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PREFACE

Newtonian mechanics is taught as part of every physics program 
for several reasons. It is a towering intellectual achievement; it has 
diverse applications; and it provides a context for teaching model-
ling and problem solving. I have tried to give equal prominence 
to all three missions in this text. To do this I have included some 
advanced material as well as the customary introductory topics. The 
book therefore is designed to be studied over an extended time-
frame somewhat beyond the first year of an English physics pro-
gramme. This enables me to develop the problem-solving aspects 
more fully than in many other texts, as well as including some more 
advanced content. In particular I have tried to show how problems 
are approached in order to bring out the way one goes about con-
structing a solution or model. Tidy solutions and appropriate mod-
els rarely come fully formed, yet many texts present them as such, 
assuming that students will learn through their own trial and error. I 
think the trial and error process needs to be taught. 

Each chapter starts with a problem, for which the following text 
provides the background to a solution. I hope that knowing what 
the question is makes the following material more digestible. I have 
included some end-of-chapter questions, but not drill exercises. 
These are so readily available (and constructible) that it seemed an 
extravagant use of paper to write yet more. The text itself contains 
some solved drill exercises where these help to illustrate a concept. 

The level of mathematics varies through some of the chapters. 
The harder sections can be omitted on first reading. I have assumed 
that students will be taking a parallel course in mathematical meth-
ods, but the early parts of chapters use plug-and-chug verification 
to avoid overburdening the student. On the other hand, if we avoid 
mathematical sophistication entirely it is not possible to reach the 
required level of skill to build up the modelling expertise that New-
tonian mechanics is supposed to teach. 
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It will be clear to readers that my approach to many subjects is 
not entirely conventional. For example, Newton’s third law is treated 
first, weight is introduced before mass, energy is introduced before 
the equations of motion. This last I do for the particular reason of 
making contact with contemporary physics: the physics of elemen-
tary particles is encapsulated (roughly speaking) in an expression for 
the (quantum) energy of the Universe and their dynamics follows 
from this. It also makes direct contact with Hamiltonian mechanics, 
an understanding of which makes quantum mechanics a little less 
impenetrable. 

A lot of the material for this book was developed in collabora-
tion. I am particularly grateful to Dr. Edwin Thomas who not only 
originated some of the problems but read an initial version of the 
text and helped eliminate some of the more egregious errors. It 
goes without saying that any remaining errors are mine alone. Sarah 
Symons and Naomi Banks also made helpful suggestions.

Derek Raine 

June 2016



CHAPTER 1
MECHANICAL 
MODELS

1.1 INTRODUCTION

We observe that the world changes. At first most of these 
changes appear random, but then we begin to observe the regularity 
of day and night; the periodicities of the seasons; the flow of water; 
the transforming effect of fire. We wonder if we can perhaps control 
some of these changes. Gradually we learn that to exploit Nature 
we must first understand change. Progress in understanding change 
means describing it and isolating regularities; it means understand-
ing a surface complexity in terms of a deep simplicity. We might link 
the start of this endeavor to Plato’s challenge to the academicians of 
Athens to understand the complex movement of the stars and the 
planets in terms of motion on interlinked circles. We might highlight 
the development of kinematics in Oxford and Paris in the thirteenth 
century, isolating the features of motion under constant accelera-
tion and describing it graphically. We could note the complexity of 
Ptolemy’s epicycles brought to order by Kepler’s discovery of the 
elliptical motion of the planet Mars and Galileo’s experimental find-
ing that bodies fall with constant acceleration. Or we could begin 
with the laws of motion as synthesized by Newton from the work of 
Huygens and Descartes into a code that can unravel the motion of 
all bodies – unless they are moving near the speed of light or inhabit 
the micro-world of the atom. Wherever we start, this is above all 
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a story of progress in stripping away the inessentials for the given 
purpose; in short, a story of how to make models of the world in the 
language of mathematics.

This book is about that story: as history it is one of the greatest 
narratives of human endeavor; and as current science, it is one of the 
most significant underpinnings of modern technology.

Let us begin, amusingly and totally unfairly, with a speech to 
the British Association for the Advancement of Science given by 
Dionysius Lardner in 1838. Lardner said “Men might as well project 
a voyage to the Moon as attempt to employ steam navigation against 
the stormy North Atlantic Ocean.”

One hundred and fifty years separated the accomplishment of 
the two events, but neither was as impossible as he had predicted. 
We do not have any record of why Lardner thought we could not 
travel to the Moon, but we do know why he thought that steam ships 
could not cross the Atlantic. He believed that the resistance of a 
ship increases with its size; so more coal is required to feed the boil-
ers that produce the power to overcome the resistance. But the size 
of the ship then has to be increased to carry the extra coal, which 
in turn increases the resistance requiring ever more coal. Eventu-
ally, Lardner believed, the maximum range would be reached using 
(presumably) an infinite amount of coal in an infinite ship.

A little mathematics, and some knowledge of ship design, 
enables us to see how the problem is in fact overcome. In order to 
proceed, it is easier to imagine ourselves in the frame of reference 
of the ship (or, stated more simply, just imagine ourselves on the 
ship). Then the resistance force on the ship is proportional to the 
rate at which it destroys the momentum of the sea that tries to flow 
past it. This is proportional to the transverse cross sectional area of 
the ship. Let us take some length scale L to characterize the size of 
the ship, the width or length for example. Then we imagine the ship 
to grow proportionately as we increase L. (For example, multiply all 
lengths by a factor 2). The area will increase as  L2 with the scale, L. 
(So by a factor of 4 if we double L.) However, the amount of coal 
carried increases as the volume, which increases more rapidly 
( L3). Thus, larger ships are in fact more suited to long distances 
than small ones. We can do even better if we make the ship long 
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and thin (which is why ships are long and thin): we can increase the 
volume while the transverse area remains almost constant.

What do we learn from this? First, that we need mathematics, or 
at least mathematical ideas, to clinch an argument, not mere words. 
Second, that to apply mathematics we need to simplify the situation 
to retain only what is relevant: here it does not matter what the ship 
is made of, or even how it differs from a cuboid; the properties of 
the sea are unimportant, other than that it flows. And we can adopt 
a convenient point of view (from the ship or from the land) in assess-
ing the problem: the outcome cannot depend on which frame of 
reference we choose.

1.2 MODELS

We are going to look at a systematic way of thinking about mod-
els in physics. Let us introduce this through another example. Con-
sider the orbit of the Earth round the Sun. There are two agents 
involved here: the Earth and the Sun; they are, if you like, the play-
ers on the stage. The Sun is going to be an external agent: that is to 
say its properties are going to be fixed and unaffected by the pres-
ence of the Earth. Its only role will be to exert a gravitational pull 
on the Earth. Our second agent, the Earth, we will treat as a point 
mass with the properties that is has a position and a velocity. The two 
agents interact through the gravity of the Sun, which falls off with 
the inverse square of the distance between the Sun and the Earth. 
With this set-up we look for possible orbits of the Earth round the 
Sun which repeat – that is to say which the Earth, in this model, will 
track year after year. The outcome, as you probably know, is that the 
Earth must move in an elliptical orbit with the Sun at a special point 
called the focus of the ellipse; which particular ellipse will depend 
on how the system was formed (i.e. on the initial conditions).

Is this what really happens? No. The Sun is not at rest – it too 
moves under the influence of the gravity of the Earth; the Earth is 
not a point; it is not spherical; also it spins; and the pair interacts 
through solar radiation and the solar wind as well as through gravity. 
And that is before we have taken account of the influence of the 
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other planets of the solar system. Some of these differences do not 
affect the orbit, some do. The point of the model is that it allows 
us to investigate the effect of the hypothesis that gravity follows an 
inverse square law. No other law would provide us with the gross 
features of the orbits. The model can then be extended under the 
same hypothesis to see if we can account for the detailed departures 
of the orbit from a perfect ellipse by adding in the previously omit-
ted details to a more comprehensive model. Once we have used 
these models to establish our hypothesis about the nature of gravity, 
this will become part of our knowledge of physics that will be used 
in any other situations where we need to model gravitational inter-
actions, for example in other planetary systems: our models should 
be consistent and we develop a body of knowledge of the laws of 
physics to ensure this.

To complete the story, you may know that things work out pretty 
well for the inverse square law, but not exactly once Einstein comes 
on the scene. Einstein’s general theory of relativity enables us to say 
that the hypothesis of the inverse square law is not exactly true – 
no model based on it will agree exactly with all observations of the 
motion of the planets. In Einstein’s theory of relativity there are, 
in effect, forces of gravity on the Earth (and on the other planets) 
which modify the inverse square law, and which do enable us to 
account for planetary motion precisely1.

We use Einstein’s theory to calculate departures from Newto-
nian gravity in any model of bodies orbiting under gravity. So let us 
think about the orbit of a GPS satellite around the Earth. To calcu-
late this we would need a model of the Earth. There are a number 
to choose from:

1. The Earth is a uniform sphere

2.  The Earth is a non-uniform sphere with density varying 
with radius

3. The Earth is an ellipsoid

1 Even Einstein’s theory may not be the final word: string theories for example 
suggest that there may be higher order corrections to the equations of general 
relativity, although these would have a negligible effect on the solar system.
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4.  The Earth is a body the mass distribution (and shape) of 
which has been mapped (to some level of accuracy)

5.  The Earth is exactly the shape and density of the Earth 
(the real world “experiment”)

All (except the last) are approximations. Whether they are useful 
depends on what we want to do. Which model is the most appropri-
ate to study the following? We’ll leave you to decide.

a) Satellite orbits

b) Earthquake determinations of the structure of the core

c) Tidal forces

d) Weather prediction

e) Solar system models

1.3 ESTIMATES

Before we tackle a problem in detail it is important to build an 
approximate model to get a rough idea of what to expect. Here is an 
historical example.

Newton attempted to test his postulate of the universal inverse 
square law of gravity by estimating the gravity required to keep the 
Moon in orbit. A body orbiting in a circle at radius R falls through 
a distance R in a quarter of a period (T/4), so the acceleration 
(distance per unit time) due to gravity at the body is approximately 
R/(T/4)2. Comparing the acceleration due to gravity produced by the 
Earth at its surface (g = 9.81 m s–2) with the gravity of the Earth at 
the Moon (gm), we have therefore

2

9.81 .16m m

g T
g R

The Moon is at a distance Rm = 4  108 m and its orbital period is a 
month (= 2.5  106 s) so we have g/gm ~ 104

.
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What would the inverse square law give us? If g  1/R2 then 
g/gm = (Re/Rm )2 where Re (=6400 km) is the radius of the Earth; so 
we should have g/gm = (Re/Rm )2 ~ 5  103. This is a factor 2 out, not 
bad for our rough estimate.

Newton used a much better estimate for the acceleration of 
the Moon, but a rather worse estimate of the distance to the Moon, 
with the result that for several years he did not believe the inverse 
square law to be exact. With a better knowledge of the distance to 
the Moon, the numbers worked out and Newton went on to write 
the Principia.

Two important points to remember in making estimates: quanti-
ties raised to high powers need to be known fairly accurately to get 
a good estimate; on the other hand only rough values are needed for 
quantities raised to fractional powers. Also, if a quantity is bounded 
by a large range, then the geometric mean is the best estimate for 
that quantity. For example, a useful estimate of a quantity that var-
ies between 1 and 100 is usually not 50.5 (the arithmetic mean) but 

1 100 10   (the geometric mean).

It is useful to practice using approximate models and approxi-
mate values to obtain order of magnitude estimates. Here are some 
examples: which of the following are true?

(a)  1 foot = 1 light nanosecond. (The speed of light is 
3 x 108 m s–1. )

(b)  ½ degree ~ the angle subtended by a penny coin at arm’s 
length.

(c)  A piece of paper folded 25 times could stretch to the Moon

1.4 UNITS AND DIMENSIONS

In the SI system the standard base units in mechanics are the 
meter, kilogram and second, corresponding to the dimensions of 
mass [M], length [L] and time [T]. Apart from the need to attach 
units to physical quantities, the dimensions of derived quantities are 
useful in several ways.
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Dimensions have to balance in an equation, a fact which often 
allows one to check an equation – provided the equation is writ-
ten with all the physical quantities in symbols and not subsumed in 
numerical values.

Dimensions also allow us to associate various physical meanings 
to a quantity. For example, force is mass times acceleration so has 
dimensions [F] = MLT–2. This can be written as MLT–1 / T i.e. as the 
rate of change of momentum (because it is mass times velocity – or 
momentum – per unit time). Similarly, pressure is force per unit 
area, so has dimensions [P] = [F]/L2 = ML–1T–2. This can be written 
as ML2T–2/L3 or energy (mv2) per unit volume. This can be quite use-
ful if one wants to estimate a pressure.

For example, the pressure at the center of the Sun supports the 
Sun against its own gravity, so the energy per unit volume must be 
roughly equal to the gravitational energy. In Chapter 6 we shall see 
that the gravitational potential energy can be estimated as GM2/R4, 
where M is the mass of the Sun, R its radius and G Newton’s gravi-
tational constant. Putting in values for the solar mass and radius we 
find that the pressure at the center of the Sun must be of order 
1014 N m–2. This is a remarkable result: we have used a little mathe-
matical physics to construct a “device” that “measures” the pressure 
at the center of the Sun. (Actually, we could go further: this pressure 
must also be roughly the energy density of the solar plasma, from 
which we could estimate the temperature of the solar interior.)

Finally, one can sometimes use dimensional analysis to extract 
the dependence of one physical quantity on others. For example, the 
drag of a body in a fluid must have the dimensions of a force and must 
depend on the area of the body, A, its speed v, (a body at rest expe-
riences no drag) and the density of the medium , (at low enough 
density the medium may as well not be there). The only combination 
of A, v, and  that has the dimension of a force (MLT–2) is Av2. Of 
course, the shape of the body will add a numerical factor. In addi-
tion, there would be a viscous drag on the body, which can also be 
estimated by dimensional considerations, up to a numerical factor.

The disadvantage of units is that there are many different ones in 
use for the same quantity. This is partly historical and partly, sometimes, 
for the convenience of using numerical values as close as possible to of 
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order unity. This being so, it is often necessary to convert between units. 
There are various algorithmic ways of doing this. For example,

V (miles hr–1) = V (m s–1)  (miles m–1 )  (s hr–1)
     = V (m s–1)  (8/5  1000)–1  3600 miles hr–1

because there are 8/5  1000 meters in a mile and 3600 seconds in an 
hour. Note that meters (m) and seconds (s) cancel from the intermedi-
ate formula. Personally, I think it is easier to use common sense. Your 
speed in miles per second will be less than that in meters per second 
by a factor of the number of meters in a mile (divide by 8/5  1000) 
and your speed in meters per hour will be greater than that in meters 
per second by the number of seconds in an hour (multiply by 3600).

1.5 EQUATIONS

Estimates inform mathematics as well as numerical calculations. 
The most important aspect, once one has learnt to work with sym-
bols and not numerical values, is to learn to neglect small quantities. 
Let us look at some examples.

Suppose we put a girdle round the Earth, that is we wrap a rope 
round its circumference. Suppose the rope has a length L = 2R + . 
How high off the ground is it? Most people would guess that the 
height is very much less than  because the extra  has to stretch all 
the way round the world2. This is a not very interesting question from 
a practical point of view, but let us see how the mathematics works out 
using a simple model of a spherical Earth. Let the height off of the 
ground be h. We have:

 2 2R h Rp p d  

2 The philosopher Ludwig Wittgenstein liked to quote this as an example where 
a mental picture of the relation between big and small leads us astray: pouring a 
glass of water into the ocean does not have much effect on sea level. Quoted in, 
for example, Wittgenstein and the Philosophy of Mind, Ed Jonathan Ellis & Daniel 
Guevara (2012) OUP.
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so
.2h

d
p

Thus, adding a meter to the length gives a height of about 15 cm – on 
whatever planet you choose!

Why has it worked out like this? Dividing through by 2R, we 
can write the equation another way:

1 1 .2
h
R R

d
p  

In other words a 1% change in the circumference (/R) pro-

duces a roughly 
1 1

~2 6p  % (proportionate) increase in the radius 

(h/R), because the radius and circumference are linearly related. Put 
this way the answer is entirely reasonable.

Consider next a completely different problem. What rise in sea 
level would result from a 1 degree rise is sea temperature? What 
model shall we choose? The simplest one, which we shall take as our 
starting point, is a sphere of radius R covered to a uniform depth h 
in a thin layer of water. Suppose that the coefficient of expansion of 
water is . Then the change in volume of sea on expansion is  times 
the original sea volume:

      3 3 3 34 4 4 4
– –3 3 3 3R h R h R h Rp d p a p p         (1.1)

This looks like a lot of work; however, our model has both h << R 
and  << R. So, expanding the brackets, we can approximate:

  2 24 4  R h R hp d p a   (1.2)

neglecting powers of  higher than the first, or

 hd a  (1.3)

since h << R.
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Equation (1.1) makes it look as if the final answer should involve 
the radius of the Earth, R. The result (1.3) shows that the relative 
rise (/h) is independent of the radius of the planet. Is this rea-
sonable? We cannot make a dimensional argument here, because 
there are too many lengths involved: the final answer could have 
been multiplied by any number of factors of h/R. The easiest way to 
see that the result is reasonable is to imagine a strip of water from 
around the circumference laid out (approximately) on a flat surface. 
Then it does not matter how long the strip is: the rise in height will 
always be the same when it expands. Another way of seeing this is 
to compare it to putting a girdle round the Earth: the extra height 
(radius) is accommodated by a proportionate increase in length 
(circumference) without reference to the radius of the planet.

Note that we could have written down Equation (1.2) immedi-
ately by approximating the volume of a thin covering of ocean on a 
sphere as area  depth. So this is another check on the model.

For our final example we look at the fall off of pressure with 
height in the Earth’s atmosphere. Suppose that a student, asked to 
estimate the height of the atmosphere, claims that the inverse square 
law of gravity means that gravity gets weaker as you get to greater 
heights in the atmosphere and hence that the top of the atmosphere 
is where gravity is so much weaker that it cannot stop the air mol-
ecules escaping. What do we make of this?

Of course, to be fair it all depends on what you mean by the top 
of the atmosphere, but we can agree that what most people mean 
by a significant atmosphere does not extend as far as low Earth orbit 
at a few hundred km. (It’s actually much less; the FAI defines the 
boundary between the atmosphere and outer space as the Karman 
line at 100km.) We can see that the student’s answer must be wrong 
with just a little appreciation of the mathematics. The acceleration 
due to gravity, g, falls off with radius from the center of the Earth 
as an inverse square: 21 .g R  The only length scale in the gravita-
tional model is the radius R. (The presence of the atmosphere does 
not alter this: gravity is essentially unaffected by the atmosphere.) 
So R is the length scale on which gravity gets significantly weaker, a 
scale very much greater than the height of the atmosphere. Thus, as 
far as the atmosphere is concerned we can treat g  as approximately 
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constant. The explanation for the thinness of the layer of atmosphere 
round the Earth must lie elsewhere.

Another way of looking at this is to work out how much g  
changes by over a height h << R. We do not do this by tapping num-
bers into a calculator. Instead we derive a feeling for the way g  falls 
off by expanding the inverse square law for h << R:

 2 2 3
1 1 2

~ – ,
h

g
R RR h




using the binomial theorem and neglecting terms in higher powers 
of h/R. So close to the surface, g  falls off linearly with height.

The Earth is 6400 km in radius so if the atmosphere were to 
extend this by as much as 200 km it would amount to no more than 
3 %. Gravity is an inverse square law so a 3% increase in radius 
means roughly a 6% decrease (double 3%) in gravity: scarcely 
noticeable. The atmosphere would extend by several Earth radii 
if the explanation given were really true. In fact, the height of the 
atmosphere is governed by the amount of air, and the way pres-
sure falls off with height in an approximately constant gravitational 
field, and has a true scale height (height to fall by a factor 1/e) of 
around 8km.

1.6 CHAPTER SUMMARY

●  Physics in general, and mechanics in particular, involves 
making mathematical models of the world.

●  A model seeks to simplify reality as much as possible for the 
purpose to which it is being put.

●  A model is defined in terms of the agents and their interac-
tions. Simplification therefore means identifying the signifi-
cant agents and their essential interactions.

●  Models in mechanics should be described in terms of math-
ematical symbols for dimensional quantities, with the entry 
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of numerical values reserved for the final step. This allows 
dimensions to be checked for consistency.

●  The mathematics should be approximated appropriately 
to the model, especially in the neglect of small quantities 
where justified. This enables the results to be interpreted 
more readily.

●  The result of a model should be expressed and explained in 
words (and/or graphically) and examined to check that it is 
reasonable.



CHAPTER 2
FORCES

In this chapter we are going to address the following problem:

Problem 1: Figure 2.1 shows a horse and cart. In due course 
the farmers will have had enough of being photographed and will 
want to transport their harvest to market or storage. How does the 
horse pull the cart?

What are the forces in and on the system of horse and cart; why 
do these forces move the cart in some circumstances but not others 
(for example if the cart is too laden)?

Figure 2.2: Horizontal forces on a block at rest on a horizontal plane

Figure 2.1: Horse and cart (Picture credit: http://www.flickr.com/photos/hartlepool_
museum/5933914248/sizes/z/in/photostream/)
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Figure 2.3: Vertical forces on a block at rest on a horizontal plane. 
The reaction force R is equal and opposite to the weight W.

2.1 ACTION AND REACTION

We start by considering various cases where the forces on a body 
are in equilibrium, hence where the forces do not change the state 
of motion of the body.

Consider a block at rest on a flat plane as in Figure 2.2. We 
imagine that the block is subject to equal and opposite horizontal 
forces acting through a common point, as indicated by the arrows. 
By symmetry, the block cannot move. If the forces on a body do not 
change its state of motion we say that the forces are in equilibrium. 
This suggests that a body that does not move must be acted on by 
equal and opposite forces in both magnitude and direction, hence 
must be subject to no net force (or no forces at all).

If forces of the same magnitude in Figure 2.2 were not to act 
through a common point we should have a more complicated situa-
tion in which the block could tip over. We shall deal with this later: 
for the moment all forces on an extended body are assumed to act 
through a common point. Alternatively we can consider the body 
to be a point particle with no extension, so that all forces on it act 
through the same point by construction.

Consider now a block at rest on a flat plane as in Figure 2.3. If 
we were to imagine ourselves in the role of the plane, for example by 
holding the block in our hand, we would feel the block pushing down. 
We attribute this to the weight of the block. Let us call this force W.

Thus, the block has a weight W, which is the force acting down 
on the plane. Experience shows that an unbalanced force causes an 
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object to move. So we expect that the plane must act back on the 
block with a force equal and opposite to the weight of the block. 
In fact, if we imagine ourselves now in the role of the block, we 
feel this reaction as our weight. This is shown in Figure 2.3 where 
each force is represented by an arrow which points in the direction 
of the force and has a length proportional to the magnitude of the 
force.

The SI unit of force is the Newton (N) where 1 N = 1 kg m s-2.

Actually, in general, everyday experience alone does not always 
show that an unbalanced force causes an object to move. In one of 
the earliest systematic considerations of the issue, Aristotle pointed 
out that a man cannot move a ship3. It was Newton’s insight to argue 
that the reason for this was not, directly, the weight of the ship, but 
the resistance offered by the water. Thus, even in this case, the ship 
does not move perceptibly because the forces on it are balanced. 
More than that, Newton proposed that in all cases, an action is bal-
anced by an equal and opposite reaction – even when the reaction is 
not obviously visible. Thus we have:

Newton’s Third law:

To every Action there is an equal and opposite Reaction.

Note that the law refers to the action and reaction between two 
agents (the block and the plane above): the action of agent A on B is 
equal and opposite to that of B on A. Each agent is acted on by the 
respective reaction.

2.2 FORCES IN EQUILIBRIUM

We now put this together in Figure 2.4. The block is again at rest 
by symmetry. The forces form a closed figure.

Experimentally we find that if the forces are applied at an angle 
(rather than horizontally and vertically) they will still balance if they 
form a closed figure.

3 Since water has no static friction, in principle a man should be able to move a ship 
ever so slowly, but not, at least in Aristotle’s experience, perceptibly.
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Figure 2.5 shows another example of three forces applied at an 
angle to a body. The forces balance since they form a closed figure. 
The diagram shows why this is. The forces are labelled B, R and G. 
The arrows are drawn in the direction of the forces and their lengths 
represent the magnitude of the forces. Horizontally the force G to 
the left is balanced by the force R to the right and vertically the 
forces R and G are balanced by B. This balance will always be the 
result if the forces form a closed figure.

Figure 2.4: Forces on a block at rest on a horizontal plane. 
In equilibrium the forces form a closed figure.

Figure 2.5: Forces in equilibrium form a closed figure. The horizontal () and vertical com-
ponents () are indicated by subscripts. The components of forces in horizontal and 

vertical directions balance and hence balance in any pair of orthogonal direction. 
This implies that forces behave as vectors.

A necessary condition for a body to be in static 
equilibrium is that the forces on it balance. Forces balance if they 

form a closed figure.

This is a necessary condition only (it must be satisfied by bodies 
in equilibrium, but it is not sufficient to guarantee that a body is in 
equilibrium) because we have assumed that the forces act through 
a point.

The fact that forces forming a closed figure balance is equivalent 
to the parallelogram law of force and hence to the fact that force is a 
vector i.e. it behaves “like an arrow on the page” having a length and 
direction. To see this, consider the triangle of forces in Figure 2.6. 
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Since the triangle is a closed figure, the forces balance, so the net 
force must be zero. Thus (Figure 2.6a)

0.AB BC CA  
  

Equivalently (Figure 2.6b)

 –AB BC CA AC  
   

 (2.1)

Equation (2.1) is the parallelogram law in Figure 2.6c, since :BC AD
 

.AB AD AC 
  

The vector AC


 is called the resultant of AB


 and .BC


Figure 2.7 also shows how a force can be broken into orthogonal 
components. To express this algebraically, as well as in pictures, we 
introduce vectors i and j, each of unit length, in the horizontal and 
vertical directions respectively.

Figure 2.6: The fact that forces in equilibrium form a closed figure 
is equivalent to the parallelogram law

Figure 2.7: The decomposition of a force into components. The vectors i and j are 
orthogonal unit vectors (i.e. are perpendicular to each other and have unit length)

From Figure 2.7 we can then write for a force F, with magnitude F:

 
cos sin

x y

F F F

F F

q q 
 

i j
i j  (2.2)
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sin cos sin sin cos

x y z

F F F

F F F

q f q f q  
  

i j k
i j k

F

In three dimensions we again find that forces in equilibrium 
form a closed figure. To obtain the analogue of Equation (2.2) 
we introduce a third unit vector k orthogonal to i and j, whence 
(Figure 2.8):

sin cos sin sin cosF F Fq f q f q  i j kF

0x y z    F F F

We can now see the relation between the condition that balanced 
forces form a closed figure, and that the components of the net force 
in any direction are zero. If the forces form a closed figure then the 
vector sum is zero: hence

0,x y zF F F F      i j k

from which

0x y zF F F    

and hence the components in the directions of the axes sum to 
zero. But the axes can be chosen in any three orthogonal directions; 
hence, for a body in equilibrium, the components of force in any 
directions sum to zero.

Figure 2.8: A vector F in 3 dimensions in terms of its components



Forces • 19

Figure 2.9: Addition of forces

Example: What is the resultant of a force F1= 5 N and a force of 
F2 = 2 N acting in directions an angle 30o apart (Figure 2.9)?

Solution (1): The parallelogram law

The cosine rule gives
2 2 2 o

1 2 1 2– 2 cos150

3
25 4 20 46.32

F F F F F 

    

osin150
sin 2 0.156.8a   

So F = 6.8 N. The sine rule then gives

 1 2 5 3 .    i jF F F

and  = 8.5o to F1.

Solution (2): Resolving forces

Since we can choose the axes arbitrarily, let F1 = 5i ; then F2 = 2 
cos 30o i + 2 sin 30o j, and

 22 5 3 1 25 10 3 3 1 37.66.F        

Thus 
1

1

. 25 5 3
cos 0.996.8 5

F F
F F

a


  

Then 
1

1

. 25 5 3
cos 0.996.8 5

F F
F F

a 
    so = 8.1o.

The two equivalent methods appear to yield slightly different results! 
Which is the more accurate? Near  = 0 the cosine is changing slowly 
so we need a very accurate value for cos to get an accurate value 
for , whereas the inverse sin function is changing rapidly, so gives 
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greater accuracy. Keeping three decimal places in solution 2 also 
gives  = 8.5o in agreement with solution 1.

Figure 2.10: Forces on the horse (white arrows) and on the cart (black arrows). 
The forces on the Earth balance the vertical arrows. Picture: Microsoft Clip

2.3 HORSE BEFORE CART

Let us return to the horse and cart and trace all the action – 
reaction pairs as it starts to move off. First of all assume that the 
brakes have been applied to the wheels so they are not free to turn. 
We will release them shortly once the horse is ready. Imagine your-
self as the horse.

Your weight is supported by the reaction on your hooves from 
the ground. You push backwards on the ground and the ground 
responds by pushing you forwards with an equal force, assum-
ing that friction is sufficient to prevent you from slipping. You 
pull on the cart and the cart pulls you back with an equal and 
opposite force.

Now imagine yourself as the cart.

Your weight is supported by the reaction on your wheels from the 
ground. The horse is pulling you forwards and you are pulling back 
on the horse. The pull is communicated to the axle. The wheels 
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cannot rotate because the brakes are on and they also cannot slip as 
long as the friction from the ground is sufficient to pin the points of 
contact to the ground. The horse and cart remain at rest.

To complete the picture, imagine yourself as the Earth.

You are pulling on the horse and cart by your gravity and they 
are pulling on you equally by their gravity. Furthermore, they are 
pushing on you by their weight, compressing you slightly and you 
are pushing back with the pressure generated by the compression.

Note that the gravitational attraction of the Earth on the horse 
and cart is equal and opposite to the gravitational attraction of the 
horse and cart for the Earth, and that the compressional force on the 
horse and cart is equal and opposite to the vertical compressional 
force on the Earth. The effect of these forces on the Earth is small 
and we neglect them; the corresponding reaction forces on the horse 
and cart are respectively equal in magnitude to the corresponding 
actions. However, the effect of these forces is rather larger on the 
horse and cart because of the rather different mass of the horse and 
cart compared to the mass of the Earth. We will see why the mag-
nitude of the effects differ when we come to Newton’s second law.

Notice carefully that the forces on any stationary agent balance; 
these forces on a single agent do not constitute action and reaction pairs, 
which must act on different agents! Confusing this issue leads to the 
puzzle as to how the horse can pull the cart: if their action and reaction 
balance, so the argument goes, there is no net force to accelerate the 
cart from rest. In Figure 2.10 the white arrows indicate forces acting 
on the horse (the reaction of the cart and the ground) and the black 
arrows indicate forces acting on the cart (the action of the horse and the 
ground). Each will accelerate if the forces acting on it do not balance.

2.4 STATIC FRICTION

Before we release the brakes on the wheels, the cart will move 
off only if the force on it is sufficient to overcome the friction 
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between the wheels and the ground and cause it to skid. How large 
is the frictional force? Experiment shows that the frictional force will 
be just large enough to balance the applied force on the cart up to a 
maximum given by

 mmaxF R  (2.3)

where R is the normal reaction of the ground on the cart. In the 
simple case that we have only the weight of the cart W pulling down 
we have seen that R = W (Figure 2.3). The quantity  is called the 
coefficient of friction. Its value is usually in the range 0 < < 1, 
although values greater than unity are possible. Once the force on 
the cart exceeds this maximum, friction will no longer maintain the 
balance of forces. Note that the coefficient of friction  depends on 
the materials in contact, but not on their apparent surface areas in 
contact (Section 2.8). This result was first published by Amontons 
in 1699.

2.5 SLIDING FRICTION

Clearly it is only possible to move the cart with the brakes on if 
the friction when the wheels are sliding is less than when they are 
at rest, since otherwise sliding would produce a greater restraining 
force than the one we are supposing has been overcome. We there-
fore have to distinguish between sliding friction and static friction. 
Static friction is variable up to a maximum value. What about slid-
ing friction? Suppose it were to have a constant magnitude. Then 
once the cart was in motion friction would never balance the applied 
force and the cart would continue to accelerate forever. Even if our 
experience with horse drawn vehicles is limited, our experience with 
motorised transport shows that this does not happen. Therefore, as 
the speed of sliding increases, so too must the friction: sliding fric-
tion is a velocity-dependent force. The functional dependence of 
the force on speed is something that has to be determined experi-
mentally: all we know is that it must be an increasing function of 
speed. Simple models are –slidingF v  or – .slidingF v v  (You might 
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be tempted to write ,v v instead of ,v v , but if you do this you 
need to take care that you adjust the sign so that the friction always 
opposes the motion i.e. that the frictional force changes sign when 
the motion reverses.)

2.6 A FRICTION PARADOX

Before we leave friction we need to address a question that 
puzzles a lot of students. Imagine a block moving at constant speed 
under the balance of an external force and an equal opposing fric-
tional force. We know that friction causes a loss of energy as heat; so 
energy must be supplied to the block by the external force to keep 
its speed constant. This is common experience: we will return to the 
conceptual details later. Here is the puzzle: change your frame of 
reference by running with constant speed alongside the block. Now 
what you see is a block at rest with two equal and opposite forces in 
balance. So there should be no heat dissipation! How can we have 
removed the need to supply energy to the block just by viewing it 
from a different platform? Of course, this is not possible, so where 
is the fallacy?

To solve the puzzle we need to understand the origin of friction. 
Friction cannot arise between exactly smooth surfaces: it requires 
fluctuations in the surfaces. In the final instance these are provided 
by the atomic nature of matter, although in practice few surfaces 
are smooth down to the atomic scale. The roughness means that 
the interaction between the surfaces is not constant: friction cannot 
be a constant force. Only when we take a macroscopic average of 
the fluctuating force do we get an apparently smooth behavior. If 
the frictional force is not exactly constant, then it cannot balance a 
constant external force moment by moment. Sometimes the body 
accelerates a little, sometimes it decelerates, maintaining a constant 
speed only on average and dissipating energy in the process. This 
behavior is the same whether we view it from a fixed point or from 
a uniformly moving platform. The fluctuating nature of frictional 
forces resolves the paradox.
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2.7 ROLLING FRICTION

Let us return to the horse and cart and release the brakes. 
The wheels are now free to rotate. The frictional force now acts to 
stop the wheels from sliding. This means that the point of contact 
with the ground is prevented from sliding forwards, so the friction 
still acts backwards. As the wheels turn they experience a rolling fric-
tion from the changing contact with the ground. This must be less 
than the sliding friction or the wheels would slide rather than roll. 
There is also a velocity dependent sliding friction from the axle bear-
ings which now also contributes to prevent the horse from accelerat-
ing the cart to ever greater speeds.

2.8 CONTACT AREA

There is one more problem we need to clear up: how does fric-
tion depend on the area of contact between two surfaces? The para-
dox is this: according to the formula F = R, the maximum frictional 
force between two objects depends only on the reaction on one 
object on the other and not on the apparent area of contact. So why 
would we increase the area of the tires on a car to increase the road 
holding?

The well-known example of the impossibility of separating 
two books with the pages interleaved appears to demonstrate 
precisely this dependence of the force on contact area. In fact, 
it does no such thing. The resolution of this paradox is that each 
page has the increasing weight of all the pages above it provid-
ing the frictional response. Thus two 500 page books require a 
force 250 times greater than that between two sheets of paper, 
not because of the increased area, but because of the weight of 
the pages.

Car tires are another story entirely: A skidding tire leaves a strip 
of rubber on the road, so this is not solid friction between two sur-
faces: it is harder to strip off a layer of rubber from a wider tire than 
from a narrower one.
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We can understand this better if we consider that between two 
rough surfaces (hence in practice, between any surfaces) the area of 
actual contact in a unit of visible area depends on the pressure. An 
increasing pressure deforms the surfaces leading to a greater area of 
contact, proportional to the pressure. The frictional force depends 
on the total number of points of contact, hence to the pressure times 
the area, or reaction force, between the surfaces, and not on the vis-
ible areas of overlap.

2.9  TORQUE: THE MOMENT OR 
COUPLE OF A FORCE

Our next problem is: how do we explain that a wheel with equal 
and opposite forces (from the ground and the axle) nevertheless 
moves? The resolution will be that the forces in this case do not act 
through the same point.

Consider the simple situation shown in Figure 2.11. Two blocks 
of equal weight W are placed equidistant from the pivot point 
(or fulcrum) of a lever. We assume that the weight of the arm of the 
balance can be neglected.

Figure 2.11: Two equal blocks at equal distances from the fulcrum of a lever. 
The upward reaction from the fulcrum balances the weights.

Figure 2.12: The arm will balance when .wX Wx  
Under this condition there is zero couple on the system.
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Since the arrangement is symmetrical there can be no preference 
for one of the blocks to move down and the other up, so the system 
does not move. Therefore the forces on the lever arm must balance. 
If we now move one of the blocks towards the pivot, the forces will 
still balance but the arm will nevertheless tip. Observation shows 
that it tips down on the side with the weight further from the pivot.

More detailed experiments show that for the weights to balance 
we must have

 .wX Wx  (2.4)

Actually, of course, experiment can never tell us this exactly, but we 
assume it to be exactly true and see where that leads.

First, we need to give names to the quantities in Equation (2.4). 
We select a point in space: any one will do, but usually a conve-
nient one suggests itself. In this case we choose the fulcrum. We 
then define the moment G of a force (or its couple  or torque) about 
the chosen point to be the force multiplied by the perpendicular 
distance to the line of action of the force (Figure 2.13). In vectors G 
is the vector product (or cross product)

 G r F.   (2.5)

So G has a direction perpendicular to the plane containing the force 
and our chosen point about which it is acting and a magnitude rF.

Figure 2.13: The moment G of a force about a point P is given by the vector product of the 
force and a vector from P to the line of action of the force.

In fact, we can take the cross product of F with any vector from P to 
the line of action of F, r' say, because

 – .        r F r r r F r F



Forces • 27

The final equality arises because –r r  is parallel to F so   0.  r – r F  
If r is chosen to be perpendicular to F then the magnitude of the 
couple G is just G = |G| = rF in a direction normal to the plane of r 
and F.

We now assert:

For a body to be in static equilibrium 
the moments of the forces on it must balance 

(i.e. the net moment must vanish)

To show this assertion is meaningful we have to show that if the 
moments balance about one point they balance about any other. To 
do this, assume that forces Fi act at points xi and that these forces are 
in equilibrium. Then we have

0i F

and

0.i i  x F

Now change the origin to X. We have to show that

  0.i i   X x F

But

  0,i i i i i       X x F X F x F

since each sum vanishes, which is what we set out to prove.

2.10 CONDITION FOR STATIC EQUILIBRIUM

We can now summarize our results. For a body in static 
equilibrium:

i.  the vector sum of the forces acting on the body must 
equal zero
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ii.  the moment of the forces on the body about any point must 
equal zero.

Although we shall not show it, these conditions are also suffi-
cient for a body to be in equilibrium i.e. if the forces on a body satisfy 
these conditions then the forces must be in equilibrium. Thus, to 
solve a problem in statics we set the sums of each component of the 
forces to zero and the moment to zero:

0x y zF F F    

and

      0,
yx z

       r F r F r F

where the sums are over all the forces acting on the body. We call 
this “resolving and taking moments”.

2.11 CENTER OF GRAVITY

It is convenient to remove the lever arm or balance now and 
consider the abstract point about which the moments of a system of 
weights would be zero. We call this the center of gravity. For two 
weights w and W it is defined by dividing the line between them in 
the ratio X:x such that:

 0.wX Wx   (2.6)

In general it is the point about which the moment of the weights is G = 0.

We can now describe why the lever balances under the Archime-
dean condition (2.4): this condition ensures that the center of grav-
ity coincides with the fulcrum. Thus the overall forces on the beam 
and the weights (gravity and the reaction from the fulcrum) not only 
balance in magnitude and direction, but also in point of application.
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Example: Center of Gravity

The most comfortable way to carry an object across your 
shoulder is to balance it at the center of gravity. Find the center of 
gravity of the spade in Figure 2.14. The handle is a cylinder of length 
h = 0.8m weighing W = 8 N and the blade is a rectangle of length 
b = 20 cm weighing w = 5 N.

Figure 2.14: A model of a spade

Solution: If the center of gravity is a distance x from the top of the 
handle, then taking moments about the top of the handle

  2 2
b h

W w x w h W     
 

from which

5 0.2 8 0.8
0.85 8 2 5 8 2

59cm

x             


Figure 2.15: A ladder against a wall
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2.12 AN EXAMPLE

A traditional example of a statics problem that is tackled by 
resolving forces and taking moments is that of ladder against a wall. 
The figure shows the forces involved, where W, the weight of the 
ladder, acts through the center of gravity of the ladder, which we 
assume to be the midpoint. The ladder has length 2l.

We solve the problem by resolving the forces and taking 
moments.

Resolving horizontally:

 ;rF R   (2.7)

Resolving vertically:

 ;rF R W   (2.8)

Taking moments about the point of contact with the wall:

 cos 2 sin 2 cos .rWl F l Rla a a   (2.9)

Consider first the case in which the wall is frictionless (i.e. when 
the friction from the wall is much less than that from the ground). 
We get

 rF R Wm m   (2.10)

at the point of slipping. So

cos 2 sin 2 cosW W Wa m a a 

or

 
1

tan .2a m  (2.11)

For stability then, we require  > tan-1(1/2µ). Once again we try out a 
numerical example to check this is reasonable. For example, if µ = 0, 
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so all the surfaces are frictionless, we require  > /2, which is 
impossible, as it should be: the ladder cannot stay against the wall 
without friction. At the other extreme, if µ = 1, then  = tan-1 0.5, so 
the ladder cannot rest at a shallower angle than about 27o.

Let us now introduce friction on the wall, so at the point of 
sliding .rF Rm    Then, using (2.8)

   – – –r r rF R W F W R W Fm m m m m mm     

so

 
.1r

W
F

m
mm    (2.12)

Then from Equations (2.9) and (2.7) we have

     2 sin – cos – cos – cos .r r rF W F W R W Fa a m a m a  

A little algebra using (2.12) gives

1–
tan .2

mm
a m




Thus the friction on the wall reduces the angle at which the ladder 
slips. If both µ = 1 and µ' = 1 then the ladder will not slip at all.

2.13 PROBLEM SUMMARY

To summarize: we are interested in the motion of the horse and 
cart together, so this is our agent. We are not interested in the reac-
tion back on the Earth, so this provides the environment; that is 
to say it can act on the agents but we are not concerned with their 
action back on it. The horse and cart are at rest while the forces and 
couples on them balance, or, equivalently, while the net force and 
net couple are zero. Both forces and couples are vectors so their 
components, taken in convenient directions, must balance. Thus, 
the system will remain at rest while the net vertical and horizontal 
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forces are zero. Vertically Newton’s third law tells us that if there is 
no vertical acceleration then the reaction from the ground equals 
the weight of the combined system. The reaction will be distributed 
between the wheels of the cart and the horse’s hooves. To determine 
at which point a hoof slips or a cart wheel slides we should need to 
know how the reaction is distributed, because for each point of con-
tact, with reaction force R the horizontal friction cannot exceed R.

Horizontally, the reaction of the ground on the horse’s hooves pro-
vides the force to propel the system forwards. Rolling friction with the 
ground and sliding friction in the bearings resist this motion. Once the 
horizontal forces balance, the motion is again at a steady speed.

We can divide the system into parts if we wish – and this might 
be important if we are considering the strength of the coupling 
between the horse and the cart for example – but as far as the sys-
tem as a whole is concerned Newton’s third law guarantees that the 
internal forces cancel. Consider the schematic diagram in Figure 
2.16 representing the horizontal forces on the horse and cart.

Figure 2.16: A schematic diagram of the forces on the horse H and cart C. Fr is the frictional 
force from the ground; Fh is the force the horse exerts on the cart; Fc is the force exerted by 

the cart on the horse and Fr' is the friction on the cart.

Looking at each agent, the cart and the horse, separately we have for 
the static equilibrium of the horse

,r cF F

and for the cart

.r hF F 

Newton’s third law gives us
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,h cF F

from which we can deduce that

.r rF F

This is the condition for the static equilibrium of the system 
as a whole, indicated by the dashed rectangle in Figure 2.16. The 
cancellation of internal action-reaction pairs, Newton’s third law, 
guarantees that we can divide the system into parts in any conve-
nient way.

Later we shall see how Newton’s other laws enable us to calcu-
late the acceleration of a system in which the forces do not balance.

Problem 2: For the second part of this chapter we are going to 
address the following problem:

Figure 2.17 shows the Great Pyramid of Giza together with a 
pictorial illustration of one idea for the way in which it was built, 
known as the ramp theory. According to this view the building 
stones were hauled up the ramps. The theory is disputed by scholars 
because the ramps must be shallow and this implies a vast amount 
of material is required to build the ramps. Some remains of ramp 
like structures are known, but the absence of more visible evidence 
makes the theory problematic.

Clearly a crucial aspect of the theory is the angle of the ramp: 
the stone blocks typically weigh 60 tons wt; up what angle is a team 
of men likely to be able to haul a stone block?

Figure 2.17: Great Pyramid of Giza, also known as the Pyramid of Khufu or Pyramid of 
Cheops. (http://www.lifeslittlemysteries.com/2174-cost-build-great-pyramid.html 
CREDIT: Nina | Creative Commons http://www.cheops-pyramide.ch/khufu-pyramid/

ramp-models.html)
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2.14 INCLINED PLANES

Figure 2.18: The forces acting on a block on an inclined plane

Our problem is to determine the optimum angle at which to pull a 
block up an inclined plane by a rope. We shall approach the problem 
in stages, including some false avenues, in order to illustrate various 
aspects of problem solving.

Think of the block as an agent (or if you prefer, think of yourself 
as the block) and consider the forces on it. There is its weight W 
vertically downwards, the reaction of the surface normal to the plane 
R and the friction Fr along the plane, and finally the force F pulling 
the block. Once again we represent the direction of a force by an 
arrow in that direction, and the magnitude of the force by the length 
of the arrow.

We shall do a simpler example first by considering the case  = 0. 
We could balance forces horizontally and vertically, but that would 
involve three forces in each case. It looks simpler to balance forces 
parallel to the plane and normal to the plane. Of course, both meth-
ods (and any other resolution) lead to the same result.

Resolving parallel to the plane in Figure 2.18 (with  = 0) we 
have

sinrF F W a 

where 0   < /2 is the slope of the plane. Resolving normal to the 
plane:

cos .R W a
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At the point of slipping, cosrF R Wm m a   so

 cos sin .F W Wm a a   (2.13)

The stationary value of F is obtained by setting dF/d =0. Differ-
entiation of (2.13) with respect to  shows that the derivative is zero 

for –1cot .a m  For this   
1

2 2cos 1a m m   and  
1
22sin 1 1 .a m   

So F has the value

 
1

2 21 .F Wm 

For  = 0, we have  
1

2 21 ,F W Wm m    so –1cota m  must be a 
maximum, not a minimum. Assuming 1,m  , the smallest value for 
F is µW at  = 0 (i.e. no slope at all).

So following the algebra we seem to have come to the conclu-
sion that the slope only makes things worse in terms of minimizing 
the force! However, if we take  = 0, we do not raise the block at 
all. The practical answer, other things being equal, seems to be 
that we want the gentlest slope possible. Of course, this is obvious! 
The more we wish to raise the block vertically, the more we have 
to pull! So we learn two things: first, to think about what outcome 
we expect before doing a calculation, and second, that we need 
to interrogate the mathematics, not be led blindly by it. Here we 
needed to check whether the stationary value for the force is a 
minimum and to not be misled by the hope that that is indeed what 
we would find.

A more relevant calculation might be to determine the angle 
required for a given force. We have to solve Equation (2.13) for . 
The result is not very illuminating, but the method is, so we shall 
present it here. We isolate either the sin or cos term on one side of 
the equation and square. Isolating the sin term on the left hand side 
and squaring gives

2 2sin ( – cos ) .
F
Wa m a
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We can now substitute for sin2 in terms of cos2, giving an equation 
involving only cosine terms: this was the point of the initial manipu-
lation. Using sin2 = 1 – cos2, we get

2
2 2

2
2

( 1)cos – cos ( –1) 0.
F F

W W
mm a a  

This operation has yielded a quadratic for cos (with no sin  terms) 
with the solution

 
2 2

2

1–
cos ,

1
mb m b

a
m

 


  (2.14)

where  = F/W. Now we want  < 1, that is F < W, or else there 
is no point in dragging the block up a slope. If we take the negative 
square root with  < 1 this gives cos 0a  or  > /2. Thus we take 
the positive root.

Figure 2.19: The function cos  plotted against  = F/W from Equation (2.14) for μ=0.5

Finally, look again at the expression we have obtained in Equa-

tion (2.14). For  = 0 we have  –1/22cos 1 .a m   Does this mean 
that is we apply a zero force (F = W = 0) the block will levitate up 
the slope? Clearly not! So what is wrong? As a clue consider that if F 
= 0 the block will, if anything, slide down the plane. So our solution 
does not apply to the problem that we set for small values of F or . 
It is useful to draw a graph. Figure 2.19 shows cos plotted against 
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 for a value of  = 0.5. At the peak of the curve cos =1 or  = 0. 
This is therefore the point at which the force is sufficient to move 
the block on a flat plane. Values to the left of this are not solutions 
of the problem; only for values of  to the right of the maximum do 
we get a valid slope.

2.15 PULLING AT AN ANGLE ON A FLAT PLANE

Figure 2.20: Pulling a block at an angle

We can now investigate how much difference pulling at an angle 
up an inclined plane would make. However, before we do this, con-
sider pulling at an angle 0q   on a flat plane ( = 0). Before we do 
any calculation let us see why we expect an optimum angle. If the 
angle  in Figure 2.20 is negative, the block is pulled onto the plane 
so the reaction force is bigger than it might otherwise be and fric-
tion is increased. If the angle  is too large and positive, much of the 
effort is going into lifting the block off of the plane, and while this 
reduces friction, the component of force pulling the block along the 
plane is diminished. Somewhere in between we expect to find the 
choice of  that minimizes the force required.

Resolving forces horizontally in Figure 2.20 we have

cosrF F q

and resolving vertically,

sin .W R F q 
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The block will slide once ,rF Rm , so using this and eliminating R 
gives

 ( – sin ) cosW F Fm q q  (2.15)

or

 .cos sin
W

F
m

q m q   (2.16)

This gives the force required for a given value of the angle . For 
the minimum force we differentiate (2.15) (or 2.16) with respect to 
 and set dF/d = 0 to get

–1tan .q m

This is reasonable: for negligible friction (<< 1)  is small: 
there is no point in pulling anything other than close to horizontally. 
For the minimum force we find from (2.16)

 2
.

1

W
F

m

m


  (2.17)

This also tells us that if  is small, there is not much point in adjust-
ing the angle: for  = 0, F = W so adjusting the angle has reduced 
the force in Equation (2.17) only by terms of order 2. We would be 
far better off reducing because the force required depends lin-
early on . So reducing by a factor 2 would roughly halve the force 
required.

At the other extreme, for large , consider the case that  has its 
maximum value of  = 1. Then pulling at 45o reduces the required 
force in (2.17) by a factor of 2, and this is the best we can do by 
adjusting the angle. Incidentally, in this case we really do have a 
minimum and not a maximum: for example, if  = 0 we have

21

W
F W

mm
m

 

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i.e. for angles away from the stationary point the force required is 
larger, hence the stationary point is a minimum.

Alternatively we can solve (2.15) for  for a given force. The 
result is again not very illuminating, but the method is. We could 
follow the approach we used to solve (2.13), but there is a more 
interesting way. Compare (2.13):

cos sin .F W Wm a a 

and (2.15), rewritten as

W cos sin .
F

Fq qm 

We see that the transformations W  F (or   1/ ),  1/ and 
  converts one equation into the other. Therefore the solution 
of the second equation is found by applying this transformation to 
the solution, Equation (2.14), of the first equation: from Equation 
(2.14) we get

–1 –1 –2 –2

–2

1–
cos

1
m b m b

q
m
 




and tidying up: 2 2 2 2

2

–1
cos .

1
b b m mmq b m

  
 
  

This idea of transforming one problem (that we have solved) into 
another (which we wish to solve), and thereby obtaining the solu-
tion by transformation, is exploited in various contexts in theoretical 
physics.

2.16  PULLING AT AN ANGLE ON 
AN INCLINED PLANE

Now to the calculation for the inclined plane: Figure 2.18 
shows the forces forming a closed figure, which will be the case up 
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until the block is about to slip. We could once again resolve forces 
horizontally and vertically, but this will involve three forces in each 
case and some trigonometric functions of . It seems as if it 
might be easier to consider the balance of forces parallel to the plane 
and perpendicular to it.

Resolving parallel to the plane:

 cos sin .rF F Wq a   (2.18)

Resolving perpendicular to the plane:

 cos sin .W R Fa q   (2.19)

Once more, if the block is just about to slip the frictional force is 
directly related to the normal reaction through the coefficient of 
friction for the two surfaces, µ by

 .rF Rm  (2.20)

We can in principle solve these equations for the angle . We start 
by combining Equations (2.18) to get F as a function of for fixed 
W and  giving

 cos ( cos – sin ) sinF W F Wq m a q a   (2.21)

We can find the angle that minimizes F by putting 0.
dF
dq   Differen-

tiating (2.21) gives

cos – sin – sin – cos
dF dF

F Fd dq q m q m qq q

or, when we put dF/d = 0,

–1tanmq q m 

for the value of  at the minimum. Is this answer reasonable? If  is 
small then m is small and we should pull almost parallel to the plane 
to minimize the effort required to move the block: we cannot reduce 
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by much the already small friction. As  increases we need a larger 
angle to the plane. The angle m is independent of the slope  of 
the ramp, which is perhaps a bit unexpected. But what force do we 
have to exert? We have assumed this can be adjusted at will. Let us 
substitute m back into Equation (2.21) and see. This gives

 
2

2 2

1
cos sin

1 1
F W

m m a a
m m

 
   
   

or

 
 

2

1
cos sin .

1
F W m a a

m
 

  (2.22)

The maximum value of cos sinm a a is  21 m   when  = cot1 . 
Then F = W and  +  = /2. In other words the ramp is of no ben-
efit: we may as well lift the weight vertically!

So a more realistic calculation might be to investigate the angle 
of the ramp given a fixed force. We have just found that the best 
angle  is independent of the ramp angle , so we put  = tan1  and 
solve (2.22) for . But apart from the factor (1 + 2) this is the same 
as (2.13). So from the solution to (2.13), Equation (2.14), we have

2 2

2

1–
cos .

1
mb m b

a
m

 



where now

2 1 .
F
Wb m 

2.17 SOLUTION OF PROBLEM 2

Let us put in some values. A stone block in the pyramid has a 
weight of about 60 000 N. Let us assume it is being moved on rollers, 
so friction might be  = 0.1 (say). A man can pull rather less than his 
body weight, so say 300 N. Suppose we employ 50 men to move the 
block so  ~ F/W ~ 0.25. We get  ~7o. The length of the ramp to the 
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height of the pyramid must therefore be cot 70 ~ 9. So the length of 
the ramp should be ~10 times its height.

Unfortunately this estimate depends sensitively on the value of 
 and . We should therefore add some error bars. We have, fixing 
 and varying ,

   

1
–2 2 2

2

– 1–
cos – sin  ~ – ,

1

mdb bdb m b
d a a da db m b

m


 


where we have taken 2 << 1 and 2 << 1 for our assumed values 
of  and . So  0 5~ .1 sin7 ~1.2 .da db db  In degrees this gives 

~70 .da db . So we need to know  to 1 per cent to get  to a fac-
tor of 2 (since  = 0.01 gives  ~ 7o, comparable with the value 
we found for ). A similar conclusion holds for . It is worthwhile 
remembering that this problem is generic: since a function varies 
slowly near a stationary point, locating a maximum or minimum 
accurately requires accurate data!

Figure 2.21: Near a minimum a small change in  gives an inaccurate estimate of .

2.18 TIPPING POINT

Where along the side of the block should we attach the rope? 
Intuitively we know that it should be at the lowest point, since this 
not only stops the block from tipping but helps to lift it off of the 
ground and minimize the friction. How can we show this? We do an 
easier problem first.
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Figure 2.22: Considering the block as an extended body, the position at 
which the rope is attached will determine if it tips or slides

In Figure 2.22 we consider that a square block is just at the point 
of tipping when it starts to slide. How do we know this is a tipping 
point? Consider approaching the situation by increasing the force 
gradually while the block refuses to slide. As the force increases, 
the far end of the block will begin to leave the ground. At this point 
the reaction force must be through the only point of contact with the 
ground, which must also be where friction is acting.

Why do we draw the figure like this and not with the block tip-
ping over (Figure 2.23)? It would be perfectly possible to analyze 
the situation mathematically with the block at an arbitrary angle, 
but toppling from this position is more likely than toppling from the 
horizontal. We can see this because once the block starts to tip off of 
the ground, the line of action of the weight moves towards the pivot 
end. So the weight exerts less of a restoring moment as the block 
tips. In other words, if the block is going to slip without tipping it had 
better do so by the time the block is about to pivot off the ground or 
it will not do so at all. So this is a situation where a little intuition can 
save us some complication in the mathematics.

Figure 2.23: A block at tipping point

To solve the problem we consider the block to be at the point of 
sliding and resolve horizontally in Figure 2.22:
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 cos ,rF F Rq m   (2.23)

and vertically:

 
cos

sin (1 tan ),
F

W R F
q

q m qm     (2.24)

where the final expression arises by substituting for from Equation 
(2.23). We now also take moments about the point of contact in Figure 
2.22. Of course, in reality, rather than in the two dimensional projec-
tion of the figure, this is a line, not a point, but nevertheless we usually 
talk about taking moments about a point! We choose this point because 
the unknown quantities Fr and R have zero moment about this point. 
They are therefore automatically eliminated from the resulting equa-
tion, thereby simplifying the resulting algebra. We know that taking 
moments about any other point would lead to the same result eventu-
ally. The moment equation about the line of contact is

 cos .2
h

W xF q  (2.25)

We now solve these Equations (2.24) and (2.25) for x/h in terms of  
by eliminating W/F. A little algebra gives

 
1 1

(tan ).2
x
h q m   (2.26)

This is the condition for the block to slide just at the point where it 
is about to topple. To find the condition that it slides before toppling 
we could rework the equations with Fr > R at the point of toppling 
(because the friction in this case would have to be larger than it actu-
ally is to prevent slipping). More simply we can see that if the point 
of application is lower than implied by (2.26) the couple on the block 
will be reduced and it is less likely to topple. Therefore the block will 
slide before toppling if

1 1
(tan ).2

x
h q m 

We look at some special cases to check the answer is reasonable and to 
draw some conclusions. Consider first the case  = 0. Then x/h  1/(2). 
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Thus for   1/2 it does not matter where we attach the rope: the 
block will always slide before toppling. For  = 1, we get x  h/2 
and we must attach the rope at or below the half-way point. In this 
situation we can see that the block cannot tip because there is no 
clockwise moment; so this is in agreement with our result.

If we now choose the angle  for the minimum force, tan = , 
we get

2 1
.2

x
h

m
m




The right hand side is always >1. To see this consider 
 22 –11

–1 0.2 2
mm

m m


   Thus, if we choose the angle to correspond 

to the minimum force the block will always slide before tipping. This 
is something we might expect the ancient Egyptians to have discov-
ered by trial and error in the course of laying many thousands of 
blocks.

2.19 TIPPING ON AN INCLINED PLANE

Figure 2.24: Block on an inclined plane

A slightly different problem occurs for a block on an inclined plane. 
Once again we consider the simpler case of a cubical block of side 
h, first for a block that is not being pulled. The block will now tip, 
if it tips at all, about the lower edge so if the block is at the point of 
sliding as it is about to topple the reaction force will act through the 
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lower edge. To look at the condition on the slope of the plane, once 
again we could resolve the forces parallel to and normal to the plane 
and take moments about a convenient point, in this case, to get the 
equation with the fewest forces, about the lower edge, P. Since the 
block is sliding down the slope the frictional force acts up the plane.

However, looking at the diagram (Figure 2.24) we see that W 
produces an unbalanced couple about the lower edge at P. Thus at 
the point of toppling, W must also act through the edge P. So if top-
pling occurs at the point of slipping,  = 45o. If  < 45o the block slip 
before it topples.

Resolving normal to the plane

 cos .R W a  (2.27)

Resolving parallel to the plane

sin cos ,rW F R Wa m m a  

using (2.27) in the final step. Thus, the block will topple before slip-
ping if  tan .m a  With  = 45o, this gives  = 1 i.e. the block will 
slip before it topples if  < 1.

Figure 2.25: The block tips or slides depending on the point of 
application and the angle of the rope

Finally, we look at an inclined plane. Our experience shows us not to 
plunge straight into the equations. So what do we expect? As we have 
drawn the figure the moment of F about P is clockwise, hence acts to 
tip the block about the leading edge at Q. If the angle  is increased 
sufficiently, or the distance x is decreased, then the moment of F 
about P will act to tip the block instead about the trailing edge at P. 
The condition for the situation in Figure 2.25 is
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tan .
x
hq 

Assume again that the block is on the point of tipping when it starts 
to slide. Resolving along the plane:

sin cosrW F Fa q 

and normal to the plane:

sin cos .F R Wq a 

Again taking moments about the leading edge:

cos –4
cos .

2

Wh
xF

p a
q

 
 
 

Putting tan  =  for the minimum force and solving for x we get:

21 (cos sin )
.2 1

[cos sin –1 sin ]

x
h

m a a
m

a a am

 
            

In this equation we have written the denominator in such a way that 
it is obvious that for  < 1 the trigonometric factor in curly brackets 
is less than 1 because the denominator is greater than the numera-
tor. Thus on an inclined plane we must attach the rope nearer the 
base; i.e. we appear to have shown that the slope makes it more 
likely that the block will topple before sliding! How can we under-
stand this?

There are two factors at work. On the one hand the moment of 
the weight about the leading edge increases as the slope gets steeper 
acting as a stabilizing influence against tipping. On the other hand, 
the reaction on the ground is less because the component of the 
weight normal to the slope is the reduced. Thus we require a larger 
applied force before the friction reaches its limiting value, making 
the block more prone to tipping. Only the calculation can tell us 
which of these is the dominant effect.
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2.20 LEVERS

Consider now how blocks might be levered into place. 
The figure shows two arrangements: where is the fulcrum best 
placed?

Figure 2.26: Various ways of applying a lever

The figure (Figure 2.26) shows the forces on the lever: the applied 
force, F, the load, L, and the reaction from the fulchrum, R. Note 
how we have drawn the forces in the figure, namely normal to the 
lever. The forces will have components parallel to the lever, and 
these must balance, but they will not help lift the weight; thus the 
equilibrium of the parallel components is irrelevant to the problem 
so we need not consider it.

Since we are interested in the relationship between the applied 
force and the load we take moments about the fulchrum. In the first 
case we get

  ,aL a b F 

and therefore

.
aL

F a b 

In the second case we have

,aL bF

so

.
aL

F b
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The applied force is clearly smaller in the first case, clearly because 
the lever arm (the distance from the applied force to the fulchrum) 
is longer in this case.

2.21 STRESS AND STRAIN

Finally we consider how the blocks may have been pulled up a 
ramp by ropes. Over a limited range of force, a rope obeys Hooke’s 
law:

F kx

where x is extension and k is a constant which will depend on the 
material and dimensions of the rope. Since we do not have a sample 
of Egyptian rope on which to evaluate k the equation in this form is 
not very useful. At a more fundamental level the constant k is related 
to Young’s modulus Y of the material:

YA
k l

This enables us to express the relation in a more fundamental way: 
for a rope of length l and cross-sectional area A

.
F x

YA l

The quantity F/A (force per unit area) is defined as the stress applied 
to the material, and x/l (extension divided by original length) is the 
strain, so Hooke’s law can be stated as stress  strain, with Young’s 
modulus as the constant of proportionality.

At large stresses, the material will deviate from this law: beyond 
the so called elastic limit the material will not return to its original 
state when the stress is removed, and eventually of course the rope 
will break.

Example: As an example, the ancient Egyptians invented the 
method of making ropes by twisting fibers together. The breaking 
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stress of hemp which the pyramid builders would have plaited into 
ropes, might have been around 108 N m-2. To exert a force of say 
5104 N on a 50 000 N block of stone would require rope with a 
cross section of 5104/108 = 510-4 m2, so about 5 ropes of 6mm 
radius.

2.22 CHAPTER SUMMARY

●  Force is a vector quantity with magnitude and direction and 
point of application

●  Newton’s Third Law: Between any pair of agents, to every 
action there is an equal and opposite reaction

●  A body is in static equilibrium if the net force and the net 
couple on it (about any fixed point) are zero; in particular 
the components of force must balance in every direction

●  The maximum static frictional force on a body is given by 
the coefficient of friction  times the reaction force R and is 
independent of area

●  The center of gravity of a body is the point about which the 
moment of its weight is zero

●  To solve a problem in mechanics we:

(i) draw a diagram

(ii)  identify the agents and their interactions on the diagram

(iii) think what answer you expect

(iv)  express the problem mathematically by considering the 
forces on each agent

(v)  express the solution analytically in symbols (if possible)

(vi) check the dimensions are correct

(vii) check the answer looks reasonable for special cases

(viii) express the solution graphically if possible
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(ix)  express the solution in words and decide if the solution 
meets our expectations; if not investigate why not

(x)  substitute numerical values if required in consistent units 
(and check that the order of magnitude of the outcome is 
reasonable).

2.23 EXERCISES

1.  Figure (2.27) shows (schematically) a bulldozer of mass M 
pushing a smaller block of mass m. Add the missing forces 
dues to friction, labelling them F9 on the bulldozer and F10 
on the block.

 What are the relations (greater than, equal or less than) 
between the following forces:

(a) F7 and F8

(b) F9 and F8

(c) F3, F4 and F2

(d) F5 and F10 ?

What is the relation between F2 and the mass of the bulldozer? 
What is the acceleration of the system in terms of the masses of the 
bulldozer and block and the forces acting on the system?

Figure 2.27: Bulldozer and block, question 1

2.  The diagram (Figure 2.28) shows a model of a nutcracker 
consisting of two equal hinged levers of length l pushing 
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on a spherical nut of radius a. The coefficient of friction 
between the nut and the levers is . A force F is applied at 
right angles at the end of each of the levers.

 Draw a diagram of the forces acting on the nut and of the 
forces on the levers.

 If the contact between the nut and the lever is a distance x 
along the lever, by taking moments about the hinge show 
that the normal reaction on the nut is Fl/x.

 By considering the horizontal forces acting on the nut, 
show that the nut will start to slip when x = a/ at which 
point the normal force on the nut is lF/a. Deduce that, 
other things being equal, it is easier to crack a smaller 
nut.

Figure 2.28: A model nutcracker and nut (question 2)

3.  Point weights 1W and 2W  are separated by a distance d. 
Show that their center of gravity is a distance

2cm.h w 

from W1 and find its distance from W2.

(b)  Find the center of gravity of the uniform L-shaped figure 
shown in Figure 2.29 if 10cma b   and 2cm.h w  .

(c) Describe the orientation of the object if it is hung from the 
corner at O.
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Figure 2.29: An L-shaped figure (question 3)

4.  A typical femur has a Young’s modulus of 17 900 N mm-2, 
a length of 500mm and a cross sectional area of 330 mm2. 
How much shorter is your femur when you are you stand-
ing up?

5.  Figure 2.30 shows a horizontal rod fixed at A but free to 
expand to the right. The spring constant is 10 Nm1 (i.e. a 
force of 10N produces a contraction of 1m) and the coef-
ficient of expansion of the rod (i.e. the fractional increase 
in length per degree) is 2105 m per degree. The length of 
the rod is 1m supported on a knife edge at its center. 
A mass of 0.1kg is hung from the right end.

a)  The system is initially in equilibrium with the rod horizon-
tal. Show that the force exerted on the rod by the spring is 
0.1g. In which direction does it act? 

b)  With the position of the knife-edge fixed with respect to A, 
the rod is now heated by 1oC. Neglecting the mass of the 
rod, through what angle does it move?

Is this the basis of a useful thermometer?

 

Figure 2.30: Question 5
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 Figure 2.31: Question 6

6.  Figure 2.31 shows a proposed perpetual motion machine. 
It is argued that the force on the two balls on the left if 
greater than the force on the ball on the right, so the 
machine will turn forever. What is the fallacy?



CHAPTER 3
KINEMATICS

Problem 1: Motion in one dimension

“According to the court report he was travelling at 60 mph. Had 
he been obeying the 30 mph speed limit he would have stopped in 
half the distance.” What is wrong? What should it say?

3.1 CONSTANT SPEED

Let us start with one of the iconic pictures of kinematics first 
proposed by the 14th century French philosopher Nicole Oresme. 
This is a graph of the speed of a body moving at constant speed 
against time (Figure 3.1). Since

Figure 3.1: constant speed in one dimension

by definition, v = distance/time = x/t , we have x = vt: i.e. the dis-

tance travelled is the area under the graph. Alternatively, we plot 
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distance against time. The speed is then the slope of the graph. This 
graphical representation resolved a long-standing puzzle. The puz-
zle was this: what does it mean to divide unlike quantities, that is, 
quantities with different units? We certainly cannot add or subtract 
them; dividing like quantities is valid, of course since it gives a pure 
number. Oresme’s graphs elucidate the meaning of speed as distance 
divided by time.

Suppose we transform to a frame of reference x' moving with 
constant speed u in the positive x-direction. Then the x coordinate 
transforms as

 x x ut    (3.1).

So

 .
x x

v u v ut t    


  (3.2)

The transformation law (3.1) between coordinates is called a Gali-
lean transformation and Equation (3.2) is the addition law for veloci-
ties in one dimension. 

3.2 CONSTANT ACCELERATION

If a body moves under constant acceleration we can draw simi-
lar graphs to those for constant speed. Then from the area under 
the graph of acceleration against time we have v = at. Similarly the 
acceleration is the slope of the graph of v against t. We can go one 
step further: the distance travelled is the area under the v-t graph so, 
assuming the body starts from rest, x = ½ at2 (the area of a triangle 
is ½ × base × height). If the body starts with a speed u there is and 
additional area ut to add on so

 
21

2x ut at   (3.3)
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Figure 3.2: Constant acceleration

For a body starting from rest we have

2
21

2 2
v

x at a 

or

2 2 .v ax

which gives us a relation between speed and distance rather than 
speed and time.

You might guess that starting from a speed u this equation 
becomes

 2 2 .v u ax 

It is instructive to see why this must be wrong. If we reverse the 
sign of acceleration a (so the body is slowing down from its initial 
speed) then the right hand side changes sign, but the left hand side 
(being a square) does not. Therefore this cannot be a valid formula.

We can obtain the correct result starting from (3.3) and putting 
t = (v – u)/a; after some algebra we arrive at

 2 2 2 .v u ax   (3.4)

But it is more instructive to see how this arises from the Galilean 
transformation. Let the motion be viewed from a frame moving 
at constant speed u along the positive x axis. Then, in this frame, 

;x x ut   and v' = v – u. Thus
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 2 22 2 2 .auvv ax a x ut ax a    

or

2 2 2v uv ax  

and so

 2 2 '2 2 2v u u v u ax    

which is the result (in the primed frame) we were seeking to prove.

Finally, the most general approach is to use calculus. For a body 
undergoing constant acceleration a from an initial speed u we have

 

2

2
d x

a
dt


 (3.5)

Integrating gives

dx u atdt  

where u is a constant or

 .v u at   (3.6)

Thus u is the speed at t = 0. Integrating again, we get

 
21
,2x ut at 
 (3.7)

assuming that the body starts from x = 0 at t = 0. Given the accel-
eration, the motion of the body is completely determined once we 
specify the initial speed and position. Thus Equations (3.6) and (3.7) 
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contain all the information about the motion, and we have seen that 
we can manipulate them to obtain the speed-distance relation of 
Equation (3.4). However, it is sometimes useful to know that we can 
obtain (3.4) directly by integration in the following way. To obtain a 
speed-distance relation we convert (3.5) from distance and time to 
distance and speed: we have

2

2 ,d x dv dv ds dva vdt ds dt dsdt
     
 

where the third equality is obtained from the chain rule of calculus. 
If a is a constant this integrates immediately to (3.4).

The advantage of this method is that it can be applied whatever 
the law of motion. So, for example, if the need arose, we could use 
this method to solve for the motion of a body with a constant rate of 
change of acceleration.

3.3  EXAMPLE: A BODY PROJECTED VERTICALLY 
UNDER GRAVITY

Let us take as an example a body projected vertically from 
height y = 0 with speed v subject to a deceleration –g. We expect 
the body to reach a maximum height at which point its speed will be 
zero. It will then return to the origin with acceleration g. The two 
parts of the motion are symmetrical – the speed on the way down is 
the same as that on the way up at corresponding points. If this were 
not the case we could extract the additional energy on the way up 
or down and create a perpetual motion machine. So the interesting 
issues are the maximum height and the time taken. The motion is 
governed by

 
21

– 2y vt gt  (3.8)

on the way up. You might think that this equation needs to be modi-
fied for the downward leg, since v is now negative. In fact the sym-
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metry of the two parts ensures that the same equation holds for each 
leg. To be convincing we shall show this explicitly in a moment. First 
let us calculate the maximum height.

The simplest approach is to complete the square:

 
2 21

.2 2
v v

y g t g g
        (3.9)

The maximum occurs when the negative term is as small as possible, 

namely zero. So 
2

2
v

y h g max at .
v

t g Of course the same result 

can be obtained by differentiation to find the maximum. This result 

is valid whatever the downward motion, so we can use it to set up the 
equation for the fall.

The body starts at 
2

2
vy g  at time 

vt g  with speed 0. The 

acceleration is still in the -y direction, so is still -g. Thus, using 
2

0
1
2y y ut at   we have

22 10 .2 2
v vy g tg g

     
 

which is the same as (3.8). Rearranging, we get for t > v/g

21
2y vt gt 

which is, naturally, the same as (3.9). So we do not have to consider 
the up and down motion separately.

Problem 1:

We can now tackle the problem. It is often useful to begin a 
problem by creating a visual representation, in this case a graph. 
Since the problem is dealing with speed and distance we use these 
as axes.
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Figure 3.3: Stopping distance, problem 1

A convenient unit here is to measure speed in units of 30 mph. In 
the absence of any other information we assume constant decelera-
tion. Then the deceleration a is given by

24 2 .as

Thus the distance in stopping from 1 speed unit is given by

11 2as

From which it is clear that 1

2

1
4

s
s  and not 

1 .2  We see that the stop-

ping distance increases as the square of the speed under constant 
deceleration. One might argue that constant dissipation of energy 
would be a better assumption. We shall return to this once we have 
formally introduced the concept of energy.

Problem 2: Motion in two dimensions

One of the first military applications of mathematics (certainly 
one of the first for financial gain) was Galileo’s application of pro-
jectile motion to aiming a canon. This problem is a slight variation 
on the theme: Given the height of a castle wall what is the angle of 
release of a projectile that gives it maximum range?
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3.4 MOTION IN TWO DIMENSIONS

Another of Galileo’s many achievements was the recognition that 
the orthogonal components of motion in two dimensions are inde-
pendent: we can treat vertical and horizontal motion separately and 
combine the results. This is an empirical result; in relativity theory it 
is not true. Thus, various combinations arise: constant speed in both 
directions; constant speed in one and constant acceleration in the 
other; constant acceleration in both directions. We treat each in turn.

3.5 ADDITION OF VELOCITIES

Since the orthogonal components of velocity are independent, 
we can add them separately. Thus, if

1 2u u i ju

and

1 2v v i jv

then

   1 1 2 2u v u v     i jw u v

This is equivalent to the parallelogram law, as shown in Figure 3.4.

Figure 3.4: Showing the addition of two vectors by components is 
equivalent to the parallelogram law.
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Example: A missile appears to be approaching you from 30º north 
of west. If you are flying due north at the same speed as the missile, 
what is the true direction of travel of the missile?

Figure 3.5: Example triangle of velocities of relative motion

From the isosceles triangle in the figure, the true direction 30º is 
south of east.

3.6 PROJECTILE MOTION

In this section, we add motion at constant speed in the hori-
zontal direction to motion at constant acceleration vertically down-
wards. This describes, for example, the motion of a projectile in the 
absence of air resistance, which is what we need to solve Problem 2. 
Let’s start with some simpler examples.

Example 1: A projectile launched from a tower

Figure 3.6: Launch of a projectile horizontally from a tower
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Suppose we launch a projectile horizontally with speed v from a 
height h. Where does the projectile land? This problem nicely illus-
trates the independence of the horizontal and vertical motion. We 
begin by sketching a diagram and deciding (carefully) the direction 
of our axes and the origin. Suppose y is measured vertically upwards 
and x horizontally with the origin at the top of the tower. For the 
horizontal motion at constant speed we have

 
x vt

 
(3.10)

and for the vertical motion at constant acceleration from rest

 2y = – gt .  (3.11)

The projectile hits the ground when , – ,y h  hence when 2– –h gt

or 
h

t = .g Thus the range is

.hR v
g



First let us check that this is dimensionally correct: 

 
1
21

2 ,LR LT L
LT




   
 

, which is right. And obviously the range 

increases with increasing v and h, and we would also expect the pro-
jectile to go further if the acceleration due to gravity were weaker. 
Note that we could not have guessed the result by dimensional anal-

ysis alone, because there are two length scales in the problem: h and 
2

.v
g

The range is the geometric mean of these:

1
2 2

.vR hg
 

  
 
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Finally we derive the form of the trajectory. Equations (3.10) and 
(3.11) give the curve in parametric form (with t as the parameter). 
We eliminate t to get the coordinate form:

2
2
gy x
v

 

which is an inverted parabola through the origin.

Example 2: The range of a projectile on a flat surface

Consider next a projectile launched from the point x = 0, y = 0 
at an angle  to the vertical with speed v. First think about what we 
expect. The projectile reaches a highest point and falls back again. 
In the absence of air resistance the motion about the highest point is 
symmetrical. We can see this in several ways. Sending the projectile 
in the negative x-direction must be equivalent to reversing the initial 
trajectory and shifting the origin: so the second half of one trajectory 
must be the same as the first half of the other. Alternatively, we know 
that the horizontal motion and vertical motion are independent. We 
can eliminate the horizontal motion by viewing the trajectory from a 
moving frame and we already know that the vertical motion alone is 
symmetrical about the highest point.

We sketch the expected motion:

Figure 3.7: Range of a projectile on a flat surface

Now we know what to expect, we can proceed to analyses the motion 
mathematically. Considering the horizontal motion at constant speed 
vsin  in time t:

 sin .x v tq  (3.12)

For the vertical motion we have



66 • Newtonian Mechanics

 21
( cos ) .2y v t gtq   (3.13)

Considering only the vertical motion we see that y = 0 at t = 0 and 

at 

1
2

range
2 cos .vt t g

q    
 

 The former is of course the time of launch 

and the latter is the time at which the projectile returns to its launch 

height. We can find the maximum height by completing the square 
in (3.13):

 
2 2

21
– – cos cos2 2

v v
y g t g gq q      (3.14)

So y is a maximum when the term in the bracket on the right of 

(3.14) vanishes, hence at max cos .vt t g q  At this time the height of 

the projectile, from (3.14), is 2 2cos / 2 .v gq

Alternatively, we can use calculus. Differentiating y in (3.13) 
with respect to t we get

 
cos

dy
v gtdt q 

 (3.15)

from which we obtain dy/dt = 0 at

max cos .vt t g q 

Note that physically dy/dt = 0 means the vertical speed is zero at 
the maximum height, which is correct. It also suggests yet another 
approach: we can use the constant acceleration formula for speed, v 
= u + at, to obtain (3.15) directly. This gives us tmax and hence trange 
= 2 tmax by symmetry.

To calculate the range we put t = trange in (3.12) to get

2 2

range range
2sin cos sin sin 2v vx v t g gq q q q.  
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At this point we should check the dimensions of the result: [v2] /[g] 
= L2 T-2/L T-2 = L, which is correct. We could guess that the range 
is of the form 2 /v g , because this is here the only quantity with the 
dimensions of length that enters the problem; but the dimensionless 
factor, sin 2, could be obtained only by calculation.

This result enables us to calculate the angle of projection to 
obtain the maximum range: the maximum value of sin2 is 1 when  
= /4, or 45o. Thus 2 /v g  is the maximum range.

Finally we look at the geometrical form of the trajectory. Equa-
tions (3.12) and (3.13) are parametric equations for the trajectory. 
We can obtain the direct form by eliminating the parameter t:

 
2

21
cot /2 sin

x
y x g vq q

       (3.16)

This is the equation of a parabola. It is perhaps clearer if we com-
plete the square:

 
2 2

2v cos cos ,2 sin g 2
g x vy v gq qq
     
 

which once more gives us the maximum height, ymax = (v2 / 2g) cos2 
 at xmax = ( 2 /v g ) sin cos , from which we can deduce the range 
xrange = 2 xmax.

Example 3: The range of a projectile on a slope

We consider next the length of a ski jump assuming a given 
angle of launch  and a given constant slope of the jump  (Figure 
3.8). 

What do we expect? Initially, the projectile cannot “know” the 
slope of the surface: it will move exactly as if it were launched on 
a horizontal plane. Only when the projectile reaches y = 0 does it 
become apparent that the surface is not there. So the motion is a 
continuation of the parabola until it hits the slope. This turns the 
problem into one of the intersection of two curves, the trajectory 
and the slope. We begin by sketching this in Figure 3.8.
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Figure 3.8: Range on a slope

Next we find the curves. We already know the equation of the trajec-
tory (Equation 3.16)

2
21

cot / .2 sin
x

y x g vq q
     

The equation of the slope is

tan .y x a 

Thus the two intersect when

2
21

tan cot /2 sin
x

x x g va q q
      

Thus, the intersection point is either x = 0 (which is obviously cor-
rect) or

2
2

range
2 (tan cot )sinvx x g a q q  

As a check, if  = 0 we regain our previous result for xrange. Note that 
this is not the length of the jump, which is measured down the slope: 
the range down the slope is R = xrange /tan.

But now the launch angle for maximum range is no longer 45o. 
Again, before we do the calculation, what do we expect? In the 
extreme case that the slope is almost vertical we can see that the 
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range will be larger if the launch angle is shallower giving a higher 
horizontal component.

To find the actual angle we have to differentiate and set the 
result to zero:

2
2 2(2(tan cot )sin cos – sin cosec ) 0.rangedx v

d g a q q q qq q  

Multiplying out terms in the bracket and using the double angle for-
mulae gives

2tan sin 2 2cos 1 tan sin 2 cos 2 0,a q q a q q    

from which tan 2 cotq a  or tan 2 tan .2
pq a   

  Therefore the 
maximum range occurs for

.2 4
a pq  

You might guess this from the case where =/2, for which the 
launch should be horizontal (so we have to add /2 = /4 to /4 to 
get  = /2), but we need the calculation to verify this.

Solution to Problem 2: 

We want to find the angle of launch for the maximum range 
from a tower. This is a much harder problem than those we have 
tackled so far. It is not the same as the range obtained at 450 from the 
top of the tower, nor is it obtained by launching at a 450 angle from 
a point behind the tower. A slightly shallower launch from further 
behind the tower that passes through the top of the tower might land 
at a larger distance from the tower, even though it is not a maximum 
range from the point of launch. We shall go through the calculation 
to the point where we can show that the angle for the maximum 
range is somewhat less than 450 to the vertical.

We’ll use the same axes as in Example 2 with the origin of coor-
dinates at the top of the tower and y measured vertically upwards. 
Then we can write down the horizontal and vertical motion as before:
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21
sin ; cos .2x vt y vt gtq q  

Figure 3.9: Range from a tower

The range is given by the value of x = R when y = –H. Let the time 
when this occurs be t = T. Then

 sinR vT q  (3.17)

and

 
21

– cos – .2H vT gTq
 

(3.18)

We have taken some care to distinguish the current coordinates (x, 
y, t) from the values associated with the range (R, –H, T) to be clear 
about what is constant and what is variable. The height H is fixed, 
so (3.18) gives us the time T as a function of the launch angle . 
Equation (3.17) then gives the range as a function of , which is the 
quantity we are seeking to maximize. We could try to eliminate T 
and differentiate R to find the maximum. Often, it is easier to dif-
ferentiate first and eliminate dT/d and T because the equations will 
be linear in dT/d. Thus, from (3.17)

0 cos sindR dTvT vd dq qq q  

so
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cot  .dT Td qq  

Also from (3.18):

0 sin cos .dH dT dTvT v gTd d dq qq q q     

Eliminating 
dT
dq we obtain a simple equation for T as a function of :

 sec .
v

T g q  (3.19)

Now (3.17) will give is the range in terms of . But we do not yet 
know . However, using (3.19) in (3.18) will give us : Substituting 
for T gives a simple equation for sin which can be solved to yield:

 

1
2

2

1 1 1
cos .

2 21
gH
v

q

 
   

  

 
(3.20)

Thus  > 45o. This method requires a lot less algebra than solving for 
T() and setting dR/d = 0 explicitly.

We can check that   45o as H  0, which recovers our pre-
vious result. Furthermore we can see that the height of the tower 
starts to make a significant difference only if H > v2/g or if v < gH. 
This suggests a different problem: how does the range vary with 
height for a given angle – in other words how much range advantage 
do you gain by releasing a projectile from a height?

Let us do this in the case that  is adjusted for the maximum 
range at each height. We can avoid solving (3.18) again because we 
already know that for this case T is given by (3.19); also  is given by 
(3.20). Thus the expression (3.17) for the range with these substitu-
tions simplifies to
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1
2 2

2
2

1 .
gHv

R g v
      

(3.21)

So we find also that the height makes a significant difference to the 
range only if H > v2/g. If H >> v2/g we can neglect the 1 in the square 

root, whence 

1
2 2

,vR Hg
 

  
   the geometric mean of the two length 

scales v2/g and H. In this case cos 0q  or   p/2 and we are back to 

the case of an approximately horizontal launch. In other words once 
the tower is high enough to make a big difference to the range, the 
best angle of launch is not very different from horizontal.

Another way of looking at (3.21) is to write it in terms of the 
parameter v2/gH = l (say):

 
1
22

1 .
R
H l l

    
 (3.22)

Figure 3.10: A plot of x (1+2/x )1/2 against x (Equation (3.22)) 
showing the change from y  x1/2 to y  x.

Thus R is smaller or larger than H by a factor that depends on . 
We can sketch this dependence: for small , R/H increases approxi-
mately as 1/2 changing to an approximately linear dependence for 
large values. Figure 3.10 shows this dependence.
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3.7 APPROXIMATE SOLUTIONS

Suppose we could not solve Problem 2 exactly. We should 
then try to identify a small parameter in terms of which we can 
find an approximate solution. This is an important technique, 
so let us illustrate it in this case (even though we know an exact 
solution). Return to Equations (3.17) and (3.18). Our first task is 
to identify a small parameter. If something is going to be small 
then it has to be dimensionless. (All dimensional quantities are 
“large” if you measure them in “small” units.) This suggests that 
in order to find a small parameter we should make these equa-
tions dimensionless. So we define a new time variable and a new 
range:

Tg
vt 

.RHr 

Notice the choice of notation which reminds us of the origin of each 
of the variables as a time and a length. (Ideally we would have used 
t and r but t is already in use, so we use t and a matching Greek ; it 
is never a waste of time to think about what to call a variable, since it 
often saves the effort of having to recall its physical significance.) In 
terms of these dimensionless variables Equations (3.17) and (3.18) 
become:

 

2

sin
v
gHr t q

 
(3.23)

 

2 2
2 cos 1 0.2

v v
gH gHt t q  

 
(3.24)

Thus, the dimensionless parameter is identified as 
2

.v
gHl  Solving 

(3.24) for t gives us
1

2 22cos (cos )t q q l  
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There are two limits:

(i) if l0 then 
1
22t l

    
 and then, from (3.23), 

2 sin .r l q Thus the maximum range is  = 2l at  = p/2; (ii) 

if l•, 

1
2

2
2

cos cos 1 2cos 1 / ( cos )
cos

t q q q l q
l q

       
and 

2 sin cos tan .r l q q q  Since l• we can ignore tan so the maxi-
mum value of  is  .

This agrees with (3.22) in the two limits l 0 and l•.

3.8 AIR RESISTANCE

Now suppose we add air resistance to a projectile problem. Will 
the range be larger because the time of flight is longer? It seems 
unlikely. Is the time of flight longer in fact, since the maximum height 
will be less, so the downward journey might take less time rather than 
more? We seem to need a calculation to solve the problem. However, 
several issues appear to present themselves. First, with air resistance 
we cannot separate out the horizontal motion and the vertical motion, 
because the component of the resistance in both the horizontal and 
vertical directions will depend on the overall speed. Thus, second, it 
seems that we have to make a model of the forces on the system, and 
that it is therefore not simply a problem that can be solved in kinemat-
ics. On the other hand whether the range shrinks in the presence of 
resistance should not really depend on a model for the resistance, but 
simply on its decelerating effect.

So here is a trick. Suppose we look at the motion from a frame of 
reference moving with the horizontal motion of the projective with-
out air resistance. In this frame of reference there is only a vertical 
motion: the projectile appears to go straight up and come straight 
down. If we now look at the motion with resistance from this frame, 
the projectile must always appear to be moving backwards. Thus the 
range must be shorter than without resistance.
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3.9 ADDITION OF ACCELERATIONS

In principle we can consider the case of constant acceleration in 
both the horizontal and vertical directions. An example would be a 
particle accelerated in a horizontal electric field while falling under 
gravity. Let us calculate the angle of projection that now gives the 
maximum range. One might argue that increasing the angle of projec-
tion (closer to vertical) will increase the time of flight allowing more 
time for the horizontal acceleration to act; alternatively we can afford 
to decrease the angle to give a greater initial horizontal component 
because the extra horizontal acceleration will more than take up the 
slack. So in this case, only the calculation will tell us the correct answer.

For the horizontal motion we now have

 
21sin 2q x ut at  (3.25)

and for the vertical motion, as usual

 
21

cos .2y ut gtq   (3.26)

Putting y = 0, we get

range 2 cosut g q

and hence

2 2
2

22 cos sin 2 cos .u u aR g g
q q q 

To get the maximum we put 0dR
dq   to get

2 2

2
2 20 cos 2 sin 2u u a
g g

q q 

or
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11 tan .2
g
aq 

First we check that this agrees with the result we already have for 
constant speed in the x direction: if a  0 we recover q = p/4. And 
we find that for an a π 0 the acceleration in the x direction leads to a 

reduction in the angle of launch 1(tan / 2).g
a p 

We can solve for the shape of the trajectory in space by eliminat-

ing t from (3.25) and (3.26). If 
2 sinut a q  and 

2 cosut g q  we can 

approximate the trajectory as y = – x.

3.10 OTHER FORMS OF ACCELERATION

We shall see in Section 5.5 that a body supplied with a constant 

power has an acceleration 
k

a v  where k is a constant. We can solve 

the kinematics of this situation by putting .
dv

a v ds  From

dv k
v ds v

separating the variables and integrating gives

 31
,3 v ks  (3.27)

assuming the body starts from rest at s = 0. Putting 
dsv dt and inte-

grating again we find

3
2s t

again assuming that s = 0 at t = 0. This would be an appropriate 
approximate model for drag racers.
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3.11 CHAPTER SUMMARY

●  Kinematics deals with the description of the motion of bodies 
without regard to the forces required to sustain such motion.

●  For motion in one dimension

(i)  at constant speed: s = vt is the area under a graph 
of velocity–time graph, and v = s/t is the slope of a 
distance-time graph.

(ii)  at constant acceleration, a = v/t, s = ut + ½ at2 is the 
area under a velocity-time graph, from which v2 = u2 + 
2as.

●  For motion in two dimensions horizontal and vertical mo-
tions are independent (in the absence of air resistance); thus 
velocities add as vectors and accelerations add as vectors.

●  General formulae for distance and speed can be deduced 
from a = d2x/dt2 and a = vdv/dx.

●  Models should be expressed in dimensionless variables to 
identify small parameters.

3.12 EXERCISES

1.   A sprint race can be considered to consist of a phase of 
constant acceleration a lasting for T seconds followed by 
a run at constant speed v to the finish line. Write down 
the relationship for distance x in terms of a, T and total 
time t and use the data below to find a, v and T.

Record for 60 m sprint = 6.39s
Record for 100 m sprint = 9.58s

2.  Usain Bolt of Jamaica won the Olympic gold medal in 
the men’s 100 meters in a world record of 9.69 seconds. 
He then broke that record to win the World Champion-
ship final in Berlin in 9.58 seconds. In the Olympics he 
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slowed up in the final five meters. Assuming that oth-
erwise the two records would have been the same and 
that he ran at a constant speed except for that final 5 
meters, what was his deceleration (assumed constant)? 
(The more accurate model of Question 1 would give a 
better estimate.)

3.  A greyhound track has two straight sides joined by 
semicircular arcs. A (mechanical) hare moves at con-
stant speed u round the track. The dogs are released 
when the hare is ahead of them by a distance d. If the 
dogs were to run with constant acceleration, a, how long 
would it take them to catch the hare? Guessing some 
reasonable values, estimate this time.

4.  The acceleration due to gravity on the Moon is 1/6th of 
that on the Earth. By what factor does this change the 
maximum range of a projectile launched with a given 
speed?

5.  A package is dropped from a plane moving with speed v 
at height h. Neglecting air resistance, how far from the 
intended landing spot should the package be dropped?

6.  The musician Percy Grainger is said to have claimed 
that he could hit a tennis ball over a house from the 
front garden and run round to catch it in the back gar-
den. Is this feasible?



CHAPTER 4
ENERGY

For our problem for this chapter we return to the pyramid of 
Giza:

Problem:
We can assume that the Great Pyramid of Giza was built dur-

ing the reign of the pharaoh Kufu which lasted for 23 years. It has a 
square base of side 230.4 m and an original height of 146.7 m. Can 
we estimate how many laborers were required?

To address this problem we need to introduce the concepts of 
work and potential energy.

4.1 WORK

It is important to realize that in physics today, we have no knowl-
edge of what energy is.

Richard Feynman was a Nobel prize winning physicist with a 
great interest in physics education. The quotation above is taken 
from his famous set of lectures. The fact that “we have no knowl-
edge of what energy is” is unfortunate, since it is this property of 
physical agents from which their interactions follow. I would go so 
far as to say that the fundamental laws of physics are specified in 
terms of the various forms of energy and the attempts to unify phys-
ics can be described as attempts to specify a single form of energy 
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as the theory of everything.4 This is the reason that we choose to 
start from a hypothesis for the mathematical formulation of energy, 
rather than the more usual route through Newton’s laws of motion. 
In fact, we shall derive Newton’s laws in the next chapter.

In fact, most science textbooks define energy as: “energy is the 
capacity to do work” which is indeed what Feynman goes on to do. 
This does not tell us what energy is, but it does tell us how we can use 
the concept. Strictly speaking, the capacity to do work defines free 
energy, but if we confine ourselves to mechanical systems, where 
agents do not have internal random motions, the concepts of energy 
and free energy amount to the same thing.

If we are going to make use of this definition of energy, we need 
a definition of work. If a constant force F moves a body through a 
distance s in a straight line we define the work done as

work = force  distance.

or

 .Fs  (4.1)

If F is measured in Newtons and s in meters then  is given in Joules. 
(We use  as the symbol for work so as not to cause confusion with 
W for weight.)

4.2 KINETIC ENERGY AND WORK

Next we can relate the work done on a body to the gain in its 
energy of motion, or its kinetic energy.

Consider the free fall of a weight under gravity from rest 
through a height h. From the formulae for constant acceleration, 
we have

4  The Standard Model of particle physics, which encompasses all known physics 
(except gravity), describes the world in terms of an expression for the sum of 
the energies of all the fundamental particles together with their energies of 
interaction.
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   2 2 .v gh  (4.2)

To relate this to work we need the force on the body. On a static 
body we know the force of gravity is the weight W of the body. Thus 
as we release the body from rest, the force on the body is W.

We also know that we can describe the motion from any frame of 
reference moving with constant velocity. Therefore there is nothing 
special about the initial position: the body moving at speed v seen 
from the initial frame will appear momentarily at rest in a frame fall-
ing with speed v. Therefore the force on the body is its weight W at 
all times during its descent.

Thus the work done on the body in falling a distance h is  = 
Wh. According to our definition the energy acquired by the body 
must be related to . Since we cannot have a theory without assum-
ing something, let us assume that the two are directly proportional:

2.v

The validity of the theory this leads to will have to be tested against 
experiment. With hindsight we choose not to investigate the conse-
quences of assuming  to be a more general function of v2.

For the constant of proportionality we choose m/2, so

 21
.2Wh mv   (4.3)

Thus the energy of motion, or kinetic energy is

 
21
.2KE mv  (4.4)

In fact, there are some fundamental constraints on the choice of the 
expression for EK in Equation (4.4). The expression must be inde-
pendent of the origin of time, so it must be unchanged if we make 
the transformation of variables , ,t t c    where c is a constant. 
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Thus we do not expect to see an explicit reference to time t in a 
fundamental expression for energy. So the constant of proportional-
ity cannot explicitly depend on time. Furthermore, we expect the 
fundamental laws to be reversible, hence not to specify an arrow of 
time, since our observation of the world suggests that irreversibility 
is associated with dissipation, which is not a property of individual 
particles. Thus EK must remain unchanged if we let t  –t, and 
therefore it can contain only even powers of v.

4.3 DEFINITION OF MASS

From (4.3) and (4.2) we have

;Wh mgh

thus the parameter m is defined as

.Wm g

We call this the mass of the body.

Notice that we have not defined what mass is: the parameter m 
will have to be identified with a measurable quantity by compari-
son with experiment. Clearly we want the energy to be an extensive 
quantity (so doubling the size of the body doubles the energy, other 
things being equal). So m must account for the amount of material 
in the body.

The definition of mass was troublesome to Newton, who defined 
it as the quantity of matter, a definition that one might consider to 
be not entirely transparent. In his influential exegesis of Newtonian 
mechanics, Ernst Mach defined mass as a measureable quantity in 
the context of a ballistic balance, essentially by measuring the quan-
tity mv.5 Here we have defined mass as the parameter m = W/g: the 
mass of a body is determined by weighing it and dividing by the local 

5 Ernst Mach, The Science of Mechanics
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acceleration due to gravity, which is the “everyday” definition. Since 
mass is a property of a body (as it turns out) and not of the environ-
ment, the value of m for a body is fixed once for all independently 
of the actual local value of the gravitational field (including zero). Of 
course, this is not an operational definition of mass in the absence of 
gravity, nor does it strictly place mass as a logically primitive concept. 
For this we should return to Mach and the momentum balance.

We cannot prove any of these definitions: we simply have to 
determine if they are consistent with experiment and observation. 
We do indeed find consistency provided that we are dealing with 
bodies moving at speeds much less than that of light. That suggests 
that it is unlikely that alternatives to Newtonian mechanics would be 
successful, although such attempts exist. For higher speeds relativity 
theory provides a different starting point.

With our definition of mass we can now introduce the standard 
SI units. Alongside the meter for distance and the second for time, 
we have the kilogram for mass:

if g is the local acceleration of gravity, a kilogram is the mass of 
a body that weighs g N.

We should emphasize again that this is not how SI units are actu-
ally defined. Rather the kg is taken as a fundamental quantity, relat-
ing to a platinum object in Paris, and force (the Newton) is taken as 
a derived unit. But in practice, we compare masses by weighing, just 
as we are doing here.

4.4 WORK AND POTENTIAL ENERGY

For a constant force F acting on an agent over a distance s, we 
defined a quantity Fs, as the magnitude of the work done on the 
agent by the external force. If the force opposes the motion we want 
this to represent a gain in energy of the body. For example, if we 
raise a body in a gravitational field, in which case the weight acts in 
the opposite direction to the motion, we want to say that the body 
has acquired energy, so we define the work done on the body as –Fs. 
If the force acts in the x-direction and its magnitude is a function of 
distance this becomes
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 
0

.
s
F x dx 

In general, the force can vary in both magnitude and direction. Sup-
pose that it acts along a curve x = x(t); then the work done is the line 
integral

 0
– ( ( )).

s d
t dtdt 

xF x  (4.5)

Consider now pulling a block very slowly up a slope at angle  so the 
speed of the block remains infinitesimally small. Then the forces on 
the block must almost balance, so F = Wsin. Moving the block up 
the slope a distance s requires work Wsin × s = Wh, where h is the 
vertical distance raised.

Figure 4.1: Block on an inclined plane

This leads to the interesting observation that the work done is the 
same whether the block has been pulled up a frictionless slope or 
raised vertically. The observation can be generalized:

A force is called conservative if the integral in (4.5) is indepen-
dent of the path.

If F is a conservative force, then for a given initial point, the 
integral in (4.5) defines a function  PE xW   of spatial position, 
x(s). We call such a function the potential energy of the system (with 
respect to the fixed reference point). Usually the reference point is 
taken as spatial infinity or as the origin of coordinates.

To summarize: the work done, , is always given by (4.5) but is 
not in general a function of position because it depends on the path; 
in the case of a conservative force (4.5) defines a function of position 
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equal to the work done along any path; this is the potential energy 
which we write as .  .PE x

4.5 CONSERVATIVE FORCES

Equation (4.5) gives us a relation between the force and the 
work done when the force acts along a path. But it is not possible to 
use it directly to test if a force is conservative: we cannot evaluate it 
along every possible path. So we should like to find an instrumental 
criterion (i.e. one we can apply in practice).

If the force is conservative, so the integral is independent of the 
path, we can invert the relation (4.5) to get the force in terms of the 
potential energy. In the force acts in a constant direction we have

   
0

x –
x

PE F x dx  
from which

.PdEF dx 

The force is the gradient of the potential energy.

In general,

   
0

–
x

PE d  x F x x

implies that

 
– , , –P P P

P
E E E

Ex y z
         

F
 

(4.6)

where the vector PE  (read as “grad EP”) is defined by (4.6) i.e. 
   / , / , /f x f x f y f z       

Now, if F = ( , , )x y zF F F  is the gradient of a scalar as in (4.6), and 
therefore, if F is conservative, then we can show that
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 ( ) 0PE     F x  (4.7)

where the vector   F  (read as “curl F”) is defined by

 , , .y yz z x xF FF F F F
z y x z y x

     
            

F  (4.8)

Equation (4.7) is therefore a necessary condition for a conservative 
force which we can test in practice.

We can also show that (4.7) is a sufficient condition i.e. if it is 
satisfied then F is indeed conservative. The proof (which uses results 
from vector calculus) is as follows.

Consider the work done along any two paths P1 and P2 between 
points A and B. Then

1 2 1 2–
. . . . 0

P P P P s
F dx F dx F dx F dS        

where the central integral is taken round the closed curve P1 – P2 

and the second equality follows from Stokes’s theorem. It follows 
that if 0F    then the integrals along any two paths are the same 
and F is conservative, which is what we set out to prove.

Example 1: Any radial force of the form F = F(r) 

r  is conserva-

tive. We have

   F r
F x y zr  i j k

from which

     

       
2 3 2 3

–

– – 0,

x
F r F r

F z yy r z r

F r F r F r F r
yz yz zy zy

r r r r

              

  
 
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with corresponding results for the other components. Forces of this 
form are therefore conservative.

Just in case it seems that all forces might be conservative, here 
is one that is not.

Example 2: A force of the form , , F r  with ω a constant 
vector, is not conservative. Calculating   F  from (4.8) we can 
show that 2 0.   F   The fact that F is not conservative is clear 
if we draw a picture (Figure 4.2). The force is azimuthal about the 
z-axis, so the work done depends on whether the path is clockwise 
or counterclockwise.

Figure 4.2: Lines of force  F r

4.6 NON-CONSERVATIVE FORCES

All of the fundamental forces (gravity, electromagnetism, and 
the weak and strong nuclear forces) are conservative. Non-conser-
vative forces arise when we consider only a subsystem and not the 
universe as a whole. For example, consider a body falling through 
the air. If we were to take account of the interaction of the body 
with each atom of air, then the total mechanical energy would 
be conserved: the energy of motion of the falling body would be 
reduced but that of the air atoms would be raised. Such a calcula-
tion would be both impractical and of no interest: our only concern 
is the falling body. So we replace the effect of the air atoms by 
a frictional force. We say that the mechanical energy of the fall-
ing body is converted irreversibly into heat. The irreversibility is 
statistical in nature: we never find a macroscopic falling body with 
increased kinetic energy and cooler air, because this is overwhelm-
ingly unlikely.
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4.7 FRICTION AND “ZERO WORK FORCES”

Friction is another obvious example of a non-conservative force. 
The work done by friction along a path is dissipated as heat and can-
not be recovered by returning to the starting point. That much is 
straightforward. A great deal of confusion arises however when we 
look in more detail at the role of frictional forces in motion. Let us 
return to the horse and cart of Chapter 2.

The force accelerating the horse cart appears to be the reac-
tion to the frictional force from the road on the horse’s hooves. 
According to our discussion so far this force must do work on the 
horse and cart to supply the gain in kinetic energy. Now, as every-
one knows, the energy to accelerate a cart does not come from 
the road, but from the horse’s metabolism (or muscles). This has 
given rise to the suggestion in some quarters that, since all the 
work done comes from the horse and none (apparently) from the 
road, some moving forces do no work! But Newton’s laws (as with 
any physical laws) cannot be suspended. So how do we explain 
this?

Once again it goes back to an understanding of the micro-
scopic origins of the force we are dealing with. It is easier to start 
from a simpler situation: that of pushing against a spring, say when 
an object rebounds from a wall. The compression of the object 
(and the wall) on impact stores the kinetic energy as elastic energy 
and returns most of it on rebound. This is exactly what happens 
as the cart moves along the road. At each instant there is a com-
pression of the road by the horse’s hooves and a rebound. Energy 
does indeed flow from the horse to the road and back to the horse 
and cart. If we look just at the forces on the horse and cart as a 
body, the force from the road supplies all the kinetic energy (and 
frictional losses). This does not tell us how the road acquired the 
energy. As far as the analysis of the forces on the system is con-
cerned, the road could have been supplied with a compression 
wave that is then ridden by the horse and cart and drives it for-
ward.



Energy • 89

4.8 CONSERVATION OF ENERGY

In Section 4.2, we introduced the idea of kinetic energy by relat-
ing it to work, on the assumption that for the falling object the two 
were inter-convertible without loss. Here we generalize this to all 
mechanical systems. As our starting point for mechanics, we make 
the fundamental assumption that the total energy of a system that is 
subject to conservative forces only is constant. Thus we assume the 
law of conservation of energy

constantK PE E E  

for a conservative system.

It will turn out that this is a profound statement about the physi-
cal world. We shall see in Chapter 10 that it is related to the invari-
ance of physical systems in time: that the repetition of a mechanical 
experiment at any time in the future will give the same results as it 
does today.

For our body falling from rest under gravity at height h to the 
ground at h = 0, we have

21
0 02mgh mv  

in agreement with (4.2).

4.9 UNITS FOR ENERGY

Before we turn to some examples, we shall introduce some use-
ful units for energy in addition to the SI unit of the Joule:

The electron volt (eV) is defined as the work done in moving an 
electron charge through a potential of 1 V. We have 1 eV = 1.602 × 
10−19 J.
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The kilowatt hour (kWh): the watt (W) is defined as 1 J s-1. Thus 
a kWh is 3.6 × 106 J

Tons of TNT: 1 gram TNT = 4184 J so 1 ton of TNT equivalent 
is equal to 4.2 × 109 J.

4.10 EXAMPLE

Normal cruising speed Mach  0.85
Maximum take-off weight 560,000 kg
Operating empty weight  276,800 kg 

Maximum payload (without fuel)  90,800 kg
Maximum cruising speed Mach 0.89 (945 km/h) 

Max thrust of each of 4 engines 355 kN
Length of runway at max load 2750 m

The table shows some data on the Airbus A380 super-jumbo air-
plane taken from the Airbus website. We can use this to estimate the 
kinetic energy of the plane at maximum cruising speed with half-
empty fuel tanks. We can also estimate the speed of the A380 on 
take-off.

The mass of the plane with half-empty fuel tanks is

Mass Empty + payload + half fuel = 463 800 kg

(where the mass of a full load of fuel is obtained by subtract-
ing the empty weight and the maximum payload from the maximum 
take-off weight). A speed of 945 km hr-1 corresponds to 263 m s−1. So 
the kinetic energy is 

½ Mv2 = 1.6 x 1010 J .

This looks like a large number but can we get some idea of how 
large it is by comparison with something we might know? We can 
compare it the explosive energy in TNT. We know that 1 ton of TNT 
has an energy equivalent of 4.2 109 J. So 1.6 x 1010J is equivalent to 
3.8 tons TNT or almost four 1000 lb bombs!
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We turn now to an estimate of the speed of the A380 on take-off 
from the additional data shown in the table. Note that the quoted 
“weight” is in fact the mass. The thrust of the four engines gives 
us the force, F, on the plane. The length of the runway gives us 
the distance, s, over which this force acts and hence the work done. 
Assuming this goes into kinetic energy, that is that there are no losses 
of energy, we can equate the work done to the gain in energy of 
½ M v2. From this we can find v:

                             

1
22Fsv M

   
 

1
22 4 355000N 2750m

560000kg
      

                                
1118ms .

or about 420 km hr−1. The actual take-off speed is 250 km hr−1 so 
there are quite considerable losses.

4.11 BOUND SYSTEMS

Given that the total energy of a system is constant there are 
three possibilities: 0, 0, 0.E E E    If the potential energy is set 
to be zero at infinity then these cases correspond respectively to 
bound, unbound and marginally stable systems. For example, if E 
< 0, then 0P KE E E   (since 0KE  ) and so the system cannot 
get to infinity (where EP = 0). The system is therefore confined (or 
bound).

4.12 VIRTUAL WORK

We can now understand the principal of the lever in terms of 
work. Suppose that the lever is in balance and displace it through a 
small angle . Then
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;Wx wX  

i.e. the work done on one weight by lifting it x equals the work 
done by the other weight in falling X. Thus there is nothing to 
be gained by displacing the lever. This is true only if the lever is in 
equilibrium; otherwise there would be a net moment and the bal-
ance would tip.

Figure 4.3: Principle of virtual work for a lever

This is a general property of systems in static equilibrium: the net 
work done on or by a system in equilibrium for a small displacement 
is zero. This is called the principle of virtual work.

Had we not found the equilibrium of the lever by other means, 
we could have used the principle of virtual work to derive the Archi-
medes formula for the equality of the moments of the weights. In 
more complicated cases we can use the principle to determine the 
equilibrium configuration.

4.13 ELASTIC ENERGY

The energy stored in a material that has undergone extension 
or compression is called elastic energy. For a material that is being 
stretched or compressed in one direction let the original length be 
L. Suppose that the material is extended by a length x. We define the 
strain  of the material as the quantity

.
x
Lx 
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If the force applied to the material is F and the cross section area 
of the material perpendicular to the extension is A the stress on the 
material is defined as F/A.

A particularly simple type of elastic material is one that obeys 
Hooke’s law, which states that stress is proportional to strain:

F
YA x

where Y is Young’s modulus of the material. We can write this as

F kx

where k = AY/L. All materials obey the law for small enough exten-
sions.

Let us calculate how much work is done in stretching the mate-
rial. We have

2 2

0 0

1
.2 2

x x AYx AY
Fdx dx x kxL L    

The energy per unit volume is given by

21 .2YAL x


4.14 EXAMPLE - BUNGEE JUMPING

As an example of elastic energy let’s look at a bungee jump. We 
shall assume that the bungee cord obeys Hooke’s law. The height 
of the jump must be greater than L + x, the original length of the 
cord plus the extension. The gravitational potential energy lost in a 
jump of height h is Mgh where h must be at least L + x. This must be 
absorbed by the extension of the cord, so we equate it to ½ kx2. This 
gives a quadratic equation for x:

   21 .2 Mg L x kx  (4.9)
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A convenient dimensionless parameter here is obviously

2Mg
kL

l 

and our quadratic equation becomes

 2 0.x lx l    (4.10)

Rather than the exact solution, we can look at two extremes, x <<  
and x ~ .

If x >>  and we can neglect the second term in the quadratic 
equation. This gives equation

x l

or, reinstating physical quantities
1
22 .MgLx k

   
 

The extension goes up as the square root of the length of the 
unstretched cord. For consistency in this case we must have  << 1. 
This is the case of a stiff cord with a large elastic modulus, and the 
extension is less than the original length since it corresponds to put-
ting L + x ~ L on the left hand side of (4.9).

If  ~  and  > 1 we can ignore the final term in the quadratic 
Equation (4.10). Then we get

x l

or
2 ;Mgx k

the extension is independent of the initial length. Of course this 
happens because if the extension is large we can ignore the small 
contribution from the original length of cord to the overall height. 
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This approximation corresponds to putting L ~ 0 on the left of 
(4.9).

Of course the exact solution can be found from the quadratic 
Equation (4.10):

 21 42x l l l  

from which we can re-derive the two limiting cases for  >> 1 and 
 << 1.

4.15 SOLUTION TO THE PROBLEM

The pyramid at Giza is a store of potentially energy of all the 
work done by the laborers who built it. Conversely it has the poten-
tial to do work if it falls down. Of course, the laborers expended 
more energy than this, since their ramps (if that is what they used) 
were not frictionless.

Let the pyramid have semi-vertex angle  height h, base side b 
and density . Adding the potential energy of each slice, thickness dx a 
distance x from the top, the potential energy of the pyramid is given by

     
2

22 4 2

0

2

1

0

2

2 tan 1

1
.12

h

P
b

E g h x x dx g h d
h

gb h

r a r x x x

r

      



 

or, if we put / :x hx 

 
2

4 2 2

0

2
1 1

1 .12P
b

E gh d gb hh r x x x r      
In terms of its mass

 22 2

0

1
2 tan 3

h
M x dx hbr a r 

the potential energy is
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1
.4PE Mgh

From the data, and taking the density of stone to be 2700 kg m−3, the 
mass is

97 10 kgM  

and the potential energy

122.5 10 J.PE  

How much work can a man do in a day? We know this must be of 
order of the daily intake of food, say 1000 kcal ~ 250 kJ. (The daily 
calorie count for laborers might be  4000 kcal per day, but the con-
version to mechanical work is about 25% efficient.) The pyramid 
could therefore be built in 107 man days. This excludes cutting the 
stones and building the ramps (if that was how it was done). So the 
minimum number of men required to build the pyramid in 20 years, 
or 7300 days, is 1400. The report of the Greek historian Herodotus 
that it took the labor of 100,000 men to build the pyramid seems to 
be an overestimate.

4.16 CHAPTER SUMMARY

●  We can define the mass of a body as its weight divided by 
the local acceleration due to gravity (recognizing that this is 
not the fundamental definition)

●  The work done by a force F moving through a distance x is 
defined as the force × distance or  =  F.dx

●  If the force is conservative the work done is independent of 
path and defines a potential energy EP =  F.dx

●  The kinetic energy of a body of mass m moving with speed v 
is defined as 21

2KE mv  
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●  For conservative forces mechanical energy is conserved: 
constantK PE E E    

●  The energy of a bound system is negative

●  The stress on an elastic body of cross section A transverse to 
a force F is F/A.

●  The strain of an elastic body of length l extended by an 
amount x is  = x/l.

●  Hooke’s law states that (for small strains) F/A = Y where Y 
is Young’s modulus of the elastic material.

●  The energy per unit volume stored in an elastic body is . 
21

2 .Yx
 

4.17 EXERCISES

1.  A block of mass M is prevented from sliding down a plane 
inclined at an angle  to the horizontal by a horizontal force 
F. The coefficient of friction between the block and the 
plane is µ. What is the force required? Under what condi-
tion or conditions is F = 0? How much work would have to 
be done to raise the block by a vertical height h allowing for 
the dissipation by friction.

2.  The Golden Gate Bridge is supported by steel cables of 
typical length l00 m exerting a force of 3 × 107 N. What is 
the minimum radius of a cable? What is the stored energy 
in a cable?
 The breaking stress of pre-stressed steel is 1500 MPa and its 
Young’s modulus is 200 GPa.

3.  One model of a leg is a simple pendulum (ignoring the 
knee joint). Estimate the maximum kinetic energy of a leg 
at normal walking speed. What angle of swing would your 
estimate imply? How high off the ground would the leg 
swi ng? 
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 As the leg hits the ground the energy is stored in the Achil-
les tendon. Estimate the extension of the tendon given the 
following data.

Young’s modulus Y =8 x 108 N m-2

Area A = 89 mm2

Length l = 250 mm

Maximum extension l= 15 mm

Assuming this model can also be used for running what is the 
maximum KE that can be stored in the tendon? Hence, what does 
the model predict for the maximum running speed? Comment on 
your estimate.

In this model how would the length of stride scale with the 
length of leg?



CHAPTER 5
MOTION

Figure 5.1: Walters coop shot tower

http://freeaussiestock.com/free/Victoria/Melbourne/slides/walters_coop.htm

Problem: The lead shot used in shotgun cartridges consists of 
small spherical pellets 2-3mm in diameter made by pouring mol-
ten lead through a frame suspended in a high tower, a method used 
since its invention by William Watts in 1782. In order to produce 
spherical shot the lead must solidify before the pellet has reached 
terminal velocity. How high should the tower be?
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5.1 NEWTONIAN DYNAMICS

To attack a problem such as this we have to go beyond kinematics, 
since we are not given the acceleration, and beyond energy conserva-
tion (since energy is dissipated) and look at how the motion of a body 
depends on the forces acting on it. This general problem was solved 
by Newton in his three laws of motion. Since these laws form the start-
ing point for dynamics they cannot be derived and are justified only by 
agreement with their experimental consequences. However, we shall 
look first briefly at some of the background to the laws. We shall then 
see that in simple cases the Newtonian equations of motion can be 
derived from the conservation of energy. In our final chapter we shall 
generalize this approach making energy the fundamental quantity.

Let us start with a casual observation of everyday life: bodies 
appear to require a force to keep them in motion. A momentary 
reflection shows that this is not true: there is no visible force act-
ing on a falling body and conversely, on ice, in the absence of an 
opposing force, I will continue to slide, at least for some time. A bet-
ter hypothesis might therefore be that bodies have natural states of 
motion from which they deviate only if subject to some force. This 
was Aristotle’s view: namely, that it required a force to stop things 
from falling. Aristotle also knew about the roughly circular perpetual 
motion of the planets, so he postulated that the natural motion of 
“heavenly bodies” was circular, from which they would depart only 
subject to an applied force. (To explain the different natural motion 
of terrestrial and celestial bodies, Aristotle postulated that they were 
made of different materials.)

In order to describe Aristotle’s natural motions we require a 
standard of rest with respect to which bodies can be said to be 
moving. Aristotle chose the Earth as his absolute reference frame. 
If casual observation is all that is available, this is not a stupid 
theory. To go beyond it requires some detailed experiments and 
a willingness to suspend judgement on what one already “knows” 
(namely that bodies apparently stop moving in the absence of a 
force).



Motion • 101

The first problem with Aristotle’s theory arose in the 
consideration of projectile motion: what is the force that is keep-
ing the projectile moving forwards (given that its natural motion 
is vertical)? And why does it (apparently) stop moving forwards 
(when it falls)? Various ideas were tried, such as the motive power 
of air, or the waning of the initial impetus from the thrower. But 
the real undermining observation was that the Earth is not at rest. 
If that is the case, why do bodies projected vertically not fall away 
from the point of projection? As Galileo pointed out, this observa-
tion must mean that physics does not distinguish between frames 
of reference in constant relative motion (and his detractors that it 
must means that the Earth does not move, an argument that has 
been settled in Galileo’s favor.) This means that force cannot be the 
cause of velocity 6.5

So a better hypothesis might be that a force on a body changes 
its speed. Well, that does not work for the planets, which move with 
approximately constant speeds but in constantly changing direc-
tions. So an even better hypothesis is that a force on a body causes a 
change in velocity (speed and direction of motion).

This is not yet Newtonian mechanics. We have to postulate the 
nature of the change in velocity brought about by a force. The sim-
plest proposal is to relate force to acceleration:

,F ma

where m is a constant characteristic of the body. This is Newton’s 
second law.

This however only shifts the previous problem of an absolute 
standard of rest up one level: to make this law work we appear to 
have to specify an absolute state of zero acceleration, with respect 
to which all non-zero accelerations can be referred. Newton never 
solved this problem. Instead he postulated the first law, which 

6  Suppose that forces caused bodies to move, so that the equation of motion of a 
body were, say, F = mv. Then changing to a frame moving with speed u would 
change this to F = mv – mu: the same force causes a different speed, or F + mu = 
mv and a fictitious force mu appears, contrary to experience. 
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simply asserts that there is such a state and we can all find out what 
it is by validating the second law. So to summarize:

Newton’s first law

There exists a state of motion that is unaccelerated that can 
serve as a reference frame for other states of motion. A body subject 
to no forces will move with constant velocity (or remain at rest) in 
this frame of reference.

Once we have identified one such frame then any observer 
moving with constant velocity in that frame will provide another 
such frame of unaccelerated motion. Thus, Newton’s first law actu-
ally asserts the existence of a class of reference frames (or motions 
of observers). We call these inertial frames of reference or inertial 
observers.

Newton’s second law:

In an inertial frame of reference a body of mass m subject to a 
force F will undergo an acceleration a given by

.mF a

The fact that this definition of mass is the same as that in Chapter 3 
will become apparent shortly, so we shall not complicate matters by 
making the distinction.

It should be clear now why the first law is not a consequence 
of the second: it is trivially true from the second law that if F = 0 
then a = 0, but this is not what the first law asserts. Instead, the first 
law asserts the existence of a universal frame of reference with zero 
acceleration. This is a prerequisite for the second law, not a conse-
quence of it.

It may have occurred to the reader that asserting the existence 
of such a frame (or frames) of reference is not the same as speci-
fying how to find it (or them): who are the inertial observers? We 
shall take this up again later; for now, it is sufficient to note that 
the Earth is a good enough inertial frame (because we find that 
Newton’s second law holds if we think of ourselves as at rest) for 
most engineering purposes, and a frame of reference in which the 
distant stars are on average non-rotating is a good enough inertial 
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frame for all other purposes (such as the motion of the planets in 
the solar system).

5.2 EQUATIONS OF MOTION

In standard university courses we normally think of deriving an 
energy equation from Newton’s equations of motion. This is not how 
equations of motion are derived in fundamental physics (in for example 
the standard model of particle physics or string theory). We start by 
postulating a functional form for the energy of the system and derive 
the laws of motion from that. So that is what we shall do here for a 
simple one dimensional system. In more complex situations, with many 
degrees of freedom, we need special techniques to extract the equations 
of motion from the energy for each degree of freedom, but the principle 
is the same and we shall address these situations in Chapter 11.

Thus, following Chapter 4, we start from an energy function  
E(x) for a particle, with constant mass m, position x(t), moving in 

one dimension subject to a conservative force :PdE
F dx 

  21
,2 PE mx E x   (5.1)

where .
dx

x dt  The first term on the right hand side is the energy of 
the free system (without any interactions); the second gives its inter-
actions with the world. In this case, when the world only makes an 
appearance through parameters in EP, we call EP a potential energy. 
We now impose the condition that E is conserved:

0 .PdE dE
mxx xdt dx      

Dividing by x  we get

 
– ,PdE

m x dx 
 

(5.2)
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which is the equation of motion of the particle, or Newton’s 
second law, if we identify – /PF dE dx . Notice that the parame-
ter m appearing in the energy (5.1) also appears in the equation of 
motion (5.2), justifying our identification of it as the particle mass in 
both cases.

If the mass of the body is not constant then we get

  .Pd dE
mxdt dx  

The quantity p m x    is the momentum of the particle. Thus we get 
the more general for of the second law, namely that

force equals rate of change of momentum.

5.3 AN EXAMPLE

The Chinese F1 grand prix is held on the Shanghai circuit. At 
corner 14 drivers decelerate from 326 km hr-1 to 85 km hr-1. The 
circuit map (http://www.vivaf1.com/shanghai.php) gives the decel-
eration as 5.97g. What is the braking distance? What is the force 
exerted given that the minimum mass of an F1 car is 642kg?

Since we are given speed and a deceleration to find the distance 
we use

2 2– 2v u as

Then, converting km hr-1 to m s-1 by dividing by 3.6,

2 2((23.6) – (90.5) ) / (2 5.97 9.81) 65.2 ms ¥ ¥ 

Adding say 60 kg for the mass of the driver, the braking force is given by

702 5.97 4191N.F ¥ 
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5.4 MOTION IN HIGHER DIMENSIONS

Clearly setting the time derivative of the single quantity E to 
zero produces only one equation, so we have to modify the approach 
for motion in 2 or 3 dimensions. We shall look at the full theory in 
Chapter 11, but here is roughly how it works. We have

1
( )2 PE m E 2x x

where 2 .   x x x  We now make a small change:

 1
0  2 PE m m Ed d d — d        x x x x x

where

( / , / , / )f f x f y f z— ∂ ∂ ∂ ∂ ∂ ∂

So 

( )Pm E— d  x x

Since the increments in (x, y, z) are independent we have, finally

.Pm E— x

5.5 RATE OF DOING WORK

A body, or agent, of mass m and speed v has a stock of energy of 
motion, or kinetic energy, of ½ mv2. The flow of energy into or out of 
the body is the rate at which the stock is changing. This turns out to be 
the rate of doing work on the body by any external force acting on it.

We have
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21
2

d
mx mxx xFdt

     
  

We identify Fx as the rate of doing work, since is the work done in 
time t. The change in kinetic energy in a displacement x is the 
work done, or, equivalently, the rate of change of kinetic energy 
equals the rate of doing work. The rate of doing work is also called 
the power.

Example: In a race the dragster with the highest terminal speed 
at the end of the run wins. Since the finish is at a given distance, not 
time, we would like to know how the terminal speed depends on the 
power. In this case we have a relation between speed v and distance 
s from Equation (2.8.1) in Chapter 2

31
,3 v ks

where k is a constant. Power is defined as the rate of doing work; so 
for an acceleration a = k/v, the power is

k
P m v mkv 

i.e. the power is constant. Thus, k = P/m and
1
33

.
Ps

v m
    

The terminal speed depends on the power to the 1/3. This is why the 
power to double the top speed of a road car from (say) 100 mph to 
200 mph must be increased about eight-fold.

5.6 INERTIAL FORCES

If we transform between frames of reference at constant relative 
velocity, Newton’s laws are unchanged, and therefore physics is the 
same for the two  
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–x x vt

be the coordinates of a point viewed by an observer moving with 
speed v in the positive x direction. Then

2 2

2 2
d x d x

m m F
dt dt


 

and the observer cannot tell which frame of reference they are in by 
carrying out a Newtonian experiment.

Now consider two frames which are accelerating relatively. We 
have

21
2x x at 

and
2 2

2 2 .
d x d x

m m ma F ma
dt dt


   

Thus in the x' frame the body is subject to an additional force ma. 
This is a common experience: whenever a vehicle accelerates the 
occupants feel an additional force. These additional forces, which 
appear for accelerating observers, are called inertial forces. They 
are also called “fictitious forces” although they are quite real for the 
occupants of the vehicle.

This discussion means that care is needed in identifying the 
frame of reference in which a dynamical system is being described. 
Newton’s laws, with no additional inertial forces, hold only in inertial 
frames of reference.

5.7 SYSTEMS OF PARTICLES

So far we have dealt with a single body treated as a particle, 
having a mass but no extension. To apply the theory to real objects 
we should consider an assemblage of particles. We shall find that 
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the translational motion of an extended body can be determined by 
consideration of the motion of the center of mass. This will justify 
our application of the equations of motion to extended objects, such 
as the shot pellet, as if they were point particles.

Suppose we have particles of mass mi positioned at coordi-
nates xi with external forces Fi and let the internal force of particle 
j on particle i be fij. Then for each particle Newton’s second law 
reads

i ij i
j i

im
π

  F f x

Summing over all particles we get

i ij i i
i i j i i

m
π

Â ÂÂ Â  F f x

But, by Newton’s third law, the force particle i exerts on particle j is 
equal and opposite to that of particle j on particle i: – ( );ji j iπijf f ; 
so the sum over the internal forces cancels and we are left with

2

2 .i i i
i i

d
m

dtÂ Â 
   

F x

We define the center of mass, analogous to the center of gravity, by

i i
i

M mÂX x

where iiM m   (Section 2.11). Thus finally,

i
i

MÂ  F X

and the translational motion of the body is equivalent to the total 
external forces acting on the total mass placed at the center of mass. 
We shall discuss the rotational motion in Chapter 9.
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5.8 EXAMPLE: MOTION UNDER AIR RESISTANCE

 
Figure 5.2: Motion under air resistance starting from an initial speed. The dashed line gives 

the approximate solution at late times

Air resistance or drag on a body is proportional to the square of 
its speed. The equation governing the change in speed is therefore

2dv
kvdt  

where k is a constant. The solution for a body with an initial speed 
u is given by

1 1
ktv u 

or

 
.1

u
v ukt   (5.3)
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Initially, while t << 1/uk, v is approximately constant. If t is very large 
(much greater than 1/ku in fact) we can neglect 1 compared to ukt. 
So at late times v is proportional to 1/t. The graph of v against t must 
therefore look roughly like the dashed curve in Figure 5.2. The exact 
solution is given by the full curve.

The speed initially decays at a rate –ku2; if this were to be main-
tained, the decay would be linear in t and the time for v to reach 
zero would be

0
2

0

1
.

–

v u
kudv ku

dt

t   
 
  

From the exact Solution (5.3) we see that this is the time required 
for the initial speed to be halved. Thus, assuming a constant decay 
rate gives us an estimate of the time required for the initial speed 
to decay significantly. This is an important general result: the tim-
escale of decay of a quantity can be estimated by dividing its initial 
value by its initial rate of decay, as if the rate of decay were con-
stant.

5.9 SKY DIVE

Another example of motion under the combined effect of grav-
ity and air resistance is an attempt to sky-dive through the sound 
barrier in free fall from a height of 39 km above sea level. The dif-
ficulty of the problem is the varying density of the atmosphere, 
which leads to a dependence of the air resistance on height as well 
as speed. An approximation to the density over the relevant range 
of height is

–

1 –
p

s
z
ar r     
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where z is measured down through the atmosphere from the start of 
the jump in km, sr  is the density of air at this point, a = 108 km is a 
constant and 15.9p ~ . The equation of motion is

–
2– 1 –

pdv z
mv mg k vdz a

    

where k is a constant. Putting  the equation of motion 
becomes

  
(5.4)

We choose k such that at sea level ( 39 km)z  the terminal speed is 

92 km h-1.. This gives – 10.13km .k   In these units 51.27 10g ¥  km 
hr-2. There are two regimes: one where gravity dominates over the 
initial fall, followed by one where air resistance dominates. In the 
first phase

  (5.5)

The boundary between the phases, at 0,z z say, is defined by 
 = 0 or

or, using (5.5),

 

–
0

02 1 – 1.
pz

k za ª 
    

(5.6)
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Figure 5.3: Numerical solution for the energy per unit mass plotted against distance fallen 
for the sky dive (Equation 5.4)

Unfortunately it is difficult to obtain an approximate solution of 
this equation (because of the high value of the power p). We can 
however solve the differential equation numerically show how this 
is consistent with (5.6). Figure (5.3) shows that the speed reaches a 
maximum at 10 kmz ~  with ϵ ~ 0.9 × 106 km2 h-2, corresponding to 

31.34 10v ~ ¥  km h-1 or 838 mph. This is roughly consistent with the 
approximation (5.6) for the turning point of the graph. The official 
figure for the speed reached was 834 mph.

5.10 TOWER PROBLEM

We are now ready to tackle the problem of the shot tower. We shall 
present this in terms of several model of increasing detail and accuracy. 
Throughout we shall treat the pellet as a single body of mass m.
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5.11 MODEL 1

Let us begin by sketching what we expect. In Figure (5.4) we 
have sketched the velocity of a shot pellet against distance from the 
top of the tower. To avoid a lot of minus signs, we take distance and 
speed to be positive in the downward direction. Initially the speed is 
small, so the resistance to motion

Figure 5.4: The speed (measured downwards) plotted against height (measured from the 
top of the tower) for the falling pellet.

offered by the air is small and the graph must look like constant 
acceleration. Eventually air resistance will balance gravity and the 
pellet will reach a terminal velocity. The graph is quite complicated 
so to start with we do not attempt to find an exact solution with 
all factors in play. Instead we approximate the different regimes: an 
initial phase where the body is in free fall and a final phase where 
it has reached terminal speed, and an approximation for where the 
two phases meet.

The constant acceleration phase then is relatively easy. From the 
graph we see we want a relation between speed and height (or dis-
tance) so from Chapter 3 we use

dv
v gdz 

or

2 2 .v gz
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5.12 MODEL 2: TERMINAL SPEED

Moving on now to the terminal phase we need to decide what 
the force is that is acting against gravity. There are two possibilities: 
viscosity and drag. We can look up the formula for the force in each 
case or we can estimate it. So as not to interrupt the calculation let 
us quote the relevant formulae and see how we could have esti-
mated them later. For the viscous force (resulting from the shear 
as the air flows past the sides of drop) on a sphere of radius a mov-
ing with speed v through a medium of viscosity  we have Stokes’s 
formula:

 6 .viscF a vp h  (5.7)

For the drag force (resulting from the destruction of momentum of 
the air impacting a blunt body) we have

 
21
,2drag DF C A vr  (5.8)

where ρ is the density of air, 2A ap  is the area of the cross section 
of the body normal to the flow and CD is a constant that depends on 
the shape of the body but is usually around 0.5.

How do we know which to use? Well, of course, both forces 
are acting, so we should use the sum of the two. This is rarely a 
good idea: it complicates matters without offering much illumina-
tion. At least to start with, we use whichever is the larger. When v is 
very small the viscous term (5.7) must dominate the drag force (5.8) 
because for v small 2 .v v  . In fact we shall have drag viscF F<  if

12
.

D
v C a

h
< r

Putting in some values for the larger size of shot (a = 3mm), and 
taking the density of lead to be 11000 kg m-3 we get that viscosity 
dominates drag if



Motion • 115

 

– 5
– 2 –112 1.5 10

10 ms .0.5 0.003 11000v
¥ ¥< ¥ ¥ ~

 
(5.9)

So initially (when 0)v ~  we have to consider only viscosity. Let us 
then estimate the viscous term: We have, taking the larger size of 
shot

– 5 – 66 6 0.003 1.5 10  10 N.a v v vp h p ¥ ¥ ¥ ~

Thus there is a gravitational force accelerating the pellet and a vis-
cous force opposing the motion. Let us compare the magnitude of 
these. We have

2 13 44
11000 9.8 10 N 6 f 10 ms .3Mg a a v i v¥ p ¥ p h <  ~ 

So in the initial fall, for small speeds, we can clearly neglect viscos-
ity relative to gravity: the initial motion is just free fall under gravity. 
However, from Equation 5.9, the drag will become more important 
than viscosity once 3 110 msv >    and will balance the gravitational 
force once

 
21

.2 DC A v Mgr 
 

(5.10)

Thus the maximum speed, or terminal speed, of the shot is given by 
solving (5.10) for v:

1 1 1
2 2 2 –12 8 8 0.003 9.81 11000

37ms .3 3 0.5 1.29
lead

t
D D air

Mg ag
v C A C

r ¥ ¥ ¥
r r ¥ ¥

                
~ ~

We can estimate the distance, sf, to reach this speed by using the free 
fall equation:

2 4
68m.2 3

t lead
f

D air

v a
s g C

r
r  ~

This corresponds to a time
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2
4s.f

f
s

t g ~

Since the body is not freely falling, but accelerating more slowly, this 
is an underestimate.

To solve the problem posed by the cooling of the shot we need 
to consider the time of fall. We can assume that this is set by the 
time required for the shot to cool, which we suppose for the sake of 
argument is greater than one second (the time in free fall). Thus the 
fall can be approximated by two phases: one in free fall at constant 
acceleration, followed by a period at a constant speed of 8 m s-1. The 
time of fall is thus

,total f
t

h
t t v 

where h is the height fallen at the terminal speed or

  .f total f t fH h s t t v s    

5.13 MODEL 3

In fact, this problem can be solved exactly, so we have the oppor-
tunity to compare our approximation with the exact solution. The 
equation of motion is

21
– .2 D a

dv
mv mg C Avdz r

Dividing through by the mass of the pellet we have

2

2 f

dv v
v gdz s 
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where 
4

3
L

f
D a

a
s C

r
r

      as above. The equation confirms our earlier 

analysis that for length scales less than sf gravity is important, and for 

length scales greater than sf the drag term dominates. To see this we 
approximate vdv/dz as v2/z. Then

2 .1 1
2 f

g
v

z s
~

So for z < 2 sf we can ignore the drag term.

The first thing to do is to tidy up the equation of motion by 
introducing some dimensionless variables. One reason is that oth-
erwise we would find ourselves writing out the constants such 
as CD again and again as we work through the algebra. A more 
important reason is that the collection of constants obscures the 
meaning of the equation. We make z dimensionless by dividing by 
sf: so define

.2 f

z
x s

(The factor of 2 is included with hindsight to tidy up the working.) 
If we now define

,
2 f

v
u

s g


 The equation of motion takes the dimensionless form

2
21 – .

du
udx 

The two regimes are now clear. For u2 << 1 we have u2 ~ x or u ~ x. 
As u2  1, du2/dx 0, so 1 is the limiting value for u2.

The equation of motion is a first order separable differential 
equation so the exact solution can be obtained by rearrangement 
and integration:
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2
2

21 –
u

du x
u


or

 
–2 1 – ,xu e  (5.11)

where we have chosen the constants of integration such that u2 = 0 at 
x = 0. Note that u2  1 as x , and that for finite x, u never actu-
ally reaches 1. This means that the terminal speed is never reached 
exactly. However, for all practical purposes, unless we require a high 
level of accuracy, we can take terminal speed to be reached at around 
x = 1, as we did in model 2 above.

We now have to solve for distance as a function of time. Since 
ds/dt = v, or

2
f

gdx
udt s

we define a timescale T = (sf/2g) and put

2
f

gt
tT st   '

Then, the equation of motion becomes

–1 – xdx
u edt  

from (5.11) with the initial conditions x = 0 at t = 0. You might 
be tempted to think that this cannot be integrated analytically 
and instead try to solve it numerically using a standard numerical 
method. The problem would then be that at x = 0, we have dx/dt = 
0. Thus, numerically, x never changes and the solution appears to be 
x = 0 for all time. The numerical equation solver needs some help, 
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which we would give it by expanding the solution about x = 0 and 
setting the initial conditions at t = . So, for small x, by expanding 
the exponential,

1
2dx

xdt ~

from which

1
22 .xt 

The initial conditions become x = (/2)2 at t =  (where  would then 
be given some small value, say 10-2).

Figure 5.5: Exact solution (solid line) and approximate solution (dashed line) for the time 
against distance fallen. The exact solution approaches – 2 ln 2x t as t  ∞.

In fact the equation can be solved exactly: we get

  
 

1
–1 – 2

1
– 2

2 tanh 1 –
1 –

x

x

dx
e

e
t  

 
(5.12)

with the constants of integration chosen to satisfy t = 0 at x =0.
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We can invert (5.12) to give x as a function of t:
2

– ln 1 – tanh .2x
t       

This is plotted in Figure 5.5. We have also shown on the figure the 
approximate solution for early times, x = (t/2)2. The figure shows how 
the graph departs from this solution and becomes approximately a 
straight line – 2x ~ t  In2 around t = 2. Note how taking drag into 
account reduces the required height of the tower.

Finally we should express the solution in physical units:

 

1 1
2 2–12 3

tanh 1 – exp – .3 8
L D a

D a L

a C z
t gC a

r r
r r

                    

You should check that the pre-factor has the units of time and that 
the argument of the exponent is dimensionless.

From this it is clear that the length scale

8
23

L
f f

D a

a
s sC

r
r 

divides the behavior of the trajectory into two phases; For fz s  
we have approximately free fall and for fz s  drag starts to become 
important. This agrees with our previous approximate solution.

Solving for z gives

21
238

ln 1 tanh .3 2
DL a

D a L

gCa
z tC a

r r
r r

  
            

Finally we should put in some numerical values. Shotgun pellets are 
around 6 mm in diameter ( 3a   mm); the density of lead is 11 300 
kg m-3; the density of air is 1.29 kg m-3. If the time required for lead 
to solidify were around 5 s (say) this would give a height of about 
4.4sf ~ 250 m, in agreement with the graph of Figure 5.5.
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In fact, towers are rather shorter than this because the lead must 
solidify in the free-fall phase if the pellets are to be spherical, as we 
see next,

5.14 THE SHAPE OF THE SHOT

The problem asked us to determine the shape of the shot. To 
do this we transform our point of view to the reference frame of the 
shot. In the initial phase, under free fall, in frame of reference of the 
falling shot the acceleration is zero, so the shot is weightless. What 
does this mean for the shape? In the absence of gravity, the surface 
tension of the lead will form the drop into a sphere. In the constant 
velocity phase the drag on the drop prevents it from moving (relative 
to us as observers falling with it, now at constant speed). A drop at 
rest under gravity, on a table say, adopts a flattened shape. So this is 
the shape of the shot both in our frame, and, of course, in the frame 
of the tower. Tear shaped rain drops are a myth!

5.15 UPTHRUST

A solid body immersed in a fluid (by which we mean a gas or liq-
uid) displaces an equal volume of the fluid. Prior to the introduction 
of the solid body, the displaced volume was neither sinking nor rising. 
The gravitational force on it must therefore have been balanced by the 
force of the surrounding medium; in other words any volume of fluid 
experiences an upthrust equal to its weight. Since this upthrust is the 
result of the action of the surrounding medium, it must still be pres-
ent after the solid body is introduced. Thus we arrive at Archimedes’ 
Principle:

A solid body immersed in a fluid experiences an upthrust equal 
to the weight of the fluid it displaces.

An obvious corollary is that a less dense object will float in a 
denser fluid.
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A body of mass M, density b, falling in a fluid of density f expe-

riences an upthrust f
b

M
gr r

 
    and therefore has an effective weight 

of

1 – .f
eff

b
W W

r
r

 
   

Archimedes’ Principle generates various paradoxes. Suppose we weigh 
an object (W) and a tub of water (w) separately. The combined weight 
is W + w . Now place the object in the tub and assume no water is 
spilt. Is the weight now Weff + w? This is impossible because we could 
generate a perpetual motion machine just by adding and removing the 
weight (using the upthrust as driver). The paradox is resolved if we 
appreciate that the weight cannot be in static equilibrium immersed 
in the fluid: it will be falling. The fall imparts downward momentum 
to the fluid which impacts the bottom of the container with a down-
ward force; perhaps this is just sufficient to keep the overall system 
with a weight W . This seems strange since the body might be falling 
quite slowly if the medium is more viscous than water.

What happens when the weight hits the bottom then? Does 
a weight resting on the bottom of a container not experience an 
upthrust? Indeed it must by the same argument we used to deduce 
Archimedes’ principle.

For the resolution, we must take into account the rise in the 
fluid level in the tub. This will increase the pressure at the bottom 
just enough to compensate for the upthrust on the body.

Another paradox emerges if we try to find the weight of air by 
accurately weighing a balloon empty and comparing this with the 
weight of an inflated balloon. We would discover that air is appar-
ently weightless.

In fact, we know that air does have weight. To explain why this 
attempt to measure the weight of air has failed, we could bring in 
Archimedes’ principle according to which there is an upthrust on the 
balloon equal to the weight of air it displaces – that is, an upthrust 
that exactly balances the weight of air inside it.
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But you do not need a theory to see this (or more correctly the 
theory is only a concise expression of what you already intuitively know). 
The fallacy is the same as the fact that you can’t see a blue balloon against 
a blue background. If the filled balloon weighed more than the empty 
one then it would fall to the ground. But you can’t make the air inside a 
region heavier than it was previously by putting a balloon round it.

5.16 SIMPLE HARMONIC MOTION

Newton’s laws enable us to find the motion of a body under a 
given force. One important example is the simple harmonic oscil-
lator. It is useful to have in mind a concrete picture. One example 
is a body on a spring that is displaced from its equilibrium position 
(Figure 5.6) assuming that the spring obeys Hooke’s law.

In equilibrium we assume that the spring has an extension x0 (mea-
sured downwards); then

0.W kx

 
Figure 5.6: Mass on a spring
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Once displaced the spring will oscillate; if the total extension of the 
spring is x + x0 then

 0– – .mx W k x x kx  

We can simplify the notation slightly by defining 2 = k/m so the 
equation of motion becomes

 
2 .x xw   (5.13)

This Equation (5.13) defines simple harmonic motion: in general 
any system (not just a spring) which obeys this equation of motion 
is said to be a simple harmonic oscillator (SHO) or undergo simple 
harmonic motion (SHM).

As usual we try to describe the motion before turning to the 
mathematical analysis. The physical picture of a spring tells us that the 
motion should be oscillatory. The body slows down as it approaches 
the extremes of the displacement and speeds up as it accelerates 
through the equilibrium position at x = 0. If we start the body from a 
displacement x(0) at t = 0, with some downward speed, and if we mea-
sure x as positive in the downward direction, we expect something like 
Figure (5.7) for the displacement (dashed line) and speed (solid line).

Figure 5.7: Expected motion of a mass on a spring starting from a non-zero displacement 
and zero speed. The speed is a maximum at zero displacement.
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Turning now to the mathematical analysis, the general solution of 
Equation (5.13) is

 cos sinx a t b tw w   (5.14)

where a and b are arbitrary constants. This can be verified by dif-
ferentiation:

 – sin  cosx a t b tw w w w   (5.15)

and hence

2 2 2 2– cos – sin – ( cos sin ) – .x a t b t a t b t xw w w w w w w w   

The constants a and b are fixed by the starting conditions at t = 0. 
For example, we might know that x = x(0) at t = 0 and  0 0.x   
Then at t = 0 from (5.14)

 0 cos0x a a 

and from (5.15)

0 cos0b bw w 

so b = 0 and a = x(0). Hence the solution for this set of initial condi-
tions is

 0 cos .x x tw
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Figure 5.8: The displacement cos t  (dashed line) and velocity sin t  (solid line)of a 
harmonic oscillator started from rest with unit initial

Figure (5.8) illustrates the solution graphically and confirms the gen-
eral form of our initial expectation. It also shows (from the periodic-
ity properties of the cosine function) that  is the angular frequency 
of the oscillation, or, equivalently, that f = /2p is the frequency and 
T = 1/f = 2p/ is the period.

5.17 WHY SHM IS IMPORTANT

To see why simple harmonic motion plays such an important 
role in mechanics consider a body, coordinate x acted upon by a 
force that varies as some function F(x). Assume that at some point x0 
the force vanishes:

 0 0.F x 

Newton’s second law tells us that a body placed at this point (with 
zero speed) will remain there. Thus, x0 is an equilibrium point. 
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(There may be more than one.) Now consider a small displacement 
x = x0 + ϵ. Then

using the Taylor expansion of F(x0 + ϵ). If we neglect higher order 
terms, the equation of motion becomes

If dF/dx at x0 is negative, we can set it to –2. This will be the case 
if x0 is a point of stable equilibrium. For small displacements about 
a stable equilibrium point any system behaves (approximately) as a 
simple harmonic oscillator.

We shall investigate oscillatory motion more fully in Chapter 8.

5.18 ENERGY OF A HARMONIC OSCILLATOR

Since we view energy as the fundamental dynamical quantity, we 
would like to derive the equations of motion of a harmonic oscillator 
from an expression for energy. There are several ways to do this. One 
general method is to reverse the process that leads us from energy to 
the equations of motion. For a harmonic oscillator we have

– .mx kx

Multiplying by x  :

– .mxx kxx 

We can write this as

2 21 1
2 2

d d
mx kxdt dt

         

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in which form the equation can be integrated:

 
2 21 1

,2 2E mx kx 


 
(5.16)

where E is a constant and k = m2.

Alternatively, we know the kinetic energy is 
21

2 m x


 so we have 
only to find the potential energy from the relation

– – .PdE
F kx dx 

Integrating we get 
21

2PE kx  and, adding the kinetic energy, a total 
energy that agrees with (18.1).

5.19 CHAPTER SUMMARY

●  Newton’s first law: There exists a state of motion that is 
unaccelerated that can serve as a reference frame for other 
states of motion. A body subject to no forces will move with 
constant velocity (or remain at rest) in this frame of refer-
ence.

●  Newton’s second law: In an inertial frame of reference a 
body of mass m subject to a force F will undergo an accel-
eration a given by F ma.=  

●  In a non-inertial frame of reference additional “inertial 
forces” appear in the equations of motion.

●  The equations of motion for a conservative system can be 
obtained by differentiating the total energy

 21
.2 PE mx E x 
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●  The rate of doing work by a force F on a body moving with 
speed v is F.v .

●  The translational motion of the body is equivalent to the 
total external forces acting on the total mass placed at the 
center of mass

●  Solving Newton’s equations of motion usually requires ap-
proximations. Relevant approximations can be obtained by 
introducing dimensionless variables and identifying small 
parameters.

●  Archimedes’ Principle: A solid body immersed in a fluid 
experiences an upthrust equal to the weight of the fluid it 
displaces.

●  The displacement from equilibrium x(t) of a simple harmon-
ic oscillator satisfies the equation of motion : 2– .x xw

5.20 EXERCISES

1.  The acceleration of a body moving in a straight line with 
speed v through a certain medium is given as -kv. Write 
down the equation of motion of the body.
Show that such a body, starting with speed u, moves ac-
cording to

–(1 – )ktu
x ek

and hence comes to rest in a finite distance u/k.
2.  Investigate damped simple harmonic motion with a damp-

ing proportional to 4rv  for small r.
3.  In Figure 5.9 the chain on the right hand slope is more 

massive than the chain on the left. Therefore the chain will 
move clockwise forever. What is the fallacy?
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Figure 5.9: Question 3

4.  Estimate the rate of doing work against drag by a car on a 
motorway.

5.  A helium balloon with a rigid envelope is released from 
rest in still air. What is its maximum height and how long 
does it take to reach it? (Party balloons have a radius of 
0.1143 m and a mass of 0.0185 kg.)



CHAPTER 6
MOMENTUM 

Figure 6.1: Momentum

Problem: The figure shows a small ball balanced on a much larger 
one falling together towards a solid floor. What happens next? 

6.1 CONSERVATION

The velocity of a free particle is constant, so its momentum, mv 
is constant. More generally, from Newton’s law in the form 

,
d d

mdt dt
    

x F

we see that, if there is no external force, the rate of change of the momentum 
is zero and hence the momentum is constant whether or not the mass varies. 

We can generalize this result to a system of particles. Suppose 
we have particles of mass mi positioned at coordinates xi with exter-
nal forces Fi and let the internal force of particle j on particle i be fij. 
Then for each particle Newton’s second law reads
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i ij i
j i

m
π

iÂ  F f x

Summing over all particles we get

i ij i
i i j i i

m
π

iÂÂ ÂÂ  F f x

But – ( )ij ji j iπf f  by Newton’s third law; so the sum over the inter-
nal forces cancels and we are left with

.i i i
i i

d
mdtÂ Â 

   
F x

If the net external force is zero then 

 
0.i i

i

d
mdt Â 

  
x

 
(6.1)

We define the position vector X of the center of mass by (Section 5.7)

.i i
i

m MÂ x X

where M is the total mass. Thus, (6.1) gives

constant .i i
i

m MÂ   x X

In words, the total momentum is the momentum of the total mass 
moving with the center of mass; if a system of particles is subject to 
no net external force then the momentum of the system is conserved. 

6.2 CONSERVATION AND INVARIANCE 

In general, if the energy of the system is independent of posi-
tion, momentum is conserved. This is trivial to show for a single 
particle subject to conservative forces. We have
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K PE E E 

with 
2

21
2 2K

p
E mv m   and 0.PdE

dx   Thus

0 Pp dp p dpdE dE dx
dt m dt dx dt m dt   

so

0
dp
dt 

and p = constant. We shall show this more generally in Chapter 11. 

6.3 IMPULSE

More generally if now a system is subject to a force over some 
time interval we can write

.dp Fdt 
The left hand side is the change in momentum over the time inter-
val. We call the right hand side the impulse. Thus we have

Change in momentum = Impulse.

We can compare this with the corresponding relation for energy:

Change in energy = Work done.

Example: The speed of a soccer ball can be up to about 30 m s-1. 
The time of contact between the foot and ball has been measured 
at 0.05 s and the mass of a soccer ball is 0.45 kg. What is the force 
exerted by the player? 

We have F t m v    in an obvious notation. Thus 
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30
0.45 270N.0.05F ¥ 

Thus a player exerts a force of about 1/3 of their weight.

6.4 COLLISIONS IN ONE DIMENSION

The conservation of momentum is useful in analyzing collisions 
where there are, by definition, no external forces (only internal 
forces). In a collision we are often interested only in the situations 
before and after the event, and not in following the details through 
the collision. 

Figure 6.2: A collision with one body (mass M) initially at rest

Consider a body of mass m moving with speed u on a frictionless 
surface in a collision with a body of mass M at rest (Figure 6.2). Let 
the speeds after collision be v and V respectively. We assume that 
the collision conserves energy as well as momentum. Such collisions 
are termed elastic. One case we can solve without calculation is that 
of equal masses, M = m. Since energy is conserved these collisions 
are reversible. But in this case the time reversed collision must look 
exactly like the original collision (since the masses are identical). 
Thus the solution must be v = 0 and V = u; the moving body comes 
to rest and the originally stationary body moves off with the speed of 
the incoming body. 

How can we make this symmetry more obvious? If we view the 
collision in a frame moving with speed u/2 we should see incom-
ing particles each with speed u/2 (and opposite directions). The 
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symmetry is now clear: the motion of each particle must be reversed 
in the collision. In the original frame this corresponds to an inter-
change of speeds. 

Figure 6.3: The collision of Figure 6.2 with equal mass particles viewed from a frame moving 
to the right with speed u/2. 

If the masses of the two particles are not equal we might guess that 
the center of mass frame would be a good way to look at the collision: 
in this frame the momentum must be zero before the collision and 
therefore zero after the collision. The only way this can happen is for 
the particle velocities to be reversed. Figure 6.3 shows the result.

Figure 6.4: The collision of Figure 6.2 from the center of mass frame moving to the right 
with speed w = mu/(M + m) in the laboratory frame. In the CM frame to conserve 

momentum the particle velocities are reversed. To obtain the laboratory frame speeds add w 
(vectorially) to each. 

There are several ways to obtain the velocities in the CM frame. One 
way (we give an alternative in Section 6.5) is to note that, if the par-
ticles are separated by a distance x then the distances to the center 
of mass are / ( )Mx M m  and / ( )mx M m  and hence the speeds 
are / ( )Mx M m  = / ( )Mu M m  and / ( )mu M m  towards the 
CM. During collision these speeds are reversed in direction. Since 
the mass M was initially at rest in the laboratory frame, to get the 
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speeds in this frame we add / ( )mu M m  to each having regard to 
direction. Thus the laboratory frame speeds after the collision are:

2mu mu mu
V M m M m M m    

for the mass M and

m MMu mu
v uM m M m M m


     

for the mass m. 

To give us confidence in dealing with collisions let us derive this 
result in a less elegant but more straightforward way. The general 
rule is to write down the equations for conservation of momentum 
and conservation of energy. For the collision depicted in Figure 6.2 
we have for conservation of momentum in the laboratory frame:

 mu mv MV   (6.2)

and for conservation of energy

 
2 2 21 1 1

.2 2 2mu mv MV 
 (6.3)

Note that we measure all velocities in the same direction and let the 
algebra take care of the actual signs. In principle both bodies could 
continue to move in the same direction after collision. We have to 
solve these equations for v and V. There is a neat trick that reduces 
the algebra. We write Equations (6.2) and (6.3) as:

  –m u v MV  (6.4)

and

   2 2 2– – .mu mv m u v u v MV    (6.5)
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Dividing Equation (6.5) by (6.4), we get

.u v V 

Substituting back for V into (6.4) gives

 
–m M

v um M   
(6.6)

and hence

 
2

.
m

V um M   (6.7)

We see that if M > m the direction of motion of the incoming particle 
is reversed. 

6.5 CENTER OF MASS FRAME

Collisions are often easier to analyze in the center of momentum 
frame because in this frame the initial and final momenta must be 
zero. So suppose we have a body mass M moving at speed U and m 
moving at u. To bring the total momentum to zero we view the colli-
sion from a frame moving with speed w such that 

    – – 0.U w M u w m   (6.8)

Note that by specifying all the velocities in the same + x-direction 
the signs will look after themselves. Solving (6.8) for w, we find

 
.

MU mu
w M m


   (6.9)
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This is the speed of the center of momentum frame viewed from the 
laboratory (rest) frame. 

In the CM frame, before collision, the mass M moves with speed

 
 –

–CM
m U u

U U w M m    (6.10)

and the mass m with speed

 
 –

– .CM
M u U

u u w M m    (6.11)

Let the speed after collision be CMV  and CMv  respectively in the 
CM frame. Then conservation of momentum implies

 0.CM CMMV mv   (6.12)

If the collision is elastic then conservation of energy gives

2 2 2 2
CM CM CM CMMV mv MU mu  

                            

   2 2– –m U u M u U
M mM m M m
           

  2–
mM

U uM m 
 (6.13)

Thus, using (6.12) to eliminate VCM,

 221 –CM
m mM

mv U uM M m
     

or
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( – )CM
M

v U uM m± 

We take the positive sign, otherwise CM CMv u  and the collision 
would have no effect. In the laboratory frame the speed is

 
 2 –

.CM
MU m M u

v v w M m


     
(6.14)

If M = m we recover v = U as in our first example and if U = 0 we 
recover   / ( )v m M u M m    as in (6.6).

We have also for the mass M:

( – )CM
m

V u UM m 

and 

 
 2 –

.CM
mu M m U

V V w M m


     
(6.15)

6.6 INELASTIC COLLISIONS 

Another interesting example is where the particles stick together 
after a collision (for example in a possible road traffic accident) or 
where they split apart (as in an explosion). In neither case can we 
conserve both energy and momentum. Since there are no exter-
nal forces acting, it is momentum that must be conserved. From 
the point of view of the calculation we replace the conservation of 
energy by a further condition on the final speeds. 

For example if the particles stick together we have 0CM CMV v   
in the center of momentum frame. The loss in energy is equal to the 
initial energy and therefore, from Equations (6.10) and (6.11)
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 22 21 1
– .2 2CM CM

mM
E mu MU U uM m    

In an explosion we have u = U = 0 and 

2 21 1
2 2mv MV E  

Conservation of momentum gives 0mv MV   so

21
12

M
E MVm

     

or

 

1
22

.
m E

V M m M
    

If M + m is a constant (the mass of the bomb) then the larger frag-
ment carries off less energy by a factor (m/M)1/2. This means that the 
smaller fragments can do more damage (depending on how many 
share the energy). 

6.7 THE PROBLEM

We can now look at our initial problem as a series of elastic col-
lisions:

Figure 6.5: The figure on the left shows the balls at the point of initial impact (with the 
separation of the balls exaggerated); the figure on the right shows the subsequent collision. 
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In the first stage the big ball collides with the floor and has its motion 
reversed. We then have a collision between a small ball of mass m 
falling with speed u and a large ball of mass M rising with speed u.

Thus, from Equations (6.14) and (6.15) with U =  u

3 –
–

1

m
M

v u um
M

 
  






if m ≪ M, and 
3

1 –
– .

1

m
MV u um
M

~


Thus we expect the small ball to fly rapidly up once the big ball hits 
the floor. There is a transfer of energy from the larger to the smaller 
ball. This makes a surprisingly effective demonstration. 

6.8 COLLISIONS IN 2 DIMENSIONS

Non-collinear collisions are a bit more difficult because we now 
have to conserve momentum in two directions. The general set-up 
is shown in Figure 6.6

We are given the initial parameters and have to find the final val-
ues after collision. Assume the collision is elastic. Then conservation 
of momentum (see Figure 6.6) yields

 

1 1 1

2 2 2 1 1 1 2 2 2

cos
cos cos cos

P m u

m u m v m v
|| q

q


   
 

(6.16a)

1 1 1

2 2 2 1 1 1 2 2 2

– sin
sin sin – sin

P m u

m u m v m v
^ q

q


   
  

(6.16b)

and conservation of energy gives
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2 2 2 2

1 1 2 2 1 1 2 2.E m u m u m v m v     (6.17)

Figure 6.6: Bodies of masses m1 and m2 with speeds u1 and u2 respectively travelling at angles 
1 and 2 to the horizontal collide elastically. After the collision the bodies move with the 

speeds and angles shown. 

So we apparently have three equations for four unknowns. How do 
we fix this? Imagine repeating the experiment many times with the 
same initial angles and speeds: the result will be a variety of angles 
for the outgoing particles, because the angles will depend on just 
how glancing a blow they receive. So one of the emerging angles has 
to be given in order to determine the problem. Let this be 1. Then, 
eliminating 2 from (6.16a) and (6.16b), 

2 2 2 2 2
1 1 1 1 1 1 2 2 1 1( cos ) ( sin )P m v P m v m v E m v|| ^     

which is a quadratic equation for v1. We can then obtain v2 and hence 
2; but the general solution is far from illuminating. So let us take a 
specific example that does lead to a nice result. 

We put 1 2m m m   and 1 0.u   Then Equations (6.16a) and 
(6.16b) give

 

2 2 2 2 1 1cos cos cosu v vq   

 
(6.18)

 2 2 1 1 2 2sin sin – sinu v vq     (6.19)

and (6.17) gives
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2 2 2
2 1 2.u v v   (6.20)

Thus, squaring and adding (6.18) and (6.19) we have

2 2 2
2 1 2 1 2 1 2 2 1(cos cos sin sin )u v v v v      

Using (6.20) we get

 1 2 1 2 1 2(cos cos sin sin ) cos 0        

or

1 2 .2
p

  

This is a useful result for pool players. The cue ball and the target 
will move at 90o after collision. 

6.9 COLLISION TIMESCALES

Since we can treat collisions by simply conserving momentum 
before and after the event it is unnecessary to go into the details of 
what happens in a collision. However, the details can be important 
in clarifying what assumptions we are making in treating collisions 
in this way. 

On impact, in a collision between two bodies, the bodies deform 
and this deformation is transmitted through the bodies with the 
speed of sound in the material of the bodies. The deformation of 
each body lasts on the order of the time it takes sound to cross the 
body and hence to transmit the force of impact to the body as a 
whole. If the force between the bodies is of order F and the time of 
impact of order Dt, the body is subject to an impulse of order FDt. 
this is equal to the change in momentum (Section 6.3). 
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The impact of a golf club on the ball provides an interesting 
application. One might think that this is not a case of a momentum 
conserving collision because the golf club is being driven by the 
golfer. The ball and club head do not appear therefore to be an 
isolated system without external forces. However, the time of con-
tact is about the sound crossing time of the golf ball which is about 
0.5ms. The time for the sound wave to travel up the shaft is about 
1 ms. By the time the golfer is aware of the impact the golf ball is 
well on its way. We can therefore treat the impact as conserving 
momentum. 

6.10 ROCKET EQUATION 

An interesting application of the conservation of momentum is 
the motion of a rocket. The expulsion of momentum in the exhaust 
gases is balanced by the gain in momentum of the rocket. 

Figure 6.7: Derivation of the rocket equation; the rocket is moving from right to left.

Suppose the rocket, mass m, ejects a mass m with relative speed ve. 
If the speed of the rocket is v before the gas is ejected and v + v 
after ejection conservation of momentum gives

    – – .emv m m v v m v vd d d  
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Note that we write m md for the mass of the rocket so that we can 
use the standard calculus approach that / 0dm dt < corresponds to a 
loss of mass. Cancelling terms gives 

0 em v mvd d 

and hence, in the limit, 

– .
e

dv dm
v m

This integrates to

elog i
f e

f

m
v v m

for the final speed in terms of the initial and final masses. This is the 
rocket equation.

The rocket equation demonstrates the advantage of discarding 
the rocket casing along the way in multiple stage rockets to achieve 
high speeds for a given payload. 

6.11 CHAPTER SUMMARY

●  In a system subject to no external forces momentum is 
conserved.

●  The change in momentum of a system equals the impulse 
of the external forces  Fdt

●  In an elastic collision momentum and energy are conserved. 

●  Collisions are often best looked at from the center of mass 
frame.
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● The rocket equation gives the speed of a rocket in terms of 
the initial and current mass if the exhaust speed relative to 
the rocket is constant. 

6.12 EXERCISES

1.  Show that with the inclusion of gravity the rocket equation for 
near Earth flight becomes

e
–

log –i

f

i f
e

m m
v v g m

m
m

 
  

 

where m  is the mass rate at which fuel is being burnt (assumed 
constant). It is possible to achieve a mass ration of / 10i fm m ~  
and a ratio of thrust to launch weight of 2.£  Show that this is 
insufficient to achieve escape speed from the Earth’s surface in 
a single stage rocket.

2.  For the special case of an n-stage rocket with identical stages 
and constant exhaust speed, find the final speed as a function of 
n and the fuel to mass ratio. 

3.  The HS-601 HP satellite uses XIPS ion thrust engines to 
perform north-south station keeping and to control roll and 
yaw. The xenon ions are ejected with a velocity of 33,600 m s-1. 
The specific impulse (defined below) is 3400 seconds with a 
mass flow rate of 0.6 mg s-1. Calculate the thrust and the power 
required from the solar array. The initial satellite mass is of order 
1680kg with about 380kg of xenon fuel; if a single ion thrust 
motor were fired continuously find the time to reach maximum 
speed and comment on the result. 

The specific impulse of a rocket, I, is defined in terms of the 
thrust F (in Newtons) by .F Img 

4.  Neutrons in a nuclear reactor are released from fissile material 
with energies of a few MeV and must be slowed down to speeds 
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of a few km s-1 to maintain a chain reaction. They are slowed 
by elastic collisions with the nuclei of a moderator. How many 
head-on collisions would be required for a boron moderator? 
(In practice the number is larger because glancing collisions are 
less effective in exchanging energy.) 

5.  Suppose two bodies have speeds u1 and u2 before a collision 
and speeds v1 and v2 afterwards. The coefficient of restitution 
is defined by 

2 1

2 1

–
.–

v v
e u u

Regulations of the Association of Tennis Professionals (ATP) 
specify the height to which a ball must bounce on a hard surface. 
A ball dropped from a height of 254 cm will have a velocity of 7.06 
m/s just before it hits the ground. According to the regulations, 
the tennis ball must then bounce to a height of between 135 cm 
and 147 cm, meaning the ball must have a velocity of between 
5.14 m/s and 5.36 m/s as it leaves the ground. Calculate the range 
of acceptable values for the coefficient of restitution. How much 
energy is lost in the impact?

6.  A bouncing ball dropped from a height h loses a fraction f of its 
energy on impact with the ground. What is the length of time 
before it comes to rest? (The time is finite even though the 
number of bounces is infinite.) 





CHAPTER 7
ORBITAL MOTION

Figure 7.1: Image of the tidal disruption of Comet Shoemaker–Levy in the gravitational field 
of Jupiter (May 17, 1994) (NASA Image : STScI, http://hubblesite.org/newscenter/newsdesk/

archive/releases/1994/21/image/b )

Problem: The rings of Saturn and the accretion of material by a 
black hole are just two phenomena that depend on the “tidal” forces 
of gravity. Under what conditions does gravity disrupt an orbiting 
body? 

7.1 ANGULAR SPEED: GEOMETRIC APPROACH

Consider first a body moving uniformly round a circle; say a mass 
on the end of a string, or a planet in a circular orbit about its parent 
sun. It is clumsy to describe this motion in Cartesian coordinates (x, 
y); it is much simpler to use polar coordinates (r ,  ). The motion is 
then described by
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 0, constant sayr q w  

and hence 

constant and .r tq w 

The quantity  is called the angular speed of the body. In one revo-
lution  changes by 2 so the time to complete one revolution is

2
.T

p
w

We call T the period of the orbit. The number of orbits per unit time 
is the frequency f = 1/T. 

We can see in Figure 7.2 that if in a time t the body moves 
through an angle  it travels a distance s = r. Its linear speed v 
is therefore 

.
d

v r rdt
q w 

Another way to see this for uniform motion is to consider that the 
body moves round the circle, a distance of 2r in a time T, so 

2 2
.

r
v r rT T

p p w  

Figure 7.2: Circular motion
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7.2 ANGULAR SPEED: ALGEBRAIC APPROACH

As an alternative to the geometric approach we can describe the 
motion of a body in vectorial form. This will be useful in cases where 

the geometric picture is more complicated. Let r


 be a unit vector 

in the radial direction, and let 

 be a unit vector tangential to the 

circle (Figure 7.3)

Figure 7.3: Angular speed in vector form

From the figure we have 

cos sinq q r i j


and

– sin cos .q q i j



Hence 

– sin cos
d
dt q q q q 

r
i j



 

.w



This agrees with the figure where we see that d r


 is in the direction 

of 

 and has magnitude dq = dq


r  (for small enough δθ ). Similarly
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– cos – sin
d
dt q q q q i j



 

 .w  r


 
(7.1)

Now consider 

ˆ,rr r

the position vector of the body. We have

 
ˆ .

d
r rdt w 

r
r


 

 
(7.2)

If 0r  (for circular motion) this tells us that the velocity of the body 
is rw in the tangential direction. We also see, although this is obvious 
anyway, that if the body is not moving in a circle the radial compo-
nent of the velocity is / .dr dt

7.3 ANGULAR VELOCITY AS A VECTOR

Any motion can be decomposed into a translation and a rotation 
about an axis. We can therefore think of the angular velocity as hav-
ing a magnitude and direction if we assign the direction as the axis of 
rotation. We can then write the relation between angular velocity ω 
and the linear velocity v of a body at position r as

.Ÿv r

For example, if ω = (0,0, ) then a point in the x-y plane has velocity 
( y, -  x, 0) . 
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7.4  ANGULAR ACCELERATION: GEOMETRIC 
APPROACH

Suppose a point moves with constant speed in a circle. The 
velocity vector of the body is tangential to the circle. In Figure (7.4) 
the velocity vectors from two neighboring points have been put into 
a triangle, so we can see clearly the change in velocity. There are 
two ways of calculating the change in radial speed. The tips of the 
velocity vectors v and v + δv lie on a circle because the lengths of 
both sides of the triangle represent the same speed v. This triangle 
therefore is exactly like the one in Figure 7.3, where we compared 
two points on a circle. 

So, just as in Section 7.1, where we had s = r , here we have v 
= v . Dividing by t, we get that the acceleration dv/dt is given by 

 

2
2 .

dv d v
v v rdt dt r

q w w   
 

(7.3)

Alternatively, the change is velocity is in the radial direction, and 
hence perpendicular to the tangent. From the triangle on the right 
of Figure (7.4) the acceleration is

sin
.

v v
vt t t

d dq dq
d d d 

Figure 7.4: Angular acceleration

The various equivalent forms in Equation (7.3) are obtained 
by using v = r and they are all useful forms to remember. The 
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expression r2 for the acceleration is just what we might guess on 
dimensional grounds: r2 is the only way, up to a constant, that we 
can make an acceleration from a length r and an angular speed  
per unit time. 

Note that the component of acceleration tangential to the circle 
is zero because the speed of the body is constant. The direction of 
the acceleration is therefore radial, towards the center of the circle; 
we call this a centripetal acceleration. 

7.5  ANGULAR ACCELERATION: ALGEBRAIC 
APPROACH 

Continuing with the vectorial approach we have from (7.2)

.
d

r rdt w 
r

r
 
 

So differentiating again we get 

2

2
d d d

r r r r rdt dtdt
w w w    

r r
r

 
  

     


 
2( – ) ( ) .r rw  r
 

  2 r r     
(7.4)

If the motion is circular at constant speed this tells us that the radial 
component of acceleration is just −rw2, where the minus sign shows 
that it is towards the center. As a bonus we get the acceleration for a 
general planar motion in polar coordinates: for the radial component 
of the acceleration from (7.4)

  2 ;ra r rw   
(7.5)

and for the tangential acceleration

  21
2 ,

d
a r r rr dtq w w w  

 
(7.6)

where  = dθ /dt. 
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7.6 ANGULAR MOMENTUM 

Consider a particle of mass m moving in a plane subject to no 
non-radial forces. Then from (7.6)

 21
0

d
m rr dt w 

and therefore

2 constant.mr w 

Furthermore the direction of the angular velocity will remain con-
stant, normal to the plane. In contrast the linear momentum mv is 
not constant in direction even if |v| = rw is constant in magnitude. 
We therefore define a new quantity, the angular momentum, by

   2 – .m m mr mŸ Ÿ   h r v r r r r      

For the motion of a body in a plane, with no non-radial forces, r and 
ωare perpendicular so . 0r   and the angular momentum vector 
h is in the direction of the angular velocity and is constant in magni-
tude and direction.

We shall generalize this from particles to extended bodies in 
Chapter 9. 

7.7 CIRCULAR MOTION: DYNAMICS

For the general motion of a body in three dimensions we have 
seen that Newton’s second law can be written in vector form as

.m x F

This is not however the most convenient way to deal with motion 
under forces directed towards a central fixed point. Rather we use 
the polar form for the acceleration derived in Section 7.5. Then
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  2
rm r r Fw 

 (7.7)

from (7.5) and 

 
 21

.
d

m r Fr dt qw 
 

(7.8)

from (7.6). For a radial force Fθ = 0, so r2 = constant. Notice that 
this does not imply that the motion is circular (i.e. that r is a con-
stant) because the angular speed might be changing. How is that 
possible? A radial force can act to change the speed of the body if the 
motion is not perpendicular to the radius. However, for the moment 
we shall restrict ourselves to circular motion. Then both r and  are 
constant for a given body. The only point at issue is how the angular 
speed changes with distance. In general, if 0,r   , from (7.1) 

1
2

.rF
mrw
    

If Fr = constant, then 

1
2rw μ 

and

1
2v rμ

so the angular speed decreases with r and the linear speed increases. 

A more interesting example is Fr = kr with k a constant. Then 
 is constant, so two bodies at different radii from the center will 
remain along the same radius vector that they start from. This is the 
force law between quarks in hadrons (strongly interacting particles) 
such as the proton. If we assume that the mass of the proton is con-
centrated in the quarks (which is not really true, but will do for this 
exercise) and if we assume the quarks orbit at about the speed of 
light (which is in fact a good first approximation) then we can work 
out the radius R of a proton from its angular momentum. We have
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R cw 

from the assumption that the quarks move at light speed. The angu-

lar momentum of a proton is 
1
2  where / 2h p  and h is Planck’s 

constant.

Thus 
1

,2mRc  

from which (to order of magnitude) 

1510 m,R mc
~ ~

which is around the right value. 

Another example is a circular orbit with constant angular momen-
tum. If mr2 = constant then F = mr2  1/r3. This is the (fictitious!) 
force law implied by the tractor beam of the Starship Enterprise.

7.8 PARTICLE IN A MAGNETIC FIELD

An example of circular motion with a more complicated force 
law is an electrically charged particle, charge e, in a magnetic field. 
The force is orthogonal to the field, B, and the velocity v of the par-
ticle and has a magnitude vBsin, where  is the angle between v 
and B. The equation of motion for a circular orbit in a plane perpen-
dicular to a constant field is

2

.
v

m eBvr 

Thus v  r and  is constant, independent of r. The angular fre-
quency  = eB/m is called the Larmour frequency. Since the 
period is independent of r a fixed frequency voltage can keep par-
ticles accelerating in circular orbits. This is the principle of the 
cyclotron. 
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It is interesting to work out the radius of the orbit of a particle 
moving with speed c (or, for pedantic readers, speed close to c). This 
is

.
mc

r eB

For an electron in the Earth’s magnetic field, r ~ 10m. This suggests, 
rather remarkably, that we could accelerate electrons to close to the 
speed of light in desktop machines with magnetic field strengths 
only a few orders of magnitude greater than that of the Earth. The 
fallacy (unfortunately) is that relativity makes an enormous differ-
ence as the particles approach the speed of light.

7.9 CENTRIFUGAL FORCE

Newton’s laws hold in an inertial frame. In such frames a body 
is held in a circular orbit as a result of a force towards the center 
that produces an acceleration towards the center. For example, the 
attentive parent insists that the child on the roundabout should hold 
on tight, because the tension in her arms will provide the necessary 
force to produce the required acceleration towards the center. If the 
child lets go, she is not hurled off of the roundabout so much as that 
she continues in the tangential motion required by Newton’s first 
law. But what about the child’s view from the roundabout? 

From the child’s frame of reference the roundabout is at rest  
the world is going round. Why does the child have to hang on in a 
system in which she is at rest? The answer is that Newton’s laws do 
not hold in a rotating frame, because such a frame is not an inertial 
one. We can derive the correct equations of motion in a non-inertial 
frame of reference only by starting in an inertial frame and making 
a transformation. We give the complete picture in the next section, 
but we already know what the answer must come out to be if New-
tonian mechanics is to be consistent. In a frame of reference rotat-
ing with a body at angular speed ω relative to an inertial frame the 
equation of motion is
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2 0r rF mr maw  

where ar is the radial acceleration.  So the radial acceleration in 
the rotating frame of reference is indeed zero, but a new term has 
appeared on the left to oppose the tension in the child’s arms. This 
is called an inertial force. This force (and other such forces) appears 
whenever we view the world from a non-inertial frame. (Note the 
slightly confusing nomenclature: inertial forces appear in non-iner-
tial frames.) 

In this particular situation, of constant rotation about a fixed 
axis, we have a name for the inertial force: it is called centrifugal 
force. We see that the centrifugal force is in the opposite direction to 
the force holding the body in orbit, hence outwards. The important 
fact is that centrifugal forces can only arise in non-inertial frames. In 
inertial frames, there are only “real” forces and centripetal (towards 
the center) accelerations.

Example: Astronauts are trained to withstand high g-forces by 
being swung round lying on a rotating arm. The maximum cen-
trifugal acceleration a pilot can tolerate without blacking out if he 
lies with feet outwards is about 8g. Assuming the centrifuge arm is 
about 3m what is the angular speed? 

We identify the most useful form of the radial acceleration here 
as r2 and set it equal to 8g. Then

1
2 18

5 rad s
g
rw ~     

or a period of about a second for one rotation!  

7.10 ROTATING FRAMES 

In three dimensions inertial forces are more complicated. Let a 
body have position vector r′  in an inertial frame. Let us consider a 
frame rotating with angular velocity ω relative to the inertial frame 
(we can always add translation later). Let the position vector of the 
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body in this non-inertial frame be r. Then the velocity of the body 
relative to the inertial frame is composed of two components: the 
speed in the rotating frame and the speed of the rotating frame as 
seen from the inertial frame. Thus we can write

d d
dt dt

  

r r r

or 

.
d d
dt dt
      

r r

We see that the rate of change in the rotating frame is obtained by 
applying the operator (d/dt +ω) to a vector. Thus, to obtain the 
acceleration in the rotating frame, we apply this operator to the 
velocity:

2

2
d d d

dt dtdt
              

r r  

                                      

2

2 2 .
d d d

dt dtdt
       

r r r r
    

If the rotation is steady we can ignore the last term. 

If we apply Newton’s law F m r  in the inertial frame we have, 
in the rotating frame

2

2– 2 – .
d d d

m m m mdt dt dt
     

r rF r r
    

The term −mωωr is called the centrifugal force and the term 
−2mωdr/dt, or −2mωv, is called the Coriolis force. Note, once 
more, that these forces appear only in a rotating frame. So, for exam-
ple, a body observed from a rotating Earth will be seen to experience 
these forces. 

As a historical example (known as Newton’s bucket) imagine I 
have a bucket of water supposedly at rest in front of me. The water 
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surface is flat (apart from the very minor curvature due to surface 
tension at the sides of the bucket. If I now spin the bucket rap-
idly in a turntable, the water surface will adopt a parabolic form. An 
observer spinning round with the bucket will see a bucket at rest 
and a parabolic surface. The deformation of the water surface for 
no apparent reason indicates to this observer that she is not in an 
inertial frame. 

It is not quite true that the surface of my stationary bucket is 
flat: if I could measure it arbitrarily accurately I should find that it is 
slightly curved. This would tell me that the Earth is spinning and is 
therefore not an inertial frame.  

If ω is perpendicular to both r and v then the acceleration 
reduces to:

2 2
2

2 2 –
d d
dt dt

w


r r r

which is the more familiar form of the centrifugal acceleration

Example: What is the ratio of the effective acceleration due 
to gravity at the equator and at the poles as a result of the Earth’s 
rotation?

We have 
2

3
2

2
6370 10 24 3600

1 9.81
g R

g

p¥ ¥ ¥w
  

      

0.997

7.11 GRAVITY

The most important central force on a large scale is that of grav-
ity. Gravity is a relatively very weak force compared to the other 
fundamental forces (electromagnetism and the weak nuclear and 
strong forces). It takes the whole mass of the Earth to produce the 
modest acceleration of 9.81 m s−2 at its surface. But because it is long 
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range and because there is no cancellation with anti-gravity, it usu-
ally dominates on macroscopic scales. 

Newton’s law of gravitation gives the force between two par-
ticles of masses M1 and M2 separated by a distance r as

1 2
2

M M
F G

r


where G = 6.67 × 10−11 N kg−2m2 is Newton’s constant. The force is 
attractive and acts along the line joining the two particles. In vector 
form we can express it as:

1 2
3–

M M
G

r
F r

or

1 2
2–

M M
G

r



F r

where 

r  is a unit vector.

Figure 7.5: Gravitational action and reaction

Because gravity is a relatively weak force (the Earth produces an 
acceleration of only 1g  ) measuring G is quite difficult and its value 
is one of the least precisely known of the fundamental constants. Of 
course, if we take the mass of the Earth as known then we can cal-
culate G from the local acceleration due to gravity g, but this is cir-
cular because we need G to find the mass of the Earth. The value of 
G is determined using experimental set-ups that measure the force 
between two large masses, essentially sophisticated versions of that 
in Figure 7.5.
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Example: As an example of the relative weakness of gravity let 
us estimate the gravitational attraction between Romeo and Juliet. 
Taking them to be point masses separated by 0.5 meters, and allow-
ing Juliet to be a little lighter than Romeo at 60kg compared to 70kg, 
gives a force of around 10-6 N. We can visualize how small this is 
if we look at the mutual potential energy (Equation 13.1 below): 

Romeo Juliet / 0.5mGM M  is about 5 × 10-7 J. Assuming a watch battery 
lasts 5 years this is sufficient to power a watch for less than a second. 

7.12 EXTENDED BODIES

Figure 7.6: The gravitational force due to a uniform sphere

In the previous section, we have stated Newton’s law of grav-
ity for point particles and assumed it can be applied to extended 
bodies. This requires some justification (which was one of the dif-
ficulties that held up Newton for some time). For a spherical body 
(with a spherically symmetric mass distribution) the justification 
can be obtained by explicit integration. The set-up is shown in 
Figure 7.6. 

We evaluate the force on a point mass m at the point Q due to 
the spherical distribution of mass, density (R) centered on a point 
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O a distance r from Q. The net force will be in the direction QO by 
symmetry so we shall evaluate this component only. Consider the 
element of mass at the point P, specified by the polar coordinates 
and  with OQ as the z-axis. The force along QP is

2

2
sin

.
Gm R d d dR

dF
r q q


l



The component in the z-direction is

( cos )
cos .

r R
dF dF

qy 
 l

Using the cosine rule we have

2 2 22 cos .r rR Rq  l

Thus our integral becomes:

 

2

3
2 2 2

sin ( – cos )

– 2 cos
z

Gm R r R d d dR
F

r rR R

r q q q

q







over the mass sphere. The  integration just gives a factor of 2. To 
evaluate the remaining integrals note that we can write

 

2

1
2 2 2

 (cos )
2 ,

2 cos
z

R dR d
F Gm r

r rR R

∂ r qp ∂
q


 



with the limits on cos θ being 1 and −1. Now

 
 

    

111
2 2 2

11 2 2 2 1

(cos ) 1
2 cos

2 cos

1 2
.

d
r rR RrR

r rR R

r R r RrR r

q q
q




 
    

  

     



So finally we get

2
2

1
4z

GmM
F Gm R dRr r r

∂p r∂ 
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where M is the mass of the gravitating body. This is exactly the same 
as if the body were a point mass at its center. 

The Earth is approximately spherical. So, as far as its gravita-
tional attraction is concerned, we are justified in treating it to a first 
approximation as a point mass at its center. 

A non-spherical body certainly does not behave like a point mass 
except approximately at large distances. This is more difficult to jus-
tify (see Section 7.23).

7.13  GRAVITATIONAL POTENTIAL AND 
POTENTIAL ENERGY 

In Section 4.4, we defined potential energy at a point in two (equiv-
alent) ways: as the work done by a conservative force in moving a mass 
from a fixed reference point to the point in question; and as a function 
the gradient of which gives the force. For the inverse square law of 
gravity, applying this second definition, we write for a point mass m,

2 .
GMm d GMm

F dr rr
      

Thus the gravitational potential energy of a point mass m in the field 
of a mass M is 

 
.P

GMm
E r 

 
(7.9)

Incidentally, the fact that the gravitational force can be written as the 
gradient of a function proves that gravity is conservative. 

It is often not convenient to continually refer to the potential 
energy of a particular mass m; rather we can refer to the potential 
energy of a unit mass. We call the potential energy of a unit mass the 
gravitational potential and write it as f(r)

Calculating the work done in bringing a unit mass from infinity 
to a point a radial distance r from the origin along a radial trajectory 
gives
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2 – .
r GM GM

dr rr
 

To find the potential energy of a distribution of N point masses Mi at 
points ri , we sum over the distribution:

 
1

– .
–

N
i

ii

M
r G

r r


 

In the limit of a continuous distribution each element contributes a 
mass dV and the potential energy becomes

  .r G dV
r r

r
 

 ''

This expression will be useful later when we compare a general 
extended body to a spherical mass. 

7.14 ESCAPE SPEED 

The total energy of a body of mass m at a distance r from a 
spherical body of mass M is

 
21

.2K P
Mm

E E E mv G r   
 

(7.10)

If there are no other external forces on the body then the energy is 
a constant which can be positive or negative (or zero). If E < 0 then 
the maximum value for r is 

max
GMm

r E

when v = 0. The two bodies are therefore bound. If E > 0 then rmax 
 ; the separation of the bodies can be arbitrarily large. We say the 
bodies are unbound. 

The marginal case is E = 0. To achieve this we must have
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1
22

.esc
GM

v v r
     

We call this the escape speed. It is the speed of a body just sufficient 
to take it to infinity i.e. to allow it to escape the parent body starting 
from a radial distance r from the center. 

Example: One simple illustration of the weakness of gravity is 
afforded by the escape speed from Deimos, the smaller of the two 
Moons of Mars. Use the following data to show that a human athlete 
can jump off of its surface into space. 

Data: Mass 1.48×1015 kg, Radius 6.2 km.

The escape speed is 
1

11 15 2
1

3
2 6.67 10 1.48 10

5.6ms .
6.2 10escv

¥ ¥ ¥ ¥
¥


 

   

We can compare this to the take-off speed of a good high jumper: 
–12 12ms .v gh ~

7.15 RADIAL INFALL

If the motion under gravity is purely radial then we can obtain a 
complete picture of the motion. We have  = constant,  = 0, so the 
radial equation of motion (Newton’s second law) is

 
2 .

GMm
mr

r
 

 
(7.11)

There are several ways of integrating this equation exactly, which 
we shall come to in a moment, but first let us do some estimates. 
Suppose you are falling from a height of h above the Earth, say in 
an airplane in a nosedive (neglecting air resistance). How long is it 
before you hit the ground?

If the fall time is t we can estimate the acceleration as h/t2 (based 
on dimensions: [acceleration] = L/T2). So
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2 2 .
h GM
t r
~

If h is 2 km (say) then 
1 1
2 23

11 24
2000

6370 10 14s
6.67 10 6 10

h
t r GM~ ~ ¥ ¥ ~

¥ ¥ ¥
   
      

Notice that the time is independent of the mass of the falling body. 
In the absence of air resistance all bodied fall with the same accelera-
tion. 

Example: Another example is the time it would take for the 
Sun to collapse if the interior pressure were removed. In this case h 

~ R  and we have  
1

3 2/t R GM~    ~ 1600 seconds! The fact that 
this time is much shorter than the age of the Earth (and hence of the 
Sun) tells us that the Sun must be supported by internal pressure. 

Now suppose we need to integrate the equation of motion 
(7.11) to obtain a more detailed picture of radial infall. The first 
thing we do is to choose some dimensionless variables so that we 
do not clutter the solution with factors of G and M. Specifically, if 
we identify a convenient radial scale R we can define new variables 
x and  by

 
,

r
x R

 
(7.12)

 

1
–3 2

.
R

tGMt
 

   
 

(7.13)

Note that the scaling of t can be obtained from dimensional analy-
sis but it also follows from the previous example, where we found 

 
1

3 2/R GM  to be a timescale, or from Kepler’s third law which we 
discuss below (Section 7.16). Using the new variables (7.11) becomes

 

2

2 2
1

– .
d x
d xt


 

(7.14)
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Let us denote /dx dt  by .x  Then we can integrate(7.14) by multi-
plying through by :x  

2
2

1 1
– ,2

d x d
x x xd d xxt t

             
'

and hence

  
(7.15)

where  is the (dimensionless) initial energy per unit 

mass as x Æ •  . Using  rather than  0x  itself tidies up the fac-
tors of 2. Note that we take the negative square root in (7.15) to 
represent an infalling body. Continuing, we can integrate (7.15): 

  
(7.16)

The integral can be performed by substituting  giv-
ing, eventually,

  
(7.17)

where x = 0 at  = (0). If the infalling body starts with zero energy 
at x =  then  = 0. It is an interesting mathematical exercise to 
work out the limit of (7.17) as , but it is much easier to start 
again from (7.16)! The complexity of (7.17) illustrates the value of an 
approximate solution (Figure 7.7). 
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Figure 7.7: The solid line shows the approximate infall  
3
22

0 3 x
÷t t    and 

the dashed curve the exact solution (7.17) for  with the condition that both go 

through the origin ( (0) = 0).

Example: Show that a body falling radially from rest to r = 0 at t = 
0 satisfies

   
2

213
33

3
22r GM t    

for 0.t <  

We integrate (7.15) with ϵ = 0. Thus,

1
2 2x dx dt  

or

3
22

2 .3 x t 

Reinstating the physical variables from (7.12) and (7.13) gives the 
result. 
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7.16 CIRCULAR ORBITS

Figure 7.8: A circular orbit

Consider now a bound system. What are the stationary states?  
Consider first just two bodies of mass m and M with M >> m. If we 
neglect the force of the smaller body on the larger body then the lat-
ter will remain at rest in an inertial frame. We look for solutions in 
which r = constant, i.e. circular motion. Using (7.3) for the accelera-
tion, the equation of motion is

2
2

GMm
mr

r
w

by Newton’s second law.

Thus, the body remains in the fixed orbit if it has an angular 
speed:

 

1
2

3 .
GM
r

w       
(7.18)

As usual, having obtained the formula we try to understand it. The 
equation tells us that only one specific angular speed will keep the 
body in orbit at a specific distance r. This is reasonable: if the body 
moves too quickly for the gravitational force that is exerted on it, it 
will fly off at a tangent. If it movers too slowly it will fall towards the 
center. In either case the radial distance cannot remain constant.  
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The formula also tells us that the angular speed falls off with dis-
tance. This means that the period T = 2/ increases with distance. 
In fact:

 

1
2 32

24
.T rGM

p 
     

(7.19)

This is Kepler’s third law for the special case of a circular orbit. It 
tells us in words that the square of the period is proportional to the 
cube of the orbital radius. This can be verified in the Solar System, 
given that the Sun is indeed much more massive than the planets 
and that the orbits of the planets are approximately circular. 

Example: The Sun is 8 light minutes away, the Moon 1.25 light 
seconds. Using the ratio of the length of the month to the length 
of the year, estimate the ratio of the mass of the Sun to that of the 
Earth.

We have 
3 1
2 2Earth

Moon Moon
.

T r M
T r M

          
 



Note there is no need to convert the light travel times to SI units 
since we are dealing with ratios. (But the units need to be consistent, 
so we shall use light seconds for the orbital radii of both the Sun and 
Moon and months for their orbital periods.) Substituting numerical 
values we get

2 3
Moon 612 1.25

2.5 101 480
M

M ~ ¥           

which is a slight underestimate. 

7.17 VIRIAL THEOREM

From Equation (7.18) the kinetic energy of a body of mass m in 
a circular orbit of radius r about a body of mass M  is
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2 21 1
.2 2

GMm
mr rw 

Thus, for a body in a circular orbit, using (7.9):

 2 0.K PE E   (7.20)

This is a particular example of the Virial Theorem which asserts a 
relationship of this form in all cases of a system in a sufficiently sym-
metrical state of equilibrium. Note that the virial theorem gives an 
actual value for 2 K PE E  , in contrast to the energy Equation (7.10) 
which asserts that K PE E E   is some constant less than zero. The 
virial theorem in the form (17.1) is not valid for a body in an elliptical 
orbit (which is where the symmetry requirement comes in). There 
is a more complicated form of the theorem for this case but that is 
beyond the scope of this discussion.

7.18 CHANGING ORBITS

Here is an argument that sometimes seems paradoxical. If we 
are in a spacecraft in orbit and we burn the motor and increase the 
speed, the radius of the orbit will increase. If our speed were to 
increase above escape velocity then we would escape from orbit. But 
the equation for orbital velocity is v = (GM/r)1/2 so according to this 
as v increases r gets smaller! What have we missed?

This makes it look as if formulae either do not work or only serve 
to complicate the issue. The problem is that a formula is valid only 
in the model for which it was derived. In general the orbital veloc-
ity is not (GM/r)1/2; it can’t be: quite obviously the orbital velocity at 
any point can be whatever you want it to be by burning your rocket 
motors. Therefore the formula can only hold under certain restricted 
circumstances. In fact, the formula gives the speed of a body in a cir-
cular orbit. If we burn our rocket motors we shall no longer be in a 
circular orbit. In fact, to get from one circular orbit to another we 
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obviously have to depart from a circle. We shall look at the form of 
the more general orbit in the next section. 

There is another apparent paradox involved here. Notice that 
in a circular orbit, the smaller the radius of the orbit the greater the 
speed. So we can make our rocket go faster by attempting to slow 
down. (Point the rocket motors in the direction of travel). However, 
we can do this only at the expense of losing height – in the same way 
that we can increase our speed by jumping off of a chair. There is 
no paradox! 

7.19 ELLIPTICAL ORBITS

To investigate if there are more general orbits than circular 
we need the general equation of motion of a body under a central 
inverse square law of force. In deriving the equations of motion in 
Section 7.7 (Equations (7.7) and (7.8)) we assumed that the orbit 
lay in a plane. To start with we would like to see if this is always the 
case. We need the general equations of motion in three dimensions, 
which means writing Newton’s second law for an orbit about a cen-
tral mass M as a vector equation:

3– .
GM
r

r r

Then

  3– 0 0.
d GM
dt r

Ÿ Ÿ Ÿ Ÿ       r r r r r r r r

Thus the angular momentum m Ÿ r r  must be constant in both 
direction and magnitude and hence the motion must be in a plane. 
This means we can use the equations of motion in polar coordinates 
we developed in Section 7.7. 

For the angular motion we have 
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 21
0

d
rr dt q 

and hence 

 
2 constant.r hq    (7.21)

The quantity h is the conserved angular momentum per unit mass of 
the body. The radial equation is

2
2r r

r
mq 

where µ = GM. Clearly we can eliminate  from these equations to 
get an equation for r:

2

3 2 .
h

r
r r

m
  

It is not obvious how to set about solving this equation. In any case, 
it would give us r as a function of time, which is not what we want to 
determine the shape of the orbit: we need r as a function of . So let 
us first transform the derivatives with respect to time to derivatives 
with respect to . We have

2
dr dr d r h
dt d dt r

q
q 




where dr
r dq   , and

2 2

2 2 2 3 2
2

–
d r d r h d r h r h h

d dtdt r r r r
q

q
           

so finally

 

2

2 3 2
2 1

– – –
r r

rr r h
m 


 (7.22)
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This is no easier to solve directly. However, the presence of 2r'  sug-
gests we try the substitution  u = 1/r: then

2–
r

u
r

 


and

2

2 3
2

– .
r r

u
r r
 

 

Thus, substituting for r  and r  in terms of u  and u  in (7.22), we 
arrive at the simple linear oscillator form:

2 .u u
h
m

 

The fact that uμ/h2 satisfies a harmonic oscillator equation tells us 
that the orbits are all periodic. The shape of the orbit is given by

2 cos ,u k
h
m q 

where k is a constant determined by the initial conditions (the value 
of u at  = 0). It is more convenient to write this as 

 
1

(1 cos )u e
l

q 
 

(7.23)

where l = h2/µ  and e ≤ 1 is some constant (unrelated to the base of 
natural logarithms) called the eccentricity of the orbit.

If we plot this curve we find that it is some sort of oval: in fact 
it is an ellipse. The approach to proving this depends on how we 
define an ellipse. Below and in the end-of-chapter exercises we give 
a couple of relations between (19.3) and more usual definitions of 
an ellipse. 
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Figure 7.9: If r1 + r2 = constant the point P traces out an ellipse. F1 and F2 are the two foci of 
the ellipse

Consider first figure (7.21). There are two ways we can describe 
the figure by placing the central mass at either of the two focal points. 
Thus, according to (7.23) the figure is equivalently described by:

1(1 cos )r e lq 

and 

2(1 cos ) .r e la 

But also, by simple trigonometry, the separation of the two foci is 
given by

1 2cos cos constant 2 ,r rq a l  

say. Thus

 1 2 1 22 ( cos cos ) 2 2 constant.r r l e r r l eq a l        (7.24)

The constancy of the “length of string” between pegs at the two foci 
as the figure is traced out is one definition of an ellipse. 

Note that the gravitating central body is at one focus, not at the 
geometric center. 
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7.20 PROPERTIES OF THE ELLIPSE

We can deduce certain properties of the orbit form the Equation 
(20.2). When  = /2 we have r =l. This radius vector from the focus 
to the ellipse perpendicular to its major axis is called the semi-latus 
rectum. 

When  =0, r = l/(1 e) and when  = , r = l/(1 + e), so the major 
axis, length 2a by definition, is

2
2

2 1 1 1
l l l

a e e e
    

or

  21 .l a e 
 

(7.25)

Considering the picture with  = , r = l/(1 + e), we now have 

 1
l

a aeel     
(7.26)

so, from (7.24)

 
2

1 2 2 2 2 .r r l e a a     (7.27)

If we now consider the triangle in Figure 7.10, by symmetry and 
using (7.24), (7.26) and (7.27)

  2
1 2

1
.2r r r l e a a    

Thus

 2 2 2 2 2 2 2 21b r a a e a el     

and
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  
1

2 21 .b a e   (7.28)

This illustrates a very important point about planetary orbits. The 
largest value of e for solar system planets is about 0.1 for Mars. Thus, 
from (7.28), the difference in the lengths of the major and minor 
axes of the orbit of Mars is about 1 per cent. To all intents and pur-
poses sketches of planetary orbits in the Solar System should look 
like circles. 

Figure 7.10: Parameters of the ellipse

This small departure form a circle is a consequence of the differ-
ence between the axes being of order e2, the ellipticity of the ellipse. 
On the other hand the displacement of the foci from the center is 
of order e, the eccentricity of the ellipse. The closest and furthest 
approaches of a planet to the Sun situated at one focus are signifi-
cantly different.  

The usual Cartesian form of the ellipse is given by 

22

2 2 1
yx

a b
 

where the origin is at the center of the ellipse, not at a focus.  It is a 
challenge to derive this from our definition; for the interested reader 
some hints are given in one of the end-of-chapter questions. 

Finally in this section, we summarize the connection between 
the geometrical parameters of the ellipse and the physical param-
eters. Physically the ellipse is defined by the angular momentum 
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per unit mass h2 and the energy per unit mass ϵ = −GM/2a. To 
derive the expression for energy consider the orbiting body at the 
position of periastron (closest approach to the parent star), r = a(1 
+ e),  = 0. Then 

because the motion is orthogonal to the radius vector at this point. 
But

 22 21a e hw  

Substituting for  and using 2h GMl  together with (7.25) gives 
(after some algebra) 

Since the energy is constant we have also the so-called vis-viva 
(“energy of motion”) equation

21
.2 2

GM GM
v r a  

Geometrically the ellipse is defined by the semi-latus rectum l and 
the eccentricity e with

So, given the geometry of the orbit we can work out the energy 
and angular momentum per unit mass, and given the energy and 
angular momentum of the orbit we can work out the shape of the 
ellipse. 
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7.21 KEPLER’S  LAWS 

Prior to Newton’s solution for the shape of an orbit under an 
inverse square law attractive force, Kepler had determined the 
properties of the orbit of the planet Mars through careful observa-
tion. He summarized his results in three laws: 

1.  The orbit is an ellipse with the Sun at one focus
2.  The radius vector from the Sun to the planet sweeps out equal 

areas in equal times
3.  The square of the orbital period is proportional to the cube of 

the semi-major axis

 The third law relates, of course, not just to Mars but to the plan-
etary system as a whole and to the moons of the giant planets. 

We have just seen how to derive the first law (Section 7.19) if the 
central body is much more massive than the planet. For the second 
law consider a circular orbit of radius r. The area of the circle swept 
out per unit time is the area of a triangle of base r and height r so  

21
.2A rw  But 2 constantr hw    and since r is constant so is .A  

This is Kepler’s second law for a cicular orbit. We have seen how to 
derive the third law for circular orbits in Section 7.16 (Equation 7.19).

The third law has to be modified to take account of the fact that 
the central body is not stationary but that two bodies orbit about 
their common center of mass. Let us calculate this effect.  

The equations of motion for the two bodies with position vectors 
R1 and R2 are

 
1 2

11 1 2–
Gm m

m
R


R R

 
(7.29)

and 

1 2
22 2 2–

Gm m
m 

R R
R
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where R = R1 + R2. Adding the equations tells us that the accelera-
tion R  is in the direction of R and hence that the bodies lie on oppo-
site ends of a diameter. Putting 

1 2
1

2

m m
m


R R

in (7.29) gives

  11 2
1 2

1
.

G m m
R






 RR

Thus Kepler’s third law becomes

 

2
2 34

.T R
G M m

p




7.22  DERIVATION OF KEPLER’S LAWS  FOR 
ELLIPTICAL ORBITS

For the general case of elliptical orbits Kepler’s laws can be 
derived from the Newtonian equations of motion in Section 7.19. We 
shall restrict our discussion to orbits about a fixed central mass. We 
have already seen that the first law is satisfied. The conservation of 
angular momentum (7.21) is equivalent to the second law just as in the 
case of circular orbits discussed in Section 7.21. For the third law we 
start from an expression for the angular speed from (7.21) and (7.22):

  
(7.30)

Using 
2h

l m  we have  
3 1

2 2 2/ /h l l GM  so (7.30) gives 
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Thus the period, T, is given by

which is Kepler’s third law. 

7.23  EXTENDED BODIES: MULTIPOLE 
EXPANSION

We have seen that the gravity of a uniform spherical body is 
equivalent to a point mass at its center. For more complicated con-
figurations of mass we have to sum (or integrate) over the mass dis-
tribution to obtain the gravitational field. In these cases it is easier 
to obtain the gravitational potential first (because it is a scalar) and 
then differentiate to find the magnitude and direction of the force.  

Consider first two equal masses, m, separated by a distance d 
(Figure 7.11). The gravitational potential at r, denoted here by f(r), is

 
1 2

– –
Gm Gm

r r r

– – .
–2 2

Gm Gm



d dr r

Figure 7.11: A gravitational quadrupole
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If we look at this field far from the masses, so r >> d, we can expand 
the denominators:

2 1
2 2

1 1

( cos )2 4
d

r rd q


  
dr

2 2
2

2 3 3
1 3

cos – cos .82 8
d d d

r r r r
q q º   

Thus, to lowest non-zero order in d:

2
2

3
2

– – (3cos – 1).
4

Gm Gmd
r r

q

We call this a gravitational quadrupole. There is an obvious possibil-
ity of extension to various octopoles (put two quadrupoles together 
in various ways) and higher moments. What would have been the 
lowest order dipole term, linear in 2/d r  , has cancelled because we 
have taken the center of mass as the origin of coordinates.  

For a continuous mass distribution we have

 

 
– ,

G r
dV

r
 



 r r


 

(7.31)

which can also be expanded in multipole moments if r r  . The 
first two terms are:

2
3 (3cos 1) ,

GM Q
r r

q º    

where again we have assumed that the origin of coordinates in the 
center of mass to remove the dipole ( 21 / )r  term. Higher order 
terms involve increasingly negative powers of r multiplied by 
various polynomial functions of  called Legendre polynomials, 
Pn(), the expressions for which can be obtained from published 
tables.   
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7.24 THE POISSON EQUATION

From (7.31) we can derive a differential equation that must be 
satisfied by the Newtonian gravitational potential:

 
2 4 G— p r   (7.32)

where, 2 .— ∫ — —   (or div(grad f)) and is, in Cartesian coordinates,

2 2 2
2

2 2 2 .
x y z

∂ ∂ ∂—
∂ ∂ ∂

  
  

This is called Poisson’s equation. 

For the interested reader, we can derive (7.32) from (7.31) as 
follows. Surround the point r = r′ by a small sphere of radius ϵ and 
unit normal n, so r  r′ = ϵ n. Surround the whole system by a large 
sphere outside the matter distribution. Then we have

   

 

2 – . .

. ,
S

r r
G dV G dV

r
G dS

r r— —

r—

 
     

  




 


r r r r

nr r



ò

  

where the last step follows from the divergence theorem, neglecting 
the contribution from the large distant sphere. The remaining inte-
gral is over the small sphere surrounding the point r  r′. Since ρ is 
approximately constant in a small enough region we can take it out 
of the integral and the expression becomes 

since — (1/ϵ) =  (1/ϵ2)n.
We can now summarize Newtonian gravity in two equations:

1.  Poisson’s  equation for the gravitational potential and 

2.  the appropriate form of Newton’s second law for a 
gravitational force:
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2

2 – .
d
dt

 
r 

 
(7.33)

Notice that the mass of the moving body does not appear in (7.33). 

7.25  MOTION INSIDE MATTER: FALLING 
THROUGH THE EARTH

We can use Poisson’s equation to determine the gravitational 
field inside a matter distribution, for example, in the interior of the 
Earth. 

For a spherical system (where f depends only on the radial coor-
dinate r) Poisson’s Equation (7.32) can be shown to take the form

 

2
2

1
4 .

d d
r Gdr drr

p r     
 

(7.34)

To integrate this let us take  to be constant. We now want the 
potential to vanish at 0r   not at r •  so we integrate from r to 0. 
Integrating (7.34) then gives 

 
22

.3 r Gp r
 

(7.35)

We could also obtain this result directly by assuming that the mate-
rial external to radius r makes no contribution to the gravitational 
force at r. Then 

 
2

d GM r
F dr r
   



where  M r  is the mass within a radius r. Setting   34
3M r rp r  

and integrating gives us (7.35). 

Thus, a body falling though a radial shaft through the Earth sat-
isfies
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2

2
4

.3
d r d

Grdrdt
p r   



This is the equation for simple harmonic motion.  We can use it to 
estimate the free-fall time through the Earth which is not a very 
practical exercise but an amusing piece of useless information. It 
is however instructive to try to guess the result before doing the 
calculation. 

Estimating r  as R/T2 on dimensional grounds as usual, and tak-
ing 5500 kg m−3 for the density of the Earth, we have

1
– 24

814s3T G
p r 

  ~ ~

which is, perhaps surprisingly, independent of the radius of the 
Earth! Why is this? 

The answer is that the period of simple harmonic motion is inde-
pendent of amplitude! On a larger planet a body would have further 
to fall, but, if  is the same, the acceleration would be greater, and 
so would the speed over much of the fall. This compensates for the 
larger distance. So this turns out to be an interesting example of a 
case of exact simple harmonic motion for large amplitudes.  Perhaps 
equally surprising is the fact that the time is the same if we dig the 
shaft radially or along a chord. (See the end-of-chapter exercises.) 

7.26 TIDAL FORCES

Figure 7.12: Tides raised on the Earth by the Moon
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The force of the Moon on the Earth is greater on the side nearer 
the Moon than on the opposite side. On a spherical Earth this dif-
ferential force would affect sea level on both the side of the Earth 
facing the Moon and the side facing away, giving rise to two tides a 
day as the Earth spins underneath the bulges in the ocean. In prac-
tice tides are affected by local geography, so two tides every 12 hours 
is a very rough approximation. 

To see the effect consider the difference in gravitational accel-
eration at the Earth’s center and at its surface due to the Moon, 
directly below the Moon:

 2 2–
– E

Gm Gm
g

DD r
 

3
2

– EG mr
D

~

where we have used the fact that Er D  to expand the denomina-
tor by the binomial theorem and to neglect terms of order  2/Er D  
and higher. Similarly on the far side we have

 2 2 3
2

.E

E

Gm Gm Gmr
g

D DD r
   


~

In both cases, gravity is weakened by the presence of the Moon. Put-
ting in values gives 7g 10 g. ~

Example: We can estimate the height, h, of the tides by looking 
at the change in radius of the Earth that would give this change in 
gravitational acceleration. We have

 2
E

GM
g g

r h
 



or, approximately,

2 3
E E

GM GMh
g g

r r
   
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and hence

0.6m.E
g

h r g


 ~

This simplified theory ignores the motion of the center of gravity 
of the Earth due to the Moon which causes the Earth to oscillate 
around its mean orbit. Since the seas are free to flow they do not fol-
low the oscillation in step which adds to the tidal amplitude. Actual 
tides also vary greatly round this value as a result of local geography. 

7.27 SOLUTION OF THE PROBLEM: ROCHE LIMIT

We are now in a position to solve the original problem of the 
break-up of a star by a black hole. In fact, there is nothing special 
about a black hole as far as its gravity is concerned. The external 
gravitational field of a non-rotating hole is the same as that of a nor-
mal spherical body of the same mass, so the discussion would be the 
same for, say, a moon orbiting a planet. 

A star will break up if the tidal forces on it exceed its own gravity. 
In the notation of Section 7.26 break-up occurs if 

  .g g ~

Thus, the condition for a star of radius R approaching at a distance 
D is

3 2
2GMR Gm

D R
~

or
1
32M

D R m
    

is the distance of closest approach. This is called the Roche limit. For 
a black hole and a star we can scale this in terms of the Sun:
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1
387 10 2 m.

R M M
D R M m¥           



 

So for a star like the Sun approaching a black hole in the center of a 
galaxy, with typically a mass of 810 M  and a radius of 3 × 1011 m, the 
distance of closest approach is around 4 × 1011 m or a few times the 
distance between the Earth and Sun. 

7.28 WHAT IS GRAVITY?

Finally we turn to a common problem at this point that occurs 
to students which is: what exactly is gravity? Students are in good 
company – the problem also occurred to Newton’s contemporaries. 
What they wanted was a mechanical picture of how the Sun could 
affect the distant planets. Newton’s answer was, in effect, that we 
could not say anything more about gravity than how it acted. 

This is a key moment in the development of science. The fact 
is that only observation and experiment tells us what exists in the 
world, not our common sense notions or everyday experience. Grav-
ity is not reducible to 

Figure 7.13: The rubber sheet analogy for the effect of a massive body (here the Earth) on 
the geometry of the space-time around it. http://upload.wikimedia.org/wikipedia/commons/2/22/

Spacetime_curvature.png
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anything else, mechanical or otherwise, but is a separate component 
of the world. Since Newton’s time we have discovered other forces 
that constitute these fundamental components, such as electricity 
and magnetism, which,despite a century of effort before Maxwell, 
were also found not to be reducible to local mechanical interactions.

On the other hand, we may learn more about how to describe 
gravity and these other forces. In Einstein’s general theory of rela-
tivity, gravity arises from the geometry of spacetime as illustrated 
by the well-known rubber sheet analogy in Figure 7.13: the shape 
of space created by the Sun in its vicinity is what accounts for the 
inverse square law and keeps the planets their orbits.

Einstein’s general theory of relativity has two parts: one, a theory 
of gravity and, two, the special theory of relativity. The first part, the 
theory of gravity, is still a theory of curved space and time even if 
we do not include special relativity to take account of strong gravi-
tational fields and near light speeds. From this point of view (due to 
Cartan in 1922) Newtonian gravity is also a theory of the structure of 
space-time. Let us see briefly how this works. 

The key is the principle of equivalence which is the main physi-
cal input into the theory. This tells us (in essence) that by performing 
experiments of restricted precision in a restricted region of space we 
cannot distinguish between a situation in which we are observers at 
rest in a gravitational field and one in which we are observers in a 
laboratory (a spaceship, for example) undergoing constant accelera-
tion in the absence of gravity. From the first point of view all bodies 
(subject to no non-gravitational forces) fall with equal acceleration. 
One can express this by saying that the passive gravitational mass of 
a body mP (the mass of a body that determines its response to a gravi-
tational field) and its inertial mass m are equal: Pma m g  implies 
a g  , independent of m, if m = mP. From the second point of view 
of a uniformly accelerated system, all bodies subject to no forces are 
seen to fall with the acceleration of the observer. 

This has significant implications for Newtonian mechanics. It 
means that, once we admit the existence of gravity, we cannot iden-
tify the local inertial frames by any local experiments. This follows 
from what we have just said in the paragraph above, where we could 
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not distinguish between an accelerated (i.e. non-inertial) frame 
and on at rest (hence supposedly inertial). You might argue that we 
should just look out of the window and check whether the stars are 
at rest. But there is no causal connection between the stars and the 
local experiments: the falling bodies should not care whether the 
stars are rushing round or not. So a proper theory of gravity will not 
care whether we use inertial frames or not.

To obtain a theory of gravity we now look at the same facts from 
a different viewpoint. The equivalence principle tells us equally that 
if we fall freely in a gravitational field we cannot detect the effects 
of gravity by any local experiment. (All bodies will be weightless.) 
Thus we know what physics in a gravitational field looks like from 
the point of view of a local freely falling observer: it looks exactly 
like physics without gravity! However, it is very inconvenient to 
keep hopping between local frames to do physics. (There is not 
really any technique for doing this.) We have to refer back to some 
global frame (it doesn’t matter which). So to obtain our Newtonian 
theory of gravity we simply transform from the local frame (where 
we know the physics) to the global reference frame (where we can 
do calculations). For the locally freely falling observer, the equation 
of motion of a body with coordinate , subject to no non-gravita-
tional forces, is  

 

2

2 0.
d
dt

x


 
(7.36)

For simplicity we shall stick to motion in one dimension. We trans-
form this equation to a general global frame of reference,   .x x x  
We have

 

dx dx d
dt d dt

x
x

 (7.37)

and

 

2 2 22 2 2 2

2 2 2 2
d x d x d dx d d x d dx

dt d dx dtdt d dt d
x x x

xx x
                   

(7.38)
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using (7.36) and (7.37) to obtain the final expression. Thus, rear-
ranging (7.38), the equation of motion in the general x-frame can 
be written

 
 

22

2 0
d x dx

x dtdt
       

(7.39)

where

 
2 2

2 .
x

x x
∂x ∂
∂ ∂x

      

Equation (7.39) is the equation of motion of a body in a gravitational 
field in Newtonian physics, but now expressed in terms of a quantity,  
, (called an affine connection). The affine connection is a property 
of spacetime because (although we cannot show it here) it allows 
us to identify vectors that are parallel to each other in an arbitrary 
curvilinear coordinate system (in which case they will not have coor-
dinates that are proportional).  Even in Newtonian theory, therefore, 
taking account of the equivalence principle, gravity appears, not as 
an additional force on the right of the equation of motion, but as a 
property of space-time on the left. We do not need to specify the 
infinity of local freely falling frames; nor do we have to specify the 
inertial frames by some sleight of hand. Rather we give  in any con-
venient frame and use (28.4) (or its generalization to 3 dimensions) 
to predict the path of a particle. 

The second part of the problem is to relate  to the distribu-
tion of matter, since this is what determines the effect of gravity. To 
recover Newtonian physics we impose

in one space dimension ,
d
dx∫      


where  is a solution of Poisson’s equation. In fact, 2  turns out 
to be the curvature of Newtonian space-time, so the Poisson equa-
tion relates the curvature of space-time to the distribution of matter, 
analogously to the relation in general relativity. On the other hand, 
a major difference between Newtonian theory and relativity is that 
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the curvature in Newtonian physics does not affect the behavior of 
rods and clocks.  

7.29 CHAPTER SUMMARY

●  Angular speed ω and linear speed v a related by v rw  or 
in vector form v r   

●  The period of a circular orbit at constant angular speed ω is 
T = 2 /ω 

●  The angular acceleration of a body moving in a circle of 
radius r is 2 2 /r v rw   towards the center

●  In general the radial and tangential components of accelera-

tion are  2 ,ra r rw   

 21
2

d
a r r rr dtq w w w  

●  Angular momentum is defined by m h r v  

●  For an observer in a rotating frame of reference −mωωr 
is called the centrifugal force and −2mωv, is called the 
Coriolis force

●  Newton’s law of gravitation gives the force between two 
particles of masses M1 and M2 separated by a distance r as 

1 2
2

M M
F G

r
  where G = 6.67 × 10−11 N kg−2m2 is Newton’s 

constant

●  The gravitational potential of a mass distribution is

  – ;
–

r G dV
r r

r
 



●  The gravitational potential of a point mass is 

2 – .
r GM GM

dr rr
 
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●  Newton’s law for a circular orbit is 2
2

GMm
mr

r
w  

●  The orbit of a body under an inverse square law of force is 

an ellipse given by 1 1
(1 cos )er l

q   

●  The Poisson equation for the gravitational potential of a 
distribution of matter, density  is 2 – 4 Gp r   

7.30 EXERCISES

1.  Tidal power extracts energy from the rotation of the Earth 
through its interaction with the Moon. In the process the 
potential energy of the Earth-Moon system is lost as the Moon 
escapes into space. It is interesting therefore to calculate the 
energy in the Earth-Moon system. Show that this is about 5% of 
the Earth’s rotational energy.   

2.  The Sun is losing mass constantly via the conversion of nuclear 
fuel and a solar wind. How does the loss of mass affect the orbit 
of the Earth?  What impact does this have on climate change?

3.  Show that the orbit of a body under an inverse cube law of force 
is a logarithmic spiral. 

4.  In the text we considered bound orbits. If the total energy 
of a two-body system is positive, show that the orbit of a test 
body (i.e. one with a mass much less than that of the central 
body) will be hyperbolic. Show further that the orbit will be 
hyperbolic also if the inverse square law of force were repulsive. 
(This meant that Rutherford’s experiments on scattering alpha 
particles from nuclei did not allow him to distinguish whether 
the particles had like or unlike charges.) 

5.  Estimate the length of the seasons on Mars assuming they are 
defined by dividing the angle  from the Sun to Mars into four 
quadrants of 90o.





CHAPTER 8
OSCILLATIONS

Question: How can a pendulum stabilize a building in high 
winds?

The Tour Sans Fins (“Tower Without Ends”) was a tower 
planned in La Defénse in Paris that has since been cancelled. The 
spelling Tour Sans Fins (rather than the apparently correct French 
fin) comes from the idea that this tower had no ends, even if one 
were to look up or down at it, hence “ends” and not “end”. The Tour 
Sans Fins was meant to be 400m tall and would have been the tall-
est skyscraper in Europe. It would have used a large pendulum to 
damp any oscillations induced by high winds. Why would high winds 
induce oscillations? How can a coupled pendulum damp them? 

8.1  RESONANCE

Consider a simple harmonic oscillator, natural frequency 0, 
subject to a periodic force with angular frequency . The equation 
of motion of the oscillator is

 

2
2
02 cos .

d x
x f t

dt
w w 

 
(8.1)

Let us look for a solution of the form  cos .x A tw   Substituting 
into (8.1) we get
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2 2
0– A A fw w 

and therefore 

 
2 2
0

cos( ).
–
f

x tw
w w

 
 

(8.2)

If we adjust the value of  towards 0w  , by altering the frequency 
of the forcing term, we see that the amplitude becomes increasingly 
large. This is the phenomenon of resonance. 

A simple example is a child’s swing. A swing has a natural fre-
quency with which, once started, it will rock to and fro. Giving the 
swing a push in synchrony with its natural frequency increases the 
amplitude. In fact, also any multiple of the period will amplify the 
motion. Eventually the swing goes over the top, in which case it will 
not behave as a swing – because the rope will slacken. More usually, 
at some stage, the resistance to motion increases and further push-
ing just compensates for this, so there is no further increase in the 
amplitude. On the other hand, pushing at random, or out of step, 
will sometimes decelerate the swing, sometimes accelerate it, with 
the result that there is only a small overall effect.

There are many examples of resonance on bridges as a result of 
people marching in step across them with a step that is some mul-
tiple of a natural frequency of oscillation of the bridge structure. A 
well-publicized example was the Millennium bridge over the river 
Thames which turned out to have sideways modes of oscillation that 
were excited by the swaying motion of walking. The movement of 
the bridge was such as to cause the pedestrians to sway in step creat-
ing a positive feedback effect. 

Not all bridge structures have noticeable resonant frequencies 
because their motion is heavily damped: the energy is redistributed 
before it can build up in one mode of oscillation. If this is not the 
case a pronounced resonance can end up with the bridge collapsing. 

Less obvious examples of resonance can be found in planetary 
systems. Rather than perturbing each other’s motion and randomis-
ing it, which is the more usual situation, the periods of the three 
inner Galilean Moons of Jupiter (Io, Europa, and Ganymede) are 
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in simple ratios (1:2:4). Their gravitational influence on each other 
then holds them in stable orbits.

Two metronomes on a common platform provide a demonstra-
tion of the way in which energy is shared between resonant modes of 
oscillation. The metronomes are initially out of step, so the net force 
on the supporting structure is zero. But any small component that is 
in step gets enhanced and amplified until the two metronomes get 
locked in synchrony. In other words energy is gradually fed into the 
platform at the resonant frequency of the whole system which grad-
ually feeds back to the metronomes to bring them into resonance. 
We shall treat this situation more fully in Section 8.10. 

Example: A swing, natural period T, is launched with an angu-

lar speed   ( > 0,  2
)T

p
  at an angle 0 ( 0 0).q   How high does 

it rise on the return? If the swing is in addition subject to a force 
cosf tw  , with  close to 0, what is its amplitude? 

Figure 8.1: In the example the angle of the swing is measured counterclockwise from the vertical 

Assuming that the swing is a simple harmonic oscillator the equation 
of motion for the angle  with the vertical is

2
0 0q w q 

where 0 2 / Tw p  . The solution is

2
cos ,A tT

pq     

where A and  are constants (Chapter 5). At 0t   we are given 
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 0 cosAq   (8.3)

and 

 0

2
sin .

t

d A
dt T

q pw


      


 
(8.4)

Thus 

 0
tan 2

Tw
pq

 (8.5)

and 

 

2 2
2
02 .

4
T

A
w q

p
 

 
(8.6)

The maximum height on the return is  = A, obtained when 
2

2tT
p p   , (at which point 0q  ). Thus the maximum angle is 

obtained from (8.6) and, from (8.5), occurs first at time 

–1

0
– tan .2 2

T T
t T

w
p pq

We should check that this is reasonable: we expect the maximum 
angle to be reached somewhat before a full period, which is what 
we have.

If the swing is also subject to a force cosf tw  then

  0 2 2
0

cos cos
f

A t tq w w
w w

  


  (8.7)

as can be verified by back-substitution. (For readers familiar with 
the solution of differential equations this is the sum of the comple-
mentary function and a particular integral,) At 0t   we have

 0 2 2
0

cos
f

Aq f
w w

 
  (8.8)
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and

 0– – sin .Aw w   (8.9)

Comparing (8.8) with (8.3) and (8.9) with (8.4), we see that the 
solutions (8.5) and (8.6) are still valid provided we replace q0 by 

 2 2
0 0– / –fq w w  . The maximum height is obtained when 0q  , 

or when t satisfies

 
 0 2 2

0
sin sin 0.

f
A t tw f w

w w
  

  
(8.10)

We cannot solve this analytically in general for t, but if  is suf-
ficiently close to 0 the forcing term will dominate over the initial 
set-up. Thus, to a first approximation, we ignore the first term in 
Equation (8.10) and obtain 

1
2

t t
p

w 

for the first approximation, t1, to the time at which the amplitude 
is a maximum. Rather than trying to get a better approximation for 
the time at maximum, it is more instructive to see that we do not 
need this in order to get the correction to the amplitude. Putting 

1 / 2 / /t t d w p w d w     in (8.7), expanding the cosine terms in 
the small quantity /d w  , and remembering that A, like , has been 
assumed to be a quantity of first order smallness, we have

 0 0
2 2
0

cos(2 ) cos 2 2
–max
f

A
w wq p d p pdw w w w

        

0
2 2
0

cos 2
f

A
wp w w w

         


and  does not appear. The reason is that the value of a function 
near its maximum (or minimum) is very insensitive to the value of 
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its argument by virtue of the fact that it is evaluated at a stationary 
point. This is the converse of the situation we met earlier.

For completeness, we could get a better approximation to the 
time at maximum displacement by putting 1 /t t d w   in (8.10) 
with  small, expanding the sin functions and retaining only first 
order terms. With some algebra this gives 

 2 2
0 0

1 sin 2 .
A

t t f
w w wd p w

       

8.2 DAMPING

Clearly Equation 8.2 cannot hold if the driving frequency  is 
arbitrarily close to the natural frequency 0 because the amplitude 
cannot in practice become arbitrarily large. Either the simple har-
monic approximation breaks down for large amplitudes, or we cannot 
neglect the dissipation of energy in some form. Here we explore this 
latter alternative. Rather than try to formulate a realistic mechanical 
model of dissipation, we construct a simple mathematical model. 

A suitable model might be the exponential decay of the displace-
ment. In that case we should have

– .rtx Ae

Now we want an equation for our oscillator that involves the unknown 
displacement x, not an explicit function of time, so consider

–– –rtdx
rAe rxdt  

and
2

2 – .
d x dx

r dtdt

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For pure exponential decay the acceleration depends on the velocity, 
/dx dt  . This suggests that to incorporate damping we modify the 

harmonic oscillator equation by adding a term linear in the velocity. 
The equation of motion of the driven damped harmonic oscillator 
becomes

 
2

2
02 cos .

d x dx
r x f tdtdt

w w    (8.11)

We have not shown that any realistic physical system obeys this 
equation, but, conveniently, linear damping of this form is tractable 
mathematically. Note how, if we reverse the sign of the time, –t t  , 
the equation for the simple harmonic oscillator (8.1), without the 
damping term, is unchanged: we say it is time symmetric. But the 
damping term in Equation (8.11) changes sign, so the solution of 
the modified equation will be quite different. Damping, as the name 
implies, has a direction in time. 

Consider first the case with no driving force, f = 0. 

 
2

2
02 0.

d x dx
r xdtdt

w    (8.12)

We shall go straight to the solution of the equation of motion to get 
the time dependence of the displacement for an oscillator undergo-
ing damped harmonic motion. You can check the solution:

  – 2
0 cos

rt

x x e pt   (8.13)

where 

 

1
2 2

2
0 2

r
p w

        
 (8.14)

by substitution of (8.13) back into Equation (8.12). Here p is the 
angular frequency of oscillation (in radians per unit time). Notice 
that the coupling to the external resistive medium alters the natu-
ral frequency and period: the new frequency p is not exactly the 
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natural frequency 0, although if the damping is not too great they 
will be close. 

The quantity  is an arbitrary phase. This is fixed by how the 
oscillator is started off and not by the equation of motion. For exam-
ple, a pendulum might be struck at its lowest point or dropped from 
an extremity. If we start the oscillator at t = 0 from x = 0 then we 
should have to put  = /2 (since cos /2 = 0). The amplitude, x0 in 
(8.12), is also determined by the starting conditions, for example, 
how hard the pendulum is struck. 

Notice that the exact exponential decay of the amplitude x to 1/e 
of its original value takes place over a timescale of 2/r, not 1/r as one 
might have expected from the approximate way we set up the model. 
Because the solution eventually decays to zero, it represents a tran-
sient phenomenon – as one might expect for a dissipative process 
with no driving force. 

Example: A simple pendulum of mass m, length l, is set in 
motion from a small displacement  = 0 with a linear speed v such 
that the small angle approximation holds at all times. If the damping 
force is mrd /dt. What is the condition for the pendulum to come 
to rest after less than one cycle? 

We expect the motion to be damped in less than a cycle is the 
damping time 1/r is less than the period,  2 /l gp  .

The equation of motion for the angle of swing is the damped 
harmonic equation

2
2
02 0

d d
r dtdt

q q w q  

with 0 / .g lw   The general solution is

 0 cosrtx e ptq  

where 

 

1
2 2

2
0 2

r
p w

          
(8.15)
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Initially, at t = 0, we have  = 0, so 

0 0 cosxq  

Also initially, d /dt = v/l so

 
1

2 2 2
0 0 0 0 0– cos – sin – – – / .x r x p r x p v lq q  

from which we can find 0x  . The solution is 

 
2 1

–2 0 2
0[ – ] cosrtr v

e ptp lp
qq q      



with p given by 8.14. It will damp in less than a cycle if

2
p

r p

or, substituting for p from (8.15) and solving for r,

0
4

.5r w

This says that the damping rate exceeds the oscillator frequency, or 
the damping timescale is less than a period, as we expected. (Of 
course, since the decay is exponential, mathematically the pendulum 
never comes to rest, but the amplitude of oscillation will be small 
compared to the initial displacement after the specified time, here 
half a cycle.) We refer to this case as critical damping (if the decay 
timescale is exactly a period) or overdamping, if it is less.
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8.3 QUALITY FACTOR 

The amplitude of a damped harmonic oscillator, with damp-
ing coefficient r, falls by a factor 1/e in a time 2/r. What about the 
energy? The energy of a simple harmonic oscillator is

   

2 2 2
0

2 2 2 2 2 2
0 0 0 0 0 0

2 2
0 0

1 1
2 2
1 1

sin cos2 2
1

.2

E mx m x

mx t m x t

mx

w

w w w w

w

 

   





 

So the energy is proportional to the square of the amplitude. For 
a damped oscillator the expression is more complicated, but, if the 
damping is small, the differences are inconsequential, and in any 
case the energy is still proportional to the square of the amplitude. 

Thus, the time for the energy of an oscillator to decay by a factor 
of 1/e is 1/r.

Figure 8.2: Damped harmonic motion with a moderate Q-factor: the amplitude decays ap-
preciably in about 3 periods. 

It is sometimes useful to express the decay time in terms of the 
period of oscillation: this is the Q-value or quality factor of the oscil-
lator, which measures the time (in radians) for the energy to decay 
by a factor 1/e:
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0Q r
w



For a bell we want a high Q (low dissipation), for the Tour Sans Fins, 
we would want a low Q (heavy damping). 

8.4 FORCED OSCILLATIONS

Let us return to Equation (8.11) including the forcing term:

 

2
2
02 cos .

d x dx
r x f tdtdt

w w  
 

(8.16)

The solution consists of two contributions: one that corresponds 
to the free motion of the unforced oscillator and one that arises in 
response to the forcing term. Because the equation is linear in x we 
add these solutions to obtain the general solution. However, we saw 
in the example in Section 8.2 that, without the forcing term, the 
displacement dies out in a time 1/r. We refer to this part of the solu-
tion as transients. The transients will be the same as for the unforced 
oscillator and will die out in a time 1/r. Thus, on longer timescales 
we are justified in neglecting the terms in the solution that die out 
and in retaining only those that come from the forcing term. The 
time taken for the transients to die out is obviously just the time for 
the system to adjust to a steady state. So 1/r is also the timescale for 
the oscillator to build up the energy it absorbs from the forcing term 
to its steady value. 

The solution of (8.16) is

 

 

 
1

2 22 2 2 2
0

sin –

–

t
x f

r

w

w ww 


 
  



 
(8.17)

where 

 

2 2
0–

tan .r
w w

w
 (8.18)
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This can be verified by back-substitution of (8.17) in (8.16) using the 
identity

sin( – ) sin cos – cos sin .t t t    

We shall look at how to derive this solution in Section 8.8. Note that 
the solution (8.17) does not depend on the initial conditions, that is, 
on how we set the oscillator in motion at time 0.t   This memory 
has been lost with the decay of the transients.

There are two factors in (8.17) which we shall look at sepa-
rately. There is a factor multiplying amplitude f of the forcing term. 
There is also a phase lag ( + /2) between the driving term and the 
response. We shall look at each of these. (The fact that the phase lag 
is ( + /2) is obtained by writing    sin – cos – – / 2t t p    
and comparing this with the driving term, cos ωt ; the difference is  

/– ).)( 2p  

8.5 IMPEDANCE 

We rewrite the solution for our harmonically driven oscillator as

 sin
f

x tZ w 

where the impedance Z is defined as

 
 

1
2 22 2 2 2

0– .Z rw w w       
(8.19)

This has a minimum, and therefore the amplitude has a maximum 
where

2
2 2 2

020 2( – ) .
dZ

r
d

w w
w

  



Oscillations • 209

(Note that it is marginally easier to differentiate Z2 rather than Z 
and much easier to differentiate with respect to 2 than .) Thus, 
resonance occurs for 1

2 22
2
0 0

02 4
r rw w w w

 
     

where the final expression is valid for r << 0 i.e. for large Q. This 
is the normal situation: otherwise the system is heavily damped and 
the notion of resonance is somewhat meaningless. The resonant fre-
quency is shifted slightly away from the natural frequency 0 by the 
coupling to a resistive medium. In addition, the amplitude is now 
finite at resonance. 

The impedance defines the magnitude of the response of the 
oscillator in terms of the magnitude of the forcing term. In a simple 
purely resistive electrical circuit, the force would be the applied 
(alternating) voltage and the response would be the current. In this 
case the impedance would just be the resistance of the circuit. 

Note that the speed x  is given by

 cos .
f

x tZ
w w  

The maximum amplitude is now given by minimizing (Z/)2, which 
occurs for 0.   We call this velocity resonance. In the case of 
velocity resonance the driving frequency is equal to the natural fre-
quency. 

8.6 ENERGY AND PHASE

We have seen that the driving force and the response are in gen-
eral not in phase. To discuss further the role of phase we need first 
to consider the energy of the oscillator. 

Since the power delivered to the oscillator is the rate of doing 
work we want to calculate the average value of fv fx   over a period 

2
T

p
w  . The integral
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0

1
d

T
P xf tT  

 
 

2

0

1
cos – cos d

Tf
t t tZ T

w
w w  

 
(8.20)

gives us the power per unit mass (since f is the force per unit mass). 
Before we evaluate the integral let us see if we can get some idea of 
its important features from a picture. We want to know the result 
of integrating the product of two trigonometric functions. If these 
are /2 (or 3 /2) out of phase then over a period the product is as 
often negative as it is positive, so the average is zero. This occurs if 
the displacement and force are exactly in phase (because then the 
velocity and force are  /2 out of phase). If r = 0 then, from (8.18) 

/ 2p  , (depending on whether 2 is less than or greater than 
2
0w ) so the phase difference between the displacement and forcing 

term is  +  /2 = 0 or  and we get zero dissipation, which is what 
we should expect. 

Only if the phase difference between the force and the speed 
is different from /2 will there be dissipation. At the other extreme 
if the speed and force are in phase, corresponding to  = 0, there 
is a /2 phase difference between the oscillator amplitude and the 
driving force; then the power dissipated at resonance is 2

0 / 2 .f m r  
In other words dissipation is effected by introducing a phase lag 
between the oscillator displacement and the driving force. 

The mean power supplied over a period T can be expressed in 
terms of the impedance by performing the integration in (8.20). We 
get for the power per unit mass

2

0

1
(cos cos sin sin )cos  .

Tf
P t t t dtZ T

w w w w   

 

2

cos .2
f

Z
w

 
 

(8.21)

Note that in a steady state the power supplied must equal the power 
dissipated. 
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8.7 POWER CURVE

In Figure 8.3 we show the shape of the power delivered to the 
oscillator as a function of the driving frequency  from Equations 
(6.2) and (5.1) for Q = 2.2 and Q = 10. 

Let us look at its properties. The curve peaks at the resonant fre-
quency 0 (i.e. x = 1). As a measure of the width of the peak we use 
the width of the curve at half its height. To obtain this we proceed 
as follows. 

Up to a constant factor the curve is given by

  
2 2

22 2 2 2
0

cos .
–

r
P Z r

w w

w w w
 




 
(8.22)

Figure 8.3: Power curve for Q = 2.2 (left) and Q = 10 (right) plotted against /0 

At the resonant frequency,  = 0 the right hand side of (8.22) is just 
1. So the frequency  at half the height is given by 

 
2 2

22 2 2 2
0

1
2–

r

r

w

w w w




or
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2 2

0– .rw w w   (8.23)

Near  = 0 we have

    2 2
0 0 0 0 0– – 2 –w w w w w w w w w  

and so we can rewrite (8.23) as

 0 0 02 – ~ .rw w w w

It follows that  0
r

– 2w w w     and the width of the peak at half 
height is r. The curve shows that to drive the oscillator to a signifi-
cant amplitude requires a force with frequency within r/2 of 0.

Incidentally, we use the power curve to define the width 
because it is essentially symmetrical about the resonant frequency. 
(It cannot be exactly symmetrical because it goes to zero between 
 = 0 and  = 0 on one side and between 0 and infinity on the 
other. We could have plotted the amplitude or velocity, in which 
case the shape of the curve and the widths would have been some-
what different. 

Finally, we get the so-called bandwidth theorem by multiplying 
the resonance width by the decay (or rise) time: 

1
1.dt r rw    

This tells us that a lightly dissipative system (small ) takes a long 
time to build up energy to the steady state. This is reasonable because 
a lightly damped system can build up a large amplitude at resonance. 

Example: It is claimed that an opera singer can break a wine 
glass by singing a loud sustained note at the resonant frequency of 
the glass. Is this a reasonable claim? 

According to the Metropolitan Opera Guild an opera singer can 
sing with a sound intensity up to Ip= 125 dB, so let us take 100 dB as 
a ball-park figure at the glass. This is related to air pressure by 
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–5 –2202 10 10 2Nm .
pI

p    

This gives us the force per unit mass, pA/m, on a wineglass of area A, 
mass m. The power per unit mass is of order

2 22

22 2
p Af

P Z rm
w

 

since Z rw  at resonance (Equation 5.1). We can estimate r from 
the damping time: if, say  = 5 s then r = 1/ = 0.2 s1. The mass, 
excluding the base and stem (which do not resonate), is around 40g 
(say). This gives a power, mP, of around 0.25 W. The stored energy 
is mP  1.25 J. We have to see if this is enough to break the glass. It 
is equivalent to dropping the glass on to a hard surface from a height 
P /g ∼ 3 m which is easily sufficient to break a glass. 

8.8 COMPLEX EXPONENTIALS 

This section is a digression on the use of complex numbers which 
turns out to simplify greatly the solution of differential equations like 
that of the damped driven oscillator (linear equations with constant 
coefficients). The technique of using complex numbers comes down 
to the fact that cos sinie iq q q   and it is easier to manipulate expo-
nentials than the trigonometric functions themselves, which can 
always be recovered by taking real or imaginary parts. 

To see how this works consider the solution of the differential 
equation for the driven damped oscillator but now in the form:

 

2
2
02

i td z dz
r z fedtdt

ww  
 

(8.24)

where x = ℜ (z) (the real part of z) and f cos t = ℜ (f  i te w  ). We 
solve the complex Equation (8.24) and recover the physical solution 
by taking the real part at the end of the calculation. 

To solve (8.24) we take a trial solution
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i tz Ae w

and substitute into (8.24). This gives 

2 2
0

.
–

f
A

irw w w


 

We can separate A into real and imaginary parts by multiplying 

denominator and numerator by 2 2
0– – irw w w  (the complex con-

jugate of the denominator). This gives:

 
   

2 2
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2 22 2 2 2 2 2 2 2
0 0

–
– .

– –

f fr
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r r

w w w

w w w w w w


 

The real part of i tAe w  is

 

 
   

2 2
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2 22 2 2 2 2 2 2 2
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–
cos sin

– –

f fr
t t

r r

w w w
w w

w w w w w w


 
 

(8.25)

from which we can deduce the solution given in Equation (8.17) as 
follows. We rewrite (8.25) as

   
   

1 2 2–2 022 2 2 2
0 1 122 2 2 2 22 22 2 2 20 0

–
– – cos sin

[ – ] –
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w w w w w w
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               

   
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8.9 FOURIER ANALYSIS

Why does a tower sway in the wind and not just bend? The 
answer has something to do with the non- steady nature of the wind. 
Even if the wind is steady upstream, the building breaks up the flow. 
The building is therefore subject to a time-varying force. Does the 
building sway in time to the force? 

We have seen that an oscillator will respond with a large ampli-
tude motion to a periodic driving force only if we impose a force 
near its resonant frequency. The wind, of course, does not know the 
resonant frequency of the building, so why does it affect the build-
ing? The reason is that any general time-varying quantity can be bro-
ken down into a sum of harmonic (sine and cosine) oscillations of 
different frequencies. The wind exerts a force at all frequencies but 
with differing amplitudes. 

Figure 8.4: Successive approximations to a periodic square wave x = 1, 0 < x < π; x = − 1, 

π < x < 2π. Dotted line 
4

siny xp  ; dashed line 
4 1

(sin sin 3 )3y x xp   ; solid line 

4 1 1
(sin sin 3 sin 5 )3 5y x x xp  

 

Let us look at a particular example. Suppose, for the sake of 
argument, the force of the wind is periodic with a square wave 
form as shown in Figure (8.4). This is not realistic but it illus-
trates the point. The other curves in this figure illustrate how 
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the square wave form can be reconstructed by adding together a 
set of sine waves with appropriate amplitudes. For a continuous 
periodic signal, any desired accuracy can be achieved by taking 
the series to enough terms. (This is not quite true for a discon-
tinuous function such as the square wave shown: with a finite 
number of terms in the series there will always be small discrep-
ancies between the function and the series near the points of 
discontinuity.)

The square wave is just one example: any periodic waveform 
can be approximated as a sum of harmonic functions, a result that 
is known as Fourier’s theorem (and the series are called Fourier 
series). The theorem actually does more than this: it tells us how 
to calculate how much of each sine and cosine term to add, but 
we are not going to need this. In fact, Fourier’s theorem also 
applies to non-periodic waveforms, if we allow integrals over a 
continuous range of frequencies as well as sums over a discrete 
set. 

The non-steady wind is made up of harmonic oscillations of vari-
ous frequencies and amplitudes. We see now that the component of 
the wind at (or near) the natural frequency of the tower causes it to 
sway. 

8.10 COUPLED OSCILLATORS

Let us return to the Tour sans Fins. To control the swaying 
of the building in the wind, the architect proposed the following 
solution: a damped pendulum suspended from the top and run-
ning down a shaft in the middle of the building that would dissi-
pate all the wind energy absorbed by the building. How would it 
work? To find out we clearly need to extend our model oscillator 
to include two coupled oscillators, representing the building and 
the pendulum.
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Figure 8.5: The normal mode of oscillation of two equal masses connected by a spring. The 
quantities x1 and x2 are the displacements from equilibrium of the masses. We can think of 

the system as two oscillators joined together by joining two springs (with their 
accompanying masses). In the coupled system the masses oscillate with a common 

frequency with equal and opposite displacements. 

We can introduce a coupling between two oscillators by letting the 
force on one depend on the coordinates of the other in any way we 
please. A nicer model is to start from an energy equation. The case 
we shall deal with here is equivalent to using Hooke’s law for elastic 
bodies. The energy for this model is given by 

 
 22 2 2

1 2 1 2
1 1 1

.2 2 2E mx mx m x xw    
 

(8.26)

Differentiating with respect to t gives us Equation (10.2):

 
 

 

2
1 1 2 2 2 1 1 2

2
2 1 2

0 –

– – .

mx x m x x m x x x

m x x x

w

w

      

  (8.27)

The equations of motion for the two oscillators then follow if we col-
lect terms in 1 x  and 2x  . This gives us 

 
2 2

1 1 2x x xw w   (8.28)

 
2 2

2 2 1.x x xw w   (8.29)

These equations couple the two oscillators. To solve them we 
need to uncouple the equations. We can do this by adding and 
subtracting. 
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Adding (8.28) and (8.29) gives us 

1 2 0x x  

or 

1 2– ,x x

from which we see that the oscillators must move in opposite 
directions. This is just what we would expect from conservation of 
momentum: the total momentum is fixed at zero. 

Subtracting (8.29) from (8.28) gives us 

 2
1 2 1 2– – 2 –x x x xw 

which shows that the separation of the oscillators, 1 2–x x  , follows 
simple harmonic motion with frequency 2. This is the so-called 
normal mode of the system in which (by definition) each oscillator 
has the same frequency. We might call this a breathing mode. 

We now vary the scenario so that the coupling strength is an 
independent parameter. The energy for this model is

2 2 2 2 2 2
1 1 2 2 1 2

1 1 1 1
–2 2 2 2E mx m x mx m x gx xw w    

where g  is the coupling strength. The equations of motion are

2
1 1 2x x gxw 

2
2 2 1.x x gxw 

Adding and subtracting we get

   2
1 2 1 2( ) – – .x x g x xw     (8.30)
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and

    2
1 2 1 2( – ) – – .x x g x xw  

 (8.31)

The normal modes have frequencies  
1

2 2– gw w   and 

 
1

2 2gw w   . The effect of the coupling is to perturb the natural 
frequencies of the oscillators. To see the behavior in more detail we 
solve (8.30) and (8.31) to get 

   1 cos cosx a t b tw w       

    2 cos cosx a t b tw w         (8.32)

To see what is happening we need a small mathematical trick. We 
write the solution for x1 as

   

   

1 – –

– –

cos cos2 2
– –

cos – cos2 2

a b a b
x t t

a b a b
t t

w w

w w

 

 

 
   

  

 

 

with a similar expression for x2 with the replacement b  – b. Then, 
using the trigonometric identities

cos cos 2cos cos2 2
A B A B

A B
 

 

cos cos 2sin sin2 2
A B A B

A B
 

  

and assuming 2 ,gw   we get 

1 –

–

( )cos( )cos – ( – )2

sin ( ) sin 2

gt
x a b t a b

gt
t

w w

w w





      

    

 

 
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2 –

–

( – )cos( ) cos – ( )2

sin ( ) sin 2

gt
x a b t a b

gt
t

w f fw

w f fw





      

    

 (8.33)

where we have approximated

– / 2gw w w 

and

/ 2gw w w  

and we have set 

– –
–

( ) –
; .2 2=  





   

Note that x2 is obtained from x1 by setting b   b in accordance 
with Equations (8.32). We see from Equations (8.33) that the masses 
oscillate at the resonant frequency , with an envelope that has a 
period 4 / gpw . The energy is therefore exchanged between the 
oscillators on this timescale, 2 / gpw  , which is much greater than 
the natural period 2/.

If we set one oscillator in motion while the other remains at rest 
we see that energy will be transferred back and forth between the 
oscillators. This is the situation we described in Section 8.1. 

Note that if 0a   we no longer have 1 2– x x   , so momentum is 
apparently not conserved. There are two ways of looking at this. The 
first is that the forces in the system are not independent of position 
(because the equations of motion refer to coordinate values and not 
just differences); in this case we would not expect momentum to be 
conserved. The other way of looking at it is to enlarge the system 
to include the spring: then the overall conservation of momentum 
is preserved by a flow of momentum along the spring. This is an 
important general point: whenever action at a distance is involved a 
full analysis requires all components of the system to be considered. 
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8.11 COUPLED OSCILLATORS WITH DISSIPATION

We now add a dissipative term to one of the oscillators, so the 
equations of motion become

 
2

1 1 1 1 2x rx x gxw     (8.34)

 
2

2 2 2 1x x gxw   (8.35)

We look for a solution of the form 

 1 1 2 2; .i t i tx a e x a ew w   (8.36)

Substituting (8.36) in to (8.34) and (8.35) we get 

 2 2
1 1 2– – 0i r a gaw w w  

  2 2
1 2 2– – 0.ga aw w    (8.37)

For 1 2 0a a   we require the determinant of the coefficients in (8.37) 
to vanish:

   2 2 2 2 2
1 2– – – 0i r gw w w w w  

 (8.38)

or

  4 3 2 2 2 2 2 2 2
1 2 2 1 2– – 0ir i r gw w w w w w w w w      (8.39)

We now assume that the coupling and the resistance are small. Our 
first approximation, from (8.38) is
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  2 2 2 2
1 2– – 0.   

So we have two solutions: either  ∼ 1 or  ∼ 2. In the first case, 
our next approximation is (from 8.39) 

 2 2 2
1 1 22 2 2

1 2 2
1 2

–

–

g i rw w w
w w w

w w


  

and from (8.37)

2 1 2 2
1 2

– .
–
g

a a
w w



Similarly, if  ∼ 2 we obtain

2
2 2 2

– 2 2 2
1 2–

g
w w w

w w
  

 and

2 2
1 2

2 1
–

a a g
w w



The general solution is then

 

 

2
– 2

1 1 1 2 2 2
1 2 1

2

2 2 2 2
1 2 1

1
cos 1 – 2 –

1
cos 1 2 –

rtg
x a t e

g
b t

w
w w w

w
w w w

  
   
   
  
   
   

 

 

2 2 2
–1 2 2

2 1 1 2 2 2
1 2 1

2

22 2 2 2 2
2 1 1 2 1

– 1
cos 1 – 2 –

1
cos 1 2– –

rtg
x a t eg

bg g
t

w w
w

w w w

w
w w w w w

  
   
   

  
   
   
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Let us see what it tells us: the + ∼ 1 mode decays on a timescale 
2/r leaving the  ∼ 2 mode oscillating forever. This cannot be cor-
rect. The coupling should be feeding energy from x2 to x1 where it 
is dissipated. There is, in the solution we have obtained so far, no 
timescale over which this happens. The problem is clearly that the 
2 mode is not dissipative. In fact we can see that there is no phase 
difference between x1 and x2 in this mode, so there is no transfer of 
energy between the oscillators. This means that we have not taken 
the approximation far enough. A more accurate expression for  is 
obtained in the next approximation:

  
2

– 2 2 2 2 2
1 2 2 2 1

1
– 2 –
g irw w w

w w w w w

 
    

  

and 2 2
1 2

2 1
–

–
ir

a ag g
w w 

  
 

giving a phase difference 

2 2
1 2

tan .
–
r

w w


The  mode is now dissipative, transferring energy to x1 on a tim-
escale 2 2 2 2

2 1( – ) / .rgw w

Note that there is an apparent singularity at 0.g   However, 
0g   breaks the conditions of the approximation. It would lead to 

1 = 2, but we must have 

2 2
2 2
1 22 2 2 2

1 2 1 2– –
g g

andw w
w w w w

 

in order that the frequencies are perturbed by small amounts. Thus 
1 and 2 must be sufficiently different, whence 0.g   If the oscil-
lators are not coupled ( 0g  ) then the behavior is quite different. 
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8.12 FORCED COUPLED OSCILLATORS

Consider finally a model of the pendulum in the tower: the case 
where the undamped oscillator is subject to an external periodic 
force. We know that the system will absorb energy from the driving 
force only if it is near resonance, so we need only consider this case. 
(Only the resonant frequencies in the wind cause the building to 
sway.) To gain some insight, consider first a simple model of masses 
on a spring. Suppose the masses are very unequal and the larger 
mass is damped. Most of the energy in the spring will be reflected 
at the larger mass. Thus, there will be very little damping. Alterna-
tively, consider the case where the smaller mass is damped. Since its 
energy is much less than that of the larger mass, however effectively 
it drains energy from the larger mass its rate of dissipation is limited 
by the relatively small store it has to dissipate at any time. Thus, we 
expect that we shall have effective dissipation only if the masses are 
close. This is an example of impedance matching. 

For our general oscillators we model this case by first taking 
1 2g g  . The aim is then to show that damping is effective if, in fact,
1 2g g  . For simplicity we assume that 1 2 0     although this 

is not essential. The equations of motion are therefore: 

 
2

1 1 0 1 1 2x rx x g xw     (8.40)

where we assume the real parts of all quantities are implied. We 
shall also assume that the damping constant r is small 2

0)r w  (and 
that the coupling is relatively weak so that it can be treated as a per-
turbation to the harmonic oscillations. 

We have seen in Section (8.11) that the unforced motion of the 
oscillators is damped. This means we can neglect the effects of initial 
conditions and consider the steady state driven entirely by the forc-
ing term. We therefore look for solutions of the form

1 1 2 2; .i t i tx a e x a ew w 

If we neglect the effect of the damping on the resonant frequency 
we find 
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2 2
0 1 2 .g gw w 

With this value of , we can now solve (8.40) and (8.41), to a first 
approximation:

1 2
2

(
1

g g
a f i rw

 
   

and 
1

1 .
ig

a rw

The dissipation timescales are equal if

1 2 1( )g g g
r rw w

or 1 2.g g  For our masses on a spring, this means that the dissipa-
tion is most effective if the masses are equal, as we proposed. This 
is a special example of a more general result that energy transfer is 
most effective if the impedances of the systems are matched. Our 
conclusion is that the pendulum will effectively suppress the motion 
of the tower in the wind if the tower and the pendulum are imped-
ance matched. 

8.13 CHAPTER SUMMARY

●  The equation of motion for the displacement of a damped, 
driven harmonic oscillator is 

2
0 0

i tx rx x f e ww   

●  Where the real parts of complex quantities are to be taken. 

●  Impedance is the ratio of the driving term to the response 
(displacement) 
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●  Resonance occurs when an oscillator is driven by a periodic 
force close to its natural frequency; the resonant frequency 
occurs at minimum impedance. 

●  The quality factor Q of an oscillator is defined by Q r
w

  
and is the number of periods for the amplitude to decline by 
a factor of e. 

●  In a damped oscillator the driving term and displacement 
(or velocity) are out of phase. If the phase difference is  the 
rate of dissipation is proportional to cos .

8.14 EXERCISES

1.  Once in motion the amplitude of a child’s swing can be increased 
by pumping the oscillation by adjusting position in time with the 
swing. Because the effect is to alter the parameters of the swing 
(its natural length or moment of inertia) the process is called 
parametric amplification or parametric resonance. 

Consider therefore a simple harmonic oscillator subject to a 
periodic variation of its natural frequency:

  (8.42)

where ϵ ≪ 1. If we neglect the perturbation the solution is, say, 

 cos .x A tw 

Setting  = 0 for simplicity show that (8.42) can be written

Show that this gives rise to a linearly growing solution for x(t). 
Show further that the power supplied over a cycle is given by 
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and hence that the energy of the oscillator grows exponentially. 

2.  A spherical buoy floats half-submerged in water and is observed 
undergo small oscillations about this equilibrium position with 
frequency . Show that the mass of the buoy is

3 69
4 gp w r

where  is the density of water and g is the acceleration due to 
gravity. 

3.  Two equal masses are joined by a spring. One of the masses is 
highly damped. The other mass is set in motion. Investigate the 
behavior of the system. 

4.  Estimate the Q-value of a tuning fork.

5.  Show that velocity resonance occurs when a damped harmonic 
oscillator is driven at its natural frequency (Section 8.5). 

6.  Fill in the missing steps in Section 8.12. 

7.  An oscillator with displacement satisfying the equation of motion 

2
0 0x rx xw   

is critically damped if 2 2
04 .r w  Show that in this case the 

solution of the equation of motion is

 – 2
rt

x e at b 

where a and b are arbitrary constants. 





CHAPTER 9
RIGID BODIES

Figure 9.1: Picture credit: David Wilmot (Creative Commons)
http://commons.wikimedia.org/wiki/File%3ALeaning_Tower_of_Pisa_(1).jpg

Problem: Galileo is credited with establishing that all bodies fall 
with the same acceleration under gravity. He did this not by drop-
ping bodies from the leaning tower of Pisa, as legend has it, but by 
rolling balls down an inclined plane. This has the advantage of dilut-
ing gravity, which makes it easier to measure the time of fall with the 
methods available to Galileo. However, Galileo was fortunate in the 
shapes of bodies he chose to compare.

Does the shape of the rolling object make any difference? 
Would Galileo have made his discovery if he had compared the roll-
ing motion of spheres and cylinders?
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9.1 ROTATIONAL ENERGY

When we consider the kinetic energy of a body in linear motion 
we do not have to worry about the distribution of mass because all 
parts of the body are moving with the same speed. But the different 
parts of an extended body that is rotating are all moving at different 

speeds, so we cannot say that the kinetic energy is just 21
2 mv .

To get the correct formula consider a point mass, m, rotating 
about a point O at a distance r with speed v. Its angular speed is  

= v/r. Its kinetic energy is 2 2 21 1
2 2mv mrd d w . Now consider a rigid 

body rotating about O. All parts of the body have the same  but 

their distances from O will be different. Thus the kinetic energy will 
be

 2 21
2KE mrd w 

where the sum is over all the elements of mass in the body. We write 
this as

21
2KE Iw

where I is called the moment of inertia of the body. In practice we 
work out I as an integral:

2 .
dm

I r drdr 

9.2 MOMENTS OF INERTIA

Start with a simple example: the moment of inertia of a rod of 
length l pivoted at one end. We have

 
2 2

0

1
.3

l
I x dx mlr   

(9.1)
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We might have been tempted to guess that we could replace the rod 
by an equal mass at its center of mass. This would give  2/ 2I m l . 
Why is the factor in (9.1) 1/3 and not 1/4? The reason is that the 
factor of x2 in the integral (9.1) for the moment of inertia weights 
the contributions of segments of the rod towards the more distant 
contributions. The equivalent mass is not at the center of mass but 
a bit farther out.

Next another simple example: the moment of inertia of a disc:

2 2 2 2

0

1 1
2  .2 2

R

D DI r r dr R R M Rp r p r  

To work out the rotational energy of the Earth therefore we need its 
moment of inertia. To get this accurately involves knowledge of the 
radial mass distribution m(r). However, we can estimate it by taking 
the Earth to be a uniform sphere, of density , radius RE and mass 
M E .

Moment of inertia of a uniform sphere:

     22 4 2 2

2

1 1 1
2 2 2

2
5

R R R

S D
R R R

E E

I M r z dz r z dz R z dz

M R

rp rp
  

   



  

where the final integral can be obtained either by expanding the 
bracket or with the substitution cos .z R q

Moment of inertia of a uniform cylinder:

For a uniform cylinder of radius R, height H rotating about its 
axis of symmetry we have

2 4 2

0 0

1 1
2 .2 2

H R

CI r r drdh R H MRp r p r   

About the a perpendicular axis through the center we have

/2
2 2 3 2 2

0

1 1
2 12 12

H

CMI h R dh H R MHp r p r  
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And about a perpendicular axis through one end:

2 2 3 2 2

0

1 1
3 3

H

EI h R dh H R MHp r p r  
Note that

2

.2E CM
H

I I M      

This is an example of the parallel axis theorem:

2
CMI I Mr 

for the moments of inertia about the center of mass and about a 
parallel axis a distance r apart.

Example: Find the moment of inertia of a square laminar of 
side 2a of surface density  about one vertex with respect of an axis 
normal to the plane of the square.

Figure 9.2: Moment of inertia of a square laminar

Consider first a strip width dx at x from the center. The moment of 
inertia about the center is

3
2 2

.3
a

x
a

a
dI dx y dy dx

ss


 

Using the parallel axes theorem, the moment of inertia of this strip 
about the center is
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  22 .C xdI dI a dx xs 

The moment of inertia of the square about the center is

3
2 2 42 8

2 ( 2 ) .3 3
a a

C x
a a

a
I dI a x dx a x dx a

ss s s
 

     

Using the parallel axes theorem again, with M the mass of the lami-
nar,

   2 2 2 4 4 28 32 8
2 4 2 .3 3 3V CI I M a a a a a Mas s s     

Example: Estimate the rotational energy of the Earth.

We have for the rotational energy, E R

 
2

22 2 2 24 6 24
7~0.2 6 10 6

1 1 2
3 10

10 2 10 J.2 5R E EE I M Rw pw             

To get some idea of the size of this number we can compare it to the 
world’s energy consumption. It is sufficient to provide the current 
world demands for power for about a billion years. It is also about a 
million times the energy falling on the Earth from the Sun in a year.

Of somewhat more practical use, we could estimate the energy 
that can be stored in a flywheel, for example for regenerative brak-
ing in a car or bus, or for smoothing out peaks in demand on the 
national electricity grid. Current technology allows rotation rates in 
excess of 25 000 rpm and is able to store 400kJ per kg using compos-
ite materials.

9.3 ANGULAR MOMENTUM

The angular momentum of a point mass m velocity v with posi-
tion vector r is m(r  v). For a rigid body, angular velocity ω this is 
becomes
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  2r .m m m Id d d        H r v r r    

The angular momentum is

IH 

along the axis of rotation, where I is the moment of inertia.

If there is no net external couple on a system angular momen-
tum is conserved. We can see this as follows:

 
CM

d d
m m Mdt dtd d           H vv v r r F R F

 
(9.2)

which is zero if there is no net couple ( CM 0). R F

9.4 THE RECEDING MOON

The Moon recedes from the Earth at the rate of 3.8 cm a year 
as a result of tidal torques exerted by the Earth on the Moon. How 
can we explain this? Estimate the resulting change in the length of 
the day.

Let HM be the magnitude of the angular momentum of the 
Moon, and let the Earth have moment of inertia IE and angular 
speed E. Conservation of angular momentum implies

 .M E EH Id dw   (9.3)

But the change in angular momentum of the Moon, if its distance 
changes by Rd , is

 

2
 .M

M

R
H Mv R M RP

pd d d 
 

(9.4)
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where PM is the orbital period of the Moon. Equating the two expres-
sions for MHd  gives

 

2
 .E

M E

R
M RP I

pdw d
 

(9.5)

If PE is the length of the day, then

2
2 2 2

E E
E M EE

R
P M RP P IP

p p pdw d d d       

where the final equality follows from (9.5). Thus, with 22
5E E EI M R ,

7
2 2

5 1 5 1 380000
~ 0.038 5 10 .2 28 2 60 6000

E E E

E M E M E E

P P MR R P M R R
P P I P M R
d d d       

the fractional change in the length of the day is 5 × 107 over a year, 
so the day decreases by 0.04 s a year.

9.5 SPACE TETHER

In near Earth orbit the atmosphere is still dense enough to pro-
duce a drag force on the international space station. In order to remain 
in orbit the space station must therefore be supplied with energy.

An efficient way of doing this is to use the energy of visiting 
space shuttles as they undock, by paying out the shuttle on a long 
tether. How would this work?

Given that the dissipation of energy is small, we can ignore these 
frictional losses in considering the orbits. Therefore the total energy 
must be conserved. Since there are no external couples acting on the 
system the angular momentum must be conserved. This gives us a 
clue as to what is proposed. If the shuttle is losing angular momen-
tum as well as energy then that angular momentum and energy must 
be transferred to the spacestation. What affect will this have: one 
might guess that it will boost the spacestation to a higher orbit.
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Figure 9.3: A shuttle tethered to a space station

We give the shuttle a little nudge towards the Earth to start things 
off. Looked at in the rotating reference frame there is a net down-
ward force on the lower mass, here the shuttle, since gravity closer 
to the Earth is greater than the centrifugal force, and an outward 
one on the upper mass, here the space station, since gravity is less 
than the centrifugal force. Since the link between them is not rigid 
these forces will cause the tether to be paid out without any further 
expenditure of energy.

As the shuttle falls its kinetic energy and potential energy change. 
In a circular orbit K PE E / 2,   so half the potential energy it loses 
goes into kinetic energy. An increase in kinetic energy means that 
the shuttle speeds up. This is correct: bodies closer in go round 
faster. But where has the other half of the change in potential gone? 
The only possibility is into increasing the energy of the space station.

9.6 EQUATION OF MOTION

Equation (9.2) gives us the equation of motion of a rotating sys-
tem that is subject to external torques:

d
dt 
H G

or, more simply, for rotation about a fixed axis,

d
I Gdt

w


or
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2

2 .
d

I G
dt

q


In the spirit of Chapter 5, we can derive this from the energy of the 
system. We have

 21
2K UE E E I Uw q   

and hence

0 .
dE d dU

Idt dt d
ww wq  

Identifying /G dU dq   gives us the equation of motion.

9.7 COMPOUND PENDULUM

A simple pendulum is a point mass on a massless string undergo-
ing small angle oscillations. If we make the support rigid and massive 
we have a

Figure 9.4: A compound pendulum

compound pendulum. How would we expect this to change the 
period? For simplicity consider a rod of length l mass m pivoted at 
one end. The only quantities that can enter the expression for the 

period are again m, l and g . So the period is proportional to  
1
2/l g  

but with a different constant of proportionality. To get this we have 
to solve the equations of motion.
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We have

sin2
l

G mg Iq q  

where I = 1/3 ml2. Thus

3
2

g
lq q

for small oscillations and the period is

2
2 .3

l
gp

The effect of adding mass nearer the pivot is to shorten the period 
as we might expect.

9.8 A MODEL OF RUNNING

The following is an extract from the Harvard University Gazette 
(April 30, 1998)

Sternlight guessed that an upper limit on the frequency of stride 
might restrict a person’s running speed. She measured stride fre-
quency and length, the amount of time a runner’s foot is in contact 
with the ground, and the time each foot is in the air. The latter is 
called “swing time.“

To Sternlight’s amazement, whether people ran fast or slow, or 
whether they ran uphill or downhill, everyone had approximately the 
same swing time at top speed.

Those running 14 miles an hour and those running 27 miles an 
hour both took between 0.37 and 0.40 second to swing one leg in 
front of the other.

“What limits top speed, then, is the minimum time you take to 
swing your leg into position for the next step,” Sternlight concludes. 
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“That’s evidently a fundamental limit for all humans. What determines 
how fast you can run is how fast you’re going when you reach that limit.”

According to this theory the leg is a compound pendulum. The 
average leg length is 0.95m so the swing time (one half a period) 
becomes 1.96/2 =0.98s. The typical stride length of a sprinter is 
1m at a speed of 10 m s-1 so a stride time of 0.1s, very differ-
ent form 0.98 s. Clearly there is something wrong! The pendulum 
model is satisfactory for slow walking (0.5 m s-1 with a step of 0.3m 
giving a step period of 0.6s which is somewhat closer to 0.98s) but 
running is clearly qualitatively different from fast walking.

9.9 ROLLING AND SLIPPING

Return now to a question we left unanswered in Chapter 2. 
Under what conditions does a cart wheel to roll rather than slip as 
the horse and cart move off. What do we expect? Clearly we must 
not accelerate away too quickly, so we are seeking a limit on the 
initial acceleration. This could in principle depend on all the param-
eters in the problem: the mass of the cart, M; the radius of a wheel, 
r, the acceleration due to gravity g  and the coefficient of friction 
µ. However, dimensionally we are restricted to  a f gm  where 
f is some unknown function. This is as far as we can get without a 
calculation.

So consider the situation in Figure 9.5 where now the wheel 
is not treated as a point mass, and the points of application of the 
forces therefore matter.

Figure 9.5: Does the wheel slip before rolling?
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Resolving the forces vertically we have

 .R Mg  (9.6)

Resolving horizontally we have

 .rF F Ma   (9.7)

Taking moments about the point of contact between the wheel and 
the ground:

 .Fr Iw   (9.8)

where I is the moment of inertia of the wheel. For there to be no 
slipping,

r aw 

so, from (9.8)

.rMar rF Ia 

Putting Fr = Mg and I = 21
2 Mr  and solving for a, rolling will occur 

before slipping if

2 .a gm

9.10 GALILEO’S INCLINED PLANE

We can now tackle the problem of Galileo’s inclined plane. 
The task is to determine the acceleration down the plane of rolling 
objects of different shapes.
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We can determine the equation of motion of a rolling body from 
the conservation of energy. Suppose the body has mass M, moment 
of inertia I, radius a, speed v and is at vertical distance z below its 
starting point. The total energy E of the body is given by the sum of 
the translational kinetic energy, the rotational energy and the poten-
tial energy:

2 21 1
constant2 2E Mv I Mgzw   

where  = v/a. Thus

20 –
dE dv I dv dz

Mv v Mgdt dt dt dta
  

where, if the body rolls on a slope that makes an angle  with the 
horizontal,

sin .
dz

vdt a

The acceleration is therefore

 2

sin

1

gdv
dt I

Ma

a



 

(9.9)

which is constant. The constant acceleration formulae, starting from 
rest, give the travel time:

1 1
2 2

2 2
2

1 .
sin

z I
T

g Maa
         

Comparing objects of similar shape we have I/Ma2 = constant, so the 
times are the same, independent of mass and radius. But comparing 
spheres and cylinders we have
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,15
1

1 2

s

c

T
T

         
   

a 3% difference, probably beyond the accuracy that Galileo could 
achieve at a time when there were no accurate clocks.

Suppose we had not thought of starting from energy conserva-
tion. How would we apply Newton’s law’s directly.

Taking moments about the point of contact we have

0sinG Mga Ia w  

where 10 = I + Ma2 is the moment of inertia about the point of con-
tact and v aw . Dividing through by Ma2 gives (10.1).

9.11 SPIN AND PRECESSION

Consider a spinning top or gyroscope. It not only spins about its 
axis, but this axis of rotation will in general rotate about some fixed 
direction. The rotation of the axis is called precession. Why then 
does a spinning top precess?

To understand precession we need to appeal to the vectorial 
property of torque and angular momentum. The force of gravity, 
acting through the center of gravity of the top, creates a couple G 
about the point of contact, perpendicular to the plane of the spin 
and the vertical. Since there are no other couples acting, the angular 
momentum orthogonal to G is conserved. Thus the vertical com-
ponent of the spin angular momentum, which is orthogonal to G, 
remains constant. The spin axis can therefore at most rotate about 
the vertical: this is precession.
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Figure 9.6: Precession

The rate of precession is given by equating the rate of change of 
angular momentum to the couple on the system. We give a purely 
vectorial derivation first, and then a slightly easier version from the 
geometry. The precession angular speed is a vector p in the direc-
tion of the unit vector k such that

 
.p p

d
dt w   k
H H H

 (9.10)

The couple on the system is given by

 .mgr k


G H  (9.11)

Equating (9.10) and (9.11) and using IH   gives

p
mgr
Iw w

for the rate of precession. Note that if  decreases, for example 
because of friction, the precession speeds up: this is verified by 
casual observation as a spinning top comes to rest, although this sim-
ple model does not tell us anything about the stability of the motion, 
which is in fact more complicated once pw w .

Alternatively, from figure,
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sin sin .pH H H tq w     

Thus the system precesses at a rate wp given byv

sin sinp
dH

H mgrdt w  

from which, as before, with H = I w,

.p
mgr
Iw w

9.12 EULER EQUATIONS

As our final application of rigid body dynamics and the conserva-
tion of angular momentum, we answer the question: why do falling 
bodies tumble? By a tumbling motion we mean the precession of the 
axis of spin in a falling body.

The precession of a free body is a bit more complicated than the 
systems we have dealt with so far. It arises if the body is not spheri-
cally symmetric. In the simplest case, the body will have cylindrical 
symmetry, with the moments of inertia about two perpendicular axes 
equal.

The equations of motion are obtained by considering the motion 
of the body in the rotating frame. If the time derivative in the rotat-
ing frame is denoted by d/dt it is not true that dH/dt = G. This is 
because Newton’s laws hold only in an inertial frame. If the frame 
of reference is rotating with angular velocity ω then viewed from an 
inertial frame there is an additional rate of change of the angular 
momentum of ω  H. Thus the correct equations of motion are

 

d
dt

      H G
 

(9.12)

We now have to relate H to the moments of inertia. We shall not go 
into details: we just note that by definition of the principle moments 
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of inertia  1 2 3, ,I I I  about the three principal axes of symmetry of 
the body, we have

 1 1 2 2 3 3, , .I I Iw w wH

In the case in question, the body is in free fall so G = 0. Equation 
(9.12) in components becomes

 1 1 2 3 2 3 1I I I Gw w w  

 2 2 3 1 3 1 2I I I Gw w w  

 3 3 1 2 1 2 3.I I I Gw w w  

If I2=I3 =C and we set I1 = A, with A > C, we get

1 0Aw 

so 1 = constant. Then

 2 3 1 0C C Aw w w  

 3 1 2 0C A Cw w w  

from which

2 2 3 3 0C Cw w w w  

and hence

2 2
2 3 constantw w 

Thus, ω = (1, 2 , 3) rotates about the 1-axis i.e the body precesses 
at a rate determined by A – C . We can now see why a freely falling 
body tumbles.
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9.13 CHAPTER SUMMARY

● The kinetic energy of a body rotating with angular speed  

is 21
2KE Iw  where 2I mrd  is the moment of inertia of 

the body about the axis of rotation
● The parallel axis theorem gives the moment of inertia I of 

a body of mass M about an axis parallel to one though the 
center of mass at a distance r: 2

CMI I Mr 
● The angular momentum of a body rotating with angular 

velocity ω is H = Iω
● The equation of motion of a body subject to a couple G about 

a fixed axis is 
d
dt 
H G .

● Euler’s equations for the general motion of a body are

 .
d
dt

      H G

9.14 EXERCISES

1.  A Fairground rotor consists of a cylindrical room which can 
be spun about its axis of symmetry. Intrepid members of the 
public stand with their backs to the wall while the room is spun 
up, at which point the floor is removed. The people inside find 
themselves stuck to the wall. How fast must a 4m rotor be 
spinning before the floor can be lowered?

2.  Volvo engineers have experimented with a 0.2 m flywheel with a 
mass of 6 kg for regenerative breaking. The carbon fibre flywheel 
can rotate at up to 60,000 rpm. How much energy can it store?

3.  A cylindrical body of radius a and mass M is released from rest 
on a plane inclined at angle . What is the condition that it rolls 
before slipping.

4.  Precession of the Earth: Because it is not a perfect sphere the 
moment of inertia of the Earth about a polar axis, A, is greater 
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than that about a perpendicular axis through the center, C. Show 

that the period of free precession is   1

2
.

C
A C

p
w  Evaluate this 

and decide if it accounts for the precession of the equinoxes on 
a 26 000 year timescale.





STABILITY OF MOTION

Problem: In what orientation does a dumbbell spaceship orbit?

Figure 10.1: Creative Commons: NASA Goddard Photo & Video, 2012

10.1 PERTURBATIONS

A dynamical system in equilibrium may be subject to an exter-
nal perturbation. If the perturbation is small we can compute its 
effect by approximation. There are two possible outcomes: the sys-
tem returns to its equilibrium or it moves (or stays) away from it. In 
practice in the latter case the system may reach a new equilibrium 
or move chaotically: we cannot tell what eventually happens from 
the approximation if the displacement becomes large; all we can 
say is that the original equilibrium was unstable. The problem of 

CHAPTER 10
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determining the orbit of a spacecraft therefore reduces to finding 
the orientation that is stable to a small perturbation.

We can also use this approach as a trick to obtain solutions for 
problems where a part of the force can be regarded as a small addi-
tion, even if this has no physical meaning, or even if it is not in prac-
tice an actual perturbation. We shall begin by illustrating this with 
some examples.

10.2 CUBIC POTENTIAL

Consider a particle of mass m moving in the potential (some-
times called the anharmonic potential)

  
(10.1)

where  is a small quantity and the factor of 1/3 has been chosen for 
later convenience. The total energy per unit mass is therefore

Differentiating with respect to t gives the equation of motion

  (10.2)

Before we solve this let us see what we might expect. The stationary 
points of the potential (10.1) are at

i.e. at x = 0 and x = 1/. Since  (x) is a cubic it has one maximum and 
one minimum and since    as x   the stationary point at x = 1/ 
is the minimum. The particle therefore now oscillates about x = 1/.
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In addition, the x2 term has the same sign when x is both positive 
and negative; it represents a force in the positive x-direction. (We 

can see this in several ways:  ; or when x is posi-

tive the x3 term in the potential has the opposite sign from the simple 

harmonic term.) So the anharmonic term adds to the acceleration on 
the positive side and reduces the acceleration on the negative side. 
The particle therefore spends more time on the positive side of the 
origin, as we might expect from the previous argument that the cen-
ter of oscillation has shifted to positive x.

Let us derive these results formally. As a first approximation to 
the solution of (10.2) we ignore the term in . Thus from (10.2)

2 .x xw 

and hence our first approximation is

 0 cos( ).x a tw   (10.3)

As the next approximation we could put x = x0 + d, substitute this 
into (10.2) and ignore terms quadratic and above in the small quan-
tities Œ and d. A quicker way is to approximate the small term we 
have so far neglected using the approximate solution we have just 
obtained in (10.3). This gives

We cannot solve this (directly) with a cos2 term on the right, so we 
use the double angle formula to turn this into a cosine term:

The solution is
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The effect of the anharmonic term has been to shift the mean dis-
placement to

since the mean of the cosine terms is zero. So the particle does 
indeed spend more time with x positive. Applied to a pair of atoms 
in a solid this means that the atoms spend more time at greater sepa-
ration than compressed from their equilibrium. Since the amplitude 
of oscillation, a, depends on temperature, this is responsible for the 
expansion of solids on heating.

10.3 MOTION OF THE PLANET MERCURY

As a second example we consider the motion of a planet accord-
ing to general relativity. The effect of relativity is to add a small cor-
rection to the Newtonian equations of planetary motion (Section 
7.19):

2
2 2

3GM GM
u u u

h c
  

for a planet with angular momentum per unit mass h in orbit about 
a star of mass M (with 2 2/ )u d u d  . The small parameter here is 
Œ= h2/c2, where c is the speed of light, So we can write

  (10.4)

where k = GM/h2. The first approximation (ignoring the term in ) is

0 (1 cos ).u k e  

If we look at what we expect to happen before we plunge into the 
solution it will make the process of solving the equation easier. Equa-
tion (10.4) is similar to (10.1) except for the constant k on the right 
hand side. So we try to remove that by letting u = v + k:
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If we ignore the v2 term now we have the equation of an ellipse, but 

with a modified period in , namely . We see there-
fore that the perturbation increases the period of the orbit in space, 
which means that the body moves through a greater angle in return-
ing to the same orbital distance 1/u. If we focus on the point in the 
orbit at its closest to the parent star (the periastron), this precesses 
round the orbit.

With this in mind as a second approximation we try

     1 1 1 cos 1u k ed d   

where we have assumed a shift in the periastron. Substituting back 
in (10.4) gives

          2
1 1– 1 cos 1 [1 cos 1k e k ed d d d d       

We now ignore terms that are of higher order than linear in the small 
quantities , 1 and  to obtain

Thus, comparing terms independent of  and in cos we get

So the solution is

In one orbit, u returns to its starting value in an angle

The periastron therefore advances by 6 Œk2 per orbit or by 6 Œ 
G2 M2 /h2 c2 in physical units. For planets in orbit around the Sun 
we speak of the precession of the perihelion. The predication of the 
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correct perihelion precession of Mercury (which is the most easily 
measured in the solar system because of its short period and large 
eccentricity) is one of the observational tests of general relativity.

10.4 STABILITY: GENERAL FORMULATION

We now turn to the problem of stability to a small perturbation. 
It is often easier to treat each case independently, but we begin with 
a general formulation. Suppose we have an equation of motion

 
2

2 ,
d x

f x t
dt



with solution  0 .x x t To investigate the stability of this solution we 
look at what happens if we add a small perturbation: :

by Taylor expansion, so

If /f x   > 0 at 0x x , Œ will grow exponentially; if /f x   < 0 at 

0x x , Œ will oscillate. Thus the equilibrium point is stable if /f x   
< 0 at this point.

10.5  AN EXAMPLE OF STABILITY: 
NON-NEWTONIAN ORBITS

Consider a body moving in a plane orbit subject to an inverse nth 

power law nF kr . The orbit equation is
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2'' nu u ku    (10.5)

which can be derived in exactly the same way as the inverse 
square case. Consider a circular orbit u = u0 = constant = ku0

n-2, 
or

 
3

0 1nku    (10.6)

and suppose we add a perturbation Œ() so that  Then 
from (10.5) to first order in Œ

where the zeroth order terms cancel using (10.6). Therefore

  (10.7)

If 3n  Equation (10.7) has oscillatory solutions so Œ always remains 
small. The original solution before the perturbation is stable. If 

3n the solution to (10.7) is a growing exponential, so the solution 
is unstable. For 3n the solution also grows (linearly). We therefore 
have stability if 3n  and instability for larger n.

It is intriguing to consider how Newtonian gravity might appear 
if the dimension of space were greater than 3. In three dimensions 
the inverse square behavior of the gravitational force arises from the 
solution of Poisson’s equation for the gravitational potential. If the 
gravitational potential in a space with higher dimensions satisfies the 
higher dimensional analogue of Poisson equation then the gravita-
tional force will fall off faster than an inverse square. This means that 
circular orbits would not be stable in universes with spatial dimen-
sion greater than 3.

For comparison, the general theory of Section (10.4) applied to 
Equation (10.5) asks us to evaluate

     0

0 2 3
0| 1 2 3n n

u u
f u d

u ku n ku nu du
 




        
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from which we obtain the conditions on stability as before.

10.6 A WARNING

As a warning against blindly applying the small perturbation 
algorithm, consider the equation of motion of a harmonic oscillator 
perturbed by a small quartic potential. The equation of motion is

So as a first approximation (ignoring the term in ϵ) we try

0 sin .x tw

Then for our second approximation we must solve

  (10.8)

where J indicates the imaginary part. We try

3
1

i t i tx At e Bew w 

where the extra factor of t in the first term arises because i te w  satis-
fies the homogeneous equation. Substitution in (10.8) fixes A and B:

There is clearly a problem with the final term: it is supposed to be 
a small correction, but if we wait long enough it will cease to be 
relatively small. The problem arises because we have tried to fix the 
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period of oscillation to be unchanged as a result of the perturbation. 
In fact the true approximation is

which we can find by following the procedure of Section (10.3)

10.7 SOLUTION TO THE PROBLEM

We are now in a position to address the problem of the orienta-
tion of the spacecraft.

To do this we cannot treat the body in orbit as a point mass. 
So we need to make some sort of model (or approximation) to the 
shape of the body. Clearly we want to keep it simple and not try to 
represent the detailed structure of the hypothetical space station. 
Figure 10.2 shows two possible models: we can make the dumbbells 
equal in mass and neglect mass of the joining section, or we can 
neglect the mass of the dumbbells and consider the mass to reside in 
the linear section. It does not matter which model we use to under-
stand the problem and to illustrate the principles involved. We shall 
restrict ourselves to the first model in the following discussion.

Figure 10.2: Models of a space station. On the left we consider two massive spheres 
connected by a massless strut; on the right a massive strut connecting two massless spheres 

(which can therefore be neglected to give a cylindrical mass).

So we can return now to the problem of the orientation of the space 
craft. Figure 10.3 shows two possible orientations. The symmetry in 
each case means there can be no net force or torque on the space-
craft, so in both of these pictures the spacecraft is in equilibrium. 
The problem therefore is to determine which of these equilibria is 
stable.
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So far we have been looking at the spacecraft from the point of 
view of an orbit about a stationary Earth. That is to say, we have been 
using the Earth as our frame of reference. This is quite straightfor-
ward if the satellite can be described as a point mass, but for the 
motion of an extended body it is quite complicated. Putting our-
selves in the frame of reference of the

Figure 10.3: Two possible equilibrium orientations of the space station.

satellite appears to remove the orbital motion, so the behavior of 
the satellite can be described more simply. However, we must 
make the transformation to the rotating frame of the satellite cor-
rectly. In a rotating frame of reference Newton’s laws of motion 
no longer hold. We say that a rotating frame is not an inertial 
frame: in a rotating frame bodies apparently subject to no forces 
appear to fly outwards! We therefore have to amend Newton’s 
laws by introducing additional forces to account for this behav-
ior. An example, sufficient for our purpose here, is the centrifugal 
force. With the inclusion of centrifugal forces Newton’s 2nd law is 
valid in a rotating reference frame. (See Chapter 8 for a general 
discussion.)

Figure 10.4 shows why it is easier to consider the motion of 
the spacecraft in the rotating frame. Viewed from the Earth in 
an inertial frame the spacecraft rotates relative to a fixed direc-
tion as a result of its orbital motion. In the rotating frame the 
equilibrium orientation remains fixed. We can therefore con-
sider the motion about an equilibrium orientation most easily 
in the rotating frame provided that we include the outward cen-
trifugal force.



Stability of Motion • 259

Figure 10.4: Orbits from the point of view of a rotating frame of reference.

Imagine then that the satellite is at rest and the Earth is spinning 
beneath it. To answer the question of stability we imagine a small 
displacement of the satellite from equilibrium and look at the forces 
that then act on it.

In case I on the left in Figure 10.5, dumbbell a is closer to the 
Earth than dumbbell b. What does this mean for the gravitational 
force on each? Since the strength of gravity falls off with distance 
from the Earth the force on the closer dumbbell a is greater. We can 
see that this creates a moment about the center of mass that pulls 
the system back to the vertical. What about the outward centrifugal 
force? That on the dumbbell a is weaker than on b, which again 
acts to restore the system to equilibrium. So the equilibrium here 
is stable.

The result depends on the non-uniformity of the gravitational field 
– the fact that it changes with distance - which generates an imbalance 
of gravitational forces. Recall from Chapter xx that forces that arise 
from the non-uniformity of gravity are also called tidal forces.

Before we leave the subject of stability of equilibrium we shall 
look at a slightly different approach from the point of view of energy. 
This is useful because it provides a picture that translates into many 
other contexts. It is also often easier to use for calculations. That is 
because, in contrast to forces, energy is a scalar quantity so we do not 
have to worry about directions.
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Figure 10.5: In a rotating frame the spaceship is at rest while the Earth spins 
about a fixed center beneath it. As seen from the North pole the Earth rotates 

counterclockwise in the rest frame of the satellite.

In the rotating frame the dumbbell is subject not only to the gravi-
tational force but to the centrifugal force. Both have an associated 
potential energy. For gravity we know that the potential energy is 
GMm/r. For the energy associated with the centrifugal term, we 
must find the work done by the force mr2 in moving from the cen-
ter of mass of the dumbbell at R to the center of the upper dumb-
bell at R +  (Figure 10.6). This is the integral of the force over the 
distance

Figure 10.6: The centrifugal force and gravity in the frame of the spaceship
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2 2 21
Centrifugal potential energy .2mr dr mrw w   

This is the loss in potential energy, since we are moving in the direc-
tion of the force, which does the work. So the potential energy is 
negative. The difference in potential energy between the center of 
mass and the dumbbell center is given by

 221
2

GMm
m RR w dd  

2 21
.2

GMm
m RR w     

Expanding this to lowest order in , we get: 

 
2

2 2
2

1
1 22

GMm GmM
U m RR R RR

d d w d d
 

          

             2 23
.2 mw d 

Figure 10.7: The dumbbell spacecraft is displaced by a small angle  from its equilibrium
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For the lower dumbbell we get a similar contribution (it depends on 
2 so has the same sign) and therefore the total potential energy of 
the two dumbbells is

2 23 .U mw d    

Imagine that the satellite is perturbed from its equilibrium posi-
tion by a small angle  (Figure 10.7). We can see from the diagram 
that the radial distance of each dumbbell from the center is  = 
dcos. So we now have an expression for energy as a function of the 
system coordinate, . Figure 10.8 shows a sketch of cos2 plotted 
against . We can see there is a minimum at  = 0 and the maximum 
at  = /2. Thus orientation (a) is stable and (b) is unstable. 

Figure 10.8:  = 0 is at the bottom of the potential energy curve, hence a stable point.  = 0 
is at a maximum so is an unstable

Finally, we can look at the equations of motion. The couple on the 
system is /U q   and the kinetic energy of rotation about the 

center of mass is 21
2 Iq  , so the equation of motion is 

2 23 .I m dq w q 
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This is simple harmonic motion with period  2 22 / 3m dp w  , so 
upon a small perturbation the system oscillates about the equilib-
rium. 

10.8  PHASE PORTRAITS: 
HARMONIC OSCILLATOR 

Often we want look not only at linear stability but at what hap-
pens to an unstable system or at the range of stable behaviors open 
to a system. If we cannot solve the equations of motion (or even if 
we can) the problem can be approached by looking at the phase 
plane. This is a plot of the momentum (or speed) against position. 
The resulting plots are called phase portraits. We illustrate this first 
for the simple harmonic oscillator.

The equation of motion is 2– .x xw  

Figure 10.9: Phase portrait for a harmonic oscillator. The arrows show the trajectories of 
the oscillator in the phase plane. (The plot was obtained using Maple.)

We begin by rewriting this in dimensionless variables by defining 
:tt w  

 .x x 
 (10.9)
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To obtain the phase portraits we need to rewrite this as a set of 
first order equations. We define 

 x p  (10.10)

so (10.9) becomes

 .p x   (10.11)

Finally, we eliminate time altogether by dividing (8.3) by (8.32): 

.
dp x
dx p 

We can now graph the solutions in the x-p plane (Figure 10.9). If x 
and p are positive the slope of the trajectory is negative, so an arrow 
in this quadrant slopes downwards; similarly in the other quadrants. 
Joining the arrows gives the trajectories through any given starting 
point. The advantage of this approach is that it shows us all solu-
tions. In this case the solutions are cycles (circles in fact).The plot in 
Figure (10.9) (and those below) was obtained using Maple symbolic 
computing software. The disadvantage of this picture is that we lose 
any information about time.

10.9 PHASE PORTRAITS: DAMPED OSCILLATOR

If we add a linear damping term to the oscillator the equations 
of motion become

x p

p x rp  
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where r is the damping rate constant. Figure 10.10 shows the system 
tending to a limit point at the origin. 

Figure 10.10: Phase portraits for the damped harmonic oscillator showing 
the systems tending to a limit point at the origin. 

Figure 10.11: Phase portraits for a large amplitude pendulum; 
the coordinates x p   represent the same point.

A finite amplitude pendulum has equation of motion:
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x p

sinp x 

where x is here the angular displacement from equilibrium. The 
behavior in Figure 10.11 is periodic since we identify x =   with x 
=  . For large enough displacements or momenta the momentum 
does not change sign: on these trajectories the pendulum swings 
over the top. 

10.10 CHAOS

If we now add forcing and resistance to the finite amplitude 
pendulum something strange happens. For certain values of the 
forcing amplitude the motion becomes chaotic. This is difficult to 
see in the phase plane so we use a Poincaré section. In a Poincaré 
section we plot the position of the point in the phase plane once 
every period of the driving force. Thus a periodic motion is repre-
sented in a Poincaré section as a single point. If we plot the rep-
resentative point for the pendulum once any transients have died 
out against the strength of the forcing term, for a given resistance 
and forcing frequency, we obtain the famous bifurcation diagram 
(Figure 10.12).

Note that for each value of the forcing strength the plot shows 
the Poincaré section. Initially the motion is periodic so there 
is only a single point for a given value of the forcing. As the con-
trol is increased the period doubles so the point returns to its 
initial location only after two cycles of the driving term. After 
a sequence of such period doublings the motion becomes cha-
otic. The sequence repeats in compressed fashion infinitely 
often. 
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Figure 10.12: Bifurcation diagram for the damped driven pendulum. At each value of the 
forcing strength the value of the steady state angle of the pendulum,  at a fixed phase 

of the driving term is plotted. (From http://www.physics.udel.edu/~jim/PHYS460_660_11S/
oscillations&chaos/The chaotic pendulum.htm)

10.11 CHAPTER SUMMARY

● Equations of motion with a small parameter can be 
approximately solved in a power series in the small parameter

● If the small parameter represents a perturbation to an 
equilibrium solution, the solution can be used to test for 
stability of the equilibrium

● A phase portrait is a plot of the system in the coordinate-
momentum plane. 

10.12 EXERCISES 

1.  Construct a general theory of linear stability for an equation of 
the form
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2

2 ( , )
d x dx

f x dtdt


2.  For potentials of the form (a)    U x x K x   and (b) 
    U x x K x H x    where H and K are constants find the 

stable and unstable points of equilibrium.

3.  The potential 

  2 2 4x x xw l 

where 2 and  are constants, is often used to model departures 
from simple harmonic motion. Investigate the equilibrium 
points and their stability for  >0 and  < 0.



CHAPTER 11
LAGRANGIAN AND 
HAMILTONIAN 
MECHANICS

Problem: What is the general solution of the equations of 
motion of a dynamical particle system?

To understand the question let us ask a simpler one: what is the 
general solution of a problem in statics? The answer comes from the 
principle of virtual work. Consider all the possible small displacements 
of the system. These are called virtual displacements; virtual work is the 
work done in making these displacements. The principle of virtual work 
then states that the equilibrium configurations of a mechanical system 
are those for which the virtual work is zero. Equivalently, a conservative 
system is in static equilibrium if the potential energy U(xi) is a minimum.

The equivalence of the two statements for a conservative system 
comes from

i i i
ii i

U
U x F x Wxd d d d
     

so a minimum of the potential energy (U = 0) corresponds to zero 
net work done (W = 0) by the forces /i iF U x     .

Can we state a similar principle for dynamical systems? 
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11.1 PRINCIPLE OF LEAST ACTION

To keep things simple at first we consider particles with masses 
mi at positions xi(t) moving in one dimension, with potential energy 
U(xi). The potential energy might arise from mutual interactions 
between the particles (their mutual gravity for example) or from an 
external source (the Earth’s gravity for example). We then start from 
Newton’s laws in the form:

 
– .i i

i

U
m xx


 


 

(11.1)

Assume now that the trajectory of the ith particle is varied by an 
amount   .ix td  Multiplying (11.1) through by xi, summing over i 
and integrating with respect to t we get

1

0

0,i

t

i i i
t ii

U
m x x dtxx d d     

where the integral runs from an initial time t0 to the current time t1 
and the sum is over all the particles in the system. We now integrate 
the first term by parts to get

 

11

0 0

– – 0.
tt

i i i i i i i
t t ii

U
m x x m x x x dtxd d d         

 
(11.2)

Since the variation in the trajectories is a matter of choice, we can 
require all the  i txd  to vanish at times t0 and t1. The first term on 
the left of (11.2) is then zero. Using

2 2x x xd d  

and

i
ii

U
U xxd d
 
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allows us to put (11.2) in the form

where the variation  refers to a variation of the path of the 
dynamical system,       ,i i ix t x t x td   with fixed end points, 

   0 1 0i ix t x td d   . Thus, we postulate that the quantity

1

0

21
( – )2

t

i l
t

S m U dtx  

is stationary along a trajectory of a dynamical system. The quan-
tity S is called the action and the quantity KE U   (the kinetic 
energy minus the potential energy) is called a Lagrangian (for New-
tonian dynamics) after Lagrange who synthesized these discover-
ies. Dynamical models often take the postulate of a form for the 
Lagrangian as their starting point.

The principle formalizes our heuristic energy minimization to 
obtain the equations of motion in Chapter 5. The important conse-
quence of deriving the equations of motion from an action principle 
is that the equations of motion are then automatically consistent 
amongst themselves. This is why all modern dynamical theories, for 
example in particle physics, start by postulating a form for the action.

11.2 EULER-LAGRANGE EQUATIONS

Rather than have to resort to first principles every time we approach 
a new problem, we derive the form of the equations of motion for a 
general Lagrangian once and for all. Let the Lagrangian  ,i iq q    
be a function of the generalized coordinates qi and iq  and let

Figure 11.1: A trajectory q(t) and a neighboring trajectory with fixed end points.
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where the integral is along a trajectory of the system   .i iq q t  
Note that we have used the symbols qi here for the coordinates, and 
not xi, to emphasize that the coordinates in the Lagrangian need not 
be Cartesian.

We imagine that we make a small change in the trajectory keep-
ing the end points fixed (Figure 11.1). Then

        
1

0

,
t

i i i i
t

S S q t q t q t q t dtd d d     

        
1

0 i

, ,
t

i i i i
t i i

q t q t q t q t dtq qd d
           

  
 



where we have expanded ℒ to first order in the small variation (as a 
Taylor series). We integrate the final term by parts in order to get the 
integrand in terms of qi alone (and not iqd   ):

We have chosen  iq td  such that it vanishes at the end-points. 
So the first term of the right of (2.1) is zero. This gives us

   
1

0

,
t

i i
t i i

d
S q t q t dtq dt qd d d           

 

which must hold for every choice of   .iq td  This can be the case 
only if the coefficient of  iq td  vanishes. So we obtain finally

 
0

l i

d
dt q q

 
  

 

 
(11.4)

for each coordinate i. The equations of motion in the form (11.4) are 
called the Euler –Lagrange equations.

It may seem that we have not gained much by writing Newton’s 
laws in this elaborate fashion, but in fact it is much easier to con-
struct the scalar energies (kinetic and potential energies) for a com-
plicated system than it is to apply the laws of motion from the forces 
directly. Let us look at some examples.
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11.3 NEWTON’S LAWS

Given that our “derivation” in Section 11.1 was far from rigor-
ous we should check that the Euler-Lagrange equations really are 
equivalent to Newton’s second law. For a collection of point masses 
mi at xi with potential energy U(xi) we have

 21
.2 i i i

i

m x U x     

The generalized coordinates qi are here the Cartesian coordinates xi 
so the Euler-Lagrange equations become

 – 0i i
i i i

d d U
mdt q xq dt x

  
      

or

–ii i
i

Fx
U

m x


 


which is Newton’s law, as required.

11.4 SIMPLE HARMONIC OSCILLATOR

For a simple harmonic oscillator the Lagrangian is

2 2 21 1
2 2mx m xw 

and the Euler-Lagrange equation (with qi  x) is

2 0,
i i

d d
mx m xdt q q dt x x w   

         
   

from which the usual oscillator equations follow.
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11.5 ACCELERATION IN POLAR COORDINATES

Let us do something a bit more useful. In Chapter 7, we saw how 
to derive the components of acceleration for motion in the plane in 
polar coordinates. The Euler-Lagrange equations give a much sim-
pler derivation. For a particle of unit mass with kinetic energy only 
the Lagrangian is

 2 2 21
.2KE r r q   

There are two Euler-Lagrange equations, one each for r and for . 
These give

2
r

d
a r rdt r q     




and
2 2 ,

d
a r rdtq q q

q
     

 


which are the required components of acceleration.

11.6 ROTATING COORDINATE SYSTEM

The Lagrange method also gives a relatively easy way of obtain-
ing the equations of motion in a rotating coordinate system. Con-
sider a particle of unit mass at location r. If it has velocity v in the 
rotating frame and velocity V in the inertial frame then

.  V v r

The Lagrangian is

   21 1 1
. . 2 . .2 2 2V       V V v v v r r r    
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   1
. 2 . .2     v v v r r r    

where we have exploited the cyclic properties of the scalar triple 
product.

Then

   – –
d d
dt dt

 
        v r v rv r       

 

and, assuming ω is constant,

 
 2 ,

d
dt     
va v r    

 
(11.5)

with additional terms in  if ω is not constant.

If you are troubled by the differentiation with respect to vectors 
then we can add indices, so v is replaced by vi, r by ri and ω ∧ r by 
(ω ∧ r)i. Then

    

    

22

22

1
2 –2

1
– 2 –2

i i i i i i ii
i

i i i i i i ii
i

v v v r r r r

v v r v r r r

w w w

w w w

   

  







Then, from the first form for ℒ,

 i i
i

vv


   r


and from the second

        2– – . – – .i ii i i
i

r rr w
       v r v r        



Putting these together in the Euler-Lagrange equations gives the ith 
component of (11.5):
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   2 .i i i i
d

a v vdt w      r  

11.7 BEAD ON A WIRE

Figure 11.2: A bead is free to slide on a wire frame which is rotating 
in a horizontal plane about the origin

Here is a more interesting, if artificial, example which illustrates the 
power of the method for dynamical problems. Consider a circular 
hoop of wire rotating with constant speed in a horizontal plane about 
a point of its circumference with a bead of unit mass free to slide on 
the wire. What is the equation of motion of the bead relative to the 
wire? (Figure 11.2)

The position of the bead is given by

 cos cosx a t a tw w q  

 sin siny a t a tw w q  

where q, the generalized coordinate, is a function of t. The kinetic 
energy is
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 2 21
2KE x y   

2 2 2 2 2( ) 2 ( )cosa a aw q w w w q     

which is the complete Lagrangian, because there is no potential 
energy. The equation of motion of the bead is

 
2 sin 0.q w q   (11.6)

The interest of the problem is that the motion turns out to be the 
same as that of a compound pendulum under gravity.

Having obtained the result we should be able to explain it. In 
fact, from the point of view of an observer rotating with the hoop, 
the bead slides on a wire in a gravitational field aω2. In this frame of 
reference we can derive (11.6) directly.

11.8 CYCLOIDAL PENDULUM

Figure 11.3: The cycloid x = (q – sin q ), y = (1+cos q

A bead slides without friction under gravity on a wire in the 
shape of a vertical cycloid
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( sin ), (1 cos )x a y aq q q   

where y measures the height of a point on the cycloid and 
 0 2q p   is a generalized coordinate.

We want to find the equations of motion for q. We have

2 21 1
2 2mx my mgy   

2 2 2 2 21 1
( cos ) sin (1 cos )2 2m a m a mgaq q q q q q      

The Euler-Lagrange equations are therefore

21
sin cos cos 0.2 2 2 2 2

g
a

q q qq q   

If we put cos 2u
q

  we get

0,4
g

u ua 

which shows that the bead executes simple harmonic motion. Note 
that we have not made the small angle approximation here: the 
cycloidal pendulum is exactly harmonic independent of the ampli-
tude of the motion of the bead.

11.9 SPHERICAL PENDULUM

The Lagrange method is also useful if we want to look at small 
amplitude oscillations of a system. If we are interested only in small 
oscillations then we can approximate the Lagrangian directly, rather 
than working out the exact equations of motion and then approxi-
mating. We shall use the spherical pendulum as an illustration. This 
comprises a bob of mass M on the end of a weightless rod free to 
move on the surface of a sphere.
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Figure 11.4: The spherical pendulum

Let  be the angle of the rod with the vertical,  the rotation angle, 
and let the length of the rod be l. The Lagrangian is

22 2 2 21 1
sin (1 cos )2 2Ml Ml Mglq q qf   

The first step is to remove all the constants as far as possible. An addi-
tive constant can be neglected. An overall constant in the Lagrang-
ian will not contribute to the Euler-Lagrange equations so we can 
take out a constant factor. One might be tempted to divide through 
by Ml2 but this would leave a dimensional factor in the potential 
energy. Instead we take out a factor of ;Mgl

2 2
21 1

sin – cos .2 2
l d l d
g dt g dt

qq q          


We can also rescale the time t in favor of a dimensionless time 
1
2

.
g

tlt     

This gives us a new Lagrangian with much less clutter:

2 2 21 1
sin cos ,2 2f q q q   

where the prime denotes differentiation with respect to . There 
are two Euler-Lagrange equations, one for each of the generalized 
coordinates  and . These are
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 2– sin 0
d d
d d qt t

 
  

   

and

2– cos sin sin 0.
d
d q q q qt q q

 
     

  

One solution is

2
0 0/ sin constant,p q    

1
0 2

0

1
cos constant.q q   



where p  is a constant (proportional to the angular momentum per 
unit mass). As we might expect the bob swings round at a constant 
angle to the vertical related to its speed. In other words, the bob 
behaves as a conical pendulum with period

 

2
.

l
T g

p
 

  
(11.7)

In general, we cannot solve the equations of motion analytically. In 
Figure 11.5 we show the phase portraits the –q q  plane for the 
case 2p   computed numerically. The pendulum oscillates in  
between an upper and lower value.

We now perturb the motion of the conical pendulum. Let

0 .d  
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Figure 11.5: Numerical solutions of the  – equation showing trajectories 
in the phase plane.  oscillates between upper and lower values.

In deriving the approximate Lagrangian we can ignore constant 
terms, since these will not contribute to the Euler-Lagrange equa-
tions. We can also ignore terms linear in ϵ and  because the action 
stationary at the equilibrium solution (so the first order variation 
vanishes). We therefore need to calculate the second order terms in ϵ and . The Lagrangian becomes approximately:

The equations of motion are

 
 (11.8)

and

'' 2 2 2
0 0 0 0 0 0 0– – 2 cos sin (cos – sin cos ) 0.

d d d
d d d d q q q q qt

          ò òò ò
   

 
(11.9)

Equation (11.8) gives
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(11.10)

If we consider the case where we do not perturb the angular momen-
tum, the constant in (11.10) can be set to zero. We can then use 
(11.10) to eliminate  from (11.9) which becomes

This is simple harmonic motion: the pendulum oscillates in altitude 
 with a period

1
2 2

0 0 0

2
.

(1 2cos cos )

l
T gq

p

q q


 

The period of the azimuthal () motion is also perturbed slightly 
from its original value Tf  (Equation (11.7)), but in general the two 
periods will be unequal. The azimuthal angle at which the altitude 
 is a maximum (or minimum) therefore precesses round the orbit.

11.10 COMPOUND PENDULUM

Figure 11.6: A compound pendulum
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Many textbook examples of the Lagrange method are artificial 
because they are chosen to give equations of motion that can be 
solved analytically. In practice the Lagrange method lets us set up 
the equations of motion of real systems which can then be solved 
numerically. Here is an example where we use the method to obtain 
the equations of motion, but would need numerical methods to get 
any further. The example is the compound pendulum. This com-
prises two rods which can pivot freely about a support at the top of 
one and about the point where they are joined. This is a model of a 
golf swing (pivoted at the shoulder and wrist) and of the medieval 
siege weapon, the trebuchet. In both cases the idea is to put more 
energy into the projectile at the end of the pendulum (the golf ball 
or the missile) than would be possible with an un-jointed pendu-
lum.

The potential energy of the system (Figure 11.6) is straightforward:

(1 – cos ) [2 (1 – cos ) (1 – cos )]U Mga mg a bq q   

 2 (1 – cos ) (1 – cos )M m ga mgbq   

The kinetic energy is more complicated. It comprises the rotational 
energy of the upper strut plus the rotational and translational energy 
of the lower strut. In these cases it is often safer to deduce the kinetic 
energy from first principles. Taking the top pivot as origin, the x and 
y coordinates of a point on the upper strut a distance a from the 
pivot are

1 1sin , – cos ,x a y al q l q 

where 0 2.l   

For the lower strut the corresponding coordinates are

2 22 sin sin , – 2 cos – cos .x a b y a bq l q l   
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Assuming the mass density, ρ per unit length, is uniform, the ele-
ments of mass are ρadλ on the top link and ρbdλ on the bottom strut. 
The kinetic energy is

Performing the integrations we get

2 2 2 22 2
2 cos ( – ).3 3KE M m a mb mabq q q      

    

where M = 2 ρa is the mass of the upper strut and m = 2ρb is the mass 
of the lower strut.

To simplify slightly we take the case where a b  and to simplify 
drastically we assume m M  and that we are interested only in 
small oscillations. Then, ignoring terms higher than quadratic,

 2 2 2 2 2 2 22 2 1 1
2 – 2 – .3 3 2 2M m a ma ma M m ga mgaq q q       

     

We can simplify this by taking out a common factor of Mga  and 
transforming to a dimensionless time

.
g

tat 

Then, letting /m Mm  be our small parameter,

 2 2 2 22 2 1 1 1
2 1 2 – – .3 3 2 2 2m q m mq m q m m              

The Euler-Lagrange equations of motion, for and  respectively, 
are

 
 1

4 1 2 03 m q m m q         
 

(11.11)

4
0.3 q    

We deduce that the two eigenfrequencies are
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3
0.67 .2

gm
M aw

 
     

(11.12)

To check, note that if µ = 0 there is no -term in the Lagrangian, so 
the only equation of motion is (11.11) with µ set to 0; this is simple 
harmonic motion with a (dimensionless) frequency of 3/2, which 
agrees with (11.12) in this limit.

Thus the frequency of the pendulum is split into two close fre-
quencies by the addition of the small mass of the lower strut. We 
can refer to Section 8.10 to see what happens rather than repeating 
the exercise. The system beats at the difference of the two eigen-
frequencies and energy is transferred between the two struts on the 
corresponding long timescale. From (11.11) we see that the ampli-
tude of the  oscillation is m/M times that of the -oscillation. This 
is reasonable if the energy is to be transferred between the larger 
and smaller masses. Thus, if we set the top strut in motion initially, 
what we see is the top strut oscillating with a small amplitude which 
gradually decreases as the lower strut starts to oscillate with a (rela-
tively) large amplitude; the situation is then gradually reversed. We 
can guess from this how a trebuchet works. Under the right con-
ditions, the energy of the massive arm is largely concentrated into 
the smaller arm and hence into the projectile. It is analogous to the 
whiplash effect.

11.11 SMALL OSCILLATIONS REVISITED

With a general formulation we can approach the problem of 
small oscillations in greater generality than in Chapter 10. Rather 
than starting from the equations of motion and adding a small per-
turbation to the coordinates, we manipulate the Lagrangian to the 
form where it yields directly the small oscillations equations.

Let us start from a general form for the Lagangian:

For small displacements about equilibrium



286 • Newtonian Mechanics

where the linear terms have disappeared because x0 satisfies the 
equations of motion. Then, taking ϵi as the generalized coordinates 
of the system, the Euler-Lagrange equations give

  
(11.13)

where we have defined

0

2

.ij
i j

V
V x x



 
    x x

Equation (11.13) is a linear equation with constant coefficient 
(because ijT  and ijV  are evaluated at the equilibrium point x0). So 
we look for a solution  , giving

2( ) 0.ij j ij j
j

T a V aw  

This set of equations has only the trivial solution 0ja   for all j 
unless the system of equations is singular. Thus (in matrix notation) 
for a non-trivial solution to the oscillation amplitudes we require

  2det 0.T Vw    (11.14)

Solving (11.14) for , gives the eigenfrequencies (or normal modes) 
of the system. The system is stable if the imaginary part of  satisfies ℐ ()  0. If T is the identity matrix then the squared eigenfrequen-
cies, 2, are the eigenvalues of the matrix V.

11.12 AN EXAMPLE

Consider a massless elastic string, with fixed ends with masses 
m1 and m2 attached at the trisection points. Let the masses oscillate 
in a horizontal plane orthogonal to the string as in Figure 11.7. The 
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problem is to ascertain whether we can adjust the masses m1 and m2 

to obtain any given pair of eigenfrequencies.

Figure 11.7: Mass points on a massless elastic string

Let the displacements of the masses from equilibrium be y1 and y2. 
The kinetic energy of the system is

2 2
1 1 2 2

1 1
2 2KE m y m y  

and the potential energy is

 22 2
1 1 2 2

1 1
2 2U ky k y y ky   

where k is the elastic constant of the string. Then (in the notation of 
Section 11.11)

2 2

1 1 1 2 1

2 2
2

2 1 2 2

0
0

K K

K K

E E
y y y y m

T
mE E

y y y y

  
      
       
     

and
2 2

1 1 1 2

2 2

2 1 2 2

2
.

2

U U
y y y y k k

V
k kU U

y y y y

  
      
       
     

The frequencies of the normal modes (eigenfrequencies) are given 
by

 

2
1

2
2

2
det 0.

2

m k k

k m k

w

w

  
 

    
(11.15)

Let 2
1 1/k m w  and 2

2 2/k m w  . Then (11.15) becomes:

 4 2 2 2 2 2
1 2 1 22 3 0.w w w w w w   

The solutions for the frequencies of the normal modes are
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    22 2 2 2 2 2 2
1 2 1 2 1 23 .w w w w w w w    

 (11.16)

Now we choose any two frequencies aw  and bw  say, and see if we 
can solve (11.16) for 1w  and 2w  . There are a few shortcuts that are 
worth noting.

We have to solve

    22 2 2 2 2 2 2
1 2 1 2 1 23aw w w w w w w    

 
(11.17)

    22 2 2 2 2 2 2
1 2 1 2 1 23bw w w w w w w    

 
(11.18)

for 1w  and 2w  . Adding (11.17) and (11.18) gives

 
 2 2 2 2

1 2
1

.2 a bw w w w  
 

(11.19)

Subtracting (11.18) from (11.17) and squaring gives

 
   2 22 2 2 2 2 2

1 2 1 2
1

3 .4 a bw w w w w w   
 

(11.20)

Using (11.19) to eliminate 2 2
1 2( )w w  from (11.20) with some rear-

rangement gives

 
2 2 2 2
1 2

1
.3 a bw w w w
 (11.21)

We can now use (11.19) and (11.21) to find 1 and 2. We have

   2 2 2 2 2
1 2 1 1 2 2

1 2
2 2 3a b a bw w w w w w w w w w      

and

   2 2 2 2 2
1 2 1 1 2 2

1 2
2 .2 3a b a bw w w w w w w w w w      

Extracting 1 and 2 is now straightforward. We obtain finally:
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   
1 1
2 22 2 2 2

1
1 1 2 1 1 2
2 2 2 23 3a b a b a b a bw w w w w w w w w              

   
1 1
2 22 2 2 2

2
1 1 2 1 1 2

– –2 2 2 23 3a b a b a b a bw w w w w w w w w            

The issue now is whether these values are real for all values of a and 
ωb. Let /a bx w w . Then

 2 2 21 2 4
0 if 1 02 3 3a b a b x xw w w w     

i.e. x =  3 or 1/ 3. Between these values the argument of the square 
root is negative. Thus, we can adjust the masses to achieve frequency 
ratios in the range / 3a bw w    or / 1 / 3.a bw w  

11.13 HAMILTONIAN MECHANICS

The Lagrange equations provide us with a general method, but 
not with a general solution of the equations of motion. Hamilton 
tried to develop the theory further to achieve this. Although he 
did not succeed, his work today is of upmost importance for the 
analysis of dynamical systems and the development of quantum 
mechanics.

The idea of Hamiltonian mechanics is to write the equations of 
motion in first order form. To do this we first define a canonical 
momentum

 
.p dq

∂
 


 
(11.22)

 The Hamiltonian function, H, a function of q and p, is then obtained 
from

 .H pq    (11.23)
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In the general case that the Lagrangian (and hence the Hamilto-
nian) are time-dependent, we get for a small variation of coordinates

H
H pq p q q q tq q dt

∂ ∂ ∂d d d d d d∂ ∂      
 

H
pq p q tt

∂d d d∂   

using (11.22) and the Euler-Lagrange equations, Here q  and p  are 
considered to be functions of p and q. Since variations q, p and t 
are independent, we obtain

 

dq H
dt p

∂
∂

 
(11.24)

 

dp H
dt q

∂
∂ 

 
(11.25)

and

 
.

dH H
dt t

∂
∂

 (11.26)

These are the equations of motion in Hamiltonian form.

The action is now

 
 S pq H dt  

 
(11.27)

integrated along a trajectory. Minimizing S (with respect to p and q) 
we retrieve Hamilton’s Equations (11.24) and (11.25).

Next we show that the momenta can be obtained from the action:

 
.

S
p q

∂
∂

 
(11.28)
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To do this we vary the end point of the trajectory in the integral in 
(11.27). We have then

  S pdq H dt p q H td d d d   

because this is what we add to the integral when we vary the final 
endpoint by t and q(t). Since q and t are independent, we obtain 
both (11.28) and

 
( , ).

S
H q pt

∂
∂  

 
(11.29)

This gives us an important result: the action S is the solution of the 
partial differential equation

 
, 0.

S S
H qt q

∂ ∂
∂ ∂

      
(11.30)

Equation (11.30) is the Hamilton-Jacobi equation. A general solution 
of this equation would in principle be the solution to all mechan-
ics problems. More practically, it gives us a novel picture of classical 
mechanics which provides a starting point for the quantum picture.

More generally, if a system is defined by more than one general-

ized coordinate,  1 2, , nq q qºq  then the momenta are

 Sp   (11.31)

and the Hamilton-Jacobi equation becomes

1 2
1 2

, , , , , , , 0n
n

S S S S
H q q qt q q q

∂ ∂ ∂ ∂º º∂ ∂ ∂ ∂
    

The Hamilton-Jacobi equation can be thought of as showing the evolu-
tion of the surfaces S = constant in space (in the q-coordinates). From 
(13.10) this means that the particle trajectories are orthogonal to the 
surfaces S = constant (because S is the normal to S = constant).
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11.14  CONSERVATION LAWS AND 
NOETHER’S THEOREM

Suppose that ℒ is independent of position. Then the dynamics is 
unchanged by translation q  q + ϵ . Also, from the Euler-Lagrange 
equations,

0
d
dt q

∂
∂

    


and hence

constant.p q
∂
∂ 


So the conservation of momentum is linked to the invariance of a 
system under translation.

Similarly, if ℒ is independent of an angle,  say, then

constant
∂
∂





expresses the conservation of the corresponding component of 
angular momentum .

Finally, if ℒ is independent of t then

0
d

q q q q qdt q q q q q
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

        
      
    



so

constant .q qp H Eq
∂
∂       


 

We shall show that the constant E is the energy, by looking at the 
special case

 21
.2 mq U q 

For this Lagrangian we have
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21
( )2q mq U qq

∂
∂    



which is indeed the total energy. We also see that

.H E

Thus, if the Lagrangian (and Hamiltonian) does not depend explic-
itly on time (except through the dynamical variables p and q) then 
the Hamiltonian is numerically equal to the energy, and the energy 
is conserved. So time translation invariance is related to conserva-
tion of energy.

These results are part of a general theorem (Noether’s theorem) 
linking symmetries of the Lagrangian to conserved quantities. To 
state the theorem we first have to distinguish between continuous 
and discrete symmetries. For example, reflection symmetry (x  
 x) is a discrete symmetry, while translation ( x  x + x) is a con-
tinuous symmetry, since the system can be varied by arbitrarily small 
amounts. Roughly speaking then, Noether’s theorem states that: to a 
continuous symmetry of the action there corresponds a quantity that 
does not change over time.

11.15  ACTION ANGLE VARIABLES AND 
INTEGRABLE SYSTEMS

An important distinction can be made in the types of behavior 
of dynamical; systems related to their integrability. We shall explain 
this through an example.

 Consider the harmonic oscillator again. The Hamiltonian is
2

2 21
.2 2

p
H m qm w 

Note that H is a function of p and q. Now define new coordinates J 
and  by
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2 cosp m Jw q

2
sin .

J
q m qw

The Hamiltonian becomes

.H Jw

The coordinates J and  are known as action angle variables. In 
terms of these variables the system is completely integrable: Hamil-
ton’s equations become

constant, constantJ tq w  

so the motion takes place on a circle. Whenever we can find a trans-
formation that puts the Hamiltonian into action-angle form, H = 
J.ω, we say the system is integrable. The motion takes place on the 
n-dimensional generalization of a circle which is a torus in n-dimen-
sions. (It is not possible to picture this beyond n = 2!)

However, not all systems are integrable. Suppose we give our 
oscillator a small perturbation:

Hamilton’s equations become

Next we expand f in a complex Fourier series:

   , .ik
k

k

f J f J e qq Â
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So

The solutions are, to first order in ϵ

In n-dimensions we should have

So J   if there are modes with k.ω =0. This is a signal of non-inte-
grable behavior and leads to systems exhibiting chaotic (unpredict-
able) motions in the absence of dissipation. This behavior is called 
Hamiltonian chaos.

11.16 QUANTUM THEORY

Our final task is to prepare to leave classical mechanics for quan-
tum mechanics. There are two routes. The first is the Heisenberg 
picture which we obtain as follows.
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We write the Hamiltonian equations of motion in terms of a 
Poisson bracket, defined by:

, .
F G G F

F G q p q p
∂ ∂ ∂ ∂{ } ∂ ∂ ∂ ∂

    

Then with F p  and G q  

   , – 1, , 0, , 0.p q p p q q{ }  

and

,
H

q H qp
∂{ } ∂  

 , .
H

p H pq
∂
∂   

We get the quantum equations of motion by replacing q by the oper-
ator q̂  and p by the operator –iℏ  /x and the Poisson bracket by a 
commutator

 ˆ ˆ ˆ ˆ ˆ ˆ, – .p q p q q p 

The alternative approach to quantum mechanics is the Schrödinger 
picture. Here we start from the Hamilton-Jacobi equation with Car-
tesian coordinate :q x  

, .
S

E H xx
∂
∂

    

We replace H by the operator

( , )H i xx
∂
∂ 

and S by the wave function . So, for example, if
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 
2

2
p

H V xm 

we get

2 2

22E Vm x
∂ yy y
∂

  


the (time-independent) Schrödinger wave equation. Classical 
mechanics then turns out to be the geometrical optics approxima-
tion to the waves of the quantum theory.

11.17 CHAPTER SUMMARY

● The equations of motion of a conservative dynamical system 
can be obtained by minimizing the action of the system.

● The action is the integral over time of the Lagrangian, ℒ = 
Kinetic energy  Potential energy = T U  

● The Euler-Lagrange equations of motion for a system 
with Lagrangian ℒ and generalized coordinates iq  are 

0
i

d
dt q qi

∂ ∂
∂ ∂ 
   

● The frequencies of small oscillations are given by 

 2det 0T Vw    where the matrices T and V are defined 
by the quadratic terms in the kinetic and potential energies 
respectively.

● The equations of motion can be written in terms 

of the Hamiltonian,  ,H q p  in first order form 

and .
dq dpH H
dt p dt q

∂ ∂
∂ ∂    .

● If the Hamiltonian is not explicitly dependent on time, then 
,H E  the total energy.
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● Noether’s theorem states that to a continuous symmetry of 
the action there corresponds a quantity that does not change 
over time.

11.18 EXERCISES

Figure 11.8: Question 1

1.  The figure shows two rigid massless rods with masses M1, M2 
and M3 attached. The lower rod has length 2L and is supported 
on a frictionless pivot about its midpoint. The upper rod has 
length 2l and is linked to the top of the first rod by a frictionless 
pivot at its bottom end.

Show that the coordinates (x, y) of the three masses relative to a 
coordinate system through the support are

1 1 1 1

2 1 2 2

3 1 2 3 1 2

sin , – sin
– sin , – cos
– sin 2 sin , cos 2 cos

x L y L

x L y L

x L l y L l

q q
q q
q q q q

 
 
   

Hence (or otherwise) show that the Lagrangian for the motion 
of the rods is

2 2 2 2 2 2 2 2
1 1 2 2 3 1 3 2

3 1 2 1 2 1 2

1 1

2 1 3 1 2

1 1 1
22 2 2

2 (cos cos sin sin )
cos

– cos – ( cos 2 cos )

M L M L M L M l

LM

M gL

M gL M g L l

q q q q

q q q q q q
q
q q q

   

 




   

 


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Derive the equations of motion for small oscillations about 
the position of equilibrium with the rods upright. By seeking 
a solution with 1 and 2  exp(it) (or otherwise) show that 
there is a mode of oscillation which is stable.

Why is this position nevertheless unstable?

2.  In spherical polar coordinates the kinetic energy of a unit mass 
particle is

2 2 2 2 2 2sin .KE r r rq q    

Find the components of acceleration in spherical polar 
coordinates.

3.  The Lagrangian for a particle in an electromagnetic field is

   2 2 21
, ,2 x y z x y z xA yB zC        

where A, B and C are functions of position x, y, z. Derive the 
equations of motion.

4.  A triatomic molecule is modelled as a central mass M joined 
by springs, with spring constants k, to two masses m in a 
linear configuration. Find the modes of oscillation and their 
frequencies.

5.  A uniform rod of mass M length l is freely pivoted at one end. 
Investigate its possible motion under gravity.

6.  A point particle of mass m is attached to the end of a massless 
rod the other end of which is free to slide on a planar curve of 
the form   .y f x  Investigate the motion of the system.
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