 7.28

Apply Hermites formula to interpolate for sin (1.05) from the following data:

[image: image]

Solution:

Here y(x) = sin x and yʹ(x) = cos x

so thaty(x0) = 0.84147, yʹ(x0) = 0.54030, y(x1) = 0.89121,

yʹ(x1) = 0.45360

[image: image]

Hence the Hermites interpolation formula in this case is

[image: image]

EXAMPLE 7.29

Determine the Hermite polynomial of degree 4 which fits the following data:

[image: image]

Solution:

Here x0 = 0, x1 = 1, x2 = 2, y(x0) = 0, y(x1) = 1, y(x2) = 0 and yʹ(x0) = 0, yʹ(x1) = 0, yʹ(x2) = 0.

Hermites formula in this case is

[image: image]

Substituting the above values in P(x), we get

[image: image]

EXAMPLE 7.30

Using Hermites intropolation, find the value of f( 0.5) from the following

[image: image]

Solution:

Here x0 =  1, x1 = 0, x2 = 1; f(x0) = 1, f(x1) = 1, f(x2) = 3 and f ʹ(x0) =  5, f ʹ(x1) = 1, fʹ(x2) = 7.

Hermites formula in this case is

[image: image]

[image: image]

Substituting the values of U0,, V0, U1, V1; U2, V2 in (i), we get

[image: image]

Exercises 7.5

 


	Find the Hermites polynomial which fits the following data:
[image: image]


	A switching path between parallel rail road tracks is to be a cubic po-lynomial joining positions (0, 0) and (4, 2) and tangents to the lines y = 0 and y = 2. Using Hermites method, find the polynomial, given:
[image: image]


	Apply Herm it es formula estimate the values of log 3.2 from the following data:
[image: image]




7.17Spline Interpolation

 

In the interpolation methods so far explained, a single polynomial has been fitted to the tabulated points. If the given set of points belong to the polynomial, then this method works well, otherwise the results are rough approximations only. If we draw lines through every two closest points, the resulting graph will not be smooth. Similarly we may draw a quadratic curve through points Ai, Ai+1 and another quadratic curve through Ai+1, Ai+2, such that the slopes of the two quadratic curves match at Ai+1 (Fig. 7.1). The resulting curve looks better but is not quite smooth. We can ensure this by drawing a cubic curve through A i, Ai+1 and another cubic through Ai+1, A i+2su ch that the slopes and curvatures of the two curves match at Ai+1. Such a curve is called a cubic spline. We may use polynomials of higher order but the resulting graph is not better. As such, cubic splines are commonly used. This technique of spline-fitting is of recent origin and has important applications.

[image: image]

Figure 7.1

Cubic spline

Consider the problem of interpolating between the data points (x0, y0), (x1, y1),...(xn, yn) by means of spline fitting.

Then the cubic spline f(x) is such that

 (i) f(x) is a linear polynomial outside the interval (x0, xn),

 (ii) f(x) is a cubic polynomial in each of the subintervals,

(iii) fʹ(x) and f″(x) are continuous at each point.

Since f(x) is cubic in each of the subintervals f″(x) shall be linear.

∴ Taking equally-spaced values of x so that xi+1  xi = h, we can write

[image: image]

Integrating twice, we have

[image: image]

The constants of integration ai, bi are determined by substituting the values of y = f(x) at xi and xi+1. Thus,

[image: image]

Substituting the values of ai, bi and writing f″(xi) = Mi, (1) takes the form

[image: image]

To impose the condition of continuity of f ʹ(x), we get

[image: image]

Now since the graph is linear for x < x0 and x > xn, we have

M0 = 0, Mn = 0(4)

(3) and (4) give (n + 1) equations in (n + 1) unknowns Mi (i = 0, 1,... n) which can be solved. Substituting the value of Mi in (2) gives the concerned cubic spline.

EXAMPLE 7.31

Obtain the cubic spline for the following data

[image: image]

Solution:

Since the points are equispaced with h = 1 and n = 3, the cubic spline can be determined from Mi1 + 4Mi + Mi+1 = 6 (yi1  2yi + yi+1), i = 1, 2.

∴M0 + 4M1 + M2 = 6 (y0  2y1 + y2)

 M1 + 4M2 + M3 = 6 (y1  2y2 + y3)

i.e.,4M1 + M2 = 36; M1 + 4M2 = 72[∵ M0 = 0, M3 = 0]

Solving these, we get M1 = 4.8, M2 = 16.8.

Now the cubic spline in (xi  x  xi + 1) is

[image: image]

Taking i = 0 in (A) the cubic spline in (0  x  1) is

[image: image]

Taking i = 1 in (A), the cubic spline in (1  x  2) is

[image: image]

Taking i = 2 in (A), the cubic spline in (2  x  3) is

[image: image]

EXAMPLE 7.32

The following values of x and y are given:

[image: image]

Find the cubic splines and evaluate y(1.5) and yʹ(3).

Solution:

Since the points are equispaced with h = 1 and n = 3, the cubic splines can be obtained from

Mi1 + 4Mi + Mi+1 = 6(yi1  2yi + yi+1), i = 1, 2.

∴M0 + 4M1 + M2 = 6(y0  2y1 + y2)

 M1 + 4M2 + M3 = 6(y1  2y2 + y3)

i.e.,4M1 + M2 = 12, M1 + 4M2 = 18 [∵ M0 = 0, M3 = 0]

which give, M1 = 2, M2 = 4.

Now the cubic spline in (xi  x  xi+1) is

[image: image]

Thus, taking i = 0, i = 1, i = 2 in (A), the cubic splines are

[image: image]

EXAMPLE 7.33

Find the cubic spline interpolation for the data:

[image: image]

Solution:

Since the points are equispaced with h = 1, n = 4, the cubic spline can be found by means of

[image: image]

Solving these equations, we get M1 = 30/7, M2 =  36/7, M3 = 30/7

Now the cubic spline in (xi  x  xi+1) is

[image: image]

Taking i = 0, in (A), the cubic spline in (1  x  2) is

[image: image]

Taking i = 1 in (A), the cubic spline in (2  x  3) is

[image: image]

i.e.,y =  1.57 x3 + 11.57x2  27x + 20.28.(2  x  3)

Taking i = 2 in (A), the cubic spline in (3  x  4) is

[image: image]

i.e.,y = 1.57 x3  16.71 x2 + 57.86x  64.57(3  x 4)

Taking i = 3 in (A), the cubic spline in (4  x  5) is

[image: image]

Exercises 7.6

 


	Find the cubic splines for the following table of values:
[image: image]

Hence evaluate y(1.5) and yʹ(2).


	The following values of x and y are given:
[image: image]

Usin g cubic spline, show that 
(i) y(1.5) = 2.575(ii) yʹ(3) = 2.067.


	Find the cubic spline corresponding to the interval [2,3] from the fol-lowing table:
[image: image]

Hence compute (i) y(2.5) and (ii) yʹ(3).




7.18Double Interpolation

 

So far, we have derived interpolation formulae to approximate a function of a single variable. In the case of functions, of two variables, we interpolate with respect to the first variable keeping the other variable constant. Then interpolate with respect to the second variable.

Similarly, we can extend the said procedure for functions of three variables.

7.19Inverse Interpolation

 

So far, given a set of values of x and y, we have been finding the value of y corresponding to a certain value of x. On the other hand, the process of estimating the value of x for a value of y (which is not in the table) is called inverse interpolation. When the values of x are unequally spaced Lagranges method is used and when the values of x are equally spaced, the Iterative method should be employed.

7.20Lagranges Method

 

This procedure is similar to Lagranges interpolation formula (p. 207), the only difference being that x is assumed to be expressible as a polynomial in y.

Lagranges formula is merely a relation between two variables either of which may be taken as the independent variable. Therefore, on interchanging x and y in the Lagranges formula, we obtain

[image: image]

EXAMPLE 7.34

The following table gives the values of x and y:

[image: image]

Find the value of x corresponding to y = 12, using Lagranges technique.

Solution:

Here x0 = 1.2, x1 = 2.1, x2 = 2.8, x3 = 4.1, x4 = 4.9, x5 = 6.2 and y0 = 4.2, y1 = 6.8, y2 = 9.8, y3 = 13.4, y4 = 15.5, y5 = 19.6.

Taking y = 12, the above formula (1) gives

[image: image]

EXAMPLE 7.35

Apply Lagranges formula inversely to obtain a root of the equation f(x) = 0, given that f(30) =  30, f(34) =  13, f(38) = 3, and f ʹ(42) = 18. 

Solution:

Herex0 = 30, x1 = 34, x2 = 38, x3 = 42

and y0 =  30, y1 =  13, y2 = 3, y3 = 18

It is required to find x corresponding to y = f(x) = 0.

Taking y = 0, Lagranges formula gives

[image: image]

Hence the desired root of f(x) = 0 is 37.23.

7.21Iterative Method

 

Newtons forward interpolation formula (p. 274) is

[image: image]

From this, we get

[image: image]

Neglecting the second and higher differences, we obtain the first approximation to p as

[image: image]

To find the second approximation, retaining the term with second differences in (1) and replacing p by p1, we get

[image: image]

To find the third approximation, retaining the term with third differences in (1) and replacing every p by p2, we have

[image: image]

and so on. This process is continued till two successive approximations of p agree with each other




	[image: image]
	
	Obs. This technique can be equally well be applied by starting with any other interpolation formula.


	
	
	This method is a powerful iterative procedure for finding the roots of an equation to a good degree of accuracy.




EXAMPLE 7.36

The following values of y = f(x) are given

[image: image]

Find the value of x for y = 3000 by iterative method.

Solution:

Taking x0 = 10 and h = 5, the difference table is

[image: image]

Hereyp = 3000, y0 = 1754, Δy0 = 894 and Δ2y0 = 22.

∴The successive approximations to p are

[image: image]

We, therefore, take p = 1.387 correct to three decimal places. Hence the value of x (corresponding to y = 3000) = x0 + ph = 10 + 1.387 × 5 = 16.935.

EXAMPLE 7.37

Using inverse interpolation, find the real root of the equation x3 + x  3= 0, which is close to 1.2.

Solution:

The difference table is

[image: image]

[image: image]

Clearly the root of the given equation lies between 1.2 and 1.3. Assuming the origin at x = 1.2 and using Stirlings formula

[image: image]

This equation can be written a s

[image: image]

Putting x = x(1) on R.H.S. of (i), we get

Second approximation

x(2) = 0.1353  0.067(0.1353)2  1.8797(0.1353)3 = 0.134

Hence the desired root = 1.2 + 0.1 × 0.134 = 1.2134.

Exercises 7.7

 


	Apply Lagranges method to find the value of x when f(x)=5 from the given data:
[image: image]


	Obtain the value of t when A = 85 from the following table, using La-granges method:
[image: image]


	Apply Lagranges formula inversely to obtain the root of the equation f(x) = 0, given that f(30) =  30, f(34) =  13, f(38) = 3 and f(42) = 18.

	From the following data:
[image: image]

find x when y = 5 u sin g the iterative method.


	The equation x3  15x + 4 = 0 ha s a root close to 0.3. Obtain this root upto four decimal places using inverse interpolation.

	Solve the equation x = 10 log x, by iterative method given that 
[image: image]




7.22Objective Type of Questions

 

Exercises 7.8

 

	Select the correct answer or fill up the blanks in the following question:
Newtons back war d interpolation formula is.........


	Bessels formula is most appropriate when p lies between
 (a)  0. 25 an d 0.25(b) 0.25 an d 0.75(c) 0.75 an d 1.00


	Form the divided difference table for the following data:
[image: image]


	Interpolation is the technique of estimating the value of a function for any......

	Bessels formula for interpolation is......

	The four divided differences for x0, x1, x2, x3, x4 =.......

	Stirlings formula is best suited for p lying between......

	Newtons divided differences formula is.......

	Given (x0, y0), (x1, y1), (x2, y2), Lagranges interpolation formula is.......

	If f(0) = 1, f(2) = 5, f(3) = 10 and f(x) = 14, then x =......

	The difference between Lagranges interpolating polynomial and Hermites interpolating polynomial is.......

	If y(1) = 4, y(3) = 12, y(4) = 19 and y(x) = 7, find x using Lagranges formula.

	Extrapolation is defined as.......

	The second divided difference of f (x) = 1/x, with arguments a, b, c is......

	The Gauss-forward interpolation formula is used to interpolate values of y for
(a) 0 < p < 1(b)  1 < 1 < 0

(c) 0 < p <  (d)   < p < 0


	Given
[image: image]

Using Lagranges formula, a polynomial that can be fitted to the data is......


	The nth divided difference of a polynomial of degree n is
(a) zero(b) a constant

(c) a variable(d) none of these.


	The Gauss forward interpolation formula involves
(a)differences above the central line and odd differences on the central line

(b)even differences below the central line and odd differences on the central line

(c)odd differences below the central line and even differences on the central line

(d)odd differences above the central line and even differences on the central line.


	Differentiate between interpolation polynomial and least square polynomial obtained for a set of data.




CHAPTER   8


Numerical Differentiation
and Integration

Chapter Objectives

 


	Numerical differentiation 

	Formulae for derivatives

	Maxima and minima of a tabulated function 

	Numerical integration

	Quadrature formulae 

	Errors in quadrature formulae

	Rombergs method 

	Euler-Maclaurin formula

	Method of undetermined coefficients 

	Gaussian integration

	Numerical double integration 

	Objective type of questions



8.1Numerical Differentiation

 

It is the process of calculating the value of the derivative of a function at some assigned value of x from the given set of values (xi, yi). To compute dy/dx, we first replace the exact relation y = f(x) by the best interpolating polynomial y = φ(x) and then differentiate the latter as many times as we desire. The choice of the interpolation formula to be used, will depend on the assigned value of x at which dy/dx is desired.

If the values of x are equispaced and dy/dx is required near the beginning of the table, we employ Newtons forward formula. If it is required near the end of the table, we use Newtons backward formula. For values near the middle of the table, dy/dx is calculated by means of Stirlings or Bessels formula. If the values of x are not equispaced, we use Lagranges formula or Newtons divided difference formula to represent the function.

Hence corresponding to each of the interpolation formulae, we can derive a formula for finding the derivative.




	[image: image]
	
	Obs. While using these formulae, it must be observed that the table of values defines the function at these points only and does not completely define the function and the function may not be differentiable at all. As such, the process of numerical differentiation should be used only if the tabulated values are such that the differences of some order are constants. Otherwise, errors are bound to creep in which go on increasing as derivatives of higher order are found. This is due to the fact that the difference between f(x) and the approximating polynomial φ(x) may be small at the data points but f ʹ(x)  φʹ(x) may be large.




8.2Formulae for Derivatives

 

Consider the function y = f(x) which is tabulated for the values xi(= x0 + ih), i = 0, 1, 2, ... n.

Derivatives using Newtons forward difference formula

Newtons forward interpolation formula (p. 274) is

[image: image]

Differentiating both sides w.r.t. p, we have

[image: image]

[image: image]

At x = x0, p = 0. Hence putting p = 0,

[image: image]

Again differentiating (1) w.r.t. x, we get

[image: image]

Putting p = 0, we obtain

[image: image]

Otherwise: We know that 1 + Δ = E = ehD

[image: image]

Now applying the above identities to y0, we get

[image: image]

[image: image]

which are the same as (2), (3), and (4), respectively.

Derivatives using Newtons backward difference formula

Newtons backward interpolation formula (p. 274) is

[image: image]

Differentiating both sides w.r.t. p, we get

[image: image]

At x = xn, p = 0. Hence putting p = 0, we get

[image: image]

Again differentiating (5) w.r.t. x, we have

[image: image]

Putting p = 0, we obtain

[image: image]

Otherwise: We know that 1  ∇ = E1 = ehD

[image: image]

Applying these identities to yn, we get

[image: image]

which are the same as (6), (7), and (8).

Derivatives using Stirlings central difference formula

Stirlings formula (p. 289) is

[image: image]

Differentiating both sides w.r.t. p, we get

[image: image]

[image: image]

At x = x0, p = 0. Hence putting p = 0, we get

[image: image]

Derivatives using Bessels central difference formula

Bessels formula (p. 290) is

[image: image]

At x = x0, p = 0. Hence putting p = 0, we get

[image: image]

Derivatives using unequally spaced values of argument

(i) Lagrangess interpolation formula is

[image: image]

Differentiating both sides w.r.t. x, we get f (x).

(ii) Newtons divided difference formula is

[image: image]

Differentiating both sides w.r.t. x, we obtain

[image: image]

EXAMPLE 8.1

Given that

[image: image]

Solution:

(a) The difference table is:

[image: image]

[image: image]

Here h = 0.1, x0 = 1.1, Δy0 = 0.378, Δ2y0 =  0.03 etc.

Substituting these values in (i) and (ii), we get

[image: image]

(b) We use the above difference table and the backward difference operator ∇ instead of Δ.

[image: image]

Here h = 0.1, xn = 1.6, ∇yn = 0.281, ∇2yn =  0.018 etc.

Putting these values in (i) and (ii), we get

[image: image]

[image: image]

EXAMPLE 8.2

The following data gives the velocity of a particle for twenty seconds at an interval of five seconds. Find the initial acceleration using the entire data:

[image: image]

Solution:

The difference table is:

[image: image]

An initial acceleration at [image: image] is required, we use Newtons forward formula:

[image: image]

Hence the initial acceleration is 1 m/sec2.

EXAMPLE 8.3

Find the value of cos (1.74) from the following table:

[image: image]

Solution:

Let y = f (x) = sin x. so that f ʹ(x) = cos x.

The difference table is

[image: image]

Since we require f ʹ(1.74), we use Newtons forward formula

[image: image]

Here h = 0.04, x0 = 1.7, Δy0 =  0.0059, Δ2y0 =  0.0017 etc.

Substituting these values in (i), we get

[image: image]

EXAMPLE 8.4

A slider in a machine moves along a fixed straight rod. Its distance x cm. along the rod is given below for various values of the time t seconds. Find the velocity of the slider and its acceleration when t = 0.3 second.

[image: image]

Solution:

The difference table is:

[image: image]

As the derivatives are required near the middle of the table, we use Stirlings formulae:

[image: image]

Putting these values in (i) and (ii), we get

[image: image]

Hence the required velocity is 5.33 cm/sec and acceleration is  45.6 cm/sec2.

EXAMPLE 8.5

The elevation above a datum line of seven points of a road are given below:

[image: image]

Find the gradient of the road at the middle point.

Solution:

Here h = 300, x0 = 0, y0 = 135, we require the gradient dy/dx at x = 900.

The difference table is

[image: image]

Using Stirlings formula for the first derivative [(9) p. 000], we get

[image: image]

Hence the gradient of the road at the middle point is 0.085.

EXAMPLE 8.6

Using Bessels formula, find fʹ(7.5) from the following table:

[image: image]

Solution:

Taking x0 = 7.50, h = 0.1, we have [image: image]

The difference table is

[image: image]

Using Bessels formula for the first derivative [(11) p. 000], we get

[image: image]

EXAMPLE 8.7

Find f ʹ(10) from the following data:

[image: image]

Solution:

As the values of x are not equispaced, we shall use Newtons divided difference formula. The divided difference table is

[image: image]

Fifth differences being zero, Newtons divided difference formula for the first derivative (p. 274), we get

fʹ(x) = f(x0, x1) + (2x  x0  x1)f(x0, x1, x2)

+ [3x2  2x(x0 + x1 + x2) + x0x1 + x1x2 + x2x0)] × f(x0, x1, x2, x3)

+ [4x3  3x2(x0 + x1 + x2 + x3) + 2x(x0x1 + x1x2 + x2x3 + x3x0 + x1x3 + x0x2)

 (x0x1x2 + x1x2x3 + x2x3x0 + x0x1x3)] f(x0, x1, x2, x3, x4)

Putting x0 = 3, x1 = 5, x2 = 11, x3 = 27 and x = 10, we obtain

f ʹ(0) = 18 + 12 × 16 + 23 × 0.998  426 × 0.0002 = 232.869.

8.3Maxima and Minima of a Tabulated Function

 

Newtons forward interpolation formula is

[image: image]

Differentiating it w.r.t. p, we get

[image: image]

For maxima or minima, dy/dp = 0. Hence equating the right-hand side of (1) to zero and retaining only up to third differences, we obtain

[image: image]

Substituting the values of Δy0, Δ2y0, Δ3y0 from the difference table, we solve this quadratic for p. Then the corresponding values of x are given by x = x0 + ph at which y is maximum or minimum.

EXAMPLE 8.8

From the table below, for what value of x, y is minimum? Also find this value of y.

[image: image]

Solution:

The difference table is

[image: image]

Taking x0 = 3, we have y0 = 0.205, Δy0 = 0.035, Δ2y0 =  0.016 and Δ3y0 = 0.

∴ Newtons forward difference formula gives

[image: image]

Differentiating it w.r.t. p, we have

[image: image]

For y to be minimum, dy/dp = 0

∴ 0.035  0.008(2p  1) = 0

which gives p = 2.6875

∴ x = x0 + ph = 3 + 2.6875 × 1 = 5.6875.

Hence y is minimum when x = 5.6875.

Putting p = 2.6875 in (i), the minimum value of y

[image: image]

EXAMPLE 8.9

Find the maximum and minimum value of y from the following data:

[image: image]

Solution:

The difference table is

[image: image]

[image: image]

Newtons forward difference formula for the first derivative gives

[image: image]

[image: image]

Thus y is maximum for x = 0, and maximum value = y(0) = 0.

Also y is minimum for x = 1 and minimum value = y(0) =  0.25

Exercises 8.1

 


	Find yʹ (0) and y (0) from the following table:
[image: image]


	Find the first, second and third derivatives of f(x) at x = 1.5 if
[image: image]


	Find the first and second derivatives of the function tabulated below, at the point x = 1.1:
[image: image]


	Given the following table of values of x and y
[image: image]


	For the following values of x and y, find the first deriva-tive at x = 4.
[image: image]


	Find the derivative of f(x) at x = 0.4 from the fol-lowing table:
[image: image]


	From the following table, find the values of dy/dx and d2y/dx2 at x = 2.03.
[image: image]


	Given sin 0 = 0.000, sin 10 = 0.1736, sin 20 = 0.3420, sin 30 = 0.5000, sin 40 = 0.6428,
(a) find the value of sin 23,

(b) find the numerical value of cos x at x = 10

(c) find the numerical value of d2y/dx2 at x = 20 for y = sin x.


	The population of a certain town is given below. Find the rate of growth of the population in 1961 from the following table
[image: image]

Estimate the population in the years 1976 and 2003. Also find the rate of growth of population in 1991.


	The following data gives corresponding values of pressure and specific vo-lume of a superheated steam.
[image: image]

Find the rate of change of

(i) pressure with respect to volume when v = 2,

(ii) volume with respect to pressure when p = 105.


	The table below reveals the velocity v of a body during the spe-cified time t find its acceleration at t = 1.1?
[image: image]


	The following table gives the velocity v of a particle at time t. Find its acceleration at t = 2.
[image: image]


	A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of the time t second.
[image: image]

Calculate the angular velocity and the angular acceleration of the rod, when t = 0.6 second.


	Find dy/dx at x = 1 from the following table by con-structing a central difference table:
[image: image]


	Find the value of f ʹ(x) at x = 0.04 from the following table using Bessels formula.
[image: image]


	If y = f(x) and yn denotes f(x0 + nh), prove that, if powers of h above h6 are neglected.
[image: image]

[HINT: Differentiate Stil-ings formula w.r.t. x, and put x = 0]


	Find the value of f ʹ(8) from the table given below:
[image: image]


	Given the following pairs of values of x and y:
[image: image]

Determine numerically dy/dx at x = 4.


	Find f ʹ (6) from the following data:
[image: image]


	Find the maximum and minimum value of y from the following table:
[image: image]


	Using the following data, find x for which y is minimum and find this value of y.
[image: image]


	Find the value of x for which f (x) is maximum, using the table
[image: image]

Also find the maximum value of f (x).




8.4Numerical Integration

 

The process of evaluating a definite integral from a set of tabulated values of the integrand f(x) is called numerical integration. This process when applied to a function of a single variable, is known as quadrature.

The problem of numerical integration, like that of numerical differentiation, is solved by representing f(x) by an interpolation formula and then integrating it between the given limits. In this way, we can derive quadrature formulae for approximate integration of a function defined by a set of numerical values only.

8.5Newton-Cotes Quadrature Formula

 

[image: image]

where f(x) takes the values y0, y1, y2, ⋯ yn for x = x0, x1, x2, ⋯ xn.

Let us divide the interval (a, b) into n sub-intervals of width h so that x0 = a, x1 = x0 + h, x2 = x0 + 2h, ⋯ .xn = x0 + nh = b. Then

[image: image]

Figure 8.1

[image: image]

Integrating term by term, we obtain

[image: image]

[image: image]

This is known as Newton-Cotes quadrature formula. From this general formula, we deduce the following important quadrature rules by taking n = 1, 2, 3, ⋯

I. Trapezoidal rule. Putting n = 1 in (1) and taking the curve through (x0, y0) and (x1, y1) as a straight line (Figure 8.2) i.e., a polynomial of first order so that differences of order higher than first become zero, we get

[image: image]

Figure 8.2

[image: image]

Adding these n integrals, we obtain

[image: image]

This is known as the trapezoidal rule.




	[image: image]
	
	Obs. The area of each strip (trapezium) is found separately. Then the area under the curve and the ordinates at x0 and xn is approximately equal to the sum of the areas of the n trapeziums.




II. Simpsons one-third rule. Putting n = 2 in (1) above and taking the curve through (x0, y0), (x1, y1), and (x2, y2) as a parabola (Figure 8.3), i.e., a polynomial of the second order so that differences of order higher than the second vanish, we get

[image: image]

Figure 8.3

[image: image]

Adding all these integrals, we have when n is even

[image: image]

This is known as the Simpsons one-third rule or simply Simpsons rule and is most commonly used.




	[image: image]
	
	Obs. While applying (3), the given interval must be divided into an even number of equal subintervals, since we find the area of two strips at a time.




III. Simpsons three-eighth rule. Putting n = 3 in (1) above and taking the curve through (xi, yi): i = 0, 1, 2, 3 as a polynomial of the third order (Figure 8.4) so that differences above the third order vanish, we get

[image: image]

Figure 8.4

[image: image]

[image: image]

Adding all such expressions from x0 to x0 + nh, where n is a multiple of 3, we obtain

[image: image]




	[image: image]
	
	Obs. While applying (4), the number of sub-intervals should be taken as a multiple of 3.




IV. Booles rule. Putting n = 4 in (1) above and taking the curve (xi, yi), i = 0, 1, 2, 3, 4 as a polynomial of the fourth order (Figure 8.5) and neglecting all differences above the fourth, we obtain

[image: image]

Figure 8.5

[image: image]

Adding all these integrals from x0 to x0 + nh, where n is a multiple of 4, we get

[image: image]

This is known as Booles rule.




	[image: image]
	
	Obs. While applying (5), the number of sub-intervals should be taken as a multiple of 4.




V. Weddles rule. Putting n = 6 in (1) above and neglecting all differences above the sixth, we obtain

[image: image]

[image: image]

Adding all these integrals from x0 to x0 + nh, where n is a multiple of 6, we get

[image: image]

This is known as Weddles rule.




	[image: image]
	
	Obs. While applying (6), the number of sub-intervals should be taken as a multiple of 6. Weddles rule is generally more accurate than any of the others. Of the two Simpson rules, the 1/3 rule is better.




EXAMPLE 8.10

Evaluate [image: image] by using

(i) Trapezoidal rule,

(ii) Simpsons 1/3 rule,

(iii) Simpsons 3/8 rule, 

(iv) Weddles rule and compare the results with its actual value.

Solution:

Divide the interval (0, 6) into six parts each of width h = 1. The values of [image: image] are given below:

[image: image]

 (i) By Trapezoidal rule,

[image: image]

(ii) By Simpsons 1/3 rule,

[image: image]

(iii) By Simpsons 3/8 rule,

[image: image]

(iv) By Weddles rule,

[image: image]

This shows that the value of the integral found by Weddles rule is the nearest to the actual value followed by its value given by Simpsons 1/3 rule.

EXAMPLE 8.11

Evaluate the integral [image: image] using Simpsons 1/3 rule. Compare the error with the exact value.

Solution:

Let us divide the interval (0, 1) into 4 equal parts so that h = 0.25. Taking [image: image] we have

[image: image]

By Simpsons 1/3 rule, we have

[image: image]

EXAMPLE 8.12

Use the Trapezoidal rule to estimate the integral [image: image] taking the number 10 intervals.

Solution:

Let y = ex2 , h = 0.2 and n = 10.

The values of x and y are as follows:

[image: image]

By the Trapezoidal rule, we have

[image: image]

EXAMPLE 8.13

Use Simpsons 1/3rd rule to find [image: image] by taking seven ordinates.

Solution:

Divide the interval (0, 0.6) into six parts each of width h = 0.1. The values of [image: image] are given below:

[image: image]

By Simpsons 1/3rd rule, we have

[image: image]

EXAMPLE 8.14

Compute the value of [image: image] using Simpsons 3/8 rule.

Solution:

Let y = sin x  loge x + ex and h = 0.2, n = 6.

The values of y are as given below:

[image: image]

By Simpsons 3/8 rule, we have

[image: image]

[image: image]




	[image: image]
	
	Obs. Applications of Simpsons rule. If the various ordinates in Section 8.5 represent equispaced cross-sectional areas, then Simpsons rule gives the volume of the solid. As such, Simpsons rule is very useful to civil engineers for calculating the amount of earth that must be moved to fill a depression or make a dam. Similarly if the ordinates denote velocities at equal intervals of time, the Simpsons rule gives the distance travelled. The following Examples illustrate these applications.




EXAMPLE 8.15

The velocity v(km/min) of a moped which starts from rest, is given at fixed intervals of time t (min) as follows:

[image: image]

Estimate approximately the distance covered in twenty minutes.

Solution:

[image: image]

EXAMPLE 8.16

The velocity v of a particle at distance s from a point on its linear path is given by the following table:

[image: image]

Estimate the time taken by the particle to traverse the distance of 20 meter, using Booles rule.

Solution:

[image: image]

∴ By Booles Rules, we have

[image: image]

EXAMPLE 8.17

A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the lines x = 0 and x = 1 and a curve through the points with the following co-ordinates:

[image: image]

Estimate the volume of the solid formed using Simpsons rule.

Solution:

Here h = 0.25, y0 = 1, y1 = 0.9896, y2 = 0.9589 etc.

∴ Required volume of the solid generated

[image: image]

Exercises 8.2

 


	Use trapezoidal rule to evaluate [image: image] considering five sub-intervals.

	Evaluate [image: image] applying
 (i) Trapezoidal rule 

 (ii) Simpsons 1/3 rule

(iii) Simpsons 3/8 rule.


	Evaluate [image: image] using 
(i) Trapezoidal rule taking h = 1/4.

(ii) Simpsons 1/3rd rule taking h = 1/4.

(iii) Simpsons 3/8th rule taking h = 1/6.

(iv) Weddles rule taking h = 1/6.

Hence compute an approximate value of o in each case.


	Find an approximate value of loge 5 by calculating to four de-cimal places, by Simpsons 1/3 rule, [image: image] dividing the range into ten equal parts.

	Evaluate [image: image] by Simpsons rule, given that 
e = 2.72, e2 = 7.39, e3 = 20.09, e4 = 54.6

and compare it with the actual value.


	Find [image: image] using Simpsons 1/3 rule.

	Evaluate [image: image] using Simpsons rule. (Take h = 0.25)

	Evaluate using Simpsons 1/3 rule,
[image: image]


	Evaluate by Simpsons 3/8 rule:
[image: image]


	Given that
[image: image]

(a) Trapezoidal rule

(b) Simpsons 1/3 rule,

(c) Simpsons 3/8 rule,

(d) Weddles rule.

Also find the error in each case.


	Use Booles five point formula to compute [image: image]

	The table below shows the temperature f (t) as a function of time:
[image: image]


	A curve is drawn to pass through the points given by the following table:
[image: image]

Estimate the area bounded by the curve, x-axis and the lines x = 1, x = 4.


	A river is 80 feet wide. The depth d in feet at a distance x feet. from one bank is given by the following table:
[image: image]


	Find approximately the area of the cross-section.
A curve is drawn to pass through the points given by the following table:

[image: image]

Using Weddles rule, estimate the area bounded by the curve, the x-axis, and the lines x = 1, x = 4.


	A curve is given by the table:
[image: image]

The x-coordinate of the C.G. of the area bounded by the curve, the end ordinates, and the x-axis is given by [image: image] where A is the area. Find x by using Simpsons rule.


	A body is in the form of a solid of revolution. The diameter D in cms of its sections at distances x cm. from one end are given below. Estimate the volume of the solid.
[image: image]


	The velocity v of a particle at distance s from a point on its path is given by the table:
[image: image]

Estimate the time taken to travel sixty feet by using Simpsons 1/3 rule. Compare the result with Simpsons 3/8 rule.


	The following table gives the velocity v of a particle at time t:
[image: image]

Find the distance moved by the particle in twelve seconds and also the acceleration at t = 2 sec.


	A rocket is launched from the ground. Its acceleration is registered during the first eighty seconds and is given in the table below. Using Simp-sons 1/3 rule, find the velocity of the rocket at t = 80 seconds.
[image: image]


	A reservoir discharging water through sluices at a depth h below the water surface has a surface area A for various values of h as given below:
[image: image]

If t denotes time in minutes, the rate of fall of the surface is given by dh/dt =  48√ h/A.

Estimate the time taken for the water level to fall from fourteen to ten feet above the sluices.




8.6Errors in Quadrature Formulae

 

The error in the quadrature formulae is given by

[image: image]

where P(x) is the polynomial representing the function y = f(x), in the interval [a, b].

Error in Trapezoidal rule. Expanding y = f(x) around x = x0 by Taylors series, we get

[image: image]

Also A1 = area of the first trapezium in the interval [image: image]

Putting x = x0 + h and y = y1 in (1), we get [image: image]

Substituting this value of y1 in (3), we get

[image: image]

[image: image]

[image: image]

Hence the error in the trapezoidal rule is of the order h2.

Error in Simpsons 1/3 rule. Expanding y = f(x) around x = x0 by Taylors series, we get (1).

∴ Over the first doubt strip, we get

[image: image]

Also A1 = area over the first doubt strip by Simpsons 1/3 rule

[image: image]

Putting x = x0 + h and y = y1 in (1), we get

[image: image]

Again putting x = x0 + 2h and y = y2 in (1), we have

[image: image]

Substituting these values of y1 and y2 in (7), we get

[image: image]

∴ Error in the interval [x0, x2]

[image: image]

i.e., Principal part of the error in [x0, x2]

[image: image]

Similarly principal part of the error in [image: image]

Hence the total error [image: image]

Assuming the yiv(X) is the largest of y0iv, y2iv, ..., yiv2n2, we get

[image: image]

i.e., the error in Simpsons 1/3 -rule is of the order h4.

Error in Simpsons 3/8 rule. Proceeding as above, here the principal part of the error in the interval [x0, x3]

[image: image]

Error in Booles rule. In this case, the principal part of the error in the interval

[image: image]

Error in Weddles rule. In this case, principle part of the error in the interval

[image: image]

8.7Rombergs Method

 

In Section 8.5, we have derived approximate quadrature formulae with the help of finite differences method. Rombergs method provides a simple modification to these quadrature formulae for finding their better approximations. As an illustration, let us improve upon the value of the integral

[image: image]

by the Trapezoidal rule. If I1, I2 are the values of I with sub-intervals of width h1, h2 and E1, E2 their corresponding errors, respectively, then

[image: image]

Since [image: image] is also the largest value of y(x) we can reasonably assume that y(x) and [image: image] are very nearly equal.

[image: image]

which is a better approximation of I.

[image: image]

Now we use the trapezoidal rule several times successively halving h and apply (4) to each pair of values as per the following scheme:

[image: image]

The computation is continued until successive values are close to each other. This method is called Richardsons deferred approach to the limit and its systematic refinement is called Rombergs method.

EXAMPLE 8.18

Evaluate [image: image] correct to three decimal places using Rombergs method. Hence find the value of loge 2.

Solution:

Taking h = 0.5, 0.25, and 0.125 successively, let us evaluate the given integral by the Trapezoidal rule.

(i) When h = 0.5, the values of y = (1 + x)1 are:

[image: image]

(ii) When h = 0.25, the values of y = (1 + x)1 are:

[image: image]

[image: image]

(iii) When h = 0.125, the values of y = (1 + x)1 are:

[image: image]

Using Rombergs formulae, we obtain

[image: image]

Hence from (i) and (ii), we have

loge 2 = 0.693.

EXAMPLE 8.19

Use Rombergs method to compute [image: image] correct to four decimal places.

Solution:

We take h = 0.5, 0.25 and 0.125 successively and evaluate the given integral using the Trapezoidal rule.

(i) When h = 0.5, the values of y = (1 + x2)1 are

[image: image]

[image: image]

(ii) When h = 0.25, the values of y = (1 + x2)1 are

[image: image]

(iii) When h = 0.125, we find that I = 0.7848

Thus we have

I(h) = 0.7750, I(h/2) = 0.7828, I(h/4) = 0.7848

Now using (4) above, we obtain

[image: image]

∴ The table of these values is

0.7750

0.7854

0.78280.7855

0.7855

0.7848

Hence the value of the integral = 0.7855.

EXAMPLE 8.20

Evaluate the integral [image: image] using Rombergs method, correct to three decimal places.

Solution:

Taking h = 0.25, 0.125, 0.0625 successively, let us evaluate the given integral by using Simpsons 1/3 rule.

(i) When h = 0.25, the values of [image: image] are

[image: image]

∴ By Simpsons rule,

[image: image]

(ii) When h = 0.125, the values of y are

[image: image]

∴ By Simpsons rule

[image: image]

(iii) When h = 0.0625, the values of y are

[image: image]

∴ By Simpsons rule:

[image: image]

Using Rombergs formulae, we obtain

[image: image]

8.8Euler-Maclaurin Formula

 

Taking ΔF(x) = f(x), we define the inverse operator Δ1 as

[image: image]

Adding all these, we get

[image: image]

where x0, x1, ....., xn are the (n + 1) equispaced values of x with difference h.

From (1), we have

[image: image]

Putting x = xn and x = x0 in (3) and then subtracting, we get

[image: image]

∴ From (2) and (4), we have

[image: image]

which is called the Euler-Maclaurin formula.




	[image: image]
	
	Obs. The first term on the right-hand side of (5) represents the approximate value of the integral obtained from trapezoidal rule and the other terms denote the successive corrections to this value. This formula is often used to find the sum of a series of the form




y(x0) + y(x0 + h) + ... + y(x0 + nh).

EXAMPLE 8.21

Using the Euler-Maclaurin formula, find the value of loge 2 from [image: image] 

Solution:

[image: image]

Then the Euler-Maclaurin formula gives

[image: image]

EXAMPLE 8.22

Apply the Euler-Maclaurin formula to evaluate

[image: image]

Solution:

Taking [image: image], x0 = 51, h = 2, n = 24, we have [image: image]

Then the Euler-Maclaurin formula gives

[image: image]

8.9Method of Undetermined Coefficients

 

This method is based on imposing certain conditions on a preassigned formula involving certain unknown coefficients and then using these conditions for evaluating these unknown coefficients. Assuming the formula to be exact for the polynomials 1, x, ⋯, xn respectively and taking yi for y(xi), we shall determine the unknown coefficients to derive the formulae.

Differentiation formulae. We first derive the two-term formula by assuming

 y0ʹ = a0y0 + a1y1(1)

where the unknown constants a0, a1 are determined by making (1) exact for y(x) = 1 and x respectively.

So, putting y(x) = 1, x successively in (1), we get

[image: image]

The three-term formula can be derived by taking

[image: image]

where the unknowns a1, a0, a1 are determined by making (3) exact for y(x) = 1, x, x2, respectively.

[image: image]

To solve these equations, we shift the origin to x0 i.e., x0 = 0. As such, being slope of the tangent to the curve y = f(x) at x = x0 remains unaltered. Thus the equations reduce to

[image: image]

Similarly for second order derivative, taking

[image: image]

and making it exact for y(x) = 1, x, x2 and putting x0 = 0, we get

[image: image]

Integration formulae. The two-term formula is derived by assuming

[image: image]

where the unknowns a0, a1 are determined by making (6) exact for y(x) = 1, x respectively.

So putting y(x) = 1, x successively in (6), we get

[image: image]

To solve these, we shift the origin to x0 and take x0 = 0.

∴ The above equations reduce to

[image: image]

The three-term formula is derived by assuming

[image: image]

where the unknowns a1, a0, a1 are determined by making (8) exact for y(x) = 1, x, x2 respectively.

So putting y = 1, x, x2 successively in (8), we obtain

[image: image]

To solve these equations, we shift the origin to x0 and take x0 = 0.

∴ The above equations reduce to

[image: image]

8.10Gaussian Integration

 

So far the formulae derived for evaluation of [image: image] required the values of the function at equally spaced points of the interval. Gauss derived a formula which uses the same number of functional values but with different spacing and yields better accuracy.

Gauss formula is expressed as

[image: image]

where wi and xi are called the weights and abscissae, respectively. The abscissae and weights are symmetrical with respect to the middle point of the interval. There being 2n unknowns in (1), 2n relations between them are necessary so that the formula is exact for all polynomials of degree not exceeding 2n  1. Thus we consider

[image: image]

Substituting these values on the right hand side of (1), we obtain

[image: image]

But the equations (3) and (4) are identical for all values of ci, hence comparing coefficients of ci , we obtain 2n equations in 2n unknowns wi and xi (i = 1, 2, ......, n).

[image: image]

The solution of the above equations is extremely complicated. It can however, be shown that xi are the zeros of the (n + 1)th Legendre polynomial.

Gauss formula for n = 2 is

[image: image]

Then the equations (5) become

[image: image]

Solving these equations, we obtain

[image: image]

Thus Gauss formula for n = 2 is

[image: image]

which gives the correct value of the integral of f(x) in the range ( 1, 1) for any function up to third order. Equation (6) is also known as Gauss-Legendre formula.

Gauss formula for n = 3 is

[image: image]

which is exact for polynomials upto degree 5.

The abscissae xi and the weights wi in (1) are tabulated for different values of n. The following table lists the abscissae and weights for values of n from 2 to 5.

Table 8.1Gauss integration: Abscissae and Weights

[image: image]

Gauss formula imposes a restriction on the limits of integration to be from  1 to 1.

In general, the limits of the integral [image: image] are changed to  1 to 1 by means of the transformation

[image: image]

EXAMPLE 8.23

Evaluate [image: image]

using Gauss formula for n = 2 and n = 3.

Solution:

(i) Gauss formula for n = 2 is

[image: image]

(ii) Gauss formula for n = 3 is

[image: image]

EXAMPLE 8.24

Using the three-point Gaussian quadrature formula, evaluate [image: image] 

Solution:

We first change the limits (0, 1) to  1 to 1 by (8) above, so that

[image: image]

Gauss-formula for n = 3 is

[image: image]

[image: image]

Otherwise (using the table):

[image: image]

Using the abscissae and weights corresponding to n = 3 in the above table, we obtain

[image: image]

EXAMPLE 8.25

Evaluate [image: image] by the Gaussian three-point formula.

Solution:

Changing the limits of integration 0 to 2 to  1 to 1 by

[image: image]

Using the three-point Gaussian formula, we have

[image: image]

Solution:

Changing the limits of integration (0.2 to 1.5) to ( 1, 1) by

[image: image]

Using the Gauss three-point formula, we have

[image: image]

Exercises 8.3

 


	Obtain an estimate of the number of sub-intervals that should be chosen so as to guarantee that the error committed in evaluating [image: image] by trapezoidal rule is less than 0.001.

	Evaluate [image: image] using the Rombergs method. Hence obtain an approximate value of .

	Apply Rombergs method to evaluate [image: image]logx dx, given that
[image: image]


	Using the Euler-Maclaurin formula, find the value of [image: image]sin x dx correct to five decimal places.

	Using the Euler-Maclaurin formula, prove that
[image: image]


	Apply the Euler-Maclaurin formula, to evaluate
[image: image]


	Assuming that [image: image] derive the quadrature formula, using the method of un-determined coefficients.

	Using the Gaussian two-point formula compute
[image: image]


	Using three point Gaussian quadrature formula, evaluate:
[image: image]


	Evaluate the following, integrals, using the Gauss three-point formula:
[image: image]


	Using the four point Gauss formula, compute [image: image] correct to four decimal places.



8.11Numerical Double Integration

 

The double integral

[image: image]

is evaluated numerically by two successive integrations in x and y directions considering one variable at a time. Repeated application of trapezoidal rule (or Simpsons rule) yields formulae for evaluating I.

Trapezoidal rule. Dividing the interval (a, b) into n equal sub-intervals each of length h and the interval (c, d) into m equal sub-intervals each of length k, we have:

xi = x0 + ih, x0 = a, xn = b.

yj = y0 + jk, y0 = c, ym = d.

Using trapezoidal rule in both directions, we get

[image: image]

Simpsons rule. We divide the interval (a, b) into 2n equal sub-intervals each of length h and the interval (c, d) into 2m equal sub-intervals each of length k. Then applying Simpsons rule in both directions, we get

[image: image]

Adding all such intervals, we obtain the value of I.

EXAMPLE 8.27

Using trapezoidal rule, evaluate [image: image] taking four sub-intervals.

Solution:

Taking h = k = 0.25 so that m = n = 4, we obtain

[image: image]

EXAMPLE 8.28

Apply Simpsons rule to evaluate the integral

[image: image]

Solution:

Taking h = 0.2 and k = 0.3 so that m = n = 2, we get

[image: image]

Exercises 8.4

 

	Evaluate [image: image] using the Trapezoidal rule (h = k = 0.5).

	Apply the Trapezoidal rule to evaluate
(a) [image: image] taking two sub-intervals.

(b) [image: image] taking h = k = 0.25.


	Evaluate [image: image] the Trapezoidal rule for the following data:
[image: image]


	Using the Trapezoidal and Simpsons rules, evaluate
[image: image] taking two sub-intervals.


	Using Simpsons rule, evaluate 
[image: image]




8.12Objective Type of Questions

 

Exercises 8.5

 

Select the correct answer or fill up the blanks in the following questions:

	The value of [image: image] by Simpsons rule is
(a) 0.96315 (b) 0.63915

(c) 0.69315 (d) 0.69351.


	Using forward differences, the formula for f ʹ(a) = ....... .

	In application of Simpsons 1/3rd rule, the interval h for closer approximation should be ...... .

	f(x) is given by
[image: image]

then using Trapezoidal rule, the value of [image: image] is...... .


	If 
[image: image]

then the value of [image: image] by Simpsons 1/3rd rule is .... .


	Simpsons 3/8 rule states that ..... .

	For the data:
[image: image]

the value of [image: image] when computed by Simpsons 1/3 rule is

(a) 15 (b) 10(c) 0 (d) 5.


	While evaluating a definite integral by Trapezoidal rule, the accuracy can be increased by taking ..... .

	The value of [image: image] by Simpsons 1/3 rule (taking n = 1/4) is ..... .

	For the data:
[image: image]

[image: image] when found by the Trapezoidal rule is

(a) 18 (b) 25(c) 16 (d) 32.


	Given f00, f01, f02, f10, f11, f12, f20, f21, f22; then the Trapezoidal rule for evaluating [image: image] is

	Gaussian two-point quadrature formula states that ....... .

	The expression for [image: image] using backward differences is ..... .

	The number of strips required in Weddles rule is ...... .

	The error involved in Simpsons 1/3 rule is
[image: image]


	The expression for Romberg integration is I = ......

	The number of strips required in Simpsons 3/8 rule is a multiple of
(a) 1(b) 2(c) 3 (d) 6.


	Add two terms to the EulerMaclaurin formula
[image: image]


	By the Gauss three-point formula, [image: image] 

	The order of error in the Trapezoidal rule and Simpsons 1/3 rule is ..... and ....., respectively

	If [image: image] and then using the Trapezoidal rule, [image: image].

	The total error E in Trapezoidal rule = ...... .

	Using Simpsons 1/3 rule, [image: image] (taking n = 4)
If y0 = 1, y1 = 0.5, y2 = 0.2, y3 = 0.1, y4 = 0.06, y5 = 0.04 and y6 = 0.03, then [image: image] by Simpsons 3/8 rule = .......


	If f (0) = 1, f (1) = 2.7, f (2) = 7.4, f (3) = 20.1, f (4) = 54.6 and h = 1, then [image: image] by Simpsons 1/3 rule = ..... .

	Simpsons 1/3 rule and direct integration give the same result if ...... .

	Whenever the Trapezoidal rule is applicable, Simpsons 1/3 rule can also be applied.(True or False)
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Difference Equations
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9.1Introduction

 

Difference calculus also forms the basis of Difference equations. These equations arise in all situations in which sequential relation exists at various discrete values of the independent variable. The need to work with discrete functions arises because there are physical phenomena which are inherently of a discrete nature. In control engineering, it often happens that the input is in the form of discrete pulses of short duration. The radar tracking devices receive such discrete pulses from the target which is being tracked. As such difference equations arise in the study of electrical networks, in the theory of probability, in statistical problems, and many other fields.

Just as the subject of Differential equations grew out of Differential calculus to become one of the most powerful instruments in the hands of a practical mathematician when dealing with continuous processes in nature, so the subject of Difference equations is forcing its way to the forefront for the treatment of discrete processes. Thus the difference equations may be thought of as the discrete counterparts of the differential equations.

9.2Definition

 

A difference equation is a relation between the differences of an unknown function at one or more general values of the argument.

Thus  Δy(n+1) + y(n) = 2 (1)

and Δy(n+1) + Δ2y(n1) = 1 (2)

are difference equations.

An alternative way of writing a difference equation is as under:

Since Δy(n+1) = y(n+2)  y(n+1), therefore (1) may be written as

y(n+2)  y(n+1) + y(n) = 2 (3)

Also since, Δ2y(n1) = y(n+1)  2y(n) + y(n1), therefore (2) takes the form:

 y(n+2)  2y(n) + y(n1) = 1(4)

Quite often, difference equations are met under the name of recurrence relations.

Order of a difference equation is the difference between the largest and the smallest arguments occurring in the difference equation divided by the unit of increment.

Thus (3) above is of the second order, for

[image: image]




	[image: image]
	
	Obs. While finding the order of a difference equation, it must always be expressed in a form free of Δs, for the highest power of Δ does not give order of the difference equation.




Solution of a difference equation is an expression for y(n) which satisfies the given difference equation.

The general solution of a difference equation is that in which the number of arbitrary constants is equal to the order of the difference equation.

A particular solution (or particular integral) is that solution which is obtained from the general solution by giving particular values to the constants.

9.3Formation of Difference Equations

 

The following examples illustrate the way in which difference equations arise and are formed.

EXAMPLE 9.1

Form the difference equation corresponding to the family of curves

(1) y = ax + bx2(2) yn = a sin nθ + b cos nθ(i)

Solution:

[image: image]

Substituting these values of a and b in (i), we get

[image: image]

This is the desired difference equation which may equally well be written in terms of E as

(x2 + x)yx+2  (2x2 + 4x)yx+1 + (x2 + 3x + 2)yx = 0

(ii)  yn = a sin nθ + b cos nθ

∴  yn + 1 = a sin (n + 1)θ + b cos (n + 1) θ

and yn + 2 = a sin(n + 2) θ + b cos (n + 2) θ

Thus yn + 2 + yn = a[sin (n + 2) θ + sin nθ] + b[cos (n + 2) θ + cos nθ]

= 2a sin (n + 1) θ cos θ + 2b cos (n + 1) θ cos θ

= 2cos θ [a sin (n + 1) θ + b cos (n + 1) θ]

= 2 cos θ (yn + 1)

Hence yn + 2  2 yn + 1 cos θ + yn = 0.

EXAMPLE 9.2

From yn = A2n + B( 3)n, derive a difference equation by eliminating the constants.

Solution:

We haveyn = A.2n + B( 3)n, yn+1 = 2A.2n  3B( 3)n

and  yn+ 2 = 4A.2n + 9B( 3)n.

Eliminating A and B, we get

[image: image]

which is the desired difference equation.

EXAMPLE 9.3

Show that n circles drawn in a plane so that each circle intersects all the others and no three circles meet in a point, divide the plane into n2  n + 2 parts.

Solution:

Let yn denote the number of subregions into which the entire plane is divided by n circles. When (n + 1)th circle is drawn to intersect each of the previous n circles, 2n more subregions are added to yn subregions.

i.e., yn + 1 = yn + 2n

∴ The diffference equation satisfied by yn is

yn + 1  yn = 2n i.e., Δyn = 2[n]1

[image: image]

Obviously when n = 1, yn = 2

Putting n = 1 in (i), we get 2 = 1 (1  1) + c i.e., c = 2.

Hence yn = n(n  1) + 2.

Exercises 9.1

 

	Write the difference equation Δ3yx + Δ2yx + Δyx + yx = 0 in the subscript notation.

	Assuming [image: image] find the difference equations satisfied by yn.

	Form a difference equation by eliminating arbitrary constant from un = a2n + 1.

	Find the difference equation satisfied by
[image: image]


	Derive the difference equations in each of the following cases: 
(i) yn = A.3n + B.5n. (ii) yx = (A + Bx)2x.


	Form the difference equations generated by 
(i) yx = ax + b2x (ii) yn = a2n + b( 2)n

(iii) yx = a2x + b3x + c.


	Show that n straight lines, no two of which are parallel and no three of which meet in a point, divide the plane into [image: image] parts.


9.4Linear Difference Equations

 

Def. A linear difference equation is that in which yn+1, yn+2, etc. occur to the first degree only and are not multiplied together.

A linear difference equation with constant coefficients is of the form

yn+r + a1yn+r1 + a1yn+r2 + ... + aryn = f(n) (1)

where a1, a2, ... , ar are constants.

Now we shall deal with linear difference equations with constant coefficients only. Their properties are analogous to those of linear differential equations with constant co-efficients.

Elementary properties. If u1(n), u2(n), ... , ur(n) are r independent solutions of the equation

yn+r + a1yn+r1...+ aryn = 0(2)

then its complete solution is Un = c1u1(n) + c2u2(n) + ⋯+ crur(n)

where c1, c2, ... , cr are arbitrary constants.

If Vn is a particular solution of (1), then the complete solution of (1) is yn = Un + Vn.

The part Un is called the complementary function (C.F.) and the part Vn is called the particular integral (P.I.) of (1).

Thus the complete solution (C.S.) of (1) is yn = C.F. + P.I.


9.5Rules for Finding the Complementary Function

 

(i.e., rules to solve a linear difference equation with constant coefficients having right hand side zero)

1. To begin with, consider the first order linear equation yn+1  yn = 0, where  is a constant.

Rewriting it as [image: image] which gives yn/n = c, a constant.

Thus the solution of (E  ) yn = 0 is yn = c.n.

2. Now consider the second order linear equation yn+2 + ayn+1 + byn = 0 which in symbolic form is

(E2 + aE + b)yn = 0(1)

Its symbolic co-efficient equated to zero i.e., E2 + aE + b = 0

is called the auxiliary equation. Let its roots be 1, 2.

Case I. If these roots are real and distinct, then (1) is equivalent to

(E  1)(E  2)yn = 0 (2)

or  (E  2)(E  1)yn = 0 (3)

If yn satisfies the subsidiary equation (E  2)yn = 0, then it will also satisfy (3).

Similarly, if yn satisfies the subsidiary equation (E  2)yn = 0, then it will also satisfy (2).

∴ It follows that we can derive two independent solutions of (1), by solving the two subsidiary equations

(E  1)yn = 0 and (E  2)yn = 0

Their solutions are respectively, yn = c1(1)n and yn = c2(2)n

where c1, c2 are arbitrary constants.

Thus the general solution of (1) is yn = c1(1)n + c2(2)n.

Case II. If the roots are real and equal (i.e., 1 = 2), then (2) becomes

(E  1)2yn = 0 (4)

Let  yn = (1)nzn,

where zn is a new dependent variable. Then (4) takes the form

[image: image]

Thus the solution of (1) becomes yn = (c1 + c2n)(1)n.

Case III. If the roots are imaginary, (i.e. 1 =  + i, 2 =   i), then the solution of (1)

[image: image]

(3) In general, to solve the equation yn+r + a1yn+r1 + a2yn+r2 + ... + aryn = 0 where as are constants:

 (i) Write the equation in the symbolic form (Er + a1Er1 + ... + ar)yn = 0.

 (ii) Write down the auxiliary equation i.e., Er + a1Er1 ... + ar = 0 and solve it for E.

(iii) Write the solution as follows:

[image: image]

EXAMPLE 9.4

Solve the difference equation un+3  2un+2  5un+1 + 6un = 0.

Solution:

Given equation in symbolic form is (E3  2E2  5E + 6)un = 0

∴ Its auxiliary equation is E3  2E2  5E + 6 = 0

or  (E  1)(E + 2)(E  3) = 0. ∴ E = 1,  2, 3.

Thus the complete solution is un = c1(1)n + c2( 2)n + c3(3)n.

EXAMPLE 9.5

Solve un+2  2un+1 + un = 0.

Solution:

Given difference equation in symbolic form is (E2  2E + 1)un = 0.

∴ Its auxiliary equation is E2  2E + 1 = 0

or (E  1)2 = 0. ∴ E = 1, 1

Thus the required solution is un = (c1 + c2n)(1)n, i.e., un = c1 + c2n.

EXAMPLE 9.6

Solve yn+1  2yn cos  + yn1 = 0.

Solution:

This is a second order difference equation in yn1; which in symbolic form is

(E2  2E cos  + 1) yn = 0.

[image: image]

EXAMPLE 9.7

The integers 0, 1, 1, 2, 3, 5, 8, 13, 21,... are said to form a Fibonacci sequence. Form the Fibonacci difference equation and solve it.

Solution:

In this sequence, each number beyond the second, is the sum of its two previous numbers. If yn be the nth number then yn = yn1 + yn2 for n > 2.

or yn+2  yn+1  yn = 0 (for n > 0)

or (E2  E  1)yn = 0 is the difference equation.

[image: image]

Solving (i) and (ii), we get

[image: image]

Hence the complete solution is

[image: image]

Exercises 9.2

 

Solve the following difference equations:

	[image: image] given u0 = 1, u1 = 0.

	[image: image]

	[image: image].

	[image: image]

	4yn  yn+2 = 0 given that y0 = 0, y1 = 2.

	uk+3  3uk+2 + 4uk = 0.

	f(x + 3)  3 f(x + 1)  2 f(x) = 0.

	un+3  3un+1 + 2un = 0, given u1 = 0, u2 = 8 and u3 =  2.

	(E3  5E2 + 8E  4)yn = 0, given that y0 = 3, y1 = 2, y4 = 22.

	un+1  2un + 2un1 = 0. 

	ym+3 + 16ym1 = 0.
[HINT. E4 =  16 = 16 [cos (2n + 1) + i sin (2n + 1)]; use De Moivres theorem.]


	Show that the difference equation Im+1  (2 + r0/r) Im + Im1 = 0 has the solution Im = I0 sinh (n  m)/sinh (n  1), if I = I0 and In = 0,  being = [image: image]

	A series of values of yn satisfy the relation yn+2 + ayn+1 + byn = 0. Given that y0 = 0, y1 = 1, y2 = y3 = 2. Show that yn = 2n/2 sin n/4.

	A particle is moving in a horizontal direction. In each second, it travels a distance which is twice the distance moved in the previous second. If the distance moved in the rth second is xr and x0 = 3, x1 = 4, then show that xr = 2n + 2.

	A plant is such that each of its seeds when one year old produces eight-fold and produces eighteen-fold when two years old or more. A seed is planted and as soon as a new seed is produced it is planted. Taking yn to be the number of seeds produced at the end of the nth year, show that yn+1 = 8yn + 18 (y1 + y2 + ⋯+ yn1).
Hence show that yn+2  9yn+1  10yn = 0 and find yn.




9.6Rules for Finding the Particular Integral 

 

Consider the equation yn+r + a1yn+r1 + ⋯+ aryn = f(n)

which in symbolic form is φ(E)yn = f(n)(1)

where φ(E) = Er + a1Er1 + ⋯ + ar

[image: image]

If φ(a) = 0, then for the equation

[image: image]

EXAMPLE 9.8

Solve yn+2  4yn+1 + 3yn = 5n.

Solution:

Given equation in symbolic form is (E2  4E + 3)yn = 5n

[image: image]

Thus the complete solution is yn = c1 + c2.3n + 5n/8.

EXAMPLE 9.9

Solve un+2  4un+1 + 4un = 2n.

Solution:

Given equation in symbolic form is (E2  4E + 4)un = 2n.

[image: image]

Hence the complete solution is un = (c1 + c2n) 2n + n(n  1) 2n3.

Case II. (1) When f(n) = sin kn. (trigonometric function)

[image: image]

Now proceed as in case I.

(2) When f(n) = cos kn

[image: image]

Now proceed as in case I

EXAMPLE 9.10

Solve yn+2  2 cos .yn+1 + yn = cos n.

Solution:

Given equation in symbolic form is (E2  2 cos . E + 1) yn = cos n

The auxiliary equation is E2  2 cos . E + 1 = 0.

[image: image]

[image: image]

Hence the complete solution is

[image: image]

	Expand [φ(1 + Δ)]1 in ascending powers of Δ by the binomial theorem as far as the term in Δp.

	Express np in the factorial form and operate on it with each term of the expansion.


EXAMPLE 9.11

Solve yn+2  4yn = n2 + n  1.

Solution: Given equation is (E2  4)yn = n2 + n  1.

The auxiliary equation is E2  4 = 0, ∴ E = ± 2.

[image: image]

Case IV. When f(n) = an F(n), F(n) being a polynomial of finite degree in n.

[image: image]

Now F(n) being a polynomial in n, proceed as in case III.

EXAMPLE 9.12

Solve yn+2  2yn+1 + yn = n2.2n.

Solution:

Given equation is (E2  2E + 1)yn = n2.2n.

[image: image]

Exercises 9.3

 

Solve the following difference equations:

	yn+2  5yn+1  6yn = 4n, y0 = 0, y1 = 1. 

	yn+2 + 6yn+1 + 9yn = 2n, y0 = y1 = 0. 

	yp+3  3yp+2 + 3yp+1  yp = 1. 

	(E2  4E + 3)y = 3x. 

	ux+2  7ux+1 + 10ux = 12.4x.

	yx+2  4yx+1 + 4yx = 3.2x + 5.4x. 

	un+2  un = cos n/2.

	[image: image]

	yn+2  2yn+1 + 4yn = 6, given that y0 = 0 and y1 = 2.

	(E2  4)yx = x2  1.

	yn+3 + yn = n2 + 1, y0 = y1 = y2 = 0.

	yn+3  5yn+2 + 3yn+1 + 9yn = 2n + 3n. 

	(4E2  4E + 1) y = 2n + 2n. 

	yn+2 + 5yn+1 + 6yn = n + 2n. 

	ux+2 + 6ux+1 + 9ux = x2x + 3x + 7. 

	yn+3 + 8yn = (2n + 3) 2n.

	un+2  4un+1 + 4un = n22n.

	(E2  5E + 6) yk = 4k(k2  k + 5).

	[image: image]

	A beam of length l, supported at n points carries a uniform load w per unit length The bending moments M1, M2... Mn at the supports satisfy the Clapeyrons equation: 
[image: image]



	If a beam weighing 30 kg is supported at its ends and at two other supports dividing the beam into three equal parts of 1 meter length, show that the bending moment at each of the two middle supports is 1 kg meter.


9.7Difference Equations Reducible to Linear Form

 

At times non-linear difference equations can be reduced to the linear form by a suitable substitution. We shall consider the following types of such equations:

I. Homogeneous equation of the type F{yx+1/yx, x} = 0.

Putting yx+1/yx = ux, this equation takes the linear form F(ux, x) = 0.

EXAMPLE 9.13

Solve yx+12  3yx+1 yx + 2yx2 = 0.

Solution:

Dividing throughout by yx2, it becomes [image: image]

Putting yx+1/yx = ux, we get ux2  3ux + 2 = 0

or Case I. When ux = 1 i.e., yx+1  yx = 0.

Its A.E. is E  1 = 0 or E = 1.

∴ Solution is yx = c1.(1)x = c1.

Case II. When ux = 2 i.e., yx+1  2yx = 0.

Its A.E. is E  2 = 0 or E = 2.

∴Solution is yx = c2(2)x.

II. Equation of the type p(x) yxyx+1 + q(x)yx+1 + r(x)yx = 0

Dividing throughout by yx yx+1, it reduces to [image: image]

Putting 1/yx = ux, we get p(x) + q(x) ux + r(x) ux+1 = 0

which is a linear equation.

EXAMPLE 9.14

Solve yx+1  yx + xyx+1 yx = 0 given y1 = 2.

Solution:

Dividing throughout by yxyx+1, the given equation becomes

[image: image]

III. Equation of the type yxyx+1 + p(x) yx+1 + q(x) yx = r(x).

We have yx+1 [yx + p(x)] + q(x) yx = r(x) (1)

Putting yx + p(x) = ux+1/ux or yx = (ux+1/ux)  p(x), (1) reduces to

[image: image]

which is a linear equation.

EXAMPLE 9.15

Solve yx+1 yx + (x + 2)yx+1 + xyx + x2 + 2x + 2 = 0.

Solution:

[image: image]

Exercises 9.4

 

Solve the following difference equations:

	yx yx+2 = yx+12.

	yx+2 yx2 = yx+13, if y1 = 1, y2 = 2.

	2yx+12 + yx+1 yx  yx2 = 0.

	[image: image]

	yx yx+1  3yx + 2 = 0. 

	yx+1 yx + 5yx+1 + yx + 9 = 0.


9.8Simultaneous Difference Equations with Constant Coefficients

 

The method used for solving simultaneous differential equations with constant coefficients also applies to simultaneous difference equations with constant coefficients. The following example illustrates the technique.

EXAMPLE 9.16

Solve the simultaneous difference equations

ux+1 + vx  3ux = x, 3ux + vx+1  5vx = 4x

subject to the conditions u1 = 2, v1 = 0.

Solution:

Given equations in symbolic form, are

 (E  3)ux + vx = x(i)

 3ux + (E  5)vx = 4x(ii)

Operating the first equation with E  5 and subtracting the second from it, we get

[(E  5)(E  3)  3]ux = (E  5)x  4x

or(E2  8E + 12)ux = 1  4x  4x

Its solution is

[image: image]

Substituting the value of ux from (iii) in (i), we get

[image: image]

Taking u1 = 2, v1 = 0, in (iii) and (iv), we obtain

[image: image]

Exercises 9.5

 

Solve the following simultaneous difference equations:

	yx+1  zx = 2(x + 1), zx+1  yx =  2(x + 1).

	yn+1  yn + 2zn+1 = 0, zn+1  zn  2yn = 2n.

	un+1 + n = 3un + 2vn, vn+1  n = un + 2vn, given u0 = 0, v0 = 3.

	ux+1 + vx + wx = 1, ux + vx+1 + wx = x, ux + vx + wx+1 = 2x.


9.9Application to Deflection of a Loaded String

 

Consider a light string of length l stretched tightly between A and B. Let the forces Pi be acting at its equispaced points xi (i = 1, 2,..., n  1) and perpendicular to AB resulting in small transverse displacements yi at these points (Figure 9.1). Assuming the angle θi made by the portion between xi and xi+1 with the horizontal, to be small, we have

sin θi = tan θi = θi and cos θi = 1.

If T is the tension of the string at xi, then T cos θi = T

i.e., the tension may be taken as uniform.

Taking xi+1  xi = h, we have

 yi+1  yi = h tan θi = hθi.(1)

yi  yi1 = h tan θ i1 = hθ i1 (2)

Also resolving the forces in equilibrium at (xi, yi) ⊥ to AB, we get

T sin θi  T sin θi1 + Pi = 0 i.e. T(θi  θi1) + Pi = 0 (3)

[image: image]

Figure 9.1

Eliminating θi and θi1 from (1), (2) and (3), we obtain

[image: image]

which is a difference equation and its solution gives the displacements yi. To obtain the arbitrary constants in the solution, we take y0 = yn = 0 as the boundary conditions, since the ends A and B of the string are fixed.

EXAMPLE 9.17

A light elastic string stretched between two fixed nails is 120 cm apart, carries 11 loads of weight at 5 gm each at equal intervals and the resulting tension is 500 gm weight. Show that the sag at the mid-point is 1.8 cm.

Solution:

Taking h = 10 cm, Pi = 5 gm and T = 500 gm weight.,

the above equation (4) becomes yi+1  2yi + yi1 =  1/10

[image: image]

[image: image]

Exercises 9.6

 

A light string of length (n + 1)l is stretched between two fixed points with a force P. It is loaded with n equal masses m at distances l. If the system starts rotating with angular velocity , find the displacement yi of the ith mass.

9.10Objective Type of Questions

 

Exercises 9.7

 

Select the correct answer or fill up the blanks in the following questions:

	yn = A 2n + B 3n, is the solution of the difference equation ... 

	The solution of (E  1)3 un = 0 is ... ..

	The solution of the difference equation un + 3  2un + 2  5un + 1 + 6un = 0 is ... 

	The solution of yn + 1  yn = 2n is...given that y0 = 2.

	The difference equation yn + 1  2yn = n given that y0 = 2 has yn = ... as its solution.

	The difference equation corresponding to the family of curves y = ax2 + bx is ... 

	The particular integral of the equation (E  2) yn = 1.

	The solution of 4yn = yn + 2 such that y0 = 0, y1 = 2, is ... .

	The equation [image: image] is of order ... ..

	The difference equation satisfied by y = a + b/x is ... .

	The order of the difference equation yn + 2  2yn + 1+ yn = 0 is ... .

	The solution of yn + 2  4yn + 1 + 4yn = 0 is ... .

	The particular integral of ux + 2  6ux + 1 + 9ux = 3 is ... .

	The difference equation generated by un = (a + bn) 3n is ... 

	Solution of 6yn + 2 + 5yn + 1  6yn = 2n is yn = A(2/3)n + B( 3/2)n + 2n/28.(True or False)
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10.1Introduction

 

A number of problems in science and technology can be formulated into differential equations. The analytical methods of solving differential equations are applicable only to a limited class of equations. Quite often differential equations appearing in physical problems do not belong to any of these familiar types and one is obliged to resort to numerical methods. These methods are of even greater importance when we realize that computing machines are now readily available which reduce numerical work considerably.

Solution of a differential equation. The solution of an ordinary differential equation means finding an explicit expression for y in terms of a finite number of elementary functions of x. Such a solution of a differential equation is known as the closed or finite form of solution. In the absence of such a solution, we have recourse to numerical methods of solution.

Let us consider the first order differential equation

dy/dx = f(x, y), given y(x0) = y0(1)

to study the various numerical methods of solving such equations. In most of these methods, we replace the differential equation by a difference equation and then solve it. These methods yield solutions either as a power series in x from which the values of y can be found by direct substitution, or a set of values of x and y. The methods of Picard and Taylor series belong to the former class of solutions. In these methods, y in (1) is approximated by a truncated series, each term of which is a function of x. The information about the curve at one point is utilized and the solution is not iterated. As such, these are referred to as single-step methods.

The methods of Euler, Runge-Kutta, Milne, Adams-Bashforth, etc. belong to the latter class of solutions. In these methods, the next point on the curve is evaluated in short steps ahead, by performing iterations until sufficient accuracy is achieved. As such, these methods are called step-by-step methods.

Euler and Runga-Kutta methods are used for computing y over a limited range of x- values whereas Milne and Adams methods may be applied for finding y over a wider range of x-values. Therefore Milne and Adams methods require starting values which are found by Picards Taylor series or Runge-Kutta methods.

Initial and boundary conditions. An ordinary differential equation of the nth order is of the form

[image: image]

Its general solution contains n arbitrary constants and is of the form

[image: image]

To obtain its particular solution, n conditions must be given so that the constants c1, c2 …, cn can be determined.

If these conditions are prescribed at one point only (say:x0), then the differential equation together with the conditions constitute an initial value problem of the nth order.

If the conditions are prescribed at two or more points, then the problem is termed as boundary value problem.

In this chapter, we shall first describe methods for solving initial value problems and then explain the finite difference method and shooting method for solving boundary value problems.

10.2Picards Method

 

[image: image]

It is required to find that particular solution of (1) which assumes the value y0 when x = x0. Integrating (1) between limits, we get

[image: image]

This is an integral equation equivalent to (1), for it contains the unknown y under the integral sign.

As a first approximation y1 to the solution, we put y = y0 in f(x, y) and integrate (2), giving

[image: image]

For a second approximation y2, we put y = y1 in f(x, y) and integrate (2), giving

[image: image]

Similarly, a third approximation is

[image: image]

Continuing this process, we obtain y4, y5, ⋯ yn where

[image: image]

Hence this method gives a sequence of approximations y1, y2, y3 ⋯ each giving a better result than the preceding one.




	[image: image]
	
	Obs. Picards method is of considerable theoretical value, but can be applied only to a limited class of equations in which the successive integrations can be performed easily. The method can be extended to simultaneous equations and equations of higher order (See Sections 10.11 and 10.12).




EXAMPLE 10.1

Using Picards process of successive approximations, obtain a solution up to the fifth approximation of the equation dy/dx = y + x, such that y = 1 when x = 0. Check your answer by finding the exact particular solution.

Solution:

[image: image]

First approximation. Put y = 1 in y + x, giving

[image: image]

Second approximation. Put y = 1 + x + x2/2 in y + x, giving

[image: image]

Third approximation. Put y = 1 + x + x2 + x3/6 in y + x, giving

[image: image]

Fourth approximation. Put y = y3 in y + x, giving

[image: image]

Fifth approximation, Put y = y4 in y + x, giving

[image: image]

(ii) Given equation

[image: image]

Its, I.F. being e−x the solution is

[image: image]

Since y = 1, when x = 0, ∴ c = 2.

Thus the desired particular solution is

[image: image]

Comparing (1) and (3), it is clear that (1), approximates to the exact particular solution (3) upto the term in x5.




	[image: image]
	
	Obs. At x = 1, the fourth approximation y4 = 3.433 and the fifth approximation y5 = 3.434 whereas the exact value is 3.44.




EXAMPLE 10.2

Find the value of y for x = 0.1 by Picards method, given that

[image: image]

Solution:

[image: image]

First approximation. Put y = 1 in the integrand, giving

[image: image]

Second approximation. Put y = 1 − x + 2 log(1 + x) in the integrand, giving

[image: image]

which is very difficult to integrate.

Hence we use the first approximation and taking x = 0.1 in (i) we obtain

y(0.1) = 1  (0.1) + 2 log 1.1 = 0.9828.

10.3Taylors Series Method

 

[image: image]

Differentiating this successively, we can get y, yiv etc. Putting x = x0 and y = 0, the

Values of (y)0, (y)0, (y)0 can be obtained. Hence the Taylors series

[image: image]

gives the values of y for every value of x for which (3) converges.

On finding the value y1 for x = xi from (3), yʹ, y″ etc. can be evaluated at x = x1 by means of (1), (2) etc. Then y can be expanded about x = x1. In this way, the solution can be extended beyond the range of convergence of series (3).




	[image: image]
	
	Obs. This is a single step method and works well so long as the successive derivatives can be calculated easily. If (x, y) is somewhat complicated and the calculation of higher order derivatives becomes tedious, then Taylors method cannot be used gainfully. This is the main drawback of this method and therefore, has little application for computer programs. However, it is useful for finding starting values for the application of powerful methods like Runga-Kutta, Milne and Adams- Bashforth which will be described in the subsequent sections.




EXAMPLE 10.3

Solve yʹ = x + y, y(0) = 1 by Taylors series method. Hence find the values of y at x = 0.1 and x = 0.2.

Solution:

Differentiating successively, we get

 yʹ = x + y yʹ(0) = 1[∵ y(0) = 1]

 y″ = 1 + yʹ y″(0) = 2

yʹ″ = y″yʹ″(0) = 2

yʹ″ = yʹ″yʹ″(0) = 2, etc.

Taylors series is

[image: image]

EXAMPLE 10.4

Find by Taylors series method, the values of y at x = 0.1 and x = 0.2 to five places of decimals from dy/dx = x2y  1, y(0) = 1.

Solution:

Differentiating successively, we get

[image: image]

Putting these values in the Taylors series, we have

[image: image]

EXAMPLE 10.5

Employ Taylors method to obtain approximate value of y at x = 0.2 for the differential equation dy/dx = 2y + 3ex, y(0) = 0. Compare the numerical solution obtained with the exact solution.

Solution:

(a) We have yʹ = 2y + 3ex; yʹ(0) = 2y(0) + 3e0 = 3.

Differentiating successively and substituting x = 0, y = 0 we get

 y″ = 2yʹ + 3ex, y″(0) = 2yʹ(0) + 3 = 9

yʹ″ = 2y″ + 3ex,yʹ″(0) = 2y″(0) + 3 = 21

 yiv = 2yʹ″ + 3ex, yiv(0) = 2yʹ″(0) + 3 = 45 etc.

Putting these values in the Taylors series, we have

[image: image]

[image: image]

Thus the exact solution is y = 3(e2x  ex)

When x = 0.2, y = 3(e0.4  e0.2) = 0.8112(ii)

Comparing (i) and (ii), it is clear that (i) approximates to the exact value up to three decimal places

EXAMPLE 10.6

Solve by Taylor series method of third order the equation [image: image] y(0) = 1 for y at x = 0.1, x = 0.2 and x = 0.3

Solution:

We have y = (x3 + xy3)ex;y(0) = 0

Differentiating successively and substituting x = 0, y = 1.

[image: image]

Substituting these values in the Taylors series, we have

[image: image]

[image: image]

EXAMPLE 10.7

Solve by Taylors series method the equation [image: image] for y(1.1) and y(1.2), given y(1) = 2.

Solution:

We have yʹ = log x + log y; yʹ(1) = log 2

Differentiating w.r.t., x and substituting x = 1, y = 2, we get

[image: image]

Substituting these values in the Taylors series about s = 1, we have

[image: image]

Exercises 10.1

 

	Using Picards method, solve dy/dx =  xy with x0 = 0, y0 = 1 up to the third approximation.

	Employ Picard s method to obtain, correct to four places of decimals the, solution of the differential equation dy/dx = x2 + y2 for x = 0.4, given that y = 0 when x = 0.

	Obtain Picards second approximate solution of the initial value problem
yʹ = x2/(y2 + 1), y(0)=0.


	Find an approximate value of y when x = 0.1, if dy/dx = x  y2 and y = 1 at x = 0, using
(a) Picards method (b) Taylors series.


	Solve yʹ = x + y given y(1) = 0. Find y(1.1) and y(1.2) by Taylors method. Compare the result with its exact value.

	Using Taylors series method, compute y(0.2) to three places of decimals from [image: image] given that y(0) = 0.

	Evaluate y(0.1) correct to six places of decimals by Taylors series method if y (x) satisfies
yʹ = xy + 1, y(0) = 1.


	Solve yʹ = y2 + x, y(0) = 1 using Taylors series method and compute y(0.1) and y(0.2).

	Evaluate y(0.1) correct to four decimal places using Taylors series methods if dy/dx = x2 + y2, y(0) = 1.

	Using Taylor series method, find y(0.1) correct to three decimal places given that dy/dx = e x y2, y(0) = 1



10.4Eulers Method

 

[image: image]

given that y(x0) = y0.Its curve of solution through P(x0, y0)is shown dotted in Figure.10.1. Now we have to find the ordinate of any other point Q on this curve.

[image: image]

Figure 10.1

Let us divide LM into n sub-intervals each of width h at L1, L2 ⋯so that h is quite small

In the interval LL1, we approximate the curve by the tangent at P. If the ordinate through L1 meets this tangent in P1(x0 + h, y1), then

[image: image]

Let P1Q1 be the curve of solution of (1) through P1 and let its tangent at P1 meet the ordinate through L2 in P2(x0 + 2h, y2). Then

y2 = y1 + hf(x0 + h, y1)(1)

Repeating this process n times, we finally reach on an approximation MPn of MQ given by

[image: image]

This is Eulers method of finding an approximate solution of (1).




	[image: image]
	
	Obs. In Eulers method, we approximate the curve of solution by the tangent in each interval, i.e., by a sequence of short lines. Unless h is small, the error is bound to be quite significant. This sequence of lines may also deviate considerably from the curve of solution. As such, the method is very slow and hence there is a modification of this method which is given in the next section.




EXAMPLE 10.8

Using Eulers method, find an approximate value of y corresponding to x = 1, given that dy/dx = x + y and y = 1 when x = 0.

Solution:

We take n = 10 and h = 0.1 which is sufficiently small. The various calculations are arranged as follows:

[image: image]

Thus the required approximate value of y = 3.18.




	[image: image]
	
	Obs. In Example 10.1(Obs.), we obtained the true values of y from its exact solution to be 3.44 where as by Eulers method y = 3.18 and by Picards method y = 3.434. In the above solution, had we chosen n = 20, the accuracy would have been considerably increased but at the expense of double the labor of computation. Eulers method is no doubt very simple but cannot be considered as one of the best.




EXAMPLE 10.9

Given [image: image] with initial condition y = 1 at x = 0; find y for x = 0.1 by Eulers method.

Solution:

We divide the interval (0, 0.1) in to five steps, i.e., we take n = 5 and h = 0.02. The various calculations are arranged as follows:

[image: image]

Hence the required approximate value of y = 1.0928.

10.5Modified Eulers Method

 

In Eulers method, the curve of solution in the interval LL1 is approximated by the tangent at P (Figure 10.1) such that at P1, we have

y1 = y0 + h f(x0, y0)(1)

Then the slope of the curve of solution through P1

[i.e., (dy/dx)P1 = f(x0 + h, y1)]

is computed and the tangent at P1 to P1Q1 is drawn meeting the ordinate through L2 in

P2(x0 + 2h, y2).

Now we find a better approximation y1(1) of y(x0 + h) by taking the slope of the curve as the mean of the slopes of the tangents at P and P1, i.e.,

[image: image]

As the slope of the tangent at P1 is not known, we take y1 as found in (1) by Eulers method and insert it on R.H.S. of (2) to obtain the first modified value y1(1)

Again (2) is applied and we find a still better value y1(2) corresponding to L1 as

[image: image]

We repeat this step, until two consecutive values of y agree. This is then taken as the starting point for the next interval L1L2.

Once y1 is obtained to a desired degree of accuracy, y corresponding to L2 is found from (1).

y2 = y1 + hf(x0 + h, y1)

and a better approximation is obtained from (2)

[image: image]

We repeat this step until y2 becomes stationary. Then we proceed to calculate y3 as above and so on.

This is the modified Eulers method which gives great improvement in accuracy over the original method.

EXAMPLE 10.10

Using modified Eulers method, find an approximate value of y when x = 0.3, given that dy/dx = x + y and y = 1 when x = 0.

Solution:

The various calculations are arranged as follows taking h = 0.1:

[image: image]

Hence y(0.3) = 1.4004 approximately.




	[image: image]
	
	Obs. In Example 10.8, we obtained the approximate value of y for x = 0.3 to be 1.53 whereas by the modified Eulers method the corresponding value is 1.4003 which is nearer its true value 1.3997, obtained from its exact solution y = 2ex  x  1 by putting x = 0.3.




EXAMPLE 10.11

Using the modified Eulers method, find y(0.2) and y(0.4) given

yʹ = y + ex, y(0) = 0.

Solution:

We have yʹ = y + ex = f (x, y); x = 0, y = 0 and h = 0.2

The various calculations are arranged as under:

To calculate y(0.2):

[image: image]

Since the last two values of y are equal, we take y (0.2) = 0.2468.

To calculate y(0.4):

[image: image]

[image: image]

Since the last two value of y are equal, we take y(0.4) = 0.6031

Hence y(0.2) = 0.2468 an d y(0.4) = 0.6031 approximately.

EXAMPLE 10.12

Solve the following by Eulers modified method:

[image: image]

at x = 1.2 and 1.4 with h = 0.2.

Solution:

The various calculations are arranged as follows:

[image: image]

[image: image]

Hence y(1.2) = 2.5351 an d y(1.4) = 2.6531 approximately.

EXAMPLE 10.13

Using Eulers modified method, obtain a solution of the equation

[image: image]

with initial conditions y = 1 at x = 0, for the range 0  x  0.6 in steps of 0.2.

Solution:

The various calculations are arranged as follows:

[image: image]

[image: image]

Hence y(0.6) = 1.8861 approximately.

Exercises 10.2 

 

	Apply Eulers method to solve yʹ = x + y, y(0) = 0, choosing the step length = 0.2. (Carry out six steps). 

	Using Eulers method, find the approximate value of y when x = 0.6 of dy/dx = 1  2xy, given that y = 0 when x = 0 (take h = 0.2). 

	Using the simple Eulers method solve for y at x = 0.1 from dy/dx = x + y + xy, y(0) = 1, taking step size h = 0.025.

	Solve yʹ = 1  y, y(0) = 0 
by the modified Eulers method and obtain y at x = 0.1, 0.2, 0.3


	Given that dy/dx = x2 + y and y(0) = 1. Find an approximate value of y(0.1), taking h = 0.05 by the modified Eulers method.

	Given yʹ = x + sin y, y(0) = 1. Compute y(0.2) and y(0.4) with h = 0.2 using Eulers modified method.

	Given [image: image] with boundary conditions y = 1 when x = 0, find approximately y for x = 0.1, by Eulers modified method (five steps)

	Given that [image: image] and y = 1 when x = 1. Find approximate value of y at x = 2 in steps of 0.2, using Eulers modified method. 



10.6Runges Method*

 

[image: image]

Clearly the slope of the curve through P(x0, y0) is f(x0, y0) (Figure 10.2).

Integrating both sides of (1) from (x0, y0) to (x0 + h, y0 + k), we have

[image: image]

[image: image]

Figure 10.2

To evaluate the integral on the right, we take N as the mid-point of LM and find the values of f(x, y) (i.e., dy/dx) at the points x0, x0 + h/2, x0 + h. For this purpose, we first determine the values of y at these points.

Let the ordinate through N cut the curve PQ in S and the tangent PT in S1. The value of yS is given by the point S1

[image: image]

Now the value of yQ at x0 + h is given by the point T where the line through P draw with slope at T(x0 + h, yT) meets MQ.

[image: image]

Thus the value of f(x, y) at P = f(x0, y0),

the value of f(x, y) at S = f(x0 + h/2, yS)

and the value of f(x, y) at Q =(x0 + h, yQ)

where yS and yQ are given by (3) and (4).

Hence from (2), we obtain

[image: image]

Which gives a sufficiently accurate value of k and also y = y0 + k

The repeated application of (5) gives the values of y for equi-spaced points.

Working rule to solve (1) by Runges method:

Calculate successively

[image: image]

[image: image]

which gives the required approximate value as y1 = y0 + k.

(Note that k is the weighted mean of k1, k2, and k3).

EXAMPLE 10.14

Apply Runges method to find an approximate value of y when x = 0.2, given that dy/dx = x + y and y = 1 when x = 0.

Solution:

[image: image]

10.7Runge-Kutta Method*

 

The Taylors series method of solving differential equations numerically is restricted by the labor involved in finding the higher order derivatives. However, there is a class of methods known as Runge-Kutta methods which do not require the calculations of higher order derivatives and give greater accuracy. The Runge-Kutta formulae possess the advantage of requiring only the function values at some selected points. These methods agree with Taylors series solution up to the term in hr where r differs from method to method and is called the order of that method.

First order R-K method. We have seen that Eulers method (Section 10.4) gives

[image: image]

Expanding by Taylors series

[image: image]

It follows that the Eulers method agrees with the Taylors series solution upto the term in h.

Hence, Eulers method is the Runge-Kutta method of the first order.

 Second order R-K method. The modified Eulers method gives

[image: image]

Substituting y1 = y0 + hf(x0, y0) on the right-hand side of (1), we obtain

[image: image]

Expanding L.H.S. by Taylors series, we get

[image: image]

Expanding f(x0 + h, y0 + hf0) by Taylors series for a function of two variables, (2) gives 

[image: image]

Comparing (3) and (4), it follows that the modified Eulers method agrees with the Taylors series solution upto the term in h2.

Hence the modified Eulers method is the Runge-Kutta method of the second order.

∴ The second order Runge-Kutta formula is

[image: image]

 (iii) Third order R-K method. Similarly, it can be seen that Runges method (Section 10.6) agrees with the Taylors series solution upto the term in h3.

As such, Runges method is the Runge-Kutta method of the third order.

∴ The third order Runge-Kutta formula is

[image: image]

(iv) Fourth order R-K method. This method is most commonly used and is often referred to as the Runge-Kutta method only.

Working rule for finding the increment k of y corresponding to an increment h of x by Runge-Kutta method from

[image: image]

which gives the required approximate value as y1 = y0 + k.

(Note that k is the weighted mean of k1, k2, k3, and k4).




	[image: image]
	
	Obs. One of the advantages of these methods is that the operation is identical whether the differential equation is linear or non-linear.




EXAMPLE 10.15

Apply the Runge-Kutta fourth order method to find an approximate value of y when x = 0.2 given that dy/dx = x + y and y = 1 when x = 0.

Solution:

[image: image]

EXAMPLE 10.16

Using the Runge-Kutta method of fourth order, solve [image: image] with y(0) = 1 at x = 0.2, 0.4.

Solution:

[image: image]

[image: image]

EXAMPLE 10.17

Apply the Runge-Kutta method to find the approximate value of y for x = 0.2, in steps of 0.1, if dy/dx = x + y2, y = 1 where x = 0.

Solution:

Given f(x, y) = x + y2.

Here we take h = 0.1 and carry out the calculations in two steps.

Step I. x0 = 0, y0 = 1, h = 0.1

[image: image]

[image: image]

EXAMPLE 10.18

Using the Runge-Kutta method of fourth order, solve for y at x = 1.2, 1.4

[image: image]

Solution:

[image: image]

To find y (1.2):

[image: image]

Exercises 10.3

 

	Use Runges method to approximate y when x = 1.1, given that y = 1.2 when x = 1 and dy/dx = 3x + y2.

	Using the Runge-Kutta method of order 4, find y(0.2) given that dy/dx = 3x + y2, y(0) = 1 taking h = 0.1.

	Using the Runge-Kutta method of order 4, compute y(0.2) and y(0.4) from [image: image] taking h = 0.1. 

	Use the Runge Kutta method to find y when x = 1.2 in steps of 0.1, given that dy/dx = x2 + y2 and y(1) = 1.5. 

	Given dy/dx = x3 + y, y(0) = 2. Compute y(0.2), y(0.4), and y(0.6) by the Runge-Kutta method of fourth order. 

	Find y(0.1) and y(0.2) using the Runge-Kutta fourth order formula, given that yʹ = x2  y and y(0) = 1.

	Using fourth order Runge-Kutta method, solve the following equation, taking each step of h = 0.1, given y(0) = 3. dy/dx (4x/y  xy). Calculate y for x = 0.1 and 0.2.

	Find by the Runge-Kutta method an approximate value of y for x = 0.6, given that y = 0.41 when x = 0.4 and [image: image] 

	Using the Runge-Kutta method of order 4, find y(0.2) for the equation,
[image: image]


	Using fourth order Runge-Kutta method, integrate y = -2x3 + 12x2 -20x + 8.5, using a step size of 0.5 and initial condition of y = 1 at x = 0.

	Using the fourth order Runge-Kutta method, find y at x = 0.1 given that dy/dx = 3ex + 2y, y(0) = 0 and h = 0.1. 

	Given that dy/dx = (y2  2x)/(y2 + x) and y = 1 at x = 0, find y for x = 0.1, 0.2, 0.3, 0.4, and 0.5. 



10.8Predictor-Corrector Methods

 

If xi1 and xi are two consecutive mesh points, we have xi = xi1 + h. In Eulers method (Section 10.4), we have

[image: image]

The modified Eulers method (Section 10.5), gives

[image: image]

The value of yi is first estimated by using (1), then this value is inserted on the right side of (2), giving a better approximation of yi. This value of yi is again substituted in (2) to find a still better approximation of yi. This step is repeated until two consecutive values of yi agree. This technique of refining an initially crude estimate of yi by means of a more accurate formula is known as predictor-corrector method. The equation (1) is therefore called the predictor while (2) serves as a corrector of yi.

In the methods so far described to solve a differential equation over an interval, only the value of y at the beginning of the interval was required. In the predictor-corrector methods, four prior values are needed for finding the value of y at xi. Though slightly complex, these methods have the advantage of giving an estimate of error from successive approximations to yi.

We now describe two such methods, namely: Milnes method and Adams-Bashforth method.

10.9Milnes Method

 

Given dy/dx = f(x, y) and y = y0, x = x0; to find an approximate value of y for x = x0 + nh by Milnes method, we proceed as follows:

The value y0 = y(x0) being given, we compute

y1 = y(x0 + h), y2 = y(x0 + 2h), y3 = y(x0 + 3h),

by Picards or Taylors series method.

Next we calculate,

  f0 = f(x0, y0), f1 = f(x0 + h, y1), f2 = f(x0 + 2h, y2), f3 = f(x0 + 3h, y3)

Then to find y4 = y(x0 + 4h), we substitute Newtons forward interpolation formula

[image: image]

In the relation

[image: image]

Neglecting fourth and higher order differences and expressing f0, 2f0 and 3f0 and in terms of the function values, we get

[image: image]

which is called a predictor.

Having found y4, we obtain a first approximation to

[image: image]

Then a better value of y4 is found by Simpsons rule as

[image: image]

which is called a corrector.

Then an improved value of f4 is computed and again the corrector is applied to find a still better value of y4. We repeat this step until y4 remains unchanged. Once y4 and f4 are obtained to desired degree of accuracy, y5 = y(x0 + 5h) is found from the predictor as

[image: image]

and f5 = f(x0 + 5h, y5) is calculated. Then a better approximation to the value of y5 is obtained from the corrector as

[image: image]

We repeat this step until y5 becomes stationary and, then proceed to calculate y6 as before.

This is Milnes predictor-corrector method. To insure greater accuracy, we must first improve the accuracy of the starting values and then sub-divide the intervals.

EXAMPLE 10.19

Apply Milnes method, to find a solution of the differential equation in the range 0  x  1 for the boundary condition y = 0 at x = 0.

Solution:

Using Picards method, we have

[image: image]

To get the first approximation, we put y = 0 in f(x, y),

[image: image]

To find the second approximation, we put

[image: image]

Similarly, the third approximation is

[image: image]

Now let us determine the starting values of the Milnes method from (i), by choosing h = 0.2.

[image: image]

[image: image]

EXAMPLE 10.20

Using Milnes method find y(4.5) given 5xyʹ + y2 − 2 = 0 given y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143; y(4.4) = 1.0187.

Solution:

[image: image]

[image: image]

EXAMPLE 10.21

Given yʹ= x(x2 + y2) ex, y(0) = 1, find y at x = 0.1, 0.2, and 0.3 by Taylors series method and compute y(0.4) by Milnes method.

Solution:

[image: image]

Substituting these values in the Taylors series,

[image: image]

[image: image]

Substituting these values in the Taylors series

[image: image]

Thus the starting values of the Milnes method with h = 0.1 are

[image: image]

EXAMPLE 10.22

Using the Runge-Kutta method of order 4, find y for x = 0.1, 0.2, 0.3 given that dy/dx = xy + y2, y(0) = 1. Continue the solution at x = 0.4 using Milnes method.

Solution:

We have f(x, y) = xy + y2.

To find y(0.1):

Here x0 = 0, y0 = 1, h = 0.1.

[image: image]

[image: image]

[image: image]

Now the starting values for the Milnes method are:

x0 = 0.0 y0 = 1.0000 f0 = 1.0000

x1 = 0.1y1 = 1.1169f1 = 1.3591

x2 = 0.2y2 = 1.2773 f2 = 1.8869

x3 = 0.3y3 = 1.5049f3 = 2.7132

Using the predictor

[image: image]

and the corrector,

[image: image]

Again using the corrector,

[image: image]

Again using the corrector,

[image: image]

Exercises 10.4

 

	Given [image: image] The values of y(0.2) = 2.073, y(0.4) = 2.452, and y(0.6) = 3.023 are gotten by the R.K. method of the order. Find y(0.8) by Milnes predictor-corrector method taking h = 0.2 

	Given 2 dy/dx = (1 + x2)y2 and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21, evaluate y(0.4) by Milnes predictor corrector method.

	Solve that initial value problem
[image: image]

for x = 0.4 by using Milnes method, when it is given that

[image: image]


	From the data given below, find y at x = 1.4, using Milnes predictor-corrector formula: dy/dx = x2 + y/2:
[image: image]


	Using Taylors series method, solve [image: image] at x = 0.1, 0.2, 0.3. Continue the solution at x = 0.4 by Milnes predictor-corrector method.

	If y = 2ex  y, y(0) = 2, y(0.1) = 2.01, y(0.2) = 2.04, and y = 2.09, find y(0.4) using Milnes predictor-corrector method.

	Using the Runge-Kutta method, calculate y (0.1), y(0.2), and y(0.3) given that [image: image] Taking these values as starting values, find y(0.4) by Milnes method.



10.10Adams-Bashforth Method

 

[image: image]

by Taylors series or Eulers method or the Runge-Kutta method.

Next we calculate

[image: image]

Then to find y1, we substitute Newtons backward interpolation formula

[image: image]

[image: image]

Neglecting fourth and higher order differences and expressing f0, 2f0 and 3f0 in terms of function values, we get

[image: image]

This is called the Adams-Bashforth predictor formula.

Having found y1, we find f1 = f(x0 + h1, y1).

Then to find a better value of y1, we derive a corrector formula by substituting Newtons backward formula at f1, i.e.,

[image: image]

Neglecting fourth and higher order differences and expressing f1, 2f1 and 3f1 and in terms of function values, we obtain

[image: image]

which is called the Adams-Moulton corrector formula.

Then an improved value of f1 is calculated and again the corrector (3) is applied to find a still better value y1. This step is repeated until y1 remains unchanged and then we proceed to calculate y2 as above.




	[image: image]
	
	Obs. To apply both Milne and Adams-Bashforth methods, we require four starting values of y which are calculated by means of Picards method or Taylors series method or Eulers method or the Runge-Kutta method. In practice, the Adams formulae (2) and (3) above together with the fourth order Runge-Kutta formulae have been found to be the most useful.




EXAMPLE 10.23

Given [image: image] and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979, evaluate y(1.4) by the Adams-Bashforth method.

Solution:

Here f(x, y) = x2(1 + y)

Starting values of the Adams-Bashforth method with h = 0.1 are

x = 1.0, y3 = 1.000,f3 = (1.0)2(1 + 1.000) = 2.000

x = 1.1, y2 = 1.233, f2 = 2.702

x = 1.2,  y1 = 1.548,f1 = 3.669

x = 1.3,  y0 = 1.979, f0 = 5.035

Using the predictor,

[image: image]

Using the corrector

[image: image]

EXAMPLE 10.24

If [image: image] find y(4) using the Adams predictor corrector formula by calculating y(1), y(2), and y(3) using Eulers modified formula.

Solution:

We have f(x, y)=2exy

[image: image]

To find y(0.4) by Adams method, the starting values with h = 0.1 are

x = 0.0 y3 = 2.4  f3 = 4

x = 0.1 y2 = 2.473 f2 = 5.467

x = 0.2 y1 = 3.129f1 = 7.643

x = 0.3 y0 = 4.059 f0 = 10.956

Using the predictor formula

[image: image]

Using the corrector formula

[image: image]

EXAMPLE 10.25

Solve the initial value problem dy/dx = x  y2, y(0) = 1 to find y(0.4) by Adams method. Starting solutions required are to be obtained using the Runge-Kutta method of the fourth order using step value h = 0.1

Solution:

[image: image]

[image: image]

Now the starting values for the Milnes method are:

x0 = 0.0 y0 = 1.0000 f0 = 0.0 − (0.1)2 = 1.0000

x1 = 0.1y1 = 0.9117f1 = 0.1 − (0.9117)2 = −0.7312

x2 = 0.2y2 = 0.8494 f2 = 0.2 − (0.8494)2 = −0.5215

x3 = 0.3y3 = 0.8061f3 = 0.3 − (0.8061)2 = −0.3498

Using the predictor,

[image: image]

Using the corrector,

[image: image]

Exercises 10.5

 

	Using the Adams-Bashforth method, obtain the solution of dy/dx = x  y2 at x = 0.8, given the value
[image: image]


	Using the Adams-Bashforth formulae, determine y(0.4) given the differential equation [image: image] and the data:
[image: image]


	Given yʹ = x2  y, y(0) = 1 and the starting values y(0.1) = 0.90516, y(0.2) = 0.82127, y(0.3) = 0.74918, evaluate y(0.4) using the Adams-Bashforth method. 

	Using the Adams-Bashforth method, find y(4.4) given 5xyʹ + y2 = 2, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097 and y(4.3) = 1.0143.

	Given the differential equation dy/dx = x2y + x2 and the data:
[image: image]

determine y(1.4) by any numerical method.


	Using the Adams-Bashforth method, evaluate y(1.4); if y satisfies dy/dx + y/x = 1/x2 and y(1) = 1, y(1.1) = 0.996, y(1.2) = 0.986, y(1.3) = 0.972.



10.11Simultaneous First Order Differential Equations

 

The simultaneous differential equations of the type

[image: image]

with initial conditions y(x0) = y0 and z(x0) = z0 can be solved by the methods discussed in the preceding sections, especially Picards or Runge-Kutta methods.

Picards method gives

[image: image]

and so on.

(ii) Taylors series method is used as follows:

If h be the step-size, y1 = y(x0 + h) and z1 = z(x0 + h). Then Taylors algorithm for (1) and (2) gives

[image: image]

Differentiating (1) and (2) successively, we get y″, z″, etc. So the values [image: image] are known. Substituting these in (3) and (4), we obtain y1, z1 for the next step.

Similarly, we have the algorithms

[image: image]

[image: image]

Since y1 and z1 are known, we can calculate and . Substituting these in (5) and (6), we get y2 and z2.

Proceeding further, we can calculate the other values of y and z step by step.

(iii) Runge-Kutta method is applied as follows:

Starting at (x0, y0, z0) and taking the step-sizes for x, y, z to be h, k, l respectively, the Runge-Kutta method gives,

[image: image]

To compute y2 and z2, we simply replace x0, y0, z0 by x1, y1, z1 in the above formulae.

EXAMPLE 10.26

Using Picards method, find approximate values of y and z corresponding to x = 0.1, given that y(0) = 2, z(0) = 1 and dy/dx = x + z, dz/dx = x  y2.

Solution:

[image: image]

First approximations

[image: image]

Second approximations

[image: image]

Third approximations

[image: image]

and so on.

[image: image]

Hence y(0.1) = 2.0845, z(0.1) = 0.5867

correct to four decimal places.

EXAMPLE 10.27

Find an approximate series solution of the simultaneous equations dx/dt = xy + 2t, dy/dt = 2ty + x subject to the initial conditions x = 1, y =  1, t = 0.

Solution:

x and y both being functions of t, Taylors series gives

[image: image]

Differentiating the given equations

[image: image]

Putting x0 = 1, y0 =  1, t0 = 0 in (ii), (iii), and (iv), we obtain

[image: image]

Substituting these values in (i), we get

[image: image]

EXAMPLE 10.28

Solve the differential equations

[image: image]

using the fourth order Runge-Kuta method. Intial values are x = 0, y = 0, z = 1.

Solution:

[image: image]

[image: image]

10.12Second Order Differential Equations

 

Consider the second order differential equation

[image: image]

By writing dy/dx = z, it can be reduced to two first order simultaneous differential Equations

[image: image]

These equations can be solved as explained above.

EXAMPLE 10.29

Find the value of y(1.1) and y(1.2) from y″ + y2yʹ = x3; y(1) = 1, yʹ(1) = 1, using the Taylor series method

Solution:

Letyʹ = z so that y″ = zʹ

Then the given equation becomes zʹ + y2z = z3

[image: image]

Taylors series for y(1.1) is

[image: image]

Taylors series for z(1.1) is

[image: image]

EXAMPLE 10.30

Using the Runge-Kutta method, solve y″ = xyʹ2  y2 for x = 0.2 correct to 4 decimal places. Initial conditions are x = 0, y = 1, yʹ = 0.

Solution:

[image: image]

∴ Runge-Kutta formulae become

[image: image]

[image: image]

EXAMPLE 10.31

Given y″ + xyʹ + y = 0, y(0) = 1, yʹ(0) = 0, obtain y for x = 0(0.1) 0.3 by any method. Further, continue the solution by Milnes method to calculate y(0.4).

Solution:

Putting yʹ = z, the given equation reduces to the simultaneous equations

zʹ + xz + y = 0, yʹ = z(1)

We employ Taylors series method to find y.

Differentiating the given equation n times, we get

yn+2 + xn+1+ nyn + yn = 0

Atx = 0, (yn+2)0 =  (n + 1)(yn)0

∴ y(0) = 1, gives y2(0) =  1, y4(0) = 3, y6(0) =  5 × 3, ......

andy1(0) = 0 yields y3(0) = y5(0) = ...... = 0.

Expanding y(x) by Taylors series, we have

[image: image]

From (2), we have

[image: image]

From (3), we have

z(0.1) =  0.0995, z(0.2) =  0.196, z(0.3) =  0.2863.

Also from (1), zʹ(x) =  (xz + y)

∴zʹ(0.1) = 0.985, zʹ(0.2) =  0.941, zʹ(0.3) =  0.87.

Applying Milnes predictor formula, first to z and then to y, we obtain

[image: image]

Now applying Milnes corrector formula, we get

[image: image]

[image: image]

Exercises 10.6

 

	Apply Picards method to find the third approximations to the values of y and z, given that 
dy/dx = z, dz/dx = x3(y + z), given y = 1, z = 1/2 when x = 0.


	Using Taylors series method, find the values of x and y for t = 0.4, satisfying the differential equations
dx/dt = x + y + t, d2y/dt2 = x  t with initial conditions x = 0, y = 1, dy/dt =  1 at t = 0.


	Solve the following simultaneous differential equations, using Taylor series method of the fourth order, for x = 0.1 and 0.2:
[image: image]


	Find y(0.1), z(0.1), y(0.2), and z(0.2) from the system of equations: yʹ = x + z, zʹ = x  y2 given y(0) = 0, z(0) = 1 using Runge-Kutta method of the fourth order.

	Using Picards method, obtain the second approximation to the solution of
[image: image]


	Use Picards method to approximate y when x = 0.1, given that
[image: image]


	Find y(0.2) from the differential equation y″ + 3xyʹ  6y = 0 where y(0) = 1, yʹ(0) = 0.1, using the Taylor series method.

	Using the Runge-Kutta method of the fourth, solve y″ = y + xyʹ, y(0) = 1, yʹ(0) = 0 to find y(0.2) and yʹ(0.2).

	Consider the second order initial value problem y″  2yʹ + 2y = e2t sin t with y(0) =  0.4 and yʹ(0) =  0.6. Using the fourth order Runga-Kutta method, find y(0.2).

	The angular displacement θ of a simple pendulum is given by the equation
[image: image]

where l = 98 cm and g = 980 cm/sec2. If θ = 0 and dθ/dt = 4.472 at t = 0, use the Runge-Kutta method to find θ and dθ/dt when t = 0.2 sec.


	In a L-R-C circuit the voltage v(t) across the capacitor is given by the equation 
[image: image]

subject to the conditions t = 0, v = v0, dv/dt = 0.

Taking h = 0.02 sec, use the Runge-Kutta method to calculate v and dv/dt when t = 0.02, for the data v0 = 10 volts, C = 0.1 farad, L = 0.5 henry and R = 10 ohms.




10.13Error Analysis

 

The numerical solutions of differential equations certainly differ from their exact solutions. The difference between the computed value yi and the true value y(xi) at any stage is known as the total error. The total error at any stage is comprised of truncation error and round-off error.

The most important aspect of numerical methods is to minimize the errors and obtain the solutions with the least errors. It is usually not possible to follow error development quite closely. We can make only rough estimates. That is why, our treatment of error analysis at times, has to be somewhat intuitive.

In any method, the truncation error can be reduced by taking smaller sub-intervals. The round-off error cannot be controlled easily unless the computer used has the double precision arithmetic facility. In fact, this error has proved to be more elusive than the truncation error.

The truncation error in Eulers method is [image: image] i.e., of (h2) while that of modified Eulers method is [image: image] .i.e., of (h3)

Similarly in the fourth order of the Runge-Kutta method, the truncation error is of O(h5).

In the Milnes method, the truncation error

[image: image]

i.e., the truncation error in Milnes method is also of O(h5).

Similarly the error in the Adams-Bashforth method is of the fifth order. Also the predictor error TP and the corrector error Tc are so related that 19TP ≈  251 Tc.

The relative error of an approximate solution is the ratio of the total error to the exact value. It is of greater importance than the error itself for if the true value becomes larger, then a larger error may be acceptable. If the true value diminishes, then the error must also diminish otherwise the computed results may be absurd.

EXAMPLE 10.32

Does applying Eulers method to the differential equation

dy/dx = f(x, y), y(x0) = y0, estimate the total error?

When f(x, y) =  y, y(0) = 1, compute this error neglecting the round-off error.

Solution:

We know that Eulers solution of the given differential equation is

yn+1 = yn+ hf(xn, yn) where xn = x0 + nh.

i.e., yn+1 = yn + hynʹ(1)

Denoting the exact solution of the given equation at x = xn by y(xn) and expanding y(xn+1) by Taylors series, we obtain

[image: image]

∴The truncation error Tn+1 = y(xn+1)  yn+1 = (1/2)h2 y ″ (n)

Thus the truncation error is of O(h2) as h → 0.

To include the effect of round-off error Rn, we introduce a new approximation yn which is defined by the same procedure allowing for the round-off error.

[image: image]

∴ The total error is defined by

[image: image]

Assuming continuity of ∂f/∂y and using Mean-Value theorem, we have

f[xn, y(xn)]  f(xn, yn) = [y(xn)  yn] fy(xn, n ), where n lies between y(xn) and yn.

∴ (4) takes the form

[image: image]

This is the recurrence formula for finding the total error. The first terms on the right-hand side is the inherited error, i.e., the propagation of the error from the previous step yn to yn+1.

(b) We have dy/dx =  y, y(0) = 1.

Taking h = 0.01 and applying (1) successively, we obtain

y(0.01) = 1 + 0.01( 1) = 0.99

y(0.02) = 0.99 + 0.01 ( 0.99) = 0.9801

y(0.03) = 0.9703, y(0.04) = 0.9606

∴ The truncation error

Tn+1 = (1/2)h2y″(ξ ) = 0.00005yξ )  5 × 105 y(xn)[∵ dy/dx is  ve]

i.e., T1  5 × 105 y(0) = 5 × 105

T2  5 × 105 y(0.01) = 5 × 105 (0.99) < 5 × 105

T3  5 × 105 y(0.02) = 5 × 105 (0.9801) < 5 × 105

T4  5 ×105 y(0.03) = 5 × 105 (0.9703) < 5 × 105 etc.

Also 1 + hf0(xn, yn) = 1 + 0.01( 1) = 0.99.

Neglecting the round-off error and using the above results, (5) gives

E0 = 0, E1 = E0(0.99) + T1  5 × 105 = 0.00005

E2 = E1(0.99) + T2 < 5 × 105 + 5 × 105 = 0.0001

E3 = E2(0.99) + T3 < 104 + 5 × 105 = 0.00015

E4 = E3(0.99) + T4 < 1.5 × 104 + 5 × 105 = 0.0002 etc.




	[image: image]
	
	Obs. The exact solution is y = ex.


	
	
	∴Actual error in y(0.03) = e0.03  0.9703 = 0.00014



	
	
	and actual error in y(0.04) = e0.04  0.9606 = 0.00019.





Clearly the total error E4 agrees with the actual error in y(0.04).

10.14Convergence of a Method

 

Any numerical method for solving a differential equation is said to be convergent if the approximate solution yn approaches the exact solution y(xn) as h tends to zero provided the rounding errors arise from the initial conditions approach zero. This means that as a method is continually refined by taking smaller and smaller step-sizes, the sequence of approximate solutions must converge to the exact solution.

Taylors series method is convergent provided f(x, y) possesses enough continuous derivatives. The Runge-Kutta methods are also convergent under similar conditions. Predictor corrector methods are convergent if f(x, y) satisfies the Lipschitz condition, i.e.,

[image: image]

k being a constant, then the sequence of approximations to the numerical solution converges to the exact solution.

10.15Stability Analysis

 

There is a limit to which the step-size h can be reduced for controlling the truncation error, beyond which a further reduction in h will result in the increase of round-off error and hence increase in the total error. This behavior of the error bound is shown in Figure 10.3.

In such situations, we have to use stable methods so that an error introduced at any stage does not get magnified.

A method is said to be stable if it produces a bounded solution which imitates the exact solution. Otherwise it is said to be unstable. If a method is stable for all values of the parameter, it is said to be absolutely or unconditionally stable. If it is stable for some values of the parameter, it is said to be conditionally stable.

The Taylors method and Adams-Bashforth method prove to be relatively stable. Eulers method and the Runge-Kutta method are conditionally stable as will be seen from Example 10.23.

The Milnes method is however, unstable since when the parameter is negative, each of the errors is magnified while the exact solution decays.

[image: image]

Figure 10.3

EXAMPLE 10.33

Does applying Eulers method to the equation

dy/dx = y, given y(x0) = y0,

determine its stability zone? What would be the range of stability when  =  1?

Solution:

We haveyʹ = y, y(x0) = y0(1)

By Eulers method,

 yn = yn1 + hyʹn1 = yn1 + hyn1 = (1 + h)yn1[by (1)

∴yn1 = (1 + h) yn2

 .......................................

y2 = (1 + h) y1

y1 = (1 + h) y0

Multiplying all these equations, we obtain

 yn = (1 + h)n y0(2)

Integrating (1), we get y = ceλx

Usingy(x0) = y0, y0 = ceλx0∴ y = y0el(xx0)

In particular, the exact solution through (xn, yn) is

[image: image]

[image: image]

Figure 10.4

Clearly the numerical solution (2) agrees with exact solution (3) for small values of h. The solution (2) increases if |1 + h| > 1.

Hence |1 + h|< 1 defines a stable zone.

When  is real, then the method is stable if |1 + h| < 1 i.e.  2 < h < 0

When  is complex ( = a + ib), then it is stable if

|1 + (a + ib) h | < 1 i.e. (1 + ah)2 + (bh)2 < 1

i.e., (x + 1)2 + y2 < 1,[where x = ah, y = bh.]

i.e., h lies within the unit circle shown in Figure 10.4.

When  is imaginary (= ib), |1 + h| = 1, then we have a periodic-stability.

Hence Eulers method is absolutely stable if and only if

(i) real :  2 < h = 0.

(ii) complex : h lies within the unit circle (Figure 10.4), i.e., Eulers method is conditionally convergent.

When  =  1, the solution is stable in the range  2 <  h < 0 i.e. 0 < h < 2.

Exercises 10.7

 

	Show that the approximate values yi, obtained from yʹ = y with y(0) = 1 by Taylors series method, converge to the exact solution for h tending to zero.

	Show that the modified Eulers method is convergent.

	Starting with the equation yʹ = y, show that the modified Eulers method is relatively stable.

	Apply the fourth order Runge-Kutta method to the equation dy/dx = μy, y(x0) = y0 and show that the range of absolute stability is
2.78 < μh < 0.


	Find the range of absolute stability of the equation
yʹ + 10y = 0, y(0) = 1, using

(a) Eulers method, (b) Runge-Kutta method.


	Show that the local truncation errors in the Milnes predictor and corrector formulae are
[image: image]




10.16Boundary Value Problems

 

Such a problem requires the solution of a differential equation in a region R subject to the various conditions on the boundary of R. Practical applications give rise to many such problems. We shall discuss two-point linear boundary value problems of the following types:

[image: image]

[image: image]

There exist two numerical methods for solving such boundary value problems. The first one is known as the finite difference method which makes use of finite difference equivalents of derivatives. The second one is called the shooting method which makes use of the techniques for solving initial value problems.

10.17Finite-Difference Method

 

In this method, the derivatives appearing in the differential equation and the boundary conditions are replaced by their finite-difference approximations and the resulting linear system of equations are solved by any standard procedure. These roots are the values of the required solution at the pivotal points.

The finite-difference approximations to the various derivatives are derived as under:

If y(x) and its derivatives are single-valued continuous functions of x then by Taylors expansion, we have

[image: image]

Equation (1) gives

[image: image]

which is the forward difference approximation of yʹ(x) with an error of the order h.

Similarly (2) gives

[image: image]

which is the backward difference approximation of yʹ(x) with an error of the order h.

Subtracting (2) from (1), we obtain

[image: image]

which is the central-difference approximation of yʹ(x) with an error of the order h2. Clearly this central difference approximation to yʹ(x) is better than the forward or backward difference approximations and hence should be preferred.

Adding (1) and (2), we get

[image: image]

which is the central difference approximation of y″(x). Similarly we can derive central difference approximations to higher derivatives.

Hence the working expressions for the central difference approximations to the first four derivatives of yi are as under:

[image: image]




	[image: image]
	
	Obs. The accuracy of this method depends on the size of the sub-interval h and also on the order of approximation. As we reduce h, the accuracy improves but the number of equations to be solved also increases.




EXAMPLE 10.34

Solve the equation y″ = x + y with the boundary conditions y(0) = y(1) = 0.

Solution:

We divide the interval (0, 1) into four sub-intervals so that h = 1/4 and the pivot points are at x0 = 0, x1 = 1/4, x2 = 1/2, x3 = 3/4, and x4 = 1.

Then the differential equation is approximated as

[image: image]

Using y0 = y4 = 0, we get the system of equations

[image: image]

Their solution gives

y1 =  0.03488, y2 =  0.05632, y3 =  0.05003.




	[image: image]
	
	Obs. The exact solution being [image: image] the error at each nodal point is given in the table below:




[image: image]

EXAMPLE 10.35

Using the finite difference method, find y(0.25), y(0.5), and y(0.75) satisfying the differential equation [image: image] subject to the boundary conditions y(0) = 0, y(1) = 2.

Solution:

Dividing the interval (0, 1) into four sub-intervals so that h = 0.25 and the pivot points are at x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 0.75, and x4 = 1.

The given equation y″(x) + y(x) = x, is approximated as

[image: image]

Usingy0 = 0 and y4 = 2, (i) gives the system of equation,

 (i = 1) 16y2  31y1 = 0.25;(ii)

 (i = 2) 16y3  31y2 + 16y1 = 0.5(iii)

 (i = 3) 32  31y3 + 16y2 = 0.75, i.e.,  31y3 + 16y2 =  31.25 (iv)

Solving the equations (ii), (iii), and (iv), we get

y1 = 0.5443, y2 = 1.0701, y3 = 1.5604

Hence y (0.25) = 0.5443, y(0.5) = 1.0701, y(0.75) = 1.5604

EXAMPLE 10.36

Determine values of y at the pivotal points of the interval (0, 1) if y satisfies the boundary value problem yiv + 81y = 81x2, y(0) = y(1) = y″(0) = y″ (1) = 0. (Take n = 3).

Solution:

Here h = 1/3 and the pivotal points are x0 = 0, x1 = 1/3, x2 = 2/3, x3 = 1. The corresponding y-values are y0(= 0), y1, y2, y3(= 0).

Replacing yiv by its central difference approximation, the differential equation becomes

[image: image]

Regarding the conditions y0″ = y3″ = 0, we know that

[image: image]

Using (iii), the equation (i) becomes

  4y2 + 6y1 = 1/9 (v)

Using (iv), the equation (ii) reduces to

 6y2  4y1 = 4/9(vi)

Solving (v) and (vi), we obtain

 y1 = 11/90 and y2 = 7/45.

Hence y(1/3) = 0.1222 and y(2/3) = 0.1556.

EXAMPLE 10.37

The deflection of a beam is governed by the equation [image: image] where f(x) is given by the table

[image: image]

and boundary condition y(0) = yʹ(0) = y″(1) = y″ʹ(1) = 0. Evaluate the deflection at the pivotal points of the beam using three sub-intervals.

Solution:

Here h = 1/3 and the pivotal points are x0 = 0, x1 = 1/3, x2 = 2/3, x3 = 1. The corresponding y-values are y0(= 0), y1, y2, y3.

The given differential equation is approximated to

[image: image]

Using (iv) and (vi), the equation (ii) becomes

 y3 + 3y2  2y1 = 1(ix)

Using (vi) and (vii), the equation (iii) reduces to

3y3  4y2 + 2y1 = 3(x)

Solving (viii), (ix), and (x), we get

y1 = 8/13, y2 = 22/13, y3 = 37/13.

Hencey(1/3) = 0.6154, y(2/3) = 1.6923, y(1) = 2.8462.

10.18Shooting Method

 

In this method, the given boundary value problem is first transformed to an initial value problem. Then this initial value problem is solved by Taylors series method or Runge-Kutta method, etc. Finally the given boundary value problem is solved. The approach in this method is quite simple.

Consider the boundary value problem

y″(x) = y(x), y(x) = A, y(b) = B(1)

One condition is y(a) = A and let us assume that yʹ(a) = m which represents the slope. We start with two initial guesses for m, then find the corresponding value of y(b) using any initial value method.

Let the two guesses be m0, m1 so that the corresponding values of y(b) are y(m0, b) and y(m1, b). Assuming that the values of m and y(b) are linearly related, we obtain a better approximation m2 for m from the relation:

[image: image]

We now solve the initial value problem

y″(x) = y(x), y(a) = A, yʹ(a) = m2

and obtain the solution y(m2, b).

To obtain a better approximation m3 for m, we again use the linear relation (2) with [m1, y(m1, b)] and [m2, y(m2, b)]. This process is repeated until the value of y(mi, b) agrees with y(b) to desired accuracy.

[image: image]

Figure 10.5




	[image: image]
	
	Obs. This method resembles an artillery problem and as such is called the shooting method (Figure 10.5). The speed of convergence in this method depends on our initial choice of two guesses for m. However, the shooting method is quite slow in practice. Also this method is quite tedius to apply to higher order boundary value problems.




EXAMPLE 10.38

Using the shooting method, solve the boundary value problem:

y″(x) = y(x), y(0) = 0 and y(1) = 1.17.

Solution:

Let the initial guesses for yʹ(0) = m be m0 = 0.8 and m1 = 0.9. Then y″(x) = y(x), y(0) = 0 gives

[image: image]

and so on.

Putting these values in the Taylors series, we have

[image: image]

∴y(1) = m(1 + 0.1667 + 0.0083 + 0.0002 + ⋯) = m (1.175)

For m0 = 0.8, y(m0, 1) = 0.8 × 1.175 = 0.94

For m1 = 0.9, y(m1, 1) = 0.9 × 1.175 = 1.057

Hence a better approximation for m, i.e., m2 is given by

[image: image]

which is closer to the exact value of yʹ(0) = 0.996

We now solve the initial value problem

y″(x) = y(x), y(0) = 0, yʹ(0) = m2.

Taylors series solution is given by

y(m2, 1) = m2 (1.175) = 1.1759

Hence the solution at x = 1 is y = 1.176 which is close to the exact value of y(1) = 1.17.

Exercises 10.8

 

	Solve the boundary value problem for x = 0.5:
[image: image]


	Find an approximate solution of the boundary value problem:
y″ + 8(sin2 y) y = 0, 0  x  1, y(0) = y(1) = 1.(Take n = 4)


	Solve the boundary value problem:
xy″ + y = 0, y(1) = 1, y(2) = 2.(Take n = 4)


	Solve the equation y″  4yʹ + 4y = e3x, with the conditions y(0) = 0, y(1) =  2, taking n = 4.

	Solve the boundary value problem y″  64y + 10 = 0 with y(0) = y(1) = 0 by the finite difference method. Compute the value of y(0.5) and compare with the true value.

	Solve the boundary value problem
y″ + xyʹ + y = 3x2 + 2, y(0) = 0, y(1) = 1.


	The boundary value problem governing the deflection of a beam of length three meters is given by
[image: image]

The beam is built-in at the left end (x = 0) and simply supported at the right end (x = 3).

Determine y at the pivotal points x = 1 and x = 2.


	Solve the boundary value problem,
[image: image]


	Solve the equation yiv  y″ʹ + y = x2, subject to the boundary conditions
y(0) = yʹ(0) = 0 and y(1) = 2, yʹ(1) = 0.(Take n = 5).


	Apply shooting method to solve the boundary value problem
[image: image]


	Using shooting method, solve the boundary value problem
[image: image]




10.19Objective Type of Questions

 

Exercises 10.9

 

Select the correct answer or fill up the blanks in the following questions:

	Which of the following is a step by step method:
(a) Taylors (b) Adams-Bashforth

(c) Picards (d) None.


	The finite difference scheme for the equation 2y″ + y = 5 is ...... .

	If yʹ = x + y, y(0) = 1 and y(1) = 1 + x + x2/2, then by Picards method, the value of y(2)(x) is ......

	The iterative formula of Eulers method for solving yʹ = f(x, y) with y(x0) = y0, is ....... .

	Taylors series for solution of first order ordinary differential equations is ......... .

	The disadvantage of Picards method is ...... .

	Given y0, y1, y2, y3, Milnes corrector formula to find y4 for dy/dx = f(x, y), is ...... .

	The second order Runge-Kutta formula is ...... .

	Adams-Bashforth predictor formula to solve yʹ = f(x, y), given y0 = y(x0) is .... .

	The Runge-Kutta method is better than Taylors series method because ...... .

	To predict Adams method atleast ...... values of y, prior to the desired value, are required.

	Taylors series solution of yʹ  xy = 0, y(0) = 1 upto x4 is ...... .

	If dy/dx is a function of x alone, the fourth order Runge-Kutta method reduces to ....... 

	Milnes Predictor formula is ....... .

	Adams Corrector formula is ....... .

	Using Eulers method, dy/dx = (y  2x)/y, y(0) = 1; gives y (0.1) = ..... .

	[image: image] is equivalent to a set of two first order differential equations ...... and ...... .

	The formula for the fourth order Runge-Kutta method is ...... .

	Taylors series method will be useful to give some ...... of Milnes method.

	The names of two self-starting methods to solve yʹ = f(x, y) given y(x0) = y0 are ...... .

	In the derivation of the fourth order Runge-Kutta formula, it is called fourth order because ..... 

	If yʹ = x  y, y(0) = 1 then by Picards method, the value of y(1) (1) is ...... .
(a) 0.915(b) 0.905(c) 1.091(d) none.


	The finite difference formulae for yʹ(x) and y″(x) are ...... . 

	If yʹ =  y, y(0) = 1, then by Eulers method, the value of y(1) is
(a) 0.99(b) 0.999(c) 0.981(d) none.


	Write down the difference between initial value problem and boundary value problem ..... . 

	Which of the following methods is the best for solving initial value problems:
(a) Taylors series method

(b) Eulers method

(c) Runge-Kutta method of the fourth order

(d) Modified Eulers method. 


	The finite difference scheme of the differential equation y″ + 2y = 0 is .....

	Using the modified Eulers method, the value of y(0.1) for
[image: image]

(a) 0.809(b) 0.909(c) 0.0809(c) none.


	The multi-step methods available for solving ordinary differential equations are ...... .

	Using the Runge Kutta method, the value of y(0.1) for yʹ = x  2y, y(0) = 1, taking h = 0.1, is ...... 
(a) 0.813(b) 0.825(c) 0.0825(c) none.


	In Eulers method, if h is small the method is too slow, if h is large, it gives inaccurate value. (True or False)

	Runge-Kutta method is a self-starting method.(True or False)

	Predictor-corrector methods are self-starting methods.(True or False) 



Footnotes

 

* Called after the German mathematician Carl Runge (1856-1927).

** O(h2) means terms containing second and higher powers of h and is read as order of h2.
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11.1Introduction

 

Partial differential equations arise in the study of many branches of applied mathematics, e.g., in fluid dynamics, heat transfer, boundary layer flow, elasticity, quantum mechanics, and electro-magnetic theory. Only a few of these equations can be solved by analytical methods which are also complicated by requiring use of advanced mathematical techniques. In most of the cases, it is easier to develop approximate solutions by numerical methods. Of all the numerical methods available for the solution of partial differential equations, the method of finite differences is most commonly used. In this method, the derivatives appearing in the equation and the boundary conditions are replaced by their finite difference approximations. Then the given equation is changed to a system of linear equations which are solved by iterative procedures. This process is slow but produces good results in many boundary value problems. An added advantage of this method is that the computation can be carried by electronic computers. To accelerate the solution, sometimes the method of relaxation proves quite effective.

Besides discussing the finite difference method, we shall briefly describe the relaxation method also in this chapter.

11.2Classification of Second Order Equations

 

The general linear partial differential equation of the second order in two independent variables is of the form

[image: image]

Such a partial differential equation is said to be

(i) elliptic if B2  4AC < 0,(ii) parabolic if B2  4AC = 0, and (iii) hyperbolic if B2  4AC > 0.




	[image: image]
	
	Obs. A partial equation is classified according to the region in which it is desired to be solved. For instance, the partial differential equation fxx + fyy = 0 is elliptic if y > 0, parabolic if y = 0, and hyperbolic if y < 0.






EXAMPLE 11.1

Classify the following equations:

[image: image]

[image: image]

Solution:

 (i) Comparing this equation with (1) above, we find that t2

A = 1, B = 4, C = 4

∴B2  4AC = (4)2  4 × 1 × 4 = 0

So the equation is parabolic.

 (ii) Here A = x2, B = 0, C = 1  y2

B2  4AC = 0  4x2 (1  y2) = 4x2(y2  1)

For all x between   and , x2 is positive

For all y between  1 and 1, y2 < 1

B2  4AC < 0

Hence the equation is elliptic

(iii) Here A = 1 + x2, B = 5 + 2x2, C = 4 + x2

∴B2  4AC = (5 + 2x2)2  4(1 + x2)(4 + x2) = 9 i.e. > 0

So the equation is hyperbolic

Exercises 11.1

 

	What is the classification of the equation fxx + 2fxy + fyy = 0.

	Determine whether the following equation is elliptic or hyperbolic?
(x + 1)uxx  2(x + 2)uxy + (x + 3)uyy = 0.


	Classify the equation
[image: image]


	In which parts of the (x, y) plane is the following equation elliptic?


[image: image]



11.3Finite Difference Approximations to Partial Derivatives

 

Consider a rectangular region R in the x, y plane. Divide this region into a rectangular network of sides Δx = h and Δy = k as shown in Figure 11.1. The points of intersection of the dividing lines are called mesh points, nodal points, or grid points

[image: image]

Figure11.1

Then we have the finite difference approximations for the partial derivatives in x-direction (Section 10.17):

[image: image]

Writing u(x, y) = u(ih, jk) as simply ui, j, the above approximations become

[image: image]

[image: image]

Similarly we have the approximations for the derivatives w.r.t. y:

[image: image]

Replacing the derivatives in any partial differential equation by their corresponding difference approximations (1) to (8), we obtain the finite-difference analogues of the given equation.

11.4Elliptic Equations

 

The Laplace equation [image: image] and the Poissons equation [image: image] are Example s of elliptic partial differential equations. The Laplace equation arises in steady-state flow and potential problems. Poissons equation arises in fluid mechanics, electricity and magnetism and torsion problems.

The solution of these equations is a function u(x, y) which is satisfied at every point of a region R subject to certain boundary conditions specified on the closed curve C (Figure 11.2).

[image: image]

Figure11.2

In general, problems concerning steady viscous flow, equilibrium stresses in elastic structures etc., lead to elliptic type of equations.

11.5Solution of Laplaces Equation

 

[image: image]

Consider a rectangular region R for which u(x, y) is known at the boundary. Divide this region into a network of square mesh of side h, as shown in Figure 11.3 (assuming that an exact sub-division of R is possible). Replacing the derivatives in (1) by their difference approximations, we have

[image: image]

[image: image]

Figure 11.3

This shows that the value of u at any interior mesh point is the average of its values at four neighboring points to the left, right, above and below. (2) is called the standard 5-point formula which is exhibited in Figure 11.4.

Sometimes a formula similar to (2) is used which is given by

[image: image]

(3)

This shows that the value of ui, j is the average of its values at the four neighboring diagonal mesh points. (3) is called the diagonal five-point formula which is represented in Figure 11.5. Although (3) is less accurate than (2), yet it serves as a reasonably good approximation for obtaining the starting values at the mesh points.

[image: image]

Figure11.4Figure11.5

Now to find the initial values of u at the interior mesh points, we first use the diagonal five-point formula (3) and compute u3, 3, u2, 4, u4, 4, u4, 2 and u2, 2, in this order. Thus we get,

[image: image]

The values at the remaining interior points, i.e., u2,3, u3,4, u4,3 and u3,2 are computed by the standard five-point formula (2). Thus, we obtain

[image: image]

Having found all the nine values of ui, j once, their accuracy is improved by either of the following iterative methods. In each case, the method is repeated until the difference between two consecutive iterates becomes negligible.

 (i) Jacobis method. Denoting the nth iterative value of ui, j, by u(n)i, j, the iterative formula to solve (2) is

[image: image]

 It gives improved values of ui, j at the interior mesh points and is called the point Jacobis formula.

(ii) Gauss-Seidal method. In this method, the iteration formula is

[image: image]

It utilizes the latest iterative value available and scans the mesh points symmetrically from left to right along successive rows.




	[image: image]
	
	Obs. The Gauss-Seidal method is simple and can be adapted to computer calculations. Its convergence being slow, the working is somewhat lengthy. It can however, be shown that the Gauss-Seidal scheme converges twice as fast as Jacobis scheme.




The accuracy of calculations depends on the mesh-size, i.e., smaller the h, the better the accuracy. But if h is too small, it may increase rounding-off errors and also increases the labor of computation.

EXAMPLE 11.2

Solve the elliptic equation uxx + uyy = 0 for the following square mesh with boundary values as shown in Figure 11.6.

Solution:

Let u1, u2,⋯, u9 be the values of u at the interior mesh-points. Since the boundary values of u are symmetrical about AB,

∴ u7 = u1, u8 = u2, u9 = u3.

Also the values of u being symmetrical about CD. u3 = u1, u6 = u4, u9 = u7.

Thus it is sufficient to find the values u1, u2, u4, and u5.

[image: image]

Figure 11.6

Now we find their initial values in the following order:

[image: image]

Now we carry out the iteration process using the standard formulae:

[image: image]

First iteration: (put n = 0 in the above results)

[image: image]

Second iteration: (put n = 1)

[image: image]

Third iteration:

[image: image]

Fourth iteration:

[image: image]

[image: image]

Fifth iteration:

[image: image]

Similarly,

[image: image]

There is a negligible difference between the values obtained in the eleventh and twelfth iterations.

Henceu1 = 939, u2 = 1001, u4 = 1251 and u5 = 1126.

EXAMPLE 11.3

Given the values of u(x, y) on the boundary of the square in the Figure 11.7, evaluate the function u(x, y) satisfying the Laplace equation ∇2u = 0 at the pivotal points of this figure by

(a) Jacobis method(b) Gauss-Seidal method

Solution:

To get the initial values of u1, u2, u3, u4, we assume that u4 = 0. Then

[image: image]

[image: image]

Figure 11.7

 (a) We carry out the successive iterations, using Jacobis formulae:

[image: image]

First iteration: (put n = 0 in the above results)

[image: image]

[image: image]

Second iteration: (put n = 1)

[image: image]

[image: image]

There is no significant difference between the seventh and eighth iteration values.

Henceu1 = 1208, u2 = 792, u3 = 1042 and u4 = 458.

(b) We carry out the successive iterations, using Gauss-Seidal formulae

[image: image]

First iteration:(put n = 0 in the above results)

[image: image]

Second iteration: (put n = 1)

[image: image]

[image: image]

Thus there is no significant difference between the fourth and fifth iteration values.

Henceu1 = 1208, u2 = 792, u3 = 1042 and u4 = 458.

EXAMPLE 11.4

Solve the Laplace equation uxx + uyy = 0 given that

[image: image]

Figure 11.8

Solution:

We first find the initial values in the following order:

[image: image]

[image: image]

Now we carry out the iteration process using the standard formula:

[image: image]

First iteration: (put n = 0, in the above results)

[image: image]

[image: image]

Second iteration: (put n = 1)

[image: image]

Third iteration: (put n = 2)

[image: image]

[image: image]

Similarly

[image: image]

 

There is no significant difference between the fourth and fifth iteration values.

Hence u1 = 7.83, u2 = 13.66, u3 = 17.89, u4 = 6.6, u5 = 11.95, u6 = 16.29, u7 = 6.64,u8 = 11.25, u9 = 14.34.

11.6Solution of Poissons Equation

 

[image: image]

Its method of solution is similar to that of the Laplace equation. Here the standard five-point formula for (1) takes the form

[image: image]

By applying (2) at each interior mesh point, we arrive at linear equations in the nodal values ui, j. These equations can be solved by the Gauss-Seidal method.




	[image: image]
	
	Obs. The error in replacing uxx by the finite difference approximation is of the order O(h2). Since k= h, the error in replacing uyy by the difference approximation is also of the order O(h2). Hence the error in solving Laplace and Poissons equations by finite difference method is of the order O(h2).




EXAMPLE 11.5

Solve the Poisson equation uxx + uyy =  81xy, 0 < x < 1, 0 < y < 1 given that u(0, y) = 0, u(x, 0) = 0, u(1, y) = 100, u(x, 1) = 100 and h = 1/3.

Solution:

Here h = 1/3.

The standard five-point formula for the given equation is

[image: image]

[image: image]

Figure 11.9

Subtracting (v) from (ii),  4u1 + 4u4 = 0, i.e., u1 = u4

Then (iii) becomes 2u1  4u2 =  204(vi)

and (iv) becomes 2u1  4u3 =  1(vii)

Now (4) × (ii) + (vi) gives  14u1 + 4u3 =  612(viii)

(vii) + (viii) gives  12u1 =  613

Thusu1 = 613/12 = 51.0833 = u4.

[image: image]

EXAMPLE 11.6

Solve the equation ∇2u 10(x2 + y2 + 10) over the square with sides x = 0 = y, x = 3= y with u = 0 on the boundary and mesh length = 1.
 
Solution:

Here h = 1.

∴ The standard five-point formula for the given equation is

[image: image]

[image: image]

Figure 11.10

[image: image]

[image: image]

Equations (ii) and (v) show that u4 = u1. Thus the above equations reduce to

[image: image]

Now let us solve these equations by the Gauss-Seidal iteration method.

First iteration: Starting from the approximations u2 = 0, u3 = 0, we obtain u1(1) = 37.5

[image: image]

Since these values are the same as those of fourth iteration, we have u1 = 75, u2 = 82.5,u3 = 67.5 and u4 = 75.

Exercises 11.2

 

	Solve the equation uxx + uyy = 0 for the square mesh with the boundary values as shown in Figure 11.11.
[image: image]

Figure 11.11

[image: image]

Figure 11.12


	Solve uxx + uyy = 0 over the square mesh of side four units satisfying the following boundary conditions: u (0, y) = 0 for 0  y  4, u (4, y) = 12 + y for 0  y  4; u(x, 0) = 3x for 0  x  4,u (x, 4) = x2 for 0  x  4.
 	Solve the elliptic equation uxx + uyy = 0 for the square mesh with boundary values as shown in Figure 11.12. Iterate until the maximum difference between successive values at any point is less than 0.005.
[image: image]

Figure 11.13

[image: image]

Figure 11.14


	Using central-difference approximation solve ∇2u = 0 at the nodal points of the square grid of Figure 11.13 using the boundary values indicated.

	Solve uxx + uyy = 0 for the square mesh with boundary values as shown in Figure 11.14. Iterate till the mesh values are correct to two decimal places.
[image: image]

Figure 11.15

[image: image]

Figure 11.16


	Solve the Laplaces equation uxx + uyy = 0 in the domain of Figure 11.15 by (a) Jacobis method, (b) Gauss-Seidal method.

	Solve the Laplaces equation ∇2u = 0 in the domain of the Figure 11.16.

	Solve the Poissons equation ∇2u = 8x2y2 for the square mesh of Figure 11.17 with u(x, y) = 0 on the boundary and mesh length = 1.
[image: image]

Figure 11.17

[image: image]

Figure 11.18




11.7Solution of Elliptic Equations by Relaxation Method

 

If the equations for all the mesh points are written using (2) of Section 11.6, we get a system of equations which can be solved by any method. For this purpose, the method of relaxation is particularly well-suited. Here we shall describe this method in relation to elliptic equations.

Consider the Laplace equation

[image: image]

We take a square region and divide it into a square net of mesh size h. Let the value of u at A be u0 and its values at the four adjacent points be u1, u2, u3, u4 (Figure 11.19). Then

[image: image]

If (1) is satisfied at A, then

[image: image]

If r0 be the residual (discrepancy) at the mesh point A,

then r0 = u1 + u2 + u3 + u4  4u0(2)

Similarly the residual at the point B, is given by

r1 = u0 + u5 + u6 + u7  4u1 and so on(3)

[image: image]

Figure 11.19

The main aim of the relaxation process is to reduce all the residuals to zero by making them as small as possible step by step. We, therefore, try to adjust the value of u at an internal mesh point so as to make the residual thereat zero. But when the value of u is changing at a mesh point, the values of the residuals at the neighboring interior points will also be changed. If u0 is given an increment 1, then

(i) (2) shows that r0 is changed by  4.

(ii) (3) shows that r1 is changed by 1.

i.e., if the value of the function is increased by 1 at a mesh point (shown by a double ring), then the residual at that point is decreased by 4 while the residuals at the adjacent interior points (shown by a single ring), get increased each by 1. This relaxation pattern is shown in Figure 11.20.

[image: image]

Figure 11.20

Working procedure to solve an equation by the relaxation method:

I. Write down by trial, the initial values of u at the interior mesh points by diagonal averaging or cross-averaging.

II. Calculate the residuals at each of these points by (2) above. If we apply this formula at a point near the boundary, one or more end points get chopped off since there are no residuals at the boundary.

III. Write the residuals at a mesh-point on the right of this point and the value of u on its left.

IV. Obtain the solution by reducing the residuals to zero, one by one, by giving suitable increments to u and using Figure 11.20. At each step, we reduce the numerically largest residual to zero and record the increment of u on the left (below the earlier value thereat) and the modified residual on the right (below the earlier residual).

V. When a round of relaxation is completed, the value of u and its increments are added at each point. Using these values, calculate all the residuals afresh. If some of there calculated residuals are large, liquidate these again.

VI. Stop the relaxation process, when the current values of the residuals are quite small. The solution will be the current value of u at each of the nodes.




	[image: image]
	
	Obs. Relaxation method combines simplicity with the speed of convergence. Its only drawback is its unsuitability for computer calculations.




EXAMPLE 11.7

Solve by relaxation method, the Laplace equation [image: image] inside the square bounded by the lines x = 0, x = 4, y = 0, y = 4, given that u = x2y2 on the boundary.

Solution:

Taking h = 1, we find u on the boundary from u = x2y2. The initial values of u at the nine mesh points are estimated to be 24, 56, 104; 16, 32, 56; 8, 16, 24 as shown on the left of the points in Figure 11.21.

∴ Residual at A, i.e., rA = 0 + 56 + 16 + 16  4 × 24 =  8

Similarly rB = 0, rC =  16, rD = 0, rE = 16, rF = 0, rG = 0, rH = 0, rI =  8.

(i)The numerically largest residual is 16 at E. To liquidate it, we increase u by 4 so that the residual becomes zero and the residuals at neighboring nodes get increased by 4.

[image: image]

Figure 11.21

(ii)Next, the numerically largest residual is  16 at C. To reduce it to zero, we increase u by  4 so that the residuals at the adjacent nodes are increased by  4.

(iii)Now, the numerically largest residual is  8 at A. To liquidate it, we increase u by 2 so that the residuals at the adjacent nodes are increased by  2.

(iv) Finally, the largest residual is  8 at I. To liquidate it, we increase u by  2 so that the residuals at the adjacent points are increased by  2.

(v)The numerically largest current residual being 2, we stop the relaxation process. Hence the final values of u are:

[image: image]

EXAMPLE 11.8

Solve by relaxation method Example 11.3.

Solution:

(i) The initial values of u at A, B, C, and D are estimated to be 1000, 625, 875, and 375 [Figure 11.22 (I)].

[image: image]

Figure 11.22 (I)

∴rA = 500, rB = 375, rC = 375, rD = 0

To liquidate rA, increase u by 125

To liquidate rB, increase u by 94

To liquidate rC, increase u by 94

(ii) Modified values of u are 1125, 719, 969, 375 [Figure (ii)]

[image: image]

Figure 11.22 (II)

∴rA = 188, rB = 124, rC = 124, rD = 188.

To liquidate rA, rD, rB, rC increase u by 47, 47, 31, 31 in turn.

(iii) Revised values of u are 1172, 750, 1000, 422 [Figure (iii)]

[image: image]

Figure 11.22 (III)

∴rA = 62, rB = 84, rC = 84, rD = 62

To liquidate rB, rC, rA, rD increase u by 21, 21, 15, 15, respectively.

(iv) Improved values of u are 1187, 771, 1021, 437 [Figure (iv)]

∴rA = 44, rB = 40, rC = 40, rD = 44.

To liquidate rA, rD, rB, rC increase u by 11, 11, 10, 10, respectively

[image: image]

Figure 11.22 (IV)

(v) Modified values of u are 1198, 781, 1031, 448 [Figure (v)]

∴rA = 20, rB = 22, rC = 22, rD = 20.

[image: image]

Figure 11.22 (V)

To liquidate rB, rC, rA, rD increase u by 5, 5, 5, 5, respectively.

(vi) Revised values of u are 1203, 786, 1036, 453 [Figure (vi)]

∴rA = 10, rB = 12, rC = 12, rD = 10

To liquidate rB, rC, rA, rD increase u by 3, 3, 2, 2, respectively.

[image: image]

Figure11.22(VI)

[image: image]

Figure11.22(VII)

(vii) Improved values of u are 1205, 789, 1039, 455 [Figure (vii)]

∴rA = 8, rB = 4, rC = 4, rD = 8.

To liquidate rA, rD, rB, rC increase u by 2, 2, 1, 1.

(viii) Finally the current residuals being 1, 0, 0, 1, we stop the relaxation process.

Hence the values of u at A, B, C, D are 1207, 790, 1040, 457.

Exercises 11.3

 

	Given that u(x, y) satisfies the equation ∇2u = 0 and the boundary conditions are [image: image] find the values u(i, j), i = 1, 2, 3; j = 1, 2, 3by the relaxation method.

	Apply the relaxation method to solve the equation ∇2u =  400, when the region of u is the square bounded by x = 0, y = 0, x = 4, and y = 4 and u is zero on the boundary of the square.

	Solve by relaxation method, the equation ∇2u = 0 in the square region with square meshes(Figure 11.23) starting with the initial values u1 = u2 = u3 = u4 = 1.


[image: image]

Figure 11.23

11.8Parabolic Equations

 

The one-dimensional heat conduction equation [image: image] is a well-known Example of parabolic partial differential equations. The solution of this equation is a temperature function u(x, t) which is defined for values of x from 0 to l and for values of time t from 0 to .The solution is not defined in a closed domain but advances in an open-ended region from initial values, satisfying the prescribed boundary conditions (Figure 11.24).

[image: image]

Figure 11.24

In general, the study of pressure waves in a fluid, propagation of heat and unsteady state problems lead to parabolic type of equations.

11.9Solution of One Dimensional Heat Equation

 

[image: image]

where c2 = k/s is the diffusivity of the substance (cm2/sec.)

Schmidt method. Consider a rectangular mesh in the x-t plane with spacing h along x direction and k along time t direction. Denoting a mesh point (x, t) = (ih, jk) as simply i, j, we have

[image: image]

where  = kc2/h2 is the mesh ratio parameter.

This formula enables us to determine the value of u at the (i, j + 1)th mesh point in terms of the known function values at the points xi1, xi, and xi+1 at the instant tj. It is a relation between the function values at the two time levels j + 1 and j and is therefore, called a two-level formula. In schematic form (2) is shown in Figure 11.25.

[image: image]

Figure 11.25

Hence (2) is called the Schmidt explicit formula which is valid only for 0 <   12 .




	[image: image]
	
	Obs. In particular when  = 1/2, (2) reduces to


	
	
	ui, j+1 = 1/2, (ui1, j + ui+1, j)(3)




	
	
	which shows that the value of u at xi at time tj+1 is the mean of the u-values at xi1 and xi+1 at time tj. This relation, known as Bendre-Schmidt recurrence relation, gives the values of u at the internal mesh points with the help of boundary conditions.





Crank-Nicolson method. We have seen that the Schmidt scheme is computationally simple and for convergent results   12 i.e., k  h2/2c2. To obtain more accurate results, h should be small i.e. k is necessarily very small. This makes the computations exceptionally lengthy as more time levels would be required to cover the region. A method that does not restrict  and also reduces the volume of calculations was proposed by Crank and Nicolson in 1947.

According to this method, ∂2u/∂x2 is replaced by the average of its central-difference approximations on the jth and (j + 1)th time rows. Thus (1) is reduced to

[image: image]

Clearly the left side of (4) contains three unknown values of u at the (j + 1)th level while all the three values on the right are known values at the jth level. Thus (4) is a two level implicit relation and is known as Crank-Nicolson formula. It is convergent for all finite values of . Its computational model is given in Figure 11.26.

[image: image]

Figure 11.26

If there are n internal mesh points on each row, then the relation (4) gives n simultaneous equations for the n unknown values in terms of the known boundary values. These equations can be solved to obtain the values at these mesh points. Similarly, the values at the internal mesh points on all rows can be found. A method such as this in which the calculation of an unknown mesh value necessitates the solution of a set of simultaneous equations, is known as an implicit scheme.

Iterative methods of solution for an implicit scheme.

From (4), we have

[image: image]

Here only ui, j+1, ui1, j+1 and ui+1, j +1 are unknown while all others are known since these were already computed in the jth step.

[image: image]

which expresses the (n + 1)th iterates in terms of the nth iterates only. This is known as the Jacobis iteration formula.

As the latest value of ui1 i.e.,[image: image] is already available, the convergence of the iteration formula (6) can be improved by replacing [image: image] Accordingly (6) may be written as

[image: image]

which is known as the Gauss-Seidal iteration formula.




	[image: image]
	
	Obs. Gauss-Seidal iteration scheme is valid for all finite values of  and converges twice as fast as Jacobis scheme.




Du Fort and Frankel method. If we replace the derivatives in (1) by the central difference approximations

[image: image]

[image: image]

where  = kc2/h2. This difference equation is called the Richardson scheme which is a three-level method.

If we replace ui, j by the mean of the values ui, j1 and ui, j+1

[image: image]

On simplification, it can be written as

[image: image]

This difference scheme is called Du Fort-Frankel method which is a three level explicit method. Its computational model is given in Figure 11.27

[image: image]

Figure 11.27

EXAMPLE 11.9

Solve [image: image] in 0 < x < 5, t  0 given that u(x, 0) = 20, u(0, t) = 0, u(5, t) = 100. Compute u for the time-step with h = 1 by the Crank-Nicholson method.

Solution:

Here c2 = 1 and h = 1.

Taking  (i.e., c2k/h) = 1, we get k = 1.

Also we have

[image: image]

Then Crank-Nicholson formula becomes

4ui, j+1 = ui1, j+1 + ui+1, j+1+ ui1, j + ui+1, j

∴4u1 = 0 + 20 + 0 + u2 i.e., 4u1  u2 = 20(1)

 4u2 = 20 + 20 + u1 + u3 i.e., u1  4u2 + u3 =  40(2)

 4u3 = 20 + 20 + u2 + u4 i.e., u2  4u3 + u4 =  40(3)

 4u4 = 20 + 100 + u3 + 100 i.e., u3  4u4 =  220(4)

Now (1)  4(2) gives 15u2  4u3 = 180(5)

4(3) + (4) gives 4u2  15u3 =  380(6)

Then 15(5)  4(6) gives 209 u2 = 4220 i.e., u2 = 20.2

From (5), we get 4u3 = 15 × 20.2  180 i.e., u3 = 30.75

From (1),4u1 = 20 + 20.2 i.e., u1 = 10.05

From (4),4u4 = 220 + 30.75 i.e., u4 = 62.69

Thus the required values are 10.05, 20.2, 30.75 and 62.68.

EXAMPLE 11.10

Solve the boundary value problem ut = uxx under the conditions u(0, t)= u(1, t) = 0 and u(x, 0) = sin px, 0  x  1 using the Schmidt method (Take h = 0.2 and  = 1/2).

Solution:

[image: image]

Since  = 1/2, we use the Bendre-Schmidt relation

[image: image]

(i)

We have u(0, 0) = 0, u(0.2, 0) = sin /5 = 0.5875

u(0.4, 0) = sin 2/5 = 0.9511, u(0.6, 0) = sin 3/5 = 0.9511

u(0.8, 0) = sin 4/5 = 0.5875, u(1, 0) = sin  = 0

The values of u at the mesh points can be obtained by using the recurrence relation (i) as shown in the table below

[image: image]

EXAMPLE 11.11

Find the values of u(x, t) satisfying the parabolic equation [image: image] and the boundary conditions u(0, t) = 0 = u(8, t) and u(x, 0) = 4x  (1/2) x2 at the points x = i:i = 0, 1, 2, ⋯, 7 and t = 1/8 j: j = 0, 1, 2, ⋯, 5

Solution:

Here c2 = 4, h = 1 and k = 1/8. Then  = c2k/h2 = 1/2.

∴ We have Bendre-Schmidts recurrence relation

ui, j+1 = 1/2 (ui1, j + u=)(i)

Now sinceu(0, t) = 0 = u(8, t)

∴ u0, i = 0 and u8, j = 0 for all values of j, i.e., the entries in the first and last column are zero.

Sinceu(x, 0) = 4x  (1/2) x2

∴ui, 0 = 4i  (1/2) i2

= 0, 3.5, 6, 7.5, 8, 7.5, 6, 3.5 for i = 0, 1, 2, 3, 4, 5, 6, 7

att = 0

These are the entries of the first row.

Putting j = 0 in (i), we have ui, 1 = (1/2) (ui1, 0 + ui+1, 0)

Taking i = 1, 2, ⋯, 7 successively, we get

[image: image]

These are the entries in the second row.

Putting j = 1 in (i), the entries of the third row are given by

[image: image]

Similarly putting j = 2, 3, 4 successively in (i), the entries of the fourth, fifth, and sixth rows are obtained.

Hence the values of ui, j are as given in the following table:

[image: image]

EXAMPLE 11.12

Solve the equation [image: image] subject to the conditions u(x, 0) = sin x, 0  x  1; u(0, t) = u(1, t) = 0, using (a) Schmidt method, (b) Crank-Nicolson method, (c) Du Fort-Frankel method. Carryout computations for two levels, taking h = 1/3, k = 1/36.

Solution:

Here c2 = 1, h = 1/3, k = 1/36 so that  =kc2/h2 = 1/4.

Also u1, 0 = sin /3 = √3/2, u2, 0 = sin 2/3 = √3/2 and all boundary values are zero as shown in Figure 11.28.

[image: image]

Figure 11.28

(a) Schmidts formula [(2) of Section 11.9]

[image: image]

 (b) Crank-Nicolson formula [(4) of Section 11.9] becomes

[image: image]

Solving these equations, we find

u1, 1 = u2, 1 = 0.67

For i = 1, 2; j = 1:

 u0, 2 + 10u1, 2  u2, 2 = u0, 1 + 6u1, 1 + u2, 1

i.e., 10u1, 2  u2, 2 = 4.69

 u1,2 + 10u2,2  u3,2 = u1, 1 + 6u2,1 + u3,1

i.e, u1,2 + 10u2,2 = 4.69

Solving these equations, we get u1,2 = u2,2 = 0.52.

(c) Du Fort-Frankel formula [(8) of Section 11.9] becomes ui, j+1 = (ui, j1 + ui1, j + ui+1, j)

To start the calculations, we need u1, 1 and u2, 1.

We may take u1, 1 = u2, 1 = 0.65 from Schmidt method.

For i = 1, 2; j = 1:

[image: image]

11.10Solution of Two Dimensional Heat Equation

 

[image: image]

The methods employed for the solution of one dimensional heat equation can be readily extended to the solution of (1).

Consider a square region 0  x  y  a and assume that u is known at all points within and on the boundary of this square.

If h is the step-size then a mesh point (x, y,t) = (ih, jh, nl) may be denoted as simply (i, j, n).

Replacing the derivatives in (1) by their finite difference approximations, we get

[image: image]

where  = lc2/h2. This equation needs the five points available on the nth plane (Figure 11.29).

[image: image]

Figure 11.29

The computation process consists of point-by-point evaluation in the (n + 1)th plane using the points on the nth plane. It is followed by plane-by-plane evaluation. This method is known as ADE (Alternating Direction Explicit) method.

EXAMPLE 11.13

Solve the equation [image: image] subject to the initial conditions u(x,y, 0) = sin 2 x sin 2 y, 0  x, y  1, and the conditions u(x, y, t) = 0, t > 0 on the boundaries, using ADE method with h = 1/3 and  = 1/8. (Calculate the results for one time level).

Solution:

The equation (2) above becomes

[image: image]

The mesh points and the computational model are given in Figure 11.30.

[image: image]

Figure 11.30

At the zero level (n = 0), the initial and boundary conditions are

[image: image]

Now we calculate the mesh values at the first level:

[image: image]

(i) Put i = j = 1 in (2):

[image: image]

(ii) Put i = 2, j = 1 in (2)

[image: image]

(iii) Put i = 1, j = 2 in (2):

[image: image]

(iv) Put i = 2, j = 2 in (2):

[image: image]

Similarly the mesh values at the second and higher levels can be calculated.

Exercises 11.4

 

	Find the solution of the parabolic equation uxx = 2ut when u(0, t) = u(4, t) = 0 and u(x, 0) = x(4  x), taking h = 1. Find the values up to t = 5.

	Solve the equation [image: image] with the conditions u(0, t) = 0, u(x, 0) = x(1  x), and u(1, t) =0. Assume h = 0.1. Tabulate u for t = k, 2k and 3k choosing an appropriate value of k.

	Given [image: image] find the values of f for x = ih (i = 0, 1, ..., 5) and t = jk (j = 0, 1, ..., 6) with h = 1 and k = 1/2, using the explicit method.

	Given ∂u/∂t = ∂2u/∂t2, u(0, t) = 0, u(4, t) = 0 and u(x, 0) = x/3(16  x2). Obtain ui, j for10 = 1, 2, 3, 4 and j = 1, 2 using Crank-Nicholsons method.

	Solve the heat equation [image: image] subject to the conditions u(0, t) = u(1, t) = 0 and 
[image: image]

Take h = 1/4 and k according to the Bandre-Schmidt equation.


	Solve the two dimensional heat equation [image: image] satisfying the initial condition: u(x, y, 0) = sin x sin y, 0  x, y  1 and the boundary conditions: u = 0 at x = 0 and x = 1for t > 0. Obtain the solution up to two time levels with h = 1/3 and  = 18. 


11.11Hyperbolic Equations

 

The wave equationis [image: image] the simplest Example of hyperbolic partial differential equations. Its solution is the displacement function u(x, t) defined for values of x from 0 to l and for t from 0 to , satisfying the initial and boundary conditions. The solution, as for parabolic equations, advances in an open-ended region (Figure 11.24). In the case of hyperbolic equations however, we have two initial conditions and two boundary conditions.

Such equations arise from convective type of problems in vibrations, wave mechanics, and gas dynamics.

11.12Solution of Wave Equation

 

[image: image]

subject to the initial conditions: u = f(x), ∂u/∂t = g(x), 0  x  1 at t = 0(2)

and the boundary conditions: u(0, t) = φ(t), u(1, t) = ψ(t)(3)

Consider a rectangular mesh in the x-t plane spacing h along x direction and k along time direction. Denoting a mesh point (x, t) = (ih, jk) as simply i, j, we have

[image: image]

Replacing the derivatives in (1) by their above approximations, we obtain

[image: image]

Now replacing the derivative in (2) by its central difference approximation, we get

[image: image]

Also initial condition u = f(x) at t = 0 becomes ui, 1 = f(x)(6)

Combining (5) and (6), we have ui, 1 = f(x) + 2kg(x)(7)

Also (3) gives u0, j = φ(t) and u1, j = ψ(t).

Hence the explicit form (4) gives the values of ui, j+1 at the (j + 1)th level when the nodal values at (j  1)th and jth levels are known from (6) and (7) as shown in Figure 11.31. Thus (4)gives an implicit scheme for the solution of the wave equation.

A special case. The coefficient of ui, j in (4) will vanish if c = 1 or k = h/c. Then (4) reduces to the simple form

ui, j+1 = ui1, j + ui+1, j  ui, j1(8)




	[image: image]
	
	Obs. 1. This provides an explicit scheme for the solution of the wave equation.


	
	
	For  = 1/c, the solution of (4) is stable and coincides with the solution of (1).



	
	
	For  < 1/c, the solution is stable but inaccurate.



	
	
	For  > 1/c, the solution is unstable.



	[image: image]
	
	Obs. 2. The formula (4) converges for   1 i.e., k  h.




[image: image]

Figure 11.31

EXAMPLE 11.14

Evaluate the pivotal values of the equation utt = 16uxx, taking Δx ≡ 1up to t = 1.25. The boundary conditions are u(0, t) = u(5, t) = 0, ut(x, 0) = 0 and u(x, 0) = x2(5  x).

Solution:

Here c2 = 16.

∴ The difference equation for the given equation is

[image: image]

where  = k/h.

Taking h = 1 and choosing k so that the coefficient of ui, j vanishes, we have 162 = 1, i.e.,k = h/4 = 1/4.

∴ (1) reduces to ui, j+1 = ui1, j + ui+1, j  ui, j  1(ii)

which gives a convergent solution (since k/h < 1). Its solution coincides with the solution of the given differential equation.

Now since u(0, t) = u(5, t) = 0,∴u0, j  = 0 and u5, j = 0 for all values of j

i.e., the entries in the first and last columns are zero.

Sinceu(x, 0) = x2 (5  x)

∴ui, 0 = i2(5  i) = 4, 12, 18, 16 for i = 1, 2, 3, 4 at t = 0.

These are the entries for the first row.

Finally since ut(x, 0) = 0 becomes

[image: image]

Thus the entries of the second row are the same as those of the first row.

Putting j = 0 in (ii),

[image: image]

Taking i = 1, 2, 3, 4 successively, we obtain

[image: image]

[image: image]

These are the entries of the second row.

Putting j = 1 in (ii), we get ui, 2 = ui1, 1 + ui+1, 1  ui, 0

Taking i = 1, 2, 3, 4 successively, we obtain

u1, 2 = u0, 1 + u2, 1  u1, 0 = 0 + 11  4 = 7

u2, 2 = u1, 1 + u3, 1  u2, 0 = 6 + 14  12 = 8

u3, 2 = u2, 1 + u4, 1  u3, 0 = 11 + 9  18 = 2

u4, 2 = u3, 1 + u5, 1  u4, 0 = 14 + 0  16 =  2

These are the entries of the third row.

Similarly putting j = 2, 3, 4 successively in (ii), the entries of the fourth, fifth, and six throws are obtained.

Hence the values of ui, j are as shown in the table below:

[image: image]

EXAMPLE 11.15

Solve ytt = yxx up to t = 0.5 with a spacing of 0.1 subject to y(0, t) = 0, y(1, t) = 0, yt (x, 0) = 0 and y(x, 0) = 10 + x(1  x).

Solution:

As c2 = 1, h = 0.1, k = (h/c) = 0.1; we use the formula

ui, j+1 = yi1, j + yi+1, j  yi, j1(i)

Since y(0, t) = 0, y(1, t) = 0,

∴y0, j = 0, y1, j = 0 for all values of i.

i.e., all the entries in the first and last columns are zero.

Since y(x, 0) = 10 + x (1  x), ∴ yi, 0 = 10 + i (1  i)

∴y0.1, 0 = 10.09, y0.2, 0 = 10.16, y0.3, 0 = 10.21, y0.4, 0 = 10.24

∴y0.5, 0 = 10.25, y0.6,0 = 10.24, y0.7, 0 = 10.21, y0.8, 0 = 10.16,

 y0.9, 0 = 10.09

These are the entries of the first row.

Since yt (x, 0) = 0, we have 1/2(yi, j+1  yi, j1) = 0(ii)

Whenj = 0, yi, 1 = yi, 1

Puttingj = 0 in (i), yi, 1 = yi1, 0 + yi+1, 0  yi,  1

Using (ii) yi, 1 = 1/2(yi1, 0 + yi+1, 0)

Taking i = 1, 2, 3 ⋯, 9 successively, we obtain the entries of the second row.

Putting j = 1 in (i), yi, 2 = yi1, 1 + yi+1, 1  yi, 0

Taking i = 1, 2, 3, ⋯, 9 successively, we get the entries of the third row.

Similarly putting j = 2, 3, …, 7 successively in (i), the entries of the fourth to ninth row are obtained. Hence the values of ui, j are as given in the table below:

[image: image]

EXAMPLE 11.16

The transverse displacement u of a point at a distance x from one end and at any time t of a vibrating string satisfies the equation ∂2u/∂t2 = 4∂2u/∂x2, with boundary conditions u = 0 at x = 0, t > 0 and u = 0 at x = 4, t > 0 and initial conditions u = x(4  x) and ∂u/∂t = 0, 0  x  4. Solve this equation numerically for one-half period of vibration, taking h = 1 and k = 1/2.

Solution:

Here, h/k = 2 = c.

∴ The difference equation for the given equation is

[image: image]

which gives a convergent solution (since k < h).

Now since u(0, t) = u(4, t) = 0,

∴u0, j = 0 and u4, j = 0 for all values of j.

i.e.,the entries in the first and last columns are zero.

Sinceu(x, 0) = x(4  x),

∴ui, 0 = i(4  i) = 3, 4, 3 for i = 1, 2, 3 at t = 0.

These are the entries of the first row.

Also ut(x, 0) = 0 becomes

[image: image]

Taking i = 1, 2, 3 successively, we obtain

[image: image]

These are the entries of the second row.

[image: image]

Taking i = 1, 2, 3, successively, we get

[image: image]

These are the entries of the third row and so on.

Now the equation of the vibrating string of length l is utt = c2 uxx.

[image: image]

This shows that we have to compute u(x, t) up to t = 2

i.e. Similarly we obtain the values of ui, 2 (fourth row)and ui, 3 (fifth row).

Hence the values of ui, j are as shown in the next table:

[image: image]

EXAMPLE 11.17

Find the solution of the initial boundary value problem:

[image: image]

Solution:

(a) Explicit scheme

[image: image]

u4,0 = sin (.6) = 0.5878.

These are the entries of the first row.

[image: image]

Taking i = 1, 2, 3, 4 successively, we obtain the entries of the second row.

Putting j = 1 in (i), ui, 2 = ui1, 1 + ui+1, 1  ui,0

Now taking i = 1, 2, 3, 4 successively, we get the entries of the third row.

Similarly taking j = 2, j = 3, j = 4 successively, we obtain the entries of the fourth, fifth, and sixth rows, respectively.

Hence the values of ui, j are as given in the table below:

[image: image]

(b) Implicit scheme

We have the formula:

[image: image]

There are the entries of the first row.

[image: image]

These are the entries of the second row.

[image: image]

These are the entries of the third row.

[image: image]

These are the entries of the fourth row.

Hence the values of ui, j are as tabulated below:

[image: image]

Exercises 11.5

 


	Solve the boundary value problem utt = uxx with the conditions u(0, t) = u(1, t) = 0, u(x, 0) = 1/2 x(1  x) and ui(x, 0) = 0, taking h = k = 0.1 for 0  t  0.4. Compare your solution with the exact solution at x = 0.5 and t = 0.3.

	The transverse displacement of a point at a distance x from one end and at any time t of a vibrating string satisfies the equation [image: image] with the boundary conditions u(0,t) = u(5, t) = 0 and the initial conditions [image: image], and u(x, 0) and ut(x, 0) = 0. Solve this equation numerically for one-half period of vibration, taking h = 1, k = 0.2.

	The function u satisfies the equation [image: image] and the conditions: u(x, 0) = 1/8 sin x,ut(x, 0) = 0 for 0  x  1, u(0, t) = u(1, t) = 0 for t  0.
Use the explicit scheme to calculate u for x = 0(0.1) 1 and t = 0(0.1) 0.5.

 
	Solve [image: image] given u(x, 0) = ut (x, 0) = u(0, 1) = 0 and u (1, t) = 100sin t. Compute u for four times with h = 0.25.



Exercises 11.6

	Which of the following equations is parabolic:
(a) fxy  fx = 0(b) fxx + 2fxy + fyy = 0(c) fxx + 2fxy + 4fyy = 0.


	uij =1/4(ui + 1, j  ui  1, j + ui, j + 1  ui, j  1) is Leibmanns five-point formula.

	uxx + 3uxy + uyy = 0 is classified as ⋯ .

	∇2u = f(x, y) is known as ⋯ .

	The simplest formula to solve utt= 2 uxx is ⋯.. .

	The finite difference form of ∂2u/∂x2 is ⋯. .

	Schmidts finite difference scheme to solve ut = c2 uxx is ⋯. .

	The five point diagonal formula gives uij = ..... .

	The partial differential equation (x + 1) uxx  2(x + 2) uxy + (x + 3) uyy = 0 is classified as⋯. .

	ui, j + 1 =1/2(ui + 1, j + ui 1, j ) is called ⋯.. recurrence relation.

	In terms of difference quotients 4uxx = utt is ⋯ .

	The Bendre-Schmidt recurrence relation for one dimensional heat equation is ..... .

	The diagonal five point formula to solve the Laplace equation uxx + uyy = 0 is ..... .

	The Crank-Nicholson formula to solve uxx = aut when k = ah2, is ..... .

	In the parabolic equation ut = 2 uxx if  = k2/h2, where k = Δt, and h = Δx, then explicit method is stable if  = ..... .

	The Bendre-Schmidt recurrence scheme is useful to solve ..... equation.

	The two methods of solving one-dimensional diffusion (heat) equation are ..... .

	 [image: image] is classified as... .

	The order of error in solving Laplace and Poissons equations by finite difference method is ⋯ .

	The difference scheme for solving the Poisson equation ∇2u = f(x, y) is....

	The explicit formula for one-dimensional wave equation with 1  22 = 0 and  = k/h is ⋯ .

	The general form of Poissons equation in partial derivatives is ⋯ .

	If u satisfies Laplace equation and u = 100 on the boundary of a square, the value of u at an interior grid point is ⋯ .

	The Laplace equation uxx + uyy = 0 in difference quotients is ⋯ .

	The equation yuxx + uyy = 0 is hyperbolic in the region ⋯ .

	To solve [image: image] by the Bendre-Schmidt method with h = 1, the value of k is ⋯ .

	Crank Nicholsons scheme is called an implicit scheme because ⋯ .
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12.1Introduction

 

We often face situations where decision making is a problem of planning activity. The problem generally, is of utilizing the scarce resources in an efficient manner so as to maximize the profit or to minimize the cost or to yield the maximum production. Such problems are called optimization problems. Linear programming in particular, deals with the optimization (maximization or minimization) of linear functions subject to linear constraints. This technique was propounded by George B. Dantzig in 1947 while working on a project for the U.S. Air Force. He also developed a powerful iterative process known as the simplex method for solving linear programming problems in 1951.

Linear programming is widely used to tackle a number of industrial, economic, marketing, and distribution problems. This technique has found its applications to important areas of product mix, blending problems, and diet problems. Oil refineries, chemical industries, steel industries, and food processing industry are also using linear programming with considerable success. In defense, this technique is being employed in inspection, optimal bombing patterns, design of weapons, etc. In fact, linear programming may be applied to any situation where a linear function of variables has to be optimized subject to a set of linear equations or inequalities.

In this chapter, our purpose is to present the principles of linear programming and the techniques of its application in a manner that will suit both engineers and scientists who are increasingly using this technique to solve their problems. Beginning with the graphical method which provides a great deal of insight into the basic concepts, the simplex method of solving linear programming problems is developed. Then the reader is introduced to the duality concept. Finally a special class of linear programming problems namely: transportation and assignment problems, is taken up.

12.2Formulation of the Problem

 

To begin with, a problem is to be presented in a linear programming form which requires defining the variables involved, establishing relationships between them, and formulating the objective function and the constraints. We illustrate this through a few examples, wherein the stress will be on the analysis of the problem and formulation of the linear programming model.

EXAMPLE 12.1

A manufacturer produces two types of models M1 and M2. Each M1 model requires 4 hours of grinding and 2 hours of polishing; whereas each M2 model requires 2 hours of grinding and 5 hours of polishing. The manufacturer has 2 grinders and 3 polishers. Each grinder works for 40 hours a week and each polisher works for 60 hours a week. Profit on an M1 model is $ 3 and on an M2 model is $ 4. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models so that he may make the maximum profit in a week

Solution:

Let x1 be the number of M1 models and x2, the number of M2 models produced per week. Then the weekly profit (in $) is

Z = 3x1 + 4x2(i)

To produce these number of models, the total number of grinding hours needed per week

= 4x1 + 2x2

and the total number of polishing hours required per week

= 2x1 + 5x2

Since the number of grinding hours available is not more than 80 and the number of polishing hours is not more than 180, therefore

4x1 + 2x2  80(ii)

 2x1 + 5x2  180(iii)

Also since the negative number of models are not produced, obviously we must have

x1  0 and x2  0(iv)

Hence this allocation problem is to find x1, x2 which

MaximizeZ = 3x1 + 4x2

subject to4x1 + 2x2  80, 2x1 + 5x2  180, x1, x2  0.




	[image: image]
	
	Obs. The variables that enter into the problem are called decision variables.


	
	
	The expression (i) showing the relationship between the manufacturers goal and the decision variables, is called the objective function.




The inequalities (ii), (iii), and (iv) are called the constraints.

The objective function and the constraints being all linear, it is a linear programming problem(L.P.P.). This is an example of a real situation from industry.

EXAMPLE 12.2

Consider the following problem faced by a production planner in a soft-drink plant. He has two bottling machines A and B. A is designed for 8-ounce bottles and B for 16 ounce bottles. However, each can be used on both types with some loss of efficiency. The following is available:

[image: image]

The machines can be run 8 hours per day, 5 days per week. Profit in a 8-ounce bottle is 15 paise and on a 16-ounce bottle is 25 paise. Weekly production of drink cannot exceed 300,000 ounces and the market can absorb 25,000 8-ounce bottles and 7,000 16-ounce bottles per week. The planner wishes to maximize his profit subject, of course, to all the production and marketing restrictions. Formulate this as a linear programming problem.

Solution:

Let x1 units of 8-ounce bottle and x2 units of 16-ounce bottle be produced per week. Than the weekly profit (in $) of the production planner is

Z = 0.15x1 + 0.25x2(i)

Since an 8-ounce bottle takes 1/100 minutes and a 16-ounce bottle 1/40 minutes on machine A and the machine can run 8 hours per day, 5 days per week, i.e., 2400 minutes per week, therefore we have

[image: image]

Also since an 8-ounce bottle takes 1/60 minutes and a 16-ounce bottle takes 1/75 minutes on machine B which can run for 2400 minutes per week, therefore we have

[image: image]

As the total weekly production cannot exceed 300,000 ounces, therefore,

8x1 + 16x2  300,000(iv)

As the market can absorb at the most 25,000, 8-ounce bottles and 7,000, 16-ounce bottles per week, therefore,

0  x1  25,000 and 0  x2  7,000(v)

Hence this allocation problem of the production planner is to find x1, x2 which

MaximizeZ = 0.15x1 + 0.25x2

subject to2x1 + 5x2  480,000, 5x1 + 4x2  720,000, x1 + 2x2  37,500

0  x1  25,000 and 0  x2  7,000.

EXAMPLE 12.3

A firm making castings uses electric furnace to melt iron with the following specifications:

[image: image]

Specifications and costs of various raw materials used for this purpose are given below

[image: image]

If the total charge of iron metal required is 4 metric tons, find the weight in kg of each raw material that must be used in the optimal mix at minimum cost. 

Solution:

Let x1, x2, x3 be the amounts (in kg) of these raw materials. The objective is to minimize the cost i.e.,

[image: image]

For iron melt to have a minimum of 3.2% carbon,

0.4 x1 + 3.8 x2 + 3.5 x3  3.2 × 4,000(ii)

For iron melt to have a maximum of 3.4% carbon,

0.4 x1 + 3.8 x2 + 3.5 x3  3.4 × 4,000(iii)

For iron melt to have a minimum of 2.25% silicon,

0.15 x1 + 2.41 x2 + 2.35 x3  2.25 × 4,000(iv)

For iron melt to have a maximum of 2.35% silicon,

0.15 x1 + 2.41 x2 + 2.35 x3  2.35 × 4,000(v)

Also, since the materials added up must be equal to the full charge weight of 4 metric tons,

∴x1 + x2 + x3 = 4,000(vi)

Finally since the amounts of raw material cannot be negative

x1  0, x2  0, x3  0(vii)

Thus the linear programming problem is to find x1, x2, x3 which

MinimizeZ = 0.85 x1 + 0.9 x2 + 0.5 x3

subject to 0.4 x1 + 3.8 x2 + 3.5 x3  12,800, 0.4 x1 + 3.8 x2 + 3.5 x3  13,600

0.15 x1 + 2.41 x2 + 2.35 x3  9,000, 0.15 x1 + 2.41 x2 +

2.35 x3  9,400

x1 + x2 + x3 = 4,000, x1, x2, x3  0.

Exercises 12.1

 

	A firm manufactures two items. It purchases castings which are then machined, bored, and polished. Castings for items A and B cost $ 3 and $ 4 each and are sold at $ 6 and $ 7 each, respectively. Running costs of these machines are $ 20, $ 14, and $17.50 per hour, respectively. Formulate the problem so that the product mix maximizes the profit. Capacities of the machines are
[image: image]


	A firm manufactures 3 products A, B, and C. The profits are $ 3, $ 2, and $ 4, respectively. The firm has two machines M1 and M2 and below is the required capacity processing time in minutes for each machine on each product
[image: image]

Machines M1 and M2 have 2000 and 2500 machine-minutes respectively. The firm must manufacture 100 As, 200 Bs and 50 Cs but not more than 150 As. Set up an L.P.P. to maximize profit.


	Three products are processed through three different operations. The time (in minutes) required per unit of each product, the daily capacity of the operations (in minutes per day), and the profit per unit sold for each product (in Dollars) are as follows:
[image: image]

The zero time indicates that the product does not require the given operation. The problem is to determine the optimum daily production for three products that maximize the profit. Formulate this production planning problem as a linear programming problem assuming that all units produced are sold.


	An aeroplane can carry a maximum of 200 passengers. A profit of $ 400 is made on each first class ticket and a profit of $ 300 is made on each economy class ticket. The airline reserves at least twenty seats for first class. However, at least four times as many passengers prefer to travel by economy class than by the first class. How many tickets of each class must be sold in order to maximize profit for the airline? Formulate the problem as an L.P. model. 

	A firm manufactures headache pills in two sizes A and B. Size A contains 2 grains of asprin, 5 grains of bicarbonate, and 1 grain of codeine. Size B contains 1 grain of asprin, 8grains of bicarbonate and 6 grains of codeine. It is found by users that it requires at least 12 grains of asprin, 74 grains of bicarbonate, and 24 grains of codeine for providing immediate effect. It is required to determine the least number of pills a patient should take to get immediate relief. Formulate the problem as a standard L.P.P.

	A dairy feed company may purchase and mix one or more of three types of grains containing different amounts of nutritional elements. The data is given in the table below. The production manager specifies that any feed mix for his live stock must meet at least minimum nutritional requirements and seeks the least costly among all three mixes
[image: image]

Formulate the problem as a L.P. model.


	 A firm produces an alloy with the following specifications:
 (i) specific gravity  0.97

 (ii) chromium content  15%

(iii) melting temperature  494C

The alloy requires three raw materials A, B, and C whose properties are as follows: 

[image: image]

Find the values of A, B, C to be used to make 1 meric ton of alloy of desired properties, keeping the raw material costs at the minimum when they are $ 105/metric ton for A, $ 245/metric ton for B and $ 165/ metric ton for C. Formulate an L.P. model for the problem.


	The owner of Metro sports wishes to determine how many advertisements to place in the selected three monthly magazines A, B, and C. His objective is to advertise in such a way that total exposure to principal buyers of expensive sports goods is maximized. Percentages of readers for magazine are known. Exposure in any particular magazine is the number of advertisements placed multiplied by the number of principal buyers. The following data may be used:
[image: image]

The budgeted amount is at most $100,000 for advertisements. The owner has already decided that magazine A should have no more than six advertisements and that B and C each have at least two advertisements. Formulate an L.P. model for the problem.



12.3Graphical Method

 

Linear programming problems involving only two variables can be effectively solved by a graphical technique. In actual practice, we rarely come across such problems. Even then, the graphical method provides a pictorial representation of the solution and one gets ample insight into the basic concepts used in solving large L.P.P.

Working procedure to solve a linear programming problem graphically:

Step 1. Formulate the given problem as a linear programming problem.

 Step 2. Plot the given constraints as equalities on x1x2-coordinate plane and determine the convex region* formed by them.

Step 3. Determine the vertices of the convex region and find the value of the objective function at each vertex. The vertex which gives the optimal

[image: image]

(maximum or minimum) value of the objective function gives the desired optimal solution to the problem.

Otherwise. Draw the dotted line through the origin representing the objective function with Z = 0. As Z is increased from zero, this line moves to the right remaining parallel to itself. We go on sliding this line (parallel to itself), till it is farthest away from the origin and passes through only one vertex of the convex region. This is the vertex where maximum value of Z is attained.

When it is required to minimize Z, the value of Z is increased until the dotted line passes through the nearest vertex of the convex region.

EXAMPLE 12.4

Solve the L.P.P. of Example 12.1 graphically.

Solution:

The problem is:

MaximizeZ = 3 x1 + 4x2(i)

subject to4 x1 + 2x2  80(ii)

2x1 + 5x2  180(iii)

x1, x2  0(iv)

Consider the x1x2-coordinate system as shown in Figure 12.5. The non-negativity restrictions (iv) imply that the values of x1, x2 lie in the first quadrant only.

We plot the lines 4x1 + 2x2 = 80 and 2x1 + 5x2 = 180.

[image: image]

Figure 12.5

Then any point on or below 4 x1 + 2x2 = 80 satisfies (ii) and any point on or below 2 x1 + 5x2 = 180 satisfies (iii). This shows that the desired point (x1, x2) must be somewhere in the shaded convex region OABC. This region is called the solution space or region of feasible solutions for the given problem. Its vertices are O(0,0), A(20, 0), B(2.5, 35), and C(0, 36).

The values of the objective function (i) at these points are

Z(O) = 0, Z(A) = 60, Z(B) = 147.5, Z(C) = 144.

Thus the maximum value of Z is 147.5 and it occurs at B. Hence the optimal solution to the problem is

x1 = 2.5, x2 = 35 and Zmax = 147.5.

Otherwise. Our aim is to find the point in the solution space which maximizes the profit function Z. To do this, we observe that on making Z = 0, (i) becomes 3x1 + 4x2 = 0 which is represented by the dotted line LM through O. As the value of Z is increased, the line LM starts moving parallel to itself towards the right. larger the value of Z, more will be the companys profit. In this way, we go on sliding LM until it is farthest away from the origin and passes through one of the corners of the convex region. This is the point where the maximum value of Z is attained. Just possibly, such a line may be one of the edges of the solution space. In that case every point on that edge gives the same maximum value of Z.

Here Zmax is attained at B(2.5, 35). Hence the optimal solution is x1 = 2.5, x2 = 35 and Zmax = 147.5.

EXAMPLE 12.5

Find the maximum value of Z = 2x + 3y

Subject to the constraints: x + y  30, y  3, 0  y  12, x  y  0, and 0  x  20.

Solution:

Any point (x, y) satisfying the conditions x  0, y  0 lies in the first quadrant only. Also since,

x + y  30, y  3, y  12, x  y and x  20, the desired point (x, y) lies within the convex region ABCDE (shown shaded in Figure 12.6). Its vertices are A(3, 3), B (20, 3), C(20, 10), D(18, 12) and E(12, 12).

The values of Z at these five vertices are Z(A) = 15, Z(B) = 49, Z(C) = 70, Z(D) = 72, and Z(E) = 60.

Since the maximum value of Z is 72 which occurs at the vertex D, the solution to the L.P.P. is

x = 18, y = 12 and maximum Z = 72.

[image: image]

Figure 12.6

EXAMPLE 12.6

A company manufactures two types of cloth, using three different colours of wool. One yard length of type A cloth requires 4 oz of red wool, 5 oz of green wool and 3 oz of yellow wool. One yard length of type B cloth requires 5 oz of red wool, 2 oz of green wool and 8 oz of yellow wool. The wool available for manufacture is 1000 oz of red wool, 1000 oz of green wool and 1200 oz of yellow wool. The manufacturer can make a profit of $ 5 on one yard of type A cloth and $ 3 on one yard of type B cloth. Find the best combination of the quantities of type A and type B cloth which gives him maximum profit by solving the L.P.P. graphically.

Solution:

Let the manufacturer decide to produce x1 yards of type A cloth and x2 yards of type B cloth. Then the total income in dollars, from these units of cloth is given by

Z = 5 x1 + 3x2(i)

To produce these units of two types of cloth, he requires

red wool = 4x1 + 5x2 oz, green wool = 5 x1 + 2x2 oz,

andyellow wool = 3x1 + 8x2 oz.

Since the manufacturer does not have more than 1000 oz of red wool, 1000 oz of green wool and 1200 oz of yellow wool, therefore

4x1 + 5x2  1000(ii)

5x1 + 2x2  1000(iii)

3x1 + 8x2  1200(iv)

Alsox1  0, x2  0(v)

Thus the given problem is to maximize Z subject to the constraints (ii) to (v).

Any point satisfying the condition (v) lies in the first quadrant only. Also the desired point satisfying the constraints (ii) to (iv) lies in the convex region OABCD (Figure 12.7). Its vertices are O(0, 0), A(200, 0), B(3000/17, 1000/17), C(2000/17, 1800/17), and D(0,150).

The values of Z at these vertices are given by Z(O) = 0, Z(A) = 1000, Z(B) = 1057.6, Z(C) = 905.8 and Z(D) = 450.
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Figure 12.7

Since the maximum value of Z is 1058.8 which occurs at the vertex B, the solution to the given problem is

x1 = 3000/17, x2 = 1000/17 and max.

Z = 1058.8.

Hence the manufacturer should produce 176.5 yards of type A cloth 58.8 yards of type B cloth, so as to get the maximum profit of $ 1058.8.

EXAMPLE 12.7

A company making cold drinks has two bottling plants located at towns T1 and T2. Each plant produces three drinks A, B, and C and their production capacity per day is shown below:

[image: image]

The marketing department of the company forecasts a demand of 80,000 bottles of A, 22,000 bottles of B and 40,000 bottles of C during the month of June. The operating costs per day of plants at T1 and T2 are $ 6,000 and $ 4,000 respectively. Find (graphically) the number of days for which each plant must be run in June so as to minimize the operating costs while meeting the market demand.

Solution:

Let the plants at T1 and T2 be run for x1 and x2 days. Then the objective is to minimize the operation costs, i.e.,

min. Z = 6000 x1 + 4000x2(i)

 Constraints on the demand for the three cold drinks are:

for A, 6,000 x1 + 2,000x2   80,000 or 3 x1 + x2  40(ii)

for B, 1,000 x1 + 2,500x2  22,000 or x1 + 2.5x2  22(iii)

for C, 3,000 x1 + 3,000x2  40,000 or x1 + x2  40/3(iv)

Alsox1, x2  0.(v)

Thus the L.P.P. is to minimize (i) subject to constraints (ii) to (v).

The solution space satisfying the constraints (ii) to (v) is shown shaded in Figure 12.8. As seen from the direction of the arrows, the solution space is unbounded. The constraint (iv) is dominated by the constraints (ii) and (iii) and hence does not affect the solution space. Such a constraint as (iv) is called the redundant constraint.

The vertices of the convex region ABC are A(22, 0), B(12, 4), and C(0, 40).
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Figure 12.8

Values of the objective function (i) at these vertices are

Z(A) = 132,000, Z(B) = 88,000, Z(C) = 160,000.

Thus the minimum value of Z is $ 88,000 and it occurs at B. Hence the solution to the problem is

x1 = 12 days, x2 = 4 days, Zmin = $ 88,000.

Otherwise. Making Z = 0, (i) becomes 3 x1 + 2x2 = 0 which is represented by the dotted line LM through O. As Z is increased, the line LM moves parallel to itself, to the right. Since we are interested in finding the minimum value of Z, value of Z is increased until LM passes through the vertex nearest to the origin of the shaded region, i.e., B(12, 4).

Thus the operating cost will be minimum for x1 = 12 days, x2 = 4 days, and Zmin = 6000 × 12 + 4000 × 4 = $ 88,000.
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	Obs. The dotted line parallel to the line LM is called the iso-cost line since it represents all possible combinations of x1, x2 which produce the same total cost.




12.4Some Exceptional Cases

 

The constraints generally, give a region of feasible solution which may be bounded or unbounded. In problems involving two variables and having a finite solution, it was observed that the optimal solution existed at a vertex of the feasible region. In fact, this is true for all L.P. problems for which solutions exist. Thus it may be stated that if there exists an optimal solution of an L.P.P., it will be at one of the vertices of the solution space.

In each of the above examples, the optimal solution was unique. But it is not always so. In fact, L.P.P. may have

 (i) a unique optimal solution,

or (ii) an infinite number of optimal solutions,

or (iii) an unbounded solution,

or (iv) no solution.

Below are a few examples to illustrate the exceptional cases (ii) to (iv).

EXAMPLE 12.8

A firm uses milling machines, grinding machines, and lathes to produce two motor parts. The machining times required for each part, the machining times available on different machines and the profit on each motor part are given below:

[image: image]

Determine the number of parts I and II to be manufactured per week to maximize the profit.

Solution:

Let x1, x2 be the number of parts I and II manufactured per week. Then objective being to maximize the profit, we have

maximize Z = 100x1 + 40x2(i)

Constraints being on the time available on each machine, we obtain

for milling machines,10x1 + 4x2  2,000 (ii)

for grinding machines,3x1 + 2x2  900(iii)

for lathes,6x1 + 12x2  3,000 (iv)

Alsox1, x2  0(v)

Thus the problem is to determine x1, x2 which maximize (i) subject to the constraints (ii) to (v).

The solution space satisfying (ii), (iii), (iv) and meeting the non-negativity restrictions (v) is shown shaded in Figure 12.9.

[image: image]

Figure 12.9

Note that (iii) is a redundant constraint as it does not affect the solution space. The vertices of the convex region OABC are

O(0, 0), A(200, 0), B(125, 187.5), C(0, 250).

Values of the objective function (i) at these vertices are

Z(O) = 0, Z(A) = 20,000, Z(B) = 20,000 and Z(C) = 10,000

Thus the maximum value of Z occurs at two vertices A and B.

∴ Any point on the line joining A and B will also give the same maximum value of Z i.e., there are an infinite number of feasible solutions which yield the same maximum value of Z.

Thus there is no unique optimal solution to the problem and any point on the line AB can be taken to give the profit of $ 20,000.
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	Obs. An L.P.P. having more than one optimal solution, is said to have alternative or multiple optimal solutions. It implies that the resources can be combined in more than one way to maximize the profit.




EXAMPLE 12.9

Using graphical method, solve the following L.P.P:

MaximizeZ = 2x1 + 3x2(i)

subject tox1  x2  2(ii)

x1 + x2  4(iii)

x1, x2  0(iv)

Solution:

Consider x1x2 coordinate system. Any point (x1, x2) satisfying the restrictions (iv) lies in the first quadrant only. The solution space satisfying the constraints (ii) and (iii) is the convex region shown shaded in Figure 12.10.

[image: image]

Figure 12.10

Here the solution space is unbounded. The vertices of the feasible region (in the finite plane) are A(3, 1) and B(0, 4).

Values of the objective function (i) at these vertices are Z(A) = 9 and Z(B) = 12.

But there are points in this convex region for which Z will have much higher values. For instance, the point (5, 5) lies in the shaded region and the value of Z thereafter is 12.5. In fact, the maximum value of Z occurs at infinity. Thus the problem has an unbounded solution.

EXAMPLE 12.10

Solve graphically the following L.P.P:

MaximizeZ = 4x1 + 3x2(i)

subject tox1  x2   1,(ii)

 x1 + x2  0,(iii)

And x1, x2  0.(iv)

Solution:

Consider x1x2-coordinate system. Any point (x1, x2) satisfying (iv) lies in the first quadrant only. The two solution spaces, one satisfying (ii) and the other satisfying (iii) are shown in Figure 12.11.
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Figure12.11

There being no point (x1, x2) common to both the shaded regions, the problem cannot be solved. Hence the solution does not exist since the constraints are inconsistent.




	[image: image]
	
	Obs. The above problem had no solution because the constraints were incompatible. There may be cases in which the constraints are compatible but the problem may still have no feasible solution.




This is an example of insoluble programming problems. At times, management sets such goals which are unattainable within the available resources for a number of reasons. Such exceptional management problems are solved with the help of Goal Programming Technique which has recently been developed.

Exercises 12.2

 

Using the graphical method, solve the following L.P. problems:

	Max. Z = 5x1 + 3x2
subject to 3x1 + 5x2  15

 5x1 + 2x2  10

 x1, x2  0


	Max. Z = 5x1 + 7x2
subject to x1 + x2  4,

5x1 + 8x2  24,

 10x1 + 7x2  35 and x1, x2  0.


	Min. Z = 20x1 + 10x2
subject to x1 + 2x2  40

 3x1 + x2  30

4x1 + 3x2  60 and x1, x2  0


	Max. Z = 120x1 + 100x2
subject to 10x1 + 5x2  80

6x1 + 6x2  66

4x1 + 8x2  24

5x1 + 6x2  90 and x1, x2  0.


	If x1, x2 are real, show that the set [image: image] is a convex set. Find the extreme points of this set. Hence solve L.P.P. (graphically): Maximize Z = 4x1 + 3x2 subject to constraints given in S.

	A firm manufactures two products A and B on which the profits earned per unit are $ 3 and $ 4, respectively. Each product is processed on two machines M1 and M2. Product A requires one minute of processing time on M1 and 2 minutes on M2 while B requires one minute on M1 and one minute on M2. Machine M1 is available for not more than 7 hours and 30 minutes while M2 is available for 10 hours during any working day. Find the number of units of products A and B to be manufactured to get maximum profit.

	Two spare parts X and Y are to be produced in a batch. Each one has to go through two processes A and B. The time required in hours per unit and total time available are given below:
[image: image]

Profit per unit of X and Y are $ 5 and $ 6 respectively. Find how many number of spare parts of X and Y are to be produced in this batch to maximize the profit. (Each batch is complete in all respects and one cannot produce fractional units and stop the batch).


	A manufacturer has two products I and II both of which are made in steps by machines A and B. The process times per hundred for the two products on the two machines are:
[image: image]

Set-up times are negligible. For the coming period machine A has 100 hrs. and B has 80 hrs. The contribution for product I is $ 10 per 100 units and for product II is $ 5 per 100 units. The manufacturer is in a market which can absorb both products as much as he can produce for the immediate period ahead. Determine graphically, how much of products I and II, he should produce to maximize his contribution.


	Two grades of paper M and N are produced on a paper machine. Because of raw material restrictions not more than 400 metric tons of grade M and 300 metric tons of grade N can be produced in a week. It requires 0.2 and 0.4 hours to produce a metric ton of products M and N respectively, with corresponding profits of $ 20 and $ 50 per metric ton. It is given that there are 160 hours in a week. Formulate the problem as an L.P.P. and determine the optimum product mix.

	A production manager wants to determine the quantity to be produced per month of products A and B manufactured by his firm. The data on resources required and availability of resources are given below:
[image: image]

Formulate the problem as a standard L.P.P. Find product mix that would give maximum profit by graphical technique.


	A pineapple firm produces two products: canned pineapple and canned juice. The specific amounts of material, labor, and equipment required to produce each product and the availability of each of these resources are shown in the table given below:
[image: image]

Assuming one unit each of canned juice and canned pineapple has profit margins of $2 and $1, respectively. Formulate it as L.P. problem and solve it graphically.


	The sales manager of a company has budgeted $ 120,000 for an advertising program for one of the firms products. The selected advertising program consists of running advertisements in two different magazines. The advertisement for magazine A costs $ 2,000 per run while the advertisement for magazine B costs $ 5,000 per run. Past experience has indicated that at least 20 runs in magazine A and at least 10 runs in magazine B are necessary to penetrate the market with any appreciable effect. Also, experience has indicated that there is no reason to make more than 50 runs in either of the two magazines. How many runs in magazine A and how many in magazine B should be made?
Solve the following L.P.P. graphically:


	MaximizeZ = 3x + 2y
subject to 2x + 3y  9, x  5y   20 and x, y  0.


	MaximizeZ = x1 + 8x2
subject tox1 + 8x2  8, x1 + 2x2  6, 2x1 + 3x2  6,

6x1 + x2  8, x1  0, x2  0.


	Minimize Z = 8x1 + 12x2
subject to60x1 + 30x2  240, 30x1 + 60x2  300,

30x1 + 180x2  540, and x1, x2  0.


	G.J. Breveries Ltd. have two bottling plants one located at G and other J. Each plant produces three drinks: whiskey, beer, and brandy. The number of bottles produced per day are as follows:
[image: image]

A market survey indicates that during the month of July, there will be a demand of 20,000 bottles of whiskey, 40,000 bottles of beer, and 44,000 bottles of brandy. The operating cost per day for plants at G and J are $ 600 and $ 400. For how many days each plant be run in July so as to minimize the production cost, while still meeting the market demand. Solve graphically.



12.5General Linear Programming Problem

 

Any L.P. problem involving more than two variables may be expressed as follows: Find the values of the variables x1, x2, ⋯, xn which maximize (or minimize) the objective function

Z = c1x1 + c2x2 +⋯+ cnxn(i)

subject to the constraints

[image: image]

and meet the non-negative restrictions.

x1, x2, ⋯, xn  0(iii)

Def. 1. A set of values x1, x2, ⋯., xn which satisfies the constraints of the L.P.P. is called its solution.

Def. 2. Any solution to a L.P.P. which satisfies the non-negativity restrictions of the problem is called its feasible solution.

Def. 3. Any feasible solution which maximizes (or minimizes) the objective function of the L.P.P. is called its optimal solution.

Some of the constraints in (ii) may be equalities, some others may be inequalities of () type and remaining ones inequalities of () type. The inequality constraints are changed to equalities by adding (or subtracting) non-negative variables to (from) the left-hand side of such constraints.

Def. 4. If the constraints of a general L.P.P. be

[image: image]

then the non-negative variables si which satisfy

[image: image]

are called slack variables.

Def. 5. If the constraints of a general L.P.P. be

[image: image]

then the non-negative variables si which satisfy

[image: image]

are called surplus variables.

12.6Canonical and Standard Forms of L.P.P.

 

After the formulation of L.P.P., the next step is to obtain its solution. But before any method is used to find its solution, the problem must be presented in a suitable form. As such, we explain its following two forms:

Canonical form. The general L.P.P. can always be expressed in the following form:

MaximizeZ = c1 x1 + c2x2 + ⋯ + cnxn

subject to the constraints

ai1 x1 + ai2x2 + ⋯ + ain xn  bi ; i = 1, 2, ⋯ m

 x1, x2, ⋯ xn  0,

by making some elementary transformations. This form of the L.P.P. is called its canonical form and has the following characteristics:

 (i) Objective function is of maximization type,

 (ii) All constraints are of () type,

(iii) All variables xi are non-negative.

The canonical form is a format for a L.P.P. which finds its use in the Duality theory.

Standard form. The general L.P.P. can also be put in the following form:

Maximize Z = c1 x1 + c2x2 + ⋯ + cnxn

subject to the constraints

ai1 x1 + ai2 x2 + ⋯ + ain xn= bi ; i = 1, 2, ⋯ m

x1, x2, ⋯ xn  0,

This form of the L.P.P. is called its standard form and has the following characteristics:

 (i) Objective function is of maximization type,

 (ii) All constraints are expressed as equations,

(iii) Right hand side of each constraint is non-negative,

 (iv) All variables are non-negative.




	[image: image]
	
	Obs. Any L.P.P. can be expressed in the standard form. 


	
	
	As minimize Z = c1 x1 + c2x2 + ⋯ + cnxn is equivalent to maximizeZʹ (=  Z) =  c1x1  c2x2 ...  cnxn, the objective function can always be expressed in the maximization form.


	
	
	The inequality constraints can always be converted to equalities by adding (or subtracting) the slack (or surplus) variables to the left hand sides of such constraints.


	
	
	So far, the decision variables x1, x2,⋯, xn have been assumed to be all non-negative. In actual practice, these variables could also be zero or negative. If a variable is negative, it can always be expressed as the difference of two non-negative variables, e.g., a variable xi can be written as
xi = xiʹ  xi″

where xiʹ  0, xi″  0.






EXAMPLE 12.11

Convert the following L.P.P. to the standard form:

[image: image]

Solution:

As x3 is unrestricted, let x3 = x3ʹ  x3″ where x3ʹ, x3″  0. Now the given constraints can be expressed as

[image: image]

Introducing the slack/surplus variables, the problem in standard form becomes:

[image: image]

EXAMPLE 12.12

Express the following problem in the standard form:

[image: image]

Solution:

Here x3, x4 are the slack/surplus variables and x1, x2 are the decision variables. As x2 is unrestricted, let x2 = x2ʹ  x2″ where x2ʹ, x2″  0.

 ∴ The problem is standard form is

Maximize Zʹ (=  Z) =  3 x1  4x2ʹ + 4x2″

subject to 2 x1 + x2ʹ  x2″ + 3x3 = 4,3x1 + 5x2ʹ  5x2″ + x4 = 10,

x1  4x2ʹ + 4x2″ = 12,x1, x2ʹ, x2″, x3, x4  0.

12.7Simplex Method

 

While solving an L.P.P. graphically, the region of feasible solutions was found to be convex, bounded by vertices and edges joining them. The optimal solution occurred at some vertex. If the optimal solution was not unique, the optimal points were on an edge. These observations also hold true for the general L.P.P. Essentially the problem is that of finding the particular vertex of the convex region which corresponds to the optimal solution. The most commonly used method for locating the optimal vertex is the simplex method. This method consists in moving step by step from one vertex to the adjacent one. Of all the adjacent vertices, the one giving better value of the objective function over that of the preceding vertex, is chosen. This method of jumping from one vertex to the other is then repeated. Since the number of vertices is finite, the simplex method leads to an optimal vertex in a finite number of steps.

In simple method, an infinite number of solutions is reduced to a finite number of promising solutions by using the following facts:

(i) When there are m constraints and m + n (decision and slack) variables (m being  n), the starting solution is found by setting n variables equal to zero and then solving the remaining m equations, provided the solution exists and is unique. The n zero variables are known as non-basic variables while the remaining m variables are called basic variables and they form a basic solution. This reduces the number of alternatives (basic solutions) for obtaining the optimal solution to m + nCm only.

(ii) In an L.P.P., the variables must always be non-negative. Some of the basic solutions may contains negative variables. Such solutions are called basic infeasible solutions and should not be considered. To achieve this, we start with a basic solution which is non-negative. The next basic solution must always be non-negative. This is ensured by the feasibility condition. Such a solution is known as basic feasible solution.

If all the variables in the basic feasible solution are non-zero, then it is called non-degenerate solution and if some of the variables are zero, it is called degenerate solution.

(iii) A new basic feasible solution may be obtained from the previous one by equating one of the basic variables to zero and replacing it by a new non-basic variables. The eliminated variable is called the leaving or outgoing variable while the new variable is known as the entering or incoming variable.

The incoming variable must improve the value of the objective function which is ensured by the optimality condition. This process is repeated until no further improvement is possible. This process is repeated until no further improvement is possible. The resulting solution is called the optimal basic feasible solution or simply optimal solution.

The simplex method is, therefore, based on the following two conditions:

I. Feasibility condition. It ensures that if the starting solution is basic feasible, the subsequent solutions will also be basic feasible.

II. Optimality condition. It ensures that only improved solutions will be obtained.

Now, we shall elaborate the above terms in relation to the general linear programming problem in standard form, i.e.,

[image: image]

(i) Solution. x1, x2, ⋯. xn is a solution of the general L.P.P. if it satisfies the constraints (2).

(ii) Feasible solution. x1, x2, ⋯. xn is a feasible solution of the general L.P.P. if it satisfies both the constraints (2) and the non-negativity restrictions (3). The set S of all feasible solutions is called the feasible region. A linear program is said to be infeasible when the set S is empty.

(iii) Basic solution is the solution of the m basic variable when each of the n non-basic variables is equated to zero.

(iv) Basic feasible solution is that basic solution which also satisfies the non-negativity restriction (3).

(v) Optimal solution is that basic feasible solution which also optimizes the objective function (1) while satisfying the conditions (2) and (3).

(iv) Non-degenerate basic feasible solution is that basic feasible solution which contains exactly m non-zero basic variables. If any of the basic variables becomes zero, it is called a degenerate basic feasible solution.

EXAMPLE 12.13

Find all the basic solutions of the following system of equations identifying in each case the basic and non-basic variables:

2x1 + x2 + 4x3 = 11, 3x1 + x2 + 5x3 = 14.

Investigate whether the basic solutions are degenerate basic solutions or not. Hence find the basic-feasible solution of the system.

Solution:

Since there are m + n = 3 variables and there are m = 2 constraints in this problem, a basic solution can be obtained by setting any one variable equal to zero and then solving the resulting equations. Also the total number of basic solutions = m + nCm = 3C2 = 3.

The characteristics of the various basic solutions are given below:

[image: image]

The basic feasible solutions are:

(i) x1 = 3, x2 = 5, x3 = 0(ii) x1 = 1 2 , x2 = 0, x3 = 5/2

which are also non-degenerate basic solutions.

EXAMPLE 12.14

Find an optimal solution to the following L.P.P. be computing all basic solutions and then finding one that maximizes the objective function:

2x1 + 3x2  x3 + 4x4 = 8, x1  2x2 + 6x3  7x4 =  3

x1, x2, x3 , x4  0Max. Z = 2 x1 + 3x2 + 4x3 + 7x4.

Solution:

Since there are four variables and two constraints, a basic solution can be obtained by setting any two variables equal to zero and then solving the resulting equations. Also the total number of basic solutions = 4C2 = 6.

The characteristics of the various basic solutions are given below:

[image: image]

Hence the optimal basic feasible solution is

x1 = 0, x2 = 0, x3 = 44/17, x4 = 45/17

and the maximum value of Z = 28.9.

Exercises 12.3

 

	Reduce the following problem to the standard form:
Determine x1  0, x2  0, x3  0 so as to

Maximize Z = 3x1 + 5x2 + 8x3

subject to the constraints 2x1  5x2  6, 3x1 + 2x2 + x3  5, 3x1 + 4x3  3.


	Express the following L.P.P. in the standard form:
Minimize Z = 3 x1 + 2x2 + 5x3

subject to  5 x1 + 2x2  5,2 x1 + 3x2 + 4x3  7,

2 x1 + 5x3  3,x1, x2 , x3  0.


	Convert the following L.P.P. to standard form:
Maximize Z = 3 x1  2x2 + 4x3

Subject tox1 + 2x2 + x3  8, 2 x1  x2 + x3  2,

4x1  2x2  3x3 =  6, x1, x2  0.


	Obtain all the basic solutions to the following system of linear equations:
x1 + 2x2 + x3 = 4, 2 x1 + x2 + 5x3 = 5.


	Show that the following system of linear equations has two degenerate feasible basic solutions and the non-degenerate basic solution is not feasible:
2x1 + x2  x3 = 2, 3x1 + 2x2 + x3 = 3.


	Find all the basic feasible solutions of the equations:
2x1 + 6x2 + 2x3 + x4 = 3, 6x1 + 4x2 + 4x3 + 6x4 = 2.


	Find all the basic solutions to the following problem:
Maximize Z = x1 + 3x2 + 3x3,

subject to x1 + 2x2 + 3x3 = 4, 2 x1 + 3x2 + 5x3 = 7.

Which of the basic solutions are

(a) non-degenerate basic feasible,(b) optimal basic feasible?


	Show that the feasible solution
x1 = 1, x2 = 0, x3 = 1; z = 6

to the system of equations

x1 + x2 + x3 = 2; x1  x2 + x3 = 2

with maximum Z = 2 x1 + 3x2 + 4x3 is not basic.




12.8Working Procedure of the Simplex Method

 

Assuming the existence of an initial basic feasible solution, an optimal solution to any L.P.P. by simplex method is found as follows:

Step 1. (i) Check whether the objective function is to be maximized or minimized.

IfZ = c1 x1 + c2x2 + c3x3 + ⋯ + cnxn

is to be minimized, then convert it into a problem of maximization, by writing.

Minimize Z = Maximize ( Z)

(ii) Check whether all bs are positive.

If any of the bis is negative, multiply both sides of that constraint by  1 so as to make its right hand side positive.

 Step 2. Express the problem in the standard form.

Convert all inequalities of constraints into equations by introducing slack/surplus variables in the constraints giving equations of the form.

a11x1 + a12x2 + a13x3 + ⋯ + s1 + os2 + os3 + ⋯ = b1.

Step 3. Find an initial basic feasible solution.

If there are m equation involving n unknowns, then assign zero values to any (n  m) of the variables for finding a solution. Starting with a basic solution for which xj: j = 1, 2, ⋯, (n  m) are each zero, find all si. If all si are  0, the basic solution is feasible and non-degenerate. If one or more of the si values are zero, then the solution is degenerate.

The above information is conveniently expressed in the following simplex table:

[image: image]

[The variables s1, s2, s3 etc. are called basic variables and variables x1, x2, x3 etc. are called non-basic variables. Basis refers to the basic variables s1, s2, s3 ⋯., cj row denotes the coefficients of the variables in the objective function, while cBcolumn denotes the coefficients of the basic variables only in the objective function. b-column denotes the values of the basic variables while remaining variables will always be zero. The coefficients of xs (decision variables) in the constraint equations constitute the body matrix while coefficients of slack variables constitute the unit matrix].

Step 4. Apply optimality test.

Compute Cj = cj  Zj where Zj = ScB aij

[Cj -row is called net evaluation row and indicates the per unit increase in the objective functions if the variable heading the column is brought into the solution.]

If all Cj are negative, then the initial basic feasible solution is optimal. If even one Cj is positive, then the current feasible solution is not optimal (i.e., can be improved) and proceed to the next step.

Step 5. (i) Identify the incoming and outgoing variables.

If there are more than one positive Cj, then the incoming variable is the one that heads the column containing maximum Cj. The column containing it is known as the key column which is shown marked with an arrow at the bottom. If more than one variable has the same maximum Cj, any of these variables may be selected arbitrarily as the incoming variable.

Now divide the elements under b-column by the corresponding elements of key column and choose the row containing the minimum positive ratio θ. Then replace the corresponding basic variable (by making its value zero). It is termed as the outgoing variable. The corresponding row is called the key row which is shown marked with an arrow on its right end. The element at the intersection of the key row and key column is called the key element which is shown bracketed. If all these ratios are  0, the incoming variable can be made as large as we please without violating the feasibility condition. Hence the problem has an unbounded solution and no further iteration is required.

(ii) Iterate towards an optimal solution.

Drop the outgoing variable and introduce and incoming variable alongwith its associated value under cB column. Convert the key element to unity by dividing the key row by the key element. Then make all other elements of the key column zero by subtracting proper multiples of key row from the other rows.

[This is nothing but the sweep-out process used to solve the linear equations. The operations performed are called elementary row operations.]

Step 6. Go to step 4 and repeat the computational procedure until either an optimal (or an unbounded) solution is obtained.

EXAMPLE 12.15

Using simplex method

Maximize Z = 5x1 + 3x2

subject to x1 + x2  2, 5x1 + 2x2  10,

 3x1 + 8x2  12, x1, x2  0.

Solution:

Consists of the following steps:

Step 1. Check whether the objective function is to be maximized and all bs are positive.

The problem consists of maximization type and all bs are  0, so this step is not necessary.

Step 2. Express the problem in the standard form.

By introducing the slack variables s1, s2, s3, the problem in standard form becomes

Maximize. Z = 5 x1 + 3x2 + os1 + os2 + os3

subject tox1 + x2 + s1 + os2 + os3 = 2(i)

 5x1 + 2x2 + os1 + s2 + os3 = 10(ii)

 3x1 + 8x2 + os1 + os2 + os3 = 12(iii)

x1, x2, s1, s2, s3  0

Step 3. Find an initial basic feasible solution.

There are three equations involving five unknowns and for obtaining a solution, we assign zero values to any two of the variables. We start with a basic solution for which we set x1 = 0 and x2 = 0. (This basic solution corresponds to the origin in the graphical method.) Substituting x1 = x2 = 0 in (i), (ii), and (iii), we get the basic solution

s1 = 2, s2 = 10, s3 = 12.

Since all s1, s2, s3 are positive, the basic solution is also feasible and non-degenerate.

∴ The basic feasible solution is

x1 = x2 = 0 (non-basic) and s1 = 2, s2 = 10, s3 = 12 (basic)

∴ Initial basic feasible solution is given by the following table:

[image: image]

[For x1-column (j = 1), Zj = Σ cB ai1 = 0(1) + 0(5) + 0(3) = 0

and for x2-column (j = 2), Zj = Σ cB ai2 = 0(1) + 0(2) + 0(8) = 0

Similarly Zj(b) = 0(2) + 0(10) + 0(12) = 0.]

Step 4. Apply optimality test.

As Cj is positive under some columns, the initial basic feasible solution is not optimal (i.e., can be improved) and we proceed to the next step.

Step 5. (i) Identify the incoming and outgoing variables.

The previous table showed that x1 is the incoming variable as its incremental contribution Cj (= 5) is maximum and the column in which it appears is the key column (shown marked by an arrow at the bottom).

Dividing the elements under the b-column by the corresponding elements of key-column, we find a minimum positive ratio θ is 2 in two row. We, therefore, arbitrarily choose the row containing s1 as the key row (shown marked by an arrow on its right end). The element at the intersection of the key row and the key column i.e., (1), is the key element s1 therefore, the outgoing basic variable will now become non-basic.

Having decided that x1 is to enter the solution, we have tried to find as to what maximum value x1 could have without violating the constraints. So removing s1, the new basis will contain x1, s2, and s3 as the basic variables.

(ii) Iterate towards the optimal solution.

To transform the initial set of equations with a basic feasible solution into an equivalent set of equations with a different basic feasible solution, we make the key element unity. Here the key element being unity, we retain the key row as it is. Then to make all other elements in key column zero, we subtract proper multiples to key row from the other rows. Here we subtract five times the elements of key row from the second row and three times the elements of key row from the third row. These become the second and third rows of the next table. We also change the corresponding value under cB column from 0 to 5, while replacing s1 by x1 under the basis. Thus the second basic feasible solution is given by the following table:

[image: image]

As Cj is either zero or negative under all columns, the above table gives the optimal basic feasible solution. This optimal solution is x1 = 2, x2 = 0 and maximum Z = 10.

EXAMPLE 12.16

A firm produces three products which are processed on three machines. The relevent data is given next:

[image: image]

The profit per unit for products A, B, and C is $ 4, $ 3 and $ 6, respectively. Determine the daily number of units to be manufactured for each product. Assume that all the units produced are consumed in the market.

Solution:

Let the firm decide to produce x1, x2, x3 units of products A, B, C respectively. Then the L.P. model for this problem is:

Max. Z = 4 x1 + 3x2 + 6x3

subject to2x1 + 3x2 + 2x3  440,4x1 + 3x2  470

2x1 + 5x2  430, x1, x2, x3  0.

Step 1. Check whether the objective function is to be maximized and all bs are non-negative.

The problem consists of maximization type and bs are  0, so this step is not necessary.

Step 2. Express the problem in the standard form.

By introducing the slack variables s1, s2, s3, the problem in standard form becomes:

Max. Z = 4x1 + 3x2 + 6x3 + 0s1 + 0s2 + 0s3

subject to2x1 + 3x2 + 2x3 + s10 + s2 + 0s3 = 440

4x1 + 0x2 + 3x3 + 0s1 + s2 + 0s3 = 470

2x1 + 5x2 + 0x3 + 0s1 + 0s2 + s3 = 430

Step 3. Find an initial basic feasible solution.

The basic (non-degenerate) feasible solution is

x1 = x2 = x3 = 0 (non-basic)

s1 = 440, s2 = 470, s3 = 430 (basic)

∴ Initial basic feasible solution is given by the following table:
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Step 4. Apply optimality test.

As Cj is positive under some columns, the initial basic feasible solution is not optimal and we proceed to the next step.

 Step 5. (i) Identify the incoming and outgoing variables.

The above table shows that x3 is the incoming variable while s2 is the outgoing variable and (3) is the key element.

(ii) Iterate towards the optimal solution.

Drop s2 and introduce x3 with its associated value 6 under cB column. Convert the key element to unity and make all other elements of key column zero. Then the second feasible solution is given by the table below:

[image: image]

Step 6. As Cj is positive under the second column, the solution is not optimal and we proceed further. Now x2 is the incoming variable and s1 is the outgoing variable and (3) is the key element for the next iteration.

Drop s1 and introduce x2 with its associated value 3 under cB column. Convert the key element to unity and make all other elements of the key column zero. Then the third basic feasible solution is given by the following table:

[image: image]

Now since each Cj  0, therefore it gives the optimal solution

x1 = 0, x2 = 380/9, x3 = 470/3

andZmax = 3200/3 i.e., 1066.67 Dollars.

EXAMPLE 12.17

Solve the following L.P.P. the by simplex method:

Minimize Z = x1  3x2 + 3x3,

subject to3x1  x2 + 2x3  7,2x1 + 4x2   12,

 4 x1 + 3x2 + 8x3  10,x1, x2, x3  0.

Solution:

Consists of the following steps:

Step 1. Check whether objective function is to be maximized and all bs are non-negative.

As the problem is that of minimizing the objective function, converting it to the maximization type, we have

Max. Zʹ =  x1 + 3x2  3x3

As the right-hand side of the second constraint is negative, we write it as

 2x1  4x2  12

Step 2. Express the problem in the standard form.

By introducing the slack variables s1, s2, s3, the problem in the standard form becomes

Max. Zʹ =  x1 + 3x2  3x3 + 0s1 + 0s2 + 0s3

subject to 3x1  x2 + 2x3 + s1 + 0s2 + 0s3 = 7

 2x1  4x2 + 0x3 + 0s1 + s2 + 0s3 = 12

 4x1 + 3x2 + 8x3 + 0s1 + 0s2 + s3 = 10

x1, x2, x3, s1, s2, s3  0.

Step 3. Find initial basic feasible solution.

The basic (non-degenerate) feasible solution is

x1 = x2 = x3 = 0 (non-basic), s1 = 7, s2 = 12, s3 = 10 (basic)

∴ Initial basic feasible solution is given by the table below:
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Step 4. Apply optimality test.

As Cj is positive under second column, the initial basic feasible solution is not optimal and we proceed further.

Step 5. (i) Identify the incoming and outgoing variables.

The above table shows that x2 is the incoming variable, s3 is the outgoing variable and (3) is the key element.

(ii) Iterate towards the optimal solution.

∴ Drop s3 and introduce x2 with its associated value 3 under cB column. Convert the key element to unity and make all other elements of the key column zero. Then the second basic feasible solution is given by the following table:

[image: image]

Step 6. As Cj is positive under first column, the solution is not optimal and we proceed further. x1 is the incoming variable, s1 is the outgoing variable and (5/3) is the key element.

∴ Drop s1 and introduce x1 with its associated value  1 under cB column. Convert the key element to unity and make all other elements of the key column zero. Then the third basic feasible solution is given by the table below:

[image: image]

Now since each Cj  0, therefore it gives the optimal solution

x1 = 31/5, x2 = 58/5, x3 = 0 (non-basic) and Zʹmax = 143/5.

Hence Zmin =  143/5.

EXAMPLE 12.18

Maximize Z = 107x1 + x2 + 2x3,

subject to the constraints: 14x1 + x2  6x3 + 3x4 = 7,16x1 + x2  6x3  5

 3x1  x2  x3  0,x1, x2, x3, x4  0

Solution:

Consists of the following steps:

Step 1. Check whether objective function is to be maximized and all bs are non-negative.

This step is not necessary.

Step 2. Express the problem in the standard form.

Here x4 is a slack variable. By introducing other slack variables s1 and s2 the problem in standard form becomes

[image: image]
 
Step 3. Find initial basic feasible solution.

The basic feasible solution is

x1 = x2 = x3 = 0 (non-basic)

x4 = 7/3, s1 = 5, s2 = 0 (basic)

∴ Initial basic feasible solution is given in the table below:

[image: image]

Step 4. Apply optimality test.

As Cj is positive under some columns, the initial basic feasible solution is not optimal and we proceed further.

Step 5. (i) Identify the incoming and outgoing variables

The above table shows that x1 is the incoming variable, s2 is the outgoing variable, and (3) is the key element.

(ii) Iterate towards the optimal solution.

Drop s2 and introduce x1 with its associated value 107 under cB column. Convert, key element to unity and make all other elements of the key column zeros. Then the second basic feasible solution is given by the following table:

[image: image]

As Cj is positive under some columns, the solution is not optimal. Here 113/3 is the largest positive value of Cj, and x3 is the incoming variable. But all the values of θ being  0, x3 will not enter the basis. This indicates that the solution to the problem is unbounded.

[Remember that (i) the incoming variable is the non-basic variable corresponding to the largest positive value of Cj and (ii) the outgoing variable is the basic-variable corresponding to the least positive ratio θ, obtained by dividing the b-column elements by the corresponding key-column elements.]

Exercises 12.4

 

Using simplex method, solve the following L.P.P. (1  9):

	Maximize Z = x1 + 3x2
subject to x1 + 2x2  10, 0  x1  5, 0  x2  4.


	Maximize Z = 4x1 + 10x2
subject to 2x1 + x2  50, 2x1 + 5x2  100, 2x1 + 3x2  90, x1, x2  0.


	Maximize Z = 4x1 + 5x2,
subject to x1  2x2  2, 2x1 + x2  6, x1 + 2x2  5,  x1 + x2  2, x1, x2  0.


	Maximize Z = 10x1 + x2 + 2x3,
subject to x1 + x2  2x3  10, 4x1 + x2 + x3  20, x1, x2, x3  0.


	Maximize Z = x1 + x2 + 3x3,
subject to 3x1 + 2x2 + x3  3, 2x1 + x2 + 2x3  2, x1, x2, x3  0.


	Maximize Z = x1  x2 + 3x3
subject to x1 + x2 + x3  10, 2x1  x2  2, 2x1  2x2 + 3x3  0, x1, x2, x3  0. 


	Minimize Z = 3x1 + 5x2 + 4x3
subject to 2x1 + 3x2  8, 2x2 + 5x3  10,

3x1 + 2x2 + 4x3  15, x1, x2, x3  0.


	 Minimize Z = x1  3x2 + 2x3,
subject to 3x1  x2 + 2x3  7,  2x1 + 4x2  12,

 4x1 + 3x2 + 8x3  10, x1, x2, x3  0.


	Maximize Z = 4x1 + 3x2 + 4x3 + 6x4
subject to x1 + 2x2 + 2x3 + 4x4  80, 2x1 + 2x3 + x4  60,

3x1 + 3x2 + x3 + x4  80, x1, x2, x3, x4  0.


	A firm produces products A and B and sells them at a profit of $ 2 and $ 3 each respectively. Each product is processed on machines G and H. Product A requires 1 minute on G and 2 minutes on H whereas product B requires 1 minute on each of the machines. Machine G is not available for more than 6 hours 40 min/day whereas the time constraint for machine H is 10 hours. Solve this problem via the simplex method for maximizing the profit.

	A company makes two types of products. Each product of the first type requires twice as much labor time as the second type. If all products are of the second type only, the company can produce a total of 500 units a day. The market limits daily sales of the first and the second type to 150 and 250 units, respectively. Assuming that the profits per unit are $ 8 for type I and $ 5 for type II, determine the number of units of each type to be produced to maximize profit.

	The owner of a dairy is trying to determine the correct blend of two types of feed. Both contain various percentages of four essential ingredients. With the following data determine the least cost blend
[image: image]


	A manufacturing firm has discontinued production of a certain unprofitable product line. This created considerable excess production capacity. Management is considering to devote their excess capacity to one or more of three products 1, 2, and 3. The available capacity on machines and the number of machine hours required for each unit of the respective product, is given below:
[image: image]

The unit profit would be $ 20, $ 6 and $ 8, respectively for products 1, 2, and 3. Find how much of each product the firm should produce in order to maximize profit.


	The following table gives the various vitamin contents of three types of food and daily requirements of vitamins along with cost per unit. Find the combination of food for minimum cost.
[image: image]


	A farmer has 1,000 acres of land on which he can grow corn, wheat, or soyabeans. Each acre of corn costs $ 100 for preparation, requires s man-days of work and yie1lds a profit of $ 30. An acre of wheat costs $ 120 to prepare, requires ten man-days of work and yields a profit of $ 40. An acre of soyabeans costs $ 70 to prepare, requires eight man-days of work and yields a profit of $ 20. If the farmer has $ 1,00,000 for preparation and can count on 8,000 man-days of work, how many acres should be allocated to each crop to maximize profits ?


12.9Artificial Variable Techniques

 

So far we have seen that the introduction of slack/surplus variables provided the initial basic feasible solution. But there are many problems wherein at least one of the constraints is of () or (=) type and slack variables fail to give such a solution. There are two similar methods for solving such problems which we explain below

M-method or Method of penalties. This method is due to A. Charnes and consists of the following steps:

Step 1. Express the problem in standard form.

Step 2. Add non-negative variables to the left hand side of all those constraints which are of () or (=) type. Such new variables are called artificial variables and the purpose of introducing these is just to obtain an initial basic feasible solution. But their addition causes violation of the corresponding constraints. As such, we would like to get rid of these variables and would not allow them to appear in the final solution. For this purpose, we assign a very large penality ( M) to these artificial variables in the objective function.

Step 3. Solve the modified L.P.P. by simplex method.

At any iteration of the simplex method, one of the following three cases may arise:

 (i) There remains no artificial variable in the basis and the optimality condition is satisfied. Then the solution is an optimal basic feasible solution to the problem.

 (ii) There is atleast one artificial variable in the basis at zero level (with zero value in b-column) and the optimality condition is satisfied. Then the solution is a degenerate optimal basic feasible solution

(iii) There is at least one artificial variable in the basis at the non-zero level (with positive value in b-column) and the optimality condition is satisfied. Then the problem has no feasible solution. The final solution is not optimal, since the objective function contains an unknown quantity M. Such a solution satisfies the constraints but does not optimize the objective function and is therefore, called pseudo optimal solution.

Step 4. Continue the simplex method until either an optimal basic feasible solution is obtained or an unbounded solution is indicated.




	[image: image]
	
	Obs. The artificial variables are only a computational device for getting a starting solution. Once an artificial variable leaves the basis, it has served its purpose and we forget about it, i.e., the column for this variable is omitted from the next simplex table.




EXAMPLE 12.19

Use Charnes penalty method to Minimize Z = 2x1 + x2

subject to3x1 + x2 = 3, 4x1 + 3x2  6,

x1 + 2x2  3, x1, x2  0.

Solution:

Consists of the following steps:

Step 1. Express the problem in standard form.

The second and third inequalities are converted into equations by introducing the surplus and slack variables s1, s2, respectively.

Also the first and second constraints being of (=) and () type, we introduce two artificial variables A1, A2.

Converting the minimization problem to the maximization form for the L.P.P. can be rewritten as

Max. Zʹ =  2x1  x2 + 0s1 + 0s2  MA1  MA2

subject to3x1 + x2 + 0s1 + 0s2 + A1 + 0A2 = 3

4x1 + 3x2  s1 + 0s2 + 0A1 + A2 = 6

 x1 + 2x2 + 0s1 + s2 + 0A1 + 0A2 = 3

 x1, x2, s1, s2, A1, A2  0.

Step 2. Obtain an initial basic feasible solution.

Surplus variable s1 is not a basic variable since its value is  6. As negative quantities are not feasible, s1 must be prevented from appearing in the initial solution. This is done by taking s1 = 0. By setting the other non-basic variables x1, x2 each = 0, we obtain the initial basic feasible solution as

x1 = x2 = 0, s1 = 0;

A1 = 3, A2 = 6, s2 = 3

Thus the initial simplex table is

[image: image]

Since Cj is positive under x1 and x2 columns, this is not an optimal solution.

Step 3. Iterate towards optimal solution.

Introduce x1 and drop A1 from basis.

∴ The new simplex table is

[image: image]

Since Cj is positive under x2 column, this is not an optimal solution.

∴ Introduce x2 and drop A2.

Then the revised simplex table is

[image: image]

Since none of Cj is positive, this is an optimal solution. Thus, an optimal basic feasible solution to the problem is

x1 = 3/5, x2 = 6/5, Max. Z ʹ =  12/5.

Hence the optimal value of the objective function is

Min. Z =  Max. Z ʹ =  ( 12/5) = 12/5.

EXAMPLE 12.20

Maximize Z = 3x1 + 2x2

subject to the constraints: 2x1 + x2  2, 3x1 + 4x2  12, x1, x2  0.

Solution:

Consists of the following steps:

Step 1. Express the problem in standard form.

The inequalities are converted into equations by introducing the slack and surplus variables s1, s2, respectively. Also the second constraint being of () type, we introduce the artificial variable A. Thus the L.P.P. can be rewritten as

Max. Z = 3x1 + 2x2 + 0s1 + 0s2  MA

subject to2x1 + x2 + s1 + 0s2 + 0A = 2,

3x1 + 4x2 + 0s1  s2 + A = 12,

x1, x2, s1, s2, A  0.

Step 2. Find an initial basic feasible solution.

Surplus variable s2 is not a basic variable since its value is 12. Since a negative quantity is not feasible, s2 must be prevented from appearing in the initial solution. This is done by letting s2 = 0. By taking the other non-basic variables x1 and x2 each = 0, we obtain the initial basic feasible solution as

x1 = x2 = s2 = 0, s1 = 2, A = 12

∴ The initial simplex table is

[image: image]

Since Cj is positive under some columns, this is not an optimal solution.

Step 3. Iterate towards optimal solution.

Introduce x2 and drop s1.

∴ The new simplex table is

[image: image]

Here each Cj is negative and an artificial variable appears in the basis at the non-zero level. Thus there exists a pseudo optimal solution to the problem.

Two-phase method. This is another method to deal with the artificial variables wherein the L.P.P. is solved in two phases.

Phase I. Step 1. Express the given problem in the standard form by introducing slack, surplus, and artificial variables.

Step 2. Formulate an artificial objective function

Z* =  A1  A2, ⋯.  Am

by assigning ( 1) cost to each of the artificial variables Ai and zero cost to all other variables.

Step 3. Maximize Z* subject to the constraints of the original problem using the simplex method. Then three cases arise:

(a) Max. Z* < 0 and at least one artificial variable appears in the optimal basis at a positive level.

In this case, the original problem does not possess any feasible solution and the procedure comes to an end.

(b) Max. Z* = 0 and no artificial variable appears in the optimal basis.

In this case, a basic feasible solution is obtained and we proceed to phase II for finding the optimal basic feasible solution to the original problem.

(c) Max. Z* = 0 and at least one artificial variable appears in the optimal basis at zero level.

Here a feasible solution to the auxiliary L.P.P. is also a feasible solution to the original problem with all artificial variables set = 0.

To obtain a basic feasible solution, we prolong phase I for pushing all the artificial variables out of the basis (without proceeding on to phase II).

Phase II. The basic feasible solution found at the end of phase I is used as the starting solution for the original problem in this phase, i.e., the final simplex table of phase I is taken as the initial simplex table of phase II and the artificial objective function is replaced by the original objective function. Then we find the optimal solution.

EXAMPLE 12.21

Use a two-phase method to

Minimize Z = 7.5x1  3x2

subject to the constraints 3x1  x2  x3  3, x1  x2 + x3  2, x1, x2, x3  0.

Solution:

Phase I. Step 1. Express the problem in standard form.

Introducing surplus variables s1, s2 and artificial variables A1, A2. The phase I problem in standard form becomes

Max. Z* = 0x1 + 0x2 + 0x3 + 0s1 +0s2  A1  A2

subject to 3x1  x2  x3  s1 + 0s2 + A1 + 0A2 = 3

x1  x2 + x3 + 0s1  s2 + 0A1 + A2 = 2

x1, x2, x3, s1, s2, A1, A2  0

Step 2. Find an initial basic feasible solution.

Setting x1 = x2 = x3 = s1 = s2 = 0,

we haveA1 = 3, A2 = 2 and Z* =  5

∴ Initial simplex table is

[image: image]

As Cj is positive under x1 column, this solution is not optimal.

Step 3. Iterate towards an optimal solution.

Making key element (3) unity and replacing A1 by x1, we have the new simplex table:

[image: image]

Since Cj is positive under x3 and s1 columns, this solution is not optimal.

Making key element (4/3) unity and replacing A2 by x3, we obtain the revised simplex table:

[image: image]

Since all Cj  0, this table gives the optimal solution. Also Z*max = 0 and no artificial variable appears in the basis. Thus an optimal basic feasible solution to the auxiliary problem and therefore to the original problem, has been attained.

Phase II. Considering the actual costs associated with the original variables, the objective function is

Max. Zʹ =  15/2x1 + 3x2 + 0x3 + 0s1 + 0s2  0A1  0A2

subject to3x1  x2  x3  s1 + 0s2 + A1 + 0A2 = 3,

x1  x2 + x3 + 0s1  s2 + 0A1 + A2 = 2,

x1, x2, x3, s1, s2, A1, A2  0

The optimal initial feasible solution thus obtained, will be an optimal basic feasible solution to the original L.P.P.

Using final table of phase I, the initial simplex table of phase II is as follows:

[image: image]

Since all Cj  0, this solution is optimal.

Hence an optimal basic feasible solution to the given problem is

x1 = 5/4, x2 = 0, x3 = 3/4 and min. Z = 75/8.

12.10Exceptional Cases

 

Tie for the incoming variable. When more than one variable has the same largest positive value in Cj row (in maximization problem), a tie for the choice of incoming variable occurs. As there is no method to break this tie, we choose any one of the prospective incoming variables arbitrarily. Such an arbitrary choice does not in any way affect the optimal solution.

Tie for the outgoing variable. When more than one variable has the same least positive ratio under the θ-column, a tie for the choice of outgoing variable occurs. If the equal values of said ratio are > 1, choose any one of the prospective leaving variables arbitrarily. Such an arbitrary choice does not affect the optimal solution.

If the equal values of ratios are zero, the simplex method fails and we make use of the following degeneracy technique.

Degeneracy. We know that a basic feasible solution is said to be degenerate if any of the basic variables vanishes. This phenomenon of getting a degenerate basic feasible solution is called degeneracy which may arise

 (i) at the initial stage, when at least one basic variable is zero in the initial basic feasible solution or

(ii) at any subsequent stage, when the least positive ratios under θ the-column are equal for two or more rows.

In this case, an arbitrary choice of one of these basic variables may result in one or more basic variables becoming zero in the next iteration. At times, the same sequence of simplex iterations is repeated endlessly without improving the solution. These are termed as cycling type of problems. Cycling occurs very rarely. Intact, cycling has seldom occurred in practical problems.

To avoid cycling, we apply the following perturbation procedure:

 (i) Divide each element in the tied rows by the positive coefficients of the key column in that row.

 (ii) Compare the resulting ratios (from left to right) first of unit matrix and then of the body matrix, column by column.

(iii) The outgoing variable lies in that row which first contains the smallest algebraic ratio.

EXAMPLE 12.22

Maximize Z = 5x1 + 3x2

subject to x1 + x2  2, 5x1 + 2x2  10, 3x1 + 8x2  12 ; x1, x2  0.

Solution:

Consists of the following steps:

Step 1. Express the problem in the standard form.

Introducing the slack variables s1, s2, s3, the problem in the standard form is

Max. Z = 5x1 + 3x2 + 0s1 + 0s2 + 0s3

x1 + x2 + s1 + 0s2 + 0s3 = 2, 5x1 + 2x2 + 0s1 + s2 + 0s3 = 10

3x1 + 8x2 + 0s1 + 0s2 + s3 = 12, x1, x2, s1, s2, s3  0.

Step 2. Find the initial basic feasible solution.

The initial basic feasible solution is

x1 = x2 = 0 (non-basic)

s1 = 2, s2 = 10, s3 = 12 (basic) and Z = 0.

∴ Initial simplex table is

[image: image]

As Cj is positive under some columns, this solution is not optimal.

Step 3. Iterate towards optimal solution.

x1 is the incoming variable. But the first two rows have the same ratio under θ-column. Therefore we apply perturbation method.

First column of the unit matrix has 1 and 0 in the tied rows. Dividing these by the corresponding elements of the key column, we get 1/1 and 0/5. s2-row gives the smaller ratio and therefore s2 is the outgoing variable and (5) is the key element.

Thus the new simplex table is

[image: image]

As Cj is positive under x2 column, this solution is not optimal.

Making key element (3/5) unity and replacing s1 by x2, we obtain the revised simplex table:

[image: image]

As Cj  0 under all columns, this table gives the optimal solution. Hence an optimal basic feasible solution is x1 = 2, x2 = 0 and Zmax = 10.

Exercises 12.5

 

Solve the following L.P. problems using the M-method:

	Maximize Z = 3x1 + 2x2 + 3x3
subject to: 2x1 + x2 + x3  2, 3x1 + 4x2 + 2x3  8, x1, x2, x3  0.


	Maximize Z = 2x1 + x2 + 3x3
subject to: x1 + x2 + 2x3  5, 2x1 + 3x2 + 4x3 = 12, x1, x2, x3  0.


	Maximize Z = 8x2,
subject to: x1  x2  0, 2x1 + 3x2   6, x1, x2 unrestricted.


	Minimize Z = 4x1 + 3x2 + x3
subject to: x1 + 2x2 + 4x3  12, 3x1 + 2x2 + x3  8, x1, x2, x3  0.


	 Maximize Z = x1 + 2x2 + 3x3  x4
subject to: x1 + 2x2 + 3x3 = 15, 2x1 + x2 + 5x3 = 20,

x1 + 2x2 + x3 + x4 = 10, x1, x2, x3, x4  0.

Use two phase method to solve the following L.P. problems:


	Minimize Z = x1 + x2
subject to: 2x1 + x2  4, x1 + 7x2  7, x1, x2  0.


	Maximize Z = 5x1 + 3x2
subject to: 2x1 + x2  1, x1 + 4x2  6, x1, x2  0.


	Maximize Z = 5x1  2x2 + 3x3,
subject to: 2x1 + 2x2  x3  2,

3x1  4x2  3, x2 + x3  5, x1, x2, x3  0.


	Maximize Z = 5x1  4x2 + 3x3
subject to: 2x1 + x2  6x3 = 20, 6x1 + 5x2 + 10x3  76,

8x1  3x2 + 6x3  50, x1, x2, x3  0.

Solve the following degenerate L.P. problems:


	Maximize Z = 9x1 + 3x2
subject to: 4x1 + x2  8, 2x1 + x2  4, x1, x2  0.


	Maximize Z = 2x1 + 3x2 + 10x3
subject to: x1 + 2x3 = 0, x2 + x3 = 1, x1, x2, x3  0.


	Maximize Z = 0.5x1 + 6x2 + 5x3
subject to: 4x1 + 6x2 + 3x3  24, x1 + 1.5x2 + 3x3  12, 3x1 + x2  12,

 x1, x2, x3  0.



12.11Duality Concept

 

One of the most interesting concepts in linear programming is the duality theory. Every linear programming problem has associated with it, another linear programming problem involving the same data and closely related optimal solutions. Such two problems are said to be duals of each other. While one of these is called the primal, the other the dual.

The importance of the duality concept is due to two main reasons. First, if the primal contains a large number of constraints and a smaller of variables, the labor of computation can be considerably reduced by converting it into the dual problem and then solving it. Secondly, the interpretation of the dual variables from the cost or economic point of view proves extremely useful in making future decisions in the activities being programmed.

Formulation of dual problem. Consider the following L.P.P:

[image: image]

To construct the dual problem, we adopt the following guide-lines:

(i) The maximization problem in the primal becomes the minimization problem in the dual and vice versa.

(ii) () type of constraints in the primal become () type of constraints in the dual and vice versa.

(iii) The coefficients c1, c2, ⋯. ,cn in the objective function of the primal become b1, b2, ⋯, bn in the objective function of the dual.

(iv) The constants b1, b2, ⋯, bn in the constraints of the primal become c1, c2, ⋯, cn in the constraints of the dual.

(v) If the primal has n variables and m constraints, the dual will have m variables and n constraints, i.e., the transpose of the body matrix of the primal problem gives the body matrix of the dual.

(vi) The variables in both the primal and dual are non-negative.

Then the dual problem will be

[image: image]

EXAMPLE 12.23

Write the dual of the following L.P.P:

Minimize Z = 3x1  2x2 + 4x3,

subject to3x1 + 5x2 + 4x3  7, 6x1 + x2 + 3x3  4,

7x1  2x2  x3  10, x1  2x2 + 5x3  3,

4x1 + 7x2  2x3  2, x1 , x2, x3  0.

Solution:

Since the problem is of minimization, all constraints should be of  type. We multiply the third constraint throughout by  1 so that

 7x1 + 2x2 + x3   10

Let y1, y2, y3 , y4 and y5 be the dual variables associated with the above five constraints. Then the dual problem is given by

Maximize W = 7y1 + 4y2  10y3 + 3y4 + 2y5

subject to 3y1 + 6y2  7y3 + y4 + 4y5  3, 5y1 + y2 + 2y3  2y4 + 7y5   2

4y1 + 3y2 + y3 + 5y4  2y5  4, y1, y2, y3, y4, y5  0.

Formulation of dual problem when the primal has equality constraints. Consider the problem.

MaximizeZ = c1x1 + c2x2

subject toa11x1 + a12x2 = b1 ; a21x1 + a22x2  b2 ; x1, x2  0.

The equality constraint can be written as

a11x1 + a12x2  b1 and a11x1 + a12x2  b1

ora11x1 + a12x2  b1 and  a11x1  a12x2   b1

Then the above problem can be restated as

Maximize Z = c1x1 + c2x2

subject toa11x1 + a12x2  b1,  a11x1  a12x2   b1,

a21x1 + a22x2  b2, x1, x2  0.

Now we form the dual using y1ʹ, y1″, y2 as the dual variables.

Then the dual problem is

Minimize W = b1(y1ʹ  y1″) + b2y2,

subject toa11(y1ʹ  y1″) + a21y2  c1, a12(y1ʹ  y1″) + a22y2  c2, y1ʹ, y1″, y2  0.

The term (y1ʹ  y1″) appears in both the objective function and all the constraints of the dual. This will always happen whenever there is an equality constraint in the primal. Then the new variable y1ʹ  y1″ (= y1) becomes unrestricted in sign being the difference of two non-negative variables and the above dual problem takes the form.

Minimize W = b1y1 + b2y2,

subject toa11b1 + a21y2  c1, a12y1 + a22y2  c2 ,

y1 unrestricted in sign, y2  0.

In general, if the primal problem is
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then the dual problem is

[image: image]

Thus the dual variables corresponding to equality constraints are unrestricted in sign. Conversely when the primal variables are unrestricted in sign, the corresponding dual constraints are equalities.

EXAMPLE 12.24

Construct the dual of the L.P.P:

Maximize Z = 4x1 + 9x2 + 2x3,

subject to2x1 + 3x2 + 2x3  7, 3x1  2x2 + 4x3 = 5, x1, x2, x3  0.

Solution:

Let y1 and y2 be the dual variables associated with the first and second constraints. Then the dual problem is

Minimize W = 7y1 + 5y2,

subject to 2y1 + 3y2  4, 3y1  2y2  9, 2y1 + 4y2  2, y1  0, y2 is unrestricted in sign.

Exercises 12.6

 

Write the duals of the following problems:

	Maximize Z = 10x1 + 13x2 + 19x3
subject to6x1 + 5x2 + 3x3  26, 4x1 + 2x2 + 5x3  7, x1, x2, x3  0.


	Minimize Z = 2x1 + 4x2 + 3x3
subject to 3x1 + 4x2 + x3  11,  2x1  3x2 + 2x3   7, 

x1  2x2  3x3   1, 3x1 + 2x2 + 2x3  5, x1, x2, x3  0.


	Maximize Z = 3x1 + x2 + 4x3 + x4 + 9x5,
4x1  5x2  9x3 + x4  2x5  6, 2x1 + 3x2 + 4x3  5x4 + x5  9,

x1 + x2  5x3  7x4 + 11x5  10, x1, x2 , x3 , x4, x5  0.


	Maximize Z = 3x1 + 16x2 + 7x3
subject tox1  x2 + 3x3  3,  3x1 + 2x3  1,

2x1 + x2  x3 = 4, x1, x2, x3  0.


	Maximize Z = 3x1 + x2 + 2x3
subject tox1 + x2 + x3  6, 3x1  2x2 + 3x3 = 3,

 4x1 + 3x2  6x3 = 4, x1, x2, x3  0.


	Minimize Z = 2x1 + 3x2 + 4x3
subject to2x1 + 3x2 + 5x3  2, 3x1 + x2 + 7x3 = 3,

x1 + 4x2 + 6x3  5, x1, x2  0 and x3 is unrestricted.


	Obtain the dual problem of the following L.P.P:
Maximize f(x) = 2x1 + 5x2 + 6x3

subject to the constraints:

5x1 + 6x2  x3  3,  2x1 + x2 + 4x3  4,

x1  5x2 + 3x3  1,  3x1  3x2 + 7x3  6, x1, x2, x3  0.

Also verify that the dual of the dual problem is the primal problem.



12.12Duality Principle

 

If the primal and the dual problems have feasible solutions then both have optimal solutions and the optimal value of the primal objective function is equal to the optimal value of the dual objective function, i.e.,

Max. Z = Min. W

This is the fundamental theorem of duality. It suggests that an optimal solution to the primal can directly be obtained from that of the dual problem and vice-versa.

Working rules for obtaining an optimal solution to the primal (dual) problem from that of the dual (primal):

Suppose we have already found an optimal solution to the dual (primal) problem by the simplex method.

Rule I. If the primal variable corresponds to a slack starting variable in the dual problem, then its optimal value is directly given by the coefficient of the slack variable with a changed sign, in the Cj row of the optimal dual simplex table and vice-versa.

Rule II. If the primal variable corresponds to an artificial starting variable in the dual problem, then its optimal value is directly given by the coefficient of the artificial variable, with a changed sign, in the Cj row of the optimal dual simplex table, after deleting the constant M and vice-versa.

On the other hand, if the primal has an unbounded solution, then the dual problem will not have a feasible solution and vice-versa.

Now we shall work out two examples to demonstrate the primal dual relationships.

EXAMPLE 12.25

Construct the dual of the following problem and solve the primal and the dual:

Maximize Z = 2x1 + x2,

subject to  x1 + 2x2  2, x1 + x2  4, x1  3, x1, x2  0.

Solution:

Using the primal problem. Since only two variables are involved, it is convenient to solve the problem graphically.

In the x1x2-plane, the five constraints show that the point (x1, x2) lies within the shaded region OABCD of Figure 12.12.

[image: image]

Figure 12.12

Values of the objective function Z = 2x1 + x2 at these corners are Z(0) = 0, Z(A) = 6, Z(B) = 7, Z(C) = 6, and Z(D) = 1.

Hence the optimal solution is x1 = 3, x2 = 1 and max. Z = 7.

Solution:

Using the dual problem. The dual problem of the given primal is:

Minimize W = 2y1 + 4y2 + 3y3

subject to  y1 + y2 + y3  2, 2y1 + y2  1, y1, y2  0.

Step1. Express the problem in the standard form.

Introducing the slack and the artificial variables, the dual problem in the standard form is

Max. W ʹ =  2y1  4y2  3y3 + 0s1 + 0s2  MA1  MA2

subject to  y1 + y2 + y3  s1 + 0s2 + A1 + 0A2 = 2,

2y1 + y2 + 0y3 + 0s1  s2 + 0A1 + A2 = 1

Step 2. Find an initial basic feasible solution.

Setting the non-basic variables y1, y2, y3, s1, s2 each equal to zero, we get the initial basic feasible solution as

y1 = y2 = y3 = s1 = s2 = 0 (non-basic), A1 = 2, A2 = 1. (basic)

 ∴ Initial simplex table is
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As Cj is positive under some columns, the initial solution is not optimal.

Step 3. Iterate toward an optimal solution.

(i) Introduce y2 and drop A2. Then the new simplex table is
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As Cj is positive under some columns, this solution is not optimal.

(ii) Now introduce y3 and drop A1. Then the revised simplex table is

[image: image]

As all Cj  0, the optimal solution is attained.

Thus an optimal solution to the dual problem is

y1 = 0, y2 = 1, y3 = 1, Min. W =  Max. (W ʹ) = 7.

To derive the optimal basic feasible solution to the primal problem, we note that the primal variables x1, x2 correspond to the artificial starting dual variables A1, A2, respectively. In the final simplex table of the dual problem, Cj corresponding to A1 and A2 are 3 and 1, respectively after ignoring M. Thus by rule II, we get opt. x1 = 3 and opt. x2 = 1.

Hence an optimal basic feasible solution to the given primal is

x1 = 3, x2 = 1; max. Z = 7.




	[image: image]
	
	Obs. The validity of the duality theorem is therefore, checked since max. Z = min. W = 7 from both the methods.




EXAMPLE 12.26

Using duality solve the following problem:

Minimize Z = 0.7 x1 + 0.5x2

subject to x1  4, x2  6, x1 + 2x2  20, 2x1 + x2  18, x1, x2  0.

Solution:

The dual of the given problem is

Max. W = 4y1 + 6y2 + 20y3 + 18y4,

subject to y1 + y3 + 2y4  0.7, y2 + 2y3 + y4  0.5, y1, y2, y3, y4  0

Step 1. Express the problem in the standard form.

Introducing slack variables, the dual problem in the standard form becomes

Max. W = 4y1 + 6y2 + 20y3 + 18y4 + 0s1 + 0s2,

subject toy1 + 0y2 + y3 + 2y4 + s1 + 0s2 = 0.7,

0y1 + y2 + 2y3 + y4 + 0s1 + s2 = 0.5, y1, y2, y3 , y4  0.

Step 2. Find an initial basic feasible solution.

Setting non-basic variables y1, y2, y3, y4 each equal to zero, the basic solution is

y1 = y2 = y3 = y4 = 0 (non-basic), s1 = 0.7, s2 = 0.5 (basic)

Since the basic variables s1, s2 > 0, the initial basic solution is feasible and non-degenerate.

∴ Initial simplex table is

[image: image]

As Cj is positive in some columns, the initial basic solution is not optimal.

Step 3. Iterate towards an optimal solution.

(i) Introduce y3 and drop s2. Then the new simplex table is

[image: image]

As Cj is positive under some of the columns, this solution is not optimal.

(ii) Introduce y4 and drop s1. Then the revised simplex table is

[image: image]

As all Cj  0, the table gives the optimal solution.

Thus the optimal basic feasible solution is

y1 = 0, y2 = 0, y3 = 20, y4 = 18 max. W = 7.4

Step 4. Derive optimal solution to the primal.

We note that the primal variable x1, x2 corresponds to the slack starting dual variables s1, s2 respectively. In the final simplex table of the dual problem. Cj values corresponding to s1 and s2 are  16/3 and  22/3, respectively.

Thus, by rule I, we conclude that

opt. x1 = 16/3 and opt. x2 = 22/3.

Hence an optimal basic feasible solution to the given primal is

x1 = 16/3, x2 = 22/3 ; min. Z = 7.4.




	[image: image]
	
	Obs. To check the validity of the duality theorem, the student is advised to solve the given L.P.P. directly by simplex method and see that




min. Z = max. W = 7.4.

Exercises 12.7

 

Using duality solve the following problems (13):

	Minimize Z = 2x1 + 9x2 + x3,
subject to x1 + 4x2 + 2x3  5, 3x1 + x2 + 2x3  4, x1, x2, x3  0


	Maximize Z = 2x1 + x2,
subject to x1 + 2x2  10, x1 + x2  6, x1  x2  2, x1  2x2  1, x1, x2  0.


	Maximize Z = 3x1 + 2x2,
subject to x1 + x2  1, x1 + x2  7, x1 + 2x2  10, x2  3, x1, x2  0.


	Maximize Z = 3x1 + 2x2 + 5x3
subject to x1 + 2x2 + x3  430, 3x1 + 2x3  460, x1 + 4x2  420, x1, x2, x3  0.


	Write the dual of the following problem and solve the dual.
Maximize Z =  2x1  2x2  4x3,

subject to 2x1 + 3x2 + 5x3  2, 3x1 + x2 + 7x3  3,

x1 + 4x2 + 6x3  5, x1, x2, x3  0.



12.13Dual Simplex Method

 

In Section 12.9, we have seen that a set of basic variables giving a feasible solution can be found by introducing artificial variables and using the M-method or Two-phase method. Using the primal-dual relationships for a problem, we have another method (known as Dual simplex method) for finding an initial feasible solution. Whereas the regular simplex method starts with a basic feasible (but non-optimal) solution and works towards optimality, the dual simplex method starts with a basic infeasible (but optimal) solution and works towards feasibility. The dual simplex method is quite similar to the regular simplex method, the only difference lies in the criteria used for selecting the incoming and outgoing variables, In the dual simplex method, we first determine the outgoing variable and then the incoming variable while in the case of regular simplex method the reverse is done.

Working procedure for dual simplex method:

Step 1. (i) Convert the problem to maximization form, if it is not so.

(ii) Convert () type constraints, if any to () type by multiplying such constraints by  1.

(iii) Express the problem in standard form by introducing slack variables.

Step 2. Find the initial basic solution and express this information in the form of dual simplex table.

Step 3. Test the nature of Cj = cj  Zj:

(a) If all Cj  0 and all bi  0, then optimal basic feasible solution has been attained.

(b) If all Cj  0 and at least one bi < 0, then go to step 4.

(c) If any Cj  0, the method fails.

Step 4. Mark the outgoing variable. Select the row that contains the most negative bi. This will be the key row and the corresponding basic variable is the outgoing variable.

Step 5. Test the nature of key row elements:

(a) If all these elements are  0, the problem does not have a feasible solution.

(b) If at least one element < 0, find the ratios of the corresponding elements of Cj-row to these elements. Choose the smallest of these ratios. The corresponding column is the key column and the associated variable is the incoming variable.

Step 6. Iterate towards optimal feasible solution. Make the key element unity. Perform row operations as in the regular simplex method and repeat iterations until either an optimal feasible solution is attained or there is an indication of non-existence of a feasible solution.

EXAMPLE 12.27

Using dual simplex method:

maximize  3x1  2x2,

subject to x1 + x2  1, x1 + x2  7, x1 + 2x2  10, x2  3, x1  0, x2  0.

Solution:

Consists of the following steps:

Step 1. (i) Convert the first and third constraints into () type.

These constraints become

 x1  x2   1,  x1  2x2   10.

(ii) Express the problem in standard form

Introducing slack variables s1, s2, s3 , s4 the given problem takes the form

Max. Z =  3x1  2x2 + 0s1 + 0s2 + 0s3 + 0s4

subject to  x1  x2 + s1 =  1, x1 + x2 + s2 = 7,

 x1  2x2 + s3 =  10, x2 + s4 = 3, x1, x2, s1, s2, s3 , s4  0.

Step 2. Find the initial basic solution

Setting the decision variables x1, x2 each equal to zero, we get the basic solution

x1 = x2 = 0, s1 =  1, s2 = 7, s3 =  10, s4 = 3 and Z = 0.

 ∴ Initial solution is given by the table below:

[image: image]

Step 3. Test nature of Cj.

Since all Cj values are  0 and b1 =  1, b3 =  10, the initial solution is optimal but infeasible. We therefore, proceed further.

Step 4. Mark the outgoing variable.

Since b3 is negative and numerically largest, the third row is the key row and s3 is the outgoing variable.

Step 5. Calculate ratios of elements in Cj-row to the corresponding negative elements of the key row.

These ratios are  3/ 1 = 3,  2/ 2 = 1 (neglecting ratios corresponding to + ve or zero elements of key row). Since the smaller ratio is 1, therefore, x2-column is the key column and ( 2) is the key element.

Step 6. Iterate towards optimal feasible solution.

(i) Drop s3 and introduce x2 alongwith its associated value  2 under cB column. Convert the key element to unity and make all other elements of the key column zero. Then the second solution is given by the table below:

[image: image]

Since all Cj values are  0 and b4 =  2, this solution is optimal but infeasible. We therefore proceed further.

(ii) Mark the outgoing variable

Since b4 is negative, the fourth row is the key row and s4 is the outgoing variable. (iii) Calculate ratios of elements in Cj-row to the corresponding negative elements of the key row.

This ratio is [image: image] (neglecting other ratios corresponding to + ve or 0 elements of key row).

∴ x1-column is the key column and [image: image] is the key element.

(iv) Drop s4 and introduce x1 with its associated value  3 under the cB column. Convert the key element to unity and make all other elements of the key column zero. Then the third solution is given by the table below:

[image: image]

Since all Cj values are  0 and all bs are  0, therefore this solution is optimal and feasible. Thus the optimal solution is x1 = 4, x2 = 3 and Zmax =  18.

EXAMPLE 12.28

Using dual simplex method, solve the following problem:

Minimize Z = 2x1 + 2x2 + 4x3

subject to 2x1 + 3x2 + 5x3  2, 3x1 + x2 + 7x3  3,

 x1 + 4x2 + 6x3  5, x1, x2, x3  0

Solution:

Consists of the following steps:

Step 1. (i) Convert the given problem to maximization form by writing

Maximize Zʹ =  2x1  2x2  4x3.

(ii) Convert the first constraint into () type. Thus it is equivalent to

 2x1  3x2  5x3   2

(iii) Express the problem in standard form.

Introducing slack variables s1, s2, s3, the given problem becomes

max. Zʹ =  2x1  2x2  4x3 + 0s1 + 0s2 + 0s3

subject to   2x1  3x2  5x3 + s1 + 0s2 + 0s3 =  2, 3x1 + x2 + 7x3 + 0s1 + s2 + 0s3 = 3, x1 + 4x2 + 6x3 + 0s1 + 0s2 + s3 = 5, x1, x2, x3, s1, s2, s3  0.

Step 2. Find the initial basic solution.

Setting the decision variables x1, x2, x3 each equal to zero, we get the basic solution

x1 = x2 = x3 = 0, s1 =  2, s2 = 3, s3 = 5 and Zʹ = 0.

∴ Initial solution is given by the table below:

[image: image]

Step 3. Test nature of Cj.

Since all Cj values are  0 and b1 =  2, the initial solution is optimal but infeasible.

Step 4. Mark the outgoing variable.

Since b1 < 0, the first row is the key row and s1 is the outgoing variable.

Step 5. Calculate the ratio of elements of Cj-row to the corresponding negative elements of the key row.

These ratios are  2/ 2 = 1,  2/ 3 = 0.67,  4/ 5 = 0.8.

Since 0.67 is the smallest ratio, x2-column is the key column and ( 3) is the key element. Step 6. Iterate towards optimal feasible solution.

Drop s1 and introduce x2 with its associated value  2 under cB column. Then the revised dual simplex table is

[image: image]

Since all Cj  0 and all bi are > 0, this solution is optimal and feasible. Thus the optimal solution is x1 = 0, x2 = 2/3, x3 = 0 and max. Zʹ =  4/3

i.e.,min. Z = 4/3.

Exercises 12.8 

 

Using dual simplex method, solve the following problems:

	Maximize Z =  3x1  x2
subject to x1 + x2  1, 2x1 + 3x2  2 ; x1, x2  0.


	Minimize Z = 2x1 + x2,
subject to 3x1 + x2  3, 4x1 + 3x2  6, x1 + 2x2  3, x1, x2  0.


	Minimize Z = x1 + 2x2 + 3x3,
subject to 2x1  x2 + x3  4, x1 + x2 + 2x3  8, x2  x3  2 ; x1 , x2 , x3  0.


	Minimize Z = 6x1 + 7x2 + 3x3 + 5x4,
subject to 5x1 + 6x2  3x3 + 4x4  12, x2 + 5x3  6x4 10,

2x1 + 5x2 + x3 + x4  8, x1, x2, x3 , x4  0.


	Minimize Z = 3x1 + 2x2 + x3 + 4x4
subject to 2x1 + 4x2 + 5x3 + x4  10, 3x1  x2 + 7x3  2x4  2,

5x1 + 2x2 + x3 + 6x4 15, x1, x2 , x3 , x4  0.



12.14Transportation Problem

 

This is a special class of linear programming problems in which the objective is to transport a single commodity from various origins to different destinations at a minimum cost.

Formulation of a transportation problem. There are m plant locations (origins) and n distribution center (destinations). The production capacity of the ith plant is ai and the number of units required at the jth desti1nation is bj. The transportation cost of one unit from the ith plant to the jth destination is cjj. Our objective is to determine the number of units to be transported from the ith plant to jth destination so that the total transportation cost is minimum.

Let xij be the number of units shipped from ith plant to jth destination, then the general transportation problem is:

[image: image]

subject to the constraints

xi1 + xi2 + ⋯ + xin = ai , for ith origin (i = 1, 2, ⋯ m)

x1j + x2j + ⋯ + xmj =bj, for destination (j = 1, 2, ⋯ n)

xij  0.

Def. 1. The two sets of constraints will be consistent if

[image: image]

which is the condition for a transportation problem to have a feasible solution. Problems satisfying this condition are called balanced transportation problems.

2. A feasible solution to a transportation problem is said to be a basic feasible solution if it contains at the most (m + n  1) strictly positive allocations, otherwise the solution will degenerate. If the total number of positive (non-zero) allocations is exactly (m + n  1), then the basic feasible solution is said to be non-degenerate.

3. A feasible solution which minimizes the transportation cost is called an optimal solution.

This problem is explicitly represented in the following transportation table:

Distribution centers (Destinations)

[image: image]

The mn squares are called cells. The per unit cost cjj of transporting from the ith origin to the jth destination is displayed in the lower right side of the (i, j)th cell. Any feasible solution is shown in the table by entering the value of xij in the small square at the upper left side of the (i, j)th cell. The various as and bs are called rim requirements. The feasibility of a solution can be verified by summing the values of xij along the rows and down the columns.




	[image: image]
	
	Obs. 1. The special features of a transportation problem are that


	
	
	(i) the coefficients of all xij in the constraints are unity, and


	
	
	(ii) the total supply Σ ai = total demand Σbj.



	
	
	Obs. 2. The objective function and the constraints being all linear, the problem can be solved be the simplex method. But the number of variables being large, there will be too many calculations. However, the coefficients of all xij in the constraints being unity, we can look for some technique which would be simpler than the simplex method.




12.15Working Procedure for Transportation Problems

 

Step 1. Construct transportation table. Express the supply from the origins ai, demand at destinations bj and the unit shipping cost cjj in the form of a matrix, know as transportation table. If the supply and demand are equal, the problem is balanced.

Step 2. Find the initial basic feasible solution. We find an initial allocation which satisfies the demand at each project site without violating the capacities of the plants (origins) and also meeting the non-negativity restrictions. There are several methods for initial allocations e.g., North-West corner rule, Row minima method, Least cost method, and Vogels approximation method. The Vogels approximation method (VAM) takes into account not only the least cost cjj but also the costs that just exceed the least cost cjj and therefore yields a better initial solution than obtained from other methods. As such we shall confine ourselves to VAM only which consists of the following steps:

(i) Display the difference between the least and the next to least costs in each row, by enclosing them in brackets to the right of the row. Similarly display the differences for each column within brackets below that column.

(ii) Identify the row or column with the largest difference among all the rows and columns and allocate as much as possible under the rim requirements, to the lowest cost cell in that row or column. In case of a tie allocate to the cell associated with the lower cost.

If the greatest difference corresponds to ith row and cjj is the lowest cost in the ith row, allocate as much as possible, i.e., min (ai,bj) in the (i, j)th cell and cross off the ith row or the jth column.

(iii) Recalculate the row and column differences for the reduced table and go to the previous step.

(iv) Repeat the procedure till all the rim requirements are satisfied. Note the solution in the upper left corner small squares of the basic cells.

Step 3. Apply optimality check.

In the above solution, the number of allocations must be m + n  1, otherwise the basic solution degenerates.

Now to test for optimality, we apply the modified distribution (MODI) method and examine each unoccupied cell to determine whether making an allocation in it reduces the total transportation cost and then repeat this procedure until the lowest possible transportation cost is obtained. This method consists of the following steps:

(i) Note the numbers ui along the left and vj along the top of the cost matrix such that their sums equal to the original costs of occupied cells, i.e., solve the equations [ui + vj =cjj] starting initially with some ui = 0.

(ii) Compute the net evaluations wij = ui + vj cjj for all the empty cells and enter them in upper right hand corners of the corresponding cells.

(iii) Examine the sign of each wij. If all wij  0, then the current basic feasible solution is optimal. If even one wij > 0, this solution is not optimal and we proceed further.

Step 4. Iterate towards an optimal solution

(i) Choose the unoccupied cell with the largest wij and mark θ in it.

(ii) Draw a closed path consisting of horizontal and vertical lines beginning and ending at θ-cell and having its other corners at the allocated cells.

(iii) Add and subtract θ alternately to and from the transition cells of the loop subject to rim requirements. Assign a maximum value to θ so that one basic variable becomes zero and the other basic variables remain non-negative. Now the basic cell whose allocation has been reduced to zero leaves the basis.

Step 5. Return to step 3 and repeat the process until an optimal basic feasible solution is obtained.

EXAMPLE 12.29

Solve the following transportation problem:

[image: image]

Solution consists of the following steps:

Step 1. Transportation table. Here the total availability and the total requirement being the same, i.e., 43, the problem is balanced.

Step 2. Find the initial basic feasible solution. Following VAM, the differences between the smallest and next to the smallest costs in each row and each column are computed and displayed within brackets against the respective rows and columns (table 1). The largest of these differences is (10) which is associated with the fourth column.

[image: image]

Since c14 (= 13) is the minimum cost, we allocate x14 = min (11, 15) = 11. This exhausts the availability of first row and therefore we cross it.

[image: image]
 
The row and column differences are now computed for reduced Table 2 and displayed within brackets. The largest of these is (18) which is against the fourth column. Since c14 (= 23) is the minimum cost, we allocate x14 = min(13, 4) = 4.

This exhausts the availability of the fourth column which we cross off. Proceeding in this way, the subsequent reduced transportation tables and differences for the remaining rows and columns are shown in Tables 3, 4, and 5.

Finally the initial basic feasible solution is as shown in Table 6.

[image: image]
 
Step 3. Apply optimality check

As the number of allocations = m + n  1 (i.e., 6), we can apply the MODI method.

(i) We have u2 + v1 = 17, u2 + v2 = 18, u3 + v2 = 27

u3 + v3 = 18, u1 + v4 = 13, u2 + v4 = 23

Letu2 = 0, then v1 = 17, v2 = 18, u3 = 9, v3 = 9, v4 = 23, u1 =  10.

(ii) Net evaluations wij = (ui + vj) cjj for all empty cells are

w11 =  14, w12 =  8, w13 =  26, w23 =  5, w31 =  6, w34 =  9.

(iii) Since all the net evaluations are negative, the current solution is optimal. Hence the optimal allocation is given by

x14 = 11, x21 = 6, x22 = 3, x24 = 4, x32 = 7 and x33 = 12.

∴ The optimal (minimum) transportation cost

= 11 × 13 + 6 × 17 + 3 × 18 + 4 × 23 + 7 × 27 + 12 × 18 = $ 796.

EXAMPLE 12.30

A company has three cement factories located in cities 1, 2, and 3 which supply cement to four projects located in towns 1, 2, 3, and 4. Each plant can supply 6, 1, and 10 truck loads of cement daily respectively and the daily cement requirements of the projects are respectively 7, 5, 3, and 2 truck loads. The transportation costs per truck load of cement (in hundreds of Dollars) from each plant to each project site are as follows:

[image: image]

Determine the optimal distribution for the company so as to minimize the total transportation cost.

Solution consists of the following steps:

Step 1. Construct the transportation table. Express the supply from the factories, demands at sites, and the unit shipping cost in the form of the following transportation table (Table 1). Here the supply being equal to the demand, the problem is balanced.

[image: image]

Step 2. Find the initial basic feasible solution.

Using VAM, the initial basic feasible solution is as shown in Table 2. The transportation cost according to this route is given by

Z = $ (1 × 2 + 5 × 3 + 1 × 1 + 6 × 5 + 3 × 15 + 1 × 9) × 100 = $ 102,00.

Step 3. Apply optimality check.

As the numbers of allocations = (m + n  1), i.e., 6, we can apply the MODI method.

We now compute the net evaluations wij = (ui + vj) cjj which are exhibited in Table 3. Since the net evaluations in two cells are positive, a better solution can be found.

[image: image]

Step 4. Iterate towards optimal solution.

First iteration:

(a) Next basic feasible solution.

(i) Choose the unoccupied cell with the maximum wij. In case of a tie, select the one with lower original cost. In Table 3, cells (1, 3) and (2, 3) each have wij = 1 and out of these cell (2, 3) has the lower original cost 6, therefore we take this as the next basic cell and note θ in it.

(ii) Draw a closed path beginning and ending at θ-cell. Add and subtract θ, alternately to and from the transition cells of the loop subject the rim requirements. Assign a maximum value to θ so that one basic variable becomes zero and the other basic variables remain  0. Now the basic cell whose allocation has been reduced to zero leaves the basis. This gives the second basic feasible solution (Table 5).

[image: image]

∴ Total transportation cost of this revised solution.

= $ [1 × 2 + 5 × 3 + 1 × 6 + 6 × 5 + 2 × 15 + 2 × 9] × 100 = $ 101,00.

(b) Optimality check. As the number of allocations in table 5 = m + n  1 (i.e., 6), we can apply the MODI method. We compute the net evaluations which are shown in Table 6. Since the cell (1, 3) has a positive value, the second basic feasible solution is not optimal.

[image: image]

Second iteration:

(a) Next basic feasible solution. In the second basic feasible solution introduce the cell (1, 3) taking θ = 1 and drop the cell (1, 1) giving Table 7. Thus we obtain the third basic feasible solution (Table 8).

[image: image]

Optimality check. As the number of allocations in Table 8 = m + n  1 (i.e., 6), we can apply the MODI method.

We compute the net evaluations which are shown in Table 9. Since all the net evaluations are  0, this basic feasible solution is optimal.

Thus the optimal transportation policy is as shown in Table 9 and the optimal transportation cost

= $ [5 × 3 + 1 × 11 + 1 × 6 + 7 × 5 + 1 × 15 + 2 × 9] × 100 = $ 10,000

12.16Degeneracy in Transportation Problems

 

When the number of basic cells in a mn-transportation table, is less than m + n  1 the basic solution degenerates. To remove the degeneracy, we assign a small positive value ε to as many zero-valued variables as may be necessary to complete m + n  1 basic variables. The cells containing ε are then treated like other basic cells and the problem is solved in the usual way. The εs are kept till the optimum solution is attained. Then we let each ε → 0.

EXAMPLE 12.31

Solve the following transportation problem:

[image: image]

Solution:

Consists of the following steps:

Step 1. Transportation table. The total supply and total demand being equal, the transportation problem is balanced.

Step 2. Find the initial basic feasible solution.

Using VAM, the initial basic feasible solution is as shown in table 1.

Step 3. Apply optimality check. Since the number of basic cells is 8 which is less than m + n  1 = 9, the basic solution degenerates. In order to complete the basis and thereby remove degeneracy, we require only one more positive basic variable. We select the variable x23 and allocate a small positive quantity ε to the cell (2, 3).

[image: image]
 
We now compute the net evaluations wij = (ui + vj) cjj which are exhibited in Table 2. Since all the net evaluations are  0, the current solution is optimal. Hence the optimal allocation is

x13 = 5, x22 = 4, x26 = 2, x31 = 1, x33 = 1, x41 = 3, x44 = 2 and x45 = 4.

[image: image]

∴ The minimum (optimal) transportation cost

= 5 × 9 + 4 × 3 + ε × 7 + 2 × 5 + 1 × 6 + 1 × 9 + 3 × 6 + 2 × 2 + 4 × 2

= 112 + 7ε = $ 112 as ε → 0.

Exercises 12.9

 

	Obtain an initial basic feasible solution to the following transportation problem:
[image: image]


	Solve the following transportation problem:
[image: image]


	Consider four bases of operations Bi and three targets Tj. The tons of bombs per aircraft from any base that can be delivered to any target are given in the following table:
[image: image]

The daily sortie capability of each of the four bases is 150 sorties per day. The daily requirement in sorties over each target is 200. Find the allocation of sorties from each base to each target which maximizes the total tonnage over all the three targets.


	Solve the following transportation problem:
[image: image]


	A company has factories F1, F2, F3 which supply ware-houses at W1, W2, and W3. Weekly factory capacities, weekly ware-house requirements and unit shipping costs (in Dollars) are as follows:
[image: image]

Determine the optimal distribution for this company to minimize shipping costs.


	A company is spending $ 1,000 on transportation of its units from plants to four distribution centers. The supply and demand of units, with unit cost of transportation are given below:
[image: image]

What can be the maximum saving by optimal scheduling.?


	A departmental store wishes to stock the following quantities of a popular product in three types of containers:
[image: image]

Tenders are submitted by four dealers who undertake to supply not more than the quantities shown below:

[image: image]

The store estimates that profit per unit will vary with the dealer as shown below:

[image: image]

Find the maximum profit of the store.


	Obtain an optimum basic feasible solution to the following transportation problem:
[image: image]


	A company has three plants A, B, and C and three warehouses X, Y,and Z. The number of units available at the plant is 60, 70, and 80, respectively. The demands at X, Y,and Z are 50, 80, 80, respectively. The unit costs of transportation are as follows:
[image: image]

Find the allocation so that the total transportation cost is minimum.


	A company has three plants at locations A, B, and C which supply to warehouses located as D, E, F, G, and H. Monthly plant capacities are 800, 500, and 900 units, respectively. Monthly warehouse requirements are 400, 400, 500, 400, and 800 units, respectively. Unit transportation costs in dollars are given below:[image: image]

Determine an optimum distribution for the company in order to minimize the total transportation cost.



12.17Assignment Problem

 

An assignment problem is a special type of transportation problem in which the objective is to assign a number of origins to an equal number of destinations at a minimum cost (or maximum profit).

Formulation of an assignment problem. There are n new machines Mi (i = 1, 2, ⋯n) which are to be installed in a machine shop. There are n vacant spaces Sj (j = 1, 2, ⋯ n) available. The cost of installing the machine Mi at space Sj is cjj Dollars. Let us formulate the problem of assigning machines to spaces so as to minimize the overall cost.

Let xij be the assignment of machine Mi to space Sj, i.e., let xij be a variable such that

[image: image]

Since one machine can only be installed at each space, we have

xi1 + xi2 + ⋯.. + xin = 1, for machine Mi (i = 1, 2, ...n)

x1j + x2j + ⋯.. + xnj = 1, for space Sj (j = 1, 2, ...n)

Also the total installation cost is [image: image]

Thus the assignment problem can be stated as follows:

Determine xij  0 (i, j = 1, 2, ...n) so as to

[image: image]

subject to the constraints

[image: image]

This problem is explicitly represented by the following n × n cost matrix:

[image: image]




	[image: image]
	
	Obs. This assignment problem constitutes n ! possible ways of installing n machines at n spaces. If we enumerate all these n ! alternatives and evaluate the cost of each one of them and select the one with the minimum cost, the problem would be solved. But this method would be very slow and time consuming, even for small value of n and hence it is not at all suitable. However, a much more efficient method of solving such problems is available. This is the Hungarian method for solution of assignment problems which we describe below.





Working procedure to solve an assignment problem: Step 1. Reduce the matrix. Subtract the smallest element of each row (of the given cost matrix) from all elements of that row. See if each row contains at least one zero. If not, subtract the smallest element of each column (not containing zero) from all the elements of that column. This gives the reduced matrix.

Step 2. Assign the zeros

(a) Examine rows (of the reduced matrix) successively until a row with exactly one unmarked zero is found. Make an assignment to this single zero by encircling it. Cross all other zeros in the column of this encircled zero, as these will not be considered for any future assignment. Continue in this way until all the rows have been examined.

(b) Now examine columns successively until a column with exactly one unmarked zero is found. Encircle this zero and make an assignment there. Then cross any other zero in its row. Continue in this way until all the columns have been examined.

In case, some rows or columns contain more than one unmarked zeros, encircle any unmarked zero arbitrarily and cross all other zeros in its row or column. Proceed in this way, until no zero is left unmarked.

Step 3. Apply optimality check.

Repeat step 2 (a) and (b) until one of the following occurs:

(i) If no row or no column is without assignment (encircled zero), then the current assignment is optimal.

(ii) If there is some row and/or column without an assignment, then the current assignment is not optimal and we go to next step.

Step 4. Find the minimum number of lines crossing all zeros.

(a) Tick (√) the rows which do not have assignments.

(b) Tick (√) the columns (not already marked) which have zeros in the ticked row.

(c) Tick (√) the rows (not already marked) which have assignments in ticked columns.

Repeat (b) and (c) until no more marking is required.

(d) Draw lines through all unticked rows and ticked columns. If the number of these lines is equal to the order of the matrix then it is an optimal solution otherwise not.

Step 5. Iterate towards an optimal solution.

Select the smallest element and subtract it from all uncovered elements. Add this smallest element to every element lying at the intersection of two lines. The resulting matrix is the second basic feasible solution.

Step 6. Go to Step 2 and repeat the procedure until the optimal solution is attained.

EXAMPLE 12.32

Four jobs are to be done on four different machines. The cost (in dollars) of producing ith job on the jth machine is given below:

[image: image]

Assign the jobs to different machines so as to minimize the total cost.

Solution:

Consists of the following steps:

Step 1. Reduce the matrix. Subtract the smallest element 11 of row 1 from all its elements. Similarly subtract 12, 10, and 11 from rows 2, 3, and 4, respectively. The resulting matrix is as shown in Table 1. Columns 1 and 4 do not have any zero element. Subtract the smallest element 4 of column 1 from all its elements and element 1 from all elements of column 4. The reduced matrix is as given in Table 1.

[image: image]

Step 2. Assign the zeros. Row 4 has a single unmarked zero in column 3. Encircle it and cross all other zeros in column 3. Row 3 has a single unmarked zero in column 1. Encircle it and cross the other zero in column 1. Row 1 has a single unmarked zero in column 2. Encircle it and cross the other zero in column 2. Finally row 2 has a single unmarked zero in column 4. Encircle it (Table 2).

Step 3. Apply optimality check. Since we have one encircled zero in each row and in each column, this gives the optimal solution.

∴ The optimal assignment policy is

Job 1 to machine 2, Job 2 to machine 4,

Job 3 to machine 1, Job 4 to machine 3,

and the minimum assignment cost = $(11 + 13 + 14 + 11) = $ 49.

EXAMPLE 12.33

A marketing manager has 5 salesmen and 5 sales districts. Considering the capabilities of the salesmen and the nature of districts, the marketing manager estimates that sales per month (in hundred Dollars) for each salesman in each district would be as follows:

[image: image]
 
Find the assignment of salesmen to districts that will result in maximum sales.

Solution:

Consists of the following steps:

Step 1. Reduce the matrix. Convert the given maximization problem into a minimization problem, by making all the profits negative, since max. Z = min. ( Z). Then subtract the smallest element of each row from the elements of that row. Now subtract the smallest element of each column (not containing zero) from the elements of that column. This gives the reduced matrix (Table 1).

[image: image]

Step 2. Assign the zeros. Rows 2 and 3 have each a single unmarked zero in column 1. Encircle these. Columns 2 and 5 have each a single unmarked zero in row 1. Encircle these and cross the zero in row 1. Columns 3 and 4 have each unmarked zeros. Encircle the zeros in each of the rows 4 and 5 as shown in Table 1 and cross other zeros.

Step 3. Apply optimality check. As column 4 is without assignment, this solution is not optimal. Therefore we go to next step.

Step 4. Find minimum number of lines crossing all zeros. Draw the least number of horizontal and vertical (dotted) lines which cover all the zeros. Since there are four dotted lines which are less than the order of the cost matrix (= 5), we go to Step 5.

Step 5. Iterate toward an optimal solution. Select the smallest element in the Table 1, not covered by the dotted lines. Such an element is 4 which lies at two different positions. Selecting the element that lies at position (3, 5) arbitrarily, subtract it from all the uncovered elements of the cost matrix (Table 1) and add the same to the elements lying at the intersection of two dotted lines. Now draw more minimum number of dotted lines so as to cover the new zero. Here we draw such a line in column 5 (Table 2).

Now, since the number of dotted lines is equal to the order of the cost matrix, the optimal solution is attained.

Finally, to determine this optimal assignment, we consider only the zero elements (Table 3):

[image: image]

(i) Examine successively the rows with exactly one zero. There is no such row.

(ii) Examine successively the columns with exactly one zero. Column 2 has one zero, encircle it and cross all zeros of row 1.

(iii) Encircle arbitrarily the zero in position (2, 1) and cross all zeros in row 2 and column 1. Then encircle the unmarked zero in row 3. Now encircle arbitrarily the zero in position (4, 3) and cross all zeros in row 4 and column 3. Finally encircle the remaining unmarked zero in row 5.

Now each row and each column has one encircled zero, therefore the optimal assignment policy is:

Salesman 1 to district B, 2 to A, 3 to E, 4 to C and 5 to D.

Hence the maximum sales

= $ (38 + 40 + 37 + 41 + 35) × 100 = $ 19100.

Exercises 12.10

 

	A firm plans to begin production of three new products on its three plants. The unit cost of producing i at plant j is as given below. Find the assignment that minimizes the total unit cost
[image: image]


	Solve the following assignment problem:
[image: image]


	A machine tool company decides to make four sub-assemblies through four contractors. Each contractor is to receive only one sub assembly. The cost of each sub-assembly is determined by the bids submitted by each contractor and is shown in the table below (in hundreds of Dollars). Assign different assemblies to contractors so as to minimize the total cost;
[image: image]


	Four professors are each capable of teaching any one of the four different courses. Class preparations time in hours for different topics varies from professor to professor and is given in the table below. Each professor is assigned only one course. Find the assignment policy schedule so as to minimize the total course preparation time for all courses.[image: image]


	Consider the problem of assigning five jobs to five persons. The assignment costs are given below:
[image: image]

Determine the assignment schedule.


	The head of the department has five jobs A, B, C, D, E and five subordinates V, W, X, Y and Z. The number of hours each man would take to perform each job is as follows:
[image: image]

How should the jobs be allocated to minimize the total time?


	A company has six jobs to be processed by six mechanics. The following table gives the return in Dollars when the ith job is assigned to the jth mechanic. How should the jobs be assigned to the mechanics so as to maximize the over all return?
[image: image]


	A company has four machines on which to do three jobs. Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following table:
[image: image]

Determine the optimum assignment.

HINT. Whenever the cost matrix of an assignment problem is not a square matrix, the problem is called an unbalanced assignment problem. In such problems, we add dummy rows (or columns) so as to form a square matrix. Then we solve the resulting balanced problem in the usual way. In this problem, we add a dummy fourth row so as to get the following balanced assignment problem:

[image: image]


	Determine an optimum assignment schedule for the following assignment problem. The cost matrix is given:
[image: image]

[image: image]



12.18Objective Type of Questions

 

Exercises 12.11

 

Fill up the blanks in the following questions:

	Infeasibility in a linear programming problem means ...... .

	The significance of the (Zj  Cj) row in the simplex solution procedure is that ...... .

	The duality principle states that ...... .

	The difference between the transportation problem and the assignment problem is ...... .

	The special features of a transportation problem are ...... ..

	 The canonical form of an L.P.P. is such that ...... .

	The dual problem of the L.P.P:
Max. Z = 4x1 + 9x2 + 2x3,

subject to 2x1 + 3x2 + 2x3  7, 3x1  2x2 + 4x3 = 5, x1 , x2, x3  0, is ...... .


	The optimality and feasibility conditions related with Dual simplex method are ...... .

	Feasible and basic solutions related with a transportation problem are ...... .

	A transportation problem is
[image: image]

Its linear programming problem is ......


	The basic feasible solutions of 2x1 + x2 + 4x3 = 11, 3x1 + x2 + 5x3 = 14 are ...... .

	A slack variable is defined as...... .

	The advantage of the dual simplex method is ...... .

	If the total availability is equal to the total requirements, the transportation problem is called ...... .

	An artificial variable is that ...... .

	Two conditions on which the simplex method is based are ...... .

	A feasible solution which minimizes the transportation cost is called an ...... . solution.

	The dual problem of: Max.5x1 + 6x2 subject to x1 + 2x2 = 5,  x1 + 5x2  3, x1 unrestricted and x2  0, is ...... .

	For a balanced transportation problem with 3 rows and 3 columns, the number of basic variables will be ...... . 

	Using graphical method, Max. Z = 5x1 + 3x2 subject to 5x1 + 2x2  10, 3x1 + 5x2  15, x1, x2  0, is ...... .

	In an L.P. problem, unbounded solution is that ...... .

	Degeneracy in a transportation problem is resolved by ...... .

	A basic solution is said to be non-degenerate in L.P.P. when ...... .

	The dual of the problem Max. Z = 2x1 + x2 subject to  x1 + 2x2  2, x1 + x2  4, x1  3, x1, x2  0, is ...... .

	The two methods used to find the initial solution of a transportation problem are ...... .

	Constraints involving equal to sign do not require use of ...... or ......variables.


Footnotes

 

* A region or a set of points is said to be convex if the line joining any two of its points lies completely in the region (or the set). Figures 12.1 and 12.2 represent convex regions while Figures 12.3 and 12.4 do not form convex sets


CHAPTER   13


A Brief Review of Computers

Chapter Objectives
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	Structure of a computer

	Computer representation of numbers

	Floating point representation of numbers

	Computer calculations: algorithm, flowchart

	Program writing



13.1Introduction

 

Many problems in modern science and engineering involve so much of computation that they would require years of labor for their solution even using the best of calculators. With the advent of high speed computers, the picture has changed completely. Such complicated problems can now be solved very quickly by using electronic computers. For instance, a system of thirty linear equations with thirty unknowns is a monstrous problem for a human being but it is just a routine job for a digital computer. In fact, modern numerical techniques can best be appreciated within the context of some basic knowledge of computers. As such, a concise introduction to the digital computer is given in this chapter.

13.2Structure of a Computer

 

A digital computer has the following interconnected units each of which performs a specific task:

 ( i )Input unit accepts (or reads) the data and instructions which are typed using a keyboard of video display unit . It consists of a magnetic tape (or disk).

 ( ii )Memory unit stores the data and procedures. It consists of magnetic cores or semi-conductor storage.

( iii )Central Processing Unit (C.P.U.) is the vital component that makes the computer work. It takes care of all arithmetic and logical operations. It comprises of the following two parts:

( a ) Control unit interprets and carries out the instructions stored in the memory. It has electronic circuitry to decode instructions and activates other units.

( b ) Arithmetic unit carries out the required calculations. It consists of electronic registers, accumulators.

( iv )Output unit presents the results of the calculations. It consists of a video display terminal and a printer. Various discs as input as well as output devices.

[image: image]

 Figure 13.1

The memory and control units deal with numbers. So they must have a method of recording numbers. Such a recording is achieved by the magnetic cores or semi-conductor storage which require the numbers to be made up of zeros and ones only.

13.3Computer Representation of Numbers

 

The numbers are first converted to machine numbers consisting of 0 and 1 with a base depending on a computer. Most of the computers have a base 2 which is called a binary system of numbers. The decimal system has the base 10. We, therefore, convert the decimal numbers into the binary system for the input and reconvert the binary numbers to the decimal form for the output.

Binary numbers. Any number is written in binary notation as

 b n −1 b n −2 ⋯ b 1 b 0. b −1 b −2 ⋯ b − m (A )

where b s are binary bits 0 or 1 and the point is the binary point.

Rule I. To convert the binary number (A) to the decimal form, use the formula: 

 b n −1 2 n −1 + b n −2 2 n −2 + ⋯ + b 1 21 + b 0 20 + b −1 2−1 + b −2 2−2 + ⋯ + b − m 2− m 

Rule II. To convert an integer to a binary number: 

 ( i ) divide it by 2 and write the remainder,

 ( ii ) continue the process until the quotient is zero,

( iii ) write the remainders from bottom to top. This will give the required binary equivalent.

Rule III. To convert a decimal number to a binary fraction: 

 ( i ) multiply the given number by 2 and separate the integral part,

 ( ii ) multiply the fractional part again by 2 and separate the integral part,

( iii ) continue this process, until the fractional part reduces to zero,

( iv ) write the integral parts and prefix the binary point. This will be the desired binary fraction.

EXAMPLE 13.1

Find the decimal number corresponding to the binary number 1101001.1110011.

Solution:

(1101001. 1110011)2 = 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22

 + 0 × 21 + 1 × 20 + 1 × 2−1 + 1 × 2−2 + 1 × 2−3 + 0 × 2−4

 + 0 × 2−5 + 1 × 2−6 + 1 × 2−7 [Rule I]

= 64 + 32 + 8 + 1 + 0.5 + 0.25 + 0.125 + 0.015625 + 0.0078125

= (105.8984375)10.

EXAMPLE 13.2

Convert 78.59375 to the binary system.

Solution:

We first convert 78 to binary form using Rule II.

78 = 1001110

Then we convert .59375 to the binary fraction using Rule III.

∴0.59375 = 0.10011

Hence (78.59375)10 = (1001110.10011)2

 Verification: Using Rule I,

(1001110.10011)2

= 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23

+ 1 × 22 + 1 × 21 + 0 × 20

+ 1 × 2−1 + 0 × 2−2 + 0 × 2−3

+ 1 × 2−4 + 1 × 2−5

= 78.59375

[image: image]

[image: image]

Some of the computers have a base 8 which is called the octal system and uses the symbols 0, 1, 2, 3, 4, 5, 6, 7. As 8 = 23, a group of three binary bits can be represented by an equivalent octal digit. Equivalence between the octal and binary systems is given below

[image: image]

Another base commonly used is 16 which is known as hexadecimal. The symbols used are 0 to 9 and A, B, C, D, E, F. As 16 = 24, a group of four binary bits can be represented by an equivalent hexadecimal symbol. Equivalence between hexadecimal and binary numbers is as follows:

[image: image]

EXAMPLE 13.3

Convert the binary number 1011101.1100101 to the octal and hexadecimal systems.

Solution:

[image: image]

13.4Floating Point Representation of Numbers

 

The memory of a digital computer has separate cells called words. Each word contains the same number of binary digits called bits. The number of digits which can be stored in a computer is known as its word length . The numbers are stored in a computer in two forms: fixed-point and floating-point forms. The fixed point mode is used to represent integers while the floating-point mode is used to represent real numbers.

A floating-point number is of the form

. d 1 d 2 ⋯ dn × bm 

where d 1, d 2,⋯, d n are all digits in the base  b  of the number system used and lie between o and b . The exponent m is such that M 1  m  M 2 where M 1 and M 2 vary with the computer. The fractional part . d 1 d 2⋯ dn is called the mantissa which lies between ±1 and restricts the size of a number. If a floating-point number has a fixed mantissa of k digits, we say that the word length of the computer is k .

For instance, the number 33.74 × 106 is represented as .3374E8 (E8 is used to represent 108). Hence the mantissa is .3374 and the exponent is 8. While storing numbers, the leading digit in the mantissa is always made non-zero by suitably shifting it and adjusting the value of the exponent accordingly. This process is called normalization . Therefore the number.003374 in normalized floating point mode would be stored as .3374E-2.

Thus the shifting of the mantissa to the left until its most significant digit is non-zero is called normalization.




	[image: image]
	
	Obs. To perform arithmetic operations with numbers in normalized floating point modes, we assume a hypothetical computer with a four decimal digit mantissa.




Arithmetic operations

( i ) To add two numbers represented in normalized floating point notation, we make their exponents equal by shifting the mantissa appropriately.

The operation of subtraction is nothing but addition of a negative number. After addition/subtraction of the mantissas, the resulting mantissa is normalized and the exponent is suitably adjusted.

EXAMPLE 13.4

Evaluate ( a ).6756 E 4 + .7644 E 6 ( b ).4546 E-4  . 8524 E -5.

Solution:

( a ) The exponent of the number with the smaller exponent is increased by 2 so that .6756E4 becomes .0067E6.

Thus .6756E4 +.7644E6 =.0067E6 +.7644E6 = 0.7711E6.

( b ) Increasing the exponent of .8524E-5 by 1, it becomes .0852E-4.

Thus .4546E-4  .8524E-5 = .4546E-4  .0852E-4 = .3694E-4.

( ii ) To multiply two numbers given in the normalized floating point mode, we multiply their mantissas and add their exponents.

After multiplication of the mantissas, the resulting mantissa is normalized and the exponent is suitably adjusted. The mantissa is only four digits of the resulting mantissa which is retained by dropping the rest of the digits.

EXAMPLE 13.5

Evaluate ( a ).6543 E 11 × .5123 E- 14 ( b ).1234 E 12 ×.1111 E 9.

Solution

( a ).6543E11 × .5123E-14 = .33519789E-3 = .3351E-3.

( b ).1234E12 ×.1111E9 = .0137097E21 = .1370E20.

( iii ) To divide a number by another, the mantissa of the numerator is divided by the mantissa of the denominator and the denominator exponent is subtracted from the exponent of the numerator. The quotient mantissa is then normalized retaining four digits and the exponent adjusted suitably.

EXAMPLE 13.6

Divide.1000 E 5 by.8889 E 3.

Solution:

\ .1000E5 ÷ .8889E3 = .1124E2.
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	Obs. While performing the arithmetic operations with numbers in normalized floating-point mode, the numbers have to be truncated to fit the four digit mantissa of our hypothetical computer. This leads to results with wide disparity. In fact, the associative and distributive laws do not yield valid results in floating point representation, i.e.,




l + m  n ≠ ( l  n ) + m and l ( m  n ) ≠ lm  ln .

For instance, if l = .6776E1, m = .6667E  1 and n = .6755E1, then

 ( l + m )  n = (.6776E1 +.0067E1)  .6755E1

 = .6842E1 .6755E1 = .0087E1 =.8700E-1.

But ( l  n ) + m = (.6776E1 .6755E1) + .6667E-1

 = .0021E1 + .6667E-1 = .2100E-1 + .6667E-1

 = .8767E-1

∴ We see that ( l + m )  n ≠ ( l  n ) + m .

In fact, the correct answer is.8767E-1 because no number has been truncated. Thus inaccuracies creep in floating point arithmetic due to truncation of numbers. As such utmost care should be taken before accepting the validity of a computer solution . Moreover, we can never ensure exact equality of a number to zero because most of the numbers in floating-point mode are only approximations.

13.5Computer Calculations

 

Algorithm. Once the method of calculation has been decided, we must describe clearly the computational steps to be followed in a particular sequence. These steps constitute the algorithm of the method.

Flow chart. A pictorial representation of a specific sequence of steps to be used by a computer is called a flow chart . It is essentially a convenient way of planning the order of operations involved in an algorithm and helps in writing a program. The programmer, then knows clearly where to start, what information to use, what operations to be carried out, and in which order and where to stop. As such a flow-chart is additional help for writing the program in any language.

A flow-chart contains certain symbols to represent the various operations. These symbols are connected by arrows to indicate the flow of information. The commonly used symbols and their meanings are given below:

A symbol used to indicate Start or Stop/End of a program. It is also used to mark end of a Subprogram. In that case Return is written in it.

[In FORTRAN the subprograms are functions and subroutines while in C these are functions only.]

A parallelogram is used to indicate an Input or Output of data.

A rectangle is a processing symbol, e.g., addition, subtraction and movement of data to computer memory.

[image: image]

A diamond is a decision-making symbol. A particular path is chosen depending on the Yes or No answer.

A small circle with any number or letter in it, is used as a connector symbol . It connects various parts of a flow-chart until that are far apart or spread over pages.

A rectangle with double vertical sides is used to denote a subprocess which is given else-where as indicated by the connector symbol. When this box is encountered the flow goes to the subroutine and it continues until a Return statement is encountered. Then it goes back to the main flow chart and flow resumes onward processing.

[image: image]

The flow chart can be translated into any computer language and can be executed on the computer.

The flow-chart can be translated into any computer language and can be executed on the computer.

EXAMPLE 13.7

Develop a flow chart to select the largest number of a given set of 500 numbers.

Solution:

[image: image]
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	 This technique of finding the largest number, i.e., assuming the first element in the list is the maximum and then scanning the rest of the list for anything greater is used in Section 14.12, and Section 15.12. 



EXAMPLE 13.8

Draw a flow chart for computing the roots of the quadratic equation ax 2 + bx + c = 0.

Solution:

We know that its roots are given by

[image: image]

Flow-chart:

[image: image]




	[image: image]
	
	 This method of finding the roots is used in Section 14.6. 





Exercises 13.1

 

	Convert the following binary numbers to decimal form:
( a ) 1101101( b ) 0.11011

( c ) 0.1010101( d ) 1.0110101.


	Convert the following decimal numbers to binary form:
( a ) 22.625 ( b )  10.125.


	Show that
( a ) (176)8 = (126)10  ( b ) (17AB)16 = (6059)10.


	If A = (111010)2 and B = (1011)2, evaluate A + B and A  B .

	Find the product of the binary numbers
( a ) 10101 and 110( b ) 11.1101 and 101.101.


	Add the numbers 83.72 and 1.529 in a decimal computer with a fixed word length of four. Find the absolute and relative errors involved.

	Draw a flow chart to evaluate
1 + 4 + 7 + ⋯ + 1003.


	Draw a flow-chart to pick up the largest of three given distinct numbers.

	Draw a flow-chart to arrange a given set of N numbers in an ascending order.



13.6Program Writing

 

Based on the flow chart, we write the instructions in a code that the computer can understand. A series of such instructions is called a program . If there are any errors in the program these will be pointed out by the computer during compilation. After correcting the compilation errors, the program is executed with the input data to check for logical errors which may be due to misinterpretation of the algorithm or due to incorrect usage of computer language. The process of finding the errors and correcting them is termed debugging .

While writing a program, our aim should be that the same program is able to run on any machine with the minimum number of modifications.


CHAPTER   14


 Numerical Methods Using
C Language

Chapter Objectives

 


	Introduction

	An overview of C features

	330 Programs of standard methods in C language.



14.1Introduction

 

C is a general purpose programming language, originally designed by Dennis Ritchie in 1972 at Bell laboratories. In 1988, it was standardized by the American National Standards Institute (ANSI) and named as ANSI C.

C, a powerful language, is used for many purposes like writing operating systems, business and scientific applications and even the C compiler itself. It is not tied to any particular hardware and programs written in C are portable across any system. The programs written in C are efficient and fast. It is one of the most popular computer languages today.

An overview of C features is given below for ready reference. It is followed by Programs of Standard Numerical methods in C language alongwith input/output of numerous examples solved in Chapters 1 to 12.

14.2 An Overview of C Features

 

C constants are numbers, which do not change during execution of a program. These may be of three types:

 TypeExample

Integer27, 10897 etc.

Floating point (Real)2.723,  0.123 etc.

StringEnter the value
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	 The string constants are enclosed in double quotes (" ). 





C variables can contain different C constants during the execution of the pro- gram. These are declared in a C program by first specifying the type int for an integer and float for the floating point and then the variable names separated by commas. The general format is

 typelist of variables 

For e.g., to declare integer variables the statement is

int a , b , c ;

and to declare a floating point variables it is

float a , b , c; 

Variables can be initialized at the same time as they are declared. For example,

float a = 1.5;

declares a as a float variable having a value 1.5.

Rules for naming C variables:

 ( i ) A variable name may contain only alphabets, digits, and the underscore (_).

 ( ii ) It must begin with a alphabet or an underscore.

( iii ) It can be as long as you wish, but on some C systems only the first thirty-one 31 characters are considered.
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	 Lower-case and upper case alphabets are treated as different in C. For e.g. Num and num are two entirely different variable names. As a matter of convention, lower- case alphabets are used.






Arrays. An array is an aggregate of variables of the same type. These variables are called elements of the array. The following statements declare arrays in C:

int b [10];

float c [2][2];

The first statement creates a one dimensional array named b having ten elements, each element being referred by an appropriate subscript in rectangle brackets, i.e., b [0], b [1],......, b [9].

The second statement creates a 2-dimensional array named c having four elements c [0][0], c [0][1], c [1][0], c [1][1].

Rules for the naming of arrays are same as those for variable names.
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	 Subscripts always start from zero in C.






User defined types. Apart from the built in types int and float C allows users to define an identifier that can represent an existing data type.

The syntax is

 typedef type identifier 

For e.g., 

typedef int number;

typedef float matrix [2][2];

The first statement defines number to mean the same as int . The second defines ma- trix to be mean the same as 2 × 2 array of float.

The above two statements enable declarations of the form number a , b , c; 

which declares three integers a , b and c , and

matrix x; 

which declares a two-dimensional array x having four elements x [0][0], x [0][1], x [1][0] and x [1][1].

Initialization of arrays at the time of declaration

The syntax is

 type array-name [size] = { list of values }

for e.g. ,  int a [2] = {2, 1};

initializes a [0] to 2 and a [1] to 1.

int a [2][2] = {{0, 1}, {3, 5}};

initializes a [0][0] to 0, a [0] [1] to 1, a [1][0] to 3 and a [1][1] to 5.

Arithmetic operators. These are as follows:

 SymbolUse 

+Addition

Subtraction

*Multiplication

/Division

while using the operators, the following order of precedence is adopted

( i ) *, /( ii ) +, 

In this case, the order of operators is that different circular brackets are used.

There is no exponentiation operator in C, but there are various library functions avail- able for the same.

For e.g., to calculate the square root sqrt function is used.

Further details on functions are presented later.

Mathematical expressions consist of a sequence of arithmetic operators and variable names. For e.g., 

 (i) a + b is written as a + b .( ii ) [image: image]

( iii ) [image: image] is written as a / a + b 

( iv ) [image: image] is written as sqrt ( b * b  4* a * c ).

( v ) ( + ) is written as alpha * (beta + gamma).

( vi ) ab is written as exp (b*ln ( a ))




	[image: image]
	
	 The multiplication operator * has to be written explicitly. In C, its presence is never assumed.






exp and ln are library functions.

Arithmetic statements are of the form

 var = exp; 

where var is an integer or a floating point variable.

 exp is a mathematical expression written in C format.

The = sign has a special meaning. It tells C to calculate the value of exp. and assign it to var.

For e.g.,n = i * i; 

calculates the value of i * i and assigns the result to the variable n . If i = 10, then n gets the value 100.

A C statement is always terminated by a semi colon (; ).

C also permits statements of the type k = n = i * i; 

This is equivalent to the following statements n = i * i; k = n; 




	[image: image]
	
	 To test the equality of two expressions C uses = =.





Shorthand assignment operators

Apart from the assignment operator =, C can also support certain short hand assignment operators (+ +,  , + =,  =, * =, / =). Their use is illustrated by the following examples.

[image: image]




	[image: image]
	
	 The use of shorthand assignment operators not only results in concise programs but more efficient programs also.





Comments in C start with / * and end with * /.

For e.g. / * Eulers Method * /.

Input statement is scanf.

 syntax scanf (control string, & variable 1, & variable 2,......); 

The control string contains the format of the data being input by the user. It contains

% d for an integer, and

% f for a floating point type.

The ampersand (&) symbol is necessary before the integer or floating- point type variable. Its significance is discussed under functions.

An example of the scanf statement:

Assuming the declarations

int c; 

float a [3][3];

the statement

scanf (% d % f , & c , & a [1][2]);

takes input from the user and stores it in the corresponding variables

% d corresponds to c ,

% f corresponds to a[1][2]. 

Output statement is printf.

 Syntax printf (control string, argument 1, argument 2,......); 

The arguments can be C constants or variables. The control string can consist of

 ( i ) The characters that will be printed as such.

 ( ii ) Format specifications for variables.

( iii ) Escape sequences.

Format specifications

for integers % w d

where w specifies the minimum width ( i.e. , number of digits) for output for

 floating point % w.p f

where p is number of digits to be displayed after the decimal point, after rounding off if necessary. In this w includes the decimal point too.

If width of the number is less than the specified width, the number is right justified in that width. However if width of the number is greater than the specified width, it will be printed in full.

Escape sequences. These are sequence of two characters meant for performing special tasks. The first character is always a back slash (\).

The most commonly used escape sequence is \ n . It causes the output to start from next line.

An example of the printf statement:

For e.g., Assuming the declarations

int i = 1;

float a = 27.23;

the statement

printf (%3 d \ n %8.2 f \ n , i , a );

will output

[image: image]



where is a blank space.

Relational operators available in C are

[image: image]

Logical expressions are mathematical expressions connected by relational operators. Their value is either true or false.

Examples of logical expressions: Assuming i = 2, j = 3

 i < j is true

 i = = j is false

( i * j ) > ( i + j ) is true.

In C the result of a logical expression is an integer. 0 is taken as false, any non-zero integer is taken as true.

Logical operators are used to test more than one conditions i.e. , to combine more than one logical expressions.

[image: image]

The following tables illustrates their use.

[image: image]

Decision making statementIf

 Syntax 

if (Lexp)

{Tstatements}

else

{Fstatements}

where Lexp is a logical expression.

 Tstatements are C statements executed when value of Lexp is true.

 Fstatements are C statements executed when value of Lexp is false.

The else part is optional.

Loops

( i ) While Loop 

Syntax

( a )while (Lexp) 

{statements}

( b )do

{statements}

while (Lexp) 

Both of these forms of the while loop cause execution of statements while value of Lexp is true. The difference between the two forms is that in the latter, the statements are executed at least once irrespective of the value of Lexp .

( ii ) For loop

syntax 

for (initialization statement; Lexp; increment statement) 

{statements}

The loop is best explained by the following flow chart:

[image: image]

Break statement. When a break statement is encountered inside a loop, that loop is exited, irrespective of the value of Lexp , and the program continues with the statement immediately following the loop.

Functions. These are the basic block of a C program. Functions contain State- ments that specify what is to be done.

Every (program has to contain a function named main . The program begins executing at the first statement of main . Apart from main the C functions are classified into

 Library functions 

 User defined functions 

These functions are called from main to accomplish various tasks.

 ( i ) Library functions are already available and we just have to use them. e.g., printf, scanf, sqrt, cos, sin, fabs (used to get the absolute value of a floating point variable) etc.

( ii ) User defined functions have to be written by the user in the program.

 Syntax 

 return-type function-name (Argument-list) 

{

 statements 

}

Program for understanding the various terms and concepts related with functions:

 1. / * Sample program * /

 2. # include < stdio. h >

 3. float add (float a , float x );

 4. void half (float * x )

 5. {

 6. * x / = 2;

 7. return;

 8. }

 9. main ( )

10. {

11. float a = 2, b = 2, c; 

12. c = add ( a , b );

13. print (%f % f %f\n, a , b , c );

14. half (& a ); half (& b );

15. printf (&f &f &f\n, a , b , c );

16. }

17. float add (float a , float x )

18. {

19. float sum;

20. sum = a + x; 

21. a = 20, x = 20; /*changing the formal arguments*/

22. return sum;

23. }

[Line numbers have been added for reference purpose and are not part of the program.]

NOTES :

(a) Declaration and Definition

Line number 3 is the declaration of the function named add . It indicates that there is a function add which takes two arguments a and b both of type float and returns a float. i.e. , the Argument list is float a, float b and return-type is float (which can be void if function doesnt return anythingsee line 4. It also indicates that the function is defined later in the program).

Lines 1723 are the definition of the function add i.e. , they define how the function will make use of the arguments it received and return the required sum.

Lines 48 constitute both the declaration and definition of the function half .

(b) Calling a function

Line number 12 calls the function add with a and b as arguments and stores the value returned by it into the variable c .

(c) Actual and Formal arguments

The variables a and x in the declaration of function add are called the formal arguments (line 3).

The variables a and b in the call to the function (line 12) are the actual arguments .

(d) Call by value/Call by reference

In C language the values of actual arguments are always copied to the formal arguments when a function is called. This way of passing arguments is called call by value . In this any change made to the formal arguments in the function does not affect the value of actual arguments.

But in other languages, notably FORTRAN any change made to the formal arguments is reflected in the actual arguments. This is called call by reference , as the formal argument is treated as just another name for the actual argument. Both of them refer to the same location in the computers memory.

(e) Simulating a call by reference in C

The following thumb rule can be followed to make the formal argument refer to the actual argument (and not just receive a copy of it)

Precede the actual argument with an ampersand & (line 14) and precede the formal argument with an asterisk * (line 4).

The actual working of this involves the concepts of pointers , which are another data type in C. The reader can refer to any standard C book for a complete understanding.

(f) Return statement in a function passes the control back to the calling function along with the calculated value (line 22)

 Syntaxreturnexpression; 

The expression can be omitted, in this case the return statement causes the function to just terminate then and there and pass control back to the calling function (Line 7).

In case no return statement is present in a function, an implicit return takes place on encountering the right curly brace } (For e.g., in the function main , the control passes back to the caller, i.e ., the operating system in this case after line 16).

Preprocessor directives. The lines in a C program that begin with a hash (#) sign are called preprocessor directives . The two most commonly used are # define and # include.




	[image: image]
	
	 There is no semi colon (; ) after the directive. 





( i ) # define

 syntax 

# define name replacement 

It instructs the computer to replace all occurences of name with the replacement even before the program is processed, i.e. , checked for syntax.

For e.g. , consider the following statements

# define N 2

int a [N];

Before the program is processed by the compiler, the second line i.e. , int a [N]; is changed to int a [2]; and the first line is removed.

∴ The resulting statement that is processed is int a [2].

( ii ) # include

 syntax 

# include < header-file-name >

This instructs the computer to insert the contents of the mentioned header file at the place where the directive appeared.




	[image: image]
	
	 The header file contains declarations of various functions and many preprocessor directives. 





Dynamic memory allocations. In todays world utilization of memory resources is needed for efficient programming. We may come across situations where we may have to deal with data, which is dynamic in nature. The number of data items may change during the executions of a program. The number of customers change during the process at any time. When the list grows we need to allocate more memory space to accommodate additional data items. Such situations can be handled more easily by using dynamic allocation. Dynamic data items at run times, thus optimizing file usage of memory space.

 The process of allocating memory at run time is known as dynamic memory allocation. Although  C  does not inherently have this facility there are four library routines which allow this function.

Many languages permit a programmer to specify an array size at run time. Such languages have the ability to calculate and assign during executions, the memory space required by the variables in the program. But  C  inherently does not have this facility but supports with memory management functions, which can be used to allocate and free memory during the program execution. The following functions are used in  C  for purpose of memory management.

[image: image]

Memory allocations process. According to the conceptual view the memory is partitioned in four different parts: in first part program instructions are stored, second global variables, third is used for function calls return address, arguments and local variables which are stored in stacks and last is called heap and is used for dynamic allocation during the execution of the program.

Allocating a block of memory. A block of memory may be allocated using the function malloc . The malloc function allocates a block of memory of specified size and returns a pointer of type void.

ptr= (type*) malloc (size);

ptr is a pointer of type the malloc returns a pointer (of type) to an area of memory with size. The general form of calloc is:

 Example: 

x= (int*) malloc (2* sizeof (int) );

On successful execution of this statement a memory equivalent to two times the area of int bytes is reserved and the address of the first byte of memory allocated is assigned to the pointer x of type int.

Allocating multiple blocks of memory. Calloc is function that is normally used to allocate multiple blocks of storage each of the same size and then sets all bytes to zero. The general form of calloc is:

ptr= (type*) calloc (n, elem-size);

The above statement allocates contiguous space for n blocks each size of elements size bytes. All bytes are initialized to zero and a pointer to the first byte of the allocated region is returned. If there is not enough space a null pointer is returned.

Freeing the used space. Compile time storage of a variable is allocated and released by the system in accordance with its storage class. With the dynamic runtime allocation, it is responsibility of programmer to free the allocated space when it is not re- quired. The release of storage space becomes important when the storage is limited. When we no longer need the data we stored in a block of memory and we do not intend to use that block for storing any other information, we may release that block of memory for future use, using the free function.

free (ptr);

ptr is a pointer that has been created by using malloc or calloc.

Data structure. In computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently. 

Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, B-trees are particularly well- suited for implementation of databases, while compiler implementations usually use hash tables to look up identifiers.

Data structures are used in almost every program or software system. Specific data structures are essential ingredients of many efficient algorithms, and make possible the management of huge amounts of data, such as large databases and Internet indexing services. Some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design.

Arrays are used to store a large set of data and manipulate them but the disadvantage is that all the elements stored in an array are of the same data type. If we need to use a collection of different data type items it is not possible using an array. When we require using a collection of different data items of different data types we can use a structure. Structure is a method of packing data of different types . A structure is a convenient method of handling a group of related data items of different data types.

structure definition:

general format:

struct tag_name

{

data type member1;

data type member2;

...

...

} Example: struct books

{

char title [30]; char author [25]; int page;

float price;

};

The keyword struct declares a structure to hold the details of four fields namely title, author, pages, and price. These are members of the structures. Each member may belong to different or same data type. The tag name can be used to define objects that have the tag names structure. The structure we just declared is not a variable by itself but a template for the structure.

We can declare structure variables using the tag name any where in the program. For example the statement,

struct lib_books book1,book2,book3;

declares book1,book2,book3 as variables of type struct lib_books each declaration has four elements of the structure lib_books. The complete structure declaration might look like this

struct lib_books

{

char title [20];

 char author [15];

int pages;

float price;

};

struct lib_books book1, book2, book3;

Structures do not occupy any memory until it is associated with the structure variable such as book1; the template is terminated with a semicolon. While the entire declaration is considered as a statement, each member is declared independent for its name and type in a separate statement inside the template. The tag name such as lib_books can be used to declare structure variables of its data type later in the program.

We can also combine both template declaration and variables declaration in one statement, the declaration

struct lib_books

{

char title [20]; char author [15]; int pages;

float price;

} book1, book2,book3;

is valid. The use of tag name is optional for example struct

{

...

...

...

}

book1, book2, book3 declares book1,book2,book3 as structure variables representing three books but does not include a tag name for use in the declaration.

A structure is usually defineds before the main along with macro definitions. In such cases the structure assumes global status and all the functions can access the structure.

Union. Unions like structure contain members whose individual data types may differ from one another. However the members that compose a union all share the same storage area within the computers memory where as each member within a structure is assigned its own unique storage area. Thus unions are used to observe memory. They are useful for application, involving multiple members. Values need not be assigned to all the members at any one time. Like structures, union can be declared using the keyword union as follows:

union item

{

int m; float p; char c;

}

code;

PROGRAMS OF STANDARD METHODS IN C LANGUAGE

14.3Bisection Method (Section 2.7)

 

Flow-chart 

[image: image]


NOTES: a, b are the limits in which the root lies

aerr is the allowed error

itr is a counter which keeps track of the number of iterations performed

maxitr is the maximum number of iterations to be performed

x is the value of root at the n th iteration

x1 is the value of root at ( n + 1)th iteration.

Function Bisect:

Purpose: Performs and prints the result of one iteration

Variables: x is the result of the current iteration.



Program

/* Bisection Method */

#include <stdio.h>

#include <math.h>

float f(float x)

{

 return (x*x*x - 4*x - 9);

}

void bisect(float *x,float a,float b,int *itr)

{

 *x = (a + b)/2;

 ++(*itr);

 printf("Iteration no. %3d X = %7.5f\n",*itr,*x);

}

main()

{

 int itr = 0, maxitr;

 float x, a, b, aerr, x1;

 printf("Enter the values of a,b,"

"allowed error, maximum iterations\n");

 scanf("%f %f %f %d",&a,&b,&aerr,&maxitr);

 bisect(&x,a,b,&itr);

 do

 {

 if (f(a)*f(x) < 0)

 b = x;

 else

 a = x;

 bisect (&x1,a,b,&itr);

 if (fabs(x1-x) < aerr)

 {

 printf("After %d iterations, root <169>

 "= %6.4f\n",itr,x1);

 return 0;

}

x = x1;

} while (itr < maxitr);

printf("Solution does not converge,"

 "iterations not sufficient");

 return 1;

}

Computer Solution of Example 2.15 (a) 

Enter the values of a, b, allowed error, maximum iterations

3 2.0001 20

Iteration No. 1 X = 2.50000

Iteration No. 2 X = 2.75000

Iteration No. 3 X = 2.62500

Iteration No. 4 X = 2.68750

Iteration No. 5 X = 2.71875

Iteration No. 6 X = 2.70313

Iteration No. 7 X = 2.71094

Iteration No. 8 X = 2.70703

Iteration No. 9 X = 2.70508

Iteration No. 10 X = 2.70605

Iteration No. 11 X = 2.70654

Iteration No. 12 X = 2.70630

Iteration No. 13 X = 2.70642

Iteration No. 14 X = 2.70648

After 14 iterations, root = 2.7065

14.4Regula-Falsi Method (Section 2.8)

 

Flow-chart 


NOTES: f(x) = 0 is the equation whose root is to be found

x0, x1 are units in which root lies

aerr is allowed error

maxitr is maximum number of iterations to be performed

itr is a counter which keeps track of the number of iterations performed

x2 is value of root at n th iteration

x3 is value of root at ( n + 1)th iteration

Function Regula:

Purpose: Performs and prints the results of one iteration.

Variables: x is value of root at n th iteration

fx0, fx1 are values of f ( x ) at x 0 and x 1, respectively.



[image: image]

Program

/* Regula Falsi Method */

#include <stdio.h>

#include <math.h>

float f(float x)

{

 return cos(x)-x*exp(x);

}

void regula (float *x, float x0, float x1,

 float fx0, float fx1, int *itr)

{

*x = x0-((x1-x0)/(fx1-fx0))*fx0;

++(*itr);

printf("Iteration no. %3d X = %7.5f\n",

 *itr,*x);

 }

 main()

 {

int itr=0, maxitr;

float x0,x1,x2,x3,aerr;

printf("Enter the values for x0,x1,"

 "allowed error,maximum iterations\n•);

scanf("%f %f %f %d",&x0,&x1,&aerr,&maxitr); 

regula(&x2,x0,x1,f(x0),f(x1),&itr);

do

{

if (f(x0)*f(x2) < 0)

 x1 = x2;

else

 x0 = x2;

regula(&x3,x0,x1,f(x0),f(x1),&itr);

if (fabs(x3-x2) < aerr)

{

printf("After %d iterations,"

 "root = %6.4f\n", itr,x3);

return 0;

}

x2=x3;

 } while(itr < maxitr);

 printf("Solution does not converge,"

 "iterations not sufficient\n");

 return 1;

}

Computer Solution of Example 2.20

Enter the values for x0, x1, allowed error, maximum iterations

0 1.000120

Iteration No. 1 X = 0.31467

Iteration No. 2 X = 0.44673

Iteration No. 3 X = 0.49402

Iteration No. 4 X = 0.50995

Iteration No. 5 X = 0.51520

Iteration No. 6 X = 0.51692

Iteration No. 7 X = 0.51748

Iteration No. 8 X = 0.51767

Iteration No. 9 X = 0.51773

After 9 iterations, root = 0.5177

14.5Newton Raphson Method (Section 2.11)

 

Flow-chart 

[image: image]


NOTES: F(x) = 0 is the equation whose root is to be found

df(x) is the derivatives of f ( x ) w.r.t. x

x0 is value of root of n th iteration

x1 is value of root of ( n + 1)th iteration

aerr is allowed error

maxitr is maximum number of iterations to be performed

itr is a counter which keeps track of the number of iterations performed.



Program

/* Newton Raphson Method */

#include <stdio.h>

#include <math.h>

float f(float x)

{

return x*log10(x)-1.2;

}

float df(float x)

{

return log10(x) + 0.43429;

}

main()

{

int itr,maxitr;

float h,x0,x1,aerr;

printf("Enter x0,allowed error,"

"maximum iterations\n");

scanf("%f %f %d",&x0,&aerr,&maxitr);

for (itr=1;itr<=maxitr;itr++)

{

h = f(x0)/df(x0);

x1 = x0-h;

printf("Iteration no. %3d,"

 "x = %9.6f\n",itr,x1);

if (fabs(h) < aerr)

{

printf("After %3d iterations,"

"root = %8.6f\n", itr,x1);

return 0;

 } 

x0 = x1;

}

printf("Iterations not sufficient,"

"solution does not converge\n");

return 1;

}

Computer Solution of Example 2.32

Enter x0, allowed error, maximum iterations

2.00000110

Iteration No.1 X = 2.813170

Iteration No.2 X = 2.741109

Iteration No.3 X = 2.740646

Iteration No.4 X = 2.740646

After 4 iterations, root = 2.740646

14.6Mullers Method (Section 2.13)

 

Flow-chart 
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NOTES: y(x) = 0 is the equation whose root is to be found

x is an array which holds the three approximations to the root and the new improved value

I is defined as 2 in the program. This has been done because in C , array subscripts always start from zero and cannot be negative. Use of I facilitates more readable expressions. For e.g., x [0] can be written as

x [I  2] which looks more close to xi 2  it actually represents.

li is  i

di is δ i

mu is μ i

s is √[μ i 2  4 yi δ i  i ( yi 2   i  yi 1  δ i + yi )]

l is 



Program

/* Muller's Method */

#include <stdio.h>

#include <math.h>

#define I 2

float y(float x)

{

 return cos(x)-x*exp(x);

}

main()

{

 int i,itr,maxitr;

 float x[4],li,di,mu,s,l,aerr;

 printf("Enter the initial <169>

"approximations\n");

 for (i = I-2;i<3;i++)

 scanf("%f",&x[i]);

 printf("Enter allowed error,"

"maximum iterations\n");

 scanf("%f %d",&aerr,&maxitr);

 for(itr = 1;itr <= maxitr;itr++)

 {

 li = (x[I]-x[I-1])/(x[I-1]-x[I-2]);

 di = (x[I]-x[I-2])/(x[I-1]-x[I-2]);

 mu = y(x[I-2])*li*li

- y(x[I-1])*di*di

+ y(x[I])*(di+li);

 s = sqrt((mu*mu - 4*y(x[I])*di*li

 *(y(x[I-2])*li-y(x[I-1])

 *di + y(x[I]))));

 if (mu < 0)

 l = (2*y(x[I])*di)/(-mu+s);

 else

 l = (2*y(x[I])*di)/(-mu-s);

 x[I+1] = x[I]+l*(x[I] - x[I-1]);

 printf("Iteration no. % 3d,"

"x = %7.5f\n",itr,x[I+1]);

 if (fabs(x[I+1]-x[I]) < aerr)

 {

 printf("After %3d iterations,"

 "the solution is %6.4f\n",

 itr,x[I+1]);

 return 0;

}

for (i=I-2;i<3;i++)

x[i] = x[i+1];

 }

 printf("Iterations not sufficient,"

 "solution does not converge\n");

 return 1;

}

Computer Solution of Example 2.34

Enter the initial approximations

1 0 1

Enter allowed error, maximum iterations

.0001 10

Iteration No. 1 X = 0.44152

Iteration No. 2 X = 0.51255

Iteration No. 3 X = 0.51769

Iteration No. 4 X = 0.51776

After 4 iterations, the solution is 0.5178

14.7Multiplication of Matrices [Section 3.2 (3)4]

 

Flow-chart 
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NOTES: MAX is largest number of rows or columns any matrix can have. (If MAX. = 20, 11 × 20 and 20

× 13 matrices can be multiplied but 1 × 21, 22 × 1 matrices cannot be multiplied until MAX > = 22

 A, B are arrays which contain the matrices to be multiplied

C is array which contains the result of multiplication

L, M are respectively the rows, columns of first matrix

P, Q are respectively the rows, columns of second matrix

Function getelems

Purpose: To input a m × n matrix

Function Matmul .

Purpose: It performs the multiplication of matrices after taking them from the user and prints the result.

Variables: i, j, k are loop control variables.



Program

/* Multiplication of matrices */

#include <stdio.h>

#define MAX 20

typedef float matrix[MAX][MAX];

void getelems(matrix x,int m,int n)

{

int i,j;

for(i=0;i<m;i++)

for(j=0;j<n;j++)

scanf("%f",&x[i][j]);

}

void printsol(matrix x,int m,int n)

{

 int i,j;

 for (i=0;i<m;i++)

 {

for (j=0;j<n;j++)

printf("%5.1f",x[i][j]);

printf("\n");

 }

}

void matmul(matrix a,matrix b,matrix c,

int l, int m,int p, int q)

{

 float s;

 int i,j,k;

 printf("Enter the elements of the"

 "first matrix\n");

 getelems(a,l,m);

 printf("Enter the elements of the"

 "second matrix\n");

getelems(b,p,q);

for (i=0;i<l;i++)

for (j=0;j<q;j++)

{

s = 0;

for (k=0;k<m;k++)

s += a[i][k]*b[k][j];

c[i][j] = s;

}

 printf("The solution is \n");

 printsol(c,l,q);

}

main()

{

matrix a,b,c;

int l,m,p,q;

printf("Enter the row, coloumn of the"

"first matrix\n");

scanf("%d %d",&l,&m);

printf("Enter the row, coloumn of the"

"second matrix\n");

scanf("%d %d",&p,&q);

if (m!=p)

printf("The two matrices cannot"

 "be multiplied\n");

else

matmul(a,b,c,l,m,p,q);

}

Computer Solution of Example 3.7

Enter the row, column of the first matrix

3 3

Enter the row, column of the second matrix

3 2

Enter the elements of the first matrix

0 1 2

1 2 3

2 3 4

Enter the elements of the second matrix

 1 -2

-10

 2 -1

The solution is

3.0-2.0

5.0-5.0

7.0-8.0

14.8Gauss Elimination Method [Section 3.4(3)]

 

Flow-chart 

[image: image]


NOTES: N is the number of unknowns

a is an array which holds the Augmented Matrix

x is an array which will contain values of unknowns

i, j, k are loop control variables.




Program

/* Gauss elimination method */

#include <stdio.h>

#define N 4 main()

{

 float a[N][N+1],x[N],t,s;

 int i,j,k;

 printf("Enter the elements of the"

 "augmented matrix rowwise\n");

 for (i=0;i<N;i++)

for (j=0;j<N+1;j++)

scanf("%f",&a[i][j]);

 for (j=0;j<N-1;j++)

for (i=j+1;i<N;i++)

 {

t = a[i][j]/a[j][j];

for (k=0;k<N+1;k++)

 a[i][k]=a[j][k]*t;

 }

 /* now printing the

 upper triangular matrix */

 printf("The upper triangular matrix"

"is:-\n");

 for (i=0;i<N;i++)

{

for (j=0;j<N+1;j++)

printf("%8.4f",a[i][j]);

printf("\n");

}

/* now performing back substitution */

for (i=N-1;i>=0;i -)

{

 s = 0;

 for (j=i+1;j<N;j++)

 s += a[i][j]*x[j];

 x[i] = (a[i][N]-s)/a[i][i];

}

 /* now printing the results */

 printf("The solution is:- \n");

 for (i=0;i<N;i++)

 printf("x[%3d] = %7.4f\n",i+1,x[i]);

}

Computer Solution of Example 3.19

Enter the elements of augmented matrix rowwis

[image: image]

The solution is:-

X[ 1] = 5.0000

X[ 2] = 4.0000

X[ 3] = -7.0000

X[ 4] = 1.0000

14.9Gauss-Jordan Method [Section 3.4(4)]

 

Flow-chart 

[image: image]


Notes: a is an array which holds the Augmented Matrix

N is the numbrt of unknowns. e.g. if it is a 3 × 3 system of equations, N = 3, and if 5 × 5 system take N = 5.

i, j, k are loop variables.



Program

/* Gauss jordan method */

#include <stdio.h>

#define N 3 main()

{

 float a[N][N+1],t;

 int i,j,k;

 printf("Enter the elements of the "

"augmented matrix rowwise\n");

 for (i=0;i<N;i++)

 for (j=0;j<N+1;j++)

scanf("%f",&a[i][j]);

 /* now calculating the values of x1,x2,....,xN */

 for (j=0;j<N;j++)

 for (i=0;i<N;i++)

 if (i!=j)

 {

 t = a[i][j]/a[j][j];

 for (k=0;k<N+1;k++)

a[i][k] -= a[j][k]*t;

 }

 /* now printing the diagonal matrix */

 printf("The diagonal matrix is:-\n");

 for (i=0;i<N;i++)

 {

 for (j=0;j<N+1;j++)

 printf("%9.4f",a[i][j]);

 printf("\n");

 }

 /* now printing the results */

 printf("The solution is:- \n");

 for (i=0;i<N;i++)

printf("x[%3d] = %7.4f\n",

i+1,a[i][N]/a[i][i]);

}

Computer Solution of Example 3.22

Enter elements of augmented matrix rowwise

[image: image]

The solution is:-

X[ 1] = 5.0000

X[ 2] = 4.0000

X[ 3] = -7.0000

X[ 4] = 1.0000

14.10Factorization Method [Section 3.4(5)]

 

Flow-chart 

[image: image]


NOTES: 
[image: image]

N is the number of unknowns

l is the lower triangular matrix u is the upper triangular matrix a is the coefficient matrix

b is the constant matrix (Column matrix)

v is a matrix such that lv = b

x will contain the values of unknowns

i, j, m are loop control variables

Function urow (I)

Purpose: Calculates elements of i th row of u

Variables: m is the number of unknowns

j, k are loop control variables

Function Lcol (J)

Purpose: Calculates elements of jth column of l

Variables: m is the number of unknowns

i, k are loop control variables.

Function Printmat

Purpose: To print an N × N matrix.



Program

/* Crout triangularization method */

#include <stdio.h>

#define N 4

typedef float matrix[N][N];

matrix l,u,a;

float b[N],x[N],v[N];

void urow(int i)

{

float s;

 int j,k;

 for (j=i;j<N;j++)

 {

s = 0;

for (k=0;k<N-1;k++)

 s += u[k][j]*l[i][k];

u[i][j] = a[i][j]-s;

 }

}

void lcol(int j)

{

float s;

int i,k;

for (i=j+1;i<N;i++)

{

s = 0;

for (k=0;k<=j-1;k++)

s += u[k][j]*l[i][k];

 l[i][j] = (a[i][j]-s)/u[j][j];

}

}

void printmat(matrix x)

{

 int i,j;

 for (i=0;i<N;i++)

 {

 for (j=0;j<N;j++)

 printf("%8.4f",x[i][j]);

 printf("\n");

 }

}

 main()

 {

 int i,j,m;

 float s;

 printf("Enter the elements of augmented"

 "matrix rowwise\n");

 for (i=0;i<N;i++)

 {

 for (j=0;j<N;j++)

 scanf("%f",&a[i][j]);

 scanf("%f",&b[i]);

 }

 /* now calculating the elements of

 l and u */

 for (i=0;i<N;i++)

 l[i][i] = 1.0;

 for (m=0;m<N;m++)

 {

 urow(m);

 if (m < N-1) lcol(m);

 }

/* now printing the elements of l and u */

printf("\t\tU\n"); printmat(u);

printf("\t\tL\n"); printmat(l);

/* now solving LV=B

by forward substitution */

for (i=0;i<N;i++)

{

 s = 0;

 for (j=0;j<=i-1;j++)

 s += l[i][j]*v[j];

 v[i] = b[i]-s;

}

/* now solving UX=V

by backward substitution */

for (i=N-1;i>=0;i )

{

 s = 0;

 for (j=i+1;j<N;j++)

 s += u[i][j]*x[j];

 x[i] = (v[i]-s)/u[i][i];

}

 /* printing the results */

 printf("The solution is:-\n");

 for (i=0;i<N;i++)

 printf("x[%3d] = %6.4f\n",i+1,x[i]);

}

Computer Solution of Example 3.23

Enter the elements of augmented matrix rowwise

[image: image]

The solution is:

x[1] = 0.8750

x[2] = 1.1250

x[3] = -.1250

Computer Solution of Example 3.24

Enter the elements of augmented matrix rowwis

[image: image]

The solution is:-

x[1] =5.0000

x[2] =4.0000

x[3] = -7.0000

x[4] =1.0000

14.11Gauss-Seidal Iteration Method [Section 3.5(2)]

 


Flow-chart 

Notes: N is the number of unknowns

a is an array which holds the augmented matrix

x is an array which will hold the values of unknowns

aerr is allowed error

maxitr is the maximum number of iterations to be performed

itr is the counter which keeps track of number of iterations performed

err is error in value of xi

maxerr is maximum error in any value of xi after an iteration.



Program

/* Gauss Seidal method */

#include <stdio.h>

#include <math.h>

#define N 4 main()

[image: image]

{

 float a[N][N+1],x[N],aerr,maxerr, t,s,err;

 int i,j,itr,maxitr;

 /* first initializing the array x */

 for (i=0;i<N;i++) x[i]=0;

 printf("Enter the elements of the"

 "augmented matrix rowwise\n");

 for (i=0;i<N;i++)

for (j=0;j<N+1;j++)

scanf("%f",&a[i][j]);

 printf("Enter the allowed error,"

"maximum iterations\n");

 scanf("%f %d",&aerr,&maxitr);

 printf("Iteration x[1] x[2]" "x[3]\n");

 for (itr=1;itr<=maxitr;itr++)

 {

 maxerr = 0;

 for (i=0;i<N;i++)

 {

 s = 0;

 for (j=0;j<N;j++)

 if (j!=i) s += a[i][j]*x[j];

 t = (a[i][N]-s)/a[i][i];

 err = fabs(x[i]-t);

 if (err > maxerr) maxerr = err;

 x[i] = t;

 }

 printf("%5d",itr);

 for (i=0;i<N;i++)

printf("%9.4f",x[i]);

 printf("\n");

 if (maxerr<aerr)

 {

 printf("Converges in %3d"

"iterations\n",itr);

 for (i=0;i<N;i++)

 printf("x[%3d] = %7.4f\n",

i+1,x[i]);

 return 0;

 }

 }

 printf("Solution does not converge,"

 "iterations not sufficient\n");

 return 1;

}

Computer Solution of Example 3.28

Enter the elements of augmented matrix rowwise

[image: image]

Enter the allowed error, maximum iterations

[image: image]

Converges in 4 iterations

X[1] =1.0000

X[2] = -1.0000

X[3] =1.0000

Computer Solution of Example 3.30

Enter the elements of the augmented matrix rowwise

[image: image]

Enter the allowed error, maximum iterations

[image: image]

Converges in 7 iterations

 x[ 1] = 1.0000

 x[ 2] = 2.0000

 x[ 3] = 3.0000

 x[ 4] = 0.0000

14.12Power Method (Section 4.11)

 

Flow-chart 

[image: image]


Notes: N is number of rows (or columns) in square matrix

a is the square matrix

x is the eigenvector at nth iteration

r is the eigenvector at (n + 1)th iteration

e is the eigenvalue at nth iteration

t is the eigenvalue at (n + 1)th iteration

aerr is the allowed error in eigenvalue and eigenvector

maxitr is the maximum number of iterations to be performed

err is error in an element of the eigenvector

maxe is the maximum error in any element of the eigenvector

errv is error in the eigenvalue

itr, i, k are loop control variables.

Function findmax:

Purpose: Finds the maximum element in array x(a N-element array) and returns it in Max .



Program

/* Power method for finding largest eigenvalue */

#include <stdio.h>

#include <math.h>

typedef float array[N];

void findmax(float *max,array x)

{

 int i;

 *max = fabs(x[0]);

for (i=1;i<N;i++)

if (fabs(x[i]) > *max)

*max = fabs(x[i]);

}

main()

{

 float a[N][N],x[N],r[N],maxe,

 err,errv,aerr,e,s,t;

 int i,j,k,itr,maxitr;

 printf("Enter the matrix rowwise\n");

 for (i=0;i<N;i++)

 for (j=0;j<N;j++)

 scanf("%f",&a[i][j]);

 printf("Enter the initial approximation"

"to the eigen vector\n");

 for (i=0;i<N;i++)

 scanf("%f",&x[i]);

 printf("Enter the allowed error,"

 "maximum iterations\n");

 scanf("%f %d",&aerr,&maxitr);

 printf("Itr no. Eigenvalue"

 "EigenVector\n");

 /* now finding the largest eigenvalue in

 the initial approx. to eigen vector */

 findmax(&e,x);

 /* now starting the iterations */

 for (itr=1;itr<=maxitr;itr++)

 {

 /* loop to multiply the matrices

 a and x */

 for (i=0;i<N;i++)

 {

s = 0;

for (k=0;k<N;k++)

 s += a[i][k]*x[k];

r[i]=s;

 }

 findmax(&t,r);

 for (i=0;i < N;i++) r[i] /= t;

 maxe = 0;

 for (i=0;i<N;i++)

 {

err = fabs(x[i]-r[i]);

 if (err > maxe) maxe = err;

 x[i] = r[i];

 }

 errv = fabs(t-e);

 e = t;

 printf("%4d %12.4f",itr,e);

 for (i=0;i<N;i++)

printf("%9.3f",x[i]);

 printf("\n");

 if ((errv <= aerr) && (maxe <= aerr))

 {

printf("Converges in %d"

"iterations\n",itr);

printf("Largest eigen value"

"= %6.2f\n",e);

printf("Eigenvector:-\n");

for (i=0;i<N;i++)

printf("x[%3d] = %6.2f\n",

i+1,x[i]);

printf("\n"); return 0;

 }

}

 printf("Solution does not converge,"

 "iterations not sufficient\n");

 return 1;

}

Computer Solution of Example 4.11

Enter the matrix rowwise

[image: image]

Enter the initial approximation to the eigenvector

1 0 0

Enter the allowed error, maximum iterations

[image: image]

Converges in 9 iterations

Largest eigenvalue = 3.41

Eigenvector:-

X[1] =0.72

X[2] = -1.00

X[3] =0.70

14.13Method of Least Squares (Section 5.5)

 

Flow-chart 

[image: image]


Notes: augm is the augmented Matrix.

n is the number of data points.



Program

/* Parabolic fit by least squares */

#include <stdio.h>

main()

{

 float augm[3][4]={{0,0,0,0},{0,0,0,0},{0,0,0,0}};

 float t,a,b,c,x,y,xsq;

 int i,j,k,n;

 puts("Enter the no. of pairs of"

"observed values:");

 scanf("%d",&n);

 augm[0][0] = n;

 for (i=0;i<n;i++)

 {

 printf("pair no. %d\n",i+1);

 scanf("%f %f",&x,&y);

 xsq = x*x;

 augm[0][1] += x;

 augm[0][2] += xsq;

 augm[1][2] += x*xsq;

 augm[2][2] += xsq*xsq;

 augm[0][3] += y;

 augm[1][3] += x*y;

 augm[2][3] += xsq*y;

 }

 augm[1][1] = augm[0][2];

 augm[2][1] = augm[1][2];

 augm[1][0] = augm[0][1];

 augm[2][0] = augm[1][1];

 puts("The augmented matrix is:-");

 for (i=0;i<3;i++)

 {

for (j=0;j<4;j++)

 printf("%9.4f",augm[i][j]);

printf("\n");

 }

 /* Now solving for a,b,c

 by Gauss Jordan Method */

 for (j=0;j<3;j++)

 for (i=0;i<3;i++)

 if (i!=j)

 {

t = augm[i][j]/augm[j][j];

for (k=0;k<4;k++)

augm[i][k]

-= augm[j][k]*t;

 }

 a = augm[0][3]/augm[0][0];

 b = augm[1][3]/augm[1][1];

 c = augm[2][3]/augm[2][2];

 printf("a = %8.4f b = %8.4f "

"c = %8.4f\n",a,b,c);

}

Computer Solution of Example 5.7

Enter the no. of pairs of observed values:

7

Pair No. 1

1 1.1

Pair No. 2

1.5 1.3

Pair No. 3

2 1.6

Pair No. 4

2.5 2

Pair No. 5

3.0 2.7

Pair No. 6

3.5 3.4

Pair No. 7

4.0 4.1

The augmented matrix is:-

[image: image]

14.14Method of Group Averages (Section 5.9)

 

Flow-chart 

[image: image]

Program

#include<conio.h>

#include<stdio.h>

void main()

{

int t[10],n,i,ts1=0,ts2=0;

float a,b,rs1=0,rs2=0,r[10],x1,y1,x2,y2;

clrscr();

printf("enter the no. of observations\n");

scanf("%d",&n);

printf("enter the different values of t\n");

for (i=1;i<=n;i++)

{

scanf("%d",&t[i);

}

printf("\n enter the corresponding values of r\n");

for (i=1;i<=n;i++)

{

scanf("%f",&r[i]);

}

for (i=1;i<=(n/2);i++)

{ ts1+=t[i]; rs1+=r[i];

}

for (i=((n/2)+1);i<=n;i++)

{ ts2+=t[i]; rs2+=r[i];

}

x1=ts1/(n/2);

y1=rs1/(n/2);

x2=ts2/(n/2);

y2=rs2/(n/2);

b=(y2-y1)/(x2-x1);

a=y1-(b*x1);

printf("the value of a&b comes out to be\n");

printf("a=%6.3f\nb=%6.3f",a,b);

getch();

}

Computer Solution of Example 5.16

Enter the no. of observations

8

enter the different values of t

40 50 60 70 80 90 100 110

enter the corresponding values of r

1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3 1030.8

the values of a&b come out to be

a=1090.256

b=-0.534

14.15Method of Moments (Section 5.11)

 

Flow-chart 
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Program

#include <stdio.h>

#include <conio.h>

void main()

{

int x[10],y[10],i,n,yt=0,x1yt=0;

float a,b,11,12,c1,c2,c3,d,d1,d2,m1,m2,h;

clrscr();

printf("enter the no. of observations\n");

scanf("%d",&n);

printf("enter the different values of x");

for (i=1;i<n;i++)

{

scanf("%d",&x[i]);

}

printf("\nenter the corresponding values of y\n");

for (i=1;i<n;i++)

{

scanf("%d",&y[i]);

}

h=x[2]-x[1];

for(i=1;i<=n;i++)

{ yt+=y[i]; x1yt+=x[i]*y[i];

} m1=h*yt; m2=h*x1yt;

11=(-(h/2)+x[1]);

12=((h/2)+x[n]);

c1=(12-11);

c2=((12*12)-(11*11))/2;

c3=((12*12*12)-(11*11*11))/3;

printf("The observed equations are\n");

printf("%5.2fa+%5.2fb=%5.2f\n%5.2fa+5.2fb=%5.2f",

c1,c2,m1,c2,c3,m2);

d=c2/c1;

d1=d*c1;

d2=d*c2;

m1=d*m1;

b=(m2-m1)/(c3-d2);

a=(m1-(d2*b))/d1;

printf("\nOn solving these equations

we get a=%5.2f&b=%5.2f\n",a,b);

printf("hence the required equation is y=%5.2f+%5.2fx",a,b);

getch ();

}

Computer Solution of Example 5.20

Enter the no. of observations

4

enter the different values of x

1 2 3 4

enter the corresponding values of y

16 19 23 26

the observed equations are

4.00a+10.00b=84.00

10.00a+30.33b=227.00

on solving these equations we get a = 13.03&b=3.19

hence the required equation is y=13.03+3.19x

14.16Newtons Forward Interpolation Formula (Section 7.2)

 

[image: image]


 NOTES: MAXN is the maximum value of N 

 ORDER is the maximum order in the difference table

 ax is an array containing values of x ( x 0, x 1,......, xn )

 ay is an array containing values of y ( y 0, y 1,....., yn )

 diff is a 2D Array containing the difference table

 h is spacing between values of X

 x is value of x at which value of y is wanted

 yp is calculated value of Y

 nr is numerator of the terms in expansion of yP

dr is denominator of the terms in expansion of yP 



Program

/* Newton's forward interpolation */

#include <stdio.h>

#define MAXN 100

#define ORDER 4 main()

{

 float ax[MAXN+1],ay[MAXN+1],

 diff[MAXN+1][ORDER+1],

nr=1.0,dr=1.0,x,p,h,yp;

 int n,i,j,k;

 printf("Enter the value of n\n");

 scanf ("%d",&n);

 printf("Enter the values in form x,y\n");

 for (i=0;i<=n;i++)

 scanf("%f %f",&ax[i],&ay[i]);

 printf("Enter the values of x"

 "for which value of y is wanted \n");

 scanf("%f",&x);

 h=ax[1]-ax[0];

 /* now making the diff. table */

 /* calculating the 1st order differences */

 for (i=0;i<=n-1;i++)

 diff[i][1] = ay[i+1]-ay[i];

 /* calculating the second &

 higher order differences.*/

 for (j=2;j<=ORDER;j++)

 for (i=0;i<=n-j;i++)

 diff [i][j] = diff[i+1][j-1]

-diff[i][j-1];

 /* now finding x0 */

 i0;

 while (!(ax[i] > x)) i++;

 /* now ax[i] is x0 & ay[i] is y0 */

 i;

 p = (x-ax[i])/h; yp=ay[i];

 /* Now carrying out interpolation */

 for (k=1;k<=ORDER;k++)

 {

nr *= p-k+1; dr *=k;

yp += (nr/dr)*diff[i][k];

 }

 printf ("when x = %6.1f, y = %6.2f\n"

,x,yp);

}

Computer Solution of Example 7.1

Enter the value of n

6

Enter the values in form x, y

10010.63

15013.03

20015.04

25016.81

30018.42

35019.90

40021.27

Enter the values of x for which value of y is wanted

218

When x = 218.0, y = 15.70

14.17Lagranges Interpolation Formula (Section 7.12)

 

Flow-chart 
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NOTES: MAX is the maximum value of n 

ax is an array containing values of x ( x 0, x 1,....., xn )

ay is an array containing values of y ( y 0, y 1,......, yn )

x is the value of x at which value of y is wanted

y is the calculated value of y 

nr is numerator of the terms in expansion of y 

dr is denominator of the terms in expansion of y .



Program

/*Lagrange's Interpolation*/

#include <stdio.h>

#define MAX 100

main()

{

 float ax [MAX+1],ay[MAX+1],nr,dr,x,y=0;

 int i,j,n;

 printf ("Enter the value of n\n");

 scanf("%d",&n);

 printf ("Enter the set of values\n");

 for (i=0;i<=n;i++)

 scanf ("%f%f",&ax[i],&ay[i]);

 puts("Enter the value of x for which"

 "value of y is wanted");

 scanf("%f",&x);

 for (i=0;i<=n;i++)

 {

 nr=dr=1;

 for(j=0;j<=n;j++)

 if (j!=i)

 {

 nr *= x-ax[j];

 dr *= ax[i]-ax[j];

 }

 y += (nr/dr)*ay[i];

 }

 printf ("When x=%4.1f y=%7.1f\n",x,y);

}

Computer Solution of Example 7.17

Enter the value of n

4

Enter the set of values

 5 150

 7 392

111452

132366

175202

Enter the value of x for which value of y is wanted

9

When x = 9.0 y = 810.0

14.18Newtons Divided Difference Formula (Section 7.14)

 

Flow-chart 
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Program

#include<stdio.h>

#include<conio.h>

void main()

{

int x[10], y[10], p[10];

int k,f,n,i,j=1,f1=1,f2=0;

clrscr();

printf("enter the no. of observations\n");

scanf("%d",&n);

printf("enter the different values of x\n");

for (i=1;i=<n;i++)

{

scanf(''%d'',&x[i]);

}

printf("enter the corresponding values of y\n");

for(i=1;i<=n;i++)

{

scanf("%d",&y[i]);

}

f=y[1];

printf("enter the value of 'k' in f(k) you want to evaluate\n");

scanf("%d",&k);

do

{

for(i=1;i<=n-1;i++)

{

p[i]=((y[i+1]-y[i])/(x[i+j]-x[i]));

y[i]=p[i];

}

f1=1;

for(i=1;i<=j;i++)

{

f1*=(k-x[i]);

}

f2+=(y[1]*f1);

n--;

j++;

} while(n!=1);

f+=f2;

printf(''f(%d)=%d",k,f);

getch();

}

Computer Solution of Example 7.23 

Enter the no. of observations

5

enter the different values of x

5 7 11 13 17

enter the corresponding values of y

150 392 1452 2366 5202

enter the value of 'k' in f(k) you want to evaluate

9

f(9) = 810

14.19Derivatives Using Forward Difference Formulae [Section 8.2 (1)]

 

 Flow-chart 

[image: image]

[image: image]

[image: image]

Program

/* Derivatives using forward difference */

#include<stdio.h>

#include<math.h>

#include<conio.h>

void main( )

{

float *x=NULL, *y=NULL;

float *tmp=NULL, *tmp1=NULL;

float xval,h,p,x0,y0,yval,sum;

int pos,i,k,max;

int v[]={0,0,1.0,1.0,11.0/12.0,5.0/6.0,137.0/180.0};

printf ("Enter the no of comparisons");

scanf("%d",&max);

x=(float*) malloc(max);

x=(float*) malloc(max);

tmp=(float*) malloc(max);

printf("Enter the values in cv table for x and y");

for (i=0;i<max;i++)

{

printf("\n value for %d x",i);

scanf("%f",&x[i]);

}

for(i=0;i<max;i++)

{

printf("\n value for %d y",i);

scanf("%f",&y[i]);

}

printf("Enter the value of x");

scanf("%f",&xval);

for(i=0;i<max;i++)

{

if(x[i]>=xval)

{

pos=i;

break;

}

}

x0=x[pos];

y0=y[pos];

printf("\n x0 is %f y0 is %f at %d",x0,y0,pos);

h=x[1]-x[0];

p=(xval-x0)/h);

if(pos<(max))

{

int fact=1,i,l, j;

// calculating no of elemets in array

l=max-pos;

tmp=(float*)malloc(l*l);

printf("\n");

for(i=0;i<l;i++)

{

for(j=0; j<=l; j++)

{

tmp[i*l+j]=0;

}

printf("\n");

}

printf("\n size of new array %d\n",l);

// copying values of y in array

for(i=0, j=pos;i<l;i++, j++)

{

tmp[i] = y[j];

}

printf("\n");

for(i=1;i<l;i++)

{

for(j=0; j<l-i; j++)

{

tmp[i*l+j]=tmp[(i-1)*l+(j+1)] tmp[(i-1)*l+(j)];

}

}

printf("\nvalues are \n");

for(i=0;i<l;i++)

{

for(j=0; j<l; j++)

{

 printf("%.3f\t|",tmp[j*l+i]);

}

printf("\n");

}

// appling newtons forward differnation using first

derivates sum=0;

k=1;

for(i=1; i<l; i++)

{

sum=sum+((1.0/i)*tmp[i*l+0])*k;

k=k;

}

printf("\n\n first (dy/dx): %f ",sum/h);

sum=0;

fact=1;

k=1;

 for(i=2;i<l;i++)

{

sum=sum+(v[i]*tmp[i*l+0]*k;

k= k;

}

printf("\n\n second (dy/dx): %f ",sum/pow(h,2.0));

}

}

Computer Solution of Example 8.1 

value for 0x1.0

value for 0y7.989

value for 1x1.1

value for 1y8.403

value for 2x1.2

value for 2y8.781

value for 3x1.3

value for 3y9.129

value for 4x1.4

value for 4y9.451

value for 5x1.5

value for 5y9.750

value for 6x1.6

value for 6y10.031

Enter the value of x1.1

x0 is 1.1y0 is 8.403 at 1

size of new aray 6

values are

[image: image]

[image: image]

14.20Trapezoidal Rule (Section 8.5I)

 

Flow-chart 

[image: image]


NOTES: y(x) is the function to be integrated

x 0 is x0

xN is xn.



Program

/* Trapezoidal rule.*/

#include <stdio.h>

float y(float x)

{

 return 1/(1+x*x);

}

main()

{

 float x0,xn,h,s;

 int i,n;

 puts("Enter x0,xn,no. of subintervals");

 scanf ("%f %f %d",&x0,&xn,&n);

 h = (xn-x0)/n;

 s = y(x0)+y(xn);

 for (i=1;i<=n-1;i++)

s += 2*y(x0+i*h);

 printf ("Value of integral is % 6.4f\n",

 (h/2)*s);

}

Computer Solution of Example 8.10 (I)

Enter x0, xn, no. of subintervals

0 6 6

Value of integral is 1.4108

14.21Simpsons Rule (Section 8.5II)

 

Flow-chart 

[image: image]


NOTE: y(x) is the function to be integrated so that yi = y(xi) = y(x0 + i*h).



Program

/* Simpson's rule */

#include <stdio.h>

float y(float x)

{

 return 1/(1+x*x);

}

main()

{

 float x0,xn,h,s;

 int i,n;

 puts("Enter x0,xn. no. of subintervals");

 scanf("%f %f %d",&x0,&xn,&n);

 h = (xn-x0)/n;

 s = y(x0)+y(xn)+4*y(x0+h);

 for (i=3;i<=n-1;i+=2)

s += 4*y(x0+i*h)+2*y(x0+(i-1)*h);

 printf("Value of integral is %6.4f\n", (h/3)*s);

}

Computer Solution of Example 8.10 (ii)

Enter x0, xn, no. of subintervals

0 6 6

Value of integral is 1.3662

14.22Eulers Method (Section 10.4)

 

Flow-chart 

[image: image]


NOTES: df(x, y) is dy/dx 

x0 is x n +0 i.e. , xn 

x1 is x n +1

y0 is y n +0 i.e. , yn 

y1 is y n +1



Program

/*Euler's Method*/

#include <stdio.h>

float df(float x,float y)

{

 return x+y;

}

main()

{

 float x0,y0,h,x,x1,y1;

 puts("Enter the values of x0,y0,h,x");

 scanf("%f %f %f %f",&x0,&y0,&h,&x);

 x1=x0;y1=y0;

 while(1)

 {

 if(x1>x) return;

 y1 += h*df(x1,y1);

 x1 += h;

 printf("When x = %3.1f "

"y = %4.2f\n",x1,y1);

 }

}

Computer Solution of Example 10.8

Enter the values of x0, y0, h, x

0 1.1 1

When x = 0.1 y = 1.10

When x = 0.2 y = 1.22

When x = 0.3 y = 1.36

When x = 0.4 y = 1.53

When x = 0.5 y = 1.72

When x = 0.6 y = 1.94

When x = 0.7 y = 2.20

When x = 0.8 y = 2.49

When x = 0.9 y = 2.82

When x = 1.0 y = 3.19

14.23Modified Eulers Method (Section 10.5)

 

Flow-chart 

[image: image]

Program

/* Modified Euler's Method */

#include<stdio.h>

#include<math.h>

#include<conio.h>

void main( )

{

float x,y,x1=0.0,y1=0.0,h,ms=0.0,flag=0,y2=0.0,t=0.0;

int i,j;

clrscr( );

printf("\n Enter the value of x");

scanf("%f",&x);

printf("Enter the value of y");

scanf("%f",&y);

printf("enter the height");

scanf("%f",&h);

i=7;

printf("x");gotoxy(10,i);printf("x+y=y1");gotoxy(28,i);

 printf ("mean slope");gotoxy(45,i);

 printf("old y+.1(mean slope)=new y");

while(x1<x)

{

i++;

do

{

i++;

if(flag==0)

{

y1=x1+y;

gotoxy(2,i);printf("%.1f",x1);gotoxy(10,i);printf("%.5f",y1);gotoxy(28,i);printf("%.5f",ms);

m5=y1;

y2=y+h*ms;

gotoxy(45,i);printf("%.5f",y2);

x1=x1+h;

flag=1;

}

else

{

ms=(y1+(x1+y2))/2.0;

t=y+h*ms;

if(y2==t)

{

y2=y+h*ms;

break;

}

gotoxy(2,i);printf("%.1f",x1);gotoxy(10,i);printf("%.1f+%.5f",x1,y2);y2=y+h*ms;

gotoxy(28,i);printf("%.5f",ms);gotoxy(45,i);printf("%.5f",y2);

}

}while(1);

y=y2;

printf("\n\n");

flag=0;

 }

}

Computer Solution of Example 10.10

enter the value of x.3

enter the value of y1

enter the height.1

[image: image]

14.24Runge-Kutta Method (Section 10.7)

 

Flow-chart 

[image: image]


NOTES: x0 is starting value of x , i.e. , x0

xn is the value of x for which y is to be determined



Program

/* Runge Kutta Method */

#include <stdio.h>

float f(float x,float y)

{

 return x+y*y;

}

main()

{

 float x0,y0,h,xn,x,y,k1,k2,k3,k4,k;

 printf("Enter the values of x0,y0," "h,xn\n");

 scanf ("%f %f %f %f",&x0,&y0,&h,&xn);

 x = x0; y = y0;

 while (1)

 {

if (x == xn) break;

k1 = h*f(x,y);

k2 = h*f(x+h/2,y+k1/2);

k3 = h*f(x+h/2,y+k2/2);

k4 = h*f(x+h,y+k3);

k = (k1+(k2+k3)*2+k4)/6;

x += h; y += k;

printf("When x = %8.4f"

"y = %8.4f\n",x,y);

 }

}

Computer Solution of Example 10.15

Enter the values of x0, y0, h, xn

0.0 1.0 0.2 0.2

When x = 0.1000 y = 1.1165

When x = 0.2000 y = 1.2736

14.25Milnes Method (Section 10.9)

 

Flow-chart 

[image: image]


NOTES: x is an array such that x [ i ] represents xn+i for e.g. x [0] represent xn

y is an array such that y [ i ] represents yn+i

xr is the last value of x at which value of y is required

h is spacing in values of x

aerr is the allowed error in value of y

yc is the latest corrected value for y

f is the function which returns value of y ʹ

corect is a subroutine that calculates the corrected value of y and prints it.



Program

/*Milne predictor corrector*/

#include <stdio.h

#include <math.h float x[5],y[5],h; float f(int i)

{

 return x[i]-y[i]*y[i];

}

void corect()

{

 y[4] = y[2]+(h/3)*(f(2)+4*f(3)+f(4));

 printf("%23s %8.4f %8.4f \n", "",y[4],f(4));

}

main()

{

 float xr,aerr,yc;

 int i;

 puts("Enter the values of x0,xr,h,"

 "allowed error");

 scanf("%f %f %f %f",

 &x[0],&xr,&h,&aerr);

 puts("Enter the value of y[i], i=0,3");

 for (i=0;i<=3;i++) scanf("%f",&y[i]);

 for (i=1;i<=3;i++) x[i] = x[0]+i*h;

 puts(" x Predicted"

" Corrected");

 puts(" y f" "y f");

 while (1)

 {

 if(x[3] = xr) return;

 x[4] = x[3]+h;

 y[4] = y[0]+

(4*h/3)*(2*(f(1)+f(3))-f(2));

 printf("%6.2f %8.4f %8.4f\n",

x[4],y[4],f(4));

 corect();

 while (1)

 {

 yc = y[4];

 corect();

 if(fabs(yc-y[4]) <= aerr) break;

 }

 for (i=0;i<=3;i++)

 {

x[i] = x[i+1];

y[i] = y[i+1];

 }

 }

}

Computer Solution of Example 10.19

Enter the values of x0, xr, h, allowed error

0 1.2.0001

Enter values of y[i]; i = 0, 3

[image: image]

14.26Adams-Bashforth Method (Section 10.10)

 

Flow-chart 

[image: image]

[image: image]

Program

/* Adams-Bashforth Method */

#include<stdio.h>

#include<malloc.h>

#include<math.h>

#include<conio.h>

void main( )

{

 float *x, *y, *f, *f1;

 float h;

 int i,size,row;

 clrscr( );

 printf("enter the size");

 scanf("%d",&size);

 x=(float*)malloc(size + 1);

 y=(float*)malloc(size+1);

 f1=(float*)malloc(size+1);

 f=(float*)malloc(size + 1);

 for (i=0;i<size;i++)

 {

 printf("enter the value for x[%d]",i);

 scanf("%f",&x[i]);

}

for(i=0;i<size;i++)

{

printf("enter the value for y[%d]",i);

scanf("%f",&y[i]);

}

h=x[1]-x[0];

// calculating values (f)

for(i=0;i<size;i++)

{

float tx,ty,tf;

fflush(stdin);

tx=x[i];

ty=y[i];

tf=(pow(tx,2)*(1.0+ty));

f[i]=tf;

}

printf("\nvalues for (x) (y) and (f) are\n");

row = 16;

for(i=0;i<=3;i++)

{

gotoxy(2,row);printf("x="); gotoxy(6,row);printf("%.1f",x[i]);

gotoxy(13,row); printf("y%d",i-3);gotoxy(16,row);printf("=");

gotoxy(18,row);printf("%f",y[i]); gotoxy(28,row);printf("f%d",i-3);

gotoxy(32,row);printf("=");gotoxy(35,row);printf("%f",f[i]);

row++;

}

//using predicator

y[size]=y[size1]+((h/24)*((55*f[size1])59*f[size2])+37*f[size3])

(9*f[size4]))); x[size] = 1.4;

f[size]=pow(x[size],2)*(1.0+y[size]);

gotoxy(2,row);printf("x=");

gotoxy(6,row);printf("%.1f",x[size]);gotoxy(13,row);printf("y1");gotoxy(16,row);printf("="); gotoxy(18,row);printf("%f",y[size]);gotoxy(28,row);printf("f1");gotoxy(32,row);printf("="); gotoxy(35,row);printf("%f",f[size]);

}

Computer Solution of Example 10.23

enter the size 4

enter the value for x[0]1.0

enter the value for y[0]1.000

enter the value for x[1]1.1

enter the value for y[1]1.233

enter the value for x[2]1.2

enter the value for y[2]1.548

enter the value for x[3]1.3

enter the value for y[3]1.979

values for(x) (y) and (f) are

[image: image]

14.27Solution of Laplace Equation (Section 11.5)

 

Flow-chart 

[image: image]


NOTES: SQR is the size of the square mesh

u is a 2D Array representing the square mesh

aerr is the allowed error

maxitr is the maximum allowed iterations

itr is a counter which keeps track of the number of iterations performed

maxerr is the maximum error in the mesh in an iteration

err is error in a particular point of the mesh

f is the execution time format

getrow is a subroutine that inputs the ith row of the mesh

getcol is a subroutine that inputs jth column of the mesh.



Program

/* Laplace's Equation */

#include <stdio.h>

#include <math.h>

#define SQR 4

typedef float array[SQR+1][SQR+1];

void getrow(int i,array u)

{

 int j;

 printf("Enter the values of u[%d,j],"

 "j=1,%d\n",i,SQR);

 for (j=1;j<=SQR;j++)

 scanf("%f",&u[i][j]);

 }

 void getcol(int j,array u)

 {

int i;

printf("Enter the values of u[i,%d],"

 "i=2,%d\n",j,SQR-1);

for (i=2;i<=SQR-1;i++)

scanf ("%f",&u[i][j]);

 }

 void printarr(array u,int width,int precision)

 {

int i,j;

for (i=1;i<=SQR;i++)

{

for (j=1;j<=SQR;j++)

printf("%7.2f%7.2f%7.2f",width,precision, u[i][j]);

printf("\n");

 }

}

main ()

{

array u;

 float maxerr,aerr,err,t;

 int i,j,itr,maxitr;

 for (i=1;i<=SQR;i++)

 for(j=1;j<=SQR;j++)

 u[i][j]=0;

 puts ("Enter the boundary conditions");

 getrow(1,u); getrow(SQR,u);

 getcol(1,u); getcol(SQR,u);

 puts ("Enter allowed error,"

"maximum iterations");

 scanf ("%f %f",&aerr,&maxitr);

 for (itr=1;itr<=maxitr;itr++)

 {

 maxerr=0;

 for (i=2;i<=SQR-1;i++)

 for(j=2;j<=SQR-1;j++)

 {

t=(u[i-1][j]+u[i+1][j]+  u[i][j+1]+u[i][j-1])/4;

err=fabs(u[i][j]-t);

if (err > maxerr)

maxerr = err;

u[i][j]=t;

 }

 printf("Iteration no. %d \n",itr);

 printarr(u,9,2);

 if (maxerr <= aerr)

 {

 printf ("After %d iterations \n"

"The solution:-\n",itr);

 printarr(u,8,1);

 return 0;

 }

}

puts ("Iterations not sufficient.");

return 1;

}

Computer Solution of Example 11.3 (A)

Enter the boundary conditions

Enter the values of u[1, j], j = 1, 4

1000 1000 1000 1000

Enter the values of u[4, j], j = 1, 4

1000 500 0 0

Enter the values of u[i, 1], i = 2, 3

2000 2000

Enter the values of u[i, 4], i = 2, 3

500 0

Enter allowed error, maximum iterations

.1 10

[image: image]

[image: image]

14.28Solution of Heat Equation (Section 11.9)

 

Flow-chart 

[image: image]


NOTES: XEND is the ending value of x

TEND is the ending value of t

h is the spacing in values of x

k is the spacing in values of y

f(x) is value of u(x, 0)

csqr is value of C2

alpha is 

ust is the value in the first column

uet is the value in the last column.



Program

/*Solution of parabolic equations by Bendre

Schmidt method*/

#include <stdio.h>

#define XEND 8

#define TEND 5 float f(int x)

{

 return 4*x-(x*x)/2.0;

}

main()

{

 float u[XEND+1][TEND+1],h=1.0,k=0.125,

 csqr,alpha,ust,uet;

 int i,j;

 puts("Enter the square of 'c'");

 scanf("%f",&csqr);

 alpha = (csqr*k)/(h*h);

 puts ("Enter the value of u[0,t]");

 scanf ("%f",&ust);

 printf ("Enter the value of u[%d,t]\n",

 XEND); scanf("%f",&uet);

 for (j=0;j<=TEND;j++)

 u[0][j]=u[XEND][j]=ust;

 for (i=1;i<=XEND-1;i++)

 u[i][0]=f(i);

 for (j=0;j<=TEND-1;j++)

 for (i=1;i<=XEND-1;i++)

 u[i][j+1]=

 alpha*u[i-1][j]

 +(1-2*alpha)*u[i][j]

 +alpha*u[i+1][j];

 printf("The value of alpha is %4.2f\n", alpha);

 puts("The values of u[i,j] are:-");

 for (j=0;j<TEND;j++)

 {

 for (i=0;i<XEND;i++)

 printf("%7.4f",u[i][j]);

 printf("\n");

 }

}

Computer Solution of Example 11.11

Enter the square of "c"

4

Enter value of u(0, t)

0

Enter value of u(8, t)

0

The value of alpha is 0.50

The values of u(i, j) are:

[image: image]

14.29Solution of Wave Equation (Section 11.12)

 

 Flow-chart 

[image: image]


NOTES: XEND is the ending value of x 

TEND is the ending value of t f(x) is value of u ( x , 0)

csqr is value of C 2

ust is the value in the first column

uet is the value in the last column



Program

/* Solution of Hyperbolic equation */

#include <stdio.h>

#define XEND 5

#define TEND 5 float f(int x)

{

 return x*x*(5-x);

}

 main()

{

 float u[XEND+1][TEND+1],csqr,ust,uet;

 int i,j;

 puts("Enter the square of 'c'");

 scanf("%d",&csqr);

 printf("Enter the value of u[0][t]\n");

 scanf("%f",&ust);

 printf("Enter the value of u[%d][t]\n",

 XEND); scanf("%f",&uet);

 for (j=0;j<=TEND;j++)

 {

 u[0][j] = ust; u[XEND][j] = uet;

 }

 for (i=1;i<=XEND-1;i++)

 u[i][1] = u[i][0] = f(i);

 for (j=1;j<=TEND-1;j++)

 for (i=1;i<=XEND-1;i++)

u[i][j+1] = u[i-1][j]+u[i+1][j]

-u[i][j-1];

 puts("The values of u[i][j] are:-");

 for (j=0;j<=TEND;j++)

 {

 for (i=0;i<=XEND;i++)

printf("%6.1f",u[i][j]);

 printf("\n");

 }

}

Computer Solution of Example 11.14

Enter the square of "c"

16

Enter value of u(0, t)

0

Enter value of u(5, t)

0

The values of u(i, j) are:

[image: image]

14.30Linear ProgrammingSimplex Method (Section 12.8)

 

Flow-chart 

[image: image]


NOTES: ND is number of decision variables

NS is number of slack variables

a is the array containing Body Matrix, Unit Matrix and bi s

c is an array containing values of cj s

cb is an array containing values of c Bs

th is an array containing values of s

bas is basis. For xi s basis contains i , for si s basis contains i + ND 

ki is the key row

kj is the key column.



Program

/* Linear programming by simplex method */

#include <stdio.h>

#define ND 2

#define NS 2

#define N(ND+NS)

#define N1 (NS*(N+1))

void init(float x[],int n)

{

 int i=0;

 for (;i<n;i++) x[i] = 0;

}

main()

{

 int i,j,k,kj,ki,bas[NS];

 float a[NS][N+1],c[N],cb[NS],th[NS],

 x[ND],cj,z,t,b,min,max;

 /* Initializing the arrays to zero */

 init(c,N); init(cb,NS);

 init(th,NS); init(x,ND);

 for (i=0;i<NS;i++) init(a[i],N+1);

 /* Now set coefficients for slack

Variables equal to one */

for (i=0;i<NS;i++) a[i][i+ND] = 1.0;

 /* Now put the slack variables in the basis */

 for (i=0;i<NS;i++) bas[i] = ND+i;

 /* Now get the constraints

 and the objective function */

 puts("Enter the constraints");

 for (i=0;i<NS;i++)

 {

 for (j=0;j<ND;j++)

 scanf("%f",&a[i][j]);

 scanf("%f",&a[i][N]);

 }

 puts("Enter the objective function");

 for (j=0;j<ND;j++)

 scanf("%f",&c[j]);

 /* Now calculate cj and identify the incoming variable */

 while (1)

 {

max = 0; kj = 0;

for (j=0;j<N;j++)

{

 z = 0;

 for (i=0;i<NS;i++)

z += cb[i]*a[i][j];

 cj = c[j]-z;

 if(cj > max)

 {max = cj; kj = j;}

}

/* Apply the optimality test */

if(max <= 0) break;

/* Now calculate thetas */

max = 0;

for (i=0;i<NS;i++)

if(a[i][kj] != 0)

{

 th[i] = a[i][N]/a[i][kj];

 if(th[i] > max) max=th[i];

}

/* Now check for unbounded soln. */

if(max <= 0)

{

puts("Unbounded solution");

 return 2;

}

/* Now search for the outgoing variable */

min = max; ki = 0;

for (i=0;i<NS;i++)

if ((th[i] < min)&&(th[i] != 0))

{

 min = th[i]; ki = i;

}

/*Now a[ki][kj] is the key element*/

t = a[ki][kj];

/*Divide the key row by key element*/

for (j=0;j<N+1;j++) a[ki][j] /= t;

/* Make all other elements of key coloumn zero */

for (i=0;i<NS;i++)

if(i != ki)

{

 b = a[i][kj];

 for (k=0;k<N+1;k++)

a[i][k]-=a[ki][k]*b;

}

cb[ki] = c[kj];

bas[ki] = kj;

}

/* Now calculating the optimum value */

for (i=0;i<NS;i++)

if ((bas[i] >= 0) && (bas[i]<ND))

x[bas[i]] = a[i][N];

 z = 0;

 for (i=0;i<ND;i++)

 z += c[i]*x[i];

 for (i=0;i<ND;i++)

 printf("x[%3d] = %7.2f\n",i+1,x[i]);

 printf("Optimal value = %7.2f\n",z);

}

Computer Solution of Example 12.4

Enter the constraints

4280

25180

Enter the objective function

34

x[ 1] = 2.50

x[ 2] = 35.00

Optimal value = 147.50

Computer Solution of Example 12.16

Enter the constraints

232440

403470

250430

Enter the objective function

436

x[ 1] = 0.00

x[ 2] = 42.22

x[ 3] = 156.67

Optimal value = 1066.67

Exercises 14.1

 

	Write a C program which prints all odd positive integers less than 100, omitting those integers divisible by 7.

	Write a C program to convert a binary number to its equivalent decimal number.

	Write a program to calculate N ! and use this to evaluate
[image: image]


	Determine the number of integers n , 1  n  2000, that are not divisible by 2, 3 or 5 but are divisible by 7.

	Write a program to evaluate the roots of the equation ax 2 + bx + c = 0.

	Write a computer program in  C  for finding out a real root of the equation f ( x ) = 0 by bisection method.

	Write a C program to find a real root of x 3  4 x  9 = 0 using the method of false position.

	Write an algorithm for the Newton-Raphson method to solve the equation f ( x ) = 0. Apply the same to solve the cos x  xex = 0 near x = 0.5 correct to three decimal places.

	Write a C program to solve the following equations by the Gauss-Seidal method: 83 x + 11 y  4 z = 95; 7 x + 52 y + 13 z = 104; 3 x + 8 y + 29 z = 71.

	With the help of a flow chart, write a C program to solve: 7.5 x + 3.8 y + 2.9 z = 15; 3.2 x + 6.8 y + 7.4 z = 37; 1.3 x + 2.1 y + 3.2 z = 7, using the triangularization method.

	Write a complete C program to ( i ) add two matrices ( ii ) multiply two matrices.

	Given the data:
[image: image]

Write a C program to fit a quadratic relation using the least squares criterion.


	Write a program in C to estimate f (0.6) by the Lagrange interpolation for the following values:
[image: image]


	Write a C program to evaluate [image: image] using the Simpsons rule.

	Write a C program for evaluation of [image: image] by the Simpsons 3/8th rule.

	Write a program in C for the second order Runge-Kutta method.

	Develop a  C  program for solving differential equations using the Runge-Kutta fourth order formulae.

	Write a C program to find y (0.8) for the differential equation [image: image] given the following table, using Milnes Predictor-Corrector method:
[image: image]


	Write a computer program in C to maximize
 z = 6 x 1 + 4 x 2

subject to2 x 1 + 3 x 2  100, 4 x 1 + 2 x 2  120, x 1, x 2  0, where x 1, x 2 are the number of items to be produced.


	Develop a computer program in C for Example 12.17 and solve it.
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C++ Language
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	An overview of C++ features

	Programs of standard methods in C++ language



15.1Introduction

 

C++ is a general purpose programming language, originally designed by Bjarne Stroustrup.

C++, a powerful language, is used for many purposes like writing operating systems, business, and scientific applications. It is not tied to any particular hardware and programs written in C++ are portable across any system. The programs written in C++ are efficient and fast. It is one of the most popular computer languages today.

An overview of C++ features is given below for ready reference. It is followed by Programs of Standard Numerical methods in C++ alongwith input/output of numerous examples solved in the Chapters 1 to 12.

15.2An Overview of C++ Features

 

C++ constants are numbers, which do not change during execution of a program. These may be of three types:

[image: image]




	[image: image]
	
	The string constants are enclosed in double quotes ().




C++ variables can contain different C++ constants during the execution of the program. These are declared in a C++ program by first specifying the type int for an integer and float for the floating point and then the variable names separated by commas. The general format is

 	typelist of variables 

For e.g., to declare integer variables the statement is

int a , b , c ;

and to declare a floating point variables it is

float a , b , c; 

Variables can be initialized at the same time as they are declared. For example,

float a = 1.5;

declares a as a float variable having a value 1.5.

Rules for naming C++ variables:

 ( i ) A variable name may contain only alphabets, digits, and the underscore (_).

 ( ii ) It must begin with a alphabet or an underscore.

( iii ) It can be as long as you wish, but on some C++ systems only the first thirty-one characters are considered.




	[image: image]
	
	 Lower-case and upper case alphabets are treated as different in C. For e.g., Num and num are two entirely different variable names. As a matter of convention, lower- case alphabets are used.




Arrays. An array is an aggregate of variables of the same type. These variables are called elements of the array. The following statements declare arrays in C:

int	 b [10];

float	 c [2][2];

The first statement creates a one dimensional array named b having ten elements, each element being referred by an appropriate subscript in rectangle brackets, i.e., b [0], b [1],......, b [9].

The second statement creates a 2-dimensional array named c having four elements c [0][0], c [0][1], c [1][0], c [1][1].

Rules for the naming of arrays are same as those for variable names.




	[image: image]
	
	 Subscripts always start from zero in C++. 





User defined types. Apart from the built in types int and float C++ allows users to define an identifier that can represent an existing data type.

The syntax is

 typedef type identifier 

For e.g., 

typedef int number;

typedef float matrix [2][2];

The first statement defines number to mean the same as int . The second defines matrix to be mean the same as 2 × 2 array of float.

The above two statements enable declarations of the form number a , b , c; 

which declares three integers a , b , and c , and

matrix x; 

which declares a two-dimensional array x having four elements x [0][0], x [0][1], x [1][0] and x [1][1].

Initialization of arrays at the time of declaration

The syntax is

 type array-name [size] = { list of values }

for e.g. ,  int a [2] = {2, 1};

initializes a [0] to 2 and a [1] to 1.

int a [2][2] = {{0, 1}, {3, 5}};

initializes a [0][0] to 0, a [0] [1] to 1, a [1][0] to 3 and a [1][1] to 5.

Arithmetic operators. These are as follows:

[image: image]

while using the operators, the following order of precedence is adopted

( i ) *, /( ii ) +, 

In this case, the order of operators is that different circular brackets are used.

There is no exponentiation operator in C, but there are various library functions avail- able for the same.

For e.g., to calculate the square root sqrt function is used.

Further details on functions are presented later.

Mathematical expressions consist of a sequence of arithmetic operators and variable names, For e.g., 

 (i) a + b is written as a + b .

( ii )[image: image] is written as a / b + c 

( iii )[image: image] is written as a /( b + c )

( iv )[image: image] is written as sqrt ( b * b  4* a * c ).

( v ) ( + ) is written as alpha * (beta + gamma).

( vi ) ab is written as exp (b*ln ( a ))




	[image: image]
	
	 The multiplication operator * has to be written explicitly. In C++, its presence is never assumed.





exp and ln are library functions.

Arithmetic statements are of the form

 var = exp; 

where var is an integer or a floating point variable.

 exp is a mathematical expression written in C++ format.

The = sign has a special meaning. It tells C++ to calculate the value of exp. and assign it to var.

For e.g.,n = i * i; 

calculates the value of i * i and assigns the result to the variable n . If i = 10, then n gets the value 100.

A C++ statement is always terminated by a semi colon (; ).

C++ also permits statements of the type k = n = i * i; 

This is equivalent to the following statements n = i * i; k = n; 




	[image: image]
	
	 To test the equality of two expressions C++ uses = =.





Shorthand assignment operators

Apart from the assignment operator =, C++ can also support certain short hand assignment operators (+ +,  , + =,  =, * =, / =). Their use is illustrated by the following examples

[image: image]




	[image: image]
	
	 The use of shorthand assignment operators not only results in concise programs but more efficient programs also.





Comments in C++ are of two types. One is single line and other is multi line . Single line comments start with //

Multiline comments start with /* and end with */.




	[image: image]
	
	 Multiline comment can be used for one or more lines. This is the style that has been followed in this book. 





 e.g., 

Single line comment 	//Eulers Method

Multi line comment 	/*Eulers Method*/

Input statement is cin.

 Syntax cin >> variable1 >> variable2......;

An example of the cin statement:

Assuming the declarations

	int c; 

	float a [3][3];

the statement

	cin >> c >> a [1][2];

takes input from the user and stores it in the corresponding variables.

Output statement is cout

Syntax cout << argument1 << manipulator1 << argument2 <<......;

 The arguments can be C++ constants or variables.

Manipulators

These are used for formatting the output. The manipulators used in this book are explained below:

 	setw (w) 

where w specifies the minimum width ( i.e. , number of digits) for output. The width set with setw only applies to the next argument printed. So setw must be used prior to each argument where a specific width is desired.

 e.g., 

the statement

cout << setw (3) << 1

will output

[image: image]

where is a blank space.

 Setprecision (p) 

where p is the precision with which numbers are output.

For fixed format, the precision is the number of digits in the fractional part, while for scientific format, precision is the total number of digits (both before and after the decimal point). The default precision in C++ is 6.

The precision set with setprecision remains in effect, until the next setprecision .

 fixed 

By default scientific format is used in C++, i.e. , the precision set with setprecision applies to the entire number. In this book, we will be using the fixed format. This is done by using the fixed manipulator.

 e.g., 

( i ) for the following statement

	cout << 97.0/7.0;

the output will be according to C++ default precision, i.e. , 6

	13.8571 (total number of digits is 6)

( ii ) for the following statements

cout << setprecision (5);

cout < 97.0/7.0;

the output will be

 13.857 (total number of digits is 5)

( iii ) Now to get 5 digits in the fractional part, consider the following statements cout << fixed;

	cout << setprecision (5);

	cout < 97.0/7.0;

the output will be

	13.85714

 endl This causes the output to start from the next line.
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	 To use the manipulators include the statement # include < iomanip.h > in the beginning of your program.





Relational operators available in C++ are:

[image: image]

Logical expressions are mathematical expressions connected by relational op- erators. Their value is either true or false.

Examples of logical expressions: Assuming i = 2, j = 3

 	i < j is true

 	i = = j is false

	( i * j ) > ( i + j ) is true.

In C++ the result of a logical expression is an integer. 0 is taken as false, any non-zero integer is taken as true.

Logical operators are used to test more than one conditions, i.e. , to combine more than one logical expressions.

[image: image]

The following tables illustrates their use.

[image: image]

[image: image]

Decision making statementIf

 Syntax 

 if (Lexp)

 {Tstatements}

 else

 {Fstatements}

where Lexp is a logical expression.

 Tstatments are C++ statements executed when value of Lexp is true.

 Fstatments are C++ statements executed when value of Lexp is false.

The else part is optional.

Loops

( i ) While Loop 

 Syntax 

( a ) while (Lexp) 

 {statements}

( b ) do

 {statements}

while (Lexp) 

Both these forms of the while loop cause execution of statements while value of Lexp is true. The difference between the two forms is that in the latter, the statements are executed at least once irrespective of the value of Lexp .

( ii ) For loop 

 Syntax 

 for (initialization statement; Lexp; increment statement) 

 {statements}

The loop is best explained by the following flow chart:

[image: image]

Break statement. When a break statement is encountered inside a loop, that loop is exited, irrespective of the value of Lexp , and the program continues with the statement immediately following the loop.

Functions. These are the basic block of a C++ program. Functions contain State- ments that specify what is to be done.

Every program has to contain a function named main . The program begins executing at the first statement of main . Apart from main the C++ functions are classified into

 Library functions 

 User defined functions 

These functions are called from main to accomplish various tasks.

 ( i ) Library functions are already available and we just have to use them, e.g., cout, cin, sqrt, cos, sin, fabs (used to get the absolute value of a floating point variable), etc.

 ( ii ) User defined functions have to be written by the user in the program.

 Syntax 

 	return-type function-name (Argument-list) 

	{

 	statements 

	}

Program for understanding the various terms and concepts related with functions:

 1. / * Sample program * /

 2. # include <isostream. h >

 3. float add (float a , float x );

 4. void half (float * x )

 5. {

 6. * x / = 2;

 7. return;

 8. }

 9. int main ( )

10. {

11. float a = 2, b = 2, c; 

12. c = add ( a , b );

13. cout << a << b << c << endl;

14. half (& a ); half (& b );

15. cout << a << b << c << endl;

16. return 0;

17. }

18. float add (float a , float x )

19. {

20. float sum;

21. sum = a + x; 

22. a = 20, x = 20; /*changing the formal arguments*/

23. return sum;

24. }

[Line numbers have been added for reference purpose and are not part of the program.]

( a ) Declaration and Definition

Line number 3 is the declaration of the function named add . It indicates that there is a function add which takes two arguments, a and b both of type float and returns a float, i.e. , the Argument list is float a, float b and return-type is float (which can be void if function doesnt return anythingsee line 4. It also indicates that the function is defined later in the program).

Lines 1824 are the definition of the function add i.e. , they define how the function will make use of the arguments it received and return the required sum.

Lines 48 constitute both the declaration and definition of the function half .

( b ) Calling a function

Line no. 12 calls the function add with a and b as arguments and stores the value returned by it into the variable c .

( c ) Actual and Formal arguments

The variables a and x in the declaration of function add are called the formal arguments (line 3).

The variables a and b in the call to the function (line 12) are the actual arguments .

( d ) Call by value/Call by reference

In C++ language the values of actual arguments are always copied to the formal arguments when a function is called. This way of passing arguments is called call by value . In this any change made to the formal arguments in the function does not affect the value of actual arguments.

But in other languages, notably FORTRAN any change made to the formal arguments is re- flected in the actual arguments. This is called call by reference , as the formal argument is treated just another name for the actual argument. Both of them refer to the same location in the computers memory.

( e ) Simulating a call by reference in C++

The following thumb rule can be followed to make the formal argument refer to the actual argument (and not just receive a copy of it)

Precede the actual argument with an ampersand & (line 14) and precede the formal argument with an asterisk * (line 4).

The actual working of this involves the concepts of pointers , which are another data type in

C++. The reader can refer to any standard C++ book for a complete understanding.

( f ) Return statement in a function passes the control back to the calling function along with the calculated value (line 23)

 Syntax 	return 	expression; 

The expression can be omitted, in this case the return statement causes the function to just terminate then and there and pass control back to the calling function (line 7).

In case no return statement is present in a function, an implicit return takes place on encoun- tering the right curly brace }.

Preprocessor directives. The lines in a C++ program that begin with a hash (#) sign are called preprocessor directives . The two most commonly used are # define and # include.
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	 There is no semi colon (; ) after the directive.





( i ) # define

 syntax 

# define name replacement 

It instructs the computer to replace all occurences of name with the replacement even before the program is processed, i.e. , checked for syntax.

 e.g. , consider the following statements

# define N 2 int a [N];

Before the program is processed by the compiler, the second line, i.e. , int a [N]; is changed to int a [2]; and the first line is removed.

∴ The resulting statement that is processed is int a [2].

( ii ) # include

 syntax 

# include < header-file-name >

This instructs the computer to insert the contents of the mentioned header file at the place where the directive appeared.
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	 The header file contains declarations of various functions and many preprocessor directives.





Object-oriented Programming (OOP) is a programming paradigm that uses objects and classesdata structures consisting of datafields and methods together with their interactions to design applications and computer programs. Programming techniques may include features such as, data abstraction, encapsulation, modularity, polymorphism, and inheritance . It was not commonly used in mainstream software application development until the early 1990s. Many modern programming languages now support OOP.

An object is actually a identifiable identity with some characteristics and behavior, all relating to a particular real-world concept such as a bank account holder or player in a computer game. Other pieces of software can access the object only by calling its functions and procedures that have been allowed to be called by outsiders.

For example, the players functions might include one to reveal the players configuration on the field. The account holders functions include one to reveal the current balance or to withdraw out or to deposit a sum.

Procedural vs. OPP Programming. In procedural programming the emphasis is on the programming where each statement tells the computer to do something. The focus is on processing the algorithm needed to perform the desire computation.

Also procedural programming is not according to the real world, i.e., it is not close to the real world, The world in which we live the activities we perform.

Limitation of procedural programming

 ( i ) Emphasis on algorithm rather than data

 ( ii ) No reusability of code

( iii ) No overloading

 ( iv ) No real world model.

OOPs Programming: Object-oriented programming has roots that can be traced to the 1960s. As hardware and software became increasingly complex, quality was often compromised. Researchers studied ways to maintain software quality and developed object- oriented programming in part to address common problems by strongly discrete, reusable block of programming logic. It focuses on data rather than processes, with programs composed of self-sufficient modules (objects) each containing all the information needed to manipulate its own data structure. This is in contrast to the existing modular programming which had been dominant for many years that focused on the function of a module, rather than specifically the data, but equally provided for code reuse, and self-sufficient reusable units of programming logic, enabling collaboration through the use of linked modules (subroutines). This more conventional approach, which still persists, tends to consider data and behavior separately.

OPP Terminology and Features: The OOP approach (based on certain concepts)

helps to overcome the drawbacks of procedural programming.

		Data abstractionrefers to the act of representing essential features without including the background detail of explanations. For example, a class Car would be made up of an Engine, Gearbox, Steering objects, and many more components. To build the Car class, one does not need to know how the different components works internally, but only how to interface with them.

		Encapsulationrefers to wrapping up of data and function (that operate on the data) into a single unit called class .

	Modularityis the property of a system that has been decomposed into a set of cohesive and loosely coupled modules.

	Inheritanceis the capability of one class of thing to inherit capabilities of properties from another class. Members are often specified as public, protected or private, determining whether they are available to all classes, sub-classes or only the defining class.

	Polymorphismis the ability for a message or data to be processsed in more than one form. Polymorphism is a property by which the same message can be sent to objects of several different classes.


Data Types

Fundamental data types: When programming, we store the variables in our computers memory, but the computer has to know what kind of data we want to store in them, since it is not going to occupy the same amount of memory to store a simple number than to store a single letter or a large number, and they are not going to be interpreted the same way.

The memory in our computers is organized in bytes. A byte is the minimum amount of memory that we can manage in C++. A byte can store a relatively small amount of data: one single character or a small integer (generally an integer between 0 and 255). In addition, the computer can manipulate more complex data types that come from grouping several bytes, such as long numbers or non-integer numbers.

Next you have a summary of the basic fundamental data types in C++, as well as the range of values that can be represented with each one:

[image: image]

[image: image]

Integer Type: Integers are whole numbers with a machine dependent range of values. A good programming language as to support the programmer by giving a control on a range of numbers and storage space. C++ has three classes of integer storage namely short int, int and long int. All of these data types have signed and unsigned forms. A short int requires half the space than normal integer values. Unsigned numbers are always positive and consume all the bits for the magnitude of the number. The long and unsigned integers are used to declare a longer range of values.

Floating Point Types: Floating point number represents a real number with six digits precision. Floating point numbers are denoted by the keywords float. When the accuracy of the floating point number is insufficient, we can use the double to define the number. The double is same as float but with longer precision. To extend the precision further we can use long double which consumes 80 bits of memory space.

Void Type: Using void data type, we can specify the type of a function. It is a good practice to avoid functions that does not return any values to the calling function.

Character Type: A single character can be defined as a defined character type of data. Characters are usually stored in 8 bits of internal storage. The qualifier signed or unsigned can be explicitly applied to char. While unsigned characters have values between 0 and 255, signed characters have values from  128 to 127.

User defined type declaration: In C++ language a user can define an identifier that represents an existing data type. The user defined datatype identifier can later be used to declare variables. The general syntax is

	typedef type identifier;

here type represents existing data type and identifier refers to the raw name given to the data type.

Example

typedef int salary;

typedef float average;

Here salary symbolizes int and average symbolizes float. They can be later used to declare variables as follows:

Salary dept1, dept2;

Average section1, section2;

Therefore dept1 and dept2 are indirectly declared as integer datatype and section 1 and section 2 are indirectly float data type.

Declaration of Storage Class: Variables in C++ have not only the data type but also storage classes that provides information about their location and visibility. The storage class divides the portion of the program within which the variables are recognized.

auto: It is local variable known only to the function in which it is declared. Auto is the default storage class.

static: Local variable which exists and retains its value even after the control is transferred to the called function.

extern: Global variable known to all functions in the file

register: Social variables which are stored in the register.

Defining Symbolic Constants: A symbolic constant value can be defined as a preprocessor statement and used in the program as any other constant value. The general form of a symbolic constant is

# define symbolic_name value of constant

Valid examples of constant definitions are:

# define marks 100

# define total 50

# define pi 3.14159

These values may appear anywhere in the program, but must come before it is referenced in the program.

It is a standard practice to place them at the beginning of the program.

Declaring Variable as Constant

The values of some variable may be required to remain constant throughout the program. We can do this by using the qualifier const at the time of initialization.

Example:

Const int class_size = 40;

The const data type qualifier tells the compiler that the value of the int variable class_size may not be modified in the program.

Derived Data Types: The C++ programming language allows programmers to separate program-specific datatypes through the use of classes. Instances of these datatypes are known as objects and can contain member variables, constants, member functions, and overloaded operators defined by the programmer. Syntactically, classes are extensions of the C struct, which cannot contain functions or overloaded operators.

Differences between struct in C and classes in C++: In C++, a structure is a class defined with the struct keyword. Its members are by default public . A class defined with the class keyword has by default private members.

C++ classes have their own members. These members include variables (including other structures and classes), functions (specific identifiers or overloaded operators) known as method, construtors and destructors. Members are declared to be either publicly or privately accessible using the public: and private: access specifiers respectively. Any member encountered after a specifier will have the associated access until another specifier is encountered. There is also inheritance between classes which can make use of the protected: specifier.

#include<iostream.h>

#include<stdio.h>

class play

{

 int playcode;

 char playtitle [25];

 float duration;

 int noofscenes;

public:

play()

{

 duration=45;

 noofscenes=5;

}

void newplay()

{

 cout<<"\n enter the play code";

 cin>>playcode;

 cout<<"\n enter the play title";

 gets(playtitle);

}

void moreinfo(float a,int b)

{

 duration=a;

 noofscenes=b;

}

void showplay()

{

 cout<<playcode<<playtitle<<duration<<noofscenes;

}

};

PROGRAMS OF STANDARD METHODS IN C++ LANGUAGE

15.3Bisection Method (Section 2.7)

 

Flow-chart 

Refer to Section 14.3, page 674

Program

/* Bisection Method */

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

float f(float x)

{

return (x*x*x - 4*x - 9);

}

void bisect(float *x,float a,float b,int *itr)

{

*x = (a + b)/2;

++(*itr);

cout << "Iteration no." <<setw(3) << *itr

<< "X = " << setw(7) << setprecision(5)

<< *x << endl;

}

int main()

{

int itr = 0, maxitr;

float x, a, b, aerr, x1;

cout << "Enter the values of a,b,"

 << "allowed error, maximum iterations" << endl;

cin >> a >> b >> aerr >> maxitr;

cout << fixed;

bisect(&x,a,b,&itr);

do

{

 if (f(a)*f(x) < 0)

 b = x;

 else

 a = x;

 bisect (&x1,a,b,&itr);

 if (fabs(x1-x) < aerr)

 {

cout << "After" << itr << "iterations, root"

 << "=" << setw(6) << setprecision(4)

 << x1 << endl;

 return 0;

 }

 x = x1;

} while (itr < maxitr);

cout << "Solution does not converge,"

 << "iterations not sufficient" << endl;

return 1;

}


NOTES: a, b are the limits in which the root lies

 aerr is the allowed error

 itr is a counter which keeps track of the number of iterations performed

 maxitr is the maximum number of iterations to be performed

 x is the value of root at n th iteration

 x1 is the value of root at ( n + 1)th iteration.

 Function Bisect: 

 Purpose: Performs and prints the result of one iteration

 Variables: x is the result of the current iteration.



Computer Solution of Example 2.15 (a)

Enter the values of a, b, allowed error, maximum iterations

3 2.0001 20

Iteration No. 1 X = 2.50000

Iteration No. 2 X = 2.75000

Iteration No. 3 X = 2.62500

Iteration No. 4 X = 2.68750

Iteration No. 5 X = 2.71875

Iteration No. 6 X = 2.70313

Iteration No. 7 X = 2.71094

Iteration No. 8 X = 2.70703

Iteration No. 9 X = 2.70508

Iteration No.10 X = 2.70605

Iteration No.11 X = 2.70654

Iteration No.12 X = 2.70630

Iteration No.13 X = 2.70642

Iteration No.14 X = 2.70648

After 14 iterations, root = 2.7065

15.4Regula-Falsi Method (Section 2.8)

 

Flow-chart 

 Refer to Section 14.4, page 676 

Program

/* Regula Falsi Method */

#include <isostream.h>

#include <iomanip.h>

#include <math.h>

float f(float x)

{

return cos(x)-x*exp(x);

}

void regula (float *x, float x0, float x1,

 float fx0, float fx1, int *itr)

{

*x = x0-((x1-x0)/(fx1-fx0))*fx0;

++(*itr);

cout << "Iteration no." << setw(3) << *itr

<< "X = " << setw(7) << setprecision(5)

<< *X << endl;

}

int main()

{

int itr=0, maxitr;

float x0,x1,x2,x3,aerr;

cout << "Enter the values for x0,x1,"

<< "allowed error,maximum iterations" << endl;

cin >> x0 >> x1 >> aerr >> maxitr;

regula(&x2,x0,x1,f(x0),f(x1),&itr);

cout << fixed;

do

{

if (f(x0)*f(x2) < 0)

 x1 = x2;

else

x0 = x2;

regula(&x3,x0,x1,f(x0),f(x1),&itr);

if (fabs(x3-x2) < aerr)

{

cout << "After" << itr << "iterations,"

 << "root = " << setw(6) << setprecision(4)

 << x3 << endl;

return 0;

}

x2=x3;

} while(itr < maxitr);

cout << "Solution does not converge,"

<< "iterations not sufficient" << endl;

return 1;

}


Notes: f(x) = 0 is the equation whose root is to be found

x0, x1 are units in which root lies

aerr is allowed error

maxitr is maximum number of iterations to be performed

itr is a counter which keeps track of the number of iterations performed

x2 is value of root at n th iteration

x3 is value of root at ( n + 1)th iteration

Function Regula: 

Purpose: Performs and prints the results of one iteration.

Variables: x is value of root at n th iteration

fx0, fx1 are values of f ( x ) at x 0 and x , 1 respectively.



Computer Solution of Example 2.20

Enter the values for x0, x1, allowed error, maximum iterations

0 1.0001 20

Iteration No. 1 X = 0.31467

Iteration No. 2 X = 0.44673

Iteration No. 3 X = 0.49402

Iteration No. 4 X = 0.50995

Iteration No. 5 X = 0.51520

Iteration No. 6 X = 0.51692

Iteration No. 7 X = 0.51748

Iteration No. 8 X = 0.51767

Iteration No. 9 X = 0.51773

After 9 iterations, root = 0.5177

15.5Newton Raphson Method (Section 2.11)

 

Flow-chart 

 Refer to Section 14.5, page 679 

Program

/* Newton Raphson Method */

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

float f(float x)

{

return x*log10(x)-1.2;

}

float df(float x)

{

return log10(x) + 0.43429;

}

int main()

{

int itr,maxitr;

float h,x0,x1,aerr;

cout << "Enter x0,allowed error,"

<< "maximum iterations" << endl;

cin >> x0 >> aerr >> maxitr;

cout << fixed;

for (itr=1;itr<=maxitr;itr++)

{

 h = f(x0)/df(x0);

 x1 = x0-h;

 cout << "Iteration no." << setw(3) << itr

<< "X = " << setw(9) << setprecision(6)

<< x1 << endl;

 if (fabs(h) < aerr)

 {

 cout << "After" << setw(3) << itr

<< "iterations, root = "

<< setw(8) << setprecision(6) << x1;

 return 0;

}

 x0 = x1;

}

cout << "Iterations not sufficient,"

 << "solution does not converge" << endl;

return 1;

}


Notes: F ( x ) = 0 is the equation whose root is to be found

df ( x ) is the derivatives of f ( x ) w.r.t. x x0 is value of root of n th iteration

x1 is value of root of ( n + 1)th iteration

aerr is allowed error

maxitr is maximum no. of iterations to be performed

itr is a counter which keeps track of the number of iterations performed.



Computer Solution of Example 2.32

Enter x0, allowed error, maximum iterations

2.000001 10

Iteration No. 1 X = 2.813170

Iteration No. 2 X = 2.741109

Iteration No. 3 X = 2.740646

Iteration No. 4 X = 2.740646

After 4 iterations, root = 2.740646

15.6Mullers Method (Section 2.13)

 

Flow-chart 

 Refer to Section 14.6, page 681 

Program

/* Muller's Method */

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

#define I 2

float y(float x)

{

return cos(x)-x*exp(x);

}

int main()

{

int i,itr,maxitr;

float x[4],li,di,mu,s,l,aerr;

cout << "Enter the initial"

"approximations" << endl;

for (i = I-2;i<3;i++)

 cin >> x[i];

cout << "Enter allowed error,"

"maximum iterations" << endl;

cin >> aerr >> maxitr;

cout << fixed;

for(itr = 1;itr <= maxitr;itr++)

{

 li = (x[I]-x[I-1])/(x[I-1]-x[I-2]);

 di = (x[I]-x[I-2])/(x[I-1]-x[I-2]);

 mu = y(x[I-2])*li*li

- y(x[I-1])*di*di

+ y(x[I])*(di+li);

 s = sqrt((mu*mu - 4*y(x[I])*di*li

*(y(x[I-2])*li-y(x[I-1])

 *di + y(x[I]))));

 if (mu < 0)

l = (2*y(x[I])*di)/(-mu+s);

 else

l = (2*y(x[I])*di)/(-mu-s);

 x[I+1] = x[I]+l*(x[I] - x[I-1]);

 cout << "Iteration no. " << setw(3) << itr

<< "X = " << setw(7) << setprecision(5)

<< x[I+1] << endl;

 if (fabs(x[I+1]-x[I]) < aerr)

 {

 cout << "After" << setw(3) << itr

<< "iterations, the solution is"

<< setw(6) << setprecision(4)

<< x[I+1] << endl;

 return 0;

 }

 for (i=I-2;i<3;i++)

 x[i] = x[i+1];

 }

cout << "Iterations not sufficient,"

 << "solution does not converge" << endl;

return 1;



}


NOTES: y ( x ) = 0 is the equation whose root is to be found

x is an array which holds the three approximations to the root and the new improved value

I is defined as 2 in the program. This has been done because in C , array subscripts always start from zero and cannot be negative. Use of I facilitates more readable expressions. For e.g., x [0] can be written as x [I  2] which looks more close to xi 2  it actually represents.

li is i

di is δi

mu is μi

s is √[12  4yi δi i(yi2 i  i1δi + yi)]

l is 



Computer Solution of Example 2.34

Enter the initial approximations

-1 0 1

Enter allowed error, maximum iterations

.0001 10

Iteration No. 1 X = 0.44152

Iteration No. 2 X = 0.51255

Iteration No. 3 X = 0.51769

Iteration No. 4 X = 0.51776

After 4 iterations, the solution is 0.5178

15.7Multiplication of Matrices [Section 3.2 (3)4]

 

Flow-chart 

 Refer to Section 14.7, page 684 

Program

/* Multiplication of matrices */

#include <iostream.h>

#include < iomanip.h>

#include <math.h>

#define MAX 20

typedef float matrix[MAX][MAX];

void getelems(matrix x,int m,int n)

{

int i,j;

for(i=0;i<m;i++)

 for(j=0;i<m;i++)

cin >> x[i][j];

}

void printsol(matrix x,int m,int n)

{

int i,j;

for (i=0;i<m;i++)

{

for (j=0;j<n;j++)

cout << setw(5) << setprecision(1)

 << x[i][j];

cout << endl;

}

}

void matmul(matrix a,matrix b,matrix c,

 int l, int m,int p, int q)

{

float s;

int i,j,k;

cout << "Enter the elements of the"

<< "first matrix" << endl;

getelems(a,l,m);

cout << "Enter the elements of the"

<< "second matrix" << endl;

getelems(b,p,q);

for (i=0;i<l;i++)

 for (j=0;j<q;j++)

 {

 s = 0;

 for (k=0;k<m;k++)

 s += a[i][k]*b[k][j];

 c[i][j] = s;

 }

cout << "The solution is" << endl;

printsol(c,l,q);

}

int main()

{

matrix a,b,c;

int l,m,p,q;

cout << "Enter the row, column of the"

<< "first matrix" << endl;

cin >> 1 >> m;

cout << "Enter the row, column of the"

"second matrix" << endl;

cin >> p >> q;

cout << fixed;

if (m!=p)

{

 cout << "The two matrices cannot"

<< "be multiplied" << endl;

 return 1;

}

else

{

matmul(a,b,c,l,m,p,q);

return 0;

}

}


Notes: MAX is largest number of rows or columns any matrix can have. (If MAX. = 20, 11 × 20, and 20 × 13 matrices can be multiplied but 1 × 21, 22 × 1 matrices cannot be multiplied till MAX > = 22

 A, B are arrays which contain the matrices to be multiplied

 C is array which contains the result of multiplication

 L, M are respectively the rows, columns of first matrix

 P, Q are respectively the rows, columns of second matrix

 Function getelems 

 Purpose: To input a m × n matrix

 Function Matmul .

 Purpose: It performs the multiplication of matrices after taking them from the user and prints the result.

 Variables: i, j, k are loop control variables.



Computer Solution of Example 3.7

Enter the row, column of the first matrix

3 3

Enter the row, column of the second matrix

3 2

Enter the elements of the first matrix

0 1 2

1 2 3

2 3 4

Enter the elements of the second matrix

1	-2

-1	 0

2	-1

The solution is

3.0 -2.0

5.0 -5.0

7.0 -8.0

15.8Gauss Elimination Method [Section 3.4 (3)]

 

Flow-chart 

 Refer to Section 14.8, page 687 

 Program

/* Gauss elimination method */

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

#define N 4

int main()

{

float a[N][N+1],x[N],t,s;

int i,j,k;

cout << "Enter the elements of the"

 "augmented matrix rowwise" << endl;

cout << fixed;

for (i=0;i<N;i++)

 for (j=0;j<N+1;j++)

cin >> a[i][j]);

for (j=0;j<N-1;j++)

 for (i=j+1;i<N;i++)

 {

t= a[i][j]/a[j][j];

for (k=0;k<N+1;k++)

a[i][k] -= a[j][k]*t;

 }

/* now printing the

upper triangular matrix */

cout << "The upper triangular matrix"

 "is:-" << endl;

for (i=0;i<N;i++)

{

for (j=0;j<N+1;j++)

 cout << setw(8) << setprecision(4) << a[i][j];

cout << endl;

}

/* now performing back substitution */

for (i=N-1;i>=0;i--)

{

s = 0;

for (j=i+1;j<N;j++)

s += a[i][j]*x[j];

x[i] = (a[i][N]-s)/a[i][i];

}

/* now printing the results */

cout << "The solution is:- " << endl;

for (i=0;i<N;i++)

 cout << "x[" << setw(3) << i+1 << "] = "

 << setw(7) << setprecision(4) << x[i] << endl;

return 0;

}


NOTES: N is the number of unknowns

a is an array which holds the Augmented Matrix

x is an array which will contain values of unknowns

i, j, k are loop control variables.



Computer Solution of Example 3.19 

Enter the elements of augmented matrix rowwise

[image: image]

The solution is:-

X[ 1] = 5.0000

X[ 2] = 4.0000

X[ 3] = -7.0000

X[ 4] = 1.0000

15.9Gauss-Jordan Method [Section 3.4 (4)]

 

Flow-chart 

 Refer to Section 14.9, page 689 

Program

/* Gauss jordan method */

#include <iostream.h>

#include <iomanip.h>

#define N 4

int main()

{

float a[N][N+1],t;

int i,j,k;

cout << "Enter the elements of the"

<< "augmented matrix rowwise" << endl;

for (i=0;i<N;i++)

for (j=0;j<N+1;j++)

cin >> a[i][j];

/* now calculating the values

 of x1,x2,....,xN */

cout << fixed;

 for (j=0;j<N;j++)

for (i=0;i<N;i++)

if (i!=j)

{

t = a[i][j]/a[j][j];

for (k=0;k<N+1;k++)

 a[i][k] -= a[j][k]*t;

}

/* now printing the diagonal matrix */

cout << "The diagonal matrix is:-" << endl;

for (i=0;i<N;i++)

{

 for (j=0;j<N+1;j++)

 cout << setw(9) << setprecision(4) << a[i][j];

 cout << endl;

}

/* now printing the results */

cout << "The solution is:- " << endl;

for (i=0;i<N;i++)

 cout << "x[" << setw(3) << i+1 << "] ="

<< setw(7) << setprecision(4)

<< a[i][N]/a[i][i] << endl;

return 0;

}


 NOTES : a is an array which holds the augmented matrix

N is the number of unknowns. e.g., if it is a 3 × 3 system of equations, N = 3, and if 5 × 5 system take N = 5.

i, j, k are loop variables.



Computer Solution of Example 3.22

Enter elements of augmented matrix rowwise

[image: image]

The solution is:-

X[ 1] = 5.0000

X[ 2] = 4.0000

X[ 3] = -7.0000

X[ 4] = 1.0000

15.10Factorization Method [Section 3.4 (5)]

 

Flow-chart 

 Refer to Section 14.10, page 691 

Program

/* Factorization method */

#include <iostream.h>

#include <iomanip.h>

#define N 3

typedef float matrix[N][N];

matrix l,u,a;

float b[N],x[N],v[N];

void urow(int i)

{

float s;

int j,k;

for (j=i;j<N;j++)

{

 s = 0;

 for (k=0;k<N-1;k++)

 s += u[k][j]*l[i][k];

 u[i][j] = a[i][j]-s;

}

}

void lcol(int j)

{

float s;

int i,k;

for (i=j+1;i<N;i++)

{

s = 0;

for (k=0;k<=j-1;k++)

s += u[k][j]*l[i][k];

l[i][j] = (a[i][j]-s)/u[j][j];

}

}

void printmat(matrix x)

{

int i,j;

for (i=0;i<N;i++)

{

 for (j=0;j<N;j++)

 cout << setw(8) << setprecision(4) << x[i][j];

 cout << endl;

}

}

int main()

{

int i,j,m;

float s;

cout << "Enter the elements of augmented"

<< " matrix rowwise" << endl;

for (i=0;i<N;i++)

{

 for (j=0;j<N;j++)

 cin >> a[i][j];

 cin >> b[i];

}

cout << fixed;

/* now calculating the elements of l and u */

for (i=0;i<N;i++)

 l[i][i] = 1.0;

for (m=0;m<N;m++)

{

 urow(m);

 if (m < N-1) lcol(m);

}

/* now printing the elements of l and u */

cout << setw(14) << "U" << endl; printmat(u);

cout << setw(14) << "L" << endl; printmat(l);

/* now solving LV=B

by forward substitution */

for (i=0;i<N;i++)

{

 s = 0;

 for (j=0;j<=i-1;j++)

s += l[i][j]*v[j];

 v[i] = b[i]-s;

}

/* now solving UX=V

 by backward substitution */

for (i=N-1;i>=0;i--)

{

s = 0;

for (j=i+1;j<N;j++)

s += u[i][j]*x[j];

x[i] = (v[i]-s)/u[i][i];

}

/* printing the results */

cout << "The solution is:-" << endl;

for (i=0;i<N;i++)

 cout << "x[" << setw(3) << i+1 << "] = "

<< setw(6) << setprecision(4)

<< x[i] << endl;

return 0;

}


Notes: 

N is the no. of unknowns

l is the lower triangular matrix

u is the upper triangular matrix

a is the coefficient matrix

b is the constant matrix (Column matrix)

v is a matrix such that lv = b 

x will contain the values of unknowns

i, j, m are loop control variables

Function urow (I) 

Purpose: Calculates elements of i th row of u 

Variables: m is the no. of unknowns

j, k are loop control variables

Function Lcol (J) 

Purpose: Calculates elements of j th column of l 

Variables: m is the no. of unknowns

i, k are loop control variables.

Function Printmat 

Purpose: To print an N × N matrix.



Computer Solution of Example 3.23

Enter the elements of augmented matrix rowwise

[image: image]

[image: image]

The solution is:

x[1] = 0.8750

x[2] = 1.1250

x[3] = - 0.1250

Computer Solution of Example 3.24

Enter the elements of augmented matrix rowwise

[image: image]

The solution is:-

x[ 1] = 5.0000

x[ 2] = 4.0000

x[ 3] = -7.0000

x[ 4] = 1.0000

15.11Gauss-Seidal Iteration Method [Section 3.5 (2)]

 

Flow-chart 

 Refer to Section 14.11, page 695 

Program

/* Gauss Seidal method */

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

#define N 3 int main()

{

float a[N][N+1],x[N],aerr,maxerr, t,s,err;

int i,j,itr,maxitr;

/* first initializing the array x */

for (i=0;i<N;i++) x[i]=0;

cout << "Enter the elements of the"

<< "augmented matrix rowwise" << endl;

for (i=0;i<N;i++)

for (j=0;j<N+1;j++)

cin >> a[i][j];

cout << "Enter the allowed error,"

 << "maximum iterations" << endl;

 cin >> aerr >> maxitr;

cout << fixed;

cout << "Iteration" << setw(6) << "x[1]"

 << setw(11) << "x[2]"

 << setw(11) << "x[3]" << endl;

for (itr=1;itr<=maxitr;itr++)

{

maxerr = 0;

for (i=0;i<N;i++)

{

s = 0;

for (j=0;j<N;j++)

 if (j!=i) s += a[i][j]*x[j];

t = (a[i][N]-s)/a[i][i];

err = fabs(x[i]-t);

if (err >> maxerr) maxerr = err;

x[i] = t;

}

cout << setw(5) << itr;

for (i=0;i<N;i++)

cout << setw(11) << setprecision(4) << x[i];

cout << endl;

if (maxerr << aerr)

{

cout << "Converges in" << setw(3) << itr

 << "iterations" << endl;

for (i=0;i<N;i++)

cout << "x[" << setw(3) << i+1 << "] = "

 << setw(7) << setprecision(4) << x[i]

 << endl;

 return 0;

}

}

cout << "Solution does not converge,"

<< "iterations not sufficient" << endl;

return 1;

}


 NOTES : N is the number of unknowns

a is an array which holds the augmented matrix

x is an array which will hold the values of unknowns

aerr is allowed error

maxitr is the maximum no. of iterations to be performed

 itr is the counter which keeps track of no. of iterations performed

err is error in value of xi

maxerr is maximum error in any value of xi after an iteration.



Computer Solution of Example 3.28

[image: image]

Computer Solution of Example 3.30

[image: image]


15.12Power Method (Section 4.11)

 

Flow-chart 

 Refer to Section 4.12, page 699 

Program

/* Power method for finding largest eigen value */

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

#define N 3

typedef float array[N];

void findmax(float *max,array x)

{

int i;

*max = fabs(x[0]);

for (i=1;i<N;i++)

if (fabs(x[i]) > *max)

 *max = fabs(x[i]);

}

int main()

{

float a[N][N],x[N],r[N],maxe,

 err,errv,aerr,e,s,t;

int i,j,k,itr,maxitr;

cout << "Enter the matrix rowwise" << endl;

for (i=0;i<N;i++)

for (j=0;j<N;j++)

cin << a[i][j];

cout << "Enter the initial approximation"

<< "to the eigen vector" << endl;

for (i=0;i<N;i++)

 cin >> x[i];

cout << "Enter the allowed error,"

<< "maximum iterations" << endl;

cin >> aerr >> maxitr;

cout << fixed;

cout << "Itr no." << setw(11) << "Eigenvalue"

<< setw(19) << "EigenVector" << endl;

/*now finding the largest eigenvalue in

 the initial approx. to eigen vector */

findmax(&e,x);

/* now starting the iterations */

for (itr=1;itr<=maxitr;itr++)

{

/* loop to multiply the matrices a and x */

for (i=0;i<N;i++)

{

s = 0;

 for (k=0;k<N;k++)

 s += a[i][k]*x[k];

 r[i]=s;

}

findmax(&t,r);

for (i=0;i<N;i++) r[i] /= t;

maxe = 0;

for (i=0;i<N;i++)

{

err = fabs(x[i]-r[i]);

if (err > maxe) maxe = err;

x[i] = r[i];

}

errv = fabs(t-e);

e = t;

cout << setw(4) << itr

 << setw(12) << setprecision(4)

 << e;

for (i=0;i<N;i++)

cout << setw(9) << setprecision(3)

 << x[i];

cout << endl;

if ((errv <= aerr) && (maxe <= aerr))

{

cout << "Converges in" << itr

 << "iterations" << endl;

cout << "Largest eigen value ="

 << setw(6) << setprecision(2)

 << e << endl;

cout << "Eigen Vector:-" << endl;

for (i=0;i<N;i++)

cout << "x[" << setw(3) << i+1 << "] = "

 << setw(6) << setprecision(2)

 << x[i] << endl;

cout << endl;

return;

}

}

 cout << "Solution does not converge,"

<< "iterations not sufficient" << endl;

 return 1;

}


 NOTES : N is number of rows (or columns) in square matrix

 a is the square matrix

 x is the eigenvector at nth iteration

 r is the eigenvector at (n + 1)th iteration

 e is the eigenvalue at nth iteration

 t is the eigenvalue at (n + 1)th iteration

 aerr is the allowed error in eigenvalue and eigenvector

 maxitr is the maximum number of iterations to be performed

 err is error in an element of the eigenvector

 maxe is the maximum error in any element of the eigenvector

 errv is error in the eigenvalue

 itr, i, k are loop control variables.

 Function findmax:

Purpose: Finds the maximum element in array x(a N-element array) and returns it in Max .



Computer Solution of Example 4.11

[image: image]

15.13Method of Least Squares (Section 5.5)

 

Flow-chart 

 Refer to Section 4.13, page 703 

Program

/* Parabolic fit by least squares */

#include <iostream.h>

#include <iomanip.h>

int main()

{

float augm[3][4]={{0,0,0,0},{0,0,0,0},{0,0,0,0}};

float t,a,b,c,x,y,xsq;

int i,j,k,n;

cout << "Enter the no. of pairs of"

<<"observed values:" << endl;

cin >> n;

cout << fixed;

augm [0] [0] = n;

for (i=0;i<n;i++)

{

 cout << "Pair no. " << i+1 << endl;

 cin >> x >> y;

 xsq = x*x;

 augm[0][1] += x;

 augm[0][2] += xsq;

 augm[1][2] += x*xsq;

 augm[2][2] += xsq*xsq;

 augm[0][3] += y;

 augm[1][3] += x*y;

 augm[2][3] += xsq*y;

}

augm[1][1] = augm[0][2];

augm[2][1] = augm[1][2];

augm[1][0] = augm[0][1];

augm[2][0] = augm[1][1];

cout << "The augmented matrix is:-" << endl;

for (i=0;i<3;i++)

{

for (j=0;j<4;j++)

 cout << setw(9) << setprecision (4) << augm[i][j];

 cout << endl;

}

/* Now solving for a,b,c

by Gauss Jordan Method */

for (j=0;j<3;j++)

 for (i=0;i<3;i++)

if (i!=j)

{

 t = augm[i][j]/augm[j][j];

 for (k=0;k<4;k++)

augm[i][k] -= augm[j][k]*t;

}

a = augm[0][3]/augm[0][0];

b = augm[1][3]/augm[1][1];

c =augm[2][3]/augm[2][2];

cout << setprecision(4)

<< "a = " << setw(8) << a

<< "b = " << setw(8) << b

<< "c = " << setw(8) << c

<< endl;

return 0;

}


Notes: augm is the augmented matrix.

n is the number of data points.



Computer Solution of Example 5.7

Enter the no. of pairs of observed values:

7

Pair No. 1

1 1.1

Pair No. 2

1.5 1.3

Pair No. 3

2 1.6

Pair No. 4

2.5 2

Pair No. 5

3.0 2.7

Pair No. 6

3.5 3.4

Pair No. 7

4.0 4.1

The augmented matrix is:-

[image: image]

15.14Method of Group Averages (Section 5.9)

 

Flow-chart 

 Refer to Section 14.14, page 706 

Program

#include<iostream.h>

#include<conio.h>

#include<iomanp.h>

void main()

{

int t[10],n,i,ts1=0,ts2=0;

float a,b,rs1=0,rs2=0,r[10],x1,y1,x2,y2;

clrscr();

cout<<"enter the no. of observations"<<endl;

cin>>n;

cout<<"enter the different values of t"<<endl;

for(i=1;i<=n;i++)

{

cin>>t[i];

}

cout<<"\nenter the corresponding values of r"<<endl;

for(i=1;i<=n;i++)

{

cin>>r[i];

}

for(i=1;i<=(n/2);i++)

{

ts1+=t[i];

rs1+=r[i];

}

for(i=((n/2)+1);i<=n;i++)

{

ts2+=t[i];

rs2+=r[i];

}

x1=ts1/(n/2);

y1=rs1/(n/2);

x2=ts2/(n/2);

y2=rs2/(n/2);

b=(y2-y1)/(x2-x1);

a=y1-(b*x1);

cout<<"the value of a&b comes out to be

"<<endl<<"a="<<setw(5)<<setprecision(3)<<a<<"\n"<<"b="<< setw(5)<<setprecision(3)<<b;

getch();

}

Computer Solution of Example 5.16 

Enter the no. of observations

8

enter the different values of t

40 50 60 70 80 90 100 110

enter the corresponding values of r

1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3 1030.8

the value of a&b comes out to be

a=1090.256

b=-0.534

15.15Method of Moments (Section 5.11)

 

Flow-chart 

 Refer to Section 14.15, page 708 

Program

#include<iostream.h>

#include<conio.h>

#include<iomanip.h>

void main()

{

int x[10],y[10],i,n,yt=0,x1yt=0;

float a,b,l1,l2,c1,c2,c3,d,d1,d2,m1,m2,h;

clrscr();

cout<<"enter the no. of observations"<<endl;

cin>>n;

cout<<"enter the different values of x"<<endl;

for(i=1;i<=n;i++)

{

cin>>x[i];

}

cout<<"\nenter the corresponding values of y"<<endl;

for(i=1;i<=n;i++)

{

cin>>y[i];

}

h=x[2]-x[1];

for(i=1;i<=n;i++)

{

yt+=y[i];

x1yt+=x[i]*y[i];

}

m1=h*yt;

m2=h*x1yt;

11=(-(h/2)+x[1]);

12=((h/2)+x[n]);

c1=(l2-l1);

c2=((l2*l2)-(l1*l1)/2);

c3=((l2*l2*l2)-(l1*l1*l1*)/3);

cout<<"The observed equations

are"<<endl<<cl<<"a+"<<c2<<"b"<<endl<<"&"<<c2<<"a+"<<c3<<"b";

d=c2/c1;

d1=d*c1;

d2=d*c2;

m1=d*m1;

b=(m2-m1)/(c3-d2);

a=(m1-(d2*b))/d1;

cout<<"\nOn solving these equations we get

a="<<setw(5)<<setprecision(2)<<a<<"

&b="<<setw(5)<<setprecision(2)<<b<<endl;

cout<<"hence the required equation is

y="<<setw(5)<<setprecision(2)<<a<<"+"<<

setw(5)<<setprecision(2)<<b<<"x";

getch();

}

Solution of Example 5.20

Enter the no. of observations

4

enter the different values of x

1 2 3 4

enter the corresponding values of y

16 19 23 26

the observed equations are

4.00a+10.00b=84.00

&10.00a+30.33b=227.00

on solving these equations we get a=13.03&b=3.19

hence the required equation is y=13.03+3.19x

15.16Newtons Forward Interpolation Formula (Section 7.2)

 

Flow-chart 

 Refer to Section 4.16, page 711 

Program

/* Newton's forward interpolation */

#include <iostream.h>

#include <iomanip.h>

#define MAXN 100

#define ORDER 4 int main()

{

float ax[MAXN+1],ay[MAXN+1],

 diff[MAXN+1][ORDER+1],

 nr=1.0,dr=1.0,x,p,h,yp;

int n,i,j,k;

cout << "Enter the value of n" << endl;

cin >> n;

cout << "Enter the values in form x,y" << endl;

for (i=0;i<=n;i++)

cin >> ax[i] >> ay[i];

cout << "Enter the values of x"

<< "for which value of y is wanted" << endl;

cin >> x;

cout << fixed;

h=ax[1]ax[0];

/* now making the diff. table */

/* calculating the 1st order differences */

for (i=0;i<=n-1;i++)

diff[i][1] = ay[i+1]-ay[i];

/* calculating the second & higher order differences.*/

for (j=2;j<=ORDER;j++)

for (i=0;i<=n-j;i++)

diff [i][j] = diff[i+1][j-1]

 -diff[i][j-1];

/* now finding x0 */

i=0;

while (!(ax[i] > x)) i++;

/* now ax[i] is x0 & ay[i] is y0 */

i--;

p = (x-ax[i])/h; yp=ay[i];

/* Now carrying out interpolation */

for (k=1;k<=ORDER;k++)

{

nr *= p-k+1; dr *=k;

yp += (nr/dr)*diff[i][k];

}

cout << "When x = "

<< setw(6) << setprecision(1)

<< x

<< " y = "

<< setw(6) << setprecision(2)

<< yp << endl;

return 0;

}


NOTES: MAXN is the maximum value of N 

ORDER is the maximum order in the difference table

ax is an array containing values of x ( x 0, x 1,......, x n)

ay is an array containing values of y ( y 0, y 1,....., y n)

diff is a 2D Array containing the difference table

h is spacing between values of X

x is value of x at which value of y is wanted

yp is calculated value of Y

nr is numerator of the terms in expansion of yP 

dr is denominator of the terms in expansion of yP .



Computer Solution of Example 7.1

Enter the value of n

6

Enter the values in form x, y

[image: image]

Enter the values of x for which value of y is wanted

218

When x = 218.0, y = 15.70

15.17Lagranges Interpolation Formula (Section 7.12)

 

Flow-chart 

 Refer to Section 4.17, page 714 

Program

/*Lagrange's Interpolation*/

#include <iostream.h>

#include <<iomanip.h>

#define MAX 100 int main()

{

float ax [MAX+1],ay[MAX+1],nr,dr,x,y=0;

int i,j,n;

cout << "Enter the value of n" << endl;

cin >> n;

cout << "Enter the set of values" << endl;

for (i=0;i<=n;i++)

 cin >> ax[i] >> ay[i];

cout << "Enter the value of x for which"

<< "value of y is wanted" << endl;

cin >> x;

cout << fixed;

for (i=0;i<=n;i++)

{

nr=dr=1;

for(j=0;j<=n;j++)

if (j!=i)

 {

nr *= x-ax[j];

dr *= ax[i]-ax[j];

 }

 y += (nr/dr)*ay[i];

}

cout << "When x="

<< setw(4) << setprecision(1)

<< x << "y="

<< setw(7) << setprecision(1)

<< y << endl;

return 0;

}


 NOTES : MAX is the maximum value of n 

ax is an array containing values of x ( x 0, x 1,....., x n)

ay is an array containing values of y ( y 0, y 1,......, y n)

x is the value of x at which value of y is wanted

y is the calculated value of y 

nr is numerator of the terms in expansion of y 

dr is denominator of the terms in expansion of y .



Computer Solution of Example 7.17

Enter the value of n

4

Enter the set of values

5 	150

7 	392

11 	1452

13 	2366

17 	5202

Enter the value of x for which value of y is wanted

9

When x = 9.0 y = 810.0

15.18Newtons Divided Difference Formula (Section 7.14)

 

Flow-chart 

 Refer to Section 14.18, page 716 

Program

#include<iostream.h>

#include<conio.h>

void main()

{

int x[10],y[10],p[10];

int k,f,n,i,j=1,f1=1,f2=0;

clrscr();

cout<<"enter the no. of observations\n";

cin>>n;

cout<<"enter the different values of x\n";

for(i=1;i<=n;i++)

{

cin>>x[i];

}

cout<<"enter the corresponding values of y\n";

for(i=1;i<=n;i++)

{

cin>>y[i];

}

f=y[1];

cout<<"enter the value of 'k' in f(k) you want to evaluate\n";

cin>>k;

do

{

for(i=1;i<=n-1;i++)

{

p[i]=((y(i+1)-y[i])/(x[i+j]-x[i]));

y[i]=p[i];

}

for(i=1;i<=j;i++)

{

f1*=(k-x[i]);

} f2+=(y[1]*f1); f1=1;

n--;

j++;

} while(n!=1); f+=f2; cout<<"f("<<k<<")="<<f; getch();

}

Computer Solution of Example 7.23

Enter the no. of observations

5

Enter the different values of x

5 7 11 13 17

enter the corresponding values of y

150 392 1452 2366 5202

enter the value of 'k' in f(k) you want to evaluate

9 f(9)=810

15.19Derivatives Using Forward Difference Formulae (Section 8.2)

 

Flow-chart 

 Refer to Section 14.19, page 718 

Program

/* derivatives using forward difference*/

#include<iostream.h>

#include<math.h>

#include<iomanip.h>

#include<conio.h>

void main( )

{

float *x=NULL, *y=NULL,max;

float *tmp = NULL;

float xval,h,p,x0,y0,yval,sum;

int pos,i;

clrscr( );

cout<<"enter the no of comparisons";

cin>>max;

x=new float[max];

y=new float[max];

cout<<"enter the values in cv table for x and y";

for (i=0;i<max;i++)

{

cout<<"\n value for "<<i<<"x";

cin>>x[i];

cout<<"\n value for "<<i<<"y";

cin>>y[i];

}

cout<<"enter the value of x";

cin>>xval;

for(i=0;i<max;i++)

{

if(x[i]>=xval)

{

pos=i;

break;

}

}

x0=x[pos];

y0=y[pos];

cout<<"\nx0 is "<<x0<<"y0 is "<<y0<<"at"<<pos;

h=x[1]-x[0];

p=(xval-x0)/h;

if(pos<(max))

{

int i,l,j;

// calculating no of elements in array

l=max-pos;

tmp= new float [l* l];

cout<<"\n";

for(i=0;i<l;i++)

{

for(j=0;j<=l;j++)

{

tmp[i*l+j]=0;

}

cout<<"\n";

}

cout<<"\n size of new array" <<l<<"\n";

//copying values of y in array

for(i=0, j=pos;i<l;i++, j++)

{

tmp[i]=y[j];

}

cout<<"\n";

for(i=1;i<l;i++)

{

for(j=0; j<l-i; j++)

{

tmp[i*l+j]=tmp[(i-1)*l+(j+1)]-tmp[(i-1)*l+(j)];

}

}

cout<<"\nvalues are \n";

for(i=0;i<l;i++)

{cout<<x[i+pos]<<"\t";

 for(j=0; j<l; j++)

 {

cout<<setprecision(3)<<tmp[j*l+i]<<"\t|";

 }

 cout<<"\n;

}

//appling newtons forward diffenation using first derivates

sum=0;

int k=1;

for(i=1;i<l;i++)

{

sum=sum+((1.0/i)*tmp[i*tmp[i*l+0]*k);

k=-k;

}

cout<<"\n\n first (dy/dx): "<<sum/h;

int v[]={0,0,1.0, 1.0, 11.0/12.0,5.0/6.0,137.0/180.0};

sum=0;

k=1;

for(i=2;i<l;i++)

 {

sum=sum+(v[i]*tmp[i*l+0]*k);

k=k;

 }

 cout<<"\n\n second (dy/dx): "<<sum/pow(h,2.0);

}

Computer Solution of Example 8.1 

value for 0x1.0

value for 0y7.989

value for 1x1.1

value for 1y8.403

value for 2x1.2

value for 2y8.781

value for 3x1.3

value for 3y9.129

value for 4x1.4

value for 4y9.451

value for 5x1.5

value for 5y9.750

value for 6x1.6

value for 6y10.031

Enter the value of x1.1

x0 is 1.1y0 is 8.403at1



size of new array 6



values are

[image: image]

15.20Trapezoidal Rule (Section 8.5I)

 

Flow-chart 

 Refer to Section 14.20, page 724 

Program

/* Trapezoidal rule.*/

#include <iostream.h>

#include <iomanip.h>

float y(float x)

{

return 1/(1+x*x);

}

int main()

{

float x0,xn,h,s;

int i,n;

cout << "Enter x0,xn,no. of subintervals" << endl;

cin >> x0 >> xn >> n;

cout << fixed;

h = (xn-x0)/n;

s = y(x0)+y(xn);

for (i=1;i<=n-1;i++)

 s += 2*y(x0+i*h);

cout << "Value of integral is"

<< setw(6) << setprecision(4)

<< (h/2)*s << endl;

return 0;

}


 NOTES : y ( x ) is the function to be integrated

 x 0 is x 0

 xN is xn .



Computer Solution of Example 8.10 (i)

Enter x0, xn, no. of subintervals

0 6 6

Value of integral is 1.4108

15.21Simpsons Rule (Section 8.5II)

 

Flow-chart 

 Refer to Section 14.21, page 726 

Program

/* Simpson's rule */

#include <iostream.h>

#include <iomanip.h>

float y(float x)

{

return 1/(1+x*x);

}

int main()

{

float x0,xn,h,s;

int i,n;

cout << "Enter x0,xn, no.of subintervals"

<< endl;

cin >> x0 >> xn >> n;

cout << fixed;

h = (xn-x0)/n;

s = y(x0)+y(xn)+4*y(x0+h);

for (i=3;i<=n-1;i+=2)

 s += 4*y(x0+i*h)+2*y(x0+(i-1)*h);

cout << "Value of integral is"

<< setw(6) << setprecision(4)

<< (h/3)*s << endl;

return 0;

}


NOTE: y(x) is the function to be integrated so that yi = y(xi) = y(x0 + i*h)



Computer Solution of Example 8.10 (ii)

Enter x0, xn, no. of subintervals

0 6 6

Value of integral is 1.3662

15.22Eulers Method (Section 10.4)

 

Flow-chart 

( Refer to Section 14.22, page 727 

Program

/*Euler's Method*/

#include <iostream.h>

#include <iomanip.h>

float df(float x,float y)

{

return x+y;

}

int main()

{

float x0,y0,h,x,x1,y1;

cout << "Enter the values of x0,y0,h,x" << endl;

cin >> x0 >> y0 >> h >> x;

cout << fixed;

x1=x0;y1=y0;

while(1)

{

if(x1>x) return 0;

y1 += h*df(x1,y1);

x1 += h;

cout << "When x = "

 << setw(3) << setprecision(1)

 << x1 << " y = "

 << setw(4) << setprecision(2)

 << y1 << endl;

}

}


 NOTES: df(x, y) is dy/dx

 x0 is xn +0 i.e. , xn 

 x1 is xn +1

 y0 is yn +0 i.e. , yn 

 y1 is yn +1



Computer Solution of Example 10.8

Enter the values of x0, y0, h, x

0 1.1 1

When x = 0.1 y = 1.10

When x = 0.2 y = 1.22

When x = 0.3 y = 1.36

When x = 0.4 y = 1.53

When x = 0.5 y = 1.72

When x = 0.6 y = 1.94

When x = 0.7 y = 2.20

When x = 0.8 y = 2.49

When x = 0.9 y = 2.82

When x = 1.0 y = 3.19

15.23Modified Eulers Method (Section 10.5)

 

Flow-chart 

 Refer to Section 14.23, page 729 

Program

/* Modified Euler's Method*/

#include<iostream.h>

#include<math.h>

#include<iomanip.h>

#include<conio.h>

void main( )

{

clrscr ( );

int i,j;

float x,y,x1=0.0,y1=0.0,h,ms=0.0,flag=0,y2=0.0,t=0.0;

cout<<"\nenter the value of x";

cin>>x;

cout<<"enter the value of y";

cin>>y;

cout<<"enter the height";

cin>>h;

i=7;

j=2;

gotoxy(2,i);

cout<<"x";gotoxy(10,i);cout<<"x+y=y1";gotoxy(28,i);

cout<<"mean slope";gotoxy(45,i);cout<<"old y+.1(mean

slope)new y"; while(x1<x)

{

i++;



 do

 {

i++;

if(flag==0)

{

y1=x1+y;

gotoxy(2,i);cout<<x1;gotoxy(10,i);

cout<<y1;gotoxy(28,i);cout<<ms;

ms=y1;

y2=y+h*ms;

gotoxy(45,i);cout<<y2;

x1=x1+h;

flag=1;

}

else

{

ms=(y1+(x1+y2))/2.0;

t=y+h*ms;

if(y2==t)

{

y2=y+h*ms;

break;

}

gotoxy(2,i);cout<<x1;gotoxy(10,i);cout<<x1<<"+"<<x2;y2=y+h*ms;

gotoxy(28,i);cout<<ms;gotoxy(45,i);cout<<y2;

 }

}while(1);

y=y2;

cout<<"\n";

flag=0;

}

getch( );

}

Computer Solution of Example 10.10

enter the value of x.3

enter the value of y1

enter the height.1

[image: image]

15.24Runge-Kutta Method (Section 10.7)

 

Flow-chart 

 Refer to Section 14.24, page 732 

Program

/* Runge Kutta Method */

#include <iostream.h>

#include <iomanip.h>

float f(float x,float y)

{

return x+y*y;

}

int main()

{

float x0,y0,h,xn,x,y,k1,k2,k3,k4,k;

cout << "Enter the values of x0,y0,"

<< "h,xn" << endl;

cin >> x0 >> y0 >> h >> xn;

x = x0; y = y0;

cout << fixed;

while (1)

{

if (x == xn) break;

k1 = h*f(x,y);

k2 = h*f(x+h/2,y+k1/2);

k3 = h*f(x+h/2,y+k2/2);

k4 = h*f(x+h,y+k3);

k = (k1+(k2+k3)*2+k4)/6;

x += h; y += k;

cout << "When x = " << setprecision(4)"

 << setw(8) << x

 << " y = " << setw(8) << y << endl;

}

return 0;

}


Notes: x0 is starting value of x i.e. , x 0

xn is the value of x for which y is to be determined.



Computer Solution of Example 10.15

Enter the values of x0, y0, h, xn

0.0 1.0 0.2 0.2

When x = 0.1000 y = 1.1165

When x = 0.2000 y = 1.2736

15.25Milnes Method (Section 10.9)

 

Flow-chart 

 Refer to Section 14.25, page 734 

Program

/*Milne predictor corrector*/

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

float x[5],y[5],h;

float f(int i)

{

return x[i]-y[i]*y[i];

}

void corect()

{

y[4] = y[2]+(h/3)*(f(2)+4*f(3)+f(4));

cout << setw(23) << ""

<< setprecision(4)

<< setw(8) << y[4]

<< setw(8) << f(4) << endl;

<< "",y[4],f(4)

}

int main()

{

float xr,aerr,yc;

int i;

cout << "Enter the values of x0,xr,h,"

<< "allowed error" << endl;

cin >> x[0] >> xr >> h >> aerr;

cout << "Enter the value of y[i], i=0, 3" << endl;

for (i=0;i<=3;i++) cin >> y[i];

cout << fixed;

for (i=1;i<=3;i++) x[i] = x[0]+i*h;

cout << setw(5) << "x" << setw(15) << "Predicted"

<< setw(17) << "Corrected" << endl;

cout << setw(11) << "y" << setw(10) << "f"

<< setw(7) << "y" << setw(10) << "f" << endl;

while (1)

{

if(x[3] = xr) return 0;

x[4] = x[3]+h;

y[4] = y[0]+

 (4*h/3)*(2*(f(1)+f(3))-f(2));

cout << setw(6) << setprecision(2) << x[4]

 << setprecision(4)

 << setw(8) << y[4]

 << setw(8) << f(4) << endl;

corect(1);

while (1)

{

yc = y[4];

corect();

if(fabs(yc-y[4]) <= aerr) break;

}

for (i=0;i<=3;i++)

{

x[i] = x[i+1];

y[i] = y[i+1];

}

}

}


NOTE: x is an array such that x [ i ] represents xn+i for e.g., x [0] represent xn 

y is an array such that y [ i ] represents yn+i 

xr is the last value of x at which value of y is required

h is spacing in values of x 

aerr is the allowed error in value of y yc is the latest corrected value for y 

f is the function which returns value of y ¢

corect is a subroutine that calculates the corrected value of y and prints it.



Computer Solution of Example 10.19

Enter the values of x0, xr, h, allowed error

0 1.2.0001

Enter values of y[i]; i = 0, 3

0.02.0795.1762

[image: image]

15.26Adams-Bashforth Method

 

Flow-chart

Refer to Section 14.26, page 736

/*Adams-Bashforth Method*/

#include<iostream.h>

#include<stdio.h>

#include<malloc.h>

#include<math.h>

#include<conio.h>

void main( )

{

float *x, *y, *f;

float h;

int i,size,row;

clrscr( );

cout <<"enter the size";

cin>>size;

x=new float[size+1];

y=new float[size+1];

f=new float[size+1];

for (i=0;i<size;i++)

{

cout<<"enter the value for x["<<i<<"]";

cin>>x[i];

cout<<"enter the value for y["<<i<<"]";

cin>>y[i];

}

h=x[1]-x[0];

// calculating values [f]

for(i=0;i<4;i++)

{

f[i]=pow(x[i],2)*(1.0+y[i]);

}

cout<<"\nvalues for (x) (y) and (f) are\n";

row=16;

for(i=0;i<4;i++)

{

gotoxy(2,row);cout<<"x=";gotoxy(6,row);cout<<x[i];gotoxy(13,row);cout<<"y"<<i-3;gotoxy(16,row);cout<<"=";gotoxy(18,row);cout<<y[i];gotoxy(28,row);cout<<"f"<<i-3;gotoxy(32,row);cout<<"=";gotoxy(35,row);cout<<f[i];

row++;

}

//using predicator

y[size]=y[size-1]+((h/24)*((55*f[size-1])(59*f[size-2])+(37*f[size-

3])-(9*f[size-4])));

x[size]=1.4;

f[size]=pow(x[size],2)*(1.0+y[size]);

gotoxy(2,row);cout<<"x=";

gotoxy(6,row);cout<<x[size];gotoxy(13,row);cout<<"y1";gotoxy(16,row);cout<<"="; gotoxy(18,row);cout<<y[size];gotoxy(28,row);cout<<"f1";gotoxy(32,row);cout<<"="; gotoxy(35,row);cout<<f[size];

}

Computer Solution of Example 10.23

enter the size 4

enter the value for x[0]1.0

enter the value for y[0]1.000

enter the value for x[1]1.1

enter the value for y[1]1.233

enter the value for x[2]1.2

enter the value for y[2]1.548

enter the value for x[3]1.3

enter the value for y[3]1.979

values for (x) (y) and (f) are

[image: image]

15.27Solution of Laplaces Equation (Section 11.5)

 

Flow-chart

 Refer to Section 14.27, page 740 

/* Laplace's Equation */

#include <iostream.h>

#include <iomanip.h>

#include <math.h>

#define SQR 4

typedef float array[SQR+1][SQR+1];

void getrow(int i,array u)

{

int j;

cout << "Enter the values of u["

<< i << ",j], j=1, " << SQR << endl;

for (j=1;j<=SQR;j++)

cin >> u[i][j];

}

void getcol(int j,array u)

{

int i;

cout << "Enter the values of u[i," << j

<< "], i=2," << SQR-1 << endl;

for (i=2;i<=SQR-1;i++)

cin >> u[i][j];

}

void printarr(array u,int width,int precision)

{

int i,j;

for (i=1;i<=SQR;i++)

{

 for (j=1;j<=SQR;j++)

 cout << setw(width) << setprecision(precision)

<< u[i][j];

 cout << endl;

}

}

int main ()

{

array u;

float maxerr,aerr,err,t;

int i,j,itr,maxitr;

for (i=1;i<=SQR;i++)

for(j=1;j<=SQR;j++)

u[i][j]=0;

cout << "Enter the boundary conditions" << endl;

getrow(1,u); getrow(SQR,u);

getcol(1,u); getcol(SQR,u);

cout << "Enter allowed error,"

<< "maximum iterations" << endl;

cin >> aerr >> maxitr;

cout << fixed;

for (itr=1;itr<=maxitr;itr++)

{

maxerr=0;

for (i=2;i<=SQR-1;i++)

 for(j=2;j<=SQR-1;j++)

 {

 t=(u[i-1][j]+u[i+1][j]+

 u[i][j+1]+u[i][j-1])/4;

 err=fabs(u[i][j]-t);

 if (err > maxerr)

maxerr = err;

 u[i][j]=t;

 }

 cout << "Iteration no. " << itr << endl;

 printarr(u,9,2);

 if (maxerr <= aerr)

{

 cout << "After " << itr << " iterations"

<< endl

<< "The solution:-" << endl;

printarr(u,8,1);

return 0;

}

}

cout << "Iterations not sufficient." << endl;

return 1;

}


NOTES: SQR is the size of the square mesh

u is a 2D Array representing the square mesh

aerr is the allowed error

maxitr is the maximum allowed iterations

itr is a counter which keeps track of number of iterations performed

maxerr is the maximum error in the mesh in an iteration

err is error in a particular point of the mesh

f is the execution time format

getrow is a subroutine that inputs the ith row of the mesh

getcol is a subroutine that inputs jth column of the mesh.



Computer Solution of Exmaple 11.3 (a)

Enter the boundary conditions

Enter the value of u[1, j], j = 1, 4

1000 1000 1000 1000

Enter the values of u[4, j], j = 1, 4

1000 500 00

Enter the values of u[i, 1], i = 2, 3

20002000

Enter the values of u[i, 4], i = 2, 3

5000

Enter allowed error, maximum iterations

.110

[image: image]

[image: image]

15.28Solution of Heat Equation (Section 11.9)

 

Flow-chart 

 Refer to Section 14.28, page 745 

Program

/*Solution of parabolic equations by

Bendre Schmidt method*/

#include <iostream.h>

#include <iomanip.h>

#define XEND 8

#define TEND 5 float f(int x)

{

return 4*x-(x*x)/2.0;

}

int main()

{

float u[XEND+1][TEND+1],h=1.0,k=0.125,

 csqr,alpha,ust,uet;

int i,j;

cout << "Enter the square of 'c'" << endl;

cin >> csqr;

alpha = (csqr*k)/(h*h);

cout << "Enter the value of u[0,t]" << endl;

cin >> ust;

cout <<"Enter the value of u[" << XEND

<< ",t]" << endl;

cin >> uet;

cout << fixed;

for (j=0;j<=TEND;j++)

 u[0][j]=u[XEND][j]=ust;

for (i=1;i<=XEND-1;i++)

u[i][0]=f(i);

for (j=0;j<=TEND-1;j++)

 for (i=1;i<=XEND-1;i++)

 u[i][j+1]=

 alpha*u[i-1][j]

 +(1-2*alpha)*u[i][j]

 +alpha*u[i+1][j];

cout << "The value of alpha is"

<< setw(4) << setprecision(2)

<< alpha << endl;

cout << "The values of u[i,j] are:-"

<< endl;

for (j=0;j<TEND;j++)

{

for (i=0;i<=XEND;i++)

cout << setw(7) << setprecision(4)

 << u[i][j];

cout << endl;

}

return 0;

}


Notes: XEND is the ending value of x

TEND is the ending value of t

h is the spacing in values of x

k is the spacing in values of y

f(x) is value of u(x, 0)

csqr is value of C2

alpha is 

ust is the value in the first column

uet is the value in the last column.



Computer Solution of Example 11.11

Enter the square of "c"

4

Enter value of u(0, t)

0

Enter value of u(8, t)

0

The value of alpha is 0.50

The values of u(i, j) are:

[image: image]

15.29Solution of Wave Equation (Section 11.12)

 

Flow-chart 

 Refer to Section 14.29, page 748 

Program

/* Solution of Hyperbolic equation */

#include <iostream.h>

#include <iomanip.h>

#define XEND 5

#define TEND 5 float f(int x)

{

return x*x*(5-x);

}

int main()

{

float u[XEND+1][TEND+1],csqr,ust,uet;

int i,j;

cout << "Enter the square of 'c'" << endl;

cin >> csqr;

cout << "Enter the value of u(0, t)" << endl;

cin >> ust;

cout << "Enter the value of u("

<< XEND << ", t)" << endl;

cin >> uet;

cout << fixed;

for (j=0;j<=TEND;j++)

{

 u[0][j] = ust; u[XEND][j] = uet;

}

for (i=1;i<=XEND-1;i++)

u[i][1] = u[i][0] = f(i);

for (j=1;j<=TEND-1;j++)

for (i=1;i<=XEND-1;i++)

u[i][j+1] = u[i-1][j]+u[i+1][j]

 -u[i][j-1];

cout << "The values of u(i, j) are:-" << endl;

for (j=0;j<=TEND;j++)

{

for (i=0;i<=XEND;i++)

cout << setw(6) << setprecision(1)

 << u[i][j];

cout << end1,

}

return 0;

}


NOTES: XEND is the ending value of x 

TEND is the ending value of t f(x) is value of u ( x , 0)

csqr is value of C 2

ust is the value in the first column

uet is the value in the last column.



Computer Solution of Example 11.14

Enter the square of "c"

16

Enter value of u(0, t)

0

Enter value of u(5, t)

0

The values of u(i, j) are:-

[image: image]

15.30Linear ProgrammingSimplex Method (Section 12.8)

 

Flow-chart 

 Refer to Section 14.30, page 750 

Program

/* Linear programming by simplex method */

#include <iostream.h>

#include <iomanip.h>

#define ND 2

#define NS 2

#define N (ND+NS)

#define N1 (NS*(N+1))

void init(float x[],int n)

{

int i=0;

for (;i<n;i++) x[i] = 0;

}

int main()

{

int i,j,k,kj,ki,bas[NS];

float a[NS][N+1],c[N],cb[NS],th[NS],

x[ND],cj,z,t,b,min,max;

/* Initializing the arrays to zero */

init(c,N); init(cb,NS);

init(th,NS); init(x,ND);

for (i=0;i<NS;i++) init(a[i],N+1);

/* Now set coefficients for slack

variables equal to one */

for (i=0;i<NS;i++) a[i][i+ND] = 1.0;

/* Now put the slack variables in the basis */

for (i=0;i<NS;i++) bas[i] = ND+i;

/*Now get the constraints

 and the objective function */

cout << "Enter the constraints" << endl;

for (i=0;i<NS;i++)

{

 for (j=0;j<ND;j++)

 cin >> a[i][j];

 cin >> a[i][N];

}

cout << "Enter the objective function"

<< endl;

for (j=0;j<ND;j++)

 cin >> c[j];

cout << fixed;

/*Now calculate cj and identify the incoming variable */

while (1)

{

 max = 0; kj = 0;

 for (j=0;j<N;j++)

 {

 z = 0;

 for (i=0;i<NS;i++)

z += cb[i]*a[i][j];

 cj = c[j]-z;

 if(cj > max)

 {max = cj; kj = j;}

 }

 /* Apply the optimality test */

 if(max <= 0) break;

 /* Now calculate thetas */

 max = 0;

 for (i=0;i<NS;i++)

if(a[i][kj]!= 0)

{

th[i] = a[i][N]/a[i][kj];

if(th[i] > max) max=th[i];

}

/* Now check for unbounded soln. */

if(max <= 0)

{

cout << "Unbounded solution";

return 1;

}

/*Now search for the outgoing variable */

min = max; ki = 0;

for (i=0;i<NS;i++)

 if ((th[i] < min)&&(th[i]!= 0))

 {

min = th[i]; ki = i;

 }

/*Now a[ki][kj] is the key element*/

t = a[ki][kj];

/*Divide the key row by key element*/

for (j=0;j<N+1;j++) a[ki][j] /= t;

/*Make all other elements of key column zero */

for (i=0;i<NS;i++)

if(i!= ki)

{

b = a[i][kj];

for (k=0;k<N+1;k++)

a[i][k]-=a[ki][k]*b;

}

cb[ki] = c[kj];

 bas[ki] = kj;

}

/* Now calculating the optimum value */

for (i=0;i<NS;i++)

 if ((bas[i] >= 0) && (bas[i]<ND))

x[bas[i]] = a[i][N];

z = 0;

for (i=0;i<ND;i++)

 z += c[i]*x[i];

for (i=0;i<ND;i++)

 cout << "x[" << setw(3) << i+1 << "] = "

<< setw(7) << setprecision(2)

<< x[i] << endl;

 cout << "Optimal value = "

<< setw(7) << setprecision(2)

<< z << endl;

return 0;

}


NOTES: ND is no. of decision variables.

NS is no. of slack variables.

a is the array containing Body Matrix, Unit Matrix and bi s

c is an array containing values of cj s

cb is an array containing values of c Bs

th is an array containing values of θs

bas is basis. For xi s basis contains i , for si s basis contains i + ND 

ki is the key row.

kj is the key column.



Computer Solution of Example 12.4

Enter the constraints

4	2	80

2	5	180

Enter the objective function

3	4

x[ 1] = 2.50

x[ 2] = 35.00

Optimal value = 147.50

Computer Solution of Example 12.16

Enter the constraints

2	3	2	440

4	0	3	470

2	5	0	430

Enter the objective function

4	3	6

x[ 1] = 0.00

x[ 2] = 42.22

x[ 3] = 156.67

Optimal value = 1066.67

Exercises 15.1

 

	Write a C++ program which prints all odd positive integers less than 100, omitting those integers divisible by 7.

	Write a C++ program to convert a binary number to its equivalent decimal number.

	Write a C++ program to calculate N! and use this to evaluate
[image: image]


	Determine the number of integers n , 1  n  2000, that are not divisible by 2, 3 or 5 but are divisible by 7.

	Write a C++ program to evaluate the roots of the equation ax 2 + bx + c = 0.

	Write a computer program in C++ for finding a real root of the equation f ( x ) = 0 by the bisection method.

	Write a C++ program to find a real root of x 3  4 x  9 = 0 using the method of false position.

	Write an algorithm for the Newton-Raphson method to solve the equation f ( x ) = 0. Apply the same to solve cos x  xex = 0 near x = 0.5 correct to three decimal places.

	Write a C++ program to solve the following equations by the Gauss-Seidal method:
83 x + 11 y  4 z = 95; 7 x + 52 y + 13 z = 104; 3 x + 8 y + 29 z = 71.


	With the help of a flow chart, write a C++ program to solve:
7.5 x + 3.8 y + 2.9 z = 15; 3.2 x + 6.8 y + 7.4 z = 37; 1.3 x + 2.1 y + 3.2 z = 7, using the factorization method.


	Write a complete C++ program to ( i ) Add two matrices ( ii ) Multiply two matrices.

	Given the data
[image: image]

Write a C++ program to fit a quadratic relation using least square criterion.


	Write a program in C++ to estimate f (0.6) by the Lagrange interpolation for the following values:
[image: image]


	Write a C++ program to evaluate [image: image] using Simpsons rule.

	Write C++ program for evaluation of [image: image] Simpsons 3/8th rule.

	Write a program in C++ for second order Runge-Kutta method.

	Develop a C++ program for solving differential equations using the Runge-Kutta fourth order formulae.

	Write a C++ program to find y (0.8) for the differential equation [image: image] given the following table using Milnes Predictor-Corrector method:
[image: image]


	Write a computer program in C++ to maximize
 z = 6 x 1 + 4 x 2

subject to 2 x 1+ 3 x 2  100, 4 x 1 + 2 x 2  120, x 1, x 2  0, where x 1, x 2 are the number of items to be produced.


	Develop a computer program in C++ for Example 12.17 and hence solve it.




CHAPTER   16


 Numerical Methods
Using MATLAB
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	3 to 30 Programs of standard methods in MATLAB


16.1Introduction

 

MATLAB is a numerical computing, fourth generation programming language built around an interactive programming environment. There is no need to compile, link, and execute after each correction, thus MATLAB programs can be developed in much shorter time than equivalent C or C++ programs. It has many built-in functions that make the learning of numerical methods much easier and interesting. Developed by Math Works, MATLAB allows matrix manipulation, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs of other languages. Although it is numeric only, an optional toolbox uses the MuPAD symbolic engine, allowing access to other algebraic capabilities. An additional Package, Simulink, adds graphical multidomain simulation and model based design for dynamic and embedded systems. MATLAB (meaning matrix laboratory) was created in the late 1970s, by Cleve Moler, then chairman of the computer science department at the University of New Mexico.

16.2An Overview of MATLAB Features

 

Variables. Variables are defined with the assignment operator, =. MATLAB is a weakly dynamically typed programming language. It is a weakly typed language because types are implicitly converted. It is a dynamically typed language because variables can be assigned without declaring their type, except if they are to be treated as symbolic objects and that their type can change. Values can come from constants, from computation involving values of other variables, or from the output of a function. For example:

>>x=17 x=

17

>>x='hat'

x=

hat

>>x=[3*4, pi/2]

x=

12.0000 1.5708

>>y=3*sin(x)

y=

1.6097 3.0000

Variable names, which must start with a letter, are case sensitive. Hence sun and Sun represent two different variables. Variables that are defined within a MATLAB function are local in their scope. They are not available to other parts of the program and do not remain in memory after exiting the function (this applies to most programming languages). However, varables can be shared between a function and the calling program if they are declared global.

Vectors/Matrices. MATLAB is a Matrix Laboratory and as such it offers many ways to create vectors, matrices, and multidimensional arrays in a convenient way. In the MATLAB vernacular, a vector refers to a one-dimensional (1 × N or N × 1) matrix, commonly referred to as an array in other programming languages. A matrix generally refers to a two dimensional i.e. m × n array where m and n are greater than or equal to one. Arrays with more than two dimensions are referred to as multidimensional arrays.

MATLAB provides a simple way to define simple arrays using the syntax: init: increment: terminator. For example:

>>a=[1:2:10]

a=

 1 3 5 7 9

defines a variable named  a  (or assigns a new value to an existing variable  a ) which is an array consisting of elements 1, 3, 5, 7, and 9. That is, the array starts at l (init value), increments uniformly by 2 (increment value) until it reaches its final value (terminator value). The increment value can actually be left out of this syntax (along with one of the colons), to use a default value of one. For example:

>>a=[l:5]

a=

 1 2 3 4 5

Indexing is one based, which is usually the convention in mathematics, but not in some programming languages.

Matrices can be defined by separating elements of a row by blank space or comma and terminating a row by a semicolon. The list of elements should be surrounded by square brackets: [ ]. Parenthesis: ( ) are used to access elements and subarrays. They are also used to denote a function argument list.

>>A=[1 2 3 4; 2 3 4 5; 5 6 7 8; 3 5 2 6]

A =

1234

 2345

5678

3526

>>A(3, 3)

ans=

7

Sets of indices can be specified by expressions such as 2:4, which evaluates to (2, 3, 4). For example, a submatrix taken from rows 2 to 4 and columns 3 to 4 can be written as:

>>A(2:4, 3:4)

ans=

45

78

26

A square identity matrix of size n can be generated using the function eye and matrices of any size containing all zeros or ones can be generated by using functions zeros and ones respectively. For example:

>>A=eye(3) A=

100

010

001

>>B=zeros(2, 3) B=

000

000

>>C=ones(3, 4)

C=

1111

1111

1111

To know, the size of an already defined array, commands length and size are used. Most MATLAB functions can accept matrices and will apply themselves to each element. For example, mod (2*J, n ) will multiply each element in J by 2 and then reduce each element modulo  n . MATLAB does include standard for and while loops, but using MATLABs vectorized notation often produces code that is easier to read and faster to execute. This code excerpted from the function magic.m, creates a magic square M for odd values of n (MATLAB function meshgrid is used here to generate square matrices I and J containing 1: n ).

[J,I]=meshgrid (1:n);

A=mod(I+J(n+3)/2,n);

B=mod(I+2*J2,n); M=n*A+B+1;

The apostrophe (prime) operator (ʹ) takes the complex conjugate transpose and has the same function as a transpose operator for real-valued matrices. For example:

>>A=[1 2 3; 3 4 5] A=

123

345

>>B=A

B=

13

24

35

The compatibility of dimensions must be observed while working with matrices, for example, while multiplication and extension of an existing matrix or defining another one based on it. For instance, if it is tried to annex a 4 × l matrix into the 3 × 1 matrix, MATLAB will reject it squarely, giving an error message.

Also, a dot (.) must be put in front of the operator for termwise (element-by-element) operations. For example:

>>A=[2 5 3; 3 4 6];

>>B=[3 4 8; 3 5 6];

>>C=A.*B

C=

62024

92036

Semicolon. Unlike many other languages, where the semicolon is used to terminate commands, in MATLAB the semicolon serves the purpose of suppressing the output of the line that it concludes.

Arithmetic Operators. All usual arithmetic operators such as (+) Addition, () Subtraction, (*) Multiplication and (^) Exponentiation are supported by MATLAB. Their matrix operation is as illustrated below.

>>A=[2 4 6; 1 2 5]

A=

246

>>B=[1 7 8; 3 2 7] B=

178

327

>>C=A+B

C=

31114

44 12

>>D=A*B

D=

7856

5542

There are two division operators in MATLAB: / Right division and\Left division. The right division x / y results in x divided by y , where x and y are scalars whereas the left division is equivalent to y / x . In the case where A and B are matrices, A/B returns the solution of X * A = B and A\B yields the solution of A * X = B.

Logical Operators. The various logical operators in MATLAB are (&) AND, (|) OR and (∼) NOT. The related examples are shown below.

>>A=[2 3 8;3 2 5];

>>B=[2 4 6; 2 4 7];

>>(A>B)|(B>6)

ans=

001

101

Relational Operators. The relational operators supported by MATLAB are < Less than, > Greater than, < = Less than or equal to, > = Greater than or equal to, = Equal to, ∼ = Not equal to. These operators always act element-wise on matrices; hence they result in a matrix of logical type. These operators return 1 for true and 0 for false. For example,

>>A=[2 6 4; 3 7 5];

>>B=[8 4 3; 2 9 7|;

>>A>B

ans=

100

Graphics. Function plot can be used to produce a graph from two vectors x and y . The code is as shown below produces the following figure of sine function.

>>x=0:pi/100:2*pi;

>>y=sin(x);

>>plot(x,y)

Three dimensional graphics can be produced using the functions surf, plot 3 , or mesh.

[image: image]

Structures. MATLAB supports structure data types. Since all variables in MATLAB are arrays, a more adequate name is structure array, where each element of the array has the same field names. In addition, MATLAB supports dynamic field names (field look-ups by name, field manipulations, etc.) Unfortunately, MATLAB JIT does not support MATLAB structure, therefore just a simple bundling of various variables in to a structure will come at a cost.

Function handles. MATLAB supports elements of lambda-calculus by introducing function handles, a references to functions, which are implemented either in files or anonymous/nested functions.

Classes. MATLAB supports classes, however the syntax and calling conventions are _ significantly different than in other languages, because MATLAB does not have reference data types. For example, a call to a method

object.method ();

cannot normally alter any variables of object variable. To create an impression that the method alters the state of variable, MATLAB toolboxes use the evalin ( ) command, which has its own restrictions.

Object-Oriented Programming. MATLABs support for object-oriented programming includes classes, inheritance, virtual dispatch, packages, pass-by-value semantics, and pass-by-reference semantics.

classdef byee

methods

function outputl (this)

disp ('byee')

end

end

end

When put in a file named m, this can be executed with the following commands:

>>x=byee;

>>x.outputl;

Byee

Programs of Standard Methods In Matlab

16.3Bisection Method (Section 2.7)

 

Flow-chart 

 Refer to Section 14.3, page 674 

Program

function[]=Bisection_Method()

clc

itr=0;

a=input('Enter the value of a:');

b=input('Enter the value of b:');

aerr= input('Enter the allowed error:');

maxitr=input {'Enter the maximum Iterations:');

[x itr]=bisect(a,b,itr);

while(itr<maxitr)

if(f(a)*f(x)<0)

b=x;

else

a=x;

end

[xl itr]=bisect(a,b,itr);

if(abs(xl-x)<aerr)

fprintf{'After %d iteration ,root = %f \n',itr,xl)

return

end

x=xl;

end

fprintf('Iterations not sufficient,solution does not

converge \n);

function[x itr_r]=bisect(a,b,itr)

if nargin <2, b=2; end

x=(a+b)/2;

itr_r=itr+l;

fprintf('Iteration no. %d X = %f \n',itr,x)

end

function[y]=f(x)

y=(x*x*x-4*x-9);

end

end


 NOTES : a , b are the limits in which the root lies

aerr is the allowed error

itr is the counter which keeps track of the number of iterations performed

maxitr is the maximum number of iterations to be performed

x is the value of root at n th iteration.

x l is the value of the root at ( n + 1)th iteration

Function Bisect:

Purpose: Performs and prints the result of one iteration

Variables: x is the result of the current iteration.



Computer Solution of Example 2.15 (a)

Enter the value of a:3

Enter the value of b:2

Enter the allowed error:0.0001

Enter the maximum Iterations:20

Iteration no. 0 X=2.500000

Iteration no. 1 X=2.750000

Iteration no. 2 X=2.625000

Iteration no. 3 X=2.687500

Iteration no. 4 X=2.718750

Iteration no. 5 X=2.703125

Iteration no. 6 X=2.710938

Iteration no. 7 X=2.707031

Iteration no. 8 X=2.705078

Iteration no. 9 X=2.706055

Iteration no. 10 X=2.706543

Iteration no. 11 X=2.706299

Iteration no. 12 X=2.706421

Iteration no. 13 X=2.706482

After 14 iteration, root=2.706482

16.4Regula-Falsi Method (Section 2.8)

 

Flow-chart 

 Refer to Section 14.4, page 676 

Program

function[]=Regula_Falsi()

clc

clear all itr=0;

x0=input('Enter the value of x0:');

xl=input('Enter the value of xl:');

aerr=input('Enter the allowed error:');

maxitr=input ('enter the maximum no. of iterations:');

[x2 itr]=regula(x0,xl,f(x0),f(xl),itr);

while(itr<maxitr)

if(f(x0)*f(x2)<0)

xl=x2;

else

x0=x2;

end

[x3 itr]=regula(x0,xl,f(x0),f(xl),itr);

if(abs(x3-x2)<aerr)

fprintf('After %d iteration, roots %f\n',itr,x3)

return

end

x2=x3;

end

fprintf('Iterations not sufficient, solution does not

converge \n');

function [x itr_r]=regula(x0,x1,fx0,fx1,itr)

x=x0-((x1-x0)/(fx1-fx0)) *fx0;

itr_r=itr+1;

fprintf ('iteration no. %d X=%f/n',itr,x)

end

function [y]=f (x)

y=(cos (x)-x*exp(x));

end


 NOTES : f ( x ) = 0 is the equation whose root is to be found

x 0, x 1 are units in which root lies

aerr is allowed error

maxitr is maximum number of iterations to be performed

itr is the counter which keeps track of the number of iterations performed

x 2 is value of root at n th iteration

x 3 is the value of root at ( n + 1) th iteration

Function Regula: 

Purpose: Performs and prints the result of one iteration

Variables: x is value of root at n th iteration

fx 0, fx 1 are value of f ( x ) at x 0 and x 1, respectively.



Computer Solution of Example 2.20

Enter the value of x0:0

Enter the value of xl:1

Enter the allowed error:0.0001

enter the maximum no. of iterations:20

iteration no. 0 X=0.314665

iteration no. 1 X=0.446728

iteration no. 2 X=0.494015

iteration no. 3 X=0.509946

iteration no. 4 X=0.515201

iteration no. 5 X=0.516922

iteration no. 6 X=0.517485

iteration no. 7 X=0.517668

iteration no. 8 X=0.517728

After 9 iteration, roots 0.517728

16.5Newton Raphson Method (Section 2.11)

 

Flow-chart 

 Refer to Section 14.5, page 679 

Program


function[]=Newton_Raphson ()

clc

clear all

f=inline('x*logl0(x)-1.2');

df=inline('logl0(x)+.43429');

x0=input('Enter the value of x0:');

aerr=input('Enter the allowed error:');

maxitr=input ('enter the maximum no. of iterations:');

for itr=l:1:maxitr

h=f(x0)/df (x0);

xl=x0-h;

fprintf('iteration no. %d X=%f \n',itr,xl)

if(abs(h)<aerr)

fprintf('After %d iteration, roots %f\n',itr,xl)

return

end

x0=xl;

end

fprintf('Iterations not sufficient,solution does not

converge \n')

end


NOTES: F ( x ) = 0 is the equation whose root is to be found

df ( x ) is the derivative of f ( x ) w.r.t. x aerr is allowed error

maxitr is maximum number of iterations to be performed

itr is the counter which keeps track of the number of iterations performed

x 0 is value of root at n th iteration

x l is the value of root at ( n + 1)th iteration



Computer Solution of Example 2.32

Enter the value of x0:2

Enter the allowed error:0.000001

enter the maximum no. of iterations:10

iteration no. 1 X=2.813170

iteration no. 2 X=2.741109

iteration no. 3 X=2.740646

iteration no. 4 X=2.740646

After 4 iteration, roots 2.740646

16.6Mullers Method (Section 2.13)

 

Flow-chart 

 Refer to Section 14.6, page 681 

Program

function[]=Mullers_method ()

clc

clear all

I = 3;

y=inline{'cos(x)-x*exp(x) ' );

disp('Enter the initial approximations');

for i=I-2:l:3

x(i)=input('');

end

aerr= input{'Enter the allowed error:');

maxitr=input ('enter the maximum no. of iterations:');

for itr=l:1:maxitr

li=(x(I)-x(1-1) )/(x (1-1)-x{I-2));

di=(x(I)-x(I-2))/{x(1-1)-x{I-2));

mu=y(x(I-2))*li*li-y(x(1-1))*di*di+y(x(I))*(li+di);

s=sqrt((mu*mu-4*y{x(I))*di*li*(y(x(1-2))*

li-y(x(1-1))*di+y(x(I)))));

if(mu<0)

l=(2*y(x(I)>*di)/(-mu+s);

else

l=(2*y(x(I)}*di)/(-mu-s);

end

x(I+l)=x(I)+l*(x(I)-x(I-l));

fprintf{'iteration no. %d X = %f \n',itr,x(1+1))

if(abs(x(1+1)-x(I))<aerr)

fprintf('After %d iterations, the solution is %f\n',itr,x(1+1))

return

end

for i=I-2:l:3

x(i)=x(i+l);

end

end

fprintf{'Iterations not sufficient,solution does not

converge \n');


 NOTES : y ( x ) = 0 is the equation whose root is to be found

x is na array which holds the three approximations to the root and the new improved value

I is defined as 3 in the program. This has been done because in MATLAB, array subscripts always start from 1 and cannot be negative. Use of 1 facilitates more readable expressions. For e.g., x [0] can be

written as x [I-3] which looks more like X i -3, which it actually represents.

li is  i 

di is δ i 

mu is μ i 

s is √[μ i 2  4 yi δ i  i ( yi -2  i  yi -1 δ i + yi ]

l is 



Computer Solution of Example 2.34

Enter the initial approximations

-1

0

1

Enter the allowed error:0.0001

enter the maximum no. of iterations:10

iteration no. 1 X=0.441517

iteration no. 2 X=0.512546

iteration no. 3 X=0.517693

iteration no. 4 X=0.517757

After 4 iterations, the solution is 0.517757

16.7Multiplication of Matrices [Section 3.2 (3)4]

 

Flow-chart 

 Refer to Section 14.7, page 684 

Program

clc

Ml=input('Enter the element of first matrix');

M2=input{'Enter the element of second matrix');

mul=Ml*M2-M2;

disp('Result after multiplication is:')

disp(mul)

Computer Solution of Example 3.7

Enter the element of first matrix [0 1 2; 1 2 3; 2 3 4]

Enter the element of second matrix [1 -2; -1 0; 2 -1]

Result after multiplication is:

3-2

5-5

7-8

16.8Gauss Elimination Method [Section 3.4 (3)]

 

Flow-chart 

 Refer to Section 14.8, page 687 

Program

function[]=gauss_elimination_method()

clc

N=4;

a=input('Enter the element of matrix:-')

for j=l:N-l

for i=j+l:N

t=a(i,j)/a (j,j);

for k=l:N+l

a(i,k)=a(i,k)-a(j,k)*t;

end

end

end

for i=l:N

for j=l:N+l

fprintf('%8.4f',a(i,j));

end

fprintf('\n');

end

for i=N:-l:l

s=0;

for j=i+l:N

s=s+a(i,j+1).*x(j);

end

x(i)=(a(i,N)-s)/a (i,i);

end

end


Notes: N is the number of unknowns

a is an array which holds the augmented matrix

x is an array which will contain values of unknowns

i , j , k are loop control variables.



Computer Solution of Example 3.19

[image: image]

16.9Gauss-Jordan Method [Section 3.4 (4)]

 

Flow-chart 

 Refer to Section 14.9, page 689 

Program

function[]=gauss_jordan_method()

N=4;

a=input('Enter the element of matrix:-\n');

for j=l:N

for i=l:N

if(i=j)

t=a(i,j)/a(j,j);

for k=l:N+l

a(i,k)=a(i,k>-a(j,k).*t;

end

end

end

end

fprintf('\nThe diagonal matrix is:-\n')

disp(a)

fprintf('\nThe solution is:-\n')

for i=l:N

fprintf('x[%d]=%f\n',i,a(i,N + l)./a(i,i));

end


Notes: a is an array which holds the Augmented Matrix

N is the number of unknowns e.g . if it is a 3 × 3 system of equations,

N = 3 and if 5 × 5 system take N = 5

i , j , k are loop variables.

Computer Solution of Example 3.22

[image: image]

The solution is:-

x[l]=5.000000

x[2]=4.000000

x[3]=-7.000000

x[4]=l.000000

16.10Factorization Method [Section 3.4 (5)]

 

Flow-chart 

 Refer to Section 14.10, page 691 

Program

function[]=Factorization_method()

clc

clear all

N=3;

u=zeros(N,N);

v=zeros(N,1);

x=ones(N,1);

a=input('Enter the element of matrix');

b=a(:,N);

l=zeros(N);

for m=l:N

urow(m)

lcol(m)

end

disp(u);

disp(1);

for i=l:N

s=0;

for j=l:i-l

s=s+[l(i,j)*v(j)];

end

v(i)=b(i)-s;

end

for i=N:-l:l

s=0;

for j=i+l:N

s=s+[u(i,j)*x(j)];

end

x(i)=(v(i)-s)/u(i,i);

end

disp(x)

function[]=urow(i)

for j=i:N

s=

0;

for k=l:N

s=s+[u(k,j).*l(i,k)];

u(i, j)=a (i, j) -s;

end

end

end

function[]=lcol(j)

for i=j:N

s=0;

for k=l:j

s=s+[u(k,j).*l(i,k)];

if i==j

1(i,j)=l;

else

1(i,j)=(a(i,j)-s)/u(j,j);

end

end

end

end

end


NOTES: 
 [image: image]

N is the number of unknowns

l is the lower triangular matrix

u is the upper triangular matrix

a is the coefficient matrix

b is the constant matrix (column matrix)

v is a matrix such that lv = b

x will contain the values of unknowns

i , j , m are loop control variables



Computer Solution of Example 3.23

[image: image]

Computer Solution of Example 3.24

[image: image]

16.11Gauss Siedel Iteration Method [Section 3.5 (2)]

 

Flow-chart 

 Refer to Section 14.11, page 695 

Program

function[]=Gauss_Seidal_Method()

clear all clc

a=input('Enter the element of matrix:\n');

aerr=input ('Enter the allowed error:');

maxitr=input ('enter the maximum no. of iterations:');

N=4;

x=zeros(1,N);

fprintf('iterations x[l] x[2] x[3] x[4]\n'

for itr=l:maxitr

maxerr=0;

for i=l:N

s=0;

for j=l:N

if (j=i)

s=s+a(i,j)*x(j);

end

end

t=(a(i,N+l)-s)/a(i,i);

err=abs(x(i)-t);

if(err>maxerr)

maxerr=err;

end

x(i)=t;

end

fprintf ('%d',itr)

for i=l:N

fprintf('%f',x(i))

end

fprintf ('\n')

if(maxerr<aerr)

fprintf('Converges in %d, iteration \n',itr)

for i=l:.N

fprintf('x(%d)=%2.4f \n',i,x(i))

end

return

end

end

fprintf('Solution does not converge, iteration not sufficient \n')

return

end


NOTES: N is the number of unknowns

a is an array which holds the augmented matrix

x is an array which hold the values of unknowns

aerr is allowed error

maxitr is the maximum no. of iterations to be performed

itr is the counter which keeps track of number of iterations performed

err is the error in value of xi 

maxerr is maximum error in any value of xi after an iteration



Computer Solution of Example 3.28

Enter the element of matrix:

[20 1 -2 17; 3 20 -1 -18; 2 -3 20 25]

Enter the allowed error:0.0001

enter the maximum no. of iterations:10

[image: image]

Converges in 4, iteration

x(1)=1.0000

x(2)=-1.0000

x(3)=1.0000

Computer Solution of Example 3.30 

Enter the element of matrix:

[10 -2 -1 -1 3;-2 0 -1 -1 15;-1 -1 10 -2 27;- 1 -1 -2 10 -9]

Enter the allowed error:0.0001

enter the maximum no. of iterations:15

[image: image]

Converges in 7, iteration

x(1)=1.0000

x(2)=2.0000

x(3)=3.OO00

x(4)=-0.0000

16.12Power Method (Section 4.11)

 

Flow-chart 

 Refer to Section 14.12, page 699 

Program


function[]=Power_Method()

clear all

clc

a=input('Enter the element of matrix:\n');

x=input('Enter the initial approximation to the eigenvector:\n')

[N M]=size(a);

aerr= input('Enter the allowed error:');

maxitr=input('enter the maximum no. of iterations:');

dispt'itr No. Eigen Value Eigen vector')

e=max(x);

for itr=l:maxitr

r=a*x;

t=max(abs(r));

t=t(1);

r=r/t;

maxe=0;

for i=l:N

err=abs(x(i)-r(i));

if(err>maxe)

maxe=err;

end

x(i)=r(i);

end

errv=abs(t-e);

e=t;

fprintf('%d%f',itr,e)

for i=l:N

fprintf('%f',x(i))

end

fprintf('\n*)

if((errv<=aerr)&&(maxe<=aerr))

fprintf{'Converges in %d iterations \n',itr);

fprintf('Largest eigenvalue=%1.2f \n',e);

fprintf('Eigen Vector:-\n');

fprintf('%1.2f \n',x);

return end

end

end


 NOTES : N is the number of rows (or columns) in square matrix

a is the square matrix

x is the eigenvector at n th iteration

r is the eigenvector at ( n + 1 )th iteration

e is the eigenvalue at nth iteration

t is the eigenvalue at ( n + 1)th iteration

aerr is allowed error in eigenvalue and eigenvector

maxitr is the maximum number of iterations to be performed

errv is the error in eigenvalue

itr, i are loop control variables



Computer Solution of Example 4.11

Enter the element of matrix:

[2-1 0;-l 2-1;0-1 2]

Enter the initial approximation to the eigenvector:

[10 0]

Enter the allowed error:0.01

enter the maximum no. of iterations:10

[image: image]

Converges in 9 iterations

Largest eigenvalue=3.41

Eigenvector:-

0.72

-1.00

0.70

16.13Method of Least Squares (Section 5.5)

 

Flow-chart 

 Refer to Section 14.13, page 703 

Program

function[]=Least_square_Method()

clear all

clc

augm=zeros(3,4);

n=input('Enter the number of pair of observation value:-\n');

augm(1,1)=n;

for i=l:n

fprintf('Pair no. %d \n',i)

x=input(' ');

xsq=x(1)*x(1);

augm(1,2)=augm(1,2)+x(1);

augm(1,3)=augm(1,3)+xsq;

augm(2,3)=augm(2,3)+x(l)*xsq;

augm(3,3)=augm(3,3)+xsq*xsq;

augm(1,4)=augm(1,4)+x(2);

augm(2,4)=augm(2,4)+x(1)*x(2);

augm(3,4)=augm{3,4)+xsq*x(2);

end

augm(2,2)=augm(1,3);

augm(3,2)=augm(2,3);

augm(2,1)=augm(1,2);

augm(3,1)=augm(2,2);

disp('The augmentd matrix is:-')

disp(augm)

for j=l:3

for i=l:3

if(i=j)

t=augm(i,j)/augm(j,j);

for k=l:4

augm(i,k)=augm(i,k)-augm(j,k)*t;

end

end

end

end

a=augm(1,4)/augm(1,1);

b=augm(2,4)/augm(2,2);

c=augm(3,4)/augm(3,3);

fprintf('a=%f b=%f c=%f \n',a,b,c)


Notes: augm is the augmented matrix

n is the number of data points



Computer Solution of Example 5.7

Enter the number of pair of observation value:-

7

Pair no.1

[1 1.1]

Pair no.2

[1.5 1.3]

Pair no.3

[2 1.6]

Pair no.4

[2.5 2]

Pair no.5

[3 2.7]

Pair no.6

[3.5 3.4]

Pair no.7

[4 4.1]

The augmentd matrix is:-

[image: image]

16.14Method of Group Averages (Section 5.9)

 

Flow-chart 

 Refer to Section 14.14 , page 706 

Program

function []=Method_Of_Averages()

clc

format compact

format short g

n=input('Enter the No of Observations:-');

t=input('Enter the different values of t:-')

disp(The Values of t are:')

disp(t);

r=input('Enter the Corresponding values of r')

disp('The Values of r are:')

disp(r);

tsl=0;rsl=0;ts2=0;rs2=0;

for i=l:(n/2)

tsl=tsl+t(i);

rsl = rsl+r(i);

end

for i=(n/2)+l:n

ts2=ts2+t(i);

rs2=rs2+r(i);

end

xl=tsl/(n/2);

yl=rsl/(n/2);

x2=ts2/(n/2);

y2=rs2/(n/2);

b=(y2-yl)/(x2-xl);

a=yl-(b*xl);

disp('The values of a&b comes out to be:')

a

b

end

Computer Solution of Example 5.16

Enter the No of Observations:-8

Enter the different values of t:-[40 50 60 70 80 90 100 110]

t=

40 50 60 70 80 90 100 110

The Values of t are:

40 50 60 70 80 90 100 110

Enterthe Corresponding values of r[1069.1 1063.6 1058.2 1052.7

1049.3 1041.8 1036.3 1030.8]

r=

Columns 1 through 7

1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3

Column 8

1030.8

The Values of r are:

Columns 1 through 7

1069.1 1063.6 1058.2 1052.7 1049.3 1041.8 1036.3

Column 8

1030.8

The values of a&b comes out to be:

a=1090.3

b=-0.53375

16.15Method of Moments (Section 5.11)

 

Flow-chart 

 Refer to Section 14.15, page 708 

Program

function [ ]=Method_Of_Moments()

clc

format compact

n=input('Enter the No of Observations:-');

x=input('Enter the different values of x:-');

y=input('Enter the Corresponding values of y')

h=x(2)-x(l);

xlyt=0;yt=0;

for i=l:n

yt=yt+y(i);

xlyt=xlyt+x(i).*y(i);

end

ml=h.*yt;

m2=h.*xlyt;

11=(-(h/2)+x(l));

12=((h/2)+x(n));

cl=12-ll;

c2=((12.*12)-{11.*11))/2;

c3=((12.*12.*12)-(ll.*ll.*l1))/3;

fprintf('The Observed Equations are:\n')

fprintf('%5.2fa+%5.2fb=%5.2f\n *%5.2fa+%5.2fb=%5.2f\

n',cl,c2,ml,c2,c3,m2)

d=c2/cl;

dl=d*cl;

d2=d*c2;

ml=d*ml;

b=(m2-ml)/(c3-d2);

a=(ml-(d2*b))/dl;

fprintf('\non solving these equations we get a=%5.2f & b=%5.2f\n',a,b)

fprintf('hence the required equation is: y = %5.2f +%5.2fx\n',a,b)

end

Computer Solution of Example 5.20

Enter the No of Observations:-4

Enter the different values of x:-[l 2 3 4]

Enter the Corresponding values of y [16 19 23 26]

y=16192326

The Observed Equations are:

4.00a+10.00b=84.00

*10.00a+30.33b=227.00

On solving these equations we get a= 13.03 & b= 3.19

hence the required equation is: y = 13.03 + 3.19x

16.16Newtons Forward Interpolation Formula (Section 7.2)

 

Flow-chart 

 Refer to Section 14.16, page 714 

Program

function []=Newtons_Forward_Interpolation_Formula()

clc

format compact

MAXN=100;

ORDER=4;

nr=l;,dr=l;

n=input('Enter the value of n:-');

ax=input('Enter the values in form of x:-');

ay=input('Enter the values in form of y:-');

disp ([ax'ay1])

x=input('Enter the value of x for which value of y is wanted:-')

h=ax(2)-ax(1);

for i=l:n

diff(i,2)=ay(i)-ay(i);

end

for j=3:ORDER+l

for i=l:n-j

diff(i, j)-diff(i+l,j-l)-diff(i,j-l);

end

end

i=1;

while((ax(i)>x))

i=i+l;

end

i=i-1;

p=(x-ax(i))/h;

yp=ay(i);

for k=2:ORDER+l

nr=nr*(p-k+1);

dr=dr-*'k;

yp=yp+((nr/dr)*diff(i,k));

end

fprintf('%4.%f \n',yp)

end


Notes: MAXN is the maximum value of N

ORDER is the maximum order in the difference table

ax is an array containing values of x ( x 0, x 1,..., xn )

ay is an array containing values of y (y 0, y 1,..., yn )

diff is a 2D array containing the difference table

h is spacing between values of X 

x is value of x at which value of y is wanted

yp is calculated value of Y 

nr is numerator of the terms in expansion of yp 

dr is denominator of the terms in expansion of yp 



Computer Solution of Example 7

Enter the value of n:-6

Enter the values in form of x:-[100 150 200 250 300 350 400]

Enter the values in form of y:-[ 10.63 13.03 15.04 16.81 18.42 19.90 21.27]

10010.63

15013.03

20015.04

25016.81

30018.42

35019.9

40021.27

Enter the value of x for which value of y is wanted:-218

x=218 15.0

16.17Lagranges Interpolation Formula (Section 7.12)

 

Flow-chart 

 Refer to Section 14.17, page 714 

Program

function[] = Lagranges_Interpolation_Formula()

clc

MAX=100;

n=input('Enter value of n:-');

ax=input{'Enter values of x:-');

ay=input{'Enter values of y:-');

x=input{'Enter value of which y is wanted:-');

y=0;

for i=l:n+l

dr=l;

nr=l;

for j=l:n+l

if(j=i)

nr=nr*(x-ax(j));

dr=dr*(ax(i)-ax(j));

end

end

y=y+((nr/dr)*ay(i));

end

fprintf('When x=%4.1f ,y=%4.1f \n',x,y);

end


Notes: MAX is the maximum value of n 

ax is an array containing values of x ( x 0, x 1,.... xn )

ay is an array containing values of y ( y 0, y 1,..., yn )

x is value of x at which value of y is wanted

y is calculated value of y 

nr is numerator of the terms in expansion of y 

dr is denominator of the terms in expansion of y 



Computer Solution of Example 7.17

Enter value of n:-4

Enter values of x:-[5 7 1113 17]

Enter values of y:-[150 392 1452 2366 5202]

Enter value of which y is wanted:-9

When x=9.0,y=810.0

16.18Newtons Divided Difference Formula (Section 7.14)

 

Flow-chart 

 Refer to Section 14.18, page 716 

Program

function [] = Newtons_ Divided- Difference Formula()

clc

n=input('Enter value of observation n:-'};

x=input('Enter values of x:-');

y=input('Enter values of y:-');

k=input('Enter value of which y is wanted:-');

j=i;

f=y(1);

f2=0;

while(n=l)

for i=l:n-l

p(i)=(y(i+l)-y(i))/(x(i+j)-x(i));

y(i)=p(i);

end

fl=l;

for i=l:j

fl=fl*(k-x (i));

end

f2-f2+(y(l)*fl);

n=n-l;

(j=j+1);

end

f=f+f2;

fprintf('f(%d)=%d\n',k,f)

end

Computer Solution of Example 7.23

Enter value of observation n:-5

Enter values ofx:-[5 7 11 13 17]

Enter values of y:-[150 392 1452 2366 5202]

Enter value of which y is wanted:-9

f(9)=810

16.19Derivatives Using Forward Difference Formula [Section 8.2]

 

Flow-chart 

 Refer to Section 14.19, page 718 

Program

function[]=Forward_Difference_Formula()

clc

v=[0 0 l 1 11/12 5/6 137/180];

max=8;

x=[l 1.1 1.2 1.3 1.41.5 1.6];

y=[7.989 8.403 8.7819.129 9.4519.750 10.031];

xval=l.1;

disp(['The values of x are: ', num2str(x)]);

disp(['The values of y are: ', num2str(y)]);

disp(['The value of x for evaluation is: ', num2str{xval)]);

for i=0<max

if(x(i+1)>=xval)

pos=i+l;

break;

end

end

x0=x(pos);

y0=y(pos);

fprintf(' \n x0 is %f y0 is %f at %d' , x0, y0, pos)

h=x(2)-x{l);

p=((xval-x0)/h);

if(pos<max)

fact=l;

l=max-pos;

fprintf('\n' );

for i=0<l

for j=0:i

tmp((i+1)*l+(j+l))=0;

end

fprintf('\n')

end

fprintf('\n size of new array %d \n',l);

i=0;

j=pos;

while(i<l)

tmp(i+l)=y(j);

i=i+l;

j=j+1;

end

fprintf('\n');

for i=1<1

for j=0<1

tmp((i+1)*l+(j+l))=tmp((i)*l+(j+2))-tmp((i)*l+(j+1));

end

end

fprintf('\n values are \n');

for i=0<l

for j=0<l

fprintf{'%f\t|',tmp((j+1)*1+(i+1)));

end

fprintf('\n')

end

sum=0;

k=l;

for i=l<l

sum=sum+((1.0/(i+1))*tmp((i+1)*l+0))*k;

k=-k;

end

fprintf('\n\n first (dy/dx):%f',sum/h);

sum=0;

fact=l;

k=l;

for i=2<l

sum=sum+(v((i+1))*tmp((i+l)*l+0)*k);

k=-k;

end

fprintf('\n\n second (dy/dx): %f',sum/(h^2))

end

end

Computer Solution of Example 8.1

The values of x are: 1 1.1 1.2 1.3 1.4 1.5 1.6 

The values of y are: 7.989 8.403 8.781 9.129 9.451 9.75 10.031 

The value of x for evaluation is: 1.1

x0 is 1.100000 y0 is 8.403000 at 1

size of new array 6 

first (dy/dx): 3.952600

second (dy/dx): 3.741200 

16.20Trapezoidal Rule (Section 8.5-1)

 

Flow-chart 

 Refer to Section 14.20, page 724 

Program


function[]=Trapezoidal_Rule()

format compact

clc

y=inline('1/(1+x.*x)');

x0=input('Enter x0:');

xn=input('Enter xn:');

n=input('Enter no of subintervals:');

h=(xn-x0)/n;

s=y(xO)+y(xn);

for i=l:n-1

s=s+2.*y(x0+i.*h);

end

fprintf('The value of integral is: %f\n',h/2.*s)

end


NOTES: y ( x ) is the function to be integrated

x 0 is x 0

xn is xn 



Computer Solution of Example 8.10 (i)

Enter x0:0

Enter xn:6

Enter no of subintervals:6

The value of integral is:1.410799

16.21Simpsons Rule (Section 8.5-II)

 

Flow-chart 

 Refer to Section 14.21, page 736 

Program

function[]=Simpsons_Rule()

clc

y=inline('1/(1+x.*x)');

x0=input('Enter x0:');

xn=input('Enter xn:');

n=input('Enter no of subintervals:');

h=(xn-x0)/n;

s=y(x0)+y(xn)+4.*y(x0+h);

for i=3:2:n-l

s=s+4.*y(x0+i.*h)+2.*y(x0+(i-1).*h);

end

fprintf('The value of integral is: %f\n',h/3.*s

)

NOTE: y ( x ) is the function to be integrated so that yi = y ( yi ) = y ( x 0 + i * h )



Computer Solution of Example 8.10 (ii)

Enter x0:0

Enter xn:6

Enter no of subintervals:6

The value of integral is: 1.366173

16.22Eulers Method (Section 10.4)

 

Flow-chart 

 Refer to Section 14.22, page 727 

Program

function[]=Eulers_Method()

format compact

format

clc df=inline{'x+y');

x0=input(' Enter value of x0:-');

y0=input('Enter value of y0:-');

h=input('Enter value of h:-');

x=input('Enter value of x:-'); xl=x0;

yl=y0;

while(x>xl)

yl=yl+h.*df(xl,yl);

xl=xl+h;

fprintf('When x=%2.2f y=%2.2f\n',xl,yl)

end

end


NOTE: df ( x , y ) is dy / dx

x 0 is xn +0, i.e ., xn 

x l is xn +1

y 0 is yn +0, i.e ., yn 

y l is yn +1



Computer Solution of Example 10.8

Enter value of x0:-0

Enter value of y0:-l

Enter value of h:-0.1

Enter value of x:-l

When x=0.10 y=1.10

When x=0.20 y=1.22

When x=0.30 y=1.36

When x=0.40 y=1.53

When x=0.50 y=1.72

When x=0.60 y=1.94

When x=0.70 y=2.20

When x=0.80 y=2.49

When x=0.90 y=2.82

When x=1.00 y=3.19

When x=1.10 y=3.61

16.23Modified Eulers Method (Section 10.5)

 

Flow-chart 

 Refer to Section 14.23, page 729 

Program

function[]=Eulers_Method()

format compact

format short g

clc

df=inline('x+y');

x0=input('Enter x0:');

y0=input{'Enter y0:');

h=input{'Enter h:');

x=input('Enter x:');

xl=x0;

yl=y0;

while (1)

if(x<xl)

return;

end

yl=yl+h.*df(xl,yl);

xl=xl+h;

fprintf ('When x=%3.1fy=%a4.2f\n',xl,yl)

end

end

Computer Solution of Example 10.10

Enter x0:0

Enter y0:l

Enter h:0.1

Enter x:0.3

Whenx=0.1 y=1.10

Whenx=0.2 y=1.22

Whenx=0.3 y=l.36

16.24Runge-Kutta Method (Section 10.7)

 

Flow-chart 

 Refer to Section 14.24, page 732 

Program

function[]=Runga_Kutta_Method()

clc

format compact

format short g

f=inline{'x+y*y');

x0=input('Enter the value x0:');

y0=input('Enter the value y0:');

h=input('Enter the value h:');

xn=input('Enter the value xn:'); x=x0;

y=y0;

while (1)

if(x==xn)

break

end

kl=h*f(x,y);

k2=h*f(x+h/2,y+kl/2);

k3=h*f(x+h/2,y+k2/2);

k4=h*f(x+h,y+k3);

k=(kl+(k2+k3)*2+k4)/6;

x=x+h;

y=y+k;

fprintf('When x=%f y=%f \n',x,y)

end

end


NOTES: x 0 is starting value of x, i.e. , x 0

xn is the value of x for which y is to be determined



Computer Solution of Example10.15

Enter the value x0:0

Enter the value y0:l

Enter the value h:0.2

Enter the value xn:0.2

When x=0.200000 y=l.273536

16.25Milnes Method (Section 10.9)

 

Flow-chart 

 Refer to Section 14.25, page 734 

Program

function,[]=Milne_Method()

clc

format compact

format short g

global x y;

global h

x=[0 0 0 0 0 ];

y=[0 0 0 0 0];

x(1)=input('Enter the value x0:');

xr=input('Enter the last value of x:');

h=input{'Enter the spacing value:');

aerr=input('Enter the allowed error:');

y=input('Enter the value of y(i),i=0,3:-');

for i=l:3

x(i+1)=x(1)+i*h;

x(2:3,:)=x(2:3,:)+x(1,1)*6

end

disp('x Predicted Corrected');

disp('y f y f');

while (1)

if(x(4)==xr)

return

end

x(5)=x(4)+h; y(5)=y{l)+(4*h/3)*(2*(f(2)+f(4))-f(3));

fprintf('%f%f%f\n', x(5), y(5), f(5) );

correct();

while(1)

yc=y(5);

corect();

if(abs(yc-y(5)<=aerr))

break;

end

end

for i=l:4

x(i)=x(i+l);

y(i)=y(i+1);

end

end

function [z]=f(i)

z=x(i)-y(i)*y(i);

end

function[]=correct()

y(5)=y(3)+(h/3)*(f(3)+4*f(4)+f(5));

fprintf('%f %f\n', y(5),f(5))

end

end


 NOTES : x is an array such that x [ i ] represents xn + i for e.g., x [0] represent xn 

y is an array such that y [ i ] represents yn + i 

xr is the last value of x at which value of y is required

h is spacing in values of x 

aerr is the allowed error in value of y yc is the latest corrected value for y 

f is the function which returns value of y ʹ

correct calculates the corrected value of y and prints it



Computer Solution of Example 10.19

Enter the value x0:0

Enter the last value of x:1

Enter the spacing value:0.2

Enter the allowed error:0.0001

Enter the value of y(i),i=0,3:-[0 0.2 0.0795 0.1762]

[image: image]

16.26Adams-Bashforth Method (Section 10.10)

 

Flow-chart 

 Refer to Section 14.26, page 736 

Program

function[]=Adams_Bashforth_Method()

clc

format compact

format short g

x=input{'Enter Values of x\n');

y=input('Enter Values of y\n');

sz=size(x);

sz=sz(2);

h=x(2)-x(l);

for i=l:sz

tx=x(i);

ty=y(i);

tf=(tx^2*{1.0+ty));

f(i)=tf;

end

for i=l:sz

x(i);

y(i);

f(i);

end

x(sz+1)=1.4;

y(sz+1)=y(sz)+(h/24)*((55*f(sz))-(59*f(sz-1))+(37*f(sz-2))-(9*f<sz-3));

f(sz+1)=(x(sz+1)^2)*(1.0+y(sz+1));

for i=l:sz+l

fprintf('x=%4.If y%d=%4.3f f%d=%4.5f\n',x(i), i-sz,y(i),i-sz,f(i))

end

end

Computer Solution of Example 10.23

Enter Values of x

[1 1.1 1.2 1.3]

Enter Values of y

[1 1.233 1.548 1.979]

x=1.0 y-3=1.000 f-3=2.00000

x=1.1 y-2=l.233 f-2=2.70193

x=1.2 y-1=1.548 f-1=3.66912

x=1.3 y0=1.979 f0=5.03451

x=1.4 y1=2.572 fl=7.00170

16.27Solution of Laplaces Equation (Section 11.5)

 

Flow-chart 

 Refer to Section 14.27, page 740 

Program


function[]=Laplace_Equation()

global SQR u

clc

SQR=4;

u=zeros(SQR);

disp('Enter the boundry conditions')

getrow(1,u);

getrow(SQR,u);

getcol(1,u);

getcol(SQR,u);

aerr=.1;

maxitr=10;

for itr=l:maxitr

maxerr=0;

for i=2:SQR-l

for j=2:SQR-l

t=(u(i-l,j)+u(i+l,j)+u(i,j+l)+u(i,j-1))/4;

err=abs(u(i,j)-t);

if(err>maxerr)

maxerr=err;

end

u(i,j)=t;

end

end

fprintf('iteration No.%d \n',itr);

disp(u)

if(maxerr<=aerr)

fprintf('After %d iterations\n the solution is\n',itr)

disp(u)

return

end

end

function[]=getrow(i,u)

global u

fprintf('Enter the values of u[%d,j],j-1,%d \n',i,SQR);

for j=l:SQR

u(i, j)=input ('');

end

end

function []=getcol(j,u)

global u

fprintf{'Enter the values of u[i,%d],i=2,%d \n',j,SQR-1);

for i=2:SQR-1

u(i,j)=input{'');

end

end

end


 NOTES : SQR is the size of the square mesh

u is a 2D array representing the square mesh

aerr is allowed error

maxitr is the maximum number of iterations to be performed

itr is the counter which keeps track of number of iterations performed

err is the error in a particular point of the mesh

maxerr is maximum error in the mesh in an iteration

f is the execution time format

getrow inputs the i th row of the mesh

getcol inputs the j th column of the mesh



Computer Solution of Example 11.3 (a)

Enter the boundry conditions



Enter the values of u[l,j],j=l,4

The elements of the matrix 1000

The elements of the matrix 1000

The elements of the matrix 1000

The elements of the matrix 1000



Enter the values of u[4,j],j=l,4

The elements of the matrix 1000

The elements of the matrix 500

The elements of the matrix 0

The elements of the matrix 0



Enter the values of u[i,l],i=2,3

The elements of the matrix 2000

The elements of the matrix 2000



Enter the values of u[i,4], i=2,3

The elements of the matrix 500

The elements of the matrix 0

[image: image]

[image: image]

After 8 iterations the solution is

[image: image]

16.28Solution of Heat Equation (Section 11.9)

 

Flow-chart 

 Refer to Section 14.28, page 745 

Program

function[]=Heat_Equation()

clc

format compact

format short g

XEND=8;

TEND=5;

u=zeros(XEND+1,TEND+1);

h=1.0;k=0.125;

f=inline('4.*x-(x.*x)/2. 0);

csqr=input('Enter the square' of c:\n');

alpha=(csqr.*k)/(h.*h);

ust=input('Enter the value of u[0,t]:');

fprintf('Enter the value of u[%d,t]\n',XEND);

uet=input('');

for j=l:TEND+l

u(XEND,j)=ust;

u(l,j)=u(XEND,j);

end

for i=l:XEND-l

u(i+l,l)=f(i);

end

for j=l:TEND

for i=2:XEND

u(i,j+1)=alpha*u(i-1,j) + (l-2*alpha)*u(i,j)+alpha*u(i+1,j);

end

end

fprintf('The value of alpha is %4.2f\n1,alpha)

disp('The value of u(i,j) are:-')

disp(u');

end


NOTES: XEND is the ending value of x 

TEND is the ending value of t

h is the spacing in values of x

k is the spacing in values of y

f ( x ) is value of u ( x , 0)

csqr is value of C2

alpha is a

ust is the value in first column

uet is the value in the last column



Computer Solution of Example 11.11

Enter the square of c:4

Enter the value of u[0,t]:0

Enter the value of u[8,t] 0

The value of alpha is 0.50

The value of u(i,j) are:-

Columns 1 through 7

[image: image]

16.29Solution of Wave Equation (Section 11.12)

 

Flow-chart 

 Refer to Section 14.29, page 748 

Program

function[]=Wave_Equation()

clc

XEND=5;

TEND=5;

f=inline('x*x*(5-x)1);

csqr=input('Enter the square of c\n');

ust=input('Enter the value of u[0][t]\n');

fprintf('Enter the value of u[%d][t]\n',XEND)

uet=input('');

for j=l:TEND+l

u(1,j)=ust;

u(XEND+1,j)=uet;

end

for i=l:XEND-l

u(i+l,l)=f(i);

u(i+l,2)=f(i);

end

for j=2:TEND

for i=2:XEND

u(i, j+1)=u(i-1,j)+u(i+l,j)-u(i,j-1);

end

end

u'

end


NOTES: XEND is the ending value of x 

TEND is the ending value of t

f ( x ) is value of u ( x , 0)

csqr is value of C2

ust is the value in first column

uet is the value in the last column



Computer Solution of Example 11.14

Enter the square of c 16

Enter the value of u[0][t] 0

Enter the value of u[5j[t] 0

[image: image]

16.30Linear Programming-Simplex Method (Section 12.8)

 

Flow-chart 

 Refer to Section 14.30, page 750 

Program

function [ ]=Linear_Programming_Simplex_Method()

clc

ND=2;

NS=2;

N=ND+NS;

N1=NS*(N+l);

c=zeros(1,N);

cb=zeros(1,NS);

th=zeros(1,NS);

x=zeros(1,ND);

a=zeros(NS,N+l);

bas=zeros{1,NS);

for i=l:NS

a(i,i+ND)=1.0;

end

for i=l:NS

bas(i)=i+ND;

end

disp('Enter the constraints')

for i=l:NS

for j=l:ND

a(i, j)=input ('');

end

a(i,N+l)=input ('');

end

disp('Enter the objective function')

for i=l:ND

c(i)=input(1');

end

while(1)

max=0;

kj = 0;

for j=l:N

z=0;

for i=l:NS

z=z+cb (i) *a(i, j);

end

cj=c(j)-z;

if(cj>max)

max=cj;

kj=j;

end

end

if(max<=0)

break;

end

max=0;

for i=l:NS

if(a(i,kj)=0)

th(i)=a(i,N)/a{i,kj);

if(th(i)>max)

max=th (i);

end

end

end

if(max<=0)

disp('Unbounded solution');

return;

end

min=max;

ki=l;

for i=l:NS

if((th(i)<min)& & <th(i)=0))

min=th(i);

ki=i;

end

end

t=a(ki, kj );

for j=l:N+l

a(ki,j)=a(ki,j)/t;

end

for i=l:NS

if(i=ki)

b=a(i,kj);

for k=l:N+l

a(i,k)=a (i,k)-a(ki,k)*b;

end

end

end

cb(ki)=c(kj);

bas(ki)=kj;

end

for i=l:NS

if((bas(i)>=0)&&(bas(i)<ND))

x(bas(i))=a(i,N);

end

end

z=0;

for i=l:ND

z=z+c(i)*x(i);

end

for i=l:ND

fprintf('X(%d)=%7.2f \n',i+1,x(i))

end

fprintf('Optimal value =%7.2f \n',z)

end


NOTES: ND is the number of decision variables

NS is the number of slack variables

a is the array containing body matrix, unit matrix and bi  s

c is an array containing values of cj  s 

cb is an array containing values of CB  S 

th is an array containing values of e  s 

bas is the basis. For xi  s basis contains i , for si  s basis contains i +ND

ki is the key row

kj is the key column



Computer Solution of Example12.4

Enter the constraints

4

2

80

2

5

180

Enter the objective function

3

4

X(l)= 2.50

X(2)= 35.00

Optimal value = 147.50

Computer Solution of Example 12.16

Enter the constraints

2

3

2

440

4

0

3

430

Enter the objective function

4

3

6

X(l)= 0.00

X(2)= 42.22

X(3)= 156.67

Optimal value= 1066.67

Exercises 16.1

 

	Let x = [1 2 3 4].
( a ) Add five to each element

( b ) Add three to just the even-index elements

( c ) Compute the square root and square of each element


	Create the vector x = randperm (50) and then evaluate the following function using only logical indexing:
 y ( x ) = 2 if x < 8

= x  9 if 9 < = x < 35


	Create a vector x with the elements,
  xn = ( l) n +1 (2 n  l)


	Given the arrays x = [1 2 3], y = [2 4 5] and A = [3 8 6; 5 4 3], find
( a ) x + y  ( b ) [ x ; y ] ( c ) [ x ; y ]( d ) A  3


	Write a MATLAB code to plot the function
 y = x 3  x 2 + 6 x sin (5 x )  9 x 


	Write a MATLAB program to evaluate the roots of the equation ax 2 + bx + c = 0.

	Write a program in MATLAB for finding a real root of the equation f ( x ) = 0 by the bisection method.

	Write a MATLAB program to find a real root of x 3  4 x  9 = 0 using the method of false position.

	Write an algorithm for the Newton-Raphson method to solve the equation f ( x ) = 0. Apply the same to solve cos x − xex = 0 near x = 0.5 correct to three decimal places.

	Write a MATLAB program to solve the following equations by the Gauss-Seidal method: 83 x + 11 y  4 z = 95; 7 x + 12 y + 13 z = 104; 3 x + 8 y + 29 z = 71.

	With the help of a flow chart, write a MATLAB program to solve: 7.5 x + 3.8 y + 2.9 z = 15; 3.2 x + 6.8 y + 7.4 z = 37; 1.3 x + 2.1 y + 3.2 z = 7, using the factorization method.

	Given the data:
[image: image]

Write a MATLAB program to fit a quadratic relation using least square criterion.


	Write a program in MATLAB to estimate f (0.6) by the Lagrange interpolation for the following values:
[image: image]


	Write a MATLAB program to evaluate [image: image] using Simpsons rule.

	Write a MATLAB program to evaluate [image: image] using the Simpsons 3/8 rule.

	Write a MATLAB for the second order Runge-Kutta method.

	Write a MATLAB for solving differential equations using the Runge-Kutta fourth order formulae.

	Write a MATLAB program to find y (0.8) for the differential equation dy / dx = ½( x + y ) Given the following table using Milnes Predictor-Corrector method:
[image: image]


	Write a MATLAB program to maximize z = 6 x 1 + 4 x 2 subject to 2 x 1 + 3 x 2  100, 4 x 1 + 2 x 2  120, x 1, x 2  0 where x 1, x 2 are number of items to be produced.

	Write a MATLAB program to solve Example 12.17.
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Useful Information

IBasic Information and Errors

 

1. Useful Data

[image: image]

2. Conversion Factors

[image: image]

3. Some Notations

[image: image]

Factorial n, i.e., n ! = n ( n  1) ( n  2)... 3. 2. 1.

Double factorials: (2 n )!! = 2 n (2 n  2) (2 n  4) ... 6. 4. 2.

	(2 n  1) !! = (2 n  1) (2 n  3) (2 n  5)... 5. 3. 1.

Stirlings approximation. When n is large [image: image]

4. If X is the true value of a quantity and X ʹ is its approximate value, then

[image: image]

5. If Δ y is the error in the function y = f ( x 1 , x 2 , ... , xn ) corresponding to the errors Δ x 1 , Δ x 2..., Δ xn, then 

[image: image]

6. Relative error of a product of n numbers

= Algebraic sum of their relative errors approximately

II Solution of Algebraic and Trancendental Equations

 

	Intermediate value property: If f ( x ) is continuous in the interval [ a, b ] and f ( a ) , f ( b ) have different signs, then the equation f ( x ) = 0 has at least one root between x = a and x = b.

	Descartes rule of signs: The equation f ( x ) = 0 cannot have more positive roots than the change of signs in f ( x ) and cannot have more negative roots than the change of signs in f (  x ).

	If 1 , 2 , 3 , ... be the roots of the equation a 0 x  n  + a 1 x  n 1 + a 2 x  n 2 + a 3 x  n 3 + ⋯ = 0, then
[image: image]


	Bisection method: Iteration formula is [image: image]
This process is continued till the difference between two consecutive values is negligible.


	Method of false-position or Regula falsi method: Iteration formula is
[image: image]

This process is repeated till the difference between two consecutive values is negligible.


	Secant method:
Iteration formula is [image: image]




	[image: image]
	
	Obs. If secant method once converges, its rate of convergence is 1.6 which is faster than that of method of false position. 





	Iteration method: Writing f ( x ) = 0 as x = φ( x ) and taking x 0 as the initial root of the given equation, the approximations to the root are xi = φ( xi ) such that φʹ( x ) < 1.

	Newton-Raphson method algorithm is
[image: image]




	[image: image]
	
	Obs. Condition for its convergence is | f(x) f ″ (x) | < | f ʹ (x) |2. Newtons method has a second order of convergence. If this method once converges, it converges faster than the Regula-falsi method and is preferred.





	Iterative formula to find 1/ N is x n +1 = xn (2  Nxn )

	Iterative formula to find is [image: image]

	Method of Least squares: ( i ) Curve of best fit y = a + bx
Normal equations: Σ y = na + b Σ x, Σ xy = a Σ x + b Σ x 2

To find a , b , solve these equations.

( ii ) Curve of best fit y = a + bx + cx 2

Normal equations: Σ y = na + b Σ x + c Σ x 2

Σ xy = a Σ x + b Σ x 2 + c Σ x 3, Σ x 2 y = a Σ x 2 + b Σ x 3 + c Σ x 4.

To find a , b , c , solve these equations.




IIISolution of Simultaneous Algebraic Equations

 

	Numerical solution of linear simultaneous equations are
( i ) Direct methods 	 ( ii ) Indirect ( or Iterative ) methods 

Method of Determinants, Matrix Inversion method, Gauss-elimination method, Gauss-Jordan method and Factorization method are direct methods; Gauss-Jacobi method, Gauss-Seidal method, and Relaxation methods are indirect methods .


	Method of determinantsCramers rule. For the equations
[image: image]


	Matrix Inversion method. For the equations:
[image: image]

where A 1, B 1, etc. are the cofactors of a 1, b 1 etc. in the determinant | A |.


	Gauss-elimination method. In the Gauss elimination method, the coefficient matrix is transformed to upper triangular matrix.

	Gauss-Jordan method .  In Gauss-Jordan method, the coefficient matrix is transformed to diagonal matrix.

	Gauss-Jordan method of finding the inverse of a matrix A. The matrices A and I are written side by side and the same row transformations are performed on both. As soon as A is reduced to I , the other matrix represents A 1.

	The convergence in Gauss-Seidal method is thrice as fast as in Jacobis method.

	The condition for Gauss-Jacobis method to converge is that the coefficient matrix should be diagonally dominant.


IVFinite Differences and Interpolation

 

	Forward differences: Δ yr = yr +1  yr .
Backward differences: ∇ yr = yr  yr 1

Central differences: Δ yx 1/2 = yx  yx 1


	Relations between operators:
[image: image]


	Factorial notation. The product x ( x  1) ( x  2) ... ( x  r + 1) is denoted by [ x ] r and is called a factorial.
Factorial polynomial is defined as [ x ] n = x ( x  h ) ( x  2 h )... [ x  ( n  1) h ] . The result of differencing [ x ] n  is analogous that of differentiating xr .

Important Result

	Δ[ x ] n = n [ x ] n 1

	Δ[ ax + b ] n = na [ ax + b ] n 1


	Reciprocal Factorial notation. The function {( x + h )( x + 2 h )... ( x + nh )}1 is denoted by [ x ] n  and is called a reciprocal factorial function.
Important Result

	Δ[ x ] n  =  n [ x ]( n +1)

Δ[ ax + b ] n  =  na [ ax + b ]( n +1)


	Inverse Operator of Δ. If Δ yx = vx , then yx = Δ1 ux , Δ1 or 1 / Δ is called the inverse operator of Δ and is analogous to 1 /D or integration in calculus.
Important Result

	Δ1 [ x ] n = [ x ] n +1/( n + 1)

	Δ1[ x ] n  = [ x ] n +1/( n + 1)



VInterpolation

 

	Newtons forward interpolation formula:
[image: image]


	Newtons backward interpolation formula:
[image: image]


	Gauss forward interpolation formula:
[image: image]


	Gausss backward interpolation formula:
[image: image]


	Stirlings formula:
[image: image]


	Bessels formula:
[image: image]


	Laplace-Everetts formula:
[image: image]


	Lagranges interpolation formula:
[image: image]


	Lagranges inverse interpolation formula:
[image: image]


	 Newtons divided difference formula:
y = f ( x ) = y 0 + ( x  x 0) [ x 0, x 1] + ( x  x 0) ( x  x 1) [ x 0, x 1, x 2]

	+ ( x  x 0) ( x  x 1) ( x  x 2) [ x 0, x 1, x 2, x 3] + ⋯


	Hermite interpolation formula:
P ( x ) = [1  2( x  x 0) L ʹ0 ( x 0)] [ L 0 ( x )]2 y ( x 0) + ( x  x 0) [ L 0 ( x )]2 y ʹ( x 0)

 + [1  2( x  x 1) L ʹ1 ( x 1)] [ L 1 ( x )]2 y ( x 1) + ( x  x 1) [ L 1( x )]2 y ʹ( x 1)

 + [1  2( x  x 2) L ʹ2 ( x 2)] [ L 2( x )]2 y ( x 2) + ( x  x 2) [ L 2( x )]2 y ʹ( x 2) + ⋯...


	Cubic Spline interpolation formula:
[image: image]

 

VINumerical Differentiation

 

	Forward difference formulae:
[image: image]


	Backward difference formulae:
[image: image]


	 Central difference formulae:
( i ) Stirlings formula gives

[image: image]

( ii ) Bessels formula gives

[image: image]



VIINumerical Integration

 

	Trapezoidal rule:
[image: image]


	Simpsons 1/3rd rule:
[image: image]

(Number of sub-intervals should be taken as even)


	Simpsons 3/8th rule:
[image: image]

(Number of sub-intervals should be taken as a multiple of 3)


	Booles rule:
[image: image]

(Number of sub-intervals should be taken as multiple of 4)


	Weddles rule:
[image: image]

(Number of sub-intervals should be taken as a multiple of 6)


	Errors:
[image: image]


	Rombergs method:
[image: image]

The computation is continued till two successive values are equal.


	Gaussian integration:
( i ) Two point formula:[image: image]

 ( ii ) Three point formula:[image: image]

( iii ) To apply Gaussian integration, the limits of integration a, b are changed to  1 , 1 by the transformation [image: image]


	Double integration:
( i ) Trapezoidal rule: 

[image: image]

( ii ) Simpsons rule: 

[image: image]

Adding all such intervals, we get I .



VIIINumber Solution of Ordinary Differential Equations

 

	Picards method:
[image: image]


	Taylors method:
[image: image]


	Eulers method: y 2 = y 1 + hf ( x 0 + h , y 1)
Repeat this process till y 2 is stationary. Then calculate y 3 and so on.


	Modified Eulers method:
[image: image]

Repeat this step, until y 2 becomes stationary. Then calculate y 3 and so on.


	Runge Kutta method:
[image: image]


	Milnes method:
[image: image]


	Adams-Bashforth method:
[image: image]

( Four prior values are required to find the next values by Milnes or Adams-Bashforth method )


	Central-difference approximations:
[image: image]



IXNumber Solution of Partial Differential Equations

 

	Classification of second order equation:
[image: image]

is said to be

 ( i ) elliptic if B 2  4 AC < 0

 ( ii ) parabolic if B 2  4 AC = 0 

( iii ) hyperbolic if B 2  4 AC > 0.


	Laplace equation:
( i ) Standard five point formula:

[image: image]

( ii ) Diagonal five point formula:

[image: image]

(Four conditions are required to solve Laplace equation.)


	Poissons equation:
[image: image]


	One-dimensional Heat equation:
[image: image]


	Wave equation:
[image: image]

 ( i ) Explicit formula for solution is 

u i, j+ 1 = 2(1   2 c 2) u i, j +  2 c 2 ( u i 1, j + u i+ 1 , j )  u i, j 1 where  = k / h 

( ii ) If  is so choosen that coefficient of ui , j is zero, then

(= k / h ) = 1/ c i.e. k = h / c , then ( i ) takes the simplified form

 u i , j +1 = u i 1, j + u i +1, j  u i , j 1

which provides as explicit scheme for the solution of the wave equation.





APPENDIX   B


Answers to Exercises

Exercises 1.1

[image: image]

Exercises 1.2

[image: image]

Exercises 1.3

[image: image]

Exercises 2.1

[image: image]

Exercises 2.2

[image: image]

Exercises 2.3
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[image: image]

Exercises 2.5

[image: image]

[image: image]

Exercises 2.6
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. Max. Z = 3x; — 2x, + 4x, — 4x5; subject tox; + 2v, + 1, — x5+ 5, = 8,

D) — Xy + Xy — X5 — Sy = 2, — 4, + 2x, + 3x, — 3x5 = 6; X, Xy, Xy, X5, S, S = 0.

(i) x; = 2, x5 = 1 (Basic); x; = 0 (Non-basic) (i) x; = 5, x5 = — 1 (Basic); x, = 0

(Non-basic) (iii) x, = 5/3, x5 = 2/3 (Basic); x; = 0 (Non-basic)

All the three basic solutions are non-degenerate.

X, =x3=x,=0andx, = 1/2.

Basic solutions are (i) x; = 2, x, = 1 (Basic) and x5 = 0; (i) x; = 3 = 1 (Basic) and
xy = 0; (iii) x, = — 1, x5 = 2 (Basic) & x; = 0.

(a) First two solutions are non-degenerate basic feasible solutions.

(b) First solution is optimal & Z,,,, = 5.
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cxy = 280713, x5 = 0, x5 = 20/13, x, = 180/13; max. Z = 2280/13.

x; = 0, x5 = 400 units; max. profit = US$1200.

x; = 125, x, = 250 units; max. profit = US$2250.
x; = 400 gms, x, = 0; min. cost = US$2.

x; = 0, x5 = x5 = 50; max. profit = US$700.

x; = 0.5, x5 = £3 = 0.04 units; min. cost = US$5.80.

Acrages for corn, wheat, soybeans are 250, 625, zero respectively to achieve a
max. profit of US$32,500.
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