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INTRODUCTION

Quantum mechanics is not the easiest part of a physics curriculum. 
Nor is quantum mechanics the easiest subject upon which to write 
an introductory text book. This is partly because quantum mechan-
ics uses mathematical concepts with which students are often not 
familiar prior to their introduction to quantum mechanics and partly 
because it is diffi cult to present quantum mechanics in a step by step 
fashion. Most topics of physics can be presented by starting at A, 
following by B, progressing to C, and ending at Z, all in the proper 
order. Quantum mechanics is different, and I have seen no text that 
presents quantum mechanics in such a step by step way. There is 
also a great proliferation of terminology; most things in quantum 
mechanics have several names, and it is confusing and diffi cult to 
become familiar with all the different names while simultaneously 
trying to understand the subject. Then there are unintuitive con-
cepts like wavefunction collapse or superposition with which the 
student has to wrestle.

This book is the 6th draft of my attempt to write an introduc-
tion to quantum mechanics that presents the subject simply. Ini-
tially, I followed the standard pattern that students will fi nd in the 
many other quantum mechanics texts. In these texts, the authors go 
straight to the Schrödinger equation without covering the necessary 
mathematics to understand it; the necessary mathematics is usually 
appended to the Schrödinger equation in later chapters (or, often, in 
other books). Finally, we meet angular momentum and spin. Other 
material is scattered throughout the texts almost at random. I do not 
contemn the authors of such texts; I am fully familiar with the dif-
fi culty of presenting quantum mechanics in any other way, and for 
some students, these other authors might well have done a better job 
than have I in presenting the subject. Now, in my 6th draft, I have 
concluded that quantum mechanics cannot be presented entirely in 
a simple step by step way. However, it can be presented more simply 
than it often is presented.

A look through the contents pages of this book will show that 
we do not approach the Schrödinger equation until we are more 
than half way through the book. Indeed, we present an overview of 
quantum mechanics before we present the Schrödinger equation. 
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xiv • Quantum Mechanics

The reader will note that we explain much of the mathematics that 
underpins the Schrödinger equation within the fi rst part of the book. 
We deal with angular momentum and intrinsic spin towards the end 
of the book, and, in this, we follow the normal order of presentation. 
Although unconventional in the presentation, I hope I have been 
able in this book to make quantum mechanics less complicated and 
less diffi cult to learn than it has the reputation of being.

There is a nagging feeling about quantum mechanics that was 
shared by many of the greatest physicists of the 20th century and is 
still felt today by many physicists. That nagging feeling is that there 
is something about quantum mechanics that is wrong or incomplete. 
As a physical theory, quantum mechanics has passed every test set 
for it with 100% success. Yet still, that nagging feeling will not leave 
the hearts of physicists. We feel that we do not really understand 
it. Unlike most introductory texts, we do not eschew this nagging 
feeling. We do not discuss the philosophical aspects of quantum 
mechanics at great length; that is not the place of an introductory 
text; but we do give some space over to the philosophical implica-
tions of quantum mechanics. In particular, we wonder if the whole 
mathematical structure of quantum mechanics can somehow be 
changed to rewrite it in more conventional mathematics (division 
algebras), and we wonder if the different geometric spaces associ-
ated with the different division algebras will allow a sensible extirpa-
tion of that nagging feeling.

There is some material in this book that your author has not seen 
presented elsewhere. In particular, the derivation of the momentum 
operator as no more than differentiation with respect to the imagi-
nary variable and the derivation of Planck’s constant as no more than 
the inverse of the scaling parameter of the complex numbers, . 
Also previously unseen by your author in an introductory textbook is 
the relativistic derivation of the Schrödinger equation.

There is more to quantum mechanics than can be introduced in 
a textbook of this size; quantum fi eld theory comes immediately to 
mind. Preparation for this more advanced material is often omitted 
from introductory texts. To your author’s surprise, restructuring the 
usual presentation of quantum mechanics allows at least some prep-
aration for the more advanced material, and so there is some such 
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Introduction • xv

preparation included in this book, but we avoid detailed scrutiny of 
this advanced material – this book is an introduction only. 

Scattered throughout the book are numerous asides. The nature 
of the asides is varied; some are biographical or historical giving a fl a-
vour of the kind of people who developed quantum mechanics; some 
are included to broaden the student’s view of quantum mechanics, 
and some introduce non-conventional ways of viewing things. The 
asides are not essential reading, but the student will lose much if she 
ignores them; physics is, after all, a human pursuit.

I hope the reader will fi nd this book relatively easy going. Chap-
ters upon philosophical considerations and the history of quantum 
mechanics have been interspersed with the more technical chapters. 
Much which has been said before is repeated at appropriate points 
in the texts, and your author does not apologize for this but hopes 
that it makes the study of this text easier. Much that will follow in 
detail later has been lightly introduced in earlier chapters. There are 
concepts in quantum mechanics that, at fi rst sight, hit the student 
like a brick wall; a gentle introduction is often less challenging. Even 
the brightest reader will not absorb the whole of this text in one 
reading, and perhaps three readings would be preferred. I hope the 
reader will fi nd this book suffi ciently clear and enlightening that the 
student will want to read it a second and third time.

Dennis Morris
May 2016
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CHAPTER 1
THE PLACE OF 
QUANTUM MECHANICS 
IN MODERN PHYSICS

Is the reader sitting comfortably? Then we will begin. Our world 
understanding is divided into several parts. There is the general the-
ory of relativity, and there is the special theory of relativity. There 
is quantum fi eld theory, which is usually referred to as QFT, and 
there is quantum mechanics. There is Newtonian mechanics, and 
there is string theory1. In this book, we are concerned with quantum 
mechanics but we will briefl y review the other areas of physics and 
how they relate to quantum mechanics.

1.1 GENERAL RELATIVITY

General relativity is a theory that is distinct from and separate 
from quantum mechanics, and it is not part of our study of quantum 
mechanics. General relativity is a theory of gravity which includes 
within it special relativity. As such, general relativity is an essen-
tial part of humankind’s understanding of the universe. Quantum 
mechanics is a theory that is not concerned with gravity and has 

1. We cannot really call string theory a physical theory because it is of no practical use.

The nuts.indb   1 09-05-2016   10:44:47



2 • Quantum Mechanics

nothing to say about gravity. It is of concern to theoretical physicists 
that our world understanding is divided into distinct and separate 
parts, and we would prefer to unite general relativity with quantum 
mechanics into only one theory, but, to date, humankind has failed 
in that endeavour. Part, possibly the whole, of the diffi culty in unit-
ing the theories of general relativity and quantum mechanics is that 
they are written in very different mathematical formulations. Gen-
eral relativity is written in the mathematics of tensors and covari-
ant derivatives. Quantum mechanics is written in the mathematics 
of operators, eigenfunctions, eigenvectors, and eigenvalues (all of 
which are quite simple and will be explained shortly). Gravity is 
a necessarily continuous tensor fi eld that can take any value. The 
dynamic variables of quantum mechanics are not tensors and are not 
necessarily continuous and they can take only allowed values. 

Aside: There are other theories of gravity such as the Brans-Dicke 
theory. The Brans-Dicke theory is a scalar-tensor theory. This means 
that, as well as the tensor fields that we have in general relativity, 
we also have a scalar field that permeates the universe. The scalar 
field is the locally varying “strength” of the gravitational constant, G. 
Within general relativity, the gravitational constant is universal and 
does not vary from place to place. There is no evidence to decide 
between general relativity and the Brans-Dicke theory, but general 
relativity is preferred because it is the simpler of the two.

1.2 SPECIAL RELATIVITY

Special relativity is the mechanics of very rapidly moving bod-
ies. We most often do not deal with very rapidly moving bodies in 
quantum mechanics, and so quantum mechanics is formulated as a 
non-relativistic theory. By this, we mean that we take the Newtonian 
view of energy as being:

 
2

. . . . . .
2
p

E K E P E P E
m

     (1.1)
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The Place of Quantum Mechanics in Modern Physics • 3

Rather than taking the relativistic view of energy as:

 2 2 2 2 4E p c m c   (1.2)

The statement, “quantum mechanics is a non-relativistic theory” 
means no more and no less that this preference for the Newtonian 
expression for energy instead of the relativistic expression for energy. 

Aside: What is energy? Does energy really exist or is it no more than 
a part of a set of mathematical relationships that describe mechani-
cal processes? Do electrons really exist or are they no more than a 
part of a set of mathematical relationships, called quantum mechan-
ics, that describe atomic processes? There are philosophical views of 
quantum mechanics that see electrons as no more than a part of a 
set of mathematical relationships. None-the-less, electric lights and 
vacuum cleaners do work.

Quantum mechanics is often said to be inaccurate and incomplete 
because it is not relativistic, but quantum mechanics does not exclude 
special relativity. Indeed, there are parts of quantum mechanics that 
certainly encompass special relativity, but only exceptionally do we 
actually need special relativity in quantum mechanics (very accurate 
calculation of spectra). Only in this sense, is quantum mechanics 
incomplete and inaccurate without special relativity. It is often said 
that, without special relativity, we would have no concept of intrinsic 
spin, but this too is not true. Intrinsic spin does naturally fall out of 
the relativistic Dirac equation, but intrinsic spin can also be deduced 
from no more than angular momentum commutation relations with 
no need of special relativity. There is nothing in special relativity that 
necessitates the concept of intrinsic spin, and there is nothing about 
intrinsic spin that necessitates special relativity.

Even though the theory of quantum mechanics is non-relativistic 
in its preference for the Newtonian energy expression, quantum 
mechanics is still a very useful theory because most day-to-day phe-
nomena are non-relativistic. For these day-to-day phenomena, quan-
tum mechanics gives the correct answers with very good precision. 

As we said above, the mathematical formulation of quantum 
mechanics includes a type of vectors called eigenvectors. Special 
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4 • Quantum Mechanics

relativity is usually formulated in the mathematics of 4-vectors, oth-
erwise known as Minkowski space-time, and there is a mathematical 
connection here but the connection is not patent within quantum 
mechanics. Only when we graduate to QFT does the connection 
become patent.

1.3 QUANTUM FIELD THEORY

Quantum fi eld theory, QFT, is the relativistic version of quan-
tum mechanics that incorporates centrally within it both quantum 
mechanics and the special theory of relativity. QFT deals with both 
the high energy physics of very rapidly moving particles and the low 
energy physics of non-relativistic particles. Calculations within QFT 
are much harder than calculations within quantum mechanics – 
which is why we use quantum mechanics most of the time. 

QFT includes the relativistic energy relation:

 E = mc2  (1.3)

This relation allows the creation and annihilation of particles from, 
or into, energy, and so QFT can deal with the creation and annihila-
tion of particles. Being non-relativistic in its view of energy, quantum 
mechanics does not include this relation, and so quantum mechanics 
is unable to deal with the creation and annihilation of particles. 

QFT is formulated in the mathematics of the calculus of varia-
tions, Lagrangian action, and the Euler equations of motion. Such 
mathematics can be used in quantum mechanics, but, most often, 
particularly in introductory texts, such mathematics is not used in 
quantum mechanics. 

Aside: It is possible to formulate general relativity as a Lagrangian 
action, and the mathematician David Hilbert (1862-1943) did so2, 
but this does not lead to a unification of general relativity and QFT.

2. D. Hilbert, Die Grundlagen der Physik (1915)
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The Place of Quantum Mechanics in Modern Physics • 5

1.4 NEWTONIAN MECHANICS

Newtonian mechanics is the mechanics of electrically neutral, 
low velocity, macroscopic objects in weak gravitational fi elds – 
macroscopic means bigger than an atom. Newtonian mechanics is 
deterministic. Newtonian mechanics is founded on a set of dynamic 
variables that include energy, momentum, position, time, angular 
momentum, and others. In Newtonian mechanics, these dynamic 
variables are just assumed (observed) to exist. Within Newtonian 
mechanics, there is a set of relations between these dynamic vari-
ables such as the energy and momentum relation:

 
2

2
p

E
m

  (1.4)

wherein E is energy, p is momentum, and m is mass. 

Newtonian mechanics is remarkably successful, and it is by far 
the most widely used theory of mechanics in the modern world. 
However, experiments have found that Newtonian mechanics does 
not properly describe physical systems consisting of very small 
bodies. To deal with such systems of microscopic bodies, we need 
quantum mechanics. So, we are swapping Newtonian mechanics 
for quantum mechanics when we deal with tiny objects rather than 
large objects. This is very similar to the way we swap Newtonian 
mechanics for special relativity mechanics when we deal with very 
rapidly moving objects or we swap Newtonian gravity for general 
relativity when we deal with very strong gravitational fi elds. Math-
ematically, Newtonian mechanics is formulated as continuous rela-
tions between continuous real variables. 

Newtonian mechanics does describe the slow moving macro-
scopic world accurately, and special relativity “morphs” into New-
tonian mechanics at low velocity. So it is that quantum mechanics 
“morphs” into Newtonian mechanics for macroscopic systems. Quan-
tum mechanics and Newtonian mechanics fi t together seamlessly at 
the interface of the microscopic and the macroscopic and it might 
be said that quantum mechanics subcludes Newtonian mechanics in 
a way similar to the way that special relativity subcludes Newtonian 
mechanics.
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6 • Quantum Mechanics

1.5 STRING THEORY

String theory is a mathematically complex attempt to unify gen-
eral relativity with QFT, and hence with quantum mechanics since 
QFT includes quantum mechanics. String theory is about vibrating 
strings set in a 10-dimensional space in which six of the dimensions 
are “compact” (rolled up). There are no practical uses, to date, of 
string theory, and its only physical prediction is the existence of a 
spin-2 boson assumed to be associated with the gravitational force. 
There is no observational support for string theory, and so it is con-
sidered to be speculative. String theory is not considered in this 
book.

1.6 QUANTUM MECHANICS

Quantum mechanics is the only mechanics that describes the 
behavior and properties of very small objects, like electrons or 
atoms. Quantum mechanics is often seen as the mechanics of objects 
that are suffi ciently small and of suffi ciently low energy that the act 
of observing one of them by hitting it with a photon3 of light disturbs 
the object that is being observed – alters its momentum or position 
or energy or …. In the macroscopic world, it is presumed that hit-
ting an object, say a cricket ball, with a photon of light to observe it 
will not noticeably disturb the object. It is this disturbance or non-
disturbance by observation that is seen as differentiating the very 
small objects of quantum mechanics from the macroscopic objects 
of Newtonian mechanics. This disturbance is often associated with 
uncertainty in the values of some of the dynamic variables, but it 
is more accurate to associate quantum mechanical uncertainty with 
non-commuting operators having different eigenfunctions – which 
will be explained later – and to view quantum mechanics as the 
mechanics of dynamic operators with no mention of observational 
disturbance. 

3. The name photon was coined by G.N. Lewis in an article in Nature 18th Decem-
ber 1926.
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Uncertainty is a central feature of quantum mechanics, but it 
does not exist in Newtonian mechanics. Within Newtonian dynam-
ics, the values of all dynamic variables like position and momentum 
can, theoretically, be simultaneously known with infi nite precision. 
Within quantum mechanics, the values of all dynamic variables like 
position and momentum cannot be simultaneously known with infi -
nite precision.

Quantum mechanics is formulated as mathematical operators, 
eigenfunctions (eigenvectors), and eigenvalues. In quantum mechan-
ics, the continuous dynamic variables, such as energy or momentum, 
of Newtonian mechanics are each taken to be associated with an 
operator. In quantum mechanics, for each dynamic Newtonian vari-
able, there is one, and only one, corresponding operator such as the 
energy operator or the momentum operator. In Newtonian mechan-
ics, the dynamic variables can take any (real) value. In quantum 
mechanics, the only allowed values of the dynamic variables, such as 
the energy or the momentum, are the eigenvalues of the associated 
operator. These eigenvalues are often discreet rather than continu-
ous. Discreteness of the values of dynamical variables is a central 
feature of quantum mechanics. It is entirely to do with a discreet 
number of full wavelengths fi tting into a given length as do standing 
waves in a vibrating string of given length.

In addition to operators corresponding to every Newtonian 
dynamic variable, quantum mechanics has other operators such as 
the intrinsic spin operators. There is no concept of intrinsic spin 
within Newtonian mechanics. 

Operators are also different from Newtonian variables in that 
they often do not commute with each other, as we will explain later. 
There is no concept of non-commutation in Newtonian mechanics.

Newtonian mechanics is formulated in the geometric space, 3 
together with an independent real time variable, t  . Quantum 
mechanics is formulated in the geometric spaces formed by fi tting 
together copies of the complex numbers, , at “right-angles” to each 
other, like 2 or 3, together with an independent real time variable, 
t  . Such n spaces are called unitary spaces; the n spaces are 
called orthogonal spaces.
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8 • Quantum Mechanics

A vector in orthogonal (Newtonian) space, n, is an ordered set 
of n real numbers. A vector in unitary (quantum mechanics) space, 
n, is an ordered set of n complex numbers. We have:

  

1 1 2
4                     :              3 7
2 2 3

A vector in Orthogonal space    :    A vector in Unitary space
      Newtonian Mechanics         :       Quantum Mechanics

i

i

i

   
   
   
   
      

 (1.5)

This is a central difference between the two types of mechanics. The 
reader should note that time is added into n as a real variable rather 
than as a complex variable, which rather spoils the pattern. 

Aside: The reader should be aware that there are other understand-
ings of the nature of empty space. For example, quaternion space is 
a 4-dimensional space with one real axis and three imaginary axes. 
The Euclidean complex plane is a 2-dimensional space with one real 
axis and one imaginary axis. 2-dimensional space-time is the hyper-
bolic complex “plane” with one real axis and one imaginary axis.

The use of operator mathematics and of unitary space has led to 
quantum mechanics being seen as a mathematically daunting sub-
ject, but this is only because previous education has left us unfa-
miliar with operators and our hearts instinctively reject the “weird” 
mathematical operator formulation and the “weird” unitary space of 
quantum mechanics. If we can overcome our objection to the math-
ematical formulation of quantum mechanics, the subject is actually 
quite easy, as we hope the reader will discover. Easy or otherwise, 
an understanding of quantum mechanics is an essential part of our 
world understanding and is essential to modern engineering. 

Quantum mechanics has become an everyday tool of engineers. 
It is used to design lasers, optic cables, transistors and microchips 
(think tunnel diode4) amongst many other now commonplace 
objects. It is the basis of magnetic resonance imaging (MRI scans), 

4. The tunnel diode is also known as Esaki diode. In 1973, Leo Esaki jointly won the 
physics Nobel prize for discovering the electron tunneling means by which these 
diodes work. 
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the scanning tunneling microscope, fl uorescent light bulbs, ultra-
precise thermometers, and ultra-precise atomic clocks. It is used in 
research as we try to build energy harvesters, try to build quantum 
computers, try to develop quantum cryptography, try to develop 
instantaneous communication, and try to develop teleportation. It is 
even used by biochemists as they seek to develop genetic engineer-
ing techniques. In spite of our instinctive dislike of its mathematical 
formulation, quantum mechanics does work marvellously well, and 
that is why it has a place of high regard in modern physics. 

SUMMARY

To learn quantum mechanics, we are going to have to become 
familiar with the mathematics of operators, eigenvectors (eigenfunc-
tions), and eigenvalues. We will also have to become familiar with 
the linear spaces in which these mathematical objects exist. We will 
have to become familiar with complex vectors, n, and the inner 
products of those vectors. We will not have to become familiar with 
general relativity, special relativity, or string theory.
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CHAPTER 2
THE DYNAMIC 
VARIABLES IN 
QUANTUM MECHANICS

In any physical theory, there are particular dynamic variables 
such as energy, momentum, angular momentum etc. The energy 
variable appears in relativistic mechanics, in Newtonian mechanics, 
and in quantum mechanics. It is believed that energy will appear in 
every possible physical theory that describes the universe. There is 
a dynamic variable within quantum mechanics called intrinsic spin. 
Intrinsic spin does not appear as a dynamic variable within Newto-
nian mechanics or within relativistic mechanics, and so we see that 
different physical theories have different sets of dynamic variables. 
Different physical theories might also view the dynamic variables 
differently. In Newtonian mechanics, energy is just energy. In rela-
tivistic mechanics, energy is momentum in the time direction (or 
momentum is energy in the space direction). Different theories 
might relate variables to each other in different ways, and so we see 
that different theories that have the same set of dynamic variables do 
not necessarily treat these dynamic variables in the same way – that 
is part of being a different theory. 

We would like an exact list of all the dynamic variables there are 
in the universe; we would like to know why there are that number 
and why they exist and how they relate to each other. Unfortunately, 
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we do not yet properly understand these matters, but we might have 
some idea. That idea is called symmetry.

A physical system like a hydrogen atom has exactly the same 
properties regardless of whether it is pointing north or pointing 
west. Rotating experimental apparatus, say a test tube, by 90 does 
not affect the outcome of the experiment, say chemical reaction. We 
call this rotational symmetry. By using mathematics that is beyond 
this book (Noether’s theorem), we can associate this symmetry with 
a dynamic variable. For rotational symmetry, that dynamic variable 
is angular momentum. The symmetry also leads to a conservation 
law. For rotational symmetry, that conservation law is conservation 
of angular momentum.

Experimental apparatus gives the same results if it is translated 
in space from one place to another. Equivalently, a hydrogen atom 
has the same properties in different places. We call this spatial 
translational symmetry; it is associated with conservation of linear 
momentum and hence with linear momentum. Experimental appa-
ratus gives the same results if it is translated in time from one day to 
another. Equivalently, a hydrogen atom has the same properties on 
different days of the week. We call this temporal translational sym-
metry; it is associated with conservation of energy.

The reader might now think that all we have to do is write down 
the list of symmetries in the universe and we will have a list of dynamic 
variables. We believe that the reader would be correct, but we are 
unable to write down the list of symmetries in the universe. In particu-
lar, we do not understand the symmetry that, we assume, is associated 
with the intrinsic spin that we fi nd in quantum mechanics1.

Any physical theory is set over a type of geometric space. Special 
relativity is set over a hyperbolic 4-dimensional unifi ed space-time. 
Newtonian mechanics is set in a Euclidean 3-dimensional space 
with an independent 1-dimensional time. Within these different 
types of space there are different types of symmetry. Within Newto-
nian space, we can rotate in a 2-dimensional plane as described by 
a single 2  2 rotation matrix but we cannot rotate 3-dimensionally 

1. Intrinsic spin seems to be associated with rotation through 720 rather than 
through 360.
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as described by a single 3  3 rotation matrix. In relativistic mechan-
ics, we can rotate, 2-dimensionally, in space-time. Such rotation is 
a change of velocity. Rotation in space-time is not possible within 
Newtonian space because time is a separate thing from space within 
the Newtonian view. There are spaces, quaternion space is an exam-
ple, in which we can do 4-dimensional rotations as described by a 
single 4  4 rotation matrix, and there are spaces, the C3 spaces2, in 
which we can do 3-dimensional rotations as described by a single 3 
 3 rotation matrix. An important symmetry in quantum mechanics 
is the 2-way oddness and evenness symmetry that we call parity. In 
the 3-dimensional C3 spaces, parity is a 3-way “oddness and even-
ness”; in the 4-dimensional C4 spaces, parity is a 4-way “oddness and 
evenness”. In short, we will not understand the symmetries of the 
universe until we understand the space-time(s) of the universe. It is 
because we do not properly understand empty space that we cannot 
deduce a “correct” list of dynamic variables from symmetry alone.

There we have it. Your author would have liked to have started 
this book with something as simple as the real numbers, deduced the 
space-time(s) of the universe, taken the symmetries of that (those) 
space-time(s) and used them to deduce the existence of a particular 
set of dynamic variables which he would present in a tidy package to 
the reader. Your author, and, as far as he is aware, everyone else, is 
unable to do that because we do not understand empty space. None-
the-less, the idea is good. If anyone asks the reader why we have 
angular momentum in quantum mechanics or why we have intrin-
sic spin in quantum mechanics or why we have energy in quantum 
mechanics, the reader will answer that they each are associated with 
a particular symmetry of empty space, we think. The mathematical 
expression of this idea is called Noether’s theorem.

Of course, this list of dynamic variables would then be the list 
that every physical theory had to use and so we would be able to 
explain why there is energy in Newtonian mechanics and why there 
is momentum in relativistic mechanics.

2. See Dennis Morris: Complex Numbers – The Higher Dimensional Forms : ISBN: 
978-0-955600-30-2
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2.1 THE CORRESPONDENCE PRINCIPLE

Since we are not able to deduce the list of dynamic variables 
used in quantum mechanics “properly” from symmetries, we will 
have to use “stone-age” methods. Newtonian mechanics works 
well for macroscopic objects. Quantum mechanics ought to work 
at least as well for macroscopic objects, and it ought to give the 
same correct results. We therefore write down the list of Newto-
nian dynamic variables and we affi rm that, for every Newtonian 
dynamic variable, there is a corresponding quantum mechanical 
dynamic variable. We further affi rm that the relations between dif-
ferent Newtonian dynamic variables are duplicated between the 
corresponding quantum mechanical dynamic variables. These two 
affi rmations are called the correspondence principle. It is an asser-
tion and not a fact. The correspondence principle does not lead to 
a complete list of quantum mechanics dynamic variables; there is 
no intrinsic spin dynamic variable in Newtonian mechanics, but 
there is an intrinsic spin dynamic variable in quantum mechan-
ics. However, for every Newtonian dynamic variable (like energy 
or momentum) there is a corresponding quantum mechanical 
dynamic variable. 

The Correspondence Principle
For every Newtonian dynamic variable, there is a corresponding 
variable in quantum mechanics. The relations between the New-
tonian dynamic variables are duplicated between the quantum 
mechanics variables.

The correspondence principle says that, since there is an energy 
variable in Newtonian mechanics, there is an energy variable in 
quantum mechanics, and, since there is a momentum variable in 
Newtonian mechanics, there is a momentum variable in quantum 
mechanics, and, since in Newtonian mechanics we have the kinetic 
energy:

 
2

21
2 2

p
E mv

m
    (2.1)
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then in quantum mechanics, we have:

 
2ˆˆ

2
p

E
m

   (2.2)

Wherein we have put a carat (little hat) over the quantum mechani-
cal variables to distinguish them from the Newtonian variables. It is 
because we use this non-relativistic expression for energy in quantum 
mechanics that quantum mechanics is considered to be a non-rela-
tivistic theory.

Aside: The fine structure constant is a constant that measures the 
strength of the electromagnetic force. It was first introduced by 
Arnold Sommerfield in 1916. It is defined as:

 
2e
c

a 
h

 (2.3)

Wherein e is the charge of the electron and c is the velocity of light. 
It is because the velocity of light is so large compared to everyday 
experience that we can use the non-relativistic form of energy in 
quantum mechanics. Alternatively, it is because the fine structure 
constant is so small that we can use the non-relativistic form of 
energy in quantum mechanics.

2.2  NEWTONIAN DYNAMIC VARIABLES 
CORRESPOND TO OPERATORS

We should warn the reader that, within quantum mechanics, the 
dynamic variables are presented as being operators that operate on 
a physical state expressed as a vector or as a wave function to extract 
a real number from that physical state. We will look at this in much 
more detail in later chapters. It will be left to the reader to decide 
whether or not the conventional operator view of dynamic variables 
is necessary or whether we can continue to look at the dynamic vari-
ables as being just variables. If we had been able to deduce a list 
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of dynamic variables from symmetry considerations, we would not 
have been led to operators.

It is normal within quantum mechanics to denote an operator by 
putting a carat over it as we have done with the quantum mechanical 
variables (operators) above in (2.2).

There is more to the correspondence principle than immediately 
meets the eye. As we will see in later chapters, the order in which 
two different operators are applied matters. Operators are not nec-
essarily commutative, and so, when we convert Newtonian variables 
to operators, we impose the commutation relations of the opera-
tors on to the physical system. Newtonian variables always commute 
with each other, and so we are assuming substantial changes to the 
physical system when we apply the correspondence principle. This 
imposition of commutation relations on to a physical system is called 
quantitisation of the physical system.

Operators are not the only mathematical objects that are asso-
ciated with non-commutativity. There are non-commutative division 
algebras (higher dimensional types of complex numbers) like the 
quaternions and the A3 algebras that are not commutative.  Unfortu-
nately, except for the quaternions (Clifford algebras are not division 
algebras), these non-commutative division algebras were not known a 
century ago when physicists discovered the need for non-commutativ-
ity in atomic physics. Thus, physicists turned to operators in their need 
for non-commutativity when perhaps they should have turned to non-
commutative division algebras. As your author writes, there is research 
being done into this “other way of writing quantum mechanics”, but, 
although there has been much success with  electromagnetism, the 
research is not yet complete, and we do not yet know whether we 
can replace operators with non-commutative division algebras. If the 
reader thinks that operators are “unnatural” objects that ought not to 
be in a physical theory, the reader is not alone, but, to date, we cannot 
manage without them. Perhaps the reader will use the higher dimen-
sional division algebras to rewrite quantum theory.
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EXERCISE

1. The z-component of Newtonian angular momentum is given 
by:

 . .z y xL x p y p   (2.4)

 We see that the expression involves the Newtonian position 
variables {x, y } and the Newtonian momentum variables {px, 
py}. Use the correspondence principle to find the form of the 
quantum mechanical z-angular momentum operator, ˆ ?zL
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CHAPTER 3
WAVE PARTICLE 
DUALITY, 
SUPERPOSITION, AND
NON-LOCALITY

3.1 WAVE-PARTICLE DUALITY

In the early part of the 20th century, it was observed that par-
ticles like electrons have properties that are normally associated with 
waves and that electromagnetic waves, like light, have properties that 
are normally associated with particles. It has been, eventually and 
reluctantly, concluded by physicists that all objects are both waves 
and particles. We call this phenomenon wave-particle duality. Wave-
particle duality is the observed fact which drove the development 
of quantum mechanics and which both justifi es and insists upon a 
quantum mechanical formulation of our world understanding.

The wave-particle dual nature of objects leads to the breakdown 
of determinism and the use of probability in physics for which quan-
tum mechanics is so famous. It is the dual nature of objects that 
leads to the de Broglie wave equation and to the Schrödinger wave 

The nuts.indb   19 09-05-2016   10:44:50



20 • Quantum Mechanics

equation of quantum mechanics. It is the dual nature of objects that 
leads to the Pauli exclusion principle, and to the quantitisation of 
what Newton saw as continuous dynamic variables. 

This wave-particle duality is a duality. This is not a monality 
of existence, and it is not a triality of existence, or a quadrality of 
existence. Why duality? Why not triality? Why do objects not have 
wave properties and particle properties and, say, “water” properties 
thereby giving a triality of existence? Why do objects not have only 
particle properties? Why do waves exist at all? 

To date, no explanation of the dual wave-particle nature of phys-
ical objects has been proposed. We observe the dual wave-particle 
nature of physical objects to be the case; experiments confi rm the 
dual wave-particle nature of physical objects to be the case, but 
no-one has proffered an explanation of why the dual wave-particle 
nature of physical objects is the case.

3.2 SUPERPOSITION

One of the most beguiling facets of quantum mechanics is the 
superposition of states. In quantum mechanics, we assume that an 
unobserved system is not in a particular state but is in all possible 
states at the same time. Erwin Schrödinger, the man after whom the 
Schrödinger equation is named, presented this view with a dilemma 
about a cat.

3.3 SCHRÖDINGER’S CAT

The superposition of states was described by Schrödinger with 
the concept of a cat in a sealed box. There is a cat inside a sealed 
box. With the cat is a sealed bottle of poisonous vapor arranged such 
that the bottle will break if a radioactive nucleus decays. The decay 
or non-decay of a radioactive nucleus is a random event governed by 
chance. If the radioactive nucleus decays, the cat will be dead when 
an observer opens the box. If the radioactive nucleus does not decay, 
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the cat will be alive when the observer opens the box. The state of 
being an alive cat corresponds to one state of the cat, and the state of 
being a dead cat corresponds to another state of the cat. As far as we 
are concerned, before we open the box, the cat is in a superposition 
of being both alive and dead. When we open the box, this superposi-
tion collapses into a single state; the cat is either dead or alive, but 
not both. 

A physical system, be it a cat in a box or an electron in an atom, 
is seen in quantum mechanics as being in a superposition of possible 
states until it is observed. When the physical system is observed, 
the physical system collapses into only one of the possible states. 
This view is known as the Copenhagen interpretation of quantum 
mechanics. 

3.4  THE COPENHAGEN INTERPRETATION OF 
QUANTUM MECHANICS

Between 1920 and 1924, Niels Bohr and Werner Heisenberg 
developed what has become known as the Copenhagen interpreta-
tion of quantum mechanics. The Copenhagen interpretation can be 
summed up as:

 1. A physical system is a wave that is a linear sum of basis solu-
tions (standing waves) of the Schrödinger wave equation (the 
linear sum is called a wave function). We see this linear sum 
of basis solutions as a superposition of all possible solutions. 
This superposition of basis solutions evolves both smoothly 
and deterministically in time until a measurement of some 
property of the system is made at which point the superposi-
tion probabilistically (not deterministically) collapses into a 
particular basis solution called an eigenstate.

 2. Nature is not deterministic.

 3. It is not possible to simultaneously know the value of every 
property of the physical system.

 4. Everything exists in a dual wave/particle form. 
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This is not the only interpretation of quantum mechanics. 
Another interpretation is the decoherence interpretation founded 
by David Bohm (1917–1992) and later used by Hugh Everett (1930–
1982) in the many worlds interpretation.

Aside: The German physicist Werner Karl Heisenberg (1901–1976) 
is famous for his formulation of matrix mechanics circa 19251 and for 
his proposal of the uncertainty principle in 1927. He was awarded 
the physics Nobel prize in 1932. Although Heisenberg first proposed 
the uncertainty principle, the principle was deduced more formally 
by E. Kennard2 (1885–1968) in 1927 and by Hermann Weyl3 (1885–
1955) in 1928.

There is much dispute over Heisenberg’s role in the second 
world war. He certainly worked upon developing the atomic bomb 
for the Nazis, but he also failed to develop the atomic bomb for 
the Nazis. His friends say he deliberately misled the atomic bomb 
research. Others say that his German patriotism motivated him to 
collaborate with the Nazis and that he failed to build the atomic 
bomb in spite of all his efforts. 

3.5  NON-LOCALITY

There are phenomena within quantum mechanics that are asso-
ciated with instantaneous communication from one locality in space 
to another locality in space. Objects seem to be able to communicate 
instantaneously from place to place. Such phenomena are said to be 
non-local, and they have been observed in experiments.

Aside: Within physics, we encounter two types of trigonometric 
functions. The hyperbolic trigonometric functions {cosh( ), sinh( )} 
are the trigonometric functions of the hyperbolic complex plane, , 

1. W. Heisenberg. Z f Physik 33, 879 (1925).
2. Kennard. E.H. (1927) - Zur Quantenmechanik einfacher Bewegungstype. 
Zeitschrift für Physik 44, 4–5, 326.
3. Weyl H. Gruppentheorie und Quantenmechanik. Leipzig Hiizel.
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and are associated with one time dimension and one space dimen-
sion. Particles move in only one spatial direction. The Euclidean 
trigonometric functions {cos( ), sin( )} are the trigonometric func-
tions of the complex plane, , and are not associated with time but 
are associated with two space dimensions. Waves move in all spatial 
directions. The hyperbolic trigonometric functions are associated 
with symmetric matrix variables. The Euclidean trigonometric func-
tions are associated with anti-symmetric matrix variables. It seems 
that the mathematics of physics comes in two types, and we might 
expect some kind of dual nature in physics. Since the Euclidean trig-
onometric functions are associated with waves, we might expect half 
of this dual nature to be wave-like. Since the hyperbolic trigonomet-
ric functions are associated with a single spatial direction, we might 
expect half of this dual nature to be particle-like. 

The mathematics of the Euclidean space  do not include time, 
and so we might expect instantaneous communication, which we call 
non-locality, within such space. If we use the mathematics of the 
complex numbers  to describe the possible states of a physical sys-
tem, then, without time, the system must be in every one of these 
possible states at the same time - superposition. When an observer 
within time interferes with the superposition by forcing time into 
the physical system, the physical system will be in a particular state 
rather than all possible states. Withdraw the concept of time from a 
physical system, and it will be in all the states that it ever was in or 
ever could be in at the same time; this is superposition. 

We leave it to the reader to evaluate the merits and demerits of 
this explanation.

3.6 MANY PATHS

Within quantum mechanics, there is uncertainty in the position 
and momentum of a particle. We will come to this in later chapters. 
Uncertainty is that we cannot simultaneously know both the exact 
momentum of a particle and the exact position of that particle. This 
means that particles do not have defi nite trajectories through space. 
We might observe a particle to be at position A one moment and to 
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be at position B at a later moment, and so we know that the particle 
has traveled from A to B. However, we are unable to say which path 
the particle followed to get from A to B. This is not just a failing of 
our knowledge; this is within the very nature of particles and space 
and time. 

There is an interpretation of quantum mechanics made known 
by Richard Feynman (1918–1988) in which particles are taken to 
travel from A to B by every possible path, including those that visit 
the distant edges of the known universe. The path is a superposition 
of all possible paths. Within this interpretation, quantum mechanics 
is done using path integrals which we do not cover within this book. 

EXERCISES

1. A slowly vibrating string is bowed to the north on Tuesday 
and is straight on Wednesday and is bowed to the south on 
Thursday and is straight again on Friday and completes its 
cycle by being bowed to the north on Saturday – I did say the 
string was vibrating slowly. Take away time. In what state is 
the string?

2. A particle moves in a straight line through the complex plane, 
, from the point a  ib to the point c  id. Is it at all points 
along its route at the same time?

3. Is being in two places at the same time instantaneous travel 
at infinite speed? 

4. Calculate:

 
0 0

exp exp
00

a

a

a b e b

b a be

       
                 

 (3.1)

 Note that:

 
a b

a ib
b a

 
     

  (3.2)

 Look at the graphs of the four trigonometric functions 
{cosh( ), sinh( )}  and {cos( ), sin( )} (next chapter). Why are 
waves associated with the complex numbers ?
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CHAPTER 4
COMPLEX NUMBERS, 
WAVE EQUATIONS, 
AND THE MOMENTUM 
OPERATOR

A wave equation is an equation that has solutions that involve 
the Euclidean trigonometric functions {cos( ), sin( )}. These trigo-
nometric functions have graphs that are waves, and so it is that equa-
tions that have these trigonometric functions as solutions are equa-
tions that describe waves. 
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The Euclidean trigonometric functions, as with all trigonometric 
functions, are such that they have a differentiation cycle:

 
 

 

sin cos

cos sin

x x
x

x x
x







 


 (4.1)

We therefore fi nd them involved in solutions of differential equa-
tions like:

 
2

2
x

x
x


 


 (4.2)

4.1  ORIGIN OF THE EUCLIDEAN 
TRIGONOMETRIC FUNCTIONS

Although the sine and cosine functions were originally defi ned 
in 6th century India as projections from the unit circle on to the axes, 
they, technically speaking, do not exist outside of the complex num-
bers, . We use the matrix form of the complex numbers for peda-
gogical ease:

 
a b

a ib
b a

 
    

  (4.3)

The reader might like to multiply two such matrices together to con-
vince herself that the above 2  2 matrix is the complex numbers.
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We have:

 
0 cos sin

exp
0 sin cos

a b r b b

b a r b b
      

             
 (4.4)

wherein we see that the rotation matrix within the complex numbers, 
, contains the sine and cosine functions. Because these trigonomet-
ric functions are within the complex numbers, , all wave equations 
are associated with the complex numbers. This is not immediately 
apparent in the case of the Newtonian wave equation for an ideal 
string which we will meet shortly; however, when we deal with this 
wave equation, we will see, with thought, that it is connected to the 
complex numbers.

In contrast, we look at the hyperbolic trigonometric functions of 
the hyperbolic complex numbers, , that are the algebra of 2-dimen-
sional space-time. 

Aside: The reader should note that the whole of the theory of spe-
cial relativity can be written within the hyperbolic complex numbers 
(and its 4-dimensional friend) and that doing so leads automatically 
to an expanding universe with an inflationary beginning and a chang-
ing rate of expansion. The presentation is also mathematically flaw-
less, which is not true of the 4-vector presentation of special relativ-
ity (the acceleration 4-vector has to be fudged)1.

We have:

 
0 cosh sinh

exp
0 sinh cosh

a b h b b

b a h b b
      

      
      

 (4.5)

These trigonometric functions have nothing to do with waves.

1. See: Empty Space is Amazing Stuff by Dennis Morris: Pantaneto Press ISBN: 
978-0-9549780-7-5
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There is a thing about the Euclidean trigonometric functions, 
{cos( ), sin( )}, that is of fundamental importance within quantum 
mechanics; they are associated with special numbers. If we look at 
the graphs above, we see that the sine and cosine functions repeat 
themselves every 2, and so we have the special numbers {0, 2,  
4,}. This repetition is ultimately due to the fact that we can rotate 
all the way through 360 within the complex plane. We have no 
such special numbers associated with the hyperbolic trigonometric 
functions because we cannot rotate all the way through 360 in 
the hyperbolic complex plane; we cannot get beyond the speed of 
light.

Perhaps more importantly, there are special numbers associated 
with fi tting the Euclidean trigonometric functions, {cos( ), sin( )}, 
into a defi nite length. We have:
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We see that to get a “complete” graph that starts at zero and returns 

to zero, we need to use the special numbers  1 3
,1, ,2... .

2 2
 There is 

nothing like this in hyperbolic trigonometry. We will come across 
exactly this again when we look at standing waves on an ideal Newto-
nian string. This is why there are special numbers (discreet energies) 
associated with electrons in orbit around an atomic nucleus. The 
electrons are orbital standing waves whose ends must fi t together 
neatly.

4.2  SCALING PARAMETERS AND PHYSICAL 
CONSTANTS

In general, the 2-dimensional complex numbers, , and the 
2-dimensional hyperbolic complex numbers, , are both of the form:

 exp  :  0
a b

b a
l

l
  

  
  

 (4.6)

 is a scaling parameter that measures the units used to measure 
along one axis against the units used to measure along the other axis. 
When  > 0, we have the hyperbolic complex numbers which are 
space-time. The distance function of 2-dimensional space-time is 

2 2 2
2

1
d t z

c
   where c is the limiting velocity (the velocity of light). 

We have:

 2 2det
t z

t z
z t

l
l

  
   

  
 (4.7)

The nuts.indb   29 09-05-2016   10:44:52



30 • Quantum Mechanics

We see that 21
,c

l
  and we have a physical constant. Of course, by 

adjusting the units in which we measure space (or time), we can 
set c = 1, but, none-the-less, we have a physical constant within the 
hyperbolic complex numbers.

Aside: The physical constant is the limiting velocity within space-
time. This is not the same physical constant as the velocity of light 
(electromagnetic waves); the physical constant is a space-time con-
stant and not an electromagnetic constant. It is only coincidence, if 
there is such a thing in the universe, that light travels at the limiting 
velocity. We ought to use different symbols for the limiting velocity 
and the speed of light because they are different things.

When  < 0, we have the Euclidean complex numbers, . (We 
have subscripted a  to avoid confusion with the  = 1 form, .) 
These too contain a physical constant. For clarity, we will keep  > 0 
and put a minus sign before  to take account of its negativity.

4.3 THE MOMENTUM OPERATOR

We will differentiate a complex function with respect to the 
imaginary axis.

 
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )1
0 0 1 0

0 0 0

1
0

1 0

1
00 1

0 1
0

f a b g a b f a b g a b

g a b f a b g a b f a b
b b

b b

gf
b b

g f
b b

gf
b b

g f
b b

l l

l l

l
l

l
l

l
l

   
        

     
            

                  
 

                 





 
 

 (4.8)
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We see that the process of differentiation by an imaginary variable 
necessitates multiplication by the negative of the imaginary unit, i 

and by the inverse of the scaling parameter, 1
.

l
 We might, in other 

notation, write this differentiation operation as:

 1
i

bl





 (4.9)

Within quantum mechanics, we will soon meet the quantum 
mechanical momentum operator:

 


xp i
x


 


   (4.10)

Wherein 
2
h
p

h  is known as “aitch bar”. The constant h, known as 

Planck’s constant, is a fundamental physical constant within quan-
tum mechanics. We see that:

 


h
1

 (4.11)

Of course, by choosing appropriate units, we can set 1h . The 
momentum operator within quantum mechanics is just the algebraic 
operation of differentiation with respect to the imaginary variable. 
This operator plays a central role in quantum mechanics. Aitch bar, 
h , is a physical constant that also plays a central role in quantum 
mechanics.

Aside: The mass dimensions of h  are ML2T2. This is called action; 
it is equivalent to length  momentum or time  energy. 

4.4  EIGENFUNCTIONS OF THE MOMENTUM 
OPERATOR

The rotation matrix of the scaled complex numbers, , is:

 
   

   

1
cos sin

0
exp

0 1
sin cos

b b
b

b
b b

l l
l

l l l l
l

 
   
          

 (4.12)
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Let us differentiate this rotation matrix of the  algebra with respect 
to the imaginary variable. We will do it with an angle of b = n:

           

   

   

   

   

    
     

 
   

                       

1
cos sin

1
sin cos

0

0

1
cos sin1

0

1
1 0 sin cos

n n

n n

n n

n n

 (4.13)

   

   

   

   

   

1 sin cos00 1
0 1

0 cos sin

1
cos sin

0
0 1

sin cos

n
n n n

n
n n n

n n
n

n
n n

ll lq lq
ll

l ll lq l lql l

lq lq
l

l lq lq
l

                       
 
  
   
     

 (4.14)

We see that differentiation with respect to the imaginary variable of 
the rotation matrix with angle n simply multiplies the rotation matrix 
by n. We say that the rotation matrix with angle n is an eigenfunction 
(special function) of the differentiate with respect to the imaginary 
variable operator. We say that the number, n, is the eigenvalue (spe-
cial value) associated with that particular eigenfunction. Notice that 
each value of n corresponds to a single eigenfunction.

If, instead of n, we had used the angle n, the rotation matrix 
would be multiplied by n, and, using other notation, we could have 
written this as:

 


 1 1i n i n i ni e i i n e nel l llq lq lq
l l l l

l q l


   


 (4.15)
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This is equivalent to the momentum operator:

 
  n n

i x i x
i e ne

x


 


   (4.16)

The reader will become familiar with this expression in later chap-
ters. The value, n, is taken to be the linear momentum in the x-direc-
tion. The eigenfunctions 

h
xp

i x
e

 are said to be the x-momentum eigen-
functions. 

4.5 THE ZERO POTENTIAL ENERGY OPERATOR

Let us differentiate twice with respect to the imaginary variable. 
We have:

 

  
    

                          
                                    

  
              

2 2

2 2

2

2 2

2 2

2 2 2

2

1
0

0 1

00 1
0

0

1
10

0 1 0

0 1
1 00

1
0

0

0 1
0

f g

b b
g f

b b
b

b

f g

b b

g f

b b

f g

b b

 
 
 
  
   

2

2 2

g f

b b

 (4.17)

We can write this as:

 
2

2
2    :   

b l
yl y

 


h   (4.18)

In due course, we will meet the quantum mechanical zero potential 
energy operator, also called the zero potential Hamiltonian (or zero 
potential Hamiltonian operator). There are two ways of denoting the 
zero potential Hamiltonian   , .H E  That operator is:
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  
2

22
H E

m x
y

  


  (4.19)

Aside: The Hamiltonian is named after the Irish mathematician and 
physicist William Rowan Hamilton (1805–1865). Hamilton refor-
mulated Newtonian mechanics to produce Hamiltonian mechanics. 
Hamiltonian mechanics is central to much modern physics including 
quantum mechanics.

In 1843, Hamilton also discovered the 4-dimensional quaternion 
division algebra. He found this after mathematicians had spent, with-
out success, some 200 years searching for division algebras of dimen-
sion higher that two. His discovery was followed in 1848 by Cockle’s 
discovery of the 2-dimensional hyperbolic complex numbers2. 

Within quantum mechanics, the Hamiltonian operator is derived 
from the correspondence principle and the non-relativistic kinetic 
energy relation:

 




2

2 2 2 2

2

2

1
2 2 2

x

p
E

m

p
E i

m m x m x



         


 (4.20)

We see there is a difference in that 
1

.
2m

 None-the-less, we see 

a striking similarity between double differentiation with respect to 
the imaginary variable and the energy operator.

4.6 ENERGY EIGENFUNCTIONS

Let us double differentiate this rotation matrix of the  algebra 
with respect to the imaginary variable. We will do it with an angle 
of b = n:

2. Cockle. On the symbols of algebra, and the theory of tessarines. Phil. Mag. (3), 
34, 406-410
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   

   

   

   

   

   

2

2

2

2

1
cos sin

1
sin cos

0
0

1
cos sin

1
sin cos0

00
0

1
cos sin

0
10 sin cos

n n

n n

n n

n nn

n

n n
n

n n n

lq lq
l

l lq lq
l

q
lq

lq lq
l

l lq lq
l

q
lq

lq lq
l

l lq lq
l

 
 

  
   

 
   

 
 

  
              
 
  
   
      

 (4.21)

We see that the rotation matrix, as well as being an eigenfunction 
of the momentum operator, is also an eigenfunction of the zero 
potential energy operator but with eigenvalues n2 rather than n. The 
reader should be aware that this is the case only where we have a 
zero potential.

If, instead of n, we had used the angle 2 ,n ml q  the rotation 
matrix would be multiplied by 2 22 ,m nl  and this is equivalent to:

 
  2 22 2

22

Em Em
i x i x

e Ee
m x


 


   (4.22)

The E is taken to be the energy.

SUMMARY

There are special numbers (eigenvalues) associated with waves. 
Waves are associated with the complex number division algebra  
through the trigonometric functions of that algebra. The scaling 
parameters of division algebras seem to be associated with physi-
cal constants. The everyday algebraic operation of differentiation 
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is portrayed within quantum mechanics as an operator. Operators 
have special functions (eigenfunctions) and special numbers (eigen-
values) associated with them.

We will meet the momentum operator much within the rest of 
this book. We have seen above that it is no more than the operation 
of differentiation with respect to the imaginary axis within the com-
plex numbers, . Most books on quantum mechanics do not pres-
ent it in this way. We could have presented the momentum operator 
with  = 1, but we would not have found a physical constant and 
would have had to feed h  in by hand. We will speak much of opera-
tors in later chapters. Quantum mechanics is formulated in terms 
of operators, but do we really need them? Perhaps operators are 
no more than normal algebraic operations, and quantum mechanics 
might be more tidily formulated without them.

One intriguing thing about the above is the association between 
momentum (and energy) and rotation in the complex plane. It is fair 
to say that we do not properly understand why there should be such 
an association. 

Aside: We point out the conjugate of eix is eix and that, for a com-
plex number, Real Imaginary ,iy y y  , we have the modulus squared is 

2 .y yy 

We fi nish this chapter with an aside that is more to do with QFT than 
quantum mechanics. We put it in for the edifi cation of the reader, 
and we use the standard  = 1 form of the complex numbers.

Aside: Let us rotate the zero potential energy operator matrix:

 

22

2 2

2 2

2 2

2 22 2

2 2 2 2

2 2 2 2

2 2 2 2

cos sin
sin cos

cos sin sin cos

sin cos cos sin

gf
y y

g f
y y

g gf f
y y y y

f f g g
y y y y

q q
q q

q q q q

q q q q

 
              
   

     
                  
        

 (4.23)
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If we now set  = 0 in these matrices, we get one Hamiltonian 
(energy) matrix out of phase with the other Hamiltonian. We get an 
operator of the form:

 
2 2

22
H V

m x


  


  (4.24)

This is the non-zero potential quantum mechanical energy operator 
(the non-zero potential Hamiltonian). It seems that a potential is a 
thing to do with phase, and this is indeed the way it is seen in QFT.

EXERCISES

1. Calculate:

 
a b c d

b a d cl l
   
       

 (4.25)

Is the product of the same form as the two factors?

2. At what points does the function f(x) = cos(4x) cross the x-
axis?

3. Using d = ea, what is the determinant of:

 
0 cosh sinh

exp
sinh cosh0

a

a

a b e b b

b a b be

     
      

       
 (4.26)

And what is the determinant of:

 t z

z t
 
 
 

 (4.27)

Putting these two determinants equal, what do you have? 

4. Using d = ea, what is the determinant of:

 
0 cos sin

exp
sin cos0

a

a

a b e b b

b a b be

     
              

 (4.28)
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And what is the determinant of:

 
x y

y x
 
  

 (4.29)

Putting these two determinants equal, what do you have?
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CHAPTER 5
AN END TO 
DETERMINISM

If a polarized beam of light meets a polarizer oriented parallel 
to the polarization of the light, all the light will pass through the 
polarizer. If a polarized beam of light meets a polarizer oriented per-
pendicularly to the polarization of the light, none the light will pass 
through the polarizer. If a polarized beam of light meets a polarizer 
oriented at 45 to the polarization of the light, exactly half the light 
will pass through the polarizer. Polarization happens because light is 
a wave. If the beam of light that meets a polarizer oriented at 45 to 
the polarization consists of only one photon of light, then, because 
photons cannot be divided into pieces, the photon either passes 
through the polarizer or it does not pass through the polarizer, but 
there is no way for the polarizer to decide which of these options 
will happen. All photons are the same, but sometimes a photon will 
pass through the 45 polarizer and sometimes a photon will not pass 
through the 45 polarizer. We have two identical events, which are 
essentially the same event, with different outcomes. Classical phys-
ics presumed that identical events would always produce identical 
outcomes. This presumption is called determinism. The fact that 
light comes in photons (wavy-particle things) means that the uni-
verse cannot be deterministic. Chance plays a part in the evolution 
of the universe.

It might be that there is the detonator of a nuclear bomb at the 
other side of the polarizer and that this detonator is such that, if a 
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photon of light hits the detonator, the bomb explodes, nuclear war 
breaks out, and the Earth is destroyed. Whether or not the Earth is 
destroyed or survives depends upon whether or not the photon goes 
through the 45 polarizer. The destruction of the Earth is a matter 
of chance.

The reader might think that there must be some hidden variable 
within the photons that distinguishes one from another. Albert Ein-
stein thought this. He expressed it in the famous phrase, “God does 
not play dice.” It was shown by J. S. Bell (1928–1990) in 1964 that 
there is no such (local) hidden variable1.

Bell’s Theorem
No physical theory of local hidden variables can produce all the 
predictions of quantum mechanics.

Bell’s theorem has been experimentally verifi ed by Clauser and Shi-
mony2 in 1978 and by Alain Aspect et al in 19813 and 1982.4

Aside: In 2008, the university of Toronto inaugurated the “John 
Stewart Bell” prize for research into the fundamental issues of quan-
tum mechanics. The first recipient in 2009 was Alain Aspect.

This “overthrow of determinism” is probably the most profound 
change brought to human understanding by quantum mechanics. 
Quantum mechanics is different from classical mechanics in many 
ways, but, by far, the most important difference is this change from 
the deterministic view of the world to the non-deterministic view 
of the world. It follows directly from the view that a light wave is a 
particle; it follows directly from wave-particle duality. 

1. J.S.Bell On the Einstein, Podolsky, Rosen Paradox. Physics, 1, 3, 195–200 (1964).
2. J.F.Clauser & A.Shimony Bell’s Theorem: experimental tests and implications. 
Reports on progress in Physics 41, 1881, (1978).
3. Aspect et al. Experimental tests of realistic local theories via Bell’s theorem. Phy 
Rev Lett 47, 460, (1981).
4. A. Aspect, J. Dalibard, & C. Roger. Physical Review Letters Vol. 49 pgs 91 & 1804 
: December 1982.
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5.1 MANY UNIVERSES

Suppose that, when the polarized photon hits the 45 polar-
izer, the universe doubles into two universes. In one of these two 
universes, the photon does not pass through the polarizer and the 
Earth is not destroyed. In the other of these two universes, the 
photon does pass through the polarizer and the Earth is destroyed. 
We have maintained determinism because the outcome of the 
photon hitting the polarizer is predictable – the universe doubles. 
This idea is known as the “Many Worlds Interpretation of quan-
tum mechanics.” It was fi rst proposed5 in 1956 by Hugh Everett6 
(1930–1982). 

The Schrödinger equation that we will meet in due course is 
utterly central to quantum mechanics. The time evolution of the 
Schrödinger equation is the time evolution of a physical system. One 
of the perplexing aspects of quantum mechanics is that the math-
ematical nature of the Schrödinger equation is deterministic, and so 
the time evolution of a physical system is deterministic. Within the 
Copenhagen interpretation of quantum mechanics, the determinis-
tic Schrödinger equation suddenly becomes non-deterministic when 
we observe the physical system. Within the many worlds interpreta-
tion of quantum mechanics, the time evolution of the Schrödinger 
equation and thus of the universe remains deterministic.

The many worlds interpretation of quantum mechanics is not an 
idle speculation but is taken seriously by modern theoretical physi-
cists. Of course, throughout the observable universe, there are tril-
lions of photon/polarizer type events happening every microsecond, 
and so, according to the many worlds interpretation of quantum 
mechanics, there are trillions of new universes being created every 
microsecond.

5. Everett, Hugh: Theory of the Universal Wavefunction. Thesis; Princeton Univer-
sity 1956 pp 1–140.
6. Everett, Hugh: Relative State Formulation of Quantum Mechanics: Reviews of 
modern physics 29: 454–462.
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5.2 A THOUGHT

Thinking back to a previous chapter, does determinism make 
any sense to an observer who is outside of time? The Euclidean 
complex plane, , has no time within it. If physics is written using 
these complex numbers, as wave physics must be, will that physics 
be deterministic?
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CHAPTER 6
THE NEWTONIAN 
WAVE EQUATION

In this chapter, we are concerned with only Newtonian  mechan-
ics. We will delve slightly more deeply into Newtonian mechanics 
that is usually done and we will discover special numbers (eigenval-
ues ) within Newtonian mechanics. Newtonian mechanics does not 
overtly use complex numbers, but we will see that, when it comes to 
waves, Newtonian mechanics is led into the complex numbers. 

Imagine a vibrating taut string stretched between two points 
that are a distance L apart – like a string on a guitar. 

We assume that the string is ideal in that its gravitational mass and 
other extraneous properties can be ignored in the mathematics that 

follows. We also assume that y
x



 is small. With those assumptions, 

the Newtonian motion of the ideal string  is given by the Newtonian 
ideal wave equation:
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2 2

2 2 2
1

0
y y

x v t
 

 
 

 (6.1)

 is a constant incorporating the density and tension of the string. 

This wave equation is subject to the boundary conditions  that 
the vertical displacement, y, at the two ends, x = {0, L} is zero. In 
mathematics, these boundary conditions are:

 y(0, t) = y(L, t) = 0  (6.2)

By applying forcing vibrations to the string, we discover that there 
are standing waves at particular resonances of the string such that 
the resonant frequencies correspond to half integral multiples of the 
string length.

Since the string is described by the Newtonian wave equation, these 
standing waves  are described by solutions of the Newtonian wave 
equation. Using standard differential equation techniques, we solve 
the Newtonian wave equation by assuming that there are solutions 
of the form:

 y(x, t) = X(x)T(t)  (6.3)

Wherein X is a function of only x and T is a function of only t. We 
call these separable solutions . It is a fact that separable solutions of 
wave equations are standing wave solutions. Since standing waves 
are unchanging over time, we also refer to separable solutions as 
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stationary solutions. Standing waves, stationary solutions , separable 
solutions – all the same thing.

Aside: We will use exactly this same method of finding standing 
wave solutions by assuming separable solutions when we solve the 
Schrödinger wave equation with a potential that is independent of 
time, but we will call the solutions stationary solutions rather than 
standing wave solutions. That is because, even though they are 
standing wave solutions, they do not change with time, and so they 
are, in that sense, stationary.

Putting the proposed solution into the Newtonian ideal wave equa-
tion leads to:

 
2 2

2 2 2
( ) 1 1 1 ( )

( ) ( )
X x T t

X x T tx v t
 


 

 (6.4)

The two variables are independent, but  must be true for all values of 
{t, x}, and so both sides must be equal to the same constant, which, in 
anticipation of getting wave solutions, we call k2. (Without the minus 
sign, we get {cosh( ), sinh( )} type solutions, which are nothing like 
waves. The squared bit avoids a square root sign in the solutions.)

 

2
2

2

2
2

2 2

( ) 1
( )

1 1 ( )
( )

X x
k

X xx

T t
k

T tv t


 




 



  (6.5)

With solutions:

 ( ) sin( ) cos( )
( ) sin( ) cos( )

X x A kx B kx

T t C vkt D vkt

 
 

 (6.6)

Although we are doing purely Newtonian mechanics in this chapter, 
we have been driven to the {sin( ), cos( )} trigonometric functions 
which properly exist in only the complex plane.

The boundary condition X(0) = 0 means that B = 0, and we have 
the solutions:

 
 ( , ) sin( ) sin( ) cos( )

,    

n n n n n

n n n

y x t k x C t D t

n
k vk

L

w w
p w

 

 
 ( 6.7)
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The fi rst four of these solutions, n = 1, 2, 3, 4, are the standing 
waves (stationary solutions or separable solutions) illustrated above. 

The separable solutions of the Newtonian wave equation are the 
set of standing waves that are resonances of the ideal string. The 
reader should note that the standing waves exist only because the 
string is a fi xed length. The equivalent to this in mathematical terms 
is that the standing wave solutions exist only because of the bound-
ary conditions.

6.1  LINEAR DIFFERENTIAL EQUATIONS AND 
LINEAR SUMS AND LINEAR SPACES

A linear sum  of mathematical objects, i, is of the form:

 1 1 2 2 3 3Linear Sum ... ...i ic c c cf f f f      (6.8)

Wherein ci  .

If a differential equation is such that it contains no terms which 
are higher than fi rst powers of differentials, we say it is a linear dif-

ferential equation . For example, if 
2y

x
 

  
 appears in the equation, 

then the equation is not linear, but we can have terms like
7

7

y
x



 in a 

linear differential equation. The Newtonian ideal string wave equa-
tion is a linear differential equation, (and so is the Schrödinger equa-
tion). This defi nition is not important to us, and we give it only for 
completeness. The important thing about linear differential equa-
tions is that the solutions of linear differential equations are a lin-
ear space. In particular, the separable solutions of linear differential 
equations form a basis of the linear space  of the solutions. We will 
deal with linear spaces in more detail later, but the centrally impor-
tant properties of linear spaces are:

 1.  Any linear sum of the elements (vectors or solutions to linear 
differential equations) that form the linear space is an ele-
ment of that linear space.
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  And 

 2. Any element of a linear space is a linear sum of elements of 
that linear space. 

 3. Linear spaces have basis elements (basis solutions or basis 
vectors) which are orthogonal to each other. Linear spaces 
are often called vector spaces. In general, any complete set of 
vectors form a linear space.

The important bit is that the separable solutions of a linear differen-
tial equation are mutually orthogonal basis solutions. Any other solu-
tion can be written as a linear sum of only these solutions and any 
linear sum of the separable solutions of a linear differential equa-
tion is also a solution of that linear differential equation. It is exactly 
analogous to vectors in which we have a set of basis vectors that are 
orthogonal to each other and that span the whole vector space.

Because the Newtonian wave equation is linear, all the possible 
solutions of this equation, that is all possible shapes of the vibrating 
string (including the triangular profi le of a plucked string), are a lin-
ear sum of basis solutions  (also called separable solutions or standing 
waves or stationary solutions). It is a fact that the standing waves 
are a complete set of basis solutions of the Newtonian wave equa-
tion. Any other solution is a linear sum of these solutions. There are 
infi nitely many standing waves, and so the other solutions might be 
an infi nite sum of the standing wave solutions. We have the general 
solution of the Newtonian wave equation is:

 sin sin cosn n
n

n n n
y x C vt D vt

L L L
p p p                   

  (6.9)

This is a superposition  (linear sum) of the standing waves.

Aside: The exact same situation applies to the Schrödinger wave 
equation. The separable solutions of the Schrödinger wave equation 
are the basis solutions of a linear space that contains all solutions as 
a linear sum of the basis solutions. We call the basis solutions of the 
Schrödinger wave equation stationary solutions because they corre-
spond to standing waves – most often electrons in unchanging orbit 
around an atomic nucleus.
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We see a concrete example of a linear space (vector space) in the 
Newtonian wave equation. The basis functions are the solutions that 
are standing waves. These solutions are orthogonal (under the over-
lap integral defi nition – see later) and complete – see later. We see 
that the basis solutions are a, infi nite in number, discreet set. We see 
that the discreet set arose because of the imposition of the boundary 
conditions – the fi xed length of the string.

If a linear differential equation has two solutions of the form:

 
cos
sin

y x

y x




 (6.10)

Then, since any linear sum of solutions is also a solution, another 
solution is:

 cos siny x i x   (6.11)

Notice the imaginary coeffi cient of sin x. The linear sums of solu-
tions of linear differential equations include sums with complex 
coeffi cients.

The reader is advised to re-read the last few paragraphs about 
linear spaces and basis solutions; when you understand this, you are 
well on the way to understanding quantum mechanics. All that we 
have done with the Newtonian wave equation, we will do with the 
Schrödinger equation. 

6.2 FOURIER ANALYSIS

In the case of wave equations, we can calculate coeffi cients of 
the, usually infi nite, linear sum of basis solutions of any desired solu-
tion using Fourier analysis. For example, if we want to know the 
solution of the Newtonian ideal string equation that corresponds to 
the initially triangular shape of a plucked string, or any other shape 
into which the string can be stretched, we can calculate that solution 
as a, most likely infi nite, sum of the basis solutions using Fourier 
analysis . Fourier analysis is explained in many texts, and so we do not 
go into the details here.

The nuts.indb   48 09-05-2016   10:45:04



The Newtonian Wave Equation • 49

The reader will have observed that when waves are superim-
posed upon each other, they form another, more complicated, wave. 
So it is with solutions of wave equations. When wave equation solu-
tions are superimposed upon each other, they form another, more 
complicated, wave equation solution. A Fourier sum is just a linear 
superimposition (superposition) of waves. 

6.3  NEWTONIAN EIGENVALUES AND 
NEWTONIAN COMPLEX NUMBERS

In the above Newtonian wave equation, we see there are special 
numbers (eigenvalues ) associated with the standing wave solutions. 

These special numbers are .n
n

k
L
p



6.4  TWO WAYS OF SEEING THE NEWTONIAN 
WAVE EQUATION

The stationary solution to the Newtonian wave equation, (6.7), 
is:

  ( , ) sin( ) sin( ) cos( )n n n n ny x t k x C t D tw w   (6.12)

The time independent part of this is:

 ( ) sin( )ny x k x  (6.13)

We have:

 
2

2
2 sin( )n n
y

k k x
x


 


 (6.14)

We can see the double differentiation as a mathematical opera-
tor  that acts on a function to turn it into another function. In the 
case above, the double differentiation operator has acted upon the 
sin(knx) function to turn it into a multiple of itself, 2.nk Mathemati-
cians say that the sin(knx) function is an eigenfunction (special func-
tion) of the double differentiation operator and that associated with 
that eigenfunction is the eigenvalue (special number) 2.nk
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If, instead of kn, we have a particular number, say 3
,

L
 then 

3
sin

x
L

 
 
 

 is an eigenfunction of the double differentiation operator 

with eigenvalue 
2

9
.

L


Alternatively, the reader can look at the equation (6.14) in the 
way we normally look at it. Quantum mechanics chooses the operator, 
eigenfunction, and eigenvalue way of looking at such an equation.

6.5 NON-STATIONARY STATES

The standing wave solution (6.7) is a solution for any values of 
{Cn, Dn}. Let us consider Cn = i & Dn = 1. We then have:

  ( , ) sin( ) sin( ) cos( )n n ny x t k x i t tw w    (6.15)

The modulus of this is:

 2 2( , ) sin ( )ny x t k x  (6.16)

We see that the modulus is independent of time. Now let us con-
sider a sum of two different standing wave solutions. We have

 

 
 

 

( , ) sin( ) sin( ) cos( )

sin( ) sin( ) cos( )

cos( )sin( ) cos( )sin( )

sin( )sin( ) sin( )sin( )

m m m

n m m

m m m n

m m m n

y x t k x i t t

k x i t t

t k x t k x

i t k x t k x

w w

w w
w w

w w

 

 

 

 

  (6.17)

The modulus of this is:

 
    

2 2 2( , ) sin ( ) sin ( )

sin( )sin cos

m n

m n n m

y x t k x k x

k x k x tw w

 

   
 (6.18)

Which is not independent of time. 

We will meet something very similar to this in quantum mechan-
ics. In general, within quantum mechanics, the observable quantity 
(probability density) is the modulus squared of a complex number, 
||2 In general, within quantum mechanics, a standing wave solution 
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corresponds to a physical state that is unchanging in time and a 
sum of standing wave solutions corresponds to a physical state that 
is changing in time. A moving particle  is a physical system that is 
changing in time. In general, within quantum mechanics, particles 
that are bound within a potential well, such as an electron orbiting 
an atom, do not change over time and are described by standing 
wave solutions of the Schrödinger wave equation whereas particles 
that are not bound within a potential well (freely moving particles) 
are described by sums of standing wave solutions of the Schrödinger 
wave equation. Within quantum mechanics, we could say that the 
property that defi nes a basis solution (standing wave solution), i, is 
that its probability density, |i|2, is independent of time. The sums 
of basis solutions are such that their probability densities are not 
independent of time.

 Unchanging physical systems  A single basis solution
Changing physical systems  A sum of basis solutions




 (6.19)

A moving particle is a changing physical system. An electron in 
(undisturbed) orbit is an unchanging physical system.

6.6 SUMMARY

The basis solutions of the Newtonian wave equation are found to 
be the separable solutions also called stationary solutions or standing 
waves. All other solutions are linear sums of these solutions. All lin-
ear sums of these solutions are also solutions. Boundary conditions 
“cause” these solutions to exist. Each basis solution is associated with 
a special number (eigenvalue).

6.7 A LOOK AHEAD

We will in due course solve the Schrödinger wave equation by 
separation of variables. This can always be done provided we have a 
potential that is independent of time. Boundary conditions will lead 
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to basis solutions associated with eigenvalues. The eigenvalues will 
correspond to standing waves. The standing waves are (usually) elec-
tron orbits in which in which the circumference of the orbit is a mul-
tiple of the wavelength of the electron, n = 2r. Electrons do not 
orbit a nucleus like planets orbit the sun; electrons are just standing 
waves that fi t around the nucleus in such a way that the ends of the 
waves fi t together to form a standing wave. Since an electron has a 
particular wavelength, electrons can occupy only particular discreet 
orbits that correspond to an integral number of wavelengths. Thus, 
electrons in orbit around an atomic nucleus will have only allowed 
discreet amounts of orbital angular momentum and only allowed 
discreet amounts of energy. In fact, electron orbital angular momen-
tum is multiples of Planck’s constant divided by 2, .L n  1

Aside: It is sometimes confusing that the basis solutions of a wave-
function are referred to by many different names within physics. 
The various names include:

Bound State Wavefunctions   Bound States 

Stationary States     Eigenstates 

Basis Eigenfunctions   Standing Waves 

Basis Solutions    Basis Vectors 

6.8 AUTHOR’S NOTE

The next two chapters are the most diffi cult chapters in this 
book. The reader will need to read and re-read these two chapters. 
Once the reader has mastered the next two chapters, the remainder 
of this book will be an easy read. Well, not quite that easy, but a lot 
easier than the next two chapters.

1. This is where the n’s in quantum mechanics comes from. We say, “Planck put the 
n is quantum.”
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CHAPTER 7
 LINEAR SPACES AND 
INNER PRODUCTS

Aside: The axioms of a linear space , V, are:

 1. V is closed under addition. This means that the sum of any 
two elements of the linear space is also an element of the 
linear space.

 2. Multiples (by scalars) of elements of V are elements of V. In 
quantum mechanics, the scalars are complex numbers rather 
than real numbers – they could have been quaternions per-
haps.

 3. Addition within V is commutative.

 4. Addition is associative.

The reader does not need to know the details of what these axioms 
mean; indeed, other authors might, entirely justifiably, list seven axi-
oms of a linear space rather than just four – it is a matter of opinion 
as to how many we need. We include this list of axioms for presenta-
tional completeness only. 

It is a quite obvious fact that the complex numbers, , are the 
linear sum of two basis elements. By this, we mean that any complex 
number can be written as the sum of multiples of these basis elements:
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  

1 0 0 1
0 1 1 0

,

a b
a b

b a

a b

     
            
  (7.1)

The numbers {a, b} are real numbers, and technically, they ought 
to be written as 2  2 homothetic matrices, but the idea is clear. All 
division algebras  can be written as the linear sum of a fi nite number 
of basis elements. The hyperbolic complex numbers  are:

 

 

0 cosh sinh
0 sinh cosh

0 cosh 0 0 0 sinh
0 0 cosh 0 sinh 0

,

h

h

h h

h h

h

c c
c c

c c
c c

c

   
   

   
       

       
       



 (7.2)

In this case, we have been technically correct and written the real 
number coeffi cients as 2  2 homothetic matrices. The quaternions  
are, in non-matrix notation:

 
     

 , , ,

a ib jc kd a b i c j d k

a b c d

      



     


 (7.3)

7.1 COMPLETENESS

Not only can every complex number be written as the linear sum 
of two basis elements, but every linear sum of these two basis ele-
ments is a complex number. We say that the complex numbers are 
“complete” because every complex number can be written as a lin-
ear sum of the two basis elements and every linear sum of the two 
basis elements is a complex number. We need both conditions to be 
satisfi ed to have completeness .

Every division algebra has this property of completeness. There 
are things other than division algebras that have this property of 
completeness. One example is the set of solutions of a linear differ-
ential equation. Of all the solutions of a linear differential equation, 
some are basis solutions. 
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Aside: We saw above that the standing wave solutions of the New-
tonian ideal wave equation are such basis solutions. The Newtonian 
wave equation for an ideal vibrating string is the linear differential 
equation:

 

2 2

2 2 2
1

0
y y

x v t
 

 
   (7.4)

For a vibrating string with both ends fixed, this equation has solu-
tions which are standing waves with wavelengths corresponding to 

 3
, , ,...

2 2
L L

L  where L is the length of the string. These standing 

wave solutions are orthogonal to each other and are complete in that 
all the possible solutions of the equation for a fixed string of length  
L can be written as a linear sum of the standing wave solutions and 
every linear sum of the standing wave solutions is a solution of the 
equation. The standing wave solutions of the Newtonian ideal fixed 
length string differential equation are basis solutions.

We can form a linear sum of the basis solutions of a linear dif-
ferential equation and that sum will be a solution of the linear differ-
ential equation. Furthermore, any solution of the linear differential 
equation will be a linear sum of the basis solutions of that linear dif-
ferential equation. If the basis solutions are i, then all solutions of 
the linear differential equation are of the form:

 1 1 2 2 3 3 ...

i

c c c

c

j j j    


  (7.5)

Above, within the division algebra, , we have taken the coeffi cients 
of the basis elements to be real numbers. For linear differential 
equations, the coeffi cients need not be real numbers, they can be 
complex numbers or, indeed, they can be elements of any division 
algebra ({, , , , A3…}. In division algebras, we always take the 
coeffi cients to be real numbers.

7.2 DIMENSION

The real numbers, , are a 1-dimensional division algebra. 
The complex numbers, , are a 2-dimensional division algebra. The 
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quaternions, , are a 4-dimensional division algebra. The dimension 
of a division algebra is the number of basis elements. This concept 
of dimension  can be applied to the solutions of a linear differential 
equation. If there are n basis solutions, the set of solutions is said 
to be n-dimensional. A division algebra is a geometric space. The 
solutions of a linear differential equation are not a geometric space 
– they are a set of solutions – but the concept of dimension can be 
associated with that set. 

Aside: We are transplanting the spatial concept of dimension into 
a non-spatial set of solutions. Is this allowed? It seems to work in 
quantum mechanics, and so we brush philosophical considerations 
under the carpet and plough onward.

Within a division algebra, we can multiply two elements of that alge-
bra together to form another element of that algebra. We say the 
division algebra is multiplicatively closed1. If we multiply two solu-
tions of a linear differential equation together, in general, we do not 
get another solution of that linear differential equation. The solu-
tions of a linear differential equation are not multiplicatively closed. 
The set of solutions does not have the property of multiplicative clo-
sure, but this simply means that the solutions of a linear differential 
equation are not a division algebra. They are only a linear space. 

7.3 ORTHOGONALITY

No matter how hard I try, I cannot write one of the basis ele-
ments of the complex numbers as a linear sum of the other basis 
element:

 
1 0 0 1

    
0 1 1 0

a b a
   

        
  (7.6)

We say that the basis elements are orthogonal . We mean that each of 
them cannot be written as a linear sum of the other basis elements. 

1. Any multiplicatively closed set of non-singular matrices is a division algebra. The 
dimension of the algebra is the size of the matrices. The non-singularity is most 
often gained by exponentiating the multiplicatively closed matrices.
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The reader will often see orthogonality defi ned in terms of an inner 
product. It can be done this way, but we do not need to do it that 
way; we do not need an inner product to defi ne orthogonality. We 
can defi ne orthogonality with no more than the concept of a linear 
sum of basis elements. 

The set of solutions of a linear differential equation includes 
basis elements (basis solutions) that are orthogonal to each other 
in that each of them cannot be written as a linear sum of the other 
basis solutions. 

7.4 VECTORS

There are other things besides the set of solutions of a linear 
differential equation and the division algebras that have these prop-
erties of completeness, dimension, and orthogonal basis elements. 
The set of ordered n-tuples of real numbers (we call these vectors ) 
are such that every one of them can be written as a linear sum of n 
basis elements and that any linear sum of these basis elements is a 
member of the set. We demonstrate with 3:

  
1 0 0
0 1 0      :   , ,
0 0 1

a

b a b c a b c

c

       
                 
              

  (7.7)

Another example, and one that is central to quantum mechanics, is 
the set of ordered n-tuples of complex numbers (we call these com-
plex vectors). We demonstrate with 3:

 

 

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

, , , , ,

a id i

b ie a d b e i c f

c if i

a b c d e f

             
                                
                          



 (7.8)

In all these cases, we see that any vector, real or complex, can be 
written as a linear sum of the appropriate basis elements and that 
any linear sum of these basis elements is a vector, real or complex 
respectively, and that none of the basis elements can be written as 
a linear sum of the other basis elements - we see completeness and 
orthogonality.
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Any set of mathematical objects that is complete and has orthog-
onal basis elements is called a linear space. Another name for a lin-
ear space is a vector space. It is all down to linear sums of basis 
elements. 

7.5  LINEAR SPACES (VECTOR SPACES) AND 
QUANTUM MECHANICS

In quantum mechanics, the state of a physical system (perhaps 
a particle) is represented by an element in a linear space. (There is 
usually more than one basis to the linear space.) The elements of a 
linear space are often called vectors (sometimes, they are vectors 
in a space of infi nite dimension). Thus, in quantum mechanics, the 
state of a physical system is a vector.

Since we take an unobserved physical system to be in a super-
position (linear sum) of all possible states, then associated with that 
superposition are the coeffi cients of the basis states in the linear 
sum. These coeffi cients are an n-tuple of complex numbers – a com-
plex vector. If, as is the case with non-commuting operators, there is 
more than one basis of the linear space involved, the state is one vec-
tor written in more than one basis. When the state is observed, it col-
lapses into a basis state (a basis vector in a particular basis), but this 
is still a vector; it is, however, only one number (the other numbers 
in the n-tuple are zero). In quantum mechanics, we write vectors as:

 vector  y  (7.9)

These vectors are also called ket s.

We will fi nd that each quantum mechanical operator is associated 
with a set of basis eigenfunctions that are the solutions of an eigen-
value equation2 containing the operator and the basis eigenfunctions 
are the basis elements of a linear space. This is another way of saying 
that the set of eigenfunctions (eigensolutions) which describe the pos-
sible states of a physical system (think possible states of an electron 
orbiting an atomic nucleus) is a linear space. The elements of the lin-

2. We will cover eigenvalue equations shortly.
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ear space are superpositions (linear sums) of the basis eigenfunctions 
– just like vectors are linear sums of basis vectors.

The dimension of the set, that is the number of basis elements, 
can be infi nite. This rather strains the brain, and the details are 
beyond this book.

7.6 COLLAPSE INTO A BASIS SOLUTION

The different energy levels of an electron orbiting an atomic 
nucleus are each associated with a different basis solution (basis vec-
tor or standing wave) of an appropriate linear differential equation 
called the Schrödinger equation for that system. Prior to observa-
tion, the electron is seen as being in a state described by a super-
position (linear sum) of all the basis solutions of the appropriate 
Schrödinger equation. When the electron is observed, it “collapse s” 
into a state described by a single basis solution. Prior to observation, 
the electron is a sum of standing waves; when observed, it becomes 
a single standing wave; after some time has passed, it has evolved 
from being a single standing wave into again being a superposition 
of standing waves. 

If there were, say, three possible orbits that an electron might 
occupy, {1, 2, 3}, then, prior to observation it would be described 
by the wavefunction (sum of standing waves):

 1 1 2 2 3 3

i

c c c

c

j j j   


 (7.10)

When observed, it would “collapse” into only one of these basis 
solutions (basis states or standing waves), say 3, and would then be 
described by the wavefunction (standing wave):

  = 3 (7.11)

The “choice” of which of the three basis solutions (also called eigen-
state s) the wavefunction collapses into is purely a matter of chance. 
The probability of it being the eigenstate i is determined by the 
relative size of the modulus of the complex coeffi cient of that eigen-
state,. 2 * ,i i ic c c  compared to the moduli of the other coeffi cients.
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Standing wave, basis state, eigenstate, basis vector, basis solu-
tion, eigensolution – all the same thing!

7.7 INNER PRODUCTS

Inner product s are a central part of quantum mechanics. The 
idea behind them derives from the inner products of division alge-
bras, but a quantum mechanical inner product is both a very differ-
ent thing and a very similar thing from and to a division algebra inner 
product. 

The nature of an inner product within a division algebra is not 
part of quantum mechanics3; none-the-less, we include a description 
of such division algebra inner products as an aside for the edifi cation 
of the reader. We choose to explain the inner product in the division 
algebra . 

Aside: Because a division algebra is a geometric space, it has angles, 
trigonometric functions, and a rotation matrix. A number within a 
division algebra is a position in the geometric space of that algebra 
– think complex plane. A position in a geometric space is a displace-
ment vector, and so numbers and vectors are the same thing within 
a division algebra. 

Within a division algebra, the inner product  is a way of calculating 
the angle between two vectors subtended at the origin. In general, 
within a division algebra, we calculate the angle between two vec-
tors by conjugating one of the vectors and taking the product of the 
conjugated vector with the other vector. We demonstrate with unit 
length complex numbers, , in polar form (look for the position of 
the minus sign).

 

cos sin cos sin
sin cos sin cos

cos( ) sin( )
sin( ) cos( )

q q f f
q q f f

q f q f
q f q f

   
      

  
     

 (7.12)

3. They are of central importance within special relativity.
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We see that by multiplying a conjugated vector with another vector, 
we get a measure of the angle (  ) between the two vectors in the 
form of a trigonometric function with the angle between the vectors 
as its argument. In Cartesian form, this is:

 

2 2 2 2

2 2 2 2

2 2 2 2

1 1

1

1
( )

s t x y

t s y xs t x y

s t x y

t s y xs t x y

sx ty sy tx

sy tx sx tys t x y

   
        

   
        

  
      

 (7.13)

Putting these equal, we get:

 
2 2 2 2

cos( )
sx ty

s t x y
q f


 

 
  (7.14)

Which the reader will doubtless recognize as being the same as the 
conventional dot-product of two 2-dimensional 2 vectors. 

We also get the magnitude of the vector cross-product4 of two vec-
tors as a bonus.

 
2 2 2 2

sin( )
sy tx

s t x y
q f


 

 
  (7.15)

In case the reader was wondering, the cross product is called the 
outer product.

In space-time (the hyperbolic complex numbers), the angle between 
two space-time vectors is the argument of the cosh( ) function.

In the above aside, we have introduced the concept of the inner 
product of one complex number with another as the conjugate of 
one number multiplied by the other number. Within a division 
algebra, the inner product makes perfect sense as a measure of the 
angle between two numbers, but the solutions of a linear differential 
equation are not a geometric space and do not have angles between 

4. Note that this is not a vector sticking out of the complex plane, . The complex 
numbers are a 2-dimensional algebra; they cannot “grow” another dimension any 
more than the reader can grow another arm.
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them. Nor are ordered n-tuples of real numbers a geometric space. 
We are shortly going to put an inner product on to ordered n-tuples 
of real numbers and on to ordered n-tuples of complex numbers and 
on to solutions of a linear differential equation. Since these sets of 
mathematical objects have no concept of angle within them, we are 
going to have to drop the association between an inner product and 
an angle. 

If the inner product of two complex numbers is zero, the cosine 
of the angle between the two vectors is zero. A zero cosine corre-
sponds to an angle of 90 within the complex plane, . So, if the 
inner product of two vectors is zero, they are perpendicular to each 
other. If two vectors in the complex plane are perpendicular to each 
other, the two vectors are such that we cannot write one as a linear 
sum of the other – the two vectors are orthogonal. We have a corre-
lation between zero inner product and orthogonality5. We will carry 
this with us into quantum mechanics.

If the inner product of two normalized complex numbers is unity, 
the cosine of the angle between the two vectors is unity. A unity cosine 
corresponds to an angle of 0 within the complex plane, . So, if the 
inner product of two normalized vectors is unity, they are the same 
vector. We have a correlation between unity inner product and iden-
tity of the vectors. We will carry this with us into quantum mechanics.

7.8 INNER PRODUCTS IN n

Within 3, we seek a way of combining two ordered 3-tuples 
of real numbers (two 3-dimensional vectors) in such a way that the 
combination is zero if we cannot write either one of the 3-tuples as 
a linear sum of the other and the combination is unity if the normal-
ized 3-tuples are the same.

It is customary to call this way of combining two normalized 
3-tuples of three real numbers the inner product  on 3. We all know 
what it is:

5. Within space-time, the cosh( ) is never zero, and so not all division algebras have 
a correlation between orthogonality and zero inner product.
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2 2 22 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

, 

xa
x y za b c

yb

a b c x y z
c z

a b c x y z

ax by cz

a b c x y z

                                     
 


   

 (7.16)

In the above, we have used the , notation to indicate the inner 
product. This notation is ubiquitous within quantum mechanics. 
Notice that the denominators of the components of the vectors nor-
malize the vector.

Not only does this way of combining two mathematical objects 
work in 3, but analogous ways of combining two normalized 
ordered n-tuples of real numbers works all the way up to infi nity. 
We are therefore able to impose this way of combining two ordered 
n-tuples of real numbers on to the vector spaces of n and call it the 
inner product of those vector spaces. 

7.9 INNER PRODUCTS IN n

Quantum mechanics uses complex vectors in n. These are 
ordered n-tuples of complex numbers. There is a way of combining 
two normalized complex vectors such that, when the combination is 
zero, the vectors are orthogonal (think sums of basis vectors), and 
that, when the combination is unity, the vectors are the same.

This way of combining two such complex vectors is called the inner 
product  on n. It is very similar to the inner product within the com-
plex plane in that we conjugate every element of one vector and then 
multiply the respective pairs of elements together and sum the lot:

      
,

( )( ) ( )( )
( ) ( )

a ib e if a ib e if

c id g ih c id g ih

a ib e if c id g ih

ae bf cg dh i af be ch dg

          
                  
     
       

 (7.17)
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Notice that, if we swap the vectors within the inner product, we get 
the conjugate of the above:

     , ( ) ( )
e if a ib

ae bf cg dh i af be ch dg
g ih c id

    
              

 (7.18)

The reader will often see the n inner product expressed as:

 , [ ]
e if a ib a ib

e if g ih
g ih c id c id

       
              

 (7.19)

Wherein the inner product appears as matrix multiplication. For 
higher dimensional n-tuples of complex numbers, the inner product 
is of the same form.

The conjugate transpose is often called a dual vector or a bra 
vector and is written as:

 [ ]e if g ih y     (7.20)

This is combined with the ket vector and written as a bracket6:

 [ ]
a ib

e if g ih
c id

y f
 

     
 (7.21)

We sometimes see the inner product  of two complex vectors, {A, B}  
n written as:

 †,A B A B   (7.22)

7.10  INNER PRODUCTS IN QUANTUM 
MECHANICS

Quantum mechanics does not use the concept of angle between 
complex vectors, but it does use the concept of an inner product 
being unity or zero if the complex vectors are the same or orthogonal 
respectively. Quantum mechanics copies these concepts from the 

6. Paul Dirac is the origin of both these names and the sense of humor that goes 
with them.
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complex number division algebra while leaving behind the concept 
of angle and geometric space.

Within quantum mechanics, we use the inner product to calcu-
late the probability that a system which is in a superposition, , of 
basis states, i, will be observed to be in a particular one of those 
basis states. Repeating the above, the superposition is a linear sum, 
with complex coeffi cients, of the possible basis states:

 1 1 2 2 3 3 ...

i

c c c

c

f f f    


 (7.23)

We uniformly scale all the coeffi cients to the point where the sum 
of their moduli is unity. We call this normalization. The probability 
of observing the system to be in the state i is the modulus of the 
normalized complex coeffi cient, ci. Clearly, *| | 1i i ic c c  . We seek 
a way of combining a particular basis state with the superposition of 
basis states to produce the modulus of the coeffi cient of the basis 
state within the superposition - we want a mathematical way to pick 
out the appropriate coeffi cient. This is very similar to using the inner 
product of a basis vector and a general vector in n to pick out a par-
ticular component of a vector.

 

1
0 [1 0 0] [ ]
0

a a

b b a

c c

     
           
          

                          (7.24)

The basis solutions of a linear differential equation are functions. 
We therefore need a way of picking out the coeffi cient of one of the 
basis functions from the superposition of basis functions. We want 
an inner product of functions.

7.11 INNER PRODUCTS OF FUNCTIONS

We can combine two normalized functions together in such a 
way that, when the combination is equal to unity, the normalized 
functions are the same function, and, when the combination is zero, 
the functions are orthogonal. In particular, we can do it with solu-
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tions of linear differential equations. In the case of functions, which 
can be complex, the inner product  is an overlap integral.

 *,  dxy f y f




   (7.25)

This is analogous to a vector inner product in a space of infi nite 
dimension, . Only if the functions form a vector space (linear 
space) can we apply this inner product.

A linear space with an inner product is called a Hilbert space  
after the mathematician David Hilbert. 

Aside: David Hilbert  (1862–1943) was one of the most prominent 
mathematicians of the early 20th century. In the path of Euclid, Hil-
bert advocated formalizing mathematics as a series of axioms, and he 
made his own contribution in the form of twenty (originally twenty-
one) axioms that formalized geometry7. This idea is known as Hil-
bert’s program. In 1902, he addressed the International Congress 
of Mathematics in Paris with a list of the central problems of math-
ematics which determined the direction of mathematics for much 
of the 20th century. To the physics student, the concept of a Hilbert 
space (linear space) is his greatest contribution.

Building upon the reputations of Gauss, Riemann, Dedekind, 
and Dirichlet, Hilbert made Göttingen University into a world 
renowned center for mathematics. Unfortunately, many of the 
mathematicians in Göttingen in the 1930’s were Jewish, and the 
Nazis effectively destroyed the mathematics department there dur-
ing the 1930’s. Hilbert is well known for his opposition to the Nazis 
and for his support in the earlier part of the 20th century of the bril-
liant female mathematician Emmy Noether against the anti-women 
prejudices of the university offi cials at the time. 

The geometries of the n-dimensional division algebras with one 
real axis and n – 1 imaginary axes which are widely mentioned in 
this book are an entirely different view of geometry from the one 
advocated by Hilbert.

7. David Hilbert: The Foundations of Geometry (1902).
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7.12 OVERLAP INTEGRALS

The overlap integral  is taken to be the inner product of two 
functions within a linear space. The product of two functions is non-
zero only when both functions are non-zero, Thus the product is a 
measure of the “overlap” of the two functions.

 

We form the overlap integral to sum the product of the functions at 
every point. To make this work, we need to normalize the area under 
the functions (the integral of the functions). The overlap integral is 
much used in quantum mechanics.

7.13 LINEAR SUB-SPACES

Linear spaces have sub-spaces. From the set of basis elements, 
we select, at random, a few. The linear sums of these few basis ele-
ments will form a linear space  in their own right. It is like 2 is a 
sub-space of 3. So it is with the solutions of a linear differential 
equation; if we select a few basis solutions, the linear sums of these 
few basis solutions are a vector space in their own right. This is very 
different from the sub-spaces of the division algebras whose exis-
tence is very much restricted by the nature of the fi nite group that 
underlies the algebra.
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7.14 SQUARE INTEGRABLE FUNCTIONS

There is a large set of functions  that form a function space that 
is central to quantum mechanics because it contains all the possible 
functions that are within quantum mechanics. That large set of func-
tions is called the set of square integrable functions and is denoted 
by L2. Within this function space, one of the sub-function spaces is 
the Hermite polynomials  which are the solutions of the Schrödinger 
equation for the simple harmonic oscillator. We will be interested in 
this function sub-space when we look at the simple harmonic oscilla-
tor. Another of the sub-function spaces is the Laguerre polynomials  
which are the solutions of the Schrödinger equation for the hydro-
gen atom. We will be interested in this function sub-space when we 
look at the hydrogen atom.

Since L2 is a vector space, within L2, we have a set of mutually 
orthogonal basis functions. Every linear sum of these basis functions 
is a square integrable function, and every square integrable function 
is a linear sum of these basis functions. The inner product of the 
square integrable functions is the overlap integral above, (7.25).

7.15 SQUARE INTEGRABILITY

The integral of a function is the area between the graph of the 
function and the axis. Area below the axis counts as negative, and 
area above the axis counts as positive. It is possible to have both posi-
tive area (above the axis) and negative area (below the axis) in such 
amounts that the total area is zero even though there is area between 
the graph of the function and the axis. The cosine function between 
[0, 2] is such a function. If we square the function before integrat-
ing, then all the area between the graph of the squared function and 
the axis will be positive, and this is a better measure of the integral 
of the function because it avoids the cancellation of positive area by 
other negative area.

A function is said to be square integrable if the area between the 
graph of its square and the axis is fi nite; if this area is infi nite, the 
function is not square integrable.
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The set of square integrable functions is denoted by:

  
3

22 3 3( ) : : :  L dx xy y
     
  




    (7.26)

This set is a linear space with an inner product (a Hilbert space). 

Square integrable functions are:

 i. Defined everywhere.

 ii. Infinitely differentiable. We can differentiate them time and 
time again until they are just zero.

 iii. Continuous everywhere.

 iv. Have continuous derivatives.

 v. Have finite square integrals. They do not zoom off to infinity 
thereby having an infinite area beneath their graphs.
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7.16  THE TWO REPRESENTATIONS OF QUANTUM 
MECHANICS

Quantum mechanics is formulated in two ways known as wave 
mechanics (the Schrödinger  representation) and matrix mechanics 
(the Heisenberg  representation). Wave mechanics uses function 
spaces which are linear sums of orthogonal basis functions and are 
complete and have an overlap integral as an inner product. Matrix 
mechanics  uses vector spaces, n, which are linear sums of orthogo-
nal basis vectors and are complete and have a “dot-product” as an 
inner product.

7.17 SUMMARY

This has not been an easy chapter. We summarize it briefl y and 
advise the reader to re-read it. A vector space (linear space) is a set 
of mathematical objects such that every one of the objects is a linear 
sum of “special objects” that are called basis objects and such that 
any linear sum of these basis objects is a member of the set; this 
is called completeness. The “special objects” are such that none of 
them can be written as a linear sum of the others of them; this is 
called orthogonality.

A vector space with an inner product8 is called a Hilbert space.

It is quite remarkable that sets of functions and sets of ordered 
n-tuples of real numbers and sets of ordered n-tuples of complex 
numbers should have these properties of basis functions (basis 
vectors), orthogonality, and completeness. It is quite remarkable 
that there exist inner products of functions and of vectors that are 
utterly divorced from the geometric spaces of the division algebras 
that inspired them. Even so, these concepts are central to quantum 
mechanics. 

8. Technically, an inner product has to satisfy various axioms; it cannot be any old 
thing.
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7.18 BRAS AND KETS (ADDENDUM)

We assume the existence of an orthonormal basis of vectors such 
that the inner product of these basis vectors is either unity or zero. 
We write this as:

 
1 1 2 2 3 3 ...

i j ij

c c c

f f d

y f f f



   
 (7.27)

To convert a ket  vector, |, into a bra  vector, |, we complex con-
jugate the components of the ket vector:

 *c c cy y y                                      (7.28)

EXERCISES

1. Is the function f(x) = eax square integrable?

2. Is the function 
2

( ) axf x e square integrable?

3. If two vectors in 3 are:

 
2

3    &  2
7 4

i

A i B

i

   
        
      

 (7.29)

What are the inner products A, B & B, A?

4. Is f(x) = cosh(x) square integrable?

5. Is ( ) cosh( )xf x e x  square integrable?

6. Is 
2

( ) cosh( )xf x e x  square integrable?
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CHAPTER 8
OPERATORS, 
EIGENFUNCTIONS, 
AND EIGENVALUES

Is the reader still sitting comfortably? Then we shall continue. 
Mathematically, quantum mechanics is formulated in terms of lin-
ear operators, eigenfunctions, and eigenvalues. Technically, a linear 
operator  changes (maps if you prefer) an element (vector or func-
tion) of a linear space into another element of that linear space. 
In quantum mechanics, the basis functions of the linear space are 
basis solutions of the linear differential equation known as the time 
dependent Schrödinger equation, TDSE. 

So, we solve the TDSE. We do this by separating the TDSE as 
we did with the Newtonian wave equation. One part of the sepa-
rated TDSE is the time independent Schrödinger equation, TISE. 
The solutions of the TISE are basis functions, i, of a linear space 
(standing wave solutions). The linear space is then all the linear sums 
of these basis functions and is of the form:

 1 1 2 2 2 2 ...

i

c c c

c

j j j    


 (8.1)

The TISE is an energy operator equation, also known as an eigen-
value equation. This means that its basis solutions are energy eigen-
functions. Associated with each eigenfunction is a special number 
called an eigenvalue. We saw this with the Newtonian wave equation 

The nuts.indb   73 09-05-2016   10:45:17



74 • Quantum Mechanics

in which each standing wave solution (basis solution) of the Newto-

nian wave equation is associated with a special number, .n
n

k
L
p

  

In quantum mechanics, the eigenvalues of a linear operator are the 
possible results of measuring the physical property (momentum, 
energy,…) associated with the linear operator. In the TISE, the 
operator is the energy operator, and so the eigenvalues are the ener-
gies of the standing wave (eigenfunction) solutions of the TISE. 

There are linear operators in any linear space. 

8.1 OPERATORS

An operator , ,A  acts upon a mathematical function, , to pro-
duce another function. A linear operator, ,A  is an operator such that:

         1 2 1 2    :   iA a a a A a A ay f y f     (8.2)

Actually ai can be an element of any division algebra. An example of 
a non-linear operator is exponentiation:

       1 2 1 2exp exp( ) expa a a ay f y f    (8.3)

Alternatively, given a complete set of orthonormal basis vectors, any 
linear operator can be written as a matrix operator (n  n matrix) that 
acts upon a vector, (n  1 column matrix) to produce another vector.

 
a b c ac bd

b a d ad bc

     
           

 (8.4)

An example of a linear operator acting on a function is the differen-
tiation operator that acts upon a function to produce its differential:

 


2( ) 2x x
x





 (8.5)

Note that we signify the operator by putting a carat (little hat) above 

it. The differentiation operator is 


.
x



 The input function (operator 

argument) is x2. The output function is 2x. 
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Another example is the multiply by x operator that acts upon an 
input function to produce the product of that function with x:

  5 7
2 23 7 3 7x x x x    (8.6)

The multiply by x operator is .x

Aside: The multiply by x operator is the operator that corresponds 
to the Newtonian dynamic variable that is x-position.

Other examples include the zero operator that converts all input 
functions into the zero function:

 30(3 9) 0x    (8.7)

The identity operator that converts all input functions into them-
selves:

  5 3 5 31 sin( ) sin( )x xe x e x    (8.8)

And the multiply by i  operator. Note: 1 :i  

     5 3 5 3sin( ) sin( )x xi e x i e x     (8.9)

To reiterate, an operator is something that acts upon a function to 
produce another function. Alternatively, a matrix operator acts upon 
a vector to produce another vector:

 

1 0 3 2 3 2
0 1 2 3 2 3
3 2 1 0 3 2
2 3 0 1 2 3

a a c d

b b c d

c a b c

d a b d

      
           
      
           

 (8.10)

We see that the concept of an operator acting upon a function to 
produce another function is mirrored by a matrix acting upon a vec-
tor to produce another vector. In quantum mechanics, we use both 
these formulations. This dual formulation of quantum mechanics 
can be confusing because it leads to operators being two types of 
things - square matrices and functionals. These two types of things 
act respectively upon vectors and functions.
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8.2 EIGENFUNCTIONS (EIGENVECTORS)

Eigenfunction means special function. Eigenvector means spe-
cial vector. Associated with each operator, there are “special func-
tions” (“special vectors”) that are special because, when they are 
acted upon by that operator, they are unchanged except in that they 
are multiplied by a number. These special functions (special vectors) 
are called eigenfunctions or eigenvectors. Examples of eigenfunc-
tions  of the differentiation operator are {e2x, e5ix}:

 
 

2 2 5 5( ) 2         :          ( ) 5x x ix ixe e e ie
x x
 

 
 

 (8.11)

8.3 EIGENVALUES

Eigenvalue means special value. Associated with each eigen-
function (eigenvector) of an operator is the number by which the 
operator multiplies the eigenfunction (eigenvector). These special 
numbers are called eigenvalues . We take e2x to be an eigenfunction 
of the differentiation operator that is different from e5x. Examples of 
eigenvalues are the 2 in:

 


2 2( ) 2x xe e
x





 (8.12)

And the 3 in:

 


3 3( ) 3x xe e
x





 (8.13)

Clearly1, there is one, and only one, eigenvalue for every eigenfunc-
tion (eigenvector).

Although the theory of operators allows eigenvalues to be any 
kind of number, in quantum mechanics all eigenvalues are real num-
bers. The eigenvalues of an operator are the possible outcomes of 
measuring some dynamic variable of the system (think the angular 

1. In mathematics, “clearly” means that the statement to which it refers is not 
only true but can be understood to be true by thinking about it for less than 
one year, but more than one month.
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momentum of an electron in orbit around an atomic nucleus), and 
so we need them to be real numbers.

Aside: If the value of, say, momentum was a complex number, we 
would also have to specify the orientation of the axes of the complex 
plane as part of that number. Since the orientation of axes is arbi-
trary, the momentum would be arbitrary.

All of the above is mirrored by matrix operators that have special 
vectors (eigenvectors) which are unchanged when multiplied by the 
matrix operator other than to be multiplied by a (real in quantum 
mechanics) number:

 
2 0 1 1

2
0 1 0 0
     

          
 (8.14)

8.4 MATRICES AND EIGENVALUES

Matrices have eigenvalues . We calculate the eigenvalues of a 
n  n matrix, A, by solving the equation:

 det( ) 0A Il   (8.15)

Wherein I is the n  n identity matrix and  are numbers that are 
the n solutions of this nth power equation; these numbers are called 
the eigenvalues of the matrix. If we were to diagonalize the n  n 
matrix with a symmetry transformation (change of basis), then the 
n elements on the leading diagonal would be the eigenvalues of the 
matrix – the other elements would all be zero, of course. If any of the 
eigenvalues of a matrix, , are equal, we say that these eigenvalues 
are degenerate. We say the same when dealing with eigenvalues in 
quantum mechanics.

8.5 HERMITIAN OPERATORS

There are particular types of operators that always have real 
eigenvalues. These particular operators are called Hermitian opera-
tors, and they are the type of operators which are used in quantum 
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mechanics. A Hermitian operator  is an operator that is both linear 
and self adjoint . We will explain self adjointness later. By defi nition, 
a functional linear operator, ,A  is Hermitian if:

      * ( )  *dx A dx Af y y f
 

 

   (8.16)

This automatically ensures the operator, ,A  will have real eigenval-
ues because:

 

 





* * * *

* *

* * * *

*

  

  

n n n n n n

n n n n n

n n n n n

n n

A a A a

dx A a dx

dx A a dx

a a

f f f f

f f f f

f f f f

  







 
 

 (8.17)

The differentiation operator, ,
x



 is not an Hermitian operator, but 

the momentum operator, ,p i
x


 


   is an Hermitian operator. For 
example, we have:

 

 
*

*

 * ( )  *

 

dx p i dx
x

i i dx
x

yf y f

ff y y

 

 








 



      

 



 

 

 (8.18)

We assume that the wavefunction, {, } are square integrable func-
tions. This means that their values at ±  0, and so the fi rst term 
is zero:

 

 

*

*

*

 * ( ) ( )  

 

 ( )

dx p i dx
x

dx i
x

dx p

ff y y

fy

y f

 

 



















 





 





 (8.19)
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It is also true that the x-position operator, ˆ,x  is Hermitian. It thus 
follows that the Hamiltonian operator2, ,H  (the energy operator), 
being a multiple and a sum of the momentum and position opera-
tors, is also a Hermitian operator.

The (non-degenerate) eigenfunctions of a Hermitian operator 
are orthogonal; that is:

 
* 

0 if    &   1 if  

m n mn

mn mn

dx

m n m n

f f d

d d



   
  (8.20)

We are going to use the eigenfunctions of Hermitian operators to 
form the basis elements (basis functions) of a linear space. We would 
not be able to do this if they were not orthogonal.

8.6 HERMITIAN MATRICES

A matrix operator is Hermitian if it is of the form that it is equal 
to its conjugate transpose. The conjugate transpose is called the 
adjoint. We form the conjugate transpose of a matrix by:

 i. Conjugate every complex number in the matrix

 ii. Transpose the matrix (swap aij for aji)

An example of a non-Hermitian matrix  is:

 
*T Ta b ic a b ic a d ie

d ie a d ie a b ic a

       
             

 (8.21)

An example of a Hermitian matrix is:

 
*T Ta b ic a b ic a b ic

b ic a b ic a b ic a

       
             

 (8.22)

2. We have mentioned the Hamiltonian operator earlier in the book, but not at 
length. It does not matter if the reader has forgotten it because we will meet it 
again later.
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If a matrix operator is equal to its own adjoint (conjugate transpose ), 
we say that it is self adjoint. We often write the adjoint matrix with a 
superscripted dagger:

 
†a b ic a d ie

d ie a b ic a

    
       

 (8.23)

8.7 UNITARY MATRICES

A unitary matrix  is one where:

 
† †

1 †

UU U U I

U U

 


 (8.24)

Wherein U† is the adjoint (conjugate transpose) of U. Within a 
unitary matrix, the rows form an orthonormal set of basis vectors 
and the columns also form an orthonormal set of basis vectors. The 
eigenvalues, i, of a unitary matrix are such that |i|2  1; they are of 
unit length.

Aside: A general 2  2 unitary matrix is of the form:

 1 2 2 2
1 2* *

2 1

 :  1
c c

c c
c c

 
  

 
 (8.25)

This is equivalent to:

 2 2 2 2 :  1

a b c d

b a d c
a b c d

c d a b

d c b a

 
       
  
   

 (8.26)

Which is a quaternion  of unit length. The quaternion rotation matrix 
is isomorphic with the Lie group SU(2) which the reader will meet 
in later studies.

Suppose I do an experiment with apparatus that is pointing north. 
If I do the same experiment with the same apparatus pointing west, 
will I get the same result? The directions north or west are no more 
than the arbitrary whims of humankind, and we would be amazed 
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if our whims were able to affect the outcome of an experiment. We 
take the view that the physical laws of the universe are independent 
of the direction in which the experimental apparatus points. This is a 
view very much supported both theoretically and observationally. If 
the laws of physics are unchanged by a change of viewpoint, we say 
that the laws of physics are symmetrical with respect to the change 
of view.

One of the results of experiments is the inner product of two 
wavefunctions which we associate with the probability of a particular 
result being seen from an experiment.

 2,iP f y  (8.27)

It is a mathematical fact that, for a unitary linear operator , U:

 2 2, ( ), ( )i iU Uf y f y                          (8.28)

Now, the operator U is mapping vectors within a linear space to 
other vectors within that linear space, and it does it in such a way 
that the inner product of the two vectors is the same (invariant). 
What is really happening is no more than a change of basis of the 
linear space. The change of basis is a rotation in unitary space.

Aside: Lie algebra  is concerned with symmetries corresponding to 
operators that can be written as:

 21 ( )...U i G Oe e    (8.29)

Applying the condition of unitarity to this operator gives:

   † 2 † 21 ( )... 1 ( )... 1i G O i G Oe e e e      (8.30)

Ignoring higher terms, this is:

 †G G  (8.31)

If we set 
n
qe   and apply the operator n times, as n  , we get:

 ( ) 1
n

i GU i G e
n

qqq     
 

  (8.32)

This is a rotation in the complex plane.
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8.8 SIMILARITY TRANSFORMATIONS

A similarity transformation  is a transformation that changes the 
basis in which the matrix, A, is written. It is of the form:

 1D S AS  (8.33)

Wherein S is an invertible matrix. The matrix D is the same matrix as 
the matrix A but it is written in a different basis. We note that if S is 
a unitary matrix, we can replace S1 with S†. It is possible to choose 
a matrix basis such that the eigenvalues of the matrix appear on the 
leading diagonal of the matrix and all other elements of the matrix 
are zero. This is called diagonalization  of the matrix. It is sometimes 
useful to diagonalize Hermitian matrices using unitary matrices in 
the similarity transformation. We then have the Hermitian matrix 
written in diagonal form and in non-diagonal form; it is the same 
matrix but written in two different bases. Such a transformation is 
called a unitary transformation and is written:

 †D U AU  (8.34)

In due course, the reader will be told that the eigenfunctions of the 

quantum mechanical momentum operator, ,xp are not the same as 
the eigenfunctions of the quantum mechanical x-position operator, 
ˆ,x  and that this is why we cannot simultaneously know both the 

momentum and the position of a particle. The two sets of eigenfunc-
tions differ only in that they are written in a different basis – they are 
the same eigenfunctions written in two different bases. One set of 
eigenfunctions can be transformed into the other set of eigenfunc-
tions by a unitary similarity transformation. The similarity transfor-
mation has to be unitary if the “size” (modulus) of the eigenfunctions 
is to remain unchanged. 

In essence, a unitary transformation is a rotation of the basis of 
a linear space. 
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8.9  SYMMETRIC MATRICES ALWAYS HAVE REAL 
EIGENVALUES

A symmetric matrix  is one that is equal to its transpose. This 
means that the elements of the matrix are such that .rc cra a  We 
have:

 

0 0
0 0

0 0
0 0

Ta c d a c d

a d c a d c

c d a c d a

d c a d c a

   
       
    
   
   

  (8.35)

Wherein the superscript T indicates transposition. This matrix has 
eigenvectors:

 

2 2 2 2

2 2 2 2
,

1 0
0 1

c d

c d c d
d c

c d c d

   
       

   
   

    
   
   
   

 (8.36)

Both with eigenvalue 2 2 ,a c d   and eigenvectors:

 

2 2 2 2

2 2 2 2
,

1 0
0 1

c d

c d c d
d c

c d c d

    
       

   
   

    
   
   
   

 (8.37)

Both with eigenvalue 2 2 .a c d   We see that the eigenvalues will 
always be real. 

It is a mathematical fact that symmetric matrices always have 
real eigenvalues . It is also a mathematical fact that n  n symmetric 
matrices with real elements have n mutually orthogonal eigenvec-
tors. The eigenvectors of a quantum mechanical operator are the 
basis of a linear space in that they are orthogonal and are a complete 
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set. The reader might think that we should have only symmetric 
matrix operators within quantum mechanics. This makes a lot of 
sense, but, for historical reasons, in quantum mechanics, this is not 
done; we use Hermitian matrices to save paper.

8.10  FROM OVERLAP INTEGRAL TO HERMITIAN 
MATRIX

If a  functional Hermitian operator has a fi nite number of basis 
eigenfunctions, say n. Given a set of basis vectors, we can defi ne a 
square n  n matrix in which the elements of that matrix, M, are 
given by the inner products of the basis eigenfunctions with each 
other:

 
* ( )

,

RC R C

R C

M dx Af f

f f









   (8.38)

Wherein i are the eigenfunctions of the operator .A  Such a matrix 
is the Hermitian functional operator written as an Hermitian matrix 
operator. This matrix will be a diagonal matrix  (have off-diagonal 
elements that are all zero) if the matrix is written in the same basis 
as the eigenfunctions; otherwise, the matrix will not be a diagonal 
matrix.

8.11 EIGENVALUE EQUATIONS

Equations of the form:

   ( ) ( )n n nA u x a u x  (8.39)

are known as eigenvalue equations . A  is an operator. un(x) is an 
eigenfunction, and an is the eigenvalue of the particular eigenfunc-
tion. An example is given by the momentum operator :

 
  a a a

i x i x i xa
i e i i e ae

x

 
    

  
   


 (8.40)
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Eigenvalue equations are central to quantum mechanics. It is by 
solving the eigenvalue equations that we get the eigenvalues which 
are the possible outcomes of measuring the Newtonian dynamic 
variable (momentum, position, energy, angular momentum,…) 
associated with the operator. The time independent Schrödinger 
equation, which is the backbone of much quantum mechanics, is an 
(energy operator) eigenvalue equation. We also get the eigenfunc-
tions from an eigenvalue equation, and these enable the calculation 
of the probability of a particular outcome of an event.

All of this is matched in the matrix mechanics representation 
of quantum mechanics in which an eigenvalue equation is a matrix 
equation of the form:

 

.
.

. na

     
     
     
     
     
     

 (8.41)

We solve an eigenvalue equation  by educated guesswork.

8.12 UPON EIGENVALUES

There is a most important physical law which describes the uni-
verse. This most important physical law is that the physics of the uni-
verse is the same regardless of which co-ordinate system we choose 
to place over the universe. Electrons have the same electric charge 
in polar co-ordinates as they have in Cartesian co-ordinates. Elec-
trons have the same electric charge in Cartesian co-ordinates that 
are oriented at 45 as they have in Cartesian co-ordinates that are 
oriented at 20.

It is the very essence of special relativity that physics is the same 
regardless of the orientation of the space-time co-ordinates. The 
relative orientation of the space-time co-ordinates of two observers 
is just the relative velocity of the observers, and physics is the same 
at all velocities.

This invariance of physics under change of co-ordinates (change 
of matrix basis) is central to quantum fi eld theory. A central part of 
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QFT is that physics is invariant under change of co-ordinates in uni-
tary spaces like 2 and 3. Rotation of co-ordinates in these unitary 
spaces is called invariance under SU(2) transformations and invari-
ance under SU(3) transformations respectively.

If we are to formulate a description of the universe, the variables 
and the equations that relate these variables must be invariant under 
change of co-ordinates just as the energy of an electron in orbit must 
be invariant under change of co-ordinates. 

Eigenvalues, like the determinant which is their product, are 
invariant under change of basis (change of co-ordinates). Once we 
have a matrix operator, its eigenvalues will be the same regardless 
of which basis we use to write the operator. The eigenvalues  are 
invariants of the system. So, if you want a description of the universe 
which is linear and independent of co-ordinate system, and the uni-
verse certainly seems to be like this, you might expect that eigenval-
ues would play a part.

8.13 PRODUCTS AND SUMS OF OPERATORS

The “product” of two operators is an operator. This product of 
operators is “fi rst let one operator act on a function to produce a sec-
ond function and then let the second operator act upon the second 
function to produce a third function”. Since operators  are no more 
than things that change a function into another function, we see that 
    ( )A B f x  is itself an operator.

        ( ) ( ) ( )A B f x A g x h x   (8.42)

Clearly, the “sum” of two operators is an operator.

          ( ) ( ) ( ) ( ) ( ) ( )A B f x A f x B f x g x h x j x       (8.43)

Alternatively, a product of matrix operators starts with a vector and 
fi rst converts it to a second vector and then converts the second vec-
tor to a third vector.
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8.14 THE COMMUTATOR OF TWO OPERATORS

It is a simple mathematical fact, not based on any assumptions, 
that the order in which different operators act upon a function 
affects the outcome. Consider the two operators:

   
   ( ) ( ),       ( ) . ( )A f x f x B f x x f x
x


 


  (8.44)

The A  operator is differentiate a function with respect to x, and the 
B  operator is multiply the function by x. The order in which these 
operators act upon the function, f(x), matters. Consider the case 
f(x)  x2  7:

 
        

        

2 3 2

2 2

( ) ( 7) ( 7 ) 3 7

( ) ( 7) (2x)       2

A B f x A B x A x x x

B A f x B A x B x

     

   
 (8.45)

We see that, by changing the order in which the operators act upon 
the function, we produce different results.

The commutator of two operators  is the difference between the 
alternately ordered products of the operators. The commutator of 
the two operators is also an operator. The commutator is written as 
a square bracket:

            , ( ) ( ) ( )A B f x A B f x B A f x      (8.46)

In the above example, this would be:

   2 2 2 2, ( 7) (3 7) (2 ) 7A B x x x x          (8.47)

Which is the function with which we started. This is not a coinci-
dence; it is true in general for the two operators above. It is not true 
for most operators. In the above case, since the commutator opera-
tor is the identity operator 1, we have:

 


, 1x
x

 
  

   (8.48)

Within which, we have placed carats over each of the elements 
because they are all operators. With a little thought, the reader will 
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realizethat swapping the order of the operators within the bracket 
reverses the sign of the commutator operator:

 


, 1x
x

 
   

   (8.49)

We refer to expressions such as the immediately above as commuta-
tion relations.

8.15 MATRIX COMMUTATORS

The commutation relations  of quantum mechanical operators 
can be seen more clearly when we use matrix operators:

 

0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0

2 0
0

0 2

i i i i

i i i i

i

i

             
                        

 
   

 (8.50)

8.16 COMPATIBLE OPERATORS

Imagine two operators ,   , ,A B  which share the same eigenfunc-
tions, n. We have:

  ( )     &     ( )n n n n n nA a B bf f f f   (8.51)

And:

      ( )     &     ( )n n n n n n n nB A b a A B a bf f f f   (8.52)

Which implies:

  , 0nA B f     (8.53)

In other words, if two operators share the same eigenfunctions, they 
commute. Conversely, if two operators commute, they have the 
same eigenfunctions. 

Commuting operators need not associate the same eigenvalues 
with any particular shared eigenfunction. The momentum operator, 
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ˆ ,p  and the zero potential energy operator, ,H  have the same set of 
eigenfunctions, but they have different sets of eigenvalues.

Commuting operators  are said to be compatible. Conversely, if 
two operators do not have the same eigenfunctions, they do not com-
mute and are said to be incompatible. Since a state can be described 
by only one eigenfunction (one standing wave) at a time, we cannot 
simultaneously know the eigenvalues of two incompatible operators. 
The x-position operator and the x-momentum operator are incom-
patible operators; they do not commute, and we cannot simultane-
ously know both the x-momentum and the x-position of a particle.

8.17  INCOMPATIBLE EIGENFUNCTIONS AND 
UNITARY TRANSFORMATIONS

When we deal with intrinsic spin, we will meet the spin opera-

tors. The spin operators are the Pauli matrices  multiplied by .
2
  The 

spin operators are:

 
0 1 0 1 0

,    ,    
1 0 0 0 12 2 2x y z

i
S S S

i

     
            

    (8.54)

The spin operators are the same matrix in different bases. We have 
the unitary matrix :

 

†

†

1 1 1 11 1
,    

1 1 1 12 2

1 0
0 1

x z x z

x z x z

U U

U U

 

 

   
       

 
  
 

  (8.55)

We do the unitary transformation on Sx:

 

† 1 1 0 1 1 11 1
1 1 1 0 1 122 2

1 0
0 12

 

     
           

 
   

x z x x z

z

U S U

S

h

h
 (8.56)
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We see that Sx is the same operator as Sz except that they are written 
in different bases. The same applies to the Sy operator, but we need 
a different unitary transformation. If {Sx, Sz} are the same operator, 
then they have the same eigenvectors except that the eigenvectors 
are written in different bases. This is true in general of incompatible 
operators and their eigenfunctions (eigenvectors). 

That nature uses three different bases for the spin operators is 
most strange. We would expect that one basis would be suffi cient. It 
seems that nature is working with three different, but only by basis, 
types of space-time. Though familiarity, physicists have come to 
accept non-commutative operators and the impossibility of simul-
taneously observing incompatible variables as normal. In doing so, 
they sweep under the carpet this most mysterious aspect of quantum 
mechanics. 

8.18 SUMMARY

We are interested in operators that multiply a function (vector) 
by a real number. We call these operators Hermitian operators. We 
are interested in solving eigenvalue equations. We are interested in 
the commutation relations of operators. Incompatible operators are 
the same operator in different bases.

8.19 BRAS AND KETS (ADDENDUM)

In the Dirac (bra & ket) notation, we write an operator with a 
carat above it, and so an eigenvalue equation is written as:

 A ay f  (8.57)

We have:

 
  

   
A B A B

AB A B

y y y

y y

  


 (8.58)
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Operators are to the left of ket s but to the write of bra s:

    &  A Ay y  (8.59)

So we have:

     11 12 1
1 2

21 22 2

A A
A A

A A

j
f j f j f f

j
   

     
   

 (8.60)

If {, } are basis vectors of the space, then the operator, ,A  is given 
by:

 
 

 
A A

A
A A

f f f j

j f j j

 
  
  

  (8.61)

The adjoint of the Dirac expression:

  c ABy f  (8.62)

Is the expression:

  † †*c B Af y  (8.63)

An Hermitian operator is one where:

 
 

  

†

*

A A

A Ay f f y




 (8.64)

EXERCISES

1. Prove that if two operators commute, they have the same 
eigenfunctions.

2. Calculate the commutator of the two symmetric matrices:

 

0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0

 &  
1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0

   
      
   
   
   

 (8.65)

Is the product of the above two matrices a symmetric matrix?
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3. Symmetric matrices are associated with rotations in space-
time (special relativity) – just take the exponential of the 
matrix. Anti-symmetric matrices are associated with rotations 
in space. Looking at the answer to 1, is the commutator of 
two space-time rotations a spatial rotation?

4. Is the operator 


x



 acting upon (x) Hermitian?

5. The “Hadamard gate” is the matrix:

 
1 11
1 12

H
 

   
 (8.66)

Is this matrix Hermitian? Is this matrix unitary? What is the 
modulus of the determinant of this matrix?

6. Confirm the operator equation:

 
   2

2
2 1x x x

x x x

            
      

  (8.67)

7. Evaluate the operator: 

 
 

x x
x x

            
  (8.68)

8. Is 

2

2
x

e


 an eigenfunction of the operator 
2

2
2 ?x

x





AUTHOR’S NOTE

The reader has now just fi nished the two most diffi cult chapters 
of this book. From now on, it is downhill. If the reader has not yet 
done so, she is urged to re-read the last two chapters.
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CHAPTER 9
THE PLACE OF 
OPERATORS IN 
QUANTUM MECHANICS

Quantum mechanics is formulated in two representation s. The 
wave mechanics representation is built upon linear operators, eigen-
functions, and eigenvalues. The matrix mechanics representation is 
built upon matrix operators, eigenvectors, and eigenvalues. Matrix 
operators are naturally linear operators – matrix algebra is linear alge-
bra. It is normal to refer to both types of operator as just “operators.”

9.1 CORRESPONDENCE PRINCIPLE

 i. For every dynamic variable in Newtonian mechanics, there is 
a corresponding  operator in quantum mechanics.

 ii. The relations between Newtonian dynamic variables are 
duplicated within quantum mechanics as relations between 
operators.

 iii. There are commutation relations between operators that do 
not exist between Newtonian variables.  These commuta-
tion relations are an essential difference between quantum 
mechanics and Newtonian mechanics. 
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9.2 OPERATORS

In quantum mechanics, every Newtonian dynamic variable 
(except time), like energy, or momentum, or position, or angular 
momentum, or…, is replaced by a single corresponding linear oper-
ator known as the energy operator , or the momentum operator, or 
the position operator, or…. For example, the x-momentum variable 
of Newtonian mechanics, p, corresponds to the x-momentum opera-

tor, xp , of quantum mechanics. This x-momentum operator  is:

 
xp i

x


 


  (9.1)

Aside: We sometimes see the momentum operator written as p  
instead of as .p  This is common in QFT.

This association of Newtonian dynamic variables with linear 
operators is a postulate of quantum mechanics; it cannot be proven 
mathematically. Indeed, we would be happier if we could do without 
it and could get our operators from elsewhere (symmetry consider-
ations perhaps).

Within Newtonian mechanics, there are relations between 
dynamic variables such as the relation between kinetic energy, E, 
and momentum, p, in a zero potential:

 
2

21
2 2

p
E mv

m
   (9.2)

These relations are duplicated by the operators in quantum mechan-
ics, and so, from the momentum operator, we are able to deduce the 
form of the zero potential energy operator (written as either E  or 
H ).

 

 2

2 2

2

1 ˆ
2
1

2

2

E p
m

i i
m x x

m x



          


 


 



  (9.3)
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Operators vary from one physical system to another physical sys-
tem. For example, the non-zero potential energy operator includes 
a potential term, V(t, x):

 
2 2

2 ( , )
2

E V t x
m x


  


  (9.4)

This potential might be zero (a free particle) or it might be a spheri-
cal potential or it might be something else. We see that the energy 
operator varies from one potential to another. Since the amount of 
energy varies from one potential to another, this ought not to sur-
prise the alert reader.

9.3 THE RADIOACTIVE DECAY OF TRITIUM

Tritium is an isotope of hydrogen with two neutrons and one 
proton. It is unstable and decays with a half-life of 12.3 days. Tritium 
decay s into an isotope of helium with two protons and one neutron. 
Effectively, a neutron changes into a proton. When tritium decays, 
it emits an electron and an antineutrino with total energy release of 
18.6 kilo electron volts. 

There is a single electron orbiting the tritium nucleus. When 
the tritium nucleus decays, the potential of the atom changes due to 
the doubling of the number of protons and the Hamiltonian (energy 
operator) describing the electron must change. 

9.4 EIGENFUNCTIONS (EIGENVECTORS)

Associated with each quantum mechanical operator, there is a 
set, which might be of infi nite number, of eigenfunctions (eigen-
vectors) known as energy eigenfunctions which are eigenfunctions 
of the energy operator, or momentum eigenfunctions, or position 
eigenfunctions, or… For example, the x-momentum eigenfunctions 
are of the form:

 
xp

i x
Aef    (9.5)
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Where A is a constant that we can adjust to normalize the wave-
function that is a superposition (linear sum) of these eigenfunc-
tions and xp   is the associated eigenvalue which is the value of 
the momentum associated with the particular state described by 
the particular eigenfunction. The eigenfunctions are complex (the 
equivalent eigenvectors have complex components).

9.5  THE RADIOACTIVE DECAY OF TRITIUM 
REVISITED

The two Hamiltonians involved in tritium decay do not have the 
same eigenfunctions and so the electron must “change its wavefunc-
tion” from a superposition of the eigenfunctions of the old Hamil-
tonian to a superposition of the eigenfunctions of the new Hamil-
tonian. Different potentials have different energy operators and so 
different energy eigenfunctions.

9.6 COMMUTATION OF OPERATORS

If two particular operators commute , their respective sets of 
eigenfunctions (linear spaces of eigenfunctions) are the same; they 
have the same eigenfunctions written in the same basis. This does 
not mean that the have the same eigenvalues, just the same eigen-
functions.

If two particular operators do not commute, their eigenfunctions 
are not the same; they do not have the same eigenfunctions, but this 
will be due only to the basis of the linear spaces being different. 

The set of eigenfunctions (eigenvectors) of any operator will 
vary from one physical system to another. For example, in a zero 
potential, the energy operator and the x-momentum operator com-
mute and so share the same linear space of eigenfunctions written 
in the same basis. In a non-zero potential (non-uniform potential), 
the energy operator and the x-momentum operator do not commute 
and so do not share the same linear space of eigenfunctions (eigen-
vectors). The difference between the two linear spaces is only that 
they are written in different bases. 
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9.7 EIGENVALUES

With each eigenfunction (eigenvector) of a particular operator, 
there is an associated eigenvalue. The set of these eigenvalues are 
known as the energy eigenvalues  (the eigenvalues of the eigenfunc-
tions of the energy operator), or the momentum eigenvalues, or the 
position eigenvalues, or…. In quantum mechanics, these eigenval-
ues are the only possible values of the associated Newtonian dynamic 
variable. In Newtonian dynamics, the dynamic variables like energy, 
or momentum, or position, or … are all continuous variables; they 
can take any real value. In quantum mechanics, these dynamic vari-
ables can take only values or that are eigenvalues of the associated 
operator. 

Sometimes, say an electron orbiting an atomic nucleus, the 
eigenvalues of an operator are a discreet set of values. This is a con-
sequence of boundary conditions associated with a particle (which 
is a wave) bound within a potential well – think Newtonian wave 
equation and standing waves. In such cases, the only possible values 
of the Newtonian variable associated with that operator are the dis-
creet values of the eigenvalues. The angular momenta of an orbiting 
electron are an example of this discreetness of possible values. 

Other times, say a freely moving electron, the eigenvalues of 
an operator are a continuous set of values – just like Newtonian 
dynamic variables.

EXERCISES

1. Verify that [A, B] =  [B, A]?

2. Verify that [A + B, C] = [A, C] + [B, C]?

3. Is the matrix:

 
cos sin
sin cos

R
q q
q q

 
   

 (9.6)

a unitary matrix? Is it Hermitian?
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4. Rotation in anti-quaternion space is encapsulated in the anti-
quaternion rotation matrix:

 

2 2 2

cos( ) sin( ) sin( ) sin( )

sin( ) cos( ) sin( ) sin( )

sin( ) sin( ) cos( ) sin( )

sin( ) sin( ) sin( ) cos( )

b c d

b d c

c d b

d c b

b c d

l l l l
l l l

l l l l
l l l

l l l l
l l l

l l l l
l l l

l

 
 
 
  
 
 
  
 
 
  
 

  

  (9.7)

Is this a unitary matrix?

5. Verify that [A, B]† = [A†, B†]?
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CHAPTER 10
COMMUTATION 
RELATIONS IN 
QUANTUM 
MECHANICS

If two operators share the same set of eigenfunctions, then the 
two operators commute with each other. We have previously shown a 
proof of this. The converse is also true; if two operators commute, they 
have the same set of eigenfunctions. For non-degenerate eigenfunc-
tions, we have:

 

 

     
   

, 0

( ) ( )

( )

n m

n n m m

k n n l m m

n m

A B

A B B A

A b B a

a b b a

C

f y

f y
f y
f y

   








  (10.1)

At most, the eigenfunctions of two commuting operators  can differ 
by a real number multiple.

Prior to observation, we view a physical system as being in a 
superposition (linear sum) of all possible states. When the superpo-
sition (wavefunction) of a physical system is observed, it collapses 
into an eigenstate which is an eigenfunction of a particular operator. 
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If this eigenfunction is also the eigenfunction of a different opera-
tor, then there are two eigenvalues associated with the eigenfunc-
tion – one for each operator – and the physical system is in a state 
with these eigenvalues as values of the two dynamic variables. Thus, 
we are able to know simultaneously, the value of both the dynamic 
variables associated with the two operators. 

If two operators do not commute with each other, then they will 
not have the same eigenfunctions. When the wavefunction (super-
position of eigenfunctions) collapses, it will collapse into an eigen-
state of only one of the operators. Associated with this eigenstate 
will be an eigenvalue that is the value of the dynamic variable associ-
ated with this fi rst operator. However, since the eigenstate is not an 
eigenfunction of the other operator, there will not be an eigenvalue 
of this second operator, and so there will be no value associated with 
the dynamic variable of the second operator. This means that it is not 
possible to measure the dynamic variables associated with the two 
operators simultaneously. 

The “choice” of collapse into a particular eigenstate is a “choice” 
of collapse into a particular basis.

Aside: The non-commutativity of operators  is often said to be the 
fundamental difference between quantum mechanics and classi-
cal physics. However, we find the commutator of covariant deriva-
tives within general relativity. The Riemann tensor measures that 
bit of the commutator of covariant derivatives which is proportional 
to a vector field. If we take the view that classical physics does not 
include general relativity, then non-commutativity of operators is a 
fundamental difference between quantum mechanics and classical 
physics.

In a later chapter, we will derive the eigenvalues of angular momen-
tum from nothing more than the commutation relations of the angu-
lar momentum operators. In this sense, we might view commutation 
relations as being both basic and central to reality.
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10.1  THE COMMUTATOR OF MOMENTUM 
AND POSITION

The commutator of position and momentum is a multiple of .  
We have:

 

  ,xp x i x xi
x x

i x x
x x

i

yy y

y yy

y

        
        

 

 

 



  (10.2)

It turns out that all commutator s within quantum mechanics are 
either zero or are multiples of .

10.2  DISTURBANCE AND THE COMMUTATOR 
OF OPERATORS

We learned above that the commutator of two operators is not 
necessarily zero. There is a physical explanation that goes with this 
observation. It is a matter of opinion whether or not this explanation 
is convincing. We leave it to the reader to form their own opinion.

Suppose we fi rst measure the position of an electron and, after 
that, we measure the momentum of that electron. The value of the 
measurement of the position will be an eigenvalue of the position 
operator. We will then measure the momentum of the electron with 
that particular eigenvalue of position and get an eigenvalue of the 
momentum operator. 

Now suppose we do the measurements in the opposite order. First 
we measure the momentum of the electron and get an eigenvalue of 
the momentum operator. It is not necessarily true that this particular 
eigenvalue of the momentum operator will be the same momentum 
eigenvalue as the one we got when we measured the momentum after 
we had fi rst measured the position of the electron. If we next measure 
the position of the electron, it is not necessarily true that we will get 
the same position eigenvalue as we got when we fi rst measured the 
position of the electron before we measured the momentum of the 
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electron. Indeed, experiments seem to show that we do not get the 
same measurements of the position and momentum of an electron if 
we reverse the order in time of the measurements.

The standard explanation of this is that measuring the position 
of something as small as an electron necessarily disturbs that elec-
tron. To measure the electron’s position, we need to hit the electron 
with a photon. This hitting the electron with a photon will change the 
momentum of the electron and thus change the particular momen-
tum eigenfunctions associated with that electron – if we’ve changed 
the system, we’ve changed the eigenfunctions that describe the sys-
tem. The new momentum eigenfunctions of the electron will have 
momentum eigenvalues that are different from the old momentum 
eigenfunctions. If, after measuring the position of an electron, we then 
measure its momentum, we ought to expect to get a different result 
from that which we would have got if we had measured the electron’s 
momentum before measuring the electron’s position because we are 
measuring the momentum of an electron with a changed momentum 
and thus a changed set of momentum eigenfunctions and therefore 
with a changed set of momentum eigenvalues. 

Of course, if we measure the momentum of a cricket ball by 
hitting the cricket ball with a photon, then we would cause negli-
gible disturbance to the position of the cricket ball, and so it would 
seem that we can measure both the position and the momentum of 
a cricket ball in either order and get the same answers. This is not 
exactly true, but it is so near to being exactly true that it is exactly 
true1.

10.3 UNCERTAINTY IN QUANTUM MECHANICS

If a particle is a wave in space, there is an inherent uncertainty  
in the position of that particle which we denote by x. We cannot say 
where the particle is to within a wavelength of the wave. 

We have p kh . This means that momentum is a wave. In this 
case, the wave is in what we call “momentum space.” As with the 

1. Shakespeare, eat your heart out.
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spatial position, we cannot, to within one momentum wavelength, 
exactly know the momentum. We denote the uncertainty in momen-
tum by p. We write the spatial wavefunction as (x) and we write 
the momentum wavefunction as (p). Fourier transform theory tells 
us that these two waves are related by:

 

1
( )  ( )

2

1
( )  ( )

2

px
i

px
i

x dp p e

p dx x e

y y
p

y y
p


























  (10.3)

Fourier theory also tells us that:

 
2

x p  
   (10.4)

This is known as the Heisenberg uncertainty principle 2. Uncertainty 
is “caused” by the wave nature of particles. It is impossible to assign 

a defi nite spatial position to a wave. Using 1
,  ,  

2
h h

p k
l l p

   , we 

have:

 1
4 4

h h
x x k

l p p
         (10.5)

It is not the only uncertainty principle in quantum mechanics. 
Another such uncertainty is:

 
2

t E  
   (10.6)

Readers familiar with the momenergy 4-vector  of special relativity 
will correctly recognize these as:

 
2

x

y

z

E t

p x

p y

p z

   
   
     
   
   
   

   (10.7)

2. W. Heisenberg Z. f. Physik 43, 172, (1927).
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Uncertainty of position in space is not just uncertainty of observa-
tion; it is an intrinsic property of particles. We are driven to conclude 
that particles do not follow a defi nite trajectory through space – that’s 
weird, but, of course, waves do not follow a defi nite trajectory through 
space.

In general, there is uncertainty between two operators given by:

  1
,

2
a b A B         (10.8)

Wherein, a is the dynamic variable associated with the operator ,A  
and b is the dynamic variable associated with the operator .B

Aside: The reader will in later studies meet the anti-commutator  of 
two operators. This is written as:

         , ( ) ( )A B A B B A       (10.9)

EXERCISES

1. What is the commutator of the two operators 

   &   yp i x x
y


  


 ?

2. What is the uncertainty relation between the two operators 
in 1?

3. What is the uncertainty relation between the operators?

        &   x z x y x zL yp zp L zp xp         (10.10)

4. Calculate  2, ?xp x 
 

5. Starting with ,
2

t E  
  show that 1

4
t n

p
    where  is 

frequency?
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CHAPTER 11
ANGULAR 
MOMENTUM AND 
THE POSITION 
OPERATORS

We have said above that the relations between Newtonian 
dynamic variables are duplicated between the quantum mechani-
cal operators associated with those Newtonian variables. This is the 
correspondence principle. This allows us to calculate the position 
operators from the angular momentum operator  relations.

The classical expression for angular momentum is:

 x y z z y

y z x x z

z x y y x

L r p

L r p r p

L r p r p

L r p r p

 
 

 

 

  

  (11.1)

The angular momentum operators are thus given by:

 







x z y

y x z

z y x

L yp zp

L zp xp

L xp yp

 

 

 

 

 

 
  (11.2)
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This leads us to the quantum mechanical operators equivalent of the 
Newtonian position variables. The position operators  are “multiply 
by the variable” operators. We have:

 
x x

y y

z z













  (11.3)

So the x-position operator acts upon a function, f(x), to produce an 
output function that is the input function multiplied by the variable x:

  ( ) . ( )x f x x f x   (11.4)

Aside: Although the linear momentum operators commute with 
each other, the angular momentum operators do not so commute 
with each other.

 
 

 

, 0

, 0

x y

x y

p p

L L

   
   

  (11.5)

11.1  EIGENFUNCTIONS OF THE POSITION 
OPERATOR (THE DIRAC  FUNCTION)

The reader might wonder what kind of eigenfunction would be 
associated with the position operator. The position eigenfunctions 
are such that:

  ( ) . ( ) ( )nx x x x a xf f f    (11.6)

The eigenfunction of the x-position operator is called the Dirac 
delta function . The Dirac delta function is defi ned to be an infi nitely 
tall “spike” at the origin on the x-axis which has an integral (area 
under the spike) of unity. Technically, it is:

 0

1
   for  

2 2
0    otherwise

x
e

e e
d e

      
  

  (11.7)
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We have:

 
2 2

2 2

1
  1dx dx

e e

e
e e

d
e

 

    (11.8)

The delta function is defi ned as a “spike” at points other than the 
origin, and it is a function of x, (x). Within an integral, the delta 
function effectively picks out the value of a function at zero:

  ( ) ( ) (0)dx x f x fd




   (11.9)

By modifying the delta function, we can pick out the value of the 
function at any point on the x-axis:

  ( ) ( ) ( )dx x a f x f ad




    (11.10)

It is in this way that (x  a) is thought of as representing a particle 
at position x = a. The eigenfunctions of the x-position operator are  
(x  a) for every (continuous) value of a. The eigenfunctions of the 
y-position operator and the eigenfunctions of the z-position opera-
tor are similarly defi ned.

The reader might feel that it is a little contrived to construct the 
Dirac delta function just because the idea of eigenfunction does not 
make any sense when it comes to position operators. It is the reader’s 
right to so feel if he wishes. 

Aside: Paul Adrien Maurice Dirac  (1902–1984) made fundamen-
tal contributions to both quantum mechanics and quantum electro-
dynamics including the prediction of anti-matter in his famous Dirac 
equation1. He shared the 1933 Nobel prize with Schrödinger. 

As well as being a mathematical genius, Dirac is thought to have had 
autistic traits. He was well known for the taciturn and precise man-
ner in which he related to people. Einstein once said of him, “…this 
balancing on the dizzying path between genius and madness…”. He 

1. P.A.M.Dirac, Proc Roy. Soc. Lond. A 117, 610 (1928).

The nuts.indb   107 09-05-2016   10:45:49



108 • Quantum Mechanics

was a renowned atheist who, though tolerant of religious people, 
thought them to be intellectually primitive.

Aside: The simplest representation of the delta-function is:

 1
( )  

2
iaxa dx ed

p





     (11.11)

We have:
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 
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 
  (11.12)

But:

 

(0)

0

g

g

g

g

f
p

pf



   
 

  (11.13)

And so, as g  , the contribution to the integral is entirely from 
a = 0.
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CHAPTER 12
A NOTE ON 
ENTANGLEMENT

According to the theory of special relativity, nothing can travel 
faster than the speed of light. So it is thought that two electrons which 
are separated in space by, say, a light year, cannot instantly commu-
nicate with each other. Indeed, two electrons separated by a light 
year would require at least a year to communicate with each other. 
In 1935, Albert Einstein (1879–1955), Boris Podolsky (1896–1966), 
and Nathan Rosen (1909–1995) presented a paper1 containing what 
is now known as the Einstein-Podolsky-Rosen paradox  in which they 
pointed out that, according to quantum mechanics, instantaneous 
communication is possible between two electrons. Although Ein-
stein, Podolsky, and Rosen considered the position and momentum 
of two electrons, the situation is more simply described using the 
spin components of two electrons. We will look at spin more closely 
later. This was done by David Bohm  (1917–1992) in 19512.

Bohm postulated that a system with zero spin decays into two 

spin 1
2

 particles that fl y apart from each other. When the particles 

are distantly separated, an observer measures the z-component of 
spin of particle A to be up. This means that (conservation of angular 
momentum) we know that the z-component of spin of particle B is 

1.  A.Einstein, B.Podolski, and N.Rosen Phys. Rev. 47 777 (1935).
2. D. Bohm: Quantum Theory Pub: Prentice Hall (1951).
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down. Suppose that each particle has its own wavefunction. Measur-
ing the z-spin of one particle has caused the other particle to col-
lapse its wavefunction and to collapse in a specifi c, non-probabilistic 
way. Wavefunctions do not collapse non-probabilistically in quan-
tum mechanics – we must have made a mistake. Let us suppose that, 
instead of two wavefunctions, one for each particle, there is only one 
wavefunction governing both particles. In this scenario, when we 
measure the z-spin of one particle, the single wavefunction of the 
two particles collapses into a particular eigenstate. Yet, still, there 
is instant communication from particle A to particle B saying into 
which eigenstate the particles have collapsed. 

In classical mechanics, each particle has a defi nite angular 
momentum from the very start. Measuring the angular momentum 
of one particle does not affect the other particle. It is because, in 
quantum mechanics, systems exist in a superposition of eigenstates 
that we need instant communication when the spatially extensive 
wavefunction collapses. This phenomenon of “instant communica-
tion” is called entanglement or, sometimes, quantum entanglement .

Entanglement is not concerned with only two separate particles. 
When a photon of light hits a 45 polarizer, it becomes a wavefunc-
tion that is a superposition of having passed through the polarizer 
and having been refl ected from the polarizer. If, after, say, a year, the 
photon is detected to have passed through the polarizer, then the 
wavefunction collapse is communicated instantly to the other side 
of the polarizer.

We go back to the two particles. Our two particles are now in 
defi nite states with regard to the z-component of spin. Suppose we 
now measure the x-component of spin of the A particle. When we do 
this, because the spin operators zS  and xS  are not commutative, we 
destroy knowledge of the z-component of spin eigenstate. Thus, par-
ticle B, which was defi nitely in the down z-spin state is no longer in 
that defi nite state. The state of the distant particle has been instantly 
affected by a local measurement of x-spin. Instant communication, 
which entanglement implies, is an irremovable feature of quantum 
mechanics, and it will remain so while superposition remains as a 
feature of quantum mechanics.
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Of course, if one adopts the view that a superposition of states is 
outside of time (there is no time in the complex plane), then instant 
communication is to be expected. Special relativity is a theory based 
in the hyperbolic complex numbers, , and does not apply to the 
Euclidean complex numbers, .

12.1 THE BELL INEQUALITIES

It might occur to the reader that  perhaps the spin components 
of the two particles introduced above are actually set when the 
particles fi rst separate as some function of one or more variables 
that are hidden from our observation. This circumvents the idea of 
wavefunction collapse instantly communicating from one place to 
another. Such theories are called hidden variable theories. It was 
shown in 1964 by J. S. Bell 3 that such theories need to satisfy par-
ticular mathematical constraints called “Bell’s inequalities.” Experi-
ments by Clauser and Shimony4 in 1978 and by Alain Aspect et al 
in 19815 and 19826 have now ruled out the possibility of any local 
hidden variables .

3. J.S.Bell: Physics 1 195 (1964).
4. J.F.Clauser & A.Shimony Bell’s Theorem: experimental tests and implications. 
Reports on progress in Physics 41, 1881, (1978).
5. Aspect et al. Experimental tests of realistic local theories via Bell’s theorem. Phy 
Rev Lett 47, 460, (1981).
6. A. Aspect, J. Dalibard, & C. Roger. Physical Review Letters Vol 49 pgs 91 & 1804 : 
December 1982.
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CHAPTER 13
EXPECTATION 
VALUE AND 
STANDARD DEVIATION

When we measure a property, say the angular momentum, of a 
physical system, say an electron in orbit around an atomic nucleus, 
we get an eigenvalue of the appropriate operator. If we immediately 
measure the same system again, we will get the same eigenvalue 
because the fi rst measurement “collapsed” the system into the par-
ticular eigenstate associated with that eigenvalue1. Immediately after 
a measurement is made, a physical system is not in a superposition 
of all possible states but is in the eigenstate that was just observed. 
If we thus successively and immediately measure the system a hun-
dred times, we will get the same eigenvalue a hundred times.

If we measure a hundred similar physical systems, say a hundred 
hydrogen atoms - a hundred electrons in orbit around a hundred 
protons – we will get a hundred eigenvalues, but they might not 
all be the same. If we sum these hundred eigenvalues and divide 
by a hundred, we will have the average value of the dynamic vari-
able associated with the eigenvalues. In quantum mechanics, this 
average value of a variable within a large number of similar physical 
systems is called the expectation value of that variable. The reader 

1.If we wait a while before we re-measure the system, the system will have evolved 
into a superposition again.
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should note that the expectation value (average value) is unlikely 
to be a particular eigenvalue of any of the many systems that were 
measured.

The expectation value,  ,A  of the dynamic variable associated 
with the operator A  within a physical system described by the wave-
function  is given by:

  * ( )A dx Ay y




    (13.1)

For example, the expectation value of x-momentum is given by:

  ( , )
 ( , )x

t x
p i dx t x

x







  

   (13.2)

And, the expectation value  of x-position is given by:

 
 ( , ) . ( , )

 .

x dx t x x t x

dx x








  

 




  (13.3)

Aside: We note that if the expectation value of the position of a 
particle is changing, then the particle is moving. In other words, a 
particle is moving if:

 0
x
t







  (13.4)

If  is a function of multiple spatial variables, then the expectation 
value is a multiple integral over every spatial variable.

As another example, the expectation value of energy of a bound 
state (stationary state) is given by:

  * *  n n n n n nE dx H E dxf f f f
 

 

     (13.5)

The energy expectation for a wave packet:

 
1

( , )
nEn i t

n n
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t x a ef
 



     (13.6)
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is given by:

   2

1

 ( , ) ( , )
n

n n
n

E dx t x H t x a E
 





      (13.7)

Notice that this energy expectation value is constant in time – energy 
is conserved.

WORKED EXAMPLE

What is the energy expectation value of the wavefunction 
1 2( ) ( ) ?a ib c idy y    

We have:
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  (13.8)

The expectation value is given by:
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  (13.9)

13.1  STANDARD DEVIATION AND 
UNCERTAINTY RELATIONS

We can form the product (square) of an operator, A, with itself 

to produce another operator,    2 .A A A  This operator will have an 
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expectation value associated with it, 2 .A  We can simply square the 

expectation value of the operator A to get 
2
.A  Statisticians can put 

these two calculations together to get the standard deviation associ-
ated with the operator A. That standard deviation  is:

    22A A A     (13.10)

This is a measure of the spread of the eigenvalues of the operator A . 
The quantum mechanical equivalent of the standard deviation is the 
uncertainty denoted .A

WORKED EXAMPLE

What is the uncertainty in the energy of a system in an energy eigen-
state? 

    22

2 2 0

n n n

n n

E E E

E E

  

  

  (13.11)

We see that there is no uncertainty in the energy of a physical system 
that is in an energy eigenstate – we knew that actually.

When we calculate the expectation values for position and for 
momentum, we get:

   &  
2 2x

a
x p

a
   

   (13.12)

This leads to the famous Heisenberg’s uncertainty relation:

 
22 2x

a
x p

a
   

    (13.13)

WORKED EXAMPLE

 1. What is the uncertainty in energy of wavefunction 

1 2( ) ( ) ?a ib c idy y    
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We have from above:

  2 2
1 2H a ib E c id E      (13.14)

Now:

 
 

 
 

2
2 2

1

1 2

2 2
1 1 2 2

2 22 2
1 2

( ) ( )

( )( ) ( )( )

( ) ( )

n

n

H H

a ib c id

a ib E c id E

a ib E c id E

y y

y y






 

  

   

  

   


 (13.15)

Giving:

    
 

 

1
2 22

1
2 22 2 2 22 2

1 2 1 2

H H H

a ib E c id E a ib E c id E

    

         

  (13.16)

13.2 EHRENFEST’S THEOREM

Ehrenfest’s theorem  deals with the time evolution of expectation 
values. We remind the reader that the expectation value of a variable 
associated with an operator, A  is given by the overlap integral (inner 
product):

  * ( )A dx A     (13.17)

Most expectation values do not change through time, but some do. 
We calculate how an expectation value might evolve with time by 
taking the derivative with respect to time. For an operator, A , we 
have:

    * ( )A dx A
t t
 

  
     (13.18)

We can differentiate under the integral sign to get:

    
 

*
* * 

A
A dx A A

t t t t

    
     

       (13.19)
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Using the time dependent Schrödinger equation, TDSE, we get:

 

   

        

*

*

( )        :        

1
 ( ) ( )

H i H i
t t

A
A dx H A A H

t i t





 
   

 

          

 



  (13.20)

We can rearrange (using the hermicity of H ):

       
*1

 ,
A

A dx A H
t i t
          (13.21)

This last statement is known as Ehrenfest’s theorem. 

13.3 CONSERVATION LAWS

For operators that are not time-dependent, the right-most term 
of Ehrenfest’s theorem is zero. If the operator A  commutes with the 
Hamiltonian, ,H  the whole expression is zero and we have:

  0A
t





  (13.22)

The expectation value of any operator is a constant if the operator 
commutes with the Hamiltonian. Most of the operators in quantum 
mechanics commute with the Hamiltonian.

We see that A  is a constant of the system – it is a conserved 
quantity – we have a conservation law .

So, there you are; if an operator commutes with the energy oper-
ator (Hamiltonian), the Newtonian dynamic variable with which that 
operator is associated is a conserved quantity.

13.4  THE HEISENBERG AND SCHRÖDINGER 
REPRESENTATIONS

There are two ways of doing quantum mechanics. One of 
these ways is called wave mechanics or the Schrödinger  represen-
tation; the other of these ways is called matrix mechanics or the 
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Heisenberg  representation. Within the Schrödinger representation, 
it is the state, (t, x), that evolves in time, and we have:

          * * †0  0t A t U A Uy y y y   (13.23)

The Schrödinger equation has the term ( , )t x
t

y


 relating to the time 

evolution of the state, (t, x), and we see that the state, , is a func-
tion of time.

Within the Heisenberg representation, it is the operator that 
evolves in time, and we have:

  †( ) (0) A t U A U   (13.24)

Corresponding to the Schrödinger equation of motion of the 
Schrödinger representation, there is a Heisenberg equation of 
motion:

 
   ( )

,
dA t

i H A t
dt

      (13.25)

Wherein ( )A t  is an operator that is dependent upon time and H  is 
the Hamiltonian.

We can have different representations because we observe inner 
products and not operators or wavefunctions. 

The Schrödinger equation defi nes the state of a physical system 
in terms of the spatial positions of the parts of the system. There are 
some things in physics, and intrinsic spin is one of these things, that 
cannot be described by spatial positions. This is why the Schrödinger 
equation is of no use when we deal with intrinsic spin.

13.5 BRAS AND KETS (ADDENDUM)

The expectation value written in Dirac notation is:

  A A      (13.26)
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EXERCISES

1. A particle has wavefunction 2
( ) sin .x x

a a
p    
 

. Find the 

expectation value of the momentum operator xp i
x


 


  and 

the position operator .x x

2. If 4
1

( ) ,x
x

y  what is the expectation value of the position 

operator ?x  You will need to know that the integral of odd 
functions is zero. What is the expectation value of the opera-

tor 3 ?x  Is 4
1

( )x
x

y   square integrable? If not, is it a valid 

wavefunction?
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CHAPTER 14
PROBABILITY

The quantum mechanical view is that, when a physical system 
is unobserved, it is in a superposition (linear sum) of possible states 
and that, when the physical system is observed, it  collapses into a 
single one of the possible states. The reader might think, as any rea-
sonable person might think, that somewhere within the superposi-
tion of possible states, there is a little something, a variable, that 
determines into which single one of the possible states the physi-
cal system will collapse and that, if we knew what this variable was, 
we could predict which of the possible states would be “the chosen 
one.” There is no such hidden variable, or, at least, there is no such 
hidden variable that is local to the physical system. This was shown 
by J. S. Bell in 19641. 

Which of the many possible states a physical system will collapse 
into when it is observed is, as far as we know, determined purely 
by chance. It seems that “God does play dice.” Let us consider the 
hydrogen atom, and let us consider the energy of an electron in orbit 
in that atom. As far as the energy is concerned, the unobserved elec-
tron in the hydrogen atom is described by a set of weighted basis 
eigenfunctions of the hydrogen energy operator linearly added 
together (to form a single complete energy wavefunction) – a linear 
sum. We see this written as:

 1 1 2 2 3 3 ...c c cy y y        (14.1)

1. J.S.Bell On the Einstein, Podolsky, Rosen Paradox. Physics, 1, 3, 195–200 
(1964).
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Where cn   are just complex constants that determine the com-
plex amplitude of the corresponding eigenfunction of the Hamilto-
nian in the “complete” wavefunction, . These eigenfunctions are 
orthogonal to each other under the overlap integral inner product. 
We can, and do, scale down the coeffi cients, ci, to normalize this 
wavefunction so that the sum of the moduli of these coeffi cients is 
unity:

 
2

1ic    (14.2)

When it is observed, the electron collapses into a single one of these 
eigenfunctions and the electron is described by the eigenfunction:

 ny    (1 4.3)

If we take the inner product (overlap integral) of the complete wave-
function, (14.1), and the collapsed wavefunction,(14.3), we get:

   
1 1 2 2

 

 ( )  ( ) ...  ( ) ...n n n n n n n n

dx

dx c c dx c c dx c cy y y y y y



  

  

   


  

  (14.4)

Because the basis eigenfunctions are orthogonal, this becomes:

 

 0 0 ...  ( ) ... 0

 

n n n n

n n n n

n n

dx dx c c

c c dx

c c

y y

y y

 

 



       





 
   (14.5)

The modulus squared of the coeffi cient is proportional to the prob-
ability that, if we observed the electron, we would fi nd it in the state 
n(with energy En).

 2
n n n nP c c cy

    (14.6)

In fact, because, in anticipation of the involvement of probability, we 
normalized the complete wavefunction, the proportionality constant 
is unity, and we have.

 2 *
y  
n n n nP c c c    (14.7)

A complete wavefunction is the weighted linear sum of differ-
ent (complex) amounts of each basis eigenfunction. The “size” of 
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the amount (the modulus of the complex coeffi cient) determines 
the probability that a particular eigenfunction will be “the chosen 
one” when the electron described by the complete wavefunction is 
observed and collapses into a possible state described by one eigen-
function.

Let us pull the above together; if a physical state is described 
by the complete wavefunction, , the probability that it will be 
observed to be in the physical state described by the basis eigenfunc-
tion, n, is the normalized square of the overlap integral:

 

2

2
2 2

1 1
 n nP dx

A A






        (14.8)

A is just a constant that normalizes the complete wavefunction. If 
we know the possible outcomes of an experiment, then we know 
the basis eigenfunctions of the wavefunction (we know the solutions 
of the TISE, perhaps). There is one basis eigenfunction for each 
possible outcome. The above formula allows us to predict the likeli-
hood of each possible outcome. If we do the experiment a million 
times, we can predict how many of the million outcomes will give a 
particular result.

The “understanding” that the modulus of the squared wavefunc-
tion ||2 corresponds to probability density  was fi rst voiced by Max 
Born (1882–1970) and is known as the Born interpretation 23.

Aside: Max Born  was a German/British Jew. He spent most of his 
early academic career at Gottingen alongside noteworthy individuals 
such as Hilbert, Klien, and Minkowski until, when the Nazis came 
to power in Germany in 1933, he was dismissed from his post and 
moved to Cambridge, England. It was Born who taught matrix alge-
bra to Heisenberg thereby contributing to the matrix formulation 
of quantum mechanics, and to was to Born that Einstein wrote the 
famous letter asserting the “God does not play dice.”

Born won the 1954 Nobel prize for physics for his contributions to 
quantum theory. 

2. M Born Z. f. Physik 37, 863, (1926) and M Born Z. f. Physik 38, 803, (1926).
3. M Born Nature 119 354 (1927).
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14.1 THE PROPERTIES OF PROBABILITY

In quantum mechanics, probability is treated in a way similar to 
the way we treat electrical charge. We have concepts like a probabil-
ity current , a probability continuity equation , conservation of prob-
ability, and a probability density . It stretches the brain to wonder 
why probability can be treated as if it were a kind of charge. Perhaps 
nature is telling us something that we seem unable to hear clearly. 
With this “probability charge” concept in mind, we proceed.

For a given wavefunction, (t, x, y, z), the probability density is 
defi ned as:

 
2( , ) ( , ) ( , )x t x t x tr y y y      (14.9)

Different values of the spatial and time co-ordinates give an amount 
of probability at each point in space at each point in time. At any 
particular point in time, probability density is a scalar fi eld. 

The probability current is defi ned as:

 
2 2

2 22
j i

m x x
y yy y


  

   
  

    (14.10)

By differentiating (14.9) with respect to time and  with respect 
to space, and remembering that both {, } are solutions of the 
TDSE, we are led to the probability continuity equation:

 
0

0

j
t x

j
t

r

r


 

 


 



  (14.11)

We have given both the 1-dimensional and the 3-dimensional ver-
sions. The probability continuity equation expresses the conserva-
tion of probability. Total probability is always unity, and so probabil-
ity must be conserved.

14.2  PROBABILITY DENSITY AND PARTICLE 
POSITION

If (t, x) is an acceptable solution of the TDSE for a particle, 
then the probability density multiplied by x, 2 * ,x x      is 
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the probability of the particle being observed to be in the interval 
[ , ].x x x   We have:

  
2

particle being in , ( , )d    dx x x xP t x x   (14.12)

The multiplication is most often done through integration.

 2
[ , ]  

x b

a b

x a

P dx




    (14.13)

Since the particle must be somewhere between plus infi nity and 
minus infi nity, we have:

 2 1
x

x

dx




    (14.14)

WORKED EXAMPLE

A probability density is given by 4
1

( ) .x
x

r   What is the probabil-

ity that the particle will be found in the interval [2, 3]?

We have:

 
3 3

4 3
22

1 1 19
 

6483
P dx

x x
          (14.15)

EXERCISES

1. A probability density is given by 3
2

( ) .
5
x

x
x

r    What is the 

probability that the particle will be found in the interval [2, 3]

2. For the wavefunction 

  1 5 1 3 2 4
sin sin sin ,

2 2
i

x x x x
a a a a a a

p p py             
     

 what 

is the probability that, when measured, we will observe the 

physical system to be in a state corresponding to 5
sin ?x

a
p 

 
 

 
Hint: is (x) normalized.
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CHAPTER 15
THE HISTORY OF 
QUANTUM MECHANICS

If, given the heavy going of the previous few chapters, the reader 
is no longer sitting comfortably, then the reader needs a somewhat 
easier chapter to relax her into the comfort in which she started this 
book. We present that easier chapter now.

As with most things in life, quantum mechanics did not spring 
overnight into being a full and glorious part of humanity’s world 
understanding. It was dragged and shoved into being by the failures 
of 19th century physics and by the effulgent insights of a few indi-
viduals and by a lot of doubt and a lot of hard graft. It developed over 
many years, and it is still developing today. In this chapter, we briefl y 
summarize some of the pangs of its birth.

15.1 NEWTONIAN MECHANICS

Newtonian mechanics is about the behavior of electrically neutral 
particles of matter. Sometimes the particles of Newtonian mechan-
ics are large particles like planets orbiting the sun. Other times, the 
particles are the size of billiard balls, but all non-microscopic electri-
cally neutral particles behave as described by Newtonian mechanics. 
By the middle of the 19th century, Newtonian mechanics was fi rmly 
established as the set of rules that govern the mechanics of particles. 
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This was so even though the Newtonian mechanics of the solar system 
was known to be not perfect. In 1859, Urbain Le Verrier  (1811–1877) 
reported a discrepancy between the predicted orbit of the planet 
Mercury and the observed orbit, but this was thought to be caused 
by the presence of a yet undiscovered planet closer to the Sun than 
Mercury. Such was the confi dence in Newtonian mechanics that the 
unseen planet was named Vulcan after the Roman god of fi re (a black-
smith) in anticipation of it being discovered. 

Newtonian mechanics has served, and continues to serve, 
humankind very well. It is used to plant space-probes gently on to the 
surface of distant worlds and to engineer marvellous bridges across 
wide waterways. However, in the early 20th century it became subject 
to a “double whammy” in that it was shown to be both insuffi cient 
to deal with objects moving at high velocities and insuffi cient to deal 
with very small objects. It was replaced by relativistic mechanics in 
the case of the rapidly moving objects, and it was replaced by quan-
tum mechanics in the case of the very small objects. 

Aside: Newtonian mechanics was subject to one more “whammy” 
in 1915 when it was replaced by the mechanics of general relativity.

15.2 ENERGY AND MOMENTUM AND WAVES

Newtonian mechanics is formulated in terms of energy and 
momentum. In Newtonian mechanics, force is temporal rate of 
change of momentum, or spatial rate of change of energy, and 
the motion of a particle is defi ned by its energy and its momen-
tum through the conservation of energy and the conservation of 
momentum. (In relativistic physics these are combined into one 
entity called momenergy.) The concepts of momentum and energy 
are also central to the theory of quantum mechanics. They are also 
central to relativity theory and to quantum fi eld theory and to gen-
eral relativity. These well-aged Newtonian concepts are still with us 
even in the most advanced of our physical theories. There is a good 
reason for this; momentum is connected, through its conservation, 
to the homogeneity of empty space. That homogeneity is the invari-
ance under translation in space of a physical system. Since physics 
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is invariant under spatial translation for all our physical theories, 
we will have momentum in all our physical theories. Energy is just 
momentum in the time direction, and, since time is homogeneous, 
we will have energy in all our physical theories.

Within Newtonian mechanics, the motion of waves is described 
by wavelength or frequency and by the propagation vector. These 
concepts are not energy and momentum, and 19th century physi-
cists did not view waves as having energy and momentum in the 
same way that particles have energy and momentum. So it was 
to 19th century physicists that there were two separate types of 
things in the universe; these two types of things were particles 
with energy and momentum and waves with frequency and a prop-
agation vector. 

15.3 THE NATURE OF LIGHT

In his day, Newton (1642–1727) had assumed light to be cor-
puscular (particles), but, by the middle of the 19th century, New-
ton’s view of the corpuscular nature of light had been superseded 
by the understanding that light, which is just a type of electromag-
netic radiation, is a wave. It would be wrong to say that Newton’s 
corpuscular view was the generally accepted view even in his own 
time. Many of Newton’s contemporaries including Robert Hooke 
(1635–1703), Christaan Huygens (1629–1695), and Leonhard Euler 
(1707–1783) held the view that light was a wave. Others that fol-
lowed, including Pierre-Simon Laplace (1749–1827), agreed with 
Newton’s corpuscular view. 

In 1803, Thomas Young  (1773–1829) conducted experiments 
demonstrating interference patterns generated by light passing 
through two very small holes very close to each other1. This experiment 
is known as Young’s double slit experiment because it is normally 
repeated with slits rather than with holes. 

1. Reported in “On the nature of light and colors” by Thomas Young. 1803.
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15.4 DOUBLE SLIT EXPERIMENT

If I fi re bullets at a wall with two slit s in it, most bullets will bounce 
back from the wall but some will go through one or other of the two 
slits. Each bullet will go through only one slit. If I place a fence behind 
the wall to mark where the bullets passed through the wall, I will get 
two separate lines of bullet holes in the fence corresponding to the 
two slits. Such behavior is the behavior of particles. 

If I now send a wave, say a water wave, against the two slits, most 
of the wave will be refl ected from the wall but some part of the wave 
will go through each of the two slits. Having passed through the 
slits, the bits of wave will each start to spread out from their slit in 
all directions. Eventually, the two bits of wave will meet each other 
and will interfere with each other. When the interfering waves hit 
the fence, the positions of their crests will give a set of several (more 
than two) lines. Such behavior is the behavior of waves. 

If I now send lots of electrons against the two slits in the wall, I 
get a set of several lines on the fence indicating that the many elec-
trons are a wave. If I send a single electron, it will appear in only one 
place on the fence, but where it appears will correspond to a place 
in one of the several interference lines indicating that it is a single 
particle that has interfered with itself and thus has wave-like proper-
ties. Electrons are thus both particles and waves!

Since interference  is a wave phenomenon, with his double 
slit experiment, Young proved that light was a wave, but this was 
not accepted until 1817 when Augustin-Jean Fresnel (1788–1827) 
won the Academie des Sciences prize for his thesis that light was a 
wave. Even then, the wave-like nature of light would not have been 
accepted if not for the experiment of Francois Arago (1786–1853) 
in which he observed the Arago spot predicted by Simeon Poisson 
(1781–1840) from Fresnel’s thesis. Ironically, Poisson, who was con-
fi dent that the Arago spot  would not be observed, had made the pre-
diction as a means of showing Fresnel’s wave thesis to be ridiculous.

In 1861 and 1862, James Clerk Maxwell  (1831–1879) produced 
the Maxwell equations of electromagnetism. From these, the wave 
equations of electromagnetic radiation can be deduced, and, also 
from these, it is clear that light is such an electromagnetic wave. If 
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one accepts the Maxwell equations, and everyone did and still does, 
then light is a wave specifi ed by a frequency and a propagation vec-
tor. In 1887, Heinrich Hertz  (1857–1894) detected the electromag-
netic waves predicted by the Maxwell equations. There we have it; 
how can you dispute that? The reader will see that to have proposed 
in those times that light has a particle like nature would have seemed 
insane. 

There was a problem with the wave nature of light. How did 
light pass through empty space from the sun to the Earth? Waves 
need a medium in which to undulate. The proposed solution was 
the aether, but the story of that is straying too far from the theme of 
this book2.

By the latter part of the 19th century, the Newtonian mechanics of 
particles and the wave nature of light were happily co-existing. Both 
seemed to have been verifi ed by experiment and were well understood. 
It was simple; matter is particles specifi ed by energy and momentum; 
electromagnetic radiation is waves specifi ed by a frequency and a 
propagation vector. This understanding is called classical physics.

Things were not that cosy for long. It gradually became appar-
ent to physicists of the time that there were physical phenomena 
that could not be explained by the scenario that matter is particles 
and electromagnetic radiation is waves. These phenomena included 
blackbody radiation, the photo-electric effect, Compton scattering, 
and eventually the nature of the Rutherford atom. As early as 1885, 
Johann Jakob Balmer  (1825–1898) had shown that electromagnetic 
radiation emitted by hydrogen atoms came in discreet frequencies 
which he had described by the formula:

 2 2
1 1

  :   3,4,5,...
2

N n
n

w     
 

 (15.1)

The Balmer series of spectral lines of the hydrogen atom is named 
after him.

2. See “Empty space is amazing stuff” by Dennis Morris ISBN: 978-0-9549780-7-5
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15.5 BLACK BODY RADIATION

Technically, a black body is a body of matter that is in thermal 
equilibrium with electromagnetic radiation at a given temperature. A 
black-body  is an idealized perfect emitter of electromagnetic radiation 
and a perfect absorber of electromagnetic radiation. Perfect examples 
do not exist in nature, but they do exist in theoretical physics.

So, a black-body emits light at all frequencies less than a high 
frequency cut-off while refl ecting none of the light that falls upon it. 
So why does a hot poker appear red or white and a cold poker appear 
black? It is the amount of light that is emitted at each frequency 
that determines the color of the poker. When a poker is glowing 
white hot, it is emitting a lot of light with wavelengths in the visible 
spectrum (circa 390  109 M – 700  109 M). When a poker is cold 
and black, it is emitting very little light at these wavelengths. In that 
state, it is emitting most of its light at wavelengths outside of, and of 
less frequency than, the visible spectrum. If we draw a graph of the 
amount of light being emitted (the energy density to be precise) at 
each wave-length against the wave-length of the emitted light, we 
get something like the graph below.

Black Body Emission Curve

We see that there is a peak of emission at a particular wave-
length. At different temperatures, the peak appears at different 
wave-lengths. For a white hot poker, this peak wave-length is the 
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wave-length that corresponds to white light. For a red hot poker, this 
peak wave-length is the wave-length that corresponds to red light. 
For a cold black poker, this peak wave-length is outside of the visible 
spectrum. Plots like the one given above were found experimen-
tally. The problem is to explain these experimental results theoreti-
cally. This is a problem because the blackbody spectrum cannot be 
explained using classical physics.

According to classical physics (matter is particles and electro-
magnetic radiation is waves), the exchange of electromagnetic radia-
tion and matter should be continuous, and so we should get no high 
frequency cut-off. Indeed, according to classical physics, we should 
get most of the electromagnetic radiation emitted at very high fre-
quencies. This is not what is observed. Classical physics was unable 
to explain the experimentally observed spectrum of black bodies. 
The best that could be done was the Rayleigh-Jeans formula, pre-
sented in 1905 by Lord Rayleigh3 (1842–1919) and Sir James Jeans 
(1877–1946), that gives the energy density, u(, T), as a function of 
frequency and temperature as:

 
2

3
8

u KT
c
pn

  (15.2)

Where  is the frequency of the emitted electromagnetic radiation, 
K is Boltzmann’s constant, T is the temperature in degrees absolute, 
and c is the speed of light. 

This formula was derived from classical physics. This formula 
does not fi t the experimental data; indeed, if one integrates over all 
frequencies to get the total energy density, one gets infi nity. There-
fore, classical physics is wrong. 

The Rayleigh-Jeans formula  works reasonably well at low fre-
quencies, but it is clearly in error at high frequencies. The error 
of the Rayleigh-Jeans formula was known to classical physics as 
the ultraviolet catastrophe4. So, how do we explain the black-body 
experimental data?

3. Lord Rayleigh’s given name was John William Strutt.
4. With titles like this, it is no wonder that someone invented science fi ction.
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The explanation was presented by Max Planck 5 (1858–1947) in 
19006 and 19017, four years before the Rayleigh-Jeans formula was 
presented. Planck assumed that, at a specifi c frequency, , energy 
comes in discreet amounts called quanta, and that the amount of the 
energy in a quantum of energy at a particular frequency is given by:

 
2
h

E hn w
p

   (15.3)

Here,  = 2, and h is a constant of nature known today as Planck’s 
constant . Planck’s constant is:

 346.62 10   h Joule Seconds    (15.4)

The reader should be aware that we often use   instead of h where:

 
2
h
p

  (15.5)

Aside: Max Karl Ernst Ludwig Planck was awarded the Nobel prize 
for physics in 1918.

Aside: Theoretical physics uses mass-dimensions  rather than Joules 
or seconds. Based on the theory of special relativity, we take the 
mass-dimension of time to be the same as the mass-dimension of 
space which we write as:

 [L] = [T] (15.6)

Where L means length and T means time. We are measuring time 
in the same units that we use to measure length. We might say that 
the Earth is 8 seconds from the sun. Based on this, we see that the 
dimensions of velocity (meters per second) is length divided by time 
which is just a number, and so the physical constant that is the veloc-
ity of light is just a number. With this in mind, based on E = mc2, we 
take the mass-dimension of energy to be the same as that of mass:

 [E] = [M] (15.7)

5. M Planck Ann Phys 1,69, (1900).
6. M Planck, Verh Dtsch Phys. Ges 2, 244 (1900).
7. M. Planck, Ann. Physik, 4, 553 (1901).
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Thus Planck’s constant has mass-dimensions:

 [h] = [M][T]  (15.8)

Since Planck’s constant is a constant of nature, like the velocity of 
light, we feel that it ought to be no more than a number, and so we 
take it that the mass-dimensions of mass are the inverse of the mass-
dimensions of time. This is:

 [L] = [T] = [M]1 = [E]1  (15.9)

Which makes Planck’s constant no more than a number. 

Note: In other cases, we have to include the mass-dimension of elec-
tric charge as a separate mass-dimension.

Planck’s view is that radiation comes in streams of particles, 
called quanta. Note that Planck’s formula (15.3) does not say energy 
is quantitised. In fact, it speaks of only electromagnetic energy, and 
it does not say electromagnetic energy is quantitised. It says that, at 
a specifi c frequency, electromagnetic energy comes in quanta. At a 
very slightly higher frequency, the quanta will have a very slightly 
higher amount of energy, and so the amount of energy is continuous 
and not discreet. Only if frequency were discreet would energy be 
discreet. We do not think that frequency itself is intrinsically quanti-
tised for to do so would be to think that space and time are intrinsi-
cally quantitised – look at the mass-dimensions in the aside above. 
In short, you can have any amount of electromagnetic energy you 
want, including an irrational number’s worth, but it will then come 
in quanta of a defi nite (possibly irrational) amount.

Because electromagnetic energy comes in quanta at a particular 
frequency, we cannot integrate over all frequencies but must do a 
discreet summation. This means we are rid of the infi nities of the 
Rayleigh-Jeans formula. In fact, based upon the assumption of elec-
tromagnetic energy quantitisation at a particular frequency, Planck 
produced a formula for the energy density of emission from a black 
body that fi ts the experimental data. That formula is:
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



 (15.10)

In which  is the wave-length. The graph above is a plot of this for-
mula. It was by fi tting this equation to the available experimental 
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data that Planck calculated the value of Planck’s constant, h = 6.626  
1034 JS.

By assuming that electromagnetic energy at a specifi c frequency 
comes in quanta of magnitude determined by E = vh, where h is 
Planck’s constant, we can match the theory to the experimentally 
observed black body spectrum. The cost of doing this is the over-
throw of the simplicity of the classical physics view that waves and 
particles are distinct entities. Planck’s equation is:

 E = vh  (15.11)

This equation has energy, a particle property, equal to frequency 
(multiplied by h), a wave property. If an object has energy, it must 
have frequency. If an object has frequency, it must have energy. 
Planck’s equation is a statement of wave-particle duality.

15.6 THE WAVE-PARTICLE DUALITY OF NATURE

The typical wave is expressed as:

   exp i t k xw 
 
  (15.12)

Aside: In matrix notation, this is:

 

 
 

   
   

0
exp

0

cos sin

sin cos

t k x

t k x

t k x t k x

t k x t k x

w

w

w w

w w

     
    

   
 
   

 


 


   
 
   
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 (15.13)

In which, for waves with velocity c = speed of light, we have:

 k cw 


 (15.14)

Where  is the angular frequency and k


 is the propagation vector. 
Thus  and k


 are wave properties. Energy and momentum are par-

ticle properties. From special relativity, we have:

 
2

2 2 2
2

E
p m c

c
   (15.15)
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Where p is the momentum. If the mass is zero, which it is for elec-
tromagnetic waves, we get:

 E
p

c
   (15.16)

From (15.3), (15.14), and (15.16), we get:

 
E hv

hv h
p k

c

w

l

 

  


 


  (15.17)

These formulae have particle properties, momentum and energy, 
on the left-hand side and wave properties, angular frequency and 
propagation vector, on the right-hand side. 

Aside: In the 4-vector notation of special relativity., this would be 
written as:

 x x

y y

z z

E

p k

p k

p k

w   
   
   
   
   
   

   (15.18)

And the exponent of (15.12) is merely i multiplied by the 4-vector 
dot product of the displacement 4-vector and the wave 4-vector:

 x
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t

k x
t xk yk zk
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k z

w

w

   
   
       
   
   
   

 (15.19)

Planck’s formula combines waves and particles. The formula makes 
no sense unless the objects it describes have both particle and wave 
properties. Since the formula resolves the blackbody problem and 
leads to predictions that match the experimental observations, phys-
icists of the early 20th century, reluctantly, began to take wave-parti-
cle duality seriously. They were pushed to accept this by other types 
of evidence.
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15.7 THE PHOTO-ELECTRIC EFFECT

If a beam of high frequency light is shone on to a metal, elec-
trons are emitted from the metal. This is called the photo-electric 
effect . If the light is of a low frequency that is less than a particular 
threshold frequency, which varies with the type of metal, then no 
electrons are emitted from the metal. If we increase the intensity 
of the low frequency light, there is no change and there are still no 
electrons emitted from the metal. If we increase the intensity of the 
high frequency light, there is an increase in the number of electrons 
emitted from the metal. As we increase the frequency of the light 
above the threshold frequency, electrons are emitted from the metal 
with increasing kinetic energies. The energy of the emitted electrons 
is of the form:

 emittedE W T   (15.20)

Where W is the energy of the emitted electrons at the threshold 
frequency and T is the kinetic energy of the emitted electrons at the 
high frequency. None of the above can be explained by the classical 
physics view that light is a wave.

In 1905, Albert Einstein  (1879–1955) assumed that light can 
carry energy and that the energy of the light is in discreet amounts 
(quanta) whose magnitude depends upon the frequency such that8:

 E w    (15.21)
With this assumption, the photo-electric effect is easily explained. 
When-ever the frequency of the light is suffi cient high, it will have 
suffi cient energy to overcome the attractive potential of the metal 
for the electron and the electron will absorb that energy and be 
freed from the metal. At a lesser frequency, the light will have less 
energy, and, if the frequency is less than the threshold frequency, 
this will be insuffi cient energy to dislodge the electron.

Aside: Albert Einstein won a Nobel prize for his explanation of the 
photoelectric effect. He was not awarded a Nobel prize for either his 
development of the theory of special relativity or for his monumen-
tal development of the theory of general relativity.

8. Einstein, A (1905) Annalen der Physik 17 (6) 132–148.
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Einstein’s photoelectric hypothesis was verifi ed experimentally 
by R. A. Millikan  in 19169. The quantum nature of the photoelectric 
effect was verifi ed in 1915 by Duane and Hunt10 and in 1928 by 
Lawrence and Beams11.

To Newtonians, energy is a continuous concept associated with 
particles. To explain the photo-electric effect, we are having to asso-
ciate discreet quanta of energy with electromagnetic radiation. To 
the classical physicist of the late 19th century, this was shocking.

The photo-electric effect is concerned with nothing more than 
the exchange of energy between light and matter. Because there is 
nothing more than only the exchange of energy between light and 
matter, this effect cannot be explained by any mechanism that avoids 
the discreetness of the quanta of energy of the light.

Between them, blackbody radiation and the photo-electric effect 
show only that the exchange of energy between light and matter is 
quantitised into discreet “lumps” (quanta); they do not show that 
light has a particle-like nature. However, Compton scattering does 
show the particle-like nature of light.

15.8 COMPTON SCATTERING

We begin by assuming that electromagnetic radiation (x-rays) 
comes in photons that have momentum. We then hit electrons with 
this radiation and calculate the consequences using Newton’s laws 
of motion for particles. There will be a change in the momentum 
of the photon after it has hit an electron. That change will depend 
upon the angle at which the photon collided with the electron. The 
change in momenta of the photons will correspond to a change 
in the energy, E2 =p2c2, and thus in the frequency of the photons, 
E = hv. We arrange the directions of the sources of the electrons and 
the electromagnetic radiation to be fi xed. The Newtonian mechan-
ics of particles predicts a change of frequency that corresponds to 
the angle of collision and thus, from pre-set sources, we will see a 

9. R.A.Millikan Phys. Rev. 7,355 (1916).
10. W. Duane and F.L.Hunt. Phys Rev, 6, 166 (1915).
11. E.O.Lawrence and J.W.Beams, phys Rev, 32, 478 (1928).

The nuts.indb   139 09-05-2016   10:46:14



140 • Quantum Mechanics

change of frequency corresponding to the angle at which the photon 
is scattered from the electron. This change will not depend upon the 
frequency of the electromagnetic radiation. The actual formula is:

 2
1 2 2 sin

2e
ql l l     
 

 (15.22)

Where e is the Compton wavelength  of the electron. This result 
is exactly what was observed in experiments by Compton  between 
1919 and 192312,13. We therefore take it that the assumption of the 
particle-like nature of the photons of electromagnetic radiation is a 
correct assumption. These results cannot be explained if we assume 
that electromagnetic radiation is wave-like. 

Aside: The Compton wavelength of the electron is: 4  1013 Meter.

Today, we are not shocked at the idea that electromagnetic waves 
have quantitised energy and quantitised momentum; as babies, we 
read it scrawled as graffi ti on the cot headboard, but to physicists of 
a hundred years ago, it was most discombobulating.

Aside: The American physicist Arthur Holly Compton  (1892–1962) 
was awarded the Nobel prize for physics in 1927 for his discovery of 
the Compton effect. From the start, he was a key figure in the Man-
hattan project that developed the first nuclear bombs. It was Comp-
ton who headed the National Defense Research Committee that, in 
May 1941, first foresaw the use of nuclear power as an energy source 
and the possibility of nuclear bombs.

15.9 DE-BROGLIE AND DAVISSON AND GERMER

In 192314, 192415, and 1925, Louis de Broglie  (1892–1987) pro-
posed that the formulae  that associate particle-like quantities with 

12. A.H.Compton Phys. Rev. 21, 207 (1923).
13. A.H.Compton Phys Rev. 22 409 (1923).
14. Louis de Broglie Comptes Rendus 177, 507 548, 630 (1923).
15. L de Broglie. Phil Mag 47 446 (1924).
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waves ought to associate wave-like quantities with particles16. Where 
there is a wave, there is a wave equation, and de Broglie proposed 
that an electron should be described by the de Broglie wave equa-
tion :

 
 

exp
Et p x

i
 
 
 

 



 (15.23)

Which the reader might like to compare with (15.12) and (15.18) 
and (15.19). Basically, de Broglie said that a material particle moving 
with momentum p, has associated with it a wave whose wavelength 
is given by:

 
2

h h
p mE

l    (15.24)

Wherein  is the wavelength, h is Planck’s constant, m is the par-
ticle’s mass and E is the particle’s energy.

Aside: The average energy of particles at absolute temperature T is 
given by:

 
3
2Average BE k T  (15.25)

Wherein 23 11.3807 10  J KBk     is Boltzmann’s constant. Using:
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  (15.26)

We get the momentum of a particle with mass m as:

 3 Bp mk T  (15.27)

Using (15.24) gives:

 
3 B

h
mk T

l   (15.28)

The de Broglie wavelength of an atom of oxygen at room tempera-
ture (~300K) is approximately 4  1011 meters. The de Broglie wave-
length of a molecule of DNA at room temperature is approximately 
1014 meters.

16. L.de Broglie Ann Physik 3, 22 (1925).
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In 1927, Clinton Davisson (1881–1958) and Lester Germer (1896–
1971) showed that a beam of electrons refl ected from the surface 
of a nickel crystal forms a diffraction pattern17. This is analogous to 
the diffraction patterns from light upon a diffraction grating. The 
diffraction pattern persists even if only one electron is refl ected. 
Thus, a single electron has wave-like properties associated with it 
– that was a shocker. The de Broglie equation accurately described 
the energy of electrons and the width of the diffraction bands of 
those electrons impinging upon the nickel crystal in the Davisson 
and Germer experiment  – the de Broglie wave equation of particles 
was verifi ed by experiment.

Aside: Louis Victor Pierre Raymond, 7th duc de Broglie  was awarded 
the Noble prize for physics in 1929 for his work on electron waves. 
Interestingly, his first degree was in history.

15.10 THE THOMPSON ATOM

We understand that matter is comprised of large numbers of dis-
creet entities called atoms. This was postulated, perhaps not for the 
fi rst time, over two thousand years ago by the ancient Greek Dem-
ocritus (460–370 BC). It became accepted in the early 19th century 
when chemists were able to show that the chemical elements could 
be combined in defi nite amounts to form common substances. 

The original concept of an atom was that it was a tiny hard ball, 
like a microscopic billiard ball. Today, we have a very different con-
cept of an atom, but we did not get from hard billiard ball to today’s 
concept in only one leap. The transition required many decades 
and much experimental work. In the early 1830s, Michael Faraday 
experimented with electrolysis and concluded that atoms could exist 
as ions18 thereby bringing into question the “billiard ball” nature of 
atoms. This was followed in 1897 by J. J. Thompson’s discovery of 

17. C.Davisson & L Germer Nature 119, 558 (1927).
18. Michael Faraday: Experimental Researches in Electricity. Series VII. January 
1834.
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the electron19. Thompson built upon this discovery by formulating a 
theory of the atom known as the Thompson atom  or the Thompson 
model of the atom. Thompson envisaged the atom as being a round 
“plum pudding” like object in which the electrons were embedded 
as plums are in a pudding and in which the rest of the atomic mate-
rial is positively charged, thereby neutralizing the negative electric 
charge of the electrons. Thompson calculated this “plum pudding” 
atom to have a radius of approximately 1010 M. 

15.11 THE RUTHERFORD ATOM

The Thompson model of the atom did not last long. In 1909, 
R. A. Millikan (1868–1953) measured the charge of the electron 
using oil droplets20. He improved the measurements a few years 
later. Alpha particle scattering experiments21 carried out by Geiger 
and Marsden22 and supervised by Ernest Rutherford  (1871–1937) 
between 1909 and 1911 led to the atom being viewed as a tiny but 
heavy, positively charged nucleus with electrons orbiting around that 
nucleus in a way similar to the way that planets orbit around the 
sun. Although the experiments lead to this view, such a model of 
the atom makes no sense in classical physics. An orbiting electron is 
an accelerating charged particle, and accelerating charged particles 
emit electromagnetic radiation thereby losing energy. If the electron 
is losing energy, it will lose speed and will spiral into the nucleus. 
Calculation shows that it should do this in 1010 seconds. Electrons 
do not do this. Atoms are stable. In addition, as the electron loses 
energy, it will emit radiation in a continuous range of differing fre-
quencies. Balmer had already shown that atoms do not do this.

The model of the atom as having orbiting electrons could not fi t 
into classical physics without some modifi cation. That modifi cation 
was provided by Niels Bohr as an “ad hoc” set of rules appended to 
classical physics.

19. J.J.Thompson Phil. Mag. 44, 293 (1897).
20. R.A.Millikan Phys Mag XIX 6 (1910) pg. 209.
21. E. Rutherford Phil Mag. 21 669 (1911).
22. H Geiger and E. Marsden Proc Roy. Soc. A 82, 495 (1909).
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Aside: The New-Zealand born Ernest Rutherford  1st Baron Ruther-
ford of Nelson was known as the “father of nuclear physics” because 
of his experiments into nuclear decay. He was awarded the 1908 
Nobel prize for chemistry for his work on the disintegration of 
atomic nuclei.

15.12 THE BOHR ATOM

The reader might have been taught that Maxwell’s equations 
describe all of electromagnetic phenomena; they do not. Maxwell’s 
equations describe all of classical electromagnetism; they do not 
describe the behavior of electrons. In 1913, Niels Bohr  (1885–1962) 
proposed “ad-hoc” rules be appended to Maxwell’s equations of 
electromagnetism to explain the behavior of electrons in atoms23. It 
is not pretty to take a set of self-consistent and complete equations 
such as the Maxwell equations and add bits to them, but this was the 
best that could be done at the time. Bohr proposed amending the 
Maxwell equations by adding the condition that angular momentum 
comes in lumps whose magnitude is given by:

 l n   (15.29)
Discreet amounts of angular momentum means discreet speeds of 
the electrons orbiting an atomic nucleus. This is the same as discreet 
energies of these orbiting electrons. It follows simply. If an orbiting 
electron can go at only particular speeds, it must have only particu-
lar angular momenta. This is defi nitely different from Newtonian 
mechanics!

What we have here is classically continuous variables taking only 
discreet values.

Bohr then allowed electrons to “jump” from one orbital speed 
(one energy or one angular momentum if you prefer) to a different 
orbital speed. Even today, we do not really understand an “electron 
jump” – we do not know how much time it takes, for example. As 
the electrons jump from one energy (orbit) to another, they emit or 
absorb radiation with energy equal to the energy difference between 

23. N. Bohr Phil Mag 26, 476 (1913).

The nuts.indb   144 09-05-2016   10:46:16



 The History of Quantum Mechanics • 145

the two orbits. This is the discreet emission of radiation discovered 
by Balmer. The difference in energies is proportional to Planck’s 
constant because the allowed angular momenta are proportional to 
Planck’s constant.

When Bohr applied these “ad hoc” rules to the hydrogen atom, 
he got the following. By classical physics, the equation of motion of 
the electron is:

 2 3 2e ma w  (15.30)

Where e is the charge of the electron. Bohr’s rules require:

 
2ma nw    (15.31)

Combining these gives the orbit radius as, r = an, where:
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a0 = 5.29  1011 Meter is a fundamental length connected to the 
hydrogen atom known as the Bohr radius . It is the classical radius of 
the electron orbit that is of the lowest energy in the hydrogen atom. 
You can see it as being a measure of the classical size of the hydrogen 
atom.

Aside: Of all the elements, caesium is the largest atom measured to 
date at 2.5 angstroms (an angstrom is 1010 M) diameter and oxygen 
is the smallest at 0.6 angstroms diameter - it might be that some 
atoms are slightly larger than caesium. There is little difference in 
the size of atoms throughout the periodic table, but the alkaline met-
als (leftmost column of the periodic table) are the largest.

Using the classical physics notion of total energy being the sum of 
potential energy and kinetic energy leads to:
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 (15.33)
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We have discreet energy levels and discreet angular frequencies. 
Choosing m = 2 and n = 3, 4, 5 will give the spectral lines of the 
hydrogen atom as found by Balmer. We have agreement with obser-
vation. Appropriate substitutions lead to the energy levels that Bohr 
calculated for the hydrogen atom as:
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  (15.34)

These discreet energy levels correspond to electron orbits being 
“circular” standing waves around the atomic nucleus of wavelength 
given by n = 2r. A “circular” standing wave, very much like a 
straight standing wave, must match full wavelengths to the length of 
the “circumference”. So it is that electrons having wavelike proper-
ties leads to the discreet energy levels of atoms. 

Should we emphasize that last sentence? Perhaps we should just 
repeat it. Because electrons are waves, electrons in atoms have dis-
creet energy levels corresponding to an integral number of wave-
lengths of the electrons. We would mention the discreet amounts of 
orbital angular momentum as well, but the reader is clever enough 
to realize that anyway.

Aside: The Danish physicist Niels Bohr  won the Nobel prize for 
physics in 1922 for his work on quantum theory. Two years previous 
to this, in 1920, he founded the Institute of Theoretical Physics at 
Copenhagen, now known as the Niels Bohr Institute. His mother was 
Jewish, and in 1943, aided by the Danish resistance, he was forced 
to flee from Denmark to the neutral country of Sweden where-after 
he played a significant role in organizing the rescue of some 7,000 
Danish Jews from the Nazis into Sweden.

The Bohr theory applies to only circular orbits, but we now know 
that elliptical orbits are allowed. Bohr’s theory was generalized to 
include elliptical orbits by Sommerfi eld in 191624.

24.A. Sommerfield Ann. D. Physik 51, 1 (1916)
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15.13  THE STERN-GERLACH EXPERIMENT 
(SEE LATER CHAPTER)

In 1922, Otto Stern (1888–1969) and Walther Gerlach (1889–
1979) conducted an experiment that demonstrated the quantitisa-
tion of angular momentum25. The experiment is universally known 
as the Stern-Gerlach experiment. The Stern-Gerlach experiment 
measured the magnetic dipole moments of neutral silver atoms by 
passing them through a non-uniform magnetic fi eld. The experi-
ment showed that an atomic dipole moment has only discreet val-
ues. This is direct experimental evidence of the quantitisation of 
angular momentum. However, the angular momentum which is dis-
covered by this experiment is the intrinsic spin of the electron and 
not the orbital angular momentum originally postulated by Bohr. 
Still, although it be intrinsic spin, this experiment demonstrated that 
angular momentum is quantitised. 

Aside: The results of the Stern-Gerlach experiment  were reported 
directly to Niels Bohr by Walther Gerlach on a post card.

Aside: The velocity of an electron in the lowest Bohr orbit is:

 
2e

v 


 (15.35)

If we divide this by the speed of light, c, we get the fi ne structure 
constant:

 
2 1

137fine structure
v e
c c

a    


  (15.36)

In this, we see three basic physical constants combined. The fi ne 
structure constant measures the strength of the electromagnetic 
interaction. The fi ne structure constant  is also a measure of the 

speed, ,
137

c
ca   of the electron in the lowest orbit Bohr atom. It 

was introduced by Arnold Sommerfeld (1868–1951) in 1916.

25. Gerlach,W: Stern,O: (1922) Das magnetische moment des silberatoms: Zeitschrift 
für Physik 9. 353–355
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SUMMARY

Taken together, the black-body spectrum, the photo-electric 
effect, Compton scattering, and Bohr’s successful explanation of the 
spectra of the hydrogen atom form a large body of evidence sup-
porting the idea that atomic particles and electromagnetic radiation 
have both wave-like and particle-like properties. More important 
is the fact that none of these phenomena can be explained by the 
classical physics view of a universe that is separated into waves and 
particles. Today, there is much more evidence of the wave-particle 
nature of both electromagnetic radiation and atomic particles to be 
piled on top of the four phenomena listed above. The quantum type 
of mechanics that accompanies the wave-particle view has been, and 
continues to be, triumphantly successful in predicting and explain-
ing phenomena (think superfl uidity and superconductivity and the 
big bang synthesis of the elements and Bose-Einstein states and, 
quantum computing, and …).

So, by the middle of the 19th century, things were simple. We had 
particles, and we had waves, and they were never mixed together. 
By the end of the fi rst quarter of the 20th century, we had particles 
that were also waves and waves that were also particles. Now, in the 
21st century, we still refer to atomic particles and electromagnetic 
waves just as 19th century physicists would have done - presumably 
we do this to confuse students - we ought really to have changed the 
vocabulary, but we haven’t.

The change from the 19th century view to the present day view 
came about in three imposed “ad hoc” rules of thumb:

 i. The particle aspect of radiation – Planck’s photons (Einstein 
helped).

 ii. The wave aspect of particles – de Broglie’s wave equation.

 iii. Some physical variables have only a discreet set of values – 
Bohr.

The fi rst two of these mean that we need a formulation of mechanics 
that combines both waves and particles. This cannot be done with 
the Newtonian formulation of mechanics. The last of these means 
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that we need a mathematical formulation that gives a particular set 
of numbers associated with a particular physical variable like energy 
or angular momentum. Nor can this be done with the Newtonian 
formulation of mechanics. The wave-particle duality of objects and 
the discreet nature of energy or angular momentum is the downfall, 
for tiny objects, of Newtonian dynamics.

Aside: Although, historically, the quantitisation of energy came 
before the de Broglie wave equation of particles, it might have hap-
pened differently. If de Broglie had proposed that electrons were 
waves first, then it would have followed the electron orbits are stand-
ing waves of a particular whole number of wavelengths and hence 
angular momentum is quantitised. Hence energy is quantitised, and 
hence when electromagnetic radiation interacts with atoms it will do 
so in discreet quanta of energy. These quanta of energy are called 
photons. As well as delivering energy to orbiting electrons, pho-
tons must deliver angular momentum to accommodate the change 
in electron orbit. It is not a big step to the idea that photons have 
particle-like momentum.

EXERCISE

1. What is the de Broglie wavelength of a neutron (mass 1.67  
1027 Kg) at room temperature (~300 K)?
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CHAPTER 16
QUANTUM 
MECHANICS – 
AN OVERVIEW

In this chapter, we skim through quantum mechanics to give a 
general overview without too many details. We repeat much of the 
previously covered material to “ram it home.” Some of the previ-
ously covered material is presented in a different way to broaden the 
reader’s understanding. Some of the material is yet to be covered, 
and so this chapter is a preview of that material. 

16.1  THE BONES OF THE THEORY OF 
QUANTUM MECHANICS

 1. a.  Quantum mechanics is based on linear operators: At the 
simplest level, a linear operator is no more than a n  n 
square matrix that acts upon a n-component vector by 
matrix multiplication to change it into another vector. In 
quantum mechanics, we are interested in only the special 
vectors that are unchanged by a linear operator  other than 
to be multiplied by a real number; we call these 
eigenvectors. 
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The number by which the operator multiplies the eigen-
vector is called an eigenvalue. 

 

1 1
0 1 1 2 2

0 1 1 1 1
                2             

2 21 1 0
1 11 1 0
0 0

    Operator          Eigenvector           Eigenvalue       Eigenvector
                  

a

a
a

a

a

   
    
    
          
         
      

                                                                 (unchanged)

 (16.1)

  Eigenvector means “special vector.” Eigenvalue means 
“special value.” Eigenfunction means “special function.”

  b.  The sums and products of linear operators are linear op-
erators: Because the operators are linear, their sums and 
products are linear operators .

 2. a.  In quantum mechanics, there is one, and only one, linear 
operator corresponding to each Newtonian dynamic vari-
able (except time): In Newtonian dynamics, we have dy-
namic variables like energy, x-momentum, y-momentum, 
z-angular momentum, etc… In quantum mechanics, for 
every Newtonian dynamic variable, there is a correspond-
ing linear operator. There is the energy operator; there is 
the x-momentum operator; there is the y-momentum opera-
tor; there is the z-angular momentum operator etc… . 

  b.  Swapping the Newtonian variables of a physical system 
for linear operators imposes the commutation relations of 
those operators upon the physical system. There are no 
commutation relations  within Newtonian mechanics, and 
so, when we quantitise the physical system by replacing 
Newtonian variables with operators, we are fundamentally 
changing the physical system.

  c.  In quantum mechanics, there are operators that have no 
corresponding dynamic variable in Newtonian mechanics: 
Although every Newtonian dynamic variable except time 
has a corresponding operator in quantum mechanics, there 
are also other operators in quantum mechanics for which 
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we do not find a corresponding dynamic variable in New-
tonian dynamics. An example of this is the intrinsic spin  of 
a particle. 

Aside: Other examples of operators are found in QFT but not in 
quantum mechanics; examples are the creation operator that creates 
a particle from energy and the annihilation operator that annihilates 
a particle into energy. 

  d.  The energy operator is called the Hamiltonian: We often 
refer to the energy operator as the energy operator, but 
we also refer to it as the Hamiltonian  operator or just the 
Hamiltonian of the physical system.

 3. In quantum mechanics, the eigenvalues associated with an 
operator are the possible values of the Newtonian variable 
associated with that operator: The eigenvalues of the energy 
operator are the possible energies of a particular physical sys-
tem. Sometimes, the set of energy eigenvalues is the whole of 
the real numbers. Sometimes, the set of energy eigenvalues 
is a finite discreet set of real numbers. The energy eigenval-
ues of a free particle are the whole of the real numbers, and 
so a free particle can have any value of energy (just like a 
Newtonian particle). The energy eigenvalues  of an electron 
in orbit around an atom are a discreet set of real numbers 
corresponding to a discreet set of standing waves. The energy 
eigenvalues of an electron in orbit around an atom are the 
discreet possible energies of that electron and the difference 
between these discreet energies correspond to the frequen-
cies of the emitted, or absorbed, spectral lines on that atom.

  You see, we have managed to capture both the Newtonian 
free particle energies and the atomic quantitised energies 
within our operator/eigenvector/eigenvalue system. 

 4. a.  In quantum mechanics, the eigenvectors associated with 
an operator correspond to the possible states in which the 
system might be with regard to the Newtonian variable as-
sociated with that operator: An electron orbiting an 
atom might be in one of, say, ten possible orbits. In which 
case, the energy operator of that system will have ten 
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eigenvectors. Each energy eigenvector will be associated 
with one of the possible orbits of the electron. Associated 
with each energy eigenvector will be one energy eigen-
value. Each energy eigenvalue will be the electron’s energy 
in the associated orbit. It is not necessarily the case that the 
ten eigenvalues will all be different.

     Similarly, there will be ten z-angular momentum eigen-
vectors, one for each orbit, and ten associated z-angular 
momentum eigenvalues corresponding to the ten values of 
z-angular momentum, one for each orbit.

     Depending upon the system, the set of ten eigenvectors of 
the different operators might or might not be the same.

  b.  In quantum mechanics, a particular state of a physical sys-
tem is called an eigenstate of that system: Corresponding to 
a particular orbit of an electron is a particular energy (the 
energy eigen value), and a particular energy eigenfunction.

 5. a.  Linear operators can be written without matrices: In 
quantum mechanics there is a x-momentum operator 
which is differentiate with respect to x and multiply by 

3 1 .i i        The x-momentum operator  is written 

as .xp  We have the three quantum mechanical operators 
corresponding to the three Newtonian dynamic variables: 

 







x

y

z

p i
x

p i
y

p i
z


 




 



 








 (16.2)

       It is normal to put a carat over an operator to signify that 
we regard it to be an operator. Thus, we write the energy 
operator as:

     or    E H  (16.3)

   The practice of calling the energy operator the Hamiltonian  
is the origin of this doubling of notation.
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  b.  The time momentum variable is:

 
tp i

t





  (16.4)

        The theory of special relativity tells us that energy is mo-
mentum in the time direction. The minus sign is absent in 
the time momentum operator because the signature of the 
distance function of 4-dimensional space-time is (, , , 
). So what we really have here is the energy operator. 

  
tE p  (16.5)

        Well, yes we do have one form of the energy operator; 
there is another, more commonly used, form of the energy 
operator which we will meet shortly.

Aside: If we write special relativity using the hyperbolic complex 
numbers, we have the relation:

 
2 2

2

0 cosh sinh
0 sinh cosh

0 0 0
0 00

E p h

p E h

p p E

p Ep

c c
c c

     
     

     
    

     
     

 (16.6)

In this, we see the relation between energy and momentum E ~ p2.

 6. The relations between Newtonian dynamic variables are 
duplicated between the quantum mechanical operators that 
correspond to those Newtonian dynamic variables: Within 
Newtonian mechanics, we have the zero potential (a uniform 
potential is a zero potential) energy/momentum relation:

 2 21 1
2 2 xE mv p

m
   (16.7)

  Which we have shown in only one dimension. It is often 
normal to omit the subscript {x, y, z} from the momentum 
operator when we write 1-dimensional forms of equations. 
Within quantum mechanics, we duplicate this relationship 
and we have the relation between the energy operator (the 
Hamiltonian) and the momentum operator:
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 2

2

2 2

2

1
2

2

2

E p
m

i i
m x x

m x



          


 








 (16.8)

Aside: The reader might think we derived the energy operator 
wrongly and that we ought to have done the calculation as:

 

  2

22

1
2

2

xE p
m

m x



     


  (16.9)

We will eventually put the energy operator into a wave equation (the 
Schrödinger equation). Any respectable wave equation should be 
linear (the Schrödinger equation is linear) because it is an observed 
fact that waves can be superimposed upon each other to form 
another wave. Since the solutions of a wave equation are waves, we 
want to be able to superimpose the solutions upon each other to 
form another solution just as waves can be imposed upon each other 
to form another wave. We can do this with only linear equations. If 

we had an energy operator with a 
2

x
 

  
 term, we could not form 

a linear equation that included it; this would mean that our “wave 
equation” was not linear and therefore not a respectable wave equa-
tion. (It would also mean that the solutions of the equation were not 
a complete vector space with orthogonal basis solutions.)

To some extent, the choice is arbitrary. The choice is justified, not 
by any profound understanding of the universe, but by the fact that 
it produces an equation, the Schrödinger equation, that correctly 
describes reality. The reader may take the view that the choice is a 
postulate of quantum mechanics. 

We now have another form of the energy operator. 
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Correspondence Principle
Every Newtonian dynamic variable has a corresponding quantum 
mechanical operator.

The relations between Newtonian dynamic variables are dupli-
cated as relations between the correspond ing quantum mechani-
cal operators. 

The quantum mechanical operators bring with them the commu-
tation relations between them and thereby are commutation rela-
tions imposed upon the Newtonian system.

Another example of relations between operators being the mirror of 
the Newtonian relations are the angular momentum operators :

 

  

  

  

x z y

y x z

z y x

l yp zp

l zp xp

l xp yp

 

 

 

 

 

 

  (16.10)

To reiterate, the reader should note that replacing the Newtonian 
variables by operators has introduced commutation relations to the 
physical system.

 7. Putting the two forms of the energy operator together forms 
the time dependent Schrödinger equation (TDSE): From 
above, we have two forms of the energy operator. We will 
give them something to operate upon, Y. Clearly, they are 
equal to each other because there is only one energy opera-
tor, and we have:

 

 
2 2

2

( ) ( )

2

tp E

i
t m x

  

  
 

 


 (16.11)

  This is known as the Time Dependent Schrödinger Equa-
tion , abbreviated to TDSE, for a uniform (zero) potential. 
For a non-uniform potential, we add the potential, V(x, t), as:

 
2 2

22
i V

t m x
  

   
 

  (16.12)
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 This is the Time Dependent Schrödinger Equation for a non-
uniform potential. It is the backbone of the wave mechanics part of 
quantum mechanics. We will meet it again later. 

Although the Schrödinger Equation can be derived in various 
ways, one of which we have shown above, in each of these deri-
vations, there is an assumption, or several assumptions. Above, we 
have assumed the Newtonian energy relation. This means that the 
Schrödinger Equation is a postulate of quantum mechanics. The 
“derivations” of it are no more than “eye-opening” attempts to 
justify it.

Aside: The complex conjugates of the two energy operators are also 
equal.

 
2 2

2 ( , )
2

i V t x
t m x

y y y
 

 
  

 
                     (16.13)

Only the 
2 2

22
E V

m x


  


  operator is known as the Hamiltonian, 
.H

 8. The quantum mechanical energy operator is non-relativistic: 
Quantum mechanics is a non-relativistic theory because the 
energy operator is calculated using the non-relativistic energy 
momentum relation:

 21
2

E p
m

  (16.14)

  instead of the relativistic energy/momentum relation:

 
2 2 2 2 4E p c m c   (16.15)

  This does not mean that special relativity is ignored com-
pletely in quantum mechanics1. We have above derived the 
TDSE from the relativistic fact that energy is momentum in 
the time direction. 

Aside: The relativistic expression for energy  is:

 2 2 2 2 4
0E c p m c   (16.16)

1. General relativity is ignored completely in quantum mechanics.
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The reader might think it better to use this relation between 
energy and momentum rather than the Newtonian relation we have 
used above. The reader would be correct. Relativity theory tells us 
that energy is momentum in the time direction, and so the energy 
operator is thus:

 
  

tE p i
t


 



   (16.17)

Putting this energy operator and the spatial momentum operator 
into the relativistic energy/momentum relation gives:

  

2 2 2 2 4
0

2 2
2 2 4

0( ) ( )( ) ( )

E c p m c

i i c m c
t x

y y y

 

 
  

 
 

 (16.18)

Setting c = 1 and re-arranging gives:

 
2 2

2
02 2 0m

t x
y y y 

  
 

 (16.19)

A change of notation:

 2( ) 0m
m y   m  (16.20)

This is the Klein-Gorden equation  of quantum fi eld theory, QFT. 
This is exactly where Schrödinger was initially led. The Klein-Gor-
den equation describes particles of integral intrinsic spin (scalar 
fi elds).

It is because we use the Newtonian energy/momentum relation 
to build quantum mechanics rather than the relativistic energy/
momentum relation that quantum mechanics is a non-relativistic 
theory. Quantum mechanics deals with only slow moving physical 
situations, and so we can “get away” with a non-relativistic theory. 

 9. The eigenvectors (eigenfunctions) of a quantum mechanical 
operator form a complete orthogonal set: The linear sums of 
eigenvectors of a quantum mechanical operator form a linear 
space (also called a vector space). 

 10. The solutions of a linear differential equation form a vector 
space: Of all the solutions of a (any) linear differential equa-
tion, some are basis solutions that are mutually independent 
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of each other (as defined by the overlap integral) and form 
a complete set. The other solutions of the linear differential 
equation are formed as a linear sum of the basis solutions. 
The solutions of non-linear differential equations do not 
have this orthogonality and completeness. The time depen-
dent Schrödinger equation, TDSE, is a linear differential 
equation. The basis solutions of the TDSE form a complete 
orthogonal set. There is nothing special about the TDSE; the 
solutions of all linear differential equations have this orthogo-
nality and completeness property.

 11. The eigenfunctions (eigenvectors) of an operator vary from 
one physical situation to another: The set of eigenfunctions 
of the energy operator within a non-uniform potential are 
different from the set of eigenfunctions of the energy opera-
tor of a free particle (a particle in a uniform potential). There 
is only one energy operator but its exact form and its eigen-
functions vary from one physical system to another.

 12. In quantum mechanics, different operators can have the 
same eigenvectors (eigenfunctions): It is the case that the 
zero potential Hamiltonian (the energy operator in a uni-
form potential) and the momentum operator have the same 
set of eigenfunctions. These two operators might associate 
different eigenvalues with the eigenfunctions, but the set of 
eigenfunctions are the same.

 13. Operators with the same set of eigenfunctions are commu-
tative: We take the example of the zero potential energy 
operator and the x-momentum operator. By multiplicatively 
commutative, we mean that the order in which the operators 
are applied does not matter. If this is the case, then the dif-
ference between the two possible orders of application will 
be zero. We call this difference the commutator of the opera-
tors  and, for operators   ,A B  acting on vector (function) , 
we write it as:

        , ( ) ( )A B A B B A        (16.21)
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  Note that the commutator is an operator in its own right. We 
have:

        







2 2

0 2

2 2 2 2

2 2

3 3 3 3

3 3

2

, ( ) ( )
2 2

0
2 2
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E p i i
m x x mx x

i i
m mx x




 



 


                       
   

    
 





   

 

  (16.22)

  We see that the zero potential Hamiltonian operator and the 
momentum operator commute. Not all operators commute, 
and, indeed, the non-zero potential Hamiltonian operator 
does not commute with the momentum operator.

 14. If operators commute with each other, then the Newtonian 
dynamic variables which they each represent can be simul-
taneously known: Because the zero potential Hamiltonian 
operator and the momentum operator have the same set of 
eigenfunctions (eigenvectors), any eigenfunction will have 
associated with it two eigenvalues, one for the Hamiltonian 
operator and one for the momentum operator. We often 
write these two numbers as ,a b . We can observe both these 
numbers simultaneously with unlimited accuracy. {a, b} are, 
of course, quantum numbers of the system.

 15. a.  If operators do not commute with each other, then the 
Newtonian dynamic variables which they each represent 
cannot be simultaneously known: The state of a system 
corresponds to a particular eigenfunction; the system is in 
a state described by only one eigenfunction. The x-position 
operator and the x-momentum operator have different 
eigenfunctions. Thus, the system cannot simultaneously 
be in a state described by a x-position eigenfunction and 
in a state described by a x-momentum eigenfunction. So, 
because the system can be in only one state at a time, we 
cannot simultaneously know an eigenvalue of x-position 
and an eigenvalue of x-momentum. To do this, we would 

The nuts.indb   161 09-05-2016   10:46:25



162 • Quantum Mechanics

need the system to be in two different states described by 
two different eigenfunctions at the same time.

 16. a.  There is an uncertainty relation  between the position and 
the momentum of a physical system (particle) which is 
expressed as:

 1
2

x p     (16.23)

      We also have the uncertainty relation:

 1
2

t E     (16.24)

  b.  In general, for two operators,   , ,A B  we have the uncer-
tainty relation:

 
 ,
2

A B
A B

i

      (16.25)

       Where the  ,A B    is the expectation value of the commu-
tator. 

 17. There is a formula for converting non-matrix operators into 
matrix operators: If an operator has n basis eigenfunctions 
(basis eigenvectors), then those eigenfunctions form a n-
dimensional linear space. Such a n-dimensional linear space 
corresponds to a n  n matrix. The elements of that n  n 
matrix are each given by an overlap integral of the eigenfunc-
tions. If the n eigenfunctions are    :  1 ,i i nf    then the 
element of the matrix on the Rth row and in the Cth column is 
given by the overlap integral :

 * RC R cA dx f f




   (16.26)

  So, an operator with three basis eigenfunctions corresponds 
to a 3  3 matrix and an operator with an infinite number of 
basis eigenfunctions corresponds to an    matrix. It is the 
size of this    matrix that causes the notational problem 
of not being able to explicitly write all operators as matrices.

 18. Much of quantum mechanics is about solving eigenvalue 
equations: An eigenvalue equation  is simply:
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  

Operator (eigenfunction)    eigenvalue  eigenfunction   

nA ay y

 
 (16.27)

We solve eigenvalue equations by fi nding the set of eigenvalues 
and eigenfunctions which satisfy the equation.

 19. The time independent Schrödinger equation, TISE, is an 
eigenvalue equation: We have the time dependent 
Schrödinger equation , TDSE is:

 
2 2

22
i V

t m x
y y y 

  
 

  (16.28)

  If the physical system is independent of time such as an 
electron in a stable orbit around an atomic nucleus, then the 
eigenfunctions, y, which correspond to the possible states of 

that physical system will be independent of time and 0.
t

y



 

In this case, we are left with only one form of the energy 
operator, the Hamiltonian:

   
2 2

22
E V

m x
yy y

  


  (16.29)

  This is the energy operator  acting upon an eigenfunction and 
it must produce a real multiple of that eigenfunction. There-
fore, we have, for physical systems that are independent of 
time:

 
2 2

2
( )

( ) ( )
2 n

x
V x E x

m x
y y y

  


   (16.30)

  Where En is the energy eigenvalue . This is called the time 
independent Schrödinger equation, abbreviated to TISE. It 
is a linear differential equation, and so it has solutions that 
form a vector space spanned by basis functions. The TISE is 
an eigenvalue equation wherein the only admissible solutions 
are eigenfunctions of the energy operator (Hamiltonian). 
The vector space of solutions is therefore spanned by a set of 
eigenfunctions. Other solutions of the TISE can be formed 
as linear sums of these basis eigenfunctions just as other 
vectors can be formed as linear sums of basis vectors. 
A particular such sum might be:
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 1 1 2 2 3 3 ...c c cy y y      (16.31)

  Wherein the ci   are constants which are complex. In 
general, the eigenfunctions, i, are complex functions.

  We use the TISE to deal with time independent physical sys-
tems. We simply2 insert the appropriate potential, V(x) into 
the TISE and find the set of eigenfunctions and the set of ei-
genvalues. The hydrogen atom is a physical system that does 
not change over time. The hydrogen atom is described by the 
TISE. The eigenvalues of the solutions of the hydrogen atom 
TISE are the electron energies of the hydrogen atom. 

 20. In quantum mechanics, the universe exists in a superposi-
tion of eigenstates: A physical system is described by the time 
dependent Schrödinger equation, TDSE. This equation has 
several basis solutions (basis eigenfunctions) each of which 
corresponds to a particular eigenvalue and a particular basis 
state of the system. We do not say that the physical system 
is in one of the basis states corresponding to one of the basis 
solutions (basis eigenfunctions); instead, we say that the 
physical system is in all the states at the same time. We say 
that the physical system is in a superposition (linear sum) of 
these states. However, when we measure the system, or the 
system interacts (think electron in orbit being hit by a photon 
of light), then the system must respond as if it is in one par-
ticular state with only one value of energy and only one value 
of angular momentum and only one value of momentum… 
etc. We say that the system has collapsed from its superposi-
tion  of states into a single state. We call this single state an 
eigenstate. 

Aside: The superposition idea is very like being outside of time. 
A physical system, say an atom, might be in one physical state on 
Tuesday and in a different physical state on Wednesday and in yet 
another physical state on Thursday. Now take away time; in which 
physical state is the atom? Now imagine that a physics student who 

2. Although inserting the potential might be simple, solving the equation is usually 
not that simple.
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lives in space-time comes along to observe the atom. His observation 
introduces time to the atomic system. 

 21. Chance determines into which basis eigenfunction of which 
operator a system will collapse: It is perhaps the most mind 
blowing aspect of quantum mechanics that probability plays 
a role in the unfolding of events. When a physical system col-
lapses into a particular basis eigenfunction (particular basis 
solution of the eigenvalue equation), how does it choose the 
“chosen eigenfunction”? Remarkably, it doesn’t; there is no 
“hidden variable” that determines which eigenfunction will 
be the “chosen one.” It is all down to chance. 

 22. The probability of an eigenfunction being the “chosen one” 
when a physical system collapses into an eigenstate is deter-
mined by the complex coefficient of that eigenfunction within 
the linear sum of eigenfunctions that is the superposition of 
eigenfunctions that describes the physical system: The super-
position of eigenfunctions is:

 1 1 2 2 3 3 ...c c cy y y      (16.32)

  The size (modulus) of the complex coefficient, ci, of the 
eigenfunction, yi, determines how similar this eigenfunction 
is to the physical system – remember, all eigenfunctions are 
dissimilar (orthogonal) from each other. The normalized size 
of the complex coefficient is the modulus of that coefficient. 
This is proportional to the probability  of the particular eigen-
function being the “chosen one”.

 i i iP c c c     (16.33)

  i ic c  is just the “length” of the complex number – its distance 
from the origin of the complex plane.

 23. Any operator that commutes with the Hamiltonian is as-
sociated with a Newtonian variable that is conserved: The 
conservation laws of quantum mechanics, like conservation 
of angular momentum, are based upon whether or not the 
particular operator commutes with the energy operator – see 
Ehrenfest’s theorem.
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 24. Angular momentum comes in two types known respectively 
as orbital angular momentum and intrinsic spin: It is one of 
the great surprises of quantum mechanics that, in addition to 
the Newtonian orbital angular momentum , we have another 
type of angular momentum (called intrinsic spin ) which has 
no classical counterpart. The orbital angular momentum op-
erators are odd sized square matrices, and the spin operators 
are even sized matrices.

 25. There are two types of particles in the universe, fermions and 
bosons: Some particles have half integral amounts of intrin-
sic spin; these are called fermions. Electrons and quarks are 
fermions . Other particles have integral amounts of intrinsic 
spin; these are called bosons. Photons are bosons . Fermions 
obey the Pauli exclusion principle. Bosons do not obey the 
Pauli exclusion principle.
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CHAPTER 17
BASIC FORMULAE

17.1  SOME FORMULAE

 1. The energy, E, of a photon of electromagnetic radiation 
(light, radio waves) is the frequency, , of that electromag-
netic radiation multiplied by Planck’s constant, h:

 nE h   ( 17.1)

  Or

 E w    (17.2)

  Where ,  2
2

w pn
p

 
h

h

 2. The relativistic energy relation between energy, E, and mo-
mentum, p, is:

 2 2 2 2 4E p c m c    (17.3)

  Wherein c is the velocity of light. For a massless particle, this 
is:

 E pc   (17.4)
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  Using (17.1), this leads to:

 h
p k

l
     (17.5)

  Wherein  is the wavelength and k is the wave number.

 3. The time dependent Schrödinger equation , TDSE, in three 
spatial dimensions is:

 
2

2( , , , )
( , , , ) ( , , , ) ( , , , )

2
t x y z

i t x y z V t x y z t x y z
t m

y
y y


   


   (17.6)

  In one spatial dimension, this is:

 
2 2

2

( , ) ( , ) ( , ) ( , )
2

y y y 
  

 
t x t xi V t x t x
t m x

h
h   (17.7)

  Wherein (t, x) is a time dependent energy eigenfunction 
and  V(t, x) is a potential that varies with time and spatial po-
sition. The solutions of this equation, (t, x), are most often 
called basis wavefunctions or just wavefunctions. 

 4. The time independent Schrödinger equation , TISE, in three 
spatial dimensions is the energy eigenvalue equation:

 
2

2 ( , , ) ( , , ) ( , , ) ( , , )
2 nx y z V x y z x y z E x y z

m
y y y   

   (17.8)

  In one spatial dimension, this is:

 
2 2

2

( ) ( ) ( ) ( )
2

y y y
  

 n
x V x x E x

m x
h

  (17.9)

  Wherein En is an energy eigenvalue and (x) is an energy 
eigenfunction. The solutions of this equation, (x), are most 
often called basis wavefunctions or just wavefunctions. The 
solutions vary with the nature of the time independent po-
tential, V(x). We use the TISE to deal with potentials that are 
independent of time. 

 5. The time independent potential, V(x) of a simple harmonic 
oscillator  is:

 21
( )

2
V x Kx   (17.10)

  Wherein K is a constant.
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 6. The time independent potential, V(x) of a hydrogen atom  is:

 
2

0

( )
4

e
V r

rpe
   (17.11)

Wherein e is the charge of the electron.

 7. The complete wavefunction (superposition of basis wavefunc-
tions) is given by the linear sum of the basis wavefunctions:

 1 1 2 2 3 3 ...

i

c c c

c

y y y    


  (17.12)

 8. The inner product (overlap integral ) of two wavefunctions 
(they need not be basis wavefunctions) is given by:

 *,  dj y j y t j y




     (17.13)

  We have introduced two ways of writing the inner product. 
We have:

  *  d dj y t j y t y j y j
 

  

 

      (17.14)

 9. The basis wavefunctions are orthogonal as defined by the 
overlap integral. Assuming the basis wavefunctions are 
normalized, this is expressed as:

 
 m n mndt y y d







 (9.15)

  Wherein mn is the Kronecker delta  with {m, n} being inte-
gers. The Kronecker delta is zero if m  n and unity if m = n. 
From this, we see:

 i i ic cy     (17.16)

  We see that the inner product of a basis wavefunction with 
the complete wavefunction is the coefficient of the basis 
wavefunction.

 10. a.  The two forms of energy operator  are:

 




2 2

22
H V

m x

E i
t


  











  (17.17)
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  b. The zero potential energy eigenfunctions are:

 2
E

i x
mAe    (17.18)

 11. a. The momentum operator s are:

 
 

 

,         ,

,           

x y

z t

p i p i
x y

p i p i
z t

 
   

 
 

  
 

 

 

  (17.19)

   b.  The momentum eigenfunctions are of the form:

 
xp

i x

mom Aey     (17.20)

  Within which, the momentum eigenvalues are px. We note 
that these eigenfunctions are the same as the eigenfunctions 
of the zero potential energy operator (17.18).

 12. a.  Operators, ,A  in functional form, are Hermitian  if:

         d A d At y f t f y
 



 

    (17.21)

  b.  Operators in matrix form are Hermitian if they are equal 
to their conjugate transpose:

  TA A   (17.22)

  c.  There is an equivalence between Hermitian matrix opera-
tors and Hermitian functional operators given by:

    mn m nA d At f f    (17.23)

       Wherein the Amn are the elements of the matrix and the 
i are the basis eigenfunctions. Note that this leads to 

mn nmA A  which is just another way of writing (17.22). 

 13. The expectation value ,  ,A  of the observable associated 
with an operator A  is given by:

  * ( )A d At




     (17.24)
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  This is the inner product of  and ( )A  . Wherein  is a 
general wavefunction (not a particular eigenfunction). If 
the system is in a state described by a particular basis 
eigenfunction, n, then the expectation value is the eigen-
value, n, associated with that eigenfunction:

  ( )n n n n n n n n nA Ay y y l y l y y l      (17.25)

  If the system is in a state described by a linear sum of basis 
eigenfunction, , then the expectation value is the weighted 
average of the eigenvalues of the basis eigenfunctions.

 14. The commutator of two operators  is:

            ,A B A B B Ay y y       (17.26)

  The commutator of two quantum mechanical operators is a 
multiple of .  For example, we have the commutator of the 
x-position operator, ,x , and the x-momentum operator,  :xp

 , xx p i       (17.27)

  And we have the commutator of the y-position operator, y, 
and the x-momentum operator,  :xp

 , 0xy p      (17.28)

 15. The angular momentum operators  are mirrors of the Newto-
nian L = r  p:

 

  

  

  

x z y

y x z

z y x

L yp zp i y z
z y

L zp xp i z x
x z

L xp yp i x y
y x

  
       

         
  

       

  

  

  

  (17.29)

 16. The probability that an observation of the dynamic variable 
associated with the operator A  will yield the eigenvalue an 
as being the value of that dynamic variable is proportional to 
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the similarity of the basis eigenfunction, n, associated with 
the eigenvalue an and the complete wavefunction, . This is 
measured by the size (modulus) of the coefficient, cn of the 
basis eigenfunction n within the linear sum of basis eigen-
functions that is the complete wavefunction. We have:

 

2

Prob  ndt y






    (17.30)

  We need to normalize the wavefunctions to ensure that total 
probability is equal to unity. We can see probability as being 
the same thing as intensity.

17.2  A LIST OF QUANTUM MECHANICAL 
OPERATORS

The position and time operators are multiply by the variable 
operators. They have mass-dimension of length1 [L]:

 ,             ,             x x y y z z

t t

  



  


  (17.31)

The momentum operators are differentiate with respect to the 
imaginary variable; if this is done using the scaled complex numbers, 

we get the physical constant, 1
.

l
  They have mass-dimension of 

mass [M]:

 
  



,             ,             x y z

t

p i p i p i
x y z

p i
t

  
     

  





  



  (17.32)

The momentum operators acting in an electromagnetic fi eld 

described by the vector potential, A


 are as above but with an added 

1. From special relativity, the mass-dimension of time is length.
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term to account for the electromagnetic fi eld. They have mass 
dimension of mass [M]. We give only the x-operator:

 Emag
x xp i A q

x


  


   (17.33)

The kinetic energy operators are based upon 
2

. . .
2
p

K E
m

  They have 
mass-dimension [M]:

      
2 2 2 2 2 2

2 2 2,             ,             
2 2 2x y zE E E

m m mx y z
  

     
  

     (17.34)

The potential energy operator is:

 V V   (17.35)
The energy operators in a non-uniform potential are the kinetic 
energy operators with an added term. We give only the x-operator:

 
2 2

22xH V
m x


  


   (17.36)

In an electromagnetic fi eld, the energy operators are based upon 
2

. .
2
p

K E
m

  with an added term. They have mass-dimension [M]. We 

give only the x-operator:

  21
2

Emag
x xE i A q

m x
     

   (17.37)

The orbital angular momentum operators are based upon .L r p 
  

 
They have mass-dimension [M][L]. They are:

 

 



,         x y

z

L i y z L i z x
z y x z

L i x y
y x

                  
  

     

 



  (17.38)

The spin angular momentum operators are the Pauli matrices. They 
have mass-dimension [M][L]. They are:

 

 



0 1 0
,                 S

1 0 02 2

1 0
0 12

x y

z

i
S

i

S

   
    

   
 

   

 


  (17.39)
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The total angular momentum operators are just the sums of the 
orbital angular momentum operators and the spin angular momen-
tum operators. They have mass-dimension [M][L]:

   
x x xJ L S    (17.40)

The total orbital angular momentum is:

       2
x x y y z zL L L L L L L       (17.41)

The reader should note that because the operators are linear, they 
can be defi ned in any number of dimensions.
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CHAPTER 18
DE BROGLIE WAVES 
LEAD TO THE 
MOMENTUM 
OPERATOR

A wave has the mathematical expression:
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 
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 
   
 

 (18.1)

In 1925 de Broglie1 postulated that particles of matter, like 
electrons, have a wave-like nature and that this wave-like nature is 
expressed as:

 
cos sin
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Et p x Et p x
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     

 

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   
 

 
   
 

 

 (18.2)

1.  L. de Broglie Ann Phys. 3, 22 (1925).
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What de Broglie  did here was to place the “particle” variable 
energy in the place of the angular frequency and the “particle” vari-
able momentum in place of the propagation vector. This equation 
accurately described the energy of electrons and the width of the 
diffraction bands of those electrons impinging upon a nickel crystal 
in the experiment of Davisson and Germer2. Because the de Broglie 
wave equation for electrons fi ts with the experimental data, we think 
it is a correct description of electrons. It is the experimental success of 
the de Broglie equation that forces us to accept quantum mechanics3.

Special relativity tells us that momentum is a space thing, 
(energy is momentum in the time direction) and so, in pursuit of the 
momentum operator, we have no interest in the part of the de Bro-
glie equation that depends on time. We therefore ignore the time 
part. We assume that the momentum, ,p


 is going to be an eigen-

value. This means we need to forget the vector aspect of p


 and 

think of it as a single real number, p. Technically, we are realigning 
our axes so that the momentum vector has only one non-zero com-
ponent. We are left with:
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sin cos

p
i x

p p
x x

e
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x x

    
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        
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  

 

 (18.3)

We now need to search for the operator of which this is an eigen-
function. Comparing this with the eigenfunction of the “differenti-
ate with respect to an imaginary variable” operator of the division 
algebra , we have:

 

cos sin cos sin

sin cossin cos

p p n n
x x

p p n n
x x

x

pn

q q

q q

q

          
                    

                            




   

  

 

 (18.4)

2. C Davisson & L Germer Nature 119, 558 (1927).
3. Along with a million other reasons.
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This is an eigenfunction of the operator:

 i
x





  (18.5)

Watch:

 
  p p p

i x i x i xp
i e ii e pe

x


   


   


 (18.6)

The eigenvalues of these eigenfunctions are ;p n   the eigenval-
ues are the allowed momenta. Since the eigenvalues are the allowed 

momenta, we call the operator i
x





  the momentum operator, and 

we call the eigenfunctions of this operator the momentum eigen-
functions. We now have it that the momentum operator is:

 p i
x


 


   (18.7)

And that the momentum eigenfunctions are of the form:

 p
i x

e 
 (18.8)

and that the allowed values of the momentum are the eigenvalues 
of this operator.

The space part of the de Broglie waves are eigenfunctions of the 
momentum operator.

To equate the momentum operator with the “differentiate with 
respect to an imaginary variable” operator of the complex number 
division algebra, we have accepted the de Broglie idea that parti-
cles are described by a wave equation (18.2) and that the world is 
described by operators, eigenfunctions, and eigenvalues. 

The time independent de Broglie wave equation (with t = 0) is 
an eigenfunction of the momentum operator. Waves that are inde-
pendent of time are called standing waves.
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We see that momentum is proportional to the rate of rotation 

of the complex number ;
px

i
e   it comes in lumps corresponding to 

complete rotations in the complex plane.

If we had known that momentum was to do with the rate of rota-
tion in the complex plane, we would have been led to the de Broglie 
equation.

Aside: The above definition of the momentum operator is commonly 
the only definition considered within an introductory text book to 
quantum mechanics. However, if the particle to which it relates is 
electrically charged with charge q and in a 4-vector electromagnetic 

field, , ,Aj  


 the momentum operator is:

 p i qA   
   (18.9)
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CHAPTER 19
THE HAMILTONIAN 
AND SCHRÖDINGER’S 
EQUATIONS

Since all the quantum mechanical operators must “morph” into 
Newtonian dynamic variables as we move from microscopic to mac-
roscopic, the relations between the Newtonian variables must be the 
same as the relations between the quantum mechanical operators. 
Having got the momentum operator, we can form the energy opera-
tor by copying the Newtonian form of the energy. 

Within quantum mechanics, the energy operator is known as the 
Hamiltonian and is denoted by .H

 

  

2

2

2

2
2

2

1
( )

2
1

2

1
( )

2

1
( )

2

E KE PE p V x
m

H p V x
m

i V x
m x

V x
m x

   

 

     


  








  (19.1)

These operators must act on a function, which we call (x), and so 
we get:

 
2

2
2

1
( ) ( )

2
H V x

m x
yy y

  


  (19.2)
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We seek the eigenfunctions and eigenvalues of the Hamiltonian. 
The Hamiltonian eigenvalue equation is:

 


2
2

2

( )

1
( )

2

n

n

H E

V x E
m x

y y

y y y




  




 (19.3)

This last equation is known as time independent Schrödinger’s 
equation , TISE. It was fi rst presented to the world in 1926 by Erwin 
Schrödinger1. The time independent Schrödinger’s equation is no 
more than the eigenvalue equation of the energy operator. The TISE 
describes the behavior of a particle with energy, En, in a potential 
V(x) that is unvarying over time.

In general, to get the particular quantum mechanical Hamilto-
nian of a physical system, we write down the classical Hamiltonian 
expression for the particular physical system and replace the classical 
variables with the appropriate quantum mechanical operators. If a 
physical system is governed by the Hamiltonian  1 2 1 2( , ,... , ...),H q q p p  
then the TISE of that physical system is:

 1 2 1 2( , ,... , ...) n n nH q q p p Ey y  (19.4)

For example, if there are two particles in the physical system, then 
the TISE is:

 
2 2 2 2

1 22 2
1 2

( , )
2 2 n nV x x E

m mx x
y y y y 

   
 

   (19.5)

EXERCISE

1. If the classical Hamiltonian of a physical system is:

 
2

. .
2 x
p

H t L
m

   (19.6)

      What is the quantum mechanical Hamiltonian operator,  ?H

1. E. Schrödinger. Ann d Physik 79, 361, 409 (1926).
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CHAPTER 20
BOUNDARY 
CONDITIONS ON 
EIGENFUNCTIONS

It might be the case that the physical system we are considering 
has boundary conditions  associated with it that must be satisfi ed. 
This means that the eigenfunctions of the operators in the physi-
cal system have those same boundary conditions that must be satis-
fi ed. Consider the above momentum operator, and accept that the 
eigenfunctions of this operator, un(x) are restricted by the boundary 
conditions that un(x) must be periodic over the distance, L. Because 
of the imposition of boundary conditions, these eigenfunctions are 
different from the same eigenfunctions without the boundary con-
ditions, or with different boundary conditions. The defi nition of a 
function includes the boundary conditions imposed on to that func-
tion. The basic momentum operator eigenvalue equation is:

    n n n np u i u a u
x


  


    (20.1)

And we seek to fi nd the functions, un, that satisfy this equation. Con-
sider:

 

 

n

n

n n n

a
i x

n

a
i x

n
n

ia x ia x ia x
n n

u e

a
u i e

x

p e ii a e a e








  








 (20.2)
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Thus, an eigenfunction of the ,p  operator is ;
na

i x

nu e   this is an 
eigenfunction with no boundary conditions. Without any boundary 
conditions, the eigenvalues, an, of this eigenfunction are the contin-
uous set of all real numbers. However, we specifi ed that the physi-
cal system be subject to boundary conditions. The physical system 
is described by eigenfunctions, and so the eigenfunctions are sub-
ject to the boundary conditions. Those boundary conditions are that 
the eigenfunction be periodic over the distance, L. We therefore 
require:

 

2

2

na
i nxi x

L

n

e e

a n
L

p

p





 (20.3)

We see that imposing the boundary condition has reduced the possi-
ble eigenvalues from the whole of the real numbers to a discreet set 
of those real numbers. The particular values of those real numbers 
is determined by the value of L. As L  , the eigenvalues tend to 
the whole of the real numbers again.

The above is an exact parallel of the situation of electrons in, or 
not in, atoms. When an electron is free from any atom, it can have 
any value of momentum. When the electron is confi ned within an 
atom, it is subject to boundary conditions that refl ect the fact that an 
electron’s orbit must be an exact number of electron wavelengths in 
circumference. An electron confi ned within an atom can have only 
discreet values of momentum – just like Niels Bohr postulated.

20.1  EIGENFUNCTIONS OF THE MOMENTUM 
OPERATOR

We might as well repeat the momentum eigenfunctions . The 
reader will see these so often that she might as well learn them by 
heart.

The eigenfunctions of the momentum operator are:

 ( )
px

i

pu x Ce   (20.4)

The nuts.indb   182 09-05-2016   10:46:50



Boundary Conditions on Eigenfunctions • 183

Note that we can include a real constant, C. Such a real constant can 
be included in every eigenfunction of every operator. Adjusting it 
allows us to rescale the eigenfunctions to normalize the probabilities 
that we calculate from the eigenfunctions.
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CHAPTER 21
WAVE MECHANICS - 
THE SCHRÖDINGER 
EQUATION

We take it that the reader is still sitting comfortably, and so we 
will proceed. We have now suffi cient understanding to tackle the 
Schrödinger wave equation. The Schrödinger wave equation is the 
backbone of quantum mechanics. We will do with it what we did 
with the Newtonian wave equation many chapters ago.

In quantum mechanics, all the information that describes the 
state of a physical system (a particle perhaps) is encoded in a wave-
function, usually denoted as (t, x). The equation that determines 
the evolution in time of this wavefunction is called the time depen-
dent Schrödinger equation , often abbreviated to TDSE. 

Aside: Erwin Schrödinger  (1887–1961) was born in Vienna and later 
moved to Germany. He is most famous for the equation named after 
him that he presented to the world in 19261 and for which he won 
the Nobel prize in 1933, but he is also famous for the “Schrödinger 
cat” which can be both alive and dead at the same time2. He left 

1. E. Schrödinger. Quantitisation as an eigenstate problem. Annalen der Physik (Jan 
1929).
2. E. Schrödinger. The present situation in quantum mechanics. Trans by: D. Trim-
mer in Proceedings of the American Philosophical Society (1935).
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Germany in 1933 because of his dislike for the Nazi’s anti-Semitism, 
but, in spite of being a Nobel laureate, he was forced to return some 
few years later because he could not secure an academic position 
outside of Germany. Both Oxford University in England and Princ-
eton University in the USA turned him down. 

Many authors take the wave nature of particles to be a basic pos-
tulate of quantum mechanics because we observe that particles 
have wave-like properties. If a particle has a wave-like nature, there 
should be a wave equation associated with it, and so we need to fi nd 
that wave equation. 

We begin our search for the particle wave equation by assum-
ing that a particle has associated with it a wavefunction, , which is 
a mathematical description of a wave. We further assume that the 
wavefunction determines everything that can be known about the 
particle. For this to make sense, we need the wavefunction to have 
specifi c properties.

We assume that the wavefunction is a single valued function of 
the space and time co-ordinates, (t, x, y, z). This is assumed with 
the hindsight that probability is involved in quantum mechanics and 
the probability, ||2, can be only one value at any particular point 
in space-time. Of course, this allows two values of the wavefunc-
tion, ±. We assume that the wavefunction is continuous through 
space-time. The basis of this is that probability should be defi ned 
everywhere. Further, if it is a wavefunction, it should be continuous. 
We specifi cally assume, again with hindsight, that the wavefunction, 

, and the fi rst derivative of the wavefunction, ,ix
y


 is continuous 

everywhere. If this were not so, then the second derivative of the 

wavefunction, 
2

2 ,ix
y


 would not satisfy the Schrödinger equation for 

a fi nite potential. 

We assume that the wavefunction is a complex function; there 
is nothing like this in Newtonian mechanics. We are assuming that a 
mathematical object that describes a real physical phenomenon is a 
complex number, . As we have pointed out earlier, wave equations 
are all tied to the complex numbers because the “wave” trigono-
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metric functions {cos( ), sin( )} exist in the complex numbers. Since 
we observe matter to have wavelike properties, these properties are 
best described using complex numbers.

Within wave mechanics,  = ||2 is the intensity of the wave. 
We refer to this as a probability density, but the reader might prefer 
to think of it as an intensity density. The wave is more intense (there 
is more of it) in places where ||2 is great and less intense (there is 
less of it) in places where ||2 is small. We identify intensity with the 
probability of the wave being found to be at the particular point in 
space – the more of the wave that there is at a point, the more likely 
it is to be found there. In order to identify wave intensity with prob-
ability density, we have to divide the intensity at every point by an 
appropriate real number so that the total intensity (= probability) is 
unity because total probability is unity. This dividing of the intensity 
at every point by an appropriate real number is called normalization. 
We have to do it because statisticians normalized probability to unity 
centuries ago.

We assume that the wavefunction is differentiable. We need this 
to be the case because we are going to differentiate it to get a wave 
equation. We assume that the wavefunction is square integrable. 
The reason for this is that total probability cannot be infi nite; total 
probability is unity. This is to assert that the wavefunction is a mem-
ber of a complete orthogonal set of functions, L2. 

Any function that is continuous, differentiable, and square inte-
grable can be a wavefunction. 

We assume that the wavefunction is the de Broglie wave:

 cos sin0
0

sin cos

Et px
i

Ae

Et px Et px
A

A Et px Et px

y
   

 

                                 



 

 

 (21.1)
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Subject to the above assumptions, we try a few possible wave equa-
tions. This is not logical deduction; it is guesswork. We consider the 
wave equation:

 
2 2

2 2 2

y y 
 x v t

 (21.2)

Substi tuting the de Broglie wave into this leads to:

 2 2 2E p v  (21.3)

This is the relativistic energy expression for a massless particle (mov-
ing at the speed of light). Since we are concerned with particles of 
non-zero mass, we must reject the above wave equation, (21.2).

21.1  THE TIME DEPENDENT SCHRÖDINGER 
EQUATION

The relativistic energy expression contains the mass-energy 
term and the classical kinetic energy term and the higher powers of 
the classical kinetic energy term. If we extract from that relativistic 
energy expression only the classical kinetic energy term, we have:

 
2

 
2
p

Kinetic Energy
m

  (21.4)

We are  constructing a non-relativistic theory, and so we seek a wave 
equation that is consistent with this non-relativistic energy expres-
sion. We begin with the de Broglie wave equation and we differenti-
ate it with respect to both time and space:
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1 1
      :      
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i i
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   
 

        
   



 
   

 



 

 

 (21.5)

Rearranging:

 
2

2 2
2

1 1
        :      

Et px Et px
i i

i e E e p
t A A x

y y
    

   
    

  
 

    (21.6)
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Putting these expressions into the kinetic energy expression, (21.4), 
gives:

 
2

22
i

t m x
y y 

 
 

  (21.7)

This equation is consistent with the non-relativistic energy expres-
sion. 1,i     is the wavefunction associated with the particle, and 
m is the mass of the particle. This equation is known as the zero 
potential time dependent Schrödinger equation , TDSE.

The time dependent Schrödinger equation describes the time 
evolution of the wavefunction – what happens to the particle of mass 
m associated with the wavefunction. The TDSE appropriate to a 
particular physical system contains all the information about results 
of measurements (observations) of that particular physical system. 

The TDSE is not the only wave equation that is consistent with 
the classical energy expression, but it is an equation that is linear. 
The fact that the TDSE is linear allows us to add different solutions 
of it together to form more solutions of it. This means that we can 
superimpose solutions to describe the interference that we see in 
electron diffraction experiments. Linearity is a very important prop-
erty of the TDSE.

Because the TDSE is linear, it has basis solutions which form 
a linear space that contains all its solutions. There would be little 
point in assuming that wavefunctions form the linear space L2 if we 
did not make the wave equation linear. Since probability is fi nite, 
if we allow the probability interpretation of the modulus of the 
wavefunction, we have to assume that wavefunctions form the lin-
ear space L2.

As it stands, the time dependent Schrödinger equation, TDSE, 
is valid for a free particle – that is a particle moving through a zero 
(uniform) potential. We modify the above TDSE to describe a par-
ticle in a potential by adding the potential energy. In a non-uniform 
(non-zero) potential, V(t, x), the TDSE is:

  
2

2 ,
2

i V t x
t m x

y y y 
  

 
  (21.8)

V(t, x) is the potential energy of a particle with mass m at the point 
in space, x, at the time t. This equation is also linear.
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Because the TDSE is of fi rst order with respect to time, the 
state of the system it describes at some initial time, t0, determines 
the behavior of that system for all future time; the TDSE is deter-
minis tic.

Since there is a 1i    on one side of the equation, there must 
be a 1i    on the other side of the equation. This means that  is 
a complex function:

 
( , ) ( , )

( , ) . ( , )
( , ) ( , )

f t x g t x
f t x i g t x

g t x f t x
y

 
    

 (21.9)

Aside: In matrix notation, the TDSE is:
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   (21.11)

Which we can write as:
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 (21.12)

We have above made an attempt to derive the Schrödinger equation. 
Perhaps we should not have so spent our time. It is more direct, and 
perhaps more honest to simple admit that we postulate the TDSE 
and we make no attempt to justify it other than “it works,” and it 
works very well, for non-relativistic particles. Having postulated 
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the Schrödinger equation, we could then deduce de Broglie’s wave 
equation from it.

We can think of the TDSE as the quantum mechanical equa-
tion of motion. It controls (deterministically) how a physical system 
evolves in time.

21.2 THE TDSE IN THREE DIMENSIONS

In three dimensions, the TDSE is:

 
       2,

, , ,
2

y
y y


   


t r

i t r V t r t r
t m

h
 (21.13)

Where 
2 2 2

2
2 2 2x y z

y y yy   
   

  

21.3  THE TIME INDEPENDENT SCHRÖDINGER 
EQUATION, TISE

There are many physical systems in which the potential, V(t, x), 
depends on time. A fl uctuating electromagnetic fi eld associated with 
electromagnetic radiation is such a potential that varies with time. 
There are many physical systems in which the potential, V(x), does 
not depend on time but depends upon only position3 in space. An 
electron orbiting a stable atom isolated from any electromagnetic 
radiation is in such a potential that does not vary with time. If the 
potential, V(x), is independent of time, then it is always possible to 
fi nd separable solutions of the time dependent Schrödinger equa-
tion of the form:

      ,r t u r T ty   (21.14)

Where u(r)  is a function of only spatial position and T(t) is a function 
of only time. The reader is reminded of the Newtonian wave equa-

3. It is a normal notational quirk of quantum mechanics, and of QFT, to write a func-
tion of three, or more, spatial co-ordinates with a single spatial co-ordinate.
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tion. The function (r, t) = u(r)T(t) is called a wavefunction. Confus-
ingly, the function u(r) is also called a wavefunction.

The solution (r, t) = u(r)T(t) is a standing wave – thus we see 
an electron in orbit around a nucleus to be a standing wave. Sub-
stituting the solution (21.14) into the time dependent Schrödinger 
equation leads to:

 
2 2

2
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   (21.15)

This equation is a function of only time on the left-hand side and of 
only position on the right-hand side. Position and time are indepen-
dent of each other, and we must therefore have that both sides are 
equal to a constant, K. This leads to:

 
2 2

2

( )
( )

( )
( ) ( ) ( )

2

T t
KT t

i t

u r
V r u r Ku r

m x


 


 
   

 




 (21.16)

These are eige nvalue equations. The constant (eigenvalue), K, is just 
the energy. 

The second of these, (21.16), is called the time independent 
Schrödinger equation , TISE, - which is different from the TDSE 
because everything in it is independent of time.

We did not start off by saying that we were interested in only 
eigenvalue equations. We started off looking at all types of solutions 
to the TDSE and were driven to the TISE by seeking separable solu-
tions. That the TISE is an eigenvalue equation is not by our choice 
that it should be so. It just turns out that solutions of the TISE for 
time independent potentials are eigenvalue equations. This is how 
eigenvalues get into physics, not because we put them there but 
because the basis solutions of linear differential equations are sepa-
rable and thus equal to a constant, K.

Rewriting the above (21.16) gives:

 ( ( )) ( )
 

 nT t E T t
i t
h

 (21.17)
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And:

 
2 2

2 ( ) ( ) ( )
2 nV r r E r

m x
y y

 
   

 

  (21.18)

The time indep endent Schrödinger equation is:

 
2 2

2

( ) ( ) ( ) ( )
2

y y y
  

 n
r V r r E r

m x
h

  (21.19)

The fi rst of the above pair of equations, (21.17), might be called the 
position independent Schrödinger equation, but it isn’t; this equa-
tion is easily solved to give:

 ( )
Et

i
T t e


   (21.20)

We therefore have that the solution (wavefunction) of the time 
dependent Schrödinger equation is:

 ( , ) ( ) ( ) ( )
Et

i
r t u r T t u r ey


     (21.21)

We reiterate, if the potential, V(x), is independent of time, the solu-

tion of the TDSE is of the form ( , ) ( )y


 
Eti

x t x e h  such that (x) 
is a solution of the TISE.

If  is a solution of the TDSE, then  is also a solution of the 
TDSE equation. Also, if  is a solution of the TISE, then  is also a 
solution of the TISE equation.

Aside: The 3-dimensional TISE in polar co-ordinates with a Cou-
lomb potential is:

 
2 2

2 . ( , , ) ( , , )
2 n nE n E

e
u r E u r

m r
q f q f

 
    
 

  (21.22)

We will meet this when we look at the hydrogen atom towards the 
end of this book. That this equation correctly predicts the energy 
levels of electrons within the hydrogen atom is a strong verification 
of the theory of quantum mechanics in spite of all the theory’s weird 
operator type mathematics.
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21.4 STATIONARY STATES

Stationary states  are states in which the probability (intensity of 
the wave) is independent of time. This means that, for a physical 
system in a stationary state, the probability of a particular outcome 
of measuring a dynamical variable of that physical system does not 
change with time – the physical system does not change with time.

We can think of the standing wave solutions of the Newtonian 
ideal string equation as stationary states. The stationary states and 
the basis solutions are the same things. Well, one is a physical state 
and the other is a solution to an equation, but the idea is clear.

Stationary states are solutions of the TDSE when the potential, 
V(x), is independent of time. Stationary states of the TDSE are of 
the form:

 ( , ) ( )
Et

i
x t x ef


    (21.23)

They are called stationary states because the scalar fi eld that is 
the probability density (wave intensity) does not vary with time. 
With each solution of the TDSE, there is an associated probabil-

ity density defi ned by 2 *P y y y  . If the solution is of the form 

( , ) ( ) ,
Et

i
x t x ey


    then the associated probability density is:

 

 *

*( ) ( )
*( ) ( )

Et Et
i i

P

x e x e

x x

y y





  
 

   (21.24)

which is independent of time. An example of such a solution with 
zero potential would be:

  sin
Et

i
A kx ey


   (21.25)

Or:

  * sin
Et

i
A kx ey    (21.26)
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If we feed this solution into the TDSE we get:

 

   

   

2 2

2

2
2

2 2

sin( ) sin( )
2

sin( ) sin( )
2

sin( ) sin( )
2

Et Et
i i

Et Et
i i

Et Et
i i

A kx e A kx e
i

t m x

E
i A kx i e Ak kx e

m

k
Ee A kx e A kx

m

 

 

 

 
 

 
 
    
 



 

 

 








 (21.27)

This is a solution if 
2 2

   :   .
2

k
E k

m
 
 

Doing it a different way, let the energy operator, the Hamilto-
nian, act upon this solution:

 
  22 2 2

2

sin
sin( )

2 2

Et
i Et

ie A kx k
e A kx

m mx




 



   (21.28)

And we fi nd that the solution is an eigenfunction of the Hamiltonian 

(the energy operator) with eigenvalues 
2 2

.
2

k
m



The modulus squared of this solution is:

      
2

2 2

2 2

*

sin sin

sin ( )

sin ( )

Et Et
i i

Et Et
i i

A kx e A kx e

A kx e e

A kx

y y y













 

 

 (21.29)

Notice how taking the conjugate has ridded us of the time part of 
this solution. The modulus squared is now independent of time – it 
is a standing wave. The modulus squared (wave intensity) evaluated 
at point, x, is proportional to the probability that the particle will be 
found at the point x at any time. This probability (wave intensity) 
does not vary with time.
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We see that, at all times, there are points associated with zero prob-
ability of the particle being at those points – the particle can never 
be there. There are also points where there is a lot of probability of 
the particle being at those points. 

21.5 GROUND STATE

Of the above solutions, there is one solution, with k = 1, with 

eigenvalue 
2

1 .
2

E
m


  This is the lowest possible value of energy. The 

lowest energy solution is known as the ground state . In our example 
above, the other energies are multiples of this state but this is very 

exceptional. It is not common to fi nd that energies are multiples of 

the ground state. The k = 0 solution is sin(0) 0.
Et

i
A ey


   Zero 

energy is the same as non-existence, and so we do not fi nd particles 
with zero energy.

21.6 NORMALIZATION

The interpretation of ||2 as the probability leads to the need to 
normalize  the sum of all the ||2 to unity because, by convention, 
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total probability is unity. We have above that the probability of our 
particle being at a point x is given by:

 2 2 2Probability sin ( )A kxy    (21.30)

If we add the probabilities of the particle being at each point in the 
interval [a, b], then we will get the probability of the particle being 
between those two points. We add by integrating:

 

 

2
,

2 2

2
2

Probability  

 sin ( )

cos( )sin( ) cos( )sin( ) ( )

b

a b

a
b

a

dx

A dx kx

A
ak ak bk bk A b a

k

y



   



 (21.31)

Since total probability must be unity, we must have:

 

2

2 2

Total  Probability  1

 sin ( ) 1

dx

A dx kx

y







 

 




 (21.32)

That this integral is undefi ned between (, ) refl ects the fact that 
this is not a solution which exists in an unbounded system. The inte-
gral is defi ned between any two points, and this refl ects the fact that 
this is a solution within a bound system. We achieve the equality 
with unity by adjusting the value of the amplitude, A.

21.7 THE NORMALIZATION CONDITION

The above requirement that total probability equals unity is 
the same thing as requiring that the particle is somewhere in the uni-
verse. This requirement is referred to as the normalization condition :

 2 1dx y




  (21.33)

As above, it is achieved by adjusting the amplitude of the wavefunc-
tion – that is multiplying it by a constant.

The nuts.indb   197 09-05-2016   10:47:01



198 • Quantum Mechanics

Technically, every solution of a linear equation can be multiplied 
by a number (also called a scalar - an element of a division algebra – it 
could be a complex number) and remain a solution of that equation. 
None of the physical properties described by that solution are changed 
by such scalar multiplication. Normalization is just scaling the solutions.

To reiterate: we normalize the wavefunction (t, x) by solving:

 
22 2 *  1y y y

 

 

  A dx A dx   (21.34)

For A  . The normalized wavefunction is then A. (t, x) 

If the particle is confi ned to a region 0 < x < L, then we integrate 
between the extremities of this region, and the normalizing condition is:

 22 2 *

0 0

  1
L L

A dx A dxy y y    (21.35)

WORKED EXAMPLE

Normalize the momentum eigenfunction ( )
p

i x

pu x Ce   for a particle 

in the interval 0 < x < L. We have the normalization condition:

 

 

2

0

2

0

2

0
2

0

1
2

 1

 1

 1 1

1

1

L

L p p
i x i x

L

L

dx

C dx e e

C dx

C x

C

L

y



















 

 (21.36)

The normalized momentum eigenfunction is:

   1
2

1
p

i x

pu x e

L

   (21.37)
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Note that the relative probability of fi nding a particle at two differ-
ent places does not involve the normalization constant as the nor-
malization constant will cancel when we calculate the ratio of the 
two probabilities.

21.8  DETERMINISM AND THE SCHRÖDINGER 
EQUATION

The Schrödinger equation is a deterministic equation in that, 
given the initial conditions of a physical system it describes how that 
system evolves in time. That description is a defi nite mathematical 
expression that has no concept of probability within it. However, the 
physical state is described by a defi nite complex expression, and we 
are unable to observe the phase of the expression. So, although the 
mathematics is determinis tic, our interpretation (observation) of 
that mathematics is unable to see the whole of the predetermined 
expression in physical reality. Probability comes into quantum 
mechanics because the Schrödinger equation has solutions that are 
complex. This means that the Schrödinger equation cannot predict 
the fate of a single electron but can statistically predict the combined 
fate of millions of electrons.

Aside: A die does not remember what number was rolled on a pre-
vious casting of it. So, how does it know that when rolled six mil-
lion times it should produce approximately a million sixes? Is this 
conservation of sixes similar to conservation of energy? Dice do not 
communicate with each other. So, if six million of them are rolled 
together, how do they know to produce approximately a million 
sixes? So it is with the collapse of the wavefunction. Ah! The myster-
ies of the universe are more numerous than the stars that bedeck the 
firmament.

21.9 THE STRUCTURE OF THE WAVEFUNCTION

Remember, because the time dependent Schrödinger equation, 
TDSE, is linear, any sum of solutions of it is also a solution of it. 
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This sum of solutions is weighted with coeffi cients that multiply each 
separate solution. We consider only separable solutions (separable 
solutions are the basis solutions) of the TDSE – those of the form 

.
nE

t

ney

  Thus, every solution of the TDSE of the form ,

E
t

e


   that 

is every wavefunction  of the TDSE of the form ,
E

t
e


  can be writ-
ten as:

 
0...

y
 



  
nE Et t

n n
n

e c eh h  (21.38)

At t = 0, this is a linear sum of stationary solutions:

 0
0...

t n n
n

c y


    (21.39)

The stationary states are called basis states because, at t = 0, any sep-
arable wavefunction can be written as a sum of them. As time passes, 

the solutions of the TDSE evolve as determined by the 
 nE t
e h  factor.

21.10 GLOBAL PHASE AND LOCAL PHASE

Take a wavefunction:

 1 1 2 2 3 3( ) y y y    x c c c    (21.40)

If this is wholly multiplied by a phase, there is no observable differ-
ence between the original wavefunction and the new wavefunction:

 1 1 2 2 3 3

* ( ) ( )

i i i

i i

e c e c e c

e x e x

q q q

q q

y y y


    

    
 (21.41)

We say that the wavefunctions are related by a global phase . 
However, if only one (or some) of the basis wavefunctions are 
multiplied by a phase, then the new wavefunction is not observation-
ally equivalent to the old wavefunction.

 1 1 2 2 3 3
qy y y      ic e c c   (21.42)
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We refer to this a local phase  change, and we are able to observe the 
difference.

21.11 MOVING PARTICLES

The sums of stationary solutions are not stationary. Particles that 
are not bound within a potential (free particles  ) are described not 
by stationary solutions but by (Fourier type) sums of stationary solu-
tions. Consider a solution that is a sum of just two stationary solu-
tions:

 
1 2

1 2 1 2( , )    :    y y
 

   
E Et t

t x A e B e E Eh h  (21.43)

The probability density of this solution is:

 
   2 1 1 2

2 *

2 22 2
1 2

* * * *
1 2 1 2

E E t E E t
i i

A B

AB e A B e

y y

y y y y
 

   

 

  

 (21.44)

We see that, unless E1 = E2, the probability density varies with time. 
This means that the physical system (say, a particle) is moving.

To form a particle like wavefunction (a wave packet), we need to 
add a lot more than just two basis solutions; we normally take it that 
an infi nite number of basis solutions are added to produce a particle. 
The group velocity  of the wave packet  is taken to be the velocity of 
the particle.

EXERCISES

1. Given 3( , ) (4 2 ) ,
Et

i
t x A x x e


    and assuming that this is a 

solution of the TDSE, find the potential, V(x)?

2. a.  For the wavefunction 2
( ) cos ,x A x

a
p    

 
 find the normal-

ization constant A?
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b.  What is the probability that the particle described by the 

wavefunction in 2a will be found in the interval , ?
3 2
a a 
  

3. Given 
2

1
( ) ,

1
ix

x A
ix

f 



 normalize (x), and find the probabil-

ity that the particle it describes will be found in the interval 

x = [0, 1]. You will need: 
2

4
1

 2 .
1

x
dx

x
p









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CHAPTER 22
SOLVING THE TISE IN 
SEVERAL POTENTIALS

Over the next few chapters, we will solve the time independent 
Schrödinger equation , TISE, in various potentials. When we choose 
to use the Schrödinger equation, we are choosing to accept that a 
particle is described by a wave equation – we are choosing that a 
particle is really a wave. It is not surprising, having chosen that a par-
ticle is a wave, to discover that the wave equation that describes that 
particle has solutions that are waves, and so the particle is a wave.

We are going to look at physical systems in which the poten-
tial is not varying over time. Because the TISE is “only part” of the 
full Schrödinger equation, the TDSE, we can use it only when the 
potential does not vary with time – it is the “part” that is time inde-
pendent. An example of such a stationary state would be the hydro-
gen atom (or any other atom) or a free particle. 

Aside: Another way of saying that the potential is not varying with 
time is to say that the Hamiltonian (energy operator) is not varying 
in time, and the reader might often hear the justification for using 
the TISE phrased in terms of the Hamiltonian being independent 
of time. 

When we have found solutions, , of the TISE, we can turn them 
into solutions of the “whole” time dependent Schrödinger equation, 
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TDSE, by multiplying them by .
Et

i
e

  When we use the TISE, we 

are assuming that the solutions of the TDSE are separable because 
the TISE was deduced upon that assumption; we deal with only such 
solutions.

We will need the following:

 
2

2
p

l p l
  
h hp kh  (22.1)

Where p is the momentum of a particle and k is the wave number of 
the particle. From this, using the classical kinetic energy expression 

2

,
2


pE
m

 we get:

 
2 2 2

2 2
 
p kE
m m

h  (22.2) 
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CHAPTER 23
THE FREE PARTICLE 
SOLUTION OF THE TISE

For a particle in potential V, the TISE is the energy eigenvalue 
equation:

 


2 2

22

n n n

n
n n n

H E

V E
m x

y y

y y y




  




 (23.1)

Where En is the energy of the particle, m is the mass of the par-
ticle and n is an eigenfunction that describes the state of the par-

ticle. 
2 2

22
H V

m x


  


  is the Hamiltonian, otherwise known as the 

energy operator. For a free particle , the potential is zero (or uniform 
if you prefer), and the TISE becomes the eigenvalue equation:

 
2 2

22
n

n nE
m x

y y
 


  (23.2)

We seek to fi nd the eigenfunctions, n, and the associated eigen-
values, En. Such eigenfunctions will be the basis of a linear space 
because the TISE is a linear differential equation. The wavefunction 
of the particle is the weighted sum of all the eigenfunctions, but we 
will never observe the wavefunction. What we will observe is one of 
the eigenfunctions with its single eigenvalue. When we seek a list of 
those possible eigenfunctions and their eigenvalues, we seek a list of 
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possible outcomes of an observation to measure the energy of the 
particle – so we can predict what we might get.

We have from (23.2):

 
2

2 2
2

0n
n n

m
E

x
y y

 
 

 (23.3)

Using (23.2) leads to:

 
2

2
2 0n

n nk
x
y y

 


 (23.4)

This equation has real and complex solutions, but the essence is 
caught by the two solutions:

 
1 2

2 2

1 2

       :          

       :          

ikx ikx

mE mE
i x i x

Ae Ae

Ae Ae

y y

y y





 

  

 (23.5)

Both rotations; one is clockwise, and the other is counterclockwise. 

Aside: In matrix notation, the two eigenfunctions of a free particle 
are:

 
1

2

0 cos( ) sin( )
0 sin( ) cos( )

0 cos( ) sin( )
0 sin( ) cos( )

A kx kx

A kx kx

A kx kx

A kx kx

y

y

   
       

   
    
   

 (23.6)

The above two solutions are solutions for all values of energy. There 
are no boundary conditions to satisfy because we are dealing with a 
free particle. We therefore have an infi nite number of eigenfunc-
tions and a corresponding infi nite number of eigenvalues. The set of 
eigenvalues spans the whole of the real numbers. The free particle 
can have any energy.

23.1 DEGENERACY

We actually have two eigenfunctions for each eigenvalue. 

For any value of 2
,

mE
k 


 we have both clockwise rotation and 
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counterclockwise rotation. This situation in which two or more 
eigenfunctions (solutions of an eigenvalue equation) have the same 
eigenvalue is called degeneracy .

23.2  FREE PARTICLE MOMENTUM 
EIGENFUNCTIONS

We have two wavefunctions (energy eigenfunctions) that solve 
the TISE for a free particle. For a free particle, these two solutions 

are also eigenfunctions of the momentum operator, .p i
x


 


   We 
have:

 1 1( ) ( )ikx ikx ikx
xp i Ae i Aike kAe k

x
y y

     


      (23.7)

We see that the momentum eigenvalues are ,k which, again, can 
take any value, and so a free particle can have any value of momen-
tum. Isaac Newton knew that! The other wavefunction has eigenval-
ues .k  The plus and minus signs correspond to the direction of 
travel, to the right or to the left, of the particle.

We have seen that the energy eigenfunctions of a free particle, 
{1, 2}, are also its momentum eigenfunctions. This implies that, 
for a free particle, the energy operator (the Hamiltonian) and the 
momentum operator commute with each other and it is possible to 
simultaneously know both the momentum and the energy of a free 
particle.

23.3  THE FREE PARTICLE SOLUTIONS OF THE 
TDSE ARE NOT SQUARE INTEGRABLE

There is a problem that we have glossed over. When we use the 
TISE, we assume that the solutions to the TDSE are separable. The 
TISE was derived on the basis of this assumption. Thus, the solu-
tions we have are separable solutions. However, the separable solu-
tions of the free particle (zero potential) TDSE are not square inte-
grable and therefore cannot be wavefunctions. The reader should 
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recall that the squared modulus of the wavefunction is proportional 
to the probability density and the sum of all probability densities at 
every point in space must be fi nite. We have:

 
2 2

2 2
1   1

mE mE
i x i x

dx dx Ae Ae A dxy
  



  

        (23.8)

There are no separable solutions of the TDSE that describe a 
free particle. There are non-separable solutions of the TDSE that 
describe a free particle. The linearity of the TDSE allows such solu-
tions to be constructed by adding the separable solutions. We will 
put that slightly differently. The solutions of the TDSE for a free 
particle (zero potential) are not basis solutions of the linear space of 
solutions. The solutions of the TDSE for a free particle are sums of 
basis solutions of the linear space of solutions. Separable solutions 
and basis solutions are the same things.

The separable solutions of the TDSE are the solutions of the 

TISE multiplied by .
Et

i
e

  The sum of such solutions is a solution of 

the TDSE of the form:

 
 2 1

2nn
n n

mEEt E t
i i i x i E t mE x

i n ne e A e A ey
   

         (23.9)

This expression might look posh, but we have seen it in a simpler 
form before. It is no more than a linear sum:

 1 1 2 2 3 3( ...)
Et

i
e c c cy y y


      (23.10)

In matrix form, this is:

  

2 2
cos sin0

0 2 2
sin cos

n n n n

n

n n n n n

E t mE E t mE
x xA

A E t mE E t mE
x x

       
                               

  

 

  (23.11)

This is just a sum of de Broglie waves. Basically, we are just adding 
Euclidean trigonometric functions in a Fourier series to produce a 
wave packet. The wave packet has particle-like properties, and that 
is why we think it to be a particle.
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To put it slightly differently, the unbound solutions (free par-
ticle solutions) are not normalizable and therefore cannot represent 
a state of the system. We have:

   22 2i kx tAe Aw    (23.12)
But such solutions can be added to form a wave packet that is both 
localized and normalizable. The sum of such solutions is a superpo-
sition of solutions. A superposition of (non-degenerate) stationary 
states is not a stationary state, and it does not represent an unchang-
ing physical system; it represents a moving particle.

Aside: There is a thing of considerable philosophical weight here. 
Any old linear sum of basis solutions will not form a wave packet. To 
form a wave packet, we need exactly the correct coefficients, ci, and 
only some (a particular set) of basis solutions. How does nature get 
only the required basis solutions and use exactly the correct coef-
ficients to form a wave packet?

23.4  SUMMARY OF FREE PARTICLE SOLUTIONS 
OF THE TDSE

We are interested in only solutions of the “whole” Schrödinger 
equation, the TDSE. There are separable solutions to the “whole” 
TDSE for free particles (particles in zero potential), but these solutions 
are not wavefunctions because they are not square integrable (not nor-
malizable). We are interested in only the solutions that are wavefunc-
tions – that is elements of the square integrable functions, L2.

There are non-separable solutions of the TDSE for free par-
ticles that are elements of the square integrable functions, L2. These 
solutions are sums of separable solutions. We take it that these sums 
are such that they form a wave packet. 

Free particles are wave packets that are linear sums of separable 
solutions (basis solutions) of the free particle, V = 0, TDSE.
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CHAPTER 24
THE INFINITE SQUARE 
WELL SOLUTION OF 
THE TDSE

We would like to solve the TDSE for an electron in the Coulomb 
potential of an atomic nucleus. This would give us the energy levels 
of the orbiting electrons. The differences between those energy lev-
els will be the energies of the electromagnetic spectrum of the atom. 
We will deal with such a case when we look at the hydrogen atom. 
Meanwhile, we approximate the Coulomb potential of the atomic 
nucleus with an infi nite square well  potential. We will get qualitative 
results, but the numbers will be inaccurate.

We want to know the energies (energy levels) of a 1-dimensional 
square box with infi nitely high walls and a constant zero potential 
between these walls.
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The potential is given by:

 ( ) 0    :     0
( )    :       &   0

V x x a

V x x a x

  
   

 (24.1)

The height of the potential barrier is such that no particle (think rub-
ber ball) can get out of the well. Whatever the energy of the particle, 
it will “bounce non-elastically” from the “walls” of the potential well. 
(There is no quantum tunneling through an infi nite potential.) The 
potential is independent of time, and so we seek solutions of the 
TISE. Since, this 1-dimensional potential is defi ned in three parts, 
there are three time independent Schrödinger equations – one for 
each part of the potential – but we have no interest in the parts of 
the potential that are outside of the well, {x < 0, x > a}. The time 
independent Schrödinger equation, TISE, inside the well is:
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





 (24.2)

This is the same TISE as for a free particle (because the potential 
in both cases was zero). However, this is not a free particle because 
there are boundary conditions. 

We presume that the energy eigenfunctions, uE, will be zero at 
x = 0 & x = a, which is at the walls where the potential is infi nite just 
as the kinetic energy of a bouncing rubber ball would be zero at the 
wall. We impose this assumption upon the solutions as a boundary 
condition on the system. Of all possible solutions, we choose to use 
the most general solution:

 2 2
cos sin

mE mE
u A x B x

   
    

    
 (24.3)

As we have seen above for the free particle, without the boundary 
condition, the energy eigenvalues (energy levels), {E2n, E2n+1} could 
be anything. The energy eigenvalues are spread across the whole of 
the real numbers. However, with the infi nite square well potential, 
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we need to satisfy the boundary condition that uE = 0: x = 0. We 
have:

 2 2
cos 0 sin 0 0      0

mE mE
A B A

   
      

    
 (24.4)

Thus, we have reduced the solution to: 

 2
sin

mE
u B x

 
  

 
 (24.5)

We now impose the other boundary condition uE = 0: x = a:

 2 2
sin 0        

mE mE
B a a np

 
   

  
 (24.6)

Aside: The reader is reminded of the solution of the Newtonian 
wave equation.

And our solution is:

 sin
n

u B x
a
p   

 
 (24.7)

With energies (energy eigenvalues):

 
2 2 2

22n
n

E
m a

p

  (24.8)

Aside: We remind the reader that Bohr calculated the energy levels 
of the hydrogen atom to be:

 
2

Hydrogen atom
2 2

0

1 1
2nE

m a n
 

  (24.9)

The minus sign is from the arbitrary way we labeled the potential 
energy.

We see that the energy levels of the infi nite square well increase as 
n2. This contrasts with the energy levels of real atoms which increase 
as 

2

1
n

.

We see that there are discreet energy levels in the infi nite square 
well. The graphs of those solutions, when a = 6, are:
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We see that it is the imposition of the boundary conditions that leads 
to the discreetness of the allowed energies. We see that each allowed 
energy corresponds to a different frequency of the standing waves 
between the walls of the infi nite square well.

This allows us to picture an electron “jumping” from one energy 
to another. We can interpret this as the electron wave being a circu-
lar standing wave “sitting” around the nucleus of the hydrogen atom. 
The circumference of the standing wave is an integer number of 
electron wavelengths, and the number of wavelengths corresponds 
to the energy of the orbit. 

The reader will have noticed that, in the case of the infi nite square 
well potential, we have chosen particular solutions and discarded 
other solutions. The solutions we have discarded either lead to quali-
tatively the same consequences – energy quantitisation – or they are 
not suitable as wavefunctions because they are not square integrable. 
There are non-separable solutions to the TDSE that we also disre-
gard. We justify this disregarding of solutions by saying that the TDSE 
is a model of reality and that, when we take the solutions we want, it 
works magnifi cently. We are really just picking out the basis solutions.

Because the walls of the infi nite square well are infi nite, there is 
no penetration of the walls by the particle. These walls are infi nitely 
hard. If the walls of the well were not infi nitely hard, they would give 
a little when hit by a rubber ball, we see something like this in the 
next example of a potential.

Technical note: The bound eigenfunctions of a potential well are 
not a complete set of functions. However, the bound and unbound 
eigenfunctions of a potential well, when taken together, are a com-
plete set of functions.
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CHAPTER 25
THE STEP 
POTENTIAL

25.1 REFLECTION AND TRANSMISSION

If you stand inside a room alongside a loud radio, you will fi nd 
that some part of the sound waves are refl ected from the walls of 
the room and you will fi nd that some part of the sound waves pen-
etrate through the walls of the room and are heard by your neigh-
bour. Waves can both go through a wall and bounce back from a wall. 
If you switch on a light within the room, you will see the light bulb 
refl ected from the glass of the window. At the other side of the glass, 
your neighbour will see the light bulb through the glass. Light waves 
can both go through a pane of glass and bounce back from that pane 
of glass. Given that particles are waves, it ought then to be no sur-
prise that particles can both bounce from walls and go through walls. 
This “going through walls” property of sound waves has been known 
since the Neolithic1, so it is quite anachronistic that it be referred to 
as quantum tunneling; none-the-less it is so called. 

We are shortly to look at a step potential. This is a model of a 
particle scattering from an impact with an atomic nucleus of other 

1. See “Quantum Tunneling and Noisy Neighbours” by Gus Grit the Ancient Brit.
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such step-like potential. We will fi nd that part of the wavefunction 
penetrates the potential and part is refl ected from the potential.

25.2 THE POTENTIAL STEP

The potential  step is an idealized 1-dimensional potential energy. 
To the left of the origin, the potential is zero; to the right of the ori-
gin, the potential is a fi nite amount. We have:

 ( ) 0    :    0
( )    :    0

V x x

V x V x

 
 

 (25.1)

Of course, a realistic step potential would not have the abrupt dis-
continuity at x = 0, but, because we cannot simply solve the realistic 
step potential, we solve the idealized, discontinuous step potential.

We take it that a particle which “feels” the force is moving across 
the page from left to right or from right to left. Associated with this 
potential, as with all potentials in both classical physics and quantum 
mechanics, there is a force given by:

 V
F

x


 


 (25.2)

Both classically and in quantum mechanics, this force acts upon a 
particle to push it leftward. In a realistic potential, which would not 
be an infi nitely steep step, a particle would “feel” this force in the 
vicinity of the origin. Away from the origin, both to the left and to 
the right, the particle would effectively behave as a free particle. The 
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energy of the particle is the sum of its kinetic energy and its potential 
energy; both of these are functions of the particle’s position, x. We 
have, both classically and quantum mechanically:

 . .( ) . .( ) ( ) ( )ParticleE K E x P E x T x V x     (25.3)

25.3 CLASSICALLY

 A. We first consider the situation classically when the total energy 
of the particle is greater than the height of the potential energy 
barrier, EParticle > V. The particle approaches the potential 
step from the left. Before it “feels” the potential, the particle’s 
potential energy is zero but its kinetic energy is T0. As the 
particle passes through the potential step, the particle’s veloc-
ity lessens and its kinetic energy is gradually converted into 
potential energy until, when it has passed through the barrier 
it has an amount of potential energy equal to V and an amount 
of kinetic energy equal to T0  V > 0. The thing to note is that 
the whole of the particle passes through the potential step. We 
call this “Total Transmission .”

 B. We next consider the situation classically when the total 
energy of the particle is less than the height of the potential 
energy barrier, EParticle < V. The particle approaches the 
potential step from the left. Before it “feels” the potential, 
the particle’s potential energy is zero but its kinetic energy 
is T0. As the particle passes through the potential step, the 
particle’s velocity lessens and its kinetic energy is gradually 
converted into potential energy until there is no more kinetic 
energy left and the particle “bounces” off the potential step 
and its motion is reversed. During this reversed motion, the 
potential energy of the particle is converted to kinetic energy 
until there is no more potential energy left and the particle 
has the same amount of kinetic energy as it started with but 
its motion is reversed. The thing to note is that the whole of 
the particle bounces off the potential step. We call this “Total 
Reflection.”
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25.4 QUANTUM MECHANICALLY

The quantum mechanical treatment leads to phenomena that 
are different from the total transmission and total refl ection of the 
classical understanding.

The step potential is really two different potentials that meet at 
the origin. These potentials are independent of time, and so, in a 
quantum mechanical consideration of the situation, the motion of 
the particle is determined by the energy eigenvalue equation that 
is the time independent Schrödinger equation, TISE. Since there 
are two 1-dimensional potentials, there are two 1-dimensional time 
independent Schrödinger equations. We have:

 
2 2

22
E

E n E
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m x


  


  (25.4)

A little manipulation:
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 (25.5)

There are two case when V = V and when V = 0. Either way, we 
have to fi nd uE such that when it is differentiated twice it is equal to 
a multiple of itself. By looking at this equation for long enough, we 
see that the two cases have the solutions:
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 (25.6)

These are the free particle solutions (sums of basis functions). Of 
course they are, the uniform potentials are each effectively a zero 
potential. In fact, there are an infi nite number of solutions in each 
case that can be formed as linear combinations of the appropriate 
solution given above.

The two wavefunctions have two parts. One part corresponds to 
x in the positive direction, and the other part corresponds to x in the 
negative direction. These correspond to the particle traveling from 
left to right and to the particle traveling from right to left.
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For a solution to be a wavefunction, it must have particular prop-
erties such as being square integrable, continuity, and differentiabil-
ity. These properties mean that the wavefunction must be such that:

 i. The wavefunction is continuous at the boundary between the 
two potentials.

 (0) (0)Left Righty y   (25.7)

 ii. The first derivative of the wavefunction is continuous at the 
boundary between the two potentials.

 (0) (0)Left Rightx x
y y 


 

 (25.8)

Technically: Since the change in potential at the step is fi nite and 
uE(0) is fi nite (a general boundary condition of the time indepen-
dent Schrödinger equation), the time independent Schrödinger 

equation says that 
2

2
Eu

x



 is fi nite. This means that both uE and 

Eu
x




 are continuous across the potential.

25.5 PARTICLE INCIDENT FROM THE LEFT

This scenario is described by solutions of the TISE applied to 
the left part of the potential step, V = 0. Such solutions have both 
incident and refl ected cases. Such a solution is a sum of the two pos-
sibilities of the form:

 
 2 2

2 2

Incident  +  Reflected

n n

Left

mE mE
i x i x

u

Ae Be




  

 (25.9)

Where {A, B} are constants whose moduli measure the intensity of 
the incident wave and the intensity of the refl ected wave respect-
fully. There could also be a transmitted wave traveling from left to 
right, V = V. The direction of travel means we can have only:
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     

2 2

     Transmited  +   Reflected

n nm E V m E V
i x i x

u Ce De
 


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 (25.10)

Where C is a constant whose modulus measures the intensity of the 
transmitted wave. For En < V, the refl ected part of the wave in the 
x > 0 region is not square integrable, and so it is not a wavefunction 
and so we set D = 0. Now, we need the wavefunction to be continu-
ous across the boundary between the two potentials, that is at x = 0. 
We need:

  
2 2

22 2 nn n m E VmE mE
i x i x i x

Ae Be Ce



   

 (25.11)

At x = 0:
 A + B = C (25.12)
We also need the differential of the wavefunction to be continuous 
at x = 0. This leads to:
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   (25.13)

We have three constants but only two equations, but we can arbi-
trarily normalize one of the constants to unity. We put A = 1, and 
this gives:
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 (25.14)

Leading to:
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 (25.15)
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E
C

E E V


 
 (25.1 6)

We now have three numbers measuring the intensities of the inci-
dent wave, A = 1, the refl ected wave, B, and the transmitted wave, 
C. If B = 0, there is no refl ected wave. If C = 0, there is no transmit-
ted wave.
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The transmitted wave is non-zero unless En = 0. The reader might 
think this has happened because we fed the transmitted wave into 
the equations. We assumed that there was no wave traveling from 
right to left in the x > 0, and then we simply fed in all possibili-
ties. We then applied the continuity relations across the boundary. 
It could have happened that the continuity conditions meant C = 0 
and there was no transmitted wave, but it did not. 

Looking at the constants {B, C} in (25.16), we see that if nE V  
then V ~ 0, the intensity of the refl ected wave, |B|2, would be zero 
and there would be no refl ected wave and the whole wave would 
be transmitted, as we would expect. If ,nE V  the intensity of the 
transmitted wave, |C|2, tends to zero, and there would be no trans-
mitted wave, as we would expect.

This is very different from the total transmission or total refl ec-
tion of a classical particle (bouncing ball). In quantum mechanics, 
because we are treating particles as waves, we have partial transmis-
sion and partial refl ection.

25.6 REFLECTED NEUTRONS

There is an interesting quantum mechanical phenomenon associ-
ated with low energy (slow moving) particles, like neutrons, that are 
incident upon a highly attractive potential such as the surface of an 
atomic nucleus. Classically, the slow moving particle would accelerate 
toward the nucleus, but, in fact, slow moving neutrons are refl ected by 
the attractive potential rather than attracted by it. A highly attractive 
potential is V. Putting this into the equations (25.16) gives:
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 (25.17)

For ,nE V  we have C ~ 0, and so there is negligible transmis-
sion – the neutron is refl ected from the attractive nucleus and not 
transmitted into the nucleus. This is experimental confi rmation of 
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the theory outlined above and experimental disproof of the classical 
theory of particles.

Aside: Neutrons were discovered by James Chadwick in 19322.

25.7 QUANTUM TUNNELING

So, the particle, which is a  standing wave, is split into three 
pieces by the step in potential. One piece is approaching the step, 
another piece is refl ected from the step, and another piece is trans-
mitted through the step. The wavefunction of the particle is the sum 
of the three eigenfunctions that describe the incident, refl ected, and 
transmitted waves. So, where is the particle? 

The probability of fi nding the particle at a given point, x > 0, is 
given by:

  
2

2
2

2
0

nm E V
i x

x EP u Ce


   
 (25.18)

For En < V,  
2

2 nm E V


 is imaginary, and we have:
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    (25. 19)

This probability decays exponentially as x increases.

So there is negligible probability (intensity) of the particle at x > 2, 
but some intensity (probability) of the particle at 0 < x < 1.

2. J. Chadwick, Nature Feb 27 1932.
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This means, that for any particle/wave with any energy, En, some 
of the particle will be inside the potential step – the intensity fi eld 
(probability fi eld) is not zero inside the potential step. For En < V, 
this would be impossible for a classical particle. A classical particle 
would just bounce off the potential step. It happens because the par-
ticle is a wave – it happens with sound waves, does it not? We refer 
to this penetration of a particle into regions that a classical particle 
could not reach as quantum tunneling. If we were to measure the 
position of the particle, the wavefunction would collapse into one of 
the three eigenfunctions corresponding to incident, refl ected, and 
transmitted waves. Sometimes, it will collapse into the transmitted 
eigenfunction, and we will measure the position of the particle as 
being inside the classically forbidden region. The particle has “tun-
nelled” into a region where is classically cannot be.

25.8 A NARROW POTENTIAL BARRIER

With the above we have all the ingredients we need to analyse a 
narrow potential barrier. There will be both incident and refl ected 
waves in all regions of the barrier. There will be exponential decay 
through the barrier in the direction of the incident wave and expo-
nential decay in the direction of the refl ected wave. We show a wave 
incident from the left; we do not show any refl ected waves.

We see that a particle, because it is a wave, with less kinetic energy 
than the potential barrier, can possibly penetrate the barrier. This 
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can never happen classically. This is quantum tunneling. If we cal-
culate the intensity of the wave (the probability that the particle will 
be observed) at each point along the x-axis, we get:

25.9 ALPHA PARTICLE EMISSION

Many atomic nuclei radioactively decay by emitting an alpha 
particle  (helium nucleus). Each particular nucleus has a character-
istic half-life. There is an inverse correlation between the energy of 
the emitted alpha particle and the half-life of the particular nucleus 
as was noted by Rutherford in 1907. This dependence is remarkable 
in that the energies of emitted alpha particles range from 4 Mev to 
9 Mev but the half-lives range from less than a microsecond to more 
than 1011 years.

In the view of classical physics, alpha particle emission is impos-
sible. Experiments by Rutherford and Royds3 in 1907 using alpha 
particles with energies of 8.7 Mev had demonstrated a Coulomb 
potential barrier around uranium nuclei of at least 8.7 Mev, and so it 
would be impossible for an alpha particle with only 4.2 Mev to pass 
through this potential barrier. None-the-less, uranium nuclei emit 
alpha particles with energies of 4.2 Mev. This is an example of quan-
tum mechanical tunneling . It was fi rst realized to be such in 19284 
by Gamow (1904–1968) and independently by Gurney and Condon 
also in 1928.5

3. E Rutherford & T Royds (1908) Spectrum of the radium emanation : Philosophi-
cal Magazine, Series 6, Vol. 16, pgs 313–317.
4. Z. Physik 5.1 204 (1928) G Gamow Zur Quantentheorie des Atomkernes.
5. Gurney R.W. & Condon E.U. (1928) Quantum Mechanics and Radioactive Dis-
tintergration : Nature 122.439.
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CHAPTER 26
THE 3-DIMENSIONAL 
BOX AND DEGENERACY

Schrödinger’s time independent equation in 3-dimension s is:

 
2

2 ( ) ( ) ( ) ( )
2

u r V r u r Eu r
m

   


  (26.1)

The form of the potential, V(r) will dictate which is the most 
suitable co-ordinate system in which to write the TISE. There are 
eleven different co-ordinate systems in which the 3-dimensional 
TISE, (26.1), is separable. The equation is separable only if the 
potential can be written as a sum of three terms; each of which is 
a function of only one co-ordinate. For simplicity, we assume the 
potential is of the form:

 ( ) ( ) ( ) ( )x y zV r V x V y V z     (26.2)

In this case, it is possible to fi nd solutions of the form:

 ( ) ( ) ( ) ( )u r X x Y y Z z  (26.3)

A little algebraic manipulation and the realization that the co-ordi-
nates are mutually independent leads to the three equations:

 

2 2

2

2 2

2

2 2

2

( ) ( ) ( )
2

( ) ( ) ( )
2

( ) ( ) ( )
2

x x

y y

z z

X x V X x E X x
m x

Y y V Y y E Y y
m y

Z z V Z z E Z z
m z


  




  



  









 (26.4)
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The total energy is simply the sum of the three separate energies:

 x y zE E E E  
 (26.5)

The eigenfunctions are the products of the individual co-ordinate 
eigenfunctions:

 ( , , ) ( ) ( ) ( )
x y z x y zn n n n n nu x y z X x Y y Z z  (26.6)

We apply the 3-dimensional Schrödinger equation to a particle in a 
3-dimensional box of size {2a,2b, 2c} with potential given by:

    

( ) 0     :           &       ( )     :      

( ) 0     :           &       ( )     :      

( ) 0      :           &       ( )      :      

x x

y y

z z

V x a x a V x x a

V y b y b V y y b

V z c x c V z z c

      

      

      

 (26.7)

We have already solved these equations when we dealt with the 
1-dimensional infi nite square well. The solutions are:

 

1
2

1
2

( ) cos  :   is even
2

( ) sin   :   is odd
2

x
x

x
x

n
X x a x n

a

n
X x a x n

a

p

p





   
 

   
 

 (26.8)

With similar solutions for the other co-ordinates. The energies are:

 
2 2 2 2 2 2

2 2 2
2 2 2,     ,     

8 8 8x x y y z zE n E n E n
ma mb mc

p p p
  

  
 (26.9)

And the total energy is:

 
22 2 2 2

2 2 28
yx z

nn n
E

m a b c
p  

   
 

   (26.10)

26.1 DEGENERACY

There is a reason that text books on quantum mechanics include 
a 3-dimensional box solution; it is because the 3-dimensional box 
allows the authors to demonstrate degeneracy . Assume that the 
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width and depth of the box are the same – it is a square box. The 
total energy is then:

 
22 2 2 2

2 2 28
yx z

nn n
E

m a a c
p  

   
 


 (26.11)

In these circumstances, we get the same total energy for different 
values of {nz, ny, nz}. For example, the total energy is the same for 
the two cases {nx = 1, ny = 2, nz = 1} and {nx = 2, ny = 1, nz = 1}. 
These two cases correspond to two different eigenfunctions, and so 
we have two different eigenfunctions with the same energy. This is 
two different eigenfunctions with the same eigenvalue. This is called 
degeneracy.
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CHAPTER 27
PARITY

Undoubtedly, the reader is  now sitting very comfortably, and so 
we shall continue. Within the complex number division algebra , 
there are two basic trigonometric functions. These are the cosine 
function and sine function that govern rotation in the complex plane.

 
0 cos sin

0 sin cos
r

r

q q
q q

   
       

  (27.1)

It is the necessary nature of trigonometric functions that they exhibit 
the symmetry and the anti-symmetry of the geometric space of 
which they are a part. We have:

 :                   cos( ) cos( )
:                 sin( ) sin( )

q q
q q
 

   
Symmetry

Anti symmetry
 (27.2)

Waves are connected to the complex numbers, , through the wavy 
nature of the trigonometric functions of that space. 

Aside: It is a consequence of the symmetry and anti-symmetry of the 
trigonometric functions that a clockwise rotation through  followed 
by an counterclockwise rotation through  takes us back to where 
we started. Suppose that the sine function was symmetric like the 
cosine function. Let us rotate first in the clockwise direction then in 
the counterclockwise direction. Watch the minus signs:
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cos sin cos( ) sin( )
sin cos sin( ) cos( )

cos sin cos( ) sin( )
sin cos sin( ) cos( )

cos(2 ) sin(2 )
sin(2 ) cos(2 )

q q q q
q q q q

q q q q
q q q q

q q
q q

    
         

   
        

 
   

 (27.3)

We do not return to where we started. Only because the cosine 
function is symmetric and the sine function is anti-symmetric does a 
clockwise rotation through  followed by an counterclockwise rota-
tion through  take us back to where we started.

 

cos sin cos( ) sin( )
sin cos sin( ) cos( )

cos sin cos( ) sin( )
sin cos sin( ) cos( )

1 0
0 1

q q q q
q q q q

q q q q
q q q q

    
         

   
       

 
  
 

 (27.4)

The graph of the cosine function is “balanced” across the origin:

Of course it is because the cosine is the projection from the unit 
circle on to the real axis. The graph of the sine function is exactly 
“unbalanced” across the origin:
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We refer to the cosine function as being an even function  and 
the sine function as being an odd function . We have:

 Even function  :        ( ) ( )
Odd function :        ( ) ( )

f x f x

f x f x

 
 

 (27.5)

Now, since a wavefunction is a sum of waves, it will be a sum of 
symmetric waves based on the cosine function and a sum of anti-
symmetric waves based on the sine function. For any wavefunction, 
un, we have the even part of the wavefunction being given by:

  1
( ) ( )

2even n nu u x u x    (27.6)

And we have the odd part of the wavefunction being given by:

  1
( ) ( )

2odd n nu u x u x     (27.7)

27.1 THE PARITY OPERATOR

We refer to this oddness and evenness, this anti-symmetry and 
symmetry, this “balance” and “unbalance” as parity. We say that a 
particular wavefunction is of even parity  or that it is of odd parity, or 
we split it into its even part and its odd part.

We take the view that there is a parity operator, ,P  which we 
have to be careful to distinguish from the momentum operator, ,P  
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or the probability, P. The parity operator acts upon a function to 
reverse its parity:

     P x xy y   (27.8)

The eigenvalues of the parity operator are   ±1. Odd wavefunc-
tions are said to have the   1 parity eigenvalue, and even wave-
functions are said to have the   1 parity eigenvalue. We see this 
with the sine and cosine functions:

  
 
cos( ) cos( ) 1cos

sin( ) sin( ) 1sin

P

P

q q q

q q q

   

   




 (27.9)

For symmetric potentials, the parity operator commutes with the 
Hamiltonian (energy operator).

27.2 THE SYMMETRIC POTENTIAL WELL

We consider a potential well that is symmetric  about the origin.

Within the well, there are bound states with discreet energy levels. 
Above the well, there are continuous free states. However, because 
the walls of this potential well are not infi nite, the bound states will 
“leak” out of the well into the potential where they could not be clas-
sically. Because the potential is symmetric about the origin, there 
will be bound states that are symmetric (based on the cosine func-
tion). More surprisingly, there are also bound anti-symmetric states 
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(based on the sine function). The graphs of the eigenfunctions of 
this well are:
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The symmetry of the potential means that wavefunctions within the 

well must “fi t” into the well in a balanced way. The separate parts of 

the wavefunctions have to match both in value and in slope y
x
 

  
 

at the walls of the potential well. It is this need to match that deter-
mines the form of each eigenfunction (single wavefunction) in the 
well and with it the value of the eigenvalue (energy) associated with 
that eigenfunction.
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CHAPTER 28
THE SIMPLE 
HARMONIC 
OSCILLATOR

Until now, we have dealt with potentials that are unreal such as 
the infi nite square well or the infi nitely steep potential step. Such 
potentials correspond to infi nitely strong forces and discontinui-
ties that do not occur in nature. We have used these potentials to 
demonstrate different aspects of quantum mechanics because the 
Schrödinger equation with such potentials is easy to solve. To do 
physics in the real world, we need to be able to solve the Schrödinger 
equation with real potentials. In almost all cases, this is very diffi cult 
and we have to resort to numerical approximation. However, in the 
case of the simple harmonic oscillator , SHO, potential we can solve 
the Schrödinger equation without resorting to numerical methods. 
This is very useful because all real potential wells approximate the 
potential well of the simple harmonic oscillator close to the bottom 
of the well. In stable physical systems, a particle will oscillate about 
the bottom of a potential well in a way that is similar to how a par-
ticle behaves in a simple harmonic oscillator potential. Consider 
an atom attached to other atoms to form a molecule; there is an 
attractive electrostatic force that holds the atom close to the other 
atoms, and there is a repulsive nuclear force that prevents the atom 
from getting too close to the other atoms. The atom is in a potential 
well, and it vibrates around the bottom of this potential well in a way 
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that is approximated by a particle in the simple harmonic oscillator 
potential.

The mathematics of this similarity is in the Taylor expansion of the 
potential, V(x). That Taylor expansion is:

 
2

2
0 0 0 2

1
( ) ( ) ( ) ( ) ...

2
V V

V x V x x x x x
x x

 
     

 
 (28.1)

The leftmost term is a constant that can be ignored within a poten-
tial. The middle term is zero at the bottom of the well because the 
slope, ,

V
x




 is zero there. The fi rst and most signifi cant term at the 

bottom of the well is of the form:

 
2 2

2 2
0 2 2

1 1
( ) ~       :       

2 2
V V

x x Kx K
x x

 
 

 
  (28.2)

This is the form of the simple harmonic oscillator potential, 
2 2 21 1

.
2 2

V Kx m xw   We have used this term to draw the dotted 

graph above.
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28.1  THE TISE OF THE SIMPLE HARMONIC 
OSCILLATOR

Because the potential is independent of time, we use the time 
independent Schrödinger equation, TISE. This assumes, usually 
without stating it, that the solution of the time dependent Schrödinger 
equation, TDSE, is separable, and any solutions we fi nd will be sepa-
rable solutions. When we have found separable solutions, , of the 
time independent Schrödinger equation TISE, we can turn them 
into solutions of the time dependent Schrödinger equation, TDSE, 

by multiplying them by .
Et

i
e



The energy eigenvalue equation which is the TISE of the simple 
harmonic operator, SHO, is:

  
2 2

2 ( ) ( )
2

V x u x Eu x
m x

 
   

 

  (28.3)

Re-arranging:

 

2 2
2 2( ) 1

( ) ( )
2 2

( ) 2
( ) 0

u x
m x u x Eu x

u x E m
x u x

w w


  


        

 (28.4)

 With m
y x

w



 and 2

,
El
w




 this becomes:

 
2

2
2

( )
( ) ( ) 0

u y
y u y

y
l


  


 (28.5)

 In this book, we will solve this equation, (28.5), in two different ways. 
We do not need to solve the SHO TISE in two ways, and most text 
books solve it in only one way, but we opine that the reader will very 
much enjoy seeing both methods. It is also true that we are able to 
show important results of quantum mechanics by solving the SHO 
TISE by two different methods.
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28.2 SOLUTION 1 (FROBENIUS METHOD)

We need solutions that are square integrable. This means that 
we need solutions whose graphs have a non-infi nite area between 
them and the axis. This means that we need solutions that do not 
diverge for very large, negative or positive, values of the variable. 
We start by considering the behavior of the equation above, (28.5), 
when y is large. When y is large, we can neglect , and the form of 
the solution of the above equation, (28.5), will approach the form of 
the solution of:

 
2

2
2

( )
( ) 0

u y
y u y

y


 


  (28.6)

We try a solution of the form:

 
21

2
y

u e


   (28.7)

Immediately, we see that we must reject the positive solution 
because it diverges for large y and therefore cannot be square inte-
grable (normalizable). The negative solution is:

 
21

2
y

u e


  (28.8)
This implies:

  
212

2 2
2 1

yu
y e

y


  


 (28.9)

We see, by luck, we have a solution of the above equation, (28.5), if:

 2
1

El
w

 


 (28.10)

This implies:

 
2

E
w


  (28.11)

We have our fi rst eigenvalue. We also have that the behavior as y 

 is given by 
21

2 .
y

e


 We therefore look for solutions of the form:

 
21

2( )
y

u H y e


  (28.12)
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The H(y) stands for Hermite polynomials – it is not the Hamiltonian. 

The 
21

2
y

e


 term decays very rapidly. Only if the H(y) term increases 

more rapidly than the 
21

2
y

e


 term decreases will the solution not be 
square integrable. Remember, the linear space of square integrable 
functions, L2(3), is also the set of possible wavefunctions.

With solution 
21

2( ) ,
y

u H y e


  the SHO TISE is:
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
  


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     

  

  
      

       (28.13)

This is known as Hermite’s equation . Insisting upon square integra-
bility leads to an infi nite number of solutions of Hermite’s equation 
that are polynomials in y. These polynomials are known as Hermite 
polynomials . The fi rst few Hermite polynomials are:
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2
2

3
3

4 2
4

5 3
5

1
2

4 2

8 12

16 48 12

32 160 120
...

H

H y

H y

H y y

H y y

H y y y




 

 

  

  

 (28.14)

The Hermite polynomials are generated by the recurrence relation:

 1 22 2( 1)n n nH yH n H     (28.15)

There is one eigenfunction of the SHO for each of these Hermite 
polynomials.
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Throwing in a normalizing real constant, Nn, the wavefunctions 
(eigenfunctions) that are square integrable solutions of the TISE 
are:

 

2

2

1
2

2

( )
y

n n n

m
x

n n

u N e H y

m
N e H x

w w







 
  

 




 (28.16)

Since the SHO potential well is symmetrical, the wavefunctions will 
have either even or odd parity. The graphs of the fi rst few eigenfunc-
tions are:
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Calculations put the normalizing constant to be:

 4
1

2 !n n
m

N
n

w
p




 (28.17)

And the energy eigenvalues are given by:

 1
2nE n w   

 
  (28.18)

When n  0, we have the lowest energy level, 0
1

.
2

E w  Notice 

how the energy levels of the SHO, that is the energy eigenvalues of 
the SHO TISE, increase in lumps of .w  This is just what Planck 
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proposed. It indicates that matter is just a set of simple harmonic 
oscillators.

A quantum mechanics harmonic oscillator, in contradistinction 
to a classical harmonic oscillator, cannot have zero energy. 

The potential well of the SHO has infi nitely high walls, and so 
there are an infi nite number of energy levels; in this way, it does not 
match real potentials.

28.3 SOLUTION 2

There is nothing wrong with the fi rst solution presented above. 
This second solution is more diffi cult to follow but holds insights of 
great value to the curious reader. It is with these insights in mind 
that we solve the above TISE again. We begin with the same TISE  
that we had for the fi rst solution:

 
2 2

2 2
2
( ) 1

( ) ( )
2 2

u x
m x u x Eu x

m x
w

  


  (28.19)

With ,
m

y x
w




 this becomes:
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2
2

( ) 2
( ) ( )

u y E
y u y u y

y w


  
 

 (28.20)

2 8.4 THE FIRST BIT OF THE CALCULATION

Now consider the, not necessarily commutative, product of 
operators:
  

 



 

 2
2

2

( ) ( )

( ) ( )

. ( )( ) ( )
. ( )

y y f y f y y f y
y y y y y

y f y yy f y
y

y f yf y f y
y y f y

y yy

           
                            

 
    

 
   

 

  

  (28.21)
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2

2

( ) ( )
. 1. ( )

( )
. ( )

( ) 1. ( )

f y f y
y f y

yy

f y
y y f y

y

y f y f y
y

 
  




 


    
  



  (28.22)

U sing this, we can rewrite the TISE, (28.20), as:

 
  2

( ) 1 ( )
E

y y u y u y
y y w

                        
 


 (28.23)

T his equation is an eigenvalue equation. There are many eigen-
functions that satisfy this equation. We will distinguish the different 
eigenfunctions by attaching a subscripted number, n, n  1, n  2, 
… to each of them.

The next step is to operate on both sides of the equation (28.23) 

with 


y
y

 
   
  to give:

 
   2

( ) 1 ( )n
n n

E
y y y u y y u y

y y y yw
                                       

   


 (28.24)

This equation is true if:

 


( ) 0ny u y
y

 
    
   (28.25)

b ut the only solution of this is the non-square integrable 
21

2 .
y

nu e


  
This cannot be a wavefunction because it is not square integrable. 
(When we repeat this procedure in the second bit of this calculation, 
we will get a different answer that will be a wavefunction.) 

The equation (28.25) is also true if this expression is equal to 
another eigenfunction (say un+1(y)). That is:

 


1( ) ( )n ny u y u y
y 

 
    
  (28.26)
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P rovided that:

 1
1

2 2
1 1n n

n n
E E

E E w
w w




             
   


 

 (28.27)

The reader should note that we have increased the energy eigen-
value by w  in going from En to En+1.

28.5 THE SECOND BIT OF THE CALCULATION

We now repeat the last few calculations with a few signs swapped 
around. By similar means as above, we calculate the “reversed” 
operator product:

 
   2

2
2( ) ( ) 1. ( )y y f y y f y f y

y y y

                          

    (28.28)

The reader is urged to look carefully at (28.22). There are signs dif-
ferent.

This leads to:

 
  2

( ) 1 ( )
E

y y u y u y
y y w

                        
 


 (28.29)

T he next step is to operate on both sides of the equation (28.29)  

with 


y
y

 
   
  to give:

 
   2

( ) 1 ( )n
n n

E
y y y u y y u y

y y y yw
                                       

   


 (28.30)

T his equation is true if:

 


( ) 0ny u y
y

 
    
  (28.31)

There is a sign difference from before.
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This time, the only solution of this equation is the square inte-

grable 
21

2 .
y

nu e


  The reader should compare this with the earlier 
case. This is our ground state. We label it as:

 
21

2
0

y
u e


  (28.32)

Associated with this eigenfunction is the ground state energy eigen-
value:

 0
1
2

E w   (28.33)

The equation (28.30) is also true if this expression is equal to another 
eigenfunction (say un1(y)). That is:

 


1( ) ( )n ny u y u y
y 

 
    
   (28.34)

If

 1
1

2 2
1 1n n

n n
E E

E E w
w w




             
   


 

 (28.35)

The reader should note that we have decreased the energy eigen-
value by w  in going from En to En-1.

After two phews worth of calculations, we combine the results 
to get the energy eigenvalues of the SHO, starting with the ground 
state, n  0:

 1
     :     0,1,2,3,...

2nE n nw    
 

  (28.36)

This is, of course, the same as the result of the fi rst solution. So, why 
did we bother? Read on.

28.6 ANNIHILATION AND CREATION OPERATORS

Starting with the ground state energy eigenfunction, u0, of the 

SHO, the operator, ,y
y

 
  

 will, subject to normalization, gener-

ate the successive SHO eigenfunctions.
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 2

2 2

1 0

1
2

1 1
2 2

1

( ) ( )

2

y

y y

u y y u y
y

y e
y

ye H e



 

 
   
 

   

   

 (28.37)

And:

  
 

2

2

2

2 1

1
2

1
2 2

1
2

2

( ) ( )

2

4 2

y

y

y

u y y u y
y

y ye
y

y e

H e







 
   

 
    

 



 (28.38)

And so on. This again corresponds to the eigenfunctions we calcu-
lated in the fi rst solution.

The operator 
 
  

 will, subject to normalization, spit out 

the eigenfunction immediately below the eigenfunction upon which 
it operates.

  
2

2

2

1 2

1
2 2

1
2

1
2

1

( ) ( )

4 2

(8 )

4

y

y

y

u y y u y
y

y y e
y

y e

H e







 
   
 

    





 (28.39)

And so on.

The two operators:

 

†
a y

y

a y
y

 
   
 

   




 (28.40)
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are creation and annihilation operators  . The operator 
†

a  moves the 
SHO into the next higher energy level. In doing this, it must increase 
the energy by w ; it must create energy. For this reason, the opera-
tor 

†
a  is known as the creation operator. Similarly, the operator a  

destroys energy in lumps of w  and is known as the annihilation 
operator. The creation and annihilation operators are central to 
QFT, and the reader will meet them often in her further studies.

Aside: We often see the creation and annihilation operators written 
as:

 





† 1 1
2 2

1 1
2 2

m m
a x i p x

m m x

m m
a x i p x

m m x

w w
w w

w w
w w

            
            

   

   

 (28.41)

We have:

 
†

, 1a a      (28.42)
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EXERCISES

1. Calculate the second energy level of the simple harmonic 
operator?

2. Verify that the Hamiltonian of the harmonic oscillator can be 
written as:

  †
shoH aa   

 
  (28.43) 

3. Using (28.43), calculate 
†

aa n ?

4. Using the normalized annihilation and creation operators:

 

1
2

1
† 2

2

2

a x
x

a x
x

w

w

          

          





 (28.44)

i) Show 
†

,a a w     

ii) Show  † †1 1
   &    

2 2
aa H a a Hw w      
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CHAPTER 29
ANGULAR 
MOMENTUM

Angular momentum appears frequently in Newtonian mechan-
ics. It ought to be no surprise that angular momentum features 
prominently in quantum mechanics.

The quantum mechanical angular momentum operators  can be 
derived from the Newtonian relations between angular momentum 
and linear momentum. The angular momentum operators are:

 

  

  

  

x z y

y x z

z y x

L yp zp i y z
z y

L zp xp i z x
x z

L xp yp i x y
y x

  
       

         
  

       

  

  

  

  (29.1)

We also have the total angular momentum operator:

    2 2 2 2
x y zL L L L     (29.2)
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We most often use the angular momentum operators in polar form. 
Those polar forms are:

 







 2 2
2 2

2 2 2

sin cot cos

cos cot sin

1 1
tan sin

x

y

z

L i

L i

L i

L

f q f
q f

f q f
q f

f

q q q q f

  
    

  
     


 



   
       









 (29.3)

When we calculate the basis eigenfunctions of these operators, we 
will be able to write these operators in matrix form. It turns out that 
there are many different sized matrix representations. For the time 
being, we give the 3  3 representation. We have:

 2 2

1 0 0
2 0 1 0

0 0 1
L

 
   
  

   (29.4)

And:

 



 

1 0 0
0 0 0
0 0 1

0 1 0 0 0
1 0 1 ,       0

2 2
0 1 0 0 0

z

x y

L

i

L L i i

i

 
   
  

   
        
      



 

 (29.5)

Remembering that:

            ,A B A B B Ay y y       (29.6)

The commutators of the angular momentum operators are:

 

  

  

  

,

,

,

x y z

y z x

z x y

L L i L

L L i L

L L i L

   
   
   







   (29.7)
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And:

   2 2 2, , , 0x y zL L L L L L           
   (29.8)

We see that the total angular momentum operator, 2,L  commutes 

with all other angular momentum operators. Since 2L  is the sum of 
the single component angular momentum operators, it ought to be no 
surprise that the eigenfunctions of all three single component angular 
momentum operators are within the set of eigenfunctions of 2.L

29.1  ANGULAR MOMENTUM IN A CENTRAL 
FORCE POTENTIAL

The potential energy of a time independent spherical well (a 
central force) such as the electromagnetic potential of an atomic 
nucleus varies with only distance from the center (the nucleus). The 
central force potential is thus of the form V(r). The 3-dimensional 
Hamiltonian (energy operator) is therefore:

 
2

2 ( )
2

H V r
m

   
   (29.9)

After some lengthy algebraic manipulation, this is written as:

 
2 2 2

2 2
2

( )
2 2

L
H V r

m r rr mr

  
      

  (29.10)

We see that, disregarding the 2L  operator, this Hamiltonian is a func-

tion of only r. The four angular momentum operators     2, , ,x y zL L L L  

are functions of only {, }. This means that this Hamiltonian will 
commute with all four angular momentum operators. The reader 
is reminded of Ehrenfest’s theorem which says that any operator 
which commutes with the Hamiltonian represents a dynamic vari-
able that is conserved and, in any mechanics, angular momentum is 
a conserved quantity. 

Ehrenfest’s theorem  says that the expectation value of any time-
independent operator is a constant if the time-independent operator 
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commutes with the Hamiltonian. Ehrenfest’s theorem is the basis of 
conservation laws in quantum mechanics. Because the four angu-
lar momentum operators commute with the Hamiltonian of a time 
independent spherical potential, the angular momenta associated 
with each operator is separately conserved in a time independent 
spherical potential.

29.2 EIGENVALUE EQUATIONS

Because the Hamiltonian (energy operator), ,H the total momen-
tum operator, 2,L  and the z-angular momentum operator, zL  all 
commute with each other, there will be simultaneous eigenfunctions 

of these three operators. We need not have chosen zL but could 

have instead have chosen either xL  or ;yL  we chose zL  because 

it is in a more simple format than either of the other two possible 

operators. We denote the eigenfunctions of    2, , zH L L  as u(r, , ). 
If we were using Dirac notation, we would denote the eigenvectors 
as |r, , . We anticipate that the solutions of the energy operator 
(Hamiltonian) eigenvalue equation (Schrödinger’s equation) will be 
separable into radial part and angular part and thus of the form:

 ( , , ) ( ) ( , )u r R r Yq f q f   (29.11)

The two corresponding eigenvalue equations are:

 


2 2

( , , ) . ( , , )

( , ) . ( , )

Hu r E u r

L Y Y

q f q f

q f l q f



 
  (29.12)

Note that the angular momentum operators are purely angular, and 
so we do not need the radial part of the eigenfunctions. 

29.3  EIGENVALUES OF THE zL OPERATOR

The operator, zL i
f


 


 depends upon only the  angular vari-

able, and so we take it that the Y(, ) part of the eigenfunctions will 
be separable:
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 ( , ) ( ) ( )Y q f q f             (29.13)

The third eigenvalue equation is thus:

 
 ( ) ( )zL m

i m

f f

f

  


  




 
  (29.14)

With solution:

 
z

im
LN e f     (29.15)

Wherein 
zLN  is a normalization constant.

There is a boundary condition upon these eigenfunctions that 
derives from the simple fact that    + 2. This boundary condi-
tion means that we require:

 
 2

( ) (2 )
z z

z

imim
L L

im im
L

N e N e

N e e

f pf

f p




     (29.16)

Which is:

  2 1ime p    (29.17)
This means that the number m must be a (real) integer, and so we 
have it that the eigenvalues of the zL  operator are:

 0,  ,  2 ,  3 ,...m          (29.18)
To know the eigenfunctions associated with these eigenvalues, we 
need to calculate the normalization constant. We have:

 

2 2
2

0 0
2

2

0
2

  ( )

 

2

z

z

z

im im
L

L

L

d N d e e

N d

N

p p
f f

p

f f

f

p

   





 


     (29.19)

We require that this be equal to unity:

 
22 1

1
2

z

z

L

L

N

N

p

p




  (29.20)
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The eigenfunctions of the zL  angular momentum operator are thus:

 1
2

ime f

p
    (29.21)

29.4 EIGENVALUES OF THE L2 OPERATOR

We now seek the eigenvalues and eigenfunctions of the 2L  
operator. We have:

 





2 2

2 2

( , ) . ( ) ( )
1 1

( ) . ( )
2 2

im im

L Y

L e ef f

q f l q f

q l q
p p

  

  




 (29.22)

This is:

 

2 2
2

2 2 2

2

1 1 1
( )

tan sin 2

1
. ( )

2

im

im

e

e

f

f

q
q q q q f p

l q
p

               

 





 (29.23)

Differentiating with respect to  and rewriting the fi rst part of the 
operator leads to:

 
2

2

sin
1

( ) ( )
sin sin

m
q

q q l q
q q q

          
 

 (29.24)

Substituting cos  =  leads to:

 

2
2

2

( )
(1 )

( ) 0
1

P v
v

mv P v
v v

l

            
   (29.25)

This equation is known as the associated Legendre equation . We 
need to solve this for P().

Aside: The Legendre equation is this associated Legendre equation 
with m = 0:

 

2 ( )
(1 )

( ) 0

P v
v

v P v
v

l

      


  (29.26)
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When  = ±1, we have division by zero within the associated Legen-
dre equation. However, a series solution exists; it is:

 2 2

0

( ) (1 )
m

r
rP v v a v



      (29.27)

Such that the (r + 2)th element of the series is given by:

 2
( )( 1)

( 1)( 2)r r
r m r m

a a
r r

l


    
    

  (29.28)

This series solution will not lead to division by zero provided the 
series terminates. We can achieve such termination of the series by 
choosing:

  ( | |) | | 1 ( 1)r m r m l ll         (29.29)

Within this, we have, following convention, taken:

 | | l r m   (29.30)

Remembering that r is just an integer counting the terms of the 
truncated series, this implies:

 
0,1,2,3,...



 

l m
l m

   (29.31)

Clearly, l must be an integer because m is an integer. We now have 

it that the eigenvalues of the 2L  operator are:

   21         :           0,1,2,3,...l l l   (29.32)

These values correspond to a total angular momentum of   21 .l l  

The reader might recall that the electrons surrounding an atomic 
nucleus are arranged into shells respectively referred to by spectros-
copists as {s, p, d, f, g, h,…}. These shells correspond to the values of 
the total momentum, LTotal, as {0, 1, 2, 3, 4, 5, …}.

The eigenfunctions, P(v), are eigenfunctions of both the 2L  and 


zL  operators. They are separately denoted as ( )m
lP v and are called 

the associated Legendre functions . The |m| is justifi ed because only 
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m2 appears in the equation that defi nes them, (29.25). The eigen-
functions are normalized such that:

 
2

0

 sin 1m
ldq q



    (29.33)

29.5 SPHERICAL HARMONICS

The complete angular momentum eigenfunctions are:

    
 

1
2!2 1

, (cos )
4 !

m
mm im

l l

l ml m
Y e P

l m m
fq f q

p
    

        
 (29.34)

These are known as the spherical harmonics . They are, or course, 
the basis of a linear space. That is, the spherical harmonics are com-
plete and mutually orthogonal as defi ned by the overlap integral:

  
2

 sink m
j l jl km

o o

d d Y Y
p p

q f q d d


   (29.34)

Wherein the jlkm are Kronecker deltas. 

The fi rst few normalized spherical harmonics are:

 

1
20

0

1
21

1

1
20

1

1
21

1

1
22 2 2

2

1
4

3
sin

8

3
cos

4

3
sin

8

15
sin

32

i

i

i

Y

Y e

Y

Y e

Y e

f

f

f

p

q
p

q
p

q
p

q
p

 

   
 

   
 

   
 

   
 

   
 

 (29.36)
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In general, the parity of the spherical harmonic depends upon the 
value of l is given by:

  1 l   (29.37)

29.6  ORBITAL ANGULAR MOMENTUM AND 
ELECTRON ORBITS

Although we did not explicitly say so, the angular momentum 
with which we have dealt above is known as orbital angular momen-
tum. The reader might wonder what other kind of angular momen-
tum there could possibly be. It was one of the great surprises of 
quantum mechanics that there is another type of angular momen-
tum which we call intrinsic spin, or just spin. No one really knows 
what intrinsic spin actually is; it has no counterpart within Newto-
nian mechanics; it is a purely quantum mechanical phenomenon. 
We will deal with intrinsic spin shortly. Meanwhile, back to orbital 
momentum.

The orbital angular momentum vector is described by two 
eigenvalues (quantum numbers) often denoted by , .l m  Of these, 

  21l l h  is the total angular momentum. Of these, mh  is the 

z-component of the angular momentum vector. We have above, 
(29.31), that l  m. It is not surprising that the total angular 
momentum is greater than or equal to the z-component of angular 
momentum. What is surprising is that, not only is the total orbital 
angular momentum quantitised as Bohr proposed, but that the 
z-component of the orbital angular momentum is quantitised. This 
means that orbits within atoms can have only particular angles with 
the z-axis. 

We normally think of an orbiting particle, like the Earth’s moon, 
as being in an orbital plane that slices through the center of the 
spherical potential. Atoms are not like planets. The orbits of elec-
trons are stacked in layers of orbital planes only one of which (the 
middle one) slices through the potential center.
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The different planes correspond to the different values of the z-
component of orbital angular momentum. Since the maximum value 
of the z-component of orbital angular momentum is lh  and this is 
less than the total orbital angular momentum, lh  we see that the 
angular momentum vector can never be purely in the z-direction – 
we cannot have an electron orbit of zero radius.

What we have done with the z-component of orbital angular 

momentum, ,zL  can be equally well done with either xL  or yL . 

The mathematics is more complicated, but the results are the same. 

We chose zL  for pedagogic ease.

SUMMARY

In quantum mechanics, orbital angular momentum is denoted 
by two quantum numbers, ,l m  which correspond to the total angu-

lar momentum 2( 1)l l    and the z-component of orbital angular 

momentum, m . We have ;l m  this condition is a statement of 
the fact that total orbital angular momentum is greater than a single 
component of orbital angular momentum.
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EXERCISES

1. A physical system is described by the normalized orbital an-
gular momentum state vector:

 
1

1
4

21
2

y
 
   
  

  (29.38)

 Why is the 1
21

 factor necessary? What are the basis states? 

If zL  is measured, what results might we get and with what 

probabilities?

2. Using the block multiplication properties of matrices, sub-

stitute 
a b

a ib
b a

 
    

 into the matrix 
0 0

0
0 0

i

i i

i

 
  
  

 to show 

that it is a symmetric matrix?

3. Consider the matrix:

 

1
2 2

1
1 0 1

2
1

2 2

i i

U

i i

  
 

  
 
 
 

  (29.39)

 Is this matrix unitary? If this matrix is unitary, use it to do a 
unitary transformation upon the matrix:

 
0 0

0
2

0 0
y

i

L i i

i

 
   
  

   (29.40)

to transform it into the matrix: 

 
1 0 0
0 0 0
0 0 1

zL
 
   
  

   (29.41)
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CHAPTER 30
THE STERN-GERLACH 
EXPERIMENT

In 1922, in Frankfurt Walther Gerlach (1889–1979) and Otto 
Stern (1889–1969) conducted an experiment1 to measure the orbital 
angular momentum of electrons in a silver atom. Unexpectedly, Ger-
lach and Stern failed to measure any orbital angular momentum of 
the electrons but discovered the intrinsic spin angular momentum of 
the electron. The experiment is known as the Stern-Gerlach experi-
ment.

Although we now say that the Stern-Gerlach experiment  discov-
ered intrinsic spin, and it did so, this was not realized at the time and 
it was several years before Uhlenbeck and Goudsmit  hypothesized 
the existence of intrinsic spin 2. The experiment was repeated using 
hydrogen atoms in 1927 by T. E. Phipps and J. B. Taylor3.

Any electrically charged body that has angular momentum will 
also have a magnetic dipole moment associated with that angular 
momentum. The Stern and Gerlach passed a beam of silver atoms 
through an inhomogeneous magnetic fi eld intending that the mag-
netic dipole of the electrons in orbit around the silver atom nucleus 

1. Gerlach, W. Stern, O. (1922) Das magnetische moment des silberstoms : 
Zeitschrift für Physik 9: 353–355.
2. S.Goudsmit & G.E.Uhlenbeck Physica 6 (1926) 273.
3. Phipps, T.E.: Taylor, J.B. (1927) The magnetic moment of the hydrogen atom. 
Physical Review 29 (2) 309–320.
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would react with this inhomogeneous magnetic fi eld in such a way 
that the orbital angular momentum of the electrons in the silver 
atoms could be deduced. This was an experiment looking for a quan-
titised spectrum of orbital angular momentum eigenvalues. Silver 
atoms are electrically neutral, and so only the effects of orbiting 
electrons would be seen.

The magnetic dipole moment of an orbiting electrically charged 
particle (electrons were thought of in this way in the 1920s) is given 
by:

 2
q

L
m

m g 
 

 (30.1)

Wherein q is the electric charge of the particle and m is the mass of 
the particle. This formula applies to any orbit which conserves angu-
lar momentum. It is applicable in quantum mechanics to orbital 
angular momentum. If the magnetic dipole is in an inhomogeneous 
magnetic fi eld, the dipole will feel a force displacing it given by:

 F Bm 
  

  (30.2)
The apparatus of the Stern-Gerlach experiment was arranged such 
that only the z-component of this force was non-zero, and so the 
force on the dipole in the Stern-Gerlach experiment is given by:

 z
z z

B
F

z
m 




 (30.3)

And we have:

 z
z z

B
F L

z
g 




 (30.4)

We now incorporate the quantum mechanical view that orbital 
angular momentum is given by z lL m   where, for a given integer 
value of l, ml are the allowed values of the z-component of angular 
momentum (see previous chapter). We get:

 z
z l

B
F m

z
g 




  (30.5)

This says that there will be (2l  1) different values of force acting on 
the magnetic dipoles (silver atoms), one for each possible value of 
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m1, and so the magnetic dipole (silver atoms) will be defl ected by the 
Stern-Gerlach apparatus into (2l  1) different beams. Note that the 
beam associated with ml  0 will be wholly undefl ected.

Source
of

silver atoms

Inhomogeneous
magnetic field

Collecting
plate

The Stern-Gerlach Apparatus

We can determine the values of the number of different values of 
orbital angular momentum from counting the number of beams. If, 
instead of a number of beams, we get just a smudge, then the value 
of orbital angular momentum is not discreet, as quantum mechanics 
says it should be, but continuous as classical physics would predict.

When the Stern-Gerlach experiment was fi rst done, it produced 
only two beams of silver atoms (as shown above). Two does not equal 
(2l  1)  for any integer value of l. We now know that the orbital 
angular momentum of a silver atom is zero; this would correspond to 
only one beam, but the experiment did not produce only one beam. 
That there are two beams means there are two, and only two, pos-
sible values of magnetic dipole (angular momentum) in the silver 
atom. 

The defl ection of silver atoms into beams in the Stern-Gerlach 
experiment is due to the intrinsic spin angular momentum of the sin-
gle (unpaired) electron in a silver atom. If intrinsic spin is to satisfy 
similar rules as orbital angular momentum, then there should be a 

(2s  1) rule. Two beams mean that .
2sm  
  Intrinsic spin angular 

momentum comes in half integer values. 

Intrinsic spin is thought of in quantum mechanics as a type of 
angular momentum that is different from orbital angular momentum. 
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There is no Newtonian counterpart to intrinsic spin, and, therefore, 
no Newtonian variable that corresponds to the spin operator . There 
is nothing like intrinsic spin predicted by the Schrödinger equation. 
If we wish to use the Schrödinger equation, we must arbitrarily add 
in the concept of spin (see later). 

Aside: This property of half integral intrinsic spin does emerge from 
the Dirac equation. The Dirac equation is a relativistic version of 
the Schrödinger equation, and so intrinsic spin is unthinkingly, and 
wrongly, seen as necessitated by special relativity. In 1934, Wolfgang 
Pauli and Victor Weisskopf (1908–2002) were able to show that a rela-
tivistic quantum theory need not include the concept of spin at all4. 

We now know that an electron is a spin 1
2

 particle. By this, we mean 

that, along any axis, the eigenvalues of the intrinsic spin operator 

(to be introduced in the next chapter) are only two, .
2


  It does not 

matter in what direction we orientate the axis we choose to measure 
against, we will still get only a half integral value of intrinsic spin for 

an electron. The amount of intrinsic spin of a particle,  1 3
0, ,1, ,... ,

2 2
 

be it electron, photon, quark, Higgs boson, or whatever is a fi xed 
property of that particle; it cannot be increased or decreased. Spin 

1
2

 particles have two possible values of intrinsic spin, 1
.

2
   Spin  

1 particles (like the W and Z bosons) have three possible values of 
intrinsic spin {1, 0, 1}.

30.1 THE ZEEMAN EFFECT

The spectral lines emitted or absorbed by an atom change 
slightly when the atom is within a magnetic fi eld. This is due to 
the change in energy levels within the atom brought about by the 

4. W. Pauli & V.F. Weisskopf, Helv. Phys. Acta 7,709 (1934).
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interaction of the magnetic fi eld and the magnetic dipoles associated 
with the angular momenta of the particles that comprise the atom:

 
mag

z

l

E B

L B

m B

m

g
g

 

 
 

 




  (30.6)

Wherein we have assumed that the magnetic fi eld is in the z-direction. 
ml is called the magnetic quantum number, and  is the magneto-
gyric ratio. This effect  is very useful in exploring the structure of 
atoms.

Because of this energy change, we need to modify the energy 
operator in the time independent Schrödinger equation by adding 
Emag. We have:

    0 0n z nH E H BL Ey y g y y     (30.7)

For an electron, the extra energy is:

 
2Mag l
e

E Bm
m


  (30.8)

The quantity 
2
e
m
  is called the Bohr magneton and is often denoted 

by B.

Aside: There are many Stern Gerlach experiments that have never 
been done but are reported in books on quantum mechanics. The 
essence of these experiments is a series of three Stern Gerlach mag-
nets. The first Stern Gerlach magnet is oriented with the z-axis verti-
cal and thus produces two beams of silver atoms. One of the beams 
of silver atoms is then blocked. The second Stern Gerlach magnet 
receives the remaining beam of silver atoms. The second Stern 
Gerlach magnet is oriented with the z-axis at 45° to the first Stern 
Gerlach magnet and produces two beams of silver atoms. One of 
the beams of silver atoms is then blocked. The third Stern Gerlach 
magnet receives the remaining beam of silver atoms. The third Stern 
Gerlach magnet is oriented with the z-axis vertical to match the first 
Stern Gerlach magnet. We might expect that, since one beam of sil-
ver atoms was blocked at the exit of the first Stern Gerlach magnet, 
the third Stern Gerlach magnet would produce only one beam of 
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silver atoms. It does not produce only one beam of silver atoms; it 
produces two such beams.

The eigenstate of the silver atoms in the single beam exiting the fi rst 
Stern Gerlach magnet does not persist through the 45 measure-
ment of the second Stern Gerlach magnet.

The experiment has never been done because it is extremely dif-
ficult to isolate the apparatus from stray magnetic fields that would 
precess the dipole of the silver atoms between magnets. It is pre-
sented as an example of the nature of the superposition wavefunc-
tion in quantum mechanics.
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CHAPTER 31
INTRINSIC SPIN

The energy levels of electrons within atoms correspond to the 
spectral lines of those atoms. It was noticed in the fi rst part of the 20th 
century that spectral lines come in pairs. A particular clear example 
is sodium it which the 3p  3s transition corresponds to the spectral 
lines at 5896 Angstroms and 5890 Angstroms. It was Uhlenbeck and 
Goudsmit who fi rst suggested that such doubling of spectral lines 
was caused by a kind of “internal angular momentum”1. We now 
refer to that “internal angular momentum” as intrinsic spin .

31.1  DIFFERENT SIZES OF ANGULAR 
MOMENTUM OPERATORS

The reader will recall that once we have the eigenfunctions of 
an operator, we can calculate the matrix form of that operator from 
the formula (8.38):

   * RC R CM dx Af f




   (31.1)

Looking at the partial list of the eigenfunctions of the orbital angular 
momentum z-component (spherical harmonics), (29.36), we see that 
when l  0, we have only one eigenfunction. This means that for l  0, 

1. S.Goudsmit and G.Uhlenbeck. Naturwiss, 13, 953 (1925) & Nature 117, 264 (1926).
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the matrix form of the zL  operator will be a 1  1 matrix. When 
l  1, we have three eigenfunctions which are:
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 (31.2)

Using the formula, (31.1), will give us a 3  3 matrix form of the zL  
operator. We see these matrices listed in (29.5). There are fi ve l  2 
eigenfunctions  2 1 0 1 2

2 2 2 2 2, , , , , Y Y Y Y Y  and these will give a 5  5 


zL  matrix operator. With a little thought, the reader will see that, 
as l increases, the size of the operator matrix will increase but it will 
always be of an odd size. The reader might wonder if there are any 
even sized n  n operator matrices that satisfy the same commuta-

tion relations, (29.7) & (29.8), as the     2, , ,x y zL L L L  operators; per-
haps a 2  2 matrix or a 4  4 matrix. If there are even sized matrices 
satisfying the same commutation relations as angular momentum, 
then these even sized matrices will presumably be something to do 
with angular momentum – same commutation relations!

Well, there are even sized matrices that have the same commuta-

tion relations as the     2, , ,x y zL L L L  operators. The 2  2 matrices are:

 

 

  2
2

0 1 0
,    

1 0 02 2

1 0 1 03
,    

0 1 0 12 4

x y

z

i
L L

i

L L

   
    

   
   

       

 

 
 (31.3)

These are universally2 known as the Pauli matrices . They were intro-
duced ad hoc by Wolfgang Pauli in 1926 in an attempt to correct the 
erroneous prediction of the Schrödinger equation that the magnetic 
moment of the ground state hydrogen atom was zero.

2. That is universally on Earth.
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31.2  THE ANGULAR MOMENTUM SPECTRUM 
FROM THE COMMUTATOR RELATIONS

The set of eigenvalues of an operator is called the spectrum of 
that operator. We have a set of commutation relations (for angu-
lar momentum) that can be written as many different sized square 
matrices. These different sized matrices correspond to different 
values of the eigenvalues, l, of the angular momentum operators 
2.L  If we can, which we shortly will, discover all the different sizes 
of matrix that have the same commutation relations as the angular 
momentum operators, then we will know the whole set of possible 
values (eigenvalues) of {l, m}.

We begin be defi ning two new operators as a sum of two angular 
momentum operators.

 
  

  
x y

x y

L L iL

L L iL





 

 
 (31.4)

These are not Hermitian operators, but that is unimportant. They 
are also known as ladder operators . The commutation relations of 
these new operators are:

 
     

   2 2

,               :              ,

, 0              :              , 0

z zL L L L L L

L L L L

   

 

         
       

 
 (31.5)

And:
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 

 
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


 (31.6)

Because L  commutes with 2 ,L  we have:

          2 2L L L Ly y   (31.7)

But:

            2L L L Ly l y l y     (31.8)

So:

        2L L Ly l y   (31.9)
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In other words,   L y  is an eigenvector of 2.L  Similarly,   L y  is 

an eigenvector of 2.L  We have, (31.5):

 
            

            

 z z

z z

L L L L L

L L L L L

y y y

y y y

  

  

  

 




 (31.10)

And:

 
          zL L L Ly my m y   

 (31.11)

Putting these together gives:

 
          

          
   

z

z

L L L L

L L L L

L

m y y y

y m y y

m y

  

  



 

 

 







 (31.12)

We see that the L  operator acts upon a fi rst eigenvector of the 


zL  operator to produce a second eigenvector of the zL  operator. 
The second eigenvector has an eigenvalue that is greater than the 
eigenvalue of the fi rst eigenvector by a single  . Similarly, the L  
operator acts upon a fi rst eigenvector of the zL  operator to produce 
a second eigenvector of the zL  operator such that the second eigen-
vector has an eigenvalue that is less than the eigenvalue of the fi rst 
eigenvector by a single  .

The eigenvalues of the zL  operator (the z-component of angu-
lar momentum) must be less than the eigenvalues of the total angu-
lar momentum operator, and so the L  operator cannot continue 
forever producing eigenvectors of the 

zL  operator with higher 
eigenvalues but must eventually come to act upon the “top eigen-
vector” with the highest eigenvalue that is possible. When the L  

operator acts upon the “top eigenvector” of the zL  operator, it must 

produce an output of zero,    0TopL y  . Similarly, the L operator 

will eventually come to act upon the “bottom eigenvector” and will 
produce zero,    0BottomL y  .

Since    0TopL y  : 
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      0TopL L y    (31.13)

But, (31.6):

                2
z z zL L L L L Ly y y y      (31.14)

So:

 

          
 

 

2

2

0

0

Top z z Top z Top

Top Top

Top Top

L L L Ly y y

l m m

l m m

  

  

 







 (31.15)

Similarly:

 ( )Bottom Bottoml m m   (31.16)

We know that .Top Bottomm m  The equations (31.15) and (31.16) 
together lead to:

 
2

Top Bottom

Top

m m

m

 






 (31.17)

We known the steps between eigenvalues are multiples of   and so 
we have:

 
2Top

mm 


 (31.18)

Leading to:

 1 3
0, ,1, ,...

2 2
l   (31.19)

31.3  ANGULAR MOMENTUM COMES IN HALF-
INTEGRAL UNITS

What we have here is that the commutation relations of the angu-
lar momentum operators have compelled the eigenvalues of angu-
lar momentum to be half-integral units of  . The lowest non-trivial 

angular momentum is 
1 1,  
2 2

  l m  and this gives the matrices 

(31.3). There are matrices of sizes that are all even values of 2l  1.
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31.4  REPRESENTATIONS OF COMMUTATION 
RELATIONS

There are 2  2 matrices that have the commutation relations 
of angular momentum. These are called the 2-dimensional repre-
sentation of the commutation relations – the 2-dimensional repre-

sentation of angular momentum corresponding to the 1 1
,

2 2
l m  

eigenvalues. There are 4  4 matrices that have the commutation 
relations of angular momentum. These are called the 3-dimen-
sional representation of the commutation relations – the 3-dimen-
sional representation of angular momentum corresponding to the 
l  1, m  0, 1 eigenvalues. There are 4  4 matrices that have the 
commutation relations of angular momentum. These are called the 
4-dimensional representation of the commutation relations – the 
4-dimensional representation of angular momentum corresponding 

to the 
3 1 3

, ,
2 2 2

l m     eigenvalues. And so on…

31.5 WHAT IS INTRINSIC SPIN?

The integral eigenvalues of angular momentum arose from the 
imposition of the boundary condition (  2)  (). This bound-
ary condition does not require the existence of half-integral eigen-
values of angular momentum; they are allowed, but not required, 
by the commutation relations. We see that there can be two types 
of angular momentum, integral and half-integral. Because the half-
integral angular momentum does not arise from the spatial bound-
ary condition (  2)  (), it is thought of as being intrinsic to 
the orbiting particle (rather than intrinsic to the spatial orbit). The 
half integral angular momentum is called intrinsic spin, or just spin.

Intrinsic spin  was fi rst suspected in 1925 by Goudsmit and 
Uhlenbeck 3. They introduced it in an ad hoc manner to explain par-
ticular spectral lines. In 1928, Dirac produced the Dirac equation 

3. S.Goudsmit & G.E.Uhlenbeck Physica 6 (1926) 273.
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as a way of reconciling special relativity with quantum mechanics. 
The Dirac equation is used in QFT instead of Schrödinger’s equa-
tion. The Dirac equation automatically has half-integral spin. This is 
why intrinsic spin is often said to be a relativistic effect. If the Dirac 
equation is a correct description of nature, and it seems to be that, 
then intrinsic spin must exist.

Some atomic particles have integral spin; pions, photons, some 
mesons, and bosons in general are of this nature. Some atomic par-
ticles have half-integral spin; electrons, quarks, -, and fermions in 
general are of this nature. Integral spin particles are dealt with in 
QFT by the Klein-Gorden equation. Half-integral spin particles are 
dealt with by the Dirac equation. The properties of the two types of 
particles are quite different. A particularly important difference is 
that the half-integral spin particles obey the Pauli exclusion princi-
ple whereas particles with integral span do not obey the Pauli exclu-
sion principle.

Aside: The Austrian physicist Wolfgang Ernst Pauli  (1900–1958) 
was, in 1930, the first to postulate the existence of the neutrino. In 
1940, he proved the spin-statistics theorem (see later), and, in 1945, 
he was awarded the physics Nobel prize. He is most famous for the 
Pauli spin matrices and for the Pauli exclusion principle. 

Among physicists of the time, it was reputed that Pauli had the abil-
ity to break laboratory equipment by simply standing close to it. This 
reputation became so engrained that it gained its own name; it was 
known as the Pauli effect, almost as if it were a physical law.

31.6 SPIN OPERATORS AND SPIN EIGENVECTORS

Intrinsic spin has only two possible eigenvectors called respec-

tively, and picturesquely but not accurately, spin up, ,
2


  and spin 

down, .
2


h

 If we had known this, perhaps from observation, we 

would have known that the operator associated with these two eigen-
vectors would be a Hermitian 2  2 matrix. Realizing that angular 
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momentum has three components would have led to three Hermi-
tian 2  2 matrices, and then to the total spin matrix. Since intrinsic 
spin is a different kind of angular momentum to the orbital kind, we 

denote the intrinsic spin operators  as     2 , , , .x y zS S S S

We choose to write the matrix operators with basis vectors that 
are the simultaneous eigenvectors of the intrinsic spin operators 
  2 , .zS S Because we choose this basis, the   2 , zS S  operators will be 

diagonal matrices with the eigenvalues on the leading diagonal. We 
therefore have:

   2
21 0 1 03

            :          
0 1 0 12 4zS S
   

       

   (31.20)

Now   ,x yS S  do not commute with .zS  This means that they are not 
diagonal unless written in a different basis to ,zS and to each other. 
This means that, in the zS  basis, the elements on the leading diago-

nals of the   ,x yS S  operators will be zero. This together with the 

hermicity property and the necessary commutation relations leads 
to the two operators:

  0 1 0
       :      

1 0 02 2x y

i
S S

i

   
    

   

 
 (31.21)

It was shown in 1928 by Paul Dirac that these matrices emerge 
naturally from the Dirac equation . The reader will often see these 

2  2 matrices written as    , ,x y z    rather than the more general 
   , , .x y zS S S

The eigenvectors are found by solving the eigenvalue equations. 
The eigenvectors are ordered pairs of complex numbers of the form:

 
a ib

c id

 
  

 (31.22)

These pairs of complex numbers (these complex vectors in 2) are 
called spinors . 

Aside: There seems to be no agreement as to the pronunciation of 
the word spinor; it is spelt as if the “i” were acute, but it is often pro-
nounced as if it were spelt “spinnor”. 
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We have:

  1 0
0 12z

a ib a ib a ib
S

c id c id c id
m

         
                   


 (31.23)

Since zS  commutes with 2 ,S  they must have the same basis (com-
plex) vectors, and so we have:

 2 1 03
0 14

a ib a ib a ib
S

c id c id c id
l

         
                  


 (31.24)

We see that the spinor will be an eigenvector of both the operators 

  2,zS S  with eigenvalues 
23

,  
4 2

l m  
 

 if {a  c  1, b  d  0}, 

and so we have the eigenvectors and eigenvalues of   2, :zS S

 
1 0

:                   :
0 12 2

m m
   

     
   

   (31.25)

In the same basis, the eigenvectors  of   ,x yS S  with 
2

m  


 are:

 





1 11 1
::     :       :     :

1 12 22 2

1 11 1
::     :       :     :

2 22 2

x

y

S

S
i i

   
   

   

   
      

 

 
 (31.26)

Remember that the inner product of two 2-component complex vec-
tors is:

 
c

a b
d

y f        
 

 (31.27)

31.7  UNITARY TRANSFORMATIONS OF SPIN 
MATRICES

The three matrices,    , ,x y zS S S  each represent spin in a differ-
ent direction. With a little thought, the reader will realize that they 
must be the same matrix written in three different bases which cor-
respond to three re-orientations of the co-ordinate system. We can 
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transform each of the spin matrices into the other spin matrices with 
a similarity transformation (remember that a similarity transforma-
tion is a change of basis) done with a unitary matrix. The unitary 
matrix  that transforms xS  into zS  is:

 
1 11
1 12

U
 

   
 (31.28)

Note that we have:

 † 1 1 1 1 1 01 1
1 1 1 1 0 12 2

U U
     

            
 (31.29)

We have:

    † 1 1 0 1 1 1 1 01 1
1 1 1 0 1 1 0 12 22 2x zU S U S
       

                  

 
 (31.30)

The above is illustrative of a general feature of non-commuting 
operators in quantum mechanics. If two quantum mechanical oper-
ators do not commute, they have different eigenfunctions (eigenvec-
tors), but the eigenfunctions (eigenvectors) differ only in that they 
are written in a different basis. We can change the eigenfunctions of 
one of a pair of non-commutating operators into the eigenfunctions 
of the other of the pair of non-commutating operators by a similar-
ity transformation using a unitary matrix – a unitary transformation.

In fact, the Pauli spin matrices together with the identity matrix 
form a 4-dimensional basis. We have:

       

0 1 0 0 0 11 1
0 0 1 0 1 02 2

0 0 1 01 1
0 0 0 12 2

1
2

a d b c

a d b c

ib ic i a d

ib ic i a d

a d a d b c b c a b

b c b c a d a d c d

        
               

         
                 

        
            

 (31.31)
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EXERCISES

1. Verify the orthonormality of the spinors of .zS

2. What effect does a similarity transformation with the unitary 

matrix (31.28) have upon  ?yS

3. What unitary matrix transforms yS  to  ?zS

4. What are the squares of the Pauli matrices? Are these square 
roots of unity?

5. Show that the Pauli matrices, 


is  relate to each other as:

 
  

x y y x zis s s s s  
 (31.32)

6. We have: 

 
0

0
s

 
   

z

i
i

i
  (31.33)

 Use:

 
a b

a ib
b a

 
    

 (31.34)

 And the block multiplication properties of matrices to write 
iz as a 4  4 matrix. Is this 4  4 matrix symmetric? Are the 
eigenvalues of symmetric matrices always real?
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CHAPTER 32
A REVISION OF THE 
STRUCTURE OF 
QUANTUM MECHANICS

Intrinsic spin is a very simple quantum mechanical system com-
prised of only two eigenvectors. Because it is so simple, we can use 
it to demonstrate the structure of quantum mechanics. This chapter 
will serve as a revision of what as gone before. We present this chap-
ter to “ram home” some of the previous chapters.

We will consider only intrinsic spin, and we will ignore all other 
aspects of a physical system. As is conventional, we will denote the 

spin up eigenstate as ;  this eigenstate has eigenvalue .
2
  We 

denote the spin down eigenstate as ; ; this eigenstate has eigen-

value .
2




 We work with .zS

 1. The general quantum mechanical state, ,y  is a superpo-
sition (linear sum) of the basis eigenstates. As far as zS  is 
concerned, this is:

    1 2

1 0
0 1

c c a ib c idy
   

          
   

 (32.1)

  We reiterate that the coefficients (amplitudes), ci, are com-
plex, and we reiterate that for most dynamic variables, the 
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vectors (eigenstates) have complex components, n. We 
take it that the coefficients are normalized.

 2. The probability that, upon observation, a physical system, 
say an electron, will be found to be in a particular eigenstate, 
i, is given by the modulus of the coefficient of that eigen-

state. The probability that the electron has the zS  compo-

nent of spin up,  , that is with eigenvalue ,
2
  is given by 

  2
1c a ib a ib   . The probability that the electron has 

the zS  component of spin down, ,  that is with eigenvalue 

,
2




 is given by   2
2c c id c id   . 

 3. Since we assumed the state y  was normalized, we have:

 2 2
1 2 1c c   (32.2)

  As we expect, total probability is equal to unity.

 4. The expectation value (roughly average value) of the z-com-
ponent of spin is:

 

 

 

1* *
1 2

2

2 2
1 2

2 2
1 2

1 0
0 12

2

2 2

z z

c
S S c c

c

c c

c c

y y
              

 

    
 





 

 (32.3)

Since the z-component of spin operator, ,zS and the total spin 
operator, 2 ,S  commute, the superposition of eigenstates of 
these operators is written in the same basis – they have the 
same eigenstates – and we also have the expectation value of 
the total spin operator as:

 



 

2
12 * *

1 2
2

2
2 2

1 2

2

1 03
0 14

3
4

3
4

c
S c c

c

c c

             

 









 (32.4)
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The direction we choose to be the z-axis is arbitrary. It would 
not matter what direction we chose as the z-axis, the only possible 

eigenstates would be the spin-up, ,  state and the spin down state, 

, with eigenvalues ,
2 2


   respectively.

EXERCISES

1. Using the 2  2 matrix form of the complex numbers and the 
block multiplication property of matrices, (This allows you to 
double the size of a matrix by replacing a complex number 
element by the 2  2 complex number matrix.) and the ma-

trices and expressions above (31.3) and (31.4), write   ,L L   

as 4  4 matrices. Are these symmetric or anti-symmetric 
matrices?

2. What are the eigenvalues of the matrix 
0 1

?
1 02
 
 
 



3. What are the eigenvectors of the matrix 
0 1

?
1 02
 
 
 



4. If a spin 1
2

 system is in the state 
51

,
16

f
 

  
  

 what is the 

probability that the system will be observed to be in the spin 
1
0

Spin up
 

  
 

 state?

5. Normalize the state 
6
3
 
 
 

The nuts.indb   281 09-05-2016   10:48:37



The nuts.indb   282 09-05-2016   10:48:39



CHAPTER 33
A STRANGE ASPECT OF 
INTRINSIC SPIN

Suppose that we have just measured the spin  of an electron to be 
in a particular direction. We now know with certainty that the spin is 
in that direction. We have:

 
2z

a ib a ib
S

c id c id

    
       

  (33.1)

We now choose to re-orientate our axes by rotating them through 
the angle . We now have:

 

  cos sin

cos 0 0 sin
0 cos sin 02 2

cos sin
sin cos2

z z xS S Sq q q
q q

q q

q q
q q

 

   
       

 
   

 



 (33.2)

This has matrix has eigenvalues .
2


h

 How-so-ever we choose to ori-

entate our axes, the eigenvalues are .
2


  It is the coeffi cients, ci, of 

the eigenstates within the superposition of eigenstates that change.
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The eigenvectors of zS q  associated with our rotated axes are:

 
cos sin

2 2,                         
sin cos

2 2

q q

q q

      
      

   
      

 (33.3)

These eigenvectors are double valued. If we rotate our axes through 

2, because of the 
2
q  within the components of the eigenstates, the 

eigenstates are not identical to the ones with which we started – they 
are the negatives of the ones with which we started. To get back 
to the original eigenstates, we must rotate through 4. This is the 

reason why we sometimes hear that electrons, and all other spin 1
2

 

particles, must be rotated through 720 to return to where the state 
in which they started. This reversal of state by rotation through 2 is 
not conceptually understood by anyone, but it has been confi rmed 
by experiment1 using neutrons.

33.1 MAGNETIC MOMENTS

The “doubling” of rotational period for intrinsic spin has mag-
netic effects. The orbital angular momentum of an electron is associ-
ated with a magnetic moment:

 
2 e

e
L

m
m  
 

 (33.4)

Wherein e is the charge of the electron and me is the mass of the 
electron. This is exactly what we would expect classically. However, 
the electron also has a magnetic moment due to its intrinsic spin , 
predicted by the Dirac equation :

 s
e

e
S

m
m  
 

 (33.5)

1. Greenberger. Rev. Mod. Phys, 55, 875–905 (1983).
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Notice the 2 has disappeared from the denominator, and so spin 
has twice as much magnetic dipole as orbital angular momentum. 
This is inexplicable classically.

33.2 SPIN WAVEFUNCTIONS

In QFT, intrinsic spin is dealt with using Dirac’s equation. How-
ever, it is possible to use Schrödinger’s equation. To do this, we need 
to allow the wavefunction , , to be a two component object:

    
 

1

2

,
,

,
t r

t r
t r

y
y
 

   
 

 (33.6)

This is what we mean when we speak of a two-valued wavefunction . 
The reader might recall that we previously stated that the wavefunc-
tion has to be single valued. Well, it does, but here we are making it 
two-valued. Normalization is:

  1 1 2 2 1dt y y y y    (33.7)

The Hamiltonian  for spin evolving in a magnetic fi eld is based upon 
the sum of the Pauli matrices :

 
2

z x y

x y z

B B iB
H

B iB B
g

 
     

  (33.8)

Wherein  is the gyro magnetic ratio. The TDSE is:

 

1

12

2

a
aa

i H
at

 
          

  (33.9)
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CHAPTER 34
IDENTICAL PARTICLES

Within the macroscopic world, we can always distinguish 
between two similar objects. Two white billiard balls might appear 
to be identical  at fi rst sight, but, with enough scrutiny, we would be 
able to detect minute differences between them. Even if we could 
not detect any differences between the billiard balls, when we make 
them collide on a billiard table, we are able to keep track of which 
one is which. This is not the case with atomic particles.

Every electron in the universe is identical to all other electrons. 
No amount of scrutiny will detect a single difference between any 
two electrons. It is as if there is only one electron that is in trillions 
of different places at the same time. Furthermore, if we collide two 
electrons together, we are unable to keep track of which is which. 
This is not because we lack a suffi ciently powerful microscope, it 
is because electrons have wave-like properties. Imagine a length 
of rope with identical wave producing machines at each end. The 
machines each produce a wave which travels towards the middle of 
the rope. When the waves collide, they become a temporary super-
position of the two waves, and then the two waves separate. The 
waves are identical, and we ask, “Did the waves pass through each 
other or did they rebound from each other?”. There is no way to 
know because the waves are identical. So it is with colliding elec-
trons. 

A state function of two electrons at {x1, x2} is of the form (x1, 
x2). The only observable associated with this state function is the 
modulus 2

1 2( , ) .x x  Because the particles are identical, the modulus 
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of the state function for the particles being “swapped” must be equal 
to the modulus of the “unswapped” electrons.

 
2 2

1 2 1 2( , ) ( , )x x x x   (34.1)

This means:

 
1 2 2 1

1 2 2 1

, ( , )
or

, ( , )



 

x x x x

x x x x

  

  

 (34.2)

We say that the fi rst of these possibilities is a symmetric wavefunc-
tion, and we say that the second of these possibilities is an anti-sym-
metric wavefunction. It is found that these two possibilities corre-
spond to two different types of particle. Particles with symmetric 
wavefunctions are called bosons, examples are the photon and the 
{W±, Z0} bosons. Particles with anti-symmetric wavefunctions are 
called fermions, examples are the electron and the quarks. Fermions 
are said to satisfy Fermi-Dirac statistics. Bosons are said to satisfy 
Einstein-Bose statistics.

34.1 THE PAULI EXCLUSION PRINCIPLE

The state function for  multiple different types of particles is a 
product of the state functions for the individual particles. For exam-
ple, the state function of a photon at x1 and an electron at x2 taken 
together is of the form:

 Photon 1 Electron 2( ) ( )x x   (34.3)
To form the total wavefunction of two particles that are in the same 
place, x1 = x2, we need to form a linear sum of the form:

    1 2 P1 1 P2 2 P1 2 P2 1, ( ) ( )  ( ) ( )x x x x x x       (34.4)

In which the coeffi cient is a normalizing constant. 

If the particles are identical bosons, 

 P1 1 P2 2 P1 2 P2 1( ) ( ) ( ) ( )x x x x     (34.5)
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and we have:

 1 2 1 1
1

( , ) 2
2Bosons x x x x     (34.6)

If the particles are identical fermions (and hence with identical wave-
functions) like two identical electrons, P1 1 P2 2 P1 2 P2 1( ) ( ) ( ) ( ),x x x xy y y y   
and we have:

 1 2( , ) 0Fermions x x   (34.7)

The probability of this state being observed is the modulus of this 
wavefunction:

 2
1 1( , ) 0FermionsP x x   (34.8)

We see that there is zero probability of two identical electrons, or 
other identical fermions, being at the same place. This is called the 
Pauli exclusion principle. It is essential that the electrons (fermions) 
are identical for the Pauli exclusion principle to apply. For example, 
if one electron has spin up and the other electron has spin down, the 
wavefunctions of these two electrons are not identical and these two 
electrons can be at the same place.

For bosons, there is no reason why identical bosons cannot be at 
the same place. For example, we can get as many photons as we like 
at the same place1.

Technically, two identical electrons are two electrons which have 
the same set of quantum numbers. These quantum numbers include 
4 numbers that are the electron’s position in space-time.

The entire electron structure of atoms is based upon the Pauli 
exclusion principle. Because intrinsic spin, either up or down, is an 
electron quantum number, two electrons with different spin can 
occupy the same place. Electrons can, and do, form spin up and spin 
down pairs that share a particular orbit in an atom; “share a particu-
lar orbit” means that the electrons have the same quantum numbers 
regarding orbital angular momentum, energy etc. The difference of 
one quantum number, spin, is suffi cient to make the electrons not 
identical. Once a pair of spin up and spin down electrons have occu-

1. Presumably, this is the nature of the photon torpedos used in Star Trek.
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pied an orbit, other electrons must have quantum numbers other 
than spin that are different from both electrons in the spin up spin 
down pair. These other quantum numbers are things like angular 
momentum, which is another way of saying that only two electrons, 
a spin up spin down pair, can occupy a particular atomic orbit. Elec-
tron orbitals are the basis of all chemistry as is encapsulated in the 
periodic table of the elements. And so you see, the periodic table of 
the elements is predicted by quantum mechanics – not bad eh!

34.2 THE SPIN STATISTICS THEOREM

The spin statistics theorem was fi rst derived by Markus Fierz 
(1912–2006) in 19392 and independently proven by Wolfgang Pauli 
in 19403. It is of central importance in quantum mechanics and quan-
tum fi eld theory. In a nutshell, the spin statistics theorem  simply says 
that particles with half integral spin are fermions and particles with 
integral spin are bosons.

Although the Pauli exclusion principle was originally brought 
into physics by Pauli as a basic principle, it is not a basic principle 
but a consequence of the spin statistics theorem. Even so, the name 
“Pauli exclusion principle” is still in common usage.

2. Uber die relativistische theorie kräfterfreier teichen mit beliebigem spin : Helvet-
ica Physica Acta 12: 3–37 (1939).
3.W. Pauli : The connection between spin and satistics : Phys Rev 58 716–722 (1940).
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CHAPTER 35
THE HYDROGEN ATOM

One of the earliest and one of the greatest achievements of quan-
tum mechanics is the prediction of the spectrum of the hydrogen 
atom. The spectrum of any element is the differences between the 
energy levels of the electrons within the atom. Quantum mechan-
ics, via the Pauli exclusion principle, is able not only to explain the 
energy levels of atoms but to also explain the whole structure of the 
chemical periodic table and thus the whole of chemistry. Quantum 
mechanics even explains the stability of DNA molecules that under-
pin life. To explain the hydrogen atom with perfect accuracy, in addi-
tion to quantum mechanics, we need to make minor relativistic cor-
rections, but they are no of concern in this book. The mathematics 
of the hydrogen atom  calculations are complicated, and we give only 
an outline here. 

35.1 A PARTICLE IN A CENTRAL POTENTIAL

The Hamiltonian for a particle of mass, me, in a central potential, 
V(r), is:

 
2

2 ( )
2 e

H V r
m

   
  (35.1)

The associated energy eigenvalue equation, TISE, is:

 
2

2 ( ) ( , , ) ( , , )
2 n nE n E

e

V r u r E u r
m

q f q f
 
    
 

  (35.2)
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In spherical polar co-ordinates, this is:

 

2
2

2

2

2

2 2 2

1

1
sin ( ) ( , , )

2 sin

1
sin

( , , )

n

n

E
e

n E

r
r rr

V r u r
m r

r

E u r

q q f
q qq

q f
q f

           
             
        



  (35.3)

Looking at the total orbital angular momentum operator, 2,L  we see 
that (35.3) can be written as:

 


2
2

2

2
2

1
2

( , , ) ( , , )
1

( )
2

n n

e
E n E

e

r
m r rr

u r E u r
L V r

m r

q f q f

         
 
  
 



 (35.4)

Looking at this, we see that, for a central potential, the Hamilto-
nian commutes with both 2L  and .zL  Because these three opera-
tors commute, it is possible to know the energy, total orbital angular 
momentum, and the z-component of the orbital angular momen-
tum simultaneously. We denote the eigenvectors of the two angular 
momentum operators with the letters {l, m}. Since the {, } depen-

dence of the Hamiltonian is entirely within the 2L term, we have:

 ( , , ) ( ) ( , )m
nlm nl lu r u r Yq f q f  (35.5)

Wherein the ( , )m
lY q f  are the spherical harmonics we dealt with 

above. We are thus able to write the Hamiltonian for a central 
potential as:

 
 

2
2

2

2

2

1
2

( ) ( )
1

( )
2

e
nl n nl

e

r
m r rr

u r E u r
l l

V r
m r

          
  
  




 (35.6)
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Aside: With enough algebraic manipulation, the Hamiltonian with a 
central potential, V(r), can be cast in the form:

 
2 2

( )
2 2

r t

e e

p p
H V r

m m
    (35.7)

Wherein pr is the momentum in a radial direction and pt is the 
momentum in the transverse direction.

35.2 THE HYDROGEN ATOM

For an atomic nucleus, the Coulomb potential  is:

 
2

( )
Ze

V r
r

    (35.8)

Where Z is the number of protons in the nucleus.

We put:

 

2
2

1
2 2

8
,                       

,                    
2

e
n n n

e
n n

n

m E
E E

Ze m
r

E

a

r a l

  

 
    

 





 (35.9)

And we get: 

  2
2 2

11 1
( ) 0

4
n

nl
l l

u
lr r

r r rr r
   

        
 (35.10)

There are singularities at {  0,   }, and we are seeking the 
eigenvalues n. A solution is:

 2( ) ( )s
nl nlu e L

r

r r r


  (35.11)

Wherein 

 ( )nlL a k
k

k

r r  (35.12)

The nuts.indb   293 09-05-2016   10:48:48



294 • Quantum Mechanics

This series must terminate to provide a solution. This leads to the 
energy levels of the electrons being given by:

 
2 21 1Z e     

 
 (35.13)

Wherein 
2

0 2
e

a
m e


  is the Bohr radius. For hydrogen, Z  1, and we 

have the electron energies of hydrogen are:

 
4

2 2
1

  :   1,2,3,...
2

e
Hydrogen

m e
E n

n
  


 (35.14)

35.3 ELECTRON ORBITS

The energy levels are determined by a single quantum number, 
n. This is called the principle quantum number. For each energy 
level, there are n values of orbital angular momentum correspond-
ing to the orbit al quantum numbers l  0, 1, 2, …(n1). l  0 corre-
sponds to a straight line oscillation through the nucleus. Correspond-
ing to each value of l, there is a total angular momentum eigenvalue 
of 2 ( 1)l l  . For each value of l, there 2l + 1 values of the magnetic 
quantum number, m, ranging as m  0, ±1, ±2,…±l Corresponding 
to each value of m, there is a lz eigenvalue of .m Although the cal-
culation above does not lead to it, there is associated with each orbit 
also a spin quantum number which is either up or down.

Each set of the quantum numbers , ,n l m  determines a particu-
lar eigenfunction. There are thus a number of different eigenfunc-
tions for each energy level. This is called degeneracy. Not count-
ing spin, there are n2 eigenstates for each value of n; counting spin, 
there are 2n2 eigenstates for each value of n.

The four quantum numbers , , ,n l m s  and the Pauli exclusion 
principle determine the chemistry and structure of the chemical ele-
ments as portrayed in the periodic table – that is not a small achieve-
ment for a theory. There is a lot of difference between the way we 
have deduced the structure of the atoms above and the way that 
Bohr arrived at almost the same place. Bohr arrived here by add-
ing guessed ad hoc rules to classical mechanics. We arrived here 
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by building a mathematical structure completely independently of 
classical mechanics. Our mathematical structure, in spite of it being 
profoundly different from the mathematical structure of classical 
mechanics, subcludes within it classical mechanics in macroscopic 
systems. This mathematical structure is called quantum mechanics.

EXERCISES

1. What type of functions are used to write the angular part of 
the wavefunction of the hydrogen atom?

2. What is the energy of the lowest (n  1) electron orbit in the 
hydrogen atom – give your answer in electron volts?
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CHAPTER 36
RELATIVISTIC 
QUANTUM 
MECHANICS

We moved from Newtonian mechanics to quantum mechanics 
by forming a quantum mechanical operator corresponding to every 
Newtonian dynamic variable except time such that the classical vari-
ables become quantum operators. If we take Maxwell’s theory of 
electromagnetism and do the equivalent change of dynamic vari-
ables into operators, then, because Maxwell’s theory is a relativistic 
theory, we will get a relativistic form of quantum mechanics . The 
quantum theory of radiation derived this way precisely confi rms 
Planck’s hypothesis that radiation may be considered as a collec-
tion of particles of zero mass (photons) with energy and frequencies 
determined as he hypothesized.

When these photons interact with electrons there is a probabil-
ity that the electron will absorb or emit a photon. The size of that 
probability of photon emission or photon absorption by electrons 
determines the strength of the electromagnetic force as expressed 
in the fi ne structure constant :

 
2 1

137
e
c

a  


   (36.1)
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Having constructed a relativistic quantum theory of radiation, we 
need to modify the Schrödinger equation for the hydrogen atom so 
that it too is consistent with the special theory of relativity. This was 
done by Dirac in 19281. The consequences of imposing special rela-
tivistic requirements upon quantum theory leads to:

 a. Electrons have intrinsic spin of .
2


 b. Spin will have double the magnetic moment of orbital mo-
mentum as expressed in 

 s
e

e
S

m
m  
 

 (36.2)

 c. There is an anti-particle to the electron - the positron.

 d. The energy levels of the hydrogen atom are changed slightly 
in a way that exactly agrees with experimental observations.

 e. There will be a “back reaction” on the electron from radia-
tion due to its orbital acceleration. This “back reaction” 
results in fine splitting of the electron energy levels. This fine 
splitting was measured by Willis Lamb (1913–2008) in 19472; 
it is known as Lamb shift  and the predictions exactly fit the 
observations. The calculations associated with the magnetic 
moment and other properties of the electron and the Lamb 
splitting are very complicated and are done by computer. 

  To date, using relativistic quantum mechanics, the magnetic 
moment of the electron has been calculated and verified by 
experiment to twenty-eight decimal places.

1. P.A.M.Dirac Proc. Roy. Soc. A117, 610 (1928).
2. Lamb, Willis, E, Retherford, Robert, C. (1947) “Fine structure of the hydrogen 
atom by a microwave method” Physical Review 72(3) 241–243.
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CONCLUDING 
REMARKS

This book is no more than an introduction to quantum mechan-
ics. I hope this book has provided the reader with a solid basis upon 
which to build a deeper knowledge of this very successful area of 
human endeavor.

I ended the book with the successful prediction of the peri-
odic table of the elements, the successful prediction of the spectra 
of hydrogen, and the extremely successful prediction of the mag-
netic moment of the electron. With such successes, it would seem 
that the theory of quantum mechanics is beyond question. It is not. 
Humankind does not properly understand the “weird” bits of quan-
tum mechanics such as superposition, collapse of the wavefunction, 
non-locality and entanglement. There are many often unasked ques-
tions about the universe which quantum mechanics does not answer:

 1. Why three Pauli matrices? Why not four or two? The three 
Pauli matrices can be written as six symmetric 
4 × 4 matrices. There are only six possible such matrices that 
are the square roots of plus one.

 2. What is spin? Angular momentum means different things in 
different types of space. Perhaps the existence of spin means 
we need to revise our concepts of space and time. 

 3. Why wave-particle duality? Why not a triality? We seem to 
live in a space with six 2-dimensional rotation planes. These 
six rotations are of two types, space-time and space-space. 
Perhaps this is why we have a duality of existence rather than 
the monality we might expect.

 4. What is mass? Although the Higgs mechanism proffers an 
explanation of the origin of mass, the Higgs mechanism is 
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seen by many theoretical physicists as messy and not beauti-
ful enough to be true. 

 5. What is electric charge? We speak of electric charge as if we 
know of what we speak, but  what electric charge really is we 
have not even a clue. 

 6. Where does gravity fit into quantum mechanics? There’s a 
Nobel prize for answering this question.

 7. What is space and time and how does empty space expand in 
the universe?

 8. What happens at the very high energies of the big bang?

 9. Why the particular particle content of the universe?

 10. How many physical constants are there, and why are they the 
values they are? We have seen that physical constants might 
be scaling parameters in different division algebras, but this 
research is still in its infancy.

 11. Why does nature have four forces instead of three or just 
one? Perhaps there are more forces at higher energies, 
super-symmetric forces perhaps.

 12. Is the Dirac function really a sensible thing?

Humanity’s quest to understand the universe is far from complete. 
Perhaps the reader will go on to deepen this understanding.

I hope the reader has been sitting comfortably through the 
whole of this book. I recommend that the reader now re-reads the 
book twice more; you will sit even more comfortably through the 
second reading than you did through the fi rst.
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APPENDIX

THE POSTULATES OF 
QUANTUM MECHANICS

This is a set of six postulates of quantum mechanics . From these, 
we can deduce all the consequences that, together with these pos-
tulates, are called the theory of quantum mechanics. It is possible to 
swap postulates for consequences, and other authors might give a 
slightly different set of postulates, but this set is the most commonly 
accepted set. 

POSTULATE 1

The state of a physical system at time t is represented by a com-
plex wavefunction , (t, x), such that the state is normalized:

  1dx






    (A.1)

We sometimes see this presented as: a particle moving in a potential 
(might be zero) is associated with a wavefunction. The two states 

( , ) &  ( , )it x e t x   are seen by the observer to be the same state. 

The unobserved state, (t, x) is a superposition (linear sum with 
complex coeffi cients) of all the possible observed states, i. 

 1 1 2 2 3 3 ...c c cy y y      (38.2)
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The observed state will be one of the possible observed states, 
i. The wavefunction, (t, x, y, z), is a single valued complex func-
tion of the space and time co-ordinates. The modulus squared of this 
wavefunction, , evaluated at a particular point in space and time 
is the probability density of the wavefunction at that particular point 
in space and time.

POSTULATE 2

A linear Hermitian operator  corresponds to each observable 
property (energy, momentum,…) of a physical system. The possible 
outcomes of measuring the observable property are the eigenvalues 
of the operator. The commutators of these operators are either zero 
or proportional to  .

POSTULATE 3

The momentum operator is  .xp i
x


 


  The position operator 

is .x x  Most other operators follow from this by copying the rela-
tions between Newtonian dynamic variables. An exception is intrin-
sic spin.

POSTULATE 4

The wavefunction, , is a linear sum of eigenfunctions, i, that 
are solutions to the time independent Schrödinger equation.  is 
normalized. If  = c11 + c22 + c33 + …, then the probability of 
the state i being observed is given by 2 .iP c .
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POSTULATE 5

The result of a measurement can be predicted with certainty 
only if the physical system is in a particular eigenstate, i, of the 
system, otherwise the result is a matter of chance.

POSTULATE 6

Associated with each physical system is a linear Hermitian 
energy operator, ,H  which determines the time evolution of the 

physical system through Schrödinger’s time dependent equation 
 .i H

t


 


  We often see this described as “The wavefunction sat-

isfi es the Time dependent Schrödinger equation at all times.”

A List of Physical Constants

Bohr magneton  

 
2B

e

e
m

m 
  24 19.274 10    J T 

Bohr radius 

 
2

0
0 2

4

e

a
m e
pe


  115.292 10    M

Boltzmann’s constant 

 kB 23 11.3807 10    J K 

Electron charge 

 e 191.602 10    C

Electron mass  

 me 319.109 10    Kg

Electron wavelength 

 0
e

h
m c

l    122.426 10    M
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Planck’s constant 

 h 
34

15

6.626 10    J S

4.135 10    eV





  
 

  
Aitch bar 

 
2
h
p

  341.0546 10    J S

Speed of light in vacuo 
 c 8 12.998 10    M S

Conversion Factors

191 eV 1.602 10    J  
301 Mev 1.78 10   Kg 

1 Å = 1010 M 

Useful Formulae

2

 axdx e
a
p






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annihilation operators, 247
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Boltzmann’s constant, 303
Born interpretation, 123
Born, Max, 123
bosons, 166
boundary conditions, 181

Newtonian wave equation, 44
bound states, 52
bound state wavefunctions, 52
bra, 71, 91

Brans-Dicke theory, 2

C

Cockle, James, 34
collapse into basis solution, 59–60
commutation of operators, 96
commutation relations, 88, 152
commutator of momentum and 
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commutator of two operators, 87, 160, 

171
commuting operators, 89, 99
compatible operators, 88–89
completeness, 54–55
complex numbers, 26

matrix form, 31
Compton, Arthur Holly, 140
Compton scattering, 139–140
Compton wavelength, 140
conjugate transpose, 80
conservation laws, 118
Copenhagen interpretation, 21
correspondence principle, 14, 16, 

93, 157
Coulomb potential, 293
creation operators, 247

D

Davisson and Germer experiment, 142
de Broglie, Louis, 140, 142
de Broglie wave, 176
de Broglie wave equation, 141
decoherence interpretation, 22
degeneracy, 207, 226–227
determinism, 19, 39, 190, 199
determinism of the SchrÖdinger 

equation, 41
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diagonalization, matrix, 82
diagonal matrix, 84
dimension of a linear space, 56
Dirac delta function, 106
Dirac equation, 274, 284
Dirac, Paul, A. M., 107
division algebras, 54
double slit experiment, 130–131
dynamic variables, 11

E

Ehrenfest’s theorem, 117–118, 251
eigenfunctions, 32, 76
eigenstate, 52, 59, 154
eigenvalue equation, 84, 85, 162
eigenvalues, 76, 97, 153

energy, 35
invariants of the system, 86
matrix, 77
Newtonian, 49
Newtonian wave equation, 43

Einstein, Albert, 138
Einstein-Podolsky-Rosen paradox, 109
Electron charge, 303
Electron mass, 303
electron orbits, 294–295
Electron wavelength, 303
energy

relativistic expression, 158
energy eigenvalue, 163
energy operator, 163, 169
entanglement, 110
even function, 231
Everett, Hugh, 22, 41
expectation value, 114, 170

F

fermions, 166
fi ne structure constant, 15, 147, 297
Fourier analysis, 48–49
free particles, 201
free particle solution of the TISE, 205
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General relativity, 1–2

geometrical units. See  mass-
dimensions; See  mass-dimensions; 
See  mass-dimensions

global phase, 200
Goudsmit and Uhlenbeck, 272
gravity, 1
ground state, 196
group velocity, 201
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Hamilton, William Rowan, 34
Hamiltonian, 34, 153, 154, 180

magnetic field, 285
Heisenberg uncertainty principle, 103
Heisenberg, Werner, 21, 22
Hermite polynomials, 68, 239
Hermite’s equation, 239
Hermitian matrix, 79
Hermitian operator, 78, 170, 302
Hertz, Heinrich, 131
hidden variables, 40, 111
Hilbert, David, 66
Hilbert space, 66
hydrogen atom, 291
hyperbolic complex numbers, 54
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ideal string, 43
identical particles, 287
infi nite square well, 211
inner product, 60

dagger notation, 64
of functions, 66
within a division algebra, 60
within n, 62, 63

interference, 130
intrinsic spin, 153, 166, 261, 267, 

272, 283
magnetic moment, 284
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Kennard, E, 22
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Klein-Gorden equation, 159
Kronecker delta, 169

The nuts.indb   308 09-05-2016   10:48:59



Index • 309

L

ladder operators, 269
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Legendre functions, 255
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linear differential equation 
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linear operators, 73, 151
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linear space, 46
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M
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matrix mechanics, 70
Maxwell, James Clerk, 130
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momentum eigenfunctions, 182
momentum operator, 31, 84, 94, 

154, 170
moving particles, 51, 201

N

Newtonian mechanics, 5
Newtonian wave equation, 43
non-commutativity of operators, 100
non-locality, 22
normalization, 196–197
normalization condition, 197–198

O

odd function, 231
operator, 74, 94

Newtonian, 49
products and sums, 86

orbital angular momentum, 166

orthogonal spaces, 7
orthogonality, 56–57
overlap integral, 67, 84, 162, 169

P

parity, 229
parity operator, 231–232
Pauli exclusion principle, 288–290
Pauli matrices, 89, 268, 285
Pauli, Wolfgang Ernst, 273
photo-electric effect, 138–139
Planck, Max, 134
Planck’s constant, 31, 134, 304
polarized light, 39
position operators, 106
postulates of quantum mechanics, 301
potential of a hydrogen atom, 169
probability, 121, 165

continuity equation, 124
current, 124

probability density, 123, 124

Q

quantitisation, 16
Quantum fi eld theory, 4
Quantum mechanics, 6–9
quantum tunneling, 222–224
quaternions, 54, 80

R

Rayleigh-Jeans formula, 133
real eigenvalues, 83
refl ection and transmission, 217
relativistic quantum mechanics, 297
representation, 93

Heisenberg, 70, 119
Schrödinger, 70, 118

Rutherford atom, 143
Rutherford, Ernest, 144

S

scaled complex numbers, 31
scaling parameter, 29
Schrödinger, Erwin, 20, 185–186
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Schrödinger’s cat, 20–21
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spin operators, 264, 274
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String theory, 6
superposition, 20, 164
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symmetric matrices, 83
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rotational, 12
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T
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time dependent Schrödinger equation, 
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euclidean, 23
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Uhlenbeck and Goudsmit, 261
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unitary linear operator, 81
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spin, 276
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