

Python

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading
of the Work onto the Internet or on a network (of any kind) without the written
consent of the Publisher. Duplication or dissemination of any text, code, simula-
tions, images, etc. contained herein is limited to and subject to licensing terms
for the respective products, and permission must be obtained from the Publisher
or the owner of the content, etc., in order to reproduce or network any portion of
the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accom-
panying algorithms, code, or computer programs (“the software”), and any ac-
companying Web site or software of the Work, cannot and do not warrant the
performance or results that might be obtained by using the contents of the Work.
The author, developers, and the Publisher have used their best efforts to insure
the accuracy and functionality of the textual material and/or programs contained
in this package; we, however, make no warranty of any kind, express or implied,
regarding the performance of these contents or programs. The Work is sold “as
is” without warranty (except for defective materials used in manufacturing the
book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and any-
one involved in the composition, production, and manufacturing of this work will
not be liable for damages of any kind arising out of the use of (or the inability to
use) the algorithms, source code, computer programs, or textual material con-
tained in this publication. This includes, but is not limited to, loss of revenue or
profit, or other incidental, physical, or consequential damages arising out of the
use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to re-
placement of the book, and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state, and might
not apply to the purchaser of this product.

Companion disc files are available for download from the publisher by writing
to info@merclearning.com.

An Introduction to Programming

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Python

James R. Parker
University of Calgary

An Introduction to Programming

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Python

James R. Parker
University of Calgary

Copyright ©2017 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic
display or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

James R. Parker. PYTHON: An Introduction to Programming.
ISBN: 978-1-9445346-5-3

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2016915244

161718321     Printed in the United States of America
This book is printed on acid-free paper.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free).
Digital versions of our titles are available at: www.authorcloudware.com and other e-vendors. All
companion files are available by writing to the publisher at info@merclearning.com.

The sole obligation of Mercury Learning and Information to the purchaser is to replace the book
and/or disc, based on defective materials or faulty workmanship, but not based on the operation
or functionality of the product.

Contents

Preface� xv

Chapter 0 Modern Computers� 1
0.1	 Calculations by Machine� 2
0.2	� How Computers Work and Why We Made Them� 3

0.2.1	 Numbers� 6
Example: Base � 7
Convert Binary Numbers to Decimal� 8
Convert Decimal Numbers to Binary� 8
Arithmetic in Binary� 9

0.2.2	 Memory� 11
0.2.3	 Stored Programs� 13

0.3	 Computer Systems Are Built in Layers� 17
0.3.1	 Assemblers and Compilers� 18
0.3.2	 Graphical User Interfaces (GUIs)� 19

Widgets� 20
0.4	 Computer Networks� 22

0.4.1	 Internet� 24
0.4.2	 World Wide Web� 25

0.5	 Representation� 26

vi ■ Contents

0.6	 Summary� 31

Chapter 1 Computers and Programming� 35
1.1	 Solving a Problem Using a Computer� 36
1.2	 Executing Python� 37
1.3	 Guess a Number� 39
1.4	 Rock-Paper-Scissors� 40
1.5	 Solving the Guess a Number Problem� 40
1.6	� Solving the Rock-Paper-Scissors Problem	� 41

1.6.1	� Variables and Values – Experimenting with the
Graphical User Interface	� 42

1.6.2	� Exchanging Information with the Computer� 45
1.6.3	 Example 1: Draw a Circle Using Characters� 46
1.6.4	 Strings, Integers, and Real Numbers� 47
1.6.5	 Number Bases	� 48
1.6.6	 Example 2: Compute the Circumference of any Circle� 49
1.6.7	 Guess a Number Again	� 50

1.7	 IF Statements� 52
1.7.1	 Else� 54

1.8	 Documentation	� 55
1.9	 Rock-Paper-Scissors Again� 57
1.10	 Types Are Dynamic (Advanced)� 60
1.11	 Summary� 62

Chapter 2 Repetition� 67
2.1	 The WHILE Statement� 69

2.1.1	 The Guess-A-Number Program Yet Again� 71
2.1.2	 Modifying the Game� 72

2.2	 Rock-Paper-Scissors Yet Again� 73
2.2.1	 Random Numbers� 74

2.3	 Counting Loops� 78
2.4	 Prime or Non-Prime� 79

2.4.1	 Exiting from a Loop� 82
2.4.2	 Else� 83

2.5	 Loops That are Nested� 84
2.6	 Draw a Histogram� 86

 Contents ■ vii

2.7	 Loops in General� 89
2.8	 Exceptions and Errors� 90

2.8.1	 Problem: A Final Look at Guess a Number	� 94
2.9	 Summary� 96

Chapter 3 Sequences: Strings, Tuples, and Lists� 101
3.1	 Strings� 102

3.1.1	 Comparing Strings� 103
Problem: Does a City Name, Entered at the Console, Come
before or after the Name Denver?	� 105

3.1.2	 Slicing – Extracting Parts of Strings� 105
Problem: Identify a “Print” Statement in a String� 106

3.1.3	 Editing Strings� 107
Problem: Create a JPEG File Name from a Basic String� 107
Problem: Change the Suffix of a File Name� 108
Problem: Reverse the Order of Characters in a String� 108
Problem: Is a Given File Name That of a Python Program?� 109

3.1.4	 String Methods	� 110
3.1.5	 Spanning Multiple Lines	� 112
3.1.6	 For Loops Again� 113

3.2	 The Type Bytes � 114
3.3	 Tuples� 115

3.3.1	 Tuples in For Loops� 116
Problem: Print the Number of Neutrons in an
Atomic Nucleus� 116

3.3.2	 Membership	� 118
Problem: What Even Numbers Less than or Equal to
100 are Also Perfect Squares?� 118

3.3.3	 Delete� 119
Problem: Delete the Element Lithium from the
Tuple Atoms, along with Its Atomic Number.� 119

3.3.4	 Update� 120
Problem: Change the Entry for Lithium to an
Entry for Oxygen� 120

3.3.5	 Tuple Assignment� 121
3.3.6	 Built-In Functions for Tuples� 122

viii ■ Contents

3.4	 Lists� 123
Problem: Compute the Average (Mean) of a List of Numbers� 124

3.4.1	 Editing Lists	� 125
3.4.2	 Insert� 126
3.4.3	 Append� 126
3.4.4	 Extend� 127
3.4.5	 Remove� 127
3.4.6	 Index� 128
3.4.7	 Pop� 128
3.4.8	 Sort� 129
3.4.9	 Reverse� 130
3.4.10	 Count� 131
3.4.11	 List Comprehension� 131
3.4.12	 Lists and Tuples	� 132
3.4.13	 Exceptions� 133

Problem: Delete the Element Helium from a List� 133
Problem: Delete a Specified Element from a List� 134

3.5	 Set Types� 135
3.5.1	 Example: Craps	� 136

3.6	 Summary� 138

Chapter 4 Functions� 143
4.1	� Function Definition: Syntax and Semantics� 144

4.1.1	 Problem: Use poundn to Draw a Histogram� 146
4.1.2	 Problem: Generalize the Histogram Code for Other Years� 147

4.2	 Function Execution� 149
4.2.1	 Returning a Value� 150

Problem: Write a Function to Calculate the
Square Root of its Parameter� 152

4.2.2	 Parameters� 153
4.2.3	 Default Parameters� 156
4.2.4	 None� 158
4.2.5	 Example: The Game of Sticks� 158
4.2.6	 Scope� 161
4.2.7	 Variable Parameter Lists� 163
4.2.8	 Variables as Functions� 165

Example: Find the Maximum Value of a Function� 167

 Contents ■ ix

4.2.9	 Functions as Return Values� 168
4.3	 Recursion� 170

4.3.1	 Avoiding Infinite Recursion� 175
4.4	 Creating Python Modules� 176
4.5	� Program Design Using Functions – Example: The Game of Nim� 178

4.5.1	 The Development Process Exposed� 182
4.6	 Summary� 184

Chapter 5 Files: Input and Output� 189
5.1	 What Is a File? A Little “Theory”� 191

5.1.1	 How Are Files Stored on a Disk?� 194
5.1.2	 File Access is Slow� 195

5.2	 Keyboard Input� 195
5.2.1	� Problem: Read a Number from the Keyboard

and Divide It by 2 � 196
5.3	 Using Files in Python: Less Theory, More Practice� 197

5.3.1	 Open a File� 198
File Not Found Exceptions� 199

5.3.2	 Reading from Files� 200
End of File� 201
Common File Input Operations� 202
CSV Files� 205
Problem: Print the Names of Planets Having Fewer
Than Ten Moons� 205
Problem: Play Jeopardy Using a CSV Data Set� 208
The With Statement� 210

5.4	 Writing To Files� 211
Example: Write a Table of Squares to a File� 212

5.4.1	 Appending Data to a File	� 212
Example: Append Another 20 Squares to the
Table of Squares File� 213

 	 5.5	 Summary� 213

Chapter 6 Classes� 217
6.1	 Classes and Types� 219

6.1.1	 The Python Class – Syntax and Semantics� 221
6.1.2	 A Really Simple Class� 223

x ■ Contents

6.1.3	 Encapsulation	� 227
6.2	 Classes and Data Types	� 228

6.2.1	 Example: A Deck of Cards� 229
6.2.2	 A Bouncing Ball� 231
6.2.3	 Cat-A-Pult� 237

Basic Design� 237
Detailed Design� 238

6.3	 Subclasses and Inheritance� 243
6.3.1	 Non-Trivial Example: Objects in a Video Game� 243

6.4	 Duck Typing� 246
6.5	 Summary� 248

Chapter 7 Graphics	� 253
7.1	� Introduction to Graphics Programming� 254

7.1.1	 Essentials: The Graphics Window and Colors� 255
7.1.2	 Pixel Level Graphics� 257

Example: Create a Page of Notepaper	� 258
Example: Creating a Color Gradient� 258

7.1.3	 Lines and Curves� 260
Example: Notepaper Again� 260

7.1.4	 Polygons� 262
7.1.5	 Text� 263
7.1.6	 Example: A Histogram� 264
7.1.7	 Example: A Pie Chart� 268
7.1.8	 Images� 271

Pixels� 273
Example: Identifying a Green Car� 274
Example: Thresholding� 275
Transparency� 276

7.1.9	 Generative Art	� 277
7.2	 Summary� 280

Chapter 8 Manipulating Data� 285
8.1	 Dictionaries� 287

8.1.1	 Example: A Naive Latin – English Translation� 289
8.1.2	 Functions for Dictionaries� 291
8.1.3	 Dictionaries and Loops� 292

 Contents ■ xi

8.2	 Arrays� 293
8.3	 Formatted Text, Formatted I/O� 294

8.3.1	 Example: NASA Meteorite Landing Data� 295
8.4	 Advanced Data Files� 299

8.4.1	 Binary File� 299
Example: Create a File of Integers� 300

8.4.2	 The Struct Module� 301
Example: A Video Game High Score File� 301

8.4.3	 Random Access	� 304
Example: Maintaining the High Score File in Order� 305

8.5	 Standard File Types� 306
8.5.1	 Image Files� 306
8.5.2	 GIF� 307
8.5.3	 JPEG� 309
8.5.4	 TIFF� 310
8.5.5	 PNG� 312
8.5.6	 Sound Files� 314

WAV� 314
8.5.7	 Other Files� 315

HTML� 316
EXE� 317

8.6	 Summary� 318

Chapter 9 Multimedia� 323
9.1	 Mouse Interaction� 324

Example: Draw a Circle at the Mouse Cursor� 325
Example: Change Background Color Using the Mouse� 327

9.1.1	 Mouse Buttons	� 328
Example: Draw Lines Using the Mouse� 328
Example: A Button� 329

9.2	 The Keyboard� 330
Example: Pressing a “+” Creates a Random Circle� 331
Example: Reading a Character String� 334

9.3	 Animation� 335
9.3.1	 Object Animation� 336

Example: A Ball in a Box� 336
Example: Many Balls in a Box� 338

xii ■ Contents

9.3.2	 Frame Animation� 340
Example: Read Frames and Play Them Back as
  an Animation� 340
Example: Simulation of the Space Shuttle Control
Console (A Class That Will Draw an Animation at a
Specific Location)	� 342

9.4	 RGBA Colors – Transparency� 346
9.5	 Sound� 347

Example: Play a Sound� 348
Example: Control Volume Using the Keyboard.
Pause and Unpause� 349
Example: Play a Sound Effect at the Right Moment: Bounces� 349

9.6	 Video� 350
Example: Carclub – Display the Video carclub2.mpg
(Annotated)� 352
Exercise: Threshold a Video (Processing Pixels)	� 355

9.7	 Summary� 357

Chapter 10 Basic Algorithms� 361
10.1	 Sorting� 361

10.1.1	 Selection Sort	� 362
10.1.2	 Merge Sort� 365

10.2	 Searching� 369
10.2.1	 Timings� 370
10.2.2	 Linear Search	� 371
10.2.3	 Binary Search� 371

10.3	 Random Number Generation� 373
10.3.1	 Linear Congruential Method� 374

10.4	 Cryptography� 376
10.4.1	 One-Time Pad� 378
10.4.2	 Public Key Encryption (RSA)� 379

Example: Encrypt the Message
  “Depart at Dawn” Using RSA� 380

10.5	 Compression� 382
10.5.1	 Huffman Encoding� 385
10.5.2	 LZW Compression� 392

 Contents ■ xiii

10.6	 Hashing� 396
djb2� 397

10.6.1	 sdbm� 398
10.7	 Summary� 398

Chapter 11 Programming for the Sciences� 403
11.1	 Finding Roots of Equations� 404
11.2	 Differentiation� 406
11.3	 Integration� 408
11.4	 Optimization: Finding Maxima and Minima� 410

11.4.1	 Newton Again	� 411
11.4.2	 Fitting Data to Curves – Regression� 413
11.4.3	 Evolutionary Methods� 416

11.5	 Longest Common Subsequence (Edit Distance)� 421
11.5.1	 Determining Longest Common Subsequence (LCS)� 422

11.6	 Summary� 427

Chapter 12 How to Write Good Programs� 431
12.1	 Procedural Programming – Word Processing� 433

12.1.1	 Top-Down� 434
12.1.2	 Centering� 443
12.1.3	 Right Justification� 445
12.1.4	 Other Commands� 447

12.2	 Object Oriented Programming – Breakout� 452
12.3	 Describing the Problem as a Process� 453

12.3.1	 Initial Coding for a Tile� 456
12.3.2	 Initial Coding for the Paddle� 457
12.3.3	 Initial Coding for the Ball� 459
12.3.4	 Collecting the Classes� 461
12.3.5	 Developing the Paddle� 462
12.3.6	 Ball and Tile Collisions� 463
12.3.7	 Ball and Paddle Collisions� 466
12.3.8	 Finishing the Game� 467

12.4	 Rules for Programmers� 470
12.5	 Summary� 477

xiv ■ Contents

Chapter 13 Communicating with the Outside World� 479
13.1	 Email� 481

Example: Send an Email� 481
13.1.1	 Reading Email	� 484

Example: Display the Subject Headers for
Emails in Inbox� 485

13.2	 FTP� 490
Example: Download and Display the README
File from an FTP Site� 491

13.3	 Communication Between Processes� 492
Example: A Server That Calculates Squares� 493

13.4	 Twitter� 497
Example: Connect to the Twitter Stream and
Print Specific Messages� 498

13.5	 Communicating with Other Languages� 502
Example: Find Two Large Relatively Prime Numbers� 502

13.6	 Summary� 504

Chapter 14 A Brief Glib Reference� 507
14.1	 Glib tkinter � 507
14.2	 Images� 510
14.3	 Dynamic Glib� 512
14.4	 Video� 516
14.5	 Audio � 518
14.6	 Interaction� 518
14.7	 Other� 518

Index� 521

Preface
This book is intended to teach introductory programming. Material is included
for the introductory computer science course, but also for students and readers in
science and other disciplines. I firmly believe that programming is an essential
skill for all professionals and especially academics in the 21st century and have
emphasized that in the content discussed in the book.

The book uses a “just-in-time” approach, meaning that I try to present new
information just before or just after the reader needs it. As a result, there are nu-
merous examples, carefully selected to fit into their proper places in the text. Not
too soon, and not too late.

I believe in object-oriented programming. My master’s thesis in the late 1970s
was on that subject, cut my teeth on Simula, was there when C++ was created,
and knew the creator of Java. I do not believe that object-oriented programming
is the only solution, though, and realized early that good objects can only be de-
vised by someone who can already program. I am therefore not an “objects first”
instructor, but a “whatever works best” instructor.

Many of the examples involve computer games and game development. As we
know, the majority of undergraduate students play games. They understand them
better than, say, accounting or inventory systems, which have been the typical early
assignments. I believe in presenting students assignments that are interesting.

I don’t think that catering to any particular language form in an introductory
text serves the student or the language. The student, if sensible, will learn other

xvi ■ Preface

languages. Bringing Python idioms into play too soon may interfere with the gen-
erality of the ideas being presented and will not assist the student when learning
Java, C++, or Ruby.

This book introduces a multimedia code module Glib that can assist the pro-
grammer with graphics, animation, sound, interaction, and video. Glib is includ-
ed on the companion disc or can be downloaded from the book’s web site. The
basic library, static Glib, needs nothing but a standard 3.4 or better installation
of Python. It uses tkinter as a basis, which is distributed with the language. The
expanded library uses pygame, and that is easily downloaded and installed. The
extended Glib, called dynamic Glib, allows exactly the same interface as does
static Glib, but extends it to also include sound, interface, and video. Thus, if
static Glib compiles and runs a program, then dynamic Glib should too.

There is a wiki concerning the book at https://sites.google.com/site/python-
parker/ and I am happy to receive comments, code fixes, extensions, extra teach-
ing material, and general suggestions. I see a good textbook as a community, and
encourage everyone – especially first year students, the target audience of this
book - to send me their experiences and ideas.

Software (any computer program) is ubiquitous. Cars, phones, refrigerators,
television, (and almost everything in our society) are computerized. Decisions
made about how a program is to be built tend to survive, and even after many
modifications, they can affect how people use that device or system. Creating ef-
ficient software helps in achieving a productive and happy civilization.

Python is a great language for beginning programmers. It is easy to write
the first programs, because the conceptual overhead is small. That is, there’s no
need to understand what “void” or “public” means at the outset. Python does
many things for a programmer. Do you want something sorted? It’s a part of the
language. Lists and hash tables (dictionaries) are a part of the language. You can
write classes, but do not have to, so it can be taught objects first or not. The re-
quired indentation means that it is much harder to place code incorrectly in loops
or if statements. There are hundreds of reasons why Python is a great idea.

And it is free. This book was written using version 3.4, and with the PyCharm
API. The modules used that require download are few, but include PyGame and
tweepy. All free.

Preface ■ xvii

Overview of Chapters
Here’s a brief outline of the book. It can be used to teach computer science majors
or science students who wish to have a competency in programming.

Chapter 0: Historical and technological material on computers. Binary num-
bers, the fetch-excute cycle. This chapter can be skipped in some syllabi.

Chapter 1: Problem solving with a computer; breaking a problem down so it
can be solved. The Python system. Some simple programs involving games that
introduce variables, expressions, print, types, and the if statement.

Chapter 2: Repetition in programming: while and for statements. Random
numbers. Counting loops, nested loops. Drawing a histogram. Exceptions (try-
except).

Chapter 3: Strings and string operations. Tuples, their definition and use.
Lists and list comprehension. Editing, slices. The bytes type. And set types. Ex-
ample: the game of craps.

Chapter 4: Functions: modular programming. Defining a function, calling
a function. Parameters, including default parameters, and scope. Return values.
Recursion. The Game of Sticks. Variable parameter lists, assigning a function to a
variable. Find the maximum of a mathematical function. Modules. Game of Nim.

Chapter 5: Files. What is a file and how are files represented. Properties of
files. File exceptions. Input, output, append, open, close. Comma separated value
(CSV) files. Game of Jeopardy. The with statement.

Chapter 6: Classes and object orientation. What is an object and what is a
class? Types and classes. Python class structure. Creating instances, __init__
and self. Encapsulation. Examples: deck of playing cards; a bouncing ball; Cat-
a-pult. Designing with classes. Subclasses and inheritance. Video game objects.
Duck typing.

Chapter 7: Graphics. The Glib module. Drawing window; color representa-
tion, pixels. Drawing lines, curves, and polygons. Filling. Drawing text. Exam-
ple: Histogram, Pie chart. Images and image display, getting and setting pixels.
Thresholding. Generative art.

Chapter 8: Data and information. Python dictionaries. Latin to English
translator. Arrays, formatted text, formatted input/output. Meteorite landing

xviii ■ Preface

data. Non-text files and the struct module. High score file example. Random ac-
cess. Image and sound file types.

Chapter 9: Digital media: dynamic Glib module. Using the mouse and the
keyboard. Animation. Space shuttle control console example. Transparent colors.
Sound: playing sound files, volume, pause. Video: play and position a video, ac-
cessing frames and pixels in a video.

Chapter 10: Basic algorithms in computer science. Sorting (selection,
merge) and searching (linear, binary). Timing code execution. Generating ran-
dom numbers; cryptography; data compression (including Huffman codes and
RLE); hashing.

Chapter 11: Programming for Science. Roots of equations; differentiation
and integration. Optimization (minimum and maximum) and curve fitting (re-
gression). Evolutionary algorithms. Longest common subsequence, or edit dis-
tance.

Chapter 12: Writing good code. A walk through two major projects: a word
processor written as procedural code and a breakout game written as object ori-
ented code. A collection of effective rules for writing good code.

Chapter 13: Dealing with real world interfaces, which tend to defined for
you. Examples are Email (send and receive), FTP, inter-process communication
(client-server), Twitter, calling other languages like C++.

Chapter 14: A reference for both versions of Glib.

Chapter Coverage for Different Majors
A computer science introduction could use most chapters, depending on the
background of the students, but Chapters 0, 7, 9, and / or 11 could be omitted.

An introduction to programming for science could omit chapters 0, 10, 12.

Chapter 13 is always optional, but is interesting as it explains how social
media software works under the interface.

Basic introduction to programming for non-science should include
Chapters 0, 1, 2, 3, 4, 5, and 7.

Preface ■ xix

Companion Files (Disc included in physical book or files avail-
able for downloading)
The companion files contain useful material for each chapter:

•	 �Selected exercises are solved, including working code when that is a part of
the solution.

•	 �All significant programming examples are provided as Python code
files(over 100), that can be compiled and executed, and that can be modi-
fied as exercises or class projects. This includes sample data files when
appropriate.

•	 �An important aspect of this book is the use of a graphics library named
Glib. Source code for this module is provided on the disc and online. There
are two versions: one that works with the built-in module tkinter which
allows graphics, and a second that extends the previous module using
pyGame and allows videos, interaction, and sound.

•	 �All figures are available as images, in full color.

Instructor Ancillaries
•	 �Solutions to almost all of the programming exercises given in the text.

•	 �MS PowerPoint lectures provided for an entire semester (35 files) including
some new examples and short videos.

•	 �Likely the most important aspect of this book, aside from the very practical
viewpoint, is the provision of the Glib graphics and multimedia library.
This comes in two versions: a universal version that handles basic graph-
ics and that can execute without any extra installation step; and the full
multimedia extension that handles sound, video, and interaction, but that
requires that pyGame be installed, which is a simple process.

•	 �All of the Python code that appears in the books has been executed, and all
complete programs are provided as .py files. Some of the numerous pro-
gramming examples (over 100) that are explored in the book and for which
working code is included:

o	 An interactive breakout game

o	 A text formatting system

xx ■ Python: An Introduct ion to Programming

o	 Plotting histograms and pie charts

o	 Reading Twitter feeds

o	 Play Jeopardy Using a CSV Data Set

o	 Sending and receiving Email

o	 A simple Latin to English translator

o	 Rock-Paper-Scissors

•	 �Hundreds of answered multiple choice quiz and examination questions in
MS Word files that can be edited and used in various ways.

Dedicated Web Site
An online community has been started at https://sites.google.com/site/python-
parker/ for comments, new exam questions and exercises, extra code, and as a
place to report problems.

Please consider contributing material to the on-line community, and do have
fun. If you don’t, then you’re doing it wrong.

J. Parker
October 2016

■ ■ ■ ■ ■

In this chapter

Humans are tool makers and tool users. This is not unique in the animal
kingdom, but the facility that humans have with tools and the variety
of applications we have for them does make us unique. Starting with
mechanical tools (machines) like levers and wheels that could lighten
the physical effort of everyday life, more and more complex and specific
devices have been created to assist with all facets of our lives. This
was extended in the twentieth century to assisting with mental efforts,
specifically calculation.

Computers are devices that humans have built in order to facilitate complex
calculations. Early computers were used to do some of the computations needed
to design the first nuclear bombs, but now computers seem to be everywhere, even
embedded within cars and kitchen appliances, and even within our own bodies.
The success of these devices in such a wide range of application areas is a result
of their ability to be programmed—that is, the device itself is only a potential

0Chapter

Modern
Computers

0.1	 Calculations by Machine ��2
0.2	 How Computers Work and Why we Made Them��3
0.3	 Computer Systems are Built in Layers�� 17
0.4	 Computer Networks ��22
0.5	 Representation��26
0.6	 Summary�� 31

2 ■ Python: An Introduct ion to Programming

when first built and has no specific function. It is designed to be configured to do
any task that requires calculations, and the configuring process is what we call
programming.

To some extent this has taken the place of a lot of other tool development that
used to be done by engineers. When designing a complex machine like an auto-
mobile, for example, there used to be a lot of mechanical work involved. The care-
ful timing of the current to the spark plug was accomplished by rotating shafts
with sensors, and resulted in the firing of each cylinder at the correct moment.
The air to gasoline mixture fed into the engine was controlled by tubes and cables
and springs. Now all of these things and many more are done using computers
that sense electric and magnetic events, do calculations, and send electrical con-
trol signals to actuators in the engine. The same computer can be used to control
a refrigerator, make telephone calls on a cellular phone, change channels on a
television, and wake you up in the morning. It is the flexibility of the computer
that has led to them becoming a dominant technology in human society, and the
flexibility comes largely from their ability to be programmed.

	 0.1	 CALCULATIONS BY MACHINE
People have been calculating things for thousands of years, and have always

had mechanical aids to help.

When someone programs a computer, they are really communicating with it.
It is a very imperative and precise communication to be sure. Imperative because
the computer has no choice; it is being told what to do, and will do exactly that.
Precise because a computer does not apply any interpretation to what it is being
told. Human languages are vague and subject to interpretation and ambiguity.
There are sentences that are legal in terms of syntax that have no real meaning:
“Which is faster, to Boston or by bus?” is a legal sentence in English that has no
meaning. Such things are not possible in a computer language. Also, computers
do not think and so can’t evaluate a command that would amount to “expose the
patient to a fatal dose of radiation” with any skepticism. As a result, we, as pro-
grammers, must be careful and precise in what we instruct the machine to do.

When humans communicate with each other we use a language. Similarly,
humans use languages to communicate with computers; it is easy for us. Such

 Chapter 0 · Modern Computers ■ 3

languages are artificial (humans invented them for this purpose, all at once),
terse (there are few if any modifiers, no way to express emotions or gradua-
tions of any feeling), precise (each item in the language means one thing), and
written (we do not speak to the computer in a programming language. Not yet,
perhaps never).

Computer languages operate at a high level, and do not represent the way the
computer actually works. For the purposes of learning to program there are a few
fundamental things that need to be known about computers. It’s not required to
know how they operate electronically, but there are basic principles that should
be understood in order to put the process of using computers in practical contexts.

	 0.2	� HOW COMPUTERS WORK AND
WHY WE MADE THEM

The reason people use computers is different depending on the point in his-
tory in which one looks, but the military always seems to be involved. There
have been many calculating devices built and used
throughout history, but the first one that would
have been programmable was designed by Charles
Babbage. The military, as well as the mathemati-
cians of the day, were interested in more accurate
mathematical tables, such as those for logarithms.
At the time these were calculated by hand, but the
idea that a machine could be built to compute more
digits of accuracy was appealing. This would have
been a mechanical device of gears and shafts, but
it was not completed due to budget and contracting
issues.

Babbage continued his work in design and cre-
ated, on paper, a programmable mechanical device
called the analytical engine in 1837. What does
programmable mean? A calculation device is ma-
nipulated by the operator to perform a sequence of
operations: add this to that, then subtract this and
divide by something else. On a modern calculator

Figure 0.1
Punched cards for the analytical
engine.

4 ■ Python: An Introduct ion to Programming

this would be done using a sequence of
key presses, but on older devices it may
involve moving beads along wires or ro-
tating gears along shafts. Now imagine
that the sequence of key presses can be en-
coded on some other media: a set of cams,
or plugs into sockets, or holes punched
into cards. This is a program.

Such a set of punched cards or cams
would be similar to a set of instructions
written in English and given to some hu-
man to calculate, but would instead be
coded in a form (language) that the com-
puting device could use immediately. The

directions on the cards could be changed so that something new could be com-
puted as needed. The difference engine would only find logarithms and trigono-
metric functions, but a device that could be programmed in this way could, in
theory, calculate anything. The analytical engine was programmed by punching
holes in stiff cards, an idea that was derived from the Jacquard loom of the day.
The location of holes would indicate either an operation (e.g., add, subtract, etc.)
or data (a number). A sequence of such cards would be executed one at a time and
yield a value at the end.

Although the analytical engine was never completed, a program was written
for it, but not by him. The world’s first programmer may have been a woman,
Augusta Ada King, Countess of Lovelace. She worked with Babbage for a few
years and wrote a program to compute Bernoulli numbers. This is the first algo-
rithm ever designed for a computer and is often claimed to be the first computer
program ever written, although it was never executed.

The very concept of programmability is a more important development
than is the development of the difference or analytical engines. The idea that
a machine can be made to do different things depending on a user-defined
set of instructions is the very basis of all modern computers, while the use
of mechanical calculation has become obsolete; it is too slow, expensive, and
cumbersome. This is where it began, though, and the programming concept is
the same today.

Figure 0.2
A portion of Babbage’s analytical engine.

 Chapter 0 · Modern Computers ■ 5

Figure 0.3
Possibly the word’s first program: to calculate Bernoulli numbers on the analytical engine.

Figure 0.4
The Colossus computer breaking a code during World
War II with the help of Dorothy Du Boisson (left) and Elsie
Booker.

During World War II computers made the leap to being electrical. Work
on breaking codes and build-
ing the atomic bomb re-
quired large amounts of
computing. Initially some of this
was provided by rooms full of
humans operating mechanical
calculators, but they could not
keep up with the demand, so elec-
tronic computers were designed
and built. The first was Colossus,
designed and built by Tommy
Flowers in 1943. It was created
to help break German military
codes, and an updated version
(Mark II) was built in 1944.

6 ■ Python: An Introduct ion to Programming

In the United States there was a need for computational power in Los Alamos
when the first nuclear weapons were being built. Electro-mechanical calcula-
tors were replaced by IBM punched-card calculators, originally designed for ac-
counting, and these were a little faster than the humans running calculators, but
could run twenty-four hours a day and made fewer errors. This computer was
programmed by plugging wires into sockets to create new connections between
components.

	0.2.1	 Numbers

The electronic computers described so far, and those of the 1940s generally,
had almost no storage for numbers. Input was through devices like cards, and
they could have numbers on them. They could be transferred to the computation
unit, then moved ahead or back, and perhaps read again. Memory was a primitive
thing, and various methods were devised to store just a few digits. A significant
advance came when engineers decided to use binary numbers. This will require
some explanation.

Electronic devices use current and voltage to represent information, such
as sounds or pictures (radio and television). One of the simplest devices is a
switch, which can open and close a circuit and turn things like lights on and
off. Electricity needs a complete circuit or route from the source of electrons,
the negative pole of a battery perhaps, to the sink, which could be the posi-

tive pole. Electrons, which is what electricity
is, in a simple sense, f low from the negative to
the positive poles of a battery. Electricity can
be made to do work by putting devices in the
way of the f low of electrons. Putting a lamp in
the circuit can cause the lamp to light up, for
example.

A switch makes a break in the circuit, which
stops the electrons from flowing; they cannot
jump the gap. This causes the lamp to go dark.
This seems obvious to anyone with electric lights
in their house, but what may not be so obvious is
that this creates two states of the circuit, on and

Battery Switch

Lamp

+ –

Figure 0.5
The switch is closed and the current
is flowing, turning the lamp on. This
is a “1.”

 Chapter 0 · Modern Computers ■ 7

off. These states can be assigned numbers. Off
could be 0, for example, and on could be 1. This
is how most computers represent numbers: as on/
off or 1/0 states. To be more clear about this way
of representing numbers, consider the usual way,
which is called positional numbering.

Most human societies now use a system that
uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The
number 123 is a combination of digits and pow-
ers of ten. It is a shorthand notation for 100 +
20 + 3, or 1  102 + 2*101 + 3*100. Each digit is
multiplied by a power of ten and summed to get
the value of the number. Anyone who has been to school accepts this and does not
think about it, but really the value used as the basis of the system, ten, is not magi-
cal. It simply happens to be the number of digits humans have on their hands. Any
base would work almost as well.

Example: Base

Numbers that use 4 as a base can only have the digits 0,1,2, and 3. Each posi-
tion in the number represents a power of 4. Thus the number 123 is, in base 4,
1  42 + 2*41 + 3*40, which is 1  16 + 2*4 + 3 = 16 + 8 + 3 = 27 in traditional
base 10 representation.

This could get confusing, what with various bases and such, so numbers will
be considered to be in base 10 unless specific by a suffix. 1234 is 123 in base 4,
whereas 1238 is 123 in base 8, and so on.

Binary numbers can have digits that are 1 or 0. The numbers are in base 2,
and can therefore only have the digits 0 and 1. These numbers can be represented
by the on/off state of a switch or transistor, which is an electronic switch, which
is why they are used in electronic computers. Modern computers represent all
data as binary numbers because it is easy to represent those numbers in electronic
form; a voltage is arbitrarily assigned to “0” and to “1.” When a device detects a
particular voltage, it can then be converted into a digit, and vice versa. If 2 volts
is assigned to a 0 and 5 volts is assigned to a 1, then the following circuit could
signal a 0 or 1 depending on what switch was selected:

Battery Switch

Lamp

+ –

Figure 0.6
The switch is off (open) and the lamp
is off, indicating a “0.”

8 ■ Python: An Introduct ion to Programming

2 V

5 V

2V
 =

 0

	    

2 V

5 V

	 (a)	 (b)

Figure 0.7
(a) A configuration giving a 2-volt value, or a zero.
(b) A configuration giving a 5-volt value, or a one.

Convert Binary Numbers to Decimal

Consider the binary number 110112. It can be converted in base 10 by multiply-
ing each digit by its corresponding power of two and then summing the results.

Digit 1 1 0 1 1
Position 4 3 2 1 0
Power of 2 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1
Digit*power 16 8 0 2 1
Sum is 16 + 8 + 2 + 1 = 2710

Some observations:

•	 Terminology: A digit in a binary number is called a bit (for binary digit)
•	 Any even number has 0 as the low digit, which means that odd numbers

have 1 as the low digit.
•	 Any exact power of two, such as 16, 32, 64, and so on, will have exactly

one digit that is a 1, and all others will be 0.
•	 Terminology: A binary digit or bit that is 1 is said to be set. A bit that is

0 is said to be clear.

Convert Decimal Numbers to Binary

Going from base 10 to base 2 is more complicated than the reverse. There
are a few ways to do the calculation, but here’s one that many people find easy to

 Chapter 0 · Modern Computers ■ 9

understand. If the lowest digit (rightmost) is 1 then the number is odd, and other-
wise it is even. If the number 7310 is to be converted into binary the rightmost digit
will be 1, because the number is odd.

The next step is to divide the number by 2, eliminating the rightmost binary
digit, the one that was just identified, from the number. 7310 / 210 = 3610, and there
can be no fractional part, so any such part is to be discarded. Now the problem
is to convert 3610 to binary and then append the part already converted to that. Is
3610 even or odd? It is even, so the next digit is 0. The final two digits of 7310 in
binary are 01.

The process is repeated:

Divide 36 by 2 to get 18, which is even, so the next digit is 0.
Divide 18 by 2 to get 9, which is odd, so the next digit is 1.
Divide 9 by 2 to get 4, which is even, so the next digit is 0.
Divide 4 by 2 to get 2, which is even, so the next digit is 0.
Divide 2 by 2 to get 1, which is odd, so the next digit is 1.
Divide 1 by 2 to get 0. When the number becomes 0, the process is complete.

The conversion process gives the binary numbers in reverse order (right to
left) so the result is that 7310 = 10010012.

Is this correct? Convert this binary number into decimal again:

	 10010012 = 1  20 + 1*23 + 1*26 = 1 + 8 + 64 = 7310.

A summary of the process for converting x into binary is:
Start at digit n=0 (rightmost)
repeat
 If x is even, the current digit n is 0, otherwise it is 1
 Divide x by 2
 Add 1 to n
 If x is zero, then end the repetition

Arithmetic in Binary

Computers do all operations on data as binary numbers, so when two num-
bers are added, for example, the calculation is performed in base 2. It turns out
that base 2 is easier than base 10 for some things, and adding is one of those

10 ■ Python: An Introduct ion to Programming

things. It’s done in the same way as in base 10 but there are only 2 digits, and twos
are carried instead of tens. For example: add 010112 to 011102:
	 0 1 0 1 1

2

	 0 1 1 1 0
2

Starting the sum on the right as usual, there is a 0 added to a 1 and the sum
is 1, just as in base 10.

	 0 1 0 1 12

	 0 1 1 1 0
2

	 1

2

The next column in the sum contains two 1s. 1 + 1 is two, but in binary that
is represented as 102. So, the result of 1 + 1 is 0 with a carry of 1:
 1
	 0 1 0 1 1

2

	 0 1 1 1 0
2

	 0 1

2

The next column has 1 + 0, but there is a carry of 1 so it is 1 + 0 + 1. That’s
0 with a 1 carry again:
 1
	 0 1 0 1 1

2

	 0 1 1 1 0
2

	 0 0 1

2

Now the column is 1 + 1 with a 1 carry, or 1 + 1 + 1. This is 1 with a carry of 1:
 1
	 0 1 0 1 1

2

	 0 1 1 1 0
2

	 1 0 0 1

2

Finally, the leading digits are 0 + 0 with a carry of 1, or 0 + 0 + 1. The answer
is 110012. Is this correct? Well, 010112 is 1110 and 011102 is 142, and 1110 + 1410 =
2510. The answer 110012 is, in fact, 2510 (confirm this!) so it all works out.

 Chapter 0 · Modern Computers ■ 11

Binary numbers can be subjected to the same operations as any other form of
number (i.e., multiplication, subtraction, division). In addition, these operations
can be performed by electronic circuits operating on voltages that represent the
digits 1 and 0.

	0.2.2	 Memory

Adding memory to computers was another huge step forward. A computer
memory must hold steady a collection of voltages that represent digits, and the digits
are collected into sets, each of which is a number. A switch can hold a binary digit,
but switches are activated by people. Computer memory must store and recall (re-
trieve) numbers when they are required by a calculation without human intervention.

The first memories were rather odd things: acoustic delay lines store num-
bers as a sound passing through mercury in a tube. The speed of sound allows a
small number of digits, around 500, to be stored in transit from a speaker on one
end to a receiver on the other. A phosphor screen can be built that is activated
by an electric pulse and draws a bright spot on a screen that needs no power to
maintain it. Numbers can be saved as bright and dark spots (1 and 0) and retrieved
using light sensitive devices.

Other devices were used in the early years, such as relays and vacuum tubes,
but in 1947 the magnetic core memory was patented, in which bits were stored as
magnetic fields in small donut-shaped elements. This kind of memory was faster
and more reliable than anything used before, and even held the data in memory
without power being applied, a handy thing in a power failure. It was also expensive,
of course.

	

	 (a)	 (b)

Figure 0.8
(a) A diagram of core memory showing six bits.
(b) Actual core memory magnified to show the individual bits.

12 ■ Python: An Introduct ion to Programming

This kind of memory is almost never used anymore, but its legacy re-
mains in terminology: memory is still frequently referred to as core, and a
core dump is still what many people call a listing of the contents of a com-
puter memory.

Current computers use transistors to store bits and solid state memories that
can hold billions of bits (Gigabits), but the way they are used in the computer is
still the same as it was. Bits are collected into groups of 8 (a byte) and then groups
of multiple bytes to for a word. Words are collected into a linear sequence, each
numbered starting at 0. These numbers are called addresses, and each word, and
sometimes each byte, can be accessed by specifying the address of the data that
is wanted. Acquiring the data element at a particular location is called a fetch, and
placing a number into a particular location is a store. A computer program to add
two numbers might be specified as:

Fetch the number at location 21
Fetch the number at location 433
Add those two numbers
Store the result in location 22

This may seem like a verbose way to add two numbers, but remember that
this can be accomplished in a tiny fraction of a second.

Memory is often presented to beginning programmers as a collection of
mailboxes. The address is a number identify-
ing the mailbox, which also contains a number.
There is some special memory in the computer
that has no specific address, and is referred to
in various ways. When a fetch is performed,
there is a question concerning where the val-
ue that was fetched goes. It can go to another
memory location, which is a move operation,
or it can go into one of these special locations,
called registers.

A computer can have many registers or very
few, but they are very fast memory units that are
used to keep intermediate results of computations.

Figure 0.9
Memory as a set of cubbyholes or
mailboxes, each with a unique address.

 Chapter 0 · Modern Computers ■ 13

The simple program above would normally have to be modified to give registers
that are involved in the operations:

Fetch the number at location 21 into register R0
Fetch the number at location 433 into register R1
Add R1 and R0 and put the result into R3
Store R3 (the result) in location 22
This is still verbose, but more correct.

	0.2.3	 Stored Programs

The final critical step in creating the modern computer occurred in 1936 with
Alan Turing’s theoretical paper on the subject, but an actual computer to employ
the concept was not built until 1948 when the Manchester Small-Scale Experi-
mental Machine ran what is considered to be the first stored program. It has been
the basic method by which computers operate ever since.

The idea is to store a computer program in memory locations instead of on
cards or in some other way. Programs and data now coexist in memory, and
this also means that computer programs have to be encoded as numbers; every-
thing in a computer is a number. There are many different ways to do this, and
many possible different instruction sets that
have been implemented and various differ-
ent configurations of registers, memory, and
instructions. The computer hardware always
does the same basic thing: first it fetches the
next instruction to be executed, and then
it decodes it and executes it. Executing an
instruction could involve more accesses to
memory or registers.

This repeated fetch then execute process
is called, not surprisingly, the fetch-execute
cycle, and is at the heart of all computers. The
location or address of the next instruction re-
sides in a register called the program counter,
and this register is incremented every time an

Memory

Math
Unit

Accumulator

Instruction Register

Program
Counter

0
1
2
3
4
5
6
7
8
9

10
11

Figure 0.10
The simple fictional computer used to
explain stored programs.

14 ■ Python: An Introduct ion to Programming

instruction is executed, meaning that instructions will be placed in consecutive
memory locations and will be fetched and executed naturally in that order. Some-
times the instruction is fetched into a special register too, called the instruction reg-
ister, so that it can be examined quickly for important components like data values
or addresses. Finally, a computer will need at least one register to store data; this
will be called the accumulator, because that’s usually what such a register is called.

The stored program concept is actually pretty difficult to grasp, so a detailed
example is in order. Imagine a computer that has 12 bit words as memory loca-
tions and that possesses the registers described above. This is a fictional machine,
but it turns out to have some of the properties of an old computer from the 1960s
called the PDP-8.

To demonstrate the execution of a program on a stored program computer a
very simple program will be used: add 21 and 433, placing the answer in location
11. As an initial assumption, assume that the value 21 is in location 9 and 433 is in
location 10. The program itself will reside in consecutive memory locations begin-
ning at address 0.

The program should be described in English first. Note that it is very much
like the previous two examples, but in this case there is only one register to put
data into, the accumulator. The program could perhaps look like this:

Fetch the contents of memory location 9 into the accumulator
Add the contents of memory location 10 to the accumulator
Store the contents of the accumulator into memory location 11

The program is now complete, and the result 21 + 433 should be found in lo-
cation 11. Computer programs are normally expressed in terms that the computer
can immediately use, normally as fairly terse and precise commands. The next
stage in the development of this program is to use a symbolic form of the actual
instructions that the computer will use.

The first step is to move the contents of location 9 to the accumulator. The
instruction that does this kind of thing is called Load Accumulator, shorted as the
mnemonic LDA. The instruction would be in location 0:

0: LDA 9 # Load accumulator with location 9

The text following the “#” character is ignored by the computer, and is really
a comment to remind the programmer what is happening. The next instruction is

 Chapter 0 · Modern Computers ■ 15

to add the contents of location 10 to the accumulator;
the instruction is ADD and it is placed in address 1:

1: ADD 10 # Add contents of address
10 to the accumulator

Finally, the result, current in the accumulator
register, will be saved into the memory location at
address 11. This is a Store instruction:

2: STO 11 # Answer into location 11

The program is complete. There is a Halt in-
struction:

3: HLT	 # End of program

If this program starts executing at address 0,
and if the correct data is in the correct locations,
then the result 454 should end up in location 11. But
these instructions are not yet in a form the computer
can use. They are characters, text that a human can
read. In a stored program computer these instruc-
tions must be encoded as numbers, and those num-
bers must agree with the ones the computer was
built to implement.

An instruction must be a binary number, so all of the possible instructions
have numeric codes. An instruction can also contain a memory address; the LDA
instruction specifies a memory location from which to load the accumulator.
Both the instruction code and the address have to be placed into one computer
word. The designers of the computer decide how that will be done, and the pro-
grammers have to live with the result.

This computer has 12 bit words. Imagine that the upper 3 bits indicate what
the instruction is. That is, a typical instruction is formatted like this:

code address

8 7 6 5 4 3 2 1 011 10 9

Figure 0.12
The format of a binary instruction

Figure 0.11
An actual PDP-8 computer.
Programs could be entered
as binary numbers, using the
switches on the front console.
This was the smallest computer
in its day.

http://www.vandermark.ch/
pdp8/index.php?n=PDP8.
Emulator

16 ■ Python: An Introduct ion to Programming

There are 9 bits at the lower (right) end of the instruction for an address, and 3 at the
top end for the code that represents the instruction. The code for LDA is 3; the code
for ADD is 5 and the code for STO is 6. HLT on most computers that have such an
instruction is code 0. Here is what the program looks like as numbers:

Code 3 Address 9
Code 5 Address 10
Code 6 Address 11
Code 0 Address 0

These have to be made into binary numbers to be stored in memory, but
that’s pretty easy. For the LDA instruction the code 310 is 0112 and the address is
910 = 0000010012, so the instruction as a binary number is 011 0000010012, where
the space between the code and the address is only present to make it obvious to
a person reading it.

The ADD instruction has code 510, which is 1012, and the address is 10, which
in binary is 00010102. The instruction is 101 0000010102.

The STO instruction has code 6, which is 1102, and the address is 11, which
is 0010112. The instruction is 110 0000010112.

The HLT instruction is code 0, or in 12 bit binary 000 0000000002.

The codes are made up by the designers of the computer. When memory is
set up to contain this program here’s what it looks like:

Memory

0
1
2
3
4
5
6
7
8
9

10
11

011000001001

000000000000

101000001010

000000000000
110000001011

000110110001

000000000000
000000000000
000000000000
000000000000
000000000000
000000010101

Figure 0.13
The simple example program as it looks in memory.

 Chapter 0 · Modern Computers ■ 17

This is how memory looks when the program begins. The act of setting up the
memory like this so that the program can execute is called loading. The binary
numbers in memory locations 9 and 10 are 21 and 433 respectively (check this!),
which are the numbers to be summed.

Of course there are more instructions than these in a useful computer. There
is not always a subtract instruction, but subtraction can be done by making a
number negative and then adding, so there is often a NEGate instruction. Set-
ting the accumulator to zero is a common thing to do, so there is a CLA (Clear
Accumulator) instruction; and there are many more.

The fetch-execute cycle involves fetching the memory location addressed by
the program counter into the instruction register, incrementing the program coun-
ter, and then executing the instruction. Execution involves figuring out what in-
struction is represented by the code and then sending the address or data through
the correct electronic circuits, a process beyond anything this chapter will address.

A very important instruction that this program does not use is a branch.
The instruction BRA 0 will cause the next instruction to be executed starting at
memory location 0. This allows a program to skip over some instructions or to
repeat some many times. A conditional branch will change the current instruction
if a certain condition is true. An example would be Branch if Accumulator is Zero
(BAZ), which will only perform a branch if, as the instruction indicates, there
is a value of zero in the accumulator. The combination of arithmetic and control
instructions makes it possible for a programmer to describe a calculation to be
performed very precisely.

	 0.3	 COMPUTER SYSTEMS ARE BUILT IN LAYERS
Entering a program as binary numbers using switches is a very tedious, time-

consuming process. Lacking a disk drive, the early computers depended on other
kinds of storage: punched cards again, or paper tape. It should be understood that
because there was no permanent storage, booting one of these machines often
meant toggling a small “boot loader” program, then reading a paper tape. Now
the computer would respond sensibly to its peripheral devices, like a printer or
card reader. The paper tape contained a primitive “operating system” that would
control the few devices available. That’s what operating systems do: allocate
resources and control devices.

18 ■ Python: An Introduct ion to Programming

The boot loader (bootstrap program) is the lowest layer of software. It was
provided by the computer manufacturer, but has to be entered by the user. The
paper tape system was the second layer, and the user did not have to write this
program. Gradually more and more layers were written so as to provide the user
with a high level of abstraction rather than having to understand the entire ma-
chine. After all, physicists and engineers have other things to do rather than tend
to the computer.

When disk drives became available, the operating system would be stored on
them, and a bootstrap loader would be saved in a special section of memory that
could not be erased (read only memory) so that when the computer was turned on
it would run the loader, which would load the operating system. Very convenient,
and it is essentially what happens today on Windows.

This operating system on the disk drive is a third layer of software. It pro-
vides basic hardware allocation functionality and also gives the user access to
some programs to use for printing and saving things on disk—a file system.

	0.3.1	 Assemblers and Compilers

Programming a computer could still be a daunting task if done in binary,
so the first thing that was provided was an assembler. This was a program that
would permit a programmer to enter a text program that could be converted into a
binary executable. It would allow memory locations to be named instead of using
an absolute number as an address, and would convert text operation codes and
addresses into binary programs. The addition program from the previous section
could be written in assembler as:

LDA Data1
ADD Data2
STO Res
HLT

Data1: 21
Data2: 433:
Res: 0

Usually one line of text in an assembler corresponds to a single instruction or
memory location. It’s the same program but is easier for a programmer to under-
stand because of the named memory locations and mnemonic instruction names.

 Chapter 0 · Modern Computers ■ 19

It is much harder to describe how a compiler works, but relatively easy to
explain what it does. A compiler translates high level language statements into
assembler, which in turn converts it into binary code. Compilers translate state-
ments like:

A = 21
B = 433
C = A+B

into executable code. It is a very complex process, but essentially it allows the
programmer to declare that certain names represent integers, that values are to
be assigned, and that arithmetic can be done. There are also more complex state-
ments like conditional execution of code and function calls with parameters, as
will be seen in later chapters.

Compilers also implement input and output from the user (reading from a
keyboard and writing to the video screen), sophisticated data types, and math-
ematical functions. An interpreter, which is what the language Python is, does a
part of the compilation process but does not produce executable code. Instead, it
simulates the execution of the code, doing most of the work in software. The Java
language does a similar thing in many cases.

The programs that someone writes (software) create another layer for some-
one to use. An example might be a database management system that gives a
user access to a computer that can query data for certain kinds of values. A
graphics system gives a programmer access to a set of operations that can draw
pictures.

	0.3.2	 Graphical User Interfaces (GUIs)

Most computers now interface with their owners through a keyboard, one
of the first devices to be interfaced to a computer; a mouse, the first device to
permit 2D navigation on a screen; and windows, a graphical construction that al-
lows many independent connections to a computer to share a single video screen.
GUIs are popular because they improve the user’s perception of what is happen-
ing on a computer. Previous computer interfaces were completely text based, so
if something was going wrong in a place where the user was not looking, then it
would probably not be noticed.

20 ■ Python: An Introduct ion to Programming

On the other hand, GUIs are more difficult to program. Just opening a new
window in a Microsoft-based operating system can require scores of lines of C++
code that would take a great deal of time to understand. Naturally, it is the job of
a programmer to be able to do this, but it means that the average user could not
create their own software that manipulated the interface in any reasonable way.
So, what is a window, and what’s involved in a GUI?

A window, in the operating system sense, is a rectangle on the computer screen
within which an exchange of information takes place between the user and the
system. The rectangle can generally be resized, removed from the screen tempo-
rarily (minimized), moved, and closed. It can be thought of as a virtual computer
terminal in that each one can do what the entire video screen was needed to do
in early systems. When the window is active, a user can type information to be

received by the program controlling it, and can ma-
nipulate graphical objects within the window using
a mouse or, more recently, by using their fingers on
a touch screen. Without a mouse or something like
it, a window-based system is pretty much crippled,
so the two are almost always used together.

The mouse is a variation on the tracker ball, and
it is agreed that the German engineering company
Telefunken devised a working version and was the
first to sell it. A mouse is linked through software to
a cursor on the screen, and left-right motions of the
mouse cause left-right motions of the cursor; for-
ward and backward motions of the mouse cause the
cursor to move up and down the screen. When the
cursor is inside of a window, then that window is
active. A mouse has buttons, and pressing a mouse
button activates whatever software object is related

to the cursor position on the screen. This describes things that are obvious to any-
one used to computers built since the 1980s.

Widgets

A widget is a graphical object drawn in a window or otherwise on a computer
screen that can be selected and/or operated using the mouse and mouse buttons.

Figure 0.14
The first computer mouse.
https://commons.wikimedia.
org/wik i/F i le:Te lefunken_
Rollkugel_RKS_100-86.jpg

Figure 0.15
Englebart’s computer mouse.

 Chapter 0 · Modern Computers ■ 21

It is connected to a software element that will be sent a control signal or numeri-
cal parameter by virtue of the widget being manipulated. That’s a pretty formal
description, but a widget is exemplified by the button, a very commonly used
widget on web pages and interfaces. Buttons can be used to display information
as well as to control a program. Some popular widgets are:

Button:  When the mouse cursor is within the bound-
aries of the button on the screen, the button is said to
be activated. Pressing a mouse button when the button
widget is activated will cause the software connected
to the button to perform its function.

Radio Button:  A set of two or more buttons used to select from
a set of discrete options. Only one of the buttons can be selected
at a time, mean that the options are mutually exclusive.

Check Box:  A way to select a set of options from a larger set.
This widget consists of a collection of boxes or buttons that can
be chosen by clicking on them. When chosen, they indicate that
fact by using a graphical change, sometimes a check mark but
sometimes a color or other visual effect.

Slider:  A horizontal or vertical control with a selection tool
that can be slid along the control. The relative position of the
control dictates the value that the widget provides. This value
is often displayed in a text box, and the range is also commonly
displayed.

Drop-down List:  A box containing text that displays
a complete set of options that can be displayed when
the mouse button is clicked within it. Then any one of
the options can be selected using the mouse and the
mouse button.

Icon:  An icon is a small graphical rep-
resentation (pictogram) that represents the
function of a program or file. When select-
ed, the program will execute or the file will
be opened.

Figure 0.16
Button.

Figure 0.17
Radio button.

Figure 0.18
Check box.

Figure 0.19
Slider.

Figure 0.20
Drop-down list.

Figure 0.21
Icon.

22 ■ Python: An Introduct ion to Programming

There are many other widgets and variations on the ones shown here. There
are two basic principles at play:

	 1.	 The widget represents an activity using a commonly understood symbol,
and performs that activity, or one related to the symbol, when selected
using the mouse. This is a graphical and tactile operation that replaces
the typing of a command in previous computer systems.

	 2.	 The software that implements the widget is a module, a piece of software
that can be reused and reconfigured for various circumstances. A button
can be quickly created to perform any number of tasks because the pro-
gram that implements it is designed for that degree of flexibility.

	 0.4	 COMPUTER NETWORKS
Schools, offices, and some homes are equipped with computer networks, which

are wires that connect computers together and software and special hardware
that allows the computers to communicate with each other. This allows people to
send information to each other through their computers; a lot of work is done in
a computer readable form in any case, and it is convenient to allow computers to
share information. But how does this really work?

Computers use electricity to perform calculations on binary numbers. Arbi-
trary voltages have been selected to represent 0 and 1, and so long as everyone
agrees on that representation, those voltages can be sent along a wire no matter
how long and still be numbers at the receiving end. As long as two computers
are being connected this works fine, but if two wires are needed to connect any
two computers then six are needed to fully connect three computers to each other
and twelve to connect four computers. A room with thirty networked computers
would be full of wires (870 to each computer)! There must be a better way.

Hawaii has an unusual problem when it comes to computer network com-
munication. It is a collection of islands. Linking them by cables is an expensive
proposition. In the early 1970s the folks at the University of Hawaii had a good
idea—to link the computers using radio. Radio transmission is really similar to
wire transmission in many practical ways, and allocating 35 radio frequencies to
connect one computer on each island to all of the others would have been pos-
sible, but their idea was better. They used a single radio link for all computers.
When a computer wanted to send information along the network, it would listen

 Chapter 0 · Modern Computers ■ 23

to see if another computer was already doing
so. If so, it would wait. If not, it would begin
to send data to all of the other computers and
would include in the transmission a code for
which computer was supposed to receive it.
All could hear it, but all would know which
computer was the correct destination so the
others would ignore it. This system was called
Alohanet.

There is a problem with this scheme. Two or more computers could try to
send at almost the same time, having noted that no other computer was sending
when they checked. This is called a collision, and is relatively easy to detect; the
data received is nonsense. When that happens each computer waits for a random
time, checks again, and tries again to send the data. An analogy would be a meet-
ing where many people are trying to speak at once.

Obviously the busier the network is the more likely a collision will be, and
the retransmissions will make things worse. Still, this scheme works very well
and is functioning today in the form of the most common networking system in
earth—Ethernet.

Ethernet is essentially Alohanet along a wire. It means that each computer
has one connection to it, rather than connections to each of the possible destina-
tions, and collisions are possible. There is another consideration that makes this
scheme work better, and that it is use of packets. Information along these net-
works is sent in fixed-size packages of a few thousand bytes. In this way, the time
needed to send a packet should be more or less constant, and it’s more efficient
than sending a bit or a byte at a time.

Each packet contains a set of data bytes intended for another computer, so
within that packet should be some information about the destination, the sender,
and other important stuff. For instance, if a data file is bigger than a packet, then
it has to be split up into parts to be sent. Thus, a part of the packet is a sequence
number indicating which packet it is (e.g., number 3 of 5). If a particular packet
never gets received for some reason, then the missing one is known, and the re-
ceiver can ask the sender for that packet to be resent. There are also codes than
can be used to determine whether an error has occurred.

Computer A

Computer B

Computer C

Clear Transmission
Collision

Packet

Time

Figure 0.22
Packets transmitted on a network. Red
ones are collisions.

24 ■ Python: An Introduct ion to Programming

	0.4.1	 Internet

The Internet is a computer network designed to communicate reliably over
long distances. It was originally created to be a reliable communications system
that could survive a nuclear attack, and was funded by the military. It is distrib-
uted, in that data can be sent from one computer to another in a chain until it
reaches its destination.

Imagine a collection of a few dozen computers, and that each one is connect-
ed to multiple others, but not directly to all others. Computer A wishes to send a
message to computer B, and does so using a packet that includes the destination.
Computer A sends the message to all computers that it is connected to. Each of
those computers sends it to all of the computers that they are connected to, and so
on until the destination is reached. All of the computers will receive every mes-
sage, which is pretty inefficient, but so long as there exists some path from A to
B the message will be delivered.

It would be hard to tell when to stop sending a message in this scheme. An-
other way to do it is to have a table in each computer saying which computers
in the network are connected to which others. A message can be sent to a com-

puter known to be a short path to the destination,
one computer at a time, and in this case not all
computers see the message, only the ones along
the route do. A new computer added to the net-
work must send a special message to all of the
others telling them which of the existing comput-
ers it is directly connected to, and this message
will propagate to all machines, allowing them to
update their map. This is essentially the scheme
used today.

The Internet has a hierarchy of communication links and processors. First, all
computers on the Internet have a unique IP (Internet Protocol) address through
which they are reached. Because there are a lot of computers in the world, an IP
address is a large number. An example would be 172.16.254.1 (obtained from
Wikipedia). When a computer in, say, Portland wants to send a message to, for
example, London, the Portland computer composes a packet that contains the
message, its address, and the recipient’s address in London. This message is sent

Figure 0.23
The organization of the internet.

 Chapter 0 · Modern Computers ■ 25

along the connection to its Internet service provider, which is a local computer, at
a relative low speed, 10 megabits per second perhaps. The service provider oper-
ates a collection of computers designed to handle network traffic. This is called a
Point of Presence (POP) and collects messages from a local area and concentrates
them for transmission further down the line.

Multiple POP sites connect to a Network Access Point (NAP) using much
faster connections than users have to connect with the POP. The NAP concen-
trates even more users, and provides a layer of addressing that can be used to
send the data to the destination. The NAP for the Portland user would have the
message delivered to a relatively local NAP, which would send it to the next
NAP along a path to the destination in London using an exceptionally fast (high
bandwidth) data connection. The London NAP would send the message to the
appropriate local POP, which would in turn send it to the correct user.

An important consideration is that the message can be read by any POP nor
NAP server along the route. Data sent along the Internet is public unless it is
properly encrypted by the users.

	0.4.2	 World Wide Web

The World Wide Web, or simply the Web, is in fact a layer of software above
the Internet protocols. It is a way to access files and data remotely through a
visual interface provided by a program that runs on the user’s computer, a browser.
When someone accesses a web page, a file that describes that page is downloaded
to the user and displayed. That file is text in a particular format, and the file name
usually ends in “.html” or “.htm.” The file holds a description of how to display
the page: what text to display, where images can be found that are part of the page,
how the page is formatted, and where other connected pages (links) are found on
the Internet. Once the file is downloaded, all of the hard work concerned with the
display of the file, such as playing sounds and videos and drawing graphics and
text, is done by the local (receiving) computer.

The Web is the basis for most of the modern advances in social network-
ing and public data access. The Internet provides the underlying network com-
munications facility while the Web uses that to fetch and display information
requested by the user in a visual and auditory fashion. Podcasts, blogs, and wikis
are simple extensions of the basic functionality.

26 ■ Python: An Introduct ion to Programming

The Web demands the ability for a user in Portland to request a file from a
user in London and to have that file delivered and made into a graphical display,
all with a single click of a mouse button. Web pages are files that reside on a
computer that has an IP address, but the IP address is often hidden by a symbolic
name called the Universal Resource Locator (URL). Almost everyone has seen
one of these: “http://www.facebook.com” is one example. Web pages each have
a unique path or address based on a URL. It is a pretty amazing fact that anyone
can create a new web page that uses its very own unambiguous URL at any time,
and that most of the world would be able to view it.

The Web is an example of what programmers call a client-server system. The
client is where the person requesting the web page lives, and is making a request.
The server is where the web page itself lives, and it satisfies the request. Other
examples of such systems would be online computer games, Email, Skype, and
Second Life.

	 0.5	 REPRESENTATION
When applying a computer to a task or writing a program to deal with a type

of data that seems to be non-numeric, the issue of how to represent the data on the
computer will invariably arise. Everything stored and manipulated on a computer
has to be a number. What if the data is not numeric?

A fundamental example of this is character data. When a user types at the
computer keyboard, what actually happens? Each key, and some key combina-
tions (e.g., shift key and “1” held down at the same time), when pressed will result
in electrical signals being sent along a set of wires that connect to an input device
on the computer, a USB port perhaps. While knowing the details of USB and the
keyboard hardware is beyond the scope of this book, it is easy to understand that
pressing a key can result in an identifiable combination of wires being given a
voltage. This is in fact a representation of the character, and one that underlies the
one that will be used on the computer itself. As described previously, voltages can
be used to represent binary numbers.

The representation of characters on a computer amounts to an assignment of
a number to each possible character. This assignment could be arbitrary, and for
some data it is. The value of the letter “a” could be 1, “b” could be 12, and “c”
could be 6. This would work, but it would be a poor representation because char-

 Chapter 0 · Modern Computers ■ 27

acters are not in an arbitrary order. The letter “b” should be between “a” and “c”
in value because it is positioned there in the data set, the set of characters. In any
case, when creating a numeric representation, the first rule is:

	 1.	 If there are a relatively small number of individual data items, assign
them consecutive values starting at 0. If there is a practical reason to start
at some other number, then do so.

		 The second rule considers the existing ordering of the elements:
	 2.	 In cases where data items are assigned consecutive values, assign them

in a manner that maintains any predefined order of the elements.
		 This means that in a definition of characters, the letters “a,” “b,” and “c”

should appear in that order.
	 3.	 In cases where data items are assigned consecutive values, assign

them in a manner that maintains any preexisting distance between the
elements.

		 This means that the letters “a,” “b,” and “c” would be adjacent to each
other in the numeric representation because they are next to each other
in the alphabet. It also means that character classes will stay together; the
uppercase letters will be consecutive, the digits will also have consecu-
tive codes so that the code for “0” will be adjacent to and smaller than the
code for “1”, and so on. This set of three rules actually creates a pretty
good mapping of characters to numbers. However, there are more rules
for making representations.

	 4.	 In cases where data items are assigned consecutive values, assign them
in a manner that simplifies the operations that are likely to be performed
on the data.

		 In the present example of character data, there are relatively few places
where this rule would be invoked, but one would be when comparing
characters to each other. A character “A” is usually thought to come be-
fore “a,” so this means that all of the uppercase letters will come before
all lowercase ones, in a numerical sense. Similarly, “0” comes before
“A,” so all digits come before all letters in the representation. A space
would come before (i.e., have a smaller value than) any character that
prints.

		 One of the most common character representations, named the Amer-
ican Standard Code for Information Interchange or ASCII, has all of
these properties and a few others. The standard ASCII character set lists

28 ■ Python: An Introduct ion to Programming

128 characters with numerical codes from 0 to 127. In the table below,
each character is listed with the code that represents it. They appear in
numerical order. The characters in orange are telecommunications char-
acters that are never used by a typical computer user; green characters
are non-printing characters that are used for formatting text on a page;
letters and numbers for English are red; special characters like punctua-
tion are blue. The space character is in some sense unique, and is black.

Code Char Code Char Code Char Code Char Code Char Code Char Code Char Code Char

0 NUL 16 DLE 32 Space 48 0 64 @ 80 P 96 ‘ 112 p

1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 A 113 q

2 STX 18 DC2 34 “ 50 2 66 B 82 R 98 B 114 r

3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 C 115 s

4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 D 116 t

5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 E 117 u

6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 F 118 v

7 BEL 23 ETB 39 ‘ 55 7 71 G 87 W 103 G 119 w

8 BS 24 CAN 40 (56 8 72 H 88 X 104 H 120 x

9 TAB 25 EM 41) 57 9 73 I 89 Y 105 I 121 y

10 LF 26 SUB 42 * 58 : 74 J 90 Z 106 J 122 z

11 VT 27 ESC 43 + 59 ; 75 K 91 [107 K 123 {

12 FF 28 FS 44 , 60 < 76 L 92 \ 108 L 124 |

13 CR 29 GS 45 - 61 = 77 M 93] 109 M 125 }

14 SO 30 RS 46 . 63 > 78 N 94 ^ 110 N 126 ~

15 SI 31 US 47 / 63 ? 79 O 95 _ 111 O 127 DEL

		 Further on the subject of representation, if there are a very large number
of possible data values, then enumerating them would seem unreason-
able. There are usually other ways to attack that sort of problem.

	 5.	 If the data can be broken up into enumerable parts, then try to do that.
		 Dates can be an example of this kind of data. There are too many dates to

store as discrete values, as there is no actual day 0 and there is no practi-
cal final day in the general case. However, a common way to state a date
is to give a year, a month, and a day. This is awkward from a computer
perspective because of the variable number of days in each month, but
works pretty well for humans. Each component is enumerable, so a pos-
sible representation for a date would be as three numbers: year, month,

 Chapter 0 · Modern Computers ■ 29

day; it would be YYYYMMDD, where YYYY is a four-digit year, MM
is a number between 0 (January) and 11 (December), and DD is a num-
ber between 0 and 30, which is the day of the month.

		 This representation should keep the dates in the correct sequence, so Dec
9, 1957 (19571108) will come after Aug 24, 1955 (19550723). However,
another common operation on dates is to find the number of days be-
tween two specified dates. This is difficult, and the only representation
that would simplify it would be to start counting days at a zero point.
If that zero point were Jan 1, 1900, then the representation for the date
Oct 31, 2017 would be 43037. The number of days between two dates
would be found by subtraction. However, printing the date in a form for
humans to read is difficult. When selecting a representation, the most
common operations on the data should be the easiest ones to perform.

		 Another example of this sort or representation is color, which will be
discussed in detail in a later chapter.

	 6.	 When the data is part of a continuous stream of real values, then it may
be possible to sample them and/or quantize them.

Sampling means to represent a se-
quence by using a subset of the values.
Imagine a set of numbers coming from a
seismometer. The number sequence rep-
resents measurements of the motion of the
ground captured continuously by a me-
chanical device. It is normally OK to ig-
nore some of these values, knowing that be-
tween a value of 5.1 (whatever that means)
and a value of 6.3, the numbers would have
taken on all possible values between those
two; that’s what continuous means.

So instead of capturing an infinite
number of values, which is not possible,
why not capture a value every second, or
tenth of a second, or at whatever interval
makes sense for the data concerned. Some
data will be lost. The important thing is not
to lose anything valuable.

Figure 0.24
A continuous set of data has a measurable
value between any other two.

Figure 0.25
Sampling means picking an interval and only
keeping the data values at those locations.
The vertical lines here are sampling positions.

30 ■ Python: An Introduct ion to Programming

The same thing can be done spatially.
If someone is building a road, then it must
be surveyed. A set of height values for
points along the area to be occupied by the
road is collected so that a model of the 3D
region can be built. But between any two
points that can be sampled there is another
point that could be sampled, on to infin-
ity. Again, a decision is made to limit the
number of samples so that the measure-

ments are made every few yards. This limits the accuracy, but not in a practical
way. The height at some specific point may not have been measured, but it can
be estimated from the numbers around it.

The distance between two sample points is referred to casually as the reso-
lution. In spatial sampling it will be expressed in distance units and says some-
thing about the smallest thing that can be precisely known. In time sampling it
is expressed in seconds.

Quantization means how accurately each measurement is known. In high
school science, numbers that are measurements are given to some number of sig-
nificant figures. Measuring a weight as 110.9881 pounds would seem impossibly
accurate, and 111 would be a more reasonable number. Quantization in computer
terms would be restricting the number of bits used to represent the value. Some-
thing that is stored as an 8-bit number can have 256 distinct values, for example.
If the world’s tallest person is under 8 feet tall, then using 8 bits to represent
height would mean that 8 feet would be broken up into 256 parts, which is 0.375
inches; that is, 8 feet x 12 inches/foot = 96 inches, and dividing this in to 256 parts
= 0.375. The smallest difference in height that could be expressed would be this
value, a little over a third of an inch.

Quantization is reflected in the representation as a possible error in each
value. The greater the number of bits per sample the more accurately each one is
represented. The use of sampling and quantization is very common, and is used
when saving sounds (MP3), images (JPEG), and videos (AVI).

There are other possible options for creating a representation for data, but
the six basic ideas here will work most of the time, alone or in combination.

Figure 0.26
The resulting signal is not as smooth as the
original (lower resolution).

 Chapter 0 · Modern Computers ■ 31

A programmer will spend most of his or her time living with the consequences
of the representations they chose for their data. A poor choice will result in more
complex code, which generates more errors and less overall satisfaction with the
result. Spending a little extra time at the beginning analyzing the possibilities can
save a lot of effort later.

	 0.6	 SUMMARY
Computers are devices that humans have built in order to facilitate com-

plex calculations and are tools for rapidly and accurately manipulating numbers.
When humans communicate with each other, we use a language. Similarly, hu-
mans use languages to communicate with computers. A computer program can
be thought of as a sequence of operations that a computer can perform in order
to accomplish a calculation. The key is that it must be expressed in terms that the
computer can do.

Early computers were mechanical, using gears to represent numbers. Elec-
tronic computers usually use two electrical states or voltages to represent num-
bers, and those numbers are in binary or base 2 form. Electronic computers have
memories that can store numbers, and everything stored in memory must be in
numeric form. That includes the instructions that the computer can execute.

Computers have been around long enough to provide many layers of com-
puter programs that can assist in their effective use: graphical user interfaces, as-
semblers, compilers for programming languages, web browsers, and accounting
packages each provide a user with a different view of a computer and a different
way to use it. Computers can exchange data between each other using wires over
short distances (computer network) and long ones (Internet). The World Wide
Web sits atop the Internet and provides an easy and effective way for computers
all over the world to exchange information in any form.

Everything stored and manipulated on a computer has to be a number. What
if the data is not numeric? In that case a numeric representation has to be de-
vised that effectively characterizes the information while permitting its efficient
manipulation.

32 ■ Python: An Introduct ion to Programming

Exercises

	 1.	Convert the following binary numbers into decimal:
	 a) 0100000
	 b) 0000100
	 c) 0000111
	 d) 0101010
	 e) 0110100101
	 f) 0111111
	 g) 110110110

	 2.	Convert the following decimal numbers into binary:
	 a) 10
	 b) 100
	 c) 64
	 d) 128
	 e) 254
	 f) 5
	 g) 999

	 3.	Core memory would not erase itself when its power source was removed.
Give reasons why this is a valuable property.
_ __

_ __

_ __

	 4.	Specify a device that is used for:
	 a) Output only
	 b) Input only
	 c) Both input and output

	 5.	Ada Countess of Lovelace is generally considered to be the first programmer,
but some contrary information has come to light recently. Search the literature
for two articles on each side of the argument and formulate a conclusion. Was
she?

 Chapter 0 · Modern Computers ■ 33

	 6.	What is the difference between a compiler and an interpreter? Give an
example of each.

	 7.	 Identify a GUI widget that was not discussed in this chapter. Sketch its
appearance and describe its operation. Give an example of a situation where
it might be used.

	 8.	Give the ASCII codes for the following characters:
	 a) ꞌPꞌ
	 b) ꞌ;ꞌ
	 c) ꞌrꞌ
	 d) ꞌ,ꞌ
	 e) ꞌ=ꞌ

	 9.	What is the value of the ASCII code for the character “1” minus the code for
the character “0”? What is “2”-“0”? What does this say about converting
from the character form of a number into its numeric value in general?

	10.	Consider the imaginary computer devised in this chapter. It has a memory
in which each location has 12 binary digits (bits) to store a number. In one of
the memory locations the value 101000000000 is seen. What is this? Is it an
instruction, a number, a character, an address, or something else? How can
this be determined?

Notes and Other Resources

	 1.	L. Carlitz. (1968). Bernoulli numbers, Fibonacci Quarterly, 6, 71–85.

	 2.	Digital Equipment Corporation. (1972). Introduction to Programming,
PDP-8 handbook series, online version http://www.mirrorservice.org/sites/
www.bitsavers.org/pdf/dec/pdp8/handbooks/IntroToProgramming1969.pdf

	 3.	James Essinger. (2004). Jacquard’s Web, Oxford University Press,
Oxford, ISBN 978-0-19-280578-2.

	 4.	Tony Sale. The Colossus Computer 1943–1996: How It Helped to Break
the German Lorenz Cipher in WWII, M.&M. Baldwin, Kidderminster,
2004, ISBN 0-947712-36-4.

	 5.	Stephen Stephenson. (2013). Ancient Computers, Part I - Rediscovery, 2nd
Edition, ISBN 1-4909-6437-1.

34 ■ Python: An Introduct ion to Programming

	 6.	A. M. Turing. (1936). On Computable Numbers, with an Application to
the Entscheidungsproblem.

	 7.	Michael R. Williams. (1998). The “Last Word” on Charles Babbage, IEEE
Annals of the History of Computing, 20(4), 10–4, doi:10.1109/85.728225

	 8.	Javier Yanes. (2015). Ada Lovelace: Original and Visionary, but No
Programmer, OpenMind, December 9, 2015, https://www.bbvaopenmind.
com/en/ada-lovelace-original-and-visionary-but-no-programmer/

■ ■ ■ ■ ■

In this chapter

The vast majority of computers that most people encounter are referred
to as digital computers. This refers to the fact that the computer works
on numbers. Other kinds of computers do exist but are not as common;
analog computers operate in a number of other ways, but are usually
electrical—they manipulate electrical voltages and currents—or
mechanical—they use gears and shafts to calculate a mechanical
response.

The fact that any problem must be expressed in numerical form has present-
ed a problem to some potential programmers. I’m not good at math is a common
complaint, and the belief that computer programming requires a knowledge of

1Chapter

Computers and
Programming

1.1	 Solving a Problem Using a Computer��36
1.2	 Executing Python ��37
1.3	 Guess a Number��39
1.4	 Rock-Paper-Scissors��40
1.5	 Solving the Guess a Number Problem��40
1.6	� Solving the Rock-Paper-Scissors Problem��41
1.7	 IF Statements��52
1.8	 Documentation ��55
1.9	 Rock-Paper-Scissors Again��57
1.10	 Types Are Dynamic (Advanced)��60
1.11	 Summary��62

36 ■ Python: An Introduct ion to Programming

advanced mathematics is used as a reason to not study programming. In fact, the
kind of math commonly needed would more properly be called arithmetic, not
math.

In order for a problem to be solved using a computer, the problem must be
expressed in a way that manipulates numbers, and the data involved must be
numeric. This is often accomplished by some kind of encoding of the data. It is
so common that the process is invisible on modern computers. Most data have a
variety of encodings that have been used for years and are taken for granted: im-
ages in JPEG format or sounds in MP3 are examples of commonly used encoding
of data into numbers.

What can computers do with numbers? Addition, subtraction, multiplication,
and division are the basic operations, but computers can compare the value of
numbers too.

	 1.1	 SOLVING A PROBLEM USING A COMPUTER
The process begins with a problem to be solved, and the first step is to state

the problem as clearly as possible. This first step is critically important because
unless the problem is completely understood, its solution on a computer is impos-
sible. Then the problem is analyzed to determine methods by which it may be
solved. As computers can only directly manipulate numbers, it is common for
solutions discussed at this stage to be numerical or mathematical and for them
to involve deciding upon representations for the data that will facilitate solving
the problem. Then a sketch of the solution, perhaps on paper in a human lan-
guage and math, is created. This is translated into computer language and then
typed into computer form using a keyboard. The resulting text file is called a
script, source code, or more commonly the computer program. A program called
a compiler takes this program and converts it into a form that can be executed on
the computer. Basically, all programs are converted into a set of numbers called
machine code, which the computer can execute.

We are going to learn a language called Python. It was developed as a general
purpose programming language and is a good language for teaching because it
makes a lot of things easy. Quite a few applications are built using Python; for
example: the games Eve Online and Civilization IV, BitTorrent, and Dropbox to

 Chapter 1 · Computers and Programming ■ 37

name only a few. It is a bit like a lot of other languages in use these days in terms
of structure (syntax) but has some simplifying ideas that will be discussed in later
chapters.

In order to use a programming language, there are some basic concepts and
structures that need to be understood at a basic level. Some of these concepts
will be introduced in this chapter, and the rest of the book will teach you to pro-
gram by example; in all cases, coding examples will be introduced by stating a
problem to be solved. The problems to be solved in this chapter include: a simple
guess-a-number game and the game of rock-paper-scissors. These problems will
be the motivation for learning more about either the Python language itself or
about methods of solving problems. Any computer programs in this book will
execute on a computer running any major operating system once the free Python
language download has been installed.

	 1.2	 EXECUTING PYTHON

Figure 1.1
Running the Python GUI.

Installing Python is not too difficult, and involves downloading the installer,
running it, and perhaps configuring a few specific details. This process can be

38 ■ Python: An Introduct ion to Programming

found on the net. Once installed there are a few variations that can be used with
it, the simplest probably being the Python Graphical User Interface or GUI. If
running Python on a Windows PC, look at the Start menu for Python and click; a
link named “IDLE (Python GUI)” will be seen, as shown in Figure 1.1. Click on
this and the user interface will open. Click the mouse in the GUI window so that
you can start typing characters there.

Python can be run interactively in the GUI window. The characters “>>>”
are called a prompt, and indicate that Python is waiting for something to be typed
at the keyboard. Anything typed here will be presumed to be a Python program,
or at least part of one. As a demonstration, type “1” followed by “Enter.” Python
responds by printing “1.” Why? When “1” was typed it was a Python expression,
something to be evaluated. The value of “1” is simply “1,” so that was the answer
Python computed.

Now type “1+1.” Python responds with “2.” Python inputs what the user/pro-
grammer types, evaluates it as a mathematical (in Python form) expression, and
prints the answer. This is not really programming yet, because a basic two-dollar
calculator can do this, but it is certainly a start.

IDLE is good for many things, but eventually a more sophisticated environ-
ment will be needed, one that can indent automatically, detect some kinds of errors,
and allow programs to be run and debugged and saved as projects. This kind of sys-
tem is called an integrated development environment, or IDE. There are many of
these available for Python, some costing quite a lot and some freely downloadable.
The code in this book has been compiled and tested using one called PyCharm, but
most IDEs out there would be fine, and it is largely a matter of personal preference.
Basic PyCharm is free, and it has a bigger brother that costs a small amount.

An advantage of an IDE is that it is easy to type in a whole program, run it,
find the errors, fix them, and run it again. This process is repeated until the pro-
gram works as desired. Multiple parts of a large program can be saved as separate
files and collected together by the IDE, and they can be worked on individually
and tested together. And a good IDE uses color to indicate syntax features that
Python understands and can show some kinds of error while the code is being
entered.

To begin programming it must be understood that a language has a syntax or
structure, and that for computer languages this structure cannot be varied. The

 Chapter 1 · Computers and Programming ■ 39

computer will always be the arbiter of what is correct, and if any program has a
syntax error in it or produces erroneous results, then it is the program and not the
computer that is at fault.

Next, one should appreciate that the syntax is arbitrary. It was designed by a
human with attitudes and biases and new ideas, and while the syntax might some-
times be ugly and hard to recall, it is what it is. Parts of it might not be understood
at first, but after a while and after reading and executing the first programs in this
book, most of it will make sense.

A program, just like any sentence or paragraph in English, consists of sym-
bols, and order matters. Some symbols are special characters with a defined
meaning. For example, “+” usually means add, and “-” usually means subtract.
Some symbols are words. Words defined by the language, like if, while, and true,
cannot also be defined by a programmer—they mean what the language says
they mean, and are called reserved words. Some names have a definition given
by the system but can be reused by a programmer as needed. These are called
predefined names or system variables. However, some words can be defined by
the programmer, and are the names for things the programmer wants to use in the
program: variables and functions are examples.

	 1.3	 GUESS A NUMBER
Games that involve guessing are common, and are sometimes used to resolve

minor conflicts such as who gets the next piece of cake or who gets the first kick
at a football. It’s also sometimes a way to occupy time, and can simply be fun.
How can we write a program to have the user guess a number that the program
has chosen?

There are many variations on this simple game. In one the number is to be
guessed precisely. One person (the chooser) has selected a number, an integer,
in a specified range. “Pick a number between one and ten” would be a typical
problem. The other person, the guesser, must choose a number in that range. If
they select the correct number, then the guesser wins. This is a boring game and
is biased in favor of the chooser.

A more interesting variation would be to start with one guess and have
the chooser then say whether the target number is greater than or less than the

40 ■ Python: An Introduct ion to Programming

guessed number. The guesser then guesses again, and the process continues un-
til the number is guessed correctly. The roles of guesser and chooser can now
switch and the game starts again. The best guesser is the one who uses the fewest
guesses.

A third alternative is to have multiple guessers. All guessers make their se-
lection and the one who has chosen a number nearest the correct number is the
winner. This is the best game for solving disputes, because it involves one guess
from each person. Ties are possible, in which case the game can be played again.

	 1.4	 ROCK-PAPER-SCISSORS
Although this game is used by children to settle disputes and make random

decisions such as “who goes first,” it has been taken more seriously by adults.
There are actually competitions where money is at stake. A televised contest in
Las Vegas had a prize of $50,000. This game is not as trivial as it once was.

In this game each of two players selects one item from the list [rock, paper,
scissors] in secret, and then both display their choice simultaneously. If both play-
ers selected the same item, then they try again. Otherwise, rock beats scissors,
scissors beats paper, and paper beats rock. This contest can be repeated for a
“best out of N” competition.

Both of these games form the first problem set, and serve as the moti-
vation for learning the elements of the Python language.

	 1.5	 SOLVING THE GUESS A NUMBER PROBLEM
The simple version of the guessing program has two versions, depending

on who is guessing. The computer should pick the number and the human user
should guess, because the other way around can use some complex programming.
In that case here’s what has to happen:

	 1.	 The computer selects a number.
	 2.	 The computer asks the player to guess.
	 3.	 The player types a number on the keyboard and the computer reads

it in.

 Chapter 1 · Computers and Programming ■ 41

	 4.	 The computer compares the input number against the one that it selected,
and if the two agree, then the player wins. Otherwise the computer wins.

The Python features needed to do this include: printing a message, reading
in a number, having a place to store a number (a variable), having a way to select
a number, and having a way to compare the two numbers and act differently de-
pending on the result.

The second version requires the above, plus a way to repeat the process in
cases when the guess is wrong and until it is correct. In this case the method
becomes:

	 1.	 The computer selects a number.
	 2.	 The computer asks the player to guess.
	 3.	 The player types a number on the keyboard and the computer reads it in.
	 4.	 The computer compares the input number against the one that it selected,

and if the two agree, then the player has guessed correctly. Exit to Step 7.
	 5.	 The computer determines whether the guess is higher or lower than the

actual number and prints an appropriate message.
	 6.	 Repeat from Step 2.
	 7.	 Game over.

The repetition mechanism is the only new aspect to this solution, but it is an
essential component of Python and every other programming language.

	 1.6	� SOLVING THE ROCK-PAPER-
SCISSORS PROBLEM

The solution to this problem has no new requirements, but re-enforces the
language features of the previous solutions. One solution to this problem is:

	 1.	 Select a random choice form the three items rock, paper, or scissors.
Save this choice in a variable named choice

	 2.	 Ask the player for their choice. Use an integer value, where 1 = rock,
2 = paper, and 3 = scissors

	 3.	 Read the player’s selection into a variable named player
	 4.	 If player is equal to choice

42 ■ Python: An Introduct ion to Programming

	 5.	 Print the message “Tie. We’ll try again.”
	 6.	 Repeat from Step 1
	 7.	 If player is equal to rock
	 8.	 If choice is equal to scissors, go to Step 17
	 9.	 Else go to Step 18
	 10.	 If player is equal to paper
	 11.	 If choice is equal to scissors, go to Step 17
	 12.	 Else go to Step 18
	 13.	 If player is equal to scissors
	 14.	 If choice is equal to rock, go to Step 17
	 15.	 Else go to Step 18
	 16.	 Print error message and terminate
	 17.	 Print “Computer wins” and terminate
	 18.	 Print “You win” and terminate

For each player selection, one of the alternate items will beat it and one will
lose to it. Each choice is checked and the win/lose decision is made based on the
known outcomes.

The solutions to both problems require similar language elements: a way to
store a value (a variable), a way to execute specific parts of the program depend-
ing on the value of a variable or expression (an if statement), a way to read a value
from the keyboard, a way to print a message on the screen, and a way to execute
code repeatedly (a loop).

	1.6.1	 �Variables and Values – Experimenting
with the Graphical User Interface

A variable is a name that the programmer can define to represent some value,
a number or a text string generally. It represents the place where the computer
stores that value; it is a symbol in text form, something humans like, representing
a value. Everything that a computer does is ultimately done with numbers, so the
location of any thing is a number that represents the place in computer memory
where that thing is stored. It’s like offices in a building. Each office has a number
(its address) and usually has a name too (the occupant or business found there).

 Chapter 1 · Computers and Programming ■ 43

Additionally, the office has contents, and those contents are often described by
the name given. In Figure 1.2 a collection of offices in a specific building can
be seen. In this metaphor the office number corresponds to the address, and the
name (variable name), being more human friendly, is how it is often referred to by
a person (programmer). In all cases, though, it is the contents of the office (loca-
tion) that are important. The number and name are ways to access it. So, someone
might say “Bring me the Python manual from the Server Room” or “Bring me
the Python manual from 607” and both would be the same thing. The contents
of location 607 would be the Python manual. Now someone could say “Put this
Python manual in the Digital Media Lab,” which would change the contents of
location 611. In actual Python the act of retrieving a value from a location does
not change the contents of that location, but instead makes a copy, but the basic
metaphor is sound.

Not all strings or characters can be variable names. A variable cannot begin
with a digit, for example, or with most non-alphabetic characters like “&” or “!,”
although in some cases beginning with “_” is acceptable. A variable name can
contain upper- or lowercase letters, digits, and “_”. Uppercase and lowercase are
distinct, so the variables Hello and hello are different.

Figure 1.2
Variables are names that represent addresses, like offices in a building. The name is used in
programming to represent the value found inside. These door signs are from the author’s workplace.

So a variable can change values but, unlike a real office, a simple variable can
hold only one value at a time. The name chosen does not have to be significant.
Programs often have variables named i or x. However, it is a good idea to select
names that represent the kind of value that the variable it to contain so as to com-
municate that meaning to another person, a programmer probably. For example,
the value 3.1415926 should be stored in a variable named pi, because that’s the
name everyone else gives to this value.

44 ■ Python: An Introduct ion to Programming

In the GUI type pi = 3.1415926. Python responds with a prompt, which indi-
cates that it is content with this statement, and that it has no value to print. If you
now type pi, the response will be 3.1415926; the variable named pi that was just
created now has a value.

In the syntax of Python, the name pi is a variable, the number 3.1415926 is
a constant, but is also an expression, and the symbol = means assign to. In the
precise domain of computer language, pi = 3.1415926 is an assignment statement
and gives the variable named pi the specified value.

Continuing with this example, define a new variable named radius to be 10.0
using an assignment statement radius = 10.0. If you type radius and “enter,"
Python responds with 10.0. Finally, we know that the circumference of a circle is
2pr in math terms, or 2 times pi times the radius in English. Type 2*pi*radius
into the Python GUI, and it responds with 62.831852, which is the correct an-
swer. Now type circumference = 2*pi*radius, and Python assigns the value of
the computation to the variable circumference.

Python defines a variable when it is given a value for the first time. The type
of the variable is defined at that moment too; that is, if a number is assigned to a
name, then that name is expected to represent a number from then on. If a string
is assigned to a name, then that name will be expected to be a string from then
on. Trying to use a variable before it has been given a value and a type is an error.
Attempting the calculation:

	 area = side*side

is not allowed unless there is a variable named side already defined at this point.
The following is OK because it defines side first, and then in turn is used to
define area:

	 side = 12.0
	 area = side*side

The two lines above are called statements in a programming language, and
in Python a statement usually ends at the end of the line (the “enter” key was
pressed). This is a bit unusual in a computer language, and people who already
know Java or C++ have some difficulty with this idea at first. In other computer
languages statements are separated by semicolons, not by the end of the line. In
fact, in most languages the indenting of lines in the program does not have any

 Chapter 1 · Computers and Programming ■ 45

meaning except to the programmer. In Python that’s not the case either, as will
be seen shortly.

The expressions we use in assignments can be pretty complicated, but are
really only things that we learned in high school. Add, subtract, multiply, and
divide. Multiplication and division are performed before addition and subtrac-
tion, which is called a precedence rule, so 3*2+1 is 7, not 9; otherwise, evaluation
is done left to right, so 6/3*2 is 4 (do the division first) as opposed to 1 (if the
multiplication was done first). These are rules that should be familiar because it
is how people are taught to do arithmetic. The symbol “**” means exponent or to
the power of, so 2**3 is 23 which is 8, and this operator has a higher precedence
(i.e., is done before) than the others. Parentheses can be used to specify the order
of things. So, for example, (2+3)**2 is 25, because the expression within the pa-
renthesis is done first, then the exponent.

	1.6.2	 �Exchanging Information with the Computer

When using most programming languages, it is necessary to design com-
munication with the computer program. This goes two ways: the program will
inform the user of things, such as the circumference of a circle given a specific
radius, and the user may want to tell the program certain things, like the value
of the radius with which to compute the circumference. We communicate with
a program using text, which is to say characters typed into a keyboard. When a
computer is presenting results, that text is often in the form of human language,
messages as sentences. “The circumference is 62.831852” could be such a mes-
sage. The sentence is actually composed by a programmer and has a number or
collection of numbers embedded within it.

Python allows a programmer to send a message to the screen, and hence to
the user, using a print directive. This is the word print followed by a character
string, which is often a set of characters in quotes. An example:

print ("The answer is yes.")

The parentheses are used to enclose everything that is to be printed; such a
statement can print many strings if they are separated by commas. Numbers will
be converted into strings for printing. So the following is correct:

print ("The circumference is ", 62.831852)

46 ■ Python: An Introduct ion to Programming

Figure 1.3
The Python GUI window showing the examples so far.

If a variable appears in the list following print, then the value of that variable
will be printed, not the name of the variable. So:

print ("The circumference is ", circumference)

is also correct.

	1.6.3	 Example 1: Draw a Circle Using Characters

Assuming that it is desired to print a circle having a constant predefined radius,
this can be done with a few print statements. The planning of the graphic itself (the
circle) can be done using graph paper. Assuming that each character uses the same
amount of space, a circle can be approximated using some skillfully placed “*”
characters. Then print each row of characters using a print statement. A sample
solution is:

print (" ***   ")
print (" ********* ")
print (" *************   ")
print (" ***************    ")
print (" ***************    ")
print (" ***************    ")
print (" *************   ")
print (" *********      ")
print (" ***   ")

 Chapter 1 · Computers and Programming ■ 47

	1.6.4	 Strings, Integers, and Real Numbers

Computer programs deal mainly with numbers. Integers, or whole numbers,
and reals or floating point numbers, which represent fractions, are represented dif-
ferently, and arithmetic works differently on the two types of numbers. A Python
variable can hold either type, but if a variable contains an integer then it is treated
as an integer, and if it’s holding a floating point number then it is treated as one of
those. What’s the difference? First, there’s a difference in how they are printed out.
If we make the assignment var = 1 and then print the value of var, it prints simply
as 1. If we make the assignment var = 1.0 and then print var, it prints as 1.0. In both
cases var is a real or floating point number and will be treated as such. Numeric
constants will be thought of as real numbers. However, a variable can be first one
thing and then another. It will be the last thing it was assigned.

Arithmetic differs between integers and reals, but the only time that differ-
ence is really apparent is when doing division. Integers are always whole, non-
fractional numbers. If we divide 3 by 2, both 3 and 2 are integers and so the
division must result in an integer: the result is 1. This is because there is exactly
a single 2 in 3, or if you like, 2 goes into 3 just once, with a remainder of 1. There
is a specific operator for doing integer division: “//.” So, 3//2 is equal to 1. The
remainder part can’t be handled and is discarded, but can be found separately us-
ing the “%” operator. For example, 8//5 is 1, and 8%5 is the remainder, 3. This
explanation is an approximation to the truth, and one that can be cleared up later,
but it works perfectly well for positive numbers.

Of course fractions work fine for real numbers, and will be printed as deci-
mal fractions: 8.0/5.0 is 1.6, for example. What happens if we mix reals and in-
tegers? In those cases things get converted into real, but now things get more
complicated, because order can matter a great deal. The expression 7//2*2.0 does
the division 7//2 first, which is 3, and then multiplies that by 2.0, yielding the
result 6.0; the result of 8/3*3.0 would be 5.333. Mixing integers and reals is not a
good idea, but if done, the expressions should use parentheses to specify how the
expression should be evaluated.

A real can be used in place of an integer in most places, but the result will be
real. Thus, 2.0 * 3 = 6.0, not 6, and 6.0//2 is 3.0, not 3. There are some exceptions.
To convert an integer to a real, there is a special operation named float: float(3)
yields 3.0. Of course it’s possible to simply multiply by 1.0 and the result will be

48 ■ Python: An Introduct ion to Programming

float too. Converting float values to integers is more complicated, because of the
fraction issue: what happens to the digits to the right of the decimal? The opera-
tion int will take a floating point value and throw away the fraction. The value of
int(3.5) will be 3, as a result. It is normal in human calculations to round to the
nearest integer, and the operation round(3.5) does that, resulting in 4.

	1.6.5	 Number Bases

In elementary school, perhaps grade 3 or 4, the idea of positional number
systems is taught. The number 216 is a way to write the value of 6 + 1*10 + 2*100.
Not all civilizations use such a scheme; Roman numerals are not positional, for
example. Still, most people are comfortable with the idea. What people are not as
comfortable with is changing the number base away from 10. In Chapter 0, the
binary system, or base 2, was discussed, but any base that is a power of 2 is of
some interest, especially base 8 and base 16.

Humans use a base 10 scheme probably because we have 10 fingers. What it
means is that we have a symbol for each of the 10 digits, 0 through 9, and each
digit position to the left of the first digit is multiplied by the next power of 10. The
number 216 is really 2*102 + 1*101 + 6*100. The base is 10, and each digit repre-
sents a power of the base multiplied by a digit. What if the base is 8? In that case
216 is really 2*82 + 1*81 + 6. If the arithmetic is carried out, this number turns out
to be 128 + 8 + 6 = 142.

If multiple number bases are used, it is common to give the base as a sub-
script. The number 216 in base 8 is written as 2168. The default would be base 10.
In base 8 there are only 8 digits, 0 through 7. The digits 8 and 9 cannot appear.
In bases larger than 10 more symbols are needed. A common base to be used on
computers is 16, or hexadecimal (hex for short). In a hex number 16 digits are
needed, so the regular ones are used and then “A” represents 10, “B” is 11, “C” is
12, “D” is 13, “E” is 14, and “F” is 15. The hex number 1216 is 1*16 + 2, or 1810.
The number 1A16 is 1*16 + 10 = 2610.

In Python numbers are given in decimal (base 10) by default. However, if a
number constant begins with “0o” (zero followed by the letter “o”) Python as-
sumes it is base 8 (octal). The number 0o21, for example, is 218 = 1710. A number
that begins with “0x” is hexadecimal. 0x21 is 2116 = 3310. This applies only to
integers.

 Chapter 1 · Computers and Programming ■ 49

There is a number base that is the most important, because it lies under all
of the numbers on a computer. That would be base 2. All numbers on a modern
digital computer are represented in base 2, or binary, in their internal representa-
tion. A binary number has only two digits, 0 and 1, and each represents a power
of 2. Thus, 11012 is 1*23 + 1*22 + 0*21+ 1 = 8 + 4 + 1 = 1310. In Python a binary
number begins with “0b,” so the number 0b10101 represents 2110.

These number bases are important for many reasons, but base 2 is fundamen-
tal, and bases 8 and 16 are important because they are powers of 2 and so convert
very easily to binary but have fewer digits. One example of the use of hex is for
colors. In Python they can represent a color, and on web pages they are certainly
used that way. The number 0xFF0000 is the color red, for example, if used on a
web page. But more of that later.

	1.6.6	 Example 2: Compute the Circumference of any Circle

When humans send information into a computer program, the text tends to be
in the form of numbers. The Python code that was written to calculate the radius
of a circle only did the calculation for a single radius: 10. That’s not as useful as
a program that computes the circumference of any circle, and that would mean
allowing the user to tell the program what radius to use. This should be easy to
do, because it is something that is needed frequently. Frequently needed things
should always be easy. In the case of sending a number into a program in Python,
the word input can be used within a program. For example:

radius = input ()

will accept a number from the keyboard, typed by the user, and will return it as
a string of characters. This makes sense because the user typed it as a string of
characters, but it can’t be used in a calculation in this form. To convert it into the
internal form of a number, we must specifically ask for this to be done:

radius = input()
radius = float(radius)

will read a string into radius, then convert it into a floating point (real) number
and assign it to the variable radius again. This can be done all in one statement:

radius = float(input())

50 ■ Python: An Introduct ion to Programming

Now the variable radius can be used to calculate a circumference. This is a
whole computer program that does a useful thing. If the value of radius was to be
an integer, the code would read:

radius = int(input())

If the conversion to a number is not done, then Python will give an er-
ror message when the calculation is performed, like:

 Traceback (most recent call last):
 File "<pyshell#13>", line 1, in <module>
 circumference = 2*pi*radius
 TypeError: can't multiply sequence by non-int of
 type 'float'

This is pretty uninformative to a beginning programmer. What is a Trace-
back? What’s pyshell? There are clues as to what this means, though. The line
of code at which the error occurs is given and the term TypeError is descriptive.
This error means that something that can’t be multiplied (a string) was used in
an expression involving a multiplication. That thing is the variable radius in this
instance because it was a text string and was not converted to a number.

Also note that int(input()) can present problems when the input string is not
in fact an integer. If it is a floating point number, this results in an error. The
expression int(“3.14159”) could be interpreted as an attempt convert pi into an
integer, and would have the value 3; in fact, it is an error. The function int was
passed a string and the string contained a float, not an int. This is something of a
quirk of Python. It is better to convert input numbers into floats.

	1.6.7	 Guess a Number Again

The simple version of the guessing program can now nearly be written in Py-
thon. Examining the method of solution, here’s what can be coded so far; versions
depend on who is guessing. The computer should pick the number and the human
user should guess, because the other way around can involve some complex pro-
gramming. In that case here’s what has to happen:

	 1.	 The computer selects a number.
	 choice = 7

 Chapter 1 · Computers and Programming ■ 51

	 2.	 The computer asks the player to guess.
		 print ("Please guess a number between 1 and 10: ")
	 3.	 The player types a number on the keyboard and the computer reads it in.
		 playerchoice = input()

	 4.	 The computer compares the input number against the one that it selected,
and if the two agree, then the player wins. Otherwise the computer wins.

It is the final step that is still not possible with what is known. It is necessary in
this program, as it is in most computer programs, to make a decision and to execute
certain code (i.e., do specific things) conditionally based on the outcome of that
decision. People do that sort of thing all of the time in real life. Examples include:

“If the light is red then stop, otherwise continue through the intersection.”
	� “If all tellers are busy when you arrive at the bank, then stand in line and

wait for the next one to become available.”
	� “If you need bread or milk, then stop at the grocery store on the way home.”
	 “If it rains, the picnic will be cancelled.”

Notice that all of these examples use the word “if.” This word indicates a
standard conditional sentence in English. The condition in the first case is the
phrase “if the light is red” (called in English the protaxis or antecedent) and the
consequence to that is the phrase “then stop” (the apodosis or consequent). Ter-
minology aside, the intent is clear to an English speaker: on the condition that or
in the event that the light is red, then the necessary action is that the driver is to
stop their car. The action is conditional on the antecedent, which in Python will
be called an expression or, more precisely, a logical expression, which has the
value True or False.

The structure or syntax of this sort of thing in Python would be:
if the light is red:
	 stop

or more exactly:
if light == red:
	 # execute whatever code makes the car stop

This is called an if statement, and is more profound with a more complex
syntax than can be inferred from this example.

52 ■ Python: An Introduct ion to Programming

	 1.7	 IF STATEMENTS
In Python an if statement begins with the word if, followed by an expression

that evaluates to True or False, followed by a colon (:), then a series of statements
that are executed if the expression is true. The names True and False are constants
having the obvious meaning, and a variable that can take on these values is a logi-
cal or Boolean (named after the man who invented two state or logical algebra)
variable. The expression is the only tricky part. It can be a constant like True,
or a variable that has a True or False value, or a relational expression (one that
compares two things) or a logical combination of any of these—anything that has
a result that is true or false.

if True:	 # Constant
if flag:	 # Logical variable
if a < b:	 # relational expression
if a<b and c>d:	 # logical combination

A logical expression can be any arithmetic expressions being compared using
any of the following operators:

<	 Less than
>	 Greater than
<=	 Less than or equal to
>=	 Greater than or equal to
==	 Equal to
!=	 Not equal to

Logical combinations can be:
and	 EG: 	 a==b and b==c
or	 EG:	 a==b or a==c
not	 EG:	 not (a == b)		 # same as !=

The syntax is simple and yet allows a huge number of combinations. For
example:

if p == q and not p == z and not z == p:
if pi**2 < 12:
if (a**b)**(c-d)/3 <= z**3:

The consequent, or the actions to be taken if the logical expression is true,
follows the colon on the following lines. The next statement is indented more than
the if, and all statements that follow immediately that have the same indentation

 Chapter 1 · Computers and Programming ■ 53

are a part of the consequent and are executed if the condition is true, otherwise
none of them are. As an example, consider:

	 if a < b:
	 a = a + 1
	 b = b – 1
	 c = a – b

In this case the two statements following the “:” are indented by 4 more spac-
es than is the if. This tells Python that they are both a part of the if statement, and
that if the value of a is smaller than the value of b, then both of those statements
will be executed. Python calls such a group of statements a suite. The assignment
to the variable c is indented to the same level as the if, so it will be executed in
any case and is not conditional.

The use of indentation to connect statements into groups is unusual in pro-
gramming languages. Most languages in use pretty much ignore spaces and line
breaks altogether, and use a statement separator such as a semicolon to demark
statements. So, in the Java language the above code would look like this:

if (a<b) {
 a = a + 1;
 b = b – 1;
}
c = a – b;

The braces { … } enclose the suite, which would probably be called a block in
Java or C++. Notice that this code is also indented, but in Java this means nothing
to the computer. Indentation is used for clarity, so that someone reading the code
later can see more clearly what is happening.

Semicolons are used in Python too, but much more rarely. If it is desired to
place more than one statement on a single line, then semicolons can be used to sep-
arate them. The Python if statement under consideration here could be written as:

if a < b:

The key word, known by
Python, that indicates this
is an IF statement.

An expression that
evaluates to True or
False

The colon indicates the end of
the first part of the statement.
Think of it as meaning THEN, as
in IF expression THEN

if a<b :

Figure 1.4
Syntax of an IF statement.

54 ■ Python: An Introduct ion to Programming

 a = a + 1;
 b = b -1
 c = a - b

This is harder to comprehend quickly and is therefore less desirable. There
are too many symbols all grouped together. A program that is easy to read is also
easier to modify and maintain. Code is written for computers to execute, but it is
also for humans to read.

There are some special assignment operators that can be used for increment-
ing and decrementing variables. In the above code the statement a = a + 1 could
be written as a += 1, and b = b – 1 can be written as b -= 1. There is no real
advantage to doing this, but other languages permit it so Python adopted it too.
There is another syntax that can be used to simplify certain code in languages
like Java and C, and that is the increment operator “++” and the decrement opera-
tor “—.” Python does not have these. However, an effect of the way that Python
deals with variables and expressions is that “++x” is legal; so is “++++x.” The
value is simply x. The expression “x++” is not correct.

	1.7.1	 Else

An if statement is a two-way or binary decision. If the expression is true, then
the indicated statements are executed. If it is not true, then it is possible to execute
a distinct set of statements. This is needed for the pick a number program. In one
case the computer wins, and in the other the human wins. An else clause is what
will allow this.

The else is not really a statement on its own, because it has to be preceded by
an if, so it’s part of the if statement. It marks the part of the statement that is ex-
ecuted only when the condition in the if statement is false. It consists of the word
else followed by a colon, followed by a suite (sequence of indented statements).
So a trivial example is:

if True:
	 print ("The condition was true")
else:
	 print ("the condition was false")

The else as a clause is not required to accomplish any specific programming
goals, and it can be implemented using another if. The code:

 Chapter 1 · Computers and Programming ■ 55

if a < b:
	 print ("a < b")
else:
	 print ("a >= b")

could also be written as:
if a < b:
	 print ("a < b")
if not (a<b):
	 print ("a >= b")

The else is expressive, efficient, and syntactically convenient. It is expressive be-
cause it represents a way that humans actually communicate. The word else means
pretty much the same thing in Python as it does in English. It is efficient because it
avoids evaluating the same expression twice, which costs something in terms of ex-
ecution speed. And it is syntactically convenient because it expresses an important
element of the language in fewer symbols than when two ifs are used.

The final Python code for the simple solution of the guess a number program
can now be written. It is:

choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
if choice == playerchoice:
	 print ("You win!")
else:
	 print ("Sorry, You lose.")

	 1.8	 DOCUMENTATION
There are some problems with this program, but is does work. A large prob-

lem is that it always chooses the same number every time it is executed (that
number being 7). This will be fixed later on. A less critical problem is that it is
undocumented; that is, there are no instructions to a player concerning how to use
the program and there is no description of how the program works that another
programmer might use if modifying this code. This can be fixed by providing
internal and external documentation.

External documentation is like a manual for the user. Most programs have
such a thing, and even though this program is quite simple, some degree of

56 ■ Python: An Introduct ion to Programming

documentation can be provided. In fact, it is brief enough that it could be printed
whenever the program starts to run. For example:

print ("Pick-a-number is a simple guessing game. The")
print ("computer will select a number between 1 and 10").
print ("and you are expected to guess what it is.")
print ("When the program displays 'Please guess")
print ("a number between 1 and 10: ' you type in")
print ("your guess followed by the <enter> key. Your ")
print ("guess must be an integer in the range 1 to 10.")
print ("The computer will tell you if you win or lose.)

For many more sophisticated programs, such as PowerPoint for example, the
documentation is many pages and forms a small book. It would be distributed as
a booklet along with the software or provided as a web site.

Internal documentation is intended for programmers who have access to the
source code of the program. It can take the form of written documents too, but is
commonly a set of comments that appears along with the code itself. High-level
languages like Python allow the programmer to add human language text to the
code that will be completely ignored by the computer but that can be read by
anyone looking at the code. These comments describe the action of the program,
the meaning of the variables, details of computational methods used, and many
other items of interest.

In Python a comment begins with the character “#” and ends at the end of
the line.

There are no rules for what can appear typed in a comment, but there are
some guidelines developed through years of programming practice. A comment
should not simply repeat what appears in the code; a comment should shed some
light on an aspect of the program that might not be clear to everyone looking at
it, and it should be written in plain language. As an example, here is the guess-a-
number program with comments included:
This program selects a number between 1 and
10 and allows a user (player) to guess what
it is.
choice = 7 # The number selected by the computer

Prompt the user, indicating what is expected
print ("Please guess a number between 1 and 10: ")

 Chapter 1 · Computers and Programming ■ 57

Read the player's input from the keyboard
playerchoice = int(input()) # convert from string

Print the outcome of the game.
if choice == playerchoice: # Is the player's guess
 print ("You win!") # correct? Player wins!
else: # Otherwise the computer wins
 print ("Sorry, You lose.")

All programs should be documented, not after the fact but as they are being
written. Why? Because relatively few programs are written all in one sitting.
The comments in the code serve as reminders to the programmer about what the
variables represent and why particular code segments read the way they do. It
also indicates the current state of thinking about the design of the code. When the
program is looked at again at the beginning of a new working (or school) day, the
comments can be essential in resuming the work.

There is also something called a docstring that seems to do the same things
as a comment, but covers multiple lines and is not really a comment. A docstring
begins and ends with a triple quote:

print ("This code will execute")
"""
print ("This code is within a docstring")
"""

A docstring is actually a string, not a comment, but behaves like a comment
and can be used in that way. It can be especially useful for temporarily comment-
ing out small sections of code while trying to find out where errors are. There are
also programs that will collect the docstrings into a separate document that can
be used as a description of the program. For that reason their intended use is to
allow the programmer to explain the purpose of certain sections of code.

	 1.9	 ROCK-PAPER-SCISSORS AGAIN
With what is now known about Python, it is time to look at the rock-paper-

scissors problem and see if it can be coded. It takes more steps, but it is really no
more complicated than the guess-a-number program. The code is the same.

	 1.	 Select a choice from the three items rock, paper, or scissors. Save this
choice in a variable named choice.

58 ■ Python: An Introduct ion to Programming

			� A representation for the three items was when the solution was first
described, where each choice was an integer. However, input reads
strings, so it should be possible to avoid the conversion to numbers and
use the strings directly.

		 choice = "paper" # Computer chooses paper.

	 2.	 Ask the player for their choice.
		 Print as prompt message.
		 print ("Rock-paper-scissors: type in your choice: ")

	 3.	 Read the player’s selection into a variable named player.
		 Use input as we did before, but this time read a string and keep it that

way. The player must type one of “rock,” “paper,” or “scissors,” or else
an error will be reported.

		 player = input ()

	 4.	 If player is equal to choice:
	 5.	 Print the message “Tie. We’ll try again.”
		 Strings can be compared against each other for equality, so this step is

quite simple:
		 if player == choice:
 print ("Game is a tie. Please try again.")

	 6.	 If player is equal to rock
	 7.	 If choice is equal to scissors, go to Step 17
		 The will be no “go to Step 17,” but that step simply says that the player

wins. Just print that message here.
		 if player == "rock":
		 if choice == "scissors":
		 print ("Congratulations. You win.")
		 else:
		 print ("Sorry - computer wins.")

	 8.	 If player is equal to paper
	 9.	 If choice is equal to scissors, go to Step 17
		 if player == "paper":
		 if choice == "scissors":
		 print ("Sorry - computer wins.")
		 else:
		 print ("Congratulations. You win.")

	 10.	 If player is equal to scissors

 Chapter 1 · Computers and Programming ■ 59

	 11.	 If choice is equal to rock, go to Step 17
		 if player == "scissors":
		 if choice == "rock":
		 print ("Sorry - computer wins.")
		 else:
		 print ("Congratulations. You win.")

This code illustrates a new concept, if not a new language feature. It has if
statements that are nested one within the other. Again, it’s not necessary to do this
because non-nested statements can implement the same decision. For example:

Nested IFs Non-nested IFs
if player == "scissors": if player == "scissors and

 choice == "rock"
 if choice == "rock": print ("Computer wins")
 print ("Computer wins.") if player == "scissors" and

 choice != "rock"
 else: print ("You win")
 print ("You win.")

Nested if statements seem more expressive, and communicate the flow of the
program better to a human programmer than does the non-nested code.

There is another Python language element that can be used here. Looking at
the code, there is no indication when the user makes an error. For example, if the
user enters “ROCK” (i.e., uppercase), then it will not match any of the choices,
and the program will not indicate this. In fact, it won’t print anything at all. What
is really wanted is a sequence of if-else-if-else statements such as:

if player == "scissors":
 if choice == "rock":
else:
 if player == "rock":
 if choice == paper:
 else:
 if player == "scissors":
 ## and so on …

Python has a special feature that implements this nesting of if and else: the
elif. The elif construct combines an else and an if, and this reduces the amount
of indenting that has to be done. The following code snippets do the same thing:

	 if a<b:				 if a<b:

60 ■ Python: An Introduct ion to Programming

	 print ("a<b")				 print ("a<b")
	 elif a>b:				 else:
	 print ("a>b")				 if (a>b):
	 else:						 print ("a>b")
	 print ("a=b")				 else:
							 print ("a=b")

If too many nested if-else statements exist, then the indenting gets to be too
much, whereas the elif allows the same indent level and has the same meaning.
In some programs this is essential, and in general is easy to read. Using the elif
statement the program for the rock-paper-scissors problem looks like this:

choice = "paper" # Computer chooses paper.
print ("Rock-paper-scissors: type in your choice: ")
player = input ()
if player == choice:
 print ("Game is a tie. Please try again.")
if player == "rock":
if choice == "scissors":

 print ("Congratulations. You win.")
else:
 print ("Sorry - computer wins.")
elif player == "paper":
if choice == "scissors":

 print ("Sorry - computer wins.")
else:
 print ("Congratulations. You win.")
elif player == "scissors":
if choice == "rock":

 print ("Sorry - computer wins.")
else:

 print ("Congratulations. You win.")
else:
 print ("Error: Select one of: rock, paper, scissors")

Now all of the possible outcomes are handled by the code.

	1.10	 TYPES ARE DYNAMIC (ADVANCED)
To programmers who only program using Python, it would seem odd that a

particular variable could have only one type and that it would have to be initially

 Chapter 1 · Computers and Programming ■ 61

defined to have that type, but it is true. In Python the type associated with a vari-
able can change. For example, consider the statements:

x = 10		 # X is an integer
x = x*0.1	 # X is floating point now
x = (x*10 == 10) 	 # X is Boolean

Some find this perfectly logical, and others find it confusing. The fact is that so
long as the variable is used according to its current type, all will be well.

It is also true that even apparently simple Python types can be quite complex
in terms of their implementation. The point is that the programmer rarely needs
to know about the underlying details of types like integers. In many program-
ming languages an integer is simply a one or two-word number, and the lan-
guages build operations like “+” from the instruction set of the computer. If, for
example, a one-word integer A is added to another one B, it can be done using a
single computer instruction like ADD A, B. This is very fast at execution time.

Python was designed to be convenient for the programmer, not fast. An in-
teger is actually a complex object that has attributes and operations. This will
become clearer as more Python examples are written and understood, but as a
simple case think about the way that C++ represents an integer. It is a 32-bit (4
byte) memory location, which is a fixed size space in memory. The largest num-
ber that can be stored there is 232-1. Is that true in Python?

Here’s a program that will answer that question, although it uses more ad-
vanced features:

for i in range (0,65):
 print (i, 2**i)

Even an especially long integer would be less than 65 bits. The fact is that this
program runs successfully, and even rather quickly. Integers in Python have an
arbitrarily large size. So calculating 264 * 264 is possible and results in 340282366
920938463463374607431768211456. This is very handy indeed from a program-
mer’s perspective.

The type of a variable can be determined by the programmer as the program
executes. The function type() will return the type of its parameter as a string, and
can be printed or tested. So, the code:

z = 1
print (type(z))

62 ■ Python: An Introduct ion to Programming

z = 1.0
print(type(z))

will result in:
<class 'int'>
<class 'float'>

If one needed to know if z was a float at a particular moment, then:
if type(z)is float:

would do the trick. Type(z) does not return a string, it returns a type. The print()
function recognizes that and prints a string, just as it does for True and False. So:

if type(z) == "<class 'float'>":

would be incorrect.

In future chapters this malleability of types will be further described, and
practical methods for taking advantage of it in Python will be examined.

 	1.11	 SUMMARY
A computer is a tool for rapidly and accurately manipulating numbers. It can

perform tedious repetitive tasks accurately and quickly, but must be told what
to do and follows its instructions very literally. A computer program is a set of
instructions for performing a task using a computer, and Python is one language
that can be used for this purpose. Python allows a programmer to define variables
by simply using them, and associates a type with a variable based on what it is
given. An if statement allows parts of a program to be executed when a certain
condition becomes true, and it can have an else part that is executed when the
condition is false. If statements can be nested, and sometimes the elif structure is
a good way to express a set of nested conditional code.

In this chapter the main examples were two programs, one of which allowed a
user to guess a number, while the other was the well-known game of rock-paper-
scissors.

 Chapter 1 · Computers and Programming ■ 63

Exercises

In the following exercises some of the expressions may result in an error. If so, ex-
plain why the error occurs. When asked to write code it should be Python 3 code.

	 1.	Evaluate the following expressions:
	 a) 3*3/2
	 b) 3*3//2
	 c) 3*3%2
	 d) (3*3)%2
	 e) 3**3/3
	 f) (3+2)-(2-4)
	 g) (3+2)/(2-4)

	 2.	 If the statements:
x = 3
y = 9
z = "2.4"

		 have been executed then evaluate the following expressions. If an error
occurs, state why:

	 a) x/y
	 b) x//y
	 d) x%y
	 e) y/x*z
	 f) float(x)/float(z)
	 g) float(x)//float(z)
	 h) int(x)//int(z)

	 3.	Given the variable definitions presented, evaluate the following expressions
as being True or False.
x = 12
y = 14

	 a) x>3
	 b) x >=12
	 c) x<y

64 ■ Python: An Introduct ion to Programming

	 d) x<y and y>14
	 e) x<y or y>14
	 f) not (x == y)
	 g) not(x<y) and not(y>14)

	 4.	What will be printed by the following statements?
	 a) print (int("23"))
	 b) if 3**2+4**2 == 5**2:

	 print ("345")
	 elif 3**2 < 4**2:
	 print ("34")
	 else:
	 print ("5")

	 c) if "toast" < "jam":
 print ("toast")
 else:
 print ("jam")

	 d) if "12" < "5":
 print ("12")
 else:
 print ("5")

	 e) a = 12.3
 b = 100
 c = 0
 if a < b: a = a + 1; b = b -1
 c = c – b
 print (a)
 print (c)

	 f) a = 100
 b = 200
 c = 300
 ab = a<b
 cd = (c == a+b)
 if ab and cd:
 print ("AB and CD")
 elif ab:
		 print ("AB")
 else:
 print ("Nope")

 Chapter 1 · Computers and Programming ■ 65

	 5.	The United States measures temperature in Fahrenheit degrees, whereas
Canada uses Celsius. A company is developing an app to convert between the
two for people wanting to ski in Banff or Whistler. The formula to convert
from Celsius degrees C to Fahrenheit degrees F is:
F = C*9/5 + 32

�Write a program that will be the basis of this app: it will read a temperature
in Celsius, convert it to Fahrenheit, and print the result.

	 6.	The numerical values of coins have been arranged so that the greedy algorithm
will result in the smallest number of coins when making change. This means
that the largest valued coin is tried first, and as many of those coins are used as
possible. Then the next smaller denomination coin is used, and so on until the
pennies are dealt out. So for 84 cents in change, a 50-cent piece could be used
(leaving 34 cents), then a 25-cent piece (leaving 9 cents), a 5 cent piece (leaving
4 cents), and 4 pennies. If no 50-cent piece was available, then 25-cent pieces
would be used in its place: 3 quarters, followed by a nickel and four pennies.
Write a program that reads a number between 1 and 99 that is an amount of
change to be given and prints the coin values that would be used.

	 7.	Three floating point variables a, b, and c have been read in from the console.
Write a set of if statements that prints these in descending order.

	 8.	 If the value of 1.0/7.0 is printed, there are many numbers to the right of the
decimal place. Devise a way to print only three places and write some Python
code to test the idea.

	 9.	Calculate an approximation to pi. There is an infinite series called the
Gregory-Leibniz series that sums to pi. Of course it can never reach the exact
value because there is no such thing, but it can compute as many digits as are
desired. The series is:

	 Π = 4/1 – 4/3 + 4/5 – 4/7 + 4/9 – 4/11 ….

�Write a program that calculates the result of the first 15 terms of this series.
How many digits of pi are correct? Add six more terms. How many digits are
correct now?

	10.	Another series that can calculate pi is the Nilakantha series. It is a little
more complicated to calculate, but gets close to pi much faster than does the
Gregory-Leibniz series of Exercise 9. The Nilakantha series is:

66 ■ Python: An Introduct ion to Programming

	 Π = 3 + 4/(2*3*4) – 4/(4*5*6) + 4/(6*7*8) – 4/(8*9*10) …

Calculate the first 15 terms of this series. How many digits of pi are correct?

Notes and Other Resources

Many teaching resources for Python exist, both in print and on the Internet.

Here is the development environment used to test the code for this book.

PyCharm. https://www.jetbrains.com/pycharm/

	 1.	David Beazley and Brian K. Jones. Python Cookbook, 3rd Edition: Recipes
for Mastering Python 3, http://www.onlineprogrammingbooks.com/python-
cookbook-third-edition/

	 2.	Cody Jackson. Learning to Program Using Python, http://www.
onlineprogrammingbooks.com/learning-program-using-python/

	 3.	Brad Miller. Problem Solving with Algorithms and Data Structures
Using Python, http://www.onlineprogrammingbooks.com/problem-solving-
with-algorithms-and-data-structures/

	 4.	Harry Percival. Test-Driven Development with Python, http://www.
onlineprogrammingbooks.com/test-driven-development-with-python/

	 5.	Lennart Regebro. Porting to Python 3: An In-Depth Guide, http://www.
onlineprogrammingbooks.com/porting-to-python-3-an-in-depth-guide/

	 6.	Zed A. Shaw. Learn Python the Hard Way, http://learnpythonthehardway.
org/book/

■ ■ ■ ■ ■

In this chapter

One of the things that makes computers attractive to humans is their
ability to do tedious, repetitive tasks accurately and at high speed without
getting bored. It is something they were designed to do. Humans have to
do things repeatedly, and not all of them can be done for us by computers.
Brushing our teeth, driving to work, cleaning the carpet—all are repeated
actions, and many would be called chores. In programming terms some
might be referred to as loops.

Consider a factory job on an assembly line. According to Henry Ford, one
of the people principally connected with devising the assembly line concept, it is
more efficient to have each worker do one job well and repeat it many times a day
than to teach workers how to build entire things, in his case automobiles. Each
worker does one relatively short job, and then the piece they are working on goes

2Chapter

Repetition

2.1	 The WHILE Statement ��69
2.2	 Rock-Paper-Scissors Yet Again��73
2.3	 Counting Loops��78
2.4	 Prime or Non-Prime��79
2.5	 Loops That are Nested ��84
2.6	 Draw a Histogram ��86
2.7	 Loops in General��89
2.8	 Exceptions and Errors ��90
2.9	 Summary��96

68 ■ Python: An Introduct ion to Programming

to the next station where the next person does their relatively short job. One such
job could be the installation of the electronic ignition module bracket:

	 1.	 Acquire a bracket and place over attachment holes with wide end below
the smaller end.

	 2.	 Place a two-inch bolt in the upper left bolt hole and screw in to two
pounds of torque.

	 3.	 Place a four-inch bolt in the upper right bolt hole and screw in to two
pounds of torque.

	 4.	 Place a two-inch bolt in the lower left bolt hole and screw in to two
pounds of torque.

	 5.	 Place a ten-millimeter nut over the bolt at the lower right and tighten to
ten pounds.

	 6.	 Re-tighten the bolts to ten pounds in the following order: upper left,
upper right, lower left.

Before Step 1 above a new work piece (an engine, probably) is placed in front
of the worker, and after Step 6 the piece is moved to the next station. So from the
worker’s perspective, so long as or while there is an engine at their station that
needs a bracket, they repeat the steps. In a form that a computer might be able to
understand this might be written as:

while there is an engine at their station that needs a bracket:
�Acquire a bracket and place over attachment holes with wide end below the
smaller end.
�Place a two-inch bolt in the upper left bolt hole and screw in to two pounds
of torque.
�Place a four-inch bolt in the upper right bolt hole and screw in to two pounds
of torque.
�Place a two-inch bolt in the lower left bolt hole and screw in to two pounds
of torque.
�Place a ten-millimeter nut over the bolt at the lower right and tighten to ten
pounds.
�Re-tighten the bolts to ten pounds in the following order: upper left, upper
right, lower left.

 Chapter 2 · Repet i t ion ■ 69

All of the actions that follow the while are indented to indicate that they are
a part of the activities to be repeated, just as was done in a Python if statement
to mark the things that were to be done if the condition was true. This example
illustrates one of the Python repetition structures quite accurately: the while
statement.

The key word, known by
Python, that indicates that
this is a WHILE statement.

An expression that
evaluates to True or
False

The colon indicates the end of
the first part of the statement.
Think of it as meaning DO as in
WHILE expression DO

while a<b :

Figure 2.1
Essential syntax of the WHILE statement.

	 2.1	 THE WHILE STATEMENT
When using this repetition statement, the condition is tested at the top or

beginning of the loop. If upon that initial test the condition is true, then the body
of the loop is executed; otherwise it is not, and the statement following the loop is
executed. This means that it is possible that the code in the loop is not executed at
all. The condition tested is the same kind of expression that is evaluated in an if
statement: one that evaluates to True or False. It could be, and often is, a compar-
ison between two numeric or string values, as it is in the example of Figure 2.1.

When the code in the body of the while statement has been executed, then the
condition is tested again. If it is still true, then the body of the loop is executed
again, otherwise the loop is exited and the statement following the loop is ex-
ecuted. There is an implication in this description that the body of the loop must
change something that is used in the evaluation of the loop condition, otherwise
the condition will always be the same and the loop will never terminate. So, here
is an example of a loop that is entered and terminates:

a = 0
b = 0
while a < 10:
 a = a + 1
print (a)

The condition a<10 is true at the outset because a has the value 0, so the code
in the loop is executed. The lone statement in this loop increments a, so that after

70 ■ Python: An Introduct ion to Programming

the first time the loop is executed, the value of a is 1. Now the condition is tested
and, again, a<10 so the loop executes again. In the final iteration of the loop, the
value of a starts out as 9, is incremented and becomes 10. When the condition is
tested it fails, because a is no longer less than 10 (it is equal) and so the loop ends.
The statement following the loop is print (a) and the value printed is 10. This
loop explicitly modifies one of the variables in the loop condition, and it is easy
to see that the loop will end and what the value of a will be at that time.

Here is an example of a loop that is entered and does not terminate:
a = 0
b = 0
while b < 10:
 a = a + 1
print (a)

In this case the value of b is less than 10 at the outset, so the loop is entered.
The body of the loop increments a as before, but does not change b. The loop con-
dition does not depend on a, only on b, so when the loop condition is tested again
the value of b is still 0, and the loop executes again. The value of b will always
be 0 each time it is tested, so the loop condition will always be true and the loop
will never end. The print statement will never be executed.

When this program is executed, the computer will seem to become unrespon-
sive. As long as the loop is executing the program can do nothing else, and so the
only indication that something is wrong is that nothing is happening. There are
many reasons why a program can appear to be doing nothing: when waiting for
the user to type some input, for instance, or when performing an especially dif-
ficult calculation. However, in this case, which is called an infinite loop, the only
thing to do is to terminate the program and fix the loop.

Here is an example of a loop that is not entered:
a = 100
b = 0
while a < 10:
 a = a + 1
print (a)

The condition a<10 is false at the outset because a has the value 100, so the
code in the loop is not executed. The statement following the loop is executed
next, which is the print statement, and the value printed is 100.

 Chapter 2 · Repet i t ion ■ 71

These loops are merely examples that illustrate the three possibilities for a
while loop and do not calculate anything useful. The two examples from the
previous chapter can make practical use of a while loop, and it would be useful
to look at those again.

	2.1.1	 The Guess-A-Number Program Yet Again

The program as it was written in Chapter 1 is:
choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
if choice == playerchoice:
 print ("You win!")
else:
 print ("Sorry, You lose.")

The game would be better if it allowed the player to guess again, perhaps un-
til a correct guess was achieved. A while loop could be used to accomplish this.
Think about what the condition might be. The loop should end when the player
guesses the answer. Another way to say this is that the loop should continue so
long as the player has not guessed the answer. The condition is one for continu-
ation of the loop, not termination, so the loop must be constructed in such a way
that it continues when the condition is true. The loop will begin with this:

while choice != playerchoice:

At the beginning of the loop the variables choice and playerchoice must be
defined. This means that before the while statement, there must be code that does
this. The program now looks like this:

choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
while choice != playerchoice:

If the player has guessed incorrectly, then the body of the loop will execute.
What should be done? One of the variables in the condition has to be changed,
first of all, and the goal of the program must be kept in mind. In this case, because
the player has guessed incorrectly, two things should happen. First, the player
must be told that they are wrong and to make another guess. Next, the new guess

72 ■ Python: An Introduct ion to Programming

must be read into the variable playerchoice, thus satisfying the rule that the loop
condition must have an opportunity to become False. The program is now:

choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
while choice != playerchoice:
 print ("Sorry, not correct. Guess again: ")
 playerchoice = int(input())

When the player finally guesses the number the loop will exit; if the first
guess is correct then the condition fails at the beginning, and this amounts to the
same thing in this case. The last thing to do is to print a message to the player:

choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
while choice != playerchoice:
 print ("Sorry, not correct. Guess again: ")
 playerchoice = int(input())
print ("You have guessed correctly.")

Note that, as was true with the if statement and as is always true in Python,
the indentation indicates which statements are a part of the loop (the suite) and
which are outside.

	2.1.2	 Modifying the Game

A simple modification of the game involves telling the player whether their
guess was too large or too small. This will help them shrink the possible range of
values and thus guess the right answer more quickly. A modification to the body
of the loop will accomplish this. If the value that the player guessed is smaller
than the target, then a message to that effect is printed, and similarly if the player
guesses a value larger than the target. The use of an if statement here would be
appropriate, and that if statement would be nested inside of the while loop:
choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
while choice != playerchoice:
 if (playerchoice < choice):
 print ("Sorry, your guess was too small.

 Chapter 2 · Repet i t ion ■ 73

 Guess again: ")
 else:
 print ("Sorry, your guess was too large.
 Guess again.")
playerchoice = int(input())
print ("You have guessed correctly.")

This program illustrates a second level of indentation. The if-else are in-
dented to indicate they are part of the while statement. The print statements are
indented further, to show that they are also part of the if statement.

Doing some printing inside of the loop is useful because an infinite loop will
be obvious. It will print a whole lot of stuff and never stop. It’s not always practi-
cal to do that, so a degree of careful analysis should always be done to ensure that
the loop can and will terminate.

	 2.2	 ROCK-PAPER-SCISSORS YET AGAIN
This game really needs a loop, and the previous implementation was not

complete. If there is a tie then the game has to be repeated, and a winner must be
determined. This means that the loop in this case will be something like:

while there is no winner:

This happens only when the player and the computer select the same object,
and in the original code was handled by the statements:

if player == choice:
 print ("Game is a tie. Please try again.")

The condition “no winner” becomes player == choice. The complete solu-
tion involves the while loop and another input from the user within the loop. Here
is one possible answer:
choice = "paper" # Computer chooses paper.
print ("Rock-paper-scissors: type in your choice: ")
player = input ()

--------- The new section of code ---------------------
while player == choice: # Repeat input until there is a
 winner
 print ("Game is a tie. Please try again.")

74 ■ Python: An Introduct ion to Programming

player = input ()

if player == "rock":
 if choice == "scissors":
 print ("Congratulations. You win.")
 else:
 print ("Sorry - computer wins.")
elif player == "paper":
 if choice == "scissors":
 print ("Sorry - computer wins.")
 else:
 print ("Congratulations. You win.")
elif player == "scissors":
 if choice == "rock":
 print ("Sorry - computer wins.")
 else:
 print ("Congratulations. You win.")
else:
 print ("Error: Select one of: rock, paper, scissors")

The termination of the loop depends on the user’s input and the value of the
computer’s choice, which could also (and should) change inside the loop. The
probability of the loop continuing after one iteration is 1 in 3, and the probabil-
ity that it will still be looping after N iterations is (1/3)N, so there is a very small
chance of the loop repeating more than 2 or 3 times.

	2.2.1	 Random Numbers

Most games depend on an element of unpredictability or chance. Those that
do not might be more properly called puzzles (or sports—football and hockey
ought to have a certain degree of skill involved). Given that computers do calcula-
tions, and that calculations should have the same result every time, how does one
produce anything that is random using a computer? The answer is partly in how
the term random is defined. The discussion involves some mathematics or at least
some basic ideas in probability and statistics.

If integers in the range 1 through 10 inclusive are considered, what is the likeli-
hood (chance, probability) that the number 5 will be selected at random? The an-
swer is 1 in 10, or 0.1. This is true each time that question is asked. So if the number
5 has just been chosen and another number is to be chosen, what is the chance that

 Chapter 2 · Repet i t ion ■ 75

it will be a 5? Same answer: 1 in 10. The principle is that the next choice does not
depend on the previous one; it’s a part of what makes them random.

Perhaps the wrong question was being asked. So, what is the likelihood that
the number 5 will be selected twice in a row at random? The answer is 1 in 100,
or 0.01. Why? Because it depends on the question asked. To get two in a row,
the first one must be a 5 (1 in 10) and the second one must also be a 5 (also 1 in
10) so the resulting likelihood is 1 in 10*10 or 1 in 100. But each time a number
is chosen, the number 5 has a 1 in 10 chance of being selected. A mathemati-
cal discussion of randomness depends on the asking the right question, and on
probabilities. If some event is completely random, then it should have the same
probability of happening as the other possible events, but events can be collected
to form more complex events. Each card in a deck of playing cards should have
the same probability of turning up, but if the question is “What’s the chance of a
flush,” then the different ways that a flush can be comprised have to be taken into
account. It can be a very complicated and interesting subject.

Numbers, in particular, are random only with respect to each other. Is the
number “6” random? That’s not really a good question. Is the sequence 87394
random? Perhaps a test could be devised to answer that. Is the sequence 66666
random? Most would say not, but it has the same probability of being generated
at random as does 87354. To create good games and simulations, it is necessary to
devise ways to generate a random number using a computer, and to test numbers
to see if they are in fact random. Then it would be possible to simulate the flip-
ping of a coin, or the rolling of a die.

What is the 100th digit of pi? It can be found easily. Are consecutive digits
of pi effectively random? As it happens, the answer is not known, but it is a good
question. What is 108763 divided by 98581? What is the remainder? Call the re-
mainder x: what is 108763 divided by x? Are these numbers random? The search
for a method for generating really good random numbers continues, but there are
some pretty good methods (See: Chapter 10). In Python a random number created
by a computer algorithm can be requested by using a built-in function.

A built-in function is like a mathematical function, and is provided by the
language itself (and so is “built-in”). The language element print that has been
used so much is really a built-in function. So are int() and float(). The functions
sine and square root should be well understood by anyone who has graduated

76 ■ Python: An Introduct ion to Programming

from high school, and are also built-in functions. Such functions belong to mod-
ules in Python and have to be specifically requested by the program so that they
can be used. This means that the name of the module has to be known as well as
the names of the built-in functions within it. The common mathematical func-
tions are located within the module math and can be used by requesting the math
module with the statement:

import math

Using a function in the math module involves using the name math followed
by a period (“.”) followed by the name of the function. The “.” opens the module
so that the names within can be used, because there may be other built-in func-
tions or even variables that have the same name. So, if the statements:

x = math.sqrt(64)
print (x)

are executed, the program will print the number 8, which is the square root of 64.
The expression sqrt(64) is called a function call, and executes the code needed
to calculate the square root of 64. The name sqrt is the name of the function,
which is code provided by the Python language. This particular call will always
return the value 8, because 8 is always the square root of 64. It is very much
like the functions that are studied in grade school mathematics, such as sine and
cosine. A module can be thought of as a bag of programs. Each bag contains a
set of programs that do a particular class of things, like mathematics or drawing.
By specifying the name of the module, access to all of the functions within is
granted, and by specifying the specific name of a function, the code that we want
is specifically made available.

By the way, the import statement should be at the very beginning of the
program.

Now imagine that it is possible to have a function that produces a random
number as a value. It is in the module named random, and the function could be
called random too. For example:

import random
print (random.random())

Every time (well almost every time, because it is random, after all) the func-
tion is used it will give a different value, a random value. This value can be used
to make games more realistic, because games have a random aspect.

 Chapter 2 · Repet i t ion ■ 77

This code prints the value 0.07229650795715237. Why? Because random.
random() produces a random number between 0.0 and 1.0. This is the most com-
mon example of a random number function, and it is really very general. In-
creasing the range is done simply by multiplying by the maximum value desired;
random.random()*100 gives a random number between 0 and 100, for instance.

What if the problem is to simulate the roll of a die? The bag of code that is
the random module contains other functions related to the generation of random
numbers, and one of them is especially suited to this problem. A die roll would
be implemented as:

random.randint (1, 6)

The randint function accepts two numbers, called parameters. The first is
the lower limit of the range of random integers to be produced and the second
is the upper limit. Specifying 1 as the lower limit and 6 as the upper, as in the
example above, means that it will generate numbers between 1 and 6 inclusive,
which is what would be expected from rolling a die. The result of rolling two dice
would be a number between 2 and 12, found by random.randint(2,12).

Flipping a coin is a two-level choice, and could be done with random.rand-
int(1,2). More completely:

if (random.randint(1,2) == 1):
 print ("Heads")
else:
 print ("Tails")

Going back again to the number guessing game, a random choice for the
computer’s number is now possible. Instead of the first line of code being:

choice = 7

it should now be:

choice = random.randint(1,10)

Every time the program executes, the program will select a new random
number, as opposed to the choice always being 7.

The introduction of a random choice is a little more complicated for the rock-
paper-scissors program because the variable holding the player’s choice is a string.
There are three possible choices, so to select one at random might look like this:

78 ■ Python: An Introduct ion to Programming

i = random.randint(1,3)
if i == 1:
 choice = "rock"
elif i == 2:
 choice = "paper"
else:
 choice = "scissors"

Many of the examples that will be developed will involve a game or puzzle
of some kind, so the use of random numbers will be a consistent feature of the
code shown.

	 2.3	 COUNTING LOOPS
Features of programming languages are provided because the designers

know they will be useful. The while loop is obviously useful, and is in fact the
only kind of loop that is required in order to implement any program. However,
loops that involve counting a certain number of iterations are pretty common,
and adding syntax for this kind of thing would be certain to be valuable for a pro-
grammer. The idea is that sometimes a loop that executes, for example, ten times
or a loop that iterated N times for some variable N would be wanted. In Python
and many other languages, this is called a for loop.

In some languages a for loop involves a special syntax, but in Python it in-
volves a new type (a class of types, really): a tuple. Here is an example of a for
loop:

for i in (1,2,3,4,5):
 print i

This will print the numbers 1 2 3 4 5 each on a separate line. The variable i
takes on each of the values in the collection provided in parentheses, and the loop
executes once for each value of i. The collection (1,2,3,4,5) is called a tuple, and
can contain any Python objects in any order. It’s basically just a set of objects.
The following are legal tuples:
(3,6, 9, 12)
(2.1, 3.5, 9.1, 0, 12)
("green", "yellow", "red")
("red", 3, 4.5, 2, "blue", i) #where i is a variable with a
 value

 Chapter 2 · Repet i t ion ■ 79

The for loop has the loop control variable (in the case above it is i) take on
each of the values in the tuple, in left to right order, and then executes the con-
nected suite. The loop will therefore execute the same the number of times as
there are elements in the tuple.

Sometimes it may be necessary to have the loop execute a great many times.
If the loop was to execute a million times, it would be more than awkward to
require a program to list a million integers in a tuple. Python provides a function
to make this more convenient: range(). It returns a tuple that consists of all of the
integers between the two parameters it is given, including the lower end point. So:
range (1,10) is (1,2,3,4,5,6,7,8,9)
range (-1, 2) is (-1, 0, 1)
range (-1, -3) is not a proper range.
range (1, 1000000) if the set of all integers from 1 to
 9999999

Ranges involving strings are not allowed, although tuples having strings in
them are certainly allowed. The original example for loop can now be written:

for i in range(1,6):
 print i

and the loop that is to execute a million times could be specified as:
for i in (0, 1000000):
 print i

This would print the integers from 0 to 999999. If range() is passed only a
single argument, then the range is assumed to start at 0; this means that range
(0,10) and range (10) are the same.

	 2.4	 PRIME OR NON-PRIME
Here’s a game that can illustrate the use of a for loop, and some other ideas

as well. The computer presents the player with large numbers, one at a time. The
player has to guess whether each number is prime or non-prime. A prime number
does not have any divisors except 1 and itself; 3, 5, 11, and 17 are prime numbers.
The game ends either when a specific number of guesses have been made, or
when the player makes a specific number of mistakes.

80 ■ Python: An Introduct ion to Programming

The key word, known by
Python, that indicates that
this is a for statement.

for
A variable, the loop
control variable, that
will take on values in
a given sequence

i
The key word in,
which is basically a
placeholder

in
A tuple (or other
sequence type)
that enumerates
the values the
variable will take

2,7,8
The colon indicates the
end of the first part of the
statement. Think of it as
meaning do, as in for i in
(2,7,8) do

:

Figure 2.2
The structure of a FOR statement.

A key problem to solve in this game is to determine when a number is prime.
The computer must be able to determine whether the player is correct, and so
for any given number there must be a way to figure out whether it is prime.
Otherwise, the program for this game is not very complicated:

while game is not over:
 select a random integer k
 print k and ask the player if it is prime
 read the playerꞌs answer
 if playerꞌs answer is correct:
 print "You are right"
 else:
 print "You are wrong."

The mysterious portion of this program is the if statement that asks if the
player’s answer is correct. This really means that the program must determine
whether or not the number K is prime and then see if the player agrees. How can
it be determined that a number is prime? A prime number has no divisors, so if
one can be found then the number is not prime. The modulo operator % can be
used to tell if a division has a remainder: if k % n = 0 then the number n divides
evenly into k, and k is not prime.

So to find out whether a number is prime, try dividing it by all numbers
smaller than it, and if any of them have a zero remainder then the number is not
prime. This is a job for a for loop. Here’s a first draft:

isprime = True
for n in range (1, K):
 if k%n == 0:
 isprime = False

After the loop has completed, the variable isprime indicates whether K is
prime or not. This seems pretty simple, if tedious. It does a lot of divisions. Too

 Chapter 2 · Repet i t ion ■ 81

many, in fact, because it is not possible for any number larger than K/2 to divide
evenly into K. So a slightly better program would be:
isprime = True # Is the number K prime?
for n in range (1, int(k/2)) # Divide K by all numbers < K/2
 if k%n == 0: # If the remainder is 0 then n
 isprime = False # �divides evenly into K: not
 # prime
If isprime is still true here then the number is prime.

Next, this section of program should be incorporated into a complete pro-
gram that plays the game. If the game is supposed to allow 10 guesses, then the
first step is to repeat the whole thing 10 times:

import random
correct = 0 # The number of correct guesses
for iteration in range(0, 10): # 10 guesses

Now select a number at random. It should be large enough so that it is hard to
see immediately if it is prime, although even numbers are a giveaway:
K = random.randint(10000, 1000000) # Generate a new number

Next print a message to the user asking for their guess, and read it:
print ("Prime or Not: Is the number ",K," prime? (yes or
 no)")
answer = input() # Read the userꞌs choice

The user types in a string, “yes” or “no,” as their response. The variable
isprime that was used in the program that determines whether K is prime is
logical, being True or False. It could be made into a string too so that it was the
same as what the user typed, and then it could be compared directly against the
user’s input:

isprime = "yes"

Now comes the code for determining primality as coded above, except with
isprime as a string:
isprime = True # Is the number K prime?
for n in range (1, int(k/2))   # Divide K by all numbers < K/2
 if k%n == 0: # If the remainder is 0 then n
 isprime = "no" # divides evenly into K: not prime
If isprime is still true here then the number is prime.

82 ■ Python: An Introduct ion to Programming

At this point the variable isprime is either “yes” or “no,” depending on
whether K is actually prime. The user’s guess is also “yes” or “no.” If they are
equal then the user guessed correctly.

if isprime==answer:
 print ("You are correct!")

 correct = correct + 1
 else:
 print ("You are incorrect.")

Finally, the outer loop is ended and the result is printed. The value of the
variable correct is the number of correct guesses the user made, because it was
incremented every time a correct answer was detected. The last statement is:

print ("You gave ",correct, " right answers out of 10.")

This program can be found on the CD in the directory “primegame.”

	2.4.1	 Exiting from a Loop

A clever programmer would notice a pretty serious inefficiency with the
prime number program. When it has been determined that the number is not
prime, the loop continues to divide more numbers into k until k/2 of them have
been tried. If k= 999992 then it is known after the first iteration that the number if
not prime; it is even, so it can’t be prime. But the program continues to try nearly
another half million numbers anyway. What is needed is a way to tell the program
that the loop is over. There is a way to do this.

A loop can be exited using the break statement. It is simply the word break
by itself. The correct way to use this in the program above would be:
for n in range (1, int(k/2)) # Divide K by all numbers < K/2
 if k%n == 0: # If the remainder is 0 then n
 isprime = "no" # divides evenly into K: not prime
 break

This loop terminates when the number k is known to be not prime. The state-
ment following the loop will be executed next. This can save a lot of computer
cycles, but does not make the program more correct—just faster.

A variation on this is the continue statement. This will result in the next
iteration of the loop being started without executing any more statements in the

ON THE CD

 Chapter 2 · Repet i t ion ■ 83

current iteration. This avoids doing a lot of work in a loop after it is known it’s not
necessary. For example, doing some task for a bunch of names except for people
named “Smith” could use a continue statement:
for name in (ꞌJonesꞌ,ꞌSmithꞌ,ꞌPetersꞌ,ꞌSinatraꞌ,ꞌBohrꞌ,
 ꞌConradꞌ):
 print (name);
 if name == ꞌSmithꞌ:
 continue
Now do a bunch of stuff …

Both the break and continue do the same thing in both while and for loops.

Modifying the loop variable will not change the number of iterations the loop
will execute. In fact, it has no effect. This loop demonstrates that:

for i in range(0, 10):
 print ("Before ",i)
 i = i + 1000
 print ("After ",i)

It prints:
Before 0
After 1000
Before 1
After 1001
 . . .

and so on. It seems that the value of i changes after the assignment for the re-
mainder of the loop and then is set to what it should be for the next iteration.
This makes sense if Python is treating the range as a set of elements (it is), and it
assigns the next one to i at the beginning of each iteration. Unlike a while loop,
there is not a test for continuation. In any case, changing i here does not alter the
number of iterations and can’t be used in place of a break.

	2.4.2	 Else

The idea that the loop can be exited explicitly makes the normal termina-
tion of the loop something that should be detectable too. When a while or for
loop exits normally by exhausting the iterations or having the expression become
False, it is said to have fallen through. When the for loop in the prime number
program detects a factor, it now executes a break statement, thus exiting the loop.

84 ■ Python: An Introduct ion to Programming

What if it never does that? In that case no factor exists, and the number is prime.
The program as it stands has a flag that indicates this, but it could be done with
an else clause on the loop.

The else part of a while or for loop is executed only if the loop falls through;
that is, when it is not exited through a break. This can be quite useful, especially
when the loop is involved in a search, as will be discussed later. In the case of the
prime number program, an else could be used when the number is in fact prime,
as follows:
for n in range (1, int(k/2)) # Divide K by all numbers < K/2
 if k%n == 0: # If the remainder is 0 then n
 isprime = "no" # divides evenly into K: not
 # prime
 break
else:
 isprime = "yes" # Loop not exited: it is prime

An else in a while loop occurs when the condition becomes false. Consider
a loop that reads from input until the user types “end” and is searching for the
name “Smith”:

inp = input()
while (inp != "Smith"):
 s = input()
 if s == "end":
 break
else:
 print ("Smith was found")
When the program reaches this point it is no
longer known whether Smith was found.

Of course, the else is not required, and some programmers believe it is even
harmful. There are always other ways to accomplish the same thing.

	 2.5	 LOOPS THAT ARE NESTED
Just as it is possible to have if statements nested within other if statements,

it is possible, and even likely, to have a loop nested within another loop. An ex-
ample of nested for loops would be:

for i in range(0, 10)

 Chapter 2 · Repet i t ion ■ 85

 for j in range (0, 10)
 print (i,j)

The print in this example would execute 100 times. Each time the outer loop
executes once the inner one is executed 10 times, for a total of 10 * 10 or 100
iterations. Loops can be nested to a greater depth if necessary, and while and for
loops can be nested interchangeably. Is it ever useful to do this? Yes, very often.

Since there has been a recent discussion of prime numbers and factoring,
consider the problem of find the number within a given range that has the greatest
number of different factors. Leaving out 1 and the number itself, 2 has no factors,
nor does 3; 4 has one (=2), 5 has none, and 6 has two (2 and 3). Which number
between 0 and 1000 has the most?

From the prime number game it is clear that the factors can be found using a
loop. If the loop is not exited when one is found, all of them can be identified and,
more importantly for this problem, counted. For a given number k, the factors can
be identified using the following loop:
count = 0;
for n in range (1, int(k/2)): # Divide K by all numbers < K/2
 if k%n == 0: # If the remainder is 0 then n
 count = count + 1
The number k has count numbers that divide evenly into it.

The statement count = count + 1 has replaced the isprime = “no” statement
from the prime number game. When the loop ends the value of count will be the
number of divisors it has. If this number is 0, then the number k is prime, by the
way. Okay, the problem has been solved for any number k. Now solve it for all
numbers between 1 and 1000 and identify the number with the largest value of
count (i.e., the largest number of divisors). This involves another loop enclosing
this one that counts from 1 to 1000.

Define a variable maxv which is at any given moment the number that has
the greatest number of divisors, and another variable maxcount which is the
number of divisors that maxv has. Initially maxv is 1 and maxcount is 0 (i.e., the
number 1 has no divisors). Now loop between 1 and 1000 and replace maxv and
maxcount whenever a new number is found for which the number of divisors is
greater than maxcount. Specifically:
maxv = 1
maxcount = 0

86 ■ Python: An Introduct ion to Programming

for k in range(1, 1000): # Count the divisors for a range
 count = 0;
 for n in range (2, int(k/2)): # Divide K by all numbers
 # < K/2

 if k%n == 0: # If the remainder is 0
 # then n
 count = count + 1 # Count this divisor
 if count > maxcount: # A new maximum
 maxcount = count # Save the count
 maxv = k # and the value itself
print ("The most divisors is ",maxv," with ",maxcount)

The result for 1 to 1000 is:
The most divisors is 840 with 30

The result for 1 to 10000:

The most divisors is 7560 with 62

By the way, this last version needed 10 seconds to execute.

	 2.6	 DRAW A HISTOGRAM
A histogram is a kind of graph. It usually represents the frequency of oc-

currence of certain discrete values. Common examples include temperature as a
function of month of the year, or histograms of income as a function of year, age,
race, or gender. Drawing one involves knowing how many categories there are
and what the numerical values are for each category. Then the numbers are scaled
so they fit in a particular area, and the rectangles are drawn so that the heights
reflect the relative numerical values. Figure 2.3 shows some typical examples.

A company wishes to plot a histogram of their income for each quarter of
2016. The numerical values are stored in variables Q1,Q2,Q3, and Q4 and range
between 0 and 1 million. Using fancy graphics is not possible yet, so how can
simple histograms be drawn? By using text. If the histogram is drawn so that the
bars are horizontal instead of vertical, then the number of characters drawn in
a row can be used to represent the “height” of the histogram bar. Using the “#”
character, a value of 20 could be drawn as:

Q1: #################### 20

 Chapter 2 · Repet i t ion ■ 87

This is another situation where a loop is necessary.

There are three parts to the histogram bar above: the label, the bar, and the
data value. The label is easy to print, and in the example there are four possibili-
ties; these are simply printed at the beginning of each line being drawn. The data
value is not necessary, but it is useful for people looking at the graph to know
what the exact number is. Each “#” character drawn could represent a range of
values. The histogram bar is the trick. If numbers up to a million must be repre-
sented, then the bar must be scaled so that it fits on a line. If 50 characters fit on a

19851980 1990 1995 2000 2005 2010

MenWomen

100
200
300
400
500
600
700
800
900

Sa
la

ry
 5

/w
ee

k

	 (a)

40

-40

30

-30

-20

-10

0

20

10

40

-40

30

-30

-20

-10

0

20

10

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Average Temperature in Bermuda

Temperature
(Degrees C)

	 (b)

Figure 2.3
Examples of histograms.

88 ■ Python: An Introduct ion to Programming

line, then each “#” printed needs to represent 1000000/50, or 20000 dollars. An-
other way to say this is that every $20000 of income results in one “#” character
being printed. How many “#” are printed for the first quarter? Q1/20000 of them.

A problem: the print function prints out a line every time it is called. How
can multiple things be printed on a line? Happily, print has a special parameter
to allow that. The call:

print(i, end=ꞌ!′)

will print the variable i and then print the “!” string following that, every time.
Normally the print will place an end of line character (represented as “\n”) at the
end of every line, but the end= clause allows the programmer to change this to
whatever they like. If the string provided is empty (contains no characters) then
the print will not print anything extra after each call, meaning specifically that no
end of line will be printed. Thus, the statement:

print ("#", end="")

prints one “#” character but no end of line. If another “#” is printed, then it will
come right after the one just printed. This is exactly what is needed for the his-
togram program. A loop that would print ten “#” characters on one line can now
be written as:

for i in range(0,10):
 print ("#", end="")

Given that the value of the variable Q1 is between 0 and 1000000 and each
20000 should result in a single “#” character being printed, the first quarter his-
togram bar could be drawn by the following:

print ("Q1: ", end="")
for k in range(0, int(Q1/20000)):
 print (ꞌ#ꞌ, end=ꞌꞌ)
print (" ", q1)

This includes all of the labels, and the output would look like this:

Q1: ######## 190000

A complete solution to the problem would draw the histogram for all four
quarters along with a heading for the graph. The output might look like this:

Earnings for WidgetCorp for 2016
 Dollars for each quarter

 Chapter 2 · Repet i t ion ■ 89

 ==============================
Q1: ######### 190000
Q2: ################# 340000
Q3: ### 873000
Q4: ##################### 439833

Exercise 5 at the end of the chapter involves finishing this program.

	 2.7	 LOOPS IN GENERAL
The concept of a loop in a programming language has been discussed for

many years and has a large degree of both theory and practice underlying it. The
original “loop” was a branch or goto, where the top of the loop was identified
with an address or label and at the bottom there was a statement that said to “go
to” or transfer control to that location. Examples of this are:
label1: add 1 to x			 12 x = x + 1
 subtract 2 from min			 min = min - 2
 branch to label1 go to 12

Branches were typical of assembly language programming, where each line
of code was one actual computer instruction. The goto statement was introduced
in the first real programming language FORTRAN, but was quickly supplement-
ed by a more structured loop construct, the do statement. Both branch and goto
statements can be conditional.

Various kinds of loop have been developed over the years, and the most com-
monly used variation is the while loop. Theory says that the only kind that is
needed, and probably the most general, is the loop statement as defined in the
Ada language. It is essentially an infinite loop that allows escapes at multiple and
various points on specified conditions. The basic syntax is:

loop
	 exit when condition1;
	 Statements …
	 …
	 exit when condition2;
end loop;

An exit at the top of the loop is a while loop. An exit at the end could be a re-
peat … until as in Pascal or C++, and it is a simple matter to declare and initial-

90 ■ Python: An Introduct ion to Programming

ize a control variable and test the condition to implement a for loop. Everything
is possible with this loop syntax.

When specifically using Python, a while loop is all that is needed. If the
range is an integer one, then the loop:

for i in range (a .. b):

is the same as the loop:
i = a
while i < b:
 …
 i= i + 1

This loop has an initialization, a condition, and an increment. As individual
entities these are somewhat hidden in Python, being masked by the syntax, but
the loop control variable takes on the first value the first time the loop is executed
(initialization), iterates through the selections (increment), and terminates after it
selects the final one (condition). The loop control variable is not really what gets
incremented; what is incremented is a count that indicates which of the items in
the tuple is currently being used. In the loop:

for i in ("red", "yellow", "green"):

the variable i takes on the values “red,” “yellow,” and “green,” but what gets
incremented each time through the loop is an indication of which position in the
tuple is represented by i. The value “red” is 0, “yellow” is 1, and “green” is 2 and
a count implicitly starts at 0 and steps until 2 assigning values to i. This kind of
loop is similar to that found in the language PHP, and is a level of abstraction
above those in Java and C++.

	 2.8	 EXCEPTIONS AND ERRORS
Computers do not, as a general rule, make mistakes. Like other human-de-

signed and -constructed devices such as cars and stoves, computers can be awk-
ward to use, can have design features that don’t turn out as expected, and can even
break down too quickly. But they do not make mistakes. A computer program, on
the other hand, almost certainly has mistakes or bugs coded within it. Consumers
don’t usually make a distinction between the computer and the software that runs
on it, but programmers and engineers must. When a computer program does not

 Chapter 2 · Repet i t ion ■ 91

work properly, a programmer must exhaust all ways the program could be wrong
before looking at an error in the computer itself.

Creating a correct program is difficult for many reasons. First of all, before
any code is written, the problem to be solved must be clearly understood, and
it must be the correct problem. Solving the wrong problem is a pretty common
error, but can’t be detected or corrected by the computer. Common examples of
this sort of error come from stating the problem in English (or a human language
of any description) where errors in understanding occur. “Find the average of the
first ten integers,” for example, is a little ambiguous. Is the first integer 0 or 1?
What is meant by “average”—the mean or the median? Computer programmers
tend to be quite literal, and so what they think is the answer will be written into
the code, and then they will argue for that answer as being correct. It is very im-
portant to realize that, whatever the literally correct answer is, the real correct an-
swer is based on the correct understanding of the problem. Sometimes it is stated
badly, but no matter whose fault the problem is, the job of fixing it will lie with
the programmer. Sometimes a little time at the beginning clarifying the question
can save more time later, and sticking with an overly pedantic interpretation will
cause problems in the long run.

A correct program also depends on the programmer being able to identify
all possible circumstances that can occur and knowing how to deal with each of
them. Failing to handle one possible situation is an error, and the program will
behave unpredictably if that situation occurs in practice. Statements that handle
errors appear all though real (in the field or commercial) code. In fact, it is com-
mon that there are more statements that detect and deal with errors than code that
actually computes an answer. One thing that should be remembered: all lines of
the code need to be tested. In very large programs this may be impossible, but
every line of code that has never been executed is a potential error. Test as many
as possible, including the error detection code.

User input is a frequent cause of mistakes in programs. It’s not that the user
is the problem; the programmer must anticipate all possible ways that a user can
enter data. There is usually one correct way but many erroneous ones, and it is
impossible to predict what a user will enter from a keyboard in response to any
request. Similarly, the contents of a file may not be what the programmer expects.
File formats are standards, but sometimes there are variations and at other times a
user may have entered the data improperly. While the mistake is on the part of the

92 ■ Python: An Introduct ion to Programming

user, it is also a programming mistake if the error is not detected and is allowed
to have an impact on the execution of the program.

Programmers tend to make assumptions about the problem. It is a common
mistake to think “this situation can never happen” and then ignore it, however
unlikely the situation seems. Testing every statement for everything that could
possibly go wrong may be impossible, but testing for the general situation may
be possible. It would be great to be able to say “if any statement in this section of
code divides by zero,” or “if any variables in this code have the wrong type,” then
do some particular thing.

Since it is impossible to write a program of any length without there being
coding errors of some kind included, a step towards a solution may be to check
all data before it is operated on to ensure the pending operation is going to suc-
ceed. For instance, before performing the division a/b, test to make sure that b is
not zero. This depends on the error being at least in principle predictable. Most
modern languages, Python included, have implemented a way to catch errors and
permit the programmer to handle them without having tests before each state-
ment or expression. This facility is called the exception.

The word exception communicates a way to think about how errors will be
handled. Some code is legal and calculates a desired value except under cer-
tain circumstances, or unless some particular thing happens. The way it works
is that the program tries to perform some operation and errors are allowed to
occur. If one does, the computer hardware or operating system detects it and
tells Python. The program cannot continue in the way that was planned, which
is why this is called an exception. The programmer can tell Python what to do
if specific errors occur by writing some code that deals with the problem. If
the programmer did not do this, then the default is for Python to print an error
message that describes the error and then stop executing the program. Error
messages can be seen as a failure on the part of the programmer to handle er-
rors correctly.

A simple example is the divide by zero error mentioned previously. If the
expression a/b is to be evaluated, the value of b can be checked to make sure it is
not zero before the division is done:

if b != 0:
	 c = a/b

 Chapter 2 · Repet i t ion ■ 93

This can be tedious for the programmer if a lot of calculations are being done,
and can be error prone. The programmer may forget to test one or two expres-
sions, especially if engaged in modifications or testing. Using exceptions is a
matter of allowing the error to happen and letting the system test for the problem.
The syntax is as follows:

try:
 c = a/b
except:
 c = 1000000

The try statement begins a section of code within which certain errors are
being handled by the programmer’s code. After that statement, code is indented
to show that it is part of the try region. Nearly any code can appear here, but the
try statement must be ended before the program ends.

The except statement consists of the key word except and, optionally, the
name of an error. The errors are named by the Python system, and the correct
name has to be used, but if no error name is given as in this example, then any
error will cause the code in the except statement to be executed. Not specifying
a name here is an implicit assumption that either only one kind of error could
possibly occur or that no matter what error happens, the same code will be used
to deal with it. Specifying an unrecognized name is itself an error. The name can
be a variable, but that variable must have been assigned a recognized error name
before the error occurs. The code following the except keyword is indented too,
to show that it is part of the except statement. This is referred to by programmers
as an error handler, and is executed only if the specified error occurs.

This appears to be even more verbose than testing b, but any number of state-
ments can appear between the try and the except. This section of code is now
protected from divide by zero errors. If any occur, then code following the except
statement will be executed, otherwise that code will not execute. If other errors
occur, then the default action will take place—an error message will be printed.

Testing specifically for the divide by zero error can be done by specifying the
correct error name in the except statement:

try:
 c = a/b
except ZeroDivisionError:
 c = 1000000

94 ■ Python: An Introduct ion to Programming

More than one specific error can be caught in one except statement:
try:
 c = a/b
except (ValueError, ZeroDivisionError):
 c = 1000000

Clearly (ValueError, ZeroDivisionError) is a tuple, and could be made lon-
ger and could be assigned to a variable.

Also, there can be many except statements associated with a single try:
try:
 c = a/b
except ValueError:
 c = 0
exceptZeroDivisionError:
 c = 1000000

And, as was mentioned, a variable can hold the value of the error to be caught:
k = ZeroDivisionError
try:
 c = a/b
except k:
 c = 1000000

Finally, the exception name can be left out altogether. In that case any excep-
tion that occurs will be caught and the exception code will be executed:

try:
 c = a/b
except:
 c = 0

	2.8.1	 Problem: A Final Look at Guess a Number

The final version of the program involving guessing a number looks like this:
choice = 7
print ("Please guess a number between 1 and 10: ")
playerchoice = int(input())
if choice == playerchoice:
 print ("You win!")
else:
 print ("Sorry, you lose.")

 Chapter 2 · Repet i t ion ■ 95

Using exceptions and what has been discussed about error checking, this
program can be improved. First, if the user enters something that is not an integer,
it is an error. This should be caught using an exception. Also, rather than forcing
the player to run the program again, a loop can be used to ask for another guess.
The input should be within the try statement. The except statement should print
an error message, and the entire collection should be within a loop that continues
to ask the user to guess a number. Here is a better version:
choice = 7
guessed = False # �Has the user guessed a reasonable

number?
while not guessed: # Keep trying until they have
 print ("Please guess a number between 1 and 10: ")
 try: # Catch potential input errors
 playerchoice = int(input())
 guessed = True # Success so far
 except: # An error occurred.
 print ("Sorry, your guess must be an integer.")
if choice == playerchoice: # Correct guess?
 print ("You win!")
else:
 print ("Sorry, you lose.")

The variable guessed is set to True when a successful guess is made, and
this stops the loop from repeating. If the user enters a real number or a string, the
exception is caught before that happens, the error message is printed, and the user
is asked to enter another guess.

What else is wrong with this code? Well, the user is asked to enter a number
between 1 and 10, but that value is never checked to see if it is OK. True, if it falls
outside the range, then it will always be an incorrect guess and the player will lose.
It’s a penalty for not paying attention to the rules. A program should whenever pos-
sible give the user as much information as is reasonable, so it would be better to
check the value of the variable playerchoice and give an error message if it is out of
range. The best way to do this is to place the check after the except statement at the
bottom of the loop, and set the variable guessed to False if the guess is an improper
one. Then the loop will repeat and the player will get another guess.

This version of the program is:
choice = 7

96 ■ Python: An Introduct ion to Programming

guessed = False
while not guessed:
 print ("Please guess a number between 1 and 10: ")
 try:
 playerchoice = int(input())
 guessed = True
 except:
 print ("Sorry, your guess must be an integer.")
 if playerchoice<10 or playerchoice>10: # Is the guess
 # in 1..10?
 print ("Your guess was",playerchoice,"which is out
� of range.")
 guessed = False # Nope. Guess again
if choice == playerchoice:
 print ("You win!")
else:
 print ("Sorry, you lose.")

	 2.9	 SUMMARY
The ability to repeat a collection of operations is an essential part of any

programming language. The while loop has a condition at the beginning, and so
long as that condition is true, the statements comprising the loop will be executed
repeatedly. The for loop has an explicit list of items for which the loop will be
executed, or a range of numerical values that define how many times the code
will be repeated.

Most problems that are solved using a computer program have some degree
of repetition implicit in the implementation, and some computer algorithms are
quite explicit about how the iterations are to be set up and how many are needed
to solve the problem (See: Exercises 3 and 4).

Certain errors that can occur in program can be detected automatically by
Python. If the programmer does not specify otherwise, then these errors cause a
message and premature program termination. The try-except statement allows
the programmer to handle errors without ending the program, and permits better
communication of the kind of error that occurred, in the context of the program,
to the programmer or user.

 Chapter 2 · Repet i t ion ■ 97

Exercises

	 1.	Given the following definitions:
	 var1 = 12
	 var2 = 100
	 var3 = -2
	 var4 = 0

		 What is printed by the following while loops:
	 a. while var1 < var2:

 print (var1)
 var1 = var1 + 30

	 b. while var1 < var2:
 print (var1)
 var1 = var1 * 2

	 c. while var1 > 0:
 var4 = var4 + 1
 var1 = var1 – 1
 print (var1, var2)

	 d. while var1 > 0:
 var4 = var4 + 1
 var1 = var1 – var4
 print (var1, var2)

	 e. while var1 < var3:
 print ("*", end="")
 var3 = var3 + 2

	 f. while var2 > var1*var4:
	 var1 = var1 + 1
	 var4 = var4 + 1
	 print (var1, var2)

	 2.	What would be printed by the following for loops:
	 a. for i in range (1, 10):

 print (i)

	 b. for i in (1, 10):
 print (i)

	 c. for i in ("red", "green", "blue"):
 print (i)

98 ■ Python: An Introduct ion to Programming

	 d. for i in range(0, 10):
 for j in range(1, 10):
 if i == j:
 print (i)

	 e. for i in range(0, 10):
 for j in range(0, 50):
 if i*i == j:
 print (i)

	 f. for i in (0, 10):
 i = i * 2
 print (i)

	 g. for i in range (1, 10):
 for j in range (1, i):
 print (j, end="")
 print()

	 h. or i in range(0, 10):
 i = i + 1
 for j in range (1, i):
 print (j, end="")
 print()

	 3.	The Greek mathematician Zeno (c. 450 BCE) is credited with creating the
paradox of the Tortoise and Achilles. A tortoise challenged the great hero
and athlete Achilles to a footrace. All the tortoise asked was a ten-yard head
start. The idea was that once the race began, Achilles could run the ten-yard
head start in a small time; however, in that same time the tortoise would move
forward a small amount, perhaps a yard. When Achilles made up that yard,
the tortoise would have moved ahead again a small distance; and so on. The
logic was that Achilles could never catch up. The misunderstanding here is
that an infinitely long series of numbers can add up to a finite value. Write a
small Python program that sums the numbers ½, ¼, ⅛, 1/16, and so on for 20
iterations and suggest what the sum would be if it were carried to an infinite
number of iterations.

	 4.	One way to calculate the square root of a number is to use Newton’s method.
This starts with an initial guess: if the square root of x is being computed,
then a fair initial guess g would be x/2. Successive estimates are given by the
expression:
	 newg = (g + x/g)/2

 Chapter 2 · Repet i t ion ■ 99

		 Successive estimates are nearer and nearer to the actual square root. Write
a program to compute the square root of a number that is entered from the
keyboard.

	 5.	Complete the program that draws a histogram for the earnings of WidgetCorp
for four quarters of 2016. Earnings are:

	 a. 190000
	 b. 340000
	 d. 873000
	 d. 439833

	 6.	Modify the program in Exercise 5 so that the data for the four quarters is read
from the terminal (i.e., entered by the user from the keyboard). Test it for the
values:

	 a. 900000
	 b. 874000
	 d. 200000
	 d. 439000

	 7.	Modify the solution to Exercise 6 in Chapter 1 (making change) so that it
makes effective use of a for loop. The program should still read a number
between 1 and 99, which is an amount of change to be given, and print the
coin values that would be used. Modify it to not use 50-cent pieces, because
nobody has those anymore.

	 8.	Convert the following for loops into the equivalent while loop:
	 a. for i in range (1, 10):

 print (i, i*i)

	 b. sum = 0
 for i in (range (10, 0, -1):
 sum = sum + i
 print (i, sum)

	 9.	A good solution to Exercise 4 above (square root) would detect negative
numbers and print a message to the effect that square roots of negative
numbers do not exist (not as real numbers, anyway). Modify the solution to
Exercise 4 to use an exception to deal with that situation, and handle other
potential errors.

100 ■ Python: An Introduct ion to Programming

Notes and Other Resources

Online tutorial on Python loops: http://www.tutorialspoint.com/python/py-
thon_loops.htm

Cornell University summary of if statements and loops: http://www.cs.cornell.
edu/courses/cs1130/2012sp/1130selfpaced/module2/module2part1/ifloop.html

Sthurlow.com, Loops, loops, loops…, http://sthurlow.com/python/lesson04/

	 1.	Henry Ford and Samuel Crowther. (1922). My Life and Work, Garden City
Publishing, Garden City, NY, http://www.gutenberg.org/ebooks/7213

	 2.	David Beazley and Brian K. Jones. Python Cookbook, 3rd Edition: Recipes
for Mastering Python 3, http://www.onlineprogrammingbooks.com/python-
cookbook-third-edition/

■ ■ ■ ■ ■

In this chapter

It was mentioned in Chapter 2 that for loops in Python are different from
those found in many other languages. In Java and C++, a for loop has a
very explicit increment; a for statement looks like this in Java:

From this it can be inferred that the variable i will start out as 0, and so long
as i is less than 10 the loop will continue. After each iteration the value of i will
be increased by 1, and then the condition is tested again.

In Python the iteration is more implicit, with the loop control variable taking
on one of a set of values in turn. There is an implication here, too, that there is a
kind of thing, a type that a variable can have, that amounts to a list or sequence
of other, simpler things. This is true, and using variables having these types is an
essential part of writing useful and effective code. Python offers strings, tuples,
and lists as objects that consist of multiple parts. They are called sequence types.
An integer or a float is a single number, whereas a sequence type consists of a
collection of items, each of which is a number or a character. Each member of

3Chapter

Sequences: Strings,
Tuples, and Lists

3.1	 Strings ��102

3.2	 The Type Bytes �� 114

3.3	 Tuples�� 115

3.4	 Lists �� 123

3.5	 Set Types�� 135

3.6	 Summary��138

102 ■ Python: An Introduct ion to Programming

a sequence is given a number based on its position: the first element in the se-
quence is given 0, the second is 1, and so on. This is a fundamental data structure
in Python and has influenced the syntax of the language.

Strings are familiar objects and have been used in programs already, so the
discussion will begin there.

	 3.1	 STRINGS
A string is a sequence of characters. The word sequence implies that the

order of the characters within the string matters, and that is certainly true.
Strings most often represent the way that communication between a computer
and a human takes place. Human language consists of words and phrases, and
each word or phrase would be a string within a program. The order of the char-
acters within a word matters a great deal to a human because some sequences
are words and others are not. The string “last” is a word, but “astl” is not. Also,
the strings “salt” and “slat” are words and use exactly the same characters as
“last” but in a different order.

Because order matters, the representation of a string on a computer will im-
pose an order on the characters within, and so there will be a first character, a
second, and so on, and it should be possible to access each character individu-
ally. A string will also have a length, which is the number of characters within it.
A computer language will provide specific things that can be done to something
that is a string: these are called operations, and a type is defined at least partly by
what operations can be done to something of that type. Because a string repre-
sents text in the human sense, the operations on strings should represent the kinds
of things that would be done to text. This would include printing and reading,
accessing any character, linking strings into longer strings, searching a string for
a particular word, and so on.

The examples of code written so far use only string constants. These are
simply characters enclosed in either single or double quotes. Assigning a string
constant to a variable causes that variable to have the string type and gives it a
value. So the statements:

name = "John Doe"
address = '121 Second Street'

cause the variables named name and address to be strings with the assigned

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 103

value. Note that either type of quote can be used, but a string that begins with a
double quote must end with one.

A string behaves as if its characters are stored as consecutive characters in
memory. The first character in a string is at location or index 0, and can be ac-
cessed using square brackets after the string name. Using the definitions above,
name[0] is “J” and name[5] = “D.” If an index is specified that is too large, it
results in an error, because it amounts to an attempt to look past the end of the
string.

How many characters are there in the string name? The built-in function
len() will return the length of the string. The largest legal index is one less than
this value: the first character of a string name has index 0, and the final one has
index 7; the length is 8. Thus, any index between 0 and len(name)-1 is legal. The
following code prints all of the characters of name and can be thought of as the
basic pattern for code that scans through the characters in strings:

for i in range(0, len(name)):
 print (name[i], end="")

This may be a little confusing, but remember that the range(0,n) does not
include n. This loop runs through values of i from 0 to len(name)-1.

Some languages have a character type, but Python does not. A string of
length one is what Python uses instead. A component of a string is therefore an-
other string. The first character of the string name, which is name[0], is “J,” the
string containing only one character.

	3.1.1	 Comparing Strings

Two strings can be compared in the same manner as are two integers or real
numbers, by using one of the relational operators ==, !=, <, >, <= or >=. What it
means for two strings to be equal is simple and reasonable: if each corresponding
character in two strings is the same, then the strings are equal. That is, for strings
a and b, if a[0] == b[0], and a[1]==b[1] and so on to the final character n, and
a[n] == b[n], then the two strings a and b are equal and a==b. Otherwise, a!=b.
By the way, this implies that equal strings have the same length.

What about inequalities? Strings in real life are often sorted in alphabeti-
cal order. Names in a telephone book, files in a doctor’s office, and books in a

104 ■ Python: An Introduct ion to Programming

store: these tend to appear in a logical order based on the alphabet. This is also
true in Python. The string “abc” is less than the string “def,” for example. Why?
Because the first letter in “abc” comes before the first letter in “def”; in other
words, “abc”[0] < “def”[0]. Yes, characters in string constants can be accessed
using their index.

A string s1 is less than string s2 if all characters from 0 through k in the two
strings are equal, and s1[k+1]<s2[k+1]. So the following statements are true:

"abcd" < "abce"
"123" < "345"
"ab " < "abc"

In the last example, the space character "." is smaller than (i.e., comes before)
the letter “c.” What if the strings are not the same length? The string "ab" <
"abc", so if two strings are equal to the end of one of them, then the shorter one
is considered to be smaller. These rules are consistent so far with those taught in
grade school for alphabetization. Trailing spaces do not matter. Leading spac-
es can matter, because a space comes before any alphabetic character; that is,
" " < "a". Thus "ab" > "z".

Digits come before lowercase letters. "1" < "a", and "1a" < "a1". Most
importantly, uppercase comes before lowercase, so "John" < "john". All
of these rules are consistent with those that secretaries understand when filing
paper documents. As an example that compares strings, consider the following:

a = "J"
b = "j"
c = "1"
if b<c:
 print ("Lcase < numbers")
else:
 print("Lcase > numbers")
if a<c:
 print ("Ucase < numbers")
else:
 print("Ucase > numbers")

This results in the output:
Lcase > numbers
Ucase > numbers

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 105

Problem: Does a City Name, Entered at the Console, Come before or
after the Name Denver?

This involves reading a string and comparing it against the constant string
“Denver.” Let the input string be read into a variable named city. Then the
answer is:
city = input()
if city < "Denver":
 print ("The name given comes before Denver in an
 alphabetic list")
elif city > "Denver":
 print ("The name given comes after Denver in an
 alphabetic list")
else:
 print ("The name given was Denver")

If “Chicago” is typed at the console as input, the result is:
Chicago
The name given comes before Denver in an alphabetic list

However, if case is ignored and “chicago” is typed instead, then the result is:

chicago
The name given comes after Denver in an alphabetic list

because, of course, the lowercase “c” comes (as do all lowercase letters) after the
uppercase “D” at the beginning of “Denver.”

	3.1.2	 Slicing – Extracting Parts of Strings

To a person, a string usually contains words and phrases, which are smaller
parts of a string. Identifying individual words is important. To Python this is true
also. A Python program consists of statements that contain individual words and
character sequences that each have a particular meaning. The words “if,” “while,”
and “for” are good examples. Individual characters can be referenced through
indexing, but can words or collections of characters be accessed? Yes, if the
location (index) of the word is known.

106 ■ Python: An Introduct ion to Programming

Problem: Identify a “Print” Statement in a String

The statement:
print ("Lcase < numbers")

appears in the example program above. This can be thought of as a string, and
assigned to a variable:

statement = 'print ("Lcase < numbers")'

Question: is this a print statement? It is if the first five characters are the word
“print.” Each of those characters could be tested individually using:
if statement[0] == 'p':
 if statement[1] == 'r':
 if statement[2] == 'i':
 if statement[3]=='n':
 if statement[4]=='t':
 if statement[5]==' ':
 # This is a print statement.

This is pretty ugly, and is something that is needed often enough that Python
offers a nicer way to do it. A slice is a set of continuous characters within a string.
This means their indices are consecutive, and they can be accessed as a sequence
by specifying the range of indices within brackets. The situation above concern-
ing the print statement could be done like this:

if statement[0:5] == "print":

The slice here does not include character 5, but is 5 characters long including
characters 0 through 4 inclusive. A slice from i to j (i.e., x[i:j]) does not include
character j. This means that the following statements produce the same result:

fname[0]
fname[0:1]

If the first index is omitted, then the start index is assumed, so the statement:
if statement[0:5] == "print":

is the same as:
if statement[:5] == "print":

If the second index is omitted, then the last legal index is assumed, which is
to say the index of the final character. So the assignment:

str = statement[6:]

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 107

results in the value of str being “(“Lcase < numbers”).” Both indices can be
omitted, which does sound silly, but really just means from the first to the last
character, or the entire string.

	3.1.3	 Editing Strings

Python does not allow the modification of individual parts of a string. That
is, things like:

str[3] = "#"
str[2:3] = ".."

are not allowed. So how can strings be modified? For example, consider the string
variable:

fname = "image"

If this is supposed to be the name of a JPEG image file, then it must end with
the suffix “.jpg.”

Problem: Create a JPEG File Name from a Basic String

The string fname can be edited to end with “.jpg” in a few ways, but the easi-
est one to use is the concatenation operator “+’.

To concatenate means “to link or join together.” If the variables a and b
are strings, then a+b is the string consisting of all characters in a followed by
all characters in b; the operator “+” in this context means to concatenate, rather
than to add numerically. The designers of Python and many other languages that
implement this operator think of concatenation as string addition.

To use this to create the image file name, simply concatenate “.jpg” to the
string fname:

fname = fname + ".jpg"

The result is that fname contains “image.jpg.”

File suffixes are very often the subject of string manipulations and provide a
good example of string editing. For instance, given a file name stored as a string
variable fname, is the suffix “.jpg”? Based on the preceding discussion, the question
can be answered using a simple if statement:

108 ■ Python: An Introduct ion to Programming

if fname[len(fname)-4:len(fname)] == '.jpg':

Using a slice it could also take the form:
if fname[len(fname)-4:] == ".jpg"

A valuable thing to know is that negative indices index from the right-hand
side of the string; that is, from the end. So fname[-1] is the final character in the
string, fname[-2] is the one previous to that, and so on. The last 4 characters, the
suffix, would be captured by using filename[-4:].

Problem: Change the Suffix of a File Name

Some individuals use the suffix “.jpeg” instead of “.jpg.” Some programs
allow this, others do not. Some code that would detect and change this suffix
would be:
if fname[len(fname)-5:] == ".jpeg": # identfy the jpeg
 # suffix
 fname = fname[0:len(fname)-5] # remove the last five
 # characters
 fname = fname + ".jpg"		 # append the correct
 # suffix

Problem: Reverse the Order of Characters in a String

There are things about any programming language that could be considered
to be “idioms.” These are things that a programmer experienced in the use of that
language would consider normal use, but that others might consider odd. This
problem exposes a Python idiom. Given what is known so far about Python, the
logical approach to string reversal might be as follows:

city has a legal value at this point
k = len(city)
for i in range(0,len(city)):
 city = city + city[k-i-1]
city = city[len(city)//2:]

This reverses the string named city that exists prior to the loop and creates
the reversed string. It does so in the following way:

	 1.	 Let i be an index into the string city, starting at 0 and running to the final
character.

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 109

	 2.	 Index a character from the end of the string, starting at the final character
and stepping backwards to 0. Since the last character is len(city) and the
current index is i, the character to be used in the current iteration would
be k-i-1 where k is the length of the original string.

	 3.	 Append city[k-i-1] to then end of the string. Alternatively, a new string
rs could be created and this character appended to it during each itera-
tion.

	 4.	 After all characters have been examined, the string city contains the
original string at the beginning and the reversed string at the end. The
first characters can be removed, leaving the reversed string only.

An experienced Python programmer would do this differently. The syntax
for taking a slice has a variation that has not been discussed; a third parameter
exists. A string slice can be expressed as:

myString[a:b:c]

where a is the starting index, b is the final index+1, and c is the increment.
Increment? If:

str = "This string has 30 characters."

Then str[0:30:2] is “Ti tighs3 hrces,” which is every second character. The
increment represents the way the string is sampled, that is, every increment char-
acter is copied into the result. Most relevant to the current example, the increment
can be negative. The idiom for reversing a string is:

print (str[::-1])

As has been explained, the value of str[:] is the whole string. Specifying an
increment of -1 implies that the string is scanned from 0 to the end, but in reverse
order. This is far from intuitive, but is probably the way that an experienced Py-
thon programmer would reverse a string. Any programmer should use the parts
of any language that they comprehend very well, and should keep in mind the
likely skill set of the people likely to read the code.

Problem: Is a Given File Name That of a Python Program?

A Python program terminates with the suffix “.py.” An obvious solution to
this problem is to simply look at the last 3 characters in the string s to see if they
match that suffix:

110 ■ Python: An Introduct ion to Programming

	 if s[len(s)-3:len(s)] == '.py':
		 print ("This is a Python program.")

Perhaps. But is “PROGRAM.PY” a legal Python program? It happens that it
is. So is “program.Py” and “program.pY.” What can be done here?

	3.1.4	 String Methods

A good way to do the test in this case is to convert the suffix to all upper- or
all lowercase before doing the comparison. Comparing against “.py” means con-
verted to lowercase, which is done by using a built-in method named lower:

s1 = s[len(s)-3:len(s)]
if s1.lower()== '.py':
 print ("This is a Python program.")

The variable s1 is a string that will contain the final 3 characters of s. The ex-
pression s1.lower() creates a copy of s1 in which all characters are lowercase. It’s
called a method to distinguish it from a function, but they are very similar things.
You should recall that a method is simply a function that belongs to one type or
class of objects. In this case lower() belongs to the type (or class) string. There
could be another method named lower() that belongs to another class and that did
a completely different thing. The dot notation indicates that it is a method, and
what class it belongs to: the same class of things that the variable belongs to. In
addition, the variable itself is really the first parameter; if lower were a function,
then it might be called by lower(s1) instead of s1.lower(). In the latter case, the
“.” is preceded by the first parameter.

Strings all have many methods. In the table below the variable s is the
target string, the one being operated upon. This means that the method names
below will appear following “s.,” as in s.lower(). Let the value of s be given by
s = “hello to you all.” These methods are intended to provide the operations
needed to make the string type in Python function as a major communication
device from humans to a program.

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 111

Method Explanation
(What is returned?)

Example

capitalize() Returns the target string but
with the first letter capitalized.

s.capitalize() ==
"Hello to you all."

count(str,beg=0,
end=len(s))

Returns a count of how many
times the string str occurs in
the target. If values for beg
and end are given, then the
count is performed using only
character indices between beg
and end.

s.count("ll") == 2

endswith(suffix,
beg=0, end=len(s))

Returns True if the target
string ends with the given suf-
fix and return False otherwise.
If beg and end are given, then
do the test on the substring
between beg and end.

s.endswith(ꞌll.ꞌ)
==True

find(str,
beg=0end=len(string))

If the string str appears with
the target string, then return
the index at which it occurs;
return -1 if it does not occur.
If beg and end are provided,
then use the substring from
beg to end.

s.find("you") == 9

index(str,beg=0,
end=len(string))

Index is the same as find
except that it will raise an
exception if the string str does
nor occur in the target

s.index("you") == 9

isdigit() Returns True if the target
string contains only digits and
False otherwise.

s.isdigit() == False

islower() Returns True if the target
string has at least 1 alphabetic
character and all alphabetic
characters are lowercase.
Returns False otherwise.

s.islower() == True

isspace() Returns True if the target
string contains only
whitespace characters and
returns False otherwise.

s.isspace() == False

(continued)

112 ■ Python: An Introduct ion to Programming

Method Explanation
(What is returned?)

Example

isupper() Returns True if s has at least
one alphabetic character and
all alphabetic characters are
uppercase. Returns False
otherwise.

s.isupper() == False

lower() Converts all uppercase letters
in string to lowercase.

s.lower() == s

replace(old, new
[, max])

Replaces all occurrences of
the string old in the target
with the string new. If max is
specified, replace at most max
instances.

s.replace("you all",
"yꞌall") ==
 "hello to yꞌall."

split(str="",
num=string.
count(str))

Returns a list of substrings
obtained from the target using
str as a delimiter. Space is the
default for str. Subdivide
at most num times if that is
specified (see: Chapter 3,
section 3).

s.split(" ") ==
["hello","to",
″you","all"]

splitlines(
num=string.
count(ꞌ\nꞌ))

Splits the target string at all (or
num, if it is specified) NEW-
LINEs and returns a list of
each line with the NEWLINEs
removed.

s.splitlines() ==
"hello to you all."

upper() Converts the lowercase letters
in string to uppercase.

s.upper() == "HELLO
TO YOU ALL."

	3.1.5	 Spanning Multiple Lines

Text as seen in human documents may contain many characters, even mul-
tiple lines and paragraphs. A special delimiter, the triple quote, is used when a
string constant is to span many lines. This has been mentioned previously in the
context of multiline comments. The regular string delimiters will terminate the
string at the end of the line. The triple quote consists of either of the two existing
delimiters repeated three times. For example, to assign the first stanza of Byron’s
poem “She Walks in Beauty” to the string variable poem:

poem = '''She walks in beauty like the night

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 113

Of cloudless climes and starry skies,
And all that's best of dark and bright
Meets in her aspect and her eyes;
Thus mellow'd to that tender light
Which Heaven to gaudy day denies.'''

When poem is printed the line endings appear where they were placed in the
constant. This example is a particularly good one in that most poems require that
lines end precisely where the poet intended.

Another example of a string that must be presented just as typed is a Python
program. A program can be placed in a string variable using a triple quote:

program = """list = [1,2,4,7,12,15,21]
for i in list:
 print(i, i*2)"""

When printed this string has the correct form to be executed by Python. In
fact, the following statement will actually execute the code in the string:

exec (program)

	3.1.6	 For Loops Again

Earlier in this section a for loop was written to print each character in the
string. That loop was:

for i in range(0, len(name)):
 print (name[i], end="")

Obviously the string could have been printed using:
print(name)

but it was being used as an example of indexing individual components within
the string. The characters do not need to be indexed explicitly in Python; the loop
variable can be assigned the value of each component:

for i in name:
 print (i, end="")

In this case the value of i is the value of the component, not its index. Each
component of the string is assigned to i in turn, and there is no need to test for the
end of the string or to know its length. This is a better way to access components
in a string and, as it happens, can be used with all sequence types. Whether an

114 ■ Python: An Introduct ion to Programming

index is used or the components are pulled out one at a time depends on the prob-
lem being solved; sometimes the index is needed, other times it is not.

	 3.2	 THE TYPE BYTES
A string is a sequence of characters, a sequence being defined as a collec-

tion within which order matters. Strings are commonly used for communication
between computers and humans: to print headings and values on the screen, and
to read objects in character string form. Humans deal with characters very well.
The type bytes represents a sequence of integers, albeit small ones. A bytes object
of length 1 is an 8-bit integer, or a value between 0 and 255. A bytes object of
length greater than 1 is a sequence of small integers. To be clear, if s is a string
and b is a bytes then:

s[i] is a character

b[i] is a small integer

A string constant (literal) is a sequence of characters enclosed in quotes. A
bytes literal is a sequence of characters enclosed in quotes and preceded by the
letter “b.” Thus:

'this is a string'

is a string, whereas:
b'this is a string'

has type bytes. Any method that applies to a string also applies to a bytes object,
but bytes objects have some new ones. In particular, to convert a bytes object to
a string, the decode() method is used and a character encoding should be given
as the parameter. If no parameter is given, then the decoding method is the one
currently being used. There are a few possible decoding methods (e.g., “utf-8”).
So to convert a bytes object b to a character string s, the following would work:

s = b.decode ("utf-8")

A question remains: “why is the bytes type needed?” What is it used for?
Because (and this is a little ahead of what is needed) it implements the buffer
interface. Certain file operations require a buffer interface to accomplish their
tasks. Anything read from some specific types of file will be of the type bytes,
for example, as it has that interface. This will be discussed further in Chapters 5
and 8, but for the moment it simply serves to explain why the type exists at all.

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 115

Other than the buffer interface, the bytes type is very much like a string, and can
be converted back and forth.

	 3.3	 TUPLES
A tuple is almost identical to a string in basic structure, except that it is com-

posed of arbitrary components instead of characters. The quotes can’t be used
to delimit a tuple because a string can be a component, so a tuple is generally
enclosed in parentheses. The following are tuples:
tup1 = (2, 3, 5, 7, 11, 13, 17, 19) # Prime numbers under 20
tup2 = ("Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon")
tup3 = "hi", "ohio", "salut"

If there is only one element in a tuple, there should be a comma at the end:
tup4 = ("one",)
tup5 = "two",

That’s because it would not be possible otherwise to tell the difference be-
tween a tuple and a string enclosed in parentheses. Is (1) a tuple? Or is it simply
the number 1?

A tuple can be empty:
tup = ()

Because they are like strings, each element in a tuple has an index, and they
begin at 0. Tuples can be indexed and sliced, just like strings. So:

tup1[2:4] is (5, 7)

Concatenation is like that of strings too:
tup4 = tup4 + tup5 # yields tup4 = ('one', 'two')

As is the case with strings, the index -1 gives the last value in the tuple, -2
gives the second last, and so on. So in the example above, tup2[-1] is “Carbon.”
Also, like strings, the tuple type is immutable; this means that elements in the
tuple can’t be altered. Thus, statements such as:
tup1[2] = 6
tup3[1:] "bonjour"

are not allowed and will generate an error.

116 ■ Python: An Introduct ion to Programming

Tuples are an intermediate form between strings, which have just been dis-
cussed, and lists, which will be discussed next. They are simpler to implement
than list (are lightweight) and are more general than strings.

Are tuples useful? Yes, it turns out, and part of their use is that they underlie
other aspects of Python.

	3.3.1	 Tuples in For Loops

Sequences can be used in a for loop to control the iteration and assign to the
loop control variable. Tuples are interesting in this context because they can con-
sist of strings, or integers or floats. The loop:
for i in ("Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"):

will iterate 6 times, and the variable i will take on the values in the tuple in the
order specified. The variable i is a string in this case. In cases where the types in
the tuple are mixed, things are more complicated.

Problem: Print the Number of Neutrons in an Atomic Nucleus

Consider the tuple:
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,
 "Boron",5,"Carbon",6)

and the loop
for i in atoms:
 print (i)

This prints:
Hydrogen
1
Helium
2
Lithium
3
Beryllium
4

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 117

Boron
5
Carbon
6

The number following the name of the element is the atomic number of that
element, the number of protons in the nucleus. In this case the type of the variable
i alternates between string and integer. For elements with a low atomic number
(less than 21), a good guess for the number of neutrons in the nucleus is twice the
number of protons. The problem is that some of the components are strings and
some are integers. The program should only do the calculation when it is in an
iteration having an integer value for the loop variable, because a string can’t be
multiplied by two.

A built-in function that can be of assistance is isinstance. It takes a variable
and a type name and returns True if the variable is of that type and False other-
wise. Using this function, here is a first stab at a program that makes the neutron
guess:
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,
 "Boron",5,"Carbon",6)
for i in atoms:
 if isinstance(i, int):
 j = i*2
 print ("has ", i, "protons and ", j, " neutrons.")
 else:
 print ("Element ", i)

In other words, in iterations where i is an integer as determined by isinstance,
then i can legally be multiplied by 2 and the guess about number of neutrons can
be printed.

Another way to solve the same problem would be to index the elements of the
tuple. Elements 0,2,4, etc. (even indices) refer to element names, while the others
refer to atomic numbers. This code would look as follows:
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,
 "Boron",5,"Carbon",6)
for i in range(0,len(atoms)):
 if i%2 == 1:
 j = atoms[i]*2
 print ("has ", atoms[i], "protons and ", j,
 " neutrons.")

118 ■ Python: An Introduct ion to Programming

 else:
 print ("Element ", atoms[i])

Note that in this case the loop variable is always an integer, and is not an
element of the tuple but is an index at which to find an element. That’s why the
expression atoms[i] is used inside the loop instead of simply i as before.

	3.3.2	 Membership

Tuples are not sets in the mathematical sense, because an element can belong
to a tuple more than once, and there is an order to the elements. However, some
set operations could be implemented using tuples by looking at individual ele-
ments. Set union and intersection, for example. The intersection of two sets A
and B is the set of elements that are members of A and also members of B. The
membership operator for tuples is the key word in:

If 1 in tuple1:

The intersection of A and B, where A and B are tuples, could be found using
the following code:

for i in A:
 if i in B:
 C = C + i

The tuple C will be the intersection of A and B. It works by taking each
known element of A and testing to see if it is a member of B; if so, it is added to C.

Problem: What Even Numbers Less than or Equal to 100 are Also
Perfect Squares?

This could be expressed as a set intersection problem. The set of even num-
bers less than 100 could be enumerated (this is not actual code):

A = (2,4,6,8,10 … and so on

Or could be generated within a loop:
A = () # Start with an empty tuple
for i in range(0,51): # for appropriate integers
 A = A + (i*2,) # �add the next even number to the
 # tuple

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 119

Can't simply use A+i because i is integer, not a tuple.
Similarly, the perfect squares could be enumerated:
B = (4,9,16,25,36,49,64,81,100)

Or, again, created in a loop:
B = ()
for i in range(0,11):
 B = B + ((i*i),)

Now the set A can be examined, element by element, to see which members
also belong to B:

C = ()
for i in A:
 if i in B:
 C = C + (i,)

The result is: (0, 4, 16, 36, 64, 100).

Two important things are learned from this. First, when constructing a new
tuple from components, one can begin with an empty tuple. Second, individual
components can be added to a tuple using the concatenation operator “+,” but
the element should be made into a tuple with one component before doing the
concatenation.

	3.3.3	 Delete

A tuple is immutable, meaning that it cannot be altered. Individual elements
can be indexed but not changed or deleted. What can be done is to create a new
tuple that has new elements; in particular, deleting an element means creating a
new tuple that has all of the other elements except the one being deleted.

Problem: Delete the Element Lithium from the Tuple Atoms, along
with Its Atomic Number.

Going back to the tuple atoms, deleting one of the components—in par-
ticular, Lithium—begins with determining which component Lithium is; that is,
what is its index? So start at the first element of the tuple and look for the string
“Lithium,” stopping when it is found.

120 ■ Python: An Introduct ion to Programming

for i in range(0, len(atoms)):
 if atoms[i] == "Lithium": # Found it at location i
 break;
else:
 i = -1 # not found

Knowing the index of the element to be deleted, it is also known that all ele-
ments before that one belong to the new tuple and all elements after it do too. The
elements before element i can be written as atoms[0:i]. Each element consists of
a string and an integer, and assuming that both are to be deleted means that the
elements following element i are atoms[i+2:]. In general to delete one element
the second half would be atoms[i+1:]. Finishing the code that deletes “Lithium”:

if i>=0:
 atoms = atoms[0:i] + atoms[i+2:]

So the tuple atoms has not been altered so much as it has been replaced com-
pletely with a new tuple that has no Lithium component.

	3.3.4	 Update

Again, because a tuple is immutable, individual elements cannot be changed.
A new tuple can be created that has new elements; in particular, updating an ele-
ment means creating a new tuple that has all of the other elements except the one
being updated, and that includes the new value in the correct position.

Problem: Change the Entry for Lithium to an Entry for Oxygen

An update is usually a deletion followed by the insertion or addition of a
new component. A deletion was done in the previous section, so what remains
is to add a new component where the old one was deleted. Inserting the element
Oxygen in place of Lithium would begin in the same way as the simple deletion
already implemented:
for i in range(0, len(atoms)):
 if atoms[i] == "Lithium": # Found it at location i
 break;
else:
 i = -1 # not found

Next, a new tuple for Oxygen is created:
newtuple = ("Oxygen", 8)

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 121

And finally this new tuple is placed at location i while Lithium is removed:
if i>=0:
 atoms = atoms[0:i] + newtuple + atoms[i+2:]

However, an update may not always involve a deletion. If Lithium is not a
component of the tuple atoms, then perhaps Oxygen should be added to atoms
anyway. Where? How about at the end?
else: # If i is -1 then the new tuple goes at the end
 atoms = atoms + newtuple

	3.3.5	 Tuple Assignment

One of the unique aspects of Python is so-called tuple assignment. When a
tuple is assigned to a variable, the components are converted into an internal form
that is the one tuples always use. This is called tuple packing, and is has already
been encountered:
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,

 "Boron",5,"Carbon",6)

What is really interesting is that tuple unpacking can also be used. Consider
the tuple:
srec = ('Parker', 'Jim', 1980, 'Math 550', 'C+', 'Cpsc 302','A+')

which is a tuple packing of a student record. It can be unpacked into individual
variables in the following way:

(fname, lname, year, cmin, gmin, cmax, gmax) = srec

Which is the same as:
fname = srec[0]
lname = srec[1]
year = srec[2]
cmin = srec[4]
gmin = srec[5]
cmax = srec[6]
gmax = srec[7]

Of course, the implication is that N variables can be assigned the value of N
expressions or variables “simultaneously” if both are written as tuples. Examples
would be:

122 ■ Python: An Introduct ion to Programming

(a, b, c, d, e) = (1,2,3,4,5)
(f, g, h, i, j) = (a, b, c, d, e)

The expression
(f, g, h, i, j) = 2 ** (a,b,c,d,e)

is invalid because the left side of “**” is not a tuple, and Python won’t convert 2
into a tuple. Also:

(f, g, h, i, j) = (2,2,2,2,2) ** (a,b,c,d,e)

is also invalid because “**” is not defined on tuples, nor are other arithmetic
operations. As with strings, “+” means concatenation, though, so (1,2,3) + (4,5,6)
yields (1,2,3,4,5,6).

Exchanging values between two variables is a common thing to do. It’s an es-
sential part of a sorting program, for example. The exchange in many languages
requires three statements: a temporary copy of one of the variables has to be
made during the swap:

temp = a
a = b
b = temp

Because of the way that tuples are implemented, this can be performed in one
tuple assignment:

(a,b) = (b,a)

This is a little obscure, not to an experienced Python programmer but cer-
tainly to a beginner, and often to experienced programmers in other languages. A
Java programmer could see what was meant, but initially the rationale would not
be obvious. This statement deserves a comment such as “perform an exchange of
values using a tuple assignment.’

	3.3.6	 Built-In Functions for Tuples

As examples for the table below, use the following:
T1 = (1,2,3,4,5)
T2 = (-1,2,4,5,7)

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 123

Function Explanation
(What Is Returned?)

Example

len(T1) Gives the number of compo-
nents that are members of T1.

len(T1) == 5

max(T1) Returns the largest element
that is a component of T1.

max(T1) == 5

max(T2) == 7
min(T1) Returns the smallest element

that is a component of T1.
min(T1) == 1
min(T2) == -1

In addition, tuples can be compared using the same operators as for integers
and strings. Comparison is done on an element-by-element basis, just as it is with
strings. In the example above, T1>T2 because at the first location where the two
tuples differ (the initial component), the element in T1 is greater than the cor-
responding element in T2. It is necessary for the corresponding elements of the
tuple to be comparable; that is, they need to be of the same type. So if the tuples
t1 and t2 are defined as:

t1 = (1, 2, 3, "4", "5")
t2 = (-1,2,4,5,7)

then the expression t1>t2 is not allowed. A string can’t be compared against an
integer, and the element indexed by 3 of t1 is a string, whereas the element in-
dexed by 3 of t2 is an int.

	 3.4	 LISTS
One way to think of a Python list is that it is a tuple in which the components

can be modified. They have many properties of an array of the sort one might
find in Java or C, in that they can be used as a place to store things and have ran-
dom access to them; any element can be read or written. They are often used as
one might use an array, but have a greater natural functionality.

Initially a list looks like a tuple, but uses square brackets to delimit it.
list1 = [2, 3, 5, 7, 11, 13, 17, 19] # Prime numbers under 20
list2 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
list3 = ["hi", "ohio", "salut"]

A list can be empty:
list4 = []

124 ■ Python: An Introduct ion to Programming

and because they are like tuples and strings, each element in a list has an index,
and they begin (as usual) at 0. Lists can be indexed and sliced, as before:

list1[2:4] is [5, 7]

Concatenation is like that of strings too:
list6 = list1 + [23, 31]

yields [2, 3, 5, 7, 11, 13, 17, 19, 23, 31]

Negative values index from the end of the string. However, unlike strings and
tuples, individual elements can be modified. So:

list1[2] = 6

results in list1 being [2, 3, 6, 7, 11, 13, 17, 19]. Also:
list3[1:] = "bonjour"

results in list3 taking the value—oops, it becomes:

[‘hi’, “b’, “o’, “n’, “j’, “o’, “u’, “r’].

That’s because a string is a sequence too, and this string consists of seven
components. Each component of the string becomes a component of the list. If
the string “bonjour” is supposed to become a single component of the list, then it
needs to be done this way:

list3[1:] = ["bonjour"]

The other components of list3 are sequences, and now so is the new one.
However, integers are not sequences, and the assignment:

list1[2] = [6,8,9]

results in the value of list2 being:
[2, 3, [6, 8, 9], 7, 11, 13, 17, 19]

There is a list within this list; that is, the third component of list1 is not an
integer, but is a list of integers. That’s legitimate, and works for tuples as well, but
may not be what is intended.

Problem: Compute the Average (Mean) of a List of Numbers

The mean is the sum of all numbers in a collection divided by the number of
numbers. If a set of numbers already exists as a list, calculating the mean might

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 125

involve a loop that sums them followed by a division. For example, assuming that
list1 = [2, 3, 5, 7, 11, 13, 17, 19]:

mean = 0.0
for i in list1:
 mean = mean + i
mean = mean/len(list1)

It can be seen that a list can be used in a loop to define the values that the loop
variable i will take on, a similar situation to that of a tuple. A second way to do
the same thing would be:

mean = 0.0
for i in range(0,len(list1)):
 mean = mean + list1[i]
mean = mean/len(list1)

In this case the loop variable i is an index into the list and not a list element,
but the result is the same. Python lists are more powerful than this, and making
use of the extensive power of the list simplifies the calculation greatly:

mean = sum(list1) / len(list1)

The built-in function sum will calculate and return the sum of all of the ele-
ments in the list. That was the purpose of the loop, so the loop is not needed at all.
The functions that work for tuples also work for lists (min, max, len), but some
of the power of lists is in the methods it provides.

	3.4.1	 Editing Lists

Editing a list means to change the values within it, usually to reflect a new
situation to be handled by the program. The most obvious way to edit a list is to
simply assign a new value to one of the components. For example:
list2 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
list2[0] = "Nitrogen"
print (list2)

results in the following output:

[‘Nitrogen’, “Helium’, “Lithium’, “Beryllium’, “Boron’, “Carbon’]

126 ■ Python: An Introduct ion to Programming

This substitution of a component is not possible with strings or tuples. It is
possible to replace a single component with another list:
list2 = ["Hydrogen","Helium","Lithium","Beryllium","Boron"
 "Carbon"]
list2[0] = ["Hydrogen", "Nitrogen"]

results in:
list2 = [['Hydrogen','Nitrogen'],'Helium','Lithium',
 'Beryllium', 'Boron','Carbon']

	3.4.2	 Insert

This is not normally what is thought of as an insertion, though. To place new
components within a list, the insert method is provided. This method places a
component at a specified index; that is, the index of the new element will be the
one given. To place “Nitrogen” at the beginning of list2, which is index 0:

list2.insert(0, "Nitrogen")

The first value given to insert, 0 in this case, is the index at which to place the
component, and the second value is the thing to be inserted. Inserting “Nitrogen”
at the end of the list would be accomplished by:

list2.insert(len(list2), "Nitrogen)

However, consider this:
list2.insert(-1, "Nitrogen)

Will this insert “Nitrogen” at the end? No. At the beginning of the statement,
the value of list2[-1] is “Carbon.” This is the value at index 5. Therefore, the
insert of “Nitrogen” will be at index 5, resulting in:

[ꞌHydrogenꞌ, ꞌHeliumꞌ, ꞌLithiumꞌ, ꞌBerylliumꞌ, ꞌBoronꞌ,
 ꞌNitrogenꞌ, ꞌCarbonꞌ]

	3.4.3	 Append

Another way to add something to the end of a list is to use the append
method:

list2.append("Nitrogen")

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 127

Results in:
[ꞌHydrogenꞌ, ꞌHeliumꞌ, ꞌLithiumꞌ, ꞌBerylliumꞌ, ꞌBoronꞌ,
 ꞌCarbon’, ꞌNitrogen’]

Remember, the “+” operation will only concatenate a list to a list, so the
equivalent expression involving “+” would be:

list2 = list2 + ["Nitrogen"]

	3.4.4	 Extend

The extend method does pretty much the same things as the “+” operator.
With the definitions:

a = [1,2,3,4,5]
b = [6,7,8,9,10]
print (a+b)
a.extend(b)
print(a)

the output is:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
However, if append has been used instead of extend above:
a = [1,2,3,4,5]
b = [6,7,8,9,10]
print (a+b)
a.append(b)
print(a)

the result would have been:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
[1, 2, 3, 4, 5, [6, 7, 8, 9, 10]]

	3.4.5	 Remove

The remove method does what is expected: it removes an element from the
list. But unlike insert, for example, it does not do it using an index; the value to
be removed is specified. So:

128 ■ Python: An Introduct ion to Programming

list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
list1.remove("Helium")

results in the list1 being [‘Hydrogen’, “Lithium’, “Beryllium’, “Boron’, “Car-
bon’]. Unfortunately, if the component being deleted is not a member of the list,
then an error occurs. There are ways to deal with that, or a test can be made for
trying to delete an item:

if "Nitrogen" in list1:
 list1.remove("Nitrogen")

If there is more than a single instance of the item being removed, then only
the first one will be removed.

	3.4.6	 Index

When discussing tuples it was learned that the index method looked through
the tuple and found the index at which a specified item occurred. The index
method for lists works in the same way. So:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
print (list1.index("Boron"))

prints “4,” because the string “Boron” appears at index 4 in this list (starting from
0, of course). If there is more than one occurrence of “Boron” in the list, then the
index of the first one (i.e., smallest index) is returned. If the value is not found in
the string, then an error occurs. Again, it might be appropriate to check:

if "Boron" in list1:
 print (list1.index("Boron"))

	3.4.7	 Pop

The pop method is effectively the reverse or inverse of append. It removes
the last item (i.e., the one having the largest index) from the list. If the list is
empty, then an error occurs. For an example:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
list1.pop()
print (list1)

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 129

prints the result:
[ꞌHydrogenꞌ, ꞌHeliumꞌ, ꞌLithiumꞌ, ꞌBerylliumꞌ, ꞌBoronꞌ]

To avoid the error that can occur if the list is empty, simply check to see that
the length of the list is greater than zero before using pop:

if len(list1) > 0:
 list1.pop()

The method is called pop because it represents a way to implement the opera-
tion of the same name on a data structure called a stack.

	3.4.8	 Sort

This method places the components of a list into ascending order. Using the
list1 variable that has been used so often:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
list1.sort()
print(list1)

the result is:
[ꞌBerylliumꞌ, ꞌBoronꞌ, ꞌCarbonꞌ, ꞌHeliumꞌ, ꞌHydrogenꞌ,
 ꞌLithiumꞌ]

which is in alphabetic order. The method will sort integers and floating point
numbers as well. Strings and numbers cannot be mixed, though, because they
can’t be compared. So:
list2 = ["Hydrogen",1,"Helium",2,"Lithium",3,"Beryllium",4,
 "Boron",5]
list2.sort()

results in an error that will be something like:
 list2.sort()
TypeError: unorderable types: int() < str()

The meaning of this error should be clear. Things of type int (integer) and
things of type str (string) can’t be compared against each other and so can’t
be placed in a sensible order if mixed. For sort to work properly, all of the ele-
ments of the list must be of the same type. It is always possible to convert one
type of thing into another, and in Python converting an integer to a string is

130 ■ Python: An Introduct ion to Programming

accomplished with the str() function; string to integer is converted using int().
So str(3) would result in “3,” and int(“12”) is 12. An error will occur if it is not
possible, so int(12.2) will fail.

If each element of a list is itself a list, it can still be sorted. Consider the list:
z = [["Hydrogen",3],["Hydrogen",2],["Lithium",3],
 ["Beryllium",4],["Boron",5]]

When sorted this becomes:
[['Beryllium',4],['Boron',5],['Hydrogen',2],['Hydrogen',3],
 ['Lithium',3]]

Each component of this list is compatible with the others, consisting of a
string and an integer. Thus they can be compared against each other. Notice that
there are two entries for hydrogen: one with a number 2 and one with a number 3.
The sort method arranges them correctly. A list is sorted by individual elements
in sequence order, so the first thing tested would be the string. If those are the
same, then the next element is checked. That’s an integer, so the component with
the smallest integer component will come first.

	3.4.9	 Reverse

In any sequence the order of the components within it is important. Reversing
that order is a logical operation to provide, but may not be used very often. One
instance where it can be important is after a sort. The sort method always places
components into ascending order. If they are supposed to be in descending order,
then the reverse method becomes valuable. As an example consider sorting the
list q:

q = [5, 6, 1, 5, 4, 9, 9, 1, 6, 3]
q.sort()

The value of q at this point is

[1, 1, 3, 4, 5, 5, 6, 6, 9, 9]

To place this list is descending order the reverse method is used:
q.reverse()

and the result is

[9, 9, 6, 6, 5, 5, 4, 3, 1, 1]

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 131

It is hard to say whether ascending order is needed more often than descend-
ing order. Names are often sorted smallest first (ascending), but dates are more
likely to require more recent dates before later ones (descending).

	3.4.10	Count

This method is used to determine how many times a potential component of
a list actually occurs. It does not return the number of elements in the list—that
job is done by the len function. Using the list q as an example:
q = [5, 6, 1, 5, 4, 9, 9, 1, 6, 3]
print (1,q.count(1), 2, q.count(2), 3, q.count(3), 99,
 q.count(99))

will result in the output:

 1 2 2 0 3 1 99 0

where the spacing is enhanced for emphasis. This says that there are 2 instances
of the number 1 (1,2) in the list, zero instances of 2 (2,0), one instance of the num-
ber 3 (3,1) and none of 99 (99,0).

	3.4.11	List Comprehension

When creating a list of items, two mechanisms have been discussed. The first
is to use constants, as in the list q in the previous section. The second appends
items to a list, and this could be done within a loop. Making a list of perfect
squares could be done like this:

t = []
for i in range(0,10):
 t = t + [i*i]

which creates the list [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]. This kind of thing is com-
mon enough that a special syntax has been created for it in Python—the list
comprehension.

The basic idea is simple enough, although some specific cases are complicated.
In the situation above involving perfect squares, the elements in the list are some
function of the index. When that is true the loop, index, and function can be given
within the square brackets as a definition of the list. So the list t could be defined as:

tt = [i**2 for i in range(10)]

132 ■ Python: An Introduct ion to Programming

The for loop is within the square brackets, indicating that the purpose is to
define components of the list. The variable i here is the loop variable, and i**2 is
the function that creates the elements from the index. This is a simple example of
a list comprehension.

Creating random integer values? No problem:
tt = [random.randint(0,100) for i in range(10)]

The first six elements in all uppercase?
list1 = ["Hydrogen","Helium","Lithium","Beryllium",
 "Boron","Carbon"]
ss = [i.upper() for i in list1]

This is a very effective way to create lists, but it does depend on having a
known connection between the index and the element.

	3.4.12	Lists and Tuples

A tuple can be converted into a list. Lists have a greater functionality than
tuples; that is, they provide more operations and greater ability to represent data.
On the other hand, they are more complicated and require more computer re-
sources. If something can be represented as a tuple, then it is likely best to do so.
A tuple is designed to be a collection of elements that as a whole represent some
more complicated object, but that individually are perhaps of different types.
This is rather like a C struct or Pascal record. A list is more often used to hold a
set of elements that all have the same type, more like an array. This is a good way
to think of the two types when deciding what to use to solve a specific problem.

Python provides tools for conversion. The built-in function list takes a tuple
and converts it into a list; the function tuple does the reverse, taking a list and
turning it into a tuple. For example, converting list1 into a tuple:

tuple1 = tuple(list1)
print(tuple1)

yields
(ꞌHydrogenꞌ, ꞌHeliumꞌ, ꞌLithiumꞌ, ꞌBerylliumꞌ, ꞌBoronꞌ,
 ꞌCarbonꞌ)

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 133

This is seen to be a tuple because of the “(‘ and ’)” delimiters. The reverse:
v = list(tuple1)
print(v)

prints the text line:
[ꞌHydrogenꞌ, ꞌHeliumꞌ, ꞌLithiumꞌ, ꞌBerylliumꞌ, ꞌBoronꞌ,
 ꞌCarbonꞌ]

and the square brackets indicate this is a list.

	3.4.13	Exceptions

Exceptions are the usual way to check for errors of indexing and membership
in lists. The error is allowed to occur, bur an exception is tested and handled in
the case where, for example, an item being deleted is not in the list.

Problem: Delete the Element Helium from a List

Earlier, as an example of the remove method, a program snippet was written
to delete the element Helium from a list of elements:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
if "Helium" in list1:
 list1.remove("Helium")

Because list1 may not have Helium as one of the components, a check was
made before an attempt to delete it. An attempt to delete an element from a list
where the element does not appear in that list results in an AttributeError. Rath-
er than perform an explicit test, a Python programmer would more likely use an
exception here. The error can be caught as follows:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
try:
 list1.remove("Helium")
except:
 print ('Can't find Helium')

The advantage of this over allowing the error to occur is that the program can
continue to execute.

134 ■ Python: An Introduct ion to Programming

Problem: Delete a Specified Element from a List

Given the same list, read an element from the keyboard and delete that ele-
ment from the list. The basic code is the same, but now the string is entered and
could be anything at all. It’s easier to test a program when it can be made to fail on
purpose. The name is entered using the input function and is used as the param-
eter to remove. Now it is possible to test all of the code in this program without
changing it. First, here is the program:
list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
s = input("Enter:")
try:
 list1.remove(s)
except:
 print ('Can't find ', s)
print (list1)

Properly testing a program means executing all of the statements that com-
prise it and ensuring that the answer given is correct. So in this case, first delete
an element that is a part of the list. Try Lithium. Here is the output:

Enter: Lithium
[“Hydrogen”, “Helium”, “Beryllium”, “Boron”, “Carbon”]
This is correct. These are the statements that were executed in this instance:

list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]
s = input("Enter:")
try:
 list1.remove(s) # This was successful
print (list1)

Now try to delete Oxygen. Output is:

Enter: Oxygen
Can’t find Oxygen
[‘Hydrogen’, “Helium’, “Lithium’, “Beryllium’, “Boron’, “Carbon’]
This is correct. These statements were executed:

list1 = ["Hydrogen","Helium","Lithium","Beryllium","Boron",
 "Carbon"]

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 135

s = input("Enter:")
try:
 list1.remove(s) # this was not successful
except:
 print ('Can't find ', s)
print (list1)

All of the code in the program has been executed and the results checked
for both major situations. For any major piece of software this kind of testing is
exhausting, but it is really the only way to minimize the errors that remain in the
final program.

	 3.5	 SET TYPES
Something of type set is an unordered collection of objects. An element can

only be a member of a given set once, so in that sense it is much like a mathemati-
cal set. In fact, that’s the point. Because a set is unordered, operations such as in-
dexing and slicing are not provided. It does support membership (is), size (len()),
and looping on membership (for i in set).

Anyone (probably an older person) who knows the Pascal language has some
familiarity with the set type in Python.

Mathematical sets have certain specific, well-defined operations, and those
are available on a Python set also.

Subset	 set1 < set2 means set1 is a true subset of s2.
Intersection	� set1 & set2 creates a new set containing members in common

with both.
Union	 set1 | set2 creates a new set with all elements of both.
Difference	 set1-set2 creates a new set with members that are not in both.
Equality	 set1==set2 is true if both sets contain only the same elements.
Creating a new object of type set is a matter of specifying either that it is a set

or what the elements are. So, one way is to use the {} syntax:
set1 = {1,3,5,7,9}

or to use the constructor:
set2 = set(range(1, 10))

136 ■ Python: An Introduct ion to Programming

which gives the set {1, 2, 3, 4, 5, 6, 7, 8, 9}. So:

set1<set2 is True
set1 & set2 is {9, 1, 3, 5, 7} Note: order does not matter to a set.
set1 | set2 is {1, 2, 3, 4, 5, 6, 7, 8, 9}
set2 – set1 is {8, 2, 4, 6}
A new element can be added to a set using add():
set1.add(11)

and removed using remove():
set1.remove(11)

or discard():
set1.discard(11)

If the element being removed is not in the set, then an error will occur (Key-
Error) when remove() is called, but not with discard(). This should be tested
first or be placed in an except statement.

All of the examples so far involve integers belonging to a set, but other types
can belong as well: floating point numbers, strings, and even tuples (not lists). For
example, the following are legal sets:

{"a", "e", "i", "o", "u"}
{"cyan", "yellow", "magenta"}
{(2,4), (3,9), (4,16), (5,25), (6,36), (7,49)}

	3.5.1	 Example: Craps

Craps is a dice game, for those unfamiliar with it, and commonly involves
betting on the outcome. The player (shooter) rolls two dice. If, on the first roll
(pass), a total of 7 or 11 is obtained, then the shooter wins. On the other hand, an
initial roll of 2, 3, or 12 loses immediately. Any other roll is called the point. In
that case the shooter continues to roll the dice. If a 7 is obtained then the shooter
loses, and if the point number is rolled then the shooter wins. The shooter con-
tinues to roll until one or the other occurs. One way to implement this game in
Python is to use sets.

Elements of the sets will be values on each die, which is to say one roll. There
are two dice so a total of 36 combinations exist. A single roll is a tuple, such as

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 137

(1,1) or (3,4). There are only 12 distinct sums of two dice, and multiple ways to
achieve them. A sequence named roll will be created that contains a set for each
possible value, and that set contains all of the ways that the value can be obtained.
For instance, there are two ways to roll a 3, so:

roll[3] = {(1,2), (2,1)}

Initially a set is created for each possible roll of a pair of dice and then is
initialized as described:
from random import *

roll = list(range(0,13)) # Create the empty list
for i in range(1,13): # and fill with empty sets.
 roll[i] = set()
for i in range (1,7): # Now for each possible roll
 for j in range (1,7): # of two dice, add that roll
 k = i+j # to the element of roll for
 roll[k].add((i,j)) # that value (sum of the
 # dice)

Now roll[i] contains all of the ways to roll a value of i, In particular, roll[7]
contains all ways to roll a 7 and roll[11] contains all ways to roll an 11. Thus, all
of the rolls that will win on the first pass can be placed in a single set, the union
of roll[7] and roll[11]:

winner = roll[7] | roll[11]

Similarly, the rolls that will lose for the shooter on the first pass are:
loser = roll[2] | roll[3] | roll[12]

If any other roll is thrown, then that becomes the point. Rolling a die amounts
to getting a random number between 1 and 6 inclusive, or:

die1 = randrange(1,7)
die2 = randrange(1,7)

Remember that randrange() produces a number less than the second parameter.
Given this roll, the point is the set roll[die1+die2]. Continuing the program from
the die rolls:
val = (die1,die2)			 # A tuple, the current roll
print ("Shooter rolls ", val)
if val in winner: # Is this tuple a winner?

138 ■ Python: An Introduct ion to Programming

 print ("The shooter wins!")
elif val in loser: # Is it a loser?
 print ("The shooter loses")
else:
 point = roll[die1+die2] # Define the point set
 print (die1+die2, " is your point.")

Now the dice are rolled repeatedly. If the roll is in the point set, then the
shooter wins. If the roll is a 7 (in the set roll[7]) then the player loses. Otherwise
the shooter rolls again.
while True: # Repeat until a win or
 # loss happens
 die1 = randrange(1,7) # Roll the dice
 die2 = randrange(1,7)
 val = (die1, die2) # val is a tuple
 print ("Rolls ", val)
 if val in roll[7]: # Any 7 roll loses
 print ("The shooter loses!")
 break
 if val in point: # Rolling the 'point' wins.
 print ("The shooter makes the point. A winner!")
 break

And that’s the game. In a real craps game this entire process is repeated, and
bets are placed on each individual game as to whether the player will win or lose.

	 3.6	 SUMMARY
There is a kind type that a variable can have that amounts to a list or sequence

of other, simpler, things. This is true, and using variables having these types is an
essential part of writing useful and effective code. Python offers strings, tuples,
and lists as objects that consist of multiple parts. They are called sequence types.

A string is a sequence of characters. The word sequence implies that the or-
der of the characters within the string matters, and that is true of a string. Strings
most often represent the way that communication between a computer and a hu-
man takes place. Strings can be indexed to see what character is in any position
(e.g., s[i]), can be searched for a string that occurs with it, can have characters
concatenated to it, and many other useful operations. If a string s contains an
integer, then int(s) will yield that integer and str(i) will create a string from an
integer i.

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 139

A tuple is almost identical to a string in basic structure, except that it is com-
posed of arbitrary components instead of characters. Examples are tup1 = (2, 3,
5) and tup2 = (“Hydrogen”,“Helium”,“Carbon”). A tuple can contain mixed
type, such as integers and strings: tup3 = (“star”, 1, “planet”, 2). An element of
a tuple cannot be altered, so it is said to be immutable, although concatenation is
possible.

A list is like a tuple but is not immutable, so individual elements can be modi-
fied. A list uses square brackets as a delimiter, instead of parentheses as used for a
tuple. Changing an element involves indexing it, so if list1 is a list then list1[2] =
6 modifies element 2 of that list.

A set is an unordered collection of objects. An element can be almost any
type, but can only occur in a set once. This mimics a mathematical set. Elements
can be added and removed, and the set operations union, intersection, and differ-
ence can be performed.

Exercises

For the exercises below, assume the following definitions:
str1 = "okra is the closest thing to nylon i've ever eaten."
str2 = "pull the string, and it will follow wherever you
 wish."
str3 = "let out a little more string on your kite."
str4 = "every string is a different color, a different voice."
vowels = 'aeiou'
atoms=("Hydrogen",1,"Helium",2,"Lithium",3,"Boron",5,"Carb
on",6, "Oxygen",8)

	 1.	What is printed by the following code snippets:
	 a) for i in range(0,len(str3)):

 print (str3[i], end=ꞌꞌ)
	 b) for i in range(0,len(str3)):

 print (i, end='')
	 c) for i in range(0,len(str3)):

 print (str2[i], end='')
	 d) for i in str3:

 print (i, end=ꞌꞌ)

140 ■ Python: An Introduct ion to Programming

	 e) for i in str3:
 if i in vowels:
 print(i, end=ꞌꞌ)

	 f) for i in str1:
 if not(i in vowels):
 print(i, end=ꞌꞌ)

	 2.	Construct a loop that prints out all characters of str4 that correspond to a
vowel in str3. Note: the two strings are different lengths.

	 3.	A Caesar cypher is a way to transmit a secret message. When encoding a
message each character is replaced by one that is a fixed distance further
along the alphabet. If that distance is 6, for example, the letter “a” would
be replaced by “g,” which is 6 positions further along. The characters at
the end will wrap around to the beginning, so “z” will become “f.” Write
some Python code that will encode str1 in this way. Ensure that it works by
decrypting the following string:

		 “varr znk yzxotm, gtj oz corr lurruc cnkxkbkx eua coyn.”

		 Ans: uqxg oy znk iruykyz znotm zu terut o’bk kbkx kgzkt.

	 4.	Write a Python snippet that will create two tuples from the single tuple atoms:
one named elements that contains only the names, and one called numbers
that contains the atomic numbers of the elements in the tuple atoms.

	 5.	Write a Python program that reads numbers from the keyboard and appends
them to a tuple. Stop the process when a negative number is entered and then
print the tuple that was created.

	 6.	A deck of playing cards consists of 52 items: each one has one of four suits
(clubs, diamonds, hearts, and spades) and within each suit are values from
1–10 and “Jack,” “Queen,” and “King.” Write a Python program that creates
a deck of cards, shuffles them, and prints out the result.

	 7.	Write a Python program that reads names (single words) one at a time from
a keyboard and deletes them from a list named names if they are already
elements of that list. If the name is not already a member of the list, then it
will be added. Typing the name “quit” terminates the program.

	 8.	Assume that a string named temp exists and has a value. Write Python code
that will print temp backwards.

 Chapter 3 · Sequences: Str ings, Tuples , and Lis ts ■ 141

	 9.	A palindrome is a phrase (a string) that reads the same forwards and
backwards. The name “hannah” is a palindrome; so is “Ogopogo,” the name
of a monster who lives in lake Okanogan, and the word “redivider.” Write a
Python program that determines whether a given string is a palindrome.

	10.	Most examples of palindromes contain spaces and punctuation, and
these characters are ignored when deciding whether or not the phrase
is palindromic. So is case. Thus, the phrase “I prefer pi” is a palindrome.
With these considerations in mind, write a Python program that determines
whether a string is a palindrome or not.

Notes and Other Resources

Built-in types: https://docs.python.org/3.4/library/stdtypes.html?highlight=set#set

Python strings: https://docs.python.org/3/library/string.html

Rules of Craps: http://www.bigmcasino.com/learn-more/learn-to-play-craps/
what-are-the-basic-rules-of-craps/

	 1.	David Mertz. (2003). Text Processing in Python, Addison Wesley
Professional, ISBN-13: 978-0321112545.

	 2.	David Makinson. (2012). Sets, Logic, and Maths for Computing, 2nd
edition, Springer, ISBN-13: 978-1447124993.

	 3.	J. D. Oldham. (2005). What happens after Python in CS1? Journal of
Computing Sciences in Colleges, 20(6), 7–13.

■ ■ ■ ■ ■

In this chapter

There is a large and useful set of functions built into Python. These
are sometimes simply there for the using, like print and input, and
sometimes are part of a module that must be imported, like random.
However, as large as this collection of functions is, it is impossible that
it will include everything that every programmer needs. At some point
there will be a need to create a function that does something new, and
Python should permit this.

Why would a programmer want to create a function of their own? It is
partly out of convenience; if some section of code can be invoked as a function
instead of being repeated many times, then there will be less typing involved. It
is also to support more correct programs: a small code unit like a function can
be very thoroughly tested and nearly guaranteed to be correct. And it is also to
support reuse of working code: once a function is tested, it can be placed in a

4Chapter

Functions

4.1	� Function Definition: Syntax and Semantics�� 144

4.2	 Function Execution�� 149

4.3	 Recursion�� 170

4.4	 Creating Python Modules�� 176

4.5	� Program Design Using Functions – Example: The Game of Nim������������������ 178

4.6	 Summary��184

144 ■ Python: An Introduct ion to Programming

collection of code (module) and used again and again instead of being rewritten
many times.

A function is really just some code that has a name, and can be executed
simply by invoking that name. It usually represents some task that has to be done
fairly frequently, but that’s not a requirement. Some functions are invoked (or
called) only once. In this context a function is a way to break up a long piece of
code into many shorter pieces which, as has been pointed out, are easier to test
and maintain.

A function should also have one single task, or at least one main task. That
task should be represented in the function name. A function named maximum
should have the task of locating the maximum of something; a function named
cosine should calculate the cosine of an angle. If a function is named wilma it
tells another programmer who is reading the code nothing about the what the
program is doing, and if a function named cosine computes the square root of a
number then it is not just uninformative but misleading. Never mind that the Py-
thon language does not insist that names be informative; there is a social compact
between programmers that says that you should be as clear as possible about what
your code is doing.

The fact that many functions return a value has been skipped over, but it is
a key part of the function construct. The code within the function has a purpose,
and often that purpose is concentrated in the return value. However it works, and
whatever the code looks like, the purpose of the cosine function is to return a single
value that is the mathematical cosine of a given angle. The nature of the function is
encapsulated in that value. There are some functions that do not explicitly return a
value; such a function might be called to print an error message or draw a graphical
object in a window. Even if it is not specifically declared in the definition, all func-
tions return something. If not defined, then it returns a value called None.

Enough exposition—how can functions be declared and used in Python?

	 4.1	� FUNCTION DEFINITION:
SYNTAX AND SEMANTICS

Unlike in the cases of if statements or for statements, a function definition
does not involve the word “function.” As an example of a simple definition in

 Chapter 4 · Funct ions ■ 145

Python, imagine a program that needs a function to print twenty “#” characters
on a line. It could be defined as:
def pound20 ():
 for i in range(0,20):
 print ("#", end="")

The word def is known to Python and always begins the definition of a func-
tion. This is followed by the name of the function, in this case pound20 because
the function prints 20 pound characters (also known as a hash characters or oc-
tothorpe). Then comes the list of parameters, which can be thought of as a tuple
of variable names. In this case the tuple is empty, meaning that nothing is passed
to the function. Finally comes the “:” character that defines a new suite that com-
prises the code belonging to the function. From here on the code is indented one
more level, and when the indentation reverts to the original level the function
definition is complete.

Calling this function is a matter of using its name as a statement or in an
expression, being careful to always include the tuple of parameters. Even when
the tuple is empty, it helps distinguish a function from a variable. A call to this
function would be:

pound20 ()

and the result would be that 20
“#” characters would be printed
on one line of the output console.

A function can be given or
passed one or more values that
will determine the result of the
function. A function cosine, for
example, would be passed an an-
gle, and that angle would be used
to compute the cosine. Each call to cosine passing a different value can yield a
different result. In the case of the function that prints pound characters, it might
be useful to pass it the number of pound characters to print. It should not be called
pound20 anymore because it does not always print 20 characters. It will be called
poundn this time:
def poundn (ncharacters):

Figure 4.1
The syntax of a function definition.

146 ■ Python: An Introduct ion to Programming

 for i in range(0,ncharacters):

 print ("#", end="")

The variable ncharacters that is given in parentheses after the function name
is called a parameter or an argument, and indicates the name by which the func-
tion will refer to the value passed to it. This name is known only inside of the
function, and while it can be modified within the function, this modification will
not have any bearing on anything outside. The call to poundn must now include
a value to be passed to the function:

poundn (3)

When this call is performed, the code within poundn begins executing, and
the value of ncharacters is 3, the value that was passed. It prints 3 characters and
returns. A subsequent call to poundn could be passed a different number, perhaps
8, and then ncharacters would take on the value 8 and the function would print
8 characters. It will print as many characters as requested through the parameter.

	4.1.1	 Problem: Use poundn to Draw a Histogram

In Chapter 2, a simple histogram was created from some print statements and
loops. The same code was repeated many times, one for each histogram bar. As it
happens the character used to draw the histogram bars was the pound character,
so the function poundn could be used as a basis for a histogram program. As a
reminder, here is the output that is desired:

Earnings for WidgetCorp for 2016

 Dollars for each quarter

 ==============================

Q1: ######## 190000

Q2: ################ 340000

Q3: ## 873000

Q4: #################### 439833

Each pound character represents $20000, and there are four variables that
hold the profit for each of the four quarters: q1, q2, q3, and q4. Given these

 Chapter 4 · Funct ions ■ 147

criteria, a solution using poundn would call the function four times, once for
each quarter:
print ("Earnings for WidgetCorp for 2016")
print (" Dollars for each quarter ")
print (" ===============================")
q1 = 190000 # The dollar amounts for profits
q2 = 340000 # in each of the four quarters of 2016
q3 = 873000
q4 = 439833

print ("Q1: ", end="")
poundn(int(q1/20000)) # Raw dollar amount is divided by
 # 20000
 # to yield the number of characters.
print (" ", q1)

print ("Q2: ", end="")
poundn (int(q2/20000))
print (" ", q2)

print ("Q3: ", end="")
poundn (int(q3/20000))
print (" ", q3)

print ("Q4: ", end="")

poundn (int(q4/20000))

print (" ", q4)

Each profit value must be scaled by dividing by 20000, just as happened be-
fore. In this case the resulting value is passed to poundn indicating the number
of “#” ’s to draw.

	4.1.2	 Problem: Generalize the Histogram Code for Other Years

Any company will need to do financial reports every year at least. Hiring a
programmer to do this task on a computer is not a reasonable thing to do, because
computers can be made to do this job in a very general way. For example, given
that each year will have four quarters and each quarter will have a profit, why not

148 ■ Python: An Introduct ion to Programming

store these data as a list? Each year will have one list containing four items, and
the name of the variable could initially be related to the year:

profit2016 = [190000, 340000, 873000, 439833]

The profit for the first quarter is profit2016[0], the second quarter is prof-
it2016[1], and so on. Using this variable means passing one of the elements of the
list to poundn instead of a simple variable, but that is fine, it’s a legal expression.
So drawing the characters for the first quarter would be done with the following
code:

poundn(int(profit2016[0]/20000))

Now consider what else gets printed. To print everything for the first quarter
the code was:

print ("Q1: ", end="")
poundn(int(profit2016[0]/20000))
print (" ", q1)

This means that the label on the left, “Q1,” the parameters to poundn, and
the actual value of the profit are needed. All of these are available, and can be
provided within a simple loop. Assuming that the loop variable i runs from 0 to 3,
the code within that loop that duplicates the previous example can be constructed
one line at a time. In each iteration the quarter is i+1 because i starts at 0; convert
that to a string and build the label “Q1 : ” from it:

print (Q1: ", end="")
print ("Q"+str(i+1)+": ", end="")

This is probably the trickiest part. The label string is constructed from the
letter “Q,” a number between 1 and 4 indicating the quarter, and “:” for the termi-
nal string. They are simply concatenated together in the print statement.

Now call poundn as before:
poundn(int(profit2016[i]/20000))
 poundn(int(profit2016[i]/20000))

finally, print the raw dollar value on the right:
print (" ", q1)
print (" ", profit2016[i])

 Chapter 4 · Funct ions ■ 149

So, using this plan the entire histogram can be drawn using only four statements:
for i in range(0,4):
 print ("Q"+str(i+1)+": ", end="")
 poundn(int(profit2016[i]/20000))
 print (" ", profit2016[i])

That’s pretty brief, readable, and general. Still, there’s another step. Since this
will be done every year, why not create a function that takes the data and the year
as parameters, and do the whole job? It shall be called pqhistogram:

def pqhistogram (profit, year):
 print ("Earnings for WidgetCorp for "+str(year))
 print (" Dollars for each quarter ")
 print (" ==============================")
 for i in range(0,4):
 print ("Q"+str(i+1)+": ", end="")
 poundn(int(profit[i]/20000))
 print (" ", profit[i])

The function pqhistogram produces the same output as did the original pro-
gram, and does so more generally and concisely. This function also brings to
light two new ideas. One is that it is possible to pass more than one parameter to
a function. The second is that it is possible to call a function from within another
function; in this case poundn is called from inside of pqhistogram. The call is
made after defining the list that contains the profit values:

profit2016 = [190000, 340000, 873000, 439833]

pqhistogram (profit2016, 2016)

It is important to note that the parameters are positional; that is, the first value
passed will correspond to the first name in the parameter list, and the second to
the second. This is the default for functions with any number of parameters.

NOTE
A def statement is not a declaration. Such things are foreign to Python.
A def statement executes, and it “creates” a new function each time it is
executed. This is an advanced topic, and will be handled later.

	 4.2	 FUNCTION EXECUTION
When a function is called, the first statement of that function starts to ex-

ecute, and it continues statement by statement through the code until the last

150 ■ Python: An Introduct ion to Programming

statement of that function or until it returns prematurely. When that last

statement executes, then execution will continue from the place where it was
called. As a function can be called from many places, Python has to remember
where the function was called so that it can return. Parameters can be expressions
or variables, and normally differ each time the function is called. Functions can
also access variables defined elsewhere.

Most importantly, and a factor that has not been dealt with yet, is that func-
tions return values.

	4.2.1	 Returning a Value

All functions return a value, and as such can be treated within expressions as
if they were variables having that value. So, assuming the existence of a cosine
function, it could be used in an expression in the usual ways. For example:

x = cosine(x)*r
if cosine(x) < 0.5:
print (cosine(x)*cosine(x))

In these cases the value returned by the function is used by the code to cal-
culate a further value or to create output. The expression “cosine(x)” resolves to
a value of some Python type. The most common purpose of a function is to cal-
culate a value, which is then returned to the calling part of the program and can
possibly be used in a further calculation. But how does a function get its value?
In a return statement.

The return statement assigns a value and a type to the object returned by the
function. It also stops executing the function and resumes execution at the loca-
tion where the function was called. A simple example would be to return a single
value, such as an integer or floating point number:

return 0

returns the value 0 from a function. The return value could be an expression:
return x*x + y*y

A function has only one return value, but it can be of any type, so it could be
a list or tuple that contains multiple components:
return (2,3,5,7,11)

 Chapter 4 · Funct ions ■ 151

return ["fluorine","chlorine","bromine","iodine","astatine"]

Expressions can include function calls, so a return value can be defined in
this way as well; for example:

return cosine(x)

One of the simplest functions that can be used as an example is one that calcu-
lates the square of its parameter. It nonetheless illustrates some interesting things:

def square (x):
 return x*x
The print statement:
print (square(12))

will print:
144

Interestingly, the statement:
print(square(12.0))
results in:

144.0

The same function returns an integer in one case and a float in the other.
Why? Because the function returns the result of an expression involving its pa-
rameter, which in one case was an integer and in the other was real. This implies
that a function has no fixed type, and can return any type at all. Indeed, the same
function can have return statements that return an integer, a float, a string, and a
list independent of type of the parameter passed:

def test (x): # Return one of four types depending on x
 if x<1:
 return 1
 if x<2:
 return 2.0
 if x<3:
 return "3"
 return [1,2,3,4]

print (test(0))

print (test(1))

152 ■ Python: An Introduct ion to Programming

print (test(2))
print (test(3))

The output:
1
2.0
3
[1, 2, 3, 4]

Problem: Write a Function to Calculate the Square Root of its
Parameter

Two thousand years ago the Babylonians had a way to calculate the square
root of a number. They understood the definition of a square root: that if y*y = x
then y is the square root of x. They figured out that if y was an overestimate to
the true value of the square root of x, then x/y would be an underestimate. In that
case, a better guess would be to average those two values: the next guess would
be y1 = (y + x/y)/2. The guess after that would be y2 = (y1+x/y1)/2, and so on. At
any point in the calculation the error (difference between the correct answer and
the estimate) can be found by squaring the guess yi and subtracting x from it,
knowing that yi*yi is supposed to equal x.

The function will therefore start by guessing what the square root might be.
It cannot be 0 because then x/y would be undefined. x is a good guess. Then
construct a loop based on the expression y2 = (y1+x/y1)/2, or more generally yi+1 =
(yi+x/yi)/2 for iteration i. At first, run this loop a fixed number of times, perhaps
20. Here is the function that results:
def root (x): # Compute the square root of x
 y = x # First guess: too big, probably
 for i in range(1, 20): # Iterate20 times
 y = (y + x/y)/2.0 # �Average the prior guess and
 # x/y
 return y # Return the last guess

This correctly computes the square root of 2 to 15 decimal places. This is
probably more than is necessary, meaning that the loop is executing more times
than it needs to. In fact, changing the 20 iterations to only 6 still gives 15 correct
places. This is exceptional accuracy: if the distance between the Earth and the
Sun were known this accurately it would be within 0.006 inches of the correct
value. The Babylonians seem to have been very clever.

 Chapter 4 · Funct ions ■ 153

What’s the square root of 10000? If the number of iterations is kept at 6, then
the answer is a very poor one indeed: 323.1. Why? Some numbers (large ones)
need more iterations than others. To guarantee that a good estimate of the square
root is returned, an estimate of the error should be used. When the error is small
enough, then the value will be good enough. The error will be x-yi*yi. The func-
tion should not loop a fixed number of times, but instead should repeat until the
error is less than, say, 0.0000001. This function will be named roote, where the
“e” is for “error.”
Computer the square root of X to 7 decimal places
def roote (x):
y = x # �y is supposed to be the square root
 # of x, so
e = abs(x-y*y) # the error is x – y*y
while e > 0.0000001: # repeat while the error is bigger
 			 # than 0.0000001
 y = (y + x/y)/2.0 # New estimate for square root

 e = abs(x-y*y) New error value

return y

This function will return the square root of any positive value of x to within
7 decimal places. It should check for negative values, though.

4.2.2	 Parameters

A parameter can be either a name, meaning that it is a Python variable (ob-
ject) of some kind, or an expression, meaning it has a value but no permanence in
that it can’t be accessed later on—it has no name. Both are passed to a function as
an object reference. The expression is evaluated before being given to the func-
tion, and its type does not matter in so far as Python will always know what it is;
its value is assigned a name when it is passed. Consider, for example, the function
square in the following context:

...
pi = 3.14159
r = 2.54
c = square (2*pi*r)
print ("Circumference is ", c)

The assignments to pi and r are performed, and when the call to square
occurs, the expression 2*pi*r is evaluated first. Its value is assigned to a temporary

154 ■ Python: An Introduct ion to Programming

variable, which is passed as the parameter to square. Inside the function this
parameter is named x, and the function calculates x squared and returns it as a
value. It is as if the following code executes:
pi = 3.14159
r = 2.54
call square(2*pi*r)
 parameter1 = 2*pi*r # set the parameter value
 x = parameter1 # �First parameter is named x inside
 # SQUARE
 returnvalue = x*x # Code within SQUARE, return x*x
c = returnvalue # �assign result of function
 # call to c
print ("Circumference is ", c)

This is not how a function is implemented, but it shows how the parameter is
effectively passed; a copy is made of the parameters and those are passed. If the
expression 2*pi*r was changed to a simple variable, then the internal location of
that variable would be passed.

Passing more structured objects works the same way but can behave differ-
ently. If a list is passed to a function then the list itself cannot be modified, but the
contents of the list can be. The list is assigned another name, but it is the same list.
To be clear, consider a simple function that edits a list by adding a new

element to the end:
def addend (arg):
 arg.append("End")

z = ["Start", "Add", "Multiply"]
print (1, z)
addend(z)
print (1, z)

The list associated with the variable z is changed by this function call. It now
ends with the string “End.” Output from this is:
1 [ꞌStartꞌ, ꞌAddꞌ, ꞌMultiplyꞌ]
2 [ꞌStartꞌ, ꞌAddꞌ, ꞌMultiplyꞌ, ꞌEndꞌ]

Why is this? Because the name z refers to a thing that consists of many other
parts. The name z is used to access them, and the function can’t modify the value
of z itself. It can modify what z indicates; that is, the components. Think of it, if

 Chapter 4 · Funct ions ■ 155

it makes it simpler, as a level of indirection. A book can be exchanged between
two people. The receiver writes a note in it and gives it back. It’s the same book,
but the contents are now different.

A small modification to addend() illustrates some confusing behavior. In-
stead of using append to add “End” to the list, use the concatenation operator
“+”:

def addend (arg):
 arg = arg + ["End"]

z = ["Start", "Add", "Multiply"]
print (1, z)
addend(z)
print (2, z)
Now the output is:

1 [ꞌStartꞌ, ꞌAddꞌ, ꞌMultiplyꞌ]
2 [ꞌStartꞌ, ꞌAddꞌ, ꞌMultiplyꞌ]

The component “End” is not a part of the list z anymore. It was made a com-
ponent inside of the function, but it’s not present after the function returns. This
is because the statement:

arg = arg + ["End"]

actually creates a new list with “End” as the final component, and then assigns
that new list as a value to arg. This represents an attempt to change the value that
was passed, which can’t happen: changing the value of arg will not change the
value of the passed variable z. So, within the function arg is a new list with “End”
as the final component. Outside, the list z has not changed.

The way that Python passes parameters is the subject of a lot of discussion
on Internet blogs and lists. There are many names given for the method used,
and while the technique is understood, it does differ from the way parameters
are passed in other languages and is confusing to people who learned another
language like Java or C before Python. The thing to remember is that the actual
value of the thing (an object reference) being passed can’t be assigned a new value
inside the function, but the things that it references or points to can be modified.

Multiple parameters are passed by position; the first parameter passed is
given to the first one listed in the function declaration, the second one passed is

156 ■ Python: An Introduct ion to Programming

given to the second one listed in the declaration, and so on. They are all passed in
the same manner, though, as object references.

	4.2.3	 Default Parameters

It is possible to specify a value for a parameter in the instance that it is not
given one by the caller. That may not seem to make sense, but the implication is
that it will sometimes be passed explicitly and sometimes not. When debugging
code it is common to embed print statements in specific places to show that the
program has reached that point. Sometimes it is important to print out a variable
or value there, other times it is just to show that the program got to that statement
safely. Consider a function named gothere:
def gothere (count, value):

 print ("Got Here: ",count, " value is ", value)

then throughout the program, calls to gothere would be sprinkled with a different
value for count every time; the value of count indicates the statement that has
been reached. This is a way of instrumenting the program, and can be very useful
for finding errors. So the code being debugged may look like:
 year = 2015 # �The code below is not especially
 # meaningful
 a = year % 19		 # and is an example only.
 gothere(1, 0)
 b = year // 100
 c = year % 100
 gothere (2, 0)
 d = (�19 * a + b - b // 4 - ((b - (b + 8) // 25 + 1)
 // 3) + 15) % 30
 e = (32 + 2 * (b % 4) + 2 * (c // 4) - d - (c % 4)) % 7
 f = d + e - 7 * ((a + 11 * d + 22 * e) // 451) + 114
 gothere (3, f)
 month = f // 31
 day = f % 31 + 1
 gothere(4, day)
 return date(year, month, day)

Output is:

Got Here: 1 value is 0
Got Here: 2 value is 0

 Chapter 4 · Funct ions ■ 157

Got Here: 3 value is 128
Got Here: 4 value is 5
2015 4 5

The program reaches each of the four checkpoints and prints a proper mes-
sage. The first two calls to gothere did not need to print a value, only the count
number. The second parameter could be given a default value, perhaps None, and
then it would not have to be passed. The definition of the function would now be:
def gothere (count, value=None):
 if value:
 print ("Got Here: ",count, " value is ", value)
 else:
 print (Got Here: ", count)

and the output this time is:

Got Here: 1
Got Here: 2
Got Here: 3 value is 128
Got Here: 4 value is 5
2015 4 5
The assignment within the parameter list gives the name value a special

property. It has a default value. If the parameter is not passed, then it takes that
value; otherwise, it behaves normally. This also means that gothere can be called
with one or two parameters, which can be very handy. It is important to note that
the parameters that are given a default value must be defined after the ones that
are not. That’s because otherwise it would not be clear what was being passed.
Consider the (illegal) definition:

def wrong (a=1, b, c=12):

…

Now call wrong with two parameters:
wrong (2,5)

What parameters are being passed? Is it a and b? Is it a and c? It is impossible
to tell. A legal definition would be:

def right (b, a=1, c=12)

158 ■ Python: An Introduct ion to Programming

This function can be called as:
right (19)

in which case b=19, a=1, and c=12. It can be called as:
right (19, 20)

in which case b=19, a=19, and c=12. It can be called as:
right (19, 19, 19)

in which case b=19, a=19, and c=19. But how can it be called passing b and c but
not a? Like this:

right (19, c=19)

In this case a has been allowed to default. The only way to pass c without also
passing a is to give its name explicitly so that the call is not ambiguous.

	4.2.4	 None

Mistakes happen when writing code. They are unavoidable, and much time
is spent getting rid of them. One common kind of mistake is to forget to assign a
return value when one is needed. This is especially likely when there are multiple
points in the function where a return can occur. In many programming languages
this will be caught as an error, but in Python it is not. Instead, a function that is
not explicitly assigned a return value will return a special value called None.

None has its own type (NoneType), and is used to indicate something that
has no defined value or the absence of a value. It can be explicitly assigned to
variables, printed, returned from a function, and tested. Testing for this value can
be done using:

if x == None:

or by:
if x is None:

	4.2.5	 Example: The Game of Sticks

This is a relatively simple combinatorial game that involves removing sticks
or chips from a pile. There are two players, and the game begins with a pile of
21 sticks. The first player begins by removing 1, 2, or 3 sticks from the pile.

 Chapter 4 · Funct ions ■ 159

Then the next player removes some sticks, again 1, 2, or 3 of them. Players alter-
nate in this way. The player who removes the last stick wins the game; in other
words, if you can’t move, you lose.

Functions are useful in the implementation of this game because both play-
ers do similar things. The action connected with making a move, displaying the
current position, and so on are the same for the human player and the computer
opponent. The current status or state of the game is simply a number, the number
of sticks remaining in the pile. When that number is zero, then the game is over,
and the loser is whatever player is supposed to move next. The code for a pair
of moves, one from the human and one from the computer, might be coded in
Python as follows:
displayState(val) 		 # Show the game board
userMove = getMove() # Ask user for their move
val = val – userMove		 # Make the move
print ("You took ", userMove, " sticks leaving ", val)
if gameOver(val):
 print("You win!")
else:
 move = makeComputerMove (val) # �Calculate the
 # computerꞌs move
 print ("Computer took ", move, " sticks leaving ", val)
 if gameOver(val):
 print("Computer wins!")

The current state of the game is displayed first, and then the human player is
asked for their move. The move is simply the number of sticks to remove. When
the move has been made, if there are no sticks left then the human wins. Other-
wise, the computer calculates and makes a move; again, if no sticks remain then
the game is over, in this case the computer being the winner. This entire section
of code needs to be repeated until the game is over, of course.

There are four functions that must be written for this version: displayState(),
getMove(), gameOver(), and makeComputerMove().

The function displayState() prints the current situation in the game. Specifi-
cally, it prints one “O” character for each stick still in the pile, and does so in rows
of 6. At the beginning of the game this function would print:
O O O O O O
O O O O O O

160 ■ Python: An Introduct ion to Programming

O O O O O O
O O O

which is 21 sticks. The code is:
def displayState(val):
 k = val		 # �K represents the number of sticks not
 # printed
 while k > 0:	 # So long as some are not printed …
 if k >=6:	# If there is a whole row, print it.
 print ("O O O O O O ", end="")
 k = k – 6 # Six fewer sticks are unprinted
 else:
 for j in range(0,k): # Print the remainder
 print ("O ", end="")
 k = 0			 # None remain
 print ("")

This should be obvious. Also note that the function is named for what it does.
It does only one thing; it modifies no values outside of the function, and it serves a
purpose that is needed multiple times. These are all good properties of a function.

The function getMove() will print a prompt to the user/player asking for the
number of sticks they wish to remove and reads that value from the keyboard,
returning it as the function value. Again, this function is named for what it does
and performs a single, simple task. One possibility for the code is:
def getMove ():
 n = int(input ("Your move: Take away how many? "))
 while n<=0 or n>3:
 print ("Sorry, you must take 1, 2, or 3 sticks.")
 n = int(input ("Your move: Take away how many? "))
 return n

The function gameOver() is trivial, but lends structure to the program. All
it does is test to see whether the value of val, the game state variable, is zero. It
leaves open the idea that there may be other end of game indicators that could be
tested here.
def gameOver (state):
 if state == 0:
 return True
 return False

 Chapter 4 · Funct ions ■ 161

Finally, the most complicated function, getComputerMove(), can be at-
tempted. Naturally a good game presents a challenge to the player, and so the
computer should win the game it if can. It should not play randomly if that is
possible. In the case of this particular game, the winning strategy is easy to
code. The player to make the final move wins, so if there are 1, 2, or 3 sticks
left at the end, the computer would take them all and win. Forcing the human
player to have 4 sticks makes this happen. The same is true if the computer can
give the human player (i.e., leave the game in the state of having) 8, 12, or 16
sticks. This can be demonstrated by playing the game with actual sticks. So, if
the human moves first (as it does in this implementation) the computer tries to
leave the game in a state where there are 16, 12, 8, or 4 sticks left after its move.
The code could be:
def getComputerMove (val):
 n = val % 4
 if n<=0:
 return 1
 else:
 return n

There are a couple of details needed to finish this game properly that are left
as an exercise.

	4.2.6	 Scope

A variable that is defined (first used) in the main program is called a global
variable, and can be accessed by all functions if they ask for it. A variable that
is used in a function can be accessed by that function, and is not available in
the main program. It’s called a local variable. This scheme is called scoping:
the locations in a program where a variable can be accessed is called its scope.
It’s all pretty clear unless a global variable has the same name as a local one, in
which case the question is: “what value is represented by this name?” If a vari-
able named “x” is global and a function also declares a variable having the same
name, this is called aliasing, and it can be a problem.

In Python, a variable is assumed to be local unless the programmer specifi-
cally says it is global. This is done in a statement; for example:

global a, b, c

162 ■ Python: An Introduct ion to Programming

tells Python that the variables named a, b, and c are global variables, and are
defined outside of the function. This means that after the function has completed
execution, those variables can still be accessed by the main program and by any
other functions that declare them to be global.

Global variables are thought by some programmers to be a bad thing, but in
fact they can be quite useful and can assist in the generality of the functions that
are a part of the program. A global variable should represent something that is, in
fact, global, something that should be known to the whole program. For instance,
if the program is one that plays checkers or chess, then the board can be global.
There is only one board, and it is essential to the whole program. The same ap-
plies to any program that has a central set of data that many of the functions need
to modify.

An example of central data is game state in a video game. In the Sticks game
program for example, the function getComputerMove() takes a parameter—the
game state. There is only one game state, and although for some games it can
involve many values, in this case there is only one value: the number of sticks
remaining. The function can be rewritten to use the game state variable val as a
global in the following way:
def getComputerMove ():
 global val
 n = val % 4
 if n<=0:
 return 1
 else:
 return n

Similarly, the function that determines whether the game is over could use
val as a global variable. On the other hand it would be poor stylistic form to have
getMove() use a global for the user’s move. The name does imply that the func-
tion will get a move, and so that value should be returned as an explicit function
return value.

If a variable is named as global, then that name cannot be used in the func-
tion as a local variable as well. It would be impossible to access it, and it would
be confusing. It is a common programming error to forget to declare a variable
as global. When this happens the variable is a new one local to the function, and
starts out with a value of 0. Thus no syntax error is detected, but the calculation

 Chapter 4 · Funct ions ■ 163

will almost certainly be incorrect. It might be a good idea to identify global vari-
ables in their name. For example, place the string “_g” at the end of the names
of all globals. The game state above would be named val_g, for example. This
would be a reminder to declare them properly within functions.

Other kinds of data that could be kept globally would include lists of names,
environment or configuration variables, complex data structures that represent a
single underlying process, and other programming objects that are referred to as
singletons in software engineering. In Python, because they have to be explicitly
named in a declaration, there is a constant reminder of the variable’s scope.

	4.2.7	 Variable Parameter Lists

The print() function is interesting because it seems to be able to accept any
number of parameters and deal with them. The statement:

print(i)

prints the value of the variable i, and
print (i,j,k)

prints the value of all three variables i, j, and k. Is this some sort of special
thing reserved for print() because Python knows about it? Nope. Any function
can do this. Consider a function:

fprint ("format string", variable list)

where the format string can contain the characters “f” or “i” in any combination.
Each instance of a letter should correspond to a variable passed to the function
in the variable list, and it will be printed as a floating point if the corresponding
character in the format string is “f” and as an integer if it is “i.” The call:

fprint("fi", 12, 13)

will print the values 12 and 13 as a float and an integer respectively. How can this
be written as a Python function?

The function would start out with the following definition:
def fprint (fstring, *vlist)

The expression *vlist represents a set of positional parameters, any number
of them. This is preceded by a specific parameter fstring, which will be the

164 ■ Python: An Introduct ion to Programming

format string. A simple test of this would be to just print the variables in the list
to see if it works:
def fprint (fstring, *vlist)
 for v in vlist:
 print v

When called as fprint(“”, 12, 13, 14, 15) this prints:

12
13
14
15

It removes some of the magic to point out that what is going on is that the
list of variables after the * character is turned into a tuple, which is passed as the
parameter, so the *vlist actually counts as a single parameter with many compo-
nents. No magic.

To finish the original function, what has to be done is to peel characters off
of the front of the format string, match them against a variable, and print the re-
sult as the format character dictates. So it is the same loop as above, but also an
index into the format string increases each time through and is used to indicate
the format. It is also important that the number of format items equals the number
of variables:
def fprint (s, *vlist):
 i = 0
 if len(s) != len(vlist): # �Format string and
 # variable list agree?
 print (�"There must be the same number of variables

as format items.")
 return
 for v in vlist: # For each variable
 if s[i] == "f": # �Is the corresponding
 # format ꞌfꞌ?
 fv = float(v) # Yes. Make it a float
 print (fv, " ", end="") # … and print it
 elif s[i] == "i": # �Is the corresponding
 # format ꞌiꞌ?
 iv = int(v) # �Yes. Make it an
 # integer
 print(iv, " ", end="") # … and print it

 Chapter 4 · Funct ions ■ 165

 else:
 print ("?", end="") # �Donꞌt know what this
 # is. Print it
 i = i + 1

All of the known positional parameters must come before the variable list;
otherwise the end of the variable list can’t be determined. There is a second com-
plication, that being the existence of named parameters. Those are indicated by
a parameter such as **nlist. The two “*” characters indicate a list of named vari-
ables. This is properly a more advanced topic.

	4.2.8	 Variables as Functions

Because Python is effectively untyped and variables can represent any kind
of thing at all, a variable can be made to refer to a function; not the function name
itself, which always refers to a specific function, but a variable that can be made
to refer to any function. Consider the following functions, each of which does one
trivial thing:

def print0():
 print ("Zero")
def print1():
 print ("One")
def print2():
 print ("Two")
def print3():
 print("Three")

Now make a variable reference one of these functions by means of an

assignment statement:
printNum = print1 # �Note that there is no parameter list
 # given

The variable printNum now represents a function, and when invoked, the
function it represents will be invoked. So:

printNum()

will result in the output:
One

166 ■ Python: An Introduct ion to Programming

Why did the statement printNum = print1 not result in the function
print1 being called? Because the parameter list was absent. The statement:

printNum = print1()

results in a call to print1 at that moment, and the value of the variable printNum
will be the return value of the function. This is the essential syntactic difference:
print1 is a function value, and print1() is a call to the function. To emphasize this
point, here is some code that would allow the English name of a number between
1 and 3 to be printed:
if a == 1:
 printNum = print1 # �Assign the function print1 to
 # printNum
elif a == 2:
 printNum = print2 # �Assign the function print2 to
 # printNum
else:
 printNum = print3 # �Assign the function print3 to
 # printNum
	 . . .
printNum() # �Call the function represented by
 # printNum

There are more subtle uses in this case. Consider this use of a list:
a = 1
printList = [print0, print1, print2, print3]
printNum = printList[a]
printNum()

will result in the output:
One

The final iteration of this is to call the function directly from the list:
printList[1]()

This works because printList[1] is a function, and a function call is a func-
tion followed by (). Seems overly complicated, doesn’t it? It is rarely used.

For those with an interest or need for mathematics, consider a function that
computes the derivative or integral of another function. Passing the function to
be differentiated or integrated as a parameter may be the best way to proceed in
these cases.

 Chapter 4 · Funct ions ■ 167

Example: Find the Maximum Value of a Function

Maximizing a function can have important consequences in real life. The
function may represent how much money will be made by manufacturing various
objects, how many patients can get through an emergency ward in an hour, or how
much food will be grown with particular crops. If the function is well behaved
then there are many mathematically sound ways to find a maximum or minimum
value, but if a function is harder to deal with, then less analytical methods may
have to be used. This problem proposes a search for the best pair of parameters to
a problem that could be solved using a method called linear programming.

The problem goes like this:

A calculator company produces a scientific calculator and a graphing
calculator. Long-term projections indicate an expected demand of at least
100 scientific and 80 graphing calculators each day. Because of limita-
tions on production capacity, no more than 200 scientific and 170 graph-
ing calculators can be made daily. To satisfy a shipping contract, a total
of at least 200 calculators much be shipped each day.

If each scientific calculator sold results in a $2 loss, but each graphing
calculator produces a $5 profit, how many of each type should be made
daily to maximize net profits?

Let s be the number of scientific calculators manufactured and g be the num-
ber of graphing calculators. From the problem statement:

100 <= s <= 200
80 <= g <= 170
Also:

s + g > 200, or g > 200 - s

Finally, the profit, which is to be maximized, is:

P = –2s + 5g

First, code the profit as a function:
def profit (s, g):
 return -2*s + 5*g

168 ■ Python: An Introduct ion to Programming

A search through the range of possibilities will run through all possible val-
ues of s and all possible values of g; that is, s from 100 to 200 and g from 80
to 170. The function will be evaluated at each point and the maximum will be
remembered:
Range for s is x0 .. x1
Range for g is y0 .. y1
s+g must be >= sum
def searchmax (f, x0, y0, x1, y1, sum):
 pmax = -1.0e12
 ps = -100
 pg = -100
 for s in range (x0, x1+1): # For all possible s
 for g in range (y0, y1+1): # For all possible g
 if s+g >= sum: # Condition is ok?
 p = f (s, g) # Calculate the profit.
 if p>=pmax: # Best so far?
 pmax = p # Yes.
 ps = s # Save it and
 pg = g # the parameters
 return ((ps, pg))

Finally, the call that does the optimization calls the search function passing
the profit function as a parameter:
c = searchmax (profit, 100, 80, 200, 170, 200)

print (c)

The answer found is the tuple (100, 170), or s=100 and g = 170, which agrees
with the correct answer as found by other methods. This is only one example of
the value of being able to pass functions as parameters. Most of the code that does
this is mathematical, but may accomplish practical tasks like optimizing perfor-
mance, drawing graphs and charts, and simulating real-world events.

	4.2.9	 Functions as Return Values

Just as any value, including a function, can be stored in a variable, any value,
including a function, can be returned by a function. If a function that prints an
English name of a number is desired, it could be returned by a function:
def print0():
 print ("Zero")

 Chapter 4 · Funct ions ■ 169

def print1():
 print ("One")
def print2():
 print ("Two")
def print3():
 print("Three")

def getPrintFun (a): # �Return a function to print a
 # numeric value 0..3

if a == 0:
 return print0 # �Return the function print0 as
 # the result
elif a == 1:
 return print1 # �Return the function print1 as
 # the result
elif a == 2:
 return print2 # �Return the function print2 as
 # the result
else:
 return print3 # �Return the function print3 as
 # the result

Calling this function and assigning it to a variable means returning a func-
tion that can print a numerical value:

printNum = getPrintFun(2) # Assign a function to printNum

and then:
printNum() # Call the function represented by printNum

results in the output:
Two

The function printFun returns, as a value, the function to be called to print
that particular number. Returning the name of the function returns something
that can be called.

Why would any of these seemingly odd aspects of Python be useful? Al-
lowing a general case, permitting the most liberal interpretation of the language,
would permit unanticipated applications, of course. And the ability to use a func-
tion as a variable value and a return result are a natural consequence of Python
having no specific type connected with a variable at compilation time. There are

170 ■ Python: An Introduct ion to Programming

many specific reasons to use functions in this way, on the other hand. Imagine a
function that plots a graph. Being able to pass this function another function to be
plotted is surely the most general way to accomplish its task.

	 4.3	 RECURSION
Recursion refers to a way of defining things and a programming technique,

not a language feature. Something that is recursive is defined at least partly in
terms of itself. This seems impossible at first, but consider the case of a grocery
list (not a Python list) of items such as:

milk, bread, coffee, sugar, peanut butter, cheese, jam

Each element in the list can be called an item, and represents something to be
purchased at a grocery store. The smallest list is one having only a single element:

milk

Thus, a list can be simply an item. What else can it be? It appears to be a
bunch of items separated by commas. One way to describe this is to say it can
be an item followed by a comma followed by a list. The complete definition is,
presuming that the symbol -> means “can be defined as”:

list -> item # list can be defined as an item
list -> item, list # list can be defined as an item, a comma, and a list

In this way the list milk is defined as a list by the first rule. The list milk,
bread is a list because it is an item (milk) followed by a comma followed by a list
(bread). It is plain that a list is defined here in terms of itself, or at least in terms
of a previous partial definition of itself.

When talking about functions, a function is recursive if it contains within
it a call to itself. This is normally done only when the thing that it is attempting
to accomplish has a definition that is recursive. Recursion as a programming
technique is an attempt to make the solution simpler. If it does not, then it is inap-
propriate to use recursion. A problem some beginning programmers have with
the ideas of a recursive function is that it appears that it does not terminate. Of
course, it is essential that a function does return, and a program that never ends
is almost always in error. The problem really is how to make certain that a chain
of function calls terminates eventually.

 Chapter 4 · Funct ions ■ 171

The following function will never return once called:
def recur1 (i):
	 recur1(i+1)

print (i)

It will not result in any output, either. Why not? Because the first thing it
does is call itself, and always does so. When it does, the next thing is does is call
itself again, and then again, and so on. The following function, on the other hand,
will terminate:
def recur2 (i):
	 if i>0:
 recur2(i-1)

print (i)

When called it checks its parameter i. If that parameter is greater than zero,
then it calls itself with a smaller value of i, meaning that eventually i will become
smaller than 0 and the chain of calls will stop. What will be printed? The first
call to recur2 that does not end up calling itself is when i==0, so the first thing
printed will be 0. Then the function returns to the previous recursive call, which
had to be where i == 1. The second thing printed will be 1. And so on until it re-
turns to the original call to the function with the original value of i, at which point
it prints i. This is a trivial example of a recursive function, but illustrates how to
exit from the chain of calls: there must be a condition that defines the recursion.
When that condition fails, the recursion ceases.

Each call to the function can be thought of as an instance of that function, and
it will create all of the local variables that are declared within it. Each instance
has its own copy of these, including its parameters, and each call returns to the
caller as occurs with any other function call. So, when the recursive call to re-
cur2() returns, the next thing to be done will be (in this case) to print the param-
eter value. A call to recur2() passing the parameter 4 will result in the following
instances of that function being created:

recur2(4) i = 4 # �This is the function state, with parameter i
given for this instance

 i>0 so call recur2(i-1) = recur2(3) # �This is the code
 # executed
 recur2(3) i = 3 # State
 i>0 so call recur2(i-1) = recur2(2) # Code executed
 recur2(2) i = 2 # State

172 ■ Python: An Introduct ion to Programming

 i>0 so call recur2(i-1) = recur2(1) # Code executed
 recur2(1) i = 1 # State
 i>0 so call recur2(i-1) = recur2(0) # Code executed
 recur2(0) i = 0 # State
 i== 0 so recur2 is NOT called # Code executed
 print(i) -> print(0) # �Code executed ,
 # prints 0
 return # Code executed
 print(i) -> print(1) # �Code executed ,
 # prints 1
 return # Code executed
 print(i) -> print(2) # �Code executed ,
 # prints 2
 return # Code executed
 print(i) -> print(3) # �Code executed ,
 # prints 3
 return # Code executed
 print(i) -> print(4) # �Code executed ,
 # prints 4
 return # Code executed

By tracing through the statements that are executed in this way, it can be seen
that the recursion does end, and the output or result can be verified.

One important use of recursion is in reducing a problem into smaller parts,
each of which has a simpler solution than does the whole problem. An example of
this is searching a list for an item. If names = [Adams, Alira, Attenbourough,
…] is a Python list of names in alphabetical order, answer the question: “Does the
name Parker appear in this list?” Of course there is a built-in function that will do
this, but this example is a pedagogical moment, and anyway perhaps the built-in
function is slower than the solution that will be devised here.

The function will return True or False when passed a list and a name. The
obvious way to solve the problem is to iterate through the list, looking at all of the
elements until the name being searched for is either found or it is not possible to
find it anymore (i.e., the current name in the list is larger than the target name).
Another, less obvious way to conduct the search is to divide the list in half, and
only search the half that has the target name in it. Consider the following names
in the list:

… Broadbent Butterworth Cait Cara Carling Devers Dillan Eberly
Foxworthy …

 Chapter 4 · Funct ions ■ 173

The name in the middle of this list is Carling. If the name being searched for
is lexicographically smaller than Carling, then it must appear in the first half;
otherwise it must appear in the second half. That is, if it is there at all. A recursive
example of an implementation of this is:
Search the list for the given name, recursively.
def searchr (name, nameList):
 n = len(nameList) # How many elements in this
 # list?
 m = n/2
 if name < nameList[m]: # target name is in the first
 # half
 return searchr (name, nameList[0:m]) # Search the
 # first half
 elif name > nameList[m]: # target must be in the
 # second half
 return searchr (name, nameList[m:n] # �Search the
 # second half
 else:

 return True

If the name is in the list, this works fine. One way to think of this is that the
function searchr() will take a string and a list as parameters and find the name
in the list if it’s there. The way it works is not clear from outside the function
(without being able to see the source) and should not matter. SO: if the target is
to be found in the first half of the list, for example, then call searchr() with the
first half of the list.

searchr (name, nameList[0:m])

The fact that the call is recursive is not really the concern of the programmer,
but is the concern of the person who created the Python system. Now, how can
the problem of a name not being in the list be solved?

When the name is not in the list, the program will continue until there is but
one item in the list. If that item is not the target, then it is not to be found. So, if
n=1 (only one item in the list) and nameList[0] is not equal to the target, then the
target is not to be found in the list and the return value should be False. The final
program will therefore be:
def searchr (name, nameList):
 n = len(nameList) # How many elements in this list?

174 ■ Python: An Introduct ion to Programming

 m = int(n/2)
 if n==1 and nameList[0]!=name: # �End of the recursive
 # calls
 return False			 # �Itꞌs not in this
 # list.
 if name < nameList[m]: # �target name is in the first
 # half
 return searchr (name, nameList[0:m]) # �Search the
 # first half
 elif name > nameList[m]: # �target must be in the
 # second half
 return searchr (name, nameList[m:n]) # �Search the
 # second half
 else:
 return True

Many algorithms have fundamentally recursive implementations, mean-
ing that the effective solution in code involves a recursive function call. Many
standard examples in beginning programming are not properly implemented re-
cursively. Commonly encountered samples with a recursive solution include the
factorial, which has a recursive definition but is not best implemented in that
manner, and any other basically linear technique (linear search, counting, min/
max finding) that does not do a reasonable subdivision. Testing the first compo-
nent, for example, and then recursively looking at the remaining elements is a
poor way to use recursion. It would be much better to use a loop. Here’s an ex-
ample: find the maximum value in a given list. The non-recursive method

(reasonable) would be:
def max (myList):
 max = myList [0]
 for i in range(1, len(myList)):
 if myList[i] > max:
 max = myList[i]
 return max

This is an effective way to find the largest value in a list, and is pretty easily
understood by a programmer reading the code. Now here is a recursive solution:

def maxr (myList):
 m1 = myList[0]
 if len(myList)>1:

 Chapter 4 · Funct ions ■ 175

 m2 = maxr (myList[1:])
 else:
 return m1
 if m1 > m2:
 return m1
 else:
 return m2

This function works by subdividing the list into two parts, as is often done
with a recursive solution. The idea is to compare the first element in the list with
the maximum of the remainder of the list to see which is bigger. For this particu-
lar problem this is not an obvious approach. It is less efficient and less obvious
than the iterative version that preceded it. The use of recursion simplifies some
problems, but it is not a universally applicable technique and should never be
used to show off. Examples of very useful recursive functions will be examined
in later chapters.

	4.3.1	 Avoiding Infinite Recursion

There is a limit to how many times a function can call itself without return-
ing, because each call uses up some amount of memory, and memory is a finite
resource. Usually when this happens a programming error has occurred and the
function has slipped into an infinite recursion, in which it will continue to call it-
self without end. Recursion can be confusing to visualize and this sort of problem
occurs frequently. How can it be avoided?

Programming the function correctly eliminates the problem, of course, but
there are some basic rules that will avoid the problem at early stages. Assuming
that global variables are not being referenced:

	 1.	 A function that begins with a call to itself is always infinitely recursive.
The first thing the function does is call itself, and no matter what the
parameters are it can never end.

	 2.	 Every recursive call within a function must have a condition upon which
that call will be avoided. The function may return sometime before the
call is made, or perhaps the call happens within an if statement, but there
must be such a condition. If it exists it is expressible as a Boolean expres-
sion, and this should be placed in a comment near the recursive call. The
call is suspect until this happens.

176 ■ Python: An Introduct ion to Programming

	 3.	 Avoid passing a function to itself. The call to a parameter hides the fact
that recursion is taking place.

	 4.	 It is possible to have a global variable that is a count of the depth of
recursion. The function will increment this count whenever a recursive
call is made and decrease it just before returning. If the count ever gets
larger than a reasonable estimate of the maximum depth, then the func-
tion could stop any more calls and back out, or an error message could
be printed.

	 4.4	 CREATING PYTHON MODULES
In some of the examples given so far there is a statement at the beginning

that looks like “import name.” The implication is that there are some functions
that are needed by the program that are provided elsewhere, possibly by the
Python system itself or perhaps by some other software developer. The idea of
writing functions that can be reused in a straightforward way is very important
to the software development process. It means that no programmer is really
alone; that code is available for doing things like generating random numbers
or interfacing with the operating system or the Internet, and that it does not to
be created each time. In addition, there is an assumption that a module works
correctly. When a programmer builds a collection of code for their own use,
it needs to be tested as thoroughly as possible, and from that time on it can be
used in a package with confidence. If a program has errors in it, then look in
the code for that program first and not in the modules. This makes debugging
code faster.

What is a module? It is simply a function or collection of functions that reside
in a file whose name ends in “.py.” Technically, all of the code developed so far
qualifies as modules. Consider as an example the function from the previous sec-
tion that finds the maximum value in a list. Save the functions max() and maxr()
in a file named max.py. Now create a new Python program named usemax.py and
place it in the same directory as max.py. If the two files are in the same directory,
they can “see” each other in some sense.

Here is some code to place in the file usemax.py:
import max
d = [12,32,76,45,9,26,84,25,61, 66, 1,2]
print ("MAX is ", max.max(d), " MAXR is ", max.maxr(d))

 Chapter 4 · Funct ions ■ 177

if max.maxr(d) != max.max(d):
 print ("*** NOT EQUAL ****")

This program is just a test of the two functions to make certain that they re-
turn the same value for the same list, the variable d. Note two things:

	 1.	 The statement import max occurs at the beginning of the program,
meaning that the code inside this file is available to this program. Python
will look inside of this file for function and variable names.

	 2.	 When the function max() or maxr() is called, the function name is pre-
ceded by the module name (max) and a period. This syntax informs
the Python system that the name maxr() (for example) is found in the
module max and not elsewhere.

The first time that the module is loaded into the Python program the code in
the module is executed. This allows any variable initializations to be performed.
Henceforth that code is not executed again, and functions within the module can
be called knowing that the initializations have been performed.

The module could reside in the same directory as the program that uses
it, but does not have to. The Python system recognizes a set of directories and
paths and modules can be placed in some of those locations as well, making
it easier for other programs on the same computer to take advantage of them.
On the computer used to create the examples in this book, the directory C:\
Python34\Lib can be used to store modules, and they will be recognized by
import statements.

Finally, if the syntax max.maxr(list) seems a bit cumbersome, then it is pos-
sible to import specific names from the module into the program. Consider the
following rewrite of usemax.py:
from max import max, maxr
d = [12,32,76,45,9,26,84,25,61, 66, 1,2]
print ("MAX is ", max(d), " MAXR is ", maxr(d))
if maxr(d) != max(d):
 print ("*** NOT EQUAL ****")

The statement from max import max, maxr instructs Python to recognize
the names max and maxr as belonging to the module named max (i.e., as resid-
ing in the file named max.py). In that case the function can be called by simply
referencing its name.

178 ■ Python: An Introduct ion to Programming

There would appear to be a name conflict with the package named max and
the function named max, but in fact there is not. Indeed, it’s not uncommon to
find this sort of naming relationship (example: random.random()). The module
name max refers to a file name, max.py. The function name max refers to a func-
tion within that file.

	 4.5	� PROGRAM DESIGN USING FUNCTIONS
– EXAMPLE: THE GAME OF NIM

Nim is a game so old that its origins have been lost. It was likely invented in
China, and is one of the oldest games known. It was also one of the first games to
have a computer or electronic implementation and has been the frequent subject
of assignments in computer programming classes. This program will implement
the game and will play one side. It will serve as an example of how to design a
computer program using functions and modularity—it is an example of a

top-down design.

The game starts with three rows of objects, such as sticks or coins, and there
are a different number of objects in each row. In this version there are 9, 7, and 5
“sticks,” which are represented by “|” characters. A player may remove as many
objects from one row as they choose, but they must remove at least one and must
take them only from one row. Players take turns removing objects, and the player
taking that final one is the winner.

Playing this game involves asking the user for two numbers: the row from
which to remove sticks, and how many to remove. The human player will be
prompted for the row, then the number. Then the computer will remove some
sticks (take its turn) and print the new state.

A list named val contains the number of sticks in each row. Initially:
val = [5, 7, 9]

This is the game state, and is critical to the game as it defines what moves are
possible. Also, when the state is [0,0,0] then the game is over.

When the user choses to remove N sticks from row M the action is:
val[M] = val[M] - N

 Chapter 4 · Funct ions ■ 179

Of course N and M must be tested to make certain that M is between 0 and
2, and M is as large as val[M]. M defines the row chosen to remove sticks from,
and N is the number of sticks to remove. A move can therefore be defined as a
list [row, sticks].

A program that uses functions should be built from the highest level of ab-
straction downwards. That is, the main program should be developed first, and
should be expressed in terms of functions that do logical things, but that may not
be designed or coded yet. So, the main program could look something like this:
val = [5, 7, 9]	 # the game state: 5, 7, and 9 sticks
done = False	 # Is the game over?
userMove = [-1, -1] # �A move is a row and a number of
 # sticks.
print ("The game of Nim.")
rules() # Print the rules for the game
while not done: # Run until the game is over
 displayState(val) # Show the game board
 prompt(userMove) # Ask user for their move
 ok = legalMove (userMove, val) # �Was the playerꞌs move
 # OK?
 while not ok:
 print ("This move is not legal.")
 displayState(val)
 prompt(userMove) # Ask user for their move
 ok = legalMove (userMove, val)
 makeMove (userMove) # Make it
 if gameOver(val):
 print("You win!")
 break;
 print ("State after your move is ") # display it.
 displayState(val)

This program is built using components (modules) that are not written yet,
but that have a purpose that is defined by what the program needs. Those mod-
ules/functions are:

rules()		 - Print out the rules of the game
displayState(v)	 - Print the game state (how many sticks in each row)
prompt()		 - Ask the user for their move
legalMove(r, n)	 - is the move legal?
makeMove(r, n)	 - make this move

180 ■ Python: An Introduct ion to Programming

Using functions, the first thing that is needed is to display the game state. It
prints the number of sticks in each of the three rows, and does so in a graphical
way (i.e., rather than just displaying the numbers). Given the situation as de-
scribed so far, the non-trivial such function is displayState(), which prints the
current state of the game—how many sticks in each row. It will be passed a list
representing the current state.
def displayState(val): # val is the list with
 # the state
 for j in range(0,3): # there are 3 rows;
 # print each one
 print (j+1, ": ", end="") # Print the row number
 for i in range(0,val[j]): # �val[j] is the current
 # row
 print ("| ",end="") # �print a ꞌ|ꞌ for each
 # stick
 print("") # print an end of line

When called at the beginning of the game, here’s what the result of a call to
this function would be:

1 : | | | | |
2 : | | | | | | |
3 : | | | | | | | | |

This function does a single task, uses a parameter to guide it and make it
more general, and is named for what it does. These are signs of a good function.
Note that the first row is labeled “1,” but is in fact element 0 of the list. It is com-
mon in user interfaces to adapt to the standard human numbering scheme that
begins with 1 instead of 0. When the user enters a row number care must be taken
to subtract 1 from it before using it as an index.

There is no required order for writing these functions, but the next one used
in the program is prompt(). This will ask the user to input a row and then read a
row number, then prompt the user to enter a number of sticks to remove and then
read that value too. The two numbers will be placed into a list that was passed so
that the values can be returned to the caller.
def prompt (move):
 row = input ("Your move: which row? ") # �Prompt for row &
 # read it
 sticks = input (" how many sticks?") # �Prompt for
 # sticks & read

 Chapter 4 · Funct ions ■ 181

Convert row to integer and decrement to be from 0 to 2.
 move[0] = int(row)-1		 # Assign to the list[0]
 move[1] = int(sticks)		 # Assign value to list[1]

This function again does a simple task, uses a parameter, and is named pretty
appropriately.

Next is the question “Is this move legal”? A move is legal if the row is be-
tween 0 and 2 inclusive, and if the number of sticks in that row is greater than or
equal to the number of sticks to be removed. The function returns True or False.
def legalMove(move, state):
 row = move[0] # Which row was requested?
 sticks = move[1] # How many sticks
 if row<0 or row>2: # Legal number of rows?
 return False # No
 if sticks<=0 or sticks>val[row]: # �Legal number of
 # sticks?
 return False	 # No
 return True		 # Both were ok, so the move is OK.

Making a move involves decreasing the specified row by the specified num-
ber of sticks. This could have been done in legalMove() if it were thought to be
OK to do multiple things in a function. Eventually that will be necessary, but
for now a new function will be written, named makeMove(), that will actually
implement a specified play in the game.
def makeMove(move, state):
 row = move[0]		 # Subtract move[1] sticks from
 sticks = move[1]	 # those that are in row move[0].
Place the new number of sticks in the state list
 state[row] = state[row]-sticks

There is a strategy that will permit a player to always win. It involves com-
puting what amounts to a parity value and making a move to ensure that parity
is maintained. Consider the initial state and the state after taking two sticks from
row 1:

Row 1 = 5 = 0 1 0 1 row 1 = 3 = 0 0 1 1
Row 2 = 7 = 0 1 1 1 row 2 = 7 = 0 1 1 1
Row 3 = 9 = 1 0 0 1 row 3 = 9 = 1 0 0 1
 Parity 1 0 1 1 1 1 0 1

182 ■ Python: An Introduct ion to Programming

The parity is determined by looking at each digit in the binary representation
of the values. In each column (digit position) the parity bit for that column is 1 if
the number of 1 bits in the column is odd and 0 if it is even. This can be calculated
using the exclusive-OR operator, which is “^” in processing. The strategy in Nim
is to make a move that makes the parity value 0. It turns out that this is always
possible if parity is not 0; in the situation above, the computer might remove 5
sticks from row 3 giving the state:

	 row 1 = 3 = 0 0 1 1
	 row 2 = 7 = 0 1 1 1
	 row 3 = 4 = 0 1 0 0
 	 Parity 0 0 0 0

This is what the sketch does after every move the player makes: it makes all
possible moves, computing the parity after each one. When the one with zero par-
ity is found it makes that move. The function eval() calculates the current parity
value as val[0]^val[1]^val[2].

NOTE
The computer always wins because the user always makes the first move.
Alternating who moves first would make the gameplay fairer.

	4.5.1	 The Development Process Exposed

In the introduction to the Nim program it was said that this was an example
of top-down design. This means that the larger program, or the main program, is
designed first. The question should be what are the steps involved in solving this
problem? The answer to that question is written down in terms of functions that
have not been written yet, but that have a known and required purpose within
the solution. In the Nim game it is known that the user’s move will have to be
read from the keyboard and that the current state of the game will have to be dis-
played, so those two functions can be presumed to be important to the solution
when sketching the main program.

Once the high-level part of the program has been devised, it can be typed in
and tested. The functions that are needed but are not yet written can be coded as
stubs: functions that do not implement their task but that are present and prevent
syntax errors. The first try at a solution of this sort does not, of course, solve the

 Chapter 4 · Funct ions ■ 183

problem, but is simply a step towards the solution. In the case of Nim, the very
first step could be something like:

Repeat
 Display the game
 Ask user for their move
 Make userꞌs move
 Generate computerꞌs move
 Make computer's move
Until someone wins
Display the winner

None of these steps are written as proper Python code, and that’s OK for a
first step. Translating this into Python would be a good idea:
Done = false
while not done: 	# Run until the game is over
 	 displayState() 	 # Show the game board
 	 prompt() 	 # Ask user for their move
 	 makeMove () 	 # Make it
	 if not gameOver():	 # Computer move?
		 makeComputerMove()# Determine computer's move
	 done = gameOver()		 # Is the game over?
printWinner()

At this point in the design the data structures to be used in the solution have
not been devised, nor have the algorithms needed. This is merely a sequence of
steps that could lead to a program that works. The functions can now be written
as stubs:
def displayState():		 def prompt():
 print("Display state")	 print("Enter move")
def makeMove():			 def gameOver():
 print ("Make move")		 if random.random()<0.2:
						 return False
					 return True
def makeComputerMove():		 def printWinner():
 print ("compute a move")	 print("The winner is:")

The output from this program might be:
Display state
Enter move
Make move

184 ■ Python: An Introduct ion to Programming

Display state
Enter move
Make move
compute a move
The winner is:

The exact output will be random, depending on what the return value of
gameOver() is. This code can be thought of as one iteration of the solution, or as
a prototype. The next step will be to refine the solution by implementing one of
the stubs. Each time that happens a set of decisions will likely be made concern-
ing the nature of the data structures used to implement the solution: the use of a
list for the game state, for instance. Three integers could have been used instead,
but once the decision is made one way or the other it should be stuck with unless
it becomes infeasible.

Repeatedly implementing the stubs creates new prototypes, each one more
functional than the one before. Some of the functions may require an application
of this same process. Complex functions can be coded in terms of other stubs,
and so on. The simpler functions, such as those that calculate based only on their
parameter, should be completed first and should not involve permanent design
choices.

A programming process of this kind can be thought of as iterative refine-
ment. At all times after the first step, a complete program that compiles and runs
will exist to be demonstrated and refined. This can be very useful, especially
when dealing with graphical user interfaces and games. The interface might well
be complete before any real functionality is present, and this permits a demon-
stration of the concept before the program is done.

	 4.6	 SUMMARY
Python allows a programmer to create a function that does something new.

A function is really just some code that has a name, and can be executed simply
by invoking that name. It usually represents some task that has to be done fairly
frequently. A function should also have one main task, and that task should be
represented in the function name: maximum, square, search, and so on. Many
functions return a value, and finding that value is frequently the purpose of the
function (e.g., sine, cosine).

 Chapter 4 · Funct ions ■ 185

The name of a function can be used to call that function, but it can also be
assigned to a variable, passed as a parameter to another function, or returned as
a value. A function can have variables that belong to it; they are called local vari-
ables and vanish after the function returns. They can also use variables defined
outside of the function if they appear in a global statement.

A special value named None is used to represent no value, and is returned by
a function that does not explicitly return some other value. A module is a function
or collection of functions that reside in a file whose name ends in “.py.”

The use of functions can organize a computer program in a logical way. A
program can be defined in terms of functions that are desired but not yet written,
and then those functions can be defined as code or in terms of other functions.
Functions are often named but are incomplete, and are called stubs—they permit
the program to be compiled while still under development.

A function that calls itself is said to be recursive. Such functions can be very
valuable in simplifying the code for some algorithms, especially ones in which
something is actually defined in terms of itself, but care must be taken when pro-
gramming to ensure that a recursive function always ultimately returns.

Exercises

	 1.	Write a Python function that takes a tuple of numbers as a parameter and
returns the location (index) of the maximum value found in that tuple.

	 2.	A word processing system sometimes needs to shorten a word to make it fit
on a line. Write a function that takes a string containing a single word and
decides where to hyphenate it. A hyphen can occur before the endings: “ing,”
“ed,” “ate,” “tion,” or “ment.” It could also occur after a prefix: “pre,” “post,”
“para,” “pro,” “con,” or “com.” Otherwise, place a hyphen somewhere in the
middle of the word. The function should return a tuple containing the first
and second half of the word split at the hyphen.

	 3.	Pascal’s triangle is an arrangement of numbers in rows and columns such that
each number in a row is the sum of the two numbers above it. An example is:

1
1 1

1 2 1
1 3 3 1

186 ■ Python: An Introduct ion to Programming

�Write a function triangle(n) that prints the first n rows of such a triangle. Use
extra marks for proper indentation so it looks like a triangle.

	 4.	Write a function that returns the value of a quadratic function at a particular
x value. A quadratic is a polynomial of the form:

ax2 + bx + c

�The function quad() is passed values for a, b, c, and x and returns the value
of the polynomial.

	 5.	A quadratic polynomial has a root at any value x for which the value of the
polynomial is zero; that is, any x such that

ax2 + bx + c = 0

		 �There can only be at most two such values (a tuple), and the expression for
finding these values of x is:

2 4 2
b b acx a

− ± −=

		 Write a function (root(a,b,c))that returns the two roots of a quadratic equation
having been passed a, b, and c. The result is a tuple, or if there is no solution
(i.e., square root of a negative number, or a=0) then it returns None.

	 6.	Write a function (inputfloat(s)) that takes a single parameter, a string to be
used as a prompt, and returns a number read from the console. The function
must prompt the user for the number using the given string, read the input,
and return the result as a floating point number. If an error occurs return
None.

	 7.	The game of table tennis is sometimes called ping-pong. Write functions
ping() and pong() that each take, as a parameter, a probability of hitting
the ball. A probability is between 0.0 and 1.0. The function returns True if
the ball is returns and False otherwise. There are two sides to the game, and
each side serves (plays first) twice, then the other side serves twice. It will be
assumed here that the server always succeeds. If ping is serving then pong()
gets called first, then if pong succeeded then ping() gets called, and so on.
The side that made the last successful hit wins a point. The game goes to 11
points, but must be won by a 2-point margin. Write a program that simulates
ping-pong using two functions named ping() and pong().

 Chapter 4 · Funct ions ■ 187

	 8.	 In mutual recursion two functions call each other, usually repeatedly to some
depth. So: A calls B, which calls A again, which calls B again, and so on.
Recode the ping-pong exercise (Number 7 above) so that ping() calls pong()
and pong() calls ping(). The functions return a string, that of the winner of
the exchange.

	 9.	Write a function prime(n) that returns True if the number n is prime, and
False otherwise. How many prime numbers are there between 1 and 1000?

Notes and Other Resources

Tutorial on Python Functions: http://www.tutorialspoint.com/python/python_
functions.htm

Also: http://anh.cs.luc.edu/python/hands-on/3.1/handsonHtml/functions.html

	 1.	Thomas S. Ferguson. Game Theory, https://www.math.ucla.edu/~tom/
Game_Theory/comb.pdf

	 2.	D. G. Luenberger. (1973). Introduction to Linear and Nonlinear
Programming (Vol. 28), Reading, MA: Addison-Wesley.

	 3.	Mitchell Wand. (1980). Induction, Recursion, and Programming,
North Holland, NY, http://tocs.ulb.tu-darmstadt.de/82570701.pdf

■ ■ ■ ■ ■

In this chapter

In the early days of computing, when a respectable machine would fill a
room, the file was invented. It was an obvious thing, really: a package in
which to place data on a tape or disk drive. Storage that was not memory,
which was pretty fast, was called secondary storage, and was terribly
slow compared to how fast a computer could execute instructions (which
is terribly slow compared to how fast a modern computer can execute
instructions).

Files still exist, and a typical PC has hundreds of thousands of them. The
details of how files are implemented is interesting, but unimportant to the discus-
sion of how to use them in Python. The focus will be on how and why to use them
effectively.

The first thing to know about a file is that it is a collection of bytes stored
on a disk or similar device. One set of bytes can look very much like another,
and unless the format of the file (i.e., the way the bytes are ordered) and its basic

5Chapter

Files: Input and Output

5.1	 What Is a File? A Little “Theory”�� 191

5.2	 Keyboard Input�� 195

5.3	 Using Files in Python: Less Theory, More Practice��197

5.4	 Writing To Files�� 211

5.5	 Summary�� 213

190 ■ Python: An Introduct ion to Programming

contents (i.e., what kind of thing the bytes represent) is known ahead of time, the
information stored there is unusable. Computer programs are written assuming
that the files they will read have a particular nature; if given a file that does not
have that nature, the program will not function properly.

What kinds of files are there? Here is a short list:

	 1.	 Text files. These contain characters that a person can read, and can be
thought of as documents.

	 2.	 Executable files. These hold instructions that a computer can execute.
Such a file is a program or an “app.”

	 3.	 Data files. It could also be a text file if it is stored as characters, but it
could be a set of bytes that represent integers or real numbers.

	 4.	 Image files. There are many types of image files, and they contain pic-
tures in digital format. Many digital cameras use a format called JPEG,
but GIF or PNG are two of many others. Not only are images stored in
such a file, but also data about how large the image is, when it was taken,
and other details.

	 5.	 Sound files. The more common sound file is the MP3, but there are
many others.

	 6.	 Video. MPEG and AVI are standard formats for video, and there are a
great many files of this sort available on the Internet.

	 7.	 Web pages. These are a special kind of text file. They can be examined
and modified using basic text editors, but can’t be viewed properly (i.e.,
as a web page) except through a browser, which is really a special kind
of display utility that can both draw images and connect to the Internet
to download more information.

All of these files, and indeed all files, have certain things in common. Some
of these things can be ignored when writing Python programs, but others cannot.

�Files have names. The first way to access a file is usually by specifying
its name. In human folklore, knowledge of a true name allows one to affect
another person or being; knowing something’s true name gives the person
power over that thing. So it is with files. Knowing the name of a file is the
way to access the information within.
�Files have a size. It is usually expressed in bytes, which is to say simple
characters. One byte is one traditional alphabetic character, although there are
now many standards for characters in German and Swedish and Chinese that

 Chapter 5 · Fi les : Input and Output ■ 191

break that rule. Knowing how large a file is helps when using it as input, and
when writing a file its size grows.
�Basic operations on a file are read and write. To read from a file means to
examine a byte (at least); usually bytes are read in large blocks for efficiency.
This means moving a copy of the bytes from the disk into memory, because
a program can only examine data that is in memory. Writing is the reverse
process: a byte or bytes are copied from memory onto disk.
�Files must be open before they can be used. To open a file a program must
know its name, and then invoke the open function or program. If the true
name of the file gives you power over it, then open is the spell used to wield
that power. Whether a file will be read or written is normally decided at the
time the file is opened. The open function and many other file-related opera-
tions belong to the operating system of the computer, and not normally to the
language. It’s one reason why so much software is not portable.
�Only one program at a time can write to a file. Many programs can read a
file simultaneously, but only one can write to it, and not while anyone else is
reading it. Many computers can have more than one user accessing a file at a
time, and the Internet certainly allows many users to access a web page at one
time, and a web page is a file. However, chaos ensues if more than one user
can change a file at the same moment.

Another thing to consider is that text, and therefore text files, are a principal
means for communication between humans and computers. It is critical that any
scheme for writing text to a file takes into account the human aspects of text:
sentences, lines, paragraphs, special characters, numbers, and so on. This chap-
ter will be concerned with the way in which Python can use files, with files as a
concept in general, and with how humans think of data and files.

	 5.1	 WHAT IS A FILE? A LITTLE “THEORY”
The claim in the previous section was that a file is “a collection of bytes

stored on a disk or similar device.” This is correct, but it does not have enough
detail to enable a programmer to take advantage of the way a file is implemented
to create a good program. What is needed is an understanding of the devices that
contain files and their advantages and limitations. This information will begin
to explain the traditional mechanisms that have evolved for using files from pro-
gramming languages generally and Python in particular.

192 ■ Python: An Introduct ion to Programming

The file as a data structure was devised for storing information on tapes and
disks. Together with some other devices that are used rarely (e.g., cram files)
these are referred to as secondary storage, where primary storage would be com-
puter memory. Memory was (and still is) too expensive to store everything that is
needed on a computer, so secondary storage has the advantages of being cheaper
than memory and can contain a much larger amount of data. Modern disks can
contain Terabytes of data, where one Terabyte (Tb) is 1012 bytes. It has been es-
timated that a human being’s functional memory is about 1.25 Tb. A Terabyte is
a lot of storage.

Most secondary storage devices store data magnetically. Since tapes are rare-
ly seen anymore, the example presented here will be that of a disk. A disk is a
circular platter made of glass or ceramic material and coated with a thin layer of
magnetic material, often a compound of iron. That’s why they look brown: iron
oxide or rust is that color. The disk is mounted on a spindle that is connected to a
motor, which spins it at a high rate of speed.

A device called a read/write head is made to sit above the moving disk but
very near to it. This device is basically a small piece of magnetizable metal
wrapped in a fine wire, not unlike the read/write heads in an old video tape
recorder (VCR) or cassette machine. It is a property of magnets and coils that a
moving magnet will create (induce) an electric current in a nearby coil, and a coil
with a current flowing through it can create a magnetic field.

So, to write data to the moving disk, a current is sent to the read/write head,
which creates a small magnetic mark on the disk below the head. Magnets have
two orientations; they have a North Pole and a South Pole. Current flowing one
way will create a magnet in the disk that has a North Pole appearing before the
South Pole, or an N-S mark. Current flowing the other direction through the
head will create a magnet on the disk that has the South Pole appearing before
the North Pole, or an S-N mark. One orientation, say N-S, will represent a binary
number “1,” and the other (S-N) will represent a “0.” In this way, binary numbers
can be written to the surface of the moving disk.

Reading numbers involved the magnetic regions of the disk passing quickly
past the read/write head and inducing small currents in the coil. These are ampli-
fied and classified by a simple electronic circuit that will detect current flow one
way as N-S and another way as S-N, thus allowing binary numbers to be read
from the disk.

 Chapter 5 · Fi les : Input and Output ■ 193

Figure 5.1
The hard drive from a typical desktop computer. The disk spins at a high rate of speed and the disk
head can be positioned over and portion so that data can be read or written.

There are some very complicated physics involved in a disk drive. The
read/write head must be very close to the surface of a rapidly rotating disk, as
close as 3 nanometers. To accomplish this, the head is actually aerodynamically
flying above the disk. If it ever actually touches the disk surface the result is cata-
strophic. At the speeds involved a large section of the magnetic material on the
disk’s surface will be scraped away, and all data there will be lost. In addition,
the read/write head will almost certainly be damaged. This event is called a head
crash, and normally results in the entire disk drive being ruined. It’s one reason
that frequent backup copies of all data should be made.

	 	

	 (a)	 (b)

Figure 5.2
(a) A track is the set of data from one entire circle on the disk. Inner tracks are smaller but contain
the same amount of data. (b) A sector is a wedge-shaped portion of the disk. The combination (track,
sector) gives an address for a block of data.

194 ■ Python: An Introduct ion to Programming

The picture that is developing is that of a device that returns data as a stream
of bits. To make best use of the area of the disk, the read/write head can move
from the outer edge of the disk to nearly the center. Imagine a set of concentric
circles on the disk’s surface: the moving read head can position itself over any of
them and read the data that had been written there.

The disk is divided into a set of concentric circles called tracks, each of which
corresponds to one position of the read/write head (Figure 5.2a). The head can
move across the disk surface, but for obvious reasons the positions are quantized:
position 0-Ntracks can be reached through commands to a controller that change
the head position. The outermost track is numbered 0, and numbers increase as
the head moves inward to the center. The disk is also divided into sectors, each
of which is a wedge-shaped portion of the disk (Figure 5.2b). These are again
numbered 0 to Nsectors, and create an address for a set of bits. Data can be read
from sector 3 track 12 by positioning the read head over track 12 and waiting for
sector 3 to rotate into position under the head. The data takes as long to read as
the sector takes to pass under the read head.

This description answers two important questions. First, data can be ac-
cessed by using the <track, sector> address. The data in a single track and sector
is a block, and all blocks are the same size in terms of bits for the sake of conve-
nience, traditionally 512 bytes (4096 bytes for AF drives). Second, it explains why
accessing data takes so long when reading from a disk. Disks rotate at 7200 RPM
or 120 revolutions per second; this is one rotation every 8.3 milliseconds.

	5.1.1	 How Are Files Stored on a Disk?

A file can be thought of as a set of blocks. If blocks are 512 bytes in size and
some data to be stored in a file consists of N bytes, then that file will need blocks,
the next larger integer than N/512; it’s not possible to have two files share a single
block.

It gets more complicated, though, because it will not always be possible to
have all of the blocks that belong to a file lie next to each other. A file might con-
sist of many blocks, all of which are some distance apart in terms of their track
and sector. There is a need for a data structure to connect these blocks in the
correct order to make a file. It’s not very hard to do but is another step. This data

 Chapter 5 · Fi les : Input and Output ■ 195

structure is written to the disk also. The result is that reading a file means finding
the location of this data structure on the disk, getting the track and sector values,
and then reading the data from those and copying it into memory. The data struc-
ture containing the sectors is usually found through a file name that the user has
provided. There is a list of file names and the track/sector address of their index
sectors in a special file someplace on the drive, or in many places. File systems
tend to be organized hierarchically, so that one main name is accessed to find the
files within that part of the disk (directory), and within that directory are names
of more files and directories. It is a significant part of the function of an operating
system like Linux or Windows to provide a convenient way to access files.

	5.1.2	 File Access is Slow

How long does it take to access a block of data on the disk? It depends on
where the disk head is and where the disk rotation has placed the target block
at the time the request is made. There will be only a statistical answer, but for a
random block it could take an average of 10 mS to move the head to the correct
track (seek time), and will take half of a rotation (4.15 mS). Add to this the time
needed to read the block, which is 8.3*1/ Nsectors mS, or about 0.008 mS for a disk
with 1024 sectors. This can be ignored, and the time to access a random block can
be estimated as 14.15 milliseconds.

As a comparison, fast computer memory can access data within 8 nanosec-
onds. If a person could write the word “Gigabyte” on a whiteboard in 8 nano-
seconds, then what could they do in 14 milliseconds? They could copy the entire
Bible onto the board over 16 times. Disk is vastly slower than memory, and in
order to use the data it must be copied into memory. This is a bottleneck in many
computer systems.

	 5.2	 KEYBOARD INPUT
Reading data from the keyboard is very different from reading data from a

file. Files exist before being read, and normally have a fixed size that is known
in advance. It is common to know the format of a file, so that the fact that the
next datum is an integer and the one following that is a float is often known.
When a user is entering data at a keyboard there is no such information available.

196 ■ Python: An Introduct ion to Programming

In fact, the user may be making up the data as they go along. Before getting
too far into file input it is important to understand the kind of errors that can
happen interactively.

These are using type errors, where the user enters data that is the wrong type
for the programmer to use: a string instead of an integer, for example. This kind
of error can arise in file input also if the format is not known in advance.

	5.2.1	 Problem: Read a Number from the
Keyboard and Divide It by 2

In this instance the problem is one of type: how to treat integers like integers
and floats like floats. When the string s is read in it’s just a string, and it is sup-
posed to contain an integer. However, users will be users, and some may type in
a float by mistake. The program should not crash just because of a simple input
mistake. How is this situation handled?

The problem is that when the string is converted into an integer, if there is a
decimal point or other non-digit character that does not belong, then an error will
occur. It seems that an answer would be to put the conversion into a try statement
block and if the string has a decimal point then convert the string to float within
the except part. Something like this:

s = input("Input an integer: ")
try:
 k = int(s)
 ks = k//2
except:
 z = float(s)
 k = int(z/2)
print (k)

If the user types “12” in response to the prompt “Input an integer:” then the
program prints “6.” If the user types “12.5” then the program catches a ValueEr-
ror, because 12.5 is not a legal integer. The except part is executed, converting
the number to floating point, dividing by 2, then finally converting to an integer.

One problem is that the except part is not part of the try, so errors that hap-
pen there will not be caught. Imagine that the user types “one” in response to the
prompt. The call to int(s) results in a ValueError, and the except part is executed.

 Chapter 5 · Fi les : Input and Output ■ 197

The statement:
z = float(s)

will result in another ValueError. This one will not be caught and the program
will stop executing, giving a message like:

ValueError: could not convert string to float: 'one'
s = input("Input an integer: ")
try:
 k = int(s)
 k = k//2
except ValueError:
 try:
 z = float(s)
 k = int(z/2)
 except ValueError:
 k = 0
print (s, k)

	 5.3	 USING FILES IN PYTHON: LESS
THEORY, MORE PRACTICE

The general paradigm for reading and writing files is the same in Python as it
is in most other languages. The steps for reading or writing a file are these:

	 1.	 Open the file.   This involves calling a function, usually named open,
and passing the name of the file to be used. Sometimes the mode for
opening is passed; that is, a file can be opened for input, output, update
(both input and output) and in binary modes. The function locates the file
using the name and returns a variable that keeps track of the current state
of input from the file. A special case exists if there is no file having the
given name.

	 2.	 Read data from the file.  Using the variable returned by open, a func-
tion is called to read data. The function might read a character, or a
number, or a line, or the whole file. The function is often called read,
and can be called multiple times. The next call to read will read from
where the last call ended. A special case exists when all of the data has
been read from the file (called the end of file condition).

OR

198 ■ Python: An Introduct ion to Programming

	 3.	 Write data to the file.  Using the variable returned by open, a function
is called to write data to the file. The function might write a character,
or a number, or a line, or many lines. The function is often called write,
and can be called multiple times. The next call to write will continue
writing data from where the last call ended. Writing data most frequently
appends data to the end of the file.

	 4.	 Close the file.  Closing a file is also accomplished using a call to a
function (yes, it is usually named close). This function frees storage as-
sociated with the input process and in some cases unlocks the file so it
can be used by other programs. A variable returned by open is passed to
close, and afterwards that variable can’t be used for input anymore. The
file is no longer open.

	5.3.1	 Open a File

Python provides a function named open that will open a file and return a
value that can be used to read from or write to the file. That value actually refers
to a complex collection of values that refers to the file status and is called a handle
or a file descriptor in the computing literature, although knowledge of the details
is not needed to use it. It can be thought of as something of type file, and must be
assigned to a variable or the file can’t be accessed. The open function is given
the name of the file to be opened and a flag that indicates whether the file is to
be read from or written to. Both of these are strings. A simple example of a call
to open is:

infile = open ("datafile.txt", "r")

This will open a file named “datafile.txt” that resides in the same directory
as does the Python program, and opens it for input: the “r” flag means read. It
returns the handle to the variable infile, which can now be used to read data from
the file.

There are some details that are crucial. The name of the file on most computer
systems can be a path name, which is to say the name including all directory
names that are used to find it on your computer. For example, on some computers
the name “datafile.txt” might have the complete path name “C:/parker/introPro-
gramming/chapter05/datafile.txt.” If path names are used, the file can be opened
from any directory on the computer. This is handy for large data sets that are used
by multiple programs, such as names of customers or suppliers.

 Chapter 5 · Fi les : Input and Output ■ 199

The read flag “r” that is the second parameter is what was called the mode in
the previous discussion. The “r” flag means that the file will be open for reading
only, and starts reading at the beginning of the file. The default is to read char-
acters from the file, which is presumed to be a text file. Opening with the mode
“rb” opens the file in binary format, and allows reading non-text files, such as
MP3 and video files.

Passing the mode “w” means that the file is to be written to. If the file exists,
then it will be overwritten; if not, the file will be created. Using “wb” means that
a binary file is to be written.

Append mode is indicated by the mode parameter “a,” and it means that the
file will be opened for writing; if the file exists, then writing will begin at the end
of the existing file. In other words, the file will not start over as being empty but
will be added to, at the end of the file. The mode “ab” appends data to a binary
file. There are a few other modes that will be discussed when they are needed.

If the file does not exist and it is being opened for input, there is a problem.
It’s an error, of course; a nonexistent file can’t be read from. There are ways to
tell whether a file exists, and the error caused by a nonexistent file can be caught
and handled from within Python. This involves an exception. It is always a bad
idea to assume that everything works properly, and when dealing with files it is
especially important to check for all likely problems.

File Not Found Exceptions

The proper way to open a file is within a try-except pair of statements. This will
ensure that nonexistent files or permission errors are caught rather than causing
the program to terminate. The basic scheme is simple:

try:
 infile = open ("datafile.txt", "r")
except FileNotFoundError:
 print (�"There is no file named ꞌdatafile.

txt'. Please try again")
 return # end program or abort this
 # section of code

The exception FileNotFoundError will be thrown if the file name can’t be
found. What to do in that case depends on the program: if the file name was typed
in by the user, then perhaps they should get another chance. In any case the file is
not open and data can’t be read.

200 ■ Python: An Introduct ion to Programming

There are multiple versions of Python on computers around the world, and
some versions have different names for things. The examples here all use Python
3.4. In other versions the FileNotFoundError exception has another name; it
may be IOError or even OSError. The documentation for the version being
used should be consulted if a compilation error occurs when using exceptions
and some built-in functions. For the 3.4 compiler version, all three seem to work
with a missing file.

All attempts to open a file should take place while catching the FileNot-
FoundError exception.

	5.3.2	 Reading from Files

After a file is opened with a read mode, the file descriptor returned can be
used to read data from the file. Using the variable infile returned from the call to
open () above, a call to the method read() can get a character from the file:

s = infile.read(1)

Reading one character at a time is always good enough, but is inefficient. If a
block on disk is 512 characters (bytes) then that should be a good number of bytes
to read at one time, or a multiple of that. Reading more data than you need and
saving it is called buffering, and buffers are used in many instances: live video
and audio streaming, audio players, and even in programming language compil-
ers. The idea is to read a larger block of data than is needed at the moment and to
hand it out as needed. Reading a buffer could be done as:

s = infile.read(512)

and then dealing characters from the strings one at a time as needed. A buf-
fer is a collection of memory locations that is temporary storage for data that was
recently on secondary store.

Text files, those that contain printable characters that humans can read, are
normally arranged as lines separated by a carriage return or a linefeed character,
something usually called a newline. An entire line can be read using the read-
line() function:

s = infile.readline()

A line is not usually a sentence, so many lines might be needed to read one
sentence, or perhaps only half of a line. Computer text files are structured so that

 Chapter 5 · Fi les : Input and Output ■ 201

humans can read them, but the structure of human language and convention is
not understood by the computer, nor it is built into the file structure. However, it
is normal for people to make data files that contain data for a particular item or
event on one line, followed by data for the next item. If this is true then one call
to readline() will return all of the information for a particular thing.

End of File

When there are no more characters in the file, read() will return the empty
string: “”. This is called the end of file condition, and it is important that it be
detected. There are many ways to open and read files, but for reading characters
in this way the end of file is checked as follows:

infile = open("data.txt", "r")
while True:
 c = infile.read(1)
 if c == '':
 print ("End of file")
 exit()
 else:
 c = infile.read(1)

When reading a file in a for statement, the end of file is handled automati-
cally. In this case the loop runs from the first line to the final line and then stops.

for c in f:
 print ("'", c, "'")

Oddly an exception can’t be used in an obvious way for handling the end of
file on file input. However, when reading from the console using the input() func-
tion the exception EOFError can be caught:

while True:
 try:
 c = input()
 print (c)
 except EOFError:
 print ("Endfile")
 break

There are many errors that could occur for any set of statements. It is possible
to determine what specific exception has been thrown in the following manner:

202 ■ Python: An Introduct ion to Programming

while True:
 try:
 c = input()
 print (c)
 except Exception as x:
 print (x)
 break

This code prints “EOF when reading a line” when the end of file is encountered.

Common File Input Operations

There are a few common ways to use files that should be mentioned as pat-
terns. Although one should never use a pattern if it is not understood, it’s some-
times handy to have a few simple snippets of code that are known to perform
basic tasks correctly. For example, one common operation to use with files is to
read each line from a file, followed by some processing step. This looks like:

f = open ("data.txt", "r")
for c in f:
 print ("'", c, "'")
f.close()

The expression c in f results in consecutive lines being read from the files into
a string variable c, and this stops when no more data can be read from the file.

Another way to do the same thing would be to use the readline() function:
f = open ("data.txt", "r")
c = f.readline()
while c != '':
 print ("'", c, "'")
 c = f.readline()
f.close()

In this case the end of file has to be determined explicitly, by checking the
string value that was read to see if it is null.

Another common file operation is to copy a file to another, character by
character. A file is opened for input and another for output. The basic “read a
file” pattern is used, with the addition of a file output after each character is read:

f = open ("data.txt", "r")
g = open ("copy.txt", "w")
c = f.read(1)

 Chapter 5 · Fi les : Input and Output ■ 203

while c != '':
 g.write(c)
 c = f.readline(1)
f.close()
g.close()

A filter is a program that reads data from a file and converts it to some other
form, then writes it out. This is often done from standard input and output, but
can be done in the middle of a file copy. For example, to convert a text file to all
lowercase, the pattern above is used with a small modification:

f = open ("data.txt", "r")
g = open ("copy.txt", "w")
c = f.read(1)
while c != '':
 g.write(c.lower())
 c = f.readline(1)
f.close()
g.close()

This filter can be done in less code if the entire file can be read in at once.
The read() function can read all data into a string.
f = open ("data.txt", "r")
g = open ("copy.txt", "w")
c = f.read()
g.write(c.lower())
f.close()
g.close()

Two files can be merged into a single file in many ways: one file after an-
other, a line from one file followed by a line from another, character by character,
and so on. A simple merging of two files where one is copied first followed by
the other is:

f = open ("data1.txt", "r")
outfile = open ("copy.txt", "w")
c = f.read()
outfile.write(c)
f.close()
g = open ("data2.txt", "r")
c = g.read()
outfile.write(c)
g.close()
outfile.close()

204 ■ Python: An Introduct ion to Programming

A more complex problem occurs when both files are sorted and are to re-
main sorted after the merge. If each line is in alphabetical order in each file
then merging them means reading a line from each and writing the one that is
smallest. When one file is complete, the remainder of the second file is written
and all files are closed.

f = open ("data1.txt", "r")
g = open ("data2.txt", "r")
outfile = open ("copy.txt", "w")
cf = f.readline()
cg = g.readline()
while cf!="" and cg!="":
 if cf<cg:
 outfile.write(cf)
 cf = f.readline()
 else:
 outfile.write(cg)
 cg = g.readline()
if cf == "":
 outfile.write(cg)
 cg = g.read()
 outfile.write(cg)
else:
 outfile.write(cf)
 cf = f.read()
 outfile.write (cf)
f.close()
g.close()
outfile.close()

Copying the input from console to a file means reading each line using in-
put() and writing it to the file. This code assumes that an empty input line implies
that the copying is complete.

outfile = open ("copy.txt", "w")
line = input ("! ")
while len(line)>1 or line[0]!="!":
 outfile.write(line)
 outfile.write ("\n")
 line = input("! ")
outfile.close()

 Chapter 5 · Fi les : Input and Output ■ 205

The end of the line is indicated by a character, which is represented by the
string “\n.” Reading characters from a file will read the end of line character also,
and detecting it can be very important.

f = open ("data.txt", "r")
c = f.read(1)
while c != '':
 print ("'", c, "'")
 c = f.read(1)
 if c == '\n':
 print ("Newline")

CSV Files

A very common format for storing data is called Comma Separated Variable
(CSV) format, named for the fact that each pair of data items have a comma be-
tween them. CSV files can be used directly by spreadsheets such as Excel and by
a large collection of data analysis tools, so it is important to be able to read them
correctly.

A simple CSV file named planets.txt is provided for experimenting with
reading CSV files. It contains some basic data for the planets in Earth’s solar sys-
tem, and while there is no actual standard for how CSV files must look, this one
is typical of what is usually seen. The first line in the file contains headings for
each of the variables or columns, separated by commas. This is followed by nine
lines of data, one for each planet. It’s a small data file as these things are counted,
but illustrative for the purpose. Here it is:

Name, Mass, Diam, Density, Grav, Escape, Rotation, Day, Dis-
tance,

Period, Moons, Temp

Mercury, 0.364, 3032, 339, 12.1, 2.7, 1407.6, 4222.6, 36.0, 88.0, 0, 333
Venus, 5.37, 7521, 327, 29.1, 6.4, -5832.5, 2802.0, 67.2, 224.7, 0, 867
Earth, 6.58, 7926, 344, 32.1, 7.0, 23.9, 24.0, 93.0, 365.2, 1, 59
Mars, 0.708, 4221, 246, 12.1, 3.1, 24.6, 24.7, 141.6, 687.0, 2, -85
Jupiter, 2093, 88846 83, 75.9, 37.0, 9.9, 9.9, 483.8, 4331.0, 67, -166
Saturn, 627, 31783 43, 29.4, 22.1, 10.7, 10.7, 890.8, 10747, 62, -220
Uranus, 95.7, 31763 79, 28.5, 13.2, -17.2, 17.2, 1784.8, 30589, 27, -320
Neptune, 113.0, 30775 102, 36.0, 14.6, 16.1, 16.1, 2793.1, 59800, 14, -330
Pluto, 0.0161, 1464 131, 2.3, 0.8, -153.3, 153.3, 3670.0, 90560, 5, -375

Problem: Print the Names of Planets Having Fewer Than Ten Moons

This is not a very profound problem, and uses the raw data as it appears on
the file. The file must be opened and then each line of data is read, the value of
the 11th data element (i.e., index 10) retrieved and compared against 10. If larger,
the name of the planet (index 0) is printed. The plan is:

206 ■ Python: An Introduct ion to Programming

Open the file
Read (skip over) the header line
For each planet
 Read a line as string s
 Break s into components based on commas giving list P
 If P[10] < 10 print the planet name, which is P[0]

It is all something that has been done before except for breaking the string
into parts based on the comma. Fortunately, the designers of Python anticipated
this kind of problem and have provided a very useful function: split(). This func-
tion breaks up a string into parts using a specified delimiter character or string
and returns a list in which each component is one section of the fractured string.
For example:

s = "This is a string"
z = s.split(" ")

yields the list z = [“This”, “is”, “a”, “string”]. It splits the string s into sub-
strings at each space character. A call like s.split(“,”) should give substrings that
are separated by a comma. Given the above sketch and the split() function, the
code now pretty much writes itself.
try:
Open the file
 infile = open ("planets.txt", "r")
Read (skip over) the header line
 s =infile.readline()
For each planet
 for i in range (0, 8):
Read a line as string s
 s = infile.readline()
Break s into components based on commas giving list P
 P = s.split (",")
If P[10] < 10 print the planet name, which is P[0]
 if int(P[10])<10:
 print (P[0], " has fewer than 10 moons.")
except FileNotFoundError:
 print ("There is no file named 'planets.txt'.
Please try again")

 Chapter 5 · Fi les : Input and Output ■ 207

Things to notice: almost the entire program resides within a try statement, so
that if the file does not exist, then a message will be printed and the program will
end normally. Also note that P[10] has to be converted into an integer, because all
components of the list P are strings. Strings are what has been read from the file.

CSV files are common enough so that Python provides a module for ma-
nipulating them. The module contains quite a large collection of material, and for
the purposes of the planets.py program only the basics are needed. To avoid the
details of a general package, a simpler version is included with this book: sim-
pleCSV has the essentials needed to read most CSV files while being written in
such a way that a beginning programmer should be able to read and understand it.

To use it, the simpleCSV module is first imported. This makes two impor-
tant functions available: nextRecord() and getData(). The nextRecord() func-
tion reads one entire line of CSV data. It allows skipping lines without examining
them in detail (like headers). The function getData() will parse one line of data,
the last one read, into a tuple, each element of which is one of the comma-sepa-
rated fields.

The simpleCSV library needs to be in the same directory as the program that
uses it, or be in the standard Python directory for installed modules. The source
code resides on the accompanying disc and is called simpleCSV.py. The program
above can be rewritten to use the simpleCSV module as follows:
import simpleCSV
try: # Read (skip over) the header line
 infile = open ("planets.txt", "r")# Open the file
 simpleCSV.nextRecord(infile)	 # Read the header
 for i in range (0, 8):		 # For each planet
 simpleCSV.nextRecord(infile) # �Read a line and
 # collect substrings
 # in a list
 p = simpleCSV.getData(infile)
 if int(P[10])<10: # �If number of moons less
 # than 10
 print (P[0], " has fewer than 10 moons.")
 # print the planet name
except FileNotFoundError:
 print (�"There is no file named 'planets.txt'.

Please try again")

ON THE CD

208 ■ Python: An Introduct ion to Programming

Problem: Play Jeopardy Using a CSV Data Set

The television game show Jeopardy has been on the air for 35 years in one of
its two incarnations, and is perhaps the best known such program on television.
Players select a topic and a point value and are asked a trivia question that they
must answer in the form of a question. There are sets of questions that have been
used in Jeopardy over the years, some in CSV form, so it should be possible to
stage a simulated game using Python as the moderator.

A simple version of the game could work like this: read a bunch of questions
and answers, and select questions at random to ask. Questions that have single
word unambiguous answers would be best. The player types in an answer and
wins if they answer ten correctly before getting three wrong.

A single line of data from the file might look like this:
5957,2010-07-06,Jeopardy!,"LETꞌS BOUNCE","$600","In this
kid’s game, you bounce a small rubber ball while picking up
6-pronged metal objects","jacks"

There are 7 different data fields here separated by commas. They are: Show
Number, Air Date, Round, Category, Value, Question, and Answer; all are strings,
but some questions may contain commas. The CSV module can deal with that.

 There are many ways that a random question can be chosen. One would be
to read all of the data into a list, but that would require a lot of memory. One way
would be to randomly read a question from the file, but that would be hard to do
because each line has a different length. What could be done relatively easily
would be to pick a random number of questions to skip over before reading one
to use. So, select a random number K between N and M, read K questions, and
the read the next one and ask the user that question. When the end of the file is
reached, it can be read again from the beginning. If the file is large enough it
would be unlikely to ask the same question twice in a short time period.

Here is a sketch of how this might work:
 Open infile as the file of questions to be used
 While game continues:
 Select a random number K between N and M
 For I = N to M:
 Read a line from the file
 If no more lines:

 Chapter 5 · Fi les : Input and Output ■ 209

 Close infile and reopen
 Read a question and print it, ask the user for an answer
    Read the user’s answer from the keyboard
 If the user’s answer is correct:
	 Count right answers
 Else:
	 Count wrong answers

If the CSV module is used, the parsing of the input file is dealt with. What
is new about this? When all of the data in the file has been used, the program
may not be complete. What is done then is new: close the file, reopen it, and start
again from the beginning. This is an unusual action for a Python program, but
illustrates the flexibility of the file system. There is a nested try-except pair, the
outer one that checks the existence of the file of questions and the inner one that
checks for the end of the file. When the file is reopened a new reader has to be
created, because the old one is connected to a closed file. The file on the disk is
the same, but when it is opened again a new handle is built; the old CSV reader
is linked to the old handle.

The program counts the number of right answers (CORRECT) and the num-
ber of wrong ones (INCORRECT). When there are 10 correct answers or 3 in-
correct ones, the game is over; a variable again is set to False and the main while
loop exits. A break could have been used, but having the condition become False
is the polite way to exit from a while loop.

The entire program looks like this:
Jeopardy!
import simpleCSV, random

try:
 infile = open ("q.txt", "r") # Open the file
 simpleCSV.nextRecord(infile) # Read (skip over) the
 # header line

 CORRECT = 0
 INCORRECT = 0
 again = True
 while again:
 k = random.randint (5, 10) # �How many questions to
 # skip?

210 ■ Python: An Introduct ion to Programming

 for i in range (0, k):
 if not simpleCSV.nextRecord(infile):
 # Skip this question
 infile.close()
 print ("Reopening")
 infile = open ("JEOPARDY_small.txt", "r")
 simpleCSV.nextRecord(infile)
 s = simpleCSV.getData(infile) # �Read the question
 # to be asked.
 print (s[5]) # Print the question
 a = input () # Read the answer
 if a.lower() == s[6].lower(): # �Does player answer
 # agree?
 CORRECT = CORRECT + 1 # Yes. count to 10.
 if CORRECT >= 10:
 print ("You win!")
 again = False
 else:
 INCORRECT = INCORRECT + 1 # No. Count to 3
 print ("Sorry. The answer is ", s[6])
 if INCORRECT > 12:
 print ("You lose.")
 again = False
except FileNotFoundError:
 print ("There is no question file. We can't play.")

The With Statement

A difficulty with the code presented so far is that it does not clean up after
itself. A file should be closed after input from it or output to it is finished; none
of the programs written so far do that, at least not after the file operations are
complete. There has been no significant discussion of the close() operation,
but what it does has been described. Normally when a program terminates, its
resources are returned to the system, including the closing of any open files.
Intentionally closing a file is important for three reasons: first, if the program
aborts for some reason, open files should be closed by the system but may not
be, and file problems can be the result. Second, as in the Jeopardy program,
closing a file can be used as a step in re-using it. Opening it again starts reading
it at the beginning. Third, closing a file frees its resources. Programs that use
many files and/or many resources will profit from freeing them when they are
no longer needed.

 Chapter 5 · Fi les : Input and Output ■ 211

The Python with statement, in its simplest form, takes care of many of the
details surrounding file access. An example of its use is:
try:
 with open ("planets.txt") as infile: # Open the file
 simpleCSV.nextRecord(infile) # Read the header
 for i in range (0, 9): # For each planet
 simpleCSV.nextRecord(infile) # �Read a line,
 # make a list
 P = simpleCSV.getData(infile)
 if int(P[10])<10: # �If number of moons
 # less than 10
 print (P[0], " has fewer than 10 moons.")
 # print the name
except FileNotFoundError:
 print (�"There is no file named 'planets.txt'.

Please try again")

Once the file is open, the with statement guarantees that certain errors will be
dealt with and the file will be closed. The problem is that the file has to be open
first, so the FileNotFound error should still be caught as an exception.

	 5.4	 WRITING TO FILES
The first step in writing to a file is opening it, but this time for output:
outfile = open ("out.txt", "w")

The “w” as the second parameter to open() means to open the file for writ-
ing. When writing to a file it is important to note that opening it will create a new
file by default. If a file with the given name already exists it will be rewritten, and
the previous contents will be gone.

The basic file output function is write(); it takes a parameter, a string to
be written to the file. It only writes strings, so numbers and other types have
to be converted into strings before being written. Also, there is no concept of a
line. This function simply moves characters to a file, one at a time, in the order
given. In order to write a line, an end of line character has to be written. This
is usually specified in a string as “\n,” spoken as “backslash n.” The “n” stands
for newline.

212 ■ Python: An Introduct ion to Programming

Example: Write a Table of Squares to a File

This will illustrate the typical code involved in writing to a file. The file must
be opened, then a loop from 0 to 25 is constructed. Each number in that range is
written to the file, as is that number multiplied by itself. Each output string rep-
resents a line, and so must have a newline character added to the end.

outfile = open ("out.txt", "w")
outfile.write (" X X squared \n")
for i in range (0, 25):
 sout = " "+str(i)+" "+str(i*i)+"\n"
 outfile.write (sout)
outfile.close()

Note that the integers are explicitly converted into strings and concatenated
into a line to be written. The elements of the line could be written in separate
calls to write:

outfile = open ("out.txt", "w")
outfile.write (" X X squared \n")
for i in range (0, 25):
 outfile.write (" ")
 outfile.write (str(i))
 outfile.write (" ")
 outfile.write (str(i*i))
 outfile.write ("\n")
outfile.close()

The output file is closed after all data has been written.

	5.4.1	 Appending Data to a File

Opening the file in “w” mode starts writing at the beginning of the file, and
will result in existing data being lost. This is not always desirable. For example,
what if a log file is being created? The log should contain a record of everything
that has happened, not just the most recent thing.

Opening the file in append mode, signified by the parameter “a,” opens the
file for output and starts writing at the end of the file if it already exists. This
means that data can be added to the end of an existing file.

 Chapter 5 · Fi les : Input and Output ■ 213

Example: Append Another 20 Squares to the Table of Squares File

The previous example created a file named “out.txt” and wrote 26 lines to it.
It was a table of squares, and the final one was 24. This example will therefore
begin at 25 and add 20 more values to the table.

The main difference is the opening of the output file in append mode, and
starting the loop at 25 instead of at 0:

outfile = open ("out.txt", "a")
for i in range (25, 45):
 sout = " "+str(i)+" "+str(i*i)+"\n"
 outfile.write (sout)
outfile.close()

The file “out.txt” will contain the squares of the integer between 0 and 44
inclusive after this program runs.

 	5.5	 SUMMARY
Files are computer structures within which data are stored, and almost al-

ways reside on disk devices, tape devices, or other secondary storage. Files have
some common properties: files have names; files have a size; basic operations on
a file are read and write; files must be open before they can be used; only one
program at a time can write to a file. Access to data on a file is much slower than
access to data in memory, but file data has to be moved into memory before it can
be manipulated.

Exceptions are events that occur while a program is executing, such as divid-
ing by zero. Rather than check for all possible exceptions every time a statement
is executed, Python provides a try-except statement that allows the programmer
to provide code to run when an error occurs. Specific named exceptions exist in
Python that can be specifically caught, like ValueError, or all exceptions can be
caught by not specifying a particular one.

Files are opened using a call to open passing a file name and a mode. If the
mode is “r” then the file will be read from; if it is “w” it will be written to. Ex-
ample: x = open(“input.txt”, “r”). Reading from a file x is accomplished by a
read call: x.read(n) will return a string of n characters; x.readline() will return
one line from the file x. When there are no more characters in the file read()

214 ■ Python: An Introduct ion to Programming

will return the empty string: “”. This is called the end of file condition, and it is
important that it be detected.

A CSV (comma separated values) file is a specific format that is common for
some kinds of data, including spreadsheets. The simpleCSV package provided on
the accompanying disc can be helpful in reading these files.

Output to a file x is done with a call to write: x.write(s) writes the string s to
the file represented by x. The string “\n” represents the end of a line.

NOTE
This chapter will be extended in Chapter 8 to expand the kind of file
operations and data that can be read from and written to a file.

Exercises

	 1.	Write a program that reads a file name from the user (console) and prints out
how many characters belong to that file.

	 2.	Write a program that opens a file containing a list of file names. For each one
print the file name followed by YES if that file exists in the current directory
and NO if it does not.

	 3.	Create a file copy facility. The program to be written reads the name of a file
from the user console and creates another file with the same contents. If the
original file is named “xx.txt” then the new file will be named “xx-copy.txt.”
The original file will always have a name ending in “.txt,” and so will the
copy.

	 4.	The CSV file “avatardata.csv” contains saved information concerning the
preferred avatars for players of a video game. The fields are: player code
(integer), avatar type (string, no quotes), number of times this avatar was
played at this level (integer), a game level reached (integer, out of 12), and the
highest score achieved on this level (integer); there is no header. Read this file
and determine and print which player/avatar has the highest score on each
level.

	 5.	Using a Python program, create a CSV file from “avatardata.csv” that
contains only information for level 10.

	 6.	 In an HTML file (i.e., a web page) an image to be displayed is usually
identified in a source tag of the form: src=“name.jpg.” The quotes are a part
of the tag, and the text between them is an image file name. Write a program

ON THE CD

 Chapter 5 · Fi les : Input and Output ■ 215

that reads an HTML file and prints the names of all of the image files that it
references.

	 7.	A user will specify the name of an image file (i.e., a file name that ends in
“.jpg,” “.gif,” or “.png”) from the console. Your program will read this name
and create “disp.html,” an html file that, when opened by a browser, will
display this image (requires a knowledge of basic HTML).

	 8.	Two files, named sorted1.txt and sorted2.txt, contain numeric data that appear
in the file in sorted ascending order (when looked at as a string). Merge these
two files to create a single file having the data of both, also in sorted order.

Notes and Other Resources

Python CSV Library: https://docs.python.org/3/library/csv.html

	 1.	Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau. (2015). Operating
Systems: Three Easy Pieces, Amazon Digital Services, Inc.

	 2.	Daniel P. Bovet and Marco Cesati. (2005). Understanding the Linux Kernel,
O’Reilly Media.

	 3.	Dominic Giampaolo. (1999). Practical Filesystem Design, Morgan
Kaufmann Publishers, Inc., http://www.nobius.org/~dbg/practical-file-
system-design.pdf, www.nobius.org/~dbg/practical-file-system-design.pdf

	 4.	 Robert Stetson. (2013). How Disk Drives Work, CreateSpace Independent
Publishing Platform.

	 5.	Jeopardy questions may be found at https://docs.google.com/uc?id=0BwT5wj_
P7BKXUl9tOUJWYzVvUjA&export=download

■ ■ ■ ■ ■

In this chapter

How many jokes begin with a phrase like “A man walks into a bar”?
So many that when someone hears that phrase, it is likely that they will
assume it is a joke. So, to ruin the joke and speak philosophically, what is
a man, what is a bar, and what does walking entail? Walking seems to be
something that a man can do, an action they can perform. And a bar is a
place where a man can walk. Can a man do anything else but walk? Is a
bar the only place a man can walk to?

It seems silly to examine a sentence in that way, but in the context of a com-
puter program it may be more meaningful. Imagine that this discussion involves
a computer game or simulation. A man now represents some kind of thing or
object that is manipulated by the program. A man has properties and things it can
do, which is to say operations it can perform. What properties does a man have?
Well, as a small subset of the possibilities:

6Chapter

Classes

6.1	 Classes and Types�� 219

6.2	 Classes and Data Types��228

6.3	 Subclasses and Inheritance ��243

6.4	 Duck Typing��246

6.5	 Summary��248

218 ■ Python: An Introduct ion to Programming

Property Type
Name String
Sex Boolean
Phone number Integer
Height Float
Weight Float
Job String?
Home (location, address) String?
Interests Array of String
Income Float
Possessions (other objects) Array of object
Spouse person
Children Array of person

So a man would appear to be a complex data type having a number of prop-
erties. Note especially that a man can have a property or characteristic called
spouse. A spouse is something called a person; so is a man, really. This is pretty
abstract, but stay with it: a man is a person, and perhaps some of the character-
istics of a man are really those of (i.e., inherited from) a person. In fact, it would
appear that most of them are. The only thing that distinguishes a man from other
persons would (from the list above) be sex, which would be (perhaps) false for a
man and true for a woman, another kind of person.

Imagine that there is a whole class of things called person that have most
of these properties. A man could be derived from this, since man has many of
these properties in common. A woman could be another class, perhaps having a
few different properties. A man could have, for example, a “date of last prostate
exam” as a property, but a woman could not. A woman could have a “date of
last pap smear,” but a man could not. At some point, person has many common
characteristics, but man has some that woman does not and vice versa.

So, considering the original proposition: what is a bar? It is clearly something
(object) that can hold (contain) a man. Perhaps it can contain many men. Women?
Why not? If a person has to be either a man or a woman, then a bar can contain some
number of persons. A bar is a class of objects that can hold or contain some number
of persons. It would be a container class, one supposes, or a holder of some kind.

 Chapter 6 · Classes ■ 219

So, the phrase “A man walks into a bar” might be expressed as:

aMan.walksInto (aBar)

where aMan is a particular man (a specific instance of a man class) and aBar is a
specific instance of a class of objects known as bar. This man has a Name, which
is to say that one of the properties that a man has is a Name, and this is really just
a variable. Since each individual man has a Name, there has to be a way of getting
at (accessing) each one. It is done through each instance, like so:
print (aMan.Name) # Accessing /printing the name.
aMan.Name = "Ted Smith" # Assigning to the name.

Using this syntax, the dot (“.”) is placed after the name of the instance. The
syntax “aMan.Name” means “look at the variable aMan, which is an instance of
man, for a property called Name.”

Okay, so what is walksInto in the above expression aMan.walksInto(aBar)?
Considering the syntax just described, it would appear to be a function that was a
part of the definition of man. It takes one parameter, which is something having
the type bar.

This may all seem very abstract still, but this way of looking at things
seems sensible in that it appears to organize information and provide a clear
and formal way to access it and manipulate it. This discussion has been a meta-
phor for the concept of a class and the ideas behind object orientation, two
key elements of modern programming structures. Python permits the program-
mer to define classes like the man or bar objects previously described and to
use them to encapsulate variables and functions and create convenient modular
constructions.

	 6.1	 CLASSES AND TYPES
A class, in the general sense, is a template for something that involves data

and operations (functions). An object is an instance of a class, a specific instan-
tiation of the template. Defining a class in Python involves specifying a class
name and a collection of variables and functions that will belong to that class.
The man class that has been referred to so far has only a few characteristics
that we know about for certain. It does have a function called walksInto, as one
example. A first draft of the man class could be as follows:

220 ■ Python: An Introduct ion to Programming

class man:
 def walksInto (aBar):
 # code goes here

A function that belongs to a class is generally referred to as a method.
This terminology likely refers back to a language devised in the 1970s named
Smalltalk. According to the standard for that language, “A method consists of a
sequence of expressions. Program execution proceeds by sequentially evaluating
the expressions in one or more methods.” In the above example, walksInto is a
method; essentially, a method is any function that is part of a class.

Classes can have their own data too, which would be variables that ‘belong’
to the class in that they exist inside it. Such variables can be used inside the class
but can’t be seen from outside.

Looking closely at the simple class man above, notice that it is actually still
a rather abstract thing. In the narrative about a man walking into a bar it was
a specific man, as indicated by a variable aMan. So it would seem that a class
is really a description of something, and that examples or instances should be
created in order to make use of that description. This is correct. In fact, many
individual instances of any class can be created (instantiated) and assigned to
variables. To create a new instance of the class man, the following syntax could
be used:

aMan = man()

When this is done all of the variables used in the definition of man are al-
located. In fact, whenever a new man class is created, a special method that is
local to man is called to initialize variables. This method is the constructor, and
can take parameters that help in the initialization. Creating a man might involve
giving him a name, so the instantiation may be:

aMan = man("Jim Parker")

In this case the constructor accepts a parameter, a string, and probably as-
signs it to a variable local to the class (Name, most likely). The constructor is
always named __init__:

def __init__ (self, parameter1, parameter2, …):

The initial parameter named self is a reference to the class being defined.
Any variable that is a part of this class is referred to by prefixing the variable

 Chapter 6 · Classes ■ 221

name with “self.” To make a constructor for man that accepted a name, it would
look like this:

def __init__ (self, name):
 self.Name = name

When a man is created, the statement would be:
aMan = man ("Jim Parker")

This metaphor has fulfilled its purpose for the moment. There are some exer-
cises concerning it at the end of the chapter, but another more practical example
might be better now.

	6.1.1	 The Python Class – Syntax and Semantics

The man walks into a bar example illustrates many aspects of the Python
class structure but obviously omits many details, especially formal ones that can
be so important to a programmer. A class looks like a function in that there is a
keyword, class, and a name and a colon, followed by an indented region of code.
Everything in that indented region “belongs” to the class, and cannot be used
from outside without using the class name or the name of a variable that is an
instance of the class.

The method __init__ is used to initialize any variables that belong to the
class. Java would call this method a constructor, and that’s how it will be refer-
enced here too. Any variables that belong to the class must be accessed through
either an instance (from outside of the class) or by using the name self (from with-
in the class). So, self.name would refer to a variable that was defined inside of
the class, whereas simply using name would refer to a variable local to a method.
When __init__ is called, a set of parameters can be passed and used to initial-
ize variables in the class. If the first parameter is self, it means that the method
can access class-local variables; otherwise it cannot. Normally self is passed to
__init__ or it can’t initialize things. Any variable initialized within __init__
and prefixed by self is a class-local variable. Any method that is passed self as a
parameter can define a new class-local variable, but it makes sense to initialize
all of them in one place if that’s possible.

222 ■ Python: An Introduct ion to Programming

A simple example of a class, initialization, and method is:
class person:
 def __init__ (self, name):
 self.name = name

 def introduce (self):
 print ("Hi, my name is ", self.name)

me = person("Jim")
me.introduce()

This class has two methods, __init__() and introduce(). After the class is
defined, a variable named me is defined and is given a new instance of the person
class having the name “Jim.” Then this variable is used to access the introduce
method, which prints the introduction message “Hi, my name is Jim.” A second
instance could be created and assigned to a second variable named you using:

you = person ("Mike")

and the method call
you.introduce()

would result in the message “Hi, my name is Mike.” Any number of instances
can be created, and some have the same name as others—they are still distinct
instances.

A new class-local variable can be created by any method. In introduce(), for
example, a new local named introductions can be created simply by assigning a
value to it.

def introduce (self):
 print ("Hi, my name is ", self.name)
 self.introductions = True

This variable is True if the method introductions has been called. The main
program can access this variable directly. If the main program becomes:

me = person("Jim")
me.introduce()
print (me.introductions)

then the program will generate the output:
Hi, my name is Jim
True

 Chapter 6 · Classes ■ 223

This is the essential information needed to define and use a class in Python.
A more complex example would be useful in seeing how these features can be
used in practice.

	6.1.2	 A Really Simple Class

A common example of a basic class is a point, a place on a plane specified by
x and y coordinates. The beginning of this class is:

class point:
 def __init__ (self, x, y):
 self.x = x
 self.y = y

This simply represents the data associated with a mathematical point. What
more does it need? Well, two points have a distance between them. A distance
method could be added to the point:
def distance (self, p):
 d = �(self.x-p.x)*(self.x-p.x) + (self.y-p.y)*
 (self.y-p.y)
 return sqrt(d)

If a traditional function were to be used to compute distance, it would be
written similarly but not identically. It would take two points as parameters:
def distance (p1, p2):
 d = (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)* (p1.y-p2.y)
 return sqrt(d)

The distance method uses one of the points as a preferred parameter, in a
sense. The distance between points p1 and p2 would be calculated as:

d = p1.distance(p2) or d = p2.distance(p1)

using the distance method, but as:
d = distance (p1, p2)

if the function was used. To a degree the difference is a philosophical one. Is
distance some property that a point has from another point (the method), or is it
something that is a thing that is calculated for two things (the function)? A pro-
grammer begins, after a while, to see the methods and data of a class as belonging
to the object, and as somehow being properties of it. That’s what makes a class a
type definition.

224 ■ Python: An Introduct ion to Programming

Many object-oriented languages offer the concept of accessor methods.
Some languages do not allow variables that belong to a class to be used directly,
or allow specific controls on access to them. The truth is that having the ability
to find the value of variables and to modify them is generally a bad idea. If the
only place that a class local variable can be modified is within the class, then that
limits the places where that can occur, and allows more control over what is pos-
sible. Preventing errors in programs is partly a matter of restricting actions to a
small region, of knowing exactly what is going on at all times.

Similarly, if some object outside of a class has access to the local variables
of that class, then it promotes a dependency on a specific implementation, and
one of the advantages of an object-oriented implementation is that the interface
to the class is fixed and independent of the way that class is implemented. It may
seem obvious that a point object has an x, y position and that those would be real
numbers, but the point class is the simplest class, and taking advantage of how a
class is coded it not always healthy.

All that an accessor method does is return a value important to a user of a
class. The x and y positions are variables local to the class, and many would agree
that they should have an accessor method:

def getx (self):
 return self.x
def gety (self):
 return self.y

Rewriting the distance() method to use accessor methods changes it only
slightly:

def distance (self, p):
 d = (self.x-p.getx())*(self.x-p.getx()) +
 (self.y-p.gety())* (self.y-p.gety())
 return sqrt(d)

Methods called mutators or setters are used to modify the value of a variable
in a class. They may do more than that, such as checking ranges and types, and
tracking modifications.

def setx (self, x):
	 self.x = x
def sety (self, y):
	 self.y = y

 Chapter 6 · Classes ■ 225

There are other methods that could be added to even this simple class just in
case they were needed, such as to draw the point, to return a string that describes
the object, to rotate about the origin or some other point, to use a destructor
method that is called when the object is no longer needed, and so on. Until it is
known what the class will be used for, there may not be any value for this ef-
fort, but if a class is being provided for general utility, like the Python string, as
much functionality would be provided as the programmer’s imagination could
invent. A draw method could simply print the coordinates, and could be useful for
debugging:

def draw (self):
 print ("(", self.x, ",", self.y, ") ")

Using this class involves creating instances and using the provided methods,
and that should be all. A triangle consists of three points. A triangle class could
be defined as:
class triangle:
 def __init__ (self, p0, p1, p2):
 self.v0 = p0
 self.v1 = p1
	 self.v2 = p2
 self.x = (p0.getx()+p1.getx()+p2.getx())/3

 self.y = (p0.gety()+p1.gety()+p2.gety())/3

 def set_vertices (self, p0, p1, p2):
 self.v0 = p0
 self.v1 = p1
	 self.v2 = p2

 def get_vertices (self):
	 return ((self.v0, self.v1, self.v2))

 def getx (self):
 return self.x

 def gety (self):
 return self.y

The (x, y) value of a triangle is its center, or the average value of the x and the
y coordinates of the vertices. These are the basic methods. A triangle is likely to
be drawn somehow, and the next chapter will explain how to do that specifically.

226 ■ Python: An Introduct ion to Programming

However, without knowing the details, a triangle is a set of lines drawn between
the vertices and so might be done that way. As it is, using text only, it will print
its vertices:

def draw (self):
 print ("Triangle:")
 self.v0.draw()
 self.v1.draw()
 self.v2.draw()

The triangle can be moved to a new position. A change in the x and y loca-
tion specifies the change, and it is done by changing the coordinates of each of
the vertices:

def move (self, dx, dy)
 coord = p0.getx()
 p0.setx(coord+dx)
 coord = p0.gety()
 p0.sety(coord+dy)
 coord = p1.getx()
 p1.setx(coord+dx)
 coord = p0.gety()
 p1.sety(coord+dy)
 coord = p2.getx()
 p2.setx(coord+dx)
 coord = p2.gety()
 p2.sety(coord+dy)
 self.x = self.x + dx
 self.y = self.y + dy

In this way of expressing things, it is clear that moving the triangle is a matter
of changing the coordinates of the vertices. If each point had a move() method,
then it would be clearer: moving a triangle is a matter of moving each of the
vertices:

def move (self, dx, dy):
 p0.move(dx, dy)
 p1.move(dx, dy)
 p2.move(dx, dy)
 self.x = self.x + dx
 self.y = self.y + dy

Which of these two move() methods seems the best description of what is
happening? The more complex are the classes, the more value there is in making

 Chapter 6 · Classes ■ 227

an effort to design them to effectively communicate their behaviors and to make
things easier to expand and modify. It is also plain that the move() method for
a point is simpler than that for a triangle. That fact is invisible from outside the
class, and it actually not relevant.

	6.1.3	 Encapsulation

In the example of the point class there is no actual need for an accessor
method, because the variables can be accessed from outside the class, in spite of
the arguments that have been given for more controlled use of these variables.
A careful programmer would want to ensure the integrity of classes by forcing
the variables to remain protected in some way, and Python allows this while not
requiring it.

The variables x and y are accessible and modifiable from outside because of
how they are named. Any variable name in a class that begins with an underscore
character (“_”) cannot be modified by code that does not belong to the class. Such
a variable is said to be protected. A variable name that begins with two under-
score characters can’t be modified or even examined from outside of the class,
and is said to be private. All other variables are public. This applies to method
names too, so the method __init__() that is the usually constructor is private.

Rewriting the point class to make the internal variables private would be
done like this:
class point:
 def __init__ (self, x, y):
 self.__x = x
	 self.__y = y

def getx (self):
 return self.__x

def gety (self):
 return self.__y

det setx (self, x):
	 self.__x = x

def sety (self, y):
	 self.__yy = y

228 ■ Python: An Introduct ion to Programming

def distance (self, p):
 d = (self.__x-p.getx())*(self.__x-p.getx()) +
 (self.__y-p.gety())* (self.__y-p.gety())
 return sqrt(d)

def move(self, dx, dy):
self.__x = self.__x + dx
self.__y = self.__y + dy

def draw (self):
 print ("(", self.__x, ",", self.__y, ") ")

Now the internal variables x and y can’t be modified or even have their values
examined unless explicitly allowed by a method.

	 6.2	 CLASSES AND DATA TYPES
Consider an integer. How can it be described so that a person who has not

used one before can implement something that looks and acts like an integer?
This is a specific case of the general problem faced when using computers—to
describe a problem in enough detail so that a machine can solve it. The definition
could start with the idea that integers can be used for counting things. They are
numbers that have no fractional part, and that have been extended so that they
can be positive or negative.

What can be done with them? Integers can be added and subtracted, multi-
plied and divided. When dividing two integers there can be an integer remainder
left over. They can be displayed in many forms: as base 10 numbers, in any other
base, as Roman numerals, and so on. There are other operations on integers, but
these are the most commonly used ones.

What has been done here is to define a type. Python types, the ones built into
the language, include the integer type, as well as floating point numbers, strings,
and so on. Each is characterized by an underlying implementation, which is often
hidden from the programmer, and a set of operations that are defined on things
of that type. This is a fair definition of a type in general. A class can be used to
implement a type—not one of the types that the language already efficiently pro-
vides, but new types that programmers find useful for their purposes. The man
and person classes described earlier can be thought of as types.

 Chapter 6 · Classes ■ 229

When designing programs that use classes, it is likely that the classes rep-
resent types, although they may not be completely implemented. The design
scheme would be to sketch a high-level solution and observe what components of
that solution look and behave like types. Those components can be implemented
as classes. The remainder of the solution will have structure imposed on it by
virtue of the fact that these other types exist and are defined to be used in spe-
cific ways. Types can hide their implementation, for example. The underlying
nature of an integer probably does not matter much to a programmer most times,
and so can be hidden behind the class boundary. This has the added feature that
it encourages portability: if the implementation has to change, the class can be
rewritten while providing the same interface to the programmer.

The operations on the type are implemented as methods. The methods can
access the internal structure of the class while providing the desired view of the
data and ways of manipulating it. If a class named integer existed, for example,
then add(), subtract(), and so on would be methods. Then instances of this class
could be implemented:

a = integer(5)
b = integer(21)

and computing a sum would be:
c = a.add(b)

The underlying representation of an integer is unknown to a user of this class.
All that is known is the interface, described as methods. If the interface is well-
documented, then that’s all a programmer needs to know. In fact, exposing too
much of the class to a programmer can compromise it.

	6.2.1	 Example: A Deck of Cards

Traditional playing cards these days have red and black colors, four suits, and
a total of 52 cards, 13 in each suit. Individual cards are components of a deck, and
can be sorted: a 2 is less than a 3, a Jack less than a King, and so on. The Ace is
a problem: sometimes it is the high card, sometimes the low card. A card would
possess the characteristics of suit and value. When playing card games, cards
are dealt from the deck into hands of some number of cards: 13 cards for bridge,
5 for most poker games, and so on. The value of a card usually matters. Sometimes

230 ■ Python: An Introduct ion to Programming

cards are compared against each other (poker), sometimes the sum of values is
key (blackjack, cribbage), and sometimes the suit matters. These uses of a deck of
cards can be used to define how classes will be created to implement card games
on a computer.

Operations on a card could include to view it (it could be face up or face
down) and to compare it against another card. Comparison operations could in-
clude a set of complex specifications to allow for aces being high or low and for
some cards having special values (spades, baccarat) so a definition step might be
very important.

A deck is a collection of cards. There are usually one of each card in a deck,
but in some places (e.g., Las Vegas) there could be four or more complete decks
used when playing blackjack. Operations on a deck would include to shuffle, to
replace the entire deck, and to deal a card or a hand. With these things in mind, a
draft of some Python classes for implementing a card deck can be created:

class card:
 def __init__ (�self, face,

suit):
 def value():
 def suit():
 def facevalue():
 def view ():
 def compare():
 def initialize()

class deck:
 def __init__ (self):
 def deal_card ():
 def deal_hand (ncards):
 def shuffle():
 def replace():

The way that the methods are implemented depends on the underlying repre-
sentation. When the programmer calls deal() they expect the method to return a
card, which is an instance of the card class. How that happens is not relevant to
them, but it is relevant to the person who implements the class. In addition, how it
happens may be different on different computers, and as long as the result is the
same it does not matter.

For example, a card could be a constant value r that represented one of the
52 cards in the deck. The class could contain a set of values for these cards and
provide them to programmers as a reference:
class card:
 CLUBS_1 = 1

 Chapter 6 · Classes ■ 231

 DIAMONDS_1 = 2
 . . .
 HEARTS_ACE = 51
 SPADES_ACE = 52

 Def __init__ (self, face, suit):
 . . .

The variables CLUBS_1, DIAMONDS_1, and so on are accessible in all in-
stances of the card class and have the appropriate value. Variables defined in this
way have one instance only, and are shared by all instances.

A second implementation could be as a tuple. The ace of clubs would be
(Clubs, 1), for instance. Each has advantages, but these will not be apparent to
the user of the class. For example, the tuple implementation makes it easier to
determine the suit of a card. This matters to games that have trump suits. The
integer value implementation makes it easier to determine values and do specific
comparisons. The value of a card could be stored in a tuple named ranks, for
example, and ranks[r] would be a numerical value associated with the specific
card.

	6.2.2	 A Bouncing Ball

Animations and computer simulations see the world as a set of samples cap-
tured at discrete times. An animation, for example, is a set of images of some
scene taken at fixed time intervals, generally 1/24th of a second or 1/30th of a
second. Simulations use time intervals that are appropriate to the thing being
simulated. This example is a simulation and animation of a bouncing ball, first in
one dimension and then in two dimensions.

A ball dropped from a height h falls to the ground when released. Its speed
increases as it falls, because it is being pulled downwards by gravity. The basic
equation governing its movement is:

	 s = 1/2at2 + v0t� (6.1)

where s is the distance fallen at time t, v0 is the velocity the object had at time
t=0, and a is the value of the acceleration. For an object at the earth’s surface, the
value of a is 32 feet/second2 = 9.8 meters/second2. For a ball being dropped, v0 is

232 ■ Python: An Introduct ion to Programming

0, since it is stationary initially. So, the distances at successive time intervals of
0.5 seconds would be:

Time S (feet)
= 16*t*t

S (meters)
= 4.9*t*t

0 0 0
0.5 4 1.225
1 16 4.9
1.5 36 11.025
2 64 19.6
2.5 100 30.625
3 144 44.1

A class could be made that would represent a ball. It would have a position
and a speed at any given time, and could even be drawn on a computer screen.
Making it bounce would be a matter of giving the ball a value that indicated how
much of its energy would be lost each time it bounced, meaning that it would
eventually stop moving. Writing the code for the class Ball could begin with the
initialization (the constructor):

class Ball:
 def __init__(self, height, elasticity):
 self.height = height
 self.e = e
 self.speed = 0.0
 self.a = 32.0

This creates and initializes four variables named height, e, a, and speed that
are local to the class. Remember, the parameter self refers to the class itself, and
any variable that begins with ‘self.’ is a part of the class. A variable within the
function __init__ that did not begin with ‘self.’ and was not global would belong
to the function, and would be created and destroyed each time that function was
called.

A method (function) that calculates the height of the ball at a specific time is
something else that the Ball class should provide. This is simply the value of the
class local variable height, so:

def height(self):
 return self.height

 Chapter 6 · Classes ■ 233

The self parameter has to be passed, otherwise the function can’t access the
local variable height. The simulation will need values of height as a function of
time, and time will increase in discrete chunks. This could be implemented in a
couple of ways: the class could keep track of the time since it was dropped, or
it could use the time increment to determine the next speed and position. If the
former then a new class variable must be used to store the time; if the latter then
a means has to be found to increment the speed rather than using total duration.
This second idea is simpler than it sounds. The equation of motion s = 1/2at2 +
v0t can use a time increment in place of t, and v0 would be the velocity at the start
of the time interval; this yields the new position. The new velocity can be found
from a related equation of motion, which is:

	 v = at + v0� (6.2)

where t is again the time increment and v0 is the speed at the beginning of the
interval.

The function that updates the speed and position in this manner will be called
delta:

def delta (self, dt):
 s = 0.5*self.a*dt*dt + self.speed*dt
 height = height - s
 self.speed = self.speed + self.a*dt

Here the parameter dt is the time interval, and so that can be varied by the
programmer to get position values at various resolutions.

For now this will be the Ball class. Some code is needed to test this class
and show how well (or whether) it works, and this will be the main part of the
program. An instance of Ball has to be created and then the delta method will be
called repeatedly at time increments of, for an example, 0.1 seconds. A table of
height and time can be constructed in this way, and it is a simple matter to see
whether the numbers are correct. The main program is:
b = Ball (12.0, 0.5)
for i in range (0, 20):
 b.delta (0.1)
 print ("At time ", i*0.1, " the ball has fallen to",
b.height(), " Feet")

234 ■ Python: An Introduct ion to Programming

The results are what should be expected, showing that this class functions
correctly:
At time 0.0 the ball has fallen to 12.0 Feet
…
At time 0.5 the ball has fallen to 7.999999999999997 Feet
…
At time 1.0 the ball has fallen to -4.0000000000000036 Feet
…
At time 1.5 the ball has fallen to -24.000000000000004 Feet
…
At time 2.0 the ball has fallen to -52.000000000000014 Feet
…
At time 2.5 the ball has fallen to -88.00000000000003 Feet
…

Because the initial height was 12 feet, the distance fallen is 12 minus the
value given above, so: 4, 16, 36, 64, and 100 feet, which is in agreement with the
initial table for the times listed. It appears to work correctly.

This code does not yet do the bounce, though. When the height reaches 0 the
ball is at ground level. It should then bounce, which is to say begin moving in the re-
verse direction, with a speed equal to its former downward speed multiplied by the
elasticity value. This does not seem hard to do until it is realized that the ball is not
likely to reach a height of 0 exactly at a time increment boundary. At one point the
ball will be above 0 and then after the next time unit the ball will be below 0. When
does it actually hit the ground, and where will be the ball actually be at the end of
the time increment? This is not a programming issue so much as an algorithmic or
mathematical one, but is a detail that is important to the correctness of the results.

It seems clear that the bounce computation should be performed in the meth-
od delta(). The height value in the class begins at a positive value and decreases
towards 0 as the ball falls. During some specific call to delta(), the ball will have
a positive height at the beginning of the call and a negative one at the end; this
means a bounce should happen. At that time the height of the ball will be nega-
tive. The height of the bounced ball at the end of the time interval will be the
negated value of the height (i.e., so it is positive again) multiplied by the elasticity.

The speed that should be used in the bounce is based not the final speed but
the speed the ball was traveling at the time when the height was 0. This happens
when self.height-s is zero, or when:

self.height = s = 0.5*self.a*dt*dt + self.speed*dt

 Chapter 6 · Classes ■ 235

Solve this for the time xt that makes the equation work out, which would be
the standard solution to a quadratic equation that is taught in high school:

	
2self.speed self.speed 2 *self.heightaxt a

− ± += � (6.3)

The value of xt will be between 0 and dt, and is the time within the increment
at which the ball struck the ground. At this time the ball will be moving with
speed (self.speed + self.a*xt) instead of (self.speed + self.a*dt) for a normal time
interval. The ball will reverse direction and reduce speed by the value of elastic-
ity. Now the ball is moving upwards.

The ball will be slowed by gravity until it stops on its upward path and drops
down again. At the top of the path its speed will be 0; at the beginning of the time
interval the speed will be negative and at the end it will be positive, and that’s
how the peak is detected. This situation is much simpler than the bounce.

The annotated program is as follows:
Ball.py
import math
class Ball:
Constructor/initializer
 def __init__(self, height, elasticity):
 self.height = height # Current height of the ball
 self.e = elasticity # �How much energy is retained each bounce
 self.speed = 0.0 # �Current speed of the ball,
 # initially 0, down +
 self.a = 32.0 # Acceleration: G= 32 ft/sec^2

�What Java would call an accessor: not really needed.
 def getHeight(self):
 return self.height

�Calculate the new height and speed for a change in time of dt
seconds.

 def delta (self, dt):
 startHeight = self.height # �Remember the state
 # before dt
 startSpeed = self.speed
 s = 0.5*self.a*dt*dt + self.speed*dt # �Equation 1:
 # position update
 self.height = self.height - s
 self.speed = self.speed + self.a*dt # �Equation 2: Speed
 # update

236 ■ Python: An Introduct ion to Programming

 if self.height < 0: # The sign changed; bounce, when?

 # �Equation 3: Solve the quadratic equation to find the time
 # of bounce
 xt = (�-startSpeed - math.sqrt(startSpeed*startSpeed

+2*self.a*startHeight))/self.a
 if xt < 0:
 xt = (-startSpeed + math.
sqrt(startSpeed*startSpeed +2*self.a*startHeight))/self.a
 print ("Bounces at time ", xt)

Equation 2 with elasticity
 self.speed = -(self.speed + self.a*xt)*self.e
 self.height = -self.height * self.e # �Correct the
 # height
 if self.e <0.03: self.e = 0.0
 else: self.e = self.e - 0.03

Peak of the upward bounce, velocity changes sign from + to -
 elif startSpeed*self.speed < 0: # �If sign differs then
 # the product is -ve
 self.speed = 0 # �Speed is 0 at the top
 # of the bounce
 print("Peak")
 print("New speed is ",self.speed," �and height starts

at ", self.height)
 if self.height<0.:
 self.height = 0.

b = Ball (12.0, 0.5) # Initial height 12 feet, elasticity is 0.5
s = Screen (20, 40)

for i in range (0, 50):
 b.delta (0.1) # Time increment is 0.1 seconds

How can this program be effectively tested? The computed values could be
compared against hand calculations, but this is time-consuming. It was done for
a few cases and the simulation was accurate. For this example, another program
was written in a different programming language to calculate the same values,
and the result from the two programs was compared—they were nearly exactly
the same. This is not definitive, but is certainly a good indication that this simu-
lation is working properly. In both programs similar approximations were made,
and the numbers agreed to seven decimal places.

 Chapter 6 · Classes ■ 237

This class will be expanded later to include an animation of the bouncing
ball.

	6.2.3	 Cat-A-Pult

Early in the development
of personal computers, a sim-
ple game was created that in-
volved shooting cannons. The
player would set an angle and
a power level and a cannon-
ball would be fired towards
the opposing cannon. If the
ball struck the cannon then it
would be destroyed, but if not
then the opposing player (or
the computer) would fire back at the player’s cannon. This process would con-
tinue until one or the other cannon was destroyed. This game evolved with time,
having more complex graphics, mountainous terrain, and more complex aspects.
Its influence can be seen in modern games like Angry Birds.

A variation of this game is proposed as an example of how classes can be
used. The basic idea is to eliminate a mouse that is eating your garden by firing
cats at it; hence the name cat-a-pult. The game will use text as input and output,
because no graphics facility is available yet. A player types the angle and the
power level and the computer will fire a cat at the mouse. The location where
the cat lands will be marked on a simple character display, and the player can try
again. The goal is to hit the mouse with as few tries as possible.

Basic Design

Before writing any code, one needs to consider the items in this game and
the actions they can take. The items will be classes, the actions will be methods.
There seem to be two items: a cannonball (a cat) and a cannon. The target (the
mouse) could be a class too. The cannon has a location, an angle, and a power or
force with which the cannonball will be ejected. Both of the last two factors affect
the distance the ball travels. The cannon is given a target as a parameter—in this

Figure 6.1
Typical configuration of a dueling cannons game.

238 ■ Python: An Introduct ion to Programming

example the target will be another cannon, basically to avoid making yet another
class definition.

The action a cannon can perform is to be fired. This involves releasing a
cannonball with a particular speed and direction from the location of the cannon.
In this implementation an instance of the cannonball class will be created when
the cannon is fired and will be given the angle and velocity as initial parameters;
the ball will, from then on, be independent. As a class, the ball has a position
(x, y) and a speed (dx, dy). The action that it can perform is to move, which will
be accomplished using a method named step(), and to collide with something,
accomplished by the method testCollision().

Detailed Design

In the metaphor of this game, the cannonball is actually a cat and the target
is a mouse, but to the program these details are not important. Here’s what is
important:

	 Class Cannon	 Class Ball
Has:	 position x, y	 position x, y
	 angle (when fired)	 speed dx, dy
	 power (when fired)	 name (text)
	 target (another cannon)	 target (a Cannon class instance)
	 ball	 gravity (force changing the height)

Does:	 fire	 step
	 step	 test for collision

All of the Has aspects are class local variables, and in this design they will
be initialized within the __init__ method of each class. This would entail the
following:
	 self.x = x	 self.x = x
	 self.y = y	 self.y = y
	 self.power = 0	 self.dx = dx
	 self.angle = 0	 self.dy = dy
	 self.target = target	 self.target = target
	 self.ball = None	 self.gravity = 1.0
		 self.name = ""

 Chapter 6 · Classes ■ 239

The game is essentially one-dimensional. The cannonball will land at a spe-
cific x coordinate, and if that is near enough to the x coordinate of the target, then
the target is destroyed and the game is over. Without a way to draw proper graph-
ics, this can be imagined as a simple text display with the cannon on one side of
the screen and the target on the other, something like that seen in Figure 6.1.

The slash character (“/”) on the left represents the cannon, and the “Y” rep-
resents the mouse, which is the target. The cannon is at horizontal coordinate 12,
and the mouse is at 60; both vertical coordinates are 0.

All of the Does aspects represent actions, or things the class object can do.
When the cannon is fired the ball is created at the cannon coordinates (12, 0) and
is given a speed that is related to the angle and power level using the usual trigo-
nometric calculations learned in high school (Figure 6.2):

Figure 6.2

ASCII (text) video of the game at the beginning.

   

	 (a)	 (b)
Figure 6.3
(a) A review of how sines and cosines are computed. (b) using the definition of sine and cosine to
calculate the speed of the ball (or any object) in the x and y direction.

240 ■ Python: An Introduct ion to Programming

dy = sin(angle * 3.1415/180.0)
dx = cos(angle * 3.1415/180.0)

The angles passed to sin and cos must be in radians, so the value PI/180 is
used to convert degrees into radians. The coordinates in this case have y increas-
ing as the ball moves upwards. So, when the cannon is fired a ball is created that
has the x and y coordinates of the cannon and the dx and dy values determined
as above. This is accomplished by a method named fire():

Fire: takes an angle and a power.
	 Angle is in degrees, between 0 and 360
	 Power is between 0 and 100 (a percentage)

	 1.	 Compute values for dx and dy from angle and power, where max power
is 0.1

	 2.	 Create an instance of Ball giving it x, y, dx, dy, a name (“cat”), and a
target (the mouse)

The simulation makes time steps of a fixed duration and calculates positions
of objects at the end of that step. Each object should have a method that updates
the time by one interval, and it will be named step(). The cannon does not move,
but sometimes has a cannonball that it has fired, so updating the status of the can-
non should update the status of the ball as well:

Step: make one-time step for this object in the simulation. No parameter.

	 1.	 If a ball has been fired, then update its position. This is done by calling
the step() method of the ball.

This defines the cannon.

The ball must also possess a step() method, and it will update the ball’s
position based on its current speed and location. The x position is increased
by dx, and the y is increased by dy. Gravity pulls down on the ball, effectively
decreasing the vertical speed of the ball during each interval. After some trials
it was determined that the value of dy should be decreased by the value of grav-
ity during each interval. If the ball strikes the ground, it should stop moving.
When does this happen? When y becomes smaller than 0. When this occurs,
set dx and dy to 0, and check to see if the impact location is near to the target.

 Chapter 6 · Classes ■ 241

Step: make a one-time step for this object in the simulation. No parameter.

	 1.	 Let x = x + dx, changing the x position
	 2.	 Let y = y + dy, changing the y position
	 3.	 Decrease dy by gravity (dy = dy - gravity)
	 4.	 If the ball has struck the ground
	 5.	 Let dx = dy = gravity = 0
	 6.	 Check for collision with target

 Checking to see if the ball hit the target is a matter of looking at the x value
of the ball and the x value of the target. If the difference is smaller than some
predefined value, say 1.0, then the target was hit. This is determined by a method
that will be called testCollision(). If the collision occurred then success has been
achieved by the player, so set a flag that will end the game.

testCollision: check to see if the ball has hit the target and, if so, set a flag:

	 1. 	 Subtract the x position of the ball from the x position of the target. Call
this d.

	 2.	 If d <= 1.0 then set a flag done to True.

This defines the class Ball and completes the two major classes.

The main program that uses these classes could look something like this:
mouse = Cannon (60, 0, None) # Create the target
player = Cannon (12, 0, mouse) # create the cannon
player.fire (42, 65) # �Example: fire cannon at
 # 42 degrees 65% power
done = False # �initialize variable
 # ꞌdoneꞌ
while not done: # �so long as the simulation
 # is not over
 player.step() # �Update the position of
 # the ball.

Actual code for most of this example is shown in Figure 6.4, and the entire
program is on the accompanying disc. Included in the disc version is an extra
class that draws each state of the game as character graphics that can be displayed
in the Python output window; the example in the figure does not include any

ON THE CD

242 ■ Python: An Introduct ion to Programming

output, and is unsatisfying to execute. The program on the disc will generate a
numeric and graphical representation of the state, showing the axes, the cannon,
the ball, and the target after each step. These can be made into distinct text files
and can be made into an animation using MovieMaker on a Windows computer
or Final Cut on a Mac. Such an animation is also included on the disc, and is
named catapult.mp4.

The process by which Cat-a-pult was designed and coded loosely defines a
way to design and code almost any program that uses classes.

from math import *
class Ball:
 def _ _ init _ _ (�self, x,

y, dx, dy,
name,
other):

 self.xPos = x
 self.yPos = y
 self.xSpeed = dx
 self.ySpeed = dy
 self.gravity = 1.0
 self.name = name
 self.other = other

 def step (self): # �One time
 # step
 self.xPos = �self.xPos +

self.xSpeed
 self.yPos = �self.yPos +

self.ySpeed
 self.ySpeed = �self.ySpeed

- self.
gravity

 if self.yPos < 0:
 self.xSpeed = 0
 self.xSpeed = 0
 self.gravity = 0
 self.yPos = 0
 self.testCollision()

 def testCollision (self):
 global done
 d = self.xPos-self.

other.x
 if d<0: d = -d
 if d < 1.0:
 done = True

class Cannon:
 def __init__ (�self, x, y,

other):
 self.x = x
 self.y = y
 self.other = other
 self.ball = None

 def fire (�self, angle,
power):

 dy = sin(angle *
3.1415/180.0)

 dx = cos(angle *
3.1415/180.0)

 self.ball = �Ball(self.x,
self.y,

 dx*power/10.0,
dy*power/10.0,

 "Cat", self.other)

 def step (self):
 if self.ball != None:
 (self.ball).step()

Figure 6.4
The Ball and the Cannon classes from the Cat-a-pult simulation

ON THE CD

 Chapter 6 · Classes ■ 243

 

 

Figure 6.5
Frames from the text animation of the game.

	 6.3	 SUBCLASSES AND INHERITANCE
Classes are designed as language features that can represent a hierarchy of

information or structure. A class can be used to define another, and properties
from the first class will be passed on (inherited) by the other. A class that is based
on another in this way is called a subclass, and explanatory examples suffuse the
Internet: a pet class with dogs and cats as special cases; a polygon having tri-
angles and rectangles as subclasses; a dessert class, having subclasses pie, cake,
and cookie; even the initial example in this chapter of a man and a woman class
and the person class that they can be derived from. A subclass is a more specific
case of the superclass (or parent class) on which it is based.

The examples above are for explanation, and are not really useful as software
components, which begs a question about whether subclasses are really useful
things. They are, but it requires non-trivial examples to really demonstrate this.

	6.3.1	 Non-Trivial Example: Objects in a Video Game

To some degree all objects in a game have some things in common. They are
things that can interact with other game objects; they have a position within the

244 ■ Python: An Introduct ion to Programming

volume of space defined by the game, and they have a visual appearance. Thus, a
description of a class that could implement a game object would include:
class gobject:
 position = (0, 0, 0) # Object position in 3D
 visual = None # �Graphics that represent
 # the object
 def __init__ (self, pos, vis)
 def getPosition (self):
 def setPosition(self, p):
 def setVisual(self, v):
 def draw (self):

Anyone who has played a video game knows that some of the objects can
move while others cannot. Objects that move can have their position change, and
the position has to be updated regularly. An object that can move can have a speed
and a method that updates their position; otherwise it is like a gobject. This is a
good case for a subclass:
class mobject (gobject):
 speed = (0, 0, 0) # �Speed in pixels per frame the
 # x,y,z directions
 def __init__ (self, s)
 def getSpeed(self):
 def setSpeed(self, s):
 def move(self):
 def collision(self, gobject):

The syntax of this has the superclass gobject as a parameter (apparently)
of the subclass mobject being defined. If an instance of a gobject is created,
its __init__ method is called and the resulting reference has access to all of the
methods in the gobject definition, just as one would expect. If an instance of
mobject is created, the __init__ method of mobject is called, but not that of
gobject. Nonetheless, all properties and methods of both classes are available
through the mobject reference; that is, the following is legal:
m = mobject ((12, 0, 0))	 # �Create mboject with speed
 # (12,0,0)
m.draw()	 # Draw this object

even though an mobject does not possess a method draw(); the method defined
in the parent class is accessible and will be used. When the mobject is created it
is also a gobject, and all of the variables and methods belonging to a gobject are

 Chapter 6 · Classes ■ 245

defined also. However, the __init__() method for gobject is not called unless the
mobject __init__() method does so. This means that, for the mobject, the values
of position and visual are not specified by the constructor and will take the de-
fault values they were given in the gobject class. If no such value was given, they
will be undefined and an error will occur if they are referenced.

Calling the __init__() method of the parent class can be done as follows:
super().__init__((10,10,10), None)

In this instance the constructor for gobject is called, passing a position and a
visual. This would normally be done only in the __init__() of the subclass.

Now consider the following code. The methods are mainly stubs that print a
message, but the output of the program is instructive:

class gobject:
Object position in 3D
 position = (0, 0, 0)
Graphics that represent the
object
 visual = None
 def __init__ (self,pos,vis):
 self.position = pos
 self.visual = vis
 print ("gobject init")
 def getPosition (self):
 return self.position
 print ("getPosition")
 def setPosition(self, p):
 self.position = p
 print ("setPosition")
 def setVisual(self, v):
 self.visual = v
 print ("setVisual")
 def draw (self):
 print("Draw")

class mobject (gobject):
Speed in pixels per frame the
x,y,z directions
 speed = (0, 0, 0)
 def __init__ (self, s):
 self.speed = s
 super().__init__

((10,10,10), None)
 print ("mobject init")
 def getSpeed(self):
 print ("getSpeed")
 return self.speed
 def setSpeed(self, s):
 print ("setSpeed")
 self.speed = s
 def move(self):
 print ("Move")
 def collision(self,

 gobject):
 print ("collision")

g = gobject ((12, 12,12), None)
m = mobject((13,13,13))
print (m.getPosition())
m.move()
m.draw()

Output from this is:
gobject init	 from the creation of the gobject instance g

246 ■ Python: An Introduct ion to Programming

gobject init	� when m is created it calls the parent __
init__

mobject init	 from the mobject __init__ when m is created
(10, 10, 10)	� m.getPosition, showing access to parent

methods
Move	 m.move call
Draw	� m.draw call, again showing access to parent

method

Attempting to call g.move() would fail because there is no move() method
within the gobject class. Hence, if an object was passed to a function that would
attempt to move it, it would be critical to know whether the parameter passed was
a gobject or an mobject. Consider a method that moves an object x out of the path
of an mobject instance if it can, or changes the path of the mobject if it cannot.
This method, named dodge(), might do the following:

def dodge self, (x):
 c = x.getPosition()
 c = c + (dx, dy, 0)
 x.setPosition (c)

However, if the parameter is an instance of a gobject, then it should not be
moved. The function isinstance() can be used to determine this. The result of:

isinstance (x, gobject)

will be True if x is a gobject and False otherwise. If False, then it can’t be moved
and the dodge() method will have to move the current mobject out of the way
instead:

def dodge self, (x):
 if isinstance(x, gobject):
 self.position = self.position + (dx, dy, 0)
else:
 c = x.getPosition()
 c = c + (dx, dy, 0)
 x.setPosition (c)

	 6.4	 DUCK TYPING
In many programming languages, types are immutable and compatibility is

enforced. This is not generally true in Python, but still there are operations that

 Chapter 6 · Classes ■ 247

require specific types. Indexing into a string or tuple must be done using something
much like an integer, and not by using a float. Now that classes can be used to
build what amounts to new types, more attention should be paid to the things
a type should offer and the requirements this puts on a programmer. A Python
philosophy could be that the fewer restrictions the better, and this is a principle
of duck typing as well.

It should not really matter what the exact type of the object is that is be-
ing manipulated, only that it possesses the properties that are needed. In a very
simple case, consider the classes point and triangle that were discussed at the
beginning of this chapter. It was proposed that both could have a draw() method
that would create a graphical representation of these on the screen, and both have
a move() method as well. A function could be written that would move a triangle
away from a point and draw them both:
def moveaway (a, b)
 dx = a.getx()-b.getx()
 dy = a.gety()-d.gety()
 a.move (dx/10, dy/10)
 b.move (-dx/10, -dy/10)

Question: which of the parameters, a or b, is the triangle, and which is the point?
Answer: it does not matter. Both classes have the methods needed by this func-
tion, namely getx(), gety(), and move(). Because of this the calls are symmetrical,
and both of the following are the same:

moveaway (a, b)
moveaway (b, a)

In fact, a class that possesses these three methods can be passed to move-
away() and a result will be calculated without error. The essence of duck typing
is that, so long as an object offers the service needed (i.e., a method of the correct
name and parameter set) to another function or method, then the call is accept-
able. There is a way to tell whether the class instance a has a getx() method. The
built-in function hasattr():

if hasattr (v1, "getx"):
 x = v1.getx()
The first argument is a class instance, and the second is the name of the

method that is needed, as a string. It returns True if the method exists.

248 ■ Python: An Introduct ion to Programming

The name comes from the old saying that “if something walks like a duck and
quacks like a duck, then it is a duck.” As long as a class offers the things asked
for, then it can be used in that context.

	 6.5	 SUMMARY
A class, in the general sense, is a template for something that involves data

and operations (functions). An object is an instance of a class, a specific instan-
tiation of the template. Defining a class in Python involves specifying a class
name and a collection of variables and functions that will belong to that class. A
method is a function that belongs to a class, and so can have easy access to its
internal data. As a first parameter, a method can be passed the self variable by
default, which can be thought of as a reference to the object currently executing.
Thus, within a method, the expression self.x refers to a variable x defined in the
class. An object is created using the name of the class: for a class named thing,
an instance x is created using x = thing(). When this occurs, if there is a method
in thing named __init__, then that method is called. This is referred to as an
initializer or a constructor.

Accessing methods in an object is done using a “dot” notation: obj.method().
Variables can be accessed in this way too.

A subclass is a class that possesses all of the properties of some other class,
the parent class or superclass, plus some new ones. The data and methods of the
parent class can be accessed from the subclass (or child class). A subclass of thing
named something would be defined using the syntax:

class something(thing):

A class can represent a new type, where methods represent operations.

Public variables can be accessed and modified from outside of a class; pro-
tected variables can be accessed but not modified from outside of a class, and
must begin with an underscore character (e.g., “_variable”); private variables can
neither be accessed nor modified from outside of the class, and must begin with
two underscore characters (e.g., “__variable”).

The principle of duck typing is that it should not really matter what the exact
type of the object is that is being manipulated, only that it possesses the properties
that are needed.

 Chapter 6 · Classes ■ 249

Exercises

	 1.	Define a class named square in which the construct takes the length of the
side as a parameter. This class should have a method area() that computes
and returns the area of the square.

	 2.	Define a subclass of square named button that also has a location, passed as
X and Y parameters to the constructor. A button always has a width of 10.
The button class has the following methods:
center()	 Return the coordinates of the center of the button
label(s)	 Set the value of a text label to be drawn to s

	 3.	Create a class client. A client is a data-only class that has no methods other
than __init__(), but that holds data. In this case the client class holds a name,
a category (retail or commercial), a time value (integer), and a service value
(integer). All values are established when the instance is created by passing
parameters to __init__(). Now create two subclasses of client, one for each
category, retail and commercial.

	 4.	Define a class named fraction that implements fractional numbers. The
constructor takes the numerator and denominator as parameters, and the
class provides methods to add, multiply, negate (make negative), print, and
find the reciprocal of a fraction. Test this class by calculating:

	 14/16 * 3/4
	 1/2 – 1/4

Bonus: results are reduced to smallest possible denominator.

	 5.	Given the following class:
class value:

	 def __init__ (self)
	 self.val = randrange(0,100)

and the initialization:

	 t = ()
	 for i in range(0,100):
	 v = value()
	 t = t + (v,)

250 ■ Python: An Introduct ion to Programming

�write the code that scans the tuple t and locates the smallest integer saved in
any of the class instances.

	 6.	Create a class that simulates a NAND logic gate with three inputs. The output
will be 1 unless all three inputs are 1, in which case the output is 0. Every
time an input is changed, the output is changed to reflect the new state;
thus, methods to set each input and to calculate the result will be needed, in
addition to a method that returns the output.

Input 1 Input 2 Input 3 Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 6.1
Truth table for the 3-input NAND gate.

	 7.	A queue is a data structure that accepts new (incoming) data at one end
(the back) and stores it in the order of arrival, giving the data at the front of
the queue when requested. It’s like a line at a cashier in a store: customers
wait for the cashier in order of arrival. Implement a queue as a class; it has
operations into() and out() to add things and remove things from the queue,
and empty(), which returns True if the queue has no data in it. What is added
to the queue are objects of a class client, as seen in Exercise 6.3 above.

	 8.	Simulation: The gestation period for a rabbit is 28–32 days, and they will
breed a week after having a litter. A female rabbit (a doe) will breed for the
first time at about 100 days old. Create a class that represents a rabbit and
simulate the growth of a rabbit population that starts with three does at day 0.
Assume a litter size of between 3 and 8, and that half of the offspring will be
male. Increase time by 1 day at a time and answer the question: “How many
rabbits will there be after 1 year?” if the initial population is three does and
one male (buck).

Figure 6.6
The symbolic representation
used in a circuit.

 Chapter 6 · Classes ■ 251

Notes and Other Resources

Notes on Python Classes:
http://www.jesshamrick.com/2011/05/18/an-introduction-to-classes-and-inheri-
tance-in-python/
August 12, 2015. http://componentsprogramming.com/using-the-right-terms-
method/
Duck typing in Python: http://www.voidspace.org.uk/python/articles/duck_typ-
ing.shtml

	 1.	R. Chugh, P. Rondon, and R. Jhala. (2012, January). Nested refinements:
A logic for duck typing, ACM SIGPLAN Notices, 47(1), 231–244.

	 2.	Ole-Johan Dahl. (2002). The birth of object orientation:
The Simula languages, in Software Pioneers: Contributions to
Software Engineering, edited by Manfred Broy and Ernst Denert,
Programming, Software Engineering, and Operating Systems Series,
Springer, 79–80.

	 3.	O.-J. Dahl and K. Nygaard. (1968). Class and subclass declarations, in
Simulation Programming Languages, edited by J. Buxton, Proceedings
from the IFIP Working Conference in Oslo, May 1967, North Holland.

	 4.	Adele Goldberg and Alan Kay. Smalltalk-72 Instruction Manual, 44.

	 5.	ANSI Smalltalk Standard v1.9 199712 NCITS X3J20 draft, Section 3.1, 9.

	 6.	B. Liskov, A Snyder, R. Atkinson, and C. Schaffert. (1977). Abstraction
mechanisms in CLU, Communications of the ACM, 20(8), 564–576.

■ ■ ■ ■ ■

In this chapter

Since the advent of Windows, computer graphics has been assumed as a fea-
ture of a computer. Before that it was a relatively rare thing, relegated to some
research, to a few expensive Hollywood movies, and to science fiction. Believe it
or not, the first use of computer graphics in a commercial motion picture was in
the film The Andromeda Strain (1971) in which it was used to show a rotating 3D
map (they called it an electronic diagram) of the underground installation where
the action mainly takes place. A few years later the film Westworld (1973) used
2½ minutes of digitally processed video to show the visual perspective of an an-
droid. It was a very time-consuming and expensive task at that time; it took about
8 hours to process 10 seconds of film, or about 120 hours in all.

Modern computers all possess very fast graphics cards that perform most
of the rendering tasks, and added to the built-in software on current operating
systems, it allows for a very sophisticated yet simple-to-use graphical/windows
interface to desktop computers. The graphics software is hierarchical; the screen
itself is merely an array of picture elements (pixels) that can be set to any col-
or, and it is difficult to see how that can be made to display complex pictures.

7Chapter

Graphics

7.1	� Introduction to Graphics Programming��254

7.2	 Summary��280

254 ■ Python: An Introduct ion to Programming

It has reached the point where everything seen on a computer screen is actually
drawn—icons, windows, backgrounds, and even text.

What this means is that interacting with a computer is now done with graph-
ics, not characters and text. Since that is the situation, it makes sense to permit a
beginning programmer to experiment with programming graphics applications.

	 7.1	 �INTRODUCTION TO GRAPHICS
PROGRAMMING

At the most primitive level of graphics software is the ability to set individ-
ual pixels. It is, as was mentioned, quite difficult to use this capability to create
complex pictures. How is a dog drawn, or a building, or even just a straight line?
Those things have been figured out, fortunately.

So at the bottom layer of software are functions that manipulate pixels. At
the next level are lines and curves; these are the basic components of drawings
and sketches. An artist with a pencil uses lines and curves to represent scenes.
At the level above lines are functions that use lines to create other objects, such
as rectangles, circles, and ellipses. These can be line drawings or can be filled
with colors. The next higher levels can be argued about, but text is probably in the
next software layer and then shading and images followed by 3D objects, which
includes perspective transformation and textures.

Python does not itself have graphics tools, but various modules that are as-
sociated with Python do. The standard graphical user interface library for use
with Python is tkinter. There are many features of this module, including the
creation of windows, drawing, user interface widgets like buttons, and a host of
other features. It is free and is normally included in the Python distribution but
it can easily be downloaded and used with any Python version. Because there are

Figure 7.1
Stills from the first computer graphic sequence in a major motion picture:
The Andromeda Strain (Courtesy of Universal Studios Licensing LLC).

 Chapter 7 · Graphics ■ 255

many ways that Python can be configured on various different systems, the in-
stallation process will not be described in detail here. A graphics module will be
described and is included on the DVD that accompanies this book, and it requires
that tkinter be available. This is almost always true (remember that this book uses
Python 3).

The library that allows graphics programming is called Glib. If the Glib.py
file is in the same directory as the source code for the Python program that uses
it, then it should work fine. Glib consists of a collection of functions that imple-
ment the first few levels of a graphics system and that create a window within
which drawing can take place. It does not allow for interaction, animation, sound,
or video, all of which are the subject of the next chapter.

	7.1.1	 Essentials: The Graphics Window and Colors

To start creating computer graphics, it is necessary to understand how colors
and images are represented. When using a computer everything must be repre-
sented as numbers. A pixel is the color of a picture at a particular location, and so
there must be a way to describe a color at that place. In physics frequency is used:
each color has a specific frequency of electromagnetic radiation. Unfortunately,
this does not map very well onto a computer display, because it is based on tele-
vision technology. On a TV, there are three colors, red, green, and blue, that are
used in various proportions to represent every color. There are red, green, and
blue dots on the TV screen that are lit up to various degrees to create the colors
that are seen. This is based on the way a human eye sees color; there are red,
green, and blue sensors in the eye that in combination create our color perception.
Another reason that frequency is not used is that there are colors that are not ac-
curately represented as frequencies; they do not appear in the rainbow. The colors
pink and brown are two examples.

So, each color in the graphics system is represented as the degree of red,
green, and blue that combine to create that color. In that sense it is a bit like mix-
ing paint. Yellow, on a computer, is a mixture of red and green. Each pixel there-
fore has three components: a red, green, and blue component. These could be
expressed as percentages, but when using a computer it is better to select numbers
between 0 and 255 (8 bits, or 1 byte) for each color. Each pixel requires 3 bytes
of storage; actually 4 bytes in some cases, as will be seen shortly. If an image

256 ■ Python: An Introduct ion to Programming

contains 100 rows of 100 pixels, then it has 10,000 pixels and is 10000*3=30000
bytes in size.

To humans, colors have names. Here’s a list of some named colors and their
RGB equivalents:

Color Red Green Blue Color Red Green Blue
Black 0 0 0 Olive 128 128 0
White 255 255 255 Khaki 240 230 140
Red 255 0 0 Teal 0 128 128
Green 0 255 0 Sienna 160 83 45
Blue 0 0 255 Tan 210 180 140
Yellow 255 255 0 Indigo 75 0 130
Magenta 255 0 255 Orange 255 165 0

There are, of course, a great many more named colors, and even more col-
ors that can be represented with RGB values in this way—16,777,202 of them
in fact. Each pixel is a color value. All grey values have the special situation
R=G=B, so there are 256 distinct values of grey ranging from black to white.

The graphics library provides functions for creating colors. The functions are
cvtColor() and cvtColor3():

cvtColor(g)	 - �Return a color value that has R=G=B = g, which is to
say it specifies a grey level = g.

cvtColor3(r,g,b)	 - �Return a color value that has the specified R,G,B
values.

When using Glib the program must initialize the system before drawing any-
thing. All graphics must take place between a call to startdraw() and a call
to enddraw(). If startdraw() is not called then important items will not be
initialized, most especially a drawing window will not be created and an er-
ror will occur at some time during execution. If enddraw() is not called then
nothing will be drawn. For an abstract example, a hypothetical main program
could be:
start of program
 Many calculations
 . . .

 Chapter 7 · Graphics ■ 257

 startdraw(width, height)
Graphics calls
 . . .
 enddraw()

The function startdraw() accepts two parameters: the width and the height
of the drawing region to be created. These values can be retrieved by a program
using calls to the functions Width() and Height() if they are needed. Start-
draw() creates the needed window and drawing area, initializes starting colors,
fonts, and modes, but does not open the window. Nothing that is drawn will be
visible until enddraw() is called.

	7.1.2	 Pixel Level Graphics

The only pixel level operation draws a pixel at a specified location; so, for
example, the call:

point (x, y)

will set a pixel at column (horizontal position) x and row (vertical position) y
to a color. What color? Glib has two default colors that can be set: the fill color,
which is the color with which pixels will be drawn, polygons and ellipses will
be filled, and characters will be drawn; and the stroke color, the color with
which lines will be drawn. Setting the fill color is done using a call to the fill()
function:
fill (200) # Set the fill color to (200, 200, 200)
fill (100, 200, 100) # Set the fill color to (100, 200, 100)

Using one parameter sets the fill color to a grey value, whereas passing three
parameters specifies the red, green, and blue values (respectively) of the fill color.
Similarly the function stroke() can accept one or three parameters:
stroke (200) # Set the stroke color to (200, 200, 200)
stroke (255, 0, 0) # �Set the stroke color to
 # (255, 0, 0) = red

There is one more function that could be thought to be in the pixel level
category. The function background() is used to set the background color of
the graphics window. Again, it can accept either one parameter (grey) or three
(color). This leads to the first example.

258 ■ Python: An Introduct ion to Programming

Example: Create a Page of Notepaper

Notepaper has blue lines separated by enough space to write or print text
between them. It often has a red vertical line indicating an indentation level, a
place to begin writing. Drawing this is a matter of drawing a set of connected
blue pixels in a set of rows, and then making a vertical column of red pixels. Here
is one way to code this:
from Glib import *
y = 60 # Height at which to start
startdraw(400, 600) # Begin drawing things
background(255) # Paper should be white
fill (0, 0, 200) # �Fill color = pixel
 # color = blue
for n in range (0, 27): # �Draw 30 horizontal blue
 # lines
 for x in range (0,Width()): # �Draw all pixels in one
 # line
 point (x, y) # Draw a blue pixel
 y = y + 20 # �The next line is 20
 # pixels down
fill (200, 0, 0) # Pixel color red
for y in range (0, Height()): # �Draw connected vertical
 # pixels
 point (25, y) # to form the margin line
enddraw()

The output of this program is shown in Figure 7.2a. When pixels are drawn
immediately next to each other they appear to be connected, and so in this case
they form horizontal and vertical lines. This is not easy to do for arbitrary lines;
it is not obvious exactly which pixels to fill for a line between, say, (10, 20) and
(99, 17). That’s why the line drawing functions exist.

Example: Creating a Color Gradient

When creating a visual on a computer, the first step is to have a clear picture
of what it will look like. For this example, imagine the sky on a clear day. The
horizon shows a lighter blue than the sky directly above, and the color changes
continuously all of the way from horizon to zenith. If a realistic sky background
were needed, then it would be necessary to draw this using the tools available.
What would the method be?

 Chapter 7 · Graphics ■ 259

First, decide on what the color is at the horizon (y=ymax) and at the highest
point in the scene (y=ymin). Now ask: “how many pixels between those points?”
The change in pixel color will be the color difference from ymax to ymin divided
by the number of pixels. Now simply draw rows of pixels beginning with the
horizon and moving up the image (i.e., decreasing Y value), changing the color
by this amount each time.

As an implementation, assume that the color at the horizon will be blue = (40,
40, 255) and the top of the image will be (40, 40, 128), a darker blue. The height of
the image will be 400 pixels; the change in blue over that range is 127 units. Thus,
the color change over each pixel is going to be 127.0/400, or about 0.32. A color
can’t change a fractional amount, of course, but what this means is that the blue
value will decrease by 1 unit for every 3-pixel increase in height. Do not forget
that the horizon is at the bottom of the image, which has the greatest Y coordinate
value, so that an increase in Y means a decrease in height and vice versa.

The example program that implements this is:
from Glib import *
blue = 128
startdraw(400, 400)
delta = 127.0/Height()
for y in range (0, Height()):
 yy = Height()-y
 fill(40, 40, blue)
 for x in range(0, Width()):
 point (x, y)
 blue = blue + delta
enddraw()

	    
	 (a)	 (b)

Figure 7.2
(a) A graphic of a sheet of lined paper; (b) a color gradient.

260 ■ Python: An Introduct ion to Programming

Figure 7.2b shows what the gradient image looks like (a full-color version of
this and all images is on the accompanying disc).

	7.1.3	 Lines and Curves

Straight lines and curves are more complex objects than pixels, consisting
of many pixels in an organized arrangement. A line is actually drawn by setting
pixels, though. The fact that a line() function exists means that the programmer
does not have to figure out what pixels to draw and can focus on the higher level
construct, the line or curve.

A line is drawn by specifying the endpoints of the line. Using Glib the call is:
line (x0, y0, x1, y1)

where one end of the line is at (x0,y0) and the other is at (x1,y1). The color of the
line is specified by the stroke color. If any part of the line extends past the bound-
ary of the window, that’s OK; the line will be clipped to fit.

Example: Notepaper Again

The example of drawing a piece of notepaper can be done using lines instead
of pixels, and will be a little faster. Set the stroke color to blue and draw a col-
lection of horizontal lines (i.e., that have the same Y coordinate at the endpoints)
separated by 20 pixels, as before. Then draw a vertical red line for the margin.
The program is a variation on the previous version:
from Glib import *
y = 60 # Height at which to start
startdraw(400, 600) # Begin drawing things
background(255) # Paper should be white
stroke (0, 0, 200) # �Fill color = pixel
 # color = blue
for n in range (0, 27): # Draw 30 horizontal blue lines
 line (0, y, Width(), y) # Draw a blue horizontal line
 y = y + 20 # The next line is 20 pixels
 # down
stroke (200, 0, 0) # Pixel color red
line (25, 0, 25, Height()) # Draw a vertical red line
enddraw()

The output from this program is the same as that for the version that drew
pixels, which is shown in Figure 7.2a.

ON THE CD

 Chapter 7 · Graphics ■ 261

A curve is trickier than a line, in that it is harder to specify. The method used
in Glib is based on that in tkinter: a curve (arc) is defined as a portion of an ellipse
from a starting angle for a specified number of degrees, as referenced from the
center of the ellipse. The angle 0 degrees is horizontal and to the right; 90 degrees
is upwards (decreasing Y value). The ellipse is defined by a bounding rectangle,
specifying the upper left and lower right coordinates of a box that just holds the
ellipse. So, looking at Figure 7.3, the rectangle defined by the upper left corner at
(100, 50) and the lower right at (300, 200) has a center at (200, 125) and contains
an ellipse slightly longer than it is high (upper left of the figure). The function
that draws a curve is named arc(), and takes the upper left and lower right coor-
dinates, a starting angle, and the size of the arc also expressed as an angle.

arc (100, 50, 300, 200, 45, -60, CHORD) arc (100, 50, 300, 200, 45, -60, PIESLICE)

(100, 50) (100, 50)

345˚

45˚

345˚

45˚

Figure 7.3
The result of calls to the arc function with various parameters.
This illustrates how the function can be used.

In the upper right of the figure is the arc drawn by the call arc(100,50, 300,
200, 0, 90), which means that the part of the ellipse from the 0 degree point coun-
terclockwise for 90 degrees will be drawn. The example at the lower left of the
figure draws the curve from the 45-degree point for 90 degrees, resulting in the
upper section of the ellipse being drawn. The final arc shown, at the lower right,
uses a negative angle. The call arc(100,50,300,200,45,-60) starts at the 45-de-
gree point and draws the arc clockwise, because the angle specified was negative.

This way of specifying arcs is fine for simple examples and single curves, but
makes combining many arcs into a more complex curve rather difficult. Joining
the ends together smoothly is the trick.

The arc() function has another parameter that can be specified. The seventh
parameter tells the system what kind of arc to draw; the possibilities are ARC,

262 ■ Python: An Introduct ion to Programming

CHORD, and PIESLICE, and the default value ARC is illustrated in the figure.
The call:

arc (100, 50, 300, 200, 45, -60, CHORD)

gives the result shown in Figure 7.3a. The result of the call:

arc (100, 50, 300, 200, 45, -60, PIESLICE)

is shown in Figure 7.34b. If filling is turned on, then these shapes would be filled
with the default fill color. A major example involving curves/arcs is the pie chart
program later in this chapter.

	7.1.4	 Polygons

For the purposes of discussion, a polygon will include all closed regions, in-
cluding ellipses and circles. In that context, the arc() function can be used to draw
circles and ellipses by specifying an angle very near to 360 degrees. The call:

arc (100, 100, 300, 300, 0, 359.9, ARC)

will draw a nearly complete circle, one that looks complete. However, there is a
function that draws real circles and real ellipses: it is named ellipse(). In the de-
fault drawing mode the ellipse() function is passed the coordinates of the center

(100, 50)

(300, 200)

200, 125

(100, 50)

(300, 200)

arc(100,50,300,200,0,90)

90˚
0˚

(100, 50)

(300, 200)

arc(100,50,300,200,45,90)

135˚ 45˚

(100, 50)

(300, 200)

arc(100,50,300,200,45,-60)
345˚

45˚

Figure 7.4
The CHORD parameter (left) and the PIESLICE parameter (Right) to the arc function.

 Chapter 7 · Graphics ■ 263

of the ellipse and its width and height in pixels. If the width and height are equal,
then the result is a circle. The call:

ellipse (100, 100, 30, 40)

draws the ellipse shown in Figure 7.4a. The color with which the ellipse is filled
is the fill color. If no filling is desired then a call to nofill() turns off filling.

The default mode for drawing ellipses is referred to as CENTER mode,
where the center of the ellipse is given. There are three others: RADIUS mode,
in which the width and height parameters represent semi-major and semi-minor
axes; CORNER mode in which the upper left corner is specified instead of the
center; and CORNERS mode, in which the upper left and the lower right corner
of the bounding box are specified. The mode is changed using a call to the func-
tion ellipsemode(), passing one of the four constants as the parameter: CENTER,
RADIUS, CORNER, or CORNERS.

A rectangle is drawn using the rect() function. Again, there are four drawing
modes. Consider the call rect (x, y, w, h):

CENTER mode:	 x, y are the coordinates of the center; w and h are the
width and height.

RADIUS mode:	 x, y are the coordinates of the center; w and r are the
horizontal and vertical distances to an edge.

CORNER mode:	 x, y are the coordinates of the upper left corner;
w and h are the width and the height.

CORNERS mode:	 x, y are the coordinates of the upper left corner;
w and h are the coordinates of the lower right corner.

As with the ellipse, the rectangle drawing mode is changed by call a function,
this time rectmode().

The function triangle() draws—yes, a triangle. It is passed three points,
which is to say six parameters: triangle (10,10, 20, 20, 30, 30) draws a triangle
between the three points (10,10), (20,20), and (30,30).

	7.1.5	 Text

Drawing text is not complicated, but changing fonts is more of a problem.
A font is saved on a file and has to be installed. If a font is specified by a program

264 ■ Python: An Introduct ion to Programming

but does not exist, then either the finished image will look different from what was
anticipated or an error will occur. Drawing text is performed by a call to text():

text ("Hello there.", x, y)

This draws the text string “Hello there!” in the graphics window so that the
lower left of the text is at location x, y. The default text size is 12 pixels, but can
be changed by a call to textsize() passing the size desired.

	7.1.6	 Example: A Histogram

A histogram is a way to visualize numerical data. It is especially useful for
discrete data like colors or political parties or choices of some kind, but can also
be used for continuous data. It displays counts of something against some other
value, a category; percentage of people voting for specific parties, or the heights
of grade six girls. It draws bars of various heights each representing the number
of entries in each category. In this example the only problem is the plotting of the
histogram, but the more general programming problem would include collect-
ing and organizing the data. In this case the program will read a data file named
“histogram.txt” that contains a few key values. The program variable names and
the corresponding data file values are:

Variable Contents
title Title to be drawn at the top of the graph
ncategories Number of categories
maxsize Maximum size of any category
hlabel Horizontal label
vlabel Vertical label
val[1] Value for category 1
val[2] Value for category 2
 …
lab[1] Label for category 1
lab[2] Label for category 2

…

When creating a graph, it pays to design it carefully. In this case the histo-
gram will have the general appearance shown in Figure 7.5a. This visual layout

 Chapter 7 · Graphics ■ 265

helps with the details of the code, especially if the design has been drawn on
graph paper so that the coordinates can easily be determined.

Assume that the variables needed have been read from the file (See: Exercise
2). Here’s what the program must do:

Create a window about 600x600pixels in size.
Draw the horizontal and vertical axes (120, 80)
Draw the title and axis labels.

Title goes here (Large font)

Vertical
label
here
(medicum
font)

Horizontal label here (medicum font)
100, 500

100,100

500, 500

10 pixels left
at the end

val[1]

val[2]

val[3]

val[4]

val[5]

val[6] val[7]

ncategories = 7
rectangle width = (400-10)/7 = 55 pixels

lab[1] lab[2] lab[3] lab[4] lab[5] lab[6] lab[7]

Figure 7.5
The visual design of a histogram before it is coded.

Determine the width and height of each rectangle.
For i in range (0,ncategories)
	 Draw rectangle i
	 Draw label i
Development can now proceed according to the plan. Create a window, set

the background, and change the font to Helvetica (a favorite):
startdraw (600, 600)
background(180)
setfont("Helvetica")

266 ■ Python: An Introduct ion to Programming

Now draw the axes. Y-axis (vertical) from 100,100 to 100,500; X-axis (hori-
zontal) from 100,500 to 500,500. Use a thicker line by setting the stroke weight
to 3 pixels.

strokeweight (3)
line (100, 100, 100, 500) # Y axis
line (100, 500, 500, 500) # X axis

The title is in a large font (24 pixels) at the top part of the canvas (y=80)
textsize (24) # Title uses a big font
text (title, 120, 80) # It’s at the top of the drawing

The horizontal axis label is in a smaller font (14 pixels) at the bottom of the
canvas (y-580). It looks nicer if the text is basically centered. It’s hard to do this
exactly because there is no easy way to find out how long a string will be when
drawn. However, a string that is 14 pixels in size and N characters long will be
approximately N*14 pixels long when drawn. The axis is 400 pixels wide, so the
amount of leftover space will be 400-N*14. Divide this in half to get the indenta-
tion of the left to approximately center the string!
textsize (14) # Labels use a medium sized font
cx = (400-len(hlabel)*14)/2 # How many pixels to indent
text (hlabel, 100+cx, 580) # Centered at the bottom

Drawing the vertical label is more difficult, and so it will be done later. Make
it a function and move on

verticalLabel(vlabel)

It is time to draw the rectangles. The width of each one will be the same,
and is the width of the drawing area divided by the number of categories. The
height will be the height of the drawing area divided by the maximum value to
be drawn, maxsize. Compute those values and set the line thickness to one pixel,
then set a fill color. Using the CORNER rectangle drawing mode is easiest for
this application, as all that needs to be figured out is the upper left coordinate—
the width and height are already known.
wid = (400-10)/ncategories # Width of a box in pixels
ht = 390.0/maxsize # Each value is this many pixels high
strokeweight (1) # Rectangle outline 1 pixel thick
fill (200, 50, 200) # Purple fill
rectmode (CORNER) # Corner mode is easiest

 Chapter 7 · Graphics ■ 267

Now make a loop that draws each rectangle. The X position of a rectangle is
its index times the width of a rectangle—that’s easy. The height of the rectangle
is the value of that data element multiplied by the variable ht that was determined
before. It’s also a good idea to draw the value being represented at the top of the
bar, which is just above and to the right of the rectangle’s upper left.
for i in range(0,ncategories):
 ulx = 100 + i*wid+2 # Upper left X
 uly = 500 - val[i]*ht # Upper left Y
 rect (ulx, uly, wid, val[i]*ht-2) # Height is val[i]*ht
 text (val[i], ulx+5, uly-2) # Draw the value at the top

Finally, draw the labels for each rectangle. These are below the X axis, cen-
tered more or less within the horizontal region for each bin. The labels start at the
Y axis (X=100 or so) and their location increases by the width of the bin during
each iteration of the drawing loop. The Y location is fixed, at 520—the X axis is
500. Finally, an attempt to center these labels is done in the same way that it was
done for the horizontal label, but the parameters are different.
x = 100+2 # Start at X=100 with extra for the thinck line
textsize(10) # Use a small size font
fill (255, 255, 255) # Text will be white
for i in range (0,ncategories): # for each rectangle
 cx = (wid-len(lab[i]*9)) # Indexnt to center the text
 if cx < 0: cx = 0 # Indent can’t be negative
 text (lab[i], x+cx/2, 520) # Draw the label
 x = x + wid Next label is one rectangle right
enddraw()

Drawing the vertical label involves pulling out the individual words and
drawing each one on its own pixel row. Words are separated by spaces (blanks),
so one way of drawing the vertical text is to look for a space in the text, draw
that word, then move down a few pixels, extract the next word, draw it, and so
on until all words have been drawn. The text will be drawn starting at X=12, and
the initial vertical position will be 200, moving down (increasing Y) by 40 pixels
for each word. This is done by the function verticalLabel(), which is passed the
string to be drawn:
def verticalLabel(v):
 lasti = 0 # Index of the next word in the string
 x = 12 # Start drawing at X=12
 y = 200 # and Y=200

268 ■ Python: An Introduct ion to Programming

 for i in range(0, len(v)): # �Look at all characters in
 # the label
 if (v[i] == " "): # �A black indicate the end of a
 # word
 text (v[lasti:i], x, y) # Draw the word
 y = y + 40 # Move down 40 pxiels
 lasti = i # �end of this word is the
 # startof the next
 text (v[lasti:], x, y) # �Draw the last word
 # after exiting the loop

This program is available on the disk as two examples: “viperHisto.py” and
“gradesHisto.py,” which draw histograms of two different sets of data. The out-
put from these two programs is shown in Figure 7.6.

This is a minimal program, and won’t always create a nice image. Labels that
are too long and use too many categories can cause badly formatted graphics.

	7.1.7	 Example: A Pie Chart

A pie chart is really just a histogram where the relative size of the categories
is illustrated by an angle instead of the height of a rectangle. Each class is shown
as a pie-shaped slice of a circle whose area is related to its proportion of the whole
sample. Pie-shaped regions are easy, because arc() will draw them. So, using the
same examples as before, look specifically at the grades data: there are 38 stu-
dents whose grades are being displayed, and there are 360 degrees in a circle. A
category of 10 students, for example (such as those receiving a “B” grade), will
represent a pie slice that is 10/38 of the whole circle, or about 95 degrees. The
process seems to be to determine how many degrees each category represents
and draw a pie slice of that size until the whole pie (circle) is used up.
Create a window about 600x600 pixels in size
Draw the title label
Establish a fill color
For i in range (0,ncategories)
 Determine the angle A used for this category i
 Draw arc from previous angle for A degrees
 Draw label i for this slice
 Change the fill color

The labels may present a problem, as they may not fit inside the pie slice. It is
probably best to display the label outside of the slice and draw a line to the slice
that represents it.

 Chapter 7 · Graphics ■ 269

The program is similar to that for the histogram. So, beginning after the label
is drawn:

Find the total number of elements in all categories—in this case, the number
of students in the class. This is the sum of all elements in val.

 

	 (a)	 (b)
Figure 7.6
(a) Histogram of a set of data on access to a cell phone game;
(b) grades in a university art course.

totalSize = 0
r = 255
fill (r, 200, 200)
for i in range (0, ncategories):
 totalSize = totalSize + val[i]

Each count val[i] in a category represents val[i]/totalSize of the entire data
set, or the angle 360.0*val[i]/totalSize. The constant 360/totalSize will be named
anglePerCount. Now starting at angle 0 degrees, create a pie-shaped arc the size
of each category:

angle = 0
for i in range(0,ncategories):
 span = val[i]*anglePerCount
 arc (150, 150, 450, 450, angle, span, PIESLICE)

Draw the label—this has been left for later, so call a function.
label (300, 300, 150, lab[i], angle, span)

270 ■ Python: An Introduct ion to Programming

The angle to start drawing must be increased so that the next arc starts where
this one left off:

angle = angle + span

	 (a)	 (b)
Figure 7.7
(a The pie chart drawn using Glib, (b) how to find the placement for labels on the chart.

Change the fill color so that each pie piece is a different color. The code
below changes the red component just a little.

r = r - 20
fill (r, 200, 200)

Figure 7.7b shows a way to determine where a label could go; a line from the
center of the circle through the outer edge points in the direction of the label. Simply
find the x and y coordinates. The y coordinate is the sine of the angle * the distance
from the center, and the x coordinate is the cosine of the angle * the same distance.
For a distance, use the radius * 1.5. The function label() can now be written:
def label (xx, yy, r, s, a1, ap):
 angle = a1 + ap/2 # �Bisector= start angle + half of
 # span
 d = r*1.25 # Distance
 x = cos (angle*3.1415/180.) * d + xx # Angle is radians
 y = -sin (angle*3.1415/180.) * d + yy # Y is inverted
 text (s, x, y)

The result is illustrated in Figure 7.8.

 Chapter 7 · Graphics ■ 271

There’s one more thing that could be added to the pie chart program. Some-
times, one of the pieces is moved out of the circle to emphasize it. It turns out that
this useful feature can be implemented in a manner very similar to the way the
labels were drawn. Find the bisector of the angle for that section and before it is
drawn identify a new center point for that piece a few pixels down that bisector.
This pulls the piece away from the original circle center.

The code is brief, and is included below to be complete:

  
	 (a)	 (b)

Figure 7.8
(a) The basic pie chart with labels;
(b) the chart with one of the sections separated to emphasize it.

def pull (x, y, a1, ap):
 angle = a1 + ap/2 # a1 is the angle, ap is the span
 d = 12 # �Pull out only a small amount
 # (12 pixels)
 y = -sin (angle*3.1415/180.) * d + y # �New center
 # coordinates
 x = cos (angle*3.1415/180.) * d + x
 arc (x-150, y-150, x+150, y+150, a1, ap, PIESLICE)

This function is called instead of the call to arc() for the piece that is to be
pulled out. A sample output is shown in Figure 7.8b.

	7.1.8	 Images

Unlike the graphical components displayed so far, an image is fundamentally
a collection of pixels. A camera captures an image and stores it digitally as pixels,

272 ■ Python: An Introduct ion to Programming

and so it was never anything else. Displaying an image means drawing each pixel
in the appropriate color, as captured.

Glib can load and display images in a limited fashion. Images reside in files
of various formats: JPEG, GIF, BMP, PNG. The same image in each format is
stored in a quite distinct way, and it can require a lot of code just to get the pix-
els from the image. Python, through tkinter, allows GIF image files to be read
directly. Any image file can be converted into a GIF by using one of a hundred
conversion tools, including Photoshop, Paint, and Gimp to name a few.

The function loadImage() will read a GIF image file and return an image
of a sort that can be displayed in the graphics window. The file “charlie.gif  ” is a
photo of checkpoint Charlie in Berlin, and has been included on the accompany-
ing disc. It could be read into a Python program with the call:

im = loadImage ("charlie.gif")

The variable im now holds the
image, and while the details are not
completely relevant, it is good to
know that im.width and im.height
give the width and height of the
image in pixels. Displaying the im-
age is a matter of calling the func-
tion image() and passing the image
and the coordinates where the up-
per left corner of the image is to be
placed. A call such as:

image (im, 0, 0)

would display the checkpoint
Charlie image.

The smallest Python program (using Glib) that can load and display an image
is thus 5 lines:

from Glib import *
startdraw(600, 600)
im = loadImage ("charlie.gif")
image (im, 0, 0)
enddraw()

ON THE CD

Figure 7.9
Original test image – Checkpoint Charlie in Berlin.

 Chapter 7 · Graphics ■ 273

However, this displays the image in a window that is bigger than it is. That
may be OK, but often an image is to be used as a background image, and the size
of the window should be the same as the image size. If that is what is needed there
is a special function to call: imageSize(). It must be called before startdraw(), of
course, because it returns the size of the image, and hence the size to be passed to
startdraw(). It returns a tuple that has the width as the first component and the
height as the second.

Opening a window that is the same size as an image is accomplished as
follows:

from Glib import *
s = imageSize("charlie.gif")
startdraw(s[0], s[1])
im = loadImage("charlie.gif")
image (im, 0, 0)
enddraw()

The output of this program is shown in Figure 7.9.

Pixels

An image as returned by loadImage() is a built-in type named PhotoImage.
It is really not designed to be used for much except displaying in the window, but
some more advanced operations are possible, if slow. For example, individual
pixel values can be extracted and modified. Glib offers a handful of low-level
functions to make pixel operations easier.

An image consists of rows and columns of pixels, and a pixel is a color. The
color of the pixel at horizontal position x and vertical position y of image pic can
be accessed using the call:

c = getpixel(pic, x, y)

The value of c is a color, and the components of this can be accessed using
the functions:

r = red(c)
g = green(c)
b = blue(c)

Setting the value of the pixel at location (x,y) is accomplished by calling
setpixel(). It requires that the image, the coordinates, and the color be passed as
parameters:

274 ■ Python: An Introduct ion to Programming

setpixel (pic, x, y, c)

These functions operate on an image, not directly on the screen display.
Changes to an image will only be visible if they are done before the image is
displayed.

Example: Identifying a Green Car

There is a pattern here that is important to recognize when working with im-
ages at the pixel level—the raster scan. All of the pixels in the image are usually
examined one at a time using a nested loop. It will look like this:

for i in range(0, Width()):
 for j in range(0, Height()):
 # Do something to pixel (i,j)

This example uses color to identify the pixels that belong to a car in an image,
as seen in Figure 7.10. The problem requires identifying pixels that are “green”
and somehow making them stand out in the image. What is green? All pixels have
a green component. When something is green, the green component is the most
significant one; it is larger than the red and blue components by some margin. In
this case that margin will be arbitrarily set at 20, and if it does not work then it
can be modified. If a pixel is green it will be set to black, otherwise it will become
white; this will make the pixels that belong to the car stand out.

The program begins by creating a window and reading in the image:
startdraw(640, 480)
im = loadImage ("eclipse.gif")

Now look at all of the pixels, searching for a green one:
for i in range(0, Width()):
 for j in range(0, Height()):
 c = getpixel(im, i,j) # �Get the color of the pixel
 # (i,j)

If the pixel is green, then change it to black. Otherwise, change it to white:
if green(c)>(red(c)+20) and green(c)>(blue(c)+20): # Green?
 setpixel (im, i, j, cvtColor3 (0,0,0)) # Black
else:
 setpixel (im, i, j, cvtColor3(255,255,255)) # White

 Chapter 7 · Graphics ■ 275

An image can be saved into a file by calling the Glib function save():
save (im, "out.gif")

 
	 (a)	 (b)

Figure 7.10
(a) A green car; (b) the result of changing green pixels to black and all others to white.

The output of this program is shown in Figure 7.10b. There are some “green”
pixels that do not belong to the car, but most of the car pixels have been identified.

Example: Thresholding

Image processing is a large subject all by itself, and this particular library
is not the best choice for exploring it in detail. There are some basic things that
can be done, and common ones include thresholding, edge enhancement, noise
reduction, and count, all of which can be done using Glib. Thresholding in par-
ticular is an early step in many image-analysis processes. It is the creation of a
bi-level image, having just black and white pixels, from a grey or color image.
The previous example is different from thresholding in that a particular color was
being searched for. In thresholding a simple grey value T, the threshold, is used to
separate pixels into black and white: all pixels having a value smaller than T will
be black, and the others will be white.

Glib has one more function that is useful, especially in this context. The
function grey() will convert a color into a simple grey level, which is an integer
in the range 0 to 255. It finds the mean of the three color components. The thresh-
olding program begins in the same way as did the previous example. Look at the
color of all of the pixels in the image, one at a time:

startdraw(640, 480)
im = loadImage ("eclipse.gif")

276 ■ Python: An Introduct ion to Programming

for i in range(0, Width()):
 for j in range(0, Height()):
 c = getpixel(im, i,j)

This is the standard scan of all pixels. Now convert the color c to a grey level
and compare that against the threshold T=128. Pixels having a grey level below
128 will be set to black, the remainder will be white:

 if g < T:
 setpixel (im, i, j, cvtColor3 (0,0,0))
 else:
 setpixel (im, i, j, cvtColor3(255,255,255))
image (im, 0, 0)
save (im, "out.gif")
enddraw()

Figure 7.11
Thresholded version of the green car image of Figure 7.10

The result, the image displayed by this program, is shown in Figure 7.11.

Transparency

A GIF image can have one color chosen to be transparent, meaning that it will
not show up and any pixel drawn previously at the same location will be visible.
This is very handy in games and animations. Images are rectangular, whereas most
objects are not. Consider a small image of a doughnut; the pixels surrounding it and
in the hole can have the pixels set to be transparent, and then when the image is
drawn over another one the background will be seen through the hole.

The transparency value must be set within the image by a program. Photo-
shop, for example, can do this. Then when Python displays the images, the back-
ground image must be displayed first, followed by the images with transparency.
As an example, Figure 7.12a shows a photo of the view through the rear and side

 Chapter 7 · Graphics ■ 277

windows of a Volvo. The window glass area, the places where transparency is
desired, have been colored yellow. The color yellow was then selected in Pho-
toshop as transparent, and the image was saved again as a GIF. A short Python
program using Glib will display a background image and the car image over it,
and the background will be seen through the window regions as in Figure 7.12b.
The program is:
from Glib import *
s = imageSize("car.gif") # Get size of image
startdraw(s[0], s[1]) # �Open window of the right
 # size
s = loadImage("perseus.gif") # Background image
t = loadImage ("car.gif") # �Car image with transparency
image (s, 0, 0) # Display background first
image (t, 0, 0) # then display the car image
enddraw()

	7.1.9	 Generative Art

In generative art an artwork is generated by a computer program that uses an
algorithm created by the artist. The artist is the creative force, the designer of the
visual display, and the computer implements it. There are many generative artists
to be found on the Internet: one list can be found here:

http://blog.hvidtfeldts.net/index.php/generative-art-links/

 

	 (a)	 (b)
Figure 7.12
(a) An image of a car interior. The window areas have been edited manually to be some color that
does not appear in the image otherwise. This color is then set to be transparent by Photoshop or
some other editing tool. (b) When the background image is drawn with the car image over it, the
background can be seen through the windows.

278 ■ Python: An Introduct ion to Programming

Much generative art is dynamic, which is to say it involves motion and/or
interaction, but many works are equivalent to paintings and drawings (static).
Glib could be a tool for helping create these sorts of generative art works. Unlike
other sorts of computer programs, those associated with art do not have a known
predictable result that can be affirmed as correct or not. It is true that an artist
begins with an idea of what their work should look like and what the message
underlying it is, but paintings, sculptures, and generative works rarely finish the
way they began.

So, either begin with an idea of what the image will look like or admit that
the whole thing is an experiment and couch the idea in terms of a sentence or two.
Here’s one such sentence: “Imagine a collection of straight lines radiating from a
set of randomly placed points within the drawing window, with each set of lines
drawn in a saturated strong color.”

Now an attempt would be made to create such an image using the functions
that Glib offers. It is often the case that the first few tries are in error, but that one
of them is interesting. An artist would pursue the interesting course instead of
sticking to the original idea, of course. Here is an example: the code below was
written with the idea that it would produce a collection of lines radiating from the
point (400,600) from 0 degrees (horizontal right) to 180 degrees (horizontal left)
with the color varying slightly:
r = 255
for i in range (1, 180, 2):
 stroke (r, 128, 128)
 line (400, 600, cos(i*conv)*500, sin(i*conv)*500)
 r = r - 0.5

The call to line() should have been:
line (400, 600, 400+cos(i*conv)*500, 600-sin(i*conv)*500)

so as to invert the Y coordinate. Instead, this created a much more interesting
image. The code for one of the four loops in the final code is:
x = randrange(100, Width())
y = randrange (100, Height()-100)
r = 255
for i in range (1, 180, 2):
 stroke (128, r, 128)
 line (x, y, sin(i*conv)*500, cos(i*conv)*500)
 r = r - 0.5

 Chapter 7 · Graphics ■ 279

Sometimes a small error can result in a more interesting result. This is rarely
the case when writing scientific or commercial software.

	   
Figure 7.13
A generative artwork created partly by accident.

Generative art should be under the control of the artist, but does use random
elements to add interest to the image. In the piece Snow Boxes by Noah Larsen a
set of rectangles is drawn, but the specific size and location of these rectangles is
random within constrained parameters. The overall color is also random within
specified boundaries. Each rectangle is drawn as a collection of white pixels with
a density that has been defined specifically for that rectangle so that the image
consists of spatters of white pixels that can be identified as rectangular regions
(Figure 7.14). Each time the program is executed a different image is created. The
program for Snow Boxes was originally written in a language called Processing,
but a Python version that uses Glib is:
Snow boxes
Original by Noah Larsen, @earlatron
from Glib import *
from random import *

startdraw (640, 480)
background(randrange(0,75), randrange(150,255),
randrange(0,75))

fill (255, 255, 255)
for i in range(0,10000):
 point (randrange(0,Width()), randrange(0,Height()))
for i in range(0,20):

280 ■ Python: An Introduct ion to Programming

 xs = randrange (0, Width())
 ys = randrange (0, Height())
 xe = randrange (xs, xs+randrange(30, 300))
 ye = randrange (ys, ys+randrange(30, 300))
 for j in range(0,10000):
 point (randrange(xs, xe+1),randrange(ys, ye+1))
enddraw()

  

Figure 7.14
Output samples from the Snow Boxes program, examples of generative art.

	 7.2	 SUMMARY
Since the advent of Windows, computer graphics has been assumed as a fea-

ture of a computer, but this has not always been true. Python does not have built-
in features for doing graphics, but the standard user interface library tkinter does,
and the library that accompanies this book, Glib, expands this and makes it more
accessible. Drawing is accomplished by setting pixels within a drawing window
to a desired color. Colors are specified by giving the amount of red, green, and
blue that comprise the color.

Glib and most graphics libraries allow the user to draw lines, polygons, text,
images, and to set pixels. These basic functions are combined by the programmer
to create desired visualizations, such as histograms and pie charts.

Exercises

	 1.	Write a Python program to create the image shown in Figure 7.15a. The
image is grey, but the colors that are to be used to fill the circles are given as
text. You need not include the text in your output.

 Chapter 7 · Graphics ■ 281

	 2.	Draw a set of 10 lines separated horizontally by 20 pixels, each parallel to the
line specified by the end points (10, 20) and (200, 421). These lines may begin
anywhere in the window.

	 3.	Draw a pyramid using dark grey bricks (rectangles) as components. The base
of the pyramid is to be 15 bricks horizontally, and each successive level is one
brick smaller. (Figure 7.15b)

	 4.	Draw a checkerboard. Each square should be 20x20 pixels, and the squares
are red or yellow, alternating. A checkerboard is 8x8 squares.

	 5.	Draw a triangle, a square, a regular pentagon, and a regular hexagon. Label
these with their names as text above the shapes.

	 6.	Write a program to draw a visual work in the visual style of Piet Mondrian’s
famous rectangular compositions, an example of which is shown in Figure
7.15d. Could triangular shapes be used instead of rectangles?

	 7.	Modify the pie chart program so that the data is read from a file name
“piein.dat.”

	 8.	Write a program that reads the file name of an image and displays the image
in a window that is correctly sized.

	 9.	The provided image named “digit.gif” contains some pixels that are pure red;
that is, they have a pixel value of (255,0,0). Write a program that locates these
pixels, draws a circle around them in a display of the image, and prints their
x and y coordinates.

	10.	An edge in an image has the property that the pixel values on one side of
the edge are significantly different (i.e., more than 40 levels) from those on
the other side. Write a python program that reads an image and sets pixels at
vertical edge locations to black and all other pixels to white; it then displays
the result in a window. Hints: convert the image to grey or select one color
value for the edges; make a working copy of the image.

282 ■ Python: An Introduct ion to Programming

 

	 (a)	 (b)

 
	 (c)	 (d)

Figure 7.15
Figures to accompany the exercises.

Notes and Other Resources

Tkinter - Python interface to Tcl/Tk, https://docs.python.org/3/library/tkinter.
html
Tkinter 8.5 reference. http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.
html
http://www.generativeart.com/

	1. John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James
D. Foley, Steven K. Feiner, and Kurt Akeley. (2013). Computer Graphics:
Principles and Practice, 3rd Edition, Addison-Wesley Professional.

	 2.	Robin Landa, Rose Gonnella, and Steven Brower. (2006). 2D Visual Basics
for Designers, Delmar Cengage Learning.

 Chapter 7 · Graphics ■ 283

	 3.	Jeffrey McConnell. (2005). Computer Graphics: Theory into Practice,
Jones & Bartlett Learning.

	 4.	Matt Pearson. (2011). Generative Art, Manning Publications, ISBN-
10: 1935182625.

Table 7.1
Glib functions and constants contained in the tkinter version.

BLACK The color black text (s, x, y) Draw the string s at
the point x, y

WHITE		
The color whit

The color white strokeweight (s) Draw lines that are
s pixels wide

RED The color red cvtColor (z) Convert integer z to
a grey level

GREEN The color green cvtColor3(r,g,b) Convert 3 integers
to an RGB color

BLUE The color blue textsize(n) Set text drawing
size to n pixels

BACKSPACE The backspace
character

loadImage (s) Read an image
from a file and
return it

CENTER Center mode for
ellipses and rect-
angles

image (im, x,y) Display an image at
(x,y) as upper left

RADIUS Radius mode for
ellipses and rect-
angles

copyImage(im) Make a copy of the
image and return it

CORNER Corner mode for
ellipses and rect-
angles

red(c) Return the integer
value of the red
component of c

CORNERS Corners mode for
ellipses and rect-
angles

green(c) Return the integer
value of the green
component of c

Width() Returns the width
of the window

blue(c) Return the integer
value of the blue
component of c

Height() Returns the height
of the window

grey(c) Convert the color c
to grey

284 ■ Python: An Introduct ion to Programming

fill(r,g,b) Set fill color getpixel(im,i,j) Get the pixel value
(a color) at image
pixel (i,j)

fill(g) Set fill grey value setpixel(im,i,j,c) Set the pixel at im-
age location (i,j) to
color c

stroke (r, g, b) Set line and outline
color

save (im, s)

Save the image to
a file named by the
string s

stroke (g) Set grey level for
lines and outlines

background2(g) Set the background
color to grey value g

nostroke() Turn off outline
drawing

background(r,g,b) Set the background
color to (r,g,b)

ellipsemode(z)

Set ellipse drawing
mode to where z is
one of the following:
CENTER,
RADIUS, CORNER,
or CORNERS

rectmode(m)

Set rectangle draw-
ing mode to one
of the following:
CENTER,
RADIUS,
CORNER, or
CORNERS

ellipse(x, y, w, h)	 Draw an ellipse at
x,y with specified
width and height

rect (x1,y1, x2,x2) Draw a rectangle at
the given coor-
dinates using the
current mode

line(x0,y0,x1,y1) Draw a line
between the two
coordinates

imageSize(s) Examine the image
file named by s and
determine its size
in pixels. Return a
tuple (width, height)

point(x, y) Draw a point
(pixel) at x,y

arc
(x0,y0,x1,y1,start,
angle, s)

Draw an arc. See
the description in
this chapter.

triangle (x0,y0,
x1,y1, x2,y2)

Draw a tringle
between the three
points

startdraw (width,
height)

Begin drawing in
an area having the
specified size

enddraw() Stop calling Glib
functions and
display what was
drawn

■ ■ ■ ■ ■

In this chapter

A fair definition of Computer Science would be the discipline that
concerns itself with information. Computers are an enabling technology,
but computer science is largely about how to store, retrieve, represent,
compress, display, transmit, and otherwise handle information. Python
happens to be pretty good at offering facilities for manipulating
information or, at a lower level, data. Data becomes information when
a person can interpret it, and information becomes knowledge once
understood.

Repeating a theme of this book, data on a computer is stored as numbers
no matter what its original form was. Computers can only operate on numbers,
so an important aspect of using data is the representation of complex things as
numbers. Based on many years of experience, it seems to be possible in all cases,
and the manner in which the data is represented as numbers is reflected in the
methods used to operate on them.

8Chapter

Manipulating Data

8.1	 Dictionaries��287

8.2	 Arrays��293

8.3	 Formatted Text, Formatted I/O ��294

8.4	 Advanced Data Files��299

8.5	 Standard File Types��306

8.6	 Summary�� 318

286 ■ Python: An Introduct ion to Programming

This chapter will be an examination of how certain kinds of data are repre-
sented and the consequences insofar as computer programs can use these data.
Python in particular will be used for this examination, although some of the dis-
cussion is more general. Of course, the discussion will be driven by practical
things and by how things can be accomplished using Python.

Most data consist of measurements of something, and as such are fundamen-
tally numeric. Astronomers measure the brightness of stars, as an example, and
note how they vary or not as a function of time. The data consists of a collection
of numbers that represent brightness on some arbitrary scale; the units of mea-
surements are always in some sense arbitrary. However, units can be converted
from one kind to another quite simply, so this is not a problem. Biologists fre-
quently count things, so again their data is fundamentally numeric. Social scien-
tists ask questions and collect answers into groups, again a numeric result. What
things are not?

Photographs are common enough in science and are not numeric values but
are, instead, visual; they relate to a human sense that can be understood by other
humans easily, rather than to an analytical approach. Of course most photographs
are ultimately analyzed by a computer these days, so there must be a way to rep-
resent them digitally. Another human sense that is used to examine data is hear-
ing. Birds make songs that indicate many things, including what they observe and
their willingness to mate. Sounds are vibrations, and can indicate problems with
machinery, the approach of a vehicle, the presence of a predator, or the current
state of the weather. Touch is less often used, but is essential in the control of ob-
jects by humans. A person controlling a device at a great distance can profit from
the ability to feel the touch of a tool across a computer network.

Then there are search engines, which can be thought of as an extension of
human memory and reasoning. The ability of humans to access information has
improved hugely over the past twenty years. If the phrase “python data manipu-
lation” is entered into the Google search engine, over half a million results are
returned. True, many may not directly relate to the query as it was intended, but
part of the problem will be in the phrasing of the request. By the way, the first
response to the query concerns the pandas module for data analysis, which may
in fact have been the right answer.

How is all of this done? It does take some clever algorithms and good pro-
gramming, but it also requires a language that offers the right facilities.

 Chapter 8 · Manipulat ing Data ■ 287

	 8.1	 DICTIONARIES
A Python dictionary is an important structure for dealing with data, and is

the only important language feature that has not been discussed until now. One
reason is that a dictionary is more properly an advanced structure that is imple-
mented in terms of more basic ones. A list, for example, is a collection of things
(integers, reals, strings) that is accessed by using an index, where the index is
an integer. If the integer is given, the contents of the list at that location can be
retrieved or modified.

A dictionary allows a more complex, expensive, and useful indexing scheme:
it is accessed by content. Well, by a description of content at least. A dictionary
can be indexed by a string, which in general would be referred to as a key, and
the information at that location in the dictionary is said to be associated with that
key. An example: a dictionary that returns the value of a color given the name. A
color, as described in Chapter 7, is specified by a red, green, and blue component.
A tuple such as (100,200,100) can be used to represent a color. So in a dictionary
named colors the value of colors[“red”] might be (255,0,0) and colors[“blue”] is
(0,0,255). Naturally, it is important to know what names are possible or the index
used will not be legal and will cause an error. So colors[“copper”] may result in
an index error, which is called a KeyError for a dictionary.

The Python syntax for setting up a dictionary differs from anything that has
been seen before. The dictionary colors could be created in this way:
colors = {�'red':(255, 0, 0), 'blue':(0,0,255),

'green':(0,255,0)}

The braces { … } enclose all of the things being defined as part of the dic-
tionary. Each entry is a pair, with a key followed by a “:” followed by a data ele-
ment. The pair “red”:(255,0,0) means that the key “red” will be associated with
the value (255,0,0) in this dictionary.

Now the name colors looks like a list, but is indexed by a string:
print (colors['blue'])

The index is called a key when referring to a dictionary. That’s because it is
not really an index, in that the string can’t directly address a location. Instead the
key is searched for, and if it is a legal key (i.e., has been defined) the corresponding

288 ■ Python: An Introduct ion to Programming

data element is selected. The definition of colors creates a list of keys and a list
of data:

Location Keys Data
0 “red” (255, 0, 0)
1 “blue” (0, 0, 255)
2 “green” (0, 255, 0)

When the expression colors[“blue”] is seen, the key “blue” is searched for in
the list of all keys. It is found at location 1, so the result of the expression is the
data element at 1, which is (0,0,255). Python does all of this work each time a dic-
tionary is accessed, so while it looks simple it really involves quite a bit of work.

New associations can be made in assignment statements:
colors['khaki'] = (240,230,140)

Indeed, a dictionary can be created with an empty pair of braces and then
have values given using assignments:
colors = {}
colors['red'] = (255, 0, 0)
 . . .

As with other variables, the value of an element in a dictionary can be
changed. This would change the association with the key; there can only be one
thing associated with a key. The assignment:

colors['red'] = (200.,0,0)

reassigns the value associated with the key “red.” To delete it altogether use the
del() function:

del(colors['blue'])

Other types can be used as keys in a dictionary. In fact, any immutable type
can be used. Hence it is possible to create a dictionary that reverses the associa-
tion of name to its RGB color, allowing the color to be used as the key and the
name to be retrieved. For example:
names = {}
names[(255,0,0)] = 'red'
names[(0,255,0)] = 'green'

 Chapter 8 · Manipulat ing Data ■ 289

This dictionary uses tuples as keys. Lists can’t be used because they are not
immutable.

	8.1.1	 Example: A Naive Latin – English Translation

A successful language translation program is difficult to implement. Human
languages are unlike computer languages in that they have nuances. Words have
more than one meaning, and many words mean essentially the same thing. Some
words mean one thing in a particular context and a different thing in another
context. Sometimes a word can be a noun and a verb. It is very confusing. What
this program will do is substitute English words for Latin ones, using a Python
dictionary as the basis.

From various sites on the Internet a collection of Latin words with their Eng-
lish counterparts has been collected. This is a text file named “latin.txt.” It has
the Latin word, a space, and the English equivalent on single lines in the file. The
program will accept text from the keyboard and translate it into English, word
by word, assuming that it originally consisted of Latin words. The file of Latin
words has 3129 items, but it should be understood that one word in any language
has many forms depending on how it is used. Many words are missing in one
form or another.

The way the program works is pretty simple. The file of words is read in and
converted into a dictionary. The file has a Latin word, a comma, and an English
word, so a line is read, converted to a tuple using split(), and the Latin word is
used as a key to store the English word into the dictionary.

Next, the program asks the user for a phrase in Latin, and the user types it in.
The phrase is split into individual words and each one is looked up in the diction-
ary and the English version is printed. This will not work very well in general, but
is a first step in creating a translation program. The code looks like this:
def load_words (name, dict): # Read the file of words
 f = open (name, "r")
 s = f.readline() # Read one word pair
 while s != "": # �exit when the file has been
 # read
 c = s.split (",") # Split at the comma
 if len(c)<2: # Possible error: no words?

290 ■ Python: An Introduct ion to Programming

 s = f.readline() # Read next and continue
 continue
 sw = c[0].strip() # �Get the latin and English
 # words.
 ew = c[1].strip()
 if len(ew) <=0: # OK?
 s = f.readline() # Nope. Just skip it.
 continue
 if ew[-1] == "\n": # Get ride of the endline
 ew = ew[0:-2]
 dict[sw] = ew # Place in dictionary
 s = f.readline() # Next word pair from the file
 f.close() # Always close when done

dict = {}
load_words("latin.txt", dict) # Read all of the word pairs

inp = input("Enter a latin phrase ") # Get the Latin text
while inp != "": # Done?
 book = inp.split(" ") # Split at words
 for i in range(0,len(book)): # For each word this
line
 sword = book[i].lower() # Lower case
 try:
 enword = dict[sword] # Look up Latin word
 print (enword, end="") # Print English version
 except:
 print (sword, end="") # �Latin not in
 # dictionary
 print (" ", end="") # Print the Latin
 print (".")
 inp = input("Enter a latin phrase ") # Do it again

Of course translation is more complex than just changing words, and that’s
all this program does. Still, sometimes it does not do too badly. A favorite Latin
phrase from the TV program The West Wing is “Post hoc ergo propter hoc.”
Given this phrase the program produced:

after this therefore because of this.
which is a pretty fair translation. Trying another, “All dogs go to heaven”
was sent to an online translation program and it gave
omnes canes ad caelum ire conspexerit

 Chapter 8 · Manipulat ing Data ■ 291

This program here translates it back into English as:
“all dogs to sky go conspexerit.”
The word ‘conspexerit’ was not successfully translated, so it was left as
it was (the online program translates that word as “glance”). This is still
not terrible.
Sadly, it makes a complete hash of the Lord’s Prayer:
Pater noster qui es in caelis sanctificetur nomen tuum.
Adveniat regnum tuum.
Fiat voluntas tua sicut in caelo et in terra.
Panem nostrum quotidianum da nobis hodie et dimitte nobis debita nostra
sicut et nos dimittimus debitoribus.
Fiat voluntas tua sicut in caelo et in terra.
Amen

Is turned into:

father our that you are against heavens holy name your.
down rule your.
becomes last your as against heaven and against earth.
bread our daily da us day and dimitte us debita our as and us forgive
debtors.
becomes last your as in heaven and in earth.
amen
A useful addition to the code would be to permit the user to add new words

into the dictionary. In particular, it could prompt the user for words that it could
not find, and perhaps even ask whether similar words were related to the un-
known one, such as “dimittimus” and “dimitte.” Of course, being able to have
some basic understanding of the grammar would be better still.

	8.1.2	 Functions for Dictionaries

The power of the store-fetch scheme in the dictionary is impressive. There
are some methods that apply mainly to dictionaries and that can be useful in more

292 ■ Python: An Introduct ion to Programming

complex programs. The method keys() returns the collection of all of the keys
that can be used with a dictionary. So:

list(dict.keys())

is a list of all of the keys, and this can be searched before doing any complex
operations on the dictionary. The list of keys is not in any specific order, and if
they need to be sorted then:

sorted(dict.keys())

will do the job. The del() method has been used to remove specific keys but dict.
clear() will remove all of them.

The method setdefault() can establish a default value for a key that has not
been defined. When an attempt is made to access a dictionary using a key, an er-
ror occurs if the key has not been defined for that dictionary. This method makes
the key known so that no error will occur and a value can be returned for it; None,
perhaps.

dict.setdefault(key, default=None)

Other useful functions include:

dict.copy()	 returns a (shallow) copy of dictionary
dict.fromkeys()	� creates a new dictionary setting keys and values;

e.g., dict.fromkeys((“one”, “two”), 3) creates
{(“one”, 3), (“two”, 3)}

dict.items()	 returns a list of dict’s (key, value) tuple pairs.
dict.values()	 returns list of dictionary dict’s values
dict.update(dict2)	 adds the key-value pairs from dictionary dict2 to dict

The expression key in dict is True if the key specified exists in the diction-
ary dict.

	8.1.3	 Dictionaries and Loops

Dictionaries are intended for random access, but on occasion it is necessary
to scan through parts or all of one. The trick is to create a list from the pairs in the
dictionary and then loop through the list. For example:

 Chapter 8 · Manipulat ing Data ■ 293

for (key,value) in dict.items():
 print (key, " has the value ", value)

The keys are given in an internal order which is not alphabetical. It is a simple
matter to sort them, though:

for (key,value) in sorted(dict.items()):
 print (key, " has the value ", value)

By converting the dictionary pairs in a list, any of the operations on lists can
be applied to a dictionary as well. It is even possible to use comprehensions to
initialize a dictionary. For example
d = {angle:sin(radians(angle)) for angle in (0,45.,90.,
 135., 180.)}

creates a dictionary of the sines of some angles indexed by the angle.

	 8.2	 ARRAYS
For programmers who have used other languages, Python lists have many

of the properties of an array, which in C++ or Java is a collection of consecutive
memory locations that contain the same type of value. Lists may be designed to
make operations such as concatenation efficient, which means that a list may not
be the most efficient way to store things. A Python array is a class that mimics
the array type of other languages and offers efficiency in storage, exchanging that
for flexibility.

Only certain types can be stored in an array, and the type of the array is
specified when it is created. For example:

data = array('f', [12.8, 5.4, 8.0, 8.0, 9.21, 3.14])

creates an array of 6 floating point numbers; the type is indicated by the “f” as
the first parameter to the constructor. This concept is unlike the Python norm of
types being dynamic and malleable. An array is an array of one kind of thing,
and an array can only hold a restricted set of types.

The type code, the first parameter to the constructor, can have one of 13 val-
ues, but the most commonly used ones will be:

“b”	 A C++ char type
“B”	 A C++ unsigned char type

294 ■ Python: An Introduct ion to Programming

“i”:	 A C++ int type
“l”:	 A C++ long type
“f ”:	 A C++ float type
“d”:	 A C++ double type

Arrays are class objects and are provided in the built-in module array, which
must be imported:

from array import array

An array is a sequence type, and has the basic properties and operations
that Python provides all sequence types. Array elements can be assigned to and
can be used in expressions, and arrays can be searched and extended like other
sequences. There are some features of arrays that are unique:

frombytes (s)	� The string argument s is converted into byte sequences
and appended to the array.

fromfile(f, num)	� Read num items from the file object f and append
them. An integer, for example, is one item.

fromlist (x)	 Append the elements from the list x to the array.
tobytes()	� Convert the array into a sequence of bytes in machine

representation.
tofile(f)	 Write the array as a sequence of bytes to the file f.

In most cases arrays are used to speed up numerical operations, but they
can also be used (and will be in the next section) to access the underlying
representations of numbers.

	 8.3	 FORMATTED TEXT, FORMATTED I/O
There is a generally believed theory among many users of data, including

some engineers and financial analysts, that if numbers line up in nice columns
then they must be correct. This is obviously not true, but appearances can mat-
ter a great deal, and numbers that do not line up properly for easy reading look
sloppy and give people the impression that they may not be as carefully prepared
as they should have been. The Python print() function as used so far simply
prints a collection of variables and constants with no real attention to a format.
Each one is printed in the order specified with a space between them. Sometimes
that’s good enough.

 Chapter 8 · Manipulat ing Data ■ 295

The Python versions since 2.7 have incorporated a string format() method
that allows a programmer to specify how values should be placed within a string.
The idea is to create a string that contains the formatted output, and then print the
string. A simple example is:

s = "x={} y={}"
fs = s.format (121.2, 6)

The string fs now contains “x=121.2 y=6.” The braces within the format
string s hold the place for a value. The format() method lists values to be placed
into the string, and with no other information given it does so in order of appear-
ance, in this case 121.2 followed by 6. The first pair of braces is replaced by the
first value, 121.2, and the second pair of braces is replaced by the second value,
which is 6. Now the string fs can be printed.

This is not how it is usually done, though. Because this is usually part of the
output process, it is often placed within the print() call:

print ("x={} y={}".format(121.2, 6))

where the format() method is referenced from the string constant. No actual
formatting is done by this particular call, merely a conversion to string and a sub-
stitution of values. The way formatting is done depends on the type of the value
being formatted, the most common types being strings, integers, and floats. An
example will be illuminating.

	8.3.1	 Example: NASA Meteorite Landing Data

NASA publishes a huge amount of data on its web sites, and one of these is a
collection of meteorite landings. It covers many years and has over 4800 entries.
The task assigned here is to print a nicely formatted report on selected parts of
the data. The data on the file has its fields separated by commas, and there are ten
of them: name, id, nametype, recclass, mass, Fall, year, reclat, reclong, and Geo-
Location. The report requires that the name, recclass, mass, reclat and reclong be
arranged in a nicely formatted set of columns.

Reading the data is a matter of opening the file, which is named “met.txt,”
and calling readline(), then creating a list of the fields using split(“,”). If this is
done and the fields are simply printed using print(), the result is messy. An ab-
breviated example is (simulated data):

296 ■ Python: An Introduct ion to Programming

infile = open ("met.txt", "r")
inline = infile.readline()

while inline !="":
 inlist = inline.split(",")
 mass = float(inlist[4])
 lat = float(inlist[7])
 long = float(inlist[8])
 print (�inlist[0], inlist[3], inlist[4], inlist[7],

inlist[8])
 inline = infile.readline()
infile.close()

The result is, as predicted, messy:
Ashdon �H5 121.13519985254874 89.85924301385958

-126.27404435776049
Arbol Solo �H6 66.94777134343516 25.567048824444797

160.58088365396014
Baldwyn �L6 47.6388587105465 -7.708508536783924

-81.22266156597777
Ankober �L6 15.265523451122064 -32.01862330869428

102.31244557598723
Ankober �LL6 57.584802700693885 -84.85880091616322

106.31130649523368
Ash Creek �L6 62.130089525516155 76.02832670618457

-140.03422105516938
Almahata Sitta �LL5 30.476879105555653 -12.906745404586

47.411816322674

Nothing lines up in columns, and the numbers show an impossible degree of
precision. Also there should be headings.

The first field to be printed is called name, and is a string; it is the name of
the location where the observation was made. The print statement simply adds
a space after printing it, and so the next thing is printed immediately following
it. Things do not line up. Formatting a string for output involves specifying how
much space to allow and whether the string should be centered or aligned to the
left or right side of the area where it will be printed. Applying a left alignment to
the string variable named placename in a field of 16 characters would be done
as follows:
ꞌ{:16s}ꞌ.format(placename)

 Chapter 8 · Manipulat ing Data ■ 297

The braces, which have previously been empty, contain formatting direc-
tives. Empty braces mean no formatting, and simply hold the place for a value. A
full format could contain a name, a conversion part, and a specification:

{ [name] [‘!’ conversion] [‘:’ specification] }

where optional parts are in square brackets. Thus, the minimal format specifica-
tion is ‘“{}.” In the example “{:16s}” there is no name and no conversion parts,
only a specification. After the “:” is ‘16s,’ meaning that the data to be placed here
is a string, and that 16 characters should be allowed for it. It will be left aligned
by default, so if placename was “Atlanta,” the result of the formatting would be
the string “Atlanta ,” left aligned in a 16-character string. Unfortunately, if
the original string is longer than 16 characters it will not be truncated, and all of
the characters will be placed in the resulting string even if it makes it too long.

To right align a string, simply place a “>” character immediately following
the “:”. So:

“{:>16s}”.format(“Atlanta”)

would be “ Atlanta.” Placing a “<” character there does a left alignment (the
default) and “^” means to center it in the available space. The alignment specifi-
cations apply to numbers as well as strings.

The first two values to be printed in the example are the city name, which is
in inlist[0] and the meteorite class which is inlist[3]. Formatting these is done as
follows:

s = '{:16s} {:10s}'.format(inlist[0], inlist[3])

Both strings will be left aligned.

Numeric formats are more complicated. For integers there is the total space
to allow, and also how to align it and what to do with the sign and leading zeros.
The formatting letter for an integer is “d”, so the following are legal directives
and their meaning:

Format Explanation Result for value 1234
‘{:5d}’ An integer in a 5-character space, right aligned " 1234"

‘{:>5d}’ An integer in a 5-character space, right aligned " 1234"

‘{:<7d}” An integer in a 7-character space, left aligned "1234 "

(contd.)

298 ■ Python: An Introduct ion to Programming

Format Explanation Result for value 1234
‘{:07d}’ An integer right aligned in a 7-character

space filled on the left with zeros.
"0001234"

‘{:,7d}’ A right aligned integer in a 7-character space
with a ‘,’ every 3 digits

" 1,234"

‘{:7x}’ A right aligned integer in hexadecimal. " 4D2"

Floating point numbers have the extra issue of the decimal place. The format
character is often “f,” but it can be “e” for exponential format or “g” for general
format, meaning the system decides whether to use “f ” or “e.” Otherwise, the
formatting of a floating point is like that of previous versions of Python and like
that of C and C++:

Format Explanation Result for value 12.321
‘{:.3f}’ 3 digits right of the decimal ꞌ12.321ꞌ

‘{:6.2f}’ 6 digits, 3 to the right of the decimal ꞌ 12.32ꞌ

‘{:>8.1}’ 5 digits, 1 to the right, left adjusted ꞌ 12.3ꞌ

‘{:8e}’ 8 places, exponential form '1.232100e+01'

‘{:8g}’ 8 places, system decides ' 12.321'

The next three values to be printed are floating point: the mass of the meteor-
ite and the location, as latitude and longitude. Printing each of these as 7 places, 2
to the right of the decimal, would seem to work. Or, as a format: “{:7.2f}.”

The solution to the problem is now at hand. The data is read line by line,
converted into a list, and then the fields are formatted and printed in two steps:
infile = open ("met.txt", "r")

inline = infile.readline()
print (" Place Class Mass Latitude
 Longitude")
while inline !="":
 inlist = inline.split(",")
 mass = float(inlist[4])
 lat = float(inlist[7])
 long = float(inlist[8])
 print('{:16s} {:14s} {:7.2f}'.format(inlist[0],

inlist[3],mass),end="")
 print (' {:7.2f} {:7.2f}'.format(lat, long))

 Chapter 8 · Manipulat ing Data ■ 299

 inline = infile.readline()
infile.close()

The result is:
Place Class Mass Latitude Longitude
Bloomington L5 13.58 9.53 -150.85
Bogou LL6 121.09 -66.28 -53.08
Alessandria L4 106.11 63.68 10.96
Bo Xian L5 85.92 0.33 -50.28
Ashdon Eucrite-mmict 6.59 -88.22 -178.84
Berduc L6 111.76 -64.20 107.10
. . .

There are many more formatting directives, and a huge number of their com-
binations.

	 8.4	 ADVANCED DATA FILES
File operations were discussed Chapter 5, but the discussion was limited to

files containing text. Text is crucial because it is how humans communicate with
the computer; people are unhappy about having to enter binary numbers. On the
other hand, text files take up more space than needed to hold the information
they do. Each character requires at least one byte. The number 3.1415926535 thus
takes up 12 bytes, but if stored as a floating point number it needs only 4 or 8
depending on precision.

The file system on most computers also permits a variety of operations that
have not been discussed. This includes reading from any point in a file, append-
ing data to files, and modifying data. The need for processing data effectively is
a main reason for computers to exist at all, so it is important to know as much as
possible about how to program a computer for these purposes.

	8.4.1	 Binary Files

A binary file is one that does not contain text, but instead holds the raw, inter-
nal representation of its data. Of course, all files on a computer disk are binary in
the strict sense, because they all contain numbers in binary form, but a binary file
in this discussion does not contain information that can be read by a human. Binary
files can be more efficient that other kinds, both in file size (smaller) and the time
it takes to read and write them (less). Many standard files types, such as MP3, exist
as binary files, so it is important to understand how to manipulate them.

300 ■ Python: An Introduct ion to Programming

Example: Create a File of Integers

The array type holds data in a form that is more natural for most computers
than a list, and also has the tofile() method built in. If a collection of integers is
to be written as a binary file, a first step is to place them into an array. If a set of
10000 consecutive integers are to be written to a file named “ints,” the first step
is to import the array class and open the output file. Notice that the file is open in
“wb” mode, which means “write binary”:
from array import array
output_file = open('ints', 'wb')

Now create an array to hold the elements and fill the array with the consecu-
tive integers:

arr = array('i')
for k in range (10000, 20000):
 arr.append(k)

Finally, write the data in the array to the file:
arr.tofile(out)
out.close()

This file has a size listed as 40kb on a Windows PC. A file having the same
integers written as text is 49kb. This is not exactly a huge saving of space, but it
does add up.

Reading these values back is just as simple:
inf = open ('ints', 'rb')
arrin = array('i')
for k in range (0, 10001):
 try:
 arrin.fromfile(inf, 1)
 except:
 break
 print (arrin[k])
inf.close()

The try is used to catch an end of file error in cases where the number of
items on the file is not known in advance. Or just because always doing so is a
good idea.

 Chapter 8 · Manipulat ing Data ■ 301

Sometimes a binary file will contain data that is all of the same type, but
that situation is not very common. It is more likely that the file will have strings,
integers, and floats intermixed. Imagine a file of data for bank accounts or maga-
zine subscriptions; the information included will be names and addresses, dates,
financial values, and optional data, depending on the specific situation. Some
customers have multiple accounts, for example. How can binary files be created
that contain more than one kind of information? By using structs.

	8.4.2	 The Struct Module

The struct module permits variables and objects of various types to be con-
verted into what amounts to a sequence of bytes. It is a common claim that this
is in order to convert between Python forms and C forms, because C has a struct
type (short for structure). However, many files exist that consist of mixed-type
data in raw (i.e., machine compatible) form that have been created by many pro-
grams in many languages. It is possible that C is singled out because the name
struct was used.

Example: A Video Game High Score File

Video game players need little incentive to try hard to win a game, but for
many years a special reward has been given to the better players. The game
“remembers” the best players and lists them at the beginning and end of the
game. This kind of ego boost is a part of the reward system of the game. The
game program stores the information on a file in descending order of score. The
data that is saved is usually the player’s name or initials, the score, and the date.
This mixes string with numeric data.

Consider that the player’s name is held in a variable name, the score is an
integer score, and the date is a set of three strings year, month, and day. In this
situation the size of each value needs to be fixed, so allow 32 characters for the
name, 4 for year, 2 for month, and 2 for day. The file was created with the name
first, then the score, then the year, month, and day. The order matters because it
will be read in the same order that it was written. On the file the data will look
like this:
cccccccccccccccccccccccccccccccc iiii cccc cc cc
Player’s name Score Year Month Day

302 ■ Python: An Introduct ion to Programming

Each letter in the first string represents a byte in the data for this entry. The
‘c’s represent characters; the ‘i’s represent bytes that are part of an integer. There
are 44 bytes in all, which is the size of one data record, which is what one set of
related data is generally called. A file contains the records for all of the elements
in the data set, and in this case a record is the data for one player, or at least one
time that the player played the game. There can be multiple entries for a player.

One way to convert mixed data like this into a struct is to use the pack()
method. It takes a format parameter first, which indicates what the struct will
consist of in terms of bytes. Then the values are passed that will be converted into
components of the final struct. For the example here the call to pack() would be:

s = pack ("32si4s2s2s", name, score, year, month, day)

The format string is “32si4s2s2s”; there are 5 parts to this, one for each of the
values to be packed:

32s	is a 32-character long string. It should be of type bytes.
i	 is one integer. However, 2i would be two integers, and 12i is 12 integers.
4s	 is a 4-character long string.
2s	 is a 2-character long string.

Other important format items are:

c	 is a character
f	 is a float
d	 is a double precision float

The value returned from pack() has type bytes, and in this case is 44 bytes
long. The high score file consists of many of these records, all of which are the
same size. A record can be written to a file using write(). So, a program that
writes just one such record would be:
from struct import *

f = open ("hiscores", "wb")
name = bytes("Jim Parker", 'UTF-8')
score = 109800
year = b"2015"
month = b"12"
day = b"26"

 Chapter 8 · Manipulat ing Data ■ 303

s = pack ("32si4s2s2s", name, score, year, month, day)
f.write(s)

Reading this file involves first reading the string of bytes that represented
a data record. Then it is unpacked, which is the reverse of what pack() does,
and the variables are passed to the unpack() function to be filled with data. The
unpack() method takes a format string as the first parameter, the same kind of
format string as pack() uses. It will return a tuple. An example that reads the
record in the above code would be:
from struct import *

f = open("hiscores", "rb")
s = f.read(44)
name,score,year,month,day = unpack("32si4s2s2s", s)
name = name.decode("UTF-8")
year = year.decode("UTF-8")
month = month.decode("UTF-8")
day = day.decode("UTF-8")

The data returned by unpack are bytes, and need to be converted into strings
before being used in most cases. Note the input mode on the open() call is “rb,”
read binary.

A file in this format has been provided, and is named simply ‘hiscore.’ When
a player plays the game they will enter their name; the computer knows their
score and the date. A new entry must be made in the ‘hiscore’ file with this new
score in it. How is that done?

Start with the new player data for Karl Holter, with a score of 100000. To
update the file it is opened and records are read and written to a new temporary
file (named “tmp”) until one is found that has a smaller score than the 100000
that Karl achieved. Then Karl’s record is written to the temporary file, and the
remainder of ‘hiscores’ is copied there. This creates a new file named “tmp” that
has Karl’s data added to it, and in the correct place. Now that file can be copied
to “hiscores” replacing the old file, or the file named “tmp” can be renamed as
“hiscores.” This is called a sequential file update.

Renaming the file requires access to some of the operating system functions
in the module os; in particular:
os.rename ("tmp", "hiscores")

304 ■ Python: An Introduct ion to Programming

	8.4.3	 Random Access

It seems natural to begin reading a file from the beginning, but that is not
always necessary. If the data that is desired is located at a known place in the
file, then the location being read from can be set to that point. This is a natural
consequence of the fact that disk devices can be positioned at any location at any
time. Why not files too?

The function that positions the file at a specific byte location is seek():
f.seek(44) # Position the file at byte 44,
 # �which is the second record in the hiscores
 # file.

It’s also possible to position the file relative to the current location:
f.seek(44, 1) # �Position the file 44 bytes from this
 # location,
 # �which skips over the next record in
 # hiscores.

A file can be rewound so that it can be read over again by calling f.seek(0),
positioning the file at the beginning. It is otherwise difficult to make use of this
feature unless the records on the file are of a fixed size, as they are in the file
‘hiscores,’ or the information on record sizes is saved in the file. Some files are
intended from the outset to be used as random access files. Those files have an
index that allows specific records to be read on demand. This is very much like
a dictionary, but on a file. Assuming that the score for player Arlen Franks is
needed, the name is searched for in the index. The result is the byte offset for
Arlen’s high score entry in the file.

Arlen’s record starts at byte 352 (8th record * 44 bytes). He just played the
game again and improved his score. Why not update his record on the file? The
file needs to be open for input and output, so mode “rb+,” meaning open a binary
file for input and output, would work in this case. Then position the file to Arlen’s
record, create a new record, and write that one record. This is new—being able
to both read and write the same file seems odd, but if the data being written is
exactly the same size as the record on the file then no harm should come from it.
The program is:
read and print hiscore file
from struct import *

 Chapter 8 · Manipulat ing Data ■ 305

f = open ("hiscores", "r+b") # �Open binary file,input and
 # output
pos = 44*8 # �Desired record is 8, 44
 # bytes per
f.seek(pos) # �Seek to that position one
 # the file
s = f.read(44) # Read the target record
name = bꞌArlen Franksꞌ # �Make a new one with a new
 # score
score = 100300
year = bꞌ2015ꞌ
month = bꞌ12ꞌ
day = bꞌ26ꞌ # Pack the new data
ss = pack("32si4s2s2s", name,score, year,month,day)
f.seek (44*8) # �Seek the original position
 # again!
f.write(ss) # �Write the new data over
 # the old
f.close () # Close the file

This works fine, provided that the position of Arlen’s data in the file is known.
It does not maintain the file in descending order, though.

Example: Maintaining the High Score File in Order

The circumstances of the new problem are that a player only appears in the
high score file once and the file is maintained in descending order of score. If a
player improves their score, then their entry should move closer to the beginning of
the file. This is a more difficult problem than before, but one that is still practical.
So, presume that a player has achieved a new score. The entire process should be:

Get the player’s old score. Read the file, get the player’s record,
unpack it.

Is the new score larger? If not, close the file. Done.
Yes, so find out where the score
belongs, in the file.

Look at successively preceding records
until one is found that has a larger score.

Place the new record where it belongs. Copy the records from the new position
for the record ahead one position until
the old position is reached.

306 ■ Python: An Introduct ion to Programming

The process is like moving a playing card closer to the top of the deck while
leaving the other cards in the same order. It’s probably more efficient to move the
record while searching for the correct position, though. Each time the previous
record is examined, if it does not have a larger score then the record being placed
is copied ahead one position. This results in a pretty compact program, given the
nature of the problem, but it is a bit tricky to get right. For example, what if the
new score is the highest? What if the current high score gets a higher score? (See:
Exercise 11)

	 8.5	 STANDARD FILE TYPES
Everyone’s computer has files on it that the owner did not create. Some have

been downloaded; some merely came with the machine. It is common practice to
associate specific kinds of files, as indicated initially by some letters at the end of
the file name, with certain applications. A file that ends in “.doc,” for example, is
usually a file created by Microsoft Word, and a file ending in “.mp3” is usually
a sound file, often music. Such files have a format that is understood by existing
software packages, and some of them (“.gif”) have been around for thirty years.

Each file type has been designed to make certain operations easy, and to pass
certain information to the application. Over the years a set of de facto standards
have evolved for how these files are laid out, and for what data are provided for
what kinds of file. And yet most users and many programmers do not understand
how these files are structured or why. Many users do not care, of course, and some
programmers too, but opening up these files to some scrutiny is an educational
experience.

	8.5.1	 Image Files

Images have been processed using computers since the 1960s when NASA
started processing images at the Jet Propulsion Laboratory. After some years peo-
ple (scientists, mainly) decided that having standards for computer images would
be useful. The first formats were ad hoc, and based essentially on raw pixel data.
Raw data means knowing what the image size is in advance, so headers were in-
troduced providing at least that information, leading to the TARGA format (.tga)
and tiff (Tagged Image File Format) in the mid-1980s. When the Internet and the
World Wide Web became popular, the GIF was invented, which compressed the

 Chapter 8 · Manipulat ing Data ■ 307

image data. This was followed by JPEG and other formats that could be used
by web designers and rendered by browsers, and each had a specific advantage.
After all, reducing size meant reducing the time it took to download an image.

Once a file format has been around for a few years and has become success-
ful it tends to stick around, so many of the image file formats created in the 1980s
are still here in one form or another. There are new ones too, like PNG (Portable
Network Graphics), which have been specifically designed for the Internet. Older
ones (like JPEG) have found common uses in new technologies, like digital cam-
eras. A programmer/computer scientist needs to know about the nature of the
various formats, their pros and cons as it were.

	8.5.2	 GIF

The Graphics Interchange Format is interesting from many perspectives.
First, it uses compression to reduce the size of the file, but the compression meth-
od is not lossy, meaning that the image does not change after being compressed
and then decompressed. The compression algorithm used is called LZW, and will
be discussed in Chapter 10. GIF uses a color map representation, so an element
in the image is not a color, but instead is an index into an array that holds the
color. That is, if v = image[row][column] then the color of that pixel is (red[v],
green[v], blue[v]). The color itself could be a full 24 bits, but the value v is a byte,
and so in a GIF there can only be 256 distinct colors. GIF uses a little-endian rep-
resentation, meaning that the least significant byte of multi-byte objects comes
first on the file.

One advantage of the GIF is that one of the colors can be made transparent.
This means that when this color is drawn over another, the color below shows
through. It is essentially a “do not draw this pixel” value. It is important for things
like sprites in computer games. Another advantage of GIF is that multiple images
can be stored in a single file, allowing an animation to be saved in a single file.
GIF animations have been common on the Internet for many years, and while
they usually represent small, brief animations such as Christmas trees with flash-
ing lights, they can be as long and complex as television programs. Still, the fact
that there can only be 256 different colors can be a problem.

A GIF is a binary file, but the first six characters are a header block contain-
ing what is called a magic number, or an identifying label. For a GIF file the three

308 ■ Python: An Introduct ion to Programming

characters are always “GIF” and the next three represent the version; for the 1989
standard the first six characters are “GIF89a.” Magic numbers are common in
binary files, and are used to identify the file type. The file name suffix does not
always tell the truth.

Following the header is the logical screen descriptor, which explains how
much screen space the image requires. This is seven bytes:

Canvas width	 2 bytes
Canvas height	 2 bytes
Packed byte		 1 byte

A set of flags and small values

Bit	 8 	 7 6 5	 4	 3 2 1
	 Global	 color	 sort 	 size of
	 Color	 resolution	 flag	 global color
	 Table?			 table

Background color index	 1 byte

Pixel aspect ratio		 1 byte

This is followed by the global color table, other descriptors, and the image
data. The details can be found in manuals and online. The information in the first
few bytes is critical, though, and the knowledge that LZW compression is used
means that the pixels are not immediately available. Decompression is done to
the image as a whole.
from struct import *
f = open ("test.gif", "rb")
s = f.read (13) # Read the header
id, ht, wd, flags, bci,par = unpack('6shhBBB', s)
#6s h h B B B
f.close()
id = id.decode("utf-8")
print (id)
print ("Height", ht, "Width", wd)
print("Flags:", flags)
print ("Background color index: ", bci)
print ("Pixel aspect ratio:", par)

 Chapter 8 · Manipulat ing Data ■ 309

	8.5.3	 JPEG

A JPEG image uses a lossy compression scheme, and so the image is not
the same after compression as it was before compression. For this reason it
should never be used for scientific or forensic purposes when measurements will
be made using the image. It should never be used for astronomy, for example,
although it is perfectly fine for portraits and landscape photographs.

The name JPEG is an acronym for the Joint Photographic Experts Group,
and actually refers to the nature of the compression algorithm. The file format
is an envelope that contains the image, and is referred to as JFIF (JPEG File In-
terchange Format). The file header contains 20 bytes: the magic number is the
first 4 and bytes 6–10. The first 4 bytes are hex FF, D8, FF, and E0. Bytes 6–10
should be “JFIF\0,” and this is followed by a revision number. A short program
that decodes the header is:
from struct import *

f = open ("test.jpg", "rb")
s = f.read (20) # Read the header
b1, b2,a1,a2,sz,id,v1, v2,unit,xd,yd, xt,yt =
unpack('BBBBh5sBBBhhBB', s)
#B B B B h 5s B B B h h B B
f.close()
id = id.decode("utf-8")
print (id, "revision", v1, v2)
if b1==0xff and b2==0xd8:
 print ("SOI checks.")
else:
 print ("SOI fails.")
if a1==0xff and a2==0xe0:
 print ("Application marker checks.")
else:
 print("Application marker fails.")
print ("App 0 segment is", sz, "bytes long.")
if unit == 0:
 print ("No units given.")
elif unit == 1:
 print ("Units are dots per inch.")
elif unit == 2:
 print ("Units are dots per centimeter.")

310 ■ Python: An Introduct ion to Programming

if unit==0:
 print ("Aspect ratio is ", xd, ":", yd)
else:
 print ("Xdensity: ", xd, " Ydensity: ", yd)
if xt==0 and yt==0:
 print ("No thumbnail")
else:
 print ("Thumbnail image is ", xt, "x", yt)

The compression scheme used in JPEG is very involved, but is does cause
certain identifiable artifacts in an image. In particular, pixels near edges and
boundaries are smeared, essentially averaging values across small regions
(Figure 8.1). This can cause problems if a JPEG image is to be edited, for example
in Photoshop or Paint.

Figure 8.1
JPEG images tend to show artifacts at places where pixels change rapidly, like corners and edges.

	8.5.4	 TIFF

The Tagged Image File Format has a potentially huge amount of metadata
associated with it, and that is all in text form in the file. It’s a favorite among sci-
entists because of that: the device used to capture the image, the focal length of
the lens, time, subject, and scores of other information can accompany the image.
In fact, the TIFF has been seconded for use with numeric non-image data as well.
The other reason it is popular is that is can be used with uncompressed (raw) data.

The word Tagged comes from the fact that information is stored in the file
using tags, such as might be found in an HTML file—except that the tags in a
TIFF are not in text form. A tag has four components: an ID (2 bytes, what tag
is this?), a data type (2 bytes, what type are the items in this tag?), a data count

 Chapter 8 · Manipulat ing Data ■ 311

(4 bytes, how many items?), and a byte offset (4 bytes, where are these items?).
Tags are identified by number, and each tag has a specific meaning. Tag 257
means Image Height and 256 is Image Width; 315 is the code meaning Artist, 306
means Date/Time, and 270 is the Image Description. They can be in any order.
In fact, the whole file structure is flexible because all components are referenced
using a byte offset into the file.

A TIFF begins with an 8-byte Image File Header (IFH):

Byte order:  This is 2 bytes, and is “II” if data is in little-endian form and “MM”
if it is big-endian.
Version Number:   Always 42.
First Image File Directory offset:  4 bytes, the offset in the file of the first
image.

The other important part of a TIFF is the Image File Directory (IFD), which
contains information about the specific image, including the descriptive tags and
data. The IFH is always 8 bytes long and is at the beginning of the file. An IFD
can be almost any size and can be anywhere in the file; there can be more than
one, as well. The first IFD is found by positioning the file to the offset found in
the IFH. Subsequent ones are indicated in the IFD. The IFD stricture is:

Number of tags:  2 bytes
Tags:  Array of tags, size unknown
Next IFD offset:  4 bytes. File offset of the next IFD. If there are no more,
then =0.

The structure of a tag was given previously, so a TIF is now defined. The
image data can be, and frequently is, raw pixels, but can also be compressed in
many ways as defined by the tags.

The program below reads the IFH and the first IFD, dumping the information
to the screen:
TIFF
from struct import *

f = open ("test.tif", "rb")
s = f.read (8) # Read the IFH
id, ver, off = unpack('2shL', s)
#2s h L

312 ■ Python: An Introduct ion to Programming

id = id.decode("utf-8")
print ("TIFF ID is ", id, end="")
if id == "II":
 print ("which means little-endian.")
elif id == "mm":
 print ("which means big-endian")
else:
 print ("which means this is not a TIFF.")
print ("Version", ver)
print("Offset", off)

f.seek(off) # Get the first IFD
n = 0
b = f.read (2) # Number of tags
n = b[0] + b[1]*256
#n = int(s.decode(“utf-8”))
for i in range(0,n):
 s = f.read (12) # Read a tag
 id,dt,dc,do = unpack ("hhLL", s)
 print ("Tag ", id, "type", dt, "count", dc, "Offset", do)
f.close()

When this program executes using “test.tif” as the input file, the first two
tags in the IFD are 256 and 257 (width and height) which are correct.

	8.5.5	 PNG

A PNG (Portable Network Graphics) file consists of a magic number, which
in this context is called a signature and consists of 8 bytes, and a collection of
chunks, which resemble TIFF tags. There are 18 different kinds of chunk, the
first of which is an image header. The Signature is always: 137 80 78 71 13 10 26
10. The bytes 80 78 71 are the letters “PNG.”

A chunk has either 3 or 4 fields: a length field, a chunk type, an optional
chunk data field, and a check code based on all previous bytes in the chunk that
is used to detect errors (called a cyclic redundancy check, or CRC).

The image header chink (IHDR) has the following structure:

Image width:	 4 bytes
Image height:	 4 bytes
Bit depth:	 1 byte. Number of bits per sample (1,2,4,8, or 16).

 Chapter 8 · Manipulat ing Data ■ 313

Color type:	� 1 byte. 0 (grey), 2 (RGB), 3 (color map), 4
(greyscale with transparency) or 6 (RGB with
transparency)

Compression method:	 1 byte. Always 0.
Filter method:	 1 byte. Always 0.
Interlace method:	� 1 byte. 0=no interlace. 1=Adam7 interlace

(See: references)

This file has compression, but it is non-lossy. It also, like GIF, allows trans-
parency, but allows full RGB color. It does not have an option for animations,
though. Reading the signature and the first (IHDR) chunk is done in the follow-
ing way:
PNG
from struct import *
b2 = (137, 80, 78, 71, 13, 10, 26, 10) # Correct header
types = ("Grey", "", "RGB", "Color map",
 "Grey with alpha", "", "RGBA") # Color types
f = open ("test.png", "rb")
s = f.read (8) # Read the header
b1 = unpack('8B', s)
if b1 == b2:
 print ("Header OK")
else:
 print ("Bad header")

s = f.read(8) # The next chunk must be the IHDR
length, type = unpack (">I4s", s) # Unpack the first
8 bytes print ("First chunk: Length is", length, "Type:",
type)

s = f.read (length) # We know the length, read the chunk
wd,ht,dep,ctype,compress, filter, interlace =
unpack(">ii5B", s)
#I I B B B B B
print ("PNG Image width=", wd, "Height=", ht)
print ("Image has ", dep, "bytes per sample.")
print ("Color type is ", types[ctype])
if compress == 0:
 print ("Compression OK")
else:
 print ("Compression should be 0 but is", compress)

314 ■ Python: An Introduct ion to Programming

if filter==0:
 print ("Filter is OK")
else:
 print ("Filter should be 0 but is", filter)
if interlace==0:
 print ("No interlace")
elif interlace == 1:
 print ("Adam7 interlace")
else:
 print ("Bad interlace specified: ", interlace)
f.close()

	8.5.6	 Sound Files

A sound file can be a lot more complex than an image file, and substantially
larger. To properly play back a sound, it is critical to know how it was sampled:
how many bits per sample, how many channels, how many samples per second,
compression schemes, and so on. The file must be readable in real time or the
sound can’t be played without a separate decoding step. All that is really needed
to display an image is its size pixel format and compression.

There are, once again, many existing audio file formats. MP3 is quite com-
plex, too much so to discuss here. The usual option on a PC would be “.wav” and,
as it happens, that format is not especially complicated.

WAV

A WAV file has three parts: the initial header, used to identify the file type;
the format sub-chunk, which specifies the parameters of the sound file; and the
data sub-chunk, which holds the sound data.

The initial header should contain the string “RIFF” followed by the size
of the file minus 8 bytes (i.e., the size from this point forward), and the string
“WAVE.” This is 12 bytes in size.

The next “sub-chunk” has the following form:

ID:	 = “fmt”
Size1:	 Size of the rest of the sub-chunk
Format:	 1 if PCM, another number if compressed
No. of Channels:	mono=1, stereo=2, etc.

 Chapter 8 · Manipulat ing Data ■ 315

Sample rate:	 Sound samples per second. CD rate is 44100
Alignment:	 Should be No. of channels*sample rate*bits per sample/8
Bits per sample:	 AKA quantization. Bits in each sample: 8, 12 are usual.

The final section contains the following:
ID:	 = “data”
Size:	 Number of bytes in the data
Data:	 The actual sound data, as a large block of Size bytes.

A program that reads the first two sub-chunks is:
WAV
from struct import *

f = open("test.wav", "rb")
s = f.read (12)
riff,sz,fmt = unpack ("4si4s", s)
riff = riff.decode("utf-8")
fmt = fmt.decode("utf-8")
print (riff, sz, "bytes ", fmt)

s = f.read (24)
id, sz1, fmt,nchan,rate,bytes,algn, bps = unpack

("4sihhiihh", s)
#4s i h h i i h h
id = id.decode ("utf-8)")
print (�"ID is", id, "Channels ", nchan, "Sample rate is ",

rate)
print ("Bits per sample is ", bps)
if fmt==1:
 print ("File is PCM")
else:
 print ("File is compressed ", fmt)
print ("Byterate was ", bytes, "should be ",
rate*nchan*bps/8)

	8.5.7	 Other Files

Every type of file has a specific purpose and a format that is appropriate for
that purpose. For that reason the nature of the headers and the file contents differ,
but the fact that the headers and other specific fields exist should by now make

316 ■ Python: An Introduct ion to Programming

some sense. When a program is asked to open a file there should be some way to
confirm that the contents of the file can be read by the program. The code that
has been presented so far is only sufficient to determine the file type and some
of its basic parameters. The code needed to read and display a GIF, for example,
would likely be over 1000 lines long. It is important, for someone who wishes to
be a programmer, to see how to construct a file so that it can be used effectively
by others and so that other programmers can create code that can identify that
file and use it.

With that in mind, some other file types will be described briefly and consid-
ered as examples of how to organize data into a file.

HTML

An HTML (HyperText Markup Language) file is one that is recognized by
a browser and can be displayed as a web page. It is a text file, and can be edited,
saved, and redisplayed using simple tools; the fancy web editors are useful, but
not necessary.

The first line of text in an HTML file should be either a variation on:
<!DOCTYPE html>

or a variation on:
<html>

The problem is that these are text files, so spaces and tabs and newlines can
appear without affecting the meaning. Browsers are also supposed to be some-
what forgiving about errors, displaying the page if at all possible. A simple ex-
ample that shows some of the problems while being largely correct is:
import webbrowser
f = open ("other.html")
html = False
while True: # Look at many lines
 s = f.readline() # Read
 s = s.strip() # Remove white space
 # (blanks, tabs)
 s = s.lower() # �Convert to lower case for
 # compare
 k = (s.find("doctype")) # doctype found?

 Chapter 8 · Manipulat ing Data ■ 317

 if k>0: # Yes
 kk = s.find("html") # Look also for 'html'
 if kk >= k+7: # Found it, after DOCTYPE
 html = True # Close enough
 break
 else:
 k = s.find("html") # No 'doctype'. 'html'?
 if k>0 and s[k-1] == "<": # Yes. Preceded by '<'?
 html = True # Yes, Close enough.
 break
 if len(s) > 0: # is the string non-blank?
 html = False # �Yes. So it is not HTML
 # probably
 break

if html:
 webbrowser.open_new_tab('other.html')
else:
 print ("This is not an HTML file.")

This program uses the webbrowser module of Python to display the web
page if it is one. The call webbrowser.open _ new _ tab('other.html')
opens the page in a new tab, if the browser is open. This module is not a browser
itself. It simply opens an existing installed browser to do the work of displaying
the page.

EXE

This is a Microsoft executable file. The details of the format are involved, and
require a knowledge of computers and formats beyond a first-year level, but de-
tecting one is relatively simple. The first two bytes that identify an EXE file are:

Byte 0: 0x4D
Byte 1: 0x5a

It is always possible that the first two bytes of a file will be these two by
accident, but it is unlikely. If the file being examined is, in fact, an EXE file,
then a Python program can execute it. This uses the operating system interface
module os:
import os
os.system ("program.exe")

318 ■ Python: An Introduct ion to Programming

	 8.6	 SUMMARY
A fair definition of Computer Science would be the discipline that concerns

itself with information. Computers can only operate on numbers, so an impor-
tant aspect of using data is the representation of complex things as numbers.
Most data consist of measurements of something, and as such are fundamentally
numeric.

A dictionary allows a more complex indexing scheme: it is accessed by con-
tent. A dictionary can be indexed by a string or tuple, which in general would be
referred to as a key, and the information at that location in the dictionary is said
to be associated with that key.

A Python array is a class that mimics the array type of other languages and
offers efficiency in storage, exchanging that for flexibility. The struct module
permits variables and objects of various types to be converted into what amounts
to a sequence of bytes. It has a pack() and an unpack() method for converting
Python variables into sequences of bytes.

The string format() method allows a programmer to specify how values
should be placed within a string. The idea is to create a string that contains the
formatted output, and then print the string.

Python data can be written to files in raw, binary form. It is also possible to
position the file at any byte in a binary file, allowing the file to be read or written
at any location.

Exercises

	 1.	Ask the user for a file name. Extract the suffix and use it to look up the type
of the file in a dictionary and print a short description of it. Recognized types
include image files (jpg, gif, tiff, png), sound files (wav), and others (dll, exe).

	 2.	Modify the Latin translation program so that it asks the user for a translation
of any word it cannot find and adds that word to the dictionary.

	 3.	Write a program that reads keys and values (strings) from the console and
creates a dictionary from those data. When the user types the word “done”
then the input is complete. City names are good examples of values, and
could represent the city where the person named in the key lives.

 Chapter 8 · Manipulat ing Data ■ 319

	 4.	Modify the answer to Exercise 3 so that after the data entry is complete, the
user can enter a value and the program will print all of the keys associated
with that value.

	 5.	Given a dictionary, write a function writedict() that writes that dictionary to
a file, and another function readdict() that will read that file and recreate the
dictionary. For simplicity assume that the keys are simple numbers or strings.

	 6.	The PNM file format for images has three types of image in two forms:
monochrome, grey, and color, saved as text or in binary form. A binary
grey level image is called a PGM (Pixel Grey Map) and has a short header
followed by pixels. The header is text and consists of the identifying code
“P5” followed by the width of the image in pixels (NC), followed by the
height (NR), followed by the maximum value for a grey level (NGL) followed
by an end of line. Now the data follows as rows of NC bytes:
P5
nc nr ngl
<image pixels, 1 byte each>

		 Write a program that will read an image file in this format and display it on
the screen as an image using Glib.

		 http://netpbm.sourceforge.net/doc/pgm.html

	 7.	Assume that the following variables exist and have the obvious meanings:
year, month, day, hour, minute, second. All are integer except second,
which is a float. The ISO 8601 standard for displaying dates uses the format:

		 YYYY-MM-DDThh:mm:ss.s
		 where the letter “T” ends the date portion and begins the time. An example

would be
		 2015-12-27T10:38:12.3
		 Write a function that takes the given variables as parameters and prints the

date in this format.
		 http://www.w3.org/TR/NOTE-datetime

	 8.	Write a Python program that opens a file named by the user from the
keyboard; the file has the suffix “.jpg,” “.gif,” or “.png.” Determine whether
the file contents agree with the suffix, and print a message indicating the
result.

320 ■ Python: An Introduct ion to Programming

	 9.	A concordance is a list of words found in a text. Build a concordance using
a dictionary that keeps track of the number of times that a word is used, in
addition to its mere presence. Print the resulting list in alphabetical order.

	10.	Write a program that prints out checks. The date and the payee are entered as
strings and the amount is entered as a floating point number, the maximum
amount being 1000 dollars. The FOR field is always “Books.” The program
formats the check according to the following image (Figure 8.2), where:
The date is line 3 starting at character 58
The pay to field is line 6 starting at character 20
The numeric amount is line 6 starting at character 57
The text amount is line 8 character 10
The FOR field is line 12 character 15

Figure 8.2
Check format.

Notes and Other Resources

List of free datasets to download: https://r-dir.com/reference/datasets.html
NASA Meteorite Landing Database: https://data.nasa.gov/view/ak9y-cwf9
String Formatting: https://infohost.nmt.edu/tcc/help/pubs/python/web/format-
spec.html
The Array type: https://docs.python.org/3/library/array.html

 Chapter 8 · Manipulat ing Data ■ 321

Image file formats: https://www.library.cornell.edu/preservation/tutorial/pre-
sentation/table7-1.html
http://www.scantips.com/basics09.html
Home page for MPEG: http://mpeg.chiariglione.org/
GIF 1989 specification: http://www.w3.org/Graphics/GIF/spec-gif89a.txt
Byte by byte GIF: http://www.matthewflickinger.com/lab/whatsinagif/bits_
and_bytes.asp
TIFF Description: http://www.fileformat.info/format/tiff/egff.htm#TIFF.FO
PNG Specification: http://www.w3.org/TR/PNG/
Adam7 Interlacing: http://www.libpng.org/pub/png/pngpics.html
EXE file format: http://www.delorie.com/djgpp/doc/exe/
File Signatures: http://www.garykessler.net/library/file_sigs.html
Sample PGM Images: http://people.sc.fsu.edu/~jburkardt/data/pgmb/pgmb.html

	 1.	Gunter Born. (1995). The File Formats Handbook, Cengage Learning
EMEA, ISBN-13: 978-1850321170.

	 2.	David Kay. (1994). Graphics File Formats, Windcrest, ISBN-13: 978-
0070340251.

	 3.	Dr. Charles R. Severance. (2013). Python for Informatics: Exploring
Information, CreateSpace Independent Publishing Platform, ISBN-
13: 978-1492339243.

	 4.	Alan Tharp. (1988). File Organization and Processing, 1st edition,
John Wiley & Sons, ISBN-13: 978-0471605218.

	 5.	John Watkinson. (2001). MPEG Handbook, Focal Press, ISBN-
13: 978-0240516561.

■ ■ ■ ■ ■

In this chapter

For a great many people computers have become the platform of choice
for the delivery of entertainment, education, and information. Part of
the reason for this is the ubiquity and speed of the Internet, but the main
reason is that computers can deliver media in almost any form: text and
images, sound, video, animation, and mixtures of all of these. If someone
has something to say, the computer can present it to the world in full color
and 5.1 channel sound. Moreover, the availability of free and inexpensive
tools for content creation allows almost anyone to be a music producer or
film director.

Python can be used to process and display most forms of media through
packages that can be downloaded and installed. There are many of these and
multiple versions in a bewildering array of combinations. It is not possible to
discuss all of the ways that Python can be used to do multimedia and all of the
packages and libraries that help programmers implement these things. A facility

9Chapter

Multimedia

9.1	 Mouse Interaction��324

9.2	 The Keyboard ��330

9.3	 Animation�� 335

9.4	 RGBA Colors – Transparency��346

9.5	 Sound��347

9.6	 Video��350

9.7	 Summary��356

324 ■ Python: An Introduct ion to Programming

has already been described for displaying images and graphics: Glib. Why not
simply add more media capability to Glib, thus building on what has already been
discussed? At the same time, of course, yet another module is being added to the
global mixture.

This extended version of Glib is built using an easily available module that
must be installed first—that module is Pygame. For the new version of Glib to
work properly, Pygame must be installed on the host computer first. This should
not be difficult, but the process varies depending on the operating system and
the nature of the computer (e.g., 32 bit or 64 bit) so the process will not be de-
scribed here. The Resources section at the end of the chapter provides links and
references that will be helpful.

It is essential to install a version of Pygame that works with Python 3.

There are two versions of Glib. The version that was used in Chapter 7 uses
tkinter as a basis and should not require anything extra to be installed. It is re-
ferred to as Static Glib, whereas the new, extended version is Dynamic Glib.
Dynamic Glib is upwards compatible from Static Glib in that all programs that
run using Static Glib should also run using Dynamic Glib, and produce a very
similar output. There are some differences between the two, such as font styles
and such. There are also new programming idioms that will be needed when us-
ing Dynamic Glib on account of the dynamic nature of some of the media forms.
In fact, one way to look at it is to think of Static Glib and Dynamic Glib as being
two different operating modes of the same library. Dynamic Glib is used in dy-
namic mode, where interaction with the user can occur, the graphics screen can
change, and sound can be played.

Dynamic mode will be explained using the example of mouse positions and
button clicks, which represent a form of dynamic interaction that most people
would have experienced. Following that, animation, video, and sound can be
discussed and combined into interesting projects.

	 9.1	 MOUSE INTERACTION
Using mouse position and button presses is a basic form of communication

with a computer. The use of the mouse position to activate some visual device on
the screen like a button is familiar to everyone who uses a computer, although it is

 Chapter 9 · Mult imedia ■ 325

being gradually replaced by touch screens. The idea is that when the user moves
the mouse, a cursor or indicator moves correspondingly. The position of this cur-
sor indicates a point on the screen that is active in some way, and if a graphical
device is there then it can be manipulated using the mouse buttons. The problem
is that a mouse button press can occur at any time; it is unpredictable. This is what
programmers call an event: something that happens at an unpredictable moment
that must be dealt with. Some software someplace must be watching the mouse at
all times, determining the x,y coordinates of the cursor on the screen and drawing
the cursor in the correct place.

The Glib module keeps track of the mouse using Pygame and continually
updates the position, which can be accessed using functions: mouseX() and
mouseY(), which return the most recent x and y coordinates. However, if a user’s
Python program is executing, how can the Glib system also run and update the
mouse position? It cannot. So, a dynamic mode program gives up control and lets
Glib control most of the work.

A dynamic Glib program consists of two parts: an initialization part and a
drawing part. Initialization takes place only once, when the program starts ex-
ecuting; it can take place in a function called initialize(), or it can be in the main
program. Glib will call a function named initialize() once, if it exists.

The part of the computer that draws will be coded as a function named
draw(). Glib will call this function many times each second, and the program-
mer is expected to redraw the graphics window each time. This scheme allows
the mouse position to update very frequently and allows the programmer to ac-
cess the most recent mouse coordinates from within the draw() function, which
can take the place of the main program. A simple example of the dynamic mode
and use of the mouse is a program that moves a circle around the screen. The
scheme described here is something that will be familiar to programmers of the
Processing language.

Example: Draw a Circle at the Mouse Cursor

Using Glib requires the use of the function startdraw() to initialize things,
in particular to establish the size of the drawing window. In Dynamic Glib the call
to startdraw() will also call the user’s initialize() function if one exists. Other
code can appear between startdraw() and enddraw(), usually calculations
and initializations. Once enddraw() is called control passes to the user’s draw()

326 ■ Python: An Introduct ion to Programming

function. It will be called 30 times per second by default, although this rate can
be changed.

Drawing a circle at the current mouse position involves repeatedly deter-
mining the mouse position and then drawing a circle at that set of coordinates.
This should be done within draw(). Initialization in this program is trivial so no
initialize() function is needed.
Import Glib

def draw ():
 Glib.background(200)
 Glib.fill (255, 0, 0)
 Glib.ellipse (Glib.mouseX(), Glib.mouseY(), 30, 30)

Glib.startdraw(400, 400)
Glib.enddraw()

The result is a red circle that follows the mouse! The draw() function sets
the background color to a grey level of 255, then sets the fill color to red, then
draws the circle (ellipse). It does this 30 times per second, every time draw() is
called. The most recent mouse position is always found using the functions Glib.
mouseX() and Glib.mouseY(). It seems like it should not be necessary to set the
fill color each time, so that can be put in the main program between startdraw()
and enddraw() or in the initialize() function:

In main: In initialize():
import Glib

def draw ():
 Glib.background(200)
 Glib.ellipse (Glib.
mouseX(), Glib.mouseY(),
30, 30)

Glib.startdraw(400, 400)
Glib.fill (255, 0, 0)
Glib.enddraw()

import Glib

def initialize ():
 Glib.fill (255, 0, 0)

def draw ():
 Glib.background(200)
 Glib.ellipse (Glib.
mouseX, Glib.mouseY, 30, 30)

Glib.startdraw(400, 400)
Glib.enddraw()

Is it necessary to call the background() function each time draw is called?
Yes. This function not only sets the background color but fills the screen with it,

 Chapter 9 · Mult imedia ■ 327

thus erasing what has been drawn so far. Unless a call to background() occurs in
draw(), all of the circles drawn to that point will be visible (Figure 9.1).

If the statement:
from Glib import *

appears at the beginning of the program then the Glib functions won’t have to be
prefixed with the name Glib. Variables that belong to Glib still do. The import
* allows all of the names from Glib to be used in the program, but is not always
recommended because it complicates the collection of names to be remembered.
Still, for the purposes of this chapter, it will be used.

Example: Change Background Color Using the Mouse

The idea here is to change the background color based on the mouse position.
There are only two directions to move, horizontally or vertically, so one of the
three colors will remain constant; let that color be blue. The horizontal mouse
position will control the red value, with the leftmost position representing no red
and the rightmost representing full red (255). Similarly, the mouse being at the
bottom of the image represents no green, and at the top it represents full green.
The background color will be changed in draw() accordingly.

Given that the position of the mouse on the screen is given by mouseX(),
the value of the red coordinate will be (mouseX()/width*255). It may require a
change in x coordinate of multiple pixels to shift the color by one unit. A similar
expression is used to change the green value.

 

Figure 9.1
Using the mouse to control elements of an image.

328 ■ Python: An Introduct ion to Programming

The program is:
from Glib import *
import Glib

def draw ():
 r = int((Glib.mouseX/width) *255.0)
 g = int((Glib.mouseY/height)*255.0)
 background (r, g, 128)

startdraw(400, 400)
enddraw()

	9.1.1	 Mouse Buttons

Mouse button clicks, as they are called, can be retrieved by writing a function
that handles them. Each time a mouse button is pressed, Glib tries to call a func-
tion named mousePressed(). If there is no such function, that’s OK, and nothing
else happens. If the user writes a function named mousePressed(), then it will
be executed. Similarly, when a mouse button is released, it tries to call mouseRe-
leased(). If the mouse button is pressed, then the mouse is moved, and then it is
released, the coordinates of the press and the release point will be different, and
both can be retrieved. For example, when the mouse button is pressed, the mouse
coordinates could be saved as the beginning of a line, and when released the co-
ordinates could be the end of the line. Multiple lines could be drawn in this way.

Example: Draw Lines Using the Mouse

Using the scheme described above, the function mousePressed() will store
the mouse position in global variables x0 and y0, and mouseReleased() will store
the release coordinates at x1 and y1. mouseReleased() will also draw the line
from (x0,y0) to (x1, y1):

from Glib import *
import Glib
x0 = x1 = y1 = y0 = 0

def mousePressed (b):
 global x0, y0
 x0 = Glib.mouseX()
 y0 = Glib.mouseY()

 Chapter 9 · Mult imedia ■ 329

def mouseReleased (b):
 global x1, y1
 x1 = Glib.mouseX()
 y1 = Glib.mouseY()
 line (x0, y0, x1,y1)

startdraw(400, 400)
enddraw()

Note that there is no draw() function and no initialize() function. Drawing
is performed inside of mouseReleased(), and no initialization is needed. This is a
rare situation. These functions accept one parameter, which is the number of the
button that was pressed: left is 0, middle is 1, and right is 2. Note that all buttons
could be pressed before any are released. In this example it does not matter what
button is pressed; the result is the same.

These functions are traditionally called callback functions. The occurrence
of some event causes the function to be called.

Example: A Button

This example will change the background color of the drawing window when
a graphical button is pressed. A button, in the user interface sense, is a rectangu-
lar region on the computer screen that responds to a mouse click with a specific
action. It is a two-part process: when the mouse cursor enters the rectangular
region, the button is said to be activated. Sometimes it will be caused to change
color at this point, or some other action will be performed that indicates that it is
ready to function. When a mouse button is pressed while the button is activated,
then some action occurs, usually as defined by a function being called. The basic
idea is simple enough to implement, although some buttons can have complex
actions such as sounds, images, and irregular shapes.

The cursor is within a rectangular region when its coordinates are greater
than the upper left coordinate of the rectangle and smaller than the lower right co-
ordinates. When that occurs the button is ready to be pressed, and should change
color. This does not require anything but knowledge of the mouse coordinates. It
the left button is pressed in this state (activated), then the action defined by the
button will occur; the background color will change, in this case. The program
begins as normal, with imports and initialization. Here is a program that does this
for a button at (100, 100) that is 60x20 pixels in size:

330 ■ Python: An Introduct ion to Programming

from Glib import *
from random import *

x0 = 100 # upper left button position
y0 = 100
w = 60 # Button size
h = 20
bc = cvtColor(200) # Initial color
active = False # Is the button currently active?

def draw ():
 global bc, w, h, x0, x1, y0,y1, active
 background (red(bc), green(bc), blue(bc))

 # Set background color to bc
 x = mouseX() # Is the mouse in the rectangle?
 y = mouseY()
 if x>x0 and x<x0+w and y>y0 and y<y0+h:
 fill (50, 200, 50) # YES. Button is active. Green
 active = True
 else:
 fill (200, 50, 50) # NO. Button is inactive. Red
 active = False
 rect (x0, y0, w, h) # Draw the button

def mouseReleased (b):
 global active, bc
 if active and b==0: # �Button active? Left button
 # released?
 # �If so generate a random
 # background color.
 bc = �(randrange (100, 200), randrange(100,200),

randrange(100, 200))

startdraw(400, 400)
enddraw()

All of the software buttons everywhere work in basically this way.

	 9.2	 THE KEYBOARD
Like mouse motions and button presses, pressing a key on the keyboard is

an event. Like button presses, a key press is a single event with multiple options.
The fact that a key has been pressed is an event, and exactly which key it was is a

 Chapter 9 · Mult imedia ■ 331

detail, just as it was when a mouse button was pressed. It is important to under-
stand that using a function such as input() will not be successful when trying to
read from the keyboard with an event-driven system, although knowing about
events can be valuable in understanding how input() could be implemented.
When input() is called it does not return until a line has been read; keyPressed()
captures the key press event. It appears that a call to input() may involve many
key press events. What software receives them? That is the important question.
The situation is really too confusing to be resolved sensibly, so the rule is: never
use input() and related functions when handling key presses. It is OK to call
print() because it is printing to a console device for which no conflict exists.

Every key press will eventually correspond to a key release, so there are two
callback functions again:

keyPressed(k):	� Called when a key is pressed. Parameter k is the key
that was pressed.

keyReleased(k):	� Called when a key is released. Parameter k is the key
that was released.

The parameters are not characters in the normal sense, but are numeric codes
that can identify the character. These are based on the Pygame character con-
stants, but extends them slightly. Table 9.1 gives a list of all of the constants pro-
vided by Glib. As an example, if a program must recognize when the up arrow
key is pressed, the keyPressed () function that would do this is:

def keyPressed (k):
 if k == K_UP:
 print ("Up arrow key pressed.")

In an event-driven program it is unusual for key presses to be converted into
strings, as they normally would be in a typical console-style program. That’s be-
cause it is expected that the interface to the event-driven program will be through
mouse gestures and using single key commands from the keyboard, like “up
arrow” meaning “move forward.”

Example: Pressing a “+” Creates a Random Circle

This program will draw a circle at a random location when the “+” key is
pressed. Old circles will remain. This illustrates the use of the keyboard in an
obvious way. The initialization is to clear the screen and set the background color

332 ■ Python: An Introduct ion to Programming

Table 9.1
Glib Character Constants

Backspace K_BACKSPACE J K_j Function
F10

K_F10

tab K_TAB K K_k Function
F11

K_F11

Clear K_CLEAR L K_l Function
F12

K_F12

Return/Enter K_RETURN M K_m Function
F13

K_F13

Pause K_PAUSE N K_n Function
F14

K_F14

Esc K_ESCAPE O K_o Function
F15

K_F15

Space K_SPACE P K_p Num lock K_NUMLOCK
Exclamation ! K_EXCLAIM Q K_q Caps lock K_CAPSLOCK
Quote “ K_QUOTEDBL R K_r Scroll

Lock
K_SCROL-
LOCK

Hash # K_HASH S K_s Right
Shift

K_RSHIFT

Dollar $ K_DOLLAR T K_t Left Shift K_LSHIFT
Ampersand & K_AMPERSAND U K_u Right ctl K_RCTRL
Quote ‘ K_QUOTE V K_v Left ctl K_LCTRL
Left Paren (K_LEFTPAREN W K_w Right alt K_RALT
Right Paren) K_RIGHTPAREN X K_x Left alt K_LALT
Asterisk * K_ASTERISK Y K_y Right

meta
K_RMETA

Plus + K_PLUS Z K_z Left meta K_LMETA
Comma , K_COMMA Del K_DELETE Left super K_LSUPER
Minus - K_MINUS Keypad 0 K_KP0 Right

super
K_RSUPER

Period . K_PERIOD Keypad 1 K_KP1 Mode K_MODE
Slash / K_SLASH Keypad 2 K_KP2 Help K_HELP
Zero 0 K_0 Keypad 3 K_KP3 Print K_PRINT
One 1 K_1 Keypad 4 K_KP4 Sys Req K_SYSREQ
Two 2 K_2 Keypad 5 K_KP5 Break K_BREAK
Three 3 K_3 Keypad 6 K_KP6 Menu K_MENU
Four 4 K_4 Keypad 7 K_KP7 Power K_POWER
Five 5 K_5 Keypad 8 K_KP8 Euro K_EURO
Six 6 K_6 Keypad 9 K_KP9 A K_A
Seven 7 K_7 Keypad . K_KP_PERIOD B K_B
Eight 8 K_8 Keypad / K_KP_DIVIDE C K_C
Nine 9 K_9 Keypad * K_KP_MULTIPLY D K_D
Colon : K_COLON Keypad - K_KP_MINUS E K_E
Semicolon ; K_SEMICOLON Keypad + K_KP_PLUS F K_F

 Chapter 9 · Mult imedia ■ 333

and fill color. The keyPressed() function generates random x,y coordinates and
draws a circle there:
from Glib import *
from random import *

def keyPressed (k):
 if k == K_PLUS:
 ellipse (�randrange(0,width), randrange(0,height),

30, 30)

startdraw(400, 400)
fill (200, 0, 0)
background (200)
enddraw()

The key value is passed as an integer, but the built-in function chr() will
convert that to the proper character in many cases. What is possibly the shortest
functional Glib program simply reads the keys and prints them on the console:

from Glib import *

def keyPressed(k):

Less < K_LESS Keypad Enter K_KP_ENTER G K_G
Equals = K_EQUALS Keypad = K_KP_EQUALS H K_H
Greater > K_GREATER Up arrow K_UP I K_I
Question ? K_QUESTION Down Arrow K_DOWN J K_J
At @ K_AT Right Arrow K_RIGHT K K_K
Left Bracket [K_LEFTBRACKET Left Arrow K_LEFT L K_L
Backslash \ K_BACKSLASH Insert K_INSERT M K_M
Right Bracket] K_RIGHTBRACKET Home K_HOME N K_N
Caret ^ K_CARET End K_END O K_O
Underscore _ K_UNDERSCORE PageUp K_PAGEUP P K_P
Back quote ‘ K_BACKQUOTE PageDown K_PAGEDOWN Q K_Q
a K_a Function F1 K_F1 R K_R
b K_b Function F2 K_F2 S K_S
c K_c Function F3 K_F3 T K_T
d K_d Function F4 K_F4 U K_U
e K_e Function F5 K_F5 V K_V
f K_f Function F6 K_F6 W K_W
g K_g Function F7 K_F7 X K_X
h K_h Function F8 K_F8 Y K_Y
i K_i Function F9 K_F9 Z K_Z

334 ■ Python: An Introduct ion to Programming

 print (chr(k))
startdraw()
enddraw()

The startdraw() function has default parameters, and creates a 50x50 pixel
window if no size is specified. This program does not draw anything, so draw()
is not needed.

Example: Reading a Character String

There are some reasons why an event-driven program might wish to read
data from the user as a string. Perhaps a name is required, or a key value to ac-
cess a database, or a password. Whatever the reason, it should be possible to read
a string using keyPressed(). The way it would normally be done is to read one
character at a time, normal for keyPressed(), and construct a string by concat-
enation. That’s how this program works:
from Glib import *

s = ""
t = ""

def keyPressed(k): # �k is the value of the key that
 # was pressed
 global s, t
 if k == K_RETURN: # �Typing RETURN ends the string
 # construction
 t = s
 s = ""
 return
 if k == K_BACKSPACE and len(s)>0: # �Delete the
 # previous character
 s = s[0:len(s)-1] # �Shorten the string by one
 # character
 else:
 s = s + chr(k) # �Append the new character to
 # the string

def draw ():
 global s, t
 background (200)
 text ("Enter a string: ", 10, 100)
 text (s, 20, 130)

 Chapter 9 · Mult imedia ■ 335

 if (t != ""):
 text ("Completed string is "+t, 20, 150)

startdraw(200, 200)
enddraw()

The global variable s holds the string being built, and the string t holds the
final string. Characters are captured from the keyboard by keyPressed() and fall
into one of three categories:

	 1.	 Most characters are added to the global string s through concatenation.
The character passed to keyPressed() is an integer. The chr() function
converts it to a character which is added to the end of s.

	 2.	 A BACKSPACE will delete the last character typed from the string. This
is done using a substring from 0 to the second last character.

	 3.	 A RETURN will end the string. The current string in s will be assigned
to t, and s will be reset to an empty string.

This kind of string data entry is especially useful when entering file names
and numeric parameters. There are frequently special interface objects (widgets)
that perform these tasks, such as text boxes. Glib could be used to implement such
a widget (see: Exercise 6).

	 9.3	 ANIMATION
Making graphical objects change position is simple, but making them seem

to move is more difficult. Animation is something of an optical illusion; images
are drawn in succession, and so quickly that the human eye can’t detect that they
are distinct images. Small changes in position in a sequence of these images will
be seen as motion rather than as a set of still pictures. A typical animation draws
a new image (frame) between 24 and 30 times per second to make the illusion
work.

There are two kinds of animation that can be done using Glib. The first in-
volves objects that consist of primitives that are drawn by the library. A circle
can represent a ball, for instance, or a set of rectangles and curves could be a
car. The second kind of animation uses images, where each image is one frame
in the sequence. These images are displayed entirely in rapid succession to cre-
ate the animation. In the first case the animation is being created as the program

336 ■ Python: An Introduct ion to Programming

executes, whereas in the second the animation is complete before the program
runs, and the program really just puts it on the screen.

	9.3.1	 Object Animation

Animating an object involves updating its position, speed, and orientation at
small time intervals, so all of these aspects of the object must be kept in variables.
If there are many objects being animated, then all of these variables must exist for
each object, and are updated at the end of each time interval. If the animation is
displaying 30 frames per second, then a new frame is drawn every 0.03 seconds.
In Glib the function named framerate() can be called passing the number of
times that draw() will be called each second, and then draw() can do the work
needed to update the objects and draw the frame.

Example: A Ball in a Box

Imagine a ball bouncing in a square box. A box has three dimensions, of
course, but for this example it will be restricted to two, so it will look like a circle
within a square. The ball is moving, and when it strikes one of the sides of the
square it will bounce, thus changing direction. There is one moving object: the
ball. Graphically it is simply a circle, with position x,y and speed dx in the x di-
rection and dy in the y direction. It will have size 30 pixels. The box will simply
be the window the circle is drawn in.

During each frame the ball will move dx pixels in the x and dy pixels in the
y direction, so within the draw() function the position is updated as:

x = x + dx
y = y + dy

This new position is where to draw the circle. However, if the ball is outside
of the box after it is moved, then a bounce has to be performed. That is, if the
new position of x is, for instance, less than 0, then it would have struck the left
side of the square and then changed x direction (bounced). In this case, and also
if x>width, the bounce is implemented by:

dx = -dx

Similarly, if the y coordinate of the ball becomes less than 0 or greater than
the height, then it bounces vertically:

dy = -dy

 Chapter 9 · Mult imedia ■ 337

This would all be true if the ball were very tiny, a single point, but it has a
size of 30 pixels, and the coordinates of the circle are the coordinates of its center.
This means that the method described above will bounce the circle only after the
center coordinate passes the boundary, meaning that half of the circle is already
on the other side. It’s easy to fix: the ball is 30 pixels in size, so it should bounce
when it gets within 15 pixels of any boundary. For example, the x bounce should
occur when x<=15 or x>=width-15. The entire solution is:
Bouncing ball animation.
from Glib import *

def draw ():
 global dx, dy, x, y
 background (200) # Erase the prior frame
 x = x + dx # Change ball position
 y = y + dy
 if x<=15 or x>=width-15: # Bounce in X direction?
 dx = -dx
 if y<=15 or y>=height-15: # Bounce in Y direction?
 dy = -dy
 ellipse (x, y, 30, 30) # Draw the ball
startdraw(200, 200)
x = 100 # �Initial x position of the
 # ball
y = 100 # Initial y position
dx = 3 # Speed in x
dy = 2 # Speed in y
fill (30, 200, 20) # Fill with green
enddraw()

Eight frames from this animation showing the ball bouncing in a corner of
the box are shown in Figure 9.2. An entire second’s worth of frames (30) are
given on the accompanying disc.

If there are many objects then all of the positions and speeds, and perhaps
even shape, size, and color would have to be kept and updated during each frame.
There are two usual ways to do this. In the first case the parameters are kept in
arrays (lists). There would be an array of x coordinates, an array of y coordinates,
of speeds, and so on. Each frame could involve an update to all elements of the
arrays. Updating the position can be done like this:
for i in range(0,Nobjects):

ON THE CD

338 ■ Python: An Introduct ion to Programming

 x[i] = x[i] + dx[i]
 y[i] = y[i] + dy[i]

The other usual method for handling multiple objects is to create an object
class that contains all of the parameters needed to display the object. There is still
an array, but it is an array of object instances, and if it is cleverly programmed the
class can be updated by calling an update() method:
for i in range(0,Nobjects):
 ball[i].update()

Example: Many Balls in a Box

This example uses the same premise as the previous one, but will draw many
balls in the window, all of them bouncing. Both methods for keeping track of
objects, arrays, and classes will be illustrated. The many arrays solution has lists
for x and y, for dx and dy, for color and for size. All parameters are initialized at
random when the program begins.

Figure 9.2
Bouncing ball in a box.

The solution that uses classes defines a class ball within which the position,
speed, color, and size are defined. The constructor initializes the values, and the
update method changes the ball’s position and performs any needed bounces. The
two solutions are:

Arrays Class
from Glib import *
from random import *

from Glib import *
from random import *

 Chapter 9 · Mult imedia ■ 339

def draw ():
 global dx, dy, x, y
 background (200) # �Erase the
 # prior frame
 for i in range(0,n):
 x[i] = x[i] + dx[i] �# Change
 # position
 y[i] = y[i] + dy[i]
 if x[i]<=sizes[i]/2 or \
 x[i]>=width-sizes[i]/2:

Bounce X?
 dx[i] = -dx[i]
 if y[i]<=sizes[i]/2 or \
 y[i]>=height-sizes[i]/2:

Bounce Y?
 dy[i] = -dy[i]
 fill (red(colors[i]),
 green(colors[i]),
 blue(colors[i]))
 ellipse (x[i], y[i],
 sizes[i], sizes[i])

Draw the ball

startdraw(400, 400)
n = 50
x = [] # �Initial x position of
 # the balls
y = [] # Initial y position
dx = [] # Speed in x
dy = [] # Speed in y
colors = []
sizes = []
for i in range (0,n):
 x = x + [randrange(15,width-15)]
 y = y +
[randrange(15,height-15)]
 dx = dx + [randrange (-2, 2)]
 dy = dy + [randrange (-2, 2)]
 sizes = sizes + [randrange

(2,30)]
 colors = colors +[(randrange

(100, 200),
 randrange(100, 200),
 randrange(100, 200)),]
nostroke()
enddraw()

class Ball:
 def __init__ (self):
 self.x = randrange (15,

width-15)
 self.y = randrange (15,

 height-15)
 self.dx = randrange (-2, 2)
 self.dy = randrange (-2, 2)
 self.size = randrange (2, 30)
 self.color = (randrange (100,

200),
 randrange (100, 200),

randrange (100, 200))

 def draw (self):
 self.x = self.x + self.dx

#Change position
 self.y = self.y + self.dy
 if self.x<=self.size/2 or
 self.x>=width-self.size/2:

Bounce X?
 self.dx = -self.dx
 if self.y<=self.size/2 or
 self.y>=height-self.size/2:

Bounce Y?
 self.dy = -self.dy
 fill(self.color[0],

self.color[1], self.color[2],
self.color[3])

 ellipse (self.x, self.y,
 self.size, self.size)

Draw the ball

def draw ():
 global dx, dy, x, y
 background (200) # �Erase the
 # prior frame
 for i in range(0,n):
 balls[i].draw()

startdraw(400, 400)
n = 50
balls = []
for i in range (0,n):
 balls = balls + [Ball()]
nostroke()
enddraw()

340 ■ Python: An Introduct ion to Programming

These two solutions illustrate how classes work
very neatly. The class contains individual properties
of a ball and many are created; the arrays contain
many instances of each property. So x[i] and ball[i].x
represent the same thing. In this case the two pro-
grams are about the same size, but the class-based
implementation encapsulates the details of the ball
and what can be done with it. The class-based draw()
function only says “draw each ball,” but in the array
implementation the draw() function looks at all of
the details of all balls to draw them. One of the impli-
cations is that it would be possible to divide the labor

between two persons, one who wrote the class and another who wrote the rest of
the code. For large programs this can matter quite a lot.

	9.3.2	 Frame Animation

The hard work in frame animation is done before the computer program is writ-
ten. An animator has created drawings of an object in various stages of movement.
All the program does is display frames one after the other, often looping them to
create the desired effect. A common example of this is the animation of gait, walk-
ing or running. An artist draws multiple stages of a single step, being careful to
ensure that timing is correct: how long does it take for a normal person to stake a
pair of steps (left, right)? This time should agree with the frames the artist creates.
If it takes one second to make the step, then it should be drawn as 30 frames.

Other kinds of animation are performed too. A fire can be animated as a
very few frames, as can smoke and water. The program that draws the animation
reads all of the image files into a collection. When the animation is played, the
program displays one image after another within the draw function. This can be
complicated by the fact that there may be multiple animations playing at the same
time, possibly of different lengths and frame sizes.

Example: Read Frames and Play Them Back as an Animation

In this example there are 10 drawn animation frames of a cartoon character
walking. These frames are intended to represent a single gait cycle, and so should
be repeated. The program will do the following: when the up arrow key is pressed

Figure 9.3
Many bouncing balls in a box.

 Chapter 9 · Mult imedia ■ 341

and held down, the character drawn in the window will “walk”; otherwise a still
image will be displayed.

First the images should be read in and stored in an array (list) so that they
can be played repeatedly. Then the keyPressed() function should be written so
that when the up arrow key is pressed the frames will be drawn. A flag can be set
True when the key is pressed, and False when the key is released so that draw()
can tell when to draw frames and when not.

def keyPressed (k):
 global keydown
 keydown = True

def keyReleased(k):
 global keydown
 keydown = False

A list named frames is initialized with all of the images in the sequence.
All that draw() does is play the next one, using a global variable f to identify the
current frame.

def draw ():
 global keydown, f
 if keydown:
 image (frames[f], 0, 0)
 f = f + 1
 if (f > 10):
 f = 1

It cycles through the frames and repeats when all have been displayed.

The initialization can be a simple matter of reading ten images into variables
and creating a list. This code does it in a loop, using a number in the name and
incrementing it:

startdraw(320, 240)
keydown = False
frames = []
for i in range (1, 10):
 s = "images/a00"+str(i) +".bmp"
 x = loadImage (s)
 frames = frames + [x,]
x = loadImage ("images/a010.bmp")
frames = frames + [x,]

342 ■ Python: An Introduct ion to Programming

x = loadImage ("images/a011.bmp")
frames = frames + [x,]
f = 1
image (frames[0], 0, 0)
enddraw()

The variable frames is a list holding all of the images, and frames[i] is the ith
image in the sequence.

The building of the file name is interesting. It is common to use numbered
names for animation frames; things like frame01, frame02, and so on. In this case
the sequence is a***.bmp where the *** represents a three-digit number. If the
variable i is an integer, then str(i) is a string containing that integer, but leading
zeros are not present. Thus, for values of i between 0 and 9 (one digit), the string
will be “a00”+str(i)+“.bmp”; for values of i between 10 and 99 (two digits), the
string will be “a0”+str(i)++“.bmp”; finally, for numbers between 100 and 999,
the string will be “a”+str(i)+“.bmp” (three digits). The leading zeros are manu-
ally inserted into the string.

The animation frames for the gait sequence are on the disk along with this code.

Example: Simulation of the Space Shuttle Control Console (A Class
That Will Draw an Animation at a Specific Location)

Animations can sometimes be used to decorate a scene in interesting ways.
A control panel showing video screens and data displays could use animations to
fill the screens, giving the illusion of real things being monitored. A class that can
play a frame-by-frame animation at any location on the screen could be instanti-
ated many times, once for each display.

The class would have to read the frames it was to play and store them, play
back the frames in a loop when requested, and place them within the window
at any location. None of these tasks is especially hard. Code for reading frames
from a file was written for the previous example, as was code for displaying the
frames. Each class instance would need a frame count so that the loop could start
over at the right place, and each class instance could have an animation with a
different number of frames. Finally, placing at the right location is a matter of
passing the correct parameters to the image() function. The class would be in-
stantiated given the position as x and y coordinates of the upper left corner.

 Chapter 9 · Mult imedia ■ 343

Sometimes, especially when multiple animations are playing, it will be nec-
essary to slow down some animations so that they look right. The Glib code
calls draw() a fixed number of times each second, but that may not always be
the correct speed for an animation. A count can be introduced so that the frame
advances to the next only when a count exceeds a fixed delay value. If the count is
2, for example, then 2 calls to draw() are required before a new frame is chosen,
meaning that the frame rate has been decreased by 50%.

The specific example is supposed to implement a “simulation” of a space shut-
tle control console. This is a visual simulation, not one that allows interaction at any
level, and the idea is to insert animations into a still photo of a real shuttle console
and make it look more active. Figure 9.4a shows the static image that will be used.
There are many video screens visible, and the program being developed will re-
place the still image on some of those screens with moving, animated images.

Three of the screens are selected for animation. The image was displayed us-
ing Paint and the coordinates of the upper left corner of each of these screens was
determined, as were the sizes. Figure 9.4b shows the location of these regions on
the image.

Figure 9.4
https://commons.wikimedia.org/wiki/File:STSCPanel.jpg

344 ■ Python: An Introduct ion to Programming

The code for the class starts like this:
class Anim:
 def __init__ (self, x, y): # Constructor -------------
 self.frames = [] # The actual images
 self.xpos = x # Position of upper left
 self.ypos = y
 self.n = 0 # How many frames are there?
 self.f = 0 # �Which frame is currently
 # being shown?
 self.active = False # �Is this animation being
 # played?
 self.delay = 1 # �Used to slow the frame
 # rate
 self.count = 100000 # �When count>delay a frame
 # is drawn

 def draw (self):
 if self.active: # �Draw the current frame at the
 # correct location
 image (self.frames[self.f], self.xpos, self.ypos)
 self.count = self.count + 1 # Increment count.
 if self.count >= self.delay: # �Change the frame
 # yet?
 self.f = self.f + 1 # �Yes. And also
 # reset the count
 self.count = 0
 if (self.f >= self.n): # �Loop the frames;
 # start over at 0
 self.f = 0

The part of the class that reads the frames as images is basically taken from
the previous example:
 def getframes (self, s1, s2):
 self.frames = [] # �The list variable
 #'frames' contains all
 # images
 for i in range (0, 100): # �Up to 100images can be
 # read.
 if i<10:
 s = s1 + "0"+str(i) + s2
 print ("Reading ", s)
 elif i<100:

 Chapter 9 · Mult imedia ■ 345

 s = s1 + str(i) + s2
 x = loadImage (s)
 if x == None:
 self.n = i
 print ("Saw ", self.n, " frames.")
 break
 self.frames = self.frames + [x,]

There is a flag named active that determines whether the animations are cur-
rently running or not. The methods start() and stop() turn the animation on and
off by toggling this variable.
 	 def start(self):
 	 self.active = True

 	 def stop (self):
 	 self.active = False

Finally, for this class, the delay can be set using a call to the setdelay() meth-
od, which simply changes the value of a class local variable delay.
 def setdelay (self, d):
 self.delay = d
The draw() method of the program simply draws the
animations by calling their respective draw() methods:

def draw ():
 a.draw()
 b.draw()
 c.draw()

The main program opens the window and loads and draws the background
image:
startdraw(800, 531) # The size of the background image
background = loadImage ("images/800px-STSCPanel.jpg")
image (background, 0, 0)

The first animation, at x=239 and y=284, will show some television static,
seven frames of which were created for this purpose using another program.
A class instance is created to draw at (239,284) and getFrames() is called to load
the images (the file names are “g100.gif ” through “g106.gif ”):

a = Anim(239, 284)
a.getframes ("images/g1", ".gif")

346 ■ Python: An Introduct ion to Programming

The second animation is at x=319 and y=258 and will display some exterior
shots of the space shuttle. The process is the same as before, but the file names are
“g200.jpg” through “g204.jpg.” In addition, a delay of 100 is set, because these
images are to be displayed for multiple seconds each to simulate a display scan-
ning a set of cameras:
b = Anim (319, 258)
b.getframes ("images/g2", ".jpg")
b.setdelay(100)

Finally the third animation, at x=319 and y=322, consists of a computer
display showing Python code (this class, in fact). It was created by another pro-
gram and consists of nine frames named “g300.gif” through “g308.gif.” This
animation is delayed a little as well so that it appears as if the text is scrolling
properly:
c = Anim (319, 322)
c.getframes ("images/g3", ".gif")
c.setdelay(10)

The last step in the program is to start all of the animations playing:
a.start()
b.start()
c.start()
enddraw()

The example is complete on the disk, and needs to be executed with the im-
ages directory, which contains the animation frames.

https://commons.wikimedia.org/wiki/File:STSCPanel.jpg

	 9.4	 RGBA COLORS – TRANSPARENCY
In Chapter 7, it was seen how it was possible to use transparency in an im-

age to allow the visualization to ‘see through’ to an image in the background. As
it happens, any pixel can be assigned a degree of transparency that permits the
same visual character. A color can be assigned a value that dictates how opaque
or transparent it is, allowing colors behind it to influence how that pixel is seen.
One can think of this as a fourth color value, in addition to red, green, and blue. It
is referred to as alpha, and a color with four color parameters is said to be in the
RGBA color space, for Red, Green, Blue, and Alpha.

 Chapter 9 · Mult imedia ■ 347

If the value of Alpha is 255, then
the color is opaque; as it decreases in
value the transparency increases un-
til at Alpha=0 pixel or object cannot
be seen. A program that draws three
overlapping circles using colors with
an Alpha value of 60 shows the visual
effect of using transparency (Figure
9.5a). Transparency is specified in this
case by providing the Alpha value as a
fourth parameter to fill():

from Glib import *

startdraw(300, 300)
fill (255, 0, 0, 60)
ellipse (100, 100, 150, 150)
fill (0, 255, 0, 60)
ellipse (200, 100, 150, 150)
fill (0, 0, 255, 60)
ellipse (150, 200, 150, 150)
enddraw()

Transparency can be added to stroke colors also, and in the same way (Figure
9.5b). For example:

stroke (255, 0, 0, 65)

	 9.5	 SOUND
Sound is an essential component of digital media. Proof? Almost nobody

watches silent films anymore, and nobody makes them. Video games are rarely
played with the sound turned off. There are a few important reasons for this.

	 1.	 Much human communication is through sound. Speech is the best ex-
ample, but non-speech sounds, clapping, stamping of feet, and so on, are
ways that people make their feelings and intentions known.

	 2.	 Sounds are associated with events. When an object falls to the floor a
sound occurs with the impact. A button is pressed and a doorbell rings.
These sounds are important indicators.

 

	 (a)	 (b)
Figure 9.5
(a) Overlapping circles filled with transparent
versions of red, green, and blue create new colors
in the overlapping regions. (b) Stroke colors can
have transparency too. Where the red and blue
lines intersect, the red under the blue is seen as
purple.

348 ■ Python: An Introduct ion to Programming

	 3.	 Sounds cause emotional reactions in people. Music can do this; it can
convey a mood better than almost anything else. But sound can also
indicate things unseen. A growling in the dark; a screech in the sky; the
sound of an approaching vehicle around a curve in the road.

In Glib a sound is much like an image in terms of how it is used. A sound
file is loaded and assigned to a variable, then that variable can be used to play,
stop, rewind, and perform all audio operations on that sound. Each sound must
be loaded into a distinct variable and has its own controls. The Glib interface to
sounds files should therefore look familiar.

One problem is that the sound system does not have a large variety of sound
files that it can handle: “.wav” and “.ogg” are about it. This leaves the more popu-
lar format, “mp3,” out of contention for Python media software, at least for now.

The first step in playing a sound is to load the file. The function loadSound()
is used for this, passing the name of the sound file:

s = loadSound ("song.wav")

Playing the sound is done using the playSound() function of Glib:
playSound (s)

Stopping a sound from playing is a matter of calling stopSound(). Setting
the volume means calling volumeSound() passing a parameter between 0.0 and
1.0, where 0.0 is no sound and 1.0 is maximum volume. That’s pretty much it for
the basics.

Example: Play a Sound

The act of reading and playing a sound file will illustrate the essential opera-
tions for using sound. The file input is done as an initialization. Starting to play
the file could be done that way too. Calling playSound() repeatedly from draw()
will cause the file to start playing over and over again. A solution is to start some
sounds in the main program; another is to set a flag when a sound starts playing
and check the flag. The best way would be to record the time when the sound
started playing and see if the current time exceeds the length of the sound.

If playSound() is called with a second parameter, an integer, then the sound
will be replayed or repeated that many times. The call playsound(s, 3) plays
the sound s three times. If the requested file does not exist, then loadSound()
returns None.

 Chapter 9 · Mult imedia ■ 349

Example: Control Volume Using the Keyboard. Pause and Unpause

This example adds volume control. The function volumeSound() accepts a
single parameter, and it is a number between 0.0 (lowest volume) and 1.0 (highest
volume). Adding a volume control is as simple as coding a keyPressed() function
that changes the volume level by an increment each time a key is pressed. Use “+”
for a volume increase and “-” for a decrease. The new program is:

from Glib import *

def keyPressed(k):
 global volume, s
 if k == K_PLUS:
 volume = volume+.1
 elif k == K_MINUS:
 volume = volume-.1
 if volume<0: volume = 0
 if volume>1: volume = 1
 volumeSound(s, volume)

startdraw()
s = loadSound ("sun.wav")
volume = 1.0
volumeSound (s, volume)
if s == None:
 print ("No such sound file.")
else:
 playSound(s)
enddraw()

Example: Play a Sound Effect at the Right Moment: Bounces

A sound effect represents some event, and needs to be played at the moment
the event happens. Synchronizing the two things is as simple as playing a sound
when the event is detected. This example program will play a sound representing
a ball hitting something when a simulated ball hits the side of the window and
bounces. The bouncing ball animation program will provide the impact event:
when the ball hits the side of the window, the sound of an impact will be played.

The sound effect is a file, and was recorded using an inexpensive micro-
phone, a computer with a sound card, and the Audacity software, which is free
and downloadable (see the end-of-chapter resources). The sound of a glass hitting

350 ■ Python: An Introduct ion to Programming

a desk was recorded, edited, and saved as a “.wav” file named “bounce.wav.” The
program was modified to read that file, and then play it back whenever a collision
with the window was detected. The program has three new lines of code:
Bouncing ball animation.
from Glib import *

def draw ():
 global dx, dy, x, y
 background (200) # Erase the prior frame
 x = x + dx # Change ball position
 y = y + dy
 if x<=15 or x>=width-15: # Bounce in X direction?
 playSound (s)
 dx = -dx
 if y<=15 or y>=height-15: # Bounce in Y direction?
 dy = -dy
 playSound(s)
 ellipse (x, y, 30, 30) # Draw the ball

startdraw(200, 200)
x = 100 # �Initial x position of the
 # ball
y = 100 # Initial y position
dx = 3 # Speed in x
dy = 2 # Speed in y
s = loadSound ("bounce.wav")
fill (30, 200, 20) # Fill with green
enddraw()

In many situations there can be a small delay between the event and the
sound being played. A sound can rarely be played instantaneously.

	 9.6	 VIDEO
The video facilities provided by Glib are limited, but the library increases

the functionality of the underlying Pygame module. It is important to understand
that video plays at a particular rate and, unlike audio, must acquire a portion of
the display window within which to be drawn. This means that playing a video
in the normal way takes control away from the programmer and allows the video
software autonomy. This can cause some trouble, as programmers often want to
draw into the display window as well.

 Chapter 9 · Mult imedia ■ 351

Using the basic functionality it is possible to play an MPEG-formatted video
with sound anywhere in the window, and the window can be sized to suit the
purpose. Only a single video can be played in this way at one time, though. A
video has characteristics of both sounds and images: the video resides in a file; it
is placed in a specific location in the window, and has a two-dimensional size (a
width and height), but the image displayed changes as a function of time. Also, a
video can have sound as one of its properties. However, because multiple videos
may have multiple sound channels, only one of them is given the sound output
channel, meaning that only one can play sound.

A video is read into a variable in the same way as an image or sound: a func-
tion loadVideo() returns a variable that references the data on an MPEG file
which is specified by file name as the parameter. A video is played by calling the
function playVideo() and passing the value returned by loadVideo(). The small-
est program that plays a video file would be something like this:

from Glib import *

startdraw(400, 400)
s = loadVideo ("ellipsis.mpg")
if s != None:
 playVideo(s)
enddraw()

The file being opened and played is one provided on the accompanying disc,
“ellipsis.mpg,” and it has no sound. The variable s represents the video in the
program, and is returned by loadVideo(). It is, in fact, a reference to a Glib class
named Gvideo. If it has the value None, then no video file was loaded for some
reason: perhaps the file does not exist or is in a format that can’t be processed.
Glib only recognizes MPEG video files, and even then only MPEG I. The play-
Video() function places the image in the upper left corner of the window and
begins playing it, sound included.

There are a small collection of useful functions in Glib for dealing with vid-
eos. They are:

pauseVideo(m):   Parameter m is a video. Pauses the video if it is playing
or resumes it if it is paused
stopVideo (m):  Parameter m is a video. Stops playing the video m
rewindVideo (m):  Parameter m is a video. Returns the video to the
beginning

ON THE CD

352 ■ Python: An Introduct ion to Programming

isVideoPlaying (m):  Parameter m is a video. Returns True if the video
is playing
setVideoVolume(m, v):  Parameter m is a video. Adjusts the audio vol-
ume on the video m to be the value v, where v=0 is the minimum and
v=1.0 is the maximum
lengthVideo (m):  Parameter m is a video. Returns the length of the video
in seconds
whereVideo(m):  Parameter m is a video. Returns the current location in
the video, in seconds from the start
getVideoFrame(m):  Parameter m is a video. Returns the current video
frame playing
setVideoFrame(m, f):  Parameter m is a video. Changes the playback so
the next frame in the video to play is frame f
getVideoPixel(m, x, y):  Parameter m is a video. Returns the value of the
pixel at location (x,y) in the frame currently being displayed
sizeVideo (m):  Parameter m is a video. Returns the dimensions of a video
frame. The video must be loaded
videoSize (s):  Parameter s is a string. Returns the dimensions a frame
in the video file s, where s is a string. Use this for finding the size before
loading the file
locVideo (m, x, y, w, h):  Position the video m at position (x,y) in the win-
dow, and make it wxh pixels in size. Does not start it playing

Example: Carclub – Display the Video carclub2.mpg (Annotated)

When the p key is pressed the video will pause, and when pressed again it
will resume. Display the video at location 100, 100 in the window and make it
200x200 pixels. Display the number of the current frame and the current time of
the frame being played.

This program uses eight of the fifteen video functions. First the file is loaded
and the location and size are set using locVideo(). Then the main program starts
the video playing.

The draw() function is responsible for updating the numeric values displayed.
It resets the background and then checks to see if the video is playing; it displays
“Playing” if so, or “Not playing” otherwise. The current position, current time,
and total time are extracted and displayed using calls to text().

 Chapter 9 · Mult imedia ■ 353

Finally the pause feature is implemented. In the function keyPressed() the
function checks that the key pressed was “p,” and if so it calls pauseVideo(). This
function keeps track of whether or not the function is playing and knows whether
to start or stop the video. Here is the program:
from Glib import *

def draw ():
 global vid
 background (0, 200, 190) # �Clear the background,
 # set to aqua.
 if isVideoPlaying(vid): # �Playing? Print an
 # indicator
 text ("playing", 10, 40)
 else:
 text ("Not playing", 10, 40)
 whr = whereVideo(vid) # Current time of play
 text ("Frame "+str(getVideoFrame(vid)), 10, 60)

Current frame
 text ("Length "+ str(whr)+" of "+str(lengthVideo(vid)),

40, 370)

def keyPressed(k):
 global vid
 if k == K_p: # Key pressed was a 'p'
 pauseVideo(vid) # Pause

startdraw(500, 500)
vid = loadVideo("carclub2.mpg") # Load the car club video
locVideo(vid, 100, 100, 200, 200) # Position it at
 # (100, 100)
playVideo(vid) # Play it.
enddraw()

A screen shot of this program in action is shown in Figure 9.5. Note that the
current time is displayed to 16 or so digits. This can be changed to display some-
thing more reasonable (see: Exercise 8).

There are four different ways to “play” a video using Glib, and each has a
distinct set of pros and cons and a process for how to manage the video. After
loading the video into variable m:

	 1.	 Using the Glib functions – loadVideo(), locVideo(), play() and so on
isolate the programmer from the actual video class Gvideo. These are

354 ■ Python: An Introduct ion to Programming

typically used when there are one or two videos and there is no compli-
cated processing going on. Only one video with sound can be played; the
others will play muted.

	 2.	 AutoPlay(m) – The video m will play automatically in the current display
window. The user has some control: the video can be paused and can be
located at a specific location and size. It will play at the internally desig-
nated rate (frames per second) with sound. Only one video with sound can
be played in this way; the others will not have the sound played.

	 3.	 PlayVideo(m) – The video will play at its internal frame rate, but a
frame will not be displayed until the drawVid() function is called. If
drawVid() is called inside of the user’s draw() function then the frames
will be displayed at the Glib-specified frame rate, but some video frames
might be missed.

	 4.	 DrawFrame(m, f) – The frame numbered f of the video m will be
drawn. Sound will not play. This permits the best control of the video,
because each frame can be played at any speed without missing any; or,
every second or third frame can be played; or random frames can be
played. The video can even be played backwards – simply start f at the
largest frame value and decrease by 1 each time.

Three of these different styles are illustrated in the table below:

from Glib import *
Use the Glib functions

startdraw (500,500)
s = loadVideo (�"vid1.

mpg")
locVideo (�s, 0, 0, 200,

200)
t = loadVideo (�"vid2.

mpg")
locVideo (�t, 210, 0,

200, 200)
autoPlay(t)
autoPlay(s)

enddraw()

from Glib import *
Use playVideo/drawVid

def draw ():
 global s, t
 drawVid(s)
 drawVid(t)
startdraw (500,500)
s = loadVideo (�"vid1.

mpg")
locVideo (�s, 0, 0, 200,

200)
t = loadVideo (�"vid2.

mpg")
locVideo (�t, 210, 0,

200, 200)
playVideo(t)
playVideo (s)
enddraw()

from Glib import *
Use the Gvideo methods

def draw ():
 global s, t, frame
 drawFrame (s, frame)
 drawFrame(t, frame)
 frame = frame + 1
startdraw (500,500)
frame = 0
s = loadVideo (�"vid1.

mpg")
locVideo (�s, 0, 0, 200,

200)
t = loadVideo (�"vid2.

mpg")
locVideo (�t, 210, 0,

200, 200)
enddraw()

 Chapter 9 · Mult imedia ■ 355

  

Figure 9.6
Car club video. (Left) While playing. (Right) While paused.

Exercise: Threshold a Video (Processing Pixels)

In Chapter 7, a program was written that thresholded an image. It converted
each pixel to a grey value and if that value was smaller than a specified threshold
it would be set to black; otherwise it would be set to white. Each frame of a video
is an image, and it should be possible to threshold each frame and then display it.
Glib provides the getVideoPixel() function that returns the value of a specified
pixel in the current frame of a video.

This example will use draw_frame() to display the video, and draw_frame()
will be called from the user’s draw() function. After the frame is displayed each
pixel in the frame is examined (getVideoPixel ()), converted to a grey value
(grey(p)), and tested against a threshold; if smaller than the threshold, it will be
drawn as black by calling fill (0) and drawing the pixel with point (). Otherwise,
the pixel will be drawn as white. The original image is displayed at the top of the
window, the thresholded one below. Thus the window has to be created initially
with double the height of the image to make room for two copies.
from Glib import *

def draw ():
 global frame, v, wid, ht, x
 background (200)
 draw_frame(v, frame)

356 ■ Python: An Introduct ion to Programming

 for i in range (0,wid):
 for j in range(0,ht):
 p = getVideoPixel (v, i, j)
 g = grey(p)
 if g<t:
 fill (0)
 else:
 fill (255)
 point (i, j+ht)
 frame = frame + 1
 fill (0)
 text ("Original: Frame"+str(frame), 10, 30)
 text ("Thresholded: Frame "+str(frame), 10, ht+30)

s = videoSize("carclub2.mpg")
startdraw(s[0],s[1]*2)
v = loadVideo ("carclub2.mpg")
frame = 1
wid = s[0]
ht = s[1]
t = 100
locVideo(v, 0, 0, wid, ht)
enddraw()

Figure 9.7
Real-time thresholding of a video, frame by frame.

 Chapter 9 · Mult imedia ■ 357

	 9.7	 SUMMARY
A facility has already been described for displaying images and graphics:

Glib, and here more media capability is added to Glib, thus building on what
has already been discussed, so that sound and video can be displayed. The new
library is dynamic Glib and offers the same functionality as previously plus
sound, animation, and video.

Using mouse position and button presses is a basic form of communication
with a computer. The Glib module keeps track of the mouse using Pygame and
continually updates the position as two variables: mouseX and mouseY hold the
most recent x and y coordinates. If the user writes a function named mouse-
Pressed(), then it will be executed when a mouse button is pressed. Similarly,
when a mouse button is released it tries to call mousereleased(). A software
graphical button is a rectangle or other area which, if the mouse button is clicked
while the mouse cursor is within that area, will perform a task; in other words,
the click while the cursor is in that area calls a function.

The keyboard is similarly dealt with by having a user-coded function key-
Pressed() and another named keyReleased(). They are passed the value of the
key that was pressed as the parameter.

Animation is performed by rapidly displaying drawn images, or frames, one
after the other, or by creating and drawing graphical objects and then changing
their positions. A function named draw() can be written by the programmer to
draw the frames many times each second.

Sounds are displayed by reading them from a file and calling a play() func-
tion when the sound is needed. Sounds can be music, voice, ambiance, or sound
effects.

Video is the most resource-consuming of the media types. Glib allows videos
to be recalled and placed in the window, and to be played automatically or frame
by frame.

Exercises

	 1.	Write a program that figures out how fast the mouse is moving (pixels per
second assuming 30 frames per second) and displays that value.

358 ■ Python: An Introduct ion to Programming

	 2.	Consider the example that prints a circle at a random position when a “+” key
is pressed. Modify it so that when the “-” key is pressed, the previous circle
is deleted (no longer appears on the screen).

	 3.	Write a program that reads lines from a file as pairs of x,y coordinates on a
single line and draw them all. Each line would have four integers:

		 100   100   200   200

		 which are the (x,y) coordinates of the start and endpoints of the line. In the
example above, the line would be drawn between (100, 100) and (200, 200).

	 4.	 Implement a circular button. It is represented on the screen as a circle at (100,
100) of size 30 pixels. Normally it is red, but it turns green when activated.
When a mouse button is pressed while the button is activated, a rectangle is
drawn somewhere (random) in the window.

	 5.	 Implement a button that normally has the text “Yes” drawn within it, but
that changes that text to “No” when the button is activated. Pressing it does
nothing.

	 6.	Use Glib to implement a text box that permits a file name or other text to be
entered when the mouse cursor is within that region defined by the box. Use
this to create a program that allows the user to enter a file name of an image
and have the program display this image in the window.

	 7.	Modify the program from Exercise 5 above so that a sound is made when the
button is pressed. A clicking sound would be most appropriate, but whatever
it is it must be of short duration.

	 8.	Floating point values, such as the current time of the video in seconds, are
often converted into strings and require ten or more digits to be displayed.
Write a function that changes a floating point number so that it will display
in five digits, and modify the video display program named carclub so that
all floats are displayed with only two digits to the right of the decimal.

	 9.	Modify the simulation of the space shuttle console so that videos are played
in the simulated screens instead of frame-by-frame animations.

Notes and Other Resources

Thanks to the estate of composer and musician and friend Michael Becker for
the use of the song ‘Holding On,’ and for the use of the .wav file.

 Chapter 9 · Mult imedia ■ 359

Download for the Pygame module. http://www.pygame.org/download.shtml

An excellent sound editor for .wav and .mp3 files. http://www.goldwave.ca/

Another excellent sound file editor. http://sourceforge.net/projects/audacity/

Complete Pygame documentation. https://media.readthedocs.org/pdf/pygame/
latest/pygame.pdf

Convert video files into MPEG-I format. http://video.online-convert.com/con-
vert-to-mpeg-1

A good tutorial on video formats. http://www.videomaker.com/article/c10/15362-
video-formats-explained

Free software that converts between video formats. http://www.any-video-con-
verter.com/products/for_video_ free/

	 1.	Al Sweigart. (2012). Making Games with Python & Pygame, CreateSpace
Independent Publishing Platform, ISBN-13: 978-1469901732.

	 2.	Sean Riley. (2003). Game Programming with Python, Charles River Media.

	 3.	Vic Costello. (2016). Multimedia Foundations, 2nd edition, Focal Press,
ISBN-13: 978-0415740036.

	 4.	Richard Boulanger and Victor Lazzarini (Eds.). (2010). The Audio
Programming Book, The MIT Press, Har/DVD edition, ISBN-13: 978-
0262014465.

	 5.	Sendpoints. (2015). GUI: Graphical User Interface Design, ISBN-13: 978-
9881383495.

	 6.	Mahesh Venkitachalam. (2015). Python Playground: Geeky Projects for
the Curious Programmer, No Starch Press, ISBN-13: 978-1593276041.

■ ■ ■ ■ ■

In this chapter

An algorithm, as discussed in previous chapters, is a step-by-step
description of a means to solve a problem. As someone who is learning
to program, what are the most important algorithms? That rather depends
on how “important” is defined. Does it reflect commercial value?
Number of times it is used? Pedagogical uses? Since there are many ways
an algorithm can be important, this chapter deals with the most common
algorithms discussed on programming web pages and in introductory
computing texts. None of these methods require a knowledge of advanced
mathematics or data structures.

	10.1	 SORTING
Most people know what sorting is and can sort a small sequence of numbers

in a few seconds. Each may have a distinct strategy for doing it, but few can

10Chapter

Basic Algorithms

10.1	 Sorting��361

10.2	 Searching��369

10.3	 Random Number Generation�� 373

10.4	 Cryptography��� 376

10.5	 Compression ��382

10.6	 Hashing ��396

10.7	 Summary��398

362 ■ Python: An Introduct ion to Programming

explain to someone else how to sort an arbitrary set of numbers. They themselves
may not know how they do it; they can simply tell when something is sorted, and
have some process for sorting in mind. In short, the process of sorting is one of
the simplest things that is hard to describe.

Because sorting is so important in computer science, it has been studied at
great length. But what is it? Sorting involves placing things in an order defined
by a function that ranks them somehow. For numbers, ranking means using the
numerical value. So: the sequence 1, 3, 2 is not in proper order, but 1, 2, 3 is in as-
cending (getting larger) order and 3, 2, 1 is in descending (getting smaller) order.
Formally, a sequence s is in ascending order if si <= si-1 for all i. The act of sorting
means arranging the values in a sequence so that this is true. It is clear that it can
be decided when a sequence is sorted.

So how can a sequence be placed in sorted order? By using a sorting algo-
rithm, of course. For all of the following discussion on sorting, assume that the
problem is to sort into ascending order.

	10.1.1	Selection Sort

Small sequences are easier to sort than longer ones, and may provide some
insight into the process. The sequence:

8 4

is not sorted in ascending order, but testing this is easy and fixing it is trivial:
simply swap the two values. The longer sequence:

8 4 9

is also not sorted but is more difficult to sort because it is longer and there are
more combinations of the numbers that are unsorted. How can this sequence be
placed in order? Here’s one idea:

	 1.	 Find the smallest element in the list.
	 2.	 Swap that element for the element at the beginning of the list.
	 3.	 Find the smallest element in the rest of the list.
	 4.	 Swap that element for the second element in the list.
		 … and so on until the list is sorted.

 Chapter 10 · Basic Algori thms ■ 363

This is called the selection sort algorithm, because at each stage it selects the
smallest of the unsorted items in the list and places it where it belongs. Consider
the following list:

[12, 18, 5, 21, 9]
 0 1 2 3 4 - index

The smallest element in this list is 5, at index 2. Swap element 2 for element 0:

[5, 18, 12, 21, 9]

The bold elements above are in sorted order, which here is only the one at
location 0. For the remainder of the elements, repeat the process of finding the
smallest element and placing it at the beginning of the unsorted list (element 1).
That means swapping 9 for 18, element 4 for element 1:

[5, 9, 12, 21, 18]

Repeating, it turns out that element 2, value 12, is now the smallest, and is in
the correct place.

[5, 9, 12, 21, 18]

Now the value 18 is smallest and should be placed at location 3.

[5, 9, 12, 18, 21]

Now the sort is complete. When only one remains it must be in the correct
place.

Finding the smallest element in a list involves three things. First, begin with
the initial element and assume that is it the smallest. Identify it using its index
imin. Next, check the value of all successive elements in the list (from imin to
the end of the list) against the value at imin. Finally, in the case where one of the
successive values at index k is smaller than the one at index imin, set imin to k
to indicate where a new smallest value was found. In simple, imprecise English,
scan all of the elements above imin and remember the location of the smallest
one. Presuming that the list to be sorted is named data, the code for finding the
smallest element from imin to the end of the list is:

for i in range (imin, len(data)):
 if data[i] < data[imin]:
 imin = i

364 ■ Python: An Introduct ion to Programming

This code does work, but it modifies imin, which is used to determine the
loop bounds, within the loop itself. This can be confusing to some, and is bad
form generally. It is better to code this loop as:

imin = istart
for i in range (iend, len(data)):
 if data[i] < data[imin]:
 imin = i

What happens after this is to swap the smallest value found for the one at lo-
cation istart. In most programming languages this would take three statements,
which would look something like this:

temp = data[imin]
data[imin] = data[istart]
data[istart] = temp

One of the joys of Python is that this swap can be performed using a different,
some would say prettier, syntax:
(data[istart], data[imin]) = (data[imin], data[istart])

This is the core of the algorithm, and needs to be done for all values of imin;
that is from 0 to len(data)-1. This is another for loop, of course, within which this
code is placed. That outer loop would be:

for istart in range (0, len(data)-1):

This is all that is needed for the sort. Writing it as a function, it looks like this:
def selection (data):
 for istart in range (0, len(data)-1):
 imin = istart
 for i in range(istart,len(data)):
 if data[i] < data[imin]:
 imin = i
 (data[istart], data[imin]) = (data[imin], data[istart])

This sorting method appears to be natural to humans. It is the one most often
described by students when asked how they sort numbers. It is not the fastest in
many cases, but does a small number of swaps. If the data is already sorted it does
no swaps; if it is in reverse order it does len(data)-1 swaps, the smallest that can
be done and still sort the list. When looking at algorithms it is common to define
a worst case and a best case, and to define performance not in seconds but in

 Chapter 10 · Basic Algori thms ■ 365

terms of one of the operations performed. In that way the nature of the computer,
whether it is fast or slow, does not affect the analysis. For sorting it is common to
select the operation to be used as a basis for comparison to be the compare opera-
tion: data[i]<data[imin]. How many of these are done?

The best case for the selection sort occurs when the list is already sorted. In that
case it will perform close to N2 comparisons, where N = len(data). This is the same
number of comparisons needed for the worst case, in which the list is in reverse
order. At least it is consistent. However, it minimizes the number of times swaps
occur, and if swapping is expensive then this could be the sorting method to choose.

Selection sort is unstable. If there are repeated values in the data, then they
will of course end up together in the final, sorted list. However, if a sort is stable
they will remain in the same order they were originally. Selection sort, like many
others, does not guarantee this. It seems as if this is a minor thing, but it does
matter in some cases. Consider a list of names in a list that are given, in order of
some sort of score, on a web page. Names for tie scores should always be in the
same order on the page, so that if the page is refreshed or a link is followed the
page looks the same.

It should be said here that generally there is no best sorting method. The
properties of such a method would be:

	 1.	 Fast. Selection sort is N2 in terms of comparisons. The best one can nor-
mally expect from any sort would be N*log(N) in the worst case.

	 2.	 Does not need extra space. This means that the array can be sorted in
place, with perhaps a temporary variable for performing swaps.

	 3.	 Performs no more than N swaps in the worst case.
	 4.	 Adaptive. The method detects when it is finished instead of looping

through unproductive iterations. If, for example, such a method is given
an already sorted list, it will finish in a single pass through the data.

	 5.	 Stable.

No method has all of these characteristics.

	10.1.2	Merge Sort

If there were a “best” sorting algorithm then this would be the place to
describe it. As there is not, perhaps the best thing to do would be to look at an

366 ■ Python: An Introduct ion to Programming

algorithm that is quite different from the selection sort, and that has properties
that it does not have. The method named merge sort fits that description nicely: it
is an N*log(N) sort, it does need extra space, and it uses more than N swaps but
it is stable.

Merge sort is an example of a divide and conquer style of algorithm, in which
a problem is repeatedly broken up into sub-problems, often using recursion, until
they are small enough to solve; the solutions are combined to solve the larger
problem. The idea behind merge sort is to break the data into parts that can be
sorted trivially, then combine those parts knowing that they are sorted. Using the
sample data from the selection sort example, the first step in the merge sort is
to split the data into two parts. There are 5 elements in this list, and the middle
element would be at 5//2, or 2, so the two parts are:

[12, 18]    [5, 21, 9]

Splitting again, the first set has 2 elements, the middle being at 0; the second
set has 3 elements, so split at 1:

[12]    [18]    [5]    [21,1]

The final split breaks the data into individual components:

[12]    [18]    [5]    [21]    [1]

The splitting is done in such a way that the original locations are remem-
bered. This happens in the recursive solution, but could be done in other ways.
One way to visualize this is as a tree structure:

 [12, 18, 5, 21, 9]
 / \
 [12, 18] [5, 21, 9]
 / \ / \
 [12] [18] [5] [21, 9]
 / \
 [21] [9]

This completes the divide portion of the divide and conquer. Now that the
individual elements are available, it is easy to sort them, as pairs. On the lower
right the pair [21] and [9] is out of order, so they must be swapped with each other.

 Chapter 10 · Basic Algori thms ■ 367

Now they are sorted. On the next level upwards, looking from left to right, the
elements are sorted, although most are single elements:

 [12, 18, 5, 21, 9]
 / \
 [12, 18] [5, 21, 9]
 / \ / \
[12] [18] [5] [9, 21]

Moving up again, [12] and [18] are combined to make [12,18], a sorted pair.
On the right, the singleton [5] is merged with the pair [9,21] by looking at the be-
ginning of each list and copying the smallest element of the pair into a new list:

Step List 1 List 2 Merged list
1 [5] [9, 21]  [5] 5 is smaller than 9
2 [] [9, 21]  [5, 9] first list is empty, copy 9
3 [] [21]  [5,9,21] first list is empty, copy 21
4 [] [] Final list: [5,9,21]

The result is:

 [12, 18, 5, 21, 9]
 / \
 [12, 18] [5, 9, 21]

At each stage, the lists contain more elements and they are sorted internally,
smallest element at the beginning. Combining a pair of these is simply a matter
of looking at the element at the beginning of each and copying the smallest one
to the result until the lists are empty. The next, and final, merge in this set of data
would be:

Step List 1 List 2 Merged list
1 [12, 18] [5, 9, 21]  [5] 5 is smaller than 12, copy 5
2 [12, 18] [9, 21]  [5, 9] 9 is smaller than 12, copy 9
3 [12, 18] [21]  [5,9,12] 12 is smaller than 21, copy 12
4 [18] [21]  [5,9,12,18] 18 is smaller than 21, copy 18
5 [] [21]  [5,9,12,18,21] First list is empty, copy 21

The final list is [5, 9, 12, 18, 21] which is sorted, as promised.

368 ■ Python: An Introduct ion to Programming

Once the data has been split into individual components, the merge stage
creates sorted pairs, the next merge creates sets of 4 sorted numbers, the next 8,
and so on, doubling each time until they are all sorted. A logical way to write the
program is to use recursion, where each recursive call splits the data in two more
parts until there is only one element. The lowest level of recursion combines the
individuals into sorted pairs, and returns to the next level where the pairs are
combined into fours, then eights, and so on until at the highest level the list is
completely sorted. Written as a recursive function this is:
data = [12, 18, 5, 21, 9]
def mergesort (data):
 n = len(data) # For this call there are n elements
 # to be sorted
 if n <= 1: # Divide the data into two parts
 return # �unless n-1, which means sorting is
 # complete
 middle = n//2 # Index of the element in the middle
 lower = data[:middle] # �Lower indexes, or the left
 # sublist
 upper = data[middle:] # �Larger indices, or the right
 # sublist
 mergesort(upper) # Sort the left sublist
 mergesort(lower) # Sort the right sublist

There are now two sorted sublists of length N//2.
Merge them into one list of length N
 (i,j,k) = (0,0,0)
 while i < len(lower) and j < len(upper): # One sublist

may be shorter …
 if lower[i] <= upper[j]:# �If the element at index i
 # of the
 data[k]=lower[i] # �left list is smaller,
 # copy it to the result
 i=i+1
 else:
 data[k]=upper[j] # �Otherwise copy the element
 # at index j
 j=j+1 # �of the right sublist to
 # the result
 k=k+1 # Result gets longer by 1 element

 Chapter 10 · Basic Algori thms ■ 369

 for i in range (i,len(lower)): # �If the left list was
 # longer, copy
 data[k] = lower[i] # �the remaining items to
 # the result
 k = k + 1
 for j in range (j, len(upper)): # �If the right list was
 # longer, copy
 data[k] = upper[j] # �the remaining items
 # to the result
 k = k + 1

The merge sort is not as obvious as was selection sort, but is faster in most
cases. It has another interesting application: it can be used to sort files. If a file
contains, for example, a billion data samples that need to be sorted it is unlikely
that they can be read into memory and sorted with a selection sort. How then to
sort them?

	10.2	 SEARCHING
Searching is the act of determining whether some specific data item appears

in a list and, if so, at which index. It seems like an odd thing to do; what can be
done knowing this information? It is especially useful when multiple lists hold
different data concerning the same items. An employee, as one example, might
have their various data saved as a name list, an employee ID list, phone number,
office number, home address, and so on. The same index gives information of the
same individual for each list. Thus, search the employee ID list for 18762; if that
index is 32, then the employee’s name can be found at name[32].

Of course Python has built-in operations on a list that will do this:
if 18762 in employeeID: # Is this ID a member of the list?
 k = employeeID.index(18762) # �What is the index of
 # 18762?

A reason to examine searching algorithms is that not all languages possess
these specific features and not all programs are written in Python. Another is that
someone had to implement the operations for the Python system itself, and they
had to know how. Did they do a good job? Are the built-in operations as fast as
ones that a programmer could code for themselves? This will be discovered using
an experiment.

370 ■ Python: An Introduct ion to Programming

	10.2.1	Timings

Any section of code in Python requires some amount of time to execute.
The specific amount depends on many things: the computer being used, the
Python compiler, the specific statements, the data, and random events such as
what other programs are executing on that computer at the same time. How-
ever, if it is important to know whether a section of code is faster than another,
there are timing functions that can provide a pretty good idea. The time module
includes a function named clock() that returns (on Windows) the elapsed time
expressed in seconds elapsed since the first call to this function. On Linux it
behaves differently, and time.time() may be a better choice. Be sure to look it up.

Timing a section of code is done by calling time.clock() before and after the
code executes and subtracting the two times. For example, timing a search of a
list using the in operator could be done this way:
import time

list = [�19872,87656,10982,18756,56344,29765,12856,12534,
88768,90012]

t0 = time.clock()
if 90012 in list:
 found = True
t1 = time.clock()
print ("Time was ", t1-t0)

This prints the message:

Time was 2.062843880463903e-05

That’s a pretty small time, as is to be expected. When run again the result
was 3.07232e-06; running again gets 2.194514766e-06 and again 7.9002531e-06.
These numbers are all small but very different. Since that is true it is better to
time many executions of the code and divide by the number of times it ran:

t0 = time.clock()
for i in range (0,10000):
 if 90012 in list:
 found = True
t1 = time.clock()
print ("Time was ", (t1-t0)/10000)

 Chapter 10 · Basic Algori thms ■ 371

This yields more consistent results: 5.5284e-07, 5.5951e-07, and 5.415e-07
in three different trials. Averaging the result of multiple trials gives even better
results, because spurious times on any one run will be averaged out.

	10.2.2	Linear Search

Consider the list that was used in the timing example:
list = [�19872,87656,10982,18756,56344,29765,12856,12534,

88768,90012]

Finding whether the target number 90012 appears in this list is a matter of
looking at each element to see if it is equal to the target. If so the answer is “yes”
and, by the way, the index at which it was found is also known. This can be done
in a basic for statement:
index = -1
for i in range(0,len(list)):
 if list[i] == target:
 index = i
 break
If the value of index is >= 0 then it was found.

This algorithm looks at each element asking “Is this equal to the target?”
When/if the target is located, the loop ends and the answer is known. If the target
is not a member of the list, then the algorithm has to examine all members of the
list to determine that fact. Thus, the worst case is when the element is not in the
list, and it requires N comparisons to find that out. If the element is a part of the
list then, on the average, it will require N/2 comparisons to find it. It could be the
first element, or the last, or any of the others, which averages out to N/2.

If the list is in sorted order then the loop can be exited as soon as it is known
whether the element is in the list or not. That is, as soon as the target is smaller
than the element it is being compared against in the list, it is clear that it can’t
be a member of the list, and the loop can be exited. This normally speeds up the
execution, but the penalty is that the list has to be sorted, and the time needed to
do this (only once, of course) has to be taken into account.

	10.2.3	Binary Search

If the list has been sorted then there is a faster way to search for an element.
The list can be divided into two parts by looking at the value in the middle of the

372 ■ Python: An Introduct ion to Programming

list and comparing it to the target. If the target is smaller than the middle element,
then it would have to be in the lower indices (left), otherwise it would have to ex-
ist in a higher valued index (to the right). What this means for performance is that
the search area is cut in half each time a comparison is done.

This idea seems simple, but is actually difficult to get right in an implementa-
tion. At conferences where many PhDs in computer science are presenting papers,
it has been found that fewer than 10% of the participants can code a binary search
that works the first time. The terminal conditions are tricky: in particular, how can
it be determined that the target is not in the list? OK, so the details are crucial. At
the beginning there is a list, and its length is known. The index of the middle ele-
ment is known too, and the list is sorted. So: find the index of the middle element:

istart = 0
iend = len(list)
m = (iend+istart)//2

If the target is in the list, is it at a smaller index than m (i.e., is list[m]>target):
if list[m]>target:

If so, don’t bother looking at any index bigger than m. In other words, the
largest index to look at would be m-1:

iend = m-1

If the target is in the list, is it at a larger index (i.e., is list[m]<target)? If so,
don’t look at any locations with an index less than m; in other words:
elif list[m]<target:
 istart = m+1

If target = list[m] then it has been found and the algorithm terminates.
else:
 return m

This code has to be repeated until the target has been found, or it has been de-
termined that it is not in the list. The loop condition is critical. The loop continues
so long as istart <= iend so that if the final step finds the target in the list, then it
will return the index. If the loop exits without finding the element, then the index
value is -1. The final code, as a function, is:

def search (list, target):
 istart = 0

 Chapter 10 · Basic Algori thms ■ 373

 iend = len(list)
 while istart<=iend:
 m = (iend+istart)//2
 if list[m]>target:
 iend = m-1
 elif list[m]<target:
 istart = m+1
 else:
 return m
 return None

The speed of the binary search depends on the fact that it is searching a ran-
domly accessible data set like a Python list or a Java array, and not a file. It will
take on the order of log(n) probes into the list to find what it is looking for or to
determine that it is not there.

Timing the binary search gave an execution time of 3.305e-06 seconds, still
slower than the built-in operation.

	10.3	 RANDOM NUMBER GENERATION
Python offers a random number module named random that offers a broad

collection of random number generation facilities. How is it possible to generate
a random number using software? Shouldn’t a computer program execute consis-
tently and always produce the same answer each time? Yes, it should. The resolu-
tion of this apparent problem lies is the definition of random.

First, randomness is defined only for collections of events or numbers. One
number, or even a small collection, can’t be said to be random. Randomness re-
flects the lack of a pattern, and only one or two events don’t really display a
pattern. Randomness is more of a statistical property of a sequence, and is not
necessarily related strictly to unpredictability. After all, if a computer program
can generate random numbers, then it should be possible to predict the next one
it will generate.

A random number generator (RNG) on a computer is referred to as pseudo-
random; it is not truly random, but exhibits properties of randomness. These
properties can be tested statistically. A typical RNG returns a floating point num-
ber between 0.0 and 1.0. This value can easily be transformed into a random num-
ber, either real or integer, in any desired range. A die roll is an integer between

374 ■ Python: An Introduct ion to Programming

1 and 6 inclusive. An RNG function named rand01() can be converted into a die
roll as:

int(rand01()*6 + 1)

If the numbers generated by rand01() are random, then it should produce die
rolls that each have a probability of 1/6. If not then there is a bias.

If a coin is flipped many times and the sequence HTHTHTHTHTHTHT re-
sults, the probability of H or T (heads or tails) is 0.5, or 50%, which is what would
be expected. If a sequence has the correct percentages for each outcome, then it
passes the frequency test. Yet this sequence is probably not random because of the
obvious pattern in the results. The frequency test is not enough.

A second test would consider pairs in the sequence and compare the prob-
ability of occurrence of each pair against the theoretical. In the coin toss there
are four possible pairs: HH, HT, TH, and TT. Each pair should appear with equal
probability, and yet the string above shows only HT instances. It is not random.
A standard suite of randomness tests called Diehard includes a more complex
version of this test, involving groups of five elements in the sequence, each one
having a theoretical probability of 1 in 120. This kind of test can be called the
serial test or overlapping permutations.

A third test involves using the RNG to generate poker hands. The probability
of specific hands is well-known, and any consistent variation from these prob-
abilities would imply a flaw in the RNG. This is the poker test. Any complex
random game could be used, and the Diehard suite uses the game of craps.

There are many other tests that could be applied, and all are based on gener-
ating complex situations and comparing the theoretical distribution of properties
generated against what the RNG creates. So, now that there are ways of testing
an RNG, can one be written in Python and tested?

	10.3.1	Linear Congruential Method

Pseudo-random number generators basically shuffle the bits around in a
number in complex and non-repeating ways; at least, they don’t repeat for a large
number of trials. A historically common method for doing this is to calculate a
value that is bound to be larger than the place where it is to be stored and keep

 Chapter 10 · Basic Algori thms ■ 375

only the remainder each time. The value of this remainder is pseudo-random
under certain conditions. A linear equation can be used and is fast to calculate:

	 Xi+1 = (aXi + b) mod m� (10.1)

where Xi is the previous random number in the sequence and Xi+1 is the next one.
The value of m should be quite large and it should be a prime number. Many com-
puters have used a 32-bit integer size, and as it happens 232 – 1 is a good value for
m (= 2147483647). Python integers can be as large as desired, so larger values
could be used. Keeping then to 32 bits is accomplished using an and operation
and masking the result with a 32-bit constant: 0xFFFFFFFF.

Values for a and b are more flexible, but large values are a good idea, and
too many factors can cause problems. One good set of values is a=69069 and
b=362437. This method uses a previous value to calculate the next one, so an
initial value is required. This is called the seed, and it must be possible for a user/
programmer to be able to set this seed value to whatever they choose. If not then
the RNG will generate the same set of values each time it is used. That’s actually
a good thing for debugging, because when tracking down a problem, it is impor-
tant that the program behave consistently.

The basic RNG described above would be:
_xseed = 76951

def irand01 ():
 global _xseed
 _xseed = (69069*_xseed+362437) & 0xFFFFFFFF
 return _xseed

This function returns a number between 0 and 2147483647, and resets the
seed (_xseed, a global) each time. It’s a good start, but what is wanted is a func-
tion that returns a number between 0 and 1; so, a second function does this simply
by dividing the above result by 2147483647:
def rand01():
 return irand01()/0xFFFFFFFF

A function that can set the seed is needed too:
def setseed (x):
 global _xseed
 _xseed = x

376 ■ Python: An Introduct ion to Programming

A commonly used function in the Python random package is randrange(a,
b), which returns a random integer between a and b. The code for a die has al-
ready been written, and so the math is known. Using the tools just written, this
is coded as:

def randrange (n1, n2):
 x = (int) (rand01()*(n2-n1+1)) + n1
 return x

How can a random number generator be made to generate a different set of
numbers every time a program starts using it? Simply by setting the seed to a
number that is hard to predict. Such a number is found in the low bits (millisec-
onds and microseconds) of the system clock. It is impossible to predict what these
will be. So randomizing the RNG can be accomplished like this:

def randomize ():
 global _xseed
 _xseed = int(time.time ()) & 0xFF

The time.time() function returns the number of seconds since a fixed date in
the past, called the epoch. This date is usually January 1st, 1970, midnight.

Other methods for generating random numbers exist and are commonly used.
Python’s random class uses the Mersenne Twister algorithm, which is often seen
as a default in programming languages but is a trifle slow. Blum-Blum-Shub re-
sembles the linear congruential but uses the relation xi+1 = xi

2 mod m where m is
the product of two prime numbers. Dozens more methods exist. There are also
practical methods for generating true random numbers, and these are based on
specific hardware that captures a truly random process such as radioactive decay,
the photoelectric effect, or random electromagnetic noise.

Finally, there are web sites that will offer random numbers and sequences on
request. Random.org will serve up true random numbers, for example, and there
are dozens of other such sites. The time needed to connect to a server and upload
a random number is considerable, so they should be used knowing the tradeoff of
time for random number quality.

	10.4	 CRYPTOGRAPHY
Cryptography involves sending messages that only certain intended people

can receive and understand. This involves codes and ciphers. A code substitutes

 Chapter 10 · Basic Algori thms ■ 377

one string for a longer message; there is a code book in which the code strings are
associated with their relevant message. So, the string “A76” could mean “retreat
100 meters.” Code books had to be changed regularly because eventually one
would fall into the hands of someone who was not supposed to have one.

A cipher is an algorithm that converts one string of characters into another
one of generally the same length. It can operate on bits, on characters, or on
blocks of characters. A cipher does not have a code book but does have a key,
which is a string of numbers or characters, that the algorithm uses to transform
the original string (called the plaintext) into the encrypted string (called the ci-
phertext). The ciphertext can be transmitted safely because it cannot be under-
stood without the key.

Cryptography has become much more important in the last 30 years or so. It’s
not just that the world is an uncertain place. It is more that people wish to share
private information across the Internet. If a purchase is made with a credit card,
then the card number should be encrypted before sending it to the seller. Access
to certain sites that have valuable services or information requires a password.
Installing new software requires an access key. These are all examples where
encryption is required.

It should be mentioned that the secure transfer of information depends on op-
erational security as well as on encryption. Someone with a password can access
all services and data associated with that password, so keys and passwords must
be protected. This aspect is beyond the ability of a programmer to control, and is
often the way security systems are broken.

There is some terminology that needs to be understood. A symmetric key sys-
tem uses one key to encode and the same key to decode. Asymmetric systems like
public key systems use one key to encrypt the message, a key that anyone can know,
and a second, private key that only the recipient knows and is used to decrypt. A
block cipher applies a key to a collection (block) of data, often a size of 64, 128, or
256 bits at a time. A stream cipher is usually a symmetric key cipher that encrypts
a plain text character with a character from the key. It’s also called a state cipher
because the encryption of the next character depends on what has happened before.

Knowing a little about encryption is important, but it is also important to un-
derstand that it is a very complex and highly mathematical subject, and requires
a significant amount of study to become an expert.

378 ■ Python: An Introduct ion to Programming

	10.4.1	One-Time Pad

Having just said how complex the field of cryptography is, the first algorithm
to be examined is, in fact, rather old and perfectly secure, if difficult to use in
practice. Suppose person A wishes to send person B the message “Meet you at
nine pm at location alpha.” Encoding this requires a sequence of random char-
acters at least as long as the message. In actual use, this cipher often used pages
from books as keys, books that were easily accessible by both parties. In this case
the following text is used as the key: “it was the best of times it was the worst of
times.” The encryption process, known to both, and in fact not really a secret, is
to apply the exclusive OR operation to corresponding characters in the message
and the key to produce the ciphertext:

m e e t y o u a t n i n e p m a t l … Message

i t w a s t h e b e s t o f t i m e … Key

4 17 18 21 10 27 29 4 22 11 26 26 10 22 25 8 25 9 … Encrypted

The exclusive OR operation is a bit-by-bit logical operator that is 0 if the two
bits are equal and is 1 otherwise. It is applied to the numerical representations of
the characters. This is quite handy because it is very fast and can easily be ac-
complished using simple hardware. Consider the first character in the message
“m.” The first character in the key is “i.” The ASCII codes are the numbers 109
and 105 respectively, or in binary:

0 1 1 0 1 1 0 1 109 “m”
0 1 1 0 1 0 0 1 105 “i”
0 0 0 0 0 1 0 0 4 Exclusive OR

One interesting observation here is that different characters can be encrypted
to the same cipher text byte, as in the above string where “s” and “t” both encrypt
to 26. Anyway, now this ciphertext is transmitted to B and is decoded in exactly
the same way that it was encoded: apply the exclusive OR between the ciphertext
and the same key (symmetric key):

4 17 18 21 10 27 29 4 22 11 26 26 10 22 25 8 encrypted

i t w a s t h e b e s t o f t i Key

105 116 119 97 115 116 104 101 98 101 115 116 111 102 116 105 Key ints

109 101 101 116 121 111 117 97 116 110 105 110 101 112 109 97 XOR

M e e t y o u a t n i n e p m a Decrypted

 Chapter 10 · Basic Algori thms ■ 379

The Python code that can do the basic encryption is:
pt = "meetyouatninepmatlocationalpha"
key = "itwasthebestoftimesitwastheworstoftimes"
ct = ""
xt = ""

for i in range(0,len(pt)):
 v = ord(pt[i])^ord(key[i])
 print(v)
 ct = ct + chr(v)
print (ct)

The exclusive-OR operator is “^”, and the expression ord(pt[i])^ord(key[i])
performs the XOR on the message and the key bytes, as numbers. Doing it again
with the same key gets the message back.

The reason that this is called a one-time pad is that the key can only be used
once, otherwise the cipher is not secure. The security lies in the randomness of
the key, and reusing it reduces the randomness. Eventually if the same key is used
often enough, an observer, someone who can intercept all of the messages, can
extract the pattern and determine the key. So in practice the keys were written
on pads of paper and, once used, were destroyed. Keeping the pads synchronized
between the sender and receiver can be a problem, especially if there are many of
each. Hence, although the system is secure, it is not used very often.

	10.4.2	Public Key Encryption (RSA)

A public key system is commonly used for secure communication across
computer networks, and involves one key for encryption and another for decryp-
tion. There are many variations on the basic idea, some being much too complex
to discuss in a few pages, but the RSA algorithm is relatively simple, quite popu-
lar, and very secure. It is named for its inventors Rivest, Shamir, and Adleman.

The mathematical idea that underlies RSA is that one can find three very
large integers e, d, and n

	 () mod
dem n m=

for any m, and that even knowing e and n or even m, it can be extremely difficult
to find d. The values d and e are the keys, and m is the message.

380 ■ Python: An Introduct ion to Programming

So, encrypting a message would work as follows: A sends message m to B
using B’s publicly known encryption key e:

	 mod ec m n=

The value of c is the ciphertext and can be transmitted to B. When B receives
the message, it is decrypted using their private key d:

	 mod dm c n=

where n > m. This works because of the original assertion that (me)d mod n =
m. The success of this method depends on a few other things: can cd mod n be
calculated quickly enough for large numbers (i.e., 500 bits), and can the numbers
d, e, and n be found to make this work?

The first step in determining the keys is to select two very large prime num-
bers p and q. Let n = p*q. A large number in this context has hundreds of bits,
but that creates a cumbersome example, so smaller numbers will be used in this
discussion.

Now calculate φ(n) = (p-1)*(q-1) and find an integer e so that e and n are co-
prime; that is the greatest common divisor between e and n is 1.

Let d = (e-1) mod φ(n) so that d*e mod n = 1. This can be found using a search,
which may be infeasible due to the size of the numbers:

for i in range (e, n):
 if (i*e)%j == 1:
 d = i
 break

or a mathematical process that uses Euler’s theorem can give the answer faster,
and code has been provided for this on the accompanying disc.

Example: Encrypt the Message “Depart at Dawn” Using RSA

The first step is to determine some keys to use and to distribute the public
key. Using the prime numbers 73 and 83 (far too small for a real situation) the
determination of the keys is:

n is 6059 and ϕ(n) is 5904

e is 17, chosen because it is prime. Now find d such that d*e mod n = 1. Searching
for it is practical for numbers this size and one gets:
	 d = 3473

ON THE CD

 Chapter 10 · Basic Algori thms ■ 381

So the public key is (17 , 6059) and the private key is (3473).

The message is 14 characters long, and would be 112 bits; n is only 10 bits
long, and the message has to be shorter than this. In this instance the message
can be sent one character at a time, but this is generally poor practice. Normally
larger blocks of data are encrypted at one time. The plaintext string is converted
into integers using ord(), and each one is encrypted using the formula:

	 mod ec m n=

An example would be:
message = "Depart at dawn"
imessage = ()
cmessage = ()
for i in range (0, len(message)):
 m = ord(message[i])
 imessage = imessage +(ord(message[i]),)
 c = (m**e) % n
 cmessage = cmessage + (c,)

Now the message consists of 14 blocks of 1 character each. It can be transmit-
ted to the recipient, who is normally named B or Bob, in this form. The sender,
named A or Alice, had access to the public key only, which is all that is needed to
encrypt the message. It cannot be decrypted using the public key.

d given d⋅e ≡ 1 (mod φ(n))

Bob receives the ciphertext message, which in this case is:

(4652, 3518, 4274, 5770, 1663, 344, 2498, 5770, 344, 2498, 2144, 5770, 1725, 4601)

He takes each block and decrypts it using:

	 mod dm c n=

The Python code for this could be:
dmessage = ()
for i in range (0, len(cmessage)):
 c = cmessage[i]
 m = (c ** d) % n
 dmessage = dmessage + (m,)

The resulting decrypted message is:

(68, 101, 112, 97, 114, 116, 32, 97, 116, 32, 100, 97, 119, 110)

382 ■ Python: An Introduct ion to Programming

Which is the original message. Notice that because only one block per char-
acter was encrypted, the effect is that of a substitution cipher, in which each letter
has been replaced by another. This is very easy to decrypt by noting patterns
of letters and frequencies of letters in the language; the letter “e” is usually the
most commonly used letter in an English message. That is why the message is
encrypted as blocks of characters. It is highly unlikely that a large block would be
repeated exactly, and if it were it would be difficult to guess what it was anyway.

	10.5	 COMPRESSION
A little arithmetic will start this discussion. The song “Blackbird” by The

Beatles is almost exactly 4 minutes long. This is 240 seconds, and if it was con-
verted into digital form, it would be sampled at a rate of 44,100 samples each sec-
ond. This means that the song has 240*44100 = 10.6 million samples. But wait—
it’s stereo, so double that to 21.2 million samples. A typical sample is 16 bits, so
this works out to 42.4 million bytes; 42 megabytes! The MP3 file for this song is
typically 1.9 megabytes. How is that possible? By using a compression algorithm.

Data compression is all about ways to take, for example, 100 bytes of infor-
mation and turn it into 10 bytes while losing none of the essential message. Of
course, compressed data is incomprehensible just to look at and must be decom-
pressed in order for it to be used. Data is often compressed before storing it in a
file to reduce its footprint on the storage device, or before transmitting it along a
communications channel to take better advantage of limited bandwidth.

The question of how a string of data bytes
can be made shorter while losing no important
information remains, and a simple example may
be in order. Consider a cartoon image. These
have a relatively small number of distinct but
vivid colors, usually less than 10 colors and the
color variation within any region is small. The
example image in Figure 10.1 is in PNG form
and is 23.2 Kbytes in size at 400x456 (= 182400)
pixels. As raw data it would be a little over
182Kbytes in size, 547 Kbytes if RGB color was
used.Figure 10.1

Sample image for compression.

 Chapter 10 · Basic Algori thms ■ 383

A simple compression technique that will work in this case is called run-
length encoding. In its simplest form data bytes are preceded by a count indicat-
ing how many repetitions of that value were encountered in the data. So if there
was a section of data:

1 1 0 0 0 0 0 0 2 2 2 1 2 1 2 0 0 0 0 0 0 2 2 2 2 2

This would be encoded as

2 1 6 0 3 2 1 1 1 2 1 1 1 2 5 0 5 2
Two
ones

six
zeros

three
twos

a
one

a
two

a
one

a
two

five
zeros

five
twos

In this case the original data required 26 bytes and the compressed data re-
quired 17 bytes. The new data takes 65% of the space that the original does. This
is not a huge saving, but is probably worth the effort. It does depend heavily on
the nature of the data.

Consider the image of Figure 10.1. The color areas are uniform and rather
large, so this image would be an ideal candidate for run-length encoding. When
writing the program, it is important to use a binary file and convert the value and
count into unsigned bytes before writing them to the file. This is a new data type
called an unsigned byte that was not discussed in Chapter 8, and has the code “B.”
So, writing the count and value could be done like this:

s = pack("BB", n, v[1])
 f.write(s)

The entire program that will run-length encode the image will read the im-
age file and collect identical pixels, counting them as they are collected, until a
change in pixel value occurs. Then the (count, value) pair is written to the file.
Also the pair will be written if 255 pixels have been collected, since that is the
biggest number that can be counted in 8 bits. The result is a binary file of pairs
of numbers (count, value) that represent the pixels in the image. As there are only
two colors, value can be 0 or 1, 0 being white and 1 being green; in general there
can be 256 distinct values. The encoding program looks like this:
from struct import *
import Glib
def emit(v, n, f): # Write a pair of bytes (count, value)
 s = pack("BB", n, v[1]) #" 'B' is unsigned byte.
 f.write(s)

384 ■ Python: An Introduct ion to Programming

Green = (123, 210, 0) # The object color
White = (255, 255, 255) # The background color

Glib.startdraw(400, 456)
b1 = Glib.loadImage ("b1.png") # Read the image
outf = open ("b1.txt", "wb") # Open the output file
Glib.image (b1, 0, 0) # Display the image
count = 0
value = Glib.getpixel (b1,0,0) # �Read a pixel value
 # initially
for j in range (0, 456):
 for i in range (0, 400): # For every image pixel
 if count ==255: # Largest possible count.
 emit (value, count, outf) # Write (255, value)
 count = 0 # Reset the count
 c = Glib.getpixel (b1, i, j) # Get the next pixel
value
 if c == value: # Same as before?
 count = count + 1 # Yes. Increment the count
 else: # No, different
 emit(value, count, outf) # �Write the count and
 # value
 count = 1 # Reset the count
 value = c # and the value
if count>0: # �After the loop ends are there pixels to
 # write?
 emit (value, count, outf) # Yes, so do it.
outf.close()
Glib.enddraw()

The decoding program reads pairs of unsigned bytes from the binary file,
and creates pixels. A pair (12, 0) would be 12 white pixels, for instance. A pair
(12, 1) could be 12 pixels of some other color, and this program writes the pixels
so it decides what color that will be. It will read pairs and draw pixels, into an
image of 400 columns and 456 rows, until all are accounted for. A program that
does this (not the only one possible) is:
from struct import *
import Glib

Glib.startdraw(400, 456)
inf = open ("b1.txt", "rb") # �Open the run length encoded
 # file

 Chapter 10 · Basic Algori thms ■ 385

i = 0
j = 0
cols = 400 # The size is known, but could be a
rows = 456 # part of the data file.

while True:
 s = inf.read(2) # Read a (count, value) pair
(bytes)
 if len(s) <= 0: # End of file?
 break # Yes. Exit loop, stop drawing.

 c,v = unpack("BB", s) # Convert to integers
 if v == 255: # Background pixel? (White)
 Glib.fill (255, 255, 255)
 else: # Object pixel? (Green)
 Glib.fill (123, 210, 0)

 for k in range (0, c): # Draw the pixels to the
 # screen.
 if i >= cols: # At end of column, add 1 to row
 i = 0
 j = j + 1
 Glib.point (i, j) # Draw as a 'point'
 i = i + 1 # Next pixel (increase X)
 if j>= 456: # Last row
 break
Glib.enddraw()

The more complex the data is, in this case meaning the more distinct values
the data can take, the less useful this encoding method will be. In some cases it
can make the file size larger that the raw data would have been. In the case of
this particular image, the run-length encoded file is about 6K bytes, as opposed
to half a million bytes that would have been needed for the raw image, saved as
pixels. Still, this serves as a basic proof that it is possible to compress a data file
without losing any information. There are, of course, many more algorithms that
will compress data to a greater extent and with fewer constraints.

	10.5.1	Huffman Encoding

If a typical text file is examined carefully, it can be found that the vast ma-
jority of the file consists of relatively few characters. As a general estimate, over

386 ■ Python: An Introduct ion to Programming

95% of the characters can be accounted for by between 25–30 distinct values. A
coding scheme that took this into account would reduce the size of a text file, and
perhaps it would generalize to other kinds of file. For example, in many files the
value 0 is the most common, and giving it a smaller representation than, say, 9
may reduce the overall file size.

This is not really a novel idea. The international Morse code is based on this
idea and has been around for a long time, beginning in 1836. The most com-
monly used letters in English are shown in Table 10.1. In the Morse code the
letter “E” is represented by a single dot, the letter “T” is a single dash, and “A”
is a dot followed by a dash. In other words the most common letters have the
smallest code representation, as a general rule. This is how the Huffman code
is organized too.
Table 10.1
Frequency of Letters in English Text

Letter Frequency % Letter Frequency % Letter Frequency % Letter Frequency %
E 12.5 R 6.1 F 2.3 K 0.7
T 9.3 H 5.4 P 2.0 X 0.19
A 8 L 4.1 G 2.0 J 0.16
O 7.6 D 4.0 W 1.9 Q 0.11
I 7.3 C 3.1 Y 1.7 Z 0.09
N 7.1 U 2.7 B 1.5
S 6.5 M 2.5 V 1.0

A Huffman code is constructed from the ground up, like a wall. The lower
levels of the wall represent the least frequently used symbols, and have the great-
est number of bricks above them. The final code will be binary numbers, and the
length of the code in bits for a symbol is related to the number of bricks above it.
The wall is actually shaped like a pyramid, and is called a binary tree by com-
puter science folks. It’s a very useful structure in general, but the description will
be restricted here to its use in Huffman codes.

As an example, consider the English text:

I think that at that time none of us quite believed in the Time Machine11

 Chapter 10 · Basic Algori thms ■ 387

The characters occur in this particular text with the following frequencies:

t 10 a 4 q 1 k 1
e 9 m 3 c 1 s 1
i 8 o 2 d 1 l 1
n 5 u 2 v 1
 h 5 b 1 f 1

The ‘leaves’ (or nodes) at the bottom of the tree (it is drawn upside-down)
contain the lowest frequency items, and so are placed first. Each two nodes in
the tree will have one node above them, straddling them, containing the sum of
the frequencies of all nodes below. All characters are turned into nodes, and each
also contains the number of occurrences of that letter. This collection of nodes
will be called a heap. Initially all have only one character, but this will change.

The rule in building the tree is to pick the pair of nodes (initially characters)
that sum to the smallest number and connect them using another node, one above
them that has a left and right node. The first bricks, alphabetically, would be “b”
and “c” both with a frequency of 1. The first two would look like this:

2

B1 C1

Figure 10.2
A step in the Huffman algorithm, lowest level

The bottom nodes have characters and counts. The one above has only a
count, and it is the sum of the counts of the two nodes it is connected to. This new
node, with a count of 2, is placed back in the heap and the nodes for B and C are
removed. The heap will always get smaller.

Repeating this process with the others, the smallest pair we can make is with
“d” and “f,” then “k” and “l,” and then “q” and “s.” At that point the smallest node
is “v” with a count of 1, but there are no more nodes with a count of 1. The smallest
sum is 2, which uses “v” and ‘o’:

2

B1 C1

2

K1 L1

2

D1 F1

2

Q1 S1

3

V1 O1

Figure 10.3
Entire Huffman bottom level complete

388 ■ Python: An Introduct ion to Programming

All of these are in the heap, and a search is done for the smallest sum of
nodes. The character “u” has a count of 2 and so do any of the nodes above that
link to two other characters. These are nodes too, so link “u” with the leftmost
node above to get a bigger grouping—this is called a subtree, because it is a tree,
but it is also part of a bigger tree. The ‘u’ node and the other gives a sum of 4:

B1 C1

4

U2 2

Figure 10.4
The first 3 deep tree section: U B C

The tree that is being built has the least commonly used characters placed at a great-
er distance from the top of the tree than are the frequently used characters. This
distance will be used to construct the codes, smaller for common characters. Now
the smallest sums of two nodes in the tree is 4, the nodes connecting “d,” “f,” “k,”
and “l”:

2

K1 L1

2

D1 F1

2

Figure 10.5
Next step in the Huffman algorithm: D F K F:

The method here takes the smallest two nodes, which are going to create
the smallest sum, and connects them, removing the original nodes and replacing
them with the new one. The smallest nodes now are the node connecting “q” and
“2” (value 2), the node with “m” (value 3) and the node connecting “v” and “o”
(value 3). The node with “m” will be selected to link to the 2-valued node. The
tree is a disconnected collection of nodes, but right now looks like this:

2

K1 L1

2

D1 F1

2

B1 C1

4

U2 2 3

V1 O2

M3

Q1 S1

5

2

Figure 10.6
Three lower levels complete.

 Chapter 10 · Basic Algori thms ■ 389

plus all of the unconnected nodes for individual letters. So, what’s next? The
smallest valued character remaining is ‘a’ at 4. That would make the smallest
sum 7 after connecting it with the subtree on the right (‘v’ and ‘o’). Next in the
heap are the two 4-nodes above to create an 8, and linking ‘h’ (5) and ‘n’ (also 5)
to get a 10:

2

K1 L1

2

D1 F1

4

B1 C1

4

U2 2 M3

Q1 S1

5

2

8 10

H5 N5

A4

V1 O2

7

3

Figure 10.7
The next level of the Huffman tree complete.

The pattern should be clear by now. Notice that the nodes with nothing below
them always consist of characters, and the nodes above have only numbers. But
oops—the space characters were not counted, and they must be for the message
to make any sense. There are 14 spaces in the message. The final sum will be
14+9 for the space. A node for a space has to be added to the heap.

71

30

14 16

18 8

4

10

F1

U2

B1 C1

2

22

75

19

4

2 2 2

D1 K1 L1

E9

Q1 S1 V1

1
H5 N5

A4

O1

M3

T10

1

1

1

1

1

1

1

1

1

1

1 11 1

1

1

0

0

0

0

0

0 0 0 0 0

0

0

0

0

0

0

0

41

12

3

Figure 10.8
The final tree

390 ■ Python: An Introduct ion to Programming

The last two steps don’t involve any new characters, but they will link all of
the nodes together and make them accessible from one single node at the top. The
final (top) node should have a value that is the length of the original string.

Now comes the bottom line: what was the point of all this? The tree that
has been constructed will be used to construct the codes for each letter, and the
length of each code will be the number of nodes between the characters and the
top (root) of the tree. The path to each left node is labeled with a digit, in this case
a 0, and the path to the right nodes is labelled with a 1, as in the tree above. The
code for any character is read off of the links that were followed to get from the
top of the tree to the node containing the character. So the space character, the
most common one, is reached by going left two times; its code will be “00.” The
“t” is the second most frequent character, and is reached from the top node by
going right, then left, then right; the code is “101.” The complete set of codes is:

‘ ‘ 00 A 11111 D 011100 V 111100
T 101 M 11101 F 011101
E 100 U 01100 K 011110
I 010 O 111101 L 011111
H 1100 B 011010 Q 111000
N 1101 C 011011 S 111001

The coded message is the concatenation of all of the codes for the characters
in the order they appear in the message. The encoded message would read:
i t h i n k t h a t a t
010 00 101 1100 010 1101 011110 00 101 1100 11111 101 00 11111 101 00
 t h a t t i m e n o n e
101 1100 11111 101 00 101 010 11101 100 00 1101 111101 1101 100 00
 o f u s q u i t e b
111101 011101 00 01100 111001 00 111000 01100 010 101 100 00 011010
 e l i e v e d i n t h e
100 011111 010 100 111100 100 011100 00 010 1101 00 101 1100 100 00
 t i m e m a c h i n e
101 010 11101 100 00 11101 11111 011011 1100 010 1101 100

This amounts to 259 bits = 33 bytes. The original string is 71 bytes long, so
the compressed data is 46% of the size of the original data. The Huffman coded
string is broken into 8-bit bytes and transmitted that way:

01000101 11000101 10101111 00010111 00111111 01001111

 Chapter 10 · Basic Algori thms ■ 391

11010010 11100111 11101001 01010111 01100001 10111110
11101100 00111101 01110100 01100111 00100111 00001100
01010110 00001101 01000111 11010100 11110010 00111000
00101101 00101110 01000010 10101110 11000011 10111111
01101 110 0 010 1101 100

Decoding requires the table or the tree. If a known table is used, such as the
natural frequencies of English letters, then it would not have to be transmitted
along with the message. The use of a Python dictionary type makes the program
for decoding very elegant indeed. Given the table and the message, bits are re-
moved from the beginning of the message and placed into code string until they
match one of the codes in the table. The Huffman code has the property that
the bit sequences are unique when appended as a long message. The first bit
sequence that matches a code will be the code for the first letter in the message.
Huffman decode
This is the coded message:
bitstring = "01000101110001011010111100010111001111110100111111"+\
"0100101110011111101001010101110110000110111110111011000011110"+\
"1011101000110011100100111000011000101011000001101010001111101"+\
"0100111100100011100000101101001011100100001010101110110000111"+\
"011111101101111000101101100"
table = {} # This is the table of codes
table['00'] = " "
table["11111"] = "A"
table["011100"] = "D"
table["111100"] = "V"
table["101"] = "T"
table["11101"] = "M"
table["011101"] = "F"
table["100"] = "E"
table["01100"] = "U"
table["011110"] = "K"
table["010"] = "I"
table["111101"] = "O"
table["011111"] = "L"
table["1100"] = "H"
table["011010"] = "B"
table["111000"] = "Q"
table["1101"] = "N"
table["011011"] = "C"
table["111001"] = "S"

392 ■ Python: An Introduct ion to Programming

Pull bits from the string making a substring until the
substring is found in the dictionary. Then emit the
character indexed.

Loop until all bits are used
while len(bitstring) > 0:
 code = "" # Clear the current code
 # While code NOT in the dictionary …
 while not (code in table):
 # Add the next bit from the message
 code = code + bitstring[0]
 # Remove that bit from the message
 bitstring = bitstring[1:]
�When the code matches, print the character corresponding
to the code
 print (table[code], end="")

	10.5.2	LZW Compression

Like many algorithms, LZW compression is named after the people who de-
vised it: A. Lempel, J. Ziv, and Terry Welch. It has been the standard for data
compression for many years, it was the method used in the GIF file format, and
was used in many versions of PDF. It is not the most effective method of compres-
sion, but it is lossless and efficient. Like the Huffman code, LZW creates a table
from the original text and uses the codes in the table to perform the compression.
Unlike the Huffman code, the decompression stage does not require that the table
be known in advance; it builds the table as it decompresses the file. The LZW
algorithm also replaces multiple characters with single codes, thus increasing the
compression rate.

LZW compression usually begins with a known code table, most often the
256 ASCII characters, but any table known by the compressor and decompressor
will work. As an example, another short section of text from The Time Machine
will be compressed:

The Time Traveller for so it will be convenient to speak of him was ex-
pounding a recondite matter to us His grey eyes shone and twinkled and
his usually pale face was flushed and animated The fire burned bright-
ly and the soft radiance of the incandescent lights in the lilies of silver
caught the bubbles that flashed and passed in our glasses.

 Chapter 10 · Basic Algori thms ■ 393

Punctuation has been removed for simplicity. The algorithm begins with a ta-
ble of characters, in this instance the ones that appear in the quote, but in general
the table can contain any starting set of symbols. This is called the code table, and
associates a numerical code with a string. The code table in this case will consist
of the letters (uppercase) and their values starting with 0: “A”=0, “B”=1, and so
on. The space has to be included as well. The code sequence 024 would be the
string “ACE” using this scheme.

Naturally there has to be more to this if it is to be a viable compression meth-
od. When encoding, the characters are examined one at a time and appended to
an input string, and looked up in the table. If the string is found in the table, then
the next character is read and appended to the string and it is looked up again.
This repeats until the string is not found, at which point a few things happen: the
code for the last string that was found is written to the output, the new string that
was encountered in the string but not found in the table is added to the tables, and
the process continues using the last character read in. This means that not only
characters but also short strings that occur in the text will have numeric codes,
and that the table will be created from the text that was given.

Consider the text in the example: The first character seen is “T”:

	 1.	 “T” exists in the table already, so a new character is read in and ap-
pended to the “T” to create the pair “TH.”

	 2.	 “TH” is not in the table. The character “T” has the code 19, so 19 is writ-
ten to the output file.

	 3.	 The string “TH” is added to the table. It will be code 27.
	 4.	 The input string is now “H.”
	 5.	 The character “H” is in the table and has code 7. The next character is

read in and appended to “H” creating “HE.”
	 6.	 “HE” is not in the table, so the code for character “H,” which is 7, is writ-

ten to the output file.
	 7.	 The string “HE” is added to the table, code 28.
	 8.	 The input string is now “E.”

The process repeats. If a multiple-character string is found in the table, then
the steps are basically the same. Hypothetically:

	 1.	 The character “T” is next and is in the table. Read the next character “H”
and append to “T” to get “TH.”

394 ■ Python: An Introduct ion to Programming

	 2.	 “TH” is in the table. Read the next character “E” and append to “T” to
get “THE.”

	 3.	 “THE’ is not in the table to emit the code for “TH,” which is 27.
	 4.	 Input string is now “E.”

Step 1 repeats until a string is obtained that has not been seen before. In the
example here the first 27 codes are letters and the space character. The next few
codes are:

TH 27		 HE 28		 E 29
T 30		 TI 31		 IM 32
ME 33		 E T 34		 TR 35

The first 3-character string (trigram) in the table is “E T.”

Python’s dictionary type is especially valuable for coding the LZW algo-
rithm. The facility for looking up a string in a table is exactly what is required
here. The critical part of the program could be written as follows:
count is the next unassigned symbol
ch is the last character read in
s is the current character string
inf is the input file (text)
s = "" # Initial string is empty.
ch = inf.read(1).upper() # �Read the first character, upper
 # case.
while len(ch) > 0: # While the file still has data …
 if s+ch in dict: # �Is string concatenated with ch
 # in the table?
 s = s + ch # Yes. Concatenate and repeat
 else: # No.
 print (dict[s]," ", end="") # �Print the code for
 # the string s
 dict[s+ch] = count # �Put the new string into
 # the dictionary
 count = count + 1 # �New code is next integer.
 s = ch # �String is now the last
 # character read.
 ch = inf.read(1).upper() # Read a new character

When decoding the LZW file, the initial table is known. Again, this is often
just the ASCII characters but can be something else, and in this case is the letters

 Chapter 10 · Basic Algori thms ■ 395

plus the space. The file contains codes, not characters, but the codes are in the
table, right? No, only the starting codes are in the table. So decoding the message
in the example starts easily. The first few codes in the message are:

19 7 4 26 19 8 12 29 19 17 0 21 …

The first code is read in and is the code for the letter “T.” This is followed by
7 (“H”) and 4 (“E”) and so on until the code 29 is reached. There is no entry for
the code 29 in the table. This is where the really clever part of the LZW algorithm
happens.

When decoding, the program builds the table again. After all, the characters
are in the same order in the encoded data, so it should be possible to reproduce the
process that was used to build the code table in the first place. When the first code
is read in, the code is expected to be in the table, and the corresponding letter “T”
is written and placed into a string. The next code is read and corresponds to ‘H.’
Now “TH” is added to the dictionary, and “H” is written and becomes the current
string. Now “E” is seen, “HE” is added to the table, and “E” is written, and so
on. Again a dictionary can be used to store the codes, but a list is more efficient.
The indices are codes, which are numbers, so a list is fine here. The central part
of the process is:
code1 = int(inf.readline()) # �CODE1 is the first code
 # on the file
print (dict[code1], end="") # �Output the string for
 # CODE1
while True: # �While mode codes on the
 # file ...
 code0 = int(inf.readline()) # �CODE0 is the next code
 # on the file
 if code0 < len(dict): # Is CODE0 in the table?
 s = dict[code0] # �YES. S is the string
 # for CODE0
 else:
 s = dict[code1] # �NO. S is the string for
 # CODE1
 s = s + ch # Append CH to S.
 print (s, end="") # IN EITHER CASE emit S
 ch = s[0] # �CH becomes the first
 # character of S
 dict = dict + [dict[code1]+ch,] # �Add new string to the
 # table

396 ■ Python: An Introduct ion to Programming

 count = count + 1
 code1 = code0

A pseudo-code summary of both the encoding and decoding processes is
given in Figure 10.9, and working programs are provided on the disc (lzwe.py and
lzwd.py). If punctuation is to be added, then a different conversion to uppercase
would have to be done. For practical applications, the entire ASCII character set
would be used at the outset.

Figure 10.9
The LZW encode and decode algorithms.

10.6	 HASHING
A hashing algorithm attempts to characterize a complex piece of data with

something simpler, and preferably unique. The most common example would be

ON THE CD

 Chapter 10 · Basic Algori thms ■ 397

to find a number that could represent a character string. A hashing algorithm has
to be fast, because the idea very often is to convert a string into an index to a list
or tuple. Consider the string “while.” There are five characters (bytes) here. How
can this string be used as an index into a tuple?

Any numerical operation on the codes used to represent the character
might work, but some result in codes that are too large. Simply adding the
codes would give a value of 537, which could work but also might be too large.
Imagine the application is to look up Python key words; there are 33 of them.
The value resulting from the hash should be an index between 0 and 32, so take
the hash mod 33. If that is tried the result is that half of the 33 entries will be
empty, and half will have two or more strings that have the same index. The
result is:

4: “None” 12: “return” 21: “try” 31: “global”
6: “class” 13: “global” 22: “is”
7: “from” 14: “as” 25: “finally”
9: “while” 15: “lambda” 27: “or”
10: “and” 17: “in” 29: “False”
11: “continue” 20: “True” 30: “for”

When two things hash to the same value it is said to be a collision. In this case
the collisions are:

(class, def) (False, nonlocal) (return, del) (from, not) (lambda, with)
(True, elif) (while, if) (from, yield) (global, assert) (False, else)
(from, import) (and, pass) (is, break) (is, except) (None, raise)

Two values can’t occupy the same location in a tuple, so something must be
done. The simplest way to deal with collisions is to have extra space in the list or
tuple. If the size of the tuple is specified as 145, then all strings hash to distinct
values. Of course, now 112 tuple entries are empty, but does that really matter?
The alternative to a table indexed by hashing (a hash table) would be a list that has
to be searched, and hashing is very much faster.

As it happens, simply adding the characters together is not a very good
hashing method. There are a few well-known ones.

398 ■ Python: An Introduct ion to Programming

djb2

This algorithm starts with a predefined seed for a hash value, multiplies it by
33 and adds the next character from the string, multiplies that by 33, adds the next
character, and so on. The code is:

def djb2 (s, size):
 sum = 5381
 for i in range (0, len(s)):
 sum = sum*33 + ord(s[i])
 sum = sum%size
 return sum

Why multiply by 33? It works well, and nobody knows why. The seed of 5381
can be changed to see how different values work. With the configuration given
here, there will need to be 112 elements in the tuple to avoid collisions. If the
program is changed slightly so that an exclusive OR replaces the sum, the size
decreases to 105. That is:

sum = sum*33 ^ ord(s[i])

	10.6.1	sdbm

This is a method devised for scrambling bits, but makes for a good hashing
function. The iteration is hash(i) = hash(i - 1) * 65599 + str[i]. The number 65599
is arbitrary, but happens to be prime. A function to implement this is:

def sdbm (s, size):
 hash = 0
 for i in range (0, len(s)):
 hash = ord(s[i]) * 65599 + hash
 return hash%size.

There are many other hashing methods (see: Knuth). The idea is an important
one. It is, for example, a way to implement Python dictionaries: hash the key to
an integer and use that to access the value.

	10.7	 SUMMARY
The goal of this chapter was to introduce important algorithms or general

techniques used in computer science. Sorting is a traditional programming prob-
lem for undergraduates and is essential in many data-handling applications. The
selection sort and the merge sort were discussed at length.

 Chapter 10 · Basic Algori thms ■ 399

Searching involves finding some piece of data within a larger collection. A
linear search starts at the beginning and looks at consecutive elements until the
target is found. A binary search splits the data into two halves each time an
element in the set is examined and so is faster, but it depends on the data being
sorted.

Random number generation creates a sequence of numbers that satisfies a
statistical test for randomness. Such numbers are crucial in computer simulations
and games, and in some numerical algorithms.

Cryptography involves sending messages that only certain intended people
can receive and understand. A cipher is an algorithm that converts one string
of characters into another one of generally the same length. The one-time pad
method was examined, followed by the very popular RSA algorithm.

Data compression is about ways to take many bytes of information and turn
them into fewer bytes while losing none of the essential message. Of course,
compressed data is incomprehensible just to look at and must be decompressed in
order for it to be used. This section demonstrated run length encoding, Huffman
codes, and the LZW algorithm.

The final section was a brief discussion of hashing, a way to convert strings
or other complex data types and reduce them to simpler forms such as integers.
The djb2 and the sdbm methods were singled out as being typical of the way that
such algorithms work.

Exercises

	 1.	Hashing algorithms must be fast. Use the timing schemes discussed in this
chapter to determine which of the three hashing algorithms presented is the
fastest.

	 2.	When a sequence of numbers is sorted into ascending order then element i-1
is always smaller than or equal to element i. Here is a description of a sorting
algorithm: scan the data set S to find any pairs of adjacent locations where
S[i-1] > S[i], and when any are found swap the two values. Repeat the process
until the array is sorted. Does it ever get sorted? What is the best case and
what is the worst case? Implement the method in Python.

400 ■ Python: An Introduct ion to Programming

	 3.	Compare the linear congruential random number generator described in
this chapter against the random() function in Python. Implement a die roll
using each method, and roll a die 1000 times. Which method is nearest to
the expected frequency distribution (equal for all values)? Repeat the process
1000 times and score Python one point when its random number generator
wins by this measure, and score the book’s generator one point when it wins.
Which is the overall winner?

	 4.	The quality of a hashing algorithm is measured by how random the hash
codes are when given a sample set of strings. One estimate of randomness
is the number of cells with more than one value hashed to it (the best here
would be 0), and the average number of values hashed to occupied cells—this
should be close to 1. Measure these for the three hashing methods presented
for a size of 60 cells.

	 5.	Data for registrants in a swimming competition consists of the swimmers
name, number, national ranking, and time in the 200-meter freestyle
competition. These data are located in four lists: name, number, rank, t200.
In all cases the same index is used to access all of the data for the same
person. Sort these data in descending order on time and identify the persons
in the top three spots and their times.

	 6.	Steganography works by concealing a message rather than making it
unreadable, as is done when using encryption. In the ideal situation nobody
will even suspect that there is a second message hidden within the first.
Consider a scheme that uses the spaces in a message: a single space is a
‘0’ and a double space is a “1.” The letters are coded as 5-bit codes starting
with “A” = 00000, “B” = 00001, and so on. Write programs that encode and
decode such messages.

Notes and Other Resources

Random.org random number server. https://www.random.org/
A pretty good description of RSA: https://en.wikipedia.org/wiki/
RSA_%28cryptosystem%29
Encode/decode stenographic messages disguised as spam. http://www.spammim-
ic.com/

	 1.	Donald Knuth. (1997). The Art of Computer Programming, Volume
3: Sorting and Searching, 3rd Edition, Addison-Wesley, 138–141, ISBN
0-201-89685-0.

 Chapter 10 · Basic Algori thms ■ 401

	 2.	Anany Levitin. Introduction to the Design & Analysis of Algorithms, 2nd
Edition, 98–100, ISBN 0-321-35828-7.

	 3.	Robert Sedgewick. (1998). Algorithms in C++, Parts 1–4: Fundamentals,
Data Structure, Sorting, Searching, 2nd Edition, Addison-Wesley
Longman, 273–274, ISBN 0-201-35088-2.

	 4.	G. Marsaglia. (2003). http://www.csis.hku.hk/~diehard

	 5.	Makato Matsumoto and Takuji Nishimura. (January 1998). Mersenne
twister: A 623-dimensionally equidistributed uniform pseudo-random
number generator, ACM Trans. Model. Comput. Simul. 8(1), 3–30, DOI =
http://dx.doi.org/10.1145/272991.272995

	 6.	Lenore Blum, Manuel Blum, and Mike Shub. (1982). Comparison of two
pseudo-random number generators, Advances in Cryptology: Proceedings
of CRYPTO ’82, Plenum, 61–78.

	 7.	Claude E. Shannon. (October 1949). Communication theory of secrecy
systems (PDF), Bell System Technical Journal, 28(4), 656–715, retrieved
2011-12-21, doi:10.1002/j.1538-7305.1949.tb00928.x

	 8.	The Only Unbreakable Cryptosystem Known—The Vernam Cipher,
retrieved 2014-03-17, Pro-technix.com

	 9.	B. Schneier. (1994). Description of a new variable-length key, 64-bit block
cipher (Blowfish), in Fast Software Encryption, edited by Ross Anderson,
Cambridge Security Workshop Proceedings (December 1993), Springer-
Verlag, 191–204.

	10.	Steven W. Smith. (2007). Data Compression Tutorial: Part 1, http://www.
eetimes.com/document.asp?doc_id=1275417&page_number=2

	11.	H. G. Wells. (1895). The Time Machine, William Heinemann, http://www.
gutenberg.org/cache/epub/35/pg35.txt

■ ■ ■ ■ ■

In this chapter

It is true that the earliest calculating devices were created to help with
commercial concerns, like payments, credit, and inventory. The abacus
is an excellent example—it does basic arithmetic and was likely an
early “cash register.” Much older devices do exist, such as the Lebombo
bone that helped ancient African bushmen do simple calculations and
keep track of time. The electronic computer, on the other hand, was
designed to carry out scientific calculations, in particular those related to
decrypting military messages and building the atom bomb. Computers
are, of course, used for those things still, but there is now a vast array
of computations in the scientific domain that could not be carried out
without the help of a computer.

Scientists from different disciplines would disagree about what the most im-
portant algorithms and techniques for science were. That’s because of the widely

11Chapter

Programming for the
Sciences

11.1	 Finding Roots of Equations ��404

11.2	 Differentiation��406

11.3	 Integration��408

11.4	 Optimization: Finding Maxima and Minima �� 410

11.5	 Longest Common Subsequence (Edit Distance)�� 421

11.6	 Summary��427

404 ■ Python: An Introduct ion to Programming

disparate things that physicists and biologists, as two examples, study. There are
a few recurring problems that pop up in almost all science domains, and some im-
portant techniques that generalize to many science and some non-science areas.

	11.1	 FINDING ROOTS OF EQUATIONS
The root of an equation is the x coordinate corresponding to its zero value.

This may not be the smallest or the largest value, but the place where a function
equals zero is often important. For example, if a function for the error in a cal-
culation can be found, then finding the place where the error is zero would be
important. In one dimension the problem being solved is:

	 x: f (x) = 0� (11.1)

Or in other words, find the value of x that results in f(x) being equal to zero. The
function could be quite complicated, but for the technique to work it should have
a derivative.

The basis of many root finding procedures is Newton’s method. The proce-
dure begins with a guess at the right answer. The guess in many cases does not
have to be very accurate, but is simply a starting point. If a range of values is
given within which to find the solution, the center of that range may be a good
starting guess. So, here is a problem to start with:

	 f (x) = (x-1)3  between  x = -2 and x = 12� (11.2)

The center of the range is x = 5.

The initial guess is called x0, and here x0 = 5. The function value there, f(x0),
is 64. The algorithm now says that the next guess for x, x1, will be:

	 x0 – f (x0)/f’(x0)� (11.3)

where f’(x0) is the derivative of f at the point x= x0. This is a wrinkle—the deriva-
tive of f has to be calculated. It’s easy to do for many functions, hard for others. A
numerical method will be examined a little later in this chapter, so in the mean-
time it is possible to simply code a function that gives the derivative, having done
the calculus on paper and then written the function based on that. The derivative
of (x-1)3 is 3x2 - 6x+3.

 Chapter 11 · Programming for the Sciences ■ 405

Roots of a function
def objective (x):
 return (x-1)*(x-1)*(x-1)

def deriv (x):
 return 3*x*x - 6*x+3

Range is -2 to +12
x = 5.
fx = 1000.
delta = 0.000001
print ("Step 0: x=", x, " obj = ", objective(x))
i = 1
while abs(fx) > delta:
 f = objective(x)
 ff = f/deriv(x)
 x = x - ff
 fx = objective(x)
 print ("Step ",i,": x=", x, " obj = ", fx)
 i = i + 1

Step 0: x= 5.0 obj = 64.0
Step 1 : x= 3.666666666666667 obj = 18.96296296296297
Step 2 : x= 2.7777777777777777 obj = 5.618655692729766
Step 3 : x= 2.185185185185185 obj = 1.6647868719199308
 . . .
Step 14 : x= 1.0137019495631274 obj = 2.5724508967303e-06
Step 15 : x= 1.0091346330420865 obj = 7.622076731056633e-07

The correct answer in this case is x=1.0, so the method gets to within 0.009
of the correct root in 15 steps. Depending on the application, this could be fine.
What if the initial guess was terrible? If the process starts at x = 500 then it takes
27 steps, but gets just a little closer to the right answer (x=1.0087). Starting at -500
also takes 27 steps.

It’s possible that there is no root. What happens in that case? The program
keeps looking. It overshoots, and then goes back, and forth, and back again. To
present this from happening it is common to place a limit of the number of times
the program will try. When this limit is exceeded an error occurs indicating that
there is no solution.

406 ■ Python: An Introduct ion to Programming

This first example has illustrated some common concepts that are used in nu-
merical analysis, which is the mathematical discipline encompassing the compu-
tation of mathematical functions and operations. The common concepts include:

The initial guess: It is relatively common to have a numerical algorithm
begin at a guessed value.
The delta: It is also common to have an algorithm step when the change
in the result or some mathematical feature becomes smaller than a speci-
fied threshold, called delta.
Iteration: Numerical methods frequently repeat a calculation expecting
it to converge on the correct result, using the previously calculated value
as the new starting point.
Maximum iterations: A user of a numerical method can assume that
the method will not converge (get close enough to the right answer) if a
specified number of attempts have been made.

	11.2	 DIFFERENTIATION
Determining the derivative of a function is something that is often thought of

as a symbolic operation, and the result is valid for any value of the function. This
may not always be true, and it may not be easy to do in the general case. Think
about what the previous algorithm does—it needs the derivative of a function at
one specific point. Can that be determined if the algebraic form of the function is
not known? Yes, it can, to within some degree of accuracy.

The derivative of a function at a point x is the slope of the curve defined by
that function at that point. The definition of the derivative of f at the point x is:

	 f ’(x) = (f (x + h) – f (x - h))/(2h)� (11.4)

as h gets smaller and smaller, what is called a limit in calculus. This formula is
essentially the mathematical definition of a derivative. On a computer h can be
made quite small, but can never be zero. If the expression above is used as an
estimate of the derivative, it will work in many cases. It is based on sampling two
points of the function each time. An improvement can be made by using more
points; for example:

	 () () ()2 8 8 (2)
() 12

f x h f x h f x h f x h
f x h

− + + + − − + −
= � (11.5)

 Chapter 11 · Programming for the Sciences ■ 407

uses four points and often produces better results.

Coding this uses a function passed as a parameter. It makes sense that the
function to be differentiated would be a parameter to the function that differenti-
ates it; other parameters will be x, the point at which it will be evaluated, delta,
the accuracy desired, and niter, the maximum number of iterations. The calcu-
lation should take place in a try-except block so that numerical errors will be
caught. The two-point and the four-point versions of the function that performs
numerical differentiation are:

def deriv1 (f, x, delta=0.0001,
niter=20): # Two point
 # derivative
 global n0
 h = 0.001
 n = 0
 dx = f(x)
 while n<niter:
 try:
 old_dx = dx
 dx = (f(x+h)-f(x-h))/

(2*h)
 n = n + 1
 if abs(dx-old_dx) <

delta:
 n0 = n
 return dx
 except:
 print ("Exception

deriv1")
 return 0

def deriv2 (f, x, delta=0.0001,
niter=20): # Four point
 # derivative
 global n1
 h = 0.001
 n = 0
 dx = f(x)
 while n<20:
 try:
 old_dx = dx
 dx = (-f(x+2*h)+

8*f(x+h)- \8*f(x-h)+
f(x-2*h))/(12*h)

 n = n + 1
 if abs(dx-old_dx) <

delta:
 n1 = n
 return dx
 except:
 print ("Exception

deriv2")
 return 0

Testing these functions is an excellent demonstration. First a function to be
differentiated is written. The previous example on finding roots has a simple one
(renamed as f1):

def f1 (x):
 return (x-1)*(x-1)*(x-1)

That example also has a function that represents the derivative of f1 at the
point x (renamed df1):

def df1 (x):
 return 3*x*x - 6*x+3

408 ■ Python: An Introduct ion to Programming

The function df1() should return the exact derivative of f1(), and can be used
to check the value returned by deriv1() or deriv2(). Create a loop that runs over
a range of x values and compare the value returned from df1() to that returned by
deriv1() and/or deriv2():

for i in range (1,20):
 x = i*1.0
 f = f1(x)
 df = df1(x)
 mydf = deriv1 (f1, x)
 mydf2 = deriv2(f1, x)
 print (f, df, mydf, n0, " ", mydf2, n1)

The result looks something like this:

f(x) df(x) result from deriv1 Niter result from derive2 Niter
0.0 0.0 9.999999e-07 1 -2.2209799e-19 1
1.0 3.0 3.0000009999 2 2.999999999999 2
8.0 12.0 12.00000099999 2 11.999999999999 2

. . .
4913.0 867.0 867.0000010015 2 867.0000000024 2
5832.0 972.0 972.000001001 2 972.0000000021 2

Both functions give excellent results in a very few iterations in this case. Of
course, some functions present more difficulties than do simple polynomials. [2]

	11.3	 INTEGRATION
An integral is most often thought of as the area under a curve, where the

curve is a function (Figure 11.1a). Numerical integration amounts calculating that
area using an algorithm. The area of a rectangle is easy to calculate, so if the re-
gion under a curve could be reasonably approximated by a bunch of rectangles,
then the problem would be solved. This is the idea behind the trapezoidal rule.
The integral from x0 to x1 of a function f(x) can be approximated by the width
(x1 - x0) multiplied by the height (the average value of the function in that range),
which is just a rectangle that approximates the area under the curve (Figure 11.1b).
In mathematical notation:

	 ()
1

0 1
1 0

0

(() ())() 2

x

x

f x f xf x x x += −∫ � (11.6)

 Chapter 11 · Programming for the Sciences ■ 409

This would generally be a pretty poor approximation of a curve, and would
yield correspondingly bad approximations of the integral. However, the smaller
the width x1 - x0 the more accurate the approximation can be, and so using a great
many small trapezoids would be much better than using only one (Figure 11.1c).
How many? That is not known at the outset, but could be increased from an initial
guess until a desired accuracy was achieved.

A function that performs integration using this method would accept a func-
tion, the starting x0 and the ending x1 for the integral. The function would break
the interval between x0 and x1 into n parts, when n is an initial guess. The func-
tion is evaluated for all n parts, the area of each trapezoid is computed, and they
are summed to get the final result. Now increase n and do it again. If the two
values are close enough (delta) then the process is complete.

This will be done in two steps. First a function trap0() that computes and
returns the sum of N trapezoids. The obvious but slow way to do this is:
f trap0 (f, x0, x1, n): # Slow method
 dx = (x1-x0)/n # Divide range into N parts
 xa = x0 # Start at x0

  
	 (a)	 (b)

	 (c)

Figure 11.1
Numerical integration by summing many small areas under a curve.

410 ■ Python: An Introduct ion to Programming

 xb = x0+dx # Current trapezoid is xa to xb
 sum = 0 # Sum of areas starts at 0.0
 for i in range(0, n): # Add up N trapezoids
 f0 = f(xa) # Compute function at xa and xb
 f1 = f(xb)
 sum = sum + dx*(f1+f0)/2 # Area of the trapezoid
 xa = xa + dx # Next xa and xb are dx from
 xb = xb + dx # the current ones
 return sum # The sum is the integral.

The integration function trapezoid() will call this function with increasing
values of n until two consecutive results show a small enough difference (i.e.,
smaller than a provided delta value):

def trapezoid (f, x0, x1, delta=0.0001, niter=1024):
 n = 4
 resold = trap0(f, x0, x1, 2)
 resnew = trap0(f, x0, x1, 4)
 while abs(resnew-resold) > delta:
 if n>niter: break
 resold = resnew
 n = n * 2
 resnew = trap0 (f, x0, x1, n)
 return resnew

The function trap0() can be sped up significantly by not re-computing the
function twice each time through the loop, but remembering the previous value
instead (Exercise 2). A more popular algorithm for integration is Simpson’s Rule,
which tries to minimize the error even more by using a quadratic approximation
to the curve at the top of the trapezoid, instead of a straight line.

	11.4	 OPTIMIZATION: FINDING
MAXIMA AND MINIMA

Finding extreme values, either the maximum or minimum, is a very common
problem in computing, not just in science but in many disciplines. It is sometimes
referred to as optimization. Naturally finding a best (in some sense) value would
be appealing. What is the least amount of fuel needed to travel from Chicago to
Atlanta? What route between those two cities requires the least amount of driving
time? What route is shortest in terms of distance? There are many reasons to want
an optimum and many ways to define what an optimum is.

 Chapter 11 · Programming for the Sciences ■ 411

In the following discussion the function to be optimized will be provided, so
there will no guesswork on that subject. The question concerns how to find loca-
tion (parameters) where the minimum or maximum occurs.

	11.4.1	Newton Again

Figure 11.2 shows an example of a function to be optimized. There is a mini-
mum of 7 at the point x= 1. How can this be found? If the nature of the function
is known, for instance that it is a quadratic polynomial, then the optimum can
be found immediately. It will be at the point where the derivative is zero. The
problem of optimization is that one does not know much, if anything, about the
function. It can only be evaluated, and perhaps the derivatives can be found nu-
merically. Given that, how can the min or max be found?

If the derivative can be found, then it may be possible to search for an opti-
mum point. At a value x, if the derivative is negative, then the slope of the curve
is negative at that point; if the derivative is positive then the slope is positive. If
an x value can be found where the slope is negative (call this point x0) and another
where it is positive (call this x1), then the optimum (slope = 0) must be between
these two points. Finding that point can be done as follows:

	 1.	 Select the point between these two (x = (x0+ x1)/2).
	 2.	 If the derivative is negative at this point, let x0 = x. If positive let x1 = x.
	 3.	 Repeat from step 1 until the derivative is close enough to 0.

This process is pretty much random. Finding the two starting points is a mat-
ter of guessing until they are found. The search range gets smaller by a factor of 2

 
	 (a)	 (b)

Figure 11.2
(a) Analytical function with a minimum. (b) A sine function has many minima and maxima.

412 ■ Python: An Introduct ion to Programming

each iteration. The fact that the function can be evaluated at any point means that
it is possible to make better guesses. In particular, it’s possible to assume that the
function is approximately quadratic at each step. Quadratics have an optimum at
a predictable place. The method called Newton’s Method fits a quadratic at each
point and moves towards its optimal point.

The method is iterative, and without doing the math the iteration is:

	 1
() ()n n

f xx x f x−
′

= − ′′ � (11.7)

A function to calculate the first and second derivative is needed. The formula
for the second derivative is based on the definition of differentiation, as was the
formula for the first. It is:

	 2
() 2 () ()() f x h f x f x hf x

h
+ − + −′′ = � (11.8)

The program should therefore be straightforward. Repeat the calculation of
xn-1 - f’(x)/f’’(x) until it converges to the answer. This will be the location of the
optimum. An example function would be:
def newtonopt (f, x0, x1, delta=0.0001, niter=20):
 x = (x0+x1)/2
 fa = 1000.0
 fb = f(x)
 i = 0
 print ("Iteration 0: x=", x, " f=", fb)
 while (abs(fa-fb) > delta):
 fa = fb
 x = x - deriv(f, x)/derivsecond(f, x)
 fb = f(x)
 i = i + 1
 print ("Iteration ", i, ": x=", x, " f=", fb)
 if i>niter:
 return 0

This finds a local optimum between the values of x0 and x1. A local optimum
may not be the largest or smallest function value that the function can produce,
but may be the optimum in a local range of values.

Figure 11.2a shows a typical quadratic function. It is f(x) = x2-2x+8, and has
an optimum at x = 1. Because it is quadratic the Newton optimization function

 Chapter 11 · Programming for the Sciences ■ 413

above finds the result in a single step. Figure 11.2b is a sine function, and can be
seen to have many minima and maxima. Any one of them might be found by the
Newton method, which is why a range of values is provided to the function.

The newtonopt() function successfully finds the optimum in Figure 11.2a at
x=1, and finds one in Figure 11.2b at x = 90 degrees (π/2 radians). If there is no
optimum the iteration limit will be reached. If either derivative does not exist,
then an exception will occur.

	11.4.2	Fitting Data to Curves – Regression

Scientists collect data on nearly everything. Data are really numerical values
that represent some process, whether it be physical, chemical, biological, or so-
ciological. The numbers are measurements, and scientists model processes using
these measurements in order to further understand them. One of the first things
that is usually done is to try to find a pattern in the data that may give some
insight into the underlying process, or at least allow predictions for situations
not measured. One of the common methods in data analysis is to fit a curve to
the data; that is, to determine whether a strong mathematical relationship exists
between the measurements.

As an example, a set of measurements of tree heights will be used. The height
of a set of a specific variety of trees is made over a period of ten years and the
data resides in a file named “treedata.txt.” The question: is there a linear relation-
ship (i.e., does a tree grow generally the same amount each year)? Specifically,
what is that relationship (i.e., how much can we expect a tree to grow)? Figure z
shows a visualization of these data in the form of a scattergram or scatter plot, in
which the data are displayed as points in their (x,y) position on a grid.

The “curve” to be fit in this case will be a line. What is the equation of the
line that best represents the data in the figure? If that were known then it would
be possible to predict the height of a tree with some degree of confidence, or to
estimate a tree’s age from its height.

One form of the equation of a line is the point-slope form:

y = mx+b

414 ■ Python: An Introduct ion to Programming

Figure 11.3
A scattergram of a typical set of measurements.

where m is the slope (angle) of the line and b is the intercept, the place where the
line crosses the Y axis. The goal of the regression process, in which the best line
is found, is to identify the values of m and b. A simple observation is needed first:
the equation of a line can be written as:

	 mx + b - y = 0

If a point actually sits on this line, then plugging its x and y values into the
equation will result in a 0 value. If a point is not on the line, then mx+b-y will
result in a number that amounts to an error; its magnitude indicates how far away
the point is from the line. Fitting a line to the data can be expressed as an opti-
mization problem: find a line that minimizes the total error over all sample data
points. If (xi,yi) is data point i then the goal is to minimize:

	 2

0

()
n

i i
i

mx b y
=

+ −∑ � (11.9)

by finding the best values of m and b. The expression is squared so that it will
always be positive, which simplifies the math. It may be possible to do this opti-
mization using a general optimization process such as Newton’s, but fortunately
for a straight line the math has been done in advance. Other situations are more
complicated, depending on the function being fit and the number of dimensions.

A simple linear regression is done by looking at the data and calculating the
following:

 Chapter 11 · Programming for the Sciences ■ 415

meanX = mean value of
x

x n= ∑

MeanY = mean value of
y

y n= ∑

stdX = standard deviation of
 2(mean)

1
x

nx
x−

= −
∑

stdY = standard deviation of
 2(mean)

1
y y

y n
−

= −
∑

r = correlation between x and
2 2

(mean)(mean)x x y y
y

x y

− −
= ∑

∑ ∑
Each of these can be calculated using a separate function. Then the slope of

the best line through the data would be:

	 std std
ym r x= � (11.10)

And the intercept is:

	 b = meany – m*meanx� (11.11)

The function regress() that does the regression accepts a tuple of X values
and a corresponding tuple of Y values, and returns a tuple (m, b) containing the
parameters of the line that fits the data. It depends on other functions to calculate
the mean, standard deviation, and correlation; these functions could generally be
more useful in other applications. The entire collection of code is:

from math import *

def mean (x):
 sum = 0.0
 for i in range (0, len(x)):
 sum = sum + x[i]
 sum = sum/len(x)
 return sum

def sdev (x, meanx):
 sum = 0
 for i in range(0,len(x)):

def regress (x, y):
 mx = mean(xdata)
 my = mean(ydata)
 sdx = sdev (xdata, mx)
 sdy = sdev (ydata, my)
 if sdx == 0: return
 r = correlate

(xdata,ydata,mx,my)
 m = r * sdy/sdx
 b = my - m * mx
 return (m, b)

416 ■ Python: An Introduct ion to Programming

 sum = sum + (x[i]-
meanx)*(x[i]-meanx)

 sum = sum/(len(x)-1)
 return sqrt (sum)

def correlate (x, y, meanx,
meany):

 sum1 = 0
 sumx2 = 0
 sumy2 = 0
 for i in range(0,len(x)):
 z = (x[i]-meanx)*(y[i]-

meany)
 sum1 = sum1 + z
 sumx2 = sumx2 + \
 (x[i]-meanx)*(x[i]-

meanx)
 sumy2 = sumy2 + \
 (y[i]-meany)*(y[i]-

meany)
 return sum1/sqrt(sumx2*sumy2)

f = open ("treedata.txt", "r")
s = f.readline ()
xdata = ()
ydata = ()

Main program: test regress
Read each lines as a string
and split at the comma;
2 reals
while s != "":
 for i in range (1,len(s)):
 if s[i] == ",": break
 x = float(s[0:i-1])
 y = float(s[i+1:])
 xdata = xdata + (x,)
 ydata = ydata + (y,)
 s = f.readline()

line = regress(x, y)

	11.4.3	Evolutionary Methods

A genetic algorithm (GA) or an evolutionary algorithm (EA) is an optimiza-
tion technique that uses natural selection as a metaphor to optimize a function or
process. The idea is to create a collection of many possible solutions (a popula-
tion), which are really just sets of parameters to the objective function. These are
evaluated (by calling the function) and the best of them are kept in the popula-
tion; the remainder are discarded. The population is refilled by combining the re-
maining parameter sets with each other in various ways in a process that mimics
reproduction, and then this new population is evaluated and the process repeats.

The idea is that the population contains the best solutions that have been seen
so far, and that by recombining them a new, better set of solutions can be created,
just as nature selects plants and animals to suit their environment. This method
does not require the calculation of a derivative, so it can be used to optimize
“functions” that can’t be handled in other ways. It can also deal with large dimen-
sions; that is, functions that take a large number of parameters.

This idea may be new, and so developing it with an example may be the best
way to illustrate it. Consider the problem of finding the minimum of a function of

 Chapter 11 · Programming for the Sciences ■ 417

two variables. This is really an attempt to find values for x and y that result in the
smallest function result. Evolutionary algorithms are often tested on quite nasty
functions, having lots of local minima or large flat regions. Two such functions
will be used here: the Goldstein-Price function:

(1+(x+y+1)2 (19 - 14x+3x2 - 14y + 6xy+3y2)
	 (30+(2x+3y)2 (18 - 32x+12x2+48y - 36xy+27y2))� (11.12)

and Bohachevsky’s function:

	 x2 + y2 – 0.3cos(3px) – 0.4cos (4py) + 0.7� (11.13)

Graphs of these functions are shown in Figure 11.4.

The first step in the evolutionary algorithm is to create a population of poten-
tial solutions. This is just a collection of parameter pairs (x,y) created at random.
The population size for this example will be 100, and is a parameter of the EA
process. This is done in the obvious way:

def genpop (population_size):
 pop = ()
 for i in range(0, population_size):
 p = (randrange(-10, 10), randrange(-100, 100))
 pop = pop + (p,)
 return pop

The population is a tuple of a hundred (x, y) parameter pairs. Now these need
to be evaluated, and so the objective function must be written. This will differ
for each optimization problem, of course. In this case it is the sum of the errors

 

Figure11.4
Two-dimensional functions to be optimized.

418 ■ Python: An Introduct ion to Programming

between a given line (one of the parameters) and the data points. One way to
calculate this is:
def objective (x, y): # One of many possiblke objective
 # functions
 return goldsteinprice (x, y)
return boha (x, y)
def goldsteinprice (x, y): # Goldstein-Price function
 # f(0, -1) = 3
 return (1+(x+y+1)**2 * (19-14*x+3*x*x - 14*y +6*x*y +
 3*y*y)) * \(30+(2*x-3*y)**2 * (18-32*x+12*x*x+
 48*y-36*x*y+27*y*y))

def boha (x, y):
 z = x*x + y*y -0.3*cos(3*pi*x) - 0.4*cos(4*pi*y) + 0.7
 return z

All members of the population are evaluated, and the best ones—in this case
the ones having the smallest objective function value—are kept. A good way to
do this is to have the values in a tuple E where E[i] is the result of evaluating
parameters P[i], and sorting the collection is descending order on E. Since there
are 100 entries in E this will mean that E[0:n] will contain the best n% of the
population. The function eval() will create a tuple of function evaluations for the
whole population, and sort() will sort these and the corresponding parameters.
These contain nothing new, and will not be shown here. The program here will
select the best 10% and discard the remainder, replacing them with copies of the
good ones.

The key issue is one of introducing variety in the population. This means
changing the values of the parameters while, one would hope, improving the
overall performance of the group. Using the metaphor of natural selection and ge-
netics, there are two ways to introduce change into the population: mutation and
crossover. Mutation involves making a small change in a parameter. In real DNA,
a mutation would change one of the base pairs in the sequence which would usu-
ally amount to a rather small change, but which will be fatal in some cases. In the
EA being written, a mutation will be a random amount added to or subtracted
from a parameter. Mutations occur randomly and with a small probability, which
will be named pmut in the program. Values between 0.015 and 0.2 are typical for
pmut, but a best value can’t be determined, and is problem specified. A value of
0.02 will be used here.

 Chapter 11 · Programming for the Sciences ■ 419

The function mutate() will examine all elements in the global population,
mutating them at random (i.e., adding random values):
def mutate (m):
 global pmut, population
 for i in range (int(m), len(population)):
 c = population[i]
 if random () < pmut: # Mutate the x parameter
 c[0] = c[0] + random()*10.0-5
 if random () < pmut: # Mutate the y parameter
 c[1] = c[1] + random()*10.0-5
 population[i] = c

A crossover is more complex, involving two sets of parameters. It involves
swapping parts of the parameters sets from two “parents.” Some parameters could
be swapped entirely, in this case meaning that (x0, y0) and (x1, y1) would become
(x0, y1) and (x1, y0). Other times parts of one parameter would be combined with
parts of another. There are implementations involving bit strings that make this
easier, but when using floating point values as is being done here, a good way to
do a crossover is to select two “parents” and replace one of the parameters in each
with a random value that lies between the original two.
def crossover (m):
 global population, pcross
 for i in range (m, len(population)): # Keep the best ones
 # unchanged
 if random () < pcross: # Crossover at the
 # given rate
 k = randrange(m, len(population)) # Pick a random
 # mate
 w = randrange (0, 1) # Change X or Y?
 c = population[i] # Get individual 1
 g1 = c[w] # Get X or Y for this guy
 cc = population[k] # get individual 2
 g2 = cc[w] # Get X or Y
 if (g1>g2): t = g1; g1 = g2; g2 = t
 # swap so g1 is smallest
 c[w] = random()*(g2-g1) + g1 # Generate new
 # parameter for 1
 cc[w] =random()*(g2g1) + g1 # Generate new
 # parameter for 2

420 ■ Python: An Introduct ion to Programming

Sample output from three attempts to find the optimal value of Bohachevsky’s
function is:

Iterations	 x	 y	 Result
5	 [0.002528698,	 0.0]	 at 9.158793881192118e-05
173	 [5.38185770e-10, -0.0006229]	 at 1.2643415301605287e-05
4	 [-0.0007491,	 0.0]	 at 8.0394329584621e-06

This shows that sometimes the process takes much more time to arrive at
a solution than others. It depends on the initial population, as well as on the
parameters of the program: the mutation and crossover probabilities, the percent-
age of the top individuals to retain, and the nature of the mutation and crossover
operators themselves.

Figure 11.5 outlines the overall process involved in the optimization. Details
on specific techniques can be found in the references.

Figure 11.5
The evolutionary algorithm process.

 Chapter 11 · Programming for the Sciences ■ 421

	11.5	 LONGEST COMMON SUBSEQUENCE
(EDIT DISTANCE)

So far in this chapter the methods being discussed are numerical ones, and
given the topic being discussed that makes some sense. There are, on the other
hand, many algorithms that are not numeric in nature, but may be more symbolic,
involve patterns, pictures, sounds, or other more complex data forms. It is true
that at some level all problems to be solved on a computer must be formulated us-
ing numbers, but in the examples so far the numbers are really the subject of the
problem, and the problem would be solved numerically even if done with a pencil
and paper. In other cases this is not so.

As a major example, consider the problem of comparing two sequences of
DNA. A sequence in this instance consists of a string of letters, each one referred
to as a base in the sequence. DNA consists of a long sequence of base pairs in-
volving four molecules: Adenine (A), Guanine (G), Thymine (T), and Cytosine
(C) linked together chemically. These ultimately define the structure of a protein,
and it is the sequence that is important. A common problem in computational
biology is to find the longest sequence in common between two DNA strands,
where the samples may be from different individuals or even different species.
Methods for doing this tend to involve the edit distance or Levenshtein distance.

The edit distance is a way of specifying how similar or dissimilar two strings
are to one another by finding the minimum number of editing operations required
to transform one string into the other. An editing operation can be a change in
a character, a deletion, or an insertion. For example, what is the edit distance
between the word “planning” and the word “pruning”? It is 3:

p l a n n i n g
p r a n n i n g change “l” to “r”
p r u n n i n g change “a” to “u”
p r u n i n g delete “n”

How is this used when looking at DNA? A DNA sequence is a set of the codes
read from a piece of DNA, and is a string containing only the letters G, A, T, and
C. Comparing two pieces of DNA is a matter of comparing the two strings. So,
the two strings AGGACAT and ATTACGAT are distance 3 from each other. The
longest common subsequence has 5 characters in it:

AGGAC AT
ATTACGAT

422 ■ Python: An Introduct ion to Programming

	11.5.1	Determining Longest Common Subsequence (LCS)

Exhaustive searching of two S1 and S2 strings for the longest common sub-
sequence would simply be too slow for any practical purpose. Fortunately, a lot
of work has been done over the past 50 years on this problem, and the method of
choice appears to be the Smith-Waterman method. It builds a matrix (two-dimen-
sional array) where each character of the first string represents a column of the
matrix, and each character in the other string forms a row, in order of appearance.
The matrix is filled with numbers using the following relation:

	 ()
()

()
()

1 21, 1 ((), ())
, max 1, gap penalty

, 1 gap penalty
0

T i j S i S j
T i j T i j

T i j

σ− − + 
 = − + 
 − +
 
 

� (11.14)

The function σ(a,b) gives a penalty for a match/mismatch between two char-
acters a and b. Here it will be 2 for a match and -2 for a miss. The gap penalty is
the value assigned to having to leave a gap in the sequence to perform a better
match. Usually this would be -1. The scheme offers a degree of flexibility, so that
different penalties (and rewards) can be applied in different circumstances.

The first step in the Smith-Waterman method is to create a matrix (a table)
T in which there are len(S1+1) columns and len(S2+1) rows. The first index in
T(i,j) refers to the column and the second index is the row. The values in the cur-
rent row are a function of those in the previous one. Place a 0 in each element of
the first row and the first column. For the two strings used previously this would
look like the table below.

S2 \ S1 A G G A C A T
0 0 0 0 0 0 0 0

A 0 *
T 0
T 0
A 0
C 0
G 0
A 0
T 0

 Chapter 11 · Programming for the Sciences ■ 423

Now, for any element T(i,j) the neighboring elements are:

	 T(i - 1, j - 1)	 T(i, j - 1)	 T(i + 1, j - 1)
	 T(i - 1, j)	 T(i, j)	 T(i + 1, j)

The first cell to fill in the table T is T(1,1), marked with a “*” character in the
example to the left. The relation used to fill this cell has four parts:

	 1.	 () 1 21, 1 ((())),T i j S i S jσ− − + The characters in the row and column
match, so () ()1 2(), ,() (0,0) 1 2S i S A Aj Tσ σ= = + =

	 2.	 Gap penalty is -1, T(i-1, j) = 0, T(0, 1) = 0. Result is -1
	 3.	 Gap penalty is -1, T(i, j-1) = T(1,1) = 0. Result is -1
	 4.	 Result is 0

The maximum value of these four calculations is 1, so T(1, 1) = 2.

S2 \ S1 A G G A C A T
0 0 0 0 0 0 0

A 0 2 *
T 0
T 0
A 0
C 0
G 0
A 0
T 0

The next cell to compute is T(2,1). This time the two characters are not the
same, so:

	 1.	 () 1 21, 1 ((), ())T i j S i S jσ− − + where ()1 2(), () (,) 1S i S j G Aσ σ= = − + T(1,0) =
-2

	 2.	 Gap penalty is -1, T(i - 1,j) = T(1,1) = 2.
		 Result is 2 - 1 = 1
	 3.	 Gap penalty is -1, T(i, j-1) = T(2,1) = 0. Result is -1
		 Result is 0
		 and so T(2,1) = 1
For T(3,1):
	 1.	 G and A are not the same, s(G, T) = -2:
	 2.	 T(i - 1.j) = T(2,1) = 1 so 1-1 = 0
	 3.	 T(i, j - 1) = T(3,0) = 0 so 0 – 1 = -1

424 ■ Python: An Introduct ion to Programming

	 4.	 0
		 Result is 0
For T(4,1):

	 1.	 σ (A, A) = 2,
	 2.	 T(i - 1, j) = T(3, 1) = 0, 0-gap = -1
	 3.	 T(i, j -1) = T(4, 0) =0, 0-gap = -1
	 4.	 0
		 Result is 2
For T(5, 1):

	 1.	 σ (C, A) = -2,
	 2.	 T(i - 1, j) = T(4, 1) = 2, 2-gap = 1
	 3.	 T(i, j - 1) = T(5, 0) =0, 0-gap = -1
	 4.	 0
		 Result is 1
For T(6, 1):

	 1.	 σ (A,A) = 2,
	 2.	 T(i - 1, j) = T(5, 1) = 1, 1-gap = 0
	 3.	 T(i, j - 1) = T(6 0) =0, 0-gap = -1
	 4.	 0
		 Result is 2
Finally for T(7,1):

1.	 σ (T, A) = -2,
2.	 T(i - 1, j) = T(6, 1) = 2, 2-gap = 1
3.	 T(i, j - 1) = T(7 0) =0, 0-gap = -1
4.	 0

Result is 1
The result after row 2 is complete is:

S2 \ S1 A G G A C A T
0 0 0 0 0 0 0 0

A 0 2 1 0 2 1 2 1
T 0
T 0

 Chapter 11 · Programming for the Sciences ■ 425

Now move to the next row. The process repeats until all cells have been ex-
amined and assigned values. For this example the final matrix is:

S2 \ S1 A G G A C A T
0 0 0 0 0 0 0 0

A 0 2 1 0 2 1 2 1
T 0 1 0 0 1 0 1 4
T 0 0 0 0 0 0 0 3
A 0 2 1 0 2 1 2 2
C 0 0 1 0 0 4 3 2
G 0 0 3 2 1 3 2 1
A 0 2 2 1 4 3 5 4
T 0 1 1 0 3 2 4 7

The lower right entry is column 7 row 8, or (7,8).

This matrix indicates the degree of match at points in the string. To determine
the actual match between the strings, begin with the largest value in the matrix.
In this case it is in the lower right corner, but that’s not always true. Wherever
the maximum is, start at that point in the matrix and trace left and upwards; this
is essentially moving from the end of each string back to the beginning. At each
step the move is left, up, or diagonally.

The process will build two ways to match the string. One indicates how
to change s1 into s2 (call this M1), and the other indicates how to turn s2 into
s1 (call this M2). Both strings are constructed from, in this case, (7,9) back
to (0,0).

def backtrack():
 global s1, s2
 mi = 0
 mj = 0
 m1 = ""
 m2 = ""
 maxv = T[mi][mj]
 for j in range (1, len(s2)+1):
 for i in range (1,

len(s1)+1):
 if T[i][j] >= maxv:
 maxv = T[i][j]
 mi = i
 mj = j

This backtracking stage is the tricky
part. Begin with two empty strings M1
and M2. Locate the largest value in the
matrix (there may be more than one)
and begin at that set of i,j coordinates:
call this point (mi,mj).

426 ■ Python: An Introduct ion to Programming

while mi>0 or mj>0:
 t11 = T[mi-1][mj-1] # Diagonal
 t01 = T[mi][mj-1] # Up
 t10 = T[mi-1][mj] # Left

A step to the left from this point is to
(mi-1, mj); upwards is (mi, mj-1); di-
agonally up-left would be (mi-1,mj-1).
The direction to be selected is the one
that has the largest value of T, with a
bias towards the diagonal if there is no
specific maximum (i.e., all three are
equal).

Diagonal is best
 if t11>=t01 and t11 >= t10:
 m1 = s1[mi-1] + m1
 m2 = s2[mj-1] + m2
 mi = mi - 1
 mj = mj - 1

A movement in the diagonal direction
implies a simple match or mismatch.
The action should be to copy the cor-
responding character from s1 into M1
and the character from s2 into M2, then
set mi = mi – 1 and mj = mj – 1.

UP is best
 elif t01>t11 and t01 > t10:
 m1 = s1[mi-1] + m1
 m2 = "_" + m2
 mj = mj - 1

A movement upwards implies that there
is to be a gap inserted into M2, and so
s1 matches. Place a “_” character into
M2 and place the current (mi) character
into M1. Leave mi alone but let mj =
mj – 1, thus moving up in the matrix.

Left is best
 elif t10>t11 and t10>t01:
 m1 = "_"+m1
 m2 = s2[mj-1]+m
 mi = mi - 1

A movement left implies that a gap is to
be inserted into M1, and so M2 match-
es. Place a “_” character into M1 and
s1[mj] into M2, Leave mj alone but set
mi = mi – 1, thus moving left.

End of WHILE Loop This process continues until either mi
or mj becomes smaller than 0.

if mi>0:
 m1 = s1[0:mi] + m1
if mj > 0:
 m2 = s2[0:mj] + m2

If mi or mj is not zero it means there
are some characters left over in one of
the two strings. Copy them into the cor-
responding match string M1 or M2.

If there is more than one cell in T with a maximum value, then a route should
be traced back from each maximum.

For the example string the result is:

M1 = AGGACCAT
M2 = ATTAC _ AT

 Chapter 11 · Programming for the Sciences ■ 427

There is a mismatch at the GG/TT pair and an inserted gap in M2.

	11.6	 SUMMARY
A discussion of some of the more important problem types studied by sci-

entists was presented along with some method for their solution. The root of an
equation is the place where its value is zero, and Newton’s method was described
as a means of finding a root. Newton’s method requires that the derivative of the
function be known, so means of numerically determining the derivative were
also discussed.

Since derivatives could be calculated, methods for performing integration
were described and functions for doing the calculation using the trapezoidal rule
were written.

One of the more common calculations in science is to find an optimum value
for a function. Another method of Newton’s was used to find maxima or minima
of a function.

The modeling of data is important in scientific (and other) disciplines. A
method for finding the best straight line that passes through a set of data was il-
lustrated (linear regression) and code was designed and tested for this problem.

Evolutionary algorithms can be used to find the optimum of a function, and is
especially useful when dealing with multidimensional functions or functions that
have many local optima, and when no derivative of the function exists.

Biologists sometimes need to match sequences of DNA. A method that does
this using bases as characters and sequences as strings was presented; this is the
Smith-Waterman algorithm for local sequence matching, and is commonly used
for these problems.

Exercises

	 1.	Modify the root finding example so that a numerical derivative is used instead
of an analytical one (i.e., use derive1() or derive2()). This is a more practical
situation. What is the effect?

	 2.	Modify the trap0() function in the trapezoid rule example so that it never
calls the function being evaluated more than once for any point.

428 ■ Python: An Introduct ion to Programming

	 3.	Look up Simpson’s Rule and code your own version. Compare it with the
trapezoid rule for two functions of your choice. Which one is more accurate
after each iteration?

	 4.	Write a function error() that accepts X and Y data tuples, and values a and b.
It returns the total error between the data points and the curve ax2+bx.

	 5.	The (natural) logarithm of a value v is defined to be the integral of 1/x from
1 to v. Create a function that calculates the natural log using the existing
integration function.

	 6.	Run the evolutionary algorithm to optimize the Goldstein-Price twenty times.
Does it ever fail to approach the minimum? How often? What can be done if
an EA does not arrive at an optimum, and how can it be determined?

	 7.	Using software developed in this chapter, find two positive numbers whose
sum is 9 and so that the product of one number and the square of the other
number is a maximum.

Notes and Other Resources

Online edit distance calculator: http://planetcalc.com/1721/

Smith-Waterman algorithm: http://www.slideshare.net/avrilcoghlan/the-smith-
waterman-algorithm

https://www.youtube.com/watch?v=jrJ23aaByE8

	 1.	D. Levy. Lecture Notes, (Ch 5) Numerical Differentiation, http://www2.
math.umd.edu/~dlevy/classes/amsc466/lecture-notes/differentiation-chap.
pdf

	 2.	William Press, Saul Teukolsky, William Vetterling, and Brian Flannery.
(2007). Numerical Recipes: The Art of Scientific Computation, 3rd
edition, Cambridge University Press.

	 3.	Richard Hamming. (1987). Numerical Methods for Scientists and
Engineers, Dover Publications.

	 4.	J. R. Parker. (2002). Genetic Algorithms for Continuous Problems, 15th
Canadian Conference on Artificial Intelligence, Calgary, Alberta,
May 27–29.

 Chapter 11 · Programming for the Sciences ■ 429

	 5.	D. E. Goldberg. (1989). Genetic Algorithms, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA.

	 6.	vlab.amrita.edu. (2012). Global Alignment of Two Sequences - Needleman-
Wunsch Algorithm, Retrieved 9 December 2015, vlab.amrita.edu/?sub=3&
brch=274&sim=1431&cnt=1

	 7.	S. B. Needleman and C. D. Wunsch. (1970). A general method applicable
to the search for similarities in the amino acid sequence of two proteins,
J. Mol. Biol., 48, 443–453.

	 8.	T. F. Smith and M. S. Waterman. (1981). Identification of common molecular
subsequences, J. Mol. Biol., 147(1), 195-197.

■ ■ ■ ■ ■

In this chapter

There is no general agreement on how best to put together a good
program. Good, by the way, means functionally correct, readable,
modifiable, reasonably efficient, and that solves a problem that someone
needs solved. This chapter will be distinct from the others in this book:
we’ll move into second person narrative, partly because of the more
personal nature of the subject material. Writing code for some people is
like telling a story or making a painting: it’s not that it is art, but that it is
personal. If you wish to insult a programmer, say that their code is poorly
structured, or naïve, or in some way less than adequate.

There are many processes that have been described for programming, and
the truth is that not only is there not one best one, but it is rarely certain than any
of them is better than any of the others. When someone writes a program, they
are trying to solve a problem. What they are doing is translating a loose collec-
tion of ideas into a form that can be represented on a computer, which is to say as

12Chapter

How to Write
Good Programs

12.1	 Procedural Programming – Word Processing��433

12.2	 Object Oriented Programming – Breakout�� 452

12.3	 Describing the Problem as a Process�� 453

12.4	 Rules for Programmers��470

12.5	 Summary��477

432 ■ Python: An Introduct ion to Programming

numbers. The ideas are associated with algorithms, things that can be shown to
work for at least a range of situations. Then that needs to be converted into a se-
quence of steps that leads to a solution to the original problem.

This is in part a problem in synthesis, the combining of separate components,
elements, and ideas into a coherent whole. There is something called synthesis
programming, but that’s not what is being discussed. The parts of a program
include decision constructs (IF statements), looping (FOR and WHILE), expres-
sions, assignment statements, and data structures (tuples, dictionaries, strings,
etc.). There is a degree of skill involved in using these units to build a sensible
larger program. This skill is somewhat individual. No two programmers will cre-
ate exactly the same program for a non-trivial problem.

What we’re going to do in this chapter is show the development of an entire
computer program, with all of the intermediate steps, flaws, errors, and flashes
of genius (if any). Why? The answer is “because that is rarely done in lectures or
in a book.” When teaching mathematics the professor often shows the proof of a
theorem on the blackboard (or as PowerPoint slides) and explains the steps. What
they never do is show how the theorem was actually proved when the original
person proved it—dead ends, days of no progress, good ideas, bad ideas: the
whole messy process.

This is crucial. No theorem and no computer program flows fully formed
and correct from someone’s head. Observing the full process may be a valuable
stage in the education of a programmer. They will see that the process is prone to
error, even for good programmers. They’ll see that not all ideas that seem good
are actually good; that the process is not a linear one, but that it appears in some
sense to spiral, gaining functionality at each loop. And they will see that there
can be a simple and obvious method that could be agreed upon by many different
programmers and yet adapted for each new situation. The method that we’ll use
is called iterative refinement, and it is nearly independent of language or philoso-
phy. Of course, not everyone will agree.

One example program will be a computer game, and one that can’t be played
without a computer. It will be a breakout style game that uses circles instead of
rectangles. The other will be a system that formats typed text.

 Chapter 12 · How to Wri te Good Programs ■ 433

	12.1	 PROCEDURAL PROGRAMMING – WORD
PROCESSING

In the early days of desktop publishing, the programs that writers used did
not display the results on the screen in “what-you-see-is-what-you-get” form.
Formatting commands were embedded within the text and were implemented by
the program, which would create a printable version that was properly formatted.
Programs like roff, nroff, tex, and variations thereof are still used, but most writ-
ing tools now look like Word or PageMaker with commands being given through
a graphical user interface.

There is a limit to what kind of text processing can be done using simple text
files, but when you think about it that’s really what a typewriter produces—sim-
ple text on paper with fixed size fonts. That worked for a very long time. It was
good enough for Ernest Hemingway and Raymond Chandler.

The program that will be developed here will accept text from a file and
format it according to a set of commands that have a specific format and are
predefined by the system. The input will resemble that accepted by nroff, an old
Unix utility, but will be a subset for simplicity. Since it uses standard text input
and output any measurements will be made in characters, not inches or points.
Commands will begin on a new line with a “.” character and will be alphabetic.
A line beginning with “.br”, for instance, results in a forced line break. Some
commands take a parameter: the command “.ll 55” sets the line length to 55
characters.

Here is a list of all of the commands that the system will recognize:

.pl n	 Sets the page length to n lines

.bp n	 Begin page n

.br		 Break

.fi		 Fill output lines (e.g., justify)

.nf		 Don’t fill output lines

.na		 No justificaton

.ce n	 Center the next n input lines

.ls n	 Output n-1 line spaces after each line

.ll n		 Line length is n characters

434 ■ Python: An Introduct ion to Programming

.in n	 Indent n characters

.ti n		 Temporarily indent n characters

.nh		 Do not hyphenate

.hy		 Hyphenation on

.sp n	 Generate n lines

The program will read a text file and identify the words and the commands.
The words will be written to an output file formatted as described by the com-
mands. The default will be to right justify the text, and to use empty lines as
paragraph breaks. The questions to be answered here are:

	 1.	 How does one begin creating such a program?
	 2.	 Can the process of program creation be described?
		 a.  Is the process systematic or casual?
		 b.  Is there only one process?

Beginning with the last question first, there is no single process. What is
presented here is only one, but it should be understood that there are others, and
that some processes probably work better than others for some kinds of program.
The program to be created here will not use classes, and will involve a classical or
traditional methodology generally referred to as top-down. Some people only use
object-oriented code, but a problem with teaching that way is that a class contains
traditional, procedure-oriented code. To make a class, one must first know how
to write a program.

	12.1.1	Top-Down

The idea behind top-down programming is that the higher levels of abstrac-
tion are described first. A description of what the entire program is to do is written
in a kind-of English/computer hybrid language (pseudocode), and this descrip-
tion involves making calls to functions that have not yet been written but whose
function is known. When the highest level description is acceptable, then the
functions used are described. In this way the high-level decisions are described
in terms of the lower level, whose implementation is postponed until the details
are appropriate. The process repeats until all parts have been described, at which
time the translation of the pseudocode into a real programming language can pro-
ceed, and should be straightforward. This can result in many distinct programs,
but all should do basically the same thing, simply in somewhat different ways.

 Chapter 12 · How to Wri te Good Programs ■ 435

For the task at hand, the first step is to sketch the actions of the program as a
whole. The program begins by opening the text file and opening an output file.
The basic action is to copy from input to output, with certain additions to the
output text. The data file is read in as characters or words, but output as lines and
pages. So perhaps the following:

Open input file inf
Open output file outf
Read a word w from inf
While there is more text on inf:
 If w is a command:
 Process the command w
 Else:
 The next word is w. Process it
 Read a word from inf
Close inf
Close outf

This represents the entire program, although lacking a degree of detail. As
Python this would look almost the same:
filename = input ("PYROFF: Enter the name if the input
 file: ")
inf = open (filename, "r")
outf = open ("pyroff.txt. "w")
w = getword (inf)
while w != "":
 if iscommand(w):
 process_command (w)
 else:
 process_word (w)
 w = getword(inf)
inf.close()
outf.close()

In order for the program to compile the functions, they must exist. They
should initially be stubs, relatively non-functional but resulting in output:
from random import *

def getword (f):
 print ("Getword ")

def iscommand(w):

436 ■ Python: An Introduct ion to Programming

 print ("ISCOMMAND given ", w)
 if random()< 0.5:
 return False
 return True

def process_command (w):
 print ("Processing command ", w)

def process_word (w):
 print ("Processing the word ", w)

This program will run, but never ends because it never reads the file. Still,
we have a structure.

Now the functions need to be defined, and in the process further design de-
cisions are made. Consider getword(): what comprises a word and how does
it differ from a command? A command starts at the beginning of a line with a
“.” character. It is followed by two alphabetic characters that are defined by the
system. If the two characters do not match any combinations in the list of com-
mands, then it is not a command. A word, on the other hand, begins or ends with a
white space (blank, tab, or end of line) and contains all of the characters between
those white spaces. It may not be a word in the traditional sense, in that it may not
be an English word; it could be a number or other sequence of characters. Those
may cause problems, but it will be left up to the user to figure it out. Example: a
long URL may extend over a line. The program has to do something, and so will
probably put an end of line when the count of characters exceeds a maximum and
leave the problem to the user to fix.

So, let’s figure out the getword() function. It will construct a word as a char-
acter string from individual characters that have been read from the input file. A
first try could be:

def getword(f):
 w = ""
 while whitespace(ch(f)):
 nextch(f)
 while not whitespace(ch(f)):
 w = w + ch(f)
 nextch(f)
 print ("Getword is ", w)
 return w

 Chapter 12 · How to Wri te Good Programs ■ 437

The function whitespace() returns True if its parameter is a white space
character. The function nextch() reads the next character from the specified file,
and the function ch() returns the value of the current character. To effectively test
getword(), we need to implement these three functions. Here’s a first attempt:

def whitespace (c):
 if c == " ": return True
 if c == "\t": return True
 if c == "\n": return True
 return False

def ch(f):
 global c
 return (c)

def nextch(f):
 global c
 c = f.read(1)

This way of handling input is a bit unusual, but there is a reason for it. We
are anticipating a need to buffer characters or to place them back on the input
stream. It is similar to the input scheme used in Pascal, or the system found in
early forms of UNIX which used getchar – putchar - ungetc. The necessity of
extracting commands from the input stream, and that commands must begin a
new line, might make this particular scheme useful. The initial implementation of
nextch() simply reads a new character from the file, but it could easily be modi-
fied to extract a character from a buffer, and refile the buffer if it is empty. Both
would look the same to the programmer using them.

The program runs, but has a problem: it never terminates. After the text file
has been read, the program seems to call nextch() repeatedly. After some thought
the reason is clear—when the input request results in an empty string (“”) the
current character is not a white space, and the loop in getword() that is building
a word runs forever. This is a traditional end-of-file problem and can be solved
in a few different ways: a special character can be used for EOF, a flag can be
set, or the empty string can be tested for in the loop explicitly. The latter solution
was chosen, and fixes the infinite loop. The word construction loop in getword()
becomes:

while not whitespace(ch(f)) and ch(f) !="":

438 ■ Python: An Introduct ion to Programming

A possible next step is to distinguish between commands and words. Be-
cause a command starts a line and begins with a “.” there are two things to
do: mark the beginning of a new line, and look up the input string in a table of
commands. The command could be searched first, then if it matches a com-
mand name we could back up the input to see if it was preceded by a newline
character (“\n”). A newline counts as a white space, and another option would
be to set a flag when a newline character is seen, clearing it when another char-
acter is read in. Now a string is a command if the flag set before it was read in
and it matches one of the commands. Timing is everything in this method, but
white space separates words, so it could work by simply remembering (saving)
the last white space character seen before any word. That sounds like a good
idea.

Oops. When implemented, none of the commands are recognized. A table of
names was implemented as a tuple:
table = (".pl",".bp",".br",".fi",".nf",".na",".ce",
 ".ls",".ll",".in",".ti",".nh",".hy",".sp")

The nextch() function was modified so:
def nextch(f):
 global c, lastws
 c = f.read(1)
 if whitespace(c):
 lastws = c

and the function iscommand() is implemented by checking for the newline
and the match of the string in the table:

def iscommand(w):
 global table, lastws
 if lastws == "\n":
 if w in table:
 return True
 return False

To discover the problem some print statements were inserted that show the
previous white space character and the match in the table for all calls to iscom-
mand(). The problem, which should have been obvious, is that when the com-
mand is read in, the last white space seen will be the one that terminated it, not
the one in front of it.

 Chapter 12 · How to Wri te Good Programs ■ 439

A solution: keeping the same theme of remembering white space characters, how
about save the previous two white space characters seen. The most recent white
space will be the one that terminated the word string, and the second most recent
will always be the one before it. All of the others, if any, would have been skipped
within getword(). The solution, as coded in the nextch() function, would be:

def nextch(f):
 global c, clast, c2last
 c = f.read(1)
 if whitespace(c):
 c2last = clast
 clast = c

There are two variables needed, clast being the previous white space and
c2last being the one encountered before clast. Now iscommand() is modified
slightly to look for c2last:

def iscommand(w):
 global table, c2last
 if c2last == "\n":
 if w in table:
 return True
 return False

Yes, this now identifies the commands in the source file, even the text that
looks like a command but is not: “.xx.”

Notice that the development of the program consists of an initial sketch and
then filling in the code as stubs and coding the stubs to be functional code, one
at a time. Sometimes a stub requires further undefined functions to be used, and
those could be coded as stubs too, or completed if they are small so as to allow
testing to proceed. It’s a judgment call as to whether to complete the stubs down
the chain for one part of the program or to proceed to the next one at the current
level. For example, should we have completed the nextch() and ch() functions
before trying to design process_command()? It does depend on how testing can
proceed and what “level” we’re at. The nextch() function looks like it won’t call
other functions that have not been implemented, and it is tough to test getword()
without finishing nextch().

This discussion speaks to what the next step will be from here, and the an-
swer is “there could be many.” Let’s look at commands next, because they will

440 ■ Python: An Introduct ion to Programming

dictate the output, and then deal with formatting last. It is known that a string rep-
resents a command, and the function called as a consequence is process_com-
mand(). This function must determine which command string was seen and what
to do about it. The way commands are handled and the way the output document
is specified has to be sorted out before this function can be finished, but a set of
stubs can hold the place of future decisions as before.

The string that was seen to be a command is stored in a tuple. The index of
the string within the tuple tells us which command was seen, although a string
match could be done directly. Using a tuple is better because new commands can
always be added to the end of the tuple during future modifications and it is easier
to modify command names. The function, which used to be a stub, is now:
def process_command (w):
 global table, inf, page_length, fill, center, center_
 count, global spacing, line_length, adjust, hyphenate
 k = table.index(w)
 if k == 0: # .PL
 s = getword(inf)
 page_length = int(s)
 elif k == 1: # .BP
 genpage()
 elif k == 2: # .BR
 genline()
 elif k == 3: # .FI
 fill = True
 elif k == 4: # .NF
 fill == False
 elif k == 5: # .NA
 adjust = False
 elif k == 6: # .CE
 center = True
 s = getword(inf)
 center_count = int(s)
 elif k == 7: # .LS
 s = getword(inf)
 spacing = int(s)
 elif k == 8: # .LL
 s = getword(inf)
 line_length = int(s)
 print ("Line length ", line_length, "characters")

 Chapter 12 · How to Wri te Good Programs ■ 441

 elif k == 9: # .IN
 s = getword(inf)
 indent (int(s))
 elif k == 10: # .TI
 s = getword(inf)
 temp_indent (int(s))
 elif k == 11: # .NF
 hyphenate = False
 elif k == 12: # .HY
 hyphenate = True
 elif k == 13: # .TL
 dotl ()
 elif k == 14: # .SP
 s = getword(inf)
 space (int(k))

This completes iteration 5 of the system and generates quite a few new stubs
and defines how some of the output functions will operate. There are some flags
(hyphenate, center, fill, adjust) and some parameters for the output process
(line_length, spacing, etc.) that are set, and so will be used in sending output
text to the file. These parameters being known, it is time to define the output
process, which will be implemented starting with the function process_word().

As was mentioned earlier, the program reads data one character at a time
and emits it as words. There is a specified line length, and words can be read and
stored until that length is neared or exceeded. Words could be stored in a string.
When the line length is reached, the string could be written to the file. If right
justification is being done, spaces could be added to some other spaces in the
string until the line length was met exactly, or the final word could be hyphenated
to meet the line length. If right justification is not being done, then the line length
only has to be approached, but not exceeded.

For text centering input lines are padded with equal numbers of spaces on
both sides. The page size is met by counting lines, and then by creating a new
page when the page size is met, possibly by entering a form feed or perhaps by
printing empty lines until a specified count is reached. Indenting is simple: the
in command results in a fixed number of spaces being placed at the beginning of
each output line; the ti command results in a specified number of spaces being
placed at the beginning of the current line. Hyphenation is done by table lookup.
Certain suffixes and prefixes and letter combinations are possible locations for

442 ■ Python: An Introduct ion to Programming

a hyphen. The final word on a line can be hyphenated if a location within it is
subject to a hyphen as indicated by the table.

The process is to read and build words and copy them to a string, the next
output line. No action is taken until the string nears the line length, at which point
insertion of spaces, hyphenation, or other actions may be taken to make the string
fit the line, either closely or precisely. After a line meets the size needed it is writ-
ten, perhaps followed by others if the line spacing is larger than one. So, the basic
action of the process_word() function will be to copy the word to a string, the
output buffer, under the control of a set of variables that are defined by the user
through commands:

page_length	 55	 Number of lines of text on a single page
fill	 True	 Controls whether the text is being formatted
adjust	 True	 Controls whether the text is right justified
center	 False	 Controls whether text is being centered
center_count	 0	 Number of lines still to be centered
spacing	 1	 Number of lines output per line of text
nindent	 0	 Number of spaces on the left
line_length	 66	 Number of characters on one line
hyphenate	 True	 Are words hyphenated by the system?

The simplest version of process_word() would copy words to the buffer until
the line was full and then simply write that line to the output file.

def process_word (w):
 global buffer, line_length
 if len(buffer) + len(w) + 1 <= line_length:
 buffer = buffer + " " + w
 else:
 emit(buffer)
 buffer = w

The code above adds the given word plus a space to the buffer if there is
room. Otherwise it calls the emit() function to write the buffer to the output file
and places the word at the beginning of a new line. This is nearly correct. Some
of the output for the sample source is:

This is sample text for testing Pyroff. The default is to right

 Chapter 12 · How to Wri te Good Programs ■ 443

adjust continuously, but embedded commands can change this.
Now the line width should be
30 characters, and so the left
margin will pulled back. This
line is centered .xx not a
command. Indented 4

Note that the command “.ll 30” was correctly handled, but that there is an
extra space at the beginning of the first line. That’s due to the fact that process_
word() adds a space between words, and if the buffer is empty that space gets
placed at the beginning. The solution is to check for an empty buffer:

if len(buffer) + len(w) + 1 <= line_length:
 if len(buffer) > 0:
 buffer = buffer + " " + w
 else:
 buffer = w

This was a successful fix, and completes iteration 6 of the system, which is
now 150 lines long.

Within process_word() there are multiple options for how words will be
written to the output. What has been done so far amounts to filling but no right
justification. Other options are: no filling, centering, and justification. When the
filling is turned off, an input line becomes an output line. This is true for center-
ing as well. When justification is taking place the program will make the output
lines exactly line_length characters long by inserting spaces in the line to extend
it and by hyphenation, where permitted, to shorten it. The rule is that the line
must be the correct length and must not begin or end with a space. The implemen-
tation of this part of the program is at the heart of the overall system, but would
not be possible without a sensible design up to this point.

	12.1.2	Centering

First, a centered line is to be written to output when an end of line is seen on
input. This means that the clast variable will be used to identify the end of line
and to emit the text. Next, the line will have spaces added to the beginning and
end to center it. The buffer holds the line to be written and has len(buffer) char-
acters. The number of spaces to be added totals line_length – len(buffer), and

444 ■ Python: An Introduct ion to Programming

half will be added to the beginning of the line and half to the end. A function that
centers a given string would be:
def do_center (s):
 global line_length
 k = len(s) # How long is the string?
 b1 = line_length - k # How much shorter than the line?
 b2 = b1//2 # Split that amount in two
 b1 = line_length - k - b2
 s = " "*b1 + s + " "*b2 # Add spaces to center the text
 emit(s) # Write to file

In the process_word() function some code must be added to handle center-
ing. This code has to detect the end of line and pass the buffer to do_center(). It
also counts the lines, because the “.ce” command specifies a number of lines to
be centered.
if center: # Text is being centered, no fill
 if len(buffer) > 0: # Add this word to the line
 buffer = buffer + " " + w
 else:
 buffer = w
 if clast == "\n": # An input line = an output line
 do_center(buffer) # Emit the text
 center_count = center_count - 1 # Count lines
 if center_count <= 0: # Done?
 center = False # Yes. Stop centering.

This code is not quite enough. There are two problems observed. One prob-
lem is that the buffer could be partly full when the “.ce” command is seen, and
must be emptied. This problem is serious, because filling may be taking place
and the line might have to be justified. For the moment a call to emit() will hap-
pen when the “.ce” command is seen, but this will have to be expanded.

The other problem is simpler: the do_center() function does not empty the
buffer so the line being centered occurs twice in the output. For example:

margin will pulled back.
 This line is centered	 ← This is correct
This line is centered .xx not	← This is wrong. Text is repeated.
a command. Indented 4

 Chapter 12 · How to Wri te Good Programs ■ 445

The solution is to clear the buffer after do_center() is called:
do_center(buffer) # Emit the text
buffer = "" # Clear the buffer

	12.1.3	Right Justification

Centering text is a first step to understanding how to justify it. Right justi-
fied text has the sentences arranged so that the right margin is aligned to the line.
When centering, spaces are added to the left and right ends of the string so as to
place any text in the middle of the line. When justifying, any space in the line
can be made into multiple spaces, thus extending the text until it reaches the right
margin. Naturally it would not be acceptable to place all of the needed spaces in
one spot. It looks best if they are distributed as evenly as possible. However, no
matter what is done there will be some situations that cause ugly spacing. We’ll
have to live with that.

The number of spaces needed to fill up a line is line_length – len(buffer),
just as it was when centering. As words are added to the line this value becomes
smaller, and when it is smaller than the length of the next word to be added, then
the extra spaces must be added and a new line started. That is, when

k = line_length - len(buffer)
if k < len(word):

then adjusting is performed. First, count the spaces in the buffer and call this
nspaces. If k>nspaces then change each single space into k//nspaces space char-
acters and set k = k%nspaces. This will rarely happen. Now we need to change
some of the spaces in the buffer into double spaces. Which ones? In an attempt to
spread them around, set xk = k + k//2. This will be used as an increment to find
consecutive spots to put spaces. So for example, let k = 5, in which case xk = 7.
The first space could be placed in the middle, or at space number 2. Now count
xk positions from 2, starting over at zero when you hit the end. This will give
4 as the next position, followed by 1, then 3, and then 0. This process seems to
spread them out. Now the buffer is written out and the new word is placed in an
empty buffer.

This sounds tricky, so let’s walk through it. Never enter code that is not likely
to work! Inside of the process_word() function, check to see if adjusting is going

446 ■ Python: An Introduct ion to Programming

on. If so, check to see if the current word fits in the current line. If so, put it there
and move on.
elif adjust:
 k = line_length - len(buffer) # Number of spaces
 # remaining
 if k > len(w): # Does the word w fit?
 if len(buffer) == 0: # Yes. Empty buffer?
 buffer = w # Yes. Buffer = word.
 else: # No. Add word to the
 # buffer
 buffer = buffer + " " + w
 print ("Buffer now ", buffer, k, len(w))
 else: # Not enough space remains
 print (buffer, k, w, len(w))
 nspaces = buffer.count(" ") # How many spaces in
 # buffer?
 xk = k + k//2 +1 # Space insert increment
 while k > 0:
 i = nth_space (buffer, xk)
 buffer = buffer[0:i] + " " + buffer[i:]
 k = k - 1
 xk = xk + 1
 emit(buffer)
 buffer = w

The function nth_space (buffer, xk) locates the nth space character in the
string s modulo the string length. The spaces were not well distributed with this
code in some cases. There was a suspicion that it depended on whether the num-
ber of remaining spaces was even or odd, so the code was modified to read:
 . . .
xk = k + (k+1)//2 # Space insert increment
if k%2 == 0:
 xk = xk + 1
 . . .

which worked better. The output for the first part of the test data was:
This is sample text for testing Pyroff. The default is
to right adjust continuously, but embedded commands can
change this.
Now the line width should be
30 characters, and so the left

 Chapter 12 · How to Wri te Good Programs ■ 447

margin will pulled back.
 This line is centered
.xx not a command. Indented 4
characters. The idea behind
top-down programming is that
the higher levels of
abstraction are described
 . . .

The short lines are right justified, but the distribution of the spaces could still
be better.

The function nth_space() is important, and looks like this:
def nth_space (s, n):
 global nindent
 nn = 0 # nn is a count of spaces seen so far
 i = 0 # i is the index of the character being examined
 while True:
 if s[i] == " ": # Is character i a space?
 nn = nn + 1 # Yes. Count it
 if nn >= n: # Is this enough spaces?
 return i # Yes, return the location
 i = (i + 1)%len(s) # Next i, wrapping around the
end

	12.1.4	Other Commands

The rest of the commands have to do with hyphenation, pagination, and inden-
tation, except for the “.br” command. Dealing with indentation first, the command
“.in” specifies a number of characters to indent, as does “.ti.” The “.in” command
begins indenting lines from the current point on, whereas “.ti” only indents the next
line. Since the “.ti” command only indents the next line of text, perhaps initializing
the buffer to the correct number of spaces will do the trick. The rest of the text for
the line will be concatenated to the spaces, resulting in an indented line.

The “.in” command currently results in the setting of a variable named nin-
dent to the number of spaces to be indented. Following the suggestion for a
temporary indent, why not replace all initializations of the buffer with indented
ones? There are multiple locations within the process_word() function where the
buffer is set to the next word:

buffer = w

448 ■ Python: An Introduct ion to Programming

These could be changed to:
buffer = " "*nindent +w

This sounds clean and simple, but it fails miserably. Here is what it looks like.
For the input text:
Indented 4 characters.
.in 2
The idea behind top-down programming is that the higher
levels of abstraction are described first. A description
of what he entire program is to do is written in a kind-
of English/computer hybrid language (pseudocode), and this
description involves making calls to functions that have
not yet been written but whose function is known.

We get:
Indented 4 characters. The
 idea behind top-down
 programming is that the
 higher levels of abstraction
 are described first. A
 description of what he
 entire program is to do is
 written in a kind-of
 English/computer hybrid
 language (pseudocode), and
 this description involves
 making calls to functions
 that have not yet been

Can you figure out where the problem is by looking at the output? This is
a skill that develops as you read more code, write more code, and design more
code. There is a place in the program that will add spaces to the text, and clearly
that has been done here. It is, in fact, how the text is right adjusted. The spaces
are counted and sometimes replaced with double spaces. This happened here to
some of the spaces used to implement the indent.

Possible solutions include the use of special characters instead of leading
blanks, to be replaced when printed; finding another way to implement indent-
ing; modifying the way right adjusting is done. Because the number of spaces at
the beginning of the line is known, the latter should be possible: when counting

 Chapter 12 · How to Wri te Good Programs ■ 449

spaces in the adjustment process, skip the nspaces characters at the beginning of
the line. This is a modification to the function nth_character() to position the
count after the indent:

def nth_space (s, n):
 global nindent
 nn = 0
 i = 0
 while True:
 print ("nn=", nn)
 if s[i] == " ":
 nn = nn + 1
 print (ꞌ" "ꞌ)
 if nn >= n:
 return i
 i = (i + 1)%len(s)
 if i < nindent+tempindent: ←
 i = nindent+tempindent ←

A second problem in the indentation code is that there should be a line break
when the command is seen. This is a matter of writing the buffer and then clear-
ing it. This should also occur when a temporary indent occurs, but before it in-
serts the spaces. Say, the temporary indent will have the same problem as indent
with respect to right adjustment, and we have not dealt with that.

The line break can be handled with a new function:
def lbreak ():
 global buffer, tempindent, nindent
 if len(buffer) > 0:
 emit(buffer)
 buffer = " "*(nindent+tempindent)
 tempindent = 0

The break involves writing the buffer and clearing it. Clearing it also means
setting the indentation. Because this sequence of operations happens elsewhere
in the program, those sequences can be replaced by a call to lbreak(). Note that
a new variable tempindent has been added; it holds the number of spaces for a
temporary indentation, and is added to the regular nindent value everywhere that
variable is used to obtain the total indentation for a line. Now right adjustment of
a temporarily indented line should work.

450 ■ Python: An Introduct ion to Programming

The lbreak() function is used directly to implement the “.br” command.
A stub previously named genline() can be removed and replaced by a call to
lbreak().

Line spacing can be handled in emit(), which is where lines are written to the
output file. After the current buffer is written, a number of newline characters are
written to equal the correct line spacing. The new emit() function is:
def emit (s):
 global outf, lines, tempindent, spacing, page_length
 outf.write(s+"\n")
 lines = (lines + 1)%page_length
 for i in range (1, spacing):
 outf.write ("\n")
 lines = (lines + 1)%page_length
 tempindent = 0

What about pages? There is a command that deals with pages directly, and
that is “.bp,” which starts a new page. The page length is known in terms of the
number of lines, and emit counts the lines as it writes them. Implementing the
“.bp” command should be a matter of emitting the number of lines needed to
complete the current page. Something like this:
def genpage():
 global page_length, lines
 lbreak()
 for i in range (lines, page_length):
 emit ("")

At this point all that is missing is the ability to hyphenate, which will be
left as one of the exercises. The system appears to do what is needed using the
small test file, so the time has come to construct more thorough tests. A file
“preface.txt” holds the text for the preface of a book named “Practical Computer
Vision Using C.” This book was written using Nroff, and the commands not avail-
able in pyroff were removed from the source text so that it could be used as test
data. It consists of over 500 lines of text. The result of the first try was interesting.

Pyroff appeared to run using this input file but never terminated. No output
file was created. The first step was to try to see where it was having trouble, so
a print statement was added to show what word had been processed last. That
word was “spectrograms,” and it appears in the first paragraph of text, after

 Chapter 12 · How to Wri te Good Programs ■ 451

headings and such. Now the data that caused the problem is known. What is the
program doing? There must be an unterminated loop someplace. Putting prints in
likely spots identifies the culprit as the loop in the nth_space() function. Tracing
through that loop finds an odd thing: the value of nindent becomes negative, and
that causes the loop never to terminate. The test data contained a situation that
caused the program to fail, and that situation resulted from a difference between
Nroff and pyroff: in Nroff the command “.in -4” subtracts 4 from the current in-
dentation, whereas in pyroff it sets the current indent to -4.

This kind of error is very common. All values entered by a user must be
tested against the legal bounds for that variable. This was not done here, and the
fix is simple. However, it reminds us to do that for all other user input values.
These are processed in the function process_command(), so locating those values
is easy. Once this was done things worked pretty well. There was one problem
observed, and that was an indentation error. Consider the input text:
.nf
1. Introduction
.in 3
1.1 Images as digital objects
1.2 Image storage and display
1.3 Image acquisition
1.4 Image types and applications

The program formats this as:
1. Introduction
 1.1 Images as digital objects
 1.2 Image storage and display
 1.3 Image acquisition
 1.4 Image types and applications

There is an extra space in the first line after the indent. This seems like it
should be easy to find where the problem is, but the function that implements the
command, indent(), looks pretty clean. However, on careful examination (and
printing some buffer values) it can be seen that it should not call lbreak() because
that function sets the buffer to the properly indented number of space characters.
This means that when the later tests for an empty buffer occur, the buffer is not
empty and text is appended to it rather than being simply assigned to it. That is,
for an empty buffer the first word is placed into it:

buffer = word

452 ■ Python: An Introduct ion to Programming

Whereas if text is present the word is appended after adding a space:
buffer = buffer + " " + word

The indent function now looks like this:
def indent (n):
 global nindent, buffer
 nindent = n
 emit(buffer)
 buffer = ""

The preface now formats pretty well, if not up to Word standards. Other
problems may well exist, and should be reported to the author and publisher when
discovered. The book’s wiki is the place for such discussions.

	12.2	 OBJECT ORIENTED
PROGRAMMING – BREAKOUT

The original game named Breakout was built in 1976, conceived by Nolan
Bushnell and Steve Bristow and built by Steve Wozniak (some say aided by Steve
Jobs). In this game there are layers of colored rectangles in the upper part of the
screen. A simulated ball moves around the game window, and if it hits a rectangle
it accumulates points and bounces. The ball also bounces off of the top and sides
of the window, but will pass through the bottom and be lost unless the player
moves a paddle into its path. If so the ball will bounce back up and perhaps score
more points; if not the ball moves out of play. After a fixed number of balls are
lost the game is over.

The game being developed here will use circles, that we’ll call tiles, rather
than rectangles. There will be 5 rows of tiles, each of a different color and point
value: 5, 10, 15, 10, and 5 points for each row respectively. That way the most
concealed row has the most points. The player will get three balls to try to clear
all of the tiles away. The paddle will move left when the left arrow key is pressed
and right when the right arrow key is pressed. The speed of the ball and of the
paddle will be determined when the game is tested. A sound will play when a tile
is removed, when the ball hits the side or top of the window, when the ball hits
the paddle, and when the ball is lost. The current score and the number of balls
remaining will be displayed on the screen someplace at all times.

 Chapter 12 · How to Wri te Good Programs ■ 453

Figure 12.1 shows an example of a breakout game clone on the left, with
rectangular bricks. On the right is a possible example of how the game that we’re
developing here might look.

	12.3	 DESCRIBING THE PROBLEM AS A PROCESS
The first step is to write down a step-by-step description of how the pro-

gram might operate. This may be changed as it is expanded, but we have to start
someplace. A problem occurs almost immediately: is the program to be a class?
Functions? Does it use Glib?

This decision can be postponed a little while, but in most cases a program is
not a class. It is more likely to be a collection of classes operated by a mail pro-
gram. However, if object orientation is a logical structure, and it often is, it should
evolve naturally from the way the problem is organized and not impose itself on
the solution.

The game consists of multiple things that interact. Play is a consequence of
the behavior of those things. For example, the ball will collide with a tile resulting
in some points, the tile disappearing, and a bounce. The next event may be that
the ball collides with a wall, or bounces off of the paddle. The game is a set of
managed events and consequences. This makes it appear as if an object oriented
design and implementation would be suitable. The ball, each time, and the paddle

  

Figure 12.1
Variations on the game “Breakout.”

454 ■ Python: An Introduct ion to Programming

could be objects (class instances) and could interact with each other under the
supervision of a main program which kept track of all objects, time, scores, and
other details.

Let’s just focus on the gameplay part of the game, and ignore introductory
windows and high score lists and other parts of a real game. The game will start
with an initial set up of the objects. Tiles will be placed in their start locations,
the paddle will be placed, the locations of the walls defined; then it will be drawn.
The initial setup was originally drawn on paper and then a sample rendering was
made, shown in Figure 12.1. The code that draws this is:

Ver 0 - Render initial play area
import Glib

Glib.startdraw(400, 800)
Glib.fill (100, 100, 240)
for i in range (0, 12):
 Glib.ellipse(i*30+15, 30, 30, 30)
Glib.fill (220, 220, 90)
for i in range (0, 12):
 Glib.ellipse(i*30+15, 60, 30, 30)
Glib.fill (220, 0, 0)
for i in range (0, 12):
 Glib.ellipse(i*30+15, 90, 30, 30)
Glib.fill (180, 120, 30)
for i in range (0, 12):
 Glib.ellipse(i*30+15, 120, 30, 30)
Glib.fill (90, 220, 80)
for i in range (0, 12):
 Glib.ellipse(i*30+15, 150, 30, 30)
Glib.fill (0)
Glib.rect (180, 350, 90, 10)
Glib.enddraw()

This code is just for a visual examination of the potential play area. The first
one is always wrong, and this one is too, but it allows us to see why it is wrong
and to define a more reasonable set of parameters. In this case the tiles don’t fully
occupy the horizontal region, the tile groups are too close to the top, because we
want to allow a ball to bounce between the top row and the top of the play area,
and the play area is too large vertically. Fixing these problems is a simple matter
of modifying the coordinates of some of the objects. This code will not be a part

 Chapter 12 · How to Wri te Good Programs ■ 455

of the final result. It’s common, especially in programs involving a lot of graph-
ics, to test the visual results periodically, and to write some testing programs to
help with this.

This program already has some obvious objects: a tile will be an object. So
will the paddle, and so will the ball. These objects have some obvious properties
too: a tile will have a position in x,y coordinates, and it will have a color and a
size. It will have a method to draw it on the screen, and a way to tell if it has been
removed or if it still active. The paddle has a position and size, and so does the
ball, although the ball has not been seen yet.

What will the main program look like if these are the principal objects in
the design? The first sketch is very abstract and depends on many functions that
have not been written. This fleshes out the way the classes and the remainder of
the code will interact and partly defines the methods they will implement. The
initialization step will involve creating rows of tiles that will appear much like
those in the initial rendering above but actually consist of five rows of tile objects.
This will be done from a function initialize(), but each row would be created in
a for loop:
for i in range (0, 12):
 tiles = tiles + tile(i*30+15, y, thiscolor, npoints)

where the tile will be created and is passed its x,y position, color, and number of
points. The entire collection of tiles is placed into a tuple named tiles. The ball
will be created at a random location and with a random speed within the space
between the paddle and the tiles, and the paddle will be created so that is initially
is drawn in the horizontal center near the bottom of the window.
def initialize ():
 score = 0
 nballs = 2
 b = ball () # Create the ball
 p = paddle () # create the paddle
 thiscolor = (100,100,240) # Blue
 npoints = 5 # Top row is 5 points each
 for i in range (0, 12):
 tiles = tiles + tile(i*30+15, y, thiscolor, npoints)
 # and so on for 4 more rows

456 ■ Python: An Introduct ion to Programming

The main draw() function will call the draw() methods of each of the class
instances, and they will draw themselves:
def draw():
 background (200)
 b.move() # Move the ball
 b.draw() # Draw the ball
 p.draw() # Draw the paddle
 for k in tiles:
 k.draw() # Draw each tile
 text ("Score is:"+score, scorex, scorey)
 text ("Balls remaining: "+nballs, remainx, remainy)

When this function is called (many times each second) the ball is placed in
its new position, possibly following a bounce, and then is drawn. The paddle is
drawn, and if it is to be moved it will be done through the user pressing a key.
Then the active tiles are drawn, and the messages are drawn on the screen. The
structure of the main part of the program is defined by the organization of the
classes.

	12.3.1	Initial Coding for a Tile

A tile has a graphical representation on the screen, but it is more complex
than that. It can collide with a ball and has a color and a point value. All of these
aspects of the tile have to be coded as a part of its class. In addition, a tile can
be active, meaning that it appears on the screen and can collide with the ball, or
inactive, meaning that the ball has hit it and it is out of play for all intents and
purposes. Here’s an initial version:
class tile:
 def __init__(self, x, y, color, points):
 self.x = x
 self.y = y
 self.color = color
 self.points = points
 self.active = True
 self.size = 30

 def draw(self):
 if self.active:
 Glib.fill (self.color)
 Glib.ellipse (self.x, self.y, self.size, self.size)

 Chapter 12 · How to Wri te Good Programs ■ 457

 At the beginning of the game every tile must be created and initialized
with its proper position, color, and point value. Then the draw() function for the
main program will call the draw() method of every tile during every small time
interval, or frame. According to the code above if the tile is not active, then it will
not be drawn. Let’s test this.
Rule: Never write more than 20-30 lines of code without
testing at least part of it. That way you have a clearer
idea where any problems you introduce may be.

A suitable test program to start with could be:
def draw():
 global tiles
 for k in tiles:
 k.draw()

Glib.startdraw(360, 350)
red = (250, 0, 0)
print (red)
tiles = ()
for i in range (0, 12):
 tiles = tiles + (tile(i*30, 90, red, 15),)
Glib.enddraw()

which simply places some tiles on the screen in a row, passing a color and
point value. This almost works, but the first tile is cut in half by the left boundary.
If the initialization becomes:

tiles = tiles + (tile(i*30+15, 90, red, 15),)

then a proper row of 12 red circles is drawn. Modifications will be made to this
class once we see more clearly how it will be used.

	12.3.2	Initial Coding for the Paddle

The paddle is represented as a rectangle on the screen, but its role in the
game is much more profound: it is the only way the player has to participate in
the game. The player will type keys to control the position of the paddle so as to
keep the ball from falling out of the area. So the ball has to be drawn, as the tiles
do, but also must be moved (i.e., change the X position) in accordance with the
player’s wishes. The paddle class initially has a few basic operations:

458 ■ Python: An Introduct ion to Programming

class paddle:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 self.speed = 3
 self.width = 90
 self.height = 10

 def draw(self):
 Glib.fill (0)
 Glib.rect (self.x, self.y, self.width, self.height)

 def moveleft(self):
 if self.x <= self.speed:
 self.x = 0
 else:
 self.x = self.x – self.speed

 def moveright (self):
 if self.x > width-self.width-self.speed:
 self.x = width-self.width
 else:
 self.x = self.x + self.speed

When the right arrow key is pressed a flag is set to True, and the paddle
moves to the right (i.e., its x coordinate increases) each time interval, or frame.
When the key is released the flag is set to False and the movement stops as a
result. Movement is accomplished by calling moveleft() and moveright(), and
these functions enforce a limit on motion: the paddle cannot leave the play area.
This is done within the class so that the outside code does not need to know any-
thing about how the paddle is implemented. It is important to isolate details of the
class implementation to the class only, so that modifications and debugging can
be limited to the class itself.

The paddle is simply a rectangle, as far as the geometry is concerned, and
presents a horizontal surface from which the ball will bounce. It is the only means
by which the player can manipulate the game, so it is important to get the paddle
operations and motion correct. Fortunately, moving a rectangle left and right is
an easy thing to do.

 Chapter 12 · How to Wri te Good Programs ■ 459

Testing this initial paddle class used a draw() function that randomly moved
the paddle left and right, and a main program, that creates the paddle:

def draw():
 global p,f
 Glib.background(200)
 p.draw()
 if f:
 p.moveright()
 else:
 p.moveleft()
 if random()< .01:
 f = not f

Glib.startdraw(360, 350)
f = True
p = paddle (130)
Glib.enddraw()

This code works, and sums up the functionality of the paddle.

	12.3.3	Initial Coding for the Ball

The ball really does much of the actual work in the game. Yes, the bounces
are controlled by the user through the paddle, but once the ball bounces off of the
paddle it has to behave properly and do the works of the game: destroying tiles.
According to the standard class model of this program, the ball should have a
draw() method that places it into its proper position on the screen. But the ball is
moving, so its position has to be updated each frame. It also has to bounce off of
the sides and top of the playing area, and the draw() method can make this hap-
pen. The essential code for doing this is:
class ball():
 def __init__ (self, x, y):
 self.x = x
 self.y = y
 self.dx = 3
 self.dy = -4
 self.active = True
 self.color = (230, 0, 230)
 self.size = 9

460 ■ Python: An Introduct ion to Programming

 def draw(self):
 if not self.active:
 return
 Glib.fill (self.color[0], self.color[1],
 self.color[2])
 Glib.ellipse (self.x, self.y, self.size, self.size)
 self.x = self.x + self.dx
 self.y = self.y + self.dy
 if (self.x <= self.size/2) or \
 (self.x >= Glib.width-self.size/4):
 self.dx = -self.dx
 if self.y <= self.size/2:
 self.dy = -self.dy
 elif self.dy >= Glib.height:
 self.active = False

This version only bounces off of the sides and top, and passes through the
bottom. Testing it requires a main program that creates the ball and a draw()
function that simply calls the ball’s draw() method:

def draw():
 global b
 Glib.background(200)
 b.draw()

Glib.startdraw(360, 350)
b = ball (300, 300)
Glib.enddraw()

Figure 12.2
The basic elements of the game: ball, targets, and paddle.

 Chapter 12 · How to Wri te Good Programs ■ 461

The ball is created at coordinates (300,300) and does three bounces, disap-
pearing through the bottom after that. A bouncing ball has been coded before, so
there is nothing new here yet.

	12.3.4	Collecting the Classes

A next step is to test all three classes running together. This will ensure that
there are no problems with variable, method, and function names and that inter-
actions between the classes are in fact isolated. All three should work together,
creating the correct visual impression on the screen. The code for the three classes
was copied to one file for this test. The main program simply creates instances
of each class as appropriate, really doing what the original test program did in
each case:

Glib.startdraw(360, 350)
red = (250, 0, 0)
print (red)
tiles = ()
for i in range (0, 12):
 tiles = tiles + (tile(i*30+15, 90, red, 15),)
f = True
p = paddle (130)
b = ball (300, 300)
Glib.enddraw()

The draw() function calls the draw() methods for each class instance and
moves the paddle randomly as before:

def draw():
 global tiles,p,f,b
 Glib.background(200)
 for k in tiles:
 k.draw()
 p.draw()
 if f:
 p.moveright()
 else:
 p.moveleft()
 if random()< .01:
 f = not f
 b.draw()

462 ■ Python: An Introduct ion to Programming

The result was that all three classes functioned together the first time it was
attempted. The game itself depends on collision, which will be implemented
next, but at the very least the classes need to cooperate, or at least not interfere
with each other. That’s true at this point in the development.

	12.3.5	Developing the Paddle

Placing the paddle under control of the user is the next step. When a key is
pressed then the paddle state will change, from still to moving, and vice versa
when released. This is accomplished using the keypressed() and keyreleased()
functions. They will set or clear a flag, respectively, that causes the paddle to
move by calling the moveleft() and moveright() methods. The flag movingleft
will result in a decrease in the paddle’s x coordinate each time draw() is called;
movingright does the same for the +x direction:
def keyPressed (k):
 global movingleft, movingright
 if k == Glib.K_LEFT:
 movingleft = True
 elif k == Glib.K_RIGHT:
 movingright = True

def keyReleased (k):
 global movingleft, movingright
 if k == Glib.K_LEFT:
 movingleft = False
 elif k == Glib.K_RIGHT:
 movingright = False

From the user perspective the paddle moves as long as the key is depressed.
Inside of the global draw() function, the flags are tested at each iteration and the
paddle is moved if necessary:
def draw(): # 07-classes-01-20.py
 global … movingleft,movingright
 . . .
 if movingleft:
 p.moveleft()
 elif movingright:
 p.moveright()
 p.draw()
 . . .

 Chapter 12 · How to Wri te Good Programs ■ 463

The other thing the paddle has to do is serve as a bounce platform for the ball.
A question surrounds the location of collision detection; is this the job of the ball
or the paddle? It does make sense to perform most of this task in the ball class,
because the ball is always in motion and is the thing that bounces. However, the
paddle class can assist by providing necessary information. Of course, the paddle
class can allow other classes to examine and modify its position and velocity
and thus perform collision testing, but if those data are to be hidden, the option
is to have a method that tests whether a moving object might have collided with
the paddle. The y position of the paddle is fixed and is stored in a global vari-
able paddle, so that is not an issue. A method in paddle that returns True if the x
coordinate passed to it lies between the start and end of the paddle is:

def inpaddle(self, x):
 if x < self.x:
 return False
 if x > self.x + self.width:
 return False
 return True

The ball class can now determine whether it collides with the paddle by
checking its own y coordinate against the paddle and by calling inpaddle() to see
if the ball’s x position lies within the paddle. If so, it should bounce. The method
hitspaddle() in the ball class returns True if the ball hits the paddle:
def hitspaddle (self): # 08classes-01-21.py
 if self.y<=paddleY+2 and self.y>=paddleY-2:
 if p.inpaddle(self.x):
 return True
 return False

The most basic reaction to hitting the paddle is to change the direction of dy
from down to up (dy = -dy).

	12.3.6	Ball and Tile Collisions

The collision between a ball and a tile is more difficult to do correctly than
any of the other collisions. Yes, determining whether a collision occurs is a similar
process, and then points are collected and the tile is deactivated. It is the bounce
of the ball that is hard to figure out. The ball may strike the tile at nearly any
angle and at nearly any location on the circumference. This is not a problem in the

464 ■ Python: An Introduct ion to Programming

original game, where the
tiles were rectangular, be-
cause the ball was always
bouncing off of a horizon-
tal or vertical surface. Now
there’s some thinking to
do.

The correct colli-
sion could be calculated,
but would involve a cer-
tain amount of math. The
specification of the prob-
lem does not say that mathematically correct bounces are required. This is a
game design choice, perhaps not a programming choice. What does the game
look like if a simple bounce is implemented? That could involve simply chang-
ing dy to –dy.

This version of the game turns out to be playable, even fun; but the ball al-
ways keeps the same x direction when it bounces. What would it look like if it
bounced in roughly the right direction, and how difficult would that be? The di-
rection of the bounce would be dictated by the impact location on the tile, as seen
in Figure12.3. This was figured out after a few minutes with a pencil and paper,
and is intuitive rather than precise.

We’ll have to figure out where the ball hits the tile, determine which of the
four parts of the tile this lies in, and then create the new dx and dy values for the
ball. A key aspect of the solution being developed is to avoid too much math that
has to be done by the program. Is this possible?

The first step is to find the impact point. We could use a little bit of analytic
geometry, or we could approximate. The fact is that the ball is not moving very
fast, and the exact coordinates of the impact point are not required. At the begin-
ning of the current frame the ball was at (x,y) and at the beginning of the next
is will be at (x+dx, y+dy). A good estimate of the point of impact would be the
mean value of these two points, or (x+dx/2, y+dy/2). Close enough for a computer
game.

The value of Dx changes as the
ball strikes one of the four parts or
the circumstance.

Dx

Dx

-Dx-Dx

The value of Dy changes as the
ball strikes one of the four parts or
the circumstance.

-Dy

-Dy

DyDy

Figure 12.3
Different parts of the target, when colliding with the ball, generate
different bounces.

 Chapter 12 · How to Wri te Good Programs ■ 465

Now the question is: within which of the four regions defined in Figure 12.3
is the impact point? The regions are defined by lines at 45 degrees and -45 de-
grees. The atan() function will, when using screen coordinates, have the –dx
points between -45 and +45 degrees. The –dy points, where the direction of Y
motion changes, involve the remaining collisions. What needs to be done is to
find the angle of the line from the center of the tile to the ball and then compare
that to -45 … +45.

Here is an example method named bounce() that does exactly this.
Return the distance squared between the two points
def distance2 (self, x0,y0, x1, y1):
 return (x0-x1)*(x0-x1) + (y0-y1)*(y0-y1)

def bounce (self, t):
 dd = t.size/2 + self.size/2 # Bounce occurs when the
 # distance
 dd = dd * dd # Between ball and tile <
 # radii squared
 collide = False
 if self.distance2 (self.x, self.y, t.x, t.y) >= dd and \
 self.distance2 (self.x+self.dx, self.y+self.dy, t.x,
 t.y) < dd:
 self.x = self.x + self.dx/2 # Estimated impact
 # point on circle
 self.y = self.y + self.dy/2
 collide = True
 elif self.distance2 (self.x, self.y, t.x, t.y) < dd:
 collide = True # Ball is completely inside
 # the time
 if not collide:
 return

If the ball is inside the tile, back it out.
 while self.distance2 (self.x, self.y, t.x, t.y) < dd:
 self.x = self.x - self.dx*0.5
 self.y = self.y - self.dy*0.5
 if self.x != t.x: # Compute the ball-tile angle
 a = atan ((self.y-t.x)/(self.x-t.y))
 a = a * 180./3.1415
 else: # If dx = 0 the tangent is infinite
 a = 90.0

466 ■ Python: An Introduct ion to Programming

 if a >= -45.0 and a<=45.0: # The x speed change
 self.dx = -self.dx
 else:
 self.dy = -self.dy # The y speed changes

After some testing the code:
If the ball is inside the tile, back it out.
 while self.distance2 (self.x, self.y, t.x, t.y) < dd:
 self.x = self.x - self.dx*0.5
 self.y = self.y - self.dy*0.5

was added. It was found that if the ball was too far inside the tile then its motion
was very odd; as it moved through the tile it constantly changed direction because
the program determined that it was always colliding.

	12.3.7	Ball and Paddle Collisions

Now we return to examine the collision between the ball and the paddle. The
paddle seems to be flat, and colliding with any location on the paddle should have
the same result. Perhaps. What if the ball hits the paddle very near to one end?
There is a corner, and maybe hitting too near to the corner should yield a different
bounce. This was the case in the original games. If the ball struck the near edge of
the paddle on the corner it could actually bounce back in the original direction to
a greater or lesser degree. This gives the player a greater degree of control, once
they understand the situation. Otherwise the game is really predetermined if the
player merely places the paddle in the way of the ball. It will always bounce in
exactly the same manner.

The proposed idea is to bounce at a different angle depending on where
the ball strikes the paddle. We need to decide how near and how intense the
effect will be. If the ball hits the paddle near the center, then it will bounce
so that the incoming angle is the same as the outgoing angle. When it hits
the near end of the paddle it will bounce somewhat back in the incoming di-
rection, and when it strikes the far end the bounce angle will be shallower a
bounce from the center.

Let’s say that if the ball hits the first pixel on the paddle it will bounce back
in the original direction, meaning that dx = -dx and dy = -dy. A bounce from
the center does not change dx but does set dy = -dy. If the relationship is linear

 Chapter 12 · How to Wri te Good Programs ■ 467

across the paddle, the implication would be that striking the final pixel would set
dx = 2*dx and dy = -dy. Striking any pixel in between would divide the change
in dx by the number of pixels in the paddle, initially 90. If the ball hits pixel n the
result will be:

delta = 2*dx/90.0
	 dx = -dx + n*delta

A problem here is that the dx value will decrease continuously until the ball
is bouncing up and down. Perhaps the incoming angle should not be considered.
The bounce angle of the ball could be completely dependent on where it hits the
paddle and nothing else. If dx is -5 on the near end of the paddle and +5 on the
far end, then:
	 dx = -5 + n*10.0/90.0

The code in the draw() method of the ball class is modified to read:
if self.hitspaddle():
 self.dy = -self.dy
 self.dx = -5 + (1./9.)*(self.x-p.x)

The user now has a lot more control. The game does appear slow, though.
And there is only one ball. Once that is lost, the game is over.

	12.3.8	Finishing the Game

What remains to be done is to implement multiple balls. Multiple balls are
tricky because there are timing issues. When the ball disappears through the
bottom of the play area it should reappear someplace, and at a random place.
It should not appear immediately, though, because the player needs some time
to respond; let’s say three seconds. Meanwhile the screen must continue to be
displayed. It’s time to introduce states.

A state is a situation that can be described by a characteristic set of param-
eters. A state can be labeled with a simple number but represents something com-
plex. In this instance specifically there will be a play state, in which the paddle
can be moved and the ball can score points, and a pause state, which happens
after a ball is lost. The draw() function is the place where each step of the pro-
gram is performed at a high level, and so will be responsible for the management
of states.

468 ■ Python: An Introduct ion to Programming

The current stage of the implementation has only the play state, and all of
the code that manages that is in the draw() function already. Change the name
of draw() to state0() and create a state variable state that can have values 0 or 1:
play is 0, pause is 1. The new draw() function is now created:

def draw ():
 global playstate, pausestate
 if state == playstate:
 state0()
 elif state == pausestate:
 state1()

where:
playstate = 0
pausestate = 1

The program should still be playable as it was before as long as state ==
playstate. What happens in the pause state? The controls of the paddle should be
disabled, and no ball is drawn. The goal of the pause state is to allow some time
for the user to get ready for the next ball, so some time is allowed to pass. Perhaps
the player should be permitted to start the game again with a new ball when a key
is pressed. This eliminates the need for a timer, which are generally to be avoided.
So, the pause state is entered when the ball departs the field of play. The game
remains in the pause state until the player presses a key, at which point a new ball
is created and the game enters the play state.

Entering the pause state means modifying the code in the ball class a little.
There is a line of code at the end of the draw() method of the ball class that looks
like this:

elif self.dy >= Glib.height:
 self.active = False

This is where the class detects the ball leaving the play area. We need to add
to this:
elif self.dy >= Glib.height:
 self.active = False

while, of course, making certain that the variables needed are listed as global.
This did not do as was expected until it was noted that the condition should have
been if self.y >= Glib.height. The comparison with dy was an error in the initial

 Chapter 12 · How to Wri te Good Programs ■ 469

coding that had not been noticed. Also, it seems like the active variable in the ball
class was not useful, so it was removed.

Now in the keyPressed() function allow a key press to change from the pause
to the play state. Any key will do:

if state = pausestate:
 resume()

The resume() function must do two things. First, it must change state back to
play. Next it must reposition the ball to a new location. Easy:

def resume():
 global state, playstate
 b.x = randrange (30, Glib.width-30)
 b.y = 250
 state = playstate

This works fine. The game is to only have a specified number of balls,
though, and this number was to be displayed on the screen. So, when in the
play state and a ball is lost, the count of remaining balls (balls_remaining) will
be decreased by one. If there are any balls remaining, then the pause state is
entered. Otherwise the game is over. Perhaps that should be a third state: game
over? Yes, probably.

The game over state is entered when the ball leaves the play area and no
balls are left (in the ball class draw() method. In the global draw() function
the third state determines if the game is won or lost and renders an appropriate
screen:

. . .
Glib.text ("Score: "+str(score), 10, 30)
if score >= maxscore:
 Glib.background (0,230, 0)
 Glib.text ("You Win", 200, 200)
else:
 Glib.background (100, 10, 10);
 Glib.text ("You Lose", 200, 200)
 Glib.text ("Score: "+str(score), 10, 30)

And that’s it! Screen shots from the game in various states are shown in
Figure 12.4. (14playble3.py)

470 ■ Python: An Introduct ion to Programming

  

	 (a)	 (b)

Figure 12.4
Screen shots from the game. (a) While play is going on. (b) The final screen, in this case the player
has lost.

	12.4	 RULES FOR PROGRAMMERS
The author of this book has collected a set of rules and laws that apply to writing

code, and on tens of thousands of lines written and 45 years as a programmer (he started
very young). There are over 250 of them, but not all apply to Python. For example, Python
enforces indenting and has no begin-end symbols. The ones that do apply are as follows:

	 2.	 Use four-space indents and not tabs.
	 5.	 Place a comment in lieu of a declaration for all variables in languages

where declarations are not permitted.
	 6.	 Declare numeric constants and provide a comment explaining them.
	 7.	 Rarely use a numeric constant in an expression; name and declare them.
	 8.	 Use variable names that refer to the use or meaning of the variable.
	 9.	 Make your code clean from the beginning, not after it works.
	 10.	 A non-working program is useless, no matter how well structured.
	 11.	 Write code that is as general as possible, even if that makes it longer.
	 12.	 If the code you write is general, then keep it and reuse it when appropriate.
	 13.	 Functions longer than 12 (not including declarations) lines are suspect.
	 15.	 Avoid recursion wherever possible.
	 16.	 Every procedure and function must have comments explaining function

and use.

 Chapter 12 · How to Wri te Good Programs ■ 471

	 17.	 Write external documentation as you code—every procedure and func-
tion must have a description in that document.

	 18.	 Some documentation is for programmers, and some is for users.
Distinguish.

	 19.	 Documentation for users must never be in the code.
	 20.	 Avoid using operating system calls.
	 21.	 Avoid using machine dependent techniques.
	 22.	 Do use the programming language library functions.
	 23.	 Documentation for a procedure includes what other procedures are

called.
	 24.	 Documentation for a procedure includes what procedures might call it.
	 26.	 When doing input: assume that the input file is wrong.
	 27.	 Your program should accept ANY input without crashing. Feed it an

executable as a test.
	 28.	 Side effects are very bad. A proper function should return a value that

depends only on its parameters.	Exceptions do exist and should be
documented.

	 29.	 Everything not defined is undefined.
	 33.	 Buffers and strings have fixed sizes. Know what they are and be con-

strained by them.
	 34.	 A handle is a pointer to a structure for an object; make certain that han-

dles used are still valid.
	 35.	 Strings and buffers should not overlap in storage.
	 36.	 Contents of strings and buffers are undefined until written to.
	 40.	 Every variable that is declared is to be given a value before it is used.
	 41.	 Put some blank lines between method definitions.
	 42.	 Explain each declared variable in a comment.
	 44.	 Solve the problem requested, not the general case or subsets.
	 45.	 White space is one of the most effective comments.
	 48.	 Avoid global symbols where possible; use them properly where useful.
	 49.	 Avoid casts (type casting).
	 50.	 Round explicitly when rounding is needed.
	 51.	 Always check the error return codes.
	 52.	 Leave spaces around operators such as =, ==, !=, and so on.

472 ■ Python: An Introduct ion to Programming

	 53.	 A method should have a clear, single, identifiable task.
	 54.	 A class should represent a clear, single, identifiable concept.
	 57.	 Do the comments first.
	 58.	 A function should have only one exit point.
	 59.	 Read code.
	 60.	 Comments should be sentences.
	 61.	 A comment shouldn’t restate the obvious.
	 62.	 Comments should align, somehow.
	 65.	 Don’t confuse familiarity with readability.
	 67.	 A function should be called more than once.
	 68.	 Code used more than once should be put into a function.
	 69.	 All code should be printable.
	 70.	 Don’t write very long lines. 80 Characters.
	 71.	 The function name must agree with what the function does.
	 72.	 Format programs in a consistent manner.
	 75.	 Have a log.
	 76.	 Document all the principal data structures.
	 77.	 Don’t print a message for a recoverable error—log it.
	 78.	 Don’t use system-dependent functions for error messages.
	 79.	 You must always correctly attribute all code in the module header.
	 80.	 Provide cross references in the code to any documents relevant to the

understanding of the code.
	 81.	 All errors should be listed together with an English description of what

they mean.
	 82.	 An error message should tell the user the correct way to do it.
	 83.	 Comments should be clear and concise and avoid unnecessary wordiness.
	 84.	 Spelling counts.
	 85.	 Run your code through a spelling checker.
	 87.	 Function documentation includes the domain of valid inputs to the

function.
	 88.	 Function documentation includes the range of valid outputs from the

function.
	 91.	 Each file must start with a short description of the module contained in

the file and a brief description of all exported functions.

 Chapter 12 · How to Wri te Good Programs ■ 473

	 92.	 Do not comment out old code—remove it.
	 93.	 Use a source code control system.
	 95.	 Comments should never be used to explain the language.
	 96.	 Don’t put more than one statement on a line.
	 97.	 Never blindly make changes to code trying to remove an error.
	 98.	 Printing variable values in key places can help you find the location of a

bug.
	 99.	 One compilation error can hide scores of others.
	 100.	 If you can’t seem to solve a problem, then do something else.
	 101.	 Explain it to the duck.	 Get an inanimate object and explain your prob-

lem to it. This often solves it. (Wyvill)
	 102.	 Don’t confuse ease of learning with ease of use.
	 103.	 A program should be written at least twice—throw away the first one.
	 104.	 Haste is not speed.
	 105.	 You can’t measure productivity by volume.
	 106.	 Expect to spend more time in design and less in development
	 107.	 You can’t program in isolation.
	 108.	 If an if ends in return, don’t use else.
	 109.	 Avoid operator overloading.
	 110.	 Scores of compilation errors can sometimes be fixed with one charac-

ter—start at the first one.
	 111.	 Programs that compile mostly still do not work.
	 112.	 Incrementally refine your code.	Start with BEGIN-SOLVE-END, then

refine SOLVE.
	 113.	 Draw diagrams of data and algorithms.
	 114.	 Use a symbolic debugger wherever possible.
	 115.	 Make certain that files have the correct name (and suffix!) when opening.
	 116.	 Never assign a value in a conditional expression.
	 117.	 If you can’t say it in English, you can’t say it in any programming lan-

guage.
	 118.	 Don’t move language idioms from one language to another.
	 119.	 First, do no harm.
	 120.	 If object oriented, design the objects first.
	 121.	 Don’t write deeply nested code.

474 ■ Python: An Introduct ion to Programming

	 122.	 Multiple inheritance is evil. Avoid sin.
	 123.	 Productivity can be measured in the number of keystrokes (sometimes).
	 125.	 Your code is not perfect. Not even close. Have no ego about it.
	 126.	 Variables are to be declared with the smallest possible scope.	
	 127.	 The names of variables and functions are to begin with a lowercase

letter.
	 133.	 Collect your best working modules into a code library.
	 134.	 Isolate dirty code (e.g., code that accesses machine dependencies) into

distinct and carefully annotated modules.
	 135.	 Anything you assume about the user will eventually be wrong.
	 136.	 Every time a rule is broken, this must be clearly documented.
	 137.	 Write code for the next programmer, not for the computer.
	 138.	 Your program should always degrade gracefully.
	 139.	 Don’t surprise your user.
	 140.	 Involve users in the development process.
	 142.	 Most programs should run the same way and give the same results each

time they are executed.
	 143.	 Most of your code will be checking for errors and potential errors.
	 144.	 Normal code and error handling code should be distinct.
	 145.	 Don’t write very large modules.
	 146.	 Put the shortest clause of an if/else on top.
	 149.	 Have a library of error-reporting code and use it (be consistent).
	 150.	 Report errors in a way that they make sense.
	 151.	 Report errors in a way that allows them to be corrected.
	 152.	 Only fools think they can optimize code better than a good compiler.
	 153.	 Change the algorithm, not the code, to make things faster. Polynomial is

polynomial.
	 154.	 Copy and paste is only for prototypes.
	 155.	 It’s always your fault.
	 156.	 Know what the problem is before you start coding.
	 157.	 Don’t re-invent the wheel.
	 158.	 Keep things as simple as possible.
	 159.	 Data structures, not algorithms, are central to programming. (Pike)

 Chapter 12 · How to Wri te Good Programs ■ 475

	 160.	 Learn from your mistakes.
	 161.	 Learn from the mistakes of others.
	 162.	 First make it work; THEN make it work faster.
	 163.	 We almost never need to make it faster.
	 164.	 First make it work; then make it work better.
	 165.	 Programmers don’t get to make big design decisions—do what is asked,

effectively.
	 166.	 Learn new languages and techniques when you can.
	 167.	 Never start a new project in a language you don’t already know.
	 168.	 You can learn a new language effectively by coding something significant

in it, just don’t expect to sell the result.
	 169.	 You will always know only a subset of any given language.
	 170.	 The subset you know will not be the same as the subset your coworkers

know.
	 171.	 Object orientation is not the only way to do things.
	 172.	 Object orientation is not always the best way to do things.
	 173.	 To create a decent object, one first needs to be a programmer.
	 174.	 You may be smarter than the previous programmer, but leave their code

alone unless it is broken.
	 175.	 You probably are not smarter than the previous programmer, so leave

their code alone unless it is broken.
	 176.	 Your program will never actually be complete. Live with it.
	 177.	 All functions have preconditions for their correct use.
	 178.	 Sometimes a function cannot tell whether its preconditions are true.
	 180.	 Computers have gigabytes of memory, mostly.	 Optimizing it is the last

thing to do.
	 181.	 Compute important values in two different ways and compare them.
	 182.	 0.1 * 10 is not equal to 1.
	 183.	 Adding manpower to a late software project makes it later.
	 184.	 It always takes longer than you expect.
	 185.	 If it can be null, it will be null.
	 186.	 Do not use catch and throw unless you know exactly what you are doing.
	 187.	 Be clear about your intention. i=1-i is not the same as if(i==0) then i=1

else i=0.

476 ■ Python: An Introduct ion to Programming

	 188.	 Fancy algorithms are buggier than simple ones, and they’re much harder
to implement.	 (Pike)

	 189.	 The first 90% of the code takes 10% of the time. The remaining 10%
takes the other 90% of the time.

	 190.	 All messages should be tagged.
	 191.	 Do not use FOR loops as time delays.
	 192.	 A user interface should not look like a computer program.
	 193.	 Decompose complex problems into smaller tasks.
	 194.	 Use the appropriate language for the job, when given a choice.
	 195.	 Know the size of the standard data types.
	 198.	 If you simultaneously hit two keys on the keyboard, the one that you do

not want will appear on the screen.	
	 199.	 Patterns are for the weak—it assumes you don’t know what you are doing.
	 200.	 Don’t assume precedence rules, especially when debugging—parenthe-

size.
	 202.	 ++ and -- are evil. What’s wrong with i = i + 1??
	 204.	 It’s hard to see where a program spends most of its time.
	 205.	 Fancy algorithms are slow when n is small, and n is usually small. (Pike)
	 206.	 Assume that things will go wrong.
	 207.	 Computers don’t know any math.
	 208.	 Expect the impossible.
	 209.	 Test everything. Test often.
	 210.	 Do the simple bits first.
	 211.	 Don’t fix what is not broken.
	 212.	 If it is not broken, then try to break it.
	 213.	 Don’t draw conclusions based on names.
	 214.	 A carelessly planned project takes three times longer to complete than

expected; a carefully planned project takes only twice as long.
	 215.	 Any system which depends on human reliability is unreliable.
	 216.	 The effort required to correct course increases geometrically with time.
	 217.	 Complex problems have simple, easy to understand, and wrong answers.
	 218.	 An expert is that person most surprised by the latest evidence to the

contrary.
	 219.	 One man’s error is another man’s data.

 Chapter 12 · How to Wri te Good Programs ■ 477

	 220.	 Noise is something in data that you don’t want.	 Someone does want it.

	12.5	 SUMMARY
There is no general agreement on how best to put together a good program.

A good program is one that is functionally correct, readable, modifiable, reason-
ably efficient, and that solves a problem that someone needs solved. No two pro-
grammers will create the same program for a non-trivial problem. The program
development strategy discussed in this chapter is called iterative refinement, and
is nearly independent of language or philosophy.

There is no single process that is best for writing programs. Some people
only use object-oriented code, but a problem with teaching that way is that a class
contains traditional, procedure-oriented code. To make a class, one must first
know how to write a program.

The idea behind top-down programming is that the higher levels of abstraction
are described first. A description of what he entire program is to do is written in a
kind-of English/computer hybrid language (pseudocode), and this description in-
volves making calls to functions that have not yet been written but whose function
is known—these functions are called stubs. The first step is to sketch the actions
of the program as a whole, then to expand each step that is not well-defined into a
detailed method that has no ambiguity. Compile and test the program as frequently
as possible so that errors can be identified while it is still easy to see where they are.

The key to object-oriented design is identifying the best objects to be im-
plemented. The rest of the program will take a logical shape depending on the
classes that it uses. Try to isolate the details of the class from the outside. Always
be willing to rethink a choice and rewrite code as a consequence.

Exercises

	 1.	Add sound to the game. When the ball collides with an object a sound effect
should play.

	 2.	Consider how hyphenation might be added to Pyroff. How would it be decided
to hyphenate a word, and where would the new code be placed? In other
words, sketch a solution.

	 3.	 In some versions of Breakout-style games, certain of the tiles or targets have
special properties. For example, sometimes hitting a special target will result

478 ■ Python: An Introduct ion to Programming

in the ball speeding up or slowing down, will have an extra point value,
or will change the size of the paddle. Modify the game so that some of the
targets speed up the ball and some others slow it down.

	 4.	The Pyroff system can turn right adjusting off, but not on. This seems like a
flaw. Add a new command, “.ra,” that will turn right adjusting on.

	 5.	Most word processors allow for a header and a footer, some space and possibly
some text at the beginning and end, respectively, of every page. Design a
command “.he” that at the least allows for empty space at the beginning of
a page, and a corresponding command “.fo” that allows for some lines at the
end of a page.

	 6.	Which three of the Rules for Programmers do you think make the greatest
difference in the code? Which three affect code the least? Are there any that
you don’t understand?

Notes and Other Resources

Bouncing a ball off of a wall: https://sinepost.wordpress.com/2012/08/19/bounc-
ing-off-the-walls/

	 1.	Jon Bentley. (1999). Programming Pearls, 2nd ed., Addison-Wesley
Professional, ISBN-13: 978-0201657883.

	 2.	Adrian Bowyer and John Woodwark. (1983). A Programmer’s Geometry,
Butterworth-Heinemann Ltd., ISBN-13: 978-0408012423.

	 3.	Frederick Brooks. (1995). The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition, Addison-Wesley Professional.

	 4.	Jim Parker. (2015). 100 Cool Processing Sketches, eBook, https://leanpub.
com/100coolprocessingsketches

	 5.	Jim Parker. (2015). Game Development Using Processing, Mercury
Learning and Publishing.

	 6.	R. Rhoad, G. Milauskas, and R. Whipple. (1984). Geometry for Enjoyment
and Challenge, rev. ed., Evanston, IL, McDougal, Littell & Company.

	 7.	Gerald M. Weinberg. (1998). The Psychology of Computer Programming,
Anl Sub ed., Dorset House, ISBN-13: 978-0932633422.

■ ■ ■ ■ ■

In this chapter

Python can read data from the keyboard and print on the screen, it can
display graphics, audio, and video, allow mouse (and touch) interactions,
and read and write data to and from files. That’s a lot of communication,
but it all happens on one computer—the one on which the program is
running. In the age of high-speed Internet, social media, podcasts, blogs,
and wikis, this is not enough. The wide world outside of the desktop
beckons, and a programmer with a knowledge of Python and the relevant
modules can respond.

Can a computer communicate with another one? Of course. Can a program
send email? Yes, that’s what a mail program like Thunderbird or Outlook does.
Can a program be written that reads tweets as they are sent? Sure, but there is a
price. That is: these things are done according to someone else’s rules. The first
email was sent in 1971 on a private network named Arpanet. It sent mail between
distinct computers, rather than sending messages between users on a specific

13Chapter

Communicating with the
Outside World

13.1	 Email ��481

13.2	 FTP��490

13.3	 Communication Between Processes��492

13.4	 Twitter��497

13.5	 Communicating with Other Languages��502

13.6	 Summary��504

480 ■ Python: An Introduct ion to Programming

machine. In 1972 Unix Email was made available, and was networked in 1978;
that was the start of something big.

The sender and receiver had to agree on how to encode and decode a mes-
sage, and how to access it from the network. To send mail between different
computers always requires a standard, a scheme that is agreed upon by imple-
menters of the system. Otherwise mail can only be sent between UNIX systems,
or Windows, or iOS. Email, to be practical, needs to be more flexible. It needs to
be ubiquitous, and so all need to agree on a standard for how Email can be sent
and received. A standard was eventually agreed on, and it was called the Simple
Mail Transfer Protocol (SMTP) and was established in 1982.

This was seven years before the World Wide Web, so Email really represents
the first practical way to communicate between computers over a long distance.
FTP happened at about the same time. The enabling technology for the Web,
TCP/IP, came next. All of these developments in networking and software com-
bined to create the modern interconnected society, but all are based on a collec-
tion of rules that software must agree to (protocols) if they are to make use of
the network infrastructure. This is an example of design by contract, in which
designers create formal specifications for components and using those involves a
kind-of contract or agreement between programmers developing client software
and those who built the modules and designed the protocols.

There are high-level programs that provide a good user interface to the Inter-
net and that implement these protocols beneath their visual presentation. When
using Python a collection of modules are used that handle the very low-level
details, but the interface to the programmer exposes the protocol. Some of these
modules are provided in a standard Python installation (smtplib, email), and some
are not (MPI, Tweepy), and will have to be installed before the code in this chapter
will run.

When communicating with another machine a key issue is that of authentica-
tion. Almost all protocols require that a connection be formed between the two
computers, using some kind of identification of those machines such as their IP
address. Then the one initializing the connection must prove that it has permis-
sion to do what it is about to do. This resembles logging in, and involves a user
identification and a password of some type. Once the user has been identified
there is an exchange of messages that tell the remote computer what is desired of

 Chapter 13 · Communicat ing with the Outside World ■ 481

it, and that allow information to be returned to the caller. This process is nearly
universal, but takes somewhat different forms on different systems.

	13.1	 EMAIL
Email is a good example of a client-server system, and one that gets used

millions of times each minute. The Email program on a PC is the client, and al-
lows a user to enter text messages, specify destinations, attach images, and all of
the features expected by such a program. This client packages the Email message
(data) according to the Simple Message Transfer Protocol (SMTP) and sends that
to another computer on the Internet, the Email server. An Email user must have
an account on the server for this to work so they can be identified and the user can
receive replies; so, the process is: log into the Email server, then send the SMTP
message to the Email server program on that server. Thus the client side of the
contract is to create a properly formatted message, to log into the server properly,
and pass the message to it.

Now the server does the work. Given the destination of the message, it
searches for the server that is connected to that destination. For example, given
the address xyz@gmail.com, the server for gmail.com is located. Then the email
message is sent across the network to that server. The server software at that end
reads the message and places it into the mailbox, which is really just a direc-
tory on a disk drive connected to the server, for the specified use xyz. The mail
message is essentially a text file at this point.

This description is simplified but essentially accurate, and describes what
has to be done by a program that is supposed to send an Email message. The
Python module that permits the sending of Email implements the protocol and of-
fers the programmer ways to specify the parameters, like the destination and the
message. The interface is implemented as a set of functions. The library needed
for this is smtplib, a part of the standard Python system.

Example: Send an Email

Sending an Email message starts with establishing a connection between the
client computer and the user’s mail server, the one on which they have an account
(user name and password). For the purposes here a Gmail (Google) server will be
used, which complicates the issue a tiny bit. The Email accounts in the example
are also Gmail ones, and these can be had for free from Google.

482 ■ Python: An Introduct ion to Programming

The program must declare smtplib as an imported module. The sending ad-
dress and the receiving address will be the same in this example, but this is just
a test. Normally this will not be the situation. The Email address is the user ID
for Gmail authentication and the password is defined by the user. These are all
just strings.
import smtplib

LOGIN = yourloginID # Login User ID for Gmail, string-
PASSWD = yourpassword # Login password for Gmail, string
sndr = pythontextbook@gmail.com # Senderꞌs email address
rcvr = pythontextbook@gmail.com # Receiverꞌs email address

Part of the SMTP scheme is a syntax for Email messages. There is a header
at the beginning that specifies the sender, receiver, and subject of the message.
These are used to format the message, not to route it—the receiver address is
specified later. A simple such message looks like this:
From: user_me@gmail.com
To: user_you@gmail.com
Subject: Just a message

A string must be constructed that contains this information:
msgt = "From: user_me@gmail.com\n"
msgt = msgt + "To: user_you@gmail.com\n"
msgt = msgt + "Subject: Just a message\n"
msgt = msgt + "\n"

Now the body of the message is attached to this string. This is the part of the
Email that is important to the sender:
msgt = msgt + "Attention: This message was sent by Python!\n"

The string variable msgt now holds the whole message. This message is in the
format defined by the Multipurpose Internet Mail Extensions (MIME) standard.
The next step for the program is to try to establish a connection with the sender’s
email server. For this the smtp module is needed, specifically the SMTP() func-
tion. It is called passing the name of the user’s Email server as a parameter, and
it returns a variable that references that server. In this example that variable is
named server:

server = smtplib.SMTP(ꞌsmtp.gmail.comꞌ)

 Chapter 13 · Communicat ing with the Outside World ■ 483

If it is not possible to connect to the server for some reason, then an error will
occur. It is therefore a good idea to place this in a try-except block:

try:
 server = smtplib.SMTP(ꞌsmtp.gmail.comꞌ)
except:
 print ("Error occurred. Canꞌt connect")
else:

Now comes the complexity that Gmail and some other servers introduce.
What has happened after the call to smtplib.SMTP() is that a communications
session has been opened up. There is now an active connection between the cli-
ent computer and the server at smtp.gmail.com. Some servers demand a level of
security that, among other things, ensures that other parties can’t modify or even
read the message. This is accomplished using a protocol named Transport Layer
Security (TLS), the details of which are not completely relevant because the mod-
ules take care of it. However, to send data to smtp.gmail.com the server must be
told to begin using TLS:

server.starttls()

Now the user must be authenticated using their ID and password:
server.login(LOGIN,PASSWD)

Only now can a message be sent, and only if the login ID and password are
correct. The sender is the string sndr, the recipient is rcvr, and the message is
msgt:

server.sendmail(sndr, rcvr, msgt)

Now that the message has been sent, it is polite to close the session. Logging
off of the server is done as follows:

server.quit()

This program will send one email, but it can be easily modified to send
many emails one after the other. It can be modified to read the message from the
keyboard, or perform any of the functions of a typical Email-sending program
(Exercise 1).

The module email can be invoked to format the message in MIME form.
The function MIMEText(s) converts the message string s into an internal form,
which is a MIME message. Fields like the subject and sender can be added to the
message, and then it is sent as was done before. For example:

484 ■ Python: An Introduct ion to Programming

import smtplib
from email.mime.text import MIMEText

LOGIN = yourloginID
PASSWD = yourpassword

fp = open ("message.txt", "r") # Read the message from a
 # file
mtest = fp.read()
Or: simply use a string
#mtest = "A message from Python: Merry Christmas."
fp.close()

msg = MIMEText (mtest) # Create a MIME string
sndr = pythontextbook@gmail.com # Senderꞌs Email
rcvr = pythontextbook@gmail.com # Recipientꞌs Email
msg[ꞌSubjectꞌ] = ꞌMail from Pythonꞌ # Add Subject to the
 # message
msg[ꞌFromꞌ] = sndr # Add sender to the
 # message
msg[ꞌToꞌ] = rcvr # Add recipent to the
 # message

Send the message using Googleꞌs SMTP server, as before
s = smtplib.SMTP(ꞌsmtp.gmail.comꞌ) # localhost could work
s.starttls()
s.login (LOGIN, PASSWD)
s.send_message(msg)
s.quit()

Using MIMEText() to create the message avoids having to format it correctly
using basic string operations.

	13.1.1	Reading Email

Reading Email is more complicated than writing it. The content of an Email
is often a surprise, and so a reader must be prepared to parse anything that might
be sent. There can be multiple mailboxes: which mailbox will be looked at? There
are usually many messages in a mailbox: how can they be distinguished? In ad-
dition, the protocol for retrieving mail from a server is different from that used to
send it; in fact, there are two competing protocols: POP and IMAP.

 Chapter 13 · Communicat ing with the Outside World ■ 485

The Post Office Protocol (POP) is the older of the two schemes, although it
has been updated a few times. It certainly allows the basic requirements of a mail
reader, which is to download and delete a message in a remote mailbox (i.e., on
the server). The Internet Message Access Protocol (IMAP) is intended for use by
many Email clients, and so messages tend not to be deleted until that is requested.
When setting up an Email client one of these protocols usually has to be speci-
fied, and then it will be used from then on. The example here will use IMAP.

Example: Display the Subject Headers for Emails in Inbox

An outline for the process of reading Email is sketched on the right-hand
side of Figure 13.1. Reading Email uses a different module that was used to send
Email: imaplib, for reading from an IMAP server. The function names are differ-
ent from those in smtplib, but the purpose of some of them is the same. The first
three steps in reading Email are:

Construct a MIME formatted message from the
subject, sender, receipient, and body text.

Connect with the mail server

mbox = imaplib.IMAP4 _ SSL(imap.gmail.com)

 

Connect with the mail server.

server = smtplib.SMTP(ꞌsmtp.gmail.comꞌ)

Identify and authenticate the user on the server.

mbox = login(USER, PASSWORD)

 

Make the connection comply with TLS, if
necessary

Select an inbox/email folder

env, data = mbox.select("Inbox")

 

Identify and authenticate the user on the server.

server.login(LOGIN, PASSWD)

Read the Mailbox

env, data = m.search(None, "ALL")

 

Send the Email message to the server, identifying
the sender and receipient

server.sendmail(sndr, rcvr, msgt)

Fetch Messages

env, data = m.fetch(num, ꞌ(RFC822)ꞌ)

 

Close the connection Log Out/Close

Process for sending an Email Process for reading Email

Figure 13.1
The procedure for sending an Email using Python.

486 ■ Python: An Introduct ion to Programming

import imaplib
server = ꞌimap.gmail.comꞌ # Gmailꞌs IMAP server
USER = pythontextbook@gmail.com # User ID
PASSWORD = "password" # Mask this password
EMAIL_FOLDER = "Inbox"

mbox = imaplib.IMAP4_SSL(server) # Connect to the server
mbox.login(USER, PASSWORD) # Authenticate (log in)

The next step is to select a mailbox to read. Each has a name, and is really
just a directory someplace. The variable mbox is a class instance of a class named
imaplib.IMAP4_SSL, the details of which can be found in many places, including
the Internet. It has a method named select() that allows the examination of a mail-
box, given its name (a string). The string is a variable named EMAIL_FOLDER
which contains “Inbox,” and the call to select() that essentially opens the inbox is:

z = mbox.select(EMAIL_FOLDER)

The return value is a tuple. The first element indicates success or failure, and
if z[0] contains the string “OK” then the mailbox is open. The usual alternative is
“NO.” The second element of the tuple indicates how many messages there are,
but it is in an odd format. If there are 2 messages, as in the example, this string is
b’2’; if there were 3 messages it would be b’3’; and so on. These are called mes-
sage sequence numbers.

Having opened the mailbox, the next step is to read it and extract the mes-
sages. The protocol requires that the mailbox be searched for the messages that
are wanted. The imaplib.IMAP4_SSL class offers the search() method for this,
the simplest form being:

mbox.search(None, "ALL")

which returns all of the messages in the mailbox. IMAP provides search func-
tionality, and all this method does is connect to it, which is why it seems awkward
to use. The first parameter specifies a character set, and None allows it to default
to a general value. The second parameter specifies a search criterion as a string.
There are dozens of parameters that can be used here and the documentation for
IMAP should be examined in detail for solutions to specific problems. However,
some of the more useful tags include:

ANSWERED: Messages that have been answered.

 Chapter 13 · Communicat ing with the Outside World ■ 487

BCC <string>: Messages with a specific string in the BCC field.
BEFORE <date>: Messages whose date (not time) is earlier than the
specified one.
HEADER <field-name> <string>: A specified field in the header con-
tains the string.
SUBJECT <string>: Messages that contain the specified string in the
SUBJECT field.
TO <string>: Messages that contain the specified string in the TO field.
UNSEEN: Messages that do not have the \Seen flag set.

So, a call to search() that looks for the text “Python” in the subject line would
be:

mbox.search(None, "SUBJECT Python")

The search() function returns a tuple again, where the first component is a
status string (i.e., “OK,” “NO,” “BAD”) and the second is a list of messages sat-
isfying the search criteria in the same format as before. If the second message if
the only match, this string will be b’2.’ If the first three match it will be b’1 2 3.’

Finally, the messages are read, or fetched. The imaplib.IMAP4_SSL class has
a fetch() method to do this, and it again takes some odd parameters. What a pro-
grammer thinks of the interface or the API or, in other words, the contract, is not
important. What must be done is to satisfy the requirements and accept the data
as it is offered. The fetch() method accepts two parameters: the first is the indica-
tion of which message is desired. The first message is b’1’, the second is b’2’, and
so on. The second parameter is an indicator of what it is that should be returned.
The header? If so, pass “(RFC822.HEADER)” as the parameter. Why? Because
they ask for it. RFC822 is the name of a protocol. If the Email body is wanted,
then pass “(RFC822.TEXT)”. A short list of possibilities is:

RFC822	 -	 Everything
RFC822.HEADER	 -	 No body, header only
RFC822.TEXT	 -	 Body only
RFC822.SIZE 	 -	 Message size
UID	 -	 Message identifier

488 ■ Python: An Introduct ion to Programming

Multiple of these specifiers can be passed; for example:
mbox.fetch(num, ꞌ(UID RFC822.TEXT RFC822.HEADER)ꞌ)

returns a tuple having three parts: the ID, the body, and the header. By the way,
the header tends to be exceptionally long, 40 lines or so, and is mostly uninterest-
ing to a specific application. For this example, the only part of the header that is
interesting is the “Subject” part. Fields in the header are separated by the char-
acters “\r\n” so they are easy to extract in a call to split(). Eliminating the header
data for a moment, the call:

(env, data) = mbox.fetch(num, ꞌ(UID RFC822.TEXT)ꞌ)

results in a tuple that has an “envelope” that should indicate “OK” (the env vari-
able). The data part is a string that contains the UID and the text body of the
message. For example:
[(bꞌ2 (UID 22 RFC822.TEXT {718}ꞌ, b"Got a collection of old
45ꞌs for sale. Contact me.\r\n\r\n-- \r\n"), bꞌ)ꞌ]

This says that this is message 2 and shows the text of that message.

This example is supposed to print all of the subject headers in this mailbox.
The call to fetch() should extract the header only:

(env, data) = mbox.fetch(num, ꞌ(RFC822.HEADER)ꞌ)

The details of IMAP are complex enough that it is easy to forget what the
original task was, which was to print the subject lines from the messages in the
mailbox. All of the relevant methods have been described and completing the
program is possible. The entire program is:
import imaplib

server = ꞌimap.gmail.comꞌ # IMAP Server
USER = "pythontextbook@gmail.com" # USER ID
PASSWORD = "" # Mask this password
EMAIL_FOLDER = "Inbox" # Which mailbox?

mbox = imaplib.IMAP4_SSL(server) # Connect
mbox.login(USER, PASSWORD) # Authenticate

env, data = mbox.select(EMAIL_FOLDER) # Select the mailbox
if env == ꞌOKꞌ: # Did it work?

 Chapter 13 · Communicat ing with the Outside World ■ 489

 print ("Printing subject headers: ", EMAIL_FOLDER)

 env, data = mbox.search(None, "ALL") # Select the
 # messages wanted.
 if env != ꞌOKꞌ: # Are there any?
 print ("No messages.", env) # Nope.
 exit()

 for num in data[0].split(): # For each selected
 # message bꞌ1 2 3 ...ꞌ
 (env, data) = mbox.fetch(num, ꞌ(RFC822.HEADER)ꞌ)
 # Read it
 if env != ꞌOKꞌ:
 print ("ERROR getting message", num, ", ", env)
 break
 s = str(data[0][1]) # Look for the string
 # "Subject" in the header
 k = s.find("Subject")
 if (k>=0): # Found it?
 s = s[k:] # Extract the string to the
 # next ꞌ\rꞌ
 k = s.find(ꞌ\\rꞌ)
 s = s[:k]
 print (s) # And print it.
 mbox.close()
else:
 print ("No such mailbox as ", EMAIL_FOLDER)
mbox.logout()

Typical output would be:

Printing subject headers: Inbox
Subject: Contents of Chapter 13
Subject: 45 RPM
Subject: another Email

The point of this section was to demonstrate how a Python program, or any
program for that matter, must comply with external specifications when interfac-
ing with sophisticated software systems, and to introduce the concept of a proto-
col, a contract between developers. Of course a program that can send Email is
useful by itself.

490 ■ Python: An Introduct ion to Programming

	13.2	 FTP
The File Transfer Protocol is used to exchange files between computers on a

network, in particular across the Internet. It provides the same sort of interface
to data on a distance computer as would be expected from a file system on a
desktop. It can copy a file in either direction, but can also change directories, list
the directory contents, and perform other useful operations. This again presumes
that the rules set up by the FTP interface are followed.

Having just seen the communication requirements for sending and receiving
Email, it should be possible to predict the way that FTP will operate. A connec-
tion will have to be made to a remote computer, and some form of authentication
will take place. The client (the program that established the connection) will now
send a set of commands to the server, which will read and process them. Then,
finally, the client will terminate the connection. This is all true.

The commands that can be processed by an FTP server include things like
LIST the contents of this directory, change the working directory (CWD), re-
trieve a file (RETR) and send or store a file (STOR). These are sent across the
network as strings and represent raw FTP commands, those that take place at a
low level of abstraction in the system. Higher level commands are implemented
as specific methods in the FTP class of ftplib. For example, there is a command
named PWD that will display the name of the current remote directory. FTP of-
fers a function that will send this command:

FTP.pwd()

Doing the same thing by sending the command directly would use the send-
cmd() method of FTP, and would pass the command as a string:

ftp.sendcmd("PWD")

There is a difference to the programmer. The pwd() method returns the string
that represents the directory, whereas when the text command is sent, the return
value is the string that the FTP system returned, which is something like:

	 257 “/” is the current directory

An example will be used to illustrate the use of FTP.

 Chapter 13 · Communicat ing with the Outside World ■ 491

Example: Download and Display the README File from an FTP Site

The site chosen for the example belongs to NASA, but any ftp site will work.
The connection and authentication steps are:
from ftplib import FTP

ftp = FTP("ftp.hq.nasa.gov") # Please donꞌt always use
NASA
ftp.login() # Select a different site.

The login step is interesting because there are no parameters given. This
is an anonymous FTP connection, which is common for sites that offer things
for download. The default login when using the login() method is a user ID of
“anonymous” and a password, if one is requested, of “anonymous.” It is also pos-
sible to specify an ID and password if the user has them:

ftp.login("myuserid", "mypassword")

The login() function returns the site’s welcome message, which is a string
that can be ignored.

The example is supposed to download the file named README and display
it. The method retrlines() can do this, because it is a text file. If it were a binary
file, like an MP3 or JPG file, then the retrbinary() method would be used in-
stead. The first parameter to retrlines() is a command. To retrieve a file the com-
mand is the keyword RETR followed by the file name. The simplest version is:

ftp.retrlines(ꞌRETR READMEꞌ)

which will display the text from the file on the screen. That’s what was wanted,
but the method can do more. If a function name is passed as the second param-
eter, then that function will be called for every line of text, and will be passed that
line as a parameter. To illustrate this consider a simple function that takes a string
and prints each line, looking for “\\n” characters. The function is:
def myprint (ss):
 s = str(ss) # Sometimes the parameter ss is type byte.
 x = s.split("\\n")
 for i in range (0, len(x)):
 print (x[i])

Now a call to retrlines() could be as follows:
ftp.retrlines(ꞌRETR READMEꞌ, myprint)

492 ■ Python: An Introduct ion to Programming

or even:
ftp.retrlines(ꞌRETR READMEꞌ, print)

to use the standard print() function. Of course any function that takes a string
parameter could be passed. To save the README file as a local file, for example:

ftp.retrlines(ꞌRETR READMEꞌ, open(ꞌREADMEꞌ, ꞌwꞌ).write)

will write the file to a local one named README, but lacking the end-of-line
characters.

Binary files use retrbinary(), and it has the same form as retrlines(). How-
ever, the second parameter, the function, must be passed, because binary files
cannot be sent to the screen. Downloading and saving an image file might be
done as follows:
ftp.retrbinary(ꞌRETR orion.jpg, open(ꞌorion.jpg, ꞌwbꞌ).write)

The session would end by logging out:
ftp.quit()

Uploading a file, that is moving a file from a desktop to a site on the Internet,
used the method storlines() for text and storbinary() for binary files. Examples:

f = open ("message.txt", "rb")
ftp.storlines ("STOR message.txt", f)

The method copies lines from the local file to the remote one. The file to be
copied is open in “rb” mode. For a binary example assume an image:

f = open ("image.jpg", "rb")
ftp.storbinary ("STOR image.jpg", f)

session.storbinary(“STOR kitten.jpg,” file) # send the file

	13.3	 COMMUNICATION BETWEEN PROCESSES
Underneath the FTP and Email protocols, which allow interfaces to applica-

tions, lies a communications layer, the programs that actually send bytes be-
tween computers or between programs on the same computer. It is conducted
very much like a conversation. One person, the client, initiates the conversation
(“Hi there!”). The other (the server) responds (“Hello. Nice to see you.”). Now it
is the client’s turn again. They take turns sending and accepting messages until

 Chapter 13 · Communicat ing with the Outside World ■ 493

one says “goodbye.” These messages might contain Email, or FTP data, or TV
programs. This layer does not care what the data is; none of its business, really.
Its job is to deliver it.

Data are delivered in packets, each containing a certain amount. In order for
the client to deliver the data there must be a server willing to connect to it. The
client needs to know the address of a server, just as an FTP address or Email
destination was required before, but now all that is needed is the host name and a
port number. A port is really a logical construction, something akin to an element
of a list. If two programs agree to share data by having one of them place it in lo-
cation 50001 of a list and the other one read it from there, it gives an approximate
idea of what a port is. Some port numbers are assigned and should not be used for
anything else; FTP and Email have assigned ports. Others are available for use,
and any two processes can agree to use one.

A module named socket, based on the interprocess communication scheme
on UNIX of the same name, is used with Python to send messages back and forth.
To create an example two computers should be used, one being the client and one
the server, and the IP address of the server is required too.

Example: A Server That Calculates Squares

The client will open a communications link (socket) to the server, which has
a known IP address. The server will engage in a short handshake (exchange of
strings) and then expect to receive a number for the client. The client will send
an integer, the server will receive it, square it, and send back the answer. This
simple exchange is really the basis for all communications between computers:
one machine sends information, the other receives it, processes it, and returns a
reply based on the data it received.

The client: will begin the conversation. It creates a connection, a socket, to
the server using the socket() function of the socket module. Protocols must be
specified, and the most common ones will be used:
import socket

HOST = ꞌ19*.***.*.***ꞌ # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))

494 ■ Python: An Introduct ion to Programming

Port 50007 is used because nothing else is using it. Now the client starts the
conversation, just as it appears at the beginning of this section:

s.send(bꞌHi there!ꞌ)

The send() function sends the message passed as a parameter. The string (as
bytes) is transmitted to the server through the variable s, which represents the
server. The client now waits for the confirmation string from the server, which
should be “Hello. Nice to see you.” The client calls:

data = s.recv(1024)

which waits for a response from the server. This response will be 1024 bytes
long at most, and it will wait only for a short time, at which point it will give up
and an error will be reported. When this client gets the response, it proceeds to
send numbers to the server. They are converted into the bytes type before trans-
mission. In this example it simply loops through 100 consecutive integers:

for i in range (0, 100):
 data = str(i).encode()
 s.send (data)

After sending to the server it waits for the answer. Actually that’s a part of
the receive function:

 data = s.recv(1024)

after 100 integers the loop ends and the connection is closed:
s.close()

The Server: is always listening. It creates a socket on a particular port so that
the operating system knows something is possible there, but because the server
cannot predict when a client will connect or what client it will be it simply listens
for a connection, by calling a function named listen():
import socket
from random import *

HOST = ꞌꞌ # A null string is correct here.
PORT = 50007
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind ((HOST, PORT))
s.listen()

 Chapter 13 · Communicat ing with the Outside World ■ 495

AF_INET and SOCK_STREAM are constants that tell the system which
protocols are being used. These are the most common, but see the documentation
for others. The bind() and the listen() functions are new. Associating this connec-
tion with a specific port is done using bind(). The tuple (HOST, PORT) says to
connect this host to this port. The empty string for HOST implies this computer.
The listen() call starts the server process, this program, accepting connections
when asked. A process connecting on the port that was specified in bind() will
now result in this process, the server, being notified. When a connection request
occurs, the server must accept it before doing any input or output:

conn, addr = s.accept()

In the tuple (conn, addr) that is returned, conn represents the connection, like
a file descriptor returned from open(), and is used to send and receive data; addr is
the address of the sender, the client, and is a string. If the addr were printed:

print ("Connected to ", addr)

It would look like an IP address:
Connected to 423.121.12.211

Now the server can receive data across the connection, and does so by calling
recv():
data = conn.recv(1024)
print ("Server heard ꞌ", data, "ꞌ")

The parameter 1024 specifies the size of the buffer, or the maximum number
of bytes that can be received in one call. The variable data is of type bytes, just
as the parameter to send() was in the client. The client was the first to send, and
it sent the message “Hi there!” That should be the value of data now, if it has
been received properly. The response from the server should be “Hello, nice to
see you.”

conn.send (bꞌHello. Nice to see you.ꞌ)

The same connection is used for sending and receiving.

Now the real data gets exchanged. The server will accept integers, sent as
bytes. It will square them and transmit the answer back.
while True:
 data = conn.recv(1024) # Read the incoming data

496 ■ Python: An Introduct ion to Programming

 if data:
 i = int(data) # Convert it to integer
 print ("Received ", i)
 data = str(i*i).encode() # Square it and convert
to bytes
 conn.send (data) # Send to the client

The server can tell when the connection is closed by the client, but it is also
polite to say “Goodbye” somehow, perhaps by sending a particular code. If the
loop ever terminates, the server should close the connection:

conn.close()

This is a pretty good example of a data exchange and a contract, because
there are specified requirements for each side of this conversation which will
result in success if done correctly and failure if messed up. Failure is sometimes
indicated by an error message, often a timeout where the client or server was
expecting something that never arrived. In other cases failure is not formally in-
dicated at all; the program simply “hangs” there and does nothing. If at any time
both processes are trying to receive data, then the program will fail.

Figure 13.2 shows the communication between the client and the server as
a diagram. If the client and the server are at any time both trying to accept data

Figure 13.2
Typical communication between the client and the server processes.

 Chapter 13 · Communicat ing with the Outside World ■ 497

from the connection, then the program will fail. In the diagram all data transfers
can be seen as transmit-accept pairs between the two processes, and as read-write
pairs within the server and write-read pairs within the client.

The FTP protocol can now be seen as a socket connection, wherein the cli-
ent sends strings (commands) to the server, which parses them, carries out the
request, and then sends an acknowledgement back.

The client
import socket

The remote host
HOST = ꞌ19*.***.*.***ꞌ
The same port used by the server
PORT = 50007

s = socket.socket(socket.AF_INET,\
 socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(bꞌHi there!ꞌ)
data = s.recv(1024)
for i in range (0, 100):
 data = str(i).encode()
 s.send (data)
 data = s.recv(1024)
s.close()

The server
import socket

HOST = ꞌꞌ # A null string is ok here.
PORT = 50007
s = socket.socket(socket.AF_INET, \
 socket.SOCK_STREAM)
s.bind ((HOST, PORT))
s.listen()
conn, addr = s.accept()
data = conn.recv(1024)
print ("Server heard ꞌ", data, "ꞌ")
conn.send (bꞌHello. Nice to see you.ꞌ)
while True:
Read the incoming data
 data = conn.recv(1024)
 if data:
Convert it to integer
 i = int(data)
 print (″Received ", i)
Square it and convert to bytes
 data = str(i*i).encode()
Send to the client
 conn.send (data)
 conn.close()

	13.4	 TWITTER
For the few people who may be unfamiliar with Twitter, it is a social media

service that allows its users to send short (140 character) messages out to the
world, or really to their subscribed listeners. From its beginning in 2006, Twitter
has grown to the point where it handles hundreds of millions of messages (tweets)
per day from their 302 million active users. It differs from Email in that it broad-
casts messages, and the recipients are self-selected.

498 ■ Python: An Introduct ion to Programming

The messages are entered by Twitter users, each of whom has an account.
All messages become part of a stream, and the ones that a particular user wants
to see are pulled from that stream and placed on the user’s feed. It is, however,
possible to see the feed and examine messages as they are sent, collecting data
or identifying patterns. Twitter allows access to the stream, but when using Py-
thon it requires the use of a module that must be downloaded and installed. That
module is called tweepy.

A warning: setting up the authentication so that the Twitter stream can be
accessed is not simple. A twitter account is needed, an application has to be
registered, and the app must be specified as being able to read, write, and direct
messages. Twitter will create a unique set of keys that must be used for the au-
thentication: the consumer key and consumer secret key, then the access token
and access secret token. Again, it does not pay to ask why because it simply must
be done. How is a better question.

A tweet is limited to 140 characters, but that only considers content. The
amount of data sent in a tweet is substantially larger than that, 6000 bytes or
more. That’s due to the large amount of metadata, or descriptive information, in a
tweet. Most people never see that, but a program that reads tweets and sifts them
for information will have to deal with it. The twitter interface returns tweet data
in JSON format (JavaScript Object Notation) which is a standard for exchang-
ing data, similar in purpose to XML. This format has to be parsed, but a second
Python module named json will do that so no further discussion of JSON will be
necessary.

Example: Connect to the Twitter Stream and Print Specific Messages

This program will examine the twitter feed and print messages that have the
term “startrek” in them. It is useful to see that once again, authentication is one
of the first things to do. In the case of Tweepy an object is created, passing the
authentication strings. First:
import tweepy
import json

Authentication details from dev.twitter.com
consumer_key = ꞌget your ownꞌ
consumer_secret = ꞌget your ownꞌ
access_token = ꞌget your ownꞌ

 Chapter 13 · Communicat ing with the Outside World ■ 499

access_token_secret = ꞌꞌget your own ꞌ

authentication = tweepy.OAuthHandler(consumer_key,
 consumer_secret)
authentication.set_access_token(access_token,
 access_token_secret)

Now something different is needed. Tweepy wants to have an object passed
to it that is a subclass of one that it defines, StreamListener. As a part of the deal
that is made with Tweepy, the class must have a method named on_data() and an-
other named on_error(). The on_data() method is called by Tweepy when there
is data in the stream to be read, and the data is passed as a string in JSON format;
the on-error() method is called when an error occurs, and is passed a string with
the error message. Creating this subclass will be described a little later. However,
assume that it is called tweet_listener. The next step in the process is to create an
instance of this class:

listener = tweet_listener()

Through this class instance the stream will be accessed. Now tell Tweepy
what this instance is so it can use it. Also do the authentication:

stream = tweepy.Stream(authentication, listener)

Finally tell Tweepy what to extract from the Twitter stream. For this example,
the call is:

stream.filter(track=[ꞌStar Trekꞌ])

but other parts of the stream can be accessed and sent to this program: times and
dates, locations, etc. In this case the track argument looks into the message text
for the “Star Trek” string, case insensitive. Multiple search strings can be placed
in the list: [“star trek”, “casablanca”].

OK, what about the tweet_listener class? It is a subclass of StreamListener, as
was said earlier. The on_data() method needs to parse the JSON-formatted string
it is passed and print the parts of the message that are desired. Since the filter()
call restricts the messages to those containing the string “star trek,” all that has
to be done in this method is to print the body of the message. Here is the class
showing the method; the explanation follows:
class tweet_listener(tweepy.StreamListener):

 def on_data(self, data):

500 ■ Python: An Introduct ion to Programming

Twitter returns data in JSON format - decode it first
 dict = json.loads(data)
 print (dict[ꞌuserꞌ][ꞌlocationꞌ])
 print (dict[ꞌuserꞌ][ꞌscreen_nameꞌ],dict[ꞌtextꞌ])
 return True

 def on_error(self, status):
 print (status)

The parameter data is in JSON format. To convert it into something useable,
pass it to the json.loads() method. It returns a Python dictionary with the data
available, indexed by field name. The data structure used by Twitter is complex,
and is shown in small part in Table 13.1. The left side of the table shows the mes-
sage field names, the right lists some of the user fields; user is a field within the
message that describes the sender. The variable dict is the resulting dictionary.

To simply solve the problem posed, all that would have to be done is to
print dict[‘text’], which is the message body. The value of dict[‘user’] is the
data for the sender of the message. There is a lot of that, mostly not useful to
anyone but an app developer (e.g., background color of the user’s window), but
dict[‘user’]’[‘screen_name’] is the Twitter identity of the sender, and dict[‘user’]
[‘location’] often indicates where they are. It would be possible to collect data on
where the largest number of tweets are being sent from, what kind of information
is being conveyed, and in this way perhaps develop an early warning system for
events happening in the world.

Table 13.1
Fields in a Twitter Message

Message fields Fields in the user structure
Coordinates (Coordinates) Represents
the geographic location of this Tweet as
reported by the user or client application.

created_at (String) The UTC datetime
that the user account was created on Twit-
ter.

created_at (String) UTC time when this
Tweet was created.

Description (String) The user-defined
string describing their account.

favorite_count (Integer) Indicates ap-
proximately how many times this
Tweet has been “liked” by Twitter
users.

geo_enabled (Boolean) When true, indi-
cates that the user has enabled the possi-
bility of geotagging their Tweets.

 Chapter 13 · Communicat ing with the Outside World ■ 501

Message fields Fields in the user structure
Id (Int64) The integer representation of the
unique identifier for this Tweet.

Id (64 bit int) The integer representation of
the unique identifier for this User.

in_reply_to_screen_name (String) If the
represented Tweet is a reply, this field will
contain the screen name of the original
author.

Lang (String) The code (BCP 47) for the
user’s declared user interface language.

Lang (String) When present, indicates a
language identifier corresponding to the
machine-detected language of the Tweet
text, or “und” if no language could be de-
tected.

listed_count (Int) The number of public
lists that this user is a member of.

Place (Places) When present, indicates
that the tweet is associated with (but not
necessarily originating from) a Place.

Location (String) The user-defined loca-
tion for this account’s profile. Not neces-
sarily a location.

retweet_count (Int) Number of times this
Tweet has been retweeted.

name (String) The name of the user, as
they’ve defined it. Not necessarily a real
name.

Source (String) Utility used to post the
Tweet, as an HTML-formatted string.

profile_image_url_https (String) A URL
pointing to the user’s avatar image.

Text (String) The actual body of the mes-
sage.

screen_name	 (String) The screen
name or alias that this user identifies them-
selves with. screen_names are unique but
subject to change.

User (Users) The user who posted this
Tweet. (see: structure to the right) some
attributes embedded within this object are
unreliable.

status	 (Tweets) If possible, the user’s
most recent tweet or retweet. In some cir-
cumstances, this data cannot be provided
and this field will be omitted, null, or
empty.

withheld_in_countries (Array of String)
When present, indicates a list of uppercase
two-letter country codes this content is
withheld from.

statuses_count (Int) The number of tweets
(including retweets) issued by the user.

time_zone (String) A string describing the
Time Zone this user declares themselves
within.

502 ■ Python: An Introduct ion to Programming

	13.5	 COMMUNICATING WITH OTHER LANGUAGES
Python is terrific for many things, but it can be quite slow. It is interpreted

and has a lot of overhead for many of its features; dynamic typing does not come
cheap. Also, it may be hard to easily access operating system functions from
Python. C, C++, and other languages do not have these problems. It’s possible to
write a program in Python that calls, for example, a C program to do complex
calculations of system calls.

Consider the problem of finding the greatest common divisor (GCD) between
two integers; that is, the largest number that divides evenly into both of them. If
the GCD between N and M is 1, then these numbers are relatively prime, and they
could find use in a random number generator.

Example: Find Two Large Relatively Prime Numbers

This problem will be solved using a C program to do the GCD calculation
and a Python program to pass it large numbers until a relatively prime par is
found. There are many C versions of the GCD program. This is a common first-
year programming assignment. One such is gcd.c, provided on the accompanying
disc:

#include "stdafx.h"
#include <stdio.h>

int _tmain(int argc, _TCHAR* argv[])
{
	 long n,m;
 scanf("%ld %ld",&n,&m);
 while(n!=m)
 {
 if(n>m)
 n-=m;
 else
 m-=n;
 }
 printf("%d",n);
 return 0;

This is written for Visual C++ 2010 Express, but very similar code will com-
pile for other compilers and systems. The basic idea is that it reads two large

ON THE CD

 Chapter 13 · Communicat ing with the Outside World ■ 503

numbers, named n and m, determines their largest common divisor, and prints
that number to standard output. The way that Python will communicate with this
C program is through the I/O system. C reads from standard input, and writes to
standard output. The Python program will co-opt input and output, pushing text
data containing the values of n and m to the input, and capturing standard output
and copying it to a string.

This requires the use of a module named subprocess that permits the pro-
gram to execute the gcd.exe program and connect to the standard I/O. A function
named Popen() takes the name of the file to be executed as a parameter and runs
it. It also allows the creation of pipes, which are data connections that can take the
place of files. The Popen() call that runs the gcd program is:
p = subprocess.Popen(ꞌgcd.exeꞌ,
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE)

Connecting stdin and stdout to subprocess PIPEs means that now Python
can perform I/O with them. When GCD starts to execute it expects two integers
on input. These can now be sent from the Python program like this:

p.stdin.write(data)

The expression p.stdin represents the file connection to the program, and
writing to it does the obvious thing. The Python program writes data to the C pro-
gram, and the C program reads it from stdin. Data should be of type bytes, and
should contain both large numbers in character form. Correspondingly, when the
C program has found the greatest common divisor, it writes to standard output.
Capturing this in Python:

s = str(p.stdout.readline())

The C program writes; the Python program reads. The value returned is of
type bytes again, so it is converted into a string.

The final Python solution calls the C program repeatedly until the GCD is 1:
import subprocess

n = 11111122
m = 121
data = bytes (str(n)+ ꞌ ꞌ+str(m), ꞌutf-8ꞌ)
while True:

504 ■ Python: An Introduct ion to Programming

 p = subprocess.Popen(ꞌgcd.exeꞌ,
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE)
 p.stdin.write(data)
 p.stdin.close()
 s = str(p.stdout.readline())
 print (s)
 if s == "bꞌ1ꞌ":
 print ("Numbers are ", n, m)
 break
 m = m + 1
 data = bytes (str(n)+ ꞌ ꞌ+str(m), ꞌutf-8ꞌ)

This method of communicating with other languages is quite universal, but
slower than passing parameters to functions and methods directly. There are a lot
of problems with calling functions in other languages, not the least of which con-
cerns typing. Python, dynamically typed interpreted language that it is, would
have to have the programmer perform some significant gymnastics to convert
lists or dictionaries into a form that C or Java could use.

	13.6	 SUMMARY
Design by contract has designers create formal specifications for compo-

nents, and using those involves a kind-of contract or agreement between pro-
grammers developing client software and those who built the modules and de-
signed the protocols. For Email, as an example, sender and receiver have to agree
on how to encode and decode a message, and how to access it from the network.
To send mail between different computers always requires a standard, a scheme
that is agreed upon by implementers of the system, a protocol.

The Simple Message Transfer Protocol is a specification of the process and
data needed to send an Email message. The Python module smtplib provides the
methods needed to interface with this system, which is to say that smtplib imple-
ments SMTP and provides a programmer access at various places. For reading
Email there are two schemes in play: the Post Office Protocol (POP) and the more
modern Internet Message Access Protocol (IMAP). An Email client must agree
to satisfy one of these. They Python module for IMAP is imaplib.

The File Transfer Protocol (FTP) is used to move entire files and directories
across networks. It provides the same sort of interface to data on a distance computer

 Chapter 13 · Communicat ing with the Outside World ■ 505

as would be expected from a file system on a desktop. The ftplib module offers
methods for handling this protocol. After authentication, commands are sent as
character strings, and files can be sent or received using analogs of read and write
operations.

FTP is built on top of lower level communication primitives such as sockets,
which create bidirectional data connections between two programs on different
computers.

Twitter sends out a stream of data containing all of the tweets sent by users,
and the client can scan these for tweets that are of interest (subscribed). This
stream can be captured using Python and the Tweepy module, and automatic
scanning of the feed can be done according to the user’s program.

It is also possible for Python to communicate with other programs written in
other languages by co-opting the input and output files for those programs and
feeding data into and extracting results from the I/O channels.

Exercises

	 1.	Write a simple Email sending program sendmail. It will ask for the destination
from the keyboard and accept the message that way too. Multiple destination
addresses can be specified by separating them with commas. The sender’s
Email address and the server name should be built into the program.

	 2.	Write an application that allows a user to specify a word or words and will
examine their mailbox for any Email that contains them. The corresponding
Email messages will be written to a text file named “search.txt.”

	 3.	Write a Python program that will download the files named “one.txt,” “two.
txt,” and “three.txt” from an ftp site specified by your instructor into files of
the same name on a desktop computer.

	 4.	Design and code a server program that will deal poker hands using the socket
protocol. When the server is connected to by a client, the client sends a string
“deal.” The server will generate a random poker hand and send it as text: The
spades suit in this scheme is: s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 sj sq sk; hearts are
“h,” diamonds are “d,” and clubs are “c.” Write a test program that reads and
prints the resulting hands.

	 5.	DIFFICULT. Write a two-player pong game using sockets. The game will
display a graphical version of the standard Pong screen on the local and

506 ■ Python: An Introduct ion to Programming

remote screens. The local player can move only the local paddle, and motions
by the remote player are reflected on the local screen. The ball is positioned
at the same place, as nearly as possible, on both screens simultaneously.

	 6.	There are words and phrases that many governments use to indicate a potential
security problem. They can examine emails and various social media outlets.
Examine the Twitter stream for tweets containing the words “assassination,”
“security,” “weapon,” or “hostage.” Print the tweet and location from which
it claims to be sent.

	 7.	How can the IP address of a distant site be determined? Search the Internet
for that information as it can be implemented in a Python program, and
implement a program that asks the user for a URL and returns an IP address
for that URL.

Notes and Other Resources

Python ftplib documentation: https://docs.python.org/3/library/ftplib.html
Search criteria in IMAP: http://tools.ietf.org/html/rfc3501#section-6.4.4
Tweep download: https://pypi.python.org/pypi/tweepy/3.4.0
Tweepy intro: http://docs.tweepy.org/en/latest/streaming_how_to.html
How to use the Twitter API to stream tweets. https://www.youtube.com/
watch?v=pUUxmvvl2FE
Twitter message fields: https://dev.twitter.com/overview/api/tweets
Twitter user fields:
JSON Tutorial: http://www.w3schools.com/json/

	 1.	Todd Campbell. (2002). The First Email Message, https://www.cs.umd.edu/
class/spring2002/cmsc434-0101/MUIseum/applications/firstemail.html

	 2.	Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Hendryk Nielsen, and
Arthur Secret. (1994). The World-Wide Web, Communications of the ACM,
37(8), 76–82.

	 3.	Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. (2010). Earthquake
shakes Twitter users: Real-time event detection by social sensors,
in Proceedings of the 19th International Conference on the World Wide
Web (WWW ’10), ACM, New York, NY, USA, 851–860.

■ ■ ■ ■ ■

In this chapter

The reason that there are two “versions” of Glib is that not all schools
and other institutions will permit installing new modules. The module
tkinter is standard with Python 3, but does not by itself offer the tools for
multimedia. The basic system consists of graphics operations, including
image input, output, and display.

For places where it is possible to install the pygame module, the dynamic Glib
module can be used. This offers the same tools as does the tkinter version plus has
sound, mouse and keyboard interaction, and video.

What follows is documentation for both systems.

	14.1	 GLIB TKINTER
BLACK = "#000000"
WHITE = "#ffffff"
RED = "#ff0000"

14Chapter

A Brief Glib
Reference

14.1	 Glib tkinter ��507

14.2	 Images �� 510

14.3	 Dynamic Glib�� 512

14.4	 Video�� 516

14.5	 Audio �� 518

14.6	 Interaction�� 518

14.7	 Other�� 518

508 ■ Python: An Introduct ion to Programming

GREEN = "#00ff00"
BLUE = "#0000ff"
BACKSPACE = '\b'

Width()

Return the width of the graphics window in pixels.

Height()

Return the height of the graphics window in pixels.

fill(r, g=1000, b=1000)

Turn on filling. Set the fill color for polygons, text color too, to (r,g,b) or just
r if one parameter is given.

nofill()

Turn filling off.

stroke(r, g=1000, b=1000)

Set the line and outline color to (r,g,b). If one parameter is given, then it is a
grey level.

nostroke()

Turn off outline drawing.

ellipsemode(z)

Set the mode for drawing ellipses. The default mode for drawing ellipses is
referred to as CENTER mode, where the center of the ellipse is given. There are
three others: RADIUS mode, in which the width and height parameters represent
semi-major and semi-minor axes; CORNER mode in which the upper left corner
is specified instead of the center; and CORNERS mode, in which the upper left
and the lower right corner of the bounding box are specified.

rectmode(z)

Set the mode for drawing rectangles. The default mode for drawing ellipses is
referred to as CENTER mode, in which x, y are the coordinates of the center; w
and h are the width and height. In RADIUS mode x, y are the coordinates of the
center; w and r are the horizontal and vertical distances to an edge. In CORNER

 Chapter 14 · A Brief Glib Reference ■ 509

mode x, y are the coordinates of the upper left corner; w and h are the width and
the height. In CORNERS mode x, y are the coordinates of the upper left corner;
w and h are the coordinates of the lower right corner.

ellipse(xpos, ypos, width, height)

Draw an ellipse. Also used for circles. Four modes as described in ellipse-
mode.

line(x0, y0, x1, y1)

Draw a line using the current stroke color between screen coordinates (x0,
y0) and (x1,y1).

point(x, y)

Draw a point (pixel) at location (x,y) in the current fill color.

rect(xpos, ypos, x2, y2)

Draw a rectangle. Same 4 modes as ellipse. Fill with the current fill color.

triangle (x0,y0, x1,y1, x2,y2)

Draw a triangle specified by three points.

bold()

Set font to bold.

italic()

Set font to italic.

normal()

Set the font weight and slant to normal (not bold) and roman (not italic).

setfont(s)

Set the font family to the name given in the string parameter s. Default is
“Helvetica.”

text(s, x, y)

Draw the text string s starting at screen coordinate (x,y).

510 ■ Python: An Introduct ion to Programming

quad (x0,y0, x1,y1, x2,y2, x3,y3)

Draw a quadrilateral having the four corners being (x0,y0), (x1,y1), (x2,y2)
and (x3,y3).

strokeweight (n)

Set the thickness of drawn lines and strokes to n pixels.

arc (x0, y0, x1, y1, start, angle, s=ARC)

Draw an arc. An arc is defined as a portion of an ellipse from a starting
angle for a specified number of degrees, as referenced from the center of the el-
lipse. The angle 0 degrees is horizontal and to the right; 90 degrees is upwards
(decreasing Y value). The ellipse is defined by a bounding rectangle, specifying
the upper left and lower right coordinates of a box that just holds the ellipse. The
final parameter being ARC means to draw only the curve; if it is CHORD then it
will draw the curve and a line joining the endpoints. PIESLICE draws the arc and
lines from the endpoints of the arc to the center of the ellipse.

cvtColor (z)

Take the grey value z and return a color object that has red=z, green=z, and
blue=z.

cvtColor3 (r,g,b)

Take the color component values r, g, and b (red, green, and blue) and return
a color object having those values.

background(r,g=1000,b=1000)

Set the background color to the color given by components (r,g,b). This ef-
fectively clears the graphics window as well.

textsize(n)

Change the size of text to n pixels high.

	14.2	 IMAGES
loadImage(s)

Read the image from the file whose name is stored in the parameter s and
return it as the value.

 Chapter 14 · A Brief Glib Reference ■ 511

image(im, x, y)

Display the image im at window coordinate (x,y).

copyImage (x)

Return a copy of the image parameter x.

getpixel (im, i, j)

Return the color of the pixel at location (i,j) of the image im.

setpixel (im, i, j, c)

Set the pixel value (color) of the image im at coordinates (i,j) to the color c.

grey (c)

 Return the grey level equivalent of the color c. It averages the three color
components.

red (c)

Extract and return the red component of the color passed as c.

green (c)

Extract and return the green component of the color passed as c.

blue (c)

Extract and return the blue component of the color passed as c.

save (im, s)

Save the image im in a file named by the string s.

imageSize (s)

Acquire the size (width, height in pixels) of an image that exists as a file
named s. Return a tuple with the (width,height). This can be executed outside of
the startdraw–enddraw block so that startdraw() can open a window of a size
appropriate to an image.

startdraw(xs=width, ys=height)

This indicates the beginning of a section of code within which drawing op-
erations will be performed. It opens a window on the screen with a width of xs

512 ■ Python: An Introduct ion to Programming

pixels and a height of ys pixels. It sets up a title on the window and does some
initializations, such as setting up a font, setting drawing modes, and establishing
a background color.

enddraw()

For users of tkinter, all this function does is to call mainloop(). For every-
one else, this function must be called in order that control can be passed to the
drawing functions and that the user’s drawing can be displayed in the graphics
window. It is the close to the block of code begun with the call to startdraw().

	14.3	 DYNAMIC GLIB
Symbolic names for special characters (LEFT, etc.) These are global vari-

ables that are used by the user.
K_BACKSPACE = pygame.K_BACKSPACE
K_TAB = pygame.K_TAB
K_CLEAR = pygame.K_CLEAR
K_RETURN = pygame.K_RETURN
K_PAUSE = pygame.K_PAUSE
K_ESCAPE = pygame.K_ESCAPE
K_SPACE = pygame.K_SPACE
K_EXCLAIM = pygame.K_EXCLAIM
K_QUOTEDBL = pygame.K_QUOTEDBL
K_HASH = pygame.K_HASH
K_DOLLAR = pygame.K_DOLLAR
K_AMPERSAND = pygame.K_AMPERSAND
K_QUOTE = pygame.K_QUOTE
K_LEFTPAREN = pygame.K_LEFTPAREN
K_RIGHTPAREN = pygame.K_RIGHTPAREN
K_ASTERISK = pygame.K_ASTERISK
K_PLUS = pygame.K_PLUS
K_COMMA = pygame.K_COMMA
K_MINUS = pygame.K_MINUS
K_PERIOD = pygame.K_PERIOD
K_SLASH = pygame.K_SLASH
K_0 = pygame.K_0
K_1 = pygame.K_1
K_2 = pygame.K_2
K_3 = pygame.K_3
K_4 = pygame.K_4

 Chapter 14 · A Brief Glib Reference ■ 513

K_5 = pygame.K_5
K_6 = pygame.K_6
K_7 = pygame.K_7
K_8 = pygame.K_8
K_9 = pygame.K_9
K_COLON = pygame.K_COLON
K_SEMICOLON = pygame.K_SEMICOLON
K_LESS = pygame.K_LESS
K_EQUALS = pygame.K_EQUALS
K_GREATER = pygame.K_GREATER
K_QUESTION = pygame.K_QUESTION
K_AT = pygame.K_AT
K_LEFTBRACKET = pygame.K_LEFTBRACKET
K_BACKSLASH = pygame.K_BACKSLASH
K_RIGHTBRACKET = pygame.K_RIGHTBRACKET
K_CARET = pygame.K_CARET
K_UNDERSCORE = pygame.K_UNDERSCORE
K_BACKQUOTE = pygame.K_BACKQUOTE
#K_a = pygame.K_a
K_b = pygame.K_b
K_c = pygame.K_c
K_d = pygame.K_d
K_e = pygame.K_e
K_f = pygame.K_f
K_g = pygame.K_g
K_h = pygame.K_h
K_i = pygame.K_i
K_j = pygame.K_j
K_k = pygame.K_k
K_l = pygame.K_l
K_m = pygame.K_m
K_n = pygame.K_n
K_o = pygame.K_o
K_p = pygame.K_p
K_q = pygame.K_q
K_r = pygame.K_r
K_s = pygame.K_s
K_t = pygame.K_t
K_u = pygame.K_u
K_v = pygame.K_v
K_w = pygame.K_w
K_x = pygame.K_x

514 ■ Python: An Introduct ion to Programming

K_y = pygame.K_y
K_z = pygame.K_z
K_DELETE = pygame.K_DELETE
K_KP0 = pygame.K_KP0
K_KP1 = pygame.K_KP1
K_KP2 = pygame.K_KP2
K_KP3 = pygame.K_KP3
K_KP4 = pygame.K_KP4
K_KP5 = pygame.K_KP5
K_KP6 = pygame.K_KP6
K_KP7 = pygame.K_KP7
K_KP8 = pygame.K_KP8
K_KP9 = pygame.K_KP9
K_KP_PERIOD = pygame.K_KP_PERIOD
K_KP_DIVIDE = pygame.K_KP_DIVIDE
K_KP_MULTIPLY = pygame.K_KP_MULTIPLY
K_KP_MINUS = pygame.K_KP_MINUS
K_KP_PLUS = pygame.K_KP_PLUS
K_KP_ENTER = pygame.K_KP_ENTER
K_KP_EQUALS = pygame.K_KP_EQUALS
K_UP = pygame.K_UP
K_DOWN = pygame.K_DOWN
K_RIGHT = pygame.K_RIGHT
K_LEFT = pygame.K_LEFT
K_INSERT = pygame.K_INSERT
K_HOME = pygame.K_HOME
K_END = pygame.K_END
K_PAGEUP = pygame.K_PAGEUP
K_PAGEDOWN = pygame.K_PAGEDOWN
K_F1 = pygame.K_F1
K_F2 = pygame.K_F2
K_F3 = pygame.K_F3
K_F4 = pygame.K_F4
K_F5 = pygame.K_F5
K_F6 = pygame.K_F6
K_F7 = pygame.K_F7
K_F8 = pygame.K_F8
K_F9 = pygame.K_F9
K_F10 = pygame.K_F10
K_F11 = pygame.K_F11
K_F12 = pygame.K_F12
K_F13 = pygame.K_F13

 Chapter 14 · A Brief Glib Reference ■ 515

K_F14 = pygame.K_F14
K_F15 = pygame.K_F15
K_NUMLOCK = pygame.K_NUMLOCK
K_CAPSLOCK = pygame.K_CAPSLOCK
K_SCROLLOCK = pygame.K_SCROLLOCK
K_RSHIFT = pygame.K_RSHIFT
K_LSHIFT = pygame.K_LSHIFT
K_RCTRL = pygame.K_RCTRL
K_LCTRL = pygame.K_LCTRL
K_RALT = pygame.K_RALT
K_LALT = pygame.K_LALT
K_RMETA = pygame.K_RMETA
K_LMETA = pygame.K_LMETA
K_LSUPER = pygame.K_LSUPER
K_RSUPER = pygame.K_RSUPER
K_MODE = pygame.K_MODE
K_HELP = pygame.K_HELP
K_PRINT = pygame.K_PRINT
K_SYSREQ = pygame.K_SYSREQ
K_BREAK = pygame.K_BREAK
K_MENU = pygame.K_MENU
K_POWER = pygame.K_POWER
K_EURO = pygame.K_EURO
K_A = 65
K_B = 66
K_C = 67
K_D = 68
K_E = 69
K_F = 70
K_G = 71
K_H = 72
K_I = 73
K_J = 74
K_K = 75
K_L = 76
K_M = 77
K_N = 78
K_O = 79
K_P = 80
K_Q = 81
K_R = 82

516 ■ Python: An Introduct ion to Programming

K_S = 83
K_T = 84
K_U = 85
K_V = 86
K_W = 87
K_X = 88
K_Y = 89
K_Z = 90

noloop()

Stop calling the draw function repeatedly. This has the effect of ceasing any
dynamic activity.
def size (xs, ys):
 global width, height, canvas
 width = xs
 height = ys
 canvas = pygame.display.set_mode((xs, ys),
 pygame.DOUBLEBUF, 32) # Make the sketch window
 pygame.display.set_caption('Drawing')

	14.4	 VIDEO
loadVideo (s)

Loads a video from the file named by the string s and returns a reference to
that video as a Gvideo class instance. This instance needs never be manipulated
by the programmer, only passed to other functions.

playVideo (m)

Play the video represented by the variable m.

pauseVideo(m)

Pause (or unpause if paused) the video represented by the variable m.

stopVideo (m)

Stop playing the video represented by the variable m.

rewindVideo (m)

Place the video m back at the beginning frame.

 Chapter 14 · A Brief Glib Reference ■ 517

isVideoPlaying (m)

Returns True if the video m is currently playing and False if not.

setVideoVolume(m, v)

Set the audio volume of the video m to a level between 0 (off) and 1
(maximum).

lengthVideo (m)

Return the length of the current video, in seconds.

whereVideo(m)

For the video m, return the number of seconds that the video has been playing
(i.e., current position)

getVideoFrame(m)

Return the number of the current frame playing in the video m.

setVideoFrame(m, f)

Set the position of the video m so that the next frame to play will be number f.

getVideoPixel(m, x, y)

Return the pixel at location (x,y) in the video frame from m currently being
displayed.

sizeVideo (m)

Return the size of a frame (width x height in pixels) of the video m.

locVideo (m, x, y, w, h)

Place the video m at position (x,y) on the graphics window, and give it size
(w,h).

videoSize (s)

Return the size (width, height) of the video in the file s without loading it. For
specifying the size of the graphics window.

518 ■ Python: An Introduct ion to Programming

	14.5	 AUDIO
loadSound (s)

Load a sound file where the file name is in string s. Return an object refer-
ence (handle) to that file.

playSound(a, loop=0)

Play the sound indicated by a.

def stopSound(a):

Stop playing the sound indicated by a.

volumeSound (a, v)

Set the volume of sound a to a value between 0 (off) and 1 (maximum).

durationSound (a)

Return the length of the sound s in seconds.

	14.6	 INTERACTION
mouse ()

Return the coordinates of the mouse cursor as a tuple (x,y).

	14.7	 OTHER
capture (s)

Save the image in the current graphics window as the image file s.

The Glib module contains two classes for internal use, an image class and a
video class. They are described here only for completeness, but if you plan to use
their internal code in any way please read it carefully from the source file and be
certain that you understand it.

An image class:
class Gimage:
 im = None # Image
 pixels = None # Pixels data
 w = h = 0

 Chapter 14 · A Brief Glib Reference ■ 519

 def setIm (self, x):
 def get (self, x, y):
 def set (self, x, y, c):
 def save (self, s):
 def draw (self, canvas, x, y):

A video class:
class Gvideo:
 def __init__ (self, name):
 def loadVideo (self, s):
 def play(self):
 def locVideo (self, x, y, w, h):
 def draw (self):
 def copy (self, x, y, w, h):
 def stop (self):
 def rewind (self):
 def is_playing (self):
 def length (self):
 def where (self):
 def get_frame (self):
 def pause(self):
 def get_frame_number(self):
 def draw_frame(self, f, iplay=0):
 def get_pixel(self, x, y):
 def auto_play (self):
 def set_volume(self, v):

A

Accessor, 224
Accumulator, 14

Load Accumulator, 14
Acoustic delay lines, 11
Addresses, 12
Advanced data files, 299–317

Binary files, 299–301
EXE, 317
HyperText Markup Language

(HTML), 316–317
Random access, 304–306
Maintaining the high score file in

order, 305–306
Standard file types, 306–315
GIF, 307–308
Image files, 306–307
JPEG, 309–310
PNG, 312–314
Sound files, 314–315
Tagged Image File Format (TIFF),

310–312
WAV file, 314
Struct module, 301–303

Aliasing, 161
Alohanet, 23
American Standard Code for

Information Interchange
(ASCII), 27

Analytical engine, 3
Assignment statements, 432

B

Babbage, Charles, 3
Basic algorithms, 361–398
Bernoulli numbers, 4
Binary numbers, 6

Arithmetic in, 9–11
Convert to decimal, 8

Bit, 8
Boot loader, 18
Branch if Accumulator is Zero

(BAZ), 17
Bristow, Steve, 452
Buffering, 200
Bushnell, Nolan, 452
Button, 21

C

Calculations by machine, 2–3
Change the working directory

(CWD), 490
Check box, 21
Cipher, 399

Class, 217–248
Data types and, 228–243
A bouncing ball, 231–237
A deck of cards, 229–231
Basic design, 237–238
Cat-a-pult, 237–243
Detailed design, 238–243
Duck typing, 246–248

Index

522 ■ Index

Sub and inheritance, 243–246
Objects in a video game, 243–246
Types and, 219–228
A really simple, 223–227
Encapsulation, 227–228

Clear Accumulator (CLA), 17
Client-server system, 26
Code table, 393
Collision, 23
Compression, 382–396

Huffman encoding, 385– 392
Huffman algorithm, 388
LZW, 392–396
Run length encoding, 383

Computer networks, 22–26
Internet, 24–25
World Wide Web, 25–26

Computer system layers, 17–22
Assemblers and compilers, 18–19
Graphical user interfaces (GUIs),

19–22
Concatenate, 107
Constructor, 221
Core, 12
Core dump, 12
Crossover, 418
Cryptography, 376–382

One-time pad, 378–379
Plaintext and ciphertext, 377
Public Key Encryption (RSA),

379–382
State cipher, 377
Stream cipher, 377
Symmetric key, 377

D

Data structures, 432
Decimal numbers, 8

Convert to binary, 8–9
Delta, 406
Design by contract, 504
Dictionary (Python), 287–293,304,

391
A naive Latin – English translation,

289–291
Functions for, 291–292
Loops and, 292–293

Differentiation, 406–407
2 and 4-point function

versions, 407
Documentation, 55–57
Docstring, 57
Drop–down list, 21

E

Email, 481–497
Communication between processes,

492–497
Communication between the client

and the server processes, 497
Packets and port number, 493
File Transfer Protocol

(FTP), 490
Ftplib, 490
Reading, 484–490
Procedure for sending, 485
Useful tags, 486–487
README File, 491
Send an, 481
Smtplib, 482

End of file condition, 201
Epoch, 376
Equation roots, 404–406

Common concepts, 406
Event, 325
Exception, 92, 199

 Index ■ 523

F

Fetch, 12
Fetch-execute cycle, 13, 17
File (s), 189–213

A little theory, 191–195
File storage on disk, 194–195
Slow file access, 195
Common things in, 190–191
Keyboard and input, 195–197
List of, 190
Writing to, 211–213
Appending data to a, 212–213

File descriptor or handle, 198
Formatted text and I/O, 294–299

NASA meteorite landing data,
295–299

Function(s), 144–184
Definition, 144–149
Generalize the histogram code for

other years, 147–149
Parameter or argument, 146
Syntax of a, 145
Use poundn to draw a histogram,

146–147
Execution, 149–170
Default parameters, 156–158
Functions as return values,

168–170
Game of sticks, 158–161
None, 158
Parameters, 153–156
Returning a value, 150–153
Scope, 161–163
Variable parameter lists,

163–165
Variables as functions, 165–168
Recursion, 170–176
Avoiding infinite, 175–176

Program design (Nim game),
178–184

Development process exposed,
182–184

G

Glib, 255, 283, 507–519
Audio, 518
Dynamic, 512–516

Functions and constants,
283–284

Images, 510–512
Interaction, 518–519
Play a video, 353–355
Static and dynamic, 324
tkinter, 507–510

Ellipse mode, 509
Useful functions in, 351–353

Video, 516–517
Graphics, 254–280
Graphic programming, 254–280

Generative art, 277–280
Histogram example,

264–268
Images, 271–277
Identifying a car, 274–275
Pixels, 273–274
Thresolding example, 275–276
Transparency, 276–277
Lines and curves, 260–262
Pie chart example, 268–271
Poixel level graphics, 257–260
Polygons, 262–263
Text, 263– 264
Window and colors, 255–257

Guess a number, 37, 39–40, 50–51,
71–72,

Solving problem, 40–41, 94–96

524 ■ Index

H

Hashing, 396–398
djb2, 397–398
sdbm, 398

Head crash, 193

I

Icon, 21
If Statements, 52–55, 432

Else, 54–55
Infinite loop, 70
Infinite recursion, 175
Initial guess, 406
Interpreter, 19
Integration, 408–410
Instruction register, 14
Internet Message Access Protocol

(IMAP), 485
Internet Protocol (IP), 24
Iteration, 184, 406

Maximum, 406
Iterative refinement, 184, 432

L

Linear programming, 167
List(s), 123–135

Append, 126–127
Count, 131
Editing, 125–126
Exceptions, 133–135
Extend, 127
Index, 128
Insert, 126
List comprehension, 131–132
Pop, 128–129
Remove, 127–128
Reverse, 130–131

Sort, 129–130
Tuples and, 132–133

Loading, 17
Longest common sequence (edit

distance), 421–427
Determining Longest Common

Subsequence (LCS),
422–427

Edit distance or Levenshtein
distance, 421

Smith–Waterman method, 422
Loops, 67, 432

Counting, 78– 79
For loop, 78
Nested, 84–86

M

Memory, 11–13
Mersenne Twister algorithm, 376
Method, 220
Multimedia, 323–356

Animation, 335–346
A ball in a box, 336–338
Change Background Color Using

the Mouse, 327–328
Draw a Circle at the Mouse Cursor,

325–327
Frame with two examples,

340–346
Many balls in a box, 338–340
Object, 336–340
Keyboard, 330–335
Pressing a “+” Creates a Random

Circle, 331–334
Reading a Character String,

334–335
Mouse interaction, 324–330
Button, 329–330

 Index ■ 525

Draw Lines Using the Mouse,
328–329

Mouse buttons, 328–330
RGBA colors, 346–347
Sound, 347–350
Controlling volume, 349
Play a sound, 348
Play a sound effect, 349–350
Video, 350–355
Play video using Glib, 353–355
Processing pixels, 355–356
Useful functions in Glib, 351–353

Multipurpose Internet Mail Extensions
(MIME) standard, 482

Mutation, 418
Mutators or setters, 224

N

Network Access Point (NAP), 25
Newline, 200
Newton’s method, 404

O

Object oriented programming –
breakout, 452–453

Optimization: maxima and minima,
410–420

Evolutionary or genetic algorithm,
416–420

Goldstein–Price function, 417
Fitting data to curves-regression,

413–416
Newton’s method, 411–413

P

Parameter or argument, 146

PDP–8, 14
Predefined names or system

variables, 39
Point, 136
Point of Presence (POP), 25
Post Office Protocol (POP), 485
Prime or non–prime number, 79–84

Else, 83–84
Exiting from a loop, 82–83

Problem as process, 453–470
Ball and paddle collusions,

466–467
Ball and tile collusions, 463–466
Collecting the classes, 461–462
Developing the paddle, 462–463
Finishing the game, 467–470
Initial coding for a tile, 456–457
Initial coding for the ball, 459–461
Initial coding for the paddle,

457–459
Procedural programming, 433–452

Centering, 443–445
Commands, 442
Filling, 443
List of system commands, 433–434
Other commands, 447–452
Pseudocode, 434
Right justification, 445–447
Top–down, 434–443

Program, 4
Program counter, 13
Programmability, 4
Programming language

communication, 502–504
Greatest common divisor

(GCD), 502
Prompt, 38
Public variables, 248
Puzzles, 74

526 ■ Index

PyCharm, 38
Pygame, 324
Python, 19, 36–62, 69, 75, 78, 90, 92,

101, 107, 109, 121, 123, 135,
144,153, 163, 177,191, 219,
228, 230, 272, 286, 293, 318,
323, 369, 373, 394, 470, 479,
485, 498, 502, 504, 507

Arrays, 293
Class-Syntax and Semantics,

221–223
Creating modules, 176–178
Dictionaries, 287–293
Executing, 37–39
List, 123–135
Python GUI, 38
Using files in, 197–211
Comma Separated Variable

(CSV), 205
Common file input operations,

202–205
End of file, 201
File not found exceptions, 199
Open a file, 198–200
Play jeopardy, 208–210
Print the planet name, 205–207
Reading from files, 200–211
The width statement, 210–211

Q

Quantization, 30

R

Random number(s), 74–78
Built–in function, 75
Function call, 76
Generation, 373–376

Linear congruential method,
374–376

Registers, 12
Repetition, 67–96

Drawing a histogram, 86–89
Exceptions and errors, 90–96
Loops in general, 89–90

Representation, 26–31
Reserved words, 39
Retrieve a file (RETR), 490
Rock–paper–scissors, 37, 40, 57–62,

73–78
Solving problem, 41–42
Exchanging information with

computers, 45–46
Number bases, 48–50
Strings, integers, and real numbers,

47–48
Variables and vales with GUI,

42–45
Types are dynamic (advanced),

60–62
Rules for programmers, 470–477

S

Sampling, 29
Script, source code or computer

program, 36
Searching, 369–373

Binary search, 371–373
Linear search, 371
Timings, 370–371

Secondary storage, 192
Swend or store a file

(STOR), 490
Sequence, 102
Set types, 135–138

Crap, 136–138

 Index ■ 527

Simple Mail Transfer Protocol
(SMTP), 480

Simpson’s Rule, 410
Slice, 106
Slider, 21
Sorting, 361–369

Merge sort, 365–369
Properties of, 365
Selection sort, 362–365

Square root, 76
Statements, 44
Stored programs, 13–17
String(s), 102–114

Comparing, 103–105
Editing, 107–110
For loops, 113
Methods, 110–112
Slicing, 105–107
Spanning multiple lines, 112–113

Stubs, 477
Synthesis programming, 432

T

The While Statements, 69–73
Modifying the game, 72–73

Tracks, 194
Transport Layer Security (TLS), 483

Transistor, 7
Tuple(s), 78, 115–123

Assignment, 121–122
Built–in functions for, 122–123
Delete, 119–120
In for loops, 116–118
Membership, 118–119
Update, 120–121

Turing, Alan, 13
Twitter, 497–501

Fields in a message, 500
StreamListener, 499
Tweepy, 498

Type bytes, 114–115

U

Universal Resource Locator
(URL), 26

V

Variable, 42

W

Widget, 20
Wozniak, Steve, 452

	Cover
	Title
	Copyright
	Contents
	Preface
	Chapter 0 Modern Computers

	0.1 Calculations by Machine
	0.2 How Computers Work and Why We M
ade Them
	0.2.1 Numbers

	Example: Base
	Convert Binary Numbers to Decimal
	Convert Decimal Numbers to Binary
	Arithmetic in Binary

	0.2.2	Memory
	0.2.3	Stored Programs

	0.3	Computer Systems Are Built in Layers
	0.3.1	Assemblers and Compilers
	0.3.2 Graphical User Interfaces (GUIs)
	Widgets

	0.4 Computer Networks
	0.4.1 Internet
	0.4.2 World Wide Web

	0.5 Representation
	0.6 Summary

	Chapter 1 Computers and Programming
	1.1 Solving a Problem Using a Computer
	1.2 Executing Python
	1.3 Guess A Number
	1.4 Rock-Paper-Scissors
	1.5 Solving the Guess a Number Problem
	1.6 Solving the Rock-Paper-Scissors Problem
	1.6.1 Variables and Values – Experimenting with the
Graphical User Interface
	1.6.2 Exchanging Information with the Computer
	1.6.3 Example 1: Draw a Circle Using Characters
	1.6.4 Strings, Integers, and Real Numbers
	1.6.5 Number Bases	
	1.6.6 Example 2: Compute the Circumference of any Circle
	1.6.7 Guess a Number Again	

	1.7 IF Statements
	1.7.1 Else

	1.8 Documentation
	1.9
Rock-Paper-Scissors Again
	1.10 Types Are Dynamic (Advanced)
	1.11 Summary

	Chapter 2 Repetition

	2.1 The WHILE Statement
	2.1.1 The Guess-A-Number Program Yet Again
	2.1.2 Modifying the Game

	2.2 Rock-Paper-Scissors Yet Again
	2.2.1 Random Numbers

	2.3 Counting Loops
	2.4 Prime or Non-Prime
	2.4.1 Exiting from a Loop
	2.4.2 Else

	2.5 Loops That are Nested
	2.6 Draw a Histogram
	2.7 Loops in General
	2.8 Exceptions and Errors
	2.8.1 Problem: A Final Look at Guess a Number

	2.9 Summary

	Chapter 3 Sequences: Strings, Tuples, and Lists

	3.1 Strings

	3.1.1 Comparing Strings

	Problem: Does a City Name, Entered at the Console, Come
before or after the Name Denver?

	3.1.2 Slicing – Extracting Parts of Strings
	Problem: Identify a “Print” Statement in a String

	3.1.3 Editing Strings
	Problem: Create a JPEG File Name from a Basic String
	Problem: Change the Suffix of a File Name
	Problem: Reverse the Order of Characters in a String
	Problem: Is a Given File Name That of a Python Program?

	3.1.4 String Methods
	3.1.5 Spanning Multiple Lines
	3.1.6 For Loops Again

	3.2 The Type Bytes
	3.3 Tuples

	3.3.1 Tuples in For Loops
	Problem: Print the Number of Neutrons in an Atomic Nucleus

	3.3.2 Membership
	Problem: What Even Numbers Less than or Equal to 100 are Also Perfect Squares?

	3.3 Delete
	Problem: Delete the Element Lithium from the Tuple Atoms, along with Its Atomic Number

	3.3.4 Update
	Problem: Change the Entry for Lithium to an Entry for Oxygen

	3.3.5 Tuple Assignment
	3.3.6 Built-In Functions for Tuples

	3.4 Lists

	Problem: Compute the Average (Mean) of a List of Numbers
	3.4.1 Editing Lists
	3.4.2 Insert
	3.4.3 Append
	3.4.4 Extend
	3.4.5 Remove
	3.4.6 Index
	3.4.7 P
op
	3.4.8 Sort

	3.4.9 Reverse

	3.4.10 Count

	3.4.11 List Comprehension
	3.4.12 Lists and Tuples

	3.4.13 Exceptions

	Problem: Delete the Element Helium from a List

	Problem: Delete a Specified Element from a List

	3.5 Set Types
	3.5.1 Example: Craps

	3.6 Summary

	Chapter 4 Functions

	4.1 Function Definition: Syntax and Semantics
	4.1.1	Problem: Use poundn to Draw a Histogram
	4.1.2	Problem: Generalize the Histogram Code for Other Years

	4.2 Function Execution
	4.2.1 Returning a Value
	Problem: Write a Function to Calculate the Square Root of its Parameter

	4.2.2 Parameters
	4.2.3 Default Parameters
	4.2.4 None
	4.2.5 Example: The Game of Sticks
	4.2.6 Scope

	4.2.7 Variable Parameter Lists
	4.2.8 Variables as Functions
	Example: Find the Maximum Value of a Function

	4.2.9 Functions as Return Values

	4.3 Recursion

	4.3.1	Avoiding Infinite Recursion

	4.4	Creating Python Modules
	4.5 Program Design Using Functions – Example: The Game of Nim
	4.5.1 The Development Process Exposed

	4.6 Summary

	Chapter 5 Files: Input and Output

	5.1 What Is a File? A Little “Theory”
	5.1.1 How Are Files Stored on a Disk?
	5.1.2 File Access is Slow

	5.2 Keyboard Input
	5.2.1 Problem: Read a Number from the Keyboard
and Divide It by 2

	5.3 Using Files in Python: Less Theory, More Practice
	5.3.1 Open a File

	File Not Found Exceptions

	5.3.2 Reading from Files
	End of File

	Common File Input Operations

	CSV Files
	Problem: Print the Names of Planets Having Fewer
Than Ten Moons
	Problem: Play Jeopardy Using a CSV Data Set

	The With Statement

	5.4 Writing to Files

	Example: Write a Table of Squares to a File
	5.4.1 Appending Data to a File
	Example: Append Another 20 Squares to the Table of Squares File

	5.5 Summary

	Chapter 6 Classes

	6.1 Classes and Types

	6.1.1 The Python Class – Syntax and Semantics
	6.1.2 A Really Simple Class
	6.1.3 Encapsulation

	6.2 Classes and Data Types
	6.2.1 Example: A Deck of Cards
	6.2.2 A Bouncing Ball
	6.2.3 Cat-A-Pult
	Basic Design

	Detailed Design

	6.3 Subclasses and Inheritance
	6.3.1 Non-Trivial Example: Objects in a Video Game

	6.4 Duck Typing

	6.5 Summary

	Chapter 7 Graphics

	7.1 Introduction to Graphics Programming
	7.1.1 Essentials: The Graphics Window and Colors
	7.1.2
Pixel Level Graphics
	Example: Create a Page of Notepaper

	Example: Creating a Color Gradient

	7.1.3 Lines and Curves
	Example: Notepaper Again

	7.1.4 Polygons
	7.1.5 Text
	7.1.6 Example: A Histogram
	7.1.7 Example: A Pie Chart
	7.1.
8 Images
	Pixels

	Example: Identifying a Green Car
	Example: Thresholding
	Transparency

	7.1.9 Generative Art

	7.2 Summary

	Chaper 8 Manipulating Data

	8.1 Dictionaries

	8.1.1 Example: A Naive Latin – English Translation
	8.1.2 Functions for Dictionaries
	8.1.3 Dictionaries and Loops

	8.2 Arrays

	8.3 Formatted Text, Formatted I/O
	8.3.1 Example: NASA Meteorite Landing Data

	8.4	Advanced Data Files
	8.4.1 Binary Files

	Example: Create a File of Integers

	8.4.2
The Struct Module
	Example: A Video Game High Score File

	8.4.3 Random Access

	Example: Maintaining the High Score File in Order

	8.5 Standard File Types
	8.5.1 Image Files
	8.5.2 Gif

	8.5.3 Jpeg

	8.5.4 Tiff

	8.5.5 Png

	8.5.6 Sound Files

	Wav

	8.5.7 Other Files

	HTML

	Exe

	8.6 Summary

	Chapter 9 Multimedia

	9.1 Mouse Interaction
	Example: Draw a Circle at the Mouse Cursor
	Example: Change Background Color Using the Mouse

	9.1.1 Mouse Buttons

	Example: Draw Lines Using the Mouse
	Example: A Button

	9.2 The Keyboard

	Example: Pressing a “+” Creates a Random Circle
	Example: Reading a Character String

	9.3 Animaiton

	9.3.1 Object Animation
	Example: A Ball in a Box
	Example: Many Balls in a Box

	9.3.2 Frame Animation

	Example: Read Frames and Play Them Back as
an Animation
	Example: Simulation of the Space Shuttle Control Console (A Class That Will Draw an Animation at a
Specific Location)

	9.4 RGBA Colors – Transparency
	9.5 Sound

	Example: Play a Sound

	Example: Control Volume Using the Keyboard. Pause and Unpause
	Example: Play a Sound Effect at the Right Moment: Bounces

	9.6 Video

	Example: Carclub – Display the Video carclub2.mpg (Annotated)
	Exercise: Threshold a Video (Processing Pixels)

	9.7 Summary

	Chapter 10 Basic Algorithms

	10.1 Sorting

	10.1.1 Selection Sort	
	10.1.2 Merge Sort

	10.2 Searching
	10.2.1 Timings
	10.2.2 Linear Search
	10.2.3 Binary Search

	10.3 Random Number Generation
	10.3.1 Linear Congruential Method

	10.4 Cryptography
	10.4.1 One-Time Pad
	10.4.2 Public Key Encryption (RSA)
	Example: Encrypt the Message “Depart at Dawn” Using RSA

	10.5 Compression
	10.5.1 Huffman Encoding
	10.5.2 LZW Compression

	10.6 Hashing

	djb2

	10.6.1 sdbm

	10.7 Summary

	Chapter 11 Programming for the Sciences
	11.1 Finding Roots of Equations
	11.2 Differentiation
	11.3 Integration
	11.4 Optimization: Finding Maxima and Minima
	11.4.1 Newton Again	
	11.4.2 Fitting Data to Curves – Regression
	11.4.3 Evolutionary Methods

	11.5 Longest Common Subsequence (Edit Distance)
	11.5.1	Determining Longest Common Subsequence (LCS)

	11.6 Summary

	Chapter 12 How to Write Good Programs
	12.1 Procedural Programming – Word Processing
	12.1.1 Top-Down
	12.1.2 Centering
	12.1.3 Right Justification
	12.1.4 Other Commands

	12.2 Object Oriented Programming – Breakout
	12.3 Describing the Problem as a Process
	12.3.1	Initial Coding for a Tile
	12.3.2	Initial Coding for the Paddle
	12.3.3	Initial Coding for the Ball
	12.3.4	Collecting the Classes
	12.3.5	Developing the Paddle

	12.3.6 Ball and Tile Collisions
	12.3.7 Ball and Paddle Collisions
	12.3.8 Finishing the Game

	12.4 Rules for Programmers

	12.5 Summary

	Chapter 13 Communicating with the Outside World

	13.1 EMail

	Example: Send an Email
	13.1.1 Reading Email

	Example: Display the Subject Headers for Emails in Inbox

	13.2 FTP

	Example: Download and Display the README File from an FTP Site

	13.3 Communication Between Processes
	Example: A Server That Calculates Squares

	13.4 Twitter

	Example: Connect to the Twitter Stream and Print Specific Messages

	13.5	Communicating with Other Languages
	Example: Find Two Large Relatively Prime Numbers

	13.6 Summary

	Chaper 14 A Brief Glib Reference

	14.1 Glib tkinter
	14.2 Images

	14.3 Dynamic Glib

	14.4 Video

	14.5 Audio

	14.6 Interaction

	14.7 Other

	Index

