[image: First Edition]
Parallel and Concurrent Programming in Haskell

Simon Marlow

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
Preface

As one of the developers of the Glasgow Haskell Compiler (GHC) for almost
15 years, I have seen Haskell grow from a niche research language
into a rich and thriving ecosystem. I spent a lot of
that time working on GHC’s support for parallelism and concurrency.
One of the first things I did to GHC in 1997 was to rewrite its
runtime system, and a key decision we made at that time was to build
concurrency right into the core of the system rather than making it an
optional extra or an add-on library. I like to think this decision was founded upon
shrewd foresight, but in reality it had as much to do with the
fact that we found a way to reduce the overhead of concurrency to near
zero (previously it had been on the order of 2%; we’ve always been
performance-obsessed). Nevertheless, having concurrency be
non-optional meant that it was always a first-class part of the
implementation, and I’m sure that this decision was instrumental in
bringing about GHC’s solid and lightning-fast concurrency
support.
Haskell has a long tradition of being associated with parallelism.
To name just a few of the projects, there was the pH variant of Haskell derived from the Id language, which was
designed for parallelism, the GUM system for running parallel Haskell
programs on multiple machines in a cluster, and the GRiP system: a
complete computer architecture designed for running parallel
functional programs. All of
these happened well before the current multicore revolution, and the
problem was that this was the time when Moore’s law was still giving
us ever-faster computers. Parallelism was difficult to achieve, and
didn’t seem worth the effort when ordinary computers were getting
exponentially faster.
Around 2004, we decided to build a parallel implementation of the GHC
runtime system for running on shared memory multiprocessors, something
that had not been done before. This was just before the multicore
revolution. Multiprocessor machines were fairly common, but multicores
were still around the corner. Again, I’d like to think the decision to
tackle parallelism at this point was enlightened foresight, but it had
more to do with the fact that building a shared-memory parallel
implementation was an interesting research problem and sounded like
fun. Haskell’s purity was essential—it meant that we could avoid
some of the overheads of locking in the runtime system and garbage
collector, which in turn meant that we could reduce the overhead of
using parallelism to a low-single-digit percentage. Nevertheless, it
took more research, a rewrite of the scheduler, and a new parallel
garbage collector before the implementation was really usable and able
to speed up a wide range of programs. The paper I presented at the International Conference on Functional Programming (ICFP) in 2009 marked the turning point from an interesting prototype into a
usable tool.
All of this research and implementation was great fun, but good-quality resources for teaching programmers how to use parallelism and
concurrency in Haskell were conspicuously absent. Over the last
couple of years, I was fortunate to have had the opportunity to teach two
summer school courses on parallel and concurrent programming in
Haskell: one at the Central European Functional Programming (CEFP) 2011 summer school in Budapest, and the other the CEA/EDF/INRIA 2012
Summer School at Cadarache in the south of France. In preparing the
materials for these courses, I had an excuse to write some in-depth
tutorial matter for the first time, and to start collecting good
illustrative examples. After the 2012 summer school I had about
100 pages of tutorial, and thanks to prodding from one or two people
(see the Acknowledgments), I decided to turn it into a book. At the
time, I thought I was about 50% done, but in fact it was probably
closer to 25%. There’s a lot to say! I hope you enjoy the results.
Audience

You will need a working knowledge of Haskell, which is not covered in
this book. For that, a good place to start is an introductory book
such as Real World Haskell (O’Reilly), Programming in Haskell (Cambridge University Press), Learn You a Haskell for Great Good! (No Starch Press), or Haskell: The Craft of Functional Programming (Addison-Wesley).

How to Read This Book

The main goal of the book is to get you programming competently with
Parallel and Concurrent Haskell. However, as you probably know by
now, learning about programming is not something you can do by reading
a book alone. This is why the book is deliberately practical: There
are lots of examples that you can run, play with, and extend.
Some of the chapters have suggestions for exercises you can try
out to get familiar with the topics covered in that chapter, and I
strongly recommend that you either try a few of these, or code up some
of your own ideas.
As we explore the topics in the book, I won’t shy away from pointing
out pitfalls and parts of the system that aren’t perfect. Haskell has
been evolving for over 20 years but is moving faster today than at any
point in the past. So we’ll encounter inconsistencies and parts that
are less polished than others. Some of the topics covered by the book
are very recent developments: Chapters 4, 5, 6, and pass:[14 cover frameworks that
were developed in the last few years.
The book consists of two mostly independent parts: Part I
and Part II. You should feel free to start with either
part, or to flip between them (i.e., read them concurrently!). There
is only one dependency between the two parts: Chapter 13 will
make more sense if you have read Part I first, and in
particular before reading The ParIO monad, you should have
read Chapter 4.
While the two parts are mostly independent from each other, the chapters should be read sequentially within each part. This isn’t a reference
book; it contains running examples and themes that are developed across
multiple chapters.

Conventions Used in This Book

The following typographical conventions are used in this book:
	
Italic

	
Used for emphasis, new terms, URLs, Unix commands and utilities, and file and directory names.

	
Constant width

	
Indicates variables, functions, types, parameters, objects, and other programming constructs.

Tip
This icon signifies a tip, suggestion, or a general note.

Caution
This icon indicates a trap or pitfall to watch out for, typically
something that isn’t immediately obvious.

Code samples look like this:
timetable1.hs

search :: (partial -> Maybe solution) -- [image: 1]
 -> (partial -> [partial])
 -> partial
 -> [solution]
The heading gives the filename of the source file containing the code
snippet, which may be found in the sample code; see Sample Code for
how to obtain the sample code. When there are multiple snippets
quoted from the same file, usually only the first will have the
filename heading.
	[image: 1]
	
There will often be commentary referring to individual lines in
the code snippet, which look like this.

Commands that you type into the shell look like this:
$./logger
hello
bye
logger: stop
The $ character is the prompt, the command follows it, and the rest
of the lines are the output generated by the command.
GHCi sessions look like this:
> extent arr
(Z :. 3) :. 5
> rank (extent arr)
2
> size (extent arr)
15
I often set GHCi’s prompt to the character > followed by a space, because
GHCi’s default prompt gets overly long when several modules are
imported. You can do the same using this command in GHCi:
Prelude> :set prompt "> "
>

Using Sample Code

The sample code that accompanies the book is available online; see
Sample Code for details on how to get it and build it. For
information on your rights to use, modify, and redistribute the sample
code, see the file LICENSE in the sample code distribution.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.
Safari Books Online offers a range of product mixes and pricing programs for organizations, government agencies, and individuals. Subscribers have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://oreil.ly/parallel-concurrent-prog-haskell.
To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

For several months I have had a head full of Parallel and Concurrent
Haskell without much room for anything else, so firstly and most
importantly I would like to thank my wife for her encouragement,
patience, and above all, cake, during this project.
Secondly, all of this work owes a lot to Simon Peyton Jones, who has
led the GHC project since its inception and has always been my richest
source of inspiration. Simon’s relentless enthusiasm and technical
insight have been a constant driving force behind GHC.
Thanks to Mary Sheeran and Andres Löh (among others), who persuaded
me to turn my tutorial notes into this book, and thanks to the
organizers of the CEFP and CEA/EDF/INRIA summer schools for inviting me to
give the courses that provided the impetus to get started, and to the
students who attended those courses for being my guinea pigs.
Many thanks to my editor, Andy Oram, and the other folks at O’Reilly
who helped this book become a reality.
The following people have helped with the book in some way, either by
reviewing early drafts, sending me suggestions, commenting on the
online chapters, writing some code that I borrowed (with attribution,
I hope), writing a paper or blog post from which I took ideas, or
something else (if I’ve forgotten you, I’m sorry): Joey Adams, Lennart Augustsson, Tuncer
Ayaz, Jost Berthold, Manuel Chakravarty, Duncan Coutts, Andrew Cowie,
Iavor Diatchki, Chris Dornan, Sigbjorn Finne, Kevin Hammonad, Tim
Harris, John Hughes, Mikolaj Konarski, Erik Kow, Chris Kuklewicz, John
Launchbury, Roman Leshchinskiy, Ben Lippmeier, Andres Löh,
Hans-Wolfgang Loidl, Ian Lynagh, Trevor L. McDonell, Takayuki
Muranushi, Ryan Newton, Mary Sheeran, Wren ng Thornton, Bryan O’Sullivan, Ross
Paterson, Thomas Schilling, Michael Snoyman, Simon Thomson, Johan
Tibell, Phil Trinder, Bas Van Dijk, Phil Wadler, Daniel Winograd-Cort,
Nicolas Wu, and Edward Yang.
Finally, thanks to the Haskell community for being one of the most friendly,
inclusive, helpful, and stimulating online open source communities I’ve
come across. We have a lot to be proud of, folks; keep it up.

Chapter 1. Introduction

For a long time, the programming community has known that
programming with threads and locks is hard. It often requires an
inordinate degree of expertise even for simple problems and leads to
programs that have faults that are hard to diagnose. Still, threads and locks
are general enough to express everything we might need to write, from
parallel image processors to concurrent web servers, and there is an
undeniable benefit in having a single general API. However, if we
want to make programming concurrent and parallel software easier, we
need to embrace the idea that different problems require different
tools; a single tool just doesn’t cut it. Image processing is
naturally expressed in terms of parallel array operations, whereas
threads are a good fit in the case of a concurrent web server.
So in Haskell, we aim to provide the right tool for the job, for as
many jobs as possible. If a job is found for which Haskell doesn’t
have the right tool, then we try to find a way to build it. The
inevitable downside of this diversity is that there is a lot to learn,
and that is what this book is all about. In this book, I’ll discuss
how to write parallel and concurrent programs in Haskell, ranging from
the simple uses of parallelism to speed up computation-heavy programs
to the use of lightweight threads for writing high-speed concurrent
network servers. Along the way, we’ll see how to use Haskell to write
programs that run on the powerful processor in a modern graphics card
(GPU), and to write programs that can run on multiple machines in a
network (distributed programming).
That is not to say that I plan to cover every experimental programming
model that has sprung up; if you peruse the packages on Hackage, you’ll
encounter a wide variety of libraries for parallel and concurrent
programming, many of which were built to scratch a particular itch, not
to mention all the research projects that aren’t ready for real-world
use yet. In this book I’m going to focus on the APIs that can be used
right now to get work done and are stable enough to rely upon in
production. Furthermore, my aim is to leave you with a firm grasp of how
the lowest layers work, so that you can build your own
abstractions on top of them if you should need to.
Terminology: Parallelism and Concurrency

In many fields, the words parallel and concurrent are synonyms;
not so in programming, where they are used to describe fundamentally
different concepts.
A parallel program is one that uses a multiplicity of computational
hardware (e.g., several processor cores) to perform a computation more
quickly. The aim is to arrive at the answer earlier, by delegating
different parts of the computation to different processors that
execute at the same time.
By contrast, concurrency is a program-structuring technique in
which there are multiple threads of control. Conceptually, the
threads of control execute “at the same time”; that is, the user
sees their effects interleaved. Whether they actually execute at the
same time or not is an implementation detail; a concurrent program can
execute on a single processor through interleaved execution or on
multiple physical processors.
While parallel programming is concerned only with efficiency,
concurrent programming is concerned with structuring a program that
needs to interact with multiple independent external agents (for
example, the user, a database server, and some external clients).
Concurrency allows such programs to be modular; the thread that
interacts with the user is distinct from the thread that talks to the
database. In the absence of concurrency, such programs have to be
written with event loops and callbacks, which are typically more
cumbersome and lack the modularity that threads offer.
The notion of “threads of control” does not make sense in a purely
functional program, because there are no effects to observe, and the
evaluation order is irrelevant. So concurrency is a structuring
technique for effectful code; in Haskell, that means code in the IO
monad.
A related distinction is between deterministic and
nondeterministic programming models. A deterministic
programming model is one in which each program can give only one
result, whereas a nondeterministic programming model admits programs
that may have different results, depending on some aspect of the
execution. Concurrent programming models are necessarily
nondeterministic because they must interact with external agents that
cause events at unpredictable times. Nondeterminism has some notable
drawbacks, however: Programs become significantly harder to test and
reason about.
For parallel programming, we would like to use deterministic
programming models if at all possible. Since the goal is just to
arrive at the answer more quickly, we would rather not make our
program harder to debug in the process. Deterministic parallel
programming is the best of both worlds: Testing, debugging, and
reasoning can be performed on the sequential program, but the program
runs faster with the addition of more processors. Indeed, most computer
processors themselves implement deterministic parallelism in the form
of pipelining and multiple execution units.
While it is possible to do parallel programming using concurrency,
that is often a poor choice because concurrency sacrifices
determinism. In Haskell, most parallel programming models are
deterministic. However, it is important to note that deterministic
programming models are not sufficient to express all kinds of parallel
algorithms; there are algorithms that depend on internal
nondeterminism, particularly problems that involve searching a
solution space. Moreover, we sometimes want to parallelize programs
that really do have side effects, and then there is no alternative but
to use nondeterministic parallel or concurrent programming.
Finally, it is entirely reasonable to want to mix parallelism and
concurrency in the same program. Most interactive programs need to
use concurrency to maintain a responsive user interface while
compute-intensive tasks are being performed in the background.

Tools and Resources

To try out the sample programs and exercises from this book, you will
need to install the Haskell
Platform. The Haskell
Platform includes the GHC compiler and all the important libraries,
including the parallel and concurrent libraries we shall be using.
The code in this book was tested with the Haskell Platform version
2012.4.0.0, but the sample code will be updated as new versions of the
platform are released.
Some chapters require the installation of additional packages.
Instructions for installing the extra dependencies can be found in
Sample Code.
Additionally, I recommend installing ThreadScope. ThreadScope is a
tool for visualizing the execution of Haskell programs and is
particularly useful for gaining insight into the behavior of Parallel
and Concurrent Haskell code. On a Linux system,
ThreadScope is probably available direct from your distribution, and
this is by far the easiest way to get it. For example, on Ubuntu, you
can install it through a simple:
$ sudo apt-get install threadscope
For instructions on how to install ThreadScope on
other systems, see the Haskell website.
While reading this book, I recommend that you have the following
Documentation in hand:
	
The GHC User’s Guide.

	
The Haskell Platform library documentation, which can be found
 on the main Haskell Platform site. Any
 types or functions that are used in this book that are not
 explicitly described can be found documented there.

	
Documentation for packages not in the Haskell Platform, which can be found
 on Hackage. To search for
 documentation for a particular function or type, use
 Hoogle.

It should be noted that the majority of the APIs used in this book are
not part of the Haskell 2010 standard. They are provided by add-on
packages, some of which are part of the Haskell Platform, while the rest
are available on Hackage.

Sample Code

The sample code is collected together in the package
parconc-examples on Hackage. To download and unpack it, run:
$ cabal unpack parconc-examples
Then, install the dependent packages:
$ cd parconc-examples
$ cabal install --only-dependencies
Next, build all the sample programs:
$ cabal build
The parconc-examples package will be updated as necessary to follow
future changes in the Haskell Platform or other APIs.

Part I. Parallel Haskell

Now that processor manufacturers have largely given up trying to
squeeze more performance out of individual processors and have
refocused their attention on providing us with more processors
instead, the biggest gains in performance are to be had by using
parallel techniques in our programs so as to make use of these extra
cores. Parallel Haskell is aimed at providing access to multiple
processors in a natural and robust way.
You might wonder whether the compiler could automatically parallelize
programs for us. After all, it should be easier to do this in a purely
functional language, where the only dependencies between computations
are data dependencies, which are mostly perspicuous and thus
readily analyzed. However, even in a purely functional language,
automatic parallelization is thwarted by an age-old problem: To make
the program faster, we have to gain more from parallelism than we lose
due to the overhead of adding it, and compile-time analysis
cannot make good judgments in this area. An alternative approach
is to use runtime profiling to find good candidates for
parallelization and to feed this information back into the compiler.
Even this, however, has not been terribly successful in practice.
Fully automatic parallelization is still a pipe dream. However, the
parallel programming models provided by Haskell do succeed in
eliminating some mundane or error-prone aspects traditionally
associated with parallel programming:
	
Parallel programming in Haskell is deterministic: The parallel
program always produces the same answer, regardless of how many
processors are used to run it. So parallel programs can be debugged
without actually running them in parallel. Furthermore, the
programmer can be confident that adding parallelism will not
introduce lurking race conditions or deadlocks that would be hard to eliminate with testing.

	
Parallel Haskell programs are high-level and declarative and do not
explicitly deal with concepts like synchronization or
communication. The programmer indicates where the parallelism is,
and the details of actually running the program in parallel are left
to the runtime system. This is both a blessing and a curse:

	
By embodying fewer operational details, parallel Haskell programs
are abstract and are therefore likely to work on a wide range of
parallel hardware.

	
Parallel Haskell programs can take advantage of existing
highly tuned technology in the runtime system, such as parallel
garbage collection. Furthermore, the program gets to benefit from
future improvements made to the runtime with no additional effort.

	
Because a lot of the details of execution are hidden, performance
problems can be hard to understand. Moreover, the programmer has
less control than he would in a lower-level programming
language, so fixing performance problems can be tricky. Indeed,
this problem is not limited to Parallel Haskell: It will be
familiar to anyone who has tried to optimize Haskell programs at
all. In this book, I hope to demonstrate how to identify and work
around the most common issues that can occur in practice.

The main thing that the parallel Haskell programmer has to think about
is partitioning: dividing up the problem into pieces that can be
computed in parallel. Ideally, you want to have enough tasks to keep all the processors busy continuously. However, your efforts
may be frustrated in two ways:
	
Granularity

	
If you make your tasks too small,
the overhead of managing the tasks outweighs any benefit you
might get from running them in parallel. So granularity should
be large enough to dwarf overhead, but not too large,
because then you risk not having enough work to keep all the
processors busy, especially toward the end of the execution
when there are fewer tasks left.

	
Data dependencies

	
When one task depends on another, they must be performed sequentially.
The first two programming models we will be encountering in this
book take different approaches to data dependencies: In Chapter 3, data dependencies are entirely implicit,
whereas in Chapter 4 they are
explicit. Programming with explicit data dependencies is less concise,
but it can be easier to understand and fix problems when the data
dependencies are not hidden.

In the following chapters, we will describe the various parallel
programming models that Haskell provides:
	
Chapters 2 and 3 introduce
the Eval monad and Evaluation Strategies, which are suitable for
expressing parallelism in Haskell programs that are not
heavily numerical or array-based. These programming models are
well established, and there are many good examples of using them to
achieve parallelism.

	
Chapter 4 introduces the Par monad, a more recent
parallel programming model that also aims at parallelizing ordinary
Haskell code but with a different trade-off: It affords the
programmer more control in exchange for some of the conciseness
and modularity of Strategies.

	
Chapter 5 looks at the Repa library, which provides a rich
set of combinators for building parallel array computations. You
can express a complex array algorithm as the composition
of several simpler operations, and the library automatically
optimizes the composition into a single-pass algorithm using a
technique called fusion. Furthermore, the implementation of the
library automatically parallelizes the operation using the
available processors.

	
Chapter 6 discusses programming with a graphics processing unit (GPU) using the
 Accelerate library, which offers a similar programming model to
Repa but runs the computation directly on the GPU.

Parallelizing Haskell code can be a joyful experience: Adding a small
annotation to your program can suddenly make it run several times
faster on a multicore machine. It can also be a frustrating
experience. As we’ll see over the course of the next few chapters,
there are a number of pitfalls waiting to trap you. Some of these are
Haskell-specific, and some are part and parcel of parallel programming
in any language. Hopefully by the end you’ll have built up enough of
an intuition for parallel programming that you’ll be able to achieve
decent parallel speedups in your own code using the techniques
covered.
Keep in mind while reading this part of the book that obtaining reliable
results with parallelism is inherently difficult because in today’s
complex computing devices, performance depends on a vast number of
interacting components. For this reason, the results I get from
running the examples on my computers might differ
somewhat from the results you get on your hardware. Hopefully the
difference isn’t huge—if it is, that might indicate a problem in GHC
that you should report. The important thing is to be aware that
performance is fragile, especially where parallelism is concerned.

Chapter 2. Basic Parallelism: The Eval Monad

This chapter will teach you the basics of adding parallelism to your
Haskell code. We’ll start with some essential background about lazy
evaluation in the next section before moving on to look at how to use
parallelism in The Eval Monad, rpar, and rseq.
Lazy Evaluation and Weak Head Normal Form

Haskell is a lazy language which means that expressions are not
evaluated until they are required.[1]
Normally, we don’t have to worry about how this happens; as
long as expressions are evaluated when they are needed and not
evaluated if they aren’t, everything is fine. However, when adding
parallelism to our code, we’re telling the compiler something about
how the program should be run: Certain things should happen in
parallel. To be able to use parallelism effectively, it helps to have
an intuition for how lazy evaluation works, so this section will
explore the basic concepts using GHCi as a playground.
Let’s start with something very simple:
Prelude> let x = 1 + 2 :: Int
This binds the variable x to the expression 1 + 2 (at type Int, to avoid any complications due to overloading). Now, as far as
Haskell is concerned, 1 + 2 is equal to 3: We could have written
let x = 3 :: Int here, and there is no way to tell the difference by
writing ordinary Haskell code. But for the purposes of parallelism,
we really do care about the difference between 1 + 2 and 3,
because 1 + 2 is a computation that has not taken place yet, and we
might be able to compute it in parallel with something else. Of
course in practice, you wouldn’t want to do this with something as
trivial as 1 + 2, but the principle of an unevaluated computation is
nevertheless important.
We say at this point that x is unevaluated. Normally in Haskell,
you wouldn’t be able to tell that x was unevaluated, but fortunately
GHCi’s debugger provides some commands that inspect the structure of
Haskell expressions in a noninvasive way, so we can use those to
demonstrate what’s going on. The :sprint command prints the value
of an expression without causing it to be evaluated:
Prelude> :sprint x
x = _
The special symbol _ indicates “unevaluated.” Another term you may
hear in this context is "thunk,” which is the object in memory
representing the unevaluated computation 1 + 2. The thunk in this
case looks something like Figure 2-1.
[image: The thunk representing 1 + 2]

Figure 2-1. The thunk representing 1 + 2

Here, x is a pointer to an object in memory representing the function
+ applied to the integers 1 and 2.
The thunk representing x will be evaluated whenever its value is
required. The easiest way to cause something to be evaluated in GHCi
is to print it; that is, we can just type x at the prompt:
Prelude> x
3
Now if we inspect the value of x using :sprint, we’ll find that
it has been evaluated:
Prelude> :sprint x
x = 3
In terms of the objects in memory, the thunk representing 1 + 2 is
actually overwritten by the (boxed) integer 3.[2] So any future demand for the value of x gets the answer
immediately; this is how lazy evaluation works.
That was a trivial example. Let’s try making something slightly more
complex.
Prelude> let x = 1 + 2 :: Int
Prelude> let y = x + 1
Prelude> :sprint x
x = _
Prelude> :sprint y
y = _
Again, we have x bound to 1 + 2, but now we have also bound y to
x + 1, and :sprint shows that both are unevaluated as expected.
In memory, we have a structure like Figure 2-2.
[image: One thunk referring to another]

Figure 2-2. One thunk referring to another

Unfortunately there’s no way to directly inspect this structure, so
you’ll just have to trust me.
Now, in order to compute the value of y, the value of x is needed:
y depends on x. So evaluating y will also
cause x to be evaluated. This time we’ll use a different way
to force evaluation: Haskell’s built-in seq function.
Prelude> seq y ()
()
The seq function evaluates its first argument, here y, and then
returns its second argument—in this case, just (). Now let’s
inspect the values of x and y:
Prelude> :sprint x
x = 3
Prelude> :sprint y
y = 4
Both are now evaluated, as expected. So the general principles so far
are:
	
Defining an expression causes a thunk to be built representing that
expression.

	
A thunk remains unevaluated until its value is required. Once
 evaluated, the thunk is replaced by its value.

Let’s see what happens when a data structure is added:
Prelude> let x = 1 + 2 :: Int
Prelude> let z = (x,x)
This binds z to the pair (x,x). The :sprint command shows
something interesting:
Prelude> :sprint z
z = (_,_)
The underlying structure is shown in Figure 2-3.
[image: A pair with both components referring to the same thunk]

Figure 2-3. A pair with both components referring to the same thunk

The variable z itself refers to the pair (x,x), but the components of the pair
both point to the unevaluated thunk for x. This shows that we can
build data structures with unevaluated components.
Let’s make z into a thunk again:
Prelude> import Data.Tuple
Prelude Data.Tuple> let z = swap (x,x+1)
The swap function is defined as: swap (a,b) = (b,a). This z is
unevaluated as before:
Prelude Data.Tuple> :sprint z
z = _
The point of this is so that we can see what happens when z is
evaluated with seq:
Prelude Data.Tuple> seq z ()
()
Prelude Data.Tuple> :sprint z
z = (_,_)
Applying seq to z caused it to be evaluated to a pair, but the
components of the pair are still unevaluated. The seq function
evaluates its argument only as far as the first
constructor, and doesn’t evaluate any more of the structure. There is
a technical term for this: We say that seq evaluates its first
argument to weak head normal form. The reason for this terminology
is somewhat historical, so don’t worry about it too much. We often
use the acronym WHNF instead. The term normal form on its own means “fully evaluated,” and we’ll see how to evaluate something to normal
form in Deepseq.
The concept of weak head normal form will crop up several times over
the next two chapters, so it’s worth taking the time to
understand it and get a feel for how evaluation happens in
Haskell. Playing around with expressions and :sprint in GHCi is a
great way to do that.
Just to finish the example, we’ll evaluate x:
Prelude Data.Tuple> seq x ()
()
What will we see if we print the value of z?
Prelude Data.Tuple> :sprint z
z = (_,3)
Remember that z was defined to be swap (x,x+1), which is (x+1,x), and
we just evaluated x, so the second component of z is now
evaluated and has the value 3.
Finally, we’ll take a look at an example with lists and a few of the
common list functions. You probably know the definition of map, but
here it is for reference:
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
The map function builds a lazy data structure. This might be clearer if we
rewrite the definition of map to make the thunks explicit:
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = let
 x' = f x
 xs' = map f xs
 in
 x' : xs'
This behaves identically to the previous definition of map, but now
we can see that both the head and the tail of the list that map
returns are thunks: f x and map f xs, respectively. That is, map
builds a structure like Figure 2-4.
[image: Thunks created by a map]

Figure 2-4. Thunks created by a map

Let’s define a simple list structure using map:
Prelude> let xs = map (+1) [1..10] :: [Int]
Nothing is evaluated yet:
Prelude> :sprint xs
xs = _
Now we evaluate this list to weak head normal form:
Prelude> seq xs ()
()
Prelude> :sprint xs
xs = _ : _
We have a list with at least one element, but that is all we know
about it so far. Next, we’ll apply the length function to the list:
Prelude> length xs
10
The length function is defined like this:
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs
Note that length ignores the head of the list, recursing on the
tail, xs. So when length is applied to a list, it will descend
the structure of the list, evaluating the list cells but not the
elements. We can see the effect clearly with :sprint:
Prelude> :sprint xs
xs = [_,_,_,_,_,_,_,_,_,_]
GHCi noticed that the list cells were all evaluated, so it switched to
using the bracketed notation rather than infix : to display the
list.
Even though we have now evaluated the entire spine of the list, it is
still not in normal form (but it is still in weak head normal form).
We can cause it to be fully evaluated by applying a function that demands
the values of the elements, such as sum:
Prelude> sum xs
65
Prelude> :sprint xs
xs = [2,3,4,5,6,7,8,9,10,11]
We have scratched the surface of what is quite a subtle and complex
topic. Fortunately, most of the time, when writing Haskell code, you
don’t need to worry about understanding when things get evaluated.
Indeed, the Haskell language definition is very careful not to specify
exactly how evaluation happens; the implementation is free to choose
its own strategy as long as the program gives the right answer. And
as programmers, most of the time that’s all we care about, too.
However, when writing parallel code, it becomes important to
understand when things are evaluated so that we can arrange to
parallelize computations.
An alternative to using lazy evaluation for parallelism is to be more
explicit about the data flow, and this is the approach taken by the
Par monad in Chapter 4. This avoids some of the subtle
issues concerning lazy evaluation in exchange for some verbosity.
Nevertheless, it’s worthwhile to learn about both approaches because
there are situations where one is more natural or more efficient than
the other.

The Eval Monad, rpar, and rseq

Next, we introduce some basic functionality for creating
parallelism, which is provided by the module
Control.Parallel.Strategies:
data Eval a
instance Monad Eval

runEval :: Eval a -> a

rpar :: a -> Eval a
rseq :: a -> Eval a
Parallelism is expressed using the Eval monad, which comes with two
operations, rpar and rseq. The rpar combinator creates
parallelism: It says, “My argument could be evaluated in parallel”;
while rseq is used for forcing sequential evaluation: It says, “Evaluate my argument and wait for the result.” In both cases,
evaluation is to weak head normal form. It’s also worth noting that
the argument to rpar should be an unevaluated computation—a thunk.
If the argument is already evaluated, nothing useful happens, because
there is no work to perform in parallel.
The Eval monad provides a runEval operation that performs the
Eval computation and returns its result. Note that runEval is
completely pure; there’s no need to be in the IO monad here.
To see the effects of rpar and rseq, suppose we have a function f, along with two
arguments to apply it to, x and y, and we would like to calculate
the results of f x and f y in parallel. Let’s say that f x takes
longer to evaluate than f y. We’ll look at a few different ways to
code this and investigate the differences between them. First,
suppose we used rpar with both f x and f y, and then returned a
pair of the results, as shown in Example 2-1.
Example 2-1. rpar/rpar
 runEval $ do
 a <- rpar (f x)
 b <- rpar (f y)
 return (a,b)

Execution of this program fragment proceeds as shown in Figure 2-5.
[image: rpar/rpar timeline]

Figure 2-5. rpar/rpar timeline

We see that f x and f y begin to evaluate in parallel, while the
return happens immediately: It doesn’t wait for either f x or f
y to complete. The rest of the program will continue to execute
while f x and f y are being evaluated in parallel.
Let’s try a different variant, replacing the second rpar with
rseq:
Example 2-2. rpar/rseq
 runEval $ do
 a <- rpar (f x)
 b <- rseq (f y)
 return (a,b)

Now the execution will look like Figure 2-6.
[image: rpar/rseq timeline]

Figure 2-6. rpar/rseq timeline

Here f x and f y are still evaluated in parallel, but now the
final return doesn’t happen until f y has completed. This is
because we used rseq, which waits for the evaluation of its argument
before returning.
If we add an additional rseq to wait for f x, we’ll wait for
both f x and f y to complete:
Example 2-3. rpar/rseq/rseq
 runEval $ do
 a <- rpar (f x)
 b <- rseq (f y)
 rseq a
 return (a,b)

Note that the new rseq is applied to a, namely the result of the
first rpar.
This results in the ordering shown in Figure 2-7.
[image: rpar/rseq/rseq timeline]

Figure 2-7. rpar/rseq/rseq timeline

The code waits until both f x and f y have completed evaluation
before returning.
Which of these patterns should we use?
	
rpar/rseq is unlikely to be useful because the programmer rarely
knows in advance which of the two computations takes the longest,
so it makes little sense to wait for an arbitrary one of the two.

	
The choice between rpar/rpar or rpar/rseq/rseq styles depends on
the circumstances. If we expect to be generating more parallelism soon
and don’t depend on the results of either operation, it makes sense to
use rpar/rpar, which returns immediately. On the other hand, if we
have generated all the parallelism we can, or we need the results of
one of the operations in order to continue, then rpar/rseq/rseq is an
explicit way to do that.

There is one final variant:
Example 2-4. rpar/rpar/rseq/rseq
 runEval $ do
 a <- rpar (f x)
 b <- rpar (f y)
 rseq a
 rseq b
 return (a,b)

This has the same behavior as rpar/rseq/rseq, waiting for both
evaluations before returning. Although it is the longest, this
variant has more symmetry than the others, so it might be preferable
for that reason.
To experiment with these variants yourself, try the sample program
rpar.hs, which uses the Fibonacci function to simulate
the expensive computations to run in parallel. In order to use parallelism with GHC, we have to use the -threaded option. Compile the program like this:
$ ghc -O2 rpar.hs -threaded
To try the rpar/rpar variant, run it as follows. The +RTS -N2 flag tells GHC to use two cores to run the program (ensure that you have at least
a dual-core machine):
$./rpar 1 +RTS -N2
time: 0.00s
(24157817,14930352)
time: 0.83s
The first timestamp is printed when the rpar/rseq fragment
returns, and the second timestamp is printed when the last calculation
finishes. As you can see, the return here happened immediately. In rpar/rseq, it happens
after the second (shorter) computation has completed:
$./rpar 2 +RTS -N2
time: 0.50s
(24157817,14930352)
time: 0.82s
In rpar/rseq/rseq, the return happens at the end:
$./rpar 3 +RTS -N2
time: 0.82s
(24157817,14930352)
time: 0.82s

Example: Parallelizing a Sudoku Solver

In this section, we’ll walk through a case study, exploring how to add
parallelism to a program that performs the same computation on
multiple input data. The computation is an implementation of a Sudoku
solver. This solver is fairly fast as Sudoku solvers go, and can
solve all 49,000 of the known 17-clue puzzles in about 2 minutes.
The goal is to parallelize the solving of multiple puzzles. We aren’t
interested in the details of how the solver works; for the purposes of
this discussion, the solver will be treated as a black box. It’s just
an example of an expensive computation that we want to perform on
multiple data sets, namely the Sudoku puzzles.
We will use a module Sudoku that provides a function solve with
type:
solve :: String -> Maybe Grid
The String represents a single Sudoku problem. It is a flattened
representation of the 9×9 board, where each square is either empty,
represented by the character ., or contains a digit 1–9.
The function solve returns a value of type Maybe Grid, which is
either Nothing if a problem has no solution, or Just g if a solution
was found, where g has type Grid. For the purposes of this
example, we are not interested in the solution itself, the Grid, but only
in whether the puzzle has a solution at all.
We start with some ordinary sequential code to solve a set of Sudoku
problems read from a file:
sudoku1.hs

import Sudoku
import Control.Exception
import System.Environment
import Data.Maybe

main :: IO ()
main = do
 [f] <- getArgs -- [image: 1]
 file <- readFile f -- [image: 2]

 let puzzles = lines file -- [image: 3]
 solutions = map solve puzzles -- [image: 4]

 print (length (filter isJust solutions)) -- [image: 5]
This short program works as follows:
	[image: 1]
	
Grab the command-line arguments, expecting a single argument, the name of the file containing the input data.

	[image: 2]
	
Read the contents of the given file.

	[image: 3]
	
Split the file into lines; each line is a single puzzle.

	[image: 4]
	
Solve all the puzzles by mapping the solve function over the
list of lines.

	[image: 5]
	
Calculate the number of puzzles that had solutions, by first
filtering out any results that are Nothing and then taking the
length of the resulting list. This length is then printed. Even
though we’re not interested in the solutions themselves, the filter isJust
is necessary here: Without it, the program would never evaluate the
elements of the list, and the work of the solver would never be
performed (recall the length example at the end of
Lazy Evaluation and Weak Head Normal Form).

Let’s check that the program works by running over a set of sample
problems. First, compile the program:
$ ghc -O2 sudoku1.hs -rtsopts
[1 of 2] Compiling Sudoku (Sudoku.hs, Sudoku.o)
[2 of 2] Compiling Main (sudoku1.hs, sudoku1.o)
Linking sudoku1 ...
Remember that when working on performance, it is important to compile with
full optimization (-O2). The goal is to make the program run faster,
after all.
Now we can run the program on 1,000 sample problems:
$./sudoku1 sudoku17.1000.txt
1000
All 1,000 problems have solutions, so the answer is 1,000. But what
we’re really interested in is how long the program took to run,
because we want to make it go faster. So let’s run it again with some
extra command-line arguments:
$./sudoku1 sudoku17.1000.txt +RTS -s
1000
 2,352,273,672 bytes allocated in the heap
 38,930,720 bytes copied during GC
 237,872 bytes maximum residency (14 sample(s))
 84,336 bytes maximum slop
 2 MB total memory in use (0 MB lost due to fragmentation)

 Tot time (elapsed) Avg pause Max pause
 Gen 0 4551 colls, 0 par 0.05s 0.05s 0.0000s 0.0003s
 Gen 1 14 colls, 0 par 0.00s 0.00s 0.0001s 0.0003s

 INIT time 0.00s (0.00s elapsed)
 MUT time 1.25s (1.25s elapsed)
 GC time 0.05s (0.05s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 1.30s (1.31s elapsed)

 %GC time 4.1% (4.1% elapsed)

 Alloc rate 1,883,309,531 bytes per MUT second

 Productivity 95.9% of total user, 95.7% of total elapsed
The argument +RTS -s instructs the GHC runtime system to emit the
statistics shown. These are particularly helpful as a first
step in analyzing performance. The output is explained in
detail in the GHC User’s Guide, but for our purposes we are interested
in one particular metric: Total time. This figure is given in two
forms: the total CPU time used by the program and the
elapsed or wall-clock time. Since we are
running on a single processor core, these times are almost identical
(sometimes the elapsed time might be slightly longer due to other
activity on the system).
We shall now add some parallelism to make use of two processor cores.
We have a list of problems to solve, so as a first attempt we’ll
divide the list in two and solve the problems in both halves of the
list in parallel. Here is some code to do just that:
sudoku2.hs

main :: IO ()
main = do
 [f] <- getArgs
 file <- readFile f

 let puzzles = lines file

 (as,bs) = splitAt (length puzzles `div` 2) puzzles -- [image: 1]

 solutions = runEval $ do
 as' <- rpar (force (map solve as)) -- [image: 2]
 bs' <- rpar (force (map solve bs)) -- [image: 3]
 rseq as' -- [image: 4]
 rseq bs' -- [image: 5]
 return (as' ++ bs') -- [image: 6]

 print (length (filter isJust solutions))
	[image: 1]
	
Divide the list of puzzles into two equal sublists (or
almost equal, if the list had an odd number of elements).

	[image: 2] [image: 3]
	
We’re using the rpar/rpar/rseq/rseq pattern from the previous section to solve both halves of the list
in parallel. However, things are not completely straightforward,
because rpar only evaluates to weak head normal form. If we were to
use rpar (map solve as), the evaluation would stop at the first
(:) constructor and go no further, so the rpar would not cause any
of the work to take place in parallel. Instead, we need to cause the
whole list and the elements to be evaluated, and this is the purpose
of force:

force :: NFData a => a -> a
The force function evaluates the entire structure of its argument, reducing it to
normal form, before returning the argument itself. It is provided
by the Control.DeepSeq module. We’ll return to the NFData class
in Deepseq, but for now it will suffice to think of it as the
class of types that can be evaluated to normal form.
Not evaluating deeply enough is a common mistake when using rpar, so
it is a good idea to get into the habit of thinking, for each rpar,
“How much of this structure do I want to evaluate in the parallel
task?” (Indeed, it is such a common problem that in the Par monad
to be introduced later, the designers went so far as to make force the
default behavior).

	[image: 4] [image: 5]
	
Using rseq, we wait for the evaluation of both lists to complete.

	[image: 6]
	
Append the two lists to form the complete list of
solutions.

Let’s run the program and measure how much performance improvement we get from the
parallelism:
$ ghc -O2 sudoku2.hs -rtsopts -threaded
[2 of 2] Compiling Main (sudoku2.hs, sudoku2.o)
Linking sudoku2 ...
Now we can run the program using two cores:
$./sudoku2 sudoku17.1000.txt +RTS -N2 -s
1000
 2,360,292,584 bytes allocated in the heap
 48,635,888 bytes copied during GC
 2,604,024 bytes maximum residency (7 sample(s))
 320,760 bytes maximum slop
 9 MB total memory in use (0 MB lost due to fragmentation)

 Tot time (elapsed) Avg pause Max pause
 Gen 0 2979 colls, 2978 par 0.11s 0.06s 0.0000s 0.0003s
 Gen 1 7 colls, 7 par 0.01s 0.01s 0.0009s 0.0014s

 Parallel GC work balance: 1.49 (6062998 / 4065140, ideal 2)

 MUT time (elapsed) GC time (elapsed)
 Task 0 (worker) : 0.81s (0.81s) 0.06s (0.06s)
 Task 1 (worker) : 0.00s (0.88s) 0.00s (0.00s)
 Task 2 (bound) : 0.52s (0.83s) 0.04s (0.04s)
 Task 3 (worker) : 0.00s (0.86s) 0.02s (0.02s)

 SPARKS: 2 (1 converted, 0 overflowed, 0 dud, 0 GC'd, 1 fizzled)

 INIT time 0.00s (0.00s elapsed)
 MUT time 1.34s (0.81s elapsed)
 GC time 0.12s (0.06s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 1.46s (0.88s elapsed)

 Alloc rate 1,763,903,211 bytes per MUT second

 Productivity 91.6% of total user, 152.6% of total elapsed
Note that the Total time now shows a marked difference between the
CPU time (1.46s) and the elapsed time (0.88s). Previously, the elapsed
time was 1.31s, so we can calculate the speedup on 2 cores
as 1.31/0.88 = 1.48. Speedups are always calculated as a ratio of
wall-clock times. The CPU time is a helpful metric for telling us how
busy our cores are, but as you can see here, the CPU time when
running on multiple cores is often greater than the wall-clock
time for a single core, so it would be misleading to calculate
the speedup as the ratio of CPU time to wall-clock time (1.66 here).
Why is the speedup only 1.48, and not 2? In general, there could be a
host of reasons for this, not all of which are under the control of
the Haskell programmer. However, in this case the problem is partly
of our doing, and we can diagnose it using the ThreadScope tool. To
profile the program using ThreadScope, we need to first recompile it
with the -eventlog flag and then run it with +RTS -l. This
causes the program to emit a log file called sudoku2.eventlog, which
we can pass to threadscope:
$ rm sudoku2; ghc -O2 sudoku2.hs -threaded -rtsopts -eventlog
[2 of 2] Compiling Main (sudoku2.hs, sudoku2.o)
Linking sudoku2 ...
$./sudoku2 sudoku17.1000.txt +RTS -N2 -l
1000
$ threadscope sudoku2.eventlog
The ThreadScope profile is shown in Figure 2-8. This
graph was generated by selecting “Export image” from ThreadScope,
so it includes the timeline graph only, and not the rest of the
ThreadScope GUI.
[image: sudoku2 ThreadScope profile]

Figure 2-8. sudoku2 ThreadScope profile

The x-axis of the graph is time, and there are
three horizontal bars showing how the program executed over time. The
topmost bar is known as the “activity” profile, and it shows how
many cores were executing Haskell code (as opposed to being idle
or garbage collecting) at a given point in time. Underneath the
activity profile is one bar per core, showing what that
core was doing at each point in the execution. Each bar has two
parts: The upper, thicker bar is green when that core is
executing Haskell code, and the lower, narrower bar is orange or green
when that core is performing garbage collection.
As we can see from the graph, there is a period at the end of the run
where just one processor is executing and the other one is idle
(except for participating in regular garbage collections, which is
necessary for GHC’s parallel garbage collector). This indicates that
our two parallel tasks are uneven: One takes much longer to execute
than the other. We are not making full use of our two cores, and this
results in less-than-perfect speedup.
Why should the workloads be uneven? After all, we divided the list in
two, and we know the sample input has an even number of problems. The
reason for the unevenness is that each problem does not take the same
amount of time to solve: It all depends on the searching strategy used
by the Sudoku solver.[3]
This illustrates an important principle when parallelizing code: Try
to avoid partitioning the work into a small, fixed number of chunks.
There are two reasons for this:
	
In practice, chunks rarely contain an equal
 amount of work, so there will be some imbalance leading to a loss of
 speedup, as in the example we just saw.

	
The parallelism we can achieve is limited to the number of chunks.
 In our example, even if the workloads were even, we could never
 achieve a speedup of more than two, regardless of how many cores we
 use.

Even if we tried to solve the second problem by dividing the work into
as many segments as we have cores, we would still have the first
problem, namely that the work involved in processing each segment may
differ.
GHC doesn’t force us to use a fixed number of rpar calls; we can
call it as many times as we like, and the system will automatically
distribute the parallel work among the available cores. If the work
is divided into smaller chunks, then the system will be able to keep all
the cores busy for longer.
A fixed division of work is often called static partitioning,
whereas distributing smaller units of work among processors at
runtime is called dynamic partitioning. GHC already provides
the mechanism for dynamic partitioning; we just have to supply it with
enough tasks by calling rpar often enough so that it can do its job
and balance the work evenly.
The argument to rpar is called a spark. The runtime collects sparks in a pool and uses this as a source of work when there
are spare processors available, using a technique called work stealing. Sparks may be evaluated at some point in the future, or
they might not—it all depends on whether there is a spare core
available. Sparks are very cheap to create: rpar
essentially just writes a pointer to the expression into an array.
So let’s try to use dynamic partitioning with the Sudoku problem.
First, we define an abstraction that will let us apply a function to a
list in parallel, parMap:
parMap :: (a -> b) -> [a] -> Eval [b]
parMap f [] = return []
parMap f (a:as) = do
 b <- rpar (f a)
 bs <- parMap f as
 return (b:bs)
This is rather like a monadic version of map, except that we have
used rpar to lift the application of the function f to the element
a into the Eval monad. Hence, parMap runs down the whole list,
eagerly creating sparks for the application of f to each element,
and finally returns the new list. When parMap returns, it will have
created one spark for each element of the list. Now, the evaluation
of all the results can happen in parallel:
sudoku3.hs

main :: IO ()
main = do
 [f] <- getArgs
 file <- readFile f

 let puzzles = lines file
 solutions = runEval (parMap solve puzzles)

 print (length (filter isJust solutions))
Note how this version is nearly identical to the first version,
sudoku1.hs. The only difference is that we’ve replaced map solve
puzzles by runEval (parMap solve puzzles).
Running this new version yields more speedup:
 Total time 1.42s (0.72s elapsed)
which corresponds to a speedup of
1.31/0.72 = 1.82, approaching the ideal speedup of 2. Furthermore,
the GHC runtime system tells us how many sparks were created:
 SPARKS: 1000 (1000 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)
We created exactly 1,000 sparks, and they were all
converted (that is, turned into real parallelism at runtime). Here are some other things that can happen to a spark:
	
overflowed

	
The spark pool has a fixed size, and if we try to
create sparks when the pool is full, they are dropped and counted as
overflowed.

	
dud

	
When rpar is applied to an expression that is already
evaluated, this is counted as a dud and the rpar is ignored.

	
GC’d

	
The sparked expression was found to be unused by the program,
so the runtime removed the spark. We’ll discuss this in more detail
in GC’d Sparks and Speculative Parallelism.

	
fizzled

	
The expression was unevaluated at the time it was sparked
but was later evaluated independently by the program. Fizzled sparks
are removed from the spark pool.

The ThreadScope profile for this version looks much better
(Figure 2-9). Furthermore, now that the runtime is
managing the work distribution for us, the program will automatically
scale to more processors. On an 8-core machine, for example, I measured a speedup of
5.83 for the same program.[4]
[image: sudoku3 ThreadScope profile]

Figure 2-9. sudoku3 ThreadScope profile

If we look closely at the two-processor profile, there appears to be a
short section near the beginning where not much work is happening. In
fact, zooming in on this section in ThreadScope
(Figure 2-10) reveals that both processors are
working, but most of the activity is garbage collection, and only one
processor is performing most of the garbage collection work. In fact,
what we are seeing here is the program reading the input file (lazily)
and dividing it into lines, driven by the demand of parMap, which
traverses the whole list of lines. Splitting the file into
lines creates a lot of data, and this seems to be happening on the
second core here. However, note that even though splitting the file
into lines is sequential, the program doesn’t wait for it to complete
before the parallel work starts. The parMap function creates the
first spark when it has the first element of the list, so
two processors can be working before we’ve finished splitting the file into
lines. Lazy evaluation helps the program be more parallel, in a
sense.
[image: sudoku3: zoomed ThreadScope profile]

Figure 2-10. sudoku3: zoomed ThreadScope profile

We can experiment with forcing the splitting into lines to happen all
at once before we start the main computation, by adding the following (see sudoku3.hs):
 evaluate (length puzzles)
The evaluate function is like a seq in the IO monad: it evaluates its argument to weak head normal form and then returns it:
evaluate :: a -> IO a
Forcing the lines to be evaluated early reduces the parallelism
slightly, because we no longer get the benefit of overlapping the
line splitting with the solving. Our two-core runtime is now 0.76s.
However, we can now clearly see the boundary between the sequential
and parallel parts in ThreadScope
(Figure 2-11).
[image: sudoku4 ThreadScope profile]

Figure 2-11. sudoku4 ThreadScope profile

Looking at the profile, we can see that the program is sequential until
about 16.7ms, when it starts executing in parallel. A program that
has a sequential portion like this can never achieve perfect speedup,
and in fact we can calculate the maximum achievable speedup for a
given number of cores using Amdahl’s law. Amdahl’s law gives the maximum speedup as the ratio:
1 / ((1 - P) + P/N)
where P is the portion of the runtime that can be
parallelized, and N is the number of processors available. In our
case, P is (0.76 - 0.0167)/0.76 = 0.978, and the maximum speedup is 1.96. The sequential fraction here is too small to make a significant impact on the theoretical maximum speedup with two
processors, but when we have more processors, say 64, it becomes much
more important: 1 / ((1-0.978) + 0.978/64) = 26.8. So no matter
what we do, this tiny sequential part of our program will limit the
maximum speedup we can obtain with 64 processors to 26.8. In fact,
even with 1,024 cores, we could achieve only around 44 speedup, and it
is impossible to achieve a speedup of 46 no matter how many cores we
have. Amdahl’s law tells us that not only does parallel speedup
become harder to achieve the more processors we add, but in practice most
programs have a theoretical maximum amount of parallelism.

Deepseq

We encountered force earlier, with this type:
force :: NFData a => a -> a
The force function fully evaluates its argument and then returns
it. This function isn’t built-in, though: Its behavior is defined for
each data type through the NFData class. The name stands for
normal-form data, where normal-form is a value with no unevaluated
subexpressions, and “data” because it isn’t possible to put a function
in normal form; there’s no way to “look inside” a function and
evaluate the things it mentions.[5]
The NFData class has only one method:
class NFData a where
 rnf :: a -> ()
 rnf a = a `seq` ()
The rnf name stands for “reduce to normal-form.” It fully evaluates
its argument and then returns (). The default definition uses
seq, which is convenient for types that have no substructure; we can
just use the default. For example, the instance for Bool is defined
as simply:
instance NFData Bool
And the Control.Deepseq module provides instances for all the other
common types found in the libraries.
You may need to create instances of NFData for your own types. For example, if we had a binary tree
data type:
data Tree a = Empty | Branch (Tree a) a (Tree a)
then the NFData instance should look like this:
instance NFData a => NFData (Tree a) where
 rnf Empty = ()
 rnf (Branch l a r) = rnf l `seq` rnf a `seq` rnf r
The idea is to just recursively apply rnf to the components of the
data type, composing the calls to rnf together with seq.
There are some other operations provided by Control.DeepSeq:
deepseq :: NFData a => a -> b -> b
deepseq a b = rnf a `seq` b
The function deepseq is so named for its similarity with seq; it is like seq,
but if we think of weak head normal form as being shallow
evaluation, then normal form is deep evaluation, hence deepseq.
The force function is defined in terms of deepseq:
force :: NFData a => a -> a
force x = x `deepseq` x
You should think of force as turning WHNF into NF: If the program
evaluates force x to WHNF, then x will be evaluated to NF.
Caution
Evaluating something to normal form involves traversing the whole of
its structure, so you should bear in mind that it is O(n) for a structure of size n, whereas
seq is O(1). It is therefore a good idea to avoid repeated uses
of force or deepseq on the same data.

WHNF and NF are two ends of a scale; there may be lots of intermediate
“degrees of evaluation,” depending on the data type. For example, we
saw earlier that the length function evaluates only the spine of a
list; that is, the list cells but not the elements. The module
Control.Seq (from the parallel package) provides a set of
combinators that can be composed together to evaluate data structures
to varying degrees. We won’t need it for the examples in this book,
but you may find it useful.

[1] Technically, this is not
correct. Haskell is actually a non-strict language, and lazy
evaluation is just one of several valid implementation strategies. But
GHC uses lazy evaluation, so we ignore this technicality for now.

[2] Strictly speaking, it is overwritten by an indirect reference to the value, but the details aren’t important here. Interested readers can head over to the GHC wiki to read the documentation about the implementation and the many papers written about its design.

[3] In fact, I sorted the problems in the sample input so as to clearly demonstrate the problem.

[4] This machine was an Amazon EC2 High-CPU extra-large instance.

[5] However, there is an instance of NFData for functions, which evaluates the function to WHNF. This is purely for convenience, because we often have data structures that contain functions and nevertheless want to evaluate them as much as possible.

Chapter 3. Evaluation Strategies

Evaluation Strategies, or simply Strategies, are a means for modularizing
parallel code by separating the algorithm from the parallelism.
Sometimes they require you to
rewrite your algorithm, but once you do so, you will be able to
parallelize it in different ways just by substituting a new Strategy.
Concretely, a Strategy is a function in the Eval monad that takes a
value of type a and returns the same value:
type Strategy a = a -> Eval a
The idea is that a Strategy takes a data structure as input, traverses
the structure creating parallelism with rpar and rseq, and then
returns the original value.
Here’s a simple example: Let’s create a Strategy for pairs that
evaluates the two components of the pair in parallel. We want a
function parPair with the following type:
parPair :: Strategy (a,b)
From the definition of the Strategy type previously shown, we know that this
type is the same as (a,b) -> Eval (a,b). So parPair is a function
that takes a pair, does some computation in the Eval monad, and
returns the pair again. Here is its definition:
strat.hs

parPair :: Strategy (a,b)
parPair (a,b) = do
 a' <- rpar a
 b' <- rpar b
 return (a',b')
This is similar to the rpar/rpar pattern that we saw in
The Eval Monad, rpar, and rseq. The difference is that we’ve packaged it up
as a Strategy: It takes a data structure (in this case a pair),
creates some parallelism using rpar, and then returns the same data structure.
We’ll see this in action in a moment, but first we need to know how to
use a Strategy. Using a Strategy consists of applying it to its
input and running the Eval computation to get the output. We could
write that directly with runEval; for example, to evaluate the pair
(fib 35, fib 36) in parallel, we could write:
 runEval (parPair (fib 35, fib 36))
This works just fine, but it turns out to be much nicer to package up
the application of a Strategy into a function named using:
using :: a -> Strategy a -> a
x `using` s = runEval (s x)
The using function takes a value of type a and a Strategy for a,
and applies the Strategy to the value. We normally write using
infix, as its definition suggests. Here is the parPair example
above rewritten with using:
 (fib 35, fib 36) `using` parPair
Why write it this way? Well, a Strategy returns the same value that it
was passed, so we know that aside from its performance, the above code
is equivalent to just:
 (fib 35, fib 36)
So we’ve clearly separated the code that describes what the program
does (the pair) from the code that adds the parallelism (`using`
parPair). Indeed, everywhere we see x `using` s in our program,
we can delete the `using` s part and the program should produce the
same result.[6] Conversely, someone who is interested in
parallelizing the program can focus on modifying the Strategy without
worrying about breaking the program.
The example program strat.hs contains the parPair example just shown;
try running it yourself with one and two processors to see it compute
the two calls to fib in parallel.
Parameterized Strategies

The parPair Strategy embodies a fixed policy: It always evaluates
the components of the pair in parallel, and always to weak head normal
form. If we wanted to do something different with a pair—fully
evaluate the components to normal form, for example—we would have to
write a completely new Strategy. A better way to factor things is to
write a parameterized Strategy, which takes as arguments the
Strategies to apply to the components of the data structure. Here is
a parameterized Strategy for pairs:
strat.hs

evalPair :: Strategy a -> Strategy b -> Strategy (a,b)
evalPair sa sb (a,b) = do
 a' <- sa a
 b' <- sb b
 return (a',b')
This Strategy no longer has parallelism built in, so I’ve called it
evalPair instead of parPair.[7] It takes
two Strategy arguments, sa and sb, applies them to the
respective components of the pair, and then returns the pair.
Compared with parPair, we are passing in the functions to apply to a
and b instead of making fixed calls to rpar. So to define
parPair in terms of evalPair, we can just pass rpar as the
arguments:
parPair :: Strategy (a,b)
parPair = evalPair rpar rpar
This means we’re using rpar itself as a Strategy:
rpar :: Strategy a
The type of rpar is a -> Eval a, which is equivalent to Strategy
a; rpar is therefore a Strategy for any type, with the effect of
starting the evaluation of its argument while the enclosing Eval
computation proceeds in parallel. (The rseq operation is also a
Strategy.)
But parPair is still restrictive, in that the components of the pair
are always evaluated to weak head normal form. What if we wanted to
fully evaluate the components using force, for example? We can make
a Strategy that fully evaluates its argument:
rdeepseq :: NFData a => Strategy a
rdeepseq x = rseq (force x)
But how do we combine rpar with rdeepseq to give us a single
Strategy that fully evaluates its argument in parallel? We need one
further combinator, which is provided by Control.Parallel.Strategies:
rparWith :: Strategy a -> Strategy a
Think of rparWith s as wrapping the Strategy s in an rpar.
Now we can provide a parameterized version of parPair that
takes the Strategies to apply to the components:
parPair :: Strategy a -> Strategy b -> Strategy (a,b)
parPair sa sb = evalPair (rparWith sa) (rparWith sb)
And we can use parPair to write a Strategy that fully evaluates
both components of a pair in parallel:
 parPair rdeepseq rdeepseq :: (NFData a, NFData b) => Strategy (a,b)
To break down what happens when this Strategy is applied to a pair:
parPair calls evalPair, and evalPair calls rparWith rdeepseq
on each component of the pair. So the effect is that each component
will be fully evaluated to normal form in parallel.
When using these parameterized Strategies, we sometimes need a way
to say, “Don’t evaluate this component at all.” The Strategy that
does no evaluation is called r0:
r0 :: Strategy a
r0 x = return x
For example, we can write a Strategy over a pair of pairs that
evaluates the first component (only) of both pairs in parallel.
 evalPair (evalPair rpar r0) (evalPair rpar r0) :: Strategy ((a,b),(c,d))
The first rpar applies to a and the first r0 to b, while the
second rpar applies to c and the second r0 to d.

A Strategy for Evaluating a List in Parallel

In Chapter 2, we defined a function parMap that would map a
function over a list in parallel. We can think of parMap as a
composition of two parts:
	
The algorithm: map

	
The parallelism: evaluating the elements of a list in parallel

And indeed, with Strategies, we can express it exactly this
way:
parMap :: (a -> b) -> [a] -> [b]
parMap f xs = map f xs `using` parList rseq
The parList function is a Strategy on lists that evaluates the list
elements in parallel. To define parList, we can take the same approach
that we took with pairs earlier and first define a parameterized
Strategy on lists, called evalList:
parlist.hs

evalList :: Strategy a -> Strategy [a]
evalList strat [] = return []
evalList strat (x:xs) = do
 x' <- strat x
 xs' <- evalList strat xs
 return (x':xs')
Note that evalList walks the list recursively, applying the Strategy
parameter strat to each of the elements and building the result
list. Now we can define parList in terms of evalList, using
rparWith:
parList :: Strategy a -> Strategy [a]
parList strat = evalList (rparWith strat)
In fact, both evalList and parList are already provided by Control.Parallel.Strategies so you don’t have to define them yourself,
but it’s useful to see that their implementations are not mysterious.
As with parPair, the parList function is a parameterized Strategy. That is, it takes as an argument a Strategy on values of type a and
returns a Strategy for lists of a. So parList describes a
family of Strategies on lists that evaluate the list elements in
parallel.
The parList Strategy covers a wide range of uses for parallelism in typical Haskell programs; in many cases, a single parList is all
that is needed to expose plenty of parallelism.
Returning to our Sudoku solver from Chapter 2 for a moment:
instead of our own hand-written parMap, we could have used
parList:
sudoku5.hs
 let solutions = map solve puzzles `using` parList rseq
Using rseq as the Strategy for the list elements is enough here: The
result of solve is a Maybe, so evaluating it to
weak head normal form forces the solver to determine whether the puzzle has a solution.
This version has essentially the same performance as the version that used parMap in Chapter 2.

Example: The K-Means Problem

Let’s look at a slightly more involved example. In the K-Means
problem, the goal is to partition a set of data points into clusters. Figure 3-1 shows an example data set, and the circles
indicate the locations of the clusters that the algorithm should
derive. From the locations of the clusters,
partitioning the points is achieved by simply finding the closest
cluster to each point.
[image: The K-Means problem]

Figure 3-1. The K-Means problem

Finding an optimal solution to the problem is too expensive to be practical. However, there are
several heuristic techniques that are fast, and even though they don’t guarantee an optimal solution, in practice, they give good results. The most well-known heuristic technique for K-Means is Lloyd’s algorithm, which finds a solution by iteratively improving an initial
guess. The algorithm takes as a parameter the number of clusters to
find and makes an initial guess at the center of each cluster. Then
it proceeds as follows:
	
Assign each point to the cluster to which it is closest. This yields
a new set of clusters.

	
Find the centroid of each cluster (the average of all the points in
the cluster).

	
Repeat steps 1 and 2 until the cluster locations stabilize. We cut off processing after an arbitrarily chosen number of iterations, because sometimes the algorithm does not converge.

The initial guess can be constructed by randomly assigning each point
in the data set to a cluster and then finding the centroids of those
clusters.
The algorithm works in any number of dimensions, but we will use two for
ease of visualization.
A complete Haskell implementation can be found in the directory
kmeans in the sample code.
A data point is represented by the type Point, which is just a pair
of Doubles representing the x and y coordinates
respectively:[8]
data Point = Point !Double !Double
There are a couple of basic operations on Point:
kmeans/KMeansCore.hs

zeroPoint :: Point
zeroPoint = Point 0 0

sqDistance :: Point -> Point -> Double
sqDistance (Point x1 y1) (Point x2 y2) = ((x1-x2)^2) + ((y1-y2)^2)
We can make a zero point with zeroPoint, and find the square of the distance between two points
with sqDistance. The actual distance between the points would be
given by the square root of this value, but since we will only be
comparing distances, we can save time by comparing squared distances
instead.
Clusters are represented by the type Cluster:
data Cluster
 = Cluster { clId :: Int
 , clCent :: Point
 }
A Cluster contains its number (clId) and its centroid (clCent).
We will also need an intermediate type called PointSum:
data PointSum = PointSum !Int !Double !Double
A PointSum represents the sum of a set of points; it contains the
number of points in the set and the sum of their x and y coordinates respectively. A PointSum is constructed
incrementally, by repeatedly adding points using addToPointSum:
kmeans/kmeans.hs

addToPointSum :: PointSum -> Point -> PointSum
addToPointSum (PointSum count xs ys) (Point x y)
 = PointSum (count+1) (xs + x) (ys + y)
A PointSum can be turned into a Cluster by computing the centroid.
The x coordinate of the centroid is the sum of the x coordinates
of the points in the cluster divided by the total number of points,
and similarly for the y coordinate.
pointSumToCluster :: Int -> PointSum -> Cluster
pointSumToCluster i (PointSum count xs ys) =
 Cluster { clId = i
 , clCent = Point (xs / fromIntegral count) (ys / fromIntegral count)
 }
The roles of the types Point, PointSum, and Cluster in the
algorithm are as follows. The input is a set of points represented as
[Point], and an initial guess represented as [Cluster]. The
algorithm will iteratively refine the clusters until convergence is
reached.
	
Step 1 divides the points into new sets by finding the Cluster to
 which each Point is closest. However, instead of collecting sets of
 Points, we build up a PointSum for each cluster. This is an
 optimization that avoids constructing the intermediate data
 structure and allows the algorithm to run in constant space. We’ll
 represent the output of this step as Vector PointSum.

	
The Vector PointSum is fed into step 2, which makes a Cluster
 from each PointSum, giving [Cluster].

	
The result of step 2 is fed back into step 1 until convergence is reached.

The function assign implements step 1 of the algorithm, assigning
points to clusters and building a vector of PointSums:
assign :: Int -> [Cluster] -> [Point] -> Vector PointSum
assign nclusters clusters points = Vector.create $ do
 vec <- MVector.replicate nclusters (PointSum 0 0 0)
 let
 addpoint p = do
 let c = nearest p; cid = clId c
 ps <- MVector.read vec cid
 MVector.write vec cid $! addToPointSum ps p

 mapM_ addpoint points
 return vec
 where
 nearest p = fst $ minimumBy (compare `on` snd)
 [(c, sqDistance (clCent c) p) | c <- clusters]
Given a set of clusters and a set of points, the job of assign is to
decide, for each point, which cluster is closest. For each cluster, we
build up a PointSum of the points that were found to be closest to
it. The code has been carefully optimized, using mutable vectors from
the vector package; the details aren’t important here.
The function makeNewClusters implements step 2 of the algorithm:
makeNewClusters :: Vector PointSum -> [Cluster]
makeNewClusters vec =
 [pointSumToCluster i ps
 | (i,ps@(PointSum count _ _)) <- zip [0..] (Vector.toList vec)
 , count > 0
]
Here we make a new Cluster, using pointSumToCluster, from each
PointSum produced by assign. There is a slight complication in
that we have to avoid creating a cluster with no points, because it
cannot have a centroid.
Finally step combines assign and makeNewClusters to implement
one complete iteration:
step :: Int -> [Cluster] -> [Point] -> [Cluster]
step nclusters clusters points
 = makeNewClusters (assign nclusters clusters points)
To complete the algorithm, we need a loop to repeatedly apply the step
function until convergence. The function kmeans_seq implements this:
kmeans_seq :: Int -> [Point] -> [Cluster] -> IO [Cluster]
kmeans_seq nclusters points clusters =
 let
 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany = do -- [image: 1]
 putStrLn "giving up."
 return clusters
 loop n clusters = do
 printf "iteration %d\n" n
 putStr (unlines (map show clusters))
 let clusters' = step nclusters clusters points -- [image: 2]
 if clusters' == clusters -- [image: 3]
 then return clusters
 else loop (n+1) clusters'
 in
 loop 0 clusters

tooMany = 80
	[image: 1]
	
The first argument to loop is the number of iterations completed
so far. If this figure reaches the limit tooMany, then we bail
out (sometimes the algorithm does not converge).

	[image: 2]
	
After printing the iteration number and the current clusters
for diagnostic purposes, we calculate the next iteration by calling
the function step. The arguments to step are the number of
clusters, the current set of clusters, and the set of points.

	[image: 3]
	
If this iteration did not change the clusters, then the algorithm
has converged, and we return the result. Otherwise, we do another
iteration.

We compile this program in the same way as before:
$ cd kmeans
$ ghc -O2 -threaded -rtsopts -eventlog kmeans.hs
The sample code comes with a program to generate some input data,
GenSamples.hs, which uses the normaldistribution package to
generate a realistically clustered set of values. The data set is
large, so it isn’t included with the sample code, but you can generate
it using GenSamples:
$ ghc -O2 GenSamples.hs
$./GenSamples 5 50000 100000 1010
This should generate a data set of about 340,000 points with 5
clusters in the file points.bin.
Run the kmeans program using the sequential algorithm:
$./kmeans seq
The program will display the clusters at each iteration and should
converge after 65 iterations.
Note that the program displays its own running time at the end; this is
because there is a significant amount of time spent reading in the
sample data at the beginning, and we want to be able to calculate the
parallel speedup for the portion of the runtime spent computing the
K-Means algorithm only.
Parallelizing K-Means

How can this algorithm be parallelized? One place that looks
profitable to parallelize is the assign function because it is
essentially just a map over the points, and indeed that is where we
will concentrate our efforts. The operations are too fine-grained
here to use a simple parMap or parList as we did before; the
overhead of the parMap will swamp the parallelism, so we need to
increase the size of the operations. One way to do that is to divide
the list of points into chunks, and process the chunks in parallel.
First we need some code to split a list into chunks:
split :: Int -> [a] -> [[a]]
split numChunks xs = chunk (length xs `quot` numChunks) xs

chunk :: Int -> [a] -> [[a]]
chunk n [] = []
chunk n xs = as : chunk n bs
 where (as,bs) = splitAt n xs
So we can split the list of points into chunks and map assign over
the list of chunks. But what do we do with the results? We have a
list of Vector PointSums that we need to combine into a single
Vector PointSum. Fortunately, PointSums can be added together:
addPointSums :: PointSum -> PointSum -> PointSum
addPointSums (PointSum c1 x1 y1) (PointSum c2 x2 y2)
 = PointSum (c1+c2) (x1+x2) (y1+y2)
And using this, we can combine vectors of PointSums:
combine :: Vector PointSum -> Vector PointSum -> Vector PointSum
combine = Vector.zipWith addPointSums
We now have all the pieces to define a parallel version of step:
parSteps_strat :: Int -> [Cluster] -> [[Point]] -> [Cluster]
parSteps_strat nclusters clusters pointss
 = makeNewClusters $
 foldr1 combine $
 (map (assign nclusters clusters) pointss
 `using` parList rseq)
The arguments to parSteps_strat are the same as for step, except
that the list of points is now a list of lists of points, that is, the
list of points divided into chunks by split. We want to pass in the chunked data rather than call split inside parSteps_strat so
that we can do the chunking of the input data just once instead of
repeating it for each iteration.
The kmeans_strat function below is our parallel version of
kmeans_seq, the only differences being that we call split to
divide the list of points into chunks ([image: 1]) and we call parSteps_strat instead of steps ([image: 2]):
kmeans_strat :: Int -> Int -> [Point] -> [Cluster] -> IO [Cluster]
kmeans_strat numChunks nclusters points clusters =
 let
 chunks = split numChunks points -- [image: 1]

 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany = do
 printf "giving up."
 return clusters
 loop n clusters = do
 printf "iteration %d\n" n
 putStr (unlines (map show clusters))
 let clusters' = parSteps_strat nclusters clusters chunks -- [image: 2]
 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 in
 loop 0 clusters
Note that the number of chunks doesn’t have to be related to
the number of processors; as we saw earlier, it is better to produce
plenty of sparks and let the runtime schedule them automatically,
because this should enable the program to scale over a wide range of
processors.

Performance and Analysis

Next we’re going on an exploration of the performance of this parallel
program. Along the way, we’ll learn several lessons about the kinds
of things that can go wrong when parallelizing Haskell code, how to
look out for them using ThreadScope, and how to fix them.
We’ll start by taking some measurements of the speedup for various
numbers of cores. When running the program in parallel, we get to
choose the number of chunks to divide the input into, and for these
measurements I’ll use 64 (but we’ll revisit this in
Granularity). The program is run in parallel like
this:
$./kmeans strat 64 +RTS -N2
strat indicates that we want to use the Strategies version of
the algorithm, and 64 is the number of chunks to divide the input data
into. Here, I’m telling the GHC runtime to use two cores.
Here are the speedup results I get on my computer for the kmeans program I showed
earlier.[9] For each
measurement, I ran the program a few times and took the average
runtime.[10]
	 Cores 	 Time (s) 	 Speedup
	1
	2.56
	1

	2
	1.42
	1.8

	3
	1.06
	2.4

	4
	0.97
	2.6

We can see that speedup is quite good for two to three cores but starts to
drop off at four cores. Still, a 2.6 speedup on 4 cores is reasonably
respectable.
The ThreadScope profile gives us some clues about why the speedup
might be less than we hope. The overall view of the four-core run can be
seen in Figure 3-2.
[image: kmeans on four cores]

Figure 3-2. kmeans on four cores

We can clearly see the sequential section at the start, where the
program reads in the input data. But that isn’t a problem; remember that
the program emits its own timing results, which begin at the parallel
part of the run. The parallel section itself looks quite good; all
cores seem to be running for the duration. Let’s zoom in on the
beginning of the parallel section, as shown in Figure 3-3.
[image: kmeans on four cores, start of parallel execution]

Figure 3-3. kmeans on four cores, start of parallel execution

There’s a segment between 0.78s and 0.8s where, although parallel
execution has started, there is heavy GC activity. This is similar to
what we saw in Example: Parallelizing a Sudoku Solver, where the work of splitting
the input data into lines was overlapped with the parallel execution.
In the case of kmeans, the act of splitting the data set into chunks
is causing the extra work.
The sequential version of the algorithm doesn’t need to split the data into
chunks, so chunking is a source of extra overhead in the parallel
version. This is one reason that we aren’t achieving full speedup.
If you’re feeling adventurous, you might want to see whether you can
avoid this chunking overhead by using Vector instead of a list to
represent the data set, because Vectors can be sliced in O(1)
time.
Let’s look at the rest of the parallel section in more detail (see Figure 3-4).
[image: kmeans on four cores, parallel execution]

Figure 3-4. kmeans on four cores, parallel execution

The parallel execution, which at first looked quite uniform, actually
consists of a series of humps when we zoom in. Remember that the
algorithm performs a series of iterations over the data set—these
humps in the profile correspond to the iterations. Each iteration is a separate
parallel segment, and between the iterations lies some sequential
execution. We expect a small amount of sequential execution
corresponding to makeNewClusters, combine, and the comparison
between the new and old clusters in the outer loop.
Let’s see whether the reality matches our expectations by zooming in
on one of the gaps to see more clearly what happens between
iterations (Figure 3-5).
[image: kmeans on four cores, gap between iterations]

Figure 3-5. kmeans on four cores, gap between iterations

There’s quite a lot going on here. We can see the parallel execution
of the previous iteration tailing off, as a couple of cores run longer
than the others. Following this, there is some sequential execution
on HEC 3 before the next iteration starts up in parallel.
Looking more closely at the sequential bit on HEC 3, we can see some
gaps where nothing appears to be happening at all. In the ThreadScope
GUI, we can show the detailed events emitted by the RTS (look for the
“Raw Events” tab in the lower pane), and if we look at the events for
this section, we see:
0.851404792s HEC 3: stopping thread 4 (making a foreign call)
0.851405771s HEC 3: running thread 4
0.851406373s HEC 3: stopping thread 4 (making a foreign call)
0.851419669s HEC 3: running thread 4
0.851451713s HEC 3: stopping thread 4 (making a foreign call)
0.851452171s HEC 3: running thread 4
...
The program is popping out to make several foreign calls during this
period. ThreadScope doesn’t tell us any more than this, but it’s
enough of a clue: A foreign call usually indicates some kind of I/O,
which should remind us to look back at what happens between iterations in the
kmeans_seq function:
 loop n clusters = do
 printf "iteration %d\n" n
 putStr (unlines (map show clusters))
 ...
We’re printing some output. Furthermore, we’re doing this in the
sequential part of the program, and Amdahl’s law is making us pay for
it in parallel speedup.
Commenting out these two lines (in both kmeans_seq and
kmeans_strat, to be fair) improves the parallel speedup from 2.6 to
3.4 on my quad-core machine. It’s amazing how easy it is to make a
small mistake like this in parallel programming, but fortunately
ThreadScope helps us identify the problem, or at least gives us clues
about where we should look.

Visualizing Spark Activity

We can also use ThreadScope to visualize the creation and use of sparks
during the run of the program. Figure 3-6 shows the profile for
kmeans running on four cores, showing the spark pool size over time for
each HEC (these graphs are enabled in the ThreadScope GUI from the
“Traces” tab in the left pane).
[image: kmeans on four cores, spark pool sizes]

Figure 3-6. kmeans on four cores, spark pool sizes

The figure clearly shows that as each iteration starts, 64 sparks are
created on one HEC and then are gradually consumed. What is perhaps
surprising is that the sparks aren’t always generated on the same HEC;
this is the GHC runtime moving work behind the scenes as it tries to
keep the load balanced across the cores.
There are more spark-related graphs available in ThreadScope, showing
the rates of spark creation and conversion (running sparks). All of
these can be valuable in understanding the performance characteristics
of your parallel program.

Granularity

Looking back at Figure 3-5, I remarked earlier that the parallel
section didn’t finish evenly, with two cores running a bit
longer than the others. Ideally, we would have all the cores running
until the end to maximize our speedup.
As we saw in Example: Parallelizing a Sudoku Solver, having too few work items in
our parallel program can impact the speedup, because the work items
can vary in cost. To get a more even run, we want to create
fine-grained work items and more of them.
To see the effect of this, I ran kmeans with various numbers of
chunks from 4 up to 512, and measured the runtime on 4 cores. The
results are shown in Figure 3-7.
[image: The effect of the number of chunkingnumber of chunks and runtimechunks in kmeans]

Figure 3-7. The effect of the number of chunks in kmeans

We can see not only that having too few chunks is not good for the
reasons given above, but also having too many can have a severe
impact. In this case, the sweet spot is somewhere around 50-100.
Why does having too many chunks increase the runtime?
There are two reasons:
	
There is some overhead per chunk in creating the spark and
 arranging to run it on another processor. As the chunks get
 smaller, this overhead becomes more significant.

	
The amount of sequential work that the program has to do is greater.
 Combining the results from 512 chunks takes longer than 64, and
 because this is in the sequential part, it significantly impacts the
 parallel performance.

GC’d Sparks and Speculative Parallelism

Recall the definition of parList:
parList :: Strategy a -> Strategy [a]
parList strat = evalList (rparWith strat)
And the underlying parameterized Strategy on lists, evalList:
evalList :: Strategy a -> Strategy [a]
evalList strat [] = return []
evalList strat (x:xs) = do
 x' <- strat x
 xs' <- evalList strat xs
 return (x':xs')
As evalList traverses the list applying the strategy strat to the
list elements, it remembers each value returned by strat (bound to
x'), and constructs a new list from these values. Why? Well, one
answer is that a Strategy must return a data structure equal to the
one it was passed.
But do we really need to build a new list? After all, this means that
evalList is not tail-recursive; the recursive call to
evalList is not the last operation in the do on its right-hand
side, so evalList requires stack space linear in the length of
the input list.
Couldn’t we just write a tail-recursive version of parList instead?
Perhaps like this:
parList :: Strategy a -> Strategy [a]
parList strat xs = do
 go xs
 return xs
 where
 go [] = return ()
 go (x:xs) = do rparWith strat x
 go xs
After all, this is type-correct and seems to call rparWith on each
list element as required.
Unfortunately, this version of parList has a serious problem: All the
parallelism it creates will be discarded by the garbage
collector. The omission of the result list turns out to be
crucial. Let’s take a look at the data structures that our original,
correct implementations of parList and evalList created
(Figure 3-8).
[image: parList heap structures]

Figure 3-8. parList heap structures

At the top of the diagram is the input list xs: a linked list
of cells, each of which points to a list element (x1, x2, and so
forth). At the bottom of the diagram is the spark pool, the runtime
system data structure that stores references to sparks in the heap.
The other structures in the diagram are built by parList (the
correct version, not the one I most recently showed). Each strat box represents the
strategy strat applied to an element of the original list, and
xs' is the linked list of cells in the output list. The spark pool
contains pointers to each of the strat boxes; these are the pointers
created by each call to rparWith.
The GHC runtime regularly checks the spark pool for any entries that
are not required by the program and removes them. It would be bad to
retain entries that aren’t needed, because that could cause the
program to hold on to memory unnecessarily, leading to a space leak.
We don’t want parallelism to have a negative impact on performance.
How does the runtime know whether an entry is needed? The same way it
knows whether any item in memory is needed: There must be a pointer to
it from something else that is needed. This is the reason that parList
creates a new list xs'. Suppose we did not build the new
list xs', as in the tail-recursive version of parList above.
Then the only reference to each strat box in the heap would be from
the spark pool, and hence the runtime would automatically sweep all
those references from the spark pool, discarding the parallelism.
So we build a new list xs' to hold references to the strat calls
that we need to retain.
The automatic discarding of unreferenced sparks has another benefit besides avoiding space leaks; suppose that under some circumstances the program does not need the entire list. If the program simply forgets the unused remainder of the list, the runtime system will clean up the unreferenced sparks from the spark pool and will not waste any further parallel processing resources on evaluating those sparks. The extra parallelism in this case is termed speculative, because it is not necessarily required, and the runtime will automatically discard speculative tasks that it can prove will never be required—a useful property!
Although the runtime system’s discarding of unreferenced sparks is
certainly useful in some cases, it can be tricky to work with because
there is no language-level support for catching mistakes. Fortunately,
the runtime system will tell us if it garbage-collects unreferenced
sparks. For example, if you use the tail-recursive parList with the
Sudoku solver from Chapter 2, the +RTS -s stats will show
something like this:
 SPARKS: 1000 (2 converted, 0 overflowed, 0 dud, 998 GC'd, 0 fizzled)
Garbage-collected sparks are reported as “GC’d.” ThreadScope will
also indicate GC’d sparks in its spark graphs.
If you see that a large number of sparks are GC’d, it’s a good
indication that sparks are being removed from the spark pool before
they can be used for parallelism. Unless you are using speculation, a
non-zero figure for GC’d sparks is probably a bad sign.
All the combinators in the Control.Parallel.Strategies libraries
retain references to sparks correctly. These are the rules of thumb for not
shooting yourself in the foot:
	
Use using to apply Strategies instead of runEval; it encourages the right pattern, in which the program uses the results of applying the Strategy.

	
When writing your own Eval monad code, this is wrong:

 do
 ...
 rpar (f x)
 ...
Equivalently, using rparWith without binding the result is wrong.
However, this is OK:
 do
 ...
 y <- rpar (f x)
 ... y ...
And this might be OK, as long as y is required by the program somewhere:
 do
 ...
 rpar y
 ...

Parallelizing Lazy Streams with parBuffer

A common pattern in Haskell programming is to use a lazy list as a
stream so that the program can consume input while simultaneously
producing output and consequently run in constant space. Such
programs present something of a challenge for parallelism; if we
aren’t careful, parallelizing the computation will destroy the lazy
streaming property and the program will require space linear in the
size of the input.
To demonstrate this, we will use the sample program rsa.hs,
an implementation of RSA encryption and decryption. The program
takes two command line arguments: the first specifies which action to
take, encrypt or decrypt, and the second is either the filename of
the file to read, or the character - to read from stdin. The
output is always produced on stdout.
The following example uses the program to encrypt the message "Hello World!":
$ echo 'Hello World!' | ./rsa encrypt -
11656463941851871045300458781178110195032310900426966299882646602337646308966290
04616367852931838847898165226788260038683620100405280790394258940505884384435202
74975036125752600761230510342589852431747
And we can test that the program successfully decrypts the output,
producing the original text, by piping the output back into rsa
decrypt:
$ echo "Hello World!" | ./rsa encrypt - | ./rsa decrypt -
Hello World!
The rsa program is a stream transformer, consuming input and
producing output lazily. We can see this by looking at the RTS stats:
$./rsa encrypt /usr/share/dict/words >/dev/null +RTS -s
 8,040,128,392 bytes allocated in the heap
 66,756,936 bytes copied during GC
 186,992 bytes maximum residency (71 sample(s))
 36,584 bytes maximum slop
 2 MB total memory in use (0 MB lost due to fragmentation)
The /usr/share/dict/words file is about 1 MB in size, but the program has a
maximum residency (live memory) of 186,992 bytes.
Let’s try to parallelize the program. The program uses the lazy
ByteString type from Data.ByteString.Lazy to achieve streaming,
and the top-level encrypt function has this type:
encrypt :: Integer -> Integer -> ByteString -> ByteString
The two Integers are the key with which to encrypt the data. The
implementation of encrypt is a beautiful pipeline composition:
rsa.hs

encrypt n e = B.unlines -- [image: 1]
 . map (B.pack . show . power e n . code) -- [image: 2]
 . chunk (size n) -- [image: 3]
	[image: 3]
	
Divide the input into chunks. Each chunk is encrypted
separately; this has nothing to do with parallelism.

	[image: 2]
	
Encrypt each chunk.

	[image: 1]
	
Concatenate the result as a sequence of lines.

We won’t delve into the details of the RSA implementation here, but if
you’re interested, go and look at the code in rsa.hs (it’s fairly
short). For the purposes of parallelism, all we need to know is that
there’s a map on the second line, so that’s our target for
parallelization.
First, let’s try to use the parList Strategy that we have seen before:
rsa1.hs

encrypt n e = B.unlines
 . withStrategy (parList rdeepseq) -- [image: 1]
 . map (B.pack . show . power e n . code)
 . chunk (size n)
	[image: 1]
	
I’m using withStrategy here, which is just a version of using
with the arguments flipped; it is slightly nicer in situations like
this. The Strategy is parList, with rdeepseq as the Strategy to
apply to the list elements (the list elements are lazy ByteStrings, so we
want to ensure that they are fully evaluated).

If we run this program on four cores, the stats show something
interesting:
 6,251,537,576 bytes allocated in the heap
 44,392,808 bytes copied during GC
 2,415,240 bytes maximum residency (33 sample(s))
 550,264 bytes maximum slop
 10 MB total memory in use (0 MB lost due to fragmentation)
The maximum residency has increased to 2.3 MB, because the parList
Strategy forces the whole spine of the list, preventing the program
from streaming in constant space. The speedup in this case was 2.2;
not terrible, but not great either. We can do better.
The Control.Parallel.Strategies library provides a Strategy to solve
exactly this problem, called parBuffer:
parBuffer :: Int -> Strategy a -> Strategy [a]
The parBuffer function has a similar type to parList but takes an Int
argument as a buffer size. In contrast to parList which eagerly
creates a spark for every list element, parBuffer N creates
sparks for only the first N elements of the list, and then creates
more sparks as the result list is consumed. The effect is that there
will always be N sparks available until the end of the list is
reached.
The disadvantage of parBuffer is that we have to choose a particular
value for the buffer size, and as with the chunk factor we saw
earlier, there will be a “best value” somewhere in the range.
Fortunately, performance is usually not too sensitive to this value,
and something in the range of 50-500 is often good. So let’s see how
well this works:
rsa2.hs

encrypt n e = B.unlines
 . withStrategy (parBuffer 100 rdeepseq) -- [image: 1]
 . map (B.pack . show . power e n . code)
 . chunk (size n)
	[image: 1]
	
Here I replaced parList with parBuffer 100.

This programs achieves a speedup of 3.5 on 4 cores. Furthermore, it
runs in much less memory than the parList version:
 6,275,891,072 bytes allocated in the heap
 27,749,720 bytes copied during GC
 294,872 bytes maximum residency (58 sample(s))
 62,456 bytes maximum slop
 4 MB total memory in use (0 MB lost due to fragmentation)
We can expect it to need more memory than the sequential version, which required only 2 MB,
because we’re performing many computations in parallel. Indeed, a
higher residency is common in parallel programs for the simple reason
that they are doing more work, although it’s not always the case;
sometimes parallel evaluation can reduce memory overhead by
evaluating thunks that were causing space leaks.
ThreadScope’s spark pool graph shows that parBuffer really does keep
a constant supply of sparks, as shown in Figure 3-9.
[image: rsa on four cores, using parBuffer]

Figure 3-9. rsa on four cores, using parBuffer

The spark pool on HEC 0 constantly hovers around 90-100 sparks.
In programs with a multistage pipeline, interposing more calls to
withStrategy in the pipeline can expose more parallelism.

Chunking Strategies

When parallelizing K-Means in Parallelizing K-Means, we divided
the input data into chunks to avoid creating parallelism with
excessively fine granularity. Chunking is a common technique, so the
Control.Parallel.Strategies library provides a version of parList
that has chunking built in:
parListChunk :: Int -> Strategy a -> Strategy [a]
The first argument is the number of elements in each chunk; the list
is split in the same way as the chunk function that we saw earlier
in the kmeans example. You might find parListChunk useful if you
have a list with too many elements to spark every one, or when the
list elements are too cheap to warrant a spark each.
The spark pool has a fixed size, and when the pool is full, subsequent
sparks are dropped and reported as overflowed in the +RTS -s stats output. If you see some overflowed sparks, it is probably a
good idea to create fewer sparks; replacing parList with
parListChunk is a good way to do that.
Note that chunking the list incurs some overhead, as we noticed in the
earlier kmeans example when we used chunking directly. For that
reason, in kmeans we created the chunked list once and shared it
amongst all the iterations of the algorithm, rather than using
parListChunk, which would chunk the list every time.

The Identity Property

I mentioned at the beginning of this chapter that if we see an
expression of this form:
 x `using` s
We can delete `using` s, leaving an equivalent program. For this to be true, the Strategy s must obey the identity property; that is, the value it returns must be equal to the value it was passed. The operations provided by the Control.Parallel.Strategies library all satisfy this property, but unfortunately it isn’t possible to enforce it for arbitrary user-defined Strategies. Hence we cannot guarantee that x `using` s == x, just as we cannot guarantee that all instances of Monad satisfy the monad laws, or that all instances of Eq are reflexive. These properties are satisfied by convention only; this is just something to be aware of.
There is one more caveat to this property. The
expression x `using` s might be less defined than x, because it
evaluates more structure of x than the context does. What does
less defined mean? It means that the program containing x `using` s might fail with an error when simply x would not. A trivial
example of this is:
print $ snd (1 `div` 0, "Hello!")
This program works and prints "Hello!", but:
print $ snd ((1 `div` 0, "Hello!") `using` rdeepseq)
This program fails with divide by zero. The original program didn’t
fail because the erroneous expression was never evaluated, but adding
the Strategy has caused the program to fully evaluate the pair, including
the division by zero.
This is rarely a problem in practice; if the Strategy evaluates more
than the program would have done anyway, the Strategy is probably
wasting effort and needs to be modified.

[6] This comes with a couple of minor caveats that we’ll describe in The Identity Property.

[7] The evalPair function is
provided by Control.Parallel.Strategies as evalTuple2.

[8] The actual implementation adds UNPACK pragmas for efficiency, which I have omitted here for clarity.

[9] A quad-core Intel i7-3770

[10] To do this scientifically, you would need to be much more rigorous, but the goal here is just to optimize our program, so rough measurements are fine.

Chapter 4. Dataflow Parallelism: The Par Monad

In the previous two chapters, we looked at the Eval monad and
Strategies, which work in conjunction with lazy evaluation to express
parallelism. A Strategy consumes a lazy data structure and evaluates
parts of it in parallel. This model has some advantages: it allows
the decoupling of the algorithm from the parallelism, and it allows
parallel evaluation strategies to be built compositionally. But
Strategies and Eval are not always the most convenient or effective
way to express parallelism. We might not want to build a lazy data
structure, for example. Lazy evaluation brings the nice modularity
properties that we get with Strategies, but on the flip side, lazy
evaluation can make it tricky to understand and diagnose performance.
In this chapter, we’ll explore another parallel programming model, the
Par monad, with a different set of tradeoffs. The goal of the Par
monad is to be more explicit about granularity and data dependencies,
and to avoid the reliance on lazy evaluation, but without sacrificing
the determinism that we value for parallel programming.
In this programming model, the programmer has to give more
detail but in return gains more control. The Par monad has some
other interesting benefits; for example, it is implemented entirely as
a Haskell library and the implementation can be readily modified to
accommodate alternative scheduling strategies.
The interface is based around a monad called, unsurprisingly, Par:
newtype Par a
instance Applicative Par
instance Monad Par

runPar :: Par a -> a
A computation in the Par monad can be run using runPar to produce
a pure result. The purpose of Par is to introduce parallelism, so
we need a way to create parallel tasks:
fork :: Par () -> Par ()
The Par computation passed as the argument to fork (the “child”)
is executed in parallel with the caller of fork (the “parent”).
But fork doesn’t return anything to the parent, so you might be
wondering how we get the result back if we start a parallel
computation with fork. Values can be passed between Par computations
using the IVar type[11] and its operations:
data IVar a -- instance Eq

new :: Par (IVar a)
put :: NFData a => IVar a -> a -> Par ()
get :: IVar a -> Par a
Think of an IVar as a box that starts empty. The put
operation stores a value in the box, and get reads the value. If
the get operation finds the box empty, then it waits until the box is
filled by a put. So an IVar lets you communicate values between
parallel Par computations, because you can put a value in the box
in one place and get it in another.
Once filled, the box stays full; the get operation doesn’t remove
the value from the box. It is an error to call put more than once
on the same IVar.
The IVar type is a relative of the MVar type that we shall see
later in the context of Concurrent Haskell (Communication: MVars), the main
difference being that an IVar can be written only once. An IVar
is also like a future or promise, concepts that may be familiar to
you from other parallel or concurrent languages.
Caution
There is nothing in the types to stop you from returning an IVar from
runPar and passing it to another call of runPar. This is a Very
Bad Idea; don’t do it. The implementation of the Par monad assumes
that IVars are created and used within the same runPar, and
breaking this assumption could lead to a runtime error, deadlock,
or worse.
The library could prevent you from doing this using qualified types
in the same way that the ST monad prevents you from returning an
STRef from runST. This is planned for a future version.

Together, fork and IVars allow the construction of dataflow
networks. Let’s see how that works with a few simple examples.
We’ll start in the same way we did in Chapter 2: write some
code to perform two independent computations in parallel. As before,
I’m going to use the fib function to simulate some work we want
to do:
parmonad.hs

 runPar $ do
 i <- new -- [image: 1]
 j <- new -- [image: 2]
 fork (put i (fib n)) -- [image: 3]
 fork (put j (fib m)) -- [image: 4]
 a <- get i -- [image: 5]
 b <- get j -- [image: 6]
 return (a+b) -- [image: 7]
	[image: 1] [image: 2]
	
Creates two new IVars to hold the results, i and j.

	[image: 3] [image: 4]
	
fork two independent Par computations. The first puts the
value of fib n into the IVar i, and the second puts the value of
fib m into the IVar j.

	[image: 5] [image: 6]
	
The parent of the two forks calls get to wait for the
results from i and j.

	[image: 7]
	
Finally, add the results and return.

When run, this program evaluates fib n and fib m in parallel.
To try it yourself, compile parmonad.hs and run it passing two
values for n and m, for example:
$./parmonad 34 35 +RTS -N2
The pattern in this program is represented graphically in
Figure 4-1.
[image: Simple Par example]

Figure 4-1. Simple Par example

The diagram makes it clear that what we are creating is a dataflow
graph: that is, a graph in which the nodes (fib n, etc.) contain the computation
and data flows down the edges (i and j). To be concrete, each fork in the
program creates a node, each new creates an edge, and get and
put connect the edges to the nodes.
From the diagram, we can see that the two nodes containing fib n and
fib m are independent of each other, and that is why they can be
computed in parallel, which is exactly what the monad-par library
will do. However, the dataflow graph doesn’t exist in any explicit
form at runtime; the library works by keeping track of all the
computations that can currently be performed (a work pool), and
dividing those amongst the available processors using an appropriate
scheduling strategy. The dataflow graph is just a way to visualize
and understand the structure of the parallelism. Unfortunately, right
now there’s no way to generate a visual representation of the dataflow graph from some Par monad
code, but hopefully in the future someone will write a tool to do
that.
Using dataflow to express parallelism is quite an old idea; there were
people experimenting with custom hardware architectures designed
around dataflow back in the 1970s and 1980s. In contrast to those designs
that were focused on exploiting very fine-grained parallelism
automatically, here we are using dataflow as an explicit parallel
programming model. But we are using dataflow here for the same reasons
that it was attractive back then: instead of saying
what is to be done in parallel, we only describe the data dependencies,
thereby exposing all the implicit parallelism to be exploited.
While the Par monad is particularly suited to expressing dataflow
networks, it can also express other common patterns. For example,
we can build an equivalent of the parMap combinator that we saw
earlier in Chapter 2. To make it easier to define parMap,
let’s first build a simple abstraction for a parallel computation that
returns a result:
spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do
 i <- new
 fork (do x <- p; put i x)
 return i
The spawn function forks a computation in parallel and returns an IVar that can be used to wait for the result. For convenience,
spawn is already provided by Control.Monad.Par.
Parallel map consists of calling spawn to apply the function to
each element of the list and then waiting for all the results:
parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM f as = do
 ibs <- mapM (spawn . f) as
 mapM get ibs
(parMapM is also provided by Control.Monad.Par, albeit in a more
generalized form than the version shown here.)
Note that the function argument, f, returns its result in the Par
monad; this means that f itself can create further parallelism using
fork and the other Par operations. When the function argument of
a map is monadic, convention is to add the M suffix to the function
name, hence parMapM.
It is straightforward to define a variant of parMapM that takes a
non-monadic function instead, by inserting a return:
parMap :: NFData b => (a -> b) -> [a] -> Par [b]
parMap f as = do
 ibs <- mapM (spawn . return . f) as
 mapM get ibs
One other thing to note here is that, unlike the parMap we saw in
Chapter 2, parMapM and parMap wait for all the results
before returning. Depending on the context, this may or may not be the
most useful behavior. If you don’t want to wait for the results, then you could always just use mapM (spawn . f), which
returns a list of IVars.
Strictness of put
The put function calls deepseq on the value it puts in the IVar,
which is why its type has an NFData constraint. This is a
deliberate design choice; in the Par monad, we want the work to
happen where we expect it to, so we rule out the possibility that an
unevaluated expression is transferred via an IVar.
This means that put causes a traversal of the value stored in
the IVar, which can be expensive if the value is a large data
structure. For this reason, there’s a backdoor to use if you know
what you’re doing:
put_ :: IVar a -> a -> Par ()
The put_ operation evaluates the value to WHNF only. Replacing
put with put_ can save some time if you know that the argument is
already fully evaluated.

Example: Shortest Paths in a Graph

The Floyd-Warshall algorithm finds the lengths of the shortest paths
between all pairs of nodes in a weighted directed graph. The
algorithm is quite simple and can be expressed as a function over
three vertices. Assuming vertices are numbered from one, and we have
a function weight g i j that gives the weight of the edge from i
to j in graph g, the algorithm is described by this pseudocode:
shortestPath :: Graph -> Vertex -> Vertex -> Vertex -> Weight
shortestPath g i j 0 = weight g i j
shortestPath g i j k = min (shortestPath g i j (k-1))
 (shortestPath g i k (k-1) + shortestPath g k j (k-1))
You can think of the algorithm intuitively this way: shortestPath g i j k gives the length of the shortest path from i to j, passing through vertices up to k
only. At k == 0, the paths between each pair of vertices consists
of the direct edges only. For a non-zero k, there are two cases:
either the shortest path from i to j passes through k, or it
does not. The shortest path passing through k is given by the sum
of the shortest path from i to k and from k to j. Then the
shortest path from i to j is the minimum of the two choices,
either passing through k or not.
We wouldn’t want to implement the algorithm like this directly,
because it requires an exponential number of recursive calls. This is a
classic example of a dynamic programming problem: rather than
recursing top-down, we can build the solution bottom-up, so that
earlier results can be used when computing later ones. In this case,
we want to start by computing the shortest paths between all pairs of
nodes for k == 0, then for k == 1, and so on until k reaches the
maximum vertex. Each step is O(n2) in the vertices, so the
whole algorithm is O(n3).
The algorithm is often run over an adjacency matrix, which is a very
efficient representation of a dense graph. But here we’re going to
assume a sparse graph (most pairs of vertices do not have an edge
between them), and use a representation more suitable for this case:
fwsparse/SparseGraph.hs

type Vertex = Int
type Weight = Int

type Graph = IntMap (IntMap Weight)

weight :: Graph -> Vertex -> Vertex -> Maybe Weight
weight g i j = do
 jmap <- Map.lookup i g
 Map.lookup j jmap
The graph is essentially a mapping from pairs of nodes to weights, but
it is represented more efficiently as a two-layer map. For example, to find
the edge between i and j, we look up i in the outer map,
yielding another map in which we look up j to find the weight. The
function weight embodies this pair of lookups using the Maybe
monad. If there is no edge between the two vertices, then weight
returns Nothing.
Here is the sequential implementation of the shortest path algorithm:
fwsparse/fwsparse.hs

shortestPaths :: [Vertex] -> Graph -> Graph
shortestPaths vs g = foldl' update g vs -- [image: 1]
 where
 update g k = Map.mapWithKey shortmap g -- [image: 2]
 where
 shortmap :: Vertex -> IntMap Weight -> IntMap Weight
 shortmap i jmap = foldr shortest Map.empty vs -- [image: 3]
 where shortest j m =
 case (old,new) of -- [image: 4]
 (Nothing, Nothing) -> m
 (Nothing, Just w) -> Map.insert j w m
 (Just w, Nothing) -> Map.insert j w m
 (Just w1, Just w2) -> Map.insert j (min w1 w2) m
 where
 old = Map.lookup j jmap -- [image: 5]
 new = do w1 <- weight g i k -- [image: 6]
 w2 <- weight g k j
 return (w1+w2)
shortestPaths takes a list of vertices in addition to the graph; we
could have derived this from the graph, but it’s slightly more
convenient to pass it in. The result is also a Graph, but instead
of containing the weights of the edges between vertices, it contains
the lengths of the shortest paths between vertices. For simplicity,
we’re not returning the shortest paths themselves, although this can
be added without affecting the asymptotic time or space complexity.
	[image: 1]
	
The algorithm as a whole is a left-fold over the list of vertices;
this corresponds to iterating over values of k in the pseudocode
description shown earlier. At each stage we add a new vertex to the set of
vertices that can be used to construct paths, until at the end we have
paths that can use all the vertices. Note that we use the strict
left-fold, foldl', to ensure that we’re evaluating the graph at
every step and not building up a chain of thunks (we’re also using a
strict IntMap to avoid thunks building up inside the Graph; this
turns out to be vital for avoiding a space leak).

	[image: 2]
	
The update function computes each step by mapping the function
shortmap over the outer IntMap in the graph. There’s no need to
map over the whole list of vertices because we know that any vertex
that does not have an entry in the outer map cannot have a path to any
other vertex (although it might have incoming paths).

	[image: 3]
	
shortmap takes i, the current vertex, and jmap, the mapping
of shortest paths from i. This function does need to consider
every vertex in the graph as a possible destination because there may
be vertices that we can reach from i via k, but which do
not currently have an entry in jmap. So here we’re building up a
new jmap by folding over the list of vertices, vs.

	[image: 5]
	
For a given j, look up the current shortest path from i to
j, and call it old.

	[image: 6]
	
Look up the shortest path from i to j via k (if one
exists), and call it new.

	[image: 4]
	
Find the minimum of old and new, and insert it into the new
mapping. Naturally, one path is the winner if the other path does not
exist.

The algorithm is a nest of three loops. The outer loop is a left-fold
with a data dependency between iterations, so it cannot be
parallelized (as a side note, folds can be parallelized only when the
operation being folded is associative, and then the linear fold can be
turned into a tree). The next loop, however, is a map:
 update g k = Map.mapWithKey shortmap g
As we know, maps parallelize nicely. Will this give the right
granularity? The map is over the outer IntMap of the Graph, so
there will be as many tasks as there are vertices without edges.
There will typically be at least hundreds of edges in the graph, so
there are clearly enough separate work items to keep even tens of
cores busy. Furthermore, each task is an O(n) loop over the list
of vertices, so we are unlikely to have problems with the granularity
being too fine.
Let’s consider how to add parallelism here. It’s not an ordinary
map—we’re using the mapWithKey function provided by Data.IntMap
to map directly over the IntMap. We could turn the IntMap into a
list, run a standard parMap over that, and then turn it back into an
IntMap, but the conversion to and from a list would add some
overhead. Fortunately, the IntMap library provides a way to
traverse an IntMap in a monad:
traverseWithKey :: Applicative t
 => (Key -> a -> t b)
 -> IntMap a
 -> t (IntMap b)
Don’t worry if you’re not familiar with the Applicative type class; most of the time, you can read Applicative as Monad and you’ll be fine. All the standard Monad types are also Applicative, and in general any Monad can be made into an Applicative easily.[12]
So traverseWithKey essentially maps a monadic function over the
IntMap, for any monad t. The monadic function is passed not only
the element a, but also the Key, which is just what we need here:
shortmap needs both the key (the source vertex) and the element (the
map from destination vertices to weights).
So we want to behave like parMap, except that we’ll use
traverseWithKey to map over the IntMap. Here is the parallel code
for update:
 update g k = runPar $ do
 m <- Map.traverseWithKey (\i jmap -> spawn (return (shortmap i jmap))) g
 traverse get m
We’ve put runPar inside update; the rest of the shortestPaths
function will remain as before, and all the parallelism is confined to
update. We’re calling traverseWithKey to spawn a call to
shortmap for each of the elements of the IntMap. The result of
this call will be an IntMap (IVar (IntMap Weight)); that is, there’s an IVar in place of each element. To get the new Graph, we need
to call get on each of these IVars and produce a new Graph
with all the elements, which is what the final call to traverse
does. The traverse function is from the Traversable class; for
our purposes here, it is like traverseWithKey but doesn’t pass the
Key to the function.
Let’s take a look at the speedup we get from this code. Running the
original program on a random graph with 800 edges over 1,000 vertices:
$./fwsparse 1000 800 +RTS -s
...
 Total time 4.16s (4.17s elapsed)
And our parallel version, first on one core:
$./fwsparse1 1000 800 +RTS -s
...
 Total time 4.54s (4.57s elapsed)
Adding the parallel traversal has cost us about 10% overhead; this is
quite a lot, and if we were optimizing this program for real, we would
want to look into whether that overhead can be reduced. Perhaps it is
caused by doing one runPar per iteration (a runPar is
quite expensive) or perhaps traverseWithKey is expensive.
The speedup on four cores is fairly respectable:
$./fwsparse1 1000 800 +RTS -s -N4
...
 Total time 5.27s (1.38s elapsed)
This gives us a speedup of 3.02 over the sequential version. To improve
this speedup further, the first target would be to reduce the overhead
of the parallel version.

Pipeline Parallelism

Next, we’re going to look at a different way to expose parallelism:
pipeline parallelism. Back in Parallelizing Lazy Streams with parBuffer, we saw how to use
parallelism in a program that consumed and produced input lazily,
although in that case we used data parallelism, which is parallelism between
the stream elements. Here, we’re going to show how to make use of
parallelism between the stages of a pipeline. For example, we might have a pipeline that looks like this:
[image: image with no caption]

Each stage of the pipeline is doing some computation on the
stream elements and maintaining state as it does so. When a
pipeline stage maintains some state, we can’t exploit parallelism between
the stream elements as we did in Parallelizing Lazy Streams with parBuffer. Instead, we would
like each of the pipeline stages to run on a separate core, with the
data streaming between them. The Par monad, together with the
techniques in this section, allows us to do that.
The basic idea is as follows: instead of representing the stream as a
lazy list, use an explicit representation of a stream:
data IList a
 = Nil
 | Cons a (IVar (IList a))

type Stream a = IVar (IList a)
An IList is a list with an IVar as the tail. This allows the
producer to generate the list incrementally, while a consumer runs in
parallel, grabbing elements as they are produced. A Stream is an
IVar containing an IList.
We’ll need a few functions for working with Streams. First, we need a
generic producer that turns a lazy list into a Stream:
streamFromList :: NFData a => [a] -> Par (Stream a)
streamFromList xs = do
 var <- new -- [image: 1]
 fork $ loop xs var -- [image: 2]
 return var -- [image: 3]
 where
 loop [] var = put var Nil -- [image: 4]
 loop (x:xs) var = do -- [image: 5]
 tail <- new -- [image: 6]
 put var (Cons x tail) -- [image: 7]
 loop xs tail -- [image: 8]
	[image: 1]
	
Creates the IVar that will be the Stream itself.

	[image: 2]
	
forks the loop that will create the Stream contents.

	[image: 3]
	
Returns the Stream to the caller. The Stream is now being created in parallel.

	[image: 4]
	
This loop traverses the input list, producing the IList as it
goes. The first argument is the list, and the second argument is the
IVar into which to store the IList. In the case of an empty list, we
simply store an empty IList into the IVar.

	[image: 5]
	
In the case of a non-empty list,

	[image: 6]
	
we create a new IVar for the
tail,

	[image: 7]
	
and store a Cons cell representing this element into the current
IVar. Note that this fully evaluates the list element x, because
put is strict.

	[image: 8]
	
Recurse to create the rest of the stream.

Next, we’ll write a consumer of Streams, streamFold:
streamFold :: (a -> b -> a) -> a -> Stream b -> Par a
streamFold fn !acc instrm = do
 ilst <- get instrm
 case ilst of
 Nil -> return acc
 Cons h t -> streamFold fn (fn acc h) t
This is a left-fold over the Stream and is defined exactly as you
would expect: recursing through the IList and accumulating the result
until the end of the Stream is reached. If the streamFold
consumes all the available stream elements and catches up with the
producer, it will block in the get call waiting for the next
element.
The final operation we’ll need is a map over Streams. This is
both a producer and a consumer:
streamMap :: NFData b => (a -> b) -> Stream a -> Par (Stream b)
streamMap fn instrm = do
 outstrm <- new
 fork $ loop instrm outstrm
 return outstrm
 where
 loop instrm outstrm = do
 ilst <- get instrm
 case ilst of
 Nil -> put outstrm Nil
 Cons h t -> do
 newtl <- new
 put outstrm (Cons (fn h) newtl)
 loop t newtl
There’s nothing particularly surprising here—the pattern is a
combination of the producer we saw in streamFromList and the consumer
in streamFold.
To demonstrate that this works, I’ll construct an example using the
RSA encryption code that we saw earlier in Parallelizing Lazy Streams with parBuffer.
However, this time, in order to construct a nontrivial pipeline, I’ll compose
together encryption and decryption; encryption will produce a stream
that decryption consumes (admittedly this isn’t a realistic use case,
but it does demonstrate pipeline parallelism).
Previously, encrypt and decrypt consumed and produced lazy
ByteStrings. Now they work over Stream ByteString in the Par
monad, and are expressed as a streamMap:
rsa-pipeline.hs

encrypt :: Integer -> Integer -> Stream ByteString -> Par (Stream ByteString)
encrypt n e s = streamMap (B.pack . show . power e n . code) s

decrypt :: Integer -> Integer -> Stream ByteString -> Par (Stream ByteString)
decrypt n d s = streamMap (B.pack . decode . power d n . integer) s
The following function composes these together and also adds a
streamFromList to create the input Stream and a streamFold to
consume the result:
pipeline :: Integer -> Integer -> Integer -> ByteString -> ByteString
pipeline n e d b = runPar $ do
 s0 <- streamFromList (chunk (size n) b)
 s1 <- encrypt n e s0
 s2 <- decrypt n d s1
 xs <- streamFold (\x y -> (y : x)) [] s2
 return (B.unlines (reverse xs))
Note that the streamFold produces a list of ByteStrings at the end,
to which we apply unlines, and then the caller prints out the
result.
This works rather nicely: I see a speedup of 1.45 running the program
over a large text file. What’s the maximum speedup we can achieve
here? Well, there are four independent pipeline stages:
streamFromList, two streamMaps, and a streamFold, although
only the two maps really involve any significant
computation.[13]
So the best we can hope for is to reduce the running time to the
longer of the two maps. We can verify, by timing the rsa.hs program,
that encryption takes approximately twice as long as decryption, which
means that we can expect a speedup of about 1.5, which is close to
the sample run here.
The ThreadScope profile of this program is quite revealing. Figure 4-2 is a
typical section from it.
[image: ThreadScope profile of rsa-pipeline]

Figure 4-2. ThreadScope profile of rsa-pipeline

HEC 0 appears to be doing the encryption, and HEC 1 the decryption.
Decryption is faster than encryption, so HEC 1 repeatedly gets stuck
waiting for the next element of the encrypted stream; this accounts
for the gaps in execution we see on HEC 1.
One interesting thing to note about this profile is that the pipeline
stages tend to stay on the same core. This is because each pipeline
stage is a single fork (a single node in the dataflow
graph) and the Par scheduler will run a task to completion on the
current core before starting on the next task. Keeping each pipeline
stage running on a single core is good for locality.
Rate-Limiting the Producer

In our previous example, the consumer was faster than the producer. If,
instead, the producer had been faster than the consumer, then there would be
nothing to stop the producer from getting a long way ahead of the consumer
and building up a long IList chain in memory. This is undesirable,
because large heap data structures incur overhead due to garbage
collection, so we might want to rate-limit the producer to avoid it
getting too far ahead. There’s a trick that adds some automatic
rate-limiting to the stream API. It entails adding another
constructor to the IList type:
data IList a
 = Nil
 | Cons a (IVar (IList a))
 | Fork (Par ()) (IList a) -- [image: 1]
	[image: 1]
	
The idea is that the creator of the IList produces a fixed
amount of the list and inserts a Fork constructor containing
another Par computation that will produce more of the list. The
consumer, upon finding a Fork, calls fork to start production of
the next chunk of the list. The Fork doesn’t have to be at the end;
for example, the list might be produced in chunks of 200 elements,
with the first Fork being at the 100 element mark, and every 200
elements thereafter. This would mean that at any time there would be
at least 100 and up to 300 elements waiting to be consumed.

I’ll leave the rest of the implementation of this idea as an exercise for you to try on your own.
See if you can modify streamFromList, streamFold, and streamMap
to incorporate the Fork constructor. The chunk size and fork
distance should be parameters to the producers (streamFromList and
streamMap).

Limitations of Pipeline Parallelism

Pipeline parallelism is limited in that we can expose only as much
parallelism as we have pipeline stages. It therefore tends to be less
effective than data parallelism, which can expose a lot more
parallelism. Still, pipeline parallelism is a useful tool to have in
your toolbox.
The earlier example also exposes a limitation of the Par monad; we cannot
produce a lazy stream from runPar itself. The call to streamFold
accumulates the entire list before it returns. You can’t return an
IList from runPar and consume it in another runPar, because
returning an IVar from runPar is illegal and will
probably result in an error. Besides, runPar always runs all the
forked Par computations to completion before returning, because this
is necessary to ensure deterministic results. There is an IO
version of the Par monad that we’ll encounter in
The ParIO monad, and you could use that for lazy streaming,
although unlike the pure Par monad, determinism is not guaranteed
when using the IO version.

Example: A Conference Timetable

In this section, we’ll look at a program that finds a valid
timetable for a conference.[14] The outline of the problem is this:
	
The conference runs T parallel tracks, and each track has the
 same number of talk slots, S; hence there are T * S talk slots
 in total. For simplicity, we assume that the talk slots all start
 and finish at the same time across the tracks.

	
There are at most T * S talks to assign to tracks and slots (if
 there are fewer talks than slots, we can make up the
 difference with dummy talks that represent empty slots).

	
There are a number of attendees who have each expressed a
 preference for some talks they would like to see.

	
The goal is to assign talks to slots and tracks so that the
 attendees can attend all the talks they want to see; that is, we
 never schedule two talks that an attendee wanted to see on two
 different tracks in the same slot.

Here’s a small example. Suppose we have two tracks and two slots, and
four talks named A, B, C, and D. There are four attendees—P, Q, R, and S—and each wants to go to two talks:
	
P wants to see A and B

	
Q wants to see B and C

	
R wants to see C and D

	
S wants to see A and D

One solution is:
	Track	 Slot 1 	 Slot 2
	1
	B
	C

	2
	D
	A

There are other solutions, but they are symmetrical with this one
(interchange either the tracks or the slots or both).
Timetabling is an instance of a constraint satisfaction problem: we’re
finding assignments for variables (talk slots) that satisfy the
constraints (attendees’ preferences). The problem requires an
exhaustive search, but we can be more clever than just generating all
the possible assignments and testing each one. We can fill in the
timetable incrementally: assign a talk to the first slot of the first
track, then find a talk for the first slot of the second track that
doesn’t introduce a conflict, and so on until we’ve filled up the
first slot of all the tracks. Then we proceed to the second slot and
so on until we’ve filled the whole timetable. This incremental
approach prunes a lot of the search space because we avoid searching
for solutions when the partial grid already contains a conflict.[15]
If at any point we cannot fill a slot without causing a conflict, we
have to backtrack to the previous slot and choose a different talk
instead. If we exhaust all the possibilities at the previous slot,
then we have to backtrack further. So, in general, the search pattern
is a tree. A fragment of the search tree for the example above is
shown in Figure 4-3.
[image: Tree-shaped search pattern for the timetabling problem]

Figure 4-3. Tree-shaped search pattern for the timetabling problem

If we are interested in all the solutions (perhaps because we want
to pick the best one according to some criteria), we have to explore
the whole tree.
Algorithms that have this tree-shaped structure are often called
divide and conquer. A divide-and-conquer algorithm is one in which
the problem is recursively split into smaller subproblems that are
solved separately, then combined to form the whole solution. In this
case, starting from the empty timetable, we’re dividing the solution
space according to which talk goes in the first slot, and then by
which talk goes in the second slot, and so on recursively until we
fill the timetable. Divide-and-conquer algorithms have some nice
properties, not least of which is that they parallelize well because
the branches are independent of one another.
So let’s look at how to code up a solution in Haskell. First, we need
a type to represent talks; for simplicity, I’ll just number them:
timetable.hs

newtype Talk = Talk Int
 deriving (Eq,Ord)

instance NFData Talk

instance Show Talk where
 show (Talk t) = show t
An attendee is represented by her name and the talks she wants to
attend:
data Person = Person
 { name :: String
 , talks :: [Talk]
 }
 deriving (Show)
And the complete timetable is represented as a list of lists of Talk. Each list represents a
single slot. So if there are four tracks and three slots, for example,
the timetable will be three lists of four elements each.
type TimeTable = [[Talk]]
Here’s the top-level function: it takes a list of Person, a list of
Talk, the number of tracks and slots, and returns a list of
TimeTable:
timetable :: [Person] -> [Talk] -> Int -> Int -> [TimeTable]
timetable people allTalks maxTrack maxSlot =
First, I’m going to cache some information about which talks clash with
each other. That is, for each talk, we want to know which other talks
cannot be scheduled in the same slot, because one or more attendees
want to see both of them. This information is collected in a Map
called clashes, which is built from the [Person] passed to
timetable:
 clashes :: Map Talk [Talk]
 clashes = Map.fromListWith union
 [(t, ts)
 | s <- people
 , (t, ts) <- selects (talks s)]
The auxiliary function selects takes a list and returns a list of
pairs, one pair for each item in the input list. The first element of
each pair is an element, and the second is the original list with that
element removed. For efficient implementation, selects does not
preserve the order of the elements. Example output:
*Main> selects [1..3]
[(1,[2,3]),(2,[1,3]),(3,[2,1])]
Now we can write the algorithm itself. Remember that the algorithm
is recursive: at each stage, we start with a partially filled-in
timetable, and we want to determine all the possible ways of filling
in the next slot and recursively generate all the solutions from
those. The recursive function is called generate. Here is its type:
 generate :: Int -- current slot number
 -> Int -- current track number
 -> [[Talk]] -- slots allocated so far
 -> [Talk] -- talks in this slot
 -> [Talk] -- talks that can be allocated in this slot
 -> [Talk] -- all talks remaining to be allocated
 -> [TimeTable] -- all possible solutions
The first two arguments tell us where in the timetable we are,
and the second two arguments are the partially complete timetable. In
fact, we’re filling in the slots in reverse order, but the slots are
independent of one another so it makes no difference. The last two
arguments keep track of which talks remain to be assigned: the first
is the list of talks that we can put in the current slot (taking into
account clashes with other talks already in this slot), and the second
is the complete list of talks still left to assign.
The implementation of generate looks a little dense, but I’ll walk
through it step by step:
 generate slotNo trackNo slots slot slotTalks talks
 | slotNo == maxSlot = [slots] -- [image: 1]
 | trackNo == maxTrack =
 generate (slotNo+1) 0 (slot:slots) [] talks talks -- [image: 2]
 | otherwise = concat -- [image: 3]
 [generate slotNo (trackNo+1) slots (t:slot) slotTalks' talks' -- [image: 4]
 | (t, ts) <- selects slotTalks -- [image: 5]
 , let clashesWithT = Map.findWithDefault [] t clashes -- [image: 6]
 , let slotTalks' = filter (`notElem` clashesWithT) ts -- [image: 7]
 , let talks' = filter (/= t) talks -- [image: 8]
]
	[image: 1]
	
If we’ve filled in all the slots, we’re done; the current list of
slots is a solution.

	[image: 2]
	
If we’ve filled in all the tracks for the current slot, move on to
the next slot.

	[image: 3]
	
Otherwise, we’re going to fill in the next talk in this slot.
The result is the concatenation of all the solutions arising from the
possibilities for filling in that talk.

	[image: 5]
	
Here we select all the possibilities for the next talk from
slotTalks, binding the next talk to t.

	[image: 6]
	
Decide which other talks clash with t.

	[image: 7]
	
Remove from slotTalks the talks that clash with t.

	[image: 8]
	
Remove t from talks.

	[image: 4]
	
For each t, recursively call generate with the new partial solution.

Finally, we need to call generate with the empty timetable to start
things off:
 generate 0 0 [] [] allTalks allTalks
The program is equipped with some machinery to generate test data, so
we can see how long it takes with a variety of inputs. Unfortunately,
it turns out to be hard to find some parameters that don’t either take
forever or complete instantaneously, but here’s one set:
$./timetable 4 3 11 10 3 +RTS -s
The command-line arguments set the parameters for the search: 4
slots, 3 tracks, 11 total talks, and 10 participants who
each want to go to 3 talks. This takes about 1 second to
calculate the number of possible timetables (about 31,000).
Adding Parallelism

This code is already quite involved, and if we try to parallelize
it directly, it is likely to get more complicated. We’d prefer to separate the parallelism as far as possible from the algorithm code. With Strategies (Chapter 3), we did this
by generating a lazy data structure. But this application is an example where generating a
lazy data structure doesn’t work very well, because we would have to
return the entire search tree as a data structure.
Instead, I want to demonstrate another technique for separating the
parallelism from the algorithm: building a parallel skeleton. A
parallel skeleton is nothing more than a higher-order function that
abstracts a pattern of computation. We’ve already seen one parallel
skeleton: parMap, the function that describes data parallelism,
abstracted over the function to apply in parallel. Here we need a
different skeleton, which I’ll call the search skeleton (although
it’s a variant of a more general divide-and-conquer skeleton).
I’ll start by refactoring the algorithm into a skeleton and its
instantiation, and then add parallelism to the skeleton. The type of
the search skeleton is as follows:
timetable1.hs

search :: (partial -> Maybe solution) -- [image: 1]
 -> (partial -> [partial]) -- [image: 2]
 -> partial -- [image: 3]
 -> [solution] -- [image: 4]
The search function is polymorphic in two types: partial is the type of partial
solutions, and solution is the type of complete solutions. We’ll
see how these are instantiated in our example shortly.
	[image: 1]
	
The first argument to search is a function that tells whether a
particular partial solution corresponds to a complete solution,
and if so, what the solution is.

	[image: 2]
	
The second argument takes a partial solution and refines it to a
list of further partial solutions. It is expected that this process
doesn’t continue forever!

	[image: 3]
	
To get things started, we need an initial, empty value of type
partial.

	[image: 4]
	
The result is a list of solutions.

The definition of search is quite straightforward. It’s one of
those functions that is almost impossible to get wrong, because the
type describes exactly what it does:
search finished refine emptysoln = generate emptysoln
 where
 generate partial
 | Just soln <- finished partial = [soln]
 | otherwise = concat (map generate (refine partial))
Now to refactor timetable to use search. The basic idea is that
the arguments to generate constitute the partial solution, so we’ll
just package them up:
type Partial = (Int, Int, [[Talk]], [Talk], [Talk], [Talk])
The rest of the refactoring is mechanical, so I won’t describe it in
detail. The result is:
timetable :: [Person] -> [Talk] -> Int -> Int -> [TimeTable]
timetable people allTalks maxTrack maxSlot =
 search finished refine emptysoln
 where
 emptysoln = (0, 0, [], [], allTalks, allTalks)

 finished (slotNo, trackNo, slots, slot, slotTalks, talks)
 | slotNo == maxSlot = Just slots
 | otherwise = Nothing

 clashes :: Map Talk [Talk]
 clashes = Map.fromListWith union
 [(t, ts)
 | s <- people
 , (t, ts) <- selects (talks s)]

 refine (slotNo, trackNo, slots, slot, slotTalks, talks)
 | trackNo == maxTrack = [(slotNo+1, 0, slot:slots, [], talks, talks)]
 | otherwise =
 [(slotNo, trackNo+1, slots, t:slot, slotTalks', talks')
 | (t, ts) <- selects slotTalks
 , let clashesWithT = Map.findWithDefault [] t clashes
 , let slotTalks' = filter (`notElem` clashesWithT) ts
 , let talks' = filter (/= t) talks
]
The algorithm works exactly as before. All we did was pull out
the search pattern as a higher-order function and call it.
Now to parallelize the search skeleton. As you might expect, the basic idea is that at
each stage, we’ll spawn off the recursive calls in parallel and then collect the results. Here’s how to express that using the Par monad:
timetable2.hs

parsearch :: NFData solution
 => (partial -> Maybe solution)
 -> (partial -> [partial])
 -> partial
 -> [solution]

parsearch finished refine emptysoln
 = runPar $ generate emptysoln
 where
 generate partial
 | Just soln <- finished partial = return [soln]
 | otherwise = do
 solnss <- parMapM generate (refine partial)
 return (concat solnss)
We’re using parMapM to call generate in parallel on the
list of partial solutions returned by refine, and then concatenating
the results. However, this doesn’t work out too well; on the
parameter set we used before, it adds a factor of five overhead. The
problem is that as we get near the leaves of the search tree, the
granularity is too fine in relation to the overhead of spawning the
calls in parallel.
So we need a way to make the granularity coarser. We can’t use
chunking, because we don’t have a flat list here; we have a tree. For
tree-shaped parallelism we need to use a different technique: a depth
threshold. The basic idea is quite simple: spawn recursive calls in
parallel down to a certain depth, and below that depth use the
original sequential algorithm.
Our parsearch function needs an extra parameter, namely the depth
to parallelize to:
timetable3.hs

parsearch :: NFData solution
 => Int
 -> (partial -> Maybe solution) -- finished?
 -> (partial -> [partial]) -- refine a solution
 -> partial -- initial solution
 -> [solution]

parsearch maxdepth finished refine emptysoln
 = runPar $ generate 0 emptysoln
 where
 generate d partial | d >= maxdepth -- [image: 1]
 = return (search finished refine partial)
 generate d partial
 | Just soln <- finished partial = return [soln]
 | otherwise = do
 solnss <- parMapM (generate (d+1)) (refine partial)
 return (concat solnss)
	[image: 1]
	
The depth argument d increases by one each time we make a
recursive call to generate. If it reaches the maxdepth passed as
an argument to parsearch, then we call search (the
sequential algorithm) to do the rest of the search below this point.

Using a depth of three in this case works reasonably well and gets us a
speedup of about three on four cores relative to the original sequential
version. Adding the skeleton unfortunately incurs some overhead, but
in return it gains us some worthwhile modularity: it would have been
difficult to add the depth threshold without first abstracting the
skeleton.
Here are the main points to take away from this example:
	
Tree-shaped (divide and conquer) computations parallelize well.

	
You can abstract the parallel pattern as a skeleton using
 higher-order functions.

	
To control the granularity in a tree-shaped computation, add a
 depth threshold, and use the sequential version of the algorithm
 below a certain depth.

Example: A Parallel Type Inferencer

In this section, we will parallelize a type inference engine, such as
you might find in a compiler for a functional language. The purpose
of this example is to demonstrate two things: one, that parallelism
can be readily applied to program analysis problems, and two,
that the dataflow model works well even when the structure of the
parallelism is entirely dependent on the input and cannot be
predicted beforehand.
The outline of the problem is as follows: given a list of bindings of
the form x = e for a variable x and expression e, infer the
types for each of the variables. Expressions consist of integers,
variables, application, lambda expressions, let expressions, and
arithmetic operators (+, -, *, /).
We can test the type inference engine on a few simple examples. Load
it in GHCi (from the directory parinfer in the sample code):
$ ghci parinfer.hs
The function test typechecks an expression. Simple arithmetic
expressions have type Int:
*Main> test "1 + 2"
Int
We can use lambda expressions, let expressions, and higher-order
functions, just like in Haskell:
*Main> test "\\x -> x"
a0 -> a0
*Main> test "\\x -> x + 1"
Int -> Int
*Main> test "\\g -> \\h -> g (h 3)"
(a2 -> a3) -> (Int -> a2) -> a3
(Note that in order to get the backslash character in a Haskell String, we
need to use "\\".)
When the type inferencer is run as a standalone program, it typechecks
a file of bindings, and infers a type for each one. For simplicity, we
assume the list of bindings is ordered and nonrecursive; any variable
used in an expression has to be defined earlier in the list.
Later bindings may also shadow earlier ones.
For example, consider the following set of bindings for which we want to infer types:
 f = ...
 g = ... f ...
 h = ... f ...
 j = ... g ... h ...
I’m using the notation "... f ..." to stand for an expression
involving f. The specific expression isn’t important here, only
that it mentions f.
We could proceed in a linear fashion through the list of bindings:
first inferring the type for f, then the type for g, then the type for
h, and so on. However, if we look at the dataflow graph for this
set of bindings (Figure 4-4), we can see that there is some parallelism.
[image: Flow of types between f, g, h, j]

Figure 4-4. Flow of types between f, g, h, j

Clearly we can infer the types of g and h in parallel, once the type of f is known. When viewed this way, we can see that type inference is a natural fit for the dataflow model; we can consider each binding to be a node in the
graph, and the edges of the graph carry inferred types from bindings
to usage sites in the program.
Building a dataflow graph for the type inference problem allows
parallelism to be automatically extracted from the type inference
process. The actual amount of parallelism present depends entirely on
the structure of the input program, however. An input program in
which every binding depends on the previous one in the list would have
no parallelism to extract. Fortunately, most programs aren’t like
that—usually there is a decent amount of parallelism implicit in the
dependency structure.
Note that we’re not necessarily exploiting all the available
parallelism here. There might be parallelism available within the
inference of individual bindings. However, to try to parallelize too
deeply might cause granularity problems, and parallelizing the
outer level is likely to gain the most reward.
The type inference engine that I’m using for this example is a rather
ancient piece of code that I modified to add parallelism.[16] The changes to add parallelism were quite modest.[17]
The types from the inference engine that we will need to work with are
as follows:
type VarId = String -- Variables
data Term -- Terms in the input program
data Env -- Environment, mapping VarId to PolyType
data PolyType -- Polymorphic types
In programming language terminology, an environment is a mapping that
assigns some meaning to the variables of an expression. A type
inference engine uses an environment to assign types to variables;
this is the purpose of the Env type. When we typecheck an
expression, we must supply an Env that gives the types of the
variables that the expression mentions. An Env is created using
makeEnv:
makeEnv :: [(VarId,PolyType)] -> Env
To determine which variables we need to populate the Env with, we
need a way to extract the free (unbound) variables of an expression;
this is what the freeVars function does:
freeVars :: Term -> [VarId]
The underlying type inference engine for expressions takes a Term
and an Env that supplies the types for the free variables of the
Term and delivers a PolyType:
inferTopRhs :: Env -> Term -> PolyType
While the sequential part of the inference
engine uses an Env that maps VarIds to PolyTypes, the parallel
part of the inference engine will use an environment that maps
VarIds to IVar PolyType, so that we can fork the inference
engine for a given binding, and then wait for its result
later.[18] The
environment for the parallel type inferencer is called TopEnv:
type TopEnv = Map VarId (IVar PolyType)
All that remains is to write the top-level loop. We’ll do this in two
stages. First, a function to infer the type of a single binding:
inferBind :: TopEnv -> (VarId,Term) -> Par TopEnv
inferBind topenv (x,u) = do
 vu <- new -- [image: 1]
 fork $ do -- [image: 2]
 let fu = Set.toList (freeVars u) -- [image: 3]
 tfu <- mapM (get . fromJust . flip Map.lookup topenv) fu -- [image: 4]
 let aa = makeEnv (zip fu tfu) -- [image: 5]
 put vu (inferTopRhs aa u) -- [image: 6]
 return (Map.insert x vu topenv) -- [image: 7]
	[image: 1]
	
Create an IVar, vu, to hold the type of this binding.

	[image: 2]
	
Fork the computation that does the type inference.

	[image: 3]
	
The inputs to this type inference are the types of the variables
mentioned in the expression u. Hence we call freeVars to get
those variables.

	[image: 4]
	
For each of the free variables, look up its IVar in the
topenv, and then call get on it. Hence this step will wait until
the types of all the free variables are available before proceeding.

	[image: 5]
	
Build an Env from the free variables and their types.

	[image: 6]
	
Infer the type of the expression u, and put the result in the
IVar we created at the beginning.

	[image: 7]
	
Back in the parent, return topenv extended with x mapped to
the new IVar vu.

Next we use inferBind to define inferTop, which infers types for a
list of bindings:
inferTop :: TopEnv -> [(VarId,Term)] -> Par [(VarId,PolyType)]
inferTop topenv0 binds = do
 topenv1 <- foldM inferBind topenv0 binds -- [image: 1]
 mapM (\(v,i) -> do t <- get i; return (v,t)) (Map.toList topenv1) -- [image: 2]
	[image: 1]
	
Use foldM (from Control.Monad) to perform inferBind over
each binding, accumulating a TopEnv that will contain a mapping for
each of the variables.

	[image: 2]
	
Wait for all the type inference to happen, and
collect the results. Hence we turn the TopEnv back into a list and
call get on all of the IVars.

This parallel implementation works quite nicely. To demonstrate it,
I’ve constructed a synthetic input for the type checker, a fragment of
which is given below (the full version is in the file
parinfer/benchmark.in).
id = \x->x ;

a = \f -> f id id ;
a = \f -> f a a ;
a = \f -> f a a ;
...
a = let f = a in \x -> x ;

b = \f -> f id id ;
b = \f -> f b b ;
b = \f -> f b b ;
...
b = let f = b in \x -> x ;

c = \f -> f id id ;
c = \f -> f c c ;
c = \f -> f c c ;
...
c = let f = c in \x -> x ;

d = \f -> f id id ;
d = \f -> f d d ;
d = \f -> f d d ;
...
d = let f = d in \x -> x ;
There are four sequences of bindings that can be inferred in
parallel. The first sequence is the set of bindings for a (each
successive binding for a shadows the previous one), then
identical sequences named b, c, and d. Each binding in a
sequence depends on the previous one, but the sequences are
independent of one another. This means that our parallel typechecking
algorithm should automatically infer types for the a, b, c, and
d bindings in parallel, giving a maximum speedup of 4.
With one processor, the result should be something like this:
$./parinfer <benchmark.in +RTS -s
...
 Total time 4.71s (4.72s elapsed)
The result with two processors represents a speedup of 1.96:
$./parinfer <benchmark.in +RTS -s -N2
...
 Total time 4.79s (2.41s elapsed)
With three processors, the result is:
$./parinfer <benchmark.in +RTS -s -N3
...
 Total time 4.92s (2.42s elapsed)
This is almost exactly the same as with two processors! But this is to be
expected: there are four independent problems, so the best we can do
is to overlap the first three and then run the final one. Thus the
program will take the same amount of time as with two processors,
where we could overlap two problems at a time. Adding the fourth
processor allows all four problems to be overlapped, resulting in a speedup of 3.66:
$./parinfer <benchmark.in +RTS -s -N4
...
 Total time 5.10s (1.29s elapsed)

Using Different Schedulers

The Par monad is implemented as a library in Haskell, so
aspects of its behavior can be changed without changing GHC or its
runtime system. One way in which this is useful is in changing the
scheduling strategy; certain scheduling strategies are better suited
to certain patterns of execution.
The monad-par library comes with two schedulers: the “Trace”
scheduler and the “Direct” scheduler, where the latter is the default. In general the Trace scheduler performs slightly worse than the Direct scheduler, but not always; it’s worth trying both with your code to see which gives the better results.
To choose one or the other, just import the appropriate module. For
example, to use the Trace scheduler instead of the Direct scheduler:
import Control.Monad.Par.Scheds.Trace
 -- instead of Control.Monad.Par
Remember that you need to make this change in all the modules of
your program that import Control.Monad.Par.

The Par Monad Compared to Strategies

I’ve presented two different parallel programming models, each with advantages and disadvantages. In reality, though, both approaches are
suitable for a wide range of tasks; most Parallel Haskell benchmarks
achieve broadly similar results when coded with either Strategies or
the Par monad. So which to choose is to some extent a matter of
personal preference. However, there are a number of trade-offs that
are worth bearing in mind, as these might tip the balance one way
or the other for your code:
	
As a general rule of thumb, if your algorithm naturally produces a
 lazy data structure, then writing a Strategy to evaluate it in parallel will probably work well. If not, then it can be more straightforward to use the Par monad to express the parallelism.

	
The runPar function itself is relatively expensive, whereas
 runEval is free. So when using the Par monad, you should usually
 try to thread the Par monad around to all the places that need
 parallelism to avoid needing multiple runPar calls. If this is
 inconvenient, then Eval or Strategies might be a better choice.
 In particular, nested calls to runPar (where a runPar is
 evaluated during the course of executing another Par computation)
 usually give poor results.

	
Strategies allow a separation between algorithm and parallelism,
 which can allow more reuse and a cleaner specification of
 parallelism. However, using a parallel skeleton works with both
 approaches.

	
The Par monad has more overhead than the Eval monad. At the
 present time, Eval tends to perform better at finer granularities,
 due to the direct runtime system support for sparks. At larger
 granularities, Par and Eval perform approximately the same.

	
The Par monad is implemented entirely in a Haskell library (the
 monad-par package), and is thus easily modified. There is a choice of scheduling strategies (see Using Different Schedulers).

	
The Eval monad has more diagnostics in ThreadScope. There are
 graphs that show different aspects of sparks: creation rate,
 conversion rate, and so on. The Par monad is not currently
 integrated with ThreadScope.

	
The Par monad does not support speculative parallelism in the
 sense that rpar does (GC’d Sparks and Speculative Parallelism); parallelism in the Par monad is always executed.

[11] IVar has this name because it is an implementation of I-Structures, a concept from an early Parallel
Haskell variant called pH.

[12] For more details, see the documentation for Control.Monad.Applicative.

[13] You can verify this for yourself by profiling the
rsa.hs program. Most of the execution time is spent in power.

[14] I’m avoiding the term “schedule” here because we already use it a lot in concurrent programming.

[15] I should mention that even with some pruning, an exhaustive search will be impractical beyond a small number of slots. Real-world solutions to this kind of problem use heuristics.

[16] This code was authored by Philip Wadler and found in the nofib benchmark suite of Haskell programs.

[17] I did, however, take the liberty of modernizing the code in various ways, although that wasn’t strictly necessary.

[18] We are ignoring the possibility of type errors here; in a real implementation, the IVar would probably contain an Either type representing either the inferred type or an error.

Chapter 5. Data Parallel Programming with Repa

The techniques we’ve seen in the previous chapters are great for
parallelizing code that uses ordinary Haskell data structures like
lists and Maps, but they don’t work as well for data-parallel
algorithms over large arrays. That’s because large-scale array
computations demand very good raw sequential performance, which we can
get only by operating on arrays of unboxed data. We can’t use
Strategies to parallelize operations over unboxed arrays, because they
need lazy data structures (boxed arrays would be suitable, but not
unboxed arrays). Similarly, Par doesn’t work well here either,
because in Par the data is passed in IVars.
In this chapter, we’re going to see how to write efficient numerical
array computations in Haskell and run them in parallel. The
library we’re going to use is called Repa, which stands for REgular PArallel arrays.[19] The library provides a range of efficient operations for creating arrays and operating on
arrays in parallel.
The Repa package is available on Hackage. If you followed the
instructions for installing the sample code dependencies earlier, then
you should already have it, but if not you can install it with cabal install:
$ cabal install repa
In this chapter, I’m going to use GHCi a lot to illustrate the behavior
of Repa; trying things out in GHCi is a great way to become familiar
with the types and operations that Repa provides. Because Repa
provides many operations with the same names as Prelude functions
(e.g., map), we usually import Data.Array.Repa with a short module
alias:
> import Data.Array.Repa as Repa
This way, we can refer to Repa’s map function as Repa.map.
Arrays, Shapes, and Indices

Everything in Repa revolves around arrays. A computation in Repa
typically consists of computing an array in parallel, perhaps using
other arrays as inputs. So we’ll start by looking at the type of
arrays, how to build them, and how to work with them.
The Array type has three parameters:
data Array r sh e
The e parameter is the type of the elements, for example Double, Int, or
Word8. The r parameter is the representation type, which
describes how the array is represented in memory; I’ll come back to
this shortly. The sh parameter describes the shape of the array;
that is, the number of dimensions it has.
Shapes are built out of two type constructors, Z and :.:
data Z = Z
data tail :. head = tail :. head
The simplest shape, Z, is the shape of an array with no dimensions (i.e., a
scalar), which has a single element. If we add a dimension, Z
:. Int, we get the shape of an array with a single dimension indexed
by Int, otherwise known as a vector. Adding another dimension gives
Z :. Int :. Int, the shape of a two-dimensional array, or matrix.
New dimensions are added on the right, and the :. operator
associates left, so when we write Z :. Int :. Int, we really mean
(Z :. Int) :. Int.
The Z and :. symbols are both type constructors and value
constructors, which can be a little confusing at times. For example, the
data value Z :. 3 has type Z :. Int. The data value form is used
in Repa to mean either “shapes” or “indices.” For example, Z :. 3 can be either the shape of three-element vectors, or the index of
the fourth element of a vector (indices count from zero).
Repa supports only Int-typed indices. A few handy type synonyms are provided for the common shape types:
type DIM0 = Z
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
Let’s try a few examples. A simple way to build an array is to use
fromListUnboxed:
fromListUnboxed :: (Shape sh, Unbox a) => sh -> [a] -> Array U sh a
The fromListUnboxed function takes a shape of type sh and a list
of elements of type a, and builds an array of type Array U sh a.
The U is the representation and stands for Unboxed: this array will
contain unboxed elements. Don’t worry about the Shape and Unbox
type classes. They are just there to ensure that we use only the
appropriate shape constructors (Z and :.) and supported element types, respectively.
Let’s build a 10-element vector of Int and fill it with the numbers
1…10. We need to pass a shape argument, which will be Z:.10
for a 10-element vector:
> fromListUnboxed (Z :. 10) [1..10]

<interactive>:15:1:
 No instance for (Shape (Z :. head0))
 arising from a use of `fromListUnboxed'
 The type variable `head0' is ambiguous
 Possible fix: add a type signature that fixes these type variable(s)
 Note: there is a potential instance available:
 instance Shape sh => Shape (sh :. Int)
 -- Defined in `Data.Array.Repa.Index'
 Possible fix: add an instance declaration for (Shape (Z :. head0))
 In the expression: fromListUnboxed (Z :. 10) [1 .. 10]
 In an equation for `it': it = fromListUnboxed (Z :. 10) [1 .. 10]
Oops! This illustrates something that you will probably encounter a
lot when working with Repa: a type error caused by insufficient type
information. In this case, the integer 10 in Z :. 10 is
overloaded, so we have to say explicitly that we mean Int. There
are many ways to give GHC the extra bit of information it needs; one
way is to add a type signature to the whole expression, which has type
Array U DIM1 Int:
> fromListUnboxed (Z :. 10) [1..10] :: Array U DIM1 Int
AUnboxed (Z :. 10) (fromList [1,2,3,4,5,6,7,8,9,10])
Similarly, we can make a two-dimensional array, with 3 rows of 5
columns, and fill it with the elements 1 to 15:
> fromListUnboxed (Z :. 3 :. 5) [1..15] :: Array U DIM2 Int
AUnboxed ((Z :. 3) :. 5) (fromList [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
Conceptually, the array we created is this:
	1
	2
	3
	4
	5

	6
	7
	8
	9
	10

	11
	12
	13
	14
	15

But internally, the array is stored as a single vector (after all,
computer memory is one-dimensional). We can see the vector in the
result of the call to fromListUnboxed; it contains the same
elements that we initialized the array with.
The shape of the array is there to tell Repa how to interpret the
operations on it. For example, if we ask for the element at index
Z:.2:.1 in an array with shape Z:.3:.5, we’ll get the element at
position 2 * 5 + 1 in the vector. We can try it using the !
operator, which extracts an element from an array. The type of !
is:
(!) :: (Shape sh, Source r e) => Array r sh e -> sh -> e
Let’s get the element at position Z:.2:.1 from our example matrix:
> let arr = fromListUnboxed (Z :. 3 :. 5) [1..15] :: Array U DIM2 Int
> arr ! (Z:.2:.1)
12
The element 12 is therefore 2 rows down and 1 column across. As I mentioned earlier, indices count
from zero in Repa.
Internally, Repa is using the function toIndex to convert an index
to an Int offset, given a shape:
toIndex :: Shape sh => sh -> sh -> Int
For example:
> toIndex (Z:.3:.5 :: DIM2) (Z:.2:.1 :: DIM2)
11
Because the layout of an array in memory is the same regardless of its
shape, we can even change the shape without copying the array:
> reshape (Z:.5:.3) arr ! (Z:.2:.1 :: DIM2)
8
With the shape Z:.5:.3, the index Z:.2:.1 corresponds to the
element at 2 * 3 + 1 = 7, which has value 8.
Here are a couple of other operations on shapes that often come in handy:
rank :: Shape sh => sh -> Int -- number of dimensions
size :: Shape sh => sh -> Int -- number of elements
To retrieve the shape of an array, we can use extent:
extent :: (Shape sh, Source r e) => Array r sh e -> sh
For example:
> extent arr
(Z :. 3) :. 5
> rank (extent arr)
2
> size (extent arr)
15

Operations on Arrays

We can map a function over an array using Repa’s map function:
Repa.map :: (Shape sh, Source r a)
 => (a -> b) -> Array r sh a -> Array D sh b
We can see from the type that map returns an array with the
representation D. The D representation stands for Delayed; this
means that the array has not been computed yet. A delayed array is
represented by a function from indices to elements.
We can apply map to an array, but there’s no way to print out the
result:
> let a = fromListUnboxed (Z :. 10) [1..10] :: Array U DIM1 Int
> Repa.map (+1) a

<interactive>:26:1:
 No instance for (Show (Array D DIM1 Int))
 arising from a use of `print'
 Possible fix:
 add an instance declaration for (Show (Array D DIM1 Int))
 In a stmt of an interactive GHCi command: print it
As its name suggests, a delayed array is not an array yet. To turn
it into an array, we have to call a function that allocates the array
and computes the value of each element. The computeS function does
this for us:
computeS :: (Load r1 sh e, Target r2 e) => Array r1 sh e -> Array r2 sh e
The argument to computeS is an array with a representation that is a
member of the Load class, whereas its result is an array with a
representation that is a member of the Target class. The most
important instances of these two classes are D and U respectively;
that is, computeS turns a delayed array into a concrete unboxed
array.[20].
Applying computeS to the result of map gives us an unboxed array:
> computeS (Repa.map (+1) a) :: Array U DIM1 Int
AUnboxed (Z :. 10) (fromList [2,3,4,5,6,7,8,9,10,11])
You might be wondering why there is this extra complication—why
doesn’t map just produce a new array? The answer is that by
representing the result of an array operation as a delayed array, a
sequence of array operations can be performed without ever building
the intermediate arrays; this is an optimization called fusion, and
it’s critical to achieving good performance with Repa. For example,
if we composed two maps together:
> computeS (Repa.map (+1) (Repa.map (^2) a)) :: Array U DIM1 Int
AUnboxed (Z :. 10) (fromList [2,5,10,17,26,37,50,65,82,101])
The intermediate array between the two maps is not built, and in
fact if we compile this rather than running it in GHCi, provided the
optimization option -O is enabled, it will compile to a single
efficient loop over the input array.
Let’s see how it works. The fundamental way to get a delayed array is
fromFunction:
fromFunction :: sh -> (sh -> a) -> Array D sh a
The fromFunction operation creates a delayed array. It takes the
shape of the array and a function that specifies the elements. For
example, we can make a delayed array that represents the vector of
integers 0 to 9 like this:
> let a = fromFunction (Z :. 10) (\(Z:.i) -> i :: Int)
> :t a
a :: Array D (Z :. Int) Int
Delayed arrays support indexing, just like manifest arrays:
> a ! (Z:.5)
5
Indexing a delayed array works by just calling the function that we
supplied to fromFunction with the given index.
We need to apply computeS to make the delayed array into a manifest array:
> computeS a :: Array U DIM1 Int
AUnboxed (Z :. 10) (fromList [0,1,2,3,4,5,6,7,8,9])
The computeS function creates the array and for each of the indices
of the array, it calls the function stored in the delayed array to find
the element at that position.
The map function, along with many other operations on arrays, can be
specified in terms of fromFunction. For example, here is a
definition of map:
> let mymap f a = fromFunction (extent a) (\ix -> f (a ! ix))
> :t mymap
mymap
 :: (Shape sh, Source r e) =>
 (e -> a) -> Array r sh e -> Array D sh a
It works just like the real map:
> computeS (mymap (+1) a) :: Array U DIM1 Int
AUnboxed (Z :. 10) (fromList [1,2,3,4,5,6,7,8,9,10])
What happens if we compose two maps together? The result would
be a delayed array containing a function that indexes into another
delayed array. So we’re building up a nested function that defines
the array elements, rather than intermediate arrays. Furthermore,
Repa is carefully engineered so that at compile time the nested
function call is optimized away as far as possible, yielding very
efficient code.

Example: Computing Shortest Paths

In Example: Shortest Paths in a Graph, we looked at an implementation of
the Floyd-Warshall algorithm for computing the lengths of shortest
paths in a sparse weighted directed graph. Here, we’ll investigate how
to code up the algorithm over dense graphs, using Repa.
For reference, here is the pseudocode definition of the algorithm:
shortestPath :: Graph -> Vertex -> Vertex -> Vertex -> Weight
shortestPath g i j 0 = weight g i j
shortestPath g i j k = min (shortestPath g i j (k-1))
 (shortestPath g i k (k-1) + shortestPath g k j (k-1))
We implement this by first computing all the shortest paths for k ==
0, then k == 1, and so on up to the maximum vertex in the graph.
For the dense version, we’re going to use an adjacency matrix; that
is, a two-dimensional array indexed by pairs of vertices, where each
element is the length of the path between the two vertices. Here is
our representation of graphs:
fwdense.hs

type Weight = Int
type Graph r = Array r DIM2 Weight
The implementation of the shortest paths algorithm is as follows:
shortestPaths :: Graph U -> Graph U
shortestPaths g0 = go g0 0 -- [image: 1]
 where
 Z :. _ :. n = extent g0 -- [image: 2]

 go !g !k | k == n = g -- [image: 3]
 | otherwise =
 let g' = computeS (fromFunction (Z:.n:.n) sp) -- [image: 4]
 in go g' (k+1) -- [image: 5]
 where
 sp (Z:.i:.j) = min (g ! (Z:.i:.j)) (g ! (Z:.i:.k) + g ! (Z:.k:.j)) -- [image: 6]
	[image: 2]
	
The number of vertices in the graph, n, is found by
pattern-matching on the shape of the input graph, which we get by
calling extent.

	[image: 1]
	
We need to loop over the vertices, with k taking values from 0 up to n - 1. This
is done with a local recursive function go, which takes the current
graph g and k as arguments. The initial value for g is g0,
the input graph, and the initial value for k is 0.

	[image: 3]
	
The first case in go applies when we have looped over all the
vertices, and k == n. The result is the current graph, g.

	[image: 4]
	
Here is the interesting case. We’re going to build a new adjacency matrix, g', for this step using fromFunction. The shape of the array is Z:.n:.n, the same as the input, and the function to compute each element is sp (discussed later).

To manifest the new graph, we call computeS. Do we have to call computeS for each step, or could we wait until the end? If we don’t manifest the graph at each step, then we will be calling a nest of k functions every time we index into the current graph, g, which is exactly what this dynamic-programming solution seeks to avoid. So we must manifest the graph at each step.

	[image: 5]
	
Recursively call go to continue with the next step, passing the
new graph we just computed, g', and the next value of k.

	[image: 6]
	
The sp function computes the value of each element in the new
matrix and is a direct translation of the pseudocode: the shortest
path between i and j is the minimum of the current shortest path,
and the shortest path that goes from i to k and then to j, all of
which we get by indexing into the current graph, g.

The code is quite readable and somewhat shorter than the sparse
version of the algorithm we saw before. However, there are a couple of subtleties that might not be obvious, but are nevertheless important for making the code run quickly:
	
I deliberately used an explicit recursive function, go, rather
 than something like foldl', even though the latter would lead to
 shorter code. The optimizations in Repa work much better when all
 the code is visible to the compiler, and calling out to library
 functions can sometimes hide details from GHC and prevent optimizations.
 There are no hard and fast rules here; I experimented with both the
 explicit version and the foldl' version, and found the explicit
 loop faster.

	
There are bang-patterns on the arguments to go. This is good
 practice for iterative loops like this one and helps Repa to
 optimize the loop.

Let’s go ahead and compile the program and try it out on a 500-vertex
graph:
> ghc fwdense.hs -O2 -fllvm
[1 of 1] Compiling Main (fwdense.hs, fwdense.o)
Linking fwdense ...
> ./fwdense 500 +RTS -s
31250125000
 1,077,772,040 bytes allocated in the heap
 31,516,280 bytes copied during GC
 10,334,312 bytes maximum residency (171 sample(s))
 2,079,424 bytes maximum slop
 32 MB total memory in use (3 MB lost due to fragmentation)

 Tot time (elapsed) Avg pause Max pause
 Gen 0 472 colls, 0 par 0.01s 0.01s 0.0000s 0.0005s
 Gen 1 171 colls, 0 par 0.03s 0.03s 0.0002s 0.0063s

 INIT time 0.00s (0.00s elapsed)
 MUT time 1.46s (1.47s elapsed)
 GC time 0.04s (0.04s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 1.50s (1.50s elapsed)
Note that I added a couple of optimization options: -O2 turns up
GHC’s optimizer, and -fllvm enables GHC’s LLVM backend, which
significantly improves the performance of Repa code; on my machine
with this particular example, I see a 40% improvement from
-fllvm.[21]
Parallelizing the Program

Now to make the program run in parallel. To compute an array in parallel, Repa provides a variant of the computeS operation, called computeP:
computeP :: (Monad m, Source r2 e, Target r2 e, Load r1 sh e)
 => Array r1 sh e
 -> m (Array r2 sh e)
Whereas computeS computes an array sequentially, computeP uses the available cores to compute the array in parallel. It knows
the size of the array, so it can divide the work equally amongst the
cores.
The type is almost the same as computeS, except that computeP
takes place in a monad. It works with any
monad, and it doesn’t matter which monad is used because the purpose of the monad is only to ensure that computeP
operations are performed in sequence and not nested. Hence we need
to modify our code so that the go function is in a monad, which
entails a few small changes. Here is the code:
shortestPaths :: Graph U -> Graph U
shortestPaths g0 = runIdentity $ go g0 0 -- [image: 1]
 where
 Z :. _ :. n = extent g0

 go !g !k | k == n = return g -- [image: 2]
 | otherwise = do
 g' <- computeP (fromFunction (Z:.n:.n) sp) -- [image: 3]
 go g' (k+1)
 where
 sp (Z:.i:.j) = min (g ! (Z:.i:.j)) (g ! (Z:.i:.k) + g ! (Z:.k:.j))
	[image: 1]
	
We need to use a monad, so the Identity monad will do.

	[image: 2]
	
Remember to return the result, as we’re now in a monad.

	[image: 3]
	
Instead of let to bind g', we use do and monadic bind and
replace computeS with computeP. There are no differences to the
fromFunction call or the sp function.

To run it in parallel, we’ll need to add the -threaded option when
compiling. Let’s see how it performs:
> ghc -O2 fwdense1 -threaded -fllvm -fforce-recomp
[1 of 1] Compiling Main (fwdense1.hs, fwdense1.o)
Linking fwdense1 ...
> ./fwdense1 500 +RTS -s
31250125000
...
 Total time 1.89s (1.91s elapsed)
There’s some overhead for using computeP, which here seems to be
about 27%. That’s quite high, but we can recoup it by using more
cores. With four cores:
> ./fwdense1 500 +RTS -s -N4
31250125000
...
 Total time 2.15s (0.57s elapsed)
That equates to a 2.63 speedup against the sequential version, for
almost zero effort. Not bad!
Monads and computeP
Did we really need to thread a monad through the go function?
Strictly speaking, the answer is no, because you can always replace computeS with
(runIdentity . computeP), but this can lead to trouble. To
illustrate what can go wrong, let’s compute two arrays with
computeP, where the second will depend on the first. The first is
just a vector of Int:
> let arr = fromFunction (Z:.5) (\(Z:.i) -> i :: Int)
> let parr = runIdentity $ computeP arr :: Array U DIM1 Int
And the second is a copy of the first, using fromFunction again:
> let arr2 = fromFunction (Z:.5) (\ix -> parr ! ix)
Now, when we try to compute the second array using computeP, we get:
> runIdentity $ computeP arr2 :: Array U DIM1 Int
Data.Array.Repa: Performing nested parallel computation sequentially.
 You've probably called the 'compute' or 'copy' function while another
 instance was already running. This can happen if the second version
 was suspended due to lazy evaluation. Use 'deepSeqArray' to ensure
 that each array is fully evaluated before you 'compute' the next one.
A call to computeP cannot refer to another array calculated with
computeP, unless the inner computeP has already been evaluated.
Here, we didn’t evaluate it; we just bound it with let, using
runIdentity to satisfy the Monad requirement.
The monad requirement in computeP is there to help us avoid this
problem, because computeP ensures that the result is fully evaluated
in the monad. In GHCi, we can use the IO monad:
> let arr = fromFunction (Z:.5) (\(Z:.i) -> i :: Int)
> parr <- computeP arr :: IO (Array U DIM1 Int)
> let arr2 = fromFunction (Z:.5) (\ix -> parr ! ix)
> computeP arr2 :: IO (Array U DIM1 Int)
AUnboxed (Z :. 5) (fromList [0,1,2,3,4])
So this is the rule of thumb: if your program makes multiple calls to
computeP, try to ensure that they are performed in the same monad.

Folding and Shape-Polymorphism

Folds are an important class of operations over arrays; they are the
operations that perform a collective operation over all the
elements of an array to produce a single result, such as summing the
array or finding its maximum element. For example, the function
sumAllS calculates the sum of all the elements in an array:
sumAllS
 :: (Num a, Shape sh, Source r a, Unbox a, Elt a)
 => Array r sh a
 -> a
For an array of elements of type a that supports addition (the Num
constraint), sumAllS produces a single result that is the sum of all
the elements:
> let arr = fromListUnboxed (Z :. 10) [1..10] :: Array U DIM1 Int
> sumAllS arr
55
But sometimes we don’t want to fold over the whole array. There are
occasions where we need to fold over just one dimension. For example,
in the shortest paths example, suppose we wanted to take the resulting
matrix of path lengths and find for each vertex the furthest distance
we would have to travel from that vertex to any other vertex in the
graph.
Our graph may have some nodes that are not connected, and in that case
we represent the distance between them by a special large value called
inf (the value of inf doesn’t matter as long as it is larger than
all the path lengths in the graph). For the purposes of finding the
maximum distance to other nodes, we’ll ignore nodes that are not
reachable and hence have path length inf. So the function to
compute the maximum of two path lengths is as follows:
maxDistance :: Weight -> Weight -> Weight
maxDistance x y
 | x == inf = y
 | y == inf = x
 | otherwise = max x y
Now we want to fold maxDistance over just one dimension of our
two-dimensional adjacency matrix. There is a function called foldS
that does just that; here is its type:
foldS :: (Shape sh, Source r a, Elt a, Unbox a)
 => (a -> a -> a) -- [image: 1]
 -> a -- [image: 2]
 -> Array r (sh :. Int) a -- [image: 3]
 -> Array U sh a -- [image: 4]
	[image: 1]
	
The function to fold.

	[image: 2]
	
The unitary value of type a.

	[image: 3]
	
The input array. Note that the shape is (sh :. Int), which
means that this is an array of some shape sh with one more
dimension.

	[image: 4]
	
The output array has shape sh; that is, one dimension fewer
than the input array. For example, if we pass in an array of shape
Z:.Int:.Int, sh is Z:.Int. The fold takes place over the
inner dimension of the array, which we normally think of as the
rows. Each row is reduced to a single value.

The fwdense.hs program has a small test graph of six vertices:
> extent testGraph
(Z :. 6) :. 6
If we use foldS to fold maxDistance over the matrix of shortest
paths, we obtain the maximum distance from each vertex to any other
vertex:
> foldS maxDistance inf (shortestPaths testGraph)
AUnboxed (Z :. 6) (fromList [20,19,31,18,15,21])
And if we fold once more, we’ll find the longest distance between any
two nodes (for which a path exists) in the graph:
> foldS maxDistance inf (foldS maxDistance inf (shortestPaths testGraph))
AUnboxed Z (fromList [31])
Note that the result this time is an array with zero dimensions,
otherwise known as a scalar.
A function named foldP allows us to fold in parallel:
foldP :: (Shape sh, Source r a, Elt a, Unbox a, Monad m)
 => (a -> a -> a)
 -> a
 -> Array r (sh :. Int) a
 -> m (Array U sh a)
For the same reasons as computeP, foldP is performed in an
arbitrary monad. The arguments are the same as for foldS.
Caution
The function argument used with foldP must be associative. That
is, the function f must satisfy f x (f y z) == f (f x y) z. This
is because unlike foldS, foldP doesn’t necessarily fold the
function over the array elements in strict left-to-right order; it
folds different parts of the array in parallel and then combines the
results from those parts using the folding function.
Note that strictly speaking,
although mathematical addition is associative, floating-point addition
is not, due to rounding errors. However, we tend to ignore this
detail when using foldP because a small amount of nondeterminism in
the floating point result is normally acceptable.

Example: Image Rotation

Repa is a great tool for coding image manipulation algorithms, which
tend to be naturally parallel and involve a lot of data. In this
section, we’ll write a program to rotate an image about its center by a
specified number of degrees.
For reading and writing image data, Repa provides an interface to
the DevIL library, which is a cross-platform C library for image
manipulation. DevIL supports reading and writing various common
image formats, including PNG and JPG. The library is wrapped by the
Haskell package repa-devil, which provides a convenient Haskell API
to DevIL. The two operations we’ll be using are readImage and
writeImage:
readImage :: FilePath -> IL Image
writeImage :: FilePath -> Image -> IL ()
Where the Image type defines various in-memory image
representations:
data Image
 = RGBA (Array F DIM3 Word8)
 | RGB (Array F DIM3 Word8)
 | BGRA (Array F DIM3 Word8)
 | BGR (Array F DIM3 Word8)
 | Grey (Array F DIM2 Word8)
A color image is represented as a three-dimensional array. The first
two dimensions are the Y and X axes, and the last dimension contains the
three color channels and optionally an alpha channel. The first four
constructors of Image correspond to different orderings of the color
channels and the presence or not of an alpha channel. The last
option, Grey, is a grayscale image with one byte per pixel.
Which one of these is returned by readImage depends on the type of
image file being read. For example, a color JPEG image returns
data in RGB format, but a PNG image returns in RGBA format.
You may have noticed one unfamiliar aspect to these array types: the
F representation type. This indicates that the array data is held
in foreign memory; that is, it was allocated by C code. Apart from
being allocated by C rather than Haskell, the F
representation is identical to U.
Note that readImage and writeImage are in the IL monad. The
purpose of the IL monad is to ensure that the DevIL library
is initialized properly. This is done by runIL:
runIL :: IL a -> IO a
It’s perfectly fine to have multiple calls to runIL; the library
will be initialized only once.
Our program will take three arguments: the number of degrees to rotate
the image by, the input filename, and the output filename, respectively:
main :: IO ()
main = do
 [n, f1,f2] <- getArgs
 runIL $ do
 (RGB v) <- readImage f1 -- [image: 1]
 rotated <- computeP $ rotate (read n) v :: IL (Array F DIM3 Word8) -- [image: 2]
 writeImage f2 (RGB rotated) -- [image: 3]
	[image: 1]
	
Read the image data from the file f1 (the second command-line argument).

	[image: 2]
	
The function rotate, which we will define shortly, returns a
delayed array representing the rotated image. We call computeP here
to calculate the new array in parallel. In the earlier examples, we
used computeP to produce arrays with U representation, but here
we’re producing an array with F representation. This is possible
because computeP is overloaded on the desired output representation;
this is the purpose of the Target type class.

	[image: 3]
	
Finally, write the new image to the file f2.

Next we’ll write the function rotate, which actually calculates the
rotated image data. First, we have a decision to make: what should the
size of the rotated image be? We have the option of producing a
smaller image than the input, and discarding any pixels that fall
outside the boundaries after rotation, or to adjust the image size to
contain the rotated image, and fill in the empty areas with something
else (e.g., black). I’ll opt, somewhat arbitrarily, to keep the output
image size the same as the input and fill in the empty areas with
black. Please feel free to modify the program to do something more
sensible.
rotate :: Double -> Array F DIM3 Word8 -> Array D DIM3 Word8
rotate deg g = fromFunction (Z :. y :. x :. k) f -- [image: 1]
 where
 sh@(Z :. y :. x :. k) = extent g

 !theta = pi/180 * deg -- [image: 2]

 !st = sin theta -- [image: 3]
 !ct = cos theta

 !cy = fromIntegral y / 2 :: Double -- [image: 4]
 !cx = fromIntegral x / 2 :: Double

 f (Z :. i :. j :. k) -- [image: 5]
 | inShape sh old = g ! old -- [image: 6]
 | otherwise = 0 -- [image: 7]
 where
 fi = fromIntegral i - cy -- [image: 8]
 fj = fromIntegral j - cx

 i' = round (st * fj + ct * fi + cy) -- [image: 9]
 j' = round (ct * fj - st * fi + cx)

 old = Z :. i' :. j' :. k -- [image: 10]
The formula to rotate a point (x,y) by an angle θ about the
origin is given by:
x′ = y sin θ + x cos θ
y′ = y cos θ + x sin θ
However, we want to rotate our image about the center, but the origin
is the upper-left corner. Hence we need to adjust the points to be
relative to the center of the image before translation and adjust
them back afterward.
	[image: 1]
	
We’re creating a delayed array, represented by the function f.
The dimensions of the array are the same as the input array, which we
get by calling extent just below.

	[image: 2]
	
Convert the angle by which to rotate the image from degrees to radians.

	[image: 3]
	
Because we’ll need the values of sin theta and cos theta twice
each, we defined them once here.

	[image: 4]
	
cy and cx are the y- and x-coordinates, respectively, of the
center of the image.

	[image: 5]
	
The function f, which gives the value of the new image at
position i, j, k (where k here is between 0 and 2,
corresponding to the RGB color channels).

	[image: 6]
	
First, we need to check whether the old pixel (the pixel we are
rotating into this position) is within the bounds of the original
image. The function inShape does this check for us:

inShape :: Shape sh => sh -> sh -> Bool
If the old pixel is within the image, then we return the value at
that position in the old image.

	[image: 7]
	
If the rotated position in the old image is out of bounds,
then we return zero, giving a black pixel at this position in the new
image.

	[image: 8]
	
fi and fj are the y and x values of this point relative to
the center of the image, respectively.

	[image: 9]
	
i' and j' are the coordinates of the pixel in the old image
that will be rotated to this position in the new image, given by the previous
formulae for st and ct.

	[image: 10]
	
Finally, old is the index of the pixel in the old image.

To see the program working, we first need an image to rotate:
Figure 5-1.
[image: Image in need of rotation]

Figure 5-1. Image in need of rotation

Running the program like so results in the straightened image shown in Figure 5-2:
$./rotateimage 4 wonky.jpg straight.jpg
[image: Straightened image]

Figure 5-2. Straightened image

Let’s check the performance of the program:
$ rm straight.jpg
$./rotateimage 4 wonky.jpg straight.jpg +RTS -s
...
 Total time 0.69s (0.69s elapsed)
And see how much we can gain by running it in parallel, on four cores:
$./rotateimage 4 wonky.jpg straight.jpg +RTS -s -N4
...
 Total time 0.76s (0.24s elapsed)
The result is a speedup of 2.88. However, this program spends 0.05s of its time
reading and writing the image file (measured by modifying the program
to omit the rotation step), and if we factor this into the results, we
obtain a speedup for the parallel portion of the program of 3.39.

Summary

Repa provides a convenient framework for describing array
operations and has some significant benefits:
	
Intermediate arrays are automatically eliminated when array
 operations are composed (fusion).

	
Operations like computeP and foldP automatically parallelize
 using the available cores.

There are a couple of gotchas to bear in mind:
	
Repa relies heavily on GHC’s optimizer and is quite sensitive to
 things like strictness annotations and INLINE pragmas. A good
 rule of thumb is to use both of these liberally. You might also
 need to use simpler code and fewer library functions so that GHC
 can see all of your code and optimize it.

	
Don’t forget to add the -fllvm option if your computer supports it.

There’s much more to Repa that we haven’t covered. For example,
Repa has support for stencil convolutions: a common class of image-processing algorithms in which a transformation on each pixel is
calculated as some function of the surrounding pixels. For certain
kinds of stencil functions that are known at compile time, Repa can
generate specialized code that runs extremely fast.
To learn more, take a look at the full
Repa documentation on Hackage.

[19] Note that we’re using Repa version 3.2 here; 3.0 had a somewhat different API.

[20] There are other array representations that aren’t covered in this chapter; for more details, see the Repa documentation

[21] You might not have LLVM installed on your computer, in which case the -fllvm option will not work. Don’t worry: Repa works perfectly well without it. The code will just be slower.

Chapter 6. GPU Programming with Accelerate

The most powerful processor in your computer may not be the
CPU. Modern graphics processing units (GPUs) usually have something on
the order of 10 to 100 times more raw compute power than the
general-purpose CPU. However, the GPU is a very different beast from
the CPU, and we can’t just run ordinary Haskell programs on it. A
GPU consists of a large number of parallel processing units, each of
which is much less powerful than one core of your CPU, so to unlock
the power of a GPU we need a highly parallel workload. Furthermore,
the processors of a GPU all run exactly the same code in lockstep, so
they are suitable only for data-parallel tasks where the operations to
perform on each data item are identical.
In recent years GPUs have become less graphics-specific and more
suitable for performing general-purpose parallel processing tasks.
However, GPUs are still programmed in a different way from the CPU
because they have a different instruction set architecture. A
special-purpose compiler is needed to compile code for the GPU, and
the source code is normally written in a language that resembles a
restricted subset of C. Two such languages are in widespread use:
NVidia’s CUDA and OpenCL. These languages are very low-level and
expose lots of details about the workings of the GPU, such as how and
when to move data between the CPU’s memory and the GPU’s memory.
Clearly, we would like to be able to make use of the vast computing
power of the GPU from Haskell without having to write code in CUDA or
OpenCL. This is where the Accelerate library comes in: Accelerate
is an embedded domain-specific language (EDSL) for programming
the GPU. It allows us to write Haskell code in a somewhat stylized form
and have it run directly on the GPU. For certain tasks, we can obtain
orders of magnitude speedup by using Accelerate.
During the course of this chapter, I’ll be introducing the various
concepts of Accelerate, starting with the basic data types and
operations and progressing to full-scale examples that run on the
GPU.
As with Repa in the previous chapter, I’ll be illustrating many of
the Accelerate operations by typing expressions into GHCi.
Accelerate comes with an interpreter, which means that for
experimenting with Accelerate code, you don’t need a machine with a
GPU. To play with examples yourself, first make sure the accelerate
package is installed:
$ cabal install accelerate
The accelerate package provides the basic infrastructure, which includes the Data.Array.Accelerate module for constructing array computations, and Data.Array.Accelerate.Interpreter for interpreting them. To actually run an Accelerate computation on a GPU, you will also need a supported GPU card and the accelerate-cuda package; I’ll cover that later in Running on the GPU.
When you have the accelerate package installed, you can start up
GHCi and import the necessary modules:
$ ghci
Prelude> import Data.Array.Accelerate as A
Prelude A> import Data.Array.Accelerate.Interpreter as I
Prelude A I>
As we’ll see, Accelerate shares many concepts with Repa. In
particular, array shapes and indices are the same, and Accelerate
also has the concept of shape-polymorphic operations like fold.
Overview

I mentioned earlier that Accelerate is an embedded domain-specific
language for programming GPUs. More specifically, it is a
deeply embedded DSL. This means that programs are written in Haskell
syntax using operations of the library, but the method by which the
program runs is different from a conventional Haskell program. A
program fragment that uses Accelerate works like this:
	
The Haskell code generates a data structure in an internal
 representation that the programmer doesn’t get to see.

	
This data structure is then compiled into GPU code using the accelerate-cuda package and run
 directly on the GPU. When you don’t have a GPU, the accelerate
 package interprets the code instead, using Accelerate’s
 built-in interpreter. Both methods give the same results, but of
 course running on the GPU should be far faster.

Both steps happen while the Haskell program is running; there’s no
extra compile step, apart from compiling the Haskell program itself.
By the magic of Haskell’s overloading and abstraction facilities, the
Haskell code that you write using Accelerate usually looks much like
ordinary Haskell code, even though it generates another program rather
than actually producing the result directly.
While reading this chapter, you probably want to have a copy of the
Accelerate API documentation at hand.

Arrays and Indices

As with Repa, Accelerate is a framework for programming with
arrays. An Accelerate computation takes arrays as inputs and
delivers one or more arrays as output. The type of Accelerate
arrays has only two parameters, though:
data Array sh e
Here, e is the element type, and sh is the shape. There is no representation type. Even though Accelerate does have delayed arrays internally and compositions of array operations are fused in much the same way as in Repa, arrays are not explicitly tagged with a representation type.
Shapes and indices use the same data types as Repa (for more details see Arrays, Shapes, and Indices):
data Z = Z
data tail :. head = tail :. head
And there are some convenient type synonyms for common shapes:
type DIM0 = Z
type DIM1 = DIM0 :. Int
type DIM2 = DIM1 :. Int
Because arrays of dimensionality zero and one are common, the library
provides type synonyms for those:
type Scalar e = Array DIM0 e
type Vector e = Array DIM1 e
You can build arrays and experiment with them in ordinary Haskell code
using fromList:
fromList :: (Shape sh, Elt e) => sh -> [e] -> Array sh e
As we saw with Repa, we have to be careful to give GHC enough type
information to fix the type of the indices (to Int), and the same is
true in Accelerate. Let’s build a 10-element vector using fromList:
> fromList (Z:.10) [1..10] :: Vector Int
Array (Z :. 10) [1,2,3,4,5,6,7,8,9,10]
Similarly, we can make a two-dimensional array, with three rows of five
columns:
> fromList (Z:.3:.5) [1..] :: Array DIM2 Int
Array (Z :. 3 :. 5) [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
The operation for indexing one of these arrays is indexArray:
> let arr = fromList (Z:.3:.5) [1..] :: Array DIM2 Int
> indexArray arr (Z:.2:.1)
12
(There is also a ! operator that performs indexing, but unlike
indexArray it can only be used in the context of an Accelerate
computation, which we’ll see shortly.)
One thing to remember is that in Accelerate, arrays cannot be nested; it is
impossible to build an array of arrays. This is because arrays must
be able to be mapped directly into flat arrays on the GPU, which has
no support for nested arrays.
We can, however, have arrays of tuples. For example:
> fromList (Z:.2:.3) (Prelude.zip [1..] [1..]) :: Array DIM2 (Int,Int)
Array (Z :. 2 :. 3) [(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)]
Internally, Accelerate will translate an array of tuples into a tuple of
arrays; this is done entirely automatically, and we don’t need to worry
about it. Arrays of tuples are a very useful structure, as we shall
see.

Running a Simple Accelerate Computation

So far, we have been experimenting with arrays in the context of ordinary Haskell code; we haven’t constructed an actual Accelerate computation over arrays yet. An Accelerate computation takes the form run E, where:
run :: Arrays a => Acc a -> a
The expression E has type Acc a, which means “an accelerated computation that delivers a value of type a.” The
Arrays class allows a to be either an array or a tuple of
arrays. A value of type Acc a is really a data structure (we’ll see
in a moment how to build it), and the run function evaluates the
data structure to produce a result. There are two versions of run:
one exported by Data.Array.Accelerate.Interpreter that we will be
using for experimentation and testing, and another exported by
Data.Array.Accelerate.CUDA (in the accelerate-cuda package) that
runs the computation on the GPU.
Let’s try a very simple example. Starting with the 3×5 array of
Int from the previous section, let’s add one to every element:
> let arr = fromList (Z:.3:.5) [1..] :: Array DIM2 Int
> run $ A.map (+1) (use arr)
Array (Z :. 3 :. 5) [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
Breaking this down, first we call A.map, which is the map function
from Data.Array.Accelerate; recall that we used import
Data.Array.Accelerate as A earlier. We have to use the
qualified name, because there are two map functions in scope:
A.map and Prelude.map.
Here is the type of A.map:
A.map :: (Shape ix, Elt a, Elt b)
 => (Exp a -> Exp b)
 -> Acc (Array ix a)
 -> Acc (Array ix b)
A few things will probably seem unusual about this type. First let’s look at the second argument. This is the array
to map over, but rather than just an Array ix a, it is an Acc (Array ix a)—that is, an array in the Accelerate world rather than
the ordinary Haskell world. We need to somehow turn our Array DIM2
Int into an Acc (Array DIM2 Int). This is what the use function
is for:
use :: Arrays arrays => arrays -> Acc arrays
The use function is the way to take arrays from Haskell and inject
them into an Accelerate computation. This
might actually involve copying the array from the computer’s main
memory into the GPU’s memory.
The first argument to A.map has type Exp a -> Exp b. Here, Exp
is a bit like Acc. It represents a computation in the world of
Accelerate, but whereas Acc is a computation delivering an array,
Exp is a computation delivering a single value.
In the example we passed (+1) as the first argument to map. This
expression is overloaded in Haskell with type Num a => a -> a, and
we’re accustomed to seeing it used at types like Int -> Int and
Double -> Double. Here, however, it is being used at type Exp Int
-> Exp Int; this is possible because Accelerate provides an instance
for Num (Exp a), so expressions built using integer
constants and overloaded Num operations work just fine in the world
of Exp.[22]
Here’s another example, which squares every element in the array:
> run $ A.map (^2) (use arr)
Array (Z :. 3 :. 5) [1,4,9,16,25,36,49,64,81,100,121,144,169,196,225]
We can inject values into the Accelerate world with functions such as
use (and some more that we’ll see shortly), but the only way to get
data out of an Accelerate computation is to run it with run, and
then the result becomes available to the caller as an ordinary Haskell
value.
Type Classes: Elt, Arrays, and Shape
There are a few type classes that commonly appear in the
operations from Data.Array.Accelerate.
The types are restricted to a fixed set, and aside from this we don’t need
to know anything more about them; indeed, Accelerate hides the methods
from the public API. Briefly, these are the three type classes you
will encounter most often:
	
Elt

	
 The class of types that may be array elements. Includes all the
 usual numeric types, as well as indices and tuples. In types of the
 form Exp e, the e is often required to be an instance of Elt.
 Note in particular that arrays are not an instance of Elt; this is
 the mechanism by which Accelerate enforces that arrays cannot be
 nested.

	
Arrays

	
 This type class includes arrays and tuples of arrays. In Acc a,
 the a must always be an instance of the type class Arrays.

	
Shape

	
 The class of shapes and indices. This class includes only Z and
 :. and is used to ensure that values used as shapes and indices
 are constructed from these two types.

See the Accelerate documentation for a full list of the instances of
each class.

Scalar Arrays

Sometimes we want to use a single value in a place where the API only
allows an array; this is quite common in Accelerate because most
operations are over arrays. For example, the result of run contains
only arrays, not scalars, so if we want to return a single value, we have to
wrap it in an array first. The unit operation is provided for this
purpose:
unit :: Elt e => Exp e -> Acc (Scalar e)
Recall that Scalar is a type synonym for Array DIM0; an array with
zero dimensions has only one element. Now we can return a single
value from run:
> run $ unit (3::Exp Int)
Array (Z) [3]
The dual to unit is the, which extracts a single value from a
Scalar:
the :: Elt e => Acc (Scalar e) -> Exp e

Indexing Arrays

The ! operator indexes into an array:
(!) :: (Shape ix, Elt e) => Acc (Array ix e) -> Exp ix -> Exp e
Unlike the indexArray function that we saw earlier, the ! operator
works in the Accelerate world; the array argument has type Acc (Array ix e), and the index is an Exp ix. So how do we get from an ordinary index like Z:.3 to an Exp (Z:.Int)? There is a handy
function index1 for exactly this purpose:
index1 :: Exp Int -> Exp (Z :. Int)
So now we can index into an array. Putting these together in GHCi:
> let arr = fromList (Z:.10) [1..10] :: Array DIM1 Int
> run $ unit (use arr ! index1 3)
Array (Z) [4]

Creating Arrays Inside Acc

We saw earlier how to create arrays using fromList and then inject them into the Acc world with use. This is not a particularly
efficient way to create arrays. Even if the compiler is clever enough
to optimize away the intermediate list, the array data will still have
to be copied over to the GPU’s memory. So it’s usually better to
create arrays inside Acc. The Accelerate library provides a few
ways to create arrays inside Acc; the simplest one is fill:
fill :: (Shape sh, Elt e) => Exp sh -> Exp e -> Acc (Array sh e)
The fill operation creates an array of the specified shape in which
all elements have the same value. We can create arrays in which the
elements are drawn from a sequence by using enumFromN and
enumFromStepN:
enumFromN :: (Shape sh, Elt e, IsNum e)
 => Exp sh -> Exp e -> Acc (Array sh e)

enumFromStepN :: (Shape sh, Elt e, IsNum e)
 => Exp sh -> Exp e -> Exp e -> Acc (Array sh e)
In enumFromN, the first argument is the shape and the second is the value of the first element. For example, enumFromN (index1 N) M is the same as use (fromList (Z:.N) [M..]).
The enumFromStepN function is the same, except that we can specify
the increment between the element values. For instance, to create a
two-dimensional array of shape three rows of five columns, where the elements
are drawn from the sequence [15,14..]:
> run $ enumFromStepN (index2 3 5) 15 (-1) :: Array DIM2 Int
Array (Z :. 3 :. 5) [15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
Note that we used index2, the two-dimensional version of index1
that we saw earlier, to create the shape argument.
A more general way to create arrays is provided by generate:
generate :: (Shape ix, Elt a)
 => Exp ix -> (Exp ix -> Exp a)
 -> Acc (Array ix a)
This time, the values of the elements are determined by a user-supplied
function from Exp ix to Exp a; that is, the function that will be
applied to each index in the array to determine the element value at
that position. This is exactly like the fromFunction operation
we used in Repa, except that here we must supply a function in the
Exp world rather than an arbitrary Haskell function.
For instance, to create a two-dimensional array in which every element
is given by the sum of its x and y coordinates, we can use
generate:
> run $ generate (index2 3 5) (\ix -> let Z:.y:.x = unlift ix in x + y)
Array (Z :. 3 :. 5) [0,1,2,3,4,1,2,3,4,5,2,3,4,5,6]
Let’s look in more detail at the function argument:
 \ix -> let Z:.y:.x = unlift ix in x + y
The function as a whole must have type Exp DIM2 -> Exp Int, and
hence ix has type Exp DIM2. We need to extract the x and y
values from the index, which means we need to deconstruct the Exp
DIM2. The function unlift does this; in general, you should think
of unlift as a way to take apart a structured value inside an Exp.
It works for tuples and indices. In the previous example, we’re using
unlift at the following type:[23]
unlift :: Exp (Z :. Int :. Int) -> Z :. Exp Int :. Exp Int
The result is a DIM2 value in the Haskell world, so we can pattern
match against Z:.x:.y to extract the x and y values, both of type Exp Int. Then x + y gives us the sum of x and y as an Exp Int, by virtue of the overloaded + operator.
There is a dual to unlift, unsurprisingly called lift, which does
the opposite transformation. In fact, the index2 function that we
used in the generate example earlier is defined in terms of lift:
index2 :: Exp Int -> Exp Int -> Exp DIM2
index2 i j = lift (Z :. i :. j)
This use of lift has the following type:
lift :: Z :. Exp Int :. Exp Int -> Exp (Z :. Int :. Int)
The lift and unlift functions are essential when we’re working
with indices in Accelerate, and as we’ll see later, they’re useful
for working with tuples as well.

Zipping Two Arrays

The zipWith function combines two arrays to produce a third array
by applying the supplied function to corresponding elements of the
input arrays:
zipWith :: (Shape ix, Elt a, Elt b, Elt c)
 => (Exp a -> Exp b -> Exp c)
 -> Acc (Array ix a) -> Acc (Array ix b)
 -> Acc (Array ix c)
The first argument is the function to apply to each pair of elements,
and the second and third arguments are the input arrays. For example,
zipping two arrays with (+):
> let a = enumFromN (index2 2 3) 1 :: Acc (Array DIM2 Int)
> let b = enumFromStepN (index2 2 3) 6 (-1) :: Acc (Array DIM2 Int)
> run $ A.zipWith (+) a b
Array (Z :. 2 :. 3) [7,7,7,7,7,7]
Here we zipped together two arrays of identical shape, but what
happens if the shapes are different? The type of zipWith requires
that the input arrays have identical dimensionality, but the sizes of
the dimensions might be different. For example, we’ll use the same
2×3 array as before, but zip it with a 3×5 array containing
elements [10, 20..]:
> let a = enumFromN (index2 2 3) 1 :: Acc (Array DIM2 Int)
> let b = enumFromStepN (index2 3 5) 10 10 :: Acc (Array DIM2 Int)
> run $ A.zipWith (+) a b
Array (Z :. 2 :. 3) [11,22,33,64,75,86]
What happened is that zipWith used the overlapping intersection of
the two arrays. With two-dimensional arrays, you can visualize it like
this: lay one array on top of the other, with their upper-left-hand
corners at the same point, and pair together the elements
that coincide. The final array has the shape of the overlapping
portion of the two arrays.

Constants

We saw earlier that simple integer literals and numeric operations are
automatically operations in Exp by virtue of being overloaded. But
what if we already have an Int value and we need an Exp Int? This
is what the function constant is for:
constant :: Elt t => t -> Exp t
Note that constant works only for instances of Elt,
which you may recall is the class of types allowed to be array
elements, including numeric types, indices, and tuples of Elts.

Example: Shortest Paths

As our first full-scale example, we’ll again tackle the Floyd-Warshall
shortest paths algorithm. For details of the algorithm, please see the
Repa example in Example: Computing Shortest Paths; the algorithm here
will be identical, except that we’re going to run it on a GPU using
Accelerate to see how much faster it goes.
Here are the type of graphs, represented as adjacency matrices:
fwaccel.hs

type Weight = Int32
type Graph = Array DIM2 Weight
The algorithm is a sequence of steps, each of which takes a value for
k and a Graph as input and produces a new Graph. First, we’ll
write the code for an individual step before we see how to put
multiple steps together. Here is the code for a step:
step :: Acc (Scalar Int) -> Acc Graph -> Acc Graph
step k g = generate (shape g) sp -- [image: 1]
 where
 k' = the k -- [image: 2]

 sp :: Exp DIM2 -> Exp Weight
 sp ix = let
 (Z :. i :. j) = unlift ix -- [image: 3]
 in
 A.min (g ! (index2 i j)) -- [image: 4]
 (g ! (index2 i k') + g ! (index2 k' j))
	[image: 1]
	
The step function takes two arguments: k, which is the
iteration number, and g, which is the graph produced by the previous
iteration. In each step, we’re computing the lengths of the shortest
paths between each two elements, using only vertices up to k. The
graph from the previous iteration, g, gives us the lengths of the
shortest paths using vertices up to k - 1. The result of this step
is a new Graph, produced by calling the generate function. The
new array has the same shape as g, and the elements of the array are
determined by the function sp, defined in the where clause.

	[image: 2]
	
The k argument is passed in as a scalar array; the sidebar
explains why. To extract the value from the array, we call the.

	[image: 3]
	
The sp function takes the index of an element in the array and
returns the value of the element at that position. We need to
unlift the input index to extract the two components, i and j.

	[image: 4]
	
This is the core of the algorithm; to determine the length of the
shortest path between i and j, we take the minimum of the previous
shortest path from i to j, and the path that goes from i to k
and then from k to j. All of these lookups in the g graph are
performed using the ! operator, and using index2 to construct the indices.

Passing Inputs as Arrays
Why did we pass in the k value as an Acc (Scalar Int) rather than
a plain Int? After all, we could use constant to convert an Int
into an Exp Int that we could use with index2. The answer is quite
subtle, and to understand it we first need to know a little more about
how Accelerate works. When the program runs, the Accelerate
library evaluates the expression passed to run to make a series of
CUDA fragments (called kernels). Each kernel takes some arrays as
inputs and produces arrays as outputs. In our example, each call
to step will produce a kernel, and when we compose a sequence of
step calls together, we get a series of kernels. Each kernel is
a piece of CUDA code that has to be compiled and loaded onto the GPU;
this can take a while, so Accelerate remembers the kernels it has
seen before and tries to reuse them.
Our goal with step is to make a kernel that will be reused. If we
don’t reuse the same kernel for each step, the overhead of
compiling new kernels will ruin the performance.
We can look at the code that Accelerate sees when it evaluates the
argument to run by evaluating an Acc expression in GHCi. Here’s
what a typical call to step evaluates to:
> step (unit (constant 2)) (use (fromList (Z:.3:.3) [1..9]))
let a0 = use ((Array (Z :. 3 :. 3) [1,2,3,4,5,6,7,8,9]))
in let a1 = unit 2
 in generate
 (shape a0)
 (\x0 -> ...)
I’ve omitted the innards of the generate argument for space, but by
all means try it yourself. The important thing to notice here is the line
let a1 = unit 2; this is the scalar array for the k argument to
step, and it is outside the call to generate. The generate
function is what turns into the CUDA kernel, and to arrange that we
get the same CUDA kernel each time we need the arguments to generate
to remain constant.
Now see what happens if we change step so that it takes an Int as
an argument instead. I’ve replaced the Acc (Scalar Int) with Int,
and changed k' = the k to k' = constant k.
> step 2 (use (fromList (Z:.3:.3) [1..9]))
let a0 = use ((Array (Z :. 3 :. 3) [1,2,3,4,5,6,7,8,9]))
in generate
 (shape a0)
 (\x0 -> min (let x1 = 2
 in ...))
Previously, the code created by k was defined outside
the generate call, but now the definition let x1 = 2 is embedded
inside the call. Hence each generate call will have a different k value
embedded in it, which will defeat Accelerate’s caching of CUDA
kernels.
The rule of thumb is that if you’re running a sequence of array
operations inside Acc, make sure that the things that change are
always passed in as arrays and not embedded in the code as constants.
How can you tell if you get it wrong? One way is to look at the code
as we just did. Another way is to use the debugging options provided
by the accelerate-cuda package, which are described briefly in
Debugging the CUDA Backend.

Now that we have the step function, we can write the wrapper that
composes the sequence of step calls together:
shortestPathsAcc :: Int -> Acc Graph -> Acc Graph
shortestPathsAcc n g0 = foldl1 (>->) steps g0 -- [image: 1]
 where
 steps :: [Acc Graph -> Acc Graph] -- [image: 2]
 steps = [step (unit (constant k)) | k <- [0 .. n-1]] -- [image: 3]
	[image: 2]
	
First we construct a list of the steps, where each takes a
Graph and delivers a Graph.

	[image: 3]
	
The list of steps is constructed by applying step to each value
of k in the sequence 0 .. n-1, wrapping the k values up as
scalar arrays using unit and constant.

	[image: 1]
	
To put the sequence together, Accelerate provides a special
operation designed for this task:

(>->) :: (Arrays a, Arrays b, Arrays c)
 => (Acc a -> Acc b) -> (Acc b -> Acc c) -> Acc a -> Acc c
This is called the pipeline operator, because it is used to connect two Acc computations together in a pipeline, where the output from the first is fed into the input of the second. We could achieve this with simple function composition, but the advantage of using the >-> operator is that it tells Accelerate that there is no sharing between the two computations, and any intermediate arrays used by the first computation can be garbage-collected when the second begins. Without this operator, it is possible to fill up memory when running algorithms with many iterations. So our shortestPathsAcc function connects together the sequence of step calls by left-folding with >-> and then passes g0 as the input to the pipeline.

Now that we have defined the complete computation, we can write a function that wraps run around it:
shortestPaths :: Graph -> Graph
shortestPaths g0 = run (shortestPathsAcc n (use g0))
 where
 Z :. _ :. n = arrayShape g0
We can try the program on test data, using the Accelerate
interpreter:
> shortestPaths testGraph
Array (Z :. 6 :. 6) [0,16,999,13,20,20,19,0,999,5,4,9,11,27,0,24,31,31,18,3,
999,0,7,7,15,4,999,1,0,8,11,17,999,14,21,0]
Running on the GPU

To run the program on a real GPU, you’ll need a supported GPU card
and some additional software. Consult the Accelerate documentation
to help you get things set up. Then install the
accelerate-cuda package:
$ cabal install accelerate-cuda -fdebug
I’ve enabled debugging support here with the -fdebug flag, which
lets us pass some extra options to the program to see what the GPU is
doing.
To use Accelerate’s CUDA support, we need to use:
import Data.Array.Accelerate.CUDA
in place of:
import Data.Array.Accelerate.Interpreter
A version of the shortest paths program that has this is in
fwaccel-gpu.hs. Compile it in the usual way:
$ ghc -O2 fwaccel.hs -threaded
The program includes a benchmarking wrapper that generates a large
graph over which to run the algorithm. Let’s run it on a graph with 2,000
nodes:[24]
$./fwaccel 2000 +RTS -s
...
 Total time 14.71s (16.25s elapsed)
For comparison, I tried the Repa version of this program on a graph of the same size, using seven cores on the same machine:[25]
$./fwdense1 2000 +RTS -s -N7
...
 Total time 259.78s (40.13s elapsed)
So the Accelerate program running on the GPU is significantly faster
than Repa. Moreover, about 3.5s of the runtime of the Accelerate
program is taken up by initializing the GPU on this machine, which we
can see by running the program with a small input size.

Debugging the CUDA Backend

When the accelerate-cuda package is compiled with -fdebug, there
are a few extra debugging options available. These are the most useful ones:
	
-dverbose

	
 Prints some information about the type and capabilities of the
 GPU being used.

	
-ddump-cc

	
 Prints information about CUDA kernels as they are compiled and
 run. Using this option will tell you whether your program is
 generating the number of kernels that you were expecting.

For a more complete list, see the accelerate-cuda.cabal file in the
accelerate-cuda package sources.

Example: A Mandelbrot Set Generator

In this second example, we’ll build a Mandelbrot set generator that
runs on the GPU. The end result will be the picture in
Figure 6-1. Generating an image of the Mandelbrot set is a
naturally parallel process—each pixel is independent of the
others—but there are some aspects to this problem that make it an
interesting example to program using Accelerate. In particular, we’ll
see how to use conditionals and to work with arrays of tuples.
[image: Mandelbrot set picture generated on the GPU]

Figure 6-1. Mandelbrot set picture generated on the GPU

The Mandelbrot set is a mathematical construction over the complex
plane, which is the two-dimensional plane of complex numbers. A
particular point is said to be in the set if, when the following
equation is repeatedly applied, the magnitude of z (written as |z|) does not diverge to infinity:

 z(n+1) =
 c +
 zn2

where c is the point on the plane (a complex number), and z0 = c.
In practice, we iterate the equation for a fixed number of times, and
if it has not diverged at that point, we declare the point to be
in the set. Furthermore, to generate a pretty picture, we remember
the iteration at which each point diverged and map the iteration
values to a color gradient.
We know that |z| will definitely diverge if it is greater than 2.
The magnitude of a complex number x + iy is given by
√(x2 + y2), so we can simplify the condition by squaring
both sides, giving us this condition for divergence: x2 + y2 > 4.
Let’s express this using Accelerate. First, we want a type for
complex numbers. Accelerate lets us work with tuples, so we can
represent complex numbers as pairs of floating point numbers. Not all
GPUs can work with Doubles, so for the best compatibility we’ll use
Float:
mandel/mandel.hs

type F = Float
type Complex = (F,F)
type ComplexPlane = Array DIM2 Complex
We’ll be referring to Float a lot, so the F type synonym helps to
keep things readable.
The following function, next, embodies the main Mandelbrot formula:
it computes the next value of z for a given point c.
next :: Exp Complex -> Exp Complex -> Exp Complex
next c z = c `plus` (z `times` z)
We can’t use the normal + and * operations here, because
there is no instance of Num for Exp Complex. In other words, Accelerate doesn’t know
how to add or multiply our complex numbers, so we have to define these
operations ourselves. First, plus:
plus :: Exp Complex -> Exp Complex -> Exp Complex
plus a b = ...
To sum two complex numbers, we need to sum the components. But
how can we access the components? We cannot pattern match on
Exp Complex. There are a few different ways to do it, and we’ll
explore them briefly. Accelerate provides operations for selecting the
components of pairs in Exp, namely:
fst :: (Elt a, Elt b) => Exp (a, b) -> Exp a
snd :: (Elt a, Elt b) => Exp (a, b) -> Exp b
So we could write plus like this:
plus :: Exp Complex -> Exp Complex -> Exp Complex
plus a b = ...
 where
 ax = A.fst a
 ay = A.snd a
 bx = A.fst b
 by = A.snd b
But how do we construct the result? We want to write something like
(ax+bx, ay+by), but this has type (Exp F, Exp F), whereas we want
Exp (F,F). Fortunately the lift function that we saw earlier
performs this transformation, so the result is:
plus :: Exp Complex -> Exp Complex -> Exp Complex
plus a b = lift (ax+bx, ay+by)
 where
 ax = A.fst a
 ay = A.snd a
 bx = A.fst b
 by = A.snd b
In fact, we could do a little better, since A.fst and A.snd are
just instances of unlift, and we could do them both in one go:
plus :: Exp Complex -> Exp Complex -> Exp Complex
plus a b = lift (ax+bx, ay+by)
 where
 (ax, ay) = unlift a
 (bx, by) = unlift b
Unfortunately, if you try this you will find that there isn’t enough
type information for GHC, so we have to help it out a bit:
plus :: Exp Complex -> Exp Complex -> Exp Complex
plus a b = lift (ax+bx, ay+by)
 where
 (ax, ay) = unlift a :: (Exp F, Exp F)
 (bx, by) = unlift b :: (Exp F, Exp F)
We can go a little further because Accelerate provides some utilities
that wrap a function in lift and unlift. For a two-argument
function, the right variant is called lift2:
plus :: Exp Complex -> Exp Complex -> Exp Complex
plus = lift2 f
 where f :: (Exp F, Exp F) -> (Exp F, Exp F) -> (Exp F, Exp F)
 f (x1,y1) (x2,y2) = (x1+x2,y1+y2)
Unfortunately, again we had to add the type signature to get
it to typecheck, but it does aid readability. This is perhaps as
close to “natural” as we can get for this definition: the necessary
lifting and unlifting are confined to just one place.
We also need to define times, which follows the same pattern as
plus, although of course this time we are multiplying the two
complex numbers together:
times :: Exp Complex -> Exp Complex -> Exp Complex
times = lift2 f
 where f :: (Exp F, Exp F) -> (Exp F, Exp F) -> (Exp F, Exp F)
 f (ax,ay) (bx,by) = (ax*bx-ay*by, ax*by+ay*bx)
So now we can compute zn+1 given z and c. But we need to
think about the program as a whole. For each point, we need to iterate
this process until divergence, and then remember the number of
iterations at which divergence happened. This creates a small
problem: GPUs are designed to do the same thing to lots of
different data at the same time, whereas we want to do something
different depending on whether or not a particular point has diverged. So in practice, we can’t do what we would normally do in a
single-threaded language and iterate each point until divergence.
Instead, we must find a way to apply the same operation to every
element of the array for a fixed number of iterations.
There is a conditional operation in Accelerate, with this type:
(?) :: Elt t => Exp Bool -> (Exp t, Exp t) -> Exp t
The first argument is an Exp Bool, and the second argument is a pair
of expressions. If the Boolean evaluates to true, the result is
the first component of the pair; otherwise it is the second.
However, as a rule of thumb, using conditionals in GPU code is
considered “bad” because conditionals cause SIMD divergence.
This means that when the GPU hits a conditional instruction, it first
runs all the threads that take the true branch and then runs the
threads that take the false branch. Of course if you have nested
conditionals, the amount of parallelism rapidly disappears.
We can’t avoid some kind of conditional in the Mandelbrot
example, but we can make sure there is only a bounded amount of
divergence by having just one conditional per iteration and a fixed
number of iterations. The trick we’ll use is to keep a pair (z,i) for
every array element, where i is the iteration at which that point
diverged. So at each iteration, we do the following:
	
Compute z' = next c z.

	
If it is greater than four, the result is (z,i).

	
Otherwise, the result is (z',i+1)

The implementation of this sequence is the iter function, defined as
follows:
iter :: Exp Complex -> Exp (Complex,Int) -> Exp (Complex,Int)
iter c p =
 let
 (z,i) = unlift p :: (Exp Complex, Exp Int) -- [image: 1]
 z' = next c z -- [image: 2]
 in
 (dot z' >* 4.0) ? -- [image: 3]
 (p -- [image: 4]
 , lift (z', i+1) -- [image: 5]
)
	[image: 1]
	
The first thing to do is unlift p so we can access the
components of the pair.

	[image: 2]
	
Next, we compute z' by calling next.

	[image: 3]
	
Now that we have z' we can do the conditional test using the ?
operator. The dot function computes x2 + y2 where x
and y are the components of z; it follows the same pattern as
plus and times so I’ve omitted its definition.

	[image: 4]
	
If the condition evaluates to true, we just return the original
p.

	[image: 5]
	
In the false case, then we return the new z' and i+1.

The algorithm needs two arrays: one array of c values that will
be constant throughout the computation, and a second array of (z,i)
values that will be recomputed by each iteration. Our arrays are
two-dimensional arrays indexed by pixel coordinates because the aim is to
generate a picture from the iteration values at each pixel.
The initial complex plane of c values is generated by a function
genPlane:
genPlane :: F -> F
 -> F -> F
 -> Int
 -> Int
 -> Acc ComplexPlane
Its definition is rather long so I’ve omitted it here, but
essentially it is a call to generate
(Creating Arrays Inside Acc).
From the initial complex plane we can generate the initial array of
(z,i) values, which is done by initializing each z to the
corresponding c value and i to zero. In the code, this can be
found in the mkinit function.
Now we can put the pieces together and write the code for the complete
algorithm:
mandelbrot :: F -> F -> F -> F -> Int -> Int -> Int
 -> Acc (Array DIM2 (Complex,Int))

mandelbrot x y x' y' screenX screenY max_depth
 = iterate go zs0 !! max_depth -- [image: 1]
 where
 cs = genPlane x y x' y' screenX screenY -- [image: 2]
 zs0 = mkinit cs -- [image: 3]

 go :: Acc (Array DIM2 (Complex,Int))
 -> Acc (Array DIM2 (Complex,Int))
 go = A.zipWith iter cs -- [image: 4]
	[image: 2]
	
cs is our static complex plane generated by genPlane.

	[image: 3]
	
zs0 is the initial array of (z,i) values.

	[image: 4]
	
The function go performs one iteration, producing a new array of
(z,i), and it is expressed by zipping iter over both cs and the
current array of (z,i).

	[image: 1]
	
To perform all the iterations, we simply call the ordinary list
function iterate:

iterate :: (a -> a) -> a -> [a]
and take the element at position depth, which corresponds to the
go function having been applied depth times. Note that in this
case, we don’t want to use the pipeline operator >-> because the
iterations share the array cs.

The complete program has code to produce an output file in PNG format,
by turning the Accelerate array into a Repa array and then using
the repa-devil library that we saw in
Example: Image Rotation. To compile the program, install the
accelerate and accelerate-cuda packages as before, and then:
$ ghc -O2 -threaded mandel.hs
Then generate a nice big image (again, this is running on an
Amazon EC2 Cluster GPU instance):
$ rm out.png; ./mandel --size=4000 +RTS -s
...
 Total time 8.40s (10.56s elapsed)

[22] This comes with a couple of extra constraints,
which we won’t go into here.

[23] The unlift function is
actually a method of the Unlift class, which has instances for
indices (of any dimensionality) and various sizes of tuples. See the
Accelerate documentation for details.

[24] These results were obtained on an Amazon EC2 Cluster GPU instance that had an NVidia Tesla card. I used CUDA version 4.

[25] Using all eight cores was slower than using seven.

Part II. Concurrent Haskell

Concurrent Haskell is the collective name for the facilities that
Haskell provides for programming with multiple threads of control. Unlike
parallel programming, where the goal is to make the program run faster
by using more CPUs, the goal in concurrent programming is usually to
write a program with multiple interactions. These interactions might
be with the user via a user interface of some kind, with other
systems, or indeed between different subsystems within the same
program. Concurrency allows us to write a program in which each of
these interactions is described separately but all happen at the
same time. As we shall see, concurrency is a powerful tool for
structuring programs with multiple interactions.
In many application areas today, some kind of concurrency is a
necessity. A typical user-facing application will have an interface
that must remain responsive while the application is downloading data
from the network or calculating some results. Often these
applications may be interacting with multiple servers over the network
at the same time; a web browser, for example, will have many concurrent
connections open to the sites that the user is browsing, while all the
time maintaining a responsive user interface. Server-side
applications also need concurrency in order to manage multiple client
interactions simultaneously.
Haskell takes the view that concurrency is a useful abstraction
because it allows each interaction to be programmed separately,
resulting in greater modularity. Abstractions should not be too
expensive because then we won’t use them—hence GHC provides
lightweight threads so that concurrency can be used for a wide range
of applications, without needing to worry about the overhead.
Haskell’s philosophy is to provide a set of very simple but general
features that you can use to build higher-level functionality. So while
the built-in functionality may seem quite sparse, in practice it is
general enough to implement elaborate abstractions. Furthermore,
because these abstractions are not built in, you can make your own
choices about which programming model to adopt, or to program down to
the low-level interfaces for performance.
Therefore, to learn Concurrent Haskell, we can start from the low-level
interfaces and then explore how to combine them and build on top to
create higher-level abstractions, which is exactly the approach taken
in this book. The aim is that by building up the implementations of
higher-level abstractions using the low-level features, the
higher-level abstractions will be more accessible and less mysterious
than if we had just described an API. Furthermore, by seeing examples
of how to build higher-level abstractions, you should be able to go
away and build your own variations or entirely new libraries.
Haskell does not take a stance on which concurrent programming model
is best: actors, shared memory, and transactions are all supported, for
example. (Conversely, Haskell does take a stance on parallel
programming; we strongly recommend that you use one of the
deterministic programming models from Part I for parallel
programming.) Haskell provides all of these concurrent programming
models and more—but this flexibility is a double-edged sword. The
advantage is that you can choose from a wide range of tools and pick
the one best suited to the task at hand, but the disadvantage is that
it can be hard to decide which tool is best for the job. Hopefully by
demonstrating a series of examples using each of the programming
models that Haskell provides, this book will help you develop an
intuition for which tool to pick for your own projects.
In the following chapters we’re going on a tour of Concurrent Haskell,
starting with the basics of threads and communication in
Chapter 7 through Chapter 10, moving on to some higher-level
abstractions in Chapter 11, and then we’ll look at how to
build multithreaded network applications in Chapter 12.
Chapter 13 deals with using Concurrent Haskell to achieve
parallelism, and in Chapter 14 we look at writing
distributed programs that run on multiple computers. Finally,
Chapter 15 will present some techniques for
debugging and performance-tuning and talk about the interaction
between Concurrent Haskell and foreign code.

Chapter 7. Basic Concurrency: Threads and MVars

The fundamental action in concurrency is forking a new
thread of control. In Concurrent Haskell, this is achieved with the
forkIO operation:
forkIO :: IO () -> IO ThreadId
The forkIO operation takes a computation of type IO () as its
argument; that is, a computation in the IO monad that eventually
delivers a value of type (). The computation passed to forkIO is
executed in a new thread that runs concurrently with the other
threads in the system. If the thread has effects, those effects will
be interleaved in an indeterminate fashion with the effects from other
threads.
To illustrate the interleaving of effects, let’s try a simple example
with two threads, one that repeatedly prints the letter A while
the other repeatedly prints B:
fork.hs

import Control.Concurrent
import Control.Monad
import System.IO

main = do
 hSetBuffering stdout NoBuffering -- [image: 1]
 forkIO (replicateM_ 100000 (putChar 'A')) -- [image: 2]
 replicateM_ 100000 (putChar 'B') -- [image: 3]
	[image: 1]
	
Put the output Handle into nonbuffered mode, so
that we can see the interleaving more clearly.

	[image: 2]
	
Create a thread to print the character A 100,000 times.

	[image: 3]
	
In the main thread, print B 100,000 times.

Try running the program; it should produce output similar to this:
AAAAAAAAAB
AB
AB
AB
The output might have a different pattern, depending on the particular
version of GHC that you use to run the test. In this case, we sometimes
see strings of a single letter and sometimes a regular alternation
between the two letters. Strings of a single letter are to be
expected; the runtime system runs one thread for a “time slice” and
then switches to the other thread.[26] But why do we see sequences where each thread
only gets a chance to output a single letter before switching? The
threads in this example are contending for a single resource, the
stdout Handle, so the behavior is affected by how contention for
this resource is managed by the runtime system. We’ll see later how
GHC’s fairness policy gives rise to the ABABABA behavior seen here.
A Simple Example: Reminders

The following program illustrates the creation of threads in a program
that implements timed reminders. The user enters a number of seconds,
and after the specified time has elapsed, the program prints a message
and emits a beep.[27] Any number of reminders can
be active simultaneously.
We’ll need an operation that waits for some time to elapse:
threadDelay :: Int -> IO ()
The function threadDelay takes an argument representing a number of
microseconds and waits for that amount of time before returning.
reminders.hs

import Control.Concurrent
import Text.Printf
import Control.Monad

main =
 forever $ do
 s <- getLine -- [image: 1]
 forkIO $ setReminder s -- [image: 2]

setReminder :: String -> IO ()
setReminder s = do
 let t = read s :: Int
 printf "Ok, I'll remind you in %d seconds\n" t
 threadDelay (10^6 * t) -- [image: 3]
 printf "%d seconds is up! BING!\BEL\n" t -- [image: 4]
The program works by creating a thread for each new request for a
reminder:
	[image: 1]
	
Waits for input from the user.

	[image: 2]
	
Creates a new thread to handle this reminder.

	[image: 3]
	
The new thread, after printing a confirmation message, waits for the specified number of seconds using threadDelay.

	[image: 4]
	
Finally, when threadDelay returns, the reminder message is printed.

For example:
$./reminders
2
Ok, I'll remind you in 2 seconds
3
Ok, I'll remind you in 3 seconds
4
Ok, I'll remind you in 4 seconds
2 seconds is up! BING!
3 seconds is up! BING!
4 seconds is up! BING!
Let’s extend this example to allow the user to terminate the program
by entering exit instead of a number. We need to modify only the main function:
reminders2.hs

main = loop
 where
 loop = do
 s <- getLine
 if s == "exit"
 then return ()
 else do forkIO $ setReminder s
 loop
Instead of forever, we now use a recursive loop, and we choose to
return from the loop if the string entered was "exit"; otherwise, we
create a new thread as before and loop again. Returning from the loop
causes main itself to return, which ends the program.
Now we can terminate the program, even if there are outstanding
reminders:
$./reminders2
2
Ok, I'll remind you in 2 seconds
3
Ok, I'll remind you in 3 seconds
2 seconds is up! BING!
exit
$
This tells us something important about how threads work in Haskell: the program terminates when main returns, even if there are other threads still running. The other threads simply stop running and
cease to exist after main returns.
Why does Haskell make this design decision, when in many cases it
would be more useful to wait for all the concurrent threads to finish
before terminating the program? Haskell’s approach is to give you the
simplest possible interface that allows you to program whatever
behavior you need, and waiting for threads is an additional service
that can be implemented using the facilities provided by Concurrent
Haskell. Higher-level interfaces can be provided by libraries. If
you don’t like the behavior provided by a certain library, you can
always modify it or write your own.
In MVar as a Simple Channel: A Logging Service, we’ll see one way to wait for a thread to
terminate. In Chapter 8, we will build a more
general interface for waiting for threads, which will be developed
further in the following chapters.

Communication: MVars

So far, we have learned how to create threads, but they can’t talk to
each other. In this section we’ll introduce MVar, the basic
communication mechanism provided by Concurrent Haskell.
The API for MVar is as follows:
data MVar a -- abstract

newEmptyMVar :: IO (MVar a)
newMVar :: a -> IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()
An MVar can be thought of as a box that is either empty or full. The
newEmptyMVar operation creates a new empty box, and newMVar
creates a new full box containing the value passed as its argument.
The takeMVar operation removes the value from a full MVar and
returns it, but waits (or blocks) if the MVar is currently empty.
Symmetrically, the putMVar operation puts a value into the MVar
but blocks if the MVar is already full.
The following sequence of small examples should help to illustrate how
MVars work. First, this program passes a single value from one
thread to another:
mvar1.hs

main = do
 m <- newEmptyMVar
 forkIO $ putMVar m 'x'
 r <- takeMVar m
 print r
The MVar is empty when it is created, the child thread puts the
value x into it, and the main thread takes the value and prints
it. If the main thread calls takeMVar before the child
thread has put the value, no problem: takeMVar blocks
until the value is available.
This second example passes two values from the child thread to the
main thread:
mvar2.hs

main = do
 m <- newEmptyMVar
 forkIO $ do putMVar m 'x'; putMVar m 'y'
 r <- takeMVar m
 print r
 r <- takeMVar m
 print r
The output when we run the program will be 'x' followed by 'y'.
An MVar can be used in this way as a simple channel between two
threads, or even between many writers and a single reader. We will
see a realistic example of this use case shortly.
What happens if a thread blocks in takeMVar but there is no other
thread to perform the corresponding putMVar? For example:
mvar3.hs

main = do
 m <- newEmptyMVar
 takeMVar m
If we run the program, we should see this:
$./mvar3
mvar3: thread blocked indefinitely in an MVar operation
The runtime system detects that the takeMVar operation in the main
thread is blocked forever and throws a special exception called
BlockedIndefinitelyOnMVar. In practice, this means that if you
accidentally write a program that contains a deadlock, in many cases
the program will fail with an exception rather than just hanging,
which is useful for debugging. We’ll return to cover deadlock
detection in more detail in Detecting Deadlock.
The MVar is a fundamental building block that generalizes many
different communication and synchronization patterns, and over the
next few sections we shall see examples of these various use cases.
To summarize the main ways in which an MVar can be used:
	
An MVar is a one-place channel, which means that it can be used
 for passing messages between threads, but it can hold at most
 one message at a time.

	
An MVar is a container for shared mutable state. For example, a
 common design pattern in Concurrent Haskell, when several threads
 need read and write access to some state, is to represent the state
 value as an ordinary immutable Haskell data structure stored in an
 MVar. Modifying the state consists of taking the current value
 with takeMVar (which implicitly acquires a lock), and then placing
 a new value back in the MVar with putMVar (which implicitly
 releases the lock again).

Sometimes the mutable state is not a Haskell data structure; it
might be stored in C code or on the filesystem, for example. In
such cases, we can use an MVar with a dummy value such as () to
act as a lock on the external state, where takeMVar acquires the
lock and putMVar releases it again.[28]

	
An MVar is a building block for constructing larger concurrent
 Datastructures.

The next three sections give examples of each of these use cases in turn.

MVar as a Simple Channel: A Logging Service

A logging service is a thread to which the rest of the program can
send messages, and it is the job of the logger to record those
messages somewhere. For example, the logger might just print the
messages to the screen, or store them in a file, or perhaps forward
them over the network to a separate machine that collects logs from
multiple sources.
Logging is usually a fire-and-forget activity. We care that the log
messages from any given thread come out in the right order, but we
don’t need to wait until the logger has actually recorded each message
before we go on to do something else. Therefore, running the logging
service in a separate thread means that logging can take place
concurrently with other activity in the system, which means that we
can overlap the input/output performed by the logger with other
activity in the program.
In this section, we implement a simple logging service in
Concurrent Haskell using an MVar for communication. The logging
service will have the following API:
data Logger

initLogger :: IO Logger
logMessage :: Logger -> String -> IO ()
logStop :: Logger -> IO ()
There is an abstract data type called Logger that represents a handle
to the logging service, and a new logging service is created by
calling initLogger. The handle is required to perform a logging
action—having Logger be a value that we pass around rather than a
globally known top-level value is good practice; it means we could
have multiple loggers, for example.
There are two operations that we can perform: logMessage takes a
String and logs it, and logStop causes the logging service to
terminate. The latter operation is important because if we want to
shut down the program, we need to be sure that the logging service has
finished processing any outstanding requests. Recall from
A Simple Example: Reminders that when the main thread exits, the program
terminates immediately rather than waiting for other threads to
terminate first. Hence logStop has an extra requirement: it must
not return until the logging service has processed all outstanding
requests and stopped.
The implementation is given in the following code fragments. First,
the data type Logger:
logger.hs

data Logger = Logger (MVar LogCommand)

data LogCommand = Message String | Stop (MVar ())
The Logger is just an MVar that we use as a channel for
communication with the logging thread. Requests are made by placing a
LogCommand in the MVar, and the logging thread will process
requests one at a time by taking them from the MVar.
There are two kinds of requests that we can make, and so LogCommand
is a data type with two constructors. The first, Message, is
straightforward; it simply contains a String that we want to log.
The second, Stop, obviously represents the message requesting that
the logging thread terminate, but it contains a field of type MVar (). This enables the sender of the Stop message to wait for a
reply from the logging thread that indicates it has finished. We’ll
see how this works in a moment.
The initLogger function creates a new logging service:
initLogger :: IO Logger
initLogger = do
 m <- newEmptyMVar
 let l = Logger m
 forkIO (logger l)
 return l
This is straightforward: just create an empty MVar for the channel
and fork a thread to perform the service. The thread will run the
function logger, which is defined as follows:
logger :: Logger -> IO ()
logger (Logger m) = loop
 where
 loop = do
 cmd <- takeMVar m
 case cmd of
 Message msg -> do
 putStrLn msg
 loop
 Stop s -> do
 putStrLn "logger: stop"
 putMVar s ()
The logger is implemented with a recursive loop. The loop
function retrieves the next LogCommand from the MVar and inspects
it. If it is a Message, this simple logger just prints the message
using putStrLn and recursively invokes loop. If it is a Stop
command, the logger emits a log message to say that it is stopping,
replies to the initiator of the Stop by putting the unit value ()
into the MVar from the Stop command, and then returns without
calling loop again, which causes the logger thread to exit.
Next we have the implementation of logMessage, which is the function that a
client uses to log a message.
logMessage :: Logger -> String -> IO ()
logMessage (Logger m) s = putMVar m (Message s)
This is simple. Just put a Message command in the MVar. Next up, logStop:
logStop :: Logger -> IO ()
logStop (Logger m) = do
 s <- newEmptyMVar
 putMVar m (Stop s)
 takeMVar s
We have to create an empty MVar to hold the response and then send
a Stop command to the logger containing the new empty MVar. After
sending the command, we call takeMVar on the new MVar to wait for
the response. After the logging thread has processed the Stop
command, it puts () into this MVar, which allows the
takeMVar to continue and logStop to return.
We can test our logger with a simple main function:
logger.hs

main :: IO ()
main = do
 l <- initLogger
 logMessage l "hello"
 logMessage l "bye"
 logStop l
If we run the program, we should see this:
$./logger
hello
bye
logger: stop
Does this logger achieve what we set out to do? The logMessage
function can return immediately provided the MVar is already empty,
and then the logger will proceed concurrently with the caller of
logMessage. However, if there are multiple threads trying to log
messages at the same time, it seems likely that the logging thread
would not be able to process the messages fast enough and most of the
threads would get blocked in logMessage while waiting for the MVar to
become empty. This is because the MVar is only a one-place channel. If it could hold more messages, we would gain greater concurrency
when multiple threads need to call logMessage simultaneously. In
MVar as a Building Block: Unbounded Channels, we will see how to use MVar to build fully
buffered channels.

MVar as a Container for Shared State

Concurrent programs often need to share some state between multiple
threads. Furthermore, we usually need to be able to perform complex
operations on the state, in a way that makes these operations appear
atomic from the point of view of the other threads. Other threads
should not be able to observe intermediate states during a complex
operation, nor should they be able to initiate their own operations
while another operation is in progress.
Traditional imperative languages achieve this using “locks,” whereby
to operate on the state (including reading it) a thread must
acquire a lock, perform the operation, and then release the lock.
Only one thread is allowed to hold the lock at any given time, so the
acquisition of a lock must block until the lock is available.
MVar provides the combination of a lock and a mutable variable in
Haskell. To acquire the lock, we take the MVar, whereas, to update the
variable and release the lock, we put the MVar.[29]
The following example models a phone book as a piece of mutable state
that may be concurrently modified and inspected by multiple threads.
First, we define the types:
phonebook.hs

type Name = String
type PhoneNumber = String
type PhoneBook = Map Name PhoneNumber

newtype PhoneBookState = PhoneBookState (MVar PhoneBook)
A PhoneBook is a mapping from names to phone numbers represented by
Haskell’s Map type from the Data.Map library. To make this into a
piece of shared mutable state, all we need to do is wrap it in an
MVar. Here, we have made a new type called PhoneBookState to
contain the MVar. This is simply good practice. If we were to make
this interface into a library, the PhoneBookState type could be
exported abstractly so that clients could not see or depend on its
implementation.
Making a new PhoneBookState is straightforward:
new :: IO PhoneBookState
new = do
 m <- newMVar Map.empty
 return (PhoneBookState m)
Now to implement insert, the operation that allows a thread to
insert a new entry in the phone book:
insert :: PhoneBookState -> Name -> PhoneNumber -> IO ()
insert (PhoneBookState m) name number = do
 book <- takeMVar m
 putMVar m (Map.insert name number book)
We call takeMVar to get the current PhoneBook, which has the
effect of locking the state against concurrent updates. Any other
thread attempting to update the state will now block in takeMVar.
Then, putMVar simultaneously unlocks the state and updates it with
the new value, which we construct by calling Map.insert to insert
the new entry into the phone book.
Next, we’ll create a lookup operation that allows us to query the
phone book for a particular name:
lookup :: PhoneBookState -> Name -> IO (Maybe PhoneNumber)
lookup (PhoneBookState m) name = do
 book <- takeMVar m
 putMVar m book
 return (Map.lookup name book)
Note that we need to put back the state after taking it; otherwise, the
state would remain locked after lookup returns.
Now we can test our data structure with a simple main function that
inserts a few entries in a phone book and then does a couple of
lookups:
phonebook.hs

main = do
 s <- new
 sequence_ [insert s ("name" ++ show n) (show n) | n <- [1..10000]]
 lookup s "name999" >>= print
 lookup s "unknown" >>= print
We should see the following:
$./phonebook
Just "999"
Nothing
This example illustrates an important principle for managing state in
Concurrent Haskell programs. We can take any pure immutable data
structure such as Map and turn it into mutable shared state by simply
wrapping it in an MVar.
Using immutable data structures in a mutable wrapper has further
benefits. Note that in the lookup operation, we simply grabbed the
current value of the state and then the complex Map.lookup
operation takes place outside of the takeMVar/putMVar sequence.
This is good for concurrency, because it means the lock is
held only for a very short time. This is possible only because the
value of the state is immutable. If the data structure were mutable, we
would have to hold the lock while operating on it.[30]
The effect of lazy evaluation here is important to understand.
The insert operation had this line:
 putMVar m (Map.insert name number book)
This places in the MVar the unevaluated expression Map.insert name
number book. There are both good and bad consequences to this. The
benefit is that we don’t have to wait for Map.insert to finish
before we can unlock the state; as in lookup, the state is only
locked very briefly. However, if we were to do many insert
operations consecutively, the MVar would build up a large chain of
unevaluated expressions, which could create a space leak. As an alternative, we might try:
 putMVar m $! Map.insert name number book
The $! operator is like the infix apply operator $, but it
evaluates the argument strictly before applying the function. The
effect is to reverse the two consequences of the lazy version noted
previously. Now we hold the lock until Map.insert has completed, but
there is no risk of a space leak. To get brief locking and no space
leaks, we need to use a trick:
 let book' = Map.insert name number book
 putMVar m book'
 seq book' (return ())
With this sequence, we’re storing an unevaluated expression in the
MVar, but it is evaluated immediately after the putMVar. The lock
is held only briefly, but now the thunk is also evaluated so we avoid
building up a long chain of thunks.

MVar as a Building Block: Unbounded Channels

One of the strengths of MVars is to provide a useful building block from which larger abstractions can be constructed. Here, we
will use MVars to construct an unbounded buffered channel that supports
the following basic interface:
data Chan a

newChan :: IO (Chan a)
readChan :: Chan a -> IO a
writeChan :: Chan a -> a -> IO ()
This channel implementation is available in the Haskell module
Control.Concurrent.Chan. The structure of the implementation is
represented diagrammatically in Figure 7-1, where each bold box
represents an MVar and the lighter boxes are ordinary Haskell data
structures.
[image: Structure of the buffered channel implementation]

Figure 7-1. Structure of the buffered channel implementation

The current contents of the channel are represented as a Stream,
defined like this:
chan.hs

type Stream a = MVar (Item a)
data Item a = Item a (Stream a)
A Stream represents the sequence of values currently stored in the
channel. Each element is an MVar containing an Item, which
contains the value and the rest of the Stream. The end of the
Stream is represented by an empty MVar called the hole, into
which the next value to be written to the channel will be placed.
The channel needs to track both ends of the Stream, because values
read from the channel are taken from the beginning, and values written
are added to the end. Hence a channel consists of two pointers called
the read and the write pointer, respectively, both represented by
MVars:
data Chan a
 = Chan (MVar (Stream a))
 (MVar (Stream a))
The read pointer always points to the next item to be read from the
channel, and the write pointer points to the hole into which the
next item written will be placed.
To construct a new channel, we must first create an empty Stream, which
is just a single empty MVar, and then the Chan constructor with
MVars for the read and write ends, both pointing to the empty
Stream:
newChan :: IO (Chan a)
newChan = do
 hole <- newEmptyMVar
 readVar <- newMVar hole
 writeVar <- newMVar hole
 return (Chan readVar writeVar)
To add a new element to the channel we must make an Item with a new
hole, fill in the current hole to point to the new item, and adjust
the write-end of the Chan to point to the new hole:
writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
 newHole <- newEmptyMVar
 oldHole <- takeMVar writeVar
 putMVar oldHole (Item val newHole)
 putMVar writeVar newHole
To remove a value from the channel, we must follow the read end of the
Chan to the first MVar of the stream, take that MVar to get the
Item, adjust the read end to point to the next MVar in the stream,
and finally return the value stored in the Item:
readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
 stream <- takeMVar readVar -- [image: 1]
 Item val tail <- takeMVar stream -- [image: 2]
 putMVar readVar tail -- [image: 3]
 return val
Consider what happens if the channel is empty. The first
takeMVar ([image: 1]) will succeed, but the second takeMVar ([image: 2])
will find an empty hole, and so will block. When another thread calls
writeChan, it will fill the hole, allowing the first thread to
complete its takeMVar, update the read end ([image: 3]) and finally
return.
If multiple threads concurrently call readChan, the first one will
successfully call takeMVar on the read end, but the subsequent
threads will all block at this point until the first thread completes
the operation and updates the read end. If multiple threads call
writeChan, a similar thing happens: the write end of the Chan is
the synchronization point, allowing only one thread at a time to add
an item to the channel. However, the read and write ends, being
separate MVars, allow concurrent readChan and writeChan
operations to proceed without interference.
This implementation allows a nice generalization to multicast
channels without changing the underlying structure. The idea is to
add one more operation:
dupChan :: Chan a -> IO (Chan a)
This creates a duplicate Chan with the following
semantics:
	
The new Chan begins empty.

	
Subsequent writes to either Chan are read from both; that is,
 reading an item from one Chan does not remove it from the other.

This implementation seems to fit the bill:
dupChan :: Chan a -> IO (Chan a)
dupChan (Chan _ writeVar) = do
 hole <- readMVar writeVar
 newReadVar <- newMVar hole
 return (Chan newReadVar writeVar)
I’m using readMVar here, which is defined thus:[31]
readMVar :: MVar a -> IO a
readMVar m = do
 a <- takeMVar m
 putMVar m a
 return a
After a dupChan, we have two channels that share a single writeVar, so items written to one
channel will appear in both. However, the channels have separate
readVars, so reading an item from one of the channels will not
cause the item to be removed from the other channel.
Sadly, this implementation of dupChan does not work. Can you see
the problem? The definition of dupChan itself is not at fault, but
combined with the definition of readChan given earlier, it does not
implement the required semantics. The problem is that readChan does
not replace the contents of a hole after having read it, so if
readChan is called to read values from both the channel returned by
dupChan and the original channel, the second call will block. The fix is to change a
takeMVar to readMVar in the implementation of readChan:
chan2.hs

readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
 stream <- takeMVar readVar
 Item val tail <- readMVar stream -- [image: 1]
 putMVar readVar tail
 return val
	[image: 1]
	
Returns the Item back to the Stream, where it can
be read by any duplicate channels created by dupChan.

Before we leave the topic of channels, consider one more extension to
the interface that was described as an “easy extension” and left as
an exercise in the original paper on Concurrent Haskell:
unGetChan :: Chan a -> a -> IO ()
The operation unGetChan pushes a value back on the read
end of the channel. Leaving aside for a moment the fact that the
interface does not allow the atomic combination of readChan and
unGetChan (which would appear to be an important use case), let us
consider how to implement unGetChan. The straightforward
implementation is as follows:
unGetChan :: Chan a -> a -> IO ()
unGetChan (Chan readVar _) val = do
 newReadEnd <- newEmptyMVar -- [image: 1]
 readEnd <- takeMVar readVar -- [image: 2]
 putMVar newReadEnd (Item val readEnd) -- [image: 3]
 putMVar readVar newReadEnd -- [image: 4]
	[image: 1]
	
Creates a new hole to place at the front of the Stream.

	[image: 2]
	
Takes the current read end, giving us the current front of the stream.

	[image: 3]
	
Places a new Item in the new hole.

	[image: 4]
	
Replaces the read end with a pointer to our new item.

Simple testing will confirm that the implementation works. However, consider what happens when the channel is empty, a readChan is already waiting in a blocked state, and another thread calls unGetChan. The desired
semantics is that unGetChan succeeds, and readChan should return
with the new element. What actually happens in this case is deadlock. The thread blocked in readChan will be holding the read end MVar,
and so unGetChan will also block in takeMVar trying to take the read
end. There is no known implementation of unGetChan based on this representation of Chan that has the desired semantics.
The lesson here is that programming larger structures with MVar can
be much trickier than it appears. As we shall see shortly, life gets
even more difficult when we consider exceptions. Fortunately there is
an alternative to MVar that avoids some of these problems, which we
will describe in Chapter 10.
Despite the difficulties with scaling MVars up to larger
abstractions, MVars do have some nice properties, as we shall see in
the next section.

Fairness

We would like our concurrent programs to be executed with some degree
of fairness. At the very least, no thread should be starved of CPU
time indefinitely, and ideally each thread should be given an equal
share of the CPU.
GHC uses a simple round-robin scheduler. It does guarantee that no
thread is starved indefinitely, although it does not ensure that every
thread gets an exactly equal share of the CPU. In practice, though,
the scheduler is reasonably fair in this respect. The MVar
implementation also provides an important fairness guarantee:
No thread can be blocked indefinitely on an MVar unless another
thread holds that MVar indefinitely.
In other words, if a thread T is
blocked in takeMVar and there are regular putMVar operations on
the same MVar, it is guaranteed that at some point thread
T’s takeMVar will return. In GHC,
this guarantee is implemented by keeping blocked threads in a FIFO
queue attached to the MVar, so eventually every thread in the queue
will get to complete its operation as long as there are other threads
performing regular putMVar operations (an equivalent guarantee
applies to threads blocked in putMVar when there are regular
takeMVars). Note that it is not enough to merely wake up the
blocked thread because another thread might run first and take
(respectively put) the MVar, causing the newly woken thread to go to
the back of the queue again, which would invalidate the fairness
guarantee. The implementation must therefore wake up the blocked
thread and perform the blocked operation in a single atomic step,
which is exactly what GHC does.
Recall our example from the beginning of Chapter 7 where we had
two threads, one printing As and the other printing Bs, and
the output was sometimes a perfect alternation between the two:
ABABABABABABABAB. This is an example of the fairness guarantee in
practice. The stdout handle is represented by an MVar, so when
both threads attempt to call takeMVar to operate on the handle, one
of them wins and the other becomes blocked. When the winning thread
completes its operation and calls putMVar, the scheduler wakes up
the blocked thread and completes its blocked takeMVar, so the
original winning thread will immediately block when it tries to
reacquire the handle. Hence this leads to perfect alternation
between the two threads. The only way that the alternation pattern
can be broken is if one thread is descheduled while it is not holding
the MVar. Indeed, this does happen from time to time as a result of
preemption, and we see the occasional long string of a single letter
in the output. Currently, GHC doesn’t try to avoid getting
into this situation, but it is possible that in the future it might
implement a tweak to the scheduling policy, perhaps by yielding the
CPU immediately after unblocking another thread.
A consequence of the fairness implementation is that, when multiple
threads are blocked in takeMVar and another thread does a putMVar,
only one of the blocked threads becomes unblocked. This “single
wakeup” property is a particularly important performance characteristic
when a large number of threads are contending for a single MVar. As
we shall see later, it is the fairness guarantee—together with the
single wakeup property—that keeps MVars from being completely
subsumed by software transactional memory.

[26] The length of the time slice is typically 1/50 of a second, but it can be set manually; the options for doing this will be discussed later in RTS Options to Tweak.

[27] We regret that the audio functionality is
available only on certain platforms.

[28] It works perfectly
well the other way around, too; just be sure to be consistent about
the policy.

[29] It is worth noting that while MVar is somewhat easier to use than locks in an imperative language, some of the same problems that plague locks also affect MVar, such as the potential to cause accidental deadlock by taking locks in the wrong order. Fortunately, there are solutions to these problems, which we will discuss in Chapter 10.

[30] The other option is to use a
lock-free algorithm, which is enormously complex and difficult to get
right.

[31] readMVar
is a standard operation provided by the Control.Concurrent module.

Chapter 8. Overlapping Input/Output

We can use MVar and threads to do asynchronous I/O, where
“asynchronous” in this context means that the I/O is performed in the
background while we do other tasks.
Suppose we want to download some web pages concurrently and wait for them all to download before continuing. We will use the following function to download a web page:
getURL :: String -> IO ByteString
This function is provided by the module GetURL in
GetURL.hs, which is a small wrapper around the
API provided by the HTTP package.
Let’s use forkIO and MVar to download two web pages at the same time:
geturls1.hs

import Control.Concurrent
import Data.ByteString as B
import GetURL

main = do
 m1 <- newEmptyMVar -- [image: 1]
 m2 <- newEmptyMVar -- [image: 2]

 forkIO $ do -- [image: 3]
 r <- getURL "http://www.wikipedia.org/wiki/Shovel"
 putMVar m1 r

 forkIO $ do -- [image: 4]
 r <- getURL "http://www.wikipedia.org/wiki/Spade"
 putMVar m2 r

 r1 <- takeMVar m1 -- [image: 5]
 r2 <- takeMVar m2 -- [image: 6]
 print (B.length r1, B.length r2) -- [image: 7]
	[image: 1] [image: 2]
	
Create two new empty MVars to hold the
results.

	[image: 3]
	
Fork a new thread to download the first URL; when
the download is complete, the result is placed in the MVar m1.

	[image: 4]
	
Do the same for the second URL, placing the result in m2.

	[image: 5]
	
In the main thread, this call to takeMVar waits for the result from m1.

	[image: 6]
	
Similarly, wait for the result from m2 (we could do these in either order).

	[image: 7]
	
Finally, print out the length in bytes of each downloaded page.

This code is rather verbose. We could shorten it by using various
existing higher-order combinators from the Haskell library, but a
better approach would be to extract the common pattern as a new
abstraction. We want a way to perform an action asynchronously
and later wait for its result. So let’s define an interface that does
that, using forkIO and MVar:
data Async a = Async (MVar a)

async :: IO a -> IO (Async a)
async action = do
 var <- newEmptyMVar
 forkIO (do r <- action; putMVar var r)
 return (Async var)

wait :: Async a -> IO a
wait (Async var) = readMVar var
First, we define an Async data type that represents an asynchronous
action that has been started. Its implementation is just an MVar
that will contain the result. Again, we are creating a new data type
so as to hide implementation details from clients, and indeed later in
this chapter we will need to extend the Async type with more
information.
It is important to use readMVar in wait, because this allows
multiple wait calls to be made for the same Async. If we had used
a simple takeMVar, the second and subsequent calls to wait would
deadlock. Multiple calls to wait for the same Async might arise
if we are programming in a dataflow style, as in a program that
creates a single Async and then two further Asyncs that both
wait for the result of the first one. In this sense, Async is
behaving rather like IVar from the Par monad (Chapter 4),
although here, the individual operations are side-effecting IO
operations rather than pure computations and there is no guarantee of
determinism.
Now we can use the Async interface to clean up our
web page downloading example:
geturls2.hs

main = do
 a1 <- async (getURL "http://www.wikipedia.org/wiki/Shovel")
 a2 <- async (getURL "http://www.wikipedia.org/wiki/Spade")
 r1 <- wait a1
 r2 <- wait a2
 print (B.length r1, B.length r2)
Much nicer! To elaborate upon this slightly, we can make a small wrapper
called timeDownload that downloads a URL and reports how much data
was downloaded and how long it took, and then apply this to a list of
URLs using async:
geturls3.hs

sites = ["http://www.google.com",
 "http://www.bing.com",
 "http://www.yahoo.com",
 "http://www.wikipedia.com/wiki/Spade",
 "http://www.wikipedia.com/wiki/Shovel"]

timeDownload :: String -> IO ()
timeDownload url = do
 (page, time) <- timeit $ getURL url -- [image: 1]
 printf "downloaded: %s (%d bytes, %.2fs)\n" url (B.length page) time

main = do
 as <- mapM (async . timeDownload) sites -- [image: 2]
 mapM_ wait as -- [image: 3]
	[image: 1]
	
To time the getURL call, we use an auxiliary function timeit
(defined in TimeIt.hs).

	[image: 2]
	
mapM maps a function over a list in a monad; in this case, the
IO monad. The function we are mapping over the list is the
composition of async and timeDownload. That is, for each URL in
the list, we will create an Async that calls timeDownload for that
URL. The result of the mapM call is the list of Asyncs created,
which we bind to as.

	[image: 3]
	
Then we wait for each of the Asyncs to complete. Notice
that in this example, each Async is returning only a () token when
it completes, rather than the web page contents as in the earlier
examples. Hence we’re using mapM_, a variant of mapM that ignores
the result of applying the function to each list element and returns
().

The program produces output like this:
downloaded: http://www.google.com (14524 bytes, 0.17s)
downloaded: http://www.bing.com (24740 bytes, 0.18s)
downloaded: http://www.wikipedia.com/wiki/Spade (62586 bytes, 0.60s)
downloaded: http://www.wikipedia.com/wiki/Shovel (68897 bytes, 0.60s)
downloaded: http://www.yahoo.com (153065 bytes, 1.11s)
Our little Async API captures a common pattern that occurs with
concurrent programming, but so far we have ignored one crucial detail:
error handling. To deal with errors, we will need to understand how
exceptions work in Haskell, and so the next section will review
Haskell’s exception-handling support before we return to the question
of error handling in Error Handling with Async.
Exceptions in Haskell

The Haskell 98 and 2010 standards provide a limited form of exceptions
in the IO monad. The IO exception mechanism has been extended by
the Control.Exception module that comes with GHC to include
exceptions generated by purely functional code (e.g., error and
pattern-matching failure), and to define an extensible hierarchy of
exception types. The result of this incremental development is that
there are some inconsistencies in the APIs as the Haskell 98/2010
interfaces are gradually replaced by the new, more general APIs.
Haskell has no special syntax or built-in semantics for exception handling;
everything is done with library functions. Thus, the idioms for
exception catching in particular may look a little strange. The tradeoff is that we
are able to build higher-level exception handling combinators that
embody more powerful abstractions, as we shall see shortly.
In Haskell, exceptions are thrown by the throw function:
throw :: Exception e => e -> a
Two things to note here:
	
throw takes a value of any type that is an instance of the
 Exception type class.

	
throw returns the unrestricted type variable a, so it can be
 called from anywhere.

The Exception type class is provided by the Control.Exception
module and is defined as follows:
class (Typeable e, Show e) => Exception e where
 -- ...
Its methods are not important here (see the
documentation for details), but the important principle is that any type that is
an instance of both Typeable and Show can be an Exception.[32]
One common type used as an exception is ErrorCall:
newtype ErrorCall = ErrorCall String
 deriving (Typeable)

instance Show ErrorCall where { ... }

instance Exception ErrorCall
For example, we can throw an ErrorCall like so:
 throw (ErrorCall "oops!")
In fact, the function error from the Prelude does exactly this and is
defined as:
error :: String -> a
error s = throw (ErrorCall s)
I/O operations in Haskell also throw exceptions to indicate errors, and
these are usually values of the IOException type. Operations to
build and inspect IOException can be found in the System.IO.Error
library.
Exceptions in Haskell can be caught, but only in the IO monad.
The basic exception-catching function is catch:
catch :: Exception e => IO a -> (e -> IO a) -> IO a
The catch function takes two arguments:
	
The IO operation to perform, of type IO a

	
An exception handler of type e -> IO a, where e must be an instance of the Exception class

The behavior is as follows: the IO operation in the first argument
is performed, and if it throws an exception of the type expected by
the handler, catch executes the handler, passing it the exception
value that was thrown. So a call to catch catches only exceptions
of a particular type, determined by the argument type of the exception
handler.
To demonstrate this, we will need a new exception type. Let’s make our
own in GHCi.[33] First some setup:
> import Prelude hiding (catch) -- not needed for GHC 7.6.1 and later
> import Control.Exception
> import Data.Typeable
> :set -XDeriveDataTypeable
Remember that to make a type an instance of Exception, it must also
be an instance of Show and Typeable. To enable automatic
derivation for Typeable, we need to turn on the
-XDeriveDataTypeable flag.
Caution
In GHC 7.4.x and earlier, the Prelude exports a function called
catch, which is similar to Control.Exception.catch but restricted to
IOExceptions. If you’re using exceptions with GHC 7.4.x or earlier,
you should use the following:
import Control.Exception
import Prelude hiding (catch)
Note that this code still works with GHC 7.6.1 and later, because it is now a warning, rather than an error, to mention a nonexistent identifier in a hiding clause.

Now we define a new type and make it an instance of Exception:
> data MyException = MyException deriving (Show, Typeable)
> instance Exception MyException
Then we check that we can throw it:
> throw MyException
*** Exception: MyException
OK, now to catch it. The catch function is normally used infix, like this: action `catch` \e -> handler.
If we try to call catch without adding any information about the type
of exception to catch, we will get an ambiguous type error from GHCi:
> throw MyException `catch` \e -> print e

<interactive>:10:33:
 Ambiguous type variable `a0' in the constraints:
 (Show a0) arising from a use of `print' at <interactive>:10:33-37
 (Exception a0)
 arising from a use of `catch' at <interactive>:10:19-25
 Probable fix: add a type signature that fixes these type variable(s)
 In the expression: print e
 In the second argument of `catch', namely `\ e -> print e'
 In the expression: throw MyException `catch` \ e -> print e
So we need to add an extra type signature to tell GHCi which type of
exceptions we wanted to catch:
> throw MyException `catch` \e -> print (e :: MyException)
MyException
The exception was successfully thrown, caught by the catch function,
and printed by the exception handler. If we throw a different type of
exception, it won’t be caught by this handler:
> throw (ErrorCall "oops") `catch` \e -> print (e :: MyException)
*** Exception: oops
What if we wanted to catch any exception? In fact, it is possible to
do this because the exception types form a hierarchy, and at the top
of the hierarchy is a type called SomeException that includes all
exception types. Therefore, to catch any exception, we can write an
exception handler that catches the SomeException type:
> throw (ErrorCall "oops") `catch` \e -> print (e :: SomeException)
oops
Writing an exception handler that catches all exceptions is
useful in only a couple of cases, though:
	
Testing and debugging, as in the above example

	
Performing some cleanup, before re-throwing the exception

Catching SomeException and then continuing is not good practice in
production code, because for obvious reasons it isn’t a good idea to
ignore unknown error conditions.
The catch function is not the only way to catch exceptions.
Sometimes it is more convenient to use the try variant instead:
try :: Exception e => IO a -> IO (Either e a)
For example:
> try (readFile "nonexistent") :: IO (Either IOException String)
Left nonexistent: openFile: does not exist (No such file or directory)
Another variant of catch is handle, which is just catch with its
arguments reversed:
handle :: Exception e => (e -> IO a) -> IO a -> IO a
This is particularly useful when the exception handler is short but
the action is long. In this case, we can use a pattern like this:
 handle (\e -> ...) $ do
 ...
It is often useful to be able to perform some operation if an
exception is raised and then re-throw the exception. For this, the
onException function is provided:
onException :: IO a -> IO b -> IO a
This is straightforwardly defined using catch:
onException io what
 = io `catch` \e -> do _ <- what
 throwIO (e :: SomeException)
To re-throw the exception here we used throwIO, which is a variant
of throw for use in the IO monad:
throwIO :: Exception e => e -> IO a
Tip
It is always better to use throwIO rather than throw in the IO monad
because throwIO guarantees strict ordering with respect to other IO
operations, whereas throw does not.

We end this short introduction to exceptions in Haskell with two very
useful functions, bracket and finally:
bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

finally :: IO a -> IO b -> IO a
These are two of the higher-level abstractions mentioned earlier. The
bracket function allows us to set up an exception handler to
reliably deallocate a resource or perform some cleanup operation.
For example, suppose we want to create a temporary file on the file
system, perform some operation on it, and have the temporary file
reliably removed afterward—even if an exception occurred during the
operation. We could use bracket like so:
 bracket (newTempFile "temp")
 (\file -> removeFile file)
 (\file -> ...)
In a call bracket a b c, the first argument a is the operation
that allocates the resource (in this case, creating the temporary file),
the second argument b deallocates the resource again (in
this case, deleting the temporary file), and the third argument c is
the operation to perform. Both b and c take the result of a as
an argument. In this case, that means they have access to the name of
the temporary file that was created.
The bracket function is readily defined using the pieces we already have:
bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket before after during = do
 a <- before
 c <- during a `onException` after a
 after a
 return c
This definition suffices for now, but note that later in
Chapter 9, we will revise it to add safety in the
presence of thread cancellation.
The finally function is a special case of bracket:
finally :: IO a -> IO b -> IO a
finally io after = do
 io `onException` after
 after
Again, we will be revising this definition later.

Error Handling with Async

If we run the geturls2 example with the network cable unplugged, we
see something like this:
$./geturls2
geturls2: connect: does not exist (No route to host)
geturls2: connect: does not exist (No route to host)
geturls2: thread blocked indefinitely in an MVar operation
What happens is that the two calls to getURL fail with an exception,
as they should. This exception propagates to the top of the thread
that async created, where it is caught by the default exception
handler that every forkIO thread gets. The default exception
handler prints the exception to stderr, and then the thread
terminates. So in geturls2, we see two network errors printed. But
now, because these threads have not called putMVar to pass a result
back to the main thread, the main thread is still blocked in
takeMVar. When the child threads exit after printing their error
messages, the main thread is then deadlocked. The runtime system
notices this and sends it the BlockedIndefinitelyOnMVar exception,
which leads to the third error message, shown earlier.
This explains what we saw, but clearly this behavior is not what
we want: the program is deadlocked after the error rather than exiting
gracefully or handling it. The natural behavior would be for the
error to be made available to the thread that calls wait because that
way the caller can find out whether the asynchronous computation
returned an error or a result and act accordingly. Moreover, a
particularly convenient behavior is for wait to simply propagate
the exception in the current thread so that in the common case the
programmer need not write any error-handling code at all.
To implement this, we need to elaborate on Async slightly:
geturls4.hs

data Async a = Async (MVar (Either SomeException a)) -- [image: 1]

async :: IO a -> IO (Async a)
async action = do
 var <- newEmptyMVar
 forkIO (do r <- try action; putMVar var r) -- [image: 2]
 return (Async var)

waitCatch :: Async a -> IO (Either SomeException a) -- [image: 3]
waitCatch (Async var) = readMVar var

wait :: Async a -> IO a -- [image: 4]
wait a = do
 r <- waitCatch a
 case r of
 Left e -> throwIO e
 Right a -> return a
	[image: 1]
	
Where previously we had MVar a, now we have MVar (Either
SomeException a). If the MVar contains Right a, then the
operation completed successfully and returned value a; whereas if it
contains Left e, then the operation threw the exception e.

	[image: 2]
	
The action is now wrapped in try, which returns
Either SomeException a—exactly the type we need to put into the
MVar. Earlier, we cautioned that catching SomeException is often
not a good idea, but this is one case where it is fine because we are
catching exceptions in one thread with the intention of propagating
them to another thread, and we want the behavior to be the same for
all exceptions.

	[image: 3]
	
Now we will provide two ways to wait for the result of an Async.
The first, waitCatch, returns Either SomeException a so the
caller can handle the error immediately.

	[image: 4]
	
The second way to wait for a result is wait, which has the same
type as before. However, now, if wait finds that the Async
resulted in an exception, the exception is re-thrown by wait itself.
This implements the convenient error-propagating behavior mentioned
previously.

Using this new Async layer, our geturls example now fails more
gracefully (see geturls4.hs for the complete code):
$./geturls4
geturls4: connect: timeout (Connection timed out)
[3] 25198 exit 1 ./geturls4
$
The program exited with an error code after the first failure, rather
than deadlocking as before.
The basic Async API is the same as before—async and wait have
the same types—but now it has error-handling built in, and it is
much harder for the programmer to accidentally forget to handle
errors. The only way to ignore an error is to ignore the result as well.

Merging

Suppose we want to wait for one of several different events to occur. For example, when downloading multiple URLs, we want to perform some
action as soon as the first one has downloaded.
The pattern for doing this with MVar is that each of the separate
actions must put its results into the same MVar, so that we can
then call takeMVar to wait for the first such event to occur. Here
is the geturls3.hs example from Chapter 8, modified to wait
for the first URL to complete downloading and then to report which
one it was.
geturls5.hs

sites = ["http://www.google.com",
 "http://www.bing.com",
 "http://www.yahoo.com",
 "http://www.wikipedia.com/wiki/Spade",
 "http://www.wikipedia.com/wiki/Shovel"]

main :: IO ()
main = do
 m <- newEmptyMVar
 let
 download url = do
 r <- getURL url
 putMVar m (url, r)

 mapM_ (forkIO . download) sites

 (url, r) <- takeMVar m
 printf "%s was first (%d bytes)\n" url (B.length r)
 replicateM_ (length sites - 1) (takeMVar m)
Here, we create a single MVar and then fork a thread for each of the
URLs to download. Each thread writes its result into the same MVar,
where the result is now a pair of the URL and its contents. The main
thread takes the first result from the MVar, announces which URL was
the quickest to download, and then waits for the rest of the results
to arrive.
$./geturls5
http://www.google.com was first (10483 bytes)
$
While this pattern works, it can be a little inconvenient to arrange
it so that all the events feed into the same MVar. For example, suppose
we want to extend our Async API to allow waiting for either of two
Asyncs simultaneously, returning the result of the first one to
succeed or propagating the exception if either Async fails. The
function we want is waitEither, with this type:
waitEither :: Async a -> Async b -> Async (Either a b)
Note that because the input Asyncs have already been created, we are
too late to tell them to put their results into the same MVar.
Instead, we have to create two new threads to collect the results of
each Async and merge them into a new MVar:
geturls6.hs

waitEither :: Async a -> Async b -> IO (Either a b)
waitEither a b = do
 m <- newEmptyMVar
 forkIO $ do r <- try (fmap Left (wait a)); putMVar m r
 forkIO $ do r <- try (fmap Right (wait b)); putMVar m r
 wait (Async m)
To get the right error-handling behavior, waitEither uses wait to
grab each result wrapped in a try to catch any exceptions and then
puts each result into the newly created MVar m. Then we make a
new Async from m and wait for the result of that.
We can generalize waitEither to wait for a list of Asyncs,
returning the result from the first one to complete:
waitAny :: [Async a] -> IO a
waitAny as = do
 m <- newEmptyMVar
 let forkwait a = forkIO $ do r <- try (wait a); putMVar m r
 mapM_ forkwait as
 wait (Async m)
Now, waitAny can be used to rewrite geturls5.hs using Async:
geturls6.hs

main :: IO ()
main = do
 let
 download url = do
 r <- getURL url
 return (url, r)

 as <- mapM (async . download) sites

 (url, r) <- waitAny as
 printf "%s was first (%d bytes)\n" url (B.length r)
 mapM_ wait as
The code for waitAny is quite short and does the job, but it is
slightly annoying to have to create an extra thread per Async for
this simple operation. Threads might be cheap, but we ought to be
able to merge multiple sources of events more directly. Later in
Chapter 10, we will see how software transactional memory allows a
neater and more efficient implementation of waitAny.

[32] An introduction to Typeable is beyond the scope of this book; please refer to the documentation for the module Data.Typeable.

[33] For this example to work in GHCi, you will need at least GHC 7.4.1

Chapter 9. Cancellation and Timeouts

In an interactive application, it is often important for one thread to
interrupt the execution of another thread after the occurrence of some
particular condition. Some examples of this kind of behavior
include the following:
	
When the user clicks the “stop” button in a web browser, the browser
 may need to interrupt several activities, such as a thread downloading the
 page, a thread rendering the page, and a thread running scripts.

	
A server application typically wants to give a client a set
 amount of time to issue a request before closing its connection, so
 as to avoid letting dormant connections use up resources.

	
An application that has a thread running a user interface and a
 separate thread performing some compute-intensive task (say,
 generating a visualization of some data) needs to interrupt the
 computation when the user changes the parameters via the user
 interface.

The crucial design decision in supporting cancellation is whether the
intended victim should have to poll for the cancellation condition
or whether the thread is immediately cancelled in some way. This is a
tradeoff:
	
If the thread has to poll, then there is a danger that the programmer
 may forget to poll regularly enough, and the thread will become
 unresponsive, perhaps permanently so. Unresponsive threads lead to
 hangs and deadlocks, which are particularly unpleasant from a
 user’s perspective.

	
If cancellation happens asynchronously, critical sections that
 modify state need to be protected from cancellation. Otherwise,
 cancellation may occur mid-update, leaving some data in an
 inconsistent state.

In fact, the choice is really between doing only (1) or doing both
(1) and (2), because if (2) is the default, protecting a critical
section amounts to switching to polling behavior for the duration of
the critical section.
In most imperative languages, it is unthinkable for (2) to be the
default, because so much code modifies state. Haskell has a
distinct advantage in this area because most code is purely
functional, so it can be safely aborted or suspended and later
resumed without affecting correctness. Moreover, our hand is
forced: by definition, purely functional code cannot poll for the
cancellation condition, so it must be cancellable by default.
Therefore, fully asynchronous cancellation is the only sensible
default in Haskell, and the design problem reduces to deciding how
cancellation is handled by code in the IO monad.
Asynchronous Exceptions

Exceptions are already a fact of life in the IO monad, and the usual
idioms for writing IO monad code include using functions like
bracket and finally to acquire and release resources in a reliable
way (see Exceptions in Haskell). We would like bracket to work even if
a thread is cancelled, so cancellation should behave like an
exception. However, there’s a fundamental difference between the kind
of exception thrown by openFile when the file does not exist, for
example, and an exception that may arise at any time because the
user pressed the “stop” button. We call the latter kind an
asynchronous exception because it is asynchronous from the point of
view of the “victim”; they didn’t ask for it. Conversely, exceptions
thrown using the normal throw and throwIO are called synchronous
exceptions.
To initiate an asynchronous exception, Haskell provides the throwTo
primitive, which throws an exception from one thread to another:
throwTo :: Exception e => ThreadId -> e -> IO ()
As with synchronous exceptions, the type of the exception must be an
instance of the Exception class. The ThreadId is a value returned
by a previous call to forkIO, and may refer to a thread in any
state: running, blocked, or finished (in the latter case, throwTo is
a no-op).
To illustrate the use of throwTo, we now elaborate on the example from
Error Handling with Async, in which we downloaded several web pages
concurrently, to allow the user to hit 'q' at any time to stop the
downloads.
First, we will extend our Async mini-API to allow cancellation. We
add one operation:
cancel :: Async a -> IO ()
This cancels an existing Async. If the operation has
already completed, then cancel has no effect.
To implement cancel, we need the ThreadId of the thread running
the Async, so we must store that in the Async type along with
the MVar that holds the result. Hence the Async type now looks
like:
data Async a = Async ThreadId (MVar (Either SomeException a))
Given this, the implementation of cancel just throws an exception to
the thread:
cancel :: Async a -> IO ()
cancel (Async t var) = throwTo t ThreadKilled
The ThreadKilled exception is provided by the Control.Exception
library and is typically used for cancelling threads in this way.)
For the example, we will need waitCatch, which has the same implementation
it had in Error Handling with Async. What happens if we call waitCatch on an Async
that has been cancelled? In that case, cancel throws the ThreadKilled
exception to the thread, so waitCatch will return Left
ThreadKilled.
The remaining piece of the implementation is the async operation,
which must now store the ThreadId returned by forkIO in the
Async constructor:
async :: IO a -> IO (Async a)
async action = do
 m <- newEmptyMVar
 t <- forkIO (do r <- try action; putMVar m r)
 return (Async t m)
Now we can change the main function of the example to support
cancelling the downloads:
geturlscancel.hs

main = do
 as <- mapM (async . timeDownload) sites -- [image: 1]

 forkIO $ do -- [image: 2]
 hSetBuffering stdin NoBuffering
 forever $ do
 c <- getChar
 when (c == 'q') $ mapM_ cancel as

 rs <- mapM waitCatch as -- [image: 3]
 printf "%d/%d succeeded\n" (length (rights rs)) (length rs) -- [image: 4]
	[image: 1]
	
Starts the downloads as before.

	[image: 2]
	
Forks a new thread that repeatedly reads characters from the standard input
and if a q is found, calls cancel on all the Asyncs.

	[image: 3]
	
Waits for all the results (complete or cancelled).

	[image: 4]
	
Emits a summary with a count of how many of the operations completed successfully. If we run the sample and hit q fast enough, we see
something like this:

downloaded: http://www.google.com (14538 bytes, 0.17s)
downloaded: http://www.bing.com (24740 bytes, 0.22s)
q2/5 finished
Note that this works even though the program is sitting atop a large
and complicated HTTP library that provides no direct support for
either cancellation or asynchronous I/O. Haskell’s support for
cancellation is modular in this respect; most library code needs to do
nothing to support it, although there are some simple and unintrusive
rules that need to be followed when dealing with state, as we shall
see in the next section.

Masking Asynchronous Exceptions

As we mentioned earlier, the danger with fully asynchronous exceptions
is that one might fire while we are in the middle of updating some
shared state, leaving the data in an inconsistent state, and with a
high probability of leading to mayhem later. Hence, we certainly need a
way to control the delivery of asynchronous exceptions during critical
sections. But we must tread carefully: a natural idea is to provide
operations to turn off asynchronous exception delivery and turn it on
again, but this is not what we really need.
Consider the following problem: a thread wishes to call takeMVar,
perform an operation depending on the value of the MVar, and finally
put the result of the operation in the MVar. The code must be
responsive to asynchronous exceptions, but it should be safe. If an
asynchronous exception arrives after the takeMVar but before the
final putMVar, the MVar should not be left empty. Instead, the
original value should be restored.
If we code this problem using the facilities we’ve seen so
far, we might end up with something like the following function
problem, which takes two arguments—m, an MVar to modify, and
f, a function that takes the current value of the MVar—and
computes a new value in the IO monad.
problem :: MVar a -> (a -> IO a) -> IO ()
problem m f = do
 a <- takeMVar m -- [image: 1]
 r <- f a `catch` \e -> do putMVar m a; throw e -- [image: 2]
 putMVar m r -- [image: 3]
There are at least two points where, if an asynchronous
exception strikes, the invariant will be violated. If an exception
strikes between [image: 1] and [image: 2] or between [image: 2] and [image: 3], the MVar
will be left empty. In fact, there is no way to shuffle around the
exception handlers to ensure the MVar is always left full. To fix
this problem, Haskell provides the mask
combinator:[34]
mask :: ((IO a -> IO a) -> IO b) -> IO b
The mask operation defers the delivery of asynchronous exceptions
for the duration of its argument. The type might look a bit
confusing, but bear with me. First, I’ll show an example of mask in
use and then explain how it works:[35]
problem :: MVar a -> (a -> IO a) -> IO ()
problem m f = mask $ \restore -> do
 a <- takeMVar m
 r <- restore (f a) `catch` \e -> do putMVar m a; throw e
 putMVar m r
mask is applied to a function, which takes as its argument a
function restore. The restore function can be used to restore the
delivery of asynchronous exceptions to its present state during
execution of the argument to mask. If we imagine shading the entire
argument to mask except for the expression (f a), asynchronous
exceptions cannot be raised in the shaded portions.
This solves the problem that we had previously because now an exception
can be raised only while (f a) is working, and we have an exception
handler to catch any exceptions in that case. But a new problem has
been introduced: takeMVar might block for a long time, but it is
inside the mask so the thread will be unresponsive during that
time. Furthermore, there’s no good reason to mask exceptions during
takeMVar; it would be safe for exceptions to be raised right up
until the point where takeMVar returns. Hence, this is exactly the
behavior that Haskell defines for takeMVar: a small
number of operations, including takeMVar, are designated as interruptible.
Interruptible operations may receive asynchronous exceptions even
inside mask.
What justifies this choice? Think of mask as “switching to polling
mode” for asynchronous exceptions. Inside a mask, asynchronous
exceptions are no longer asynchronous, but they can still be raised by
certain operations. In other words, asynchronous exceptions become
synchronous inside mask.
All operations that may block indefinitely are designated as interruptible.[36] This
turns out to be the ideal behavior in many situations, as in the previous
problem example.
The observant reader may spot a new flaw. The putMVar function can also block
indefinitely, so the definition of interruptible includes putMVar,
and therefore the problem function above is still unsafe because an
asynchronous exception could be raised by either putMVar.
However, thanks to a subtlety in the precise definition of
interruptibility, we are still safe. An interruptible operation may
receive an asynchronous exception only if it actually blocks. In
the case of problem above, we know the MVar is definitely empty
when we call putMVar, so putMVar cannot block, which means
that it is not interruptible.
How do we know that the MVar is definitely empty? Strictly speaking,
we don’t, because another thread might call putMVar on the same
MVar after the takeMVar call in problem. The guarantee
therefore relies on the MVar being operated in a consistent way,
where every operation consists of takeMVar followed by putMVar.
This is a common requirement for many MVar operations—a particular
use of MVar comes with a protocol that operations must follow or
risk a deadlock.
Tip
When you really need to call an interruptible
function but can’t afford the possibility that an asynchronous
exception might be raised, there is a last resort:
uninterruptibleMask :: ((IO a -> IO a) -> IO b) -> IO b
This works just like mask, except that interruptible operations may
not receive asynchronous exceptions. Be very careful with
uninterruptibleMask; accidental misuse may leave your application
unresponsive. Every instance of uninterruptibleMask should be
treated with the utmost suspicion.

Tip
For debugging, it is sometimes handy to be able to find out whether
the current thread is in the mask state or not. The
Control.Exception library provides a useful function for this purpose:
getMaskingState :: IO MaskingState

data MaskingState
 = Unmasked
 | MaskedInterruptible
 | MaskedUninterruptible
The getMaskingState function returns one of the following constructors:
	
Unmasked

	
The current thread is not inside mask or uninterruptibleMask.

	
MaskedInterruptible

	
The current thread is inside mask.

	
MaskedUninterruptible

	
The current thread is inside uninterruptibleMask.

We can provide higher-level combinators to insulate programmers from
the need to use mask directly. For example, the earlier problem
function has general applicability when working with MVars and is provided
under the name modifyMVar_ in the Control.Concurrent.MVar library:
modifyMVar_ :: MVar a -> (a -> IO a) -> IO ()
There is also a variant that allows the operation to return a separate
result in addition to the new contents of the MVar:
modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b
Here’s a simple example of modifyMVar, used to implement the classic
“compare-and-swap” operation:
casMVar :: Eq a => MVar a -> a -> a -> IO Bool
casMVar m old new =
 modifyMVar m $ \cur ->
 if cur == old
 then return (new,True)
 else return (cur,False)
The casMVar function takes an MVar, an old value, and a new
value. If the current contents of the MVar are equal to old, then
it is replaced by new and cas returns True; otherwise it is left
unmodified and cas returns False.
Working on multiple MVars is possible by nesting calls to
modifyMVar. For example, here is a function that modifies the
contents of two MVars safely:
modifytwo.hs

modifyTwo :: MVar a -> MVar b -> (a -> b -> IO (a,b)) -> IO ()
modifyTwo ma mb f =
 modifyMVar_ mb $ \b ->
 modifyMVar ma $ \a -> f a b
If this blocks in the inner modifyMVar and an exception is raised,
then the outer modifyMVar_ will restore the contents of the MVar it
took.
Caution
When taking two or more MVars, always take them in the same order.
Otherwise, your program is likely to deadlock. We’ll discuss this
problem in more detail in Chapter 10.

The bracket Operation

We saw the bracket function earlier; in fact, bracket is defined
with mask to make it safe in the presence of asynchronous exceptions:
bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket before after thing =
 mask $ \restore -> do
 a <- before
 r <- restore (thing a) `onException` after a
 _ <- after a
 return r
The IO actions passed in as before and after are performed
inside mask. The bracket function guarantees that if before
returns, after will be executed in the future. It is normal for
before to contain a blocking operation; if an exception is raised
while before is blocked, then no harm is done. But before should perform only one blocking operation. An exception raised by a second blocking operation would not result in after being executed. If you
need to perform two blocking operations, the right way is to nest
calls to bracket, as we did with modifyMVar.
Something else to watch out for here is using blocking operations in
after. If you need to do this, then be aware that your blocking
operation is interruptible and might receive an asynchronous
exception.

Asynchronous Exception Safety for Channels

In most MVar code, we can use operations like modifyMVar_ instead
of takeMVar and putMVar to make our code safe in the presence of
asynchronous exceptions. For example, consider the buffered channels
that we defined in MVar as a Building Block: Unbounded Channels. As defined, the operations are
not safe in the presence of asynchronous exceptions. For example, readChan was defined
like this:
readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
 stream <- takeMVar readVar
 Item val new <- readMVar stream
 putMVar readVar new
 return val
If an asynchronous exception occurs after the first
takeMVar, then the readVar will be left empty and subsequent
readers of the Chan will deadlock. To make it safe, we could
use modifyMVar:
chan3.hs

readChan :: Chan a -> IO a
readChan (Chan readVar _) = do
 modifyMVar readVar $ \stream -> do
 Item val tail <- readMVar stream
 return (tail, val)
However, this isn’t enough on its own. Remember that readMVar is defined
like this:
readMVar :: MVar a -> IO a
readMVar m = do
 a <- takeMVar m
 putMVar m a
 return a
So it is possible that an exception arrives between the takeMVar and
the putMVar in readMVar, which would leave the MVar empty.
Hence we also need to use a safe readMVar here. There are a few
approaches that work. One would be to use modifyMVar again to
restore the original value. Another approach is to use a
variant of modifyMVar:
withMVar :: MVar a -> (a -> IO b) -> IO b
This is like modifyMVar but does not change the contents of the
MVar, and so would be more direct for the purposes of readMVar.
The simplest approach, and the one used by the Control.Concurrent.MVar
library itself, is just to protect readMVar with a mask:
readMVar :: MVar a -> IO a
readMVar m =
 mask_ $ do
 a <- takeMVar m
 putMVar m a
 return a
Here mask_ is like mask, but it doesn’t pass a restore
function. We can get away with this simple definition because unlike
modifyMVar, there is no operation to perform between the takeMVar
and putMVar, and so no exception handler is required.
With writeChan, we have to be a little careful. Here is the original
definition:
writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
 newHole <- newEmptyMVar
 oldHole <- takeMVar writeVar
 putMVar oldHole (Item val newHole)
 putMVar writeVar newHole
To make the code exception-safe, our first thought might be to try this:
wrongWriteChan :: Chan a -> a -> IO ()
wrongWriteChan (Chan _ writeVar) val = do
 newHole <- newEmptyMVar
 modifyMVar_ writeVar $ \oldHole -> do
 putMVar oldHole (Item val newHole) -- [image: 1]
 return newHole -- [image: 2]
But that doesn’t work because an asynchronous exception could strike
between [image: 1] and [image: 2]. This would leave the old_hole full and
writeVar pointing to it, which violates the invariants of the data
structure. Hence we need to prevent that possibility too, and the
simplest way is just to mask_ the whole sequence:
writeChan :: Chan a -> a -> IO ()
writeChan (Chan _ writeVar) val = do
 newHole <- newEmptyMVar
 mask_ $ do
 oldHole <- takeMVar writeVar
 putMVar oldHole (Item val newHole)
 putMVar writeVar newHole
Note that the two putMVars are both guaranteed not to block, so they are not interruptible.

Timeouts

A useful illustration of programming with asynchronous exceptions is to write a function that can impose a time limit on a given action. We
want to provide the timeout wrapper as a combinator of the following
type:
timeout :: Int -> IO a -> IO (Maybe a)
Where timeout t m has the following behavior:
	
timeout t m behaves exactly like fmap Just m, if m returns a result or raises an exception (including an asynchronous exception)
 within t microseconds.

	
Otherwise, m is sent an asynchronous exception of the form
 Timeout u. Timeout is a new data type that we define, and u
 is a unique value of type Unique, distinguishing this particular
 instance of timeout from any other. The call to timeout then
 returns Nothing.

The implementation is not expected to implement real-time semantics,
so in practice the timeout will only approximate the requested t microseconds.
Note that (1) requires that m is executed in the context of the
current thread because m could call myThreadId, for example. Also,
another thread throwing an exception to the current thread with
throwTo will expect to interrupt m. It should be possible to nest timeouts, with the expected behavior.
The code for timeout, shown below,
was taken from the library System.Timeout (with some
cosmetic changes for presentation here). The implementation is tricky
to get right. The basic idea is to fork a new thread that will wait
for t microseconds and then call throwTo to throw the Timeout
exception back to the original thread; that much seems straightforward
enough. If the operation completes within the time limit, then we must ensure
that this thread never throws its Timeout exception, so
timeout must kill the thread before returning.
timeout.hs

timeout t m
 | t < 0 = fmap Just m -- [image: 1]
 | t == 0 = return Nothing -- [image: 2]
 | otherwise = do
 pid <- myThreadId -- [image: 3]
 u <- newUnique -- [image: 4]
 let ex = Timeout u -- [image: 5]
 handleJust -- [image: 6]
 (\e -> if e == ex then Just () else Nothing) -- [image: 7]
 (_ -> return Nothing) -- [image: 8]
 (bracket (forkIO $ do threadDelay t -- [image: 9]
 throwTo pid ex)
 (\tid -> throwTo tid ThreadKilled) -- [image: 10]
 (_ -> fmap Just m)) -- [image: 11]
Here is how the implementation works, line by line:
	[image: 1] [image: 2]
	
Handle the easy cases, where the timeout is negative or zero.

	[image: 3]
	
Find the ThreadId of the current thread.

	[image: 4] [image: 5]
	
Make a new Timeout exception by generating a unique value with
 newUnique.

	[image: 6]
	
handleJust is an exception handler, with the following type:

handleJust :: Exception e
 => (e -> Maybe b) -> (b -> IO a) -> IO a
 -> IO a

	[image: 7]
	
The first argument to handleJust selects which exceptions to
catch. We only want to catch a Timeout exception containing the unique
value that we created earlier.

	[image: 8]
	
The second argument to handleJust is the exception handler,
which in this case returns Nothing because timeout occurred.

	[image: 9]
	
The computation to run inside handleJust. Here, we fork the
child thread, using bracket to ensure that the child thread is
always killed before the timeout function returns. In the child thread, we wait for t microseconds with threadDelay and then throw the Timeout exception to the parent thread with throwTo.

	[image: 10]
	
Always kill the child thread before returning.

	[image: 11]
	
The body of bracket: run the computation m passed in as the
second argument to timeout and wrap the result in Just.

I encourage you to verify that the implementation works by thinking
through the two cases: either m completes and returns a value, or
the child thread throws its exception while m is still working.
There is one other tricky case to consider: what happens if both the
child thread and the parent thread try to call throwTo at the same
time? Who wins?
The answer depends on the semantics of throwTo. In order for this
implementation of timeout to work properly, the call to bracket
must not be able to return while the Timeout
exception can still be thrown; otherwise, the exception can leak.
Hence, the call to throwTo that kills the child thread must be synchronous. Once this call returns, the child thread cannot
throw its exception anymore. Indeed, this guarantee is provided by
the semantics of throwTo. A call to throwTo returns only after the
exception has been raised in the target thread. Hence throwTo may
block if the child thread is currently masking asynchronous exceptions
with mask, and because throwTo may block, it is therefore
interruptible and may itself receive asynchronous exceptions.
Returning to our “who wins” question above, the answer is “exactly
one of them,” and that is precisely what we require to ensure the
correct behavior of timeout.

Catching Asynchronous Exceptions

Once thrown, an asynchronous exception propagates like a normal
exception and can be caught by catch and the other
exception-handling functions from Control.Exception. Suppose we
catch an asynchronous exception and want to perform some operation
as a result, but before we can do that, another asynchronous
exception is received by the current thread, interrupting the first
exception handler. This is undesirable: if asynchronous exceptions
can interrupt exception handlers, it is hard to guarantee
anything about cleanup actions performed in the event of an exception,
for example.
We could fix the problem by wrapping all our calls to catch with a
mask and restore pair, like so:
 mask $ \restore ->
 restore action `catch` handler
And indeed some of our calls to catch already look like this. But
since we almost always want asynchronous exceptions masked inside an
exception handler, Haskell does it automatically for you, without
having to use an explicit mask. After you return from the exception
handler, exceptions are unmasked again.
There is one important pitfall to be aware of here: it is easy to
accidentally remain inside the implicit mask by tail-calling out of
an exception handler. Here’s an example program to illustrate the
problem: the program takes a list of filenames on the command line
and counts the number of lines in each file, ignoring files that do
not exist.
catch-mask.hs

main = do
 fs <- getArgs
 let
 loop !n [] = return n
 loop !n (f:fs)
 = handle (\e -> if isDoesNotExistError e
 then loop n fs
 else throwIO e) $
 do
 getMaskingState >>= print
 h <- openFile f ReadMode
 s <- hGetContents h
 loop (n + length (lines s)) fs

 n <- loop 0 fs
 print n
The loop function recursively walks down the list of filenames,
attempting to open and read each one, and keeping track of the total
lines so far in the first argument n. For each filename, first we
call handle to set up an exception handler. If the exception
handler catches an exception that satisfies isDoesNotExistError
(from System.IO.Error), indicating that the file we tried to open
did not exist, the exception handler recursively calls loop to
look at the rest of the files.
This program works, but it has a problem that is revealed by the
getMaskingState call. Suppose we run the program with a couple of
filenames that don’t exist:
$./catch-mask xxx yyy
Unmasked
MaskedInterruptible
0
The first time around the loop, we are in the Unmasked state, as
expected, but the second iteration of loop reports that we are now
MaskedInterruptible! This is clearly suboptimal, because we didn’t intend
to mask asynchronous exceptions for the second loop iteration.
The problem arose because we made a recursive call to loop from the
exception handler; thus the recursive call is made inside the implicit
mask of handle.
A better way to code this example is to use try instead:
catch-mask2.hs

main = do
 fs <- getArgs
 let
 loop !n [] = return n
 loop !n (f:fs) = do
 getMaskingState >>= print
 r <- Control.Exception.try (openFile f ReadMode)
 case r of
 Left e | isDoesNotExistError e -> loop n fs
 | otherwise -> throwIO e
 Right h -> do
 s <- hGetContents h
 loop (n + length (lines s)) fs

 n <- loop 0 fs
 print n
Now there is no exception handler as such (it is hidden inside try),
so the recursive call to loop is not made within a mask.
Moreover, we have narrowed the scope of the exception handling to just
the openFile call, which is neater than before.
However, beware! If you need to handle asynchronous exceptions, it’s
usually important for the exception handler to be inside a mask so that
you don’t get interrupted by another asynchronous exception before
you’ve finished dealing with the first one. For that reason, catch
or handle might be more appropriate, because you can take advantage
of the built-in mask. Just be careful to return from the exception
handler rather than tail-calling out of it, to avoid the problem
described above.

mask and forkIO

Let’s return to our Async API for a moment, and in particular the
async function:
async :: IO a -> IO (Async a)
async action = do
 m <- newEmptyMVar
 t <- forkIO (do r <- try action; putMVar m r)
 return (Async t m)
In fact, there’s a bug here. If this Async is cancelled, and the
exception strikes just after the try but before the putMVar, then
the thread will die without putting anything into the MVar and the
application will deadlock when it tries to wait for the result of
this Async.
We could close this hole with a mask, but there’s another one: the
exception might also arrive just before the try, with the same
consequences. So how do we mask asynchronous exceptions in that
small window between the thread being created and the call to try?
Putting a call to mask inside the forkIO isn’t enough. There is
still a possibility that the exception might be thrown even before mask is called.
For this reason, forkIO is specified to create a thread that
inherits the masking state of the parent thread. This means that we
can create a thread that is born in the masked state by wrapping the
call to forkIO in a mask, for example:
async :: IO a -> IO (Async a)
async action = do
 m <- newEmptyMVar
 t <- mask $ \restore ->
 forkIO (do r <- try (restore action); putMVar m r)
 return (Async t m)
This pattern of performing some action when a thread has completed is
fairly common, so we can embody it as a variant of forkIO:[37]
forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
forkFinally action fun =
 mask $ \restore ->
 forkIO (do r <- try (restore action); fun r)
The forkFinally function lets us simplify async:
geturlscancel2.hs
async :: IO a -> IO (Async a)
async action = do
 m <- newEmptyMVar
 t <- forkFinally action (putMVar m)
 return (Async t m)
Now the API is safe. The rule of thumb is that any exception-handling function called as the first thing in a forkIO is better written using
forkFinally. In particular, if you find yourself writing
forkIO (x `finally` y), then write forkFinally x (_ -> y) instead. Better
still, use the Async API, which handles these details for you.[38]

Asynchronous Exceptions: Discussion

This chapter has been full of tricky and subtle details—such is
life when dealing with exceptions that can strike at any moment. The
abstractions we’ve covered in this chapter like timeout and Chan
are certainly hard to get right, but it is worth reminding ourselves
that dealing with asynchronous exceptions at this level is something
that Haskell programmers rarely have to do, for a couple of reasons:
	
All non-IO Haskell code is automatically safe by construction. This
 is the one factor that makes asynchronous exceptions feasible.

	
We can use the abstractions provided, such as bracket, to acquire
 and release resources. These abstractions have
 asynchronous-exception safety built in. Similarly, when working
 with MVars, the modifyMVar family of operations provides
 built-in safety.

We find that making most IO monad code safe is straightforward, but
for those cases where things get a bit complicated, a couple
of techniques can simplify matters:
	
Large chunks of heavily stateful code can be wrapped in a mask,
 which drops into polling mode for asynchronous exceptions. This is much
 easier to work with. The problem then boils down to finding the
 interruptible operations and ensuring that exceptions raised by
 those will not cause problems. The GHC I/O library uses this
 technique: every Handle operation runs entirely inside mask.

	
Using software transactional memory (STM) instead of MVars or
 other state representations can sweep away all the complexity in one
 go. STM allows us to combine multiple operations in a single
 atomic unit, which means we don’t have to worry about restoring
 state if an exception strikes in the middle. We will describe STM
 in Chapter 10.

In exchange for asynchronous-exception-safety, Haskell’s approach to
asynchronous exceptions confers some important benefits:
	
Many exceptional conditions map naturally onto asynchronous
 exceptions. For example, stack overflow and user interrupt
 (e.g., Ctrl+C at the console) are mapped to asynchronous
 exceptions in Haskell. Hence, Ctrl+C not only aborts the program
 but also does so cleanly, running all the exception handlers. Haskell
 programmers don’t have to do anything to enable this behavior.

	
Computation can always be interrupted, even if it is third-party
 library code. (There is an exception to this, namely calls to
 foreign functions, which we shall discuss in
 Threads and Foreign Out-Calls).

	
Threads never just die in Haskell. It is guaranteed that a
 thread always gets a chance to clean up and run its exception
 handlers.

[34] Historical note: the original presentation of asynchronous exceptions used a pair of combinators, block and unblock, here, but mask was introduced in GHC 7.0.1 to provide a more modular behavior and to avoid using the overloaded term “block.”

[35] For simplicity here, we are using a slightly less general version of mask than the real one in the Control.Exception library.

[36] An exception is foreign calls; see Asynchronous Exceptions and Foreign Calls.

[37] The forkFinally function is provided by Control.Concurrent from GHC 7.6.1.

[38] The full Async library is available in the async package on Hackage.

Chapter 10. Software Transactional Memory

 Software transactional memory (STM) is a technique for simplifying
concurrent programming by allowing multiple state-changing operations
to be grouped together and performed as a single atomic operation.
Strictly speaking, “software transactional memory” is an
implementation technique, whereas the language construct we are
interested in is “atomic blocks.” Unfortunately, the former term has
stuck, and so the language-level facility is called STM.
STM solves a number of problems that arise with conventional
concurrency abstractions, which we describe here through a series of
examples. For reference throughout the following sections, the types
and operations of the STM interface are:
Control.Concurrent.STM
data STM a -- abstract
instance Monad STM -- among other things

atomically :: STM a -> IO a

data TVar a -- abstract
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

retry :: STM a
orElse :: STM a -> STM a -> STM a

throwSTM :: Exception e => e -> STM a
catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a
Running Example: Managing Windows

Imagine a window manager that manages multiple
desktops. The user can move windows from one desktop to another,
while at the same time, a program can request that its own window
move from its current desktop to another desktop. The window manager
uses multiple threads: one to listen for input from the user, a set of
threads to
listen for requests from the programs running in
each existing window, and
one thread that renders the display to the user.
How should the program represent the state of the display? Let’s
assume some abstract types representing desktops and windows
respectively:
data Desktop -- abstract
data Window -- abstract
A display consists of a number of Desktops, each of which is
displaying a set of Windows. To put it another way, a display
is a mapping from Desktop to a set of Window objects. The mapping changes
over time, so we want to make it mutable, and the state needs to be
shared among multiple threads. Hence, following the pattern from
MVar as a Container for Shared State, we could use a Map stored in an MVar:
type Display = MVar (Map Desktop (Set Window))
This would work, but the MVar is a single point of contention. For
example, the rendering thread, which needs to look only at the
currently displayed desktop, could be blocked by a window on another
desktop that is moving itself. This structure doesn’t allow as much
concurrency as we would like.
To allow operations on separate desktops to proceed without impeding
each other, perhaps we can have a separate MVar for each desktop:
type Display = Map Desktop (MVar (Set Window))
Unfortunately, this approach also quickly runs into problems.
Consider an operation to move a window from one desktop to another:
moveWindow :: Display -> Window -> Desktop -> Desktop -> IO ()
moveWindow disp win a b = do
 wa <- takeMVar ma
 wb <- takeMVar mb
 putMVar ma (Set.delete win wa)
 putMVar mb (Set.insert win wb)
 where
 ma = disp ! a
 mb = disp ! b
Note that we must take both MVars before we can put the results;
otherwise, another thread could potentially observe the display in a
state in which the window we are moving does not exist. But this
raises a problem: what if there is a concurrent call to moveWindow
trying to move a window in the opposite direction? Let’s think
through what would happen:
 thread 1: moveWindow d w1 a b
 thread 2: moveWindow d w2 b a
Here’s one possible interleaving:
	
Thread 1 takes the MVar for desktop a.

	
Thread 2 takes the MVar for desktop b.

	
Thread 1 tries to take the MVar for desktop b and blocks.

	
Thread 2 tries to take the MVar for desktop a and blocks.

Now we have deadlock: both threads are blocked on each other, and
neither can make progress. This is an instance of the classic “Dining Philosophers” problem.
One solution is to impose an ordering on the MVars and require
that all agents take MVars in the correct order and release them
in the opposite order. That is inconvenient and error-prone, though,
and furthermore we have to extend our ordering to any other state that
we might need to access concurrently. Large systems written in
languages with locks (e.g., operating systems) are often plagued by
this problem, and managing the complexity requires building an elaborate
infrastructure to detect ordering violations.
Sofware transactional memory provides a way to avoid this deadlock problem
without imposing a requirement for ordering on the programmer. To
solve the problem using STM, we replace MVar with TVar:
type Display = Map Desktop (TVar (Set Window))
TVar stands for “transactional variable”; it is a mutable variable
that can be read or written only within the special monad STM, using
the operations readTVar and writeTVar:
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
A computation in the STM monad can be performed in the IO monad,
using the atomically function:
atomically :: STM a -> IO a
When an STM computation is performed like this, it is called a
transaction because the whole operation takes place atomically with
respect to the rest of the program. No other thread can observe an
intermediate state in which only some of the operations of the transaction
have taken place. The STM computation passed to
atomically can be arbitrarily large and can contain any number of
TVar operations, but as we shall see later there are performance
implications for large transactions.
To implement moveWindow using STM, we first convert all the
operations to their STM equivalents, and rename the function to
moveWindowSTM to indicate that it is in the STM monad:
windowman.hs

moveWindowSTM :: Display -> Window -> Desktop -> Desktop -> STM ()
moveWindowSTM disp win a b = do
 wa <- readTVar ma
 wb <- readTVar mb
 writeTVar ma (Set.delete win wa)
 writeTVar mb (Set.insert win wb)
 where
 ma = disp ! a
 mb = disp ! b
Then, we wrap this in atomically to make the IO-monad version
moveWindow:
moveWindow :: Display -> Window -> Desktop -> Desktop -> IO ()
moveWindow disp win a b = atomically $ moveWindowSTM disp win a b
The code for moveWindowSTM is almost identical to the MVar
version, but the behavior is quite different: the sequence of
operations inside atomically happens indivisibly as far as the rest
of the program is concerned, so the problem we encountered earlier that
required taking MVars in the correct order does not occur. What’s
more, there is no requirement that we read both TVars before we
write them; this would be fine, too:
moveWindowSTM :: Display -> Window -> Desktop -> Desktop -> STM ()
moveWindowSTM disp win a b = do
 wa <- readTVar ma
 writeTVar ma (Set.delete win wa)
 wb <- readTVar mb
 writeTVar mb (Set.insert win wb)
 where
 ma = disp ! a
 mb = disp ! b
So STM is far less error-prone here. The approach also
scales to any number of TVars, so we could easily write an operation
that moves the windows from all other desktops to the current desktop,
for example.
Now suppose that we want to swap two windows, moving window W from
desktop A to B, and simultaneously V from B to A. With the MVar
representation, we would have to write a special purpose operation to do this, because it has to take the MVars for A and B (in the
right order) and then put both MVars back with the new contents.
With STM, however, we can express this much more neatly by simply
making two calls to moveWindowSTM:
windowman.hs

swapWindows :: Display
 -> Window -> Desktop
 -> Window -> Desktop
 -> IO ()
swapWindows disp w a v b = atomically $ do
 moveWindowSTM disp w a b
 moveWindowSTM disp v b a
This demonstrates the composability of STM
operations: any operation of type STM a can be composed with others
to form a larger atomic transaction. For this reason, STM
operations are usually provided without the atomically wrapper so
that clients can compose them as necessary before finally wrapping
the entire operation in atomically.
Note
Why is STM a different monad from IO? The STM implementation
relies on being able to roll back the effects of a transaction in
the event of a conflict with another transaction (and for other
reasons, as we shall see shortly). A transaction can be rolled
back only if we can track exactly what effects it has, and this would not
be possible if arbitrary I/O were allowed inside a transaction—we
might have performed some I/O that cannot be undone, like making a
noise or launching some missiles. For this reason, the STM monad
permits only side effects on TVars, and the STM implementation
tracks these effects to ensure the correct transaction
semantics. We will discuss the implementation of STM and its
performance implications in more detail in Performance.
This is an example of using the Haskell type system to enforce a
safety invariant. We are guaranteed that every transaction is
actually a transaction, because the type system prevents arbitrary
side-effects from being performed in the STM monad.

So far, we covered the basic facilities of STM and showed that STM
can be used to scale atomicity in a composable way. STM improves
the expressibility and robustness of concurrent programs. The benefits of STM in Haskell go
further, however. In the following sections, we show how STM can be
used to make blocking abstractions compose, and how STM can be used to
manage complexity in the presence of failure and interruption.

Blocking

An important part of concurrent programming is dealing with
blocking when we need to wait for some condition to be true,
or to acquire a particular resource. STM provides an ingenious way to
do this with a single operation:
retry :: STM a
The meaning of retry is simply “abandon the current transaction and
run it again.” An example should help to clarify how retry works. Let’s consider how to implement MVar using STM because takeMVar
and putMVar need to be able to block when the MVar is empty or
full, respectively.
First the data type: an MVar is always in one of two states; either it is
full and contains a value, or it is empty. We model this with a
TVar containing Maybe a:[39]
tmvar.hs

newtype TMVar a = TMVar (TVar (Maybe a))
To make an empty TMVar, we simply need a TVar containing Nothing:
newEmptyTMVar :: STM (TMVar a)
newEmptyTMVar = do
 t <- newTVar Nothing
 return (TMVar t)
Now to code takeTMVar, which blocks if the desired variable is empty
and returns the content once the variable is set:
takeTMVar :: TMVar a -> STM a
takeTMVar (TMVar t) = do
 m <- readTVar t -- [image: 1]
 case m of
 Nothing -> retry -- [image: 2]
 Just a -> do
 writeTVar t Nothing -- [image: 3]
 return a
	[image: 1]
	
Read the current contents of the TVar, which we inspect with a case.

	[image: 2]
	
If the TVar contains Nothing, then the TMVar is empty, so
we need to block. The retry operation says, “Run the current transaction again,” which will have the desired effect: we keep
rerunning the transaction until the TVar no longer contains
Nothing and the other case branch is taken. Of course, we don’t really want to blindly rerun the transaction over
and over again, making our CPU hot for no good reason. The STM
implementation knows that there is no point rerunning the transaction
unless something different is likely to happen, and that can be true only if one or more of the TVars that were read by the current
transaction have changed. In fact, what happens is that the current
thread is blocked until one of the TVars that it is reading is written
to, at which point the thread is unblocked again and the transaction
is rerun.

	[image: 3]
	
If the TVar contains Just a, we empty the TMVar by
writing Nothing into it and then return the a.

The implementation of putMVar is straightforward:
putTMVar :: TMVar a -> a -> STM ()
putTMVar (TMVar t) a = do
 m <- readTVar t
 case m of
 Nothing -> do
 writeTVar t (Just a)
 return ()
 Just _ -> retry
So now that we have a replacement for MVar built using STM, what can we do with it? Well, STM operations are composable, so we can
perform operations on multiple TMVars at the same time:
 atomically $ do
 a <- takeTMVar ta
 b <- takeTMVar tb
 return (a,b)
This STM transaction succeeds when and only when both TMVars are full;
otherwise it is blocked. This explains why retry must abandon the
whole transaction: if the first takeTMVar succeeds but the second
one retries, we do not want the effect of the first takeTMVar to
take place.
This example is difficult to program with MVar because taking a
single MVar is a side effect that is visible to the rest of the
program, and hence cannot be easily undone if the other MVar is
empty. One way to implement it is with a third MVar acting as a
lock to control access to the other two, but then of course all other
clients have to be aware of the locking protocol.

Blocking Until Something Changes

The retry operation allows us to block on arbitrary conditions. As
a concrete example, we can use retry to implement the rendering
thread in our window manager example. The behavior we want is this:
	
One desktop is designated as having the focus. The
 focused desktop is the one displayed by the rendering thread.

	
The user may request that the focus be changed at any time.

	
Windows may move around and appear or disappear of their own
 accord, and the rendering thread must update its display
 accordingly.

We are supplied with a named function render which handles the business of
rendering windows on the display. It should be called whenever the
window layout changes:[40]
render :: Set Window -> IO ()
The currently focused desktop is a piece of state that is shared by
the rendering thread and some other thread that handles user input.
Therefore, we represent that by a TVar:
type UserFocus = TVar Desktop
Next, we define an auxiliary function getWindows that takes the
Display and the UserFocus and returns the set of windows to render
in the STM monad. The implementation is straightforward: read the
current focus and look up the contents of the appropriate desktop in
the Display:
windowman.hs

getWindows :: Display -> UserFocus -> STM (Set Window)
getWindows disp focus = do
 desktop <- readTVar focus
 readTVar (disp ! desktop)
Finally, we can implement the rendering thread. The general plan is
to repeatedly read the current state with getWindows and call
render to render it, but use retry to avoid calling render when
nothing has changed. Here is the code:
renderThread :: Display -> UserFocus -> IO ()
renderThread disp focus = do
 wins <- atomically $ getWindows disp focus -- [image: 1]
 loop wins -- [image: 2]
 where
 loop wins = do -- [image: 3]
 render wins -- [image: 4]
 next <- atomically $ do
 wins' <- getWindows disp focus -- [image: 5]
 if (wins == wins') -- [image: 6]
 then retry -- [image: 7]
 else return wins' -- [image: 8]
 loop next
	[image: 1]
	
First, we read the current set of windows to display.

	[image: 2]
	
We use this as the initial value for the loop.

	[image: 3]
	
The loop takes the current set of windows as an argument, renders the windows, and then blocks until something changes that
requires re-rendering.

	[image: 4]
	
Each iteration calls render to display the
current state and then enters a transaction to read the next
state.

	[image: 5]
	
Inside the transaction, we read the current state.

	[image: 6]
	
We compare it to the state we just rendered.

	[image: 7]
	
If the states are the same, then there is no need to do anything, so we call retry.

	[image: 8]
	
If the states are different, then we return the new state, and the loop
iterates with the new state.

The effect of the retry is precisely what we need: it waits until
the value read by getWindows could possibly be different, because
another thread has successfully completed a transaction that writes to
one of the TVars that is read by getWindows. That encompasses
both changes to the focus (because the user switched to a different
desktop), and changes to the contents of the current desktop (because
a window moved, appeared, or disappeared). Furthermore, changes to
other desktops can take place without the rendering thread being woken
up.
If it weren’t for STM’s retry operation, we’d have to implement
this complex logic ourselves, including implementing the signals
between threads that modify the state and the rendering thread. This
is anti-modular, because operations that modify the state have to know
about the observers that need to act on changes. Furthermore, it
gives rise to a common source of concurrency bugs: lost wakeups. If we forgot to signal the rendering thread, the
display wouldn’t be updated. In this case, the effects are somewhat
benign. In a more complex scenario, lost wakeups often lead to
deadlocks: the woken thread was supposed to complete an
operation on which other threads are waiting.

Merging with STM

Recall that in Merging we considered the problem of waiting for any
event from a set of possible events. Typically this requires the
events to be merged into a single MVar or Chan so that we can
wait for the next event using takeMVar or readChan. In turn, this
means that the source of each event needs to know which MVar(s) or
Chan(s) to send it to, rather than each event being a completely
independent entity.
The more general problem of taking either of two MVars requires
creating two new threads to take each MVar and put the result into a
third MVar. However, even this doesn’t really solve the problem: if
we wanted to take at most one of two MVars, then (as far as I am aware) there is no way to do it; you just have to construct
your program in a different way so that it doesn’t need to do this.
STM provides a neat solution to both of these problems in the form of
an operation that we have not yet introduced:
orElse :: STM a -> STM a -> STM a
The operation orElse a b has the following behavior:
	
First, a is executed. If a returns a result, then the orElse call
 returns it and ends.

	
If a calls retry instead, a’s effects are
 discarded_ and b is executed instead.

The orElse operator lets us combine two blocking transactions such
that one is performed but not both. This is exactly what we
need for composing several event sources, or for taking at most one of
two MVars (actually TMVars, of course). The latter is coded
as follows:
code/tmvar.hs

takeEitherTMVar :: TMVar a -> TMVar b -> STM (Either a b)
takeEitherTMVar ma mb =
 fmap Left (takeTMVar ma)
 `orElse`
 fmap Right (takeTMVar mb)
There are two calls to takeTMVar, with their results wrapped in
Left and Right, respectively, composed together with orElse.
One thing to note is that orElse is left-biased: if both TMVars
are non-empty, takeEitherTMVar will always return the contents
of the first one. Whether this is problematic depends on the
application. Be aware that the left-biased nature of orElse can have
implications for fairness in some situations.
STM provides two complementary ways to compose blocking
operations together: the ordinary monadic bind gives us “and”, and
orElse gives us “or”.

Async Revisited

Recall in Merging that we defined waitEither for the Async
abstraction by forking two extra threads. STM’s orElse now allows
us to define waitEither much more efficiently. Furthermore, the
extra flexibility of STM lets us compose Asyncs together in
more interesting ways. But first, we need to rewrite the Async
implementation in terms of STM, rather than MVar. The translation
is straightforward: we just replace MVar with TMVar.
data Async a = Async ThreadId (TMVar (Either SomeException a))
The async function looks familiar, with only an additional
atomically to wrap the call to putTMVar in the child thread:
async :: IO a -> IO (Async a)
async action = do
 var <- newEmptyTMVarIO
 t <- forkFinally action (atomically . putTMVar var)
 return (Async t var)
Here we used newEmptyTMVarIO, which is a convenient version of
newEmptyTMVar in the IO monad.
The waitCatchSTM function is like waitCatch, but in the STM
monad:
waitCatchSTM :: Async a -> STM (Either SomeException a)
waitCatchSTM (Async _ var) = readTMVar var
And we can define waitSTM, the version of waitCatchSTM that
re-throws an exception result, in terms of waitCatchSTM:
waitSTM :: Async a -> STM a
waitSTM a = do
 r <- waitCatchSTM a
 case r of
 Left e -> throwSTM e
 Right a -> return a
Now we can define waitEither by composing two calls to waitSTM
using orElse:
waitEither :: Async a -> Async b -> IO (Either a b)
waitEither a b = atomically $
 fmap Left (waitSTM a)
 `orElse`
 fmap Right (waitSTM b)
More generally, we can wait for any number of Asyncs
simultaneously. The function waitAny does this by first mapping
waitSTM over a list of Asyncs and then composing the calls
together by folding them with orElse:
waitAny :: [Async a] -> IO a
waitAny asyncs =
 atomically $ foldr orElse retry $ map waitSTM asyncs
In Merging (geturls6.hs), we downloaded several URLs simultaneously
and reported the first one to finish by using a version of waitAny
that forked a new thread for each Async to wait for. Using the
above definition of waitAny with the STM version of Async, we can
now solve the same problem without forking a new thread per
Async:
geturlsfirst.hs

main :: IO ()
main = do
 let
 download url = do
 r <- getURL url
 return (url, r)

 as <- mapM (async . download) sites

 (url, r) <- waitAny as
 printf "%s was first (%d bytes)\n" url (B.length r)
 mapM_ wait as
The program works as before, creating an Async to download each URL
in the list. Then it calls waitAny to get the first result, reports
it, and finally waits for the rest to complete.

Implementing Channels with STM

In this section, we’ll implement the Chan type from
MVar as a Building Block: Unbounded Channels using STM. As we’ll see, using STM to implement
Chan is rather less tricky than using MVars, and furthermore we
are able to add complex operations that were difficult or
impossible using MVars.
The STM version of Chan is called TChan, and the interface we wish to implement is as follows:[41]
data TChan a

newTChan :: STM (TChan a)
writeTChan :: TChan a -> a -> STM ()
readTChan :: TChan a -> STM a
This is exactly the same as Chan, except that we renamed Chan to
TChan, and all the operations are in the STM monad rather than
IO. The full code for the implementation is given next.
TChan.hs:

data TChan a = TChan (TVar (TVarList a))
 (TVar (TVarList a))

type TVarList a = TVar (TList a)
data TList a = TNil | TCons a (TVarList a)

newTChan :: STM (TChan a)
newTChan = do
 hole <- newTVar TNil
 read <- newTVar hole
 write <- newTVar hole
 return (TChan read write)

readTChan :: TChan a -> STM a
readTChan (TChan readVar _) = do
 listHead <- readTVar readVar
 head <- readTVar listHead
 case head of
 TNil -> retry
 TCons val tail -> do
 writeTVar readVar tail
 return val

writeTChan :: TChan a -> a -> STM ()
writeTChan (TChan _ writeVar) a = do
 newListEnd <- newTVar TNil
 listEnd <- readTVar writeVar
 writeTVar writeVar newListEnd
 writeTVar listEnd (TCons a newListEnd)

The implementation is similar in structure to the MVar version in
MVar as a Building Block: Unbounded Channels, so we do not describe it line by line; however, we
will point out a few important details:
	
All the operations are in the STM monad, so to use them they
 need to be wrapped in atomically (but they can also be composed;
 more about that later).

	
The TList type needs a TNil constructor to indicate an empty
 list; in the MVar implementation, the empty list was represented
 implicitly by an empty MVar.

	
Blocking in readTChan is implemented by a call to retry.

	
Nowhere did we have to worry about what happens when a read
 executes concurrently with a write, because all the operations are
 atomic.

We now describe three distinct benefits of the STM implementation
compared with using MVars.
More Operations Are Possible

In MVar as a Building Block: Unbounded Channels, we mentioned the
operation unGetChan, which could not be implemented with the desired
semantics using MVars. Here is its implementation with STM:
unGetTChan :: TChan a -> a -> STM ()
unGetTChan (TChan readVar _) a = do
 listHead <- readTVar readVar
 newHead <- newTVar (TCons a listHead)
 writeTVar readVar newHead
The obvious implementation does the right thing here. Other
operations that were not possible with MVars are straightforward
with STM; an example is isEmptyTChan, the MVar version that
suffers from the same problem as unGetChan:
isEmptyTChan :: TChan a -> STM Bool
isEmptyTChan (TChan read _write) = do
 listhead <- readTVar read
 head <- readTVar listhead
 case head of
 TNil -> return True
 TCons _ _ -> return False

Composition of Blocking Operations

Because blocking STM
computations can be composed together, we can build composite
operations like readEitherTChan:
readEitherTChan :: TChan a -> TChan b -> STM (Either a b)
This function reads a value from either of the two TChans passed
as arguments, or blocks if they are both empty. Its implementation
should look familiar, being similar to takeEitherTMVar:
readEitherTChan :: TChan a -> TChan b -> STM (Either a b)
readEitherTChan a b =
 fmap Left (readTChan a)
 `orElse`
 fmap Right (readTChan b)

Asynchronous Exception Safety

Up until now, we have said nothing
about how exceptions in STM behave. The STM monad supports
exceptions much like the IO monad, with two operations:
throwSTM :: Exception e => e -> STM a
catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a
The throwSTM operation throws an exception, and catchSTM catches
exceptions and invokes a handler, just like catch in the IO monad.
However, exceptions in STM are different in one vital way: in
catchSTM m h, if m raises an exception, then all of its effects
are discarded, and then the handler h is invoked. As a degenerate
case, if there is no enclosing catchSTM at all, then all of the effects
of the transaction are discarded and the exception is propagated out
of atomically.
An example should help to demonstrate the motivation for this
behavior. Imagine an STM operation readCheck defined as follows:
readCheck :: TChan a -> STM a
readCheck chan = do
 a <- readTChan chan
 checkValue a
Where checkValue is an operation that imposes some extra constraints
on the value read from the channel. Now suppose checkValue
raises an exception (perhaps accidentally, e.g., divide-by-zero). We
would prefer it if the readTChan had not happened because an element
of the channel would be lost. Furthermore, we would like readCheck
to have this behavior regardless of whether there is an enclosing
exception handler or not. Hence catchSTM discards the effects of
its first argument in the event of an exception.
The discarding-effects behavior is even more useful in the case of
asynchronous exceptions. If an asynchronous exception occurs during
an STM transaction, the effects of the transaction are discarded, just
as for a synchronous exception. So in most cases, asynchronous
exception safety in STM consists of doing absolutely nothing at all.
There are no locks to replace, so there is no need for exception handlers or
bracket and no need to worry about which critical sections to
protect with mask.
The implementation of TChan given earlier is entirely safe with
respect to asynchronous exceptions as it stands, and moreover any
compositions of these operations are also safe.
STM provides a nice way to write code that is automatically safe with
respect to asynchronous exceptions, so it can be useful even for state
that is not shared between threads. The only catch is that we have to
use STM consistently for all our state, but having made that leap,
asynchronous exception safety comes for free.

An Alternative Channel Implementation

In the previous section, we implemented a channel type that was
analogous to the MVar-based Chan, in that it has a similar
implementation structure and the same basic operations. However, the
flexibility of STM gives us more choices in how to construct channels,
and in fact if we don’t need dupChan, we can implement a much
more efficient channel abstraction.
The key observation is that in STM, an operation can block on any
condition whatsoever. This means we can represent the channel
contents by any data structure we choose. For example, even a simple
list works:
TList.hs

newtype TList a = TList (TVar [a])

newTList :: STM (TList a)
newTList = do
 v <- newTVar []
 return (TList v)

writeTList :: TList a -> a -> STM ()
writeTList (TList v) a = do
 list <- readTVar v
 writeTVar v (list ++ [a])

readTList :: TList a -> STM a
readTList (TList v) = do
 xs <- readTVar v
 case xs of
 [] -> retry
 (x:xs') -> do
 writeTVar v xs'
 return x
This is a channel abstraction with the same behavior as TChan;
readTList blocks when the channel is empty, because it can detect
the empty list and call retry.
There is a performance problem with this representation, though. Note
that writeTList must add an element to the end of the list, which,
using the standard Haskell list datatype, requires an O(n) append
operation.
The solution is to use a different queue data structure that
supports O(1) enqueue and dequeue operations. There is a folklore
technique for representing a queue that has the desired property: the
idea is to represent a queue as two lists, xs and ys, where
the whole contents of the list is given by xs ++ reverse ys. That
is, to take an element from the front we take it from xs, and to add
an element to the back we add it to the front of ys; both of these
operations are O(1). But what if xs is empty and we need to take
an element? In that case, we must reverse ys and let that become the
new xs. So while most of the time, taking an element from the front
is O(1), occasionally it is O(n). However, we know that each list
element is reversed only once, so on average the complexity of both
enqueue and dequeue is O(1).[42]
We can use this technique to represent the channel contents. This is the code:
TQueue.hs

data TQueue a = TQueue (TVar [a]) (TVar [a])

newTQueue :: STM (TQueue a)
newTQueue = do
 read <- newTVar []
 write <- newTVar []
 return (TQueue read write)

writeTQueue :: TQueue a -> a -> STM ()
writeTQueue (TQueue _read write) a = do
 listend <- readTVar write
 writeTVar write (a:listend)

readTQueue :: TQueue a -> STM a
readTQueue (TQueue read write) = do
 xs <- readTVar read
 case xs of
 (x:xs') -> do writeTVar read xs'
 return x
 [] -> do ys <- readTVar write
 case ys of
 [] -> retry -- [image: 1]
 _ -> do let (z:zs) = reverse ys -- [image: 2]
 writeTVar write []
 writeTVar read zs
 return z
	[image: 1]
	
If we are reading from the channel and the read list is empty,
then we check the write list. If that is also empty, then we block.

	[image: 2]
	
If the ys list is non-empty, then we must reverse it and make it
the new xs list, and then return the first element of the new xs as the
value we read from the channel.

+
There is one subtlety here: we must be careful that the reverse is
done lazily, which is why we use a let rather than case here. If
we were to pattern-match on the result of the reverse strictly,
the STM transaction could not complete until the reverse finished
(see Performance).
Another happy consequence of this representation choice is that we are
able to use a separate TVar for each list. This means that in the
common case, readers and writers can proceed independently without
conflict, which is important if we use this data structure in a
parallel setting.
This implementation of channels in STM outperforms both the
MVar-based Chan and the TVar-based TChan. A simple
benchmark program can be found in chanbench.hs with
three different scenarios:
	
Two threads, one reading from and one writing to the channel

	
One thread, writing a large number of values and then reading them

	
One thread, repeatedly writing and then reading a number of values

On my computer, TQueue is about the same as Chan on the first
test and wins by about 20% on the second and third test.
Why is TQueue so much faster? The main reason is that the data
structure representing the channel contents is much more compact and
thus faster to operate on: ordinary linked lists are very cheap in Haskell,
whereas operations on TVar and MVar are much more expensive.

Bounded Channels

So far, we have seen one-place channels (MVar and TMVar) and
unbounded channels (Chan and TChan), but in practice we often want
something between the two. The one-place channel does not allow
sufficient concurrency: consider multiple writers with a single
reader. If there is a burst of writing activity, most of the
writers will block waiting for the reading thread to catch up, and
there will be a lot of context switching as the reader services each
writer in turn. The unbounded channel has a different pathology: if
the reading thread cannot keep up with the writers, the size of
the channel will keep growing without bound, and in the worst case we
could run out of memory.
Ideally, there should be some limit on the size of the channel so
that the channel can absorb bursts of writing activity without
the danger that heavy writing will use too much memory.
Fortunately, STM makes it quite straightforward to build a bounded
channel. All we need to do is keep track of the current capacity in
the channel and arrange that writing to the channel blocks if the
channel is currently full. This implementation is based on TQueue:
TBQueue.hs

data TBQueue a = TBQueue (TVar Int) (TVar [a]) (TVar [a]) -- [image: 1]

newTBQueue :: Int -> STM (TBQueue a)
newTBQueue size = do
 read <- newTVar []
 write <- newTVar []
 cap <- newTVar size
 return (TBQueue cap read write)

writeTBQueue :: TBQueue a -> a -> STM ()
writeTBQueue (TBQueue cap _read write) a = do
 avail <- readTVar cap -- [image: 2]
 if avail == 0 -- [image: 3]
 then retry -- [image: 4]
 else writeTVar cap (avail - 1) -- [image: 5]
 listend <- readTVar write
 writeTVar write (a:listend)

readTBQueue :: TBQueue a -> STM a
readTBQueue (TBQueue cap read write) = do
 avail <- readTVar cap -- [image: 6]
 writeTVar cap (avail + 1)
 xs <- readTVar read
 case xs of
 (x:xs') -> do writeTVar read xs'
 return x
 [] -> do ys <- readTVar write
 case ys of
 [] -> retry
 _ -> do let (z:zs) = reverse ys
 writeTVar write []
 writeTVar read zs
 return z
	[image: 1]
	
The TBQueue data type is like the TQueue we saw previously
but has an extra TVar Int to store the channel’s current capacity.

	[image: 2]
	
In writeTBQueue, we first read the current capacity.

	[image: 3]
	
If the capacity is zero, meaning the channel is full,

	[image: 4]
	
we call retry to block.

	[image: 5]
	
Otherwise, decrease the capacity by 1, because we are about to add another element.

	[image: 6]
	
When reading, we always increment the capacity.

In the chanbench.hs channel benchmark, the bounded
channel performs almost as well as TQueue in the first test,
although it doesn’t do so well in the third test, performing about the
same as TChan. The second test, which writes a large number of
items to the channel, inevitably fails with TBQueue.
Tip
The danger with bounded channels is that it is possible to write a
program with a lurking deadlock that is only discovered much later
when the program is running in production. This is because the vast
majority of the time writeTBQueue does not block, but once in a
while, probably under heavy load, the channel fills up and
writeTBQueue blocks. If the program depends on writeTBQueue not
blocking, it may deadlock. How might we get into this situation?
It is the dining philosophers problem again:
thread 1:
 x <- atomically $ readTBQueue q1
 y <- atomically $ readTBQueue q2

thread 2:
 atomically $ writeTBQueue q2 y
 atomically $ writeTBQueue q1 x
This sequence will work perfectly well until q2 becomes
full, at which point we get a deadlock. If the communication pattern
is obscured by other code, we might not realize there’s a
problem.
There’s no silver bullet. The best advice is to test your code
thoroughly with a buffer size of 1, because that will tend to expose
any deadlocks of this kind during testing. Note that deadlocks will
often be detected by the runtime system and result in an exception
rather than a hang; see Detecting Deadlock.

What Can We Not Do with STM?

STM offers a qualitative improvement over MVar in various ways:
composable atomicity, composable blocking, and simpler error handling.
Therefore, it is reasonable to ask whether we need MVar at all, and
whether there is anything that is harder to accomplish with STM than
with MVar.
One unsurprising advantage of MVar is that it
is faster than STM. But even though a straightforward comparison of, say,
takeMVar against atomically . takeTMVar will show that takeMVar
is faster, we should not assume that using MVar will
always result in faster code. As we saw in the previous section, we
can build a channel using STM that outperforms the MVar-based
version, and furthermore is composable.
In fact, MVar does have one other important advantage over STM, which
we mentioned earlier: fairness. When multiple threads block on
an MVar, they are guaranteed to be woken up in FIFO order, and no
single thread can be blocked in takeMVar indefinitely so long as
there is a constant supply of putMVars. In contrast, when multiple
threads are blocked in STM transactions that depend on a particular
TVar, and the TVar is modified by another thread, it is not enough
to just wake up one of the blocked transactions—the runtime must
wake them all. To see why, consider the following:
do x <- takeTMVar m
 when (x /= 42) retry
A transaction can block on an arbitrary condition, so the runtime
doesn’t know whether any individual transaction will be able to make
progress after the TVar is changed; it must run the
transaction to find out. Hence, when there are multiple transactions
that might be unblocked, we have to run them all; after all, they
might all be able to continue now. Because the runtime has to run all the blocked transactions, there is no guarantee that threads will
be unblocked in FIFO order and no guarantee of fairness.
You might wonder whether we could implement fairness using STM. For
example, suppose we want to add fairness to our TMVar
implementation. We will need to represent explicitly the queue of
blocked takeTMVars, perhaps as a list of TVars, each waiting
to receive a value. Conversely, the blocked putTMVars could also
be a list of TVars, each with a value to put. In fact, we could
represent all the blocked threads by a list of TVar (Maybe a).
So this could be the TMVar data type:
data TMVar a = TMVar (TVar (Maybe a)) (TVar [TVar (Maybe a)])
Now consider how putMVar would work. There are three cases to consider:
	
The TMVar is empty, and there are no blocked takeTMVars

	
 Store the value in the TMVar and return.

	
The TMVar is empty, and there are some blocked takeTMVars

	
 Removes the first blocked takeTMVar from the queue and put the
 value in its TVar.

	
The TMVar is full

	
 We must create a new TVar containing Just a (the value to be
 put), add this to the end of the list of blocked putTMVars, and
 then wait until the TVar contents becomes Nothing.

The last case is the tricky one: we cannot write a transaction that
both has a visible effect (adds something to the list) and calls
retry, because calling retry abandons any changes to TVars
made by the current transaction.
The only way to implement fairness is to abandon composability. We
can implement a TMVar with the structure I suggested, but the
operations must be in the IO monad, not the STM monad. The trick
is to have the STM transaction return an IO action that is executed
after the STM transaction completes. I’ll leave the implementation as
an exercise for the reader.
In general, the class of operations that STM cannot express are those
that involve multi-way communication between threads. The simplest
example is a synchronous channel, in which both the reader and the
writer must be present simultaneously for the operation to go ahead.
We cannot implement this in STM, at least compositionally, for the
same reason that we cannot implement TMVar with fairness: the
operations need to block and have a visible effect—advertise that
there is a blocked thread—simultaneously.

Performance

As with most abstractions, STM has a runtime cost. If we understand
the cost model, we can avoid writing code that hits the bad
cases. So in this section I’ll give an informal description of the
implementation of STM, with enough detail that the
reader can understand the cost model.
An STM transaction works by accumulating a log of readTVar
and writeTVar operations that have happened so far during the
transaction. The log is used in three ways:
	
By storing writeTVar operations in the log rather than
 applying them to main memory immediately, discarding the effects of
 a transaction is easy; we just throw away the log. Hence, aborting
 a transaction has a fixed small cost.

	
Each readTVar must traverse the log to check whether the
 TVar was written by an earlier writeTVar. Hence, readTVar is
 an O(n) operation in the length of the log.

	
Because the log contains a record of all the readTVar
 operations, it can be used to discover the full set of TVars read
 during the transaction, which we need to know in order to implement
 retry.

When a transaction reaches the end, the STM implementation compares
the log against the contents of memory. If the current contents of
memory match the values read by readTVar, the effects of the
transaction are committed to memory, and if not, the log is
discarded and the transaction runs again from the beginning. This
process takes place atomically by locking all the TVars involved
in the transaction for the duration. The STM implementation in GHC
does not use global locks; only the TVars involved in the
transaction are locked during commit, so transactions operating on
disjoint sets of TVars can proceed without interference.
There are two important rules of thumb:
	
Never read an unbounded number of TVars in a single transaction
because the O(n) performance of readTVar then gives O(n2)
for the whole transaction.

	
Try to avoid expensive evaluation inside a transaction because this
 will cause the transaction to take a long time, increasing the
 chance that another transaction will modify one or more of the same
 TVars, causing the current transaction to be re-executed. In
 the worst case, a long-running transaction re-executes indefinitely
 because it is repeatedly aborted by shorter transactions.

It is possible that a future STM implementation may use a different
data structure to store the log, reducing the readTVar overhead to
O(log n) or better (on average), but the likelihood that a
long transaction will fail to commit would still be an issue. To
avoid that problem, intelligent contention-management is required,
which is an area of active research.
The retry operation uses the transaction log to find out which
TVars were accessed by the transaction, because changes to any of
these TVars must trigger a rerun of the current transaction.
Hence, each TVar has a watch list of threads that should be
woken up if the TVar is modified, and retry adds the current
thread to the watch list of all the TVars read during the current
transaction. Hence, retry is O(n) in the number of TVars
read during the transaction. When a transaction is committed, if any
of the modified TVars has a watch list, then the threads on the list
are all woken up.
One other thing to watch out for is composing too many blocking
operations together. If we wanted to wait for a list of TMVars to
become full, we might be tempted to do this:
atomically $ mapM takeTMVar ts
Imagine that the TMVars all started empty and became full one at a
time in the same order as the list ts. Each time a new TMVar
becomes full, the transaction wakes up and runs again, going to sleep
at the next empty TMVar. We’ll run the transaction from the start,
once for every element of ts, so the whole operation is O(n2).
If instead, we had written this code:
mapM (atomically . takeTMVar) ts
then it is O(n), although now the semantics are different—it is
not a single transaction anymore—but if these semantics are acceptable,
then the second form will be much faster.

Summary

To summarize, STM provides several benefits for concurrent
programming:
	
Composable atomicity

	
You can construct arbitrarily large atomic
 operations on shared state, which can simplify the implementation of
 concurrent data structures with fine-grained locking.

	
Composable blocking

	
You can build operations that
 choose between multiple blocking operations, which is
 very difficult with MVars and other low-level concurrency
 abstractions.

	
Robustness in the presence of failure and cancellation

	
 A transaction in progress is aborted if an exception occurs, so STM
 makes it easy to maintain invariants on state in the presence of
 exceptions.

[39] The TMVar implementation is available from the Control.Concurrent.STM.TMVar module in the stm package.

[40] We are assuming that the actual window contents
are rendered via some separate means, e.g., compositing.

[41] The implementation
 is available in the module Control.Concurrent.STM.TChan from the
 stm package.

[42] Technically, the complexity is
amortized O(1). For more details on these kinds of data structures,
I recommend reading Okasaki’s Purely Functional Data Structures (Cambridge University Press, 1999).

Chapter 11. Higher-Level Concurrency Abstractions

The preceding sections covered the basic interfaces for writing
concurrent code in Haskell. These are enough for simple tasks, but
for larger and more complex programs we need to raise the level of
abstraction.
The previous chapters developed the Async interface for
performing operations asynchronously and waiting for the results. In
this chapter, we will be revisiting that interface and expanding it
with some more sophisticated functionality. In particular, we will
provide a way to create an Async that is automatically cancelled if
its parent dies and then use this to build more compositional
functionality.
What we are aiming for is the ability to build trees of threads,
such that when a thread dies for whatever reason, two things happen:
any children it has are automatically terminated, and its parent is
informed. Thus the tree is always collapsed from the bottom up, and
no threads are ever left running accidentally. Furthermore, all
threads are given a chance to clean up when they die, by handling
exceptions.
Avoiding Thread Leakage

Let’s review the last version of the Async API that we encountered
from Async Revisited:
data Async

async :: IO a -> IO (Async a)
cancel :: Async a -> IO ()

waitCatchSTM :: Async a -> STM (Either SomeException a)
waitCatch :: Async a -> IO (Either SomeException a)

waitSTM :: Async a -> STM a
wait :: Async a -> IO a

waitEither :: Async a -> Async b -> IO (Either a b)
Now we’ll define a way to create an Async that is automatically
cancelled if the current thread dies. A good motivation for this
arises from the example we had in Error Handling with Async,
geturls4.hs, which contains the following code:
main = do
 a1 <- async (getURL "http://www.wikipedia.org/wiki/Shovel")
 a2 <- async (getURL "http://www.wikipedia.org/wiki/Spade")
 r1 <- wait a1
 r2 <- wait a2
 print (B.length r1, B.length r2)
Consider what happens when the first Async, a1, fails with an
exception. The first wait operation throws the same exception,
which gets propagated up to the top of main, resulting in program
termination. But this is untidy: we left a2 running, and if this
had been deep in a program, we would be not only leaking a thread, but
also leaving some I/O running in the background.
What we would like to do is create an Async and install an exception
handler that cancels the Async should an exception be raised. This
is a typical resource acquire/release pattern, and Haskell has a good
abstraction for that: the bracket function. Here is the general pattern:
 bracket (async io) cancel operation
Here, io is the IO action to perform
asynchronously and operation is the
code to execute while io is running.
Typically, operation will include a
wait to get the result of the Async. For example, we could
rewrite geturls4.hs in this way:
main = do
 bracket (async (getURL "http://www.wikipedia.org/wiki/Shovel"))
 cancel $ \a1 -> do
 bracket (async (getURL "http://www.wikipedia.org/wiki/Shovel"))
 cancel $ \a2 -> do
 r1 <- wait a1
 r2 <- wait a2
 print (B.length r1, B.length r2)
But this is a bit of a mouthful. Let’s package up the bracket
pattern into a function instead:
withAsync :: IO a -> (Async a -> IO b) -> IO b
withAsync io operation = bracket (async io) cancel operation
Now our main function becomes:
geturls7.hs

main =
 withAsync (getURL "http://www.wikipedia.org/wiki/Shovel") $ \a1 ->
 withAsync (getURL "http://www.wikipedia.org/wiki/Spade") $ \a2 -> do
 r1 <- wait a1
 r2 <- wait a2
 print (B.length r1, B.length r2)
This is an improvement over geturls6.hs. Now the second Async is
cleaned up if the first one fails.

Symmetric Concurrency Combinators

Take another look at the example at the end of the previous section.
The behavior in the event of failure is lopsided: if a1 fails, then the alarm is raised immediately, but if a2 fails, then the program waits for a result from a1 before it notices the failure of a2.
Ideally, we should be able to write this symmetrically so that we
notice the failure of either a1 or a2, whichever one happens
first. This is somewhat like the waitEither operation that we
defined earlier:
waitEither :: Async a -> Async b -> IO (Either a b)
But here we want to wait for both results and terminate
early if either Async raises an exception. By analogy with
waitEither, let’s call it waitBoth:
waitBoth :: Async a -> Async b -> IO (a,b)
Indeed, we can program waitBoth rather succinctly, thanks to STM’s
orElse combinator:
waitBoth :: Async a -> Async b -> IO (a,b)
waitBoth a1 a2 =
 atomically $ do
 r1 <- waitSTM a1 `orElse` (do waitSTM a2; retry) -- [image: 1]
 r2 <- waitSTM a2
 return (r1,r2)
It is worth considering the different cases to convince yourself that
line [image: 1] has the right behavior:
	
If a1 threw an exception, then the exception is re-thrown here
 (remember that if an Async results in an exception, it is
 re-thrown by waitSTM).

	
If a1 returned a result, then we proceed to the next line and wait for
 a2’s result.

	
If waitSTM a1 retries, then we enter the right side of orElse:

	
If a2 threw an exception, then the exception is re-thrown here.

	
If a2 returned a result, then we ignore it and call retry, so the
 whole transaction retries. This case might seem
 counterintuitive, but the purpose of calling waitSTM a2 here
 was to check whether a2 had thrown an exception. We aren’t
 interested in its result yet because we know that a1 has still
 not completed.

	
If waitSTM a2 retries, then the whole transaction retries.

Now, using withAsync and waitBoth, we can build a nice symmetric
function that runs two IO actions concurrently but aborts if either
one fails with an exception:
concurrently :: IO a -> IO b -> IO (a,b)
concurrently ioa iob =
 withAsync ioa $ \a ->
 withAsync iob $ \b ->
 waitBoth a b
Finally, we can rewrite geturls7.hs to use concurrently:
geturls8.hs

main = do
 (r1,r2) <- concurrently
 (getURL "http://www.wikipedia.org/wiki/Shovel")
 (getURL "http://www.wikipedia.org/wiki/Spade")
 print (B.length r1, B.length r2)
What if we wanted to download a list of URLs at the same time? The
concurrently function takes only two arguments, but we can fold it
over a list, provided that we use a small wrapper to rebuild the list of
results:
geturls9.hs

main = do
 xs <- foldr conc (return []) (map getURL sites)
 print (map B.length xs)
 where
 conc ioa ioas = do
 (a,as) <- concurrently ioa ioas
 return (a:as)
The concurrently function has a companion; if we swap waitBoth for
waitEither, we get a different but equally useful function:
race :: IO a -> IO b -> IO (Either a b)
race ioa iob =
 withAsync ioa $ \a ->
 withAsync iob $ \b ->
 waitEither a b
The race function runs two IO actions concurrently, but as
soon as one of them returns a result or throws an exception, the other
is immediately cancelled. Hence the name race: the two IO actions are
racing to produce a result. As we shall see later, race is quite
useful when we need to fork two threads while letting either one terminate
the other by just returning.
These two functions, race and concurrently, are the essence of
constructing trees of threads. Each builds a structure like Figure 11-1.
[image: Threads created by concurrently]

Figure 11-1. Threads created by concurrently

By using multiple race and concurrently calls, we can build up
larger trees of threads. If we use these functions consistently,
we can be sure that the tree of threads constructed will always be
collapsed from the bottom up:
	
If a parent throws an exception or receives an asynchronous
 exception, then the children are automatically cancelled. This happens
 recursively. If the children have children themselves, then they will
 also be cancelled, and so on.

	
If one child receives an exception, then its sibling is also
 cancelled.

	
The parent chooses whether to wait for a result from both children
 or just one, by using race or concurrently, respectively.

What is particularly nice about this way of building thread trees is
that there is no explicit representation of the tree as a data
structure, which would involve a lot of bookkeeping and would likely
be prone to errors. The thread tree is completely implicit in the
structure of the calls to withAsync and hence concurrently and
race.
Timeouts Using race

A simple demonstration of the power of race is an implementation of the timeout function from Timeouts.
timeout2.hs

timeout :: Int -> IO a -> IO (Maybe a)
timeout n m
 | n < 0 = fmap Just m
 | n == 0 = return Nothing
 | otherwise = do
 r <- race (threadDelay n) m
 case r of
 Left _ -> return Nothing
 Right a -> return (Just a)
Most of the code here is administrative: checking for negative and
zero timeout values and converting the Either () a result of race
into a Maybe a. The core of the implementation is simply race
(threadDelay n) m.
Pedantically speaking, this implementation of timeout does have a
few differences from the one in Timeouts. First, it doesn’t
have precisely the same semantics in the case where another thread
sends the current thread an exception using throwTo. With the
original timeout, the exception would be delivered to the computation
m, whereas here the exception is delivered to race, which then
terminates m with killThread, and so the exception seen by m
will be ThreadKilled, not the original one that was thrown.
Secondly, the exception thrown to m in the case of a timeout is
ThreadKilled, not a special Timeout exception. This might be
important if the thread wanted to act on the Timeout exception.
Finally, race creates an extra thread, which makes this
implementation of timeout a little less efficient than the one in
Timeouts. You won’t notice the difference unless timeout is
in a critical path in your application, though.

Adding a Functor Instance

When an Async is created, it has a fixed result type corresponding to the type of the value returned by the IO action. But this might
be inconvenient: suppose we need to wait for several different
Asyncs that have different result types. We would like to emulate
the waitAny function defined in Async Revisited:
waitAny :: [Async a] -> IO a
waitAny asyncs =
 atomically $ foldr orElse retry $ map waitSTM asyncs
But if our Asyncs don’t all have the same result type, then we
can’t put them in a list. We could force them all to have
the same type when they are created, but that might be difficult,
especially if we use an Async created by a library function that is
not under our control.
A better solution to the problem is to make Async an instance of
Functor:
class Functor f where
 fmap :: (a -> b) -> f a -> f b
The fmap operation lets us map the result of an
Async into any type we need.
But how can we implement fmap for Async? The type of the result
that the Async will place in the TMVar is fixed when we create the
Async; the definition of Async is the following:
data Async a = Async ThreadId (TMVar (Either SomeException a))
Instead of storing the TMVar in the Async, we need to store
something more compositional that we can compose with the function
argument to fmap to change the result type. One solution is to replace
the TMVar with an STM computation that returns the same type:
data Async a = Async ThreadId (STM (Either SomeException a))
The change is very minor. We only need to move the readTMVar call
from waitCatchSTM to async:
async :: IO a -> IO (Async a)
async action = do
 var <- newEmptyTMVarIO
 t <- forkFinally action (atomically . putTMVar var)
 return (Async t (readTMVar var))
waitCatchSTM :: Async a -> STM (Either SomeException a)
waitCatchSTM (Async _ stm) = stm
And now we can define fmap by building a new STM computation that is
composed from the old one by applying the function argument of fmap
to the result:
instance Functor Async where
 fmap f (Async t stm) = Async t stm'
 where stm' = do
 r <- stm
 case r of
 Left e -> return (Left e)
 Right a -> return (Right (f a))

Summary: The Async API

We visited the Async API several times during the course of the
previous few chapters, each time evolving it to add a new feature or
to fix some undesirable behavior. The addition of the Functor instance
in the previous section represents the last addition I’ll be making to
Async in this book, so it seems like a good point to take a step
back and summarize what has been achieved:
	
We started with a simple API to execute an IO action
 asynchronously (async) and wait for its result (wait).

	
We modified the implementation to catch exceptions in the
 asynchronous code and propagate them to the wait call. This
 avoids a common error in concurrent programming: forgetting to
 handle errors in a child thread.

	
We reimplemented the Async API using STM, which made it possible
 to have efficient implementations of combinators that symmetrically
 wait for multiple Asyncs to complete (waitEither, waitBoth).

	
We added withAsync, which avoids the accidental leakage of threads
 when an exception occurs in the parent thread, thus avoiding another
 common pitfall in concurrent programming.

	
Finally, we combined withAsync with waitEither and waitBoth to
 make the high-level symmetric combinators race and concurrently.
 These two operations can be used to build trees of threads that are
 always collapsed from the bottom up and to propagate errors correctly.

The complete library is available in the async package on Hackage.

Chapter 12. Concurrent Network Servers

Server-type applications that communicate with many clients
simultaneously demand both a high degree of concurrency and high
performance from the I/O subsystem. A good web server should be able
to handle hundreds of thousands of concurrent connections and service
tens of thousands of requests per second.
Ideally, we would like to write these kinds of applications using
threads. A thread is the right abstraction. It allows the developer
to focus on programming the interaction with a single client and then
to lift this interaction to multiple clients by simply forking many
instances of the single-client interaction in separate threads. In
this chapter, we explore this idea by developing a series of
server applications, starting from a trivial server with no
interaction between clients, then adding some shared state, and
finally building a chat server with state and inter-client
interaction.
Along the way, we will need to draw on many of the concepts from
previous chapters. We’ll discuss the design of the server using both
MVar and STM, how to handle failure, and building groups of threads
using the abstractions introduced in Symmetric Concurrency Combinators.
A Trivial Server

In this section, we will consider how to build a simple network server
with the following behavior:
	
The server accepts connections from clients on port 44444.

	
If a client sends an integer n, then the service responds with the value of
 2n.

	
If a client sends the string "end", then the server closes the
 connection.

First, we program the interaction with a single client. The function
talk defined below takes a Handle for communicating with the
client. The Handle will be bound to a network socket so that data
sent by the client can be read from the Handle, and data written to
the Handle will be sent to the client.
server.hs

talk :: Handle -> IO ()
talk h = do
 hSetBuffering h LineBuffering -- [image: 1]
 loop -- [image: 2]
 where
 loop = do
 line <- hGetLine h -- [image: 3]
 if line == "end" -- [image: 4]
 then hPutStrLn h ("Thank you for using the " ++ -- [image: 5]
 "Haskell doubling service.")
 else do hPutStrLn h (show (2 * (read line :: Integer))) -- [image: 6]
 loop -- [image: 7]
	[image: 1]
	
First, we set the buffering mode for the Handle to
line buffering. If we don’t, output sent to the Handle
will be buffered up by the I/O layer until there is a full block
(which is more efficient for large transfers, but not useful for
interactive applications).

	[image: 2]
	
We enter a loop to respond to
requests from the client.

	[image: 3]
	
Each iteration of the loop reads a new line
of text.

	[image: 4]
	
Then it checks whether the client sent "end".

	[image: 5]
	
If so, we emit a polite message and return.

	[image: 6]
	
If not, we attempt to interpret the line as an integer and to
write the value obtained by doubling it.

	[image: 7]
	
Finally, we call loop again to read the next request.

Having dealt with the interaction with a single client, we can now
make this into a multiclient server using concurrency. The main
function for our server is as follows:
main = withSocketsDo $ do
 sock <- listenOn (PortNumber (fromIntegral port)) -- [image: 1]
 printf "Listening on port %d\n" port
 forever $ do -- [image: 2]
 (handle, host, port) <- accept sock -- [image: 3]
 printf "Accepted connection from %s: %s\n" host (show port)
 forkFinally (talk handle) (_ -> hClose handle) -- [image: 4]

port :: Int
port = 44444
	[image: 1]
	
First, we create a network socket to listen on port
44444.

	[image: 2]
	
Then we enter a loop to accept connections from clients.

	[image: 3]
	
This line waits for a new client connection. The accept operation blocks
until a connection request from a client arrives and then returns a
Handle for communicating with the client (here bound to handle) and
some information about the client. Here we bind host to the client’s
hostname and port to the local port that accepted the connection
but use the variables just to log information to the console.

	[image: 4]
	
Next, we call forkFinally to create a new thread to handle the
request. The interaction with the client is delegated to the function
talk that we defined above, to which we pass the handle returned
by the accept call. We defined forkFinally back in
Catching Asynchronous Exceptions.[43] It is used here
to ensure that the Handle is always closed in
the event of an exception in the server thread. If we didn’t do this, then GHC’s garbage collector would eventually close the Handle for us, but it might take a while, and we might run out of Handles in
the meantime (there is usually a fixed limit imposed by the operating
system on the number of open Handles).

Having forked a thread to handle this client, the main thread then
goes back to accepting more connections. All the active client
connections and the main thread run concurrently with each other, so
the fact that the server is handling multiple clients will be
invisible to any individual client.
So making our concurrent server was simple—we did not have to
change the single-client code at all, and the code to lift it to a
concurrent server was only a handful of lines. We can verify that it
works by starting the server in one window:
$./server
In another window, we start a client and try a single
request. We send 22 and get 44 in return.[44]
$ nc localhost 44444
22
44
Next, we leave this client running and start another client:
$ ghc -e 'mapM_ print [1..]' | nc localhost 44444
2
4
6
...
This client exercises the server a bit more by sending it a
continuous stream of numbers to double. For fun, try starting a few
of these. Meanwhile we can switch back to our first client and
observe that it is still being serviced:
$ nc localhost 44444
22
44
33
66
Finally, we can end a single client’s interaction by typing
end:
end
Thank you for using the Haskell doubling service.
This was just a simple example, but the same ideas underlie several
high-performance web server implementations in Haskell. Furthermore,
with no additional effort at all, the same server code can make use of
multiple cores simply by compiling with -threaded and running with
+RTS -N.
There are two technologies that make this structure feasible in
Haskell:
	
GHC’s very lightweight threads mean that having one thread per
 client is practical.

	
GHC’s I/O libraries employ an I/O manager thread that multiplexes
 all the ongoing I/O requests using efficient operating system
 primitives such as epoll on Linux. Thus applications with
 lots of lightweight threads, all doing I/O simultaneously,
 perform very well.

Were it not for lightweight threads and the I/O manager, we would have
to resort to collapsing the structure into a single event loop (or
worse, multiple event loops to take advantage of multiple cores). The
event loop style loses the single-client abstraction. Instead, all
clients have to be dealt with simultaneously, which can be complicated
if there are different kinds of clients with different behaviors.
Furthermore, we have to represent the state of each client somehow,
rather than just writing the straight-line code as we did in talk earlier. Imagine extending talk to implement a more elaborate
protocol with several states—it would be reasonably straightforward
with the single-client abstraction, but if we had to represent each
state and the transitions explicitly, things would quickly get
complicated.
We ignored many details that would be necessary in a real server
application. The reader is encouraged to think about these and try
implementing any required changes on top of the provided sample code:
	
What happens if the user interrupts the server with
 Ctrl+C? (Ctrl+C is implemented by sending an asynchronous
 Interrupted exception to the main thread.)

	
What happens in talk if the line does not parse as a number?

	
What happens if the client cuts the connection prematurely or
 the network goes down?

	
Should there be a limit on the number of clients we serve
 simultaneously?

	
Can we log the activity of the server to a file?

Extending the Simple Server with State

Next, we’ll extend the simple server from the previous section to
include some state that is shared amongst the clients and may be
changed by client actions.
The new behavior is as follows: instead of multiplying each number by
two, the server will multiply each number by the current factor.
Any connected client can change the current factor by sending the
command *N, where
N is an integer. When a client
changes the factor, the server sends a message to all the other
connected clients informing them of the change.
While this seems like a small change in behavior, it introduces some
interesting new challenges in designing the server.
	
There is a shared state—the current factor—so we must decide how to store it and how it is accessed and modified.

	
When one server thread changes the state in response to its client
issuing the *N command, we must
arrange to send a message to all the connected clients.

Let’s explore the design space, taking as a given that we want to
serve each client from a separate thread on the server. Over the
following sections, I’ll outline four possible designs and explain the
pros and cons of each one.
Design One: One Giant Lock

This is the simplest approach. The state of the server is stored
under a single MVar and looks something like this:
data State = State {
 currentFactor :: Int,
 clientHandles :: [Handle]
 }

newtype StateVar = StateVar (MVar State)
Note that the state contains all the Handles of the connected
clients. This is so that if a server thread receives a factor-change
command from its client, it can notify all the other clients of the
change by writing a message to their Handle.
However, we have to be careful. If multiple threads write to a
Handle simultaneously, the messages might get interleaved in an
arbitrary way. To make sure messages don’t get interleaved, we
can use the MVar as a lock. But this means that every server
thread, when it needs to send a message to its client, must hold the
MVar while sending the message.
Clearly, the disadvantage of this model is that there will be lots of
contention for the shared MVar, since even when clients are not
interacting with each other, they still have to take the lock. This
design does not have enough concurrency.
Note that we can’t reduce contention by using finer-grained locking
here because the combination of modifying the state and informing all
the clients must be atomic. Otherwise, the notifications created by
multiple factor-change commands could interleave with one another and
clients may end up being misled about the current factor value.

Design Two: One Chan Per Server Thread

To add more concurrency, we want to design the system so that each
server thread can communicate with its client privately without
interacting with the other server threads. Therefore, the Handle for
communicating with the client must be private to each server thread.
The factor-change command still has to notify all the clients, but
since the server thread is the only thread allowed to communicate with
a client, we must send a message to all the server threads when a
factor-change occurs. Therefore, each server thread must have a Chan
on which it receives messages.
The types in this setup would look like this:
data State = State {
 clientChans :: [Chan Message]
 }

data Message
 = FactorChange Int
 | ClientInput String

newtype StateVar = StateVar (MVar State)
There are two kinds of events that a server thread can act upon:
a factor-change event from another server thread or a line of
input from the client. Therefore, we make a Message type to combine
these two events so that the Chan can carry either. How do the
ClientInput events get generated? We need another thread for each
server thread whose sole job it is to receive lines of input from the
client’s Handle and forward them to the Chan in the form of
ClientInput events. I’ll call this the “receive thread.”
This design is an improvement over the first design, although it does
still have one drawback. A server thread that receives a factor-change
command must iterate over the whole list of Chans sending a
message to each one, and this must be done with the lock held, again
for atomicity reasons. Furthermore, we have to keep the list of
Chans up to date when clients connect and disconnect.

Design Three: Use a Broadcast Chan

To solve the issue that notifying all the clients requires a possibly
expensive walk over the list of Chans, we can use a broadcast
channel instead, where a broadcast channel is an ordinary Chan that
we create a copy of for each server thread using dupChan (see
MVar as a Building Block: Unbounded Channels). When an item is written to the broadcast channel,
it will appear on all the copies.
So in this design, the only shared state we need is a single broadcast
channel, which doesn’t even need to be stored in an MVar (because it
never changes). The messages sent on the broadcast channel are new
factor values. Because all server threads will see messages on this
channel in the same order, they all have a consistent view of the state.
newtype State = State { broadcastChan :: Chan Int }
However, there is one wrinkle with this design. The server thread
must listen both for events on the broadcast channel and for input from
the client. To merge these two kinds of events, we’ll need a Chan as
in the previous design, a receive thread to forward the client’s
input, and another thread to forward messages from the broadcast
channel. Hence this design needs a total of three threads per client.
The setup is summarized by the diagram in Figure 12-1.
[image: Server structure with Chan]

Figure 12-1. Server structure with Chan

Design Four: Use STM

We can improve on the previous design further by using STM. With STM,
we can avoid the broadcast channel by storing the current factor in a
single shared TVar:
newtype State = State { currentFactor :: TVar Int }
An STM transaction can watch for changes in the TVar’s value using
the technique that we saw in Blocking Until Something Changes, so we
don’t need to explicitly send messages when it changes.
Furthermore, as we saw in Merging with STM, we can merge multiple
sources of events in STM without using extra threads. We do need a
receive thread to forward input from the client because an STM
transaction can’t wait for IO, but that’s all. This design needs two
threads per client. The overall structure is depicted in
Figure 12-2.
[image: Server structure with STM]

Figure 12-2. Server structure with STM

For concreteness, let’s walk through the sequence of events that take
place in this setup when a client issues a
*N command:
	
The receive thread reads the *N
 command from the Handle, and forwards it to the server thread’s
 TChan.

	
The server thread receives the command on its TChan and modifies
 the shared TVar containing the current factor.

	
The change of value in the TVar is noticed by the other server
 threads, which all report the new value to their respective clients.

The Implementation

STM results in the simplest architecture, so we’ll develop our
solution using that. First, the main function, which has a couple
of changes compared with the previous version:
server2.hs

main = withSocketsDo $ do
 sock <- listenOn (PortNumber (fromIntegral port))
 printf "Listening on port %d\n" port
 factor <- atomically $ newTVar 2 -- [image: 1]
 forever $ do
 (handle, host, port) <- accept sock
 printf "Accepted connection from %s: %s\n" host (show port)
 forkFinally (talk handle factor) (_ -> hClose handle) -- [image: 2]

port :: Int
port = 44444
	[image: 1]
	
Here, we create the TVar that contains the current factor and
initialize its value to 2.

	[image: 2]
	
The talk function now takes the factor TVar as an
additional argument.

The talk function sets up the threads to handle the new client
connection:
talk :: Handle -> TVar Integer -> IO ()
talk h factor = do
 hSetBuffering h LineBuffering
 c <- atomically newTChan -- [image: 1]
 race (server h factor c) (receive h c) -- [image: 2]
 return ()
	[image: 1]
	
Creates the new TChan that will carry the messages from the
receive thread.

	[image: 2]
	
Creates the server and receive threads. (The
server and receive functions will be defined shortly.) Note that we are using
race from Symmetric Concurrency Combinators. race is particularly useful
here because we want to set up a sibling relationship between the two
threads. If either thread fails for any reason, then we want to cancel the
other thread and raise the exception, which will cause the client
connection to be cleanly shut down. Furthermore, race gives us the
ability to terminate one thread by simply returning from the other. We
don’t intend the receive thread to ever voluntarily terminate, but
it is useful to be able to shut down cleanly by just returning from
the server thread.

The receive function repeatedly reads a line from the Handle and
writes it to the TChan:
receive :: Handle -> TChan String -> IO ()
receive h c = forever $ do
 line <- hGetLine h
 atomically $ writeTChan c line
Next, we have the server thread, where most of the application logic
resides.
server :: Handle -> TVar Integer -> TChan String -> IO ()
server h factor c = do
 f <- atomically $ readTVar factor -- [image: 1]
 hPrintf h "Current factor: %d\n" f -- [image: 2]
 loop f -- [image: 3]
 where
 loop f = do
 action <- atomically $ do -- [image: 4]
 f' <- readTVar factor -- [image: 5]
 if (f /= f') -- [image: 6]
 then return (newfactor f') -- [image: 7]
 else do
 l <- readTChan c -- [image: 8]
 return (command f l) -- [image: 9]
 action

 newfactor f = do -- [image: 10]
 hPrintf h "new factor: %d\n" f
 loop f

 command f s -- [image: 11]
 = case s of
 "end" ->
 hPutStrLn h ("Thank you for using the " ++
 "Haskell doubling service.") -- [image: 12]
 '*':s -> do
 atomically $ writeTVar factor (read s :: Integer) -- [image: 13]
 loop f
 line -> do
 hPutStrLn h (show (f * (read line :: Integer)))
 loop f
	[image: 1]
	
Read the current value of the factor.

	[image: 2]
	
Report the current factor value to the client.

	[image: 3]
	
Then we enter the loop.

	[image: 4]
	
The overall structure is as follows: loop waits for the next
event, which is either a change in the factor or a command from the client, and
calls newfactor or command, respectively. The newfactor and
command functions take whatever action is necessary and then call back to
loop to process the next event. The loop function itself is implemented as an STM transaction that
returns an IO action, which is then performed. This is a common
pattern in STM. Since we can’t invoke IO from inside STM, the
transaction instead returns an IO action which is invoked by the
caller of atomically.[45]

	[image: 5]
	
In the transaction, first we read the current factor.

	[image: 6]
	
Next, we compare it against the value we previously read, in f.

	[image: 7]
	
If the two are different, indicating that the factor has been
changed, then we call the newfactor function.

	[image: 8]
	
If the factor has not been changed, we read from the TChan.
This may retry if the channel is empty, but note that in the event
of a retry, the transaction will be re-executed if either the
factor TVar or the TChan changes. You can think of this
transaction as a composition of two blocking operations: waiting for
the factor TVar to change, and reading from the TChan. But we can
code it without orElse thanks to the following equality:

 (if A then retry else B) `orElse` C ==> if A then C else B
(Convince yourself that the two versions do the same thing, and also
consider why it isn’t possible to always transform away an
orElse). Sometimes it isn’t necessary to use orElse to compose
blocking operations in STM.

	[image: 9]
	
Having read a line of input from the TChan, we call command to
act upon it.

	[image: 10]
	
The newfactor function reports the change in factor to the
client and continues with loop.

	[image: 11]
	
The command function executes a command received from the
client.

	[image: 12]
	
If the client said end, then we terminate the connection by
simply returning, instead of recursively calling loop. As mentioned
earlier, this will cause race to terminate the receive thread.

	[image: 13]
	
If the client requests a change in factor, then we update the
global factor value and call loop, passing the old factor value.
Thus the transaction will immediately notice the change in factor and
report it, giving the client confirmation that the factor was changed.

Try this server yourself by compiling and running the server2.hs
program. Start up a few clients with the nc program (or another
suitable telnet-style application) and check that it is working as
expected. Test the error handling: what happens when you close the
client connection without sending the end command, or if you send a
non-number? You might want to add some additional debugging output to
various parts of the program in order to track more clearly what is happening.

A Chat Server

Continuing on from the simple server examples in the previous sections,
we now consider a more realistic example: a network chat server. A
chat server enables multiple clients to connect and type messages to
one another interactively. Real chat servers (e.g., IRC) have multiple
channels and allow clients to choose which channels to participate in. For simplicity, we will be building a chat server that has a single
channel, whereby every message is seen by every client.
The informal specification for the server is as follows:
	
When a client connects, the server requests the name that the client
 will be using. The client must choose a name that is not currently
 in use; otherwise, the server will request that the user choose a
 different name.

	
Each line received from the client is interpreted as a command,
 which is one of the following:

	
/tell name message

	
 Sends message to the user name.

	
/kick name

	
 Disconnects user name.[46]

	
/quit

	
 Disconnects the current client.

	
message

	
 Any other string (not beginning with /) is broadcast as a
 message to all the connected clients.

	
Whenever a client connects or disconnects, all other connected
 clients are notified.

	
We will be handling errors correctly and aiming for consistent
 behavior. For example, when two clients connect at the same time,
 one of them is always deemed to have connected first and gets
 notified about the other client connecting.

	
If two clients simultaneously try to kick each other, only one
 of them will succeed. This may seem obvious, but as we shall see it
 is easy to get this wrong.

Architecture

As in the factor example of the previous section, the requirements
dictate that a server thread must act on events from multiple sources:
input from the client over the network, /tell messages and
broadcasts from other clients, being kicked by another client, and
clients connecting or disconnecting,
The basic architecture will be similar. We need a receive thread to
forward the network input into a TChan and a server thread to wait
for the different kinds of events and act upon them. Compared to the
previous example, though, we have a lot more shared state. A client
needs to be able to send messages to any other client, so the set of
clients and their corresponding TChans must be shared.
We should consider how to handle /kick because we want to guarantee
that two clients cannot simultaneously kick each other. This implies
some synchronized, shared state for each client to
indicate whether it has been kicked. A server thread can then check
that it has not already been kicked itself before kicking another
client. To inform the victim that it has been kicked, we could send a
message to its TChan, but because we are using STM, we might as well
just watch the global state for changes as we did in the factor
example in the previous section.
Next, we need to consider how the various events (apart from /kick)
arrive at the server thread. There is input from the client over the
network and also messages from other clients to be sent back to this
client. We could use separate TChans for the different kinds of
events, but it is slightly better to use just one; the ordering on
events is retained, which makes things more predictable for the
client. So the design we have so far is a TVar to indicate whether
the client has been kicked and a TChan to carry both network input
and events from other clients.

Client Data

Now that we have established the main architectural design, we can
fill in the details. In the previous examples, we passed around the
various pieces of state explicitly, but now that things are more
complicated, it will help to separate the state into the global server
state and the per-client state. The per-client state is defined as
follows:
chat.hs

type ClientName = String

data Client = Client
 { clientName :: ClientName
 , clientHandle :: Handle
 , clientKicked :: TVar (Maybe String)
 , clientSendChan :: TChan Message
 }
We have one TVar indicating whether this client has been
kicked (clientKicked). Normally, this TVar contains Nothing, but
after the client is kicked, the TVar contains Just s, where s
is a string describing the reason for the client being kicked.
The TChan clientSendChan carries all the other messages that may be
sent to a client. These have type Message:
data Message = Notice String
 | Tell ClientName String
 | Broadcast ClientName String
 | Command String
Where, respectively: Notice is a message from the server,
Tell is a private message from another client, Broadcast is a
public message from another client, and Command is a line of text
received from the user (via the receive thread).
We need a way to construct a new instance of Client, which is
Straightforward:
newClient :: ClientName -> Handle -> STM Client
newClient name handle = do
 c <- newTChan
 k <- newTVar Nothing
 return Client { clientName = name
 , clientHandle = handle
 , clientSendChan = c
 , clientKicked = k
 }
Next, we define a useful function for sending a Message to a given
Client:
sendMessage :: Client -> Message -> STM ()
sendMessage Client{..} msg =
 writeTChan clientSendChan msg
The syntax Client{..} is a record wildcard pattern, which brings
into scope all the fields of the Client record with their
declared names. In this case, we are using only clientSendChan, but
when there are lots of fields it is a convenient shorthand, so we will
be using it quite often from here on. (Remember to enable the
RecordWildCards extension to use this syntax.)
Note that this function is in the STM monad, not IO. We
will be using it inside some STM transactions later.

Server Data

The data structure that stores the server state is just a TVar
containing a mapping from ClientName to Client.
data Server = Server
 { clients :: TVar (Map ClientName Client)
 }

newServer :: IO Server
newServer = do
 c <- newTVarIO Map.empty
 return Server { clients = c }
This state must be accessible from all the clients, because each
client needs to be able to broadcast to all the others. Furthermore,
new clients need to ensure that they are choosing a username that is
not already in use and hence the set of active usernames is
shared knowledge.
Here is how we broadcast a Message to all the clients:
broadcast :: Server -> Message -> STM ()
broadcast Server{..} msg = do
 clientmap <- readTVar clients
 mapM_ (\client -> sendMessage client msg) (Map.elems clientmap)

The Server

Now we will work top-down and write the code of the server. The
main function is almost identical to the one in the previous section:
main :: IO ()
main = withSocketsDo $ do
 server <- newServer
 sock <- listenOn (PortNumber (fromIntegral port))
 printf "Listening on port %d\n" port
 forever $ do
 (handle, host, port) <- accept sock
 printf "Accepted connection from %s: %s\n" host (show port)
 forkFinally (talk handle server) (_ -> hClose handle)

port :: Int
port = 44444
The only difference is that we create a new empty server
state up front by calling newServer and pass this to each new
client as an argument to talk.

Setting Up a New Client

When a new client connects, we need to do the following tasks:
	
Ask the client for a username.

	
If the username already exists, ask the client to choose another name.

	
Otherwise, create a new Client and insert it into the Server
 state, ensuring that the Client will be removed when it
 disconnects or any failure occurs.

	
Notify all existing clients that the new client has connected.

	
Set up the threads to handle the client connection and start
 processing messages.

Let’s start by defining an auxiliary function checkAddClient, which
takes a username and attempts to add a new client with that name to
the state, returning Nothing if a client with that name already
exists, or Just client if the addition was successful. It also
broadcasts the event to all the other connected clients:
checkAddClient :: Server -> ClientName -> Handle -> IO (Maybe Client)
checkAddClient server@Server{..} name handle = atomically $ do
 clientmap <- readTVar clients
 if Map.member name clientmap
 then return Nothing
 else do client <- newClient name handle
 writeTVar clients $ Map.insert name client clientmap
 broadcast server $ Notice (name ++ " has connected")
 return (Just client)
And we will need a corresponding removeClient that removes
the client again:
removeClient :: Server -> ClientName -> IO ()
removeClient server@Server{..} name = atomically $ do
 modifyTVar' clients $ Map.delete name
 broadcast server $ Notice (name ++ " has disconnected")
Now we can put the pieces together. Unfortunately we can’t reach for
the usual tool for these situations, namely bracket, because our
“resource acquisition” (checkAddClient) is conditional. So we
need to write the code out explicitly:
talk :: Handle -> Server -> IO ()
talk handle server@Server{..} = do
 hSetNewlineMode handle universalNewlineMode
 -- Swallow carriage returns sent by telnet clients
 hSetBuffering handle LineBuffering
 readName
 where
 readName = do
 hPutStrLn handle "What is your name?"
 name <- hGetLine handle
 if null name
 then readName
 else do
 ok <- checkAddClient server name handle -- [image: 1]
 case ok of
 Nothing -> do -- [image: 2]
 hPrintf handle
 "The name %s is in use, please choose another\n" name
 readName
 Just client -> -- [image: 3]
 runClient server client
 `finally` removeClient server name
	[image: 1]
	
After reading the requested username from the client, we attempt
to add it to the server state with checkAddClient.

	[image: 2]
	
If we were unsuccessful, then print a message to the client, and
recursively call readName to read another name.

	[image: 3]
	
If we were successful, then call a function named runClient (to be
defined shortly) to handle the client interaction and use finally
to arrange that whatever happens, we eventually call removeClient to
remove this client from the state.

This is almost right, but strictly speaking we should mask
asynchronous exceptions to eliminate the possibility that an exception
is received just after checkAddClient but before runClient, which
would leave a stale client in the state. This is what bracket would
have done for us, but because we’re rolling our own logic here, we have
to handle the exception safety, too (for reference, the definition of
bracket is given in Asynchronous Exception Safety for Channels).
The correct version of readName is as follows:
 readName = do
 hPutStrLn handle "What is your name?"
 name <- hGetLine handle
 if null name
 then readName
 else mask $ \restore -> do -- [image: 1]
 ok <- checkAddClient server name handle
 case ok of
 Nothing -> restore $ do -- [image: 2]
 hPrintf handle
 "The name %s is in use, please choose another\n" name
 readName
 Just client ->
 restore (runClient server client) -- [image: 3]
 `finally` removeClient server name
	[image: 1]
	
We mask asynchronous exceptions.

	[image: 2]
	
We restore them again before trying again if the name was already in use.

	[image: 3]
	
If the name is accepted, then we unmask asynchronous
exceptions when calling runClient but being careful to do it inside
the argument to finally so there’s no danger that a stale Client
will be left in the state.

Running the Client

Having initialized the client, created the Client data structure, and
added it to the Server state, we now need to create the client
threads themselves and start processing events. The main
functionality of the client will be implemented in a function called
runClient:
runClient :: Server -> Client -> IO ()
runClient returns or throws an exception only when the client
is to be disconnected. Recall that we need two threads per client: a
receive thread to read from the network socket and a server
thread to listen for messages from other clients and to send messages
back over the network. As before, we can use race to create the two
threads with a sibling relationship so that if either thread returns
or fails, the other will be cancelled.
runClient :: Server -> Client -> IO ()
runClient serv@Server{..} client@Client{..} = do
 race server receive
 return ()
 where
 receive = forever $ do
 msg <- hGetLine clientHandle
 atomically $ sendMessage client (Command msg)

 server = join $ atomically $ do
 k <- readTVar clientKicked
 case k of
 Just reason -> return $
 hPutStrLn clientHandle $ "You have been kicked: " ++ reason
 Nothing -> do
 msg <- readTChan clientSendChan
 return $ do
 continue <- handleMessage serv client msg
 when continue $ server
So runClient is just race applied to the server and
receive threads. In the receive thread, we read one line at a time
from the client’s Handle and forward it to the server thread as a
Command message.
In the server thread, we have a transaction that tests two pieces of
state: first, the clientKicked TVar, to see whether this client
has been kicked. If it has not, then we take the next message from
clientSendChan and act upon it. Note that this time, we have
expressed server using join applied to the STM transaction: the
join function is from Control.Monad and has the following type:
join :: Monad m => m (m a) -> m a
Here, m is instantiated to IO. The STM transaction
returns an IO action, which is run by join, and in most cases this
IO action returned will recursively invoke server.
The handleMessage function acts on a message and
is entirely straightforward:
handleMessage :: Server -> Client -> Message -> IO Bool
handleMessage server client@Client{..} message =
 case message of
 Notice msg -> output $ "*** " ++ msg
 Tell name msg -> output $ "*" ++ name ++ "*: " ++ msg
 Broadcast name msg -> output $ "<" ++ name ++ ">: " ++ msg
 Command msg ->
 case words msg of
 ["/kick", who] -> do
 atomically $ kick server who clientName
 return True
 "/tell" : who : what -> do
 tell server client who (unwords what)
 return True
 ["/quit"] ->
 return False
 ('/':_):_ -> do
 hPutStrLn clientHandle $ "Unrecognized command: " ++ msg
 return True
 _ -> do
 atomically $ broadcast server $ Broadcast clientName msg
 return True
 where
 output s = do hPutStrLn clientHandle s; return True
Note that the function returns a Bool to indicate whether the caller
should continue to handle more messages (True) or exit (False).

Recap

We have now given most of the code for the chat server. The full code
is less than 250 lines total, which is not at all bad considering that
we have implemented a complete and usable chat server. Moreover, without
changes the server will scale to many thousands of connections and
can make use of multiple CPUs if they are available.
There were two tools that helped a lot here:
	
race

	
Helped to create threads that propagate errors to their
parents and are automatically cancelled when their siblings terminate.

	
STM

	
Helped to build consistency properties, such as the requirement that two clients may not kick each other simultaneously, and helps
when we need to handle multiple sources of events.

Care should be taken with STM with respect to performance, though. Take a look at the definition of broadcast in Server Data. It is an STM
transaction that operates on an unbounded number of TChans and thus
builds an unbounded transaction. We noted earlier in
Performance that long transactions should be avoided because
they cost O(n2). Hence, broadcast should be reimplemented to
avoid this. As an exercise, why not try to fix this yourself: one way to do it
would be to use a broadcast channel.

[43] It is provided by
Control.Concurrent in GHC 7.6.1 and later.

[44] nc is the netcat program, which is useful for simple network
 interaction. You can also use telnet if nc is not available.

[45] In fact, this pattern is more
succinctly expressed using Control.Monad.join, but here it is
written without join for clarity.

[46] In real chat servers, this command would typically be available only to privileged users, but for simplicity here we will allow any user to kick any other user.

Chapter 13. Parallel Programming Using Threads

We have been discussing concurrency as a means to modularize programs
with multiple interactions. For instance,
concurrency allows a network server to interact with a multitude of clients
simultaneously while letting you separately write and maintain code that deals with only a single client at a
time. Sometimes these interactions are batch-like operations that we
want to overlap, such as when downloading multiple URLs
simultaneously. There the goal was to speed up the program by
overlapping the I/O, but it is not true parallelism because we don’t
need multiple processors to achieve a speedup; the speedup was
obtained by overlapping the time spent waiting for multiple web
servers to respond.
But concurrency can also be used to achieve true parallelism. In
this book, we have tried to emphasize the use of the parallel
programming models—Eval, Strategies, the Par monad, and so on—for
parallelism where possible, but there are some problems for which
these pure parallel programming models cannot be used. These are the two main
classes of problem:
	
Problems where the work involves doing some I/O

	
Algorithms that rely on some nondeterminism internally

Having side effects does not necessarily rule out the use of
parallel programming models because Haskell has the ST monad for
encapsulating side-effecting computations. However, it is typically
difficult to use parallelism within the ST monad, and in that case
probably the only solution is to drop down to concurrency unless your
problem fits into the Repa model (Chapter 5).
How to Achieve Parallelism with Concurrency

In many cases, you can achieve parallelism by forking a few
threads to do the work. The Async API can help by propagating
errors appropriately and cleaning up threads. As with the parallel
programs we saw in Part I, you need to do two things to run
a program on multiple cores:
	
Compile the program with -threaded.

	
Run the program with +RTS -Ncores where
cores is the number of cores to
use, e.g., +RTS -N2 to use two cores. Alternatively, use +RTS -N to
use all the cores in your machine.

When multiple cores are available, the GHC runtime system
automatically migrates threads between cores so that no cores are left
idle. Its load-balancing algorithm isn’t very sophisticated, though,
so don’t expect the scheduling policy to be fair, although it does try
to ensure that threads do not get starved.
Many of the issues that we saw in Part I also arise when
using concurrency to program parallelism; for example, static
versus dynamic partitioning, and granularity. Forking a fixed number of
threads will gain only a fixed amount of parallelism, so instead you
probably want to fork plenty of threads to ensure that the program
scales beyond a small number of cores. On the other hand, forking too many threads
creates overhead that we want to avoid. The next section tackles these issues in
the context of a concrete example.

Example: Searching for Files

We start by considering how to parallelize a simple program that
searches the filesystem for files with a particular name. The program
takes a filename to search for and the root directory for the search
as arguments, and prints either Just p if the file was found with
pathname p or Nothing if it was not found.
This problem may be either I/O-bound or compute-bound, depending on
whether the filesystem metadata is already cached in memory or not,
but luckily the same solution will allow us to parallelize the work in
both cases.
Sequential Version

The search is implemented in a recursive function find, which takes
the string to search for and the directory to start searching from,
respectively, and returns a Maybe FilePath indicating whether the
file was found (and its path) or not. The algorithm is a recursive
walk over the filesystem, using the functions getDirectoryContents
and doesDirectoryExist from System.Directory:
findseq.hs

find :: String -> FilePath -> IO (Maybe FilePath)
find s d = do
 fs <- getDirectoryContents d -- [image: 1]
 let fs' = sort $ filter (`notElem` [".",".."]) fs -- [image: 2]
 if any (== s) fs' -- [image: 3]
 then return (Just (d </> s))
 else loop fs' -- [image: 4]
 where
 loop [] = return Nothing -- [image: 5]
 loop (f:fs) = do
 let d' = d </> f -- [image: 6]
 isdir <- doesDirectoryExist d' -- [image: 7]
 if isdir
 then do r <- find s d' -- [image: 8]
 case r of
 Just _ -> return r -- [image: 9]
 Nothing -> loop fs -- [image: 10]
 else loop fs -- [image: 11]
	[image: 1]
	
Read the list of filenames in the directory d.

	[image: 2]
	
Filter out "." and ".." (the two special entries
corresponding to the current and the parent directory, respectively).
We also sort the list so that the search is deterministic.

	[image: 3]
	
If the filename we are looking for is in the current directory,
then return the result: d </> s is the filename constructed by
appending the filename s to the directory d.

	[image: 4]
	
If the filename was not found, then loop over the filenames in the
directory d, recursively searching each one that is a
subdirectory.

	[image: 5]
	
In the loop, if we reach the end of the list, then we did not find the
file. Return Nothing.

	[image: 6]
	
For a filename f, construct the full path d </> f.

	[image: 7]
	
Ask whether this pathname corresponds to a directory.

	[image: 8]
	
If it does, then make a recursive call to find to search the
subdirectory.

	[image: 9]
	
If the file was found in this subdirectory, then return the name.

	[image: 10]
	
Otherwise, loop to search the rest of the subdirectories.

	[image: 11]
	
If the name was not a directory, then loop again to search the
rest.

The main function that wraps find into a program expects two command-line arguments and passes them as the arguments to find:
main :: IO ()
main = do
 [s,d] <- getArgs
 r <- find s d
 print r
To search a tree consisting of about 7 GB of source code on
my computer, this program takes 1.14s when all the metadata is
in the cache.[47] The program isn’t as efficient as it could be. The
system find program is about four times faster, mainly because the
Haskell program is using the notoriously inefficient String type
and doing Unicode conversion. If you were optimizing this program for real, it would obviously be important to fix these inefficiencies before trying to parallelize it, but we gloss over that here.

Parallel Version

Parallelizing this program is not entirely straightforward because
doing it naively could waste a lot of work; if we search multiple
subdirectories concurrently and we find the file in one subdirectory,
then we would like to stop searching the others as soon as possible.
Moreover, if an error is encountered at any point, then we need to
propagate the exception correctly. We must be careful to keep the
deterministic behavior of the sequential version, too. If we encounter
an error while searching a subtree, then the error should not prevent the
return of a correct result if the sequential program would have done
so.
To implement this, we’re going to use the Async API with its
withAsync facility for creating threads and automatically cancelling
them later. This is just what we need for spawning threads to search
subtrees: the search threads should be automatically cancelled as soon
as we have a result for a subtree.
Recall the type of withAsync:
withAsync :: IO a -> (Async a -> IO b) -> IO b
It takes the inner computation as its second argument. So to set off
several searches in parallel, we have to nest multiple calls of
withAsync. This implies a fold of some kind, and furthermore we
need to collect up the Async values so we can wait for the
results. The function we are going to fold is this:
subfind :: String -> FilePath
 -> ([Async (Maybe FilePath)] -> IO (Maybe FilePath))
 -> [Async (Maybe FilePath)] -> IO (Maybe FilePath)

subfind s p inner asyncs = do
 isdir <- doesDirectoryExist p
 if not isdir
 then inner asyncs
 else withAsync (find s p) $ \a -> inner (a:asyncs)
The subfind function takes the string to search for, s, the path
to search, p, the inner IO computation, inner, and the list of
Asyncs, asyncs. If the path corresponds to a directory, we
create a new Async to search it using withAsync, and inside
withAsync we call inner, passing the original list of Asyncs
with the new one prepended. If the pathname is not a directory, then we
simply invoke the inner computation without creating a new Async.
Using this piece, we can now update the find function to create a
new Async for each subdirectory:
findpar.hs

find :: String -> FilePath -> IO (Maybe FilePath)
find s d = do
 fs <- getDirectoryContents d
 let fs' = sort $ filter (`notElem` [".",".."]) fs
 if any (== s) fs'
 then return (Just (d </> s))
 else do
 let ps = map (d </>) fs' -- [image: 1]
 foldr (subfind s) dowait ps [] -- [image: 2]
 where
 dowait as = loop (reverse as) -- [image: 3]

 loop [] = return Nothing
 loop (a:as) = do -- [image: 4]
 r <- wait a
 case r of
 Nothing -> loop as
 Just a -> return (Just a)
The differences from the previous find are as follows:
	[image: 1]
	
Create the list of pathnames by prepending d to each filename.

	[image: 2]
	
Fold subfind over the list of pathnames, creating the
nested sequence of withAsync calls to create the child threads. The
inner computation is the function dowait, defined next.

	[image: 3]
	
dowait enters a loop to wait for each Async to finish, but
first we must reverse the list. The fold generated the list in reverse
order, and to make sure we retain the same behavior as the sequential
version, we must check the results in the same order.

	[image: 4]
	
The loop function loops over the list of Asyncs and calls
wait for each one. If any of the Asyncs returns a Just
result, then loop immediately returns it. Returning from here will
cause all the Asyncs to be cancelled, as we return up through the
nest of withAsync calls. Similarly, if an error occurs inside any
of the Async computations, then the exception will propagate from the
wait and cancel all the other Asyncs.

Performance and Scaling

You might wonder whether creating a thread for every subdirectory is
expensive, both in terms of time and space. Let’s compare findseq
and findpar on the same 7 GB tree of source code, searching for a file that does not exist so that the search is forced to traverse the whole tree:
$./findseq nonexistent ~/code +RTS -s
Nothing
 2,392,886,680 bytes allocated in the heap
 76,466,184 bytes copied during GC
 1,179,224 bytes maximum residency (26 sample(s))
 37,744 bytes maximum slop
 4 MB total memory in use (0 MB lost due to fragmentation)

 MUT time 1.05s (1.06s elapsed)
 GC time 0.07s (0.07s elapsed)
 Total time 1.13s (1.13s elapsed)
$./findpar nonexistent ~/code +RTS -s
Nothing
 2,523,910,384 bytes allocated in the heap
 601,596,552 bytes copied during GC
 34,332,168 bytes maximum residency (21 sample(s))
 1,667,048 bytes maximum slop
 80 MB total memory in use (0 MB lost due to fragmentation)

 MUT time 1.28s (1.29s elapsed)
 GC time 1.16s (1.16s elapsed)
 Total time 2.44s (2.45s elapsed)
The parallel version does indeed take about twice as long, and it
needs a lot more memory (80 MB compared to 4 MB). But let’s see how
well it scales, first with two processors:
$./findpar nonexistent ~/code +RTS -s -N2
Nothing
 2,524,242,200 bytes allocated in the heap
 458,186,848 bytes copied during GC
 26,937,968 bytes maximum residency (21 sample(s))
 1,242,184 bytes maximum slop
 62 MB total memory in use (0 MB lost due to fragmentation)

 MUT time 1.28s (0.65s elapsed)
 GC time 0.86s (0.43s elapsed)
 Total time 2.15s (1.08s elapsed)
We were lucky. This program scales super-linearly (better than double
performance with two cores), and just about beats the sequential
version when using -N2. The reason for super-linear performance may
be because running in parallel allowed some of the data structures to
be garbage-collected earlier than they were when running sequentially. Note the lower GC time compared with findseq and the lower memory use compared with the single-processor findpar. Running with -N4
shows the good scaling continue:
$./findpar nonexistent ~/code +RTS -s -N4
Nothing
 2,524,666,176 bytes allocated in the heap
 373,621,096 bytes copied during GC
 23,306,264 bytes maximum residency (23 sample(s))
 1,084,456 bytes maximum slop
 55 MB total memory in use (0 MB lost due to fragmentation)

 MUT time 1.42s (0.36s elapsed)
 GC time 0.83s (0.21s elapsed)
 Total time 2.25s (0.57s elapsed)
Relative to the sequential program, this is a speedup of two on four cores. Not bad, but we ought to be able to do better.

Limiting the Number of Threads with a Semaphore

The findpar program is scaling quite nicely, which indicates that there is plenty of parallelism available. Indeed, a quick glance at a
ThreadScope profile confirms this (Figure 13-1).
[image: findpar ThreadScope profile]

Figure 13-1. findpar ThreadScope profile

So the reason for the lack of speedup relative to the sequential
version is the extra overhead in the parallel program.
To improve performance, therefore, we need to focus on reducing the overhead.
The obvious target is the creation of an Async, and therefore a thread, for every single subdirectory. This is a classic granularity problem—the granularity is too fine.
One solution to granularity is chunking, where we increase the grain size by making larger chunks of work (we used this technique with the
K-Means example in Parallelizing K-Means). However, here the
computation is tree-shaped, so we can’t easily chunk. A depth
threshold is more appropriate for divide-and-conquer algorithms, as we
saw in Example: A Conference Timetable, but here the problem is that the
tree shape is dependent on the filesystem structure and is therefore
not naturally balanced. The tree could be very unbalanced—most of
the work might be concentrated in one deep subdirectory. (The reader
is invited to try adding a depth threshold to the program and
experiment to see how well it works.)
So here we will try a different approach. Remember that what we are
trying to do is limit the number of threads created so we have
just the right amount to keep all the cores busy. So let’s program
that behavior explicitly: keep a shared counter representing the
number of threads we are allowed to create, and if the counter reaches
zero we stop creating new ones and switch to the sequential algorithm.
When a thread finishes, it increases the counter so that another
thread can be created.
A counter used in this way is often called a semaphore. A semaphore
contains a number of units of a resource and has two operations:
acquire a unit of the resource or release one. Typically, acquiring a
unit of the resource would block if there are no units available,
but in our case we want something simpler. If there are no units
available, then the program will do something different (fall back to the
sequential algorithm). There are of course semaphore implementations
for Concurrent Haskell available on Hackage, but since we only need a
nonblocking semaphore, the implementation is quite straightforward, so
we will write our own. Furthermore, we will need to tinker with the
semaphore implementation later.
The nonblocking semaphore is called NBSem:
findpar2.hs

newtype NBSem = NBSem (MVar Int)

newNBSem :: Int -> IO NBSem
newNBSem i = do
 m <- newMVar i
 return (NBSem m)

tryAcquireNBSem :: NBSem -> IO Bool
tryAcquireNBSem (NBSem m) =
 modifyMVar m $ \i ->
 if i == 0
 then return (i, False)
 else let !z = i-1 in return (z, True)

releaseNBSem :: NBSem -> IO ()
releaseNBSem (NBSem m) =
 modifyMVar m $ \i ->
 let !z = i+1 in return (z, ())
We used an MVar to implement the NBSem, with straightforward tryAcquireNBSem and releaseNBSem operations to acquire a unit and
release a unit of the resource, respectively. The implementation uses
things we have seen before, e.g., modifyMVar for operating on the MVar.
We will use the semaphore in subfind, which is where we implement the new decision about whether to create a new Async or not:
subfind :: NBSem -> String -> FilePath
 -> ([Async (Maybe FilePath)] -> IO (Maybe FilePath))
 -> [Async (Maybe FilePath)] -> IO (Maybe FilePath)

subfind sem s p inner asyncs = do
 isdir <- doesDirectoryExist p
 if not isdir
 then inner asyncs
 else do
 q <- tryAcquireNBSem sem -- [image: 1]
 if q
 then do
 let dofind = find sem s p `finally` releaseNBSem sem -- [image: 2]
 withAsync dofind $ \a -> inner (a:asyncs)
 else do
 r <- find sem s p -- [image: 3]
 case r of
 Nothing -> inner asyncs
 Just _ -> return r
	[image: 1]
	
When we encounter a subdirectory, first try to acquire a unit of the semaphore.

	[image: 2]
	
If we successfully grabbed a unit, then create an Async as
before, but now the computation in the Async has an additional
finally call to releaseNBSem, which releases the unit of the
semaphore when this Async has completed.

	[image: 3]
	
If we didn’t get a unit of the semaphore, then we do a synchronous
call to find instead of an asynchronous one. If this find returns
an answer, then we can return it; otherwise, we continue to perform the
inner action.

The changes to the find function are straightforward, just pass around the NBSem. In main, we need to create the NBSem, and the
main question is how many units to give it to start with. For now, we
defer that question and make the number of units into a command-line
parameter:
findpar2.hs

main = do
 [n,s,d] <- getArgs
 sem <- newNBSem (read n)
 find sem s d >>= print
Let’s see how well this performs. First, set n to zero so we never
create any Asyncs, and this will tell us whether the NBSem has
any impact on performance compared to the plain sequential version:
$./findpar2 0 nonexistent ~/code +RTS -N1 -s
Nothing
 2,421,849,416 bytes allocated in the heap
 84,264,920 bytes copied during GC
 1,192,352 bytes maximum residency (34 sample(s))
 33,536 bytes maximum slop
 4 MB total memory in use (0 MB lost due to fragmentation)

 MUT time 1.09s (1.10s elapsed)
 GC time 0.08s (0.08s elapsed)
 Total time 1.18s (1.18s elapsed)
This ran in 1.18s, which is close to the 1.14s that the sequential
program took, so the NBSem impacts performance by around 4% (these
numbers are quite stable over several runs).
Now to see how well it scales. Remember that the value we choose for
n is the number of additional threads that the program will use, aside from the main thread. So choosing n == 1 gives us 2 threads,
for example. With n == 1 and +RTS -N2:
$./findpar2 1 nonexistent ~/code +RTS -N2 -s
Nothing
 2,426,329,800 bytes allocated in the heap
 90,600,280 bytes copied during GC
 2,399,960 bytes maximum residency (40 sample(s))
 80,088 bytes maximum slop
 6 MB total memory in use (0 MB lost due to fragmentation)

 MUT time 1.23s (0.65s elapsed)
 GC time 0.16s (0.08s elapsed)
 Total time 1.38s (0.73s elapsed)
If you experiment a little, you might find that setting n == 2 is
slightly better. We seem to be doing better than findpar, which ran
in 1.08s with -N2.
I then increased the number of cores to -N4, with n == 8, and this
is a typical run on my computer:
$./findpar2 8 nonexistent ~/code +RTS -N4 -s
Nothing
 2,464,097,424 bytes allocated in the heap
 121,144,952 bytes copied during GC
 3,770,936 bytes maximum residency (47 sample(s))
 94,608 bytes maximum slop
 10 MB total memory in use (0 MB lost due to fragmentation)
 MUT time 1.55s (0.47s elapsed)
 GC time 0.37s (0.09s elapsed)
 Total time 1.92s (0.56s elapsed)

The results vary a lot but hover around this value. The original
findpar ran in about 0.57s with -N4; so the advantage of
findpar2 at -N2 has evaporated at -N4. Furthermore,
experimenting with values of n doesn’t seem to help much.
Where is the bottleneck? We can take a look at the ThreadScope
profile; for example, Figure 13-2 is a typical section:
[image: findpar2 ThreadScope profile]

Figure 13-2. findpar2 ThreadScope profile

Things look quite erratic, with threads often blocked. Looking at the
raw events in ThreadScope shows that threads are getting blocked on
MVars, and that is the clue: there is high contention for the
MVar in the NBSem.
So how can we improve the NBSem implementation to behave better when
there is contention? One solution would be to use STM because STM
transactions do not block, they just re-execute repeatedly. In fact
STM does work here, but instead we will introduce a different way to
solve the problem, one that has less overhead than STM. The idea is
to use an ordinary IORef to store the semaphore value and operate
on it using atomicModifyIORef:
atomicModifyIORef :: IORef a -> (a -> (a, b)) -> IO b
The atomicModifyIORef function modifies the contents of an IORef
by applying a function to it. The function returns a pair of the new
value to be stored in the IORef and a value to be returned by
atomicModifyIORef. You should think of atomicModifyIORef as a
very limited version of STM; it performs a transaction on a single
mutable cell. Because it is much more limited, it has less overhead
than STM.
Using atomicModifyIORef, the NBSem implementation looks like this:
findpar3.hs

newtype NBSem = NBSem (IORef Int)

newNBSem :: Int -> IO NBSem
newNBSem i = do
 m <- newIORef i
 return (NBSem m)

tryWaitNBSem :: NBSem -> IO Bool
tryWaitNBSem (NBSem m) = do
 atomicModifyIORef m $ \i ->
 if i == 0
 then (i, False)
 else let !z = i-1 in (z, True)

signalNBSem :: NBSem -> IO ()
signalNBSem (NBSem m) =
 atomicModifyIORef m $ \i ->
 let !z = i+1 in (z, ())
Note that we are careful to evaluate the new value of i inside
atomicModifyIORef, using a bang-pattern. This is a standard trick
to avoid building up a large expression inside the IORef: 1 + 1 + 1
+
The rest of the implementation is the same as findpar2.hs, except that we
added some logic in main to initialize the number of units in the
NBSem automatically:
findpar3.hs

main = do
 [s,d] <- getArgs
 n <- getNumCapabilities
 sem <- newNBSem (if n == 1 then 0 else n * 4)
 find sem s d >>= print
The function getNumCapabilities comes from GHC.Conc and returns
the value passed to +RTS -N, which is the number of cores that the
program is using. This value can actually be changed while the
program is running, by calling setNumCapabilities from the same
module.
If the program is running on multiple cores, then we initialize the
semaphore to n * 4, which experimentation suggests to be a
reasonable value.
The results with -N4 look like this:
$./findpar3 nonexistent ~/code +RTS -s -N4
Nothing
 2,495,362,472 bytes allocated in the heap
 138,071,544 bytes copied during GC
 4,556,704 bytes maximum residency (50 sample(s))
 141,160 bytes maximum slop
 12 MB total memory in use (0 MB lost due to fragmentation)

 MUT time 1.38s (0.36s elapsed)
 GC time 0.35s (0.09s elapsed)
 Total time 1.73s (0.44s elapsed)
This represents a speedup of about 2.6—our best yet, but in the next
section we will improve on this a bit more.

The ParIO monad

In Chapter 4, we encountered the Par monad, a simple API for programming deterministic parallelism as a dataflow graph. There is
another version of the Par monad called ParIO, provided by the module
Control.Monad.Par.IO with two important differences from Par:[48]
	
IO operations are allowed inside ParIO. To inject an IO
 operation into a ParIO computation, use liftIO from the
 MonadIO class.

	
For this reason, the pure runPar is not available for
 ParIO. Instead, a parallel computation is performed by the following:

runParIO :: ParIO a -> IO a

Of course, unlike Par, ParIO computations are not guaranteed to be
deterministic. Nevertheless, the full power of the Par framework is
available: very lightweight tasks, multicore scheduling, and the same
dataflow API based on IVars. ParIO is ideal for parallel
programming in the IO monad, albeit with one caveat that we will
discuss shortly.
Let’s look at the filesystem-searching program using ParIO. The
structure will be identical to the Async version; we just need to
change a few lines. First, subfind:
findpar4.hs

subfind :: String -> FilePath
 -> ([IVar (Maybe FilePath)] -> ParIO (Maybe FilePath))
 -> [IVar (Maybe FilePath)] -> ParIO (Maybe FilePath)

subfind s p inner ivars = do
 isdir <- liftIO $ doesDirectoryExist p
 if not isdir
 then inner ivars
 else do v <- new -- [image: 1]
 fork (find s p >>= put v) -- [image: 2]
 inner (v : ivars) -- [image: 3]
Note that instead of a list of Asyncs, we now collect a list of
IVars that will hold the results of searching each subdirectory.
	[image: 1]
	
Create a new IVar for this subdirectory.

	[image: 2]
	
fork the computation to search the subdirectory, putting the result into the IVar.

	[image: 3]
	
Perform the inner computation, adding the IVar we just created to the list.

I’ve omitted the definition of find, which has only one difference
compared with the Async version: we call the Par monad’s get
function to get the result of an IVar, instead of Async’s
wait.
In main, we need to call runParIO to start the parallel computation:
findpar4.hs

main = do
 [s,d] <- getArgs
 runParIO (find s d) >>= print
That’s it. Let’s see how well it performs, at -N4:
$./findpar4 nonexistent ~/code +RTS -s -N4
Nothing
 2,460,545,952 bytes allocated in the heap
 102,831,928 bytes copied during GC
 1,721,200 bytes maximum residency (44 sample(s))
 78,456 bytes maximum slop
 7 MB total memory in use (0 MB lost due to fragmentation)

 MUT time 1.26s (0.32s elapsed)
 GC time 0.27s (0.07s elapsed)
 Total time 1.53s (0.39s elapsed)
In fact, this version beats our carefully coded NBSem implementation,
achieving a speedup of 2.92 on 4 cores. Why is that? Well, one
reason is that we didn’t have to consult
some shared state and choose whether to fork or continue
our operation in the current thread, because fork is very cheap in Par and ParIO
(note the low-memory overhead in the results above). Another reason
is that the Par monad has a carefully tuned work-stealing scheduler
implementation that is designed to achieve good parallel
speedup.[49]
However, we cheated slightly here. ParIO has no error
handling: exceptions raised by an IO computation might (or might not)
be silently dropped, depending on which thread the Par monad
scheduler happens to be using to run the computation. It is
possible to fix this; if you enjoy a programming puzzle, why not have a
go at finding a good way yourself—preferably one that requires few
changes to the application code? My attempt can be found in
findpar5.hs.

[47] The performance characteristics of this program depend to some extent on the structure of the filesystem used as a benchmark, so don’t be too surprised if the results are a bit different on your system.

[48] In monad-par-0.3.3 and later.

[49] In fact, the Par monad implementation is built
using nothing more than the concurrency APIs that we have seen so far
in this book.

Chapter 14. Distributed Programming

Up until now, we have been considering programs that run on a single
machine, while possibly making use of multiple processors to exploit
parallelism. But there is a far more plentiful source of parallelism: running a program on multiple machines
simultaneously. We call this distributed programming, and
Haskell supports it through a framework called distributed-process.[50]
Aside from the obvious advantages of multimachine parallelism, there
are other reasons to write distributed programs. For example:
	
A distributed server can make more efficient use of network
 resources by moving the servers closer to the clients. We will see
 an example of this in A Distributed Chat Server.

	
A distributed program can exploit a heterogeneous environment,
 where certain resources are available only to certain machines. An
 example of this might be a cluster of machines with local disks,
 where a large data structure is spread across the disks and we wish
 to run our computation on the machine that has the appropriate
 part of the data structure on its local disk.

So what should distributed programming look like from the programmer’s
perspective? Should it look like Concurrent Haskell, with forkIO,
MVar, and STM? In fact, there are some good reasons to treat
distributed computation very differently from computation on a
shared-memory multicore:
	
There is a realistic possibility of partial hardware failure:
 that is, some of the machines involved in a computation may go down
 while others continue to run. Indeed, given a large enough cluster
 of machines, having nodes go down becomes the norm. It would be
 unacceptable to simply abort the entire program in this case.
 Recovery is likely to be application-specific, so it makes sense to
 make failure visible to the programmer and let him handle it in an
 appropriate way for his application.

	
Communication time becomes significant. In the shared-memory
 setting, it is convenient and practical to allow unrestricted
 sharing. This is because, for example, passing a pointer to a large data
 structure from one thread to another has no cost
 (beyond the costs imposed by the hardware and the runtime memory
 manager, but again it is convenient and practical to ignore these).
 In a distributed setting, however, communication can be costly, and
 sharing a data structure between threads is something the
 programmer will want to think about and explicitly control.

	
In a distributed setting, it becomes far more difficult to provide
 any global consistency guarantees of the kind that, for example, STM
 provides in the shared-memory setting. Achieving a consistent view
 of the state of the system becomes a very hard problem indeed.
 There are algorithms for achieving agreement between nodes in a
 distributed system, but the exact nature of the consistency
 requirements depend on the application, so we don’t want to
 build a particular algorithm into the system.

For these reasons, the Haskell developers decided that the model for
distributed programming should be based on explicit message
 passing, and not the MVar and STM models that we provide for
shared-memory concurrency.[51] Think of it as having TChan be the basic
primitive available for communication. It is possible to build
higher-level abstractions on top of the explicit message-passing
layer, just as we built higher-level abstractions on top of STM and
MVar in earlier chapters.
The Distributed-Process Family of Packages

There is no built-in support for distributed programming in Haskell. It is all implemented as libraries using the concurrency facilities we
have covered in earlier chapters.
The package providing the core APIs for distributed programming is
called distributed-process. It must be used
together with a separate transport layer package that provides
infrastructure for sending and receiving messages between nodes in the
distributed network. The distributed-process package is
deliberately independent of the transport layer so we can plug
in different transport layer implementations. The most common
transport layer is likely to be TCP/IP, as provided by the network-transport-tcp package, but we could imagine a transport
layer that used shared memory to communicate among multiple nodes on
the same multicore machine, or transport layers supporting some of the
faster networks designed for clusters, such as InfiniBand.
Each transport layer needs a different mechanism for creating and
shutting down nodes on the network and discovering which nodes are
available (peer discovery). We will be using the package
distributed-process-simplelocalnet that provides a simple
implementation on top of the network-transport-tcp transport layer.
At the time of writing, the distributed-process framework is
somewhat new and a little rough around the edges, but it is already
quite fully featured and we expect it to mature in due
course.[52]
It is reasonable to wonder whether we even need a framework to do
distributed message-passing. After all, can’t we just use the
network package directly and program our own message passing?
Certainly you could do this, but the packages described in this chapter provide a lot
of functionality that makes it much easier to build a distributed
application. They let you think about your application as a single program that happens to run on multiple machines, rather than a collection of
programs running on different machines that talk to one another.
For example, with the distributed-process framework, we can call a
function spawn that spawns a process (like a thread) on a different
machine, and we can exchange messages with the remote process directly in the
form of Haskell data types. Even though we are writing a single
program to execute on multiple machines, there is no need for all the
machines to be identical; indeed, programmers often want to
exploit some non-uniformity. For example, we might want to run a
caching service on a machine with lots of memory while sending
compute-intensive tasks to machines with lots of fast cores. There
may also be nonuniformity in the network topology. We might want to
perform a database query on a machine close to the database server,
for example, or put services that communicate with each other
frequently close to one another in the network.
The distributed-process framework provides a whole infrastructure suite that
supports the distributed application domain. These are some of the important
facilities it provides:
	
Remote spawning of processes

	
Serialization of Haskell data for message passing

	
Process linking (receiving notification when another process dies)

	
Receiving messages on multiple channels

	
A dedicated per-process channel for receiving dynamically typed messages

	
Automatic peer discovery

Distributed Concurrency or Parallelism?

We have included distribution in the concurrency part of this book
for the simple reason that the explicit message-passing API we’ll
describe is concurrent and nondeterministic. And yet, the main
reason to want to use distribution is to exploit the parallelism of
running on multiple machines simultaneously. So this setting is
similar to parallel programming using threads described in Chapter 13,
except that here we have only message passing and no shared state for
coordination.
It is a little unfortunate that we have to resort to a
nondeterministic programming model to achieve parallelism just
because we want to exploit multiple machines. There are efforts
under way to build deterministic programming models atop the
distributed-process framework, although at the time of writing these projects are too
experimental to include in this book.[53]

A First Example: Pings

To get acquainted with the basics of distributed programming, we will
start with a simple example: a ping/pong message exchange. To start
with, there will be a single master process that creates a child
process. The master process will send a “ping” message to the
child, which will respond with a “pong” message and the program
will then exit.
The ping example will illustrate the basic pattern for setting up a
program to use the distributed-process framework and introduce the APIs for
creating processes and simple message passing. The first version of
the program will run on a single node (machine) so we can
get familiar with the basics of the interface before moving on to
working with multiple nodes.
For reference, the subset of the Control.Distributed.Process API that we will be using is shown here:
data Process -- instance Monad, MonadIO

data NodeId -- instance Eq, Ord, Show, Typeable, Binary
data ProcessId -- instance Eq, Ord, Show, Typeable, Binary

getSelfPid :: Process ProcessId
getSelfNode :: Process NodeId

spawn :: NodeId -> Closure (Process ()) -> Process ProcessId

send :: Serializable a => ProcessId -> a -> Process ()
expect :: Serializable a => Process a

terminate :: Process a

say :: String -> Process ()
Processes and the Process Monad

First, a bit of terminology. A distributed program consists of a set of
processes that may communicate with one another by sending and
receiving messages. A process is like a thread. Processes run
concurrently with one another, and every process has
a unique ProcessId. There are a
couple of important differences between threads and processes,
however:
	
Threads are
 always created on the current node, whereas a process can be created on a remote node (we won’t be using this facility
 until the next section, though).

	
Processes run in the Process monad, rather than the IO
 monad. Process is an instance of MonadIO, so you can perform
 IO operations in Process by wrapping them in liftIO. All
 message-passing operations are in Process, so only processes,
 not threads, can engage in message passing.

Defining a Message Type

We start by defining the type of messages that our processes will send
and receive:
distrib-ping/ping.hs

data Message = Ping ProcessId
 | Pong ProcessId
 deriving (Typeable, Generic) -- [image: 1]

instance Binary Message -- [image: 2]
The Ping message contains the ProcessId of the process that sent
it so that the target of the message knows where to send the response.
The Pong response also includes the ProcessId of the responder so
that the master process can tell which process a particular response
comes from.
Messages in a distributed program can be sent over the network, which
Involves serializing the Haskell data into a stream of bytes before
it is sent and deserializing the bytes back into Haskell data at
the other end. The distributed-process framework uses the Binary
class from the binary package to implement serialization and
deserialization, and hence every message type must be an instance of
Binary.
The serialization format is under your control. If you want, you can
define your own Binary instance that uses a specialized
serialization format. Normally, however, you’ll just want an
automatically derived Binary instance. Fortunately, the binary
package[54] lets you derive
Binary instances using GHC’s DeriveGeneric extension.[55] To do this, we first derive the Generic
class ([image: 1]) and then declare an instance
of Binary for Message ([image: 2]); GHC
fills in the method definitions of this instance for us.
Message types must also be an instance of Typeable, because they can
be sent to dynamically typed channels (more about this later). For
Typeable, we can derive the instance directly ([image: 1]).
Typeable and Binary are normally packaged up together and referred
to as Serializable using the following class provided by Control.Distributed.Process.Serializable:
class (Binary a, Typeable a) => Serializable a
instance (Binary a, Typeable a) => Serializable a
There’s nothing magic about Serializable. Just think of
Serializable a as shorthand for (Binary a, Typeable a). You’ll
see Serializable used a lot in the Control.Distributed.Process APIs.

The Ping Server Process

Next, we’ll write the code for a “ping server” process. The ping
server must wait for a Ping message and then respond with a
Pong message.
pingServer :: Process ()
pingServer = do
 Ping from <- expect -- [image: 1]
 say $ printf "ping received from %s" (show from) -- [image: 2]
 mypid <- getSelfPid -- [image: 3]
 send from (Pong mypid) -- [image: 4]
First of all, notice that we are in the Process monad. As we
mentioned earlier, virtually all of the Control.Distributed.Process API is in this monad,
and only code running in the Process monad can communicate with
other processes and spawn new processes. There has to be a way to get
into Process in the first place; we’ll see how that happens
shortly, but for now let’s assume we’re already in Process and we
need to program the ping server.
At [image: 1] we receive the next message
using expect:
expect :: Serializable a => Process a
The expect function receives a message sent directly to this
process. Each process has a channel associated with it, and the
channel can receive messages of any type. The expect call receives
a message of a particular type, where the type is determined by the
context. If the type cannot be determined, the compiler will
complain that the type is ambiguous, and the usual fix is to add a
type signature. In the example just shown, the type of messages to receive
is determined by the pattern match on the result, which matches
directly on the Ping constructor and thus forces expect to receive
messages of the type Message.
The expect function is a little like Haskell’s read function, in
that it returns a value whose type depends on the context. But
whereas read fails if its argument cannot be parsed as the desired
type, expect skips over messages in the queue that do not match and
returns the first one that matches. Messages that don’t match the
expected type are left in the channel for the time being.
If there are no messages of the right type, expect will block until
one arrives. Therefore, it should be used with care: the other
messages in the queue are ignored while expect is waiting for the
right kind of message to arrive, which could lead to a deadlock.
We’ll see later how to wait for several different types of message at
the same time.
The say function, called at [image: 2],
causes a message to be logged, which is a useful way to debug your
program. Usually, the message will be logged to stderr, but it might
be sent somewhere else if the transport layer overrides the default
logging process.
At [image: 3] we call getSelfPid to
obtain the ProcessId of the current process. The ProcessId of the
current process is needed because the Pong message will contain it:
getSelfPid :: Process ProcessId
And at [image: 4] we send a response back
to the originator of the Ping. The function send is used to send
a message to a process, and it has the following type:
send :: (Serializable a) => ProcessId -> a -> Process ()
We know which ProcessId to send the Pong to because it was
contained in the original Ping message.
Now we need to be able to create processes running pingServer.
Although in this example we will be creating the process on the local
node, in general we might be creating the process on another
node. Functions that will be executed remotely in this way need to be
declared explicitly.[56] The
following declaration invokes a bit of Template Haskell magic that creates the necessary infrastructure to allow pingServer to be executed remotely:[57]
remotable ['pingServer]

The Master Process

Next, we will write the code for the master process. As you might expect, this is an operation of type Process ():
master :: Process ()
master = do
 node <- getSelfNode -- [image: 1]

 say $ printf "spawning on %s" (show node)
 pid <- spawn node $(mkStaticClosure 'pingServer) -- [image: 2]

 mypid <- getSelfPid -- [image: 3]
 say $ printf "sending ping to %s" (show pid)
 send pid (Ping mypid) -- [image: 4]

 Pong _ <- expect -- [image: 5]
 say "pong."

 terminate -- [image: 6]
	[image: 1]
	
Call getSelfNode, which returns the NodeId of the
 current node. A NodeId is needed when creating a new process.

	[image: 2]
	
Call spawn to create the child process. Here is the function’s signature:

spawn :: NodeId -> Closure (Process ()) -> Process ProcessId
The spawn function creates a new process on the given NodeId (which
here is the current node). The new process runs the computation
supplied as the second argument to spawn, which is a value of type
Closure (Process ()). Ultimately, we want to spawn a computation
of type Process (), but such values cannot be serialized because
in practice a value of type Process () could refer to an
arbitrary amount of local data, including things that cannot be sent
to other nodes (such as a TVar). Hence the type Closure is used
to represent serializable computations.
How do we get one of these? First, the function to call must be
declared remotable, as we did above. Then, if there are no
arguments to pass, the Template Haskell function
mkStaticClosure generates the appropriate code for the closure. (If
there are arguments, then we need to use a different function, which we
will see later.)
The spawn operation returns the ProcessId of the new process,
which we bind to pid.

	[image: 3]
	
Call getSelfPid to return the ProcessId of the
current process. We need this to send in the Ping message.

	[image: 4]
	
Send the Ping message to the child process.

	[image: 5]
	
Call expect to receive the Pong message from the child
process.

	[image: 6]
	
Finally, terminate the process by calling terminate. In this
case, simply returning from master would terminate the process, but
sometimes we need to end the process in a context where it is not
practical to arrange the top-level function to return, and in those
cases terminate is useful. Moreover, it is good practice to indicate
the end of the process explicitly.

The main Function

All that remains to complete the program is to define our main
function, and here it is:
main :: IO ()
main = distribMain (_ -> master) Main.__remoteTable
The main function calls distribMain from DistribUtils, which is a small
module of utilities provided with the sample code to make these
examples a bit less cluttered. The distribMain function is a wrapper around the lower-level startup facilities from the distributed-process-simplelocalnet package. It starts up the distributed-process framework with the
distributed-process-simplelocalnet backend on a single node.
The first argument to distribMain is the Process computation to
run as the master process on the node. It has type [NodeId] ->
Process (), where the list of NodeIds are the other nodes in our
distributed network. Because this example is
running on a single node, we ignore the [NodeId] and just invoke the
master function as our master process.
The second argument to distribMain is the metadata used to execute
remote calls; in this case we pass Main.__remoteTable, which is
generated by the Template Haskell call to remotable we showed
earlier.
When you run the program, you should see output like this:[58]
$./ping
pid://localhost:44444:0:3: spawning on nid://localhost:44444:0
pid://localhost:44444:0:3: sending ping to pid://localhost:44444:0:4
pid://localhost:44444:0:4: ping received from pid://localhost:44444:0:3
pid://localhost:44444:0:3: pong.
Each of these messages corresponds to one of the calls to say in the
example program, and they are tagged with the date, time, and
ProcessId of the process that called say.

Summing Up the Ping Example

In this section, we built the simplest distributed program possible: it
spawns a single child process and performs a simple ping/pong message
exchange. Here are the key things to take away:
	
To create a process, we call spawn, passing a NodeId and a
 Closure (Process ()). The former we got from getSelfNode
 (there are other ways, which we will encounter shortly), and the
 latter was generated by a call to the Template Haskell function
 mkStaticClosure.

	
Processes run in the Process monad, which is a layer over
 the IO monad.

	
Messages can be sent to a process using send and received by
 calling expect. Messages are ordinary Haskell data; the only
 requirement is that the type of the message is an instance of the
 Binary and Typeable classes.

There is a certain amount of boilerplate associated with distributed
programming: deriving Binary instances, declaring remotable
functions with remotable, starting up the framework with
distribMain, and so on. Remember that the distributed-process framework is
currently implemented as a library entirely in Haskell. There is no
support for distributed programming built into the language or GHC
itself, and this accounts for some of the boilerplate. As the
framework matures, distributed programming will likely become a
smoother experience.

Multi-Node Ping

The previous example showed how to create a process and exchange some
simple messages. Now we will extend the program to be truly
distributed. Instead of spawning a process on the local node, we will
run the program on several nodes, create a process on each one, and
perform the ping/pong protocol with all nodes simultaneously.
The Message type and pingServer remain exactly as before. The only
changes will be to the master and main functions. The new
master function is shown below, along with a waitForPongs helper function:
distrib-ping/ping-multi.hs

master :: [NodeId] -> Process () -- [image: 1]
master peers = do

 ps <- forM peers $ \nid -> do -- [image: 2]
 say $ printf "spawning on %s" (show nid)
 spawn nid $(mkStaticClosure 'pingServer)

 mypid <- getSelfPid

 forM_ps $ \pid -> do -- [image: 3]
 say $ printf "pinging %s" (show pid)
 send pid (Ping mypid)

 waitForPongs ps -- [image: 4]

 say "All pongs successfully received"
 terminate

waitForPongs :: [ProcessId] -> Process () -- [image: 5]
waitForPongs [] = return ()
waitForPongs ps = do
 m <- expect
 case m of
 Pong p -> waitForPongs (filter (/= p) ps)
 _ -> say "MASTER received ping" >> terminate
	[image: 1]
	This time, the master process takes an argument of type [NodeId], containing a NodeId for each node in the distributed network. This list is supplied by the framework when it starts up, after it has discovered the set of peers in the network. We’ll see shortly how to start up the program on multiple nodes.

	[image: 2]
	Spawn a new process on each of the peer nodes, and bind the resulting list of ProcessIds to ps.

	[image: 3]
	Call waitForPongs (defined below) to receive all the pong messages. When waitForPongs returns, the program emits a diagnostic and terminates.

	[image: 4]
	waitForPongs is a simple algorithm that removes each ProcessId from the list as its pong message is received and returns when the list is empty.

The main function is almost the same as before:
main :: IO ()
main = distribMain master Main.__remoteTable
The only difference is that the [Node] argument gets passed along
to master instead of being discarded here.
Running with Multiple Nodes on One Machine

First, I’ll illustrate starting multiple nodes on the same machine and
then progress on to multiple machines.
A distributed program consists of a single master node and one or more
slave nodes. The master is the node that begins with a process
running; the slave nodes just wait until processes are spawned on
them.
Let’s start by creating two slave nodes:
$./ping-multi slave 44445 &
[3] 58837
$./ping-multi slave 44446 &
[4] 58847
The ping-multi program takes two command-line arguments; these are
interpreted by the distrbMain function and tell it how to
initialize the framework. The first argument is either master or
slave and indicates which kind of node to create. The second
argument is the TCP port number that this node should use to
communicate on, with the default being 44444.[59] Always use different port numbers
when creating multiple nodes on the same machine.
I used & to create these as background processes in the shell. If
you’re on Windows, just open a few Command Prompt windows and run the
program in each one.
Having started the slaves, we now start the master node:
$./ping-multi
pid://localhost:44444:0:3: spawning on nid://localhost:44445:0
pid://localhost:44444:0:3: spawning on nid://localhost:44446:0
pid://localhost:44444:0:3: pinging pid://localhost:44445:0:4
pid://localhost:44444:0:3: pinging pid://localhost:44446:0:4
pid://localhost:44446:0:4: ping received from pid://localhost:44444:0:3
pid://localhost:44445:0:4: ping received from pid://localhost:44444:0:3
pid://localhost:44444:0:3: All pongs successfully received
The first thing to note is that the master node automatically found
the two slave nodes. The distributed-process-simplelocalnet package
includes a peer discovery mechanism that is designed to
automatically locate and connect to other instances running on the
same machine or other machines on the local network.
It is also possible to restart the master without restarting the
slaves—try invoking ping-multi again, and you should see the same
result. The new master node discovers and reconnects to the
existing slaves.

Running on Multiple Machines

If we have multiple machines connected on the same network, we can run
a distributed Haskell program on them. The first step is to
distribute the binary to all the machines; every machine must be
running the same binary. A mismatch in the binary on different
machines can cause strange failures, such as errors when decoding
messages.
Next, we start the slaves as before, but this time we start slaves on
the remote machines and pass an extra argument:
$./ping-multi slave 192.168.1.100 44444
$./ping-multi slave 192.168.1.101 44444
(The above commands are executed on the appropriate machines.) The
second argument is new and gives the IP address that identifies the
slave. This is the address that the other nodes will use to contact
it, so it must be an address that resolves to the correct machine. It
doesn’t have to be an IP address, but using IP addresses is simpler
and eliminates a potential source of failure (the DNS).
When the slaves are running, we can start the master:
$./ping-multi master 44444
pid://localhost:44444:0:3: spawning on nid://192.168.1.100:44444:0
pid://localhost:44444:0:3: spawning on nid://192.168.1.101:44444:0
pid://localhost:44444:0:3: pinging pid://192.168.1.100:44444:0:5
pid://localhost:44444:0:3: pinging pid://192.168.1.101:44444:0:5
pid://192.168.1.100:44444:0:5: ping received from pid://localhost:44444:0:3
pid://192.168.1.101:44444:0:5: ping received from pid://localhost:44444:0:3
pid://localhost:44444:0:3: All pongs successfully received
The program successfully identified the remote nodes, spawned a
processes on each one, and exchanged ping-pong messages with the
process on each node.

Typed Channels

In the examples so far, we saw messages being delivered to a process and the process receiving the messages by using expect. This scheme is quite convenient: we need to know only a process’s ProcessId to
send it messages, and we can send it messages of any type. However,
all the messages for a process go into the same queue, which has a
couple of disadvantages:
	
Each time we call expect, the implementation has to search the
 queue for a message of the right type, which could be slow.

	
If we are receiving messages of the same type from multiple senders,
 then we need to explicitly include some information in the message that
 lets us tell them apart (e.g., the ProcessId of the sender).

The distributed-process framework provides an alternative means of
message passing based on typed channels, which addresses these two
problems. The interface is as follows:
data SendPort a -- instance of Typeable, Binary
data ReceivePort a

newChan :: Serializable a => Process (SendPort a, ReceivePort a)

sendChan :: Serializable a => SendPort a -> a -> Process ()

receiveChan :: Serializable a => ReceivePort a -> Process a
A typed channel consists of two ports, a SendPort and a ReceivePort. Messages are sent to the SendPort by sendChannel and received from the ReceivePort using receiveChannel. As the name suggests, a typed channel can carry messages only of a particular
type.
Typed channels imply a different pattern of interaction. For example,
suppose we were making a request to another process and expecting a
response. Using typed channels, we could program this as follows:
	
The client creates a new channel for an interaction.

	
The client sends the request, along with the SendPort.

	
The server responds on the SendPort it was sent.

In general, the server might make its own channel and send that to the
client, and the subsequent interaction would happen over these two
channels.
The advantage of creating a channel to carry the response is that the
client knows that a message arriving on this channel can only be a
response to the original request, and it is not possible to mix up
this response with other responses. The channel serves as a link
between the original request and the response; we know that it is a
response to this particular request, because it arrived on the right
channel.
In the absence of typed channels, ensuring that the response can be
uniquely identified would involve creating a new identifier to send
along with the original message.[60]
Let’s look at how to modify the ping example to use typed channels:
distrib-ping/ping-tc.hs

data Message = Ping (SendPort ProcessId)
 deriving (Typeable, Generic)

instance Binary Message
Note that we don’t need a Pong message anymore. Instead, the Ping
message will contain a SendPort on which to send the reply, and the
reply is just the ProcessId of the sender. In fact, in this example
we don’t really need to send any content back at all—just sending
() would be enough—but for the purposes of illustration we will
send back the ProcessId.
pingServer :: Process ()
pingServer = do
 Ping chan <- expect
 say $ printf "ping received from %s" (show chan)
 mypid <- getSelfPid
 sendChan chan mypid
master :: [NodeId] -> Process ()
master peers = do

 ps <- forM peers $ \nid -> do
 say $ printf "spawning on %s" (show nid)
 spawn nid $(mkStaticClosure 'pingServer)

 mapM_ monitor ps

 ports <- forM ps $ \pid -> do

 say $ printf "pinging %s" (show pid)
 (sendport,recvport) <- newChan --[image: 1]
 send pid (Ping sendport) --[image: 2]
 return recvport

 forM_ ports $ \port -> do --[image: 3]
 _ <- receiveChan port
 return ()

 say "All pongs successfully received"
 terminate
	[image: 1]
	Create a new channel to carry the response.

	[image: 2]
	Send the ping message, including the SendPort of the channel.

	[image: 3]
	Where previously we needed a function waitForPongs to collect all the responses and match them up with the peers, this time we can just wait for a response on each of the channels we created.

This code is simpler than the previous version in
Multi-Node Ping. However, note that we still sent the Ping
messages directly to the process, rather than using a typed
channel. If we wanted to use a typed channel here too, things get more
complicated. We want to do something like this (considering just a
single worker for simplicity):
 do
 (s1,r1) <- newChan
 spawn nid ($(mkClosure `pingServer) r1)

 (s2,r2) <- newChan
 sendChan s1 (Ping s2)

 receiveChan r2
This seems quite natural: we create a channel with send port s1 and
receive port r1 on which to send the
Ping message. Then we give the receive port of the channel to the
pingServer process when we spawn it. The code shows how to use spawn
to apply a function (here pingServer) to an argument (here
r1): use mkClosure instead of mkStaticClosure, and then pass the
argument to it (we’ll come back to this later; the details aren’t
important right now).
But there’s a big problem here. ReceivePorts are not Serializable,
which prevents us passing the ReceivePort r1 to the spawned
process. GHC will reject the program with a type error.
Why are ReceivePorts not Serializable? If you think about it a
bit, this makes a lot of sense. If a process were allowed to send a
ReceivePort somewhere else, the implementation would have to
deal with two things: routing messages to the correct destination when
a ReceivePort has been forwarded (possibly multiple times), and
routing messages to multiple destinations, because sending a
ReceivePort would create a new copy. This would introduce a vast
amount of complexity to the implementation, and it is not at all clear
that it is a good feature to allow. So the remote framework
explicitly disallows it, which fortunately can be done using Haskell’s
type system.
This means that we have to jump through an extra hoop to fix the
previous code, though. Instead of passing the ReceivePort to the
spawned process, the spawned process must create the channel and send
us back the SendPort. This means we need another channel so
that the spawned process can send us back its SendPort.
 do
 (s,r) <- newChan -- throw-away channel
 spawn nid ($(mkClosure `pingServer) s)
 ping <- receiveChan r

 (sendpong,recvpong) <- newChan
 sendChan ping (Ping sendpong)

 receiveChan recvpong
Since this extra handshake is a bit of a hassle, you might well prefer
to send messages directly to the spawned process using send rather
than using typed channels, which is exactly what the example code at the
beginning of this section did.
Merging Channels

In the previous section, we waited for a response from each child process
in turn, whereas the old waitForPongs version processed the messages
in the order they arrived. In this case it isn’t a problem, but
suppose some of these messages required a response. Then we might
have introduced some extra latency: if a process toward the end of
the list replies early, it won’t get a response until the
master process has dealt with the messages from the other processes
earlier in the list, some of which might take a while to reply.
So we need a way to wait for messages from multiple channels
simultaneously. The distributed-process framework has an elegant
way to do this. Channels can be merged together to make a single
channel that receives messages from any of the original channels.
There are two ways to do this:
mergePortsBiased :: Serializable a => [ReceivePort a] -> Process (ReceivePort a)
mergePortsRR :: Serializable a => [ReceivePort a] -> Process (ReceivePort a)
The difference is in the order in which messages arrive on the merged
channel. In mergePortsBiased, each receive searches the
ports in left-to-right order for a message, returning the first
message it finds. The alternative is mergePortsRR (the RR stands
for “round robin”) which also searches left to right, but rotates the list by one element after each receive, with the leftmost port moving to the end of the list.
One important thing to note is that merging channels does not affect the original channel; we can still receive messages from either source, and indeed there is no problem with merging multiple overlapping sets of channels.[61]
Here is the ping example with channels, where instead of waiting for
the responses one by one, we merge the channels together and wait for
all the responses simultaneously.
distrib-ping/ping-tc-merge.hs

master :: [NodeId] -> Process ()
master peers = do

 ps <- forM peers $ \nid -> do
 say $ printf "spawning on %s" (show nid)
 spawn nid $(mkStaticClosure 'pingServer)

 ports <- forM ps $ \pid -> do
 say $ printf "pinging %s" (show pid)
 (sendport,recvport) <- newChan
 send pid (Ping sendport)
 return recvport

 oneport <- mergePortsBiased ports -- [image: 1]
 waitForPongs oneport ps -- [image: 2]

 say "All pongs successfully received"
 terminate

waitForPongs :: ReceivePort ProcessId -> [ProcessId] -> Process ()
waitForPongs _ [] = return ()
waitForPongs port ps = do
 pid <- receiveChan port
 waitForPongs port (filter (/= pid) ps)
	[image: 1]
	Merge the ReceivePorts together into a single ReceivePort.

	[image: 2]
	Now we need a loop to wait for the responses, which is written as a separate function waitForPongs. Each message received from the channel removes the corresponding ProcessId from the list until all the spawned processes have responded.

Handling Failure

One of the important benefits provided by the distributed-process framework is handling and recovering
from failure. Failure is a fact of life in distributed computing, and we should be prepared for the possibility that any of our processes might fail at any time, whether due to network outage, a hardware crash, or software faults.
Here is a basic example showing how the failure of one process can be
caught and acted upon by another process. In the original ping
example from Defining a Message Type, recall that the Message
type has two constructors:
data Message = Ping ProcessId
 | Pong ProcessId
and the code for pingServer matches explicitly on the
Ping constructor:
distrib-ping/ping-fail.hs

pingServer :: Process ()
pingServer = do
 Ping from <- expect
 say $ printf "ping received from %s" (show from)
 mypid <- getSelfPid
 send from (Pong mypid)
What will happen if the message is a Pong, rather than a
Ping? Both messages have the type Message, so expect cannot
distinguish them; if the context requires a message of type Message, expect
can return either a Ping or a Pong. Clearly, if
expect returns a Pong here, then the pattern match against Ping will fail,
and as usual in Haskell this throws an
exception. Since there are no exception handlers, the
exception will result in the termination of the pingServer process.
There are ways to prevent the error, of course, but for now let’s see
how we can catch this failure from another process. We’ll use
withMonitor, which has the following signature:
withMonitor :: ProcessId -> Process a -> Process a
withMonitor takes a ProcessId to monitor and an action to perform. During the action, if the specified process fails in any way, a special message of type ProcessMonitorNotification is sent to the current process.
To wait for either the ProcessMonitorNotification message or a Pong, we need to know how to wait for different types of message at the same time. The basic pattern for this is as follows:
 receiveWait
 [match $ \p -> do ...
 , match $ \q -> do ...
]
where p and q are patterns that match different types of
message. The types of these functions are shown here:
receiveWait :: [Match b] -> Process b
receiveTimeout :: Int -> [Match b] -> Process (Maybe b)

match :: Serializable a => (a -> Process b) -> Match b
matchIf :: Serializable a => (a -> Bool) -> (a -> Process b) -> Match b
The function receiveWait waits until any of the match functions
applies to a message in the queue, and then executes the associated
action. The receiveTimeout operation is similar, but instead of
waiting indefinitely for a matching message, it takes a time in
milliseconds and returns Nothing if a matching message did not
arrive before the time.
Here is how we monitor the pingServer process and then wait for
either a Pong message or a ProcessMonitorNotification:
distrib-ping/ping-fail.hs

 withMonitor pid $ do
 send pid (Pong mypid) -- [image: 1]
 receiveWait
 [match $ \(Pong _) -> do
 say "pong."
 terminate
 , match $ \(ProcessMonitorNotification _ref deadpid reason) -> do
 say (printf "process %s died: %s" (show deadpid) (show reason))
 terminate
]
Note that we deliberately send the child a Pong message ([image: 1]) to cause it to fail. Running the program
results in this:
pid://localhost:44444:0:3: spawning on nid://localhost:44444:0
pid://localhost:44444:0:3: sending ping to pid://localhost:44444:0:4
pid://localhost:44444:0:3: process pid://localhost:44444:0:4 died:
 DiedException "user error (Pattern match failure in do expression at
 distrib-ping/ping-fail.hs:24:3-11)"
The third log message indicates that the master received the
notification of the failed process, and gives the details of the
failure: a pattern-match error, as we expected.
It is worth asking whether having a single Message data type for our
messages was a good idea in the first place. Perhaps we should have
made separate types, as in:
newtype Pong = Pong ProcessId
newtype Ping = Ping ProcessId
The choice comes down to whether we are using typed channels or not.
With typed channels, we could use only a single message type, whereas
using the per-process dynamically typed channel with send and
expect or receiveWait, we could use multiple message types. Having
one type for each message would avoid the possibility of a pattern-match
failure when matching on a message, but unless we also have a
catch-all case to match unrecognized messages, the other messages
could be left in the queue forever, which could amount to an
undetected error or deadlock. So there might well be cases where we
want to match both messages because one is definitely an
error, and so using a single message type would help ensure that we
always match on all the possible messages.
The more appropriate choice depends on the particular
circumstances in your application.
A summary of the API for process monitoring follows:
monitor :: ProcessId -> Process MonitorRef
unmonitor :: MonitorRef -> Process ()
withMonitor :: ProcessId -> Process a -> Process a

data ProcessMonitorNotification
 = ProcessMonitorNotification MonitorRef ProcessId DiedReason

data MonitorRef -- abstract

data DiedReason
 = DiedNormal -- Normal termination
 | DiedException !String -- The process exited with an exception
 | DiedDisconnect -- We got disconnected from the process node
 | DiedNodeDown -- The process node died
 | DiedUnknownId -- Invalid (process/node/channel) identifier
In addition to the withMonitor function mentioned earlier, a process
can also be monitored by calling the monitor function. This
function returns a token of type MonitorRef, which can be passed to
unmonitor to stop monitoring the process again. In general, it is
better to use withMonitor than the monitor and unmonitor pair if
possible, because withMonitor will automatically stop monitoring the
remote process in the event of an exception. However, sometimes
withMonitor doesn’t fit the control flow, which is when monitor and
unmonitor are useful.
The Philosophy of Distributed Failure

In a distributed system, parts of the running program may fail at any
time due to circumstances beyond our control. Such a failure typically
results in one or more of the processes in our network becoming disconnected
without warning; there is no exception and no opportunity to clean up
whatever it was doing. Perhaps the hardware it was running on failed, or the network on which we were communicating with it stopped working.
A far-reaching approach for such failures can be seen in
Erlang, a programming language with distributed programming at its
heart. The only mechanism for communication is message passing, so
every concurrent Erlang program is fundamentally distributable. The
Erlang designers promote a particular philosophy for dealing with
failure, often known by its catchphrase: “Let it crash.” The basic
principle is that since in a distributed system we must already be
prepared for a process to simply disappear, we might as well deal with
all kinds of failure in this way because doing so makes failure
handling much simpler. And since failure handling is difficult to
test, making it simpler is highly desirable.
Concretely, instead of trying to enumerate local
failure conditions and handle them in some way, we can just let
them propagate to the top of the process and let the process die. The
distributed program must be prepared for this eventuality already
(since this is a distributed system), so the system will recover in
some way: perhaps by restarting the failed process in some known-good
state and logging the failure somewhere.
Thus the granularity at which we have to consider failure is the
process, and we can design our applications such that individual
processes can fail without catastrophic consequences. A process will
probably have some internal state that is lost when it dies, but the
parent should know how to construct the initial state to restart the
process or to propagate the failure to a higher layer that
can.

A Distributed Chat Server

In A Chat Server, we built a multithreaded chat server using Concurrent
Haskell and STM. In this section, we will extend the chat server to be
distributed. The server will be running across multiple machines,
clients may connect to any of the machines, and any client will be able
to chat with any other client connected via any of the servers.
Essentially, the distributed chat server will behave just like the
single-threaded server (minus some subtle differences that we will
discuss shortly), except that clients have a choice of machines to
connect to.
A distributed chat network saves bandwidth. For example, suppose we set up a chat network with two servers A and B on each side of the
Atlantic Ocean. Each server has a large number of clients connected,
with each client connecting to its closest server. When a client
on server A broadcasts a message, it needs to be sent across
the trans-Atlantic link to server B only once, and server B then
forwards it to each of its connected clients. The broadcast message
crosses the Atlantic only once, instead of once for each of the
clients on the other side.
We have already written all the code for the multithreaded server, so
it seems a shame to throw it away and rewrite it all to use
distributed-process instead. Fortunately, we don’t have to do that. We can simply add some extra code to handle distribution, using the original server code nearly intact. Each client will still be managed
by ordinary IO threads synchronized using STM, but additionally we
will have some code communicating with the other servers using
distributed-process. In Haskell, distributed programming is not
all or nothing. We can freely mix distributed and concurrent
programming in the same program. This means we can take advantage of
the simplicity and performance of ordinary concurrent programming on
each node, while using the heavier-weight distributed interfaces for
the parts of the program that need to work across multiple nodes.
In this first version, we will use a master/slave configuration in
which the master will start up server instances on all the slaves once
at the beginning. Later, we will consider how to modify the program
so that all nodes are equal, and nodes may come and go at arbitrary
times.
Data Types

We will need a few changes to the data structures compared with the
multithreaded server. When one client sends a message to another
client connected to a different server, we need to know where to send
the message. So each server will need to keep a list of all the
clients connected to any server in the network, along with the server
to which the client is connected. The information about a client now
has two possibilities: either it is a local client (connected to
this server), or a remote client (connected to a different server).
distrib-chat/chat.hs

type ClientName = String

data Client
 = ClientLocal LocalClient
 | ClientRemote RemoteClient

data RemoteClient = RemoteClient
 { remoteName :: ClientName
 , clientHome :: ProcessId
 }

data LocalClient = LocalClient
 { localName :: ClientName
 , clientHandle :: Handle
 , clientKicked :: TVar (Maybe String)
 , clientSendChan :: TChan Message
 }

clientName :: Client -> ClientName
clientName (ClientLocal c) = localName c
clientName (ClientRemote c) = remoteName c

newLocalClient :: ClientName -> Handle -> STM LocalClient
newLocalClient name handle = do
 c <- newTChan
 k <- newTVar Nothing
 return LocalClient { localName = name
 , clientHandle = handle
 , clientSendChan = c
 , clientKicked = k
 }
LocalClient is what we previously called Client, and
RemoteClient is a client connected to another server. The Client
type is now a disjunction of these two, with constructors
ClientLocal and ClientRemote.
The Message type is as before, except that we need to derive
Typeable and Binary, because Messages will be sent over the
network:
data Message = Notice String
 | Tell ClientName String
 | Broadcast ClientName String
 | Command String
 deriving (Typeable, Generic)

instance Binary Message
Servers need to communicate with one another, and the kinds of messages
they need to send are richer than Message. For example, servers need
to tell one another when a new client connects, or one client kicks
another. So we have a new type for messages sent between servers,
which we call PMessage:
data PMessage
 = MsgServers [ProcessId]
 | MsgSend ClientName Message
 | MsgBroadcast Message
 | MsgKick ClientName ClientName
 | MsgNewClient ClientName ProcessId
 | MsgClientDisconnected ClientName ProcessId
 deriving (Typeable, Generic)

instance Binary PMessage
Most of these are self-explanatory, except for one: MsgServers is a
special message sent to each server node when it starts up, telling it
the ProcessIds of all the server nodes in the network.
The Server type previously contained only the mapping from
ClientName to Client, but now it needs some more information:
data Server = Server
 { clients :: TVar (Map ClientName Client)
 , proxychan :: TChan (Process ())
 , servers :: TVar [ProcessId]
 , spid :: ProcessId
 }

newServer :: [ProcessId] -> Process Server
newServer pids = do
 pid <- getSelfPid
 liftIO $ do
 s <- newTVarIO pids
 c <- newTVarIO Map.empty
 o <- newTChanIO
 return Server { clients = c, servers = s, proxychan = o, spid = pid }
clients is the client mapping, as before; servers is the list of
other server ProcessIds, and spid is the ProcessId of this
server (for convenience).
The proxychan field pertains to an added bit of complexity in our
distributed architecture. Remember that we are
leaving as much of the existing server infrastructure intact as
possible; that means the existing server threads are ordinary
forkIO threads. A forkIO thread cannot perform operations in the
Process monad, yet we certainly need to be able to do that somehow
because certain actions by a client must trigger communication with
other servers in the network. So the trick we use is a proxy, which is a
process that reads actions from a TChan and performs them in the
Process monad. To have a Process action performed from an IO
thread, we simply queue it on the proxy TChan. Each server has a
single proxy channel, created when the server starts up and stored in
the proxychan field of Server.

Sending Messages

Next, we need a few small utilities. First, a way to send a Message
to a LocalClient:
sendLocal :: LocalClient -> Message -> STM ()
sendLocal LocalClient{..} msg = writeTChan clientSendChan msg
The following function, sendRemote, sends a PMessage to a remote
server. To do this, it needs to use the proxychan (which it gets
from the Server) and it needs the pid of the destination process:
sendRemote :: Server -> ProcessId -> PMessage -> STM ()
sendRemote Server{..} pid pmsg = writeTChan proxychan (send pid pmsg)
Now that we can send both local and remote messages, we can define
sendMessage, which sends a Message to any client:
sendMessage :: Server -> Client -> Message -> STM ()
sendMessage server (ClientLocal client) msg =
 sendLocal client msg
sendMessage server (ClientRemote client) msg =
 sendRemote server (clientHome client) (MsgSend (remoteName client) msg)
A variant sends a message to a named client or returns False if the
client is not connected:
sendToName :: Server -> ClientName -> Message -> STM Bool
sendToName server@Server{..} name msg = do
 clientmap <- readTVar clients
 case Map.lookup name clientmap of
 Nothing -> return False
 Just client -> sendMessage server client msg >> return True

Broadcasting

Next, we consider broadcasting messages. First, we need a way to send
a PMessage to all the connected servers:
sendRemoteAll :: Server -> PMessage -> STM ()
sendRemoteAll server@Server{..} pmsg = do
 pids <- readTVar servers
 mapM_ (\pid -> sendRemote server pid pmsg) pids
We also need a broadcastLocal function that sends a message to the local
clients only:
broadcastLocal :: Server -> Message -> STM ()
broadcastLocal server@Server{..} msg = do
 clientmap <- readTVar clients
 mapM_ sendIfLocal (Map.elems clientmap)
 where
 sendIfLocal (ClientLocal c) = sendLocal c msg
 sendIfLocal (ClientRemote _) = return ()
This function works by calling an auxiliary function sendIfLocal on
each of the clients, which calls sendLocal if the client is local
and does nothing if the client is remote.
Putting sendRemoteAll and broadcastLocal together, we can
broadcast a Message to everyone:
broadcast :: Server -> Message -> STM ()
broadcast server@Server{..} msg = do
 sendRemoteAll server (MsgBroadcast msg)
 broadcastLocal server msg

Distribution

The rest of the local server code is almost identical to that in
A Chat Server, so we don’t reproduce it here. The only important
differences are that we need to inform other servers whenever a client
connects or disconnects by calling sendRemoteAll with a
MsgNewClient or MsgClientDisconnected respectively.
The interesting part is how we handle distribution. Previously, the
main function was responsible for setting up the network socket and
accepting new connections. This is now delegated to a function
socketListener, which is otherwise identical to the previous main:
socketListener :: Server -> Int -> IO ()
socketListener server port = withSocketsDo $ do
 sock <- listenOn (PortNumber (fromIntegral port))
 printf "Listening on port %d\n" port
 forever $ do
 (handle, host, port) <- accept sock
 printf "Accepted connection from %s: %s\n" host (show port)
 forkFinally (talk server handle)
 (_ -> hClose handle)
We need a function to implement the proxy, described above in
Sending Messages. All it does is repeatedly read Process
() values from the proxychan and execute them:
proxy :: Server -> Process ()
proxy Server{..} = forever $ join $ liftIO $ atomically $ readTChan proxychan
Now, the chatServer function is the main Process () action that
implements a chat server:
chatServer :: Int -> Process ()
chatServer port = do
 server <- newServer []
 liftIO $ forkIO (socketListener server port) -- [image: 1]
 spawnLocal (proxy server) -- [image: 2]
 forever $ do m <- expect; handleRemoteMessage server m -- [image: 3]
	[image: 1]
	
Starts up the socketListener thread.

	[image: 2]
	
Creates the proxy. Note here that we use spawnLocal, which is like
spawn except that the new process is always created on the current
node. This means that the computation to be spawned doesn’t need to
be serialized, so spawnLocal takes an ordinary Process value
rather than a Closure, which makes it easier to use.

	[image: 3]
	
Repeatedly grabs the next message and calls handleRemoteMessage
(defined next) to act on it.

handleRemoteMessage :: Server -> PMessage -> Process ()
handleRemoteMessage server@Server{..} m = liftIO $ atomically $
 case m of
 MsgServers pids -> writeTVar servers (filter (/= spid) pids) -- [image: 1]
 MsgSend name msg -> void $ sendToName server name msg -- [image: 2]
 MsgBroadcast msg -> broadcastLocal server msg -- [image: 3]
 MsgKick who by -> kick server who by -- [image: 4]

 MsgNewClient name pid -> do -- [image: 5]
 ok <- checkAddClient server (ClientRemote (RemoteClient name pid))
 when (not ok) $
 sendRemote server pid (MsgKick name "SYSTEM")

 MsgClientDisconnected name pid -> do -- [image: 6]
 clientmap <- readTVar clients
 case Map.lookup name clientmap of
 Nothing -> return ()
 Just (ClientRemote (RemoteClient _ pid')) | pid == pid' ->
 deleteClient server name
 Just _ ->
 return ()
	[image: 1]
	
The special MsgServers message is sent once at startup to tell
each server the ProcessIds of all the servers in the network.
This is used to set the servers field of Server.

	[image: 2] [image: 3] [image: 4]
	
MsgSend, MsgBroadcast, and MsgKick are straightforward. They
cause the appropriate action to take place just as if a
local client had initiated it.

	[image: 5]
	
MsgNewClient indicates that a client has connected to a remote
server. We attempt to add the remote client to the local state, but
it may be that this server already has a client with the same
name. Unlike in the single server case where we relied on STM to
ensure that inconsistencies like this could never arise, in a
distributed system there is no global consistency. So we have to
handle the case where two clients connect at the same time on
different servers. The method we choose here is simple but brutal:
reply with a MsgKick to kick the other client. It is likely that
the remote server will simultaneously do the same, so both clients
will end up being kicked, but at least the inconsistency is resolved,
and this case will be rare in practice.

	[image: 6]
	
MsgClientDisconnected is not difficult, but we do have to be
careful to check that the client being disconnected is in fact the
correct client, just in case an inconsistency has arisen (in
particular, this might be the response to the MsgKick initiated by
the MsgNewClient case just shown).

Now that the server code is in place, we just need to write the
code to start up the whole distributed network. The main function
invokes master on the master node:
port :: Int
port = 44444

master :: [NodeId] -> Process ()
master peers = do

 let run nid port = do
 say $ printf "spawning on %s" (show nid)
 spawn nid ($(mkClosure 'chatServer) port)

 pids <- zipWithM run peers [port+1..]
 mypid <- getSelfPid
 let all_pids = mypid : pids
 mapM_ (\pid <- send pid (MsgServers)) all_pids

 chatServer port

main = distribMain master Main.__remoteTable
The master function is fairly straightforward. It spawns
chatServer on each of the slaves, using increasing port numbers, and then sends a MsgServers message to each server process containing a list of all the server ProcessIds.[62]

Testing the Server

We can start up a few nodes on a single machine like so:
$./chat slave 55551 & ./chat slave 55552 & ./chat master 55553
pid://localhost:55553:0:3: spawning on nid://localhost:55552:0
pid://localhost:55553:0:3: spawning on nid://localhost:55551:0
Listening on port 44444
Listening on port 44445
Listening on port 44446
(Remember the port numbers given on the command line are the ports
used by the distributed-process framework; the ports that the chat
server listens to are hardcoded to 44444, 44445, …)
Then connect to one of the nodes:
$ nc localhost 44445
What is your name?
Fred
*** Fred has connected
And connect to a different node:
$ nc localhost 44446
What is your name?
Bob
*** Bob has connected
hi
<Bob>: hi
We should now see the new activity on the first connection:
*** Bob has connected
<Bob>: hi

Failure and Adding/Removing Nodes

Our distributed server works only with a fixed set of nodes, which
makes it quite limited. In practice, we want to be able to add and
remove nodes from the network at will. Nodes will disconnect due to
network and hardware outages, and we would like to be able to add new
nodes without restarting the entire network.
My sketch implementation can be found in
distrib-chat/chat-noslave.hs, but you might want to try implementing
this for yourself. Some hints on how to go about it follow.
We need to abandon the master/slave architecture; every node will be
equal. Instead of using our DistribUtils module, we can use the
following sequence to initialize the simplelocalnet backend and
start up a node:
distrib-chat/chat-noslave.hs

main = do
 [port, chat_port] <- getArgs
 backend <- initializeBackend "localhost" port
 (Main.__remoteTable initRemoteTable)
 node <- newLocalNode backend
 Node.runProcess node (master backend chat_port)
Now the function master has type Backend -> String -> Process ()
and runs on every node. The outline of the rest of the
implementation is as follows:
	
When a node starts up, it calls findPeers to get the other nodes
 in the network.

findPeers :: Backend -> Int {- timeout -} -> IO [NodeId]

	
It registers the current process as "chatServer" on the local node using the register function:

register :: String -> ProcessId ->
Process ()

	
Next we call whereisRemoteAsync for each of the other nodes,
 asking for the ProcessId of "chatServer".

whereisRemoteAsync :: NodeId -> String -> Process ()
The remote node will respond with a WhereIsReply:
data WhereIsReply = WhereIsReply String (Maybe ProcessId)
We won’t wait for the reply immediately; it will be received along with other
messages in the main message loop.

	
Then we start up the chatServer as before, but now we need to also
 handle WhereIsReply messages. When one of these messages is
 received, if it indicates that we found a "chatServer" process on
 another node, then we move on to the next step.

	
Send that ProcessId a message to tell it that we have joined the
 network. This is a new PMessage that we call MsgServerInfo. It contains the current ProcessId and the list of local clients
 we have (because clients may have already connected by now).

	
On receipt of a MsgServerInfo, add that ProcessId to the servers list if it isn’t already there.

	
Add the information about the remote clients to the state. There
 may need to be some conflict resolution at this point if the remote
 server has clients with the same names as clients that we already
 know about.

	
If the new server is not already known to us, then we should respond
 with a MsgServerInfo of our own to tell the other server which
 local clients are on this server.

	
Start monitoring the remote process. Then we can be informed when
 the remote process dies and remove its clients from our local
 state.

Exercise: A Distributed Key-Value Store

A key-value store is a simple database that supports only operations
to store and retrieve values associated with keys. Key-value stores
have become popular over recent years because they offer scalability
advantages over traditional relational databases in exchange for
supporting fewer operations (in particular, they lack database joins).
This exercise is to use the distributed-process framework to
implement a distributed fault-tolerant key-value store (albeit a
very simplistic one).
The interface exposed to clients is the following:
type Database
type Key = String
type Value = String

createDB :: Process Database
set :: Database -> Key -> Value -> Process ()
get :: Database -> Key -> Process (Maybe Value)
Here, createDB creates a database, and set and get perform
operations on it. The set operation sets the given key to the given
value, and get returns the current value associated with the given
key or Nothing if the key has no entry.
Part 1. In distrib-db/db.hs, I supplied a sample main function that
acts as a client for the database, and you can use this to test your
database. The skeleton for the database code itself is in
Database.hs in the same directory. The first exercise is to
implement a single-node database by modifying Database.hs. That is:
	
createDB should spawn a process to act as the database. It
can spawn on the current node.

	
get and set should talk to the database process via
messages; you need to define the message type and the operations.

When you run db.hs, it will call createDB to create a database
and then populate it using the Database.hs source file itself. Every
word in the file is a key that maps to the word after it. The client
will then look up a couple of keys and then go into an interactive
mode where you can type in keys that are looked up in the database.
Try it out with your database implementation and satisfy yourself
that it is working.
Part 2. The second stage is to make the database distributed. In practice,
the reason for doing this is to store a database much larger than we
can store on a single machine and still have fast access to all of
it.
The basic plan is that we are going to divide up the key space
uniformly and store each portion of the key space on a separate node.
The exact method used for splitting up the key space is important in
practice because if you get it wrong, then the load might not be well-balanced between the nodes. For the purposes of this exercise, though, a simple scheme will do: take the first character of the key modulo
the number of workers.
There will still be a single process handling requests from clients,
so we still have type Database = ProcessId. However, this process
needs to delegate requests to the correct worker process according to
the key:
	
Arrange to start worker processes on each of the nodes. The list of
 nodes in the network is passed to createDB.

	
Write the code for the worker process. You probably need to put it
in a different module (e.g., called Worker) due to restrictions
imposed by Template Haskell. The worker process needs to maintain its
own Map and handle get and set requests.

	
Make the main database process delegate operations to the correct
worker. You should be able to make the worker reply directly to the
original client rather than having to forward the response from the
worker back to the client.

Compile db.hs against your distributed database to make sure it
still works.
Part 3. Make the main database process monitor all the worker processes.
Detect failure of a worker and emit a message using say. You will
need to use receiveWait to wait for multiple types of messages; see
the ping-fail.hs example for hints.
Note that we can’t yet do anything sensible if a worker dies. That is
the next part of the exercise.
Part 4. Implement fault tolerance by replicating the database across
multiple nodes.
	
Instead of dividing the key space evenly across workers, put the
workers in pairs and give each pair a slice of the key space. Both
workers in the pair will have exactly the same data.

	
Forward requests to both workers in the pair (it doesn’t matter that
there will be two responses in the case of a get).

	
If a worker dies, you will need to remove the worker from your
internal list of workers so that you don’t try to send it messages in
the future.[63]

This should result in a distributed key-value store that is robust
to individual nodes going down, as long as we don’t kill too many
nodes too close together. Try it out—kill a node while the database
is running and check that you can still look up keys.
A sample solution can be found in distrib-db/DatabaseSample.hs and
distrib-db/WorkerSample.hs.

[50] Also known as “Cloud Haskell.”

[51] This is also known as the actor model.

[52] The distributed-process package is in fact the second implementation of these ideas, the first prototype being the remote package.

[53] For example, meta-par and
HdpH.

[54] As of binary version 0.6.3.0.

[55] As of GHC version 7.2.1.

[56] We expect that in the future, GHC will provide syntactic sugar to make remote code execution easier.

[57] Template Haskell is a feature provided by GHC that allows Haskell code to be manipulated and generated at compile time. For more details, see the GHC User’s Guide.

[58] The log messages produced by say are normally prefixed by a timestamp, but I have omitted the timestamps here for clarity.

[59] The default
port is chosen by our distribMain wrapper, not the
distributed-process framework.

[60] Indeed, some of Erlang’s libraries use exactly this technique.

[61] The current implementation of channels uses STM, and channels are merged using orElse.

[62] This is mainly so that we can test the server on a single machine; in practice, you would want to choose the port number via a command-line option or some other method.

[63] A real fault-tolerant database would restart the
worker on a new node and copy the database slice from its partner. The
solution provided in this book doesn’t do
this, but by all means have a go at doing it.

Chapter 15. Debugging, Tuning, and Interfacing with Foreign Code

Debugging Concurrent Programs

In this section, I’ve collected a few tricks and techniques that you might find useful when
debugging Concurrent Haskell programs.
Inspecting the Status of a Thread

The threadStatus function (from GHC.Conc) returns the current
state of a thread:
threadStatus :: ThreadId -> IO ThreadStatus
Here, ThreadStatus is defined as follows:
data ThreadStatus
 = ThreadRunning -- [image: 1]
 | ThreadFinished -- [image: 2]
 | ThreadBlocked BlockReason -- [image: 3]
 | ThreadDied -- [image: 4]
 deriving (Eq, Ord, Show)
	[image: 1]
	
The thread is currently running (or runnable).

	[image: 2]
	
The thread has finished.

	[image: 3]
	
The thread is blocked (the BlockReason type is explained shortly).

	[image: 4]
	
The thread died because an exception was raised but not caught.
This should never happen under normal circumstances because forkIO includes a default exception handler that catches and prints exceptions.

The BlockReason type gives more information about why a thread is
blocked and is self-explanatory:
data BlockReason
 = BlockedOnMVar
 | BlockedOnBlackHole
 | BlockedOnException
 | BlockedOnSTM
 | BlockedOnForeignCall
 | BlockedOnOther
 deriving (Eq, Ord, Show)
Here’s an example in GHCi:
> t <- forkIO (threadDelay 3000000)
> GHC.Conc.threadStatus t
ThreadBlocked BlockedOnMVar
> -- wait a few seconds
> GHC.Conc.threadStatus t
ThreadFinished
>
While threadStatus can be very useful for debugging, don’t use
it for normal control flow in your program. One reason
is that it breaks abstractions. For instance, in the previous example, it showed us
that threadDelay is implemented using MVar (at least in this
version of GHC). Another reason is that the result of
threadStatus is out of date as soon as threadStatus returns,
because the thread may now be in a different state.

Event Logging and ThreadScope

While we should never underestimate the usefulness of adding
putStrLn calls to our programs to debug them, sometimes this isn’t
quite lightweight enough. putStrLn can introduce some extra
contention for the stdout Handle, which might perturb the
concurrency in the program you’re trying to debug. So in this section,
we’ll look at another way to investigate the behavior of a concurrent
program at runtime.
We’ve used ThreadScope a lot to diagnose performance problems in
this book. ThreadScope generates its graphs from the
information in the .eventlog file that is produced when we run a
program with the +RTS -l option. This file is a mine of information
about what was happening behind the scenes when the program ran, and
we can use it for debugging our programs, too.
You may have noticed that ThreadScope identifies threads by their
number. For debugging, it helps a lot to know which thread in the
program corresponds to which thread number; this connection can be
made using labelThread:
labelThread :: ThreadId -> String -> IO ()
 -- defined in GHC.Conc
The labelThread function has no effect on the running of the
program but causes the program to emit a special event into the event log.
There are also a couple of ways to put your own information in the
eventlog file:
traceEvent :: String -> a -> a
traceEventIO :: String -> IO ()
 -- defined in Debug.Trace
Here’s a simple program to demonstrate labelThread and
traceEventIO in action:
mvar4.hs

main = do
 t <- myThreadId
 labelThread t "main"
 m <- newEmptyMVar
 t <- forkIO $ putMVar m 'a'
 labelThread t "a"
 t <- forkIO $ putMVar m 'b'
 labelThread t "b"
 traceEventIO "before takeMVar"
 takeMVar m
 takeMVar m
This program forks two threads. Each of the threads puts a value into
an MVar, and then the main thread calls takeMVar on the MVar
twice.
Compile the program with -eventlog and run it with +RTS -l:
$ ghc mvar4.hs -threaded -eventlog
$./mvar4 +RTS -l
This generates the file mvar4.eventlog, which is a space-efficient binary representation of the sequence of events that occurred in the runtime system when the program ran. You need a program to display the
contents of a .eventlog file; ThreadScope of course is one such
tool, but you can also just display the raw event stream using
the ghc-events program:[64]
$ ghc-events show mvar4.eventlog
As you might expect, there is a lot of implementation detail in the
event stream, but with the help of labelThread and traceEventIO, you
can sort through it to find the interesting bits. Note that if you
try this program yourself, you might not see exactly the same event
log; such is the nature of implementation details.
We labeled the main thread "main", so searching for main in the
log finds this section:
 912458: cap 0: running thread 3
 950678: cap 0: thread 3 has label "main" -- [image: 1]
 953569: cap 0: creating thread 4 -- [image: 2]
 956227: cap 0: thread 4 has label "a" -- [image: 3]
 957001: cap 0: creating thread 5 -- [image: 4]
 958450: cap 0: thread 5 has label "b"
 960835: cap 0: stopping thread 3 (thread yielding) -- [image: 5]
 997067: cap 0: running thread 4 -- [image: 6]
 1007167: cap 0: stopping thread 4 (thread finished)
 1008066: cap 0: running thread 5 -- [image: 7]
 1010022: cap 0: stopping thread 5 (blocked on an MVar)
 1045297: cap 0: running thread 3 -- [image: 8]
 1064248: cap 0: before takeMVar -- [image: 9]
 1066973: cap 0: waking up thread 5 on cap 0 -- [image: 10]
 1067747: cap 0: stopping thread 3 (thread finished) -- [image: 11]
	[image: 1]
	
This event was generated by labelThread. GHC needs some threads
for its own purposes, so it turns out that in this case the main
thread is thread 3.

	[image: 2]
	
This is the first forkIO executed by the main thread, creating
thread 4.

	[image: 3]
	
The main thread labels thread 4 as a.

	[image: 4]
	
The second forkIO creates thread 5, which is then labeled as b.

	[image: 5]
	
Next, the main thread “yields.” This means it stops running to
give another thread a chance to run. This happens at regular
intervals during execution due to pre-emption.

	[image: 6]
	
The next thread to run is thread 4, which is a. This thread will put a value
into the MVar and then finish.

	[image: 7]
	
Next, thread 5 (b) runs. It also puts in the MVar but gets
blocked because the MVar is already full.

	[image: 8]
	
The main thread runs again.

	[image: 9]
	
This is the effect of the call to traceEventIO in the main
thread; it helps us to know where in the code we’re currently
executing. Be careful with traceEventIO and traceEvent, though. They have to convert String values into raw bytes to put in the
event log and can be expensive, so use them only to annotate things
that don’t happen too often.

	[image: 10]
	
When the main thread calls takeMVar, this has the effect of
waking up thread 5 (b), which was blocked in putMVar.

	[image: 11]
	
The main thread has finished, so the program exits.

So from this event log we can see the sequence of actions that
happened at runtime, including which threads got blocked when, and
some information about why they got blocked. These clues can often be
enough to point you to the cause of a problem.

Detecting Deadlock

As I mentioned briefly in Communication: MVars, the GHC runtime system can
detect when a thread has become deadlocked and send it the
BlockedIndefinitelyOnMVar exception. How exactly does this work?
Well, in GHC both threads and MVars are objects on the heap, just
like other data values. An MVar that has blocked threads is
represented by a heap object that points to a list of the blocked
threads. Heap objects are managed by the garbage
collector, which traverses the heap starting from the roots to
discover all the live objects. The set of roots consists of the
running threads and the stack associated with each of these threads.
Any thread that is not reachable from the roots is definitely
deadlocked. The runtime system cannot ever find these threads by
following pointers, so they can never become runnable again.
For example, if a thread is blocked in takeMVar on an MVar that is
not referenced by any other thread, then both the MVar that it is
blocked on and the thread itself will be unreachable. When a thread
is found to be unreachable, it is sent the BlockedIndefinitelyOnMVar
exception (there is also a BlockedIndefinitelyOnSTM exception for
when a thread is blocked in an STM transaction). The exception gives
the thread a chance to clean up any resources it may have been
holding and also allows the program to quit with an error message
rather than hanging in the event of a deadlock.
The concept extends to mutual deadlock between a group of
threads. Suppose we create two threads that deadlock on each other
like this:
a <- newEmptyMVar
b <- newEmptyMVar
forkIO (do takeMVar a; putMVar b ())
forkIO (do takeMVar b; putMVar a ())
...
Then both threads are blocked, each on an MVar that is reachable
from the other. As far as the garbage collector is concerned, both
threads and the MVars a and b are unreachable (assuming the
rest of the program does not refer to a or b). When there are
multiple unreachable threads, they are all sent the
BlockedIndefinitelyOnMVar exception at the same time.
This all seems quite reasonable, but you should be aware of some
consequences that might not be immediately obvious. Here’s an
example:[65]
deadlock1.hs

main = do
 lock <- newEmptyMVar
 complete <- newEmptyMVar
 forkIO $ takeMVar lock `finally` putMVar complete ()
 takeMVar complete
Study the program for a moment and think about what you expect to
happen.
The child thread is clearly deadlocked, and so it should receive the
BlockedIndefinitelyOnMVar exception. This will cause the finally
action to run, which performs putMVar complete (), which will in
turn unblock the main thread. However, this is not what happens. At
the point where the child thread is deadlocked, the main thread is also deadlocked. The runtime system has no idea that sending the
exception to the child thread will cause the main thread to become
unblocked, so the behavior when there is a group of deadlocked
threads is to send them all the exception at the same time. Hence the
main thread also receives the BlockedIndefinitelyOnMVar exception,
and the program prints an error message.
The second consequence is that the runtime can’t always
prove that a thread is deadlocked even if it seems obvious to you.
Here’s another example:
deadlock2.hs

main = do
 lock <- newEmptyMVar
 forkIO $ do r <- try (takeMVar lock); print (r :: Either SomeException ())
 threadDelay 1000000
 print (lock == lock)
We might expect the child thread to be detected as deadlocked here because it is clear that nothing is ever going to put into the lock
MVar. But the child thread never receives an exception, and the
program completes printing True. The reason the deadlock is not
detected here is that the main thread is holding a reference to the
MVar lock because it is used in the (slightly contrived)
expression (lock == lock) on the last line. Deadlock detection
works using garbage collection, which is necessarily a conservative
approximation to the true future behavior of the program.
Suppose that instead of the last line, we had written this:
 if isPrime 43 then return () else putMVar lock ()
Provided that the compiler optimizes away isPrime 43, we would get a
deadlock exception. You can’t in general know how clever the compiler
is going to be, so you should not rely on deadlock detection for the correct working of your program. Deadlock detection is a debugging
feature; in the event of a deadlock, you get an exception rather than a
silent hang, but you should aim to never have any deadlocks in your
program.

Tuning Concurrent (and Parallel) Programs

In this section, I’ll cover a few tips and techniques for improving the
performance of concurrent programs. The standard principles apply
here, just as much as in ordinary sequential programming:
	
Avoid premature optimization. Don’t overoptimize code until you
 know there’s a problem. That said, “avoiding premature
 optimization” is not an excuse for writing awful code. For example,
 don’t use wildly inappropriate data structures if using the right
 one is just a matter of importing a library. I like to “write code
 with efficiency in mind”: know the complexity of your algorithms,
 and if you find yourself using something worse than O(nlogn),
 think about whether it might present a problem down the road. The
 more of this you do, the better your code will cope with larger and larger problems.

	
Don’t waste time optimizing code that doesn’t contribute much to overall runtime. Profile your program so that you can focus your
 efforts on the important parts. GHC has a reasonable space and
 time profiler that should point out at least where the inner loops
 of your code are. In concurrent programs, the problem can often be
 I/O or contention, in which case using ThreadScope together with
 labelThread and traceEvent can help track down the
 culprits (see Event Logging and ThreadScope).

Thread Creation and MVar Operations

GHC strives to provide an extremely efficient implementation of
threads. This section explores the performance of a couple of
very simple concurrent programs to give you a feel for the efficiency
of the basic concurrency operations and how to inspect the
performance of your programs.
The first program creates 1,000,000 threads, has each of them put a
token into the same MVar, and then reads the 1,000,000 tokens from
the MVar:
threadperf1.hs

numThreads = 1000000

main = do
 m <- newEmptyMVar
 replicateM_ numThreads $ forkIO (putMVar m ())
 replicateM_ numThreads $ takeMVar m
This program should give us an indication of the memory overhead for
threads because all the threads will be resident in memory at once.
To find out the memory cost, we can run the program with +RTS -s
(the output is abbreviated slightly here):
$./threadperf1 +RTS -s
 1,048,049,144 bytes allocated in the heap
 3,656,054,520 bytes copied during GC
 799,504,400 bytes maximum residency (10 sample(s))
 146,287,144 bytes maximum slop
 1,768 MB total memory in use (0 MB lost due to fragmentation)

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.75s (0.76s elapsed)
 GC time 2.21s (2.22s elapsed)
 EXIT time 0.18s (0.18s elapsed)
 Total time 3.14s (3.16s elapsed)
So about 1 GB was allocated, although the total memory required by
the program was 1.7 GB. The amount of allocated memory tells us that
threads require approximately 1 KB each, and the extra memory used by the program is due to copying GC overheads. In fact, it is possible to
tune the amount of memory given to a thread when it is allocated,
using the +RTS -k<size> option; here is the same program using
400-byte threads:
$./threadperf1 +RTS -s -k400
 424,081,144 bytes allocated in the heap
 1,587,567,240 bytes copied during GC
 387,551,912 bytes maximum residency (9 sample(s))
 87,195,664 bytes maximum slop
 902 MB total memory in use (0 MB lost due to fragmentation)

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.59s (0.59s elapsed)
 GC time 1.60s (1.61s elapsed)
 EXIT time 0.13s (0.13s elapsed)
 Total time 2.32s (2.33s elapsed)
A thread will allocate more memory for its stack on demand, so whether
it is actually a good idea to use +RTS -k400 will depend on your
program. In this case, the threads were doing very little before
exiting, so it did help the overall performance.
The second example also creates 1,000,000 threads, but this time we
create a separate MVar for each thread to put a token into and then
take all the MVars in the main thread before exiting:
threadperf2.hs

numThreads = 1000000

main = do
 ms <- replicateM numThreads $ do
 m <- newEmptyMVar
 forkIO (putMVar m ())
 return m
 mapM_ takeMVar ms
This program has quite different performance characteristics:
$./threadperf2 +RTS -s
 1,153,017,744 bytes allocated in the heap
 267,061,032 bytes copied during GC
 62,962,152 bytes maximum residency (8 sample(s))
 4,662,808 bytes maximum slop
 121 MB total memory in use (0 MB lost due to fragmentation)

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.70s (0.72s elapsed)
 GC time 0.50s (0.50s elapsed)
 EXIT time 0.02s (0.02s elapsed)
 Total time 1.22s (1.24s elapsed)
Although it allocated a similar amount of memory, the total memory in use
by the program at any one time was only 121 MB. This is because each
thread can run to completion independently, unlike the previous
example where all the threads were present and blocked on the same
MVar. So while the main thread is busy creating more threads, the
threads it has already created can run, complete, and be garbage-collected, leaving behind only the MVar for the main thread to take later.
Note that the GC overheads of this program are much lower than the
first example. The total time gives us a rough indication of the time
it takes to create an MVar and a thread, and for the thread to run,
put into the MVar, complete, and be garbage-collected. We did this
1,000,000 times in about 1.2s, so the time per thread is about 1.2
microseconds.
The conclusion is that threads are cheap in GHC, in both creation
time and memory overhead. Context-switch performance is also
efficient, as it does not require a kernel round-trip, although we
haven’t measured that here. The memory used by threads is
automatically recovered when the thread completes, and because thread
stacks are movable in GHC, you don’t have to worry about memory
fragmentation or running out of address space, as you do with OS threads. The
number of threads we can have is limited only by the amount of memory.
We covered one trick here: the +RTS -k<size> option, which tunes the
initial stack size of a thread. If you have a lot of very tiny
threads, it might be worth tweaking this option from its default 1k
to see if it makes any difference.

Shared Concurrent Data Structures

We’ve encountered shared data structures a few times so far: the
phonebook example in MVar as a Container for Shared State, the window-manager in
Chapter 10, and the semaphore in Limiting the Number of Threads with a Semaphore, not to
mention various versions of channels. Those examples covered most of the important
techniques to use with shared data structures, but we haven’t
compared the various choices directly. In this section, I’ll briefly
summarize the options for shared state, with a focus on the
performance implications of the different choices.
Typically, the best approach when you want some shared state is to take
an existing pure data structure, such as a list or a Map, and store
it in a mutable container. Not only is this straightforward to
accomplish, but there are a wide range of well-tuned pure data
structures to choose from, and using a pure data structure means that
reads and writes are automatically concurrent.
There are a couple of subtle performance issues to be aware of, though.
The first is the effect of lazy evaluation when writing a new value
into the container, which we covered in MVar as a Container for Shared State. The
second is the choice of mutable container itself, which exposes some
subtle performance trade-offs. There are three choices:
	
MVar

	
 We found in Limiting the Number of Threads with a Semaphore that using an MVar to keep a
 shared counter did not perform well under high contention. This is
 a consequence of the fairness guarantee that MVar offers: if a
 thread relinquishes an MVar and there is another thread waiting,
 it must then hand over to the waiting thread; it cannot continue
 running and take the MVar again.

	
TVar

	
 Using a TVar sometimes performs better than MVar under
 contention and has the advantage of being composable with other STM
 operations. However, be aware of the other performance pitfalls
 with STM described in Performance.

	
IORef

	
 Using an IORef together with atomicModifyIORef is often a good
 choice for performance, as we saw in Limiting the Number of Threads with a Semaphore. The
 main pitfall here is lazy evaluation; getting enough strictness when
 using atomicModifyIORef is quite tricky. This is a good pattern to follow:

 b <- atomicModifyIORef ref
 (\x -> let (a, b) = f x
 in (a, a `seq` b))
 b `seq` return b
The seq call on the last line forces the second component of the
pair, which itself is a seq call that forces a, which in turn
forces the call to f. All of this ensures that both the value stored
inside the IORef and the return value are evaluated strictly, and no
chains of thunks are built up.

RTS Options to Tweak

GHC has plenty of options to tune the behavior of the runtime system (RTS). For full details, see the GHC User’s Guide. Here, I’ll highlight a few of the options that are good targets for tuning concurrent and parallel programs.
RTS options should be placed between +RTS and -RTS, but the -RTS
can be omitted if it would be at the end of the command line.
	
-N[cores]

	
 (Default: 1) We encountered -N many times throughout
 Part I. But what value should you pass? GHC can
 automatically determine the number of processors in your machine if
 you use -N without an argument, but that might not always be the
 best choice. The GHC runtime system scales well when it has
 exclusive access to the number of processors specified with -N,
 but performance can degrade quite rapidly if there is contention for
 some of those cores with other processes on the machine.

Should you include hyperthreaded cores in the count? Anecdotal
evidence suggests that using hyperthreaded cores often gives a small
performance boost, but obviously not as much as a full core. On the
other hand, it might be wise to leave the hyperthreaded cores alone in order
to provide some insulation against any contention arising from
other processes. Be aware that using -N alone normally includes
hyperthreaded cores.

	
-qa

	
 (Default: off) Enables the use of processor affinity, which locks
 the Haskell program to specific cores. Normally the operating
 system is free to migrate the threads that run the Haskell program
 around the cores in the machine in response to other activity, but
 using -qa prevents it from doing so. This can improve
 performance or degrade it, depending on the scheduling
 behavior of your operating system and the demands of the program.

	
-Asize

	
 (Default: 512k) This option controls the size of the memory
 allocation area for each core. A good rule of thumb is to keep this
 around the size of the L2 cache per core on your machine. Cache
 sizes vary a lot and are often shared between cores, and sometimes there
 is even an L3 cache, too. So setting the -A value is not an exact
 science.

There are two opposing factors at play here: using more memory means
we run the garbage collector less, but using less memory means we
use the caches more. The sweet spot depends on the
characteristics of the program and the hardware, so the only
consistent advice is to try various values and see what helps.

	
-Iseconds

	
(Default: 0.3) This option affects deadlock detection
 (Detecting Deadlock). The runtime needs to perform a full garbage
 collection in order to detect deadlocked threads. When the
 program is idle, the runtime doesn’t know whether a thread will wake
 up again, or the program is deadlocked and the garbage collector
 should be run to detect the deadlock. The compromise is to wait until the
 program has been idle for a short period of time before running the
 garbage collector, which by default is 0.3 seconds. This might be a
 bad idea if a full GC takes a long time (because your program has
 lots of data) and it regularly goes idle for short periods of time,
 in which case you might want to tune this value higher.

	
-C[seconds]

	
 (Default 0.02) This option sets the context-switch interval, which
 determines how often the scheduler interrupts the current thread to
 run the next thread on the run queue. The scheduler switches
 between runnable threads in a round-robin fashion. As a rule of
 thumb, this option should not be set too low because frequent
 context switches harm performance, and should not be set too high
 because that can cause jerkiness and stuttering in interactive
 threads.

Concurrency and the Foreign Function Interface

Haskell has a foreign function interface (FFI) that allows
Haskell code to call, and be called by, foreign language code
(primarily C). Foreign languages also have their
own threading models—in C, there are POSIX and Win32 threads, for
example—so we need to specify how Concurrent Haskell interacts
with the threading models of foreign code.
All of the following assumes the use of GHC’s -threaded option.
Without -threaded, the Haskell process uses a single OS thread only,
and multithreaded foreign calls are not supported.
Threads and Foreign Out-Calls

An out-call is a call made from Haskell to a foreign language. At the
present time, the FFI supports only calls to C, so that’s all we
describe here. In the following, we refer to threads in C (i.e., POSIX
or Win32 threads) as “OS threads” to distinguish them from the Haskell
threads created with forkIO.
As an example, consider making the POSIX C function read() callable
from Haskell:
foreign import ccall "read"
 c_read :: CInt -- file descriptor
 -> Ptr Word8 -- buffer for data
 -> CSize -- size of buffer
 -> CSSize -- bytes read, or -1 on error
This declares a Haskell function c_read that can be used to call the
C function read(). Full details on the syntax of foreign
declarations and the relationship between C and Haskell types can be
found in the Haskell
2010 Language Report.
Just as Haskell threads run concurrently with one another, when a
Haskell thread makes a foreign call, that foreign call runs
concurrently with the other Haskell threads, and indeed with any other
active foreign calls. The only way that two C calls can be
running concurrently is if they are running in two separate OS
threads, so that is exactly what happens; if several Haskell threads
call c_read and they all block waiting for data to be read, there
will be one OS thread per call blocked in read().
This has to work even though Haskell threads are not
normally mapped one to one with OS threads; in GHC, Haskell threads
are lightweight and managed in user space by the runtime system. So
to handle concurrent foreign calls, the runtime system has to create
more OS threads, and in fact it does this on demand. When a Haskell
thread makes a foreign call, another OS thread is created (if
necessary), and the responsibility for running the remaining Haskell
threads is handed over to the new OS thread, while the current OS
thread makes the foreign call.
The implication of this design is that a foreign call may be executed
in any OS thread, and subsequent calls may even be executed in
different OS threads. In most cases, this isn’t a problem, but
sometimes it is; some foreign code must be called by a particular
OS thread. There are two situations where this happens:
	
Libraries that allow only one OS thread to use their API. GUI
 libraries often fall into this category. Not only must the library
 be called by only one OS thread, but it must often be one
 particular thread (e.g., the main thread). The Win32 GUI APIs
 are an example of this.

	
APIs that use internal thread-local state. The best known
 example of this is OpenGL, which supports multithreaded use but
 stores state between API calls in thread-local storage. Hence,
 subsequent calls must be made in the same OS thread; otherwise, the
 later call will see the wrong state.

To handle these requirements, Haskell has a concept of bound
threads. A bound thread is a Haskell thread/OS thread pair that guarantees
that foreign calls made by the Haskell thread always take place in the
associated OS thread. A bound thread is created by forkOS:
forkOS :: IO () -> IO ThreadId
Care should be taken when calling forkOS; it creates a complete new
OS thread, so it can be quite expensive. Furthermore, bound threads
are much more expensive than unbound threads. When context-switching
to or from a bound thread, the runtime system has to switch OS
threads, which involves a trip through the operating system and tends
to be very slow. Use bound threads sparingly.
For more details on bound threads, see the documentation for the
Control.Concurrent module.
Note
There is a common misconception about forkOS, which is partly a
consequence of its poorly chosen name. Upon seeing a function called
forkOS, one might jump to the conclusion that you need to use
forkOS to call a foreign function like read() and have it run
concurrently with the other Haskell threads. This isn’t the case. As
I mentioned earlier, the GHC runtime system creates more OS threads on
demand for running foreign calls. Moreover, using forkOS instead of
forkIO will make your code a lot slower.
The only reason to call forkOS is to create a bound thread,
and the only reason for wanting bound threads is to work with foreign
libraries that have particular requirements about the OS thread in which a
call is made.

Caution
The thread that runs main in a Haskell program is a bound thread.
This can give rise to a serious performance problem if you use the
main thread heavily; communication between the main thread and other
Haskell threads will be extremely slow. If you notice that your
program runs several times slower when -threaded is added, this
is the most likely cause.
The best way around this problem is just to create a new thread from
main and work in that instead.

Asynchronous Exceptions and Foreign Calls

When a Haskell thread is making a foreign call, it cannot receive
asynchronous exceptions. There is no way in general to interrupt a
foreign call, so the runtime system waits until the call returns
before raising the exception. This means that a thread blocked in a
foreign call may be unresponsive to timeouts and interrupts, and
moreover that calling throwTo will block if the target thread is in
a foreign call.
The trick for working around this limitation is to perform the foreign
call in a separate thread. For example:
 do
 a <- async $ c_read fd buf size
 r <- wait a
 ...
Now the current thread is blocked in wait and can be interrupted
by an exception as usual. Note that if an exception is raised it
won’t cancel the read() call, which will continue in the background.
Don’t be tempted to use withAsync here because withAsync will
attempt to kill the thread calling read() and will block in doing so.
Operations in the standard System.IO library already work this way
behind the scenes because they delegate blocking operations to a
special IO manager thread. So there’s no need to worry about forking
extra threads when calling standard IO operations.

Threads and Foreign In-Calls

In-calls are calls to Haskell functions that have been exposed to
foreign code with a foreign export declaration. For example, if we have a
function f of type Int -> IO Int, we could expose it like this:
foreign export ccall "f" f :: Int -> IO Int
This would create a C function with the following signature:
HsInt f(HsInt);
Here, HsInt is the C type corresponding to Haskell’s Int
type.
In a multithreaded program, it is entirely possible for f to be
called by multiple OS threads concurrently. The GHC runtime system
supports this (provided you use -threaded) with the following
behavior: each call becomes a new bound thread. That is, a
new Haskell thread is created for each call, and the Haskell thread is
bound to the OS thread that made the call. Hence, any further
out-calls made by the Haskell thread will take place in the same OS
thread that made the original in-call. This turns out to be important
for dealing with GUI callbacks. The GUI wants to run in the main OS
thread only, so when it makes a callback into Haskell, we need to
ensure that GUI calls made by the callback happen in the same OS
thread that invoked the callback.

[64] The ghc-events program is installed along with the ghc-events package, which is a dependency of ThreadScope, so you should have it if you have ThreadScope. If not, cabal install ghc-events should get it.

[65] Courtesy of Edward Yang.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	! operator
		in Accelerate, Arrays and Indices
	
	in Repa, Arrays, Shapes, and Indices
	
	indexing arrays with, Indexing Arrays
	

	$ operator (infix operator), MVar as a Container for Shared State
	
	$! operator, MVar as a Container for Shared State
	
	-02 optimization option, Example: Computing Shortest Paths
	
	-A (RTS option), RTS Options to Tweak
	
	-C (RTS option), RTS Options to Tweak
	
	-ddump-cc option, Debugging the CUDA Backend
	
	-dverbose option, Debugging the CUDA Backend
	
	-fllvm optimization option, Example: Computing Shortest Paths
	
	-I (RTS option), RTS Options to Tweak
	
	-k (RTS option), Thread Creation and MVar Operations
	
	-N(RTS option), RTS Options to Tweak
	
	-qa (RTS option), RTS Options to Tweak
	
	-s (RTS option), Example: Parallelizing a Sudoku Solver
	
	-threaded option, Parallelizing the Program
	
	/quit::, A Chat Server
	
	:. constructor, Arrays, Shapes, and Indices, Arrays and Indices
	
	>-> operator, Example: Shortest Paths
	

A
	Accelerate, GPU Programming with Accelerate–Zipping Two Arrays
		Arrays class, Running a Simple Accelerate Computation
	
	arrays in, Arrays and Indices–Arrays and Indices
	
	conditionals, working with, Example: A Mandelbrot Set Generator–Example: A Mandelbrot Set Generator
	
	constant function, Constants
	
	creating arrays, Creating Arrays Inside Acc–Creating Arrays Inside Acc
	
	debugging, Debugging the CUDA Backend
	
	Elt class, Running a Simple Accelerate Computation
	
	GPUs, programming with, GPU Programming with Accelerate–GPU Programming with Accelerate
	
	implementing Floyd-Warshall algorithm, Example: Shortest Paths–Debugging the CUDA Backend
	
	indices in, Arrays and Indices–Arrays and Indices
	
	Mandelbrot set generator in, Example: A Mandelbrot Set Generator–Example: A Mandelbrot Set Generator
	
	programs, executing, Running a Simple Accelerate Computation–Running a Simple Accelerate Computation
	
	Shape class, Running a Simple Accelerate Computation
	
	type classes in, Running a Simple Accelerate Computation
	

	accept operation, for multiclient servers, A Trivial Server
	
	addition, in Accelerate, Example: A Mandelbrot Set Generator
	
	addToPointSum function, Example: The K-Means Problem
	
	adjacency matrix
		algorithms run over, Example: Shortest Paths in a Graph
	
	defined, Example: Computing Shortest Paths
	
	foldS function with, Folding and Shape-Polymorphism
	

	Amdahls law, Example: Parallelizing a Sudoku Solver
	
	Applicative type class, Example: Shortest Paths in a Graph
	
	arrays
		delayed, Operations on Arrays–Operations on Arrays
	
	large-scale, Data Parallel Programming with Repa
	
	manifest, Operations on Arrays
	
	nested, Arrays and Indices
	
	unboxed, Operations on Arrays
	

	Arrays class (Accelerate), Running a Simple Accelerate Computation
	
	arrays in Accelerate, Arrays and Indices–Arrays and Indices
		creating, Creating Arrays Inside Acc–Creating Arrays Inside Acc
	
	indexing, Indexing Arrays
	
	of dimensionality one, Arrays and Indices
	
	of dimensionality zero, Arrays and Indices
	
	of tuples, working with, Example: A Mandelbrot Set Generator–Example: A Mandelbrot Set Generator
	
	passing inputs as, Example: Shortest Paths
	
	scalar, Scalar Arrays
	
	zipping, Zipping Two Arrays
	
	zipWith function, Zipping Two Arrays
	

	arrays in Repa, Arrays, Shapes, and Indices–Operations on Arrays
		folding, Folding and Shape-Polymorphism–Folding and Shape-Polymorphism
	
	operations on, Operations on Arrays–Operations on Arrays
	
	shape-polymorphism, Folding and Shape-Polymorphism–Folding and Shape-Polymorphism
	

	assign function
		in K-Means problem, Example: The K-Means Problem
	
	parallelizing, Parallelizing K-Means
	

	associativity (foldP), Folding and Shape-Polymorphism
	
	Async API, How to Achieve Parallelism with Concurrency
		automatically canceled with thread death, Avoiding Thread Leakage
	
	avoiding thread leakage with, Avoiding Thread Leakage
	
	cancellation of, mask and forkIO
	
	for asynchronous actions, Overlapping Input/Output
	
	implementing with STM, Async Revisited–Async Revisited
	
	to implement programs, Parallel Version
	

	Async computations, errors inside, Parallel Version
	
	asynchronous actions, wait function for, Overlapping Input/Output
	
	asynchronous cancellation, Cancellation and Timeouts
	
	asynchronous exceptions, Cancellation and Timeouts–Asynchronous Exceptions: Discussion
		bracket function, The bracket Operation
	
	cancellations, Asynchronous Exceptions–Asynchronous Exceptions
	
	catching, Catching Asynchronous Exceptions–Catching Asynchronous Exceptions
	
	channel safety, Asynchronous Exception Safety for Channels–Asynchronous Exception Safety for Channels
	
	defined, Asynchronous Exceptions
	
	foreign out-calls and, Asynchronous Exceptions and Foreign Calls–Asynchronous Exceptions and Foreign Calls
	
	forkIO function, mask and forkIO–mask and forkIO, Asynchronous Exceptions: Discussion
	
	in STM, Asynchronous Exception Safety
	
	mask function, mask and forkIO–mask and forkIO, Asynchronous Exceptions: Discussion
	
	masking, Masking Asynchronous Exceptions–Masking Asynchronous Exceptions, Setting Up a New Client
	
	timeouts and, Timeouts–Timeouts
	

	asynchronous I/O, Overlapping Input/Output–Merging
		exceptions, handling, Error Handling with Async–Error Handling with Async
	
	exceptions, throwing, Exceptions in Haskell–Exceptions in Haskell
	
	merging, Merging–Merging
	
	MVar and, Overlapping Input/Output–Overlapping Input/Output
	

	atomic blocks, as language construct, Software Transactional Memory
	
	atomicModifyIORef, Limiting the Number of Threads with a Semaphore, Shared Concurrent Data Structures
	

B
	backtracking, Example: A Conference Timetable
	
	bandwith, saving with distributed servers, A Distributed Chat Server
	
	bang-pattern, Limiting the Number of Threads with a Semaphore
	
	Binary class, Defining a Message Type–Defining a Message Type
	
	binary package, Defining a Message Type–Defining a Message Type
	
	BlockedIndefinitelyOnMVar exception, Communication: MVars, Detecting Deadlock
	
	blocking
		and interruptible operations, Masking Asynchronous Exceptions
	
	by throwTo, Timeouts
	
	in STM, Blocking, What Can We Not Do with STM?, Performance
	
	in takeMVar operation, Detecting Deadlock
	
	with bracket function, The bracket Operation
	
	with orElse operator, Merging with STM
	

	BlockReason data type, Inspecting the Status of a Thread
	
	bottlenecks, in parallel programs, Limiting the Number of Threads with a Semaphore
	
	bound threads, Threads and Foreign Out-Calls
		foreign in-calls as, Threads and Foreign In-Calls
	
	main threads as, Threads and Foreign Out-Calls
	

	bounded channels, Bounded Channels–Bounded Channels
	
	bracket function, The bracket Operation
		and conditional functions, Setting Up a New Client
	
	and exceptions, Asynchronous Exceptions
	
	defined with mask, The bracket Operation
	
	finally function, Exceptions in Haskell
	
	for asynchronous exception safety, Asynchronous Exceptions: Discussion
	
	for canceling an async, Avoiding Thread Leakage
	

	broadcast channels, Design Three: Use a Broadcast Chan, Recap
	
	browsers, interrupting several activiites with, Cancellation and Timeouts
	
	buffer size, with parBuffer, Parallelizing Lazy Streams with parBuffer
	

C
	C, threading models in, Concurrency and the Foreign Function Interface
	
	callbacks
		concurrency vs., Terminology: Parallelism and Concurrency
	
	GUI, Threads and Foreign In-Calls
	

	calls
		foreign, Performance and Analysis
	
	nesting, The Par Monad Compared to Strategies, Masking Asynchronous Exceptions, Parallel Version
	
	recursive, Example: Shortest Paths in a Graph, Adding Parallelism, Catching Asynchronous Exceptions
	

	cancel, Asynchronous Exceptions
	
	catch function, Exceptions in Haskell, Catching Asynchronous Exceptions
		infix use of, Exceptions in Haskell
	

	catchSTM, Asynchronous Exception Safety
	
	centroids
		computing, Example: The K-Means Problem
	
	defined, Example: The K-Means Problem
	

	Chan, MVar as a Building Block: Unbounded Channels–MVar as a Building Block: Unbounded Channels
		merging events into single, Merging with STM
	
	TChan vs., Implementing Channels with STM
	

	channel abstraction, An Alternative Channel Implementation
	
	channels
		adding elements to, MVar as a Building Block: Unbounded Channels
	
	asynchronous exceptions and, Asynchronous Exception Safety for Channels–Asynchronous Exception Safety for Channels
	
	broadcast, Design Three: Use a Broadcast Chan
	
	ClientInput events carried by, Design Two: One Chan Per Server Thread
	
	constructing new, MVar as a Building Block: Unbounded Channels
	
	duplicate, MVar as a Building Block: Unbounded Channels
	
	empty, MVar as a Building Block: Unbounded Channels, MVar as a Building Block: Unbounded Channels
	
	implementing, MVar as a Simple Channel: A Logging Service–MVar as a Simple Channel: A Logging Service, Implementing Channels with STM–Asynchronous Exception Safety
	
	one-place, Communication: MVars–Communication: MVars
	
	pushing values on end of, MVar as a Building Block: Unbounded Channels
	
	read and write pointers of, MVar as a Building Block: Unbounded Channels
	
	removing values from, MVar as a Building Block: Unbounded Channels
	
	typed channels vs., Handling Failure
	
	typed, in distributed programming, Typed Channels–Merging Channels
	
	unbounded, MVar as a Building Block: Unbounded Channels–MVar as a Building Block: Unbounded Channels
	

	chat server
		architecture, Architecture
	
	client data in, Client Data
	
	implementing, A Chat Server–Recap
	
	running client threads in, Running the Client
	
	server data, Server Data
	
	setting up new clients in, Setting Up a New Client
	

	checkAddClient function, Setting Up a New Client
	
	checkValue operation, Asynchronous Exception Safety
	
	chunking
		and parallelizing, Example: Parallelizing a Sudoku Solver
	
	in K-Means problem, Performance and Analysis
	
	number of chunks and runtime, Granularity–Granularity
	
	with granularity problems, Limiting the Number of Threads with a Semaphore
	

	client data, in chat server, Client Data
	
	client input events
		and server architecture, Architecture
	
	carrying of, by channels, Design Two: One Chan Per Server Thread
	
	on broadcast channels, Design Three: Use a Broadcast Chan
	

	client threads, in chat server, Running the Client
	
	clients, local vs. remote in distributed systems, Data Types
	
	clientSendChan, Client Data
	
	Closure, The Master Process
	
	Cluster (type)
		from PointSum, Example: The K-Means Problem
	
	in Lloyds algorithm, Example: The K-Means Problem
	
	representation of, Example: The K-Means Problem
	

	clusters, partitioning data points into, Example: The K-Means Problem–Performance and Analysis
	
	Command constructor, Client Data
	
	command function, The Implementation
	
	command-line parameters, Limiting the Number of Threads with a Semaphore
	
	communication
		between distributed processes, Distributed Programming
	
	between server and client, A Trivial Server
	
	of threads, Communication: MVars–Communication: MVars
	

	compilers
		deadlock detection by, Detecting Deadlock
	
	for functional language, Example: A Parallel Type Inferencer
	

	complex numbers
		addition of, Example: A Mandelbrot Set Generator
	
	multiplication of, Example: A Mandelbrot Set Generator
	

	composability, of STM operations, Running Example: Managing Windows
	
	composable atomicity, Summary
	
	composable blocking, Summary
	
	composite operations (in STM), Composition of Blocking Operations
	
	compute-bound program, Example: Searching for Files
	
	computeP function, Parallelizing the Program, Parallelizing the Program–Parallelizing the Program
	
	computeS function
		and building of adjacency matrix, Example: Computing Shortest Paths
	
	and delayed arrays, Operations on Arrays
	
	computeP vs., Parallelizing the Program–Parallelizing the Program, Parallelizing the Program
	

	concurrency, Terminology: Parallelism and Concurrency–Terminology: Parallelism and Concurrency, Basic Concurrency: Threads and MVars–Fairness, Higher-Level Concurrency Abstractions–Summary: The Async API
		channels, implementing, MVar as a Simple Channel: A Logging Service–MVar as a Simple Channel: A Logging Service
	
	CPU usage and, Fairness–Fairness
	
	data structures, shared, Shared Concurrent Data Structures–Shared Concurrent Data Structures
	
	deadlock, detecting, Detecting Deadlock–Detecting Deadlock
	
	debugging, Debugging Concurrent Programs–Event Logging and ThreadScope
	
	fairness of, Fairness–Fairness
	
	FFI and, Concurrency and the Foreign Function Interface
	
	Functor instances and, Adding a Functor Instance–Adding a Functor Instance
	
	MVars, Communication: MVars–MVar as a Building Block: Unbounded Channels
	
	parallelism, achieving with, How to Achieve Parallelism with Concurrency–How to Achieve Parallelism with Concurrency
	
	race operation, Timeouts Using race–Timeouts Using race
	
	shared state, MVar as a Container for Shared State–MVar as a Container for Shared State
	
	symmetric combinators, Symmetric Concurrency Combinators–Timeouts Using race
	
	thread leakage, Avoiding Thread Leakage–Avoiding Thread Leakage
	
	timeouts, Timeouts Using race–Timeouts Using race
	
	tuning, Tuning Concurrent (and Parallel) Programs–RTS Options to Tweak
	
	unbounded channels, MVar as a Building Block: Unbounded Channels–MVar as a Building Block: Unbounded Channels
	

	concurrent search, of multiple subdirectories, Parallel Version
	
	concurrent web servers, Introduction
	
	concurrently function, Symmetric Concurrency Combinators
	
	conditional operations, in Accelerate, Example: A Mandelbrot Set Generator
	
	constant function (Accelerate), Constants
	
	constraint satisfaction problems, Example: A Conference Timetable–Adding Parallelism
		parallel skeletons and, Adding Parallelism–Adding Parallelism
	

	constructors
		:., Arrays, Shapes, and Indices, Arrays and Indices
	
	Fork, Rate-Limiting the Producer
	
	MaskedInterruptible, Masking Asynchronous Exceptions
	
	MaskedUninterruptible, Masking Asynchronous Exceptions
	
	Message, MVar as a Simple Channel: A Logging Service
	
	Stop, MVar as a Simple Channel: A Logging Service
	
	TNil, Implementing Channels with STM
	
	Unmasked, Masking Asynchronous Exceptions
	
	Z, Arrays, Shapes, and Indices
	

	contention, MVar and, Limiting the Number of Threads with a Semaphore
	
	context-switch performance, efficiency of, Thread Creation and MVar Operations
	
	Control.Deepseq module, Deepseq–Deepseq
	
	converted sparks, Example: Parallelizing a Sudoku Solver
	
	cost model of STM, Performance
	
	CPUs, GPUs vs., GPU Programming with Accelerate
	
	Ctrl+C, A Trivial Server
	
	CUDA language, GPU Programming with Accelerate
		debugging, Debugging the CUDA Backend
	
	support in Accelerate for, Running on the GPU
	

D
	data dependencies, Dataflow Parallelism: The Par Monad
	
	data parallelism
		defined, Pipeline Parallelism
	
	pipeline parallelism vs., Limitations of Pipeline Parallelism
	

	data structure(s)
		evaluating compuations with, Lazy Evaluation and Weak Head Normal Form
	
	invariants of, Asynchronous Exception Safety for Channels
	
	MVar as building blocks for, Communication: MVars, MVar as a Building Block: Unbounded Channels–MVar as a Building Block: Unbounded Channels
	
	MVar wrappers for, MVar as a Container for Shared State
	
	representing channel contents, An Alternative Channel Implementation
	
	shared concurrent, Shared Concurrent Data Structures–Shared Concurrent Data Structures
	
	to store logs, Performance
	

	dataflow, Dataflow Parallelism: The Par Monad–The Par Monad Compared to Strategies
		and constraint satisfaction problems, Example: A Conference Timetable–Adding Parallelism
	
	and Floyd-Warshall algorithm, Example: Shortest Paths in a Graph–Example: Shortest Paths in a Graph
	
	pipleline paralellism and, Pipeline Parallelism–Limitations of Pipeline Parallelism
	
	type inference engines, Example: A Parallel Type Inferencer–Example: A Parallel Type Inferencer
	

	dataflow graphs, Dataflow Parallelism: The Par Monad
	
	deadlock
		and empty channels, MVar as a Building Block: Unbounded Channels
	
	caused by writeTBQueue, Bounded Channels
	
	error codes vs., Error Handling with Async
	
	mutual, Detecting Deadlock
	

	deadlock detection, Detecting Deadlock–Detecting Deadlock
		and MVar, Communication: MVars
	
	of mutual deadlock, Detecting Deadlock
	

	death, thread, Higher-Level Concurrency Abstractions, Avoiding Thread Leakage
	
	debugging
		Accelerate programs, Debugging the CUDA Backend
	
	concurrent programs, Debugging Concurrent Programs–Event Logging and ThreadScope
	
	CUDA, Debugging the CUDA Backend
	
	deadlock, detecting, Detecting Deadlock–Detecting Deadlock
	
	event logging, Event Logging and ThreadScope–Event Logging and ThreadScope
	
	monitor function, Handling Failure
	
	thread status, inspecting, Inspecting the Status of a Thread–Inspecting the Status of a Thread
	
	ThreadScope, Event Logging and ThreadScope–Event Logging and ThreadScope
	
	with getMaskingState function, Masking Asynchronous Exceptions
	
	withMonitor function, Handling Failure
	

	decrypt function, Pipeline Parallelism
	
	deeply-embedded domain-specific languages, Overview
	
	DeepSeq (Control module), Deepseq–Deepseq
	
	degrees of evaluation, Deepseq
	
	delayed arrays
		computeS function and, Operations on Arrays
	
	defined, Operations on Arrays
	
	from fromFunction operation, Operations on Arrays
	
	indexing, Operations on Arrays
	

	depth threshold
		for divide-and-conquer algorithms, Limiting the Number of Threads with a Semaphore
	
	for tree-shaped parallelism, Adding Parallelism
	

	DeriveGeneric extension (Binary class), Defining a Message Type
	
	Desktops
		for displays, Running Example: Managing Windows
	
	MVars for, Running Example: Managing Windows
	

	deterministic parallel programming, Terminology: Parallelism and Concurrency–Terminology: Parallelism and Concurrency
	
	DevIL library, Example: Image Rotation–Summary
	
	Dining Philosophers problem, Running Example: Managing Windows, Bounded Channels
	
	Direct scheduler (monad-par library), Using Different Schedulers
	
	distributed fault-tolerant key-value store, Exercise: A Distributed Key-Value Store
	
	distributed programming, Distributed Programming–Exercise: A Distributed Key-Value Store
		clients, local vs. remote, Data Types
	
	failures, handling, Handling Failure–The Philosophy of Distributed Failure
	
	implementing, A First Example: Pings–Summing Up the Ping Example
	
	main function and, The main Function–The main Function
	
	master process for, The Master Process–The Master Process
	
	multi-node, Multi-Node Ping–Running on Multiple Machines
	
	ping example, A First Example: Pings–Summing Up the Ping Example
	
	server process for, The Ping Server Process–The Ping Server Process
	
	server, implementing, A Distributed Chat Server–Failure and Adding/Removing Nodes
	
	typed channels and, Typed Channels–Merging Channels
	

	distributed servers, implementing, A Distributed Chat Server–Failure and Adding/Removing Nodes
		broadcasting messages, Broadcasting–Broadcasting
	
	data types for, Data Types–Data Types
	
	failures, handling, Failure and Adding/Removing Nodes–Failure and Adding/Removing Nodes
	
	handling distribution, Distribution–Distribution
	
	messages, sending, Sending Messages
	
	nodes, adding/removing, Failure and Adding/Removing Nodes–Failure and Adding/Removing Nodes
	
	testing, Testing the Server
	

	distributed-process framework, Distributed Programming–Exercise: A Distributed Key-Value Store
		packages in, The Distributed-Process Family of Packages–The Distributed-Process Family of Packages
	
	parallelism vs., Distributed Concurrency or Parallelism?
	
	Process monad, Processes and the Process Monad
	
	usage, A First Example: Pings–Summing Up the Ping Example
	

	distributed-process-simplelocalnet package, The main Function
	
	divide-and-conquer algorithms
		defined, Example: A Conference Timetable
	
	depth threshold for, Limiting the Number of Threads with a Semaphore
	

	doesDirectoryExist, How to Achieve Parallelism with Concurrency–How to Achieve Parallelism with Concurrency
	
	duds (sparks), Example: Parallelizing a Sudoku Solver
	
	dupChan operation, MVar as a Building Block: Unbounded Channels
	
	duplicate channels, creating, MVar as a Building Block: Unbounded Channels
	
	dynamic partitioning, Example: Parallelizing a Sudoku Solver
	

E
	effectful code, Terminology: Parallelism and Concurrency
	
	effects, interleaving of, Basic Concurrency: Threads and MVars
	
	efficiency
		of concurrency operations, Thread Creation and MVar Operations–Thread Creation and MVar Operations
	
	of context-switch performance, Thread Creation and MVar Operations
	

	elapsed time, Example: Parallelizing a Sudoku Solver
	
	Elt class (Accelerate), Running a Simple Accelerate Computation
	
	empty channels, MVar as a Building Block: Unbounded Channels, MVar as a Building Block: Unbounded Channels
	
	encrypt function, Pipeline Parallelism
	
	enumFromN operation, Creating Arrays Inside Acc
	
	enumFromStepN operation, Creating Arrays Inside Acc
	
	Env data type, Example: A Parallel Type Inferencer
	
	environment, in programming language, Example: A Parallel Type Inferencer
	
	Erlang (programming language), The Philosophy of Distributed Failure
	
	error codes, deadlocking vs., Error Handling with Async
	
	error handling
		and ParIO, The ParIO monad
	
	and propagating exceptions, Error Handling with Async
	
	in concurrent programming, Overlapping Input/Output
	

	ErrorCall, Exceptions in Haskell
	
	Eval computation, Evaluation Strategies
	
	Eval monad, The Eval Monad, rpar, and rseq
		rpar operation, The Eval Monad, rpar, and rseq
	
	rseq operation, The Eval Monad, rpar, and rseq
	
	Strategy function in, Evaluation Strategies
	

	evalList Strategy, A Strategy for Evaluating a List in Parallel–A Strategy for Evaluating a List in Parallel
	
	evalPair Strategy, Parameterized Strategies
	
	evaluation(s)
		degrees of, Deepseq
	
	in Haskell, Lazy Evaluation and Weak Head Normal Form
	
	lazy, Lazy Evaluation and Weak Head Normal Form–Lazy Evaluation and Weak Head Normal Form, MVar as a Container for Shared State, Shared Concurrent Data Structures
	
	sequential, The Eval Monad, rpar, and rseq
	

	event loops
		concurrency vs., Terminology: Parallelism and Concurrency
	
	web server implementations with, A Trivial Server
	

	eventlog file, Event Logging and ThreadScope–Event Logging and ThreadScope
	
	Exception data type, Exceptions in Haskell
	
	exception handlers
		and asynchronous exceptions, Catching Asynchronous Exceptions
	
	hidden inside try, Catching Asynchronous Exceptions
	
	higher-level combinators as, Exceptions in Haskell
	
	installing, for Async, Avoiding Thread Leakage
	
	tail-calling of, Catching Asynchronous Exceptions
	

	exception handling
		and forkFinally, mask and forkIO
	
	by forkIO function, Inspecting the Status of a Thread
	
	in asynchronous I/O, Error Handling with Async–Error Handling with Async
	

	Exception type class, Exceptions in Haskell
	
	exceptions
		and thread status, Inspecting the Status of a Thread
	
	BlockedIndefinitelyOnMVar, Communication: MVars, Detecting Deadlock
	
	catch function for, Exceptions in Haskell
	
	catching, Exceptions in Haskell, Exceptions in Haskell
	
	in STM, Asynchronous Exception Safety
	
	propagating, with error-handling code, Error Handling with Async
	
	re-throwing, Exceptions in Haskell
	
	ThreadKilled, Asynchronous Exceptions
	
	throwing, Exceptions in Haskell–Exceptions in Haskell
	
	with timeouts, Timeouts Using race
	

	expect function, The Ping Server Process, Typed Channels
	
	extent operation for shapes, Arrays, Shapes, and Indices
	

F
	F representation type (Repa), Example: Image Rotation
	
	fairness, Fairness–Fairness
		in MVar, What Can We Not Do with STM?
	
	in TMVar implementation, What Can We Not Do with STM?
	
	policy, Basic Concurrency: Threads and MVars
	

	FFI (foreign function interface), Concurrency and the Foreign Function Interface
		foreign in-calls, Threads and Foreign In-Calls
	
	threads and, Threads and Foreign Out-Calls–Threads and Foreign Out-Calls
	

	fib function, Dataflow Parallelism: The Par Monad
	
	FIFO order, What Can We Not Do with STM?
	
	filesystem-searching program (example), Example: Searching for Files, The ParIO monad
	
	fill operation, Creating Arrays Inside Acc
	
	finally function
		and exceptions, Asynchronous Exceptions
	
	as bracket function, Exceptions in Haskell
	

	find function
		and NBSem, Limiting the Number of Threads with a Semaphore
	
	as recursive, How to Achieve Parallelism with Concurrency–How to Achieve Parallelism with Concurrency
	
	in ParIO monad, The ParIO monad
	
	to create new Async, Parallel Version
	

	findpar
		findseq vs., Performance and Scaling
	
	NBSem vs., Limiting the Number of Threads with a Semaphore
	

	findseq, Performance and Scaling
	
	fixed division, of work, Example: Parallelizing a Sudoku Solver
	
	fizzled sparks, Example: Parallelizing a Sudoku Solver
	
	floating-point addition, Folding and Shape-Polymorphism
	
	Floyd-Warshall algorithm, Example: Shortest Paths in a Graph–Example: Shortest Paths in a Graph
		Accelerate, implementing in, Example: Shortest Paths–Debugging the CUDA Backend
	
	over dense graphs, Example: Computing Shortest Paths
	
	pseudocode definition of, Example: Computing Shortest Paths
	
	Repa, using over dense graphs, Example: Computing Shortest Paths–Parallelizing the Program
	

	fmap operation, Adding a Functor Instance
	
	folding, of concurrently function over a list, Symmetric Concurrency Combinators
	
	foldl function, Example: Shortest Paths in a Graph
	
	foldP, folding in parallel with, Folding and Shape-Polymorphism
	
	folds
		over arrays, Folding and Shape-Polymorphism–Folding and Shape-Polymorphism
	
	parallelized, Example: Shortest Paths in a Graph
	

	foldS function, Folding and Shape-Polymorphism
	
	force function, Example: Parallelizing a Sudoku Solver
	
	foreign calls, Performance and Analysis
	
	foreign in-calls, Threads and Foreign In-Calls
	
	foreign out-calls
		asynchronous exceptions and, Asynchronous Exceptions and Foreign Calls–Asynchronous Exceptions and Foreign Calls
	
	threads and, Threads and Foreign Out-Calls–Threads and Foreign Out-Calls
	

	fork(s), Rate-Limiting the Producer
		achieving parallelism with, How to Achieve Parallelism with Concurrency
	
	defined, Pipeline Parallelism
	
	in Par computations, Dataflow Parallelism: The Par Monad
	
	number of, How to Achieve Parallelism with Concurrency
	
	producing lists with, Rate-Limiting the Producer
	

	forkFinally function, mask and forkIO, A Trivial Server
	
	forkIO function, mask and forkIO–mask and forkIO, Asynchronous Exceptions: Discussion
		defined, Basic Concurrency: Threads and MVars
	
	exception handling by, Inspecting the Status of a Thread
	
	Process monad and, Data Types
	
	variant of, mask and forkIO
	

	forkOS, Threads and Foreign Out-Calls, Threads and Foreign Out-Calls
	
	freeVars function, Example: A Parallel Type Inferencer
	
	fromFunction operation, Example: Computing Shortest Paths
		delayed arrays from, Operations on Arrays
	

	fromListUnboxed function, Arrays, Shapes, and Indices
		building arrays in Accelerate with, Arrays and Indices
	

	functional language, compiler for, Example: A Parallel Type Inferencer
	
	Functor instances, Adding a Functor Instance–Adding a Functor Instance
	
	fusion (in Repa), Operations on Arrays
	

G
	garbage collector
		closing of Handle by, A Trivial Server
	
	heap objects and, Detecting Deadlock
	

	garbage-collected (GCd) sparks, Example: Parallelizing a Sudoku Solver, GC’d Sparks and Speculative Parallelism
	
	generate function
		in Accelerate, Creating Arrays Inside Acc
	
	in Timetable example, Example: A Conference Timetable
	

	get operation, Dataflow Parallelism: The Par Monad
	
	getDirectoryContents, How to Achieve Parallelism with Concurrency–How to Achieve Parallelism with Concurrency
	
	getMaskingState function, Masking Asynchronous Exceptions
	
	getNumCapabilities, Limiting the Number of Threads with a Semaphore
	
	getSelfNode function, The Master Process
	
	getWindows, Blocking Until Something Changes
	
	GHC Users Guide, Tools and Resources
	
	ghc-events program, displaying raw event streams with, Event Logging and ThreadScope
	
	global locks, Performance
	
	GPUs (graphics processing units)
		Accelerate without, Overview
	
	CPUs vs., GPU Programming with Accelerate
	
	programming with Accelerate, GPU Programming with Accelerate–GPU Programming with Accelerate
	
	running programs on, Running on the GPU–Running on the GPU
	

	granularity
		Eval and finer, The Par Monad Compared to Strategies
	
	in parallelizing maps, Example: Shortest Paths in a Graph
	
	larger, Par and, The Par Monad Compared to Strategies
	
	of K-Means problem, Granularity–Granularity
	
	problems from parallelizing, Example: A Parallel Type Inferencer
	
	problems with, Limiting the Number of Threads with a Semaphore
	
	when adding parallelism, Adding Parallelism
	

	GUI callback, Threads and Foreign In-Calls
	
	GUI libraries, calling foreign functions by, Threads and Foreign Out-Calls
	

H
	Hackage
		documentation on, Tools and Resources
	
	libraries on, Introduction
	

	Handle
		closing of, A Trivial Server
	
	for communication of server and client, A Trivial Server
	
	interleaving messages to, Design One: One Giant Lock
	

	handle function, catching exceptions with, Exceptions in Haskell
	
	handleJust, Timeouts
	
	handleMessage function, Running the Client
	
	Haskell
		2010 standard, exceptions in, Exceptions in Haskell
	
	98 standard, exceptions in, Exceptions in Haskell
	
	as lazy language, Lazy Evaluation and Weak Head Normal Form
	
	web server implementations in, A Trivial Server
	

	Haskell Platform
		components of, Tools and Resources
	
	library documentation, Tools and Resources
	

	Hoogle, Tools and Resources
	
	HTTP library, Asynchronous Exceptions
	
	hyperthreaded cores, RTS Options to Tweak
	

I
	I/O, Overlapping Input/Output–Merging
	
	I/O manager thread, A Trivial Server
	
	I/O-bound program, Example: Searching for Files
	
	identity property, The Identity Property–The Identity Property
	
	IL monad, Example: Image Rotation
	
	IList data type
		defined, Pipeline Parallelism
	
	long chain in, Rate-Limiting the Producer
	

	image processing, parallel array operations for, Introduction
	
	image rotation, Example: Image Rotation–Example: Image Rotation
	
	immutable data structures, MVar wrappers for, MVar as a Container for Shared State
	
	imperative languages
		and code modifying state, Cancellation and Timeouts
	
	locks in, MVar as a Container for Shared State
	

	implicit masks, Catching Asynchronous Exceptions
	
	inconsistent state
		data left in, Masking Asynchronous Exceptions
	
	of data, after cancellation, Cancellation and Timeouts
	

	indexArray operation, Arrays and Indices
	
	indexing
		arrays, in Accelerate, Arrays and Indices, Indexing Arrays
	
	delayed arrays, Operations on Arrays
	

	inferBind, Example: A Parallel Type Inferencer
	
	inferTop, Example: A Parallel Type Inferencer
	
	infix application ($ operator), MVar as a Container for Shared State
	
	initLogger function, MVar as a Simple Channel: A Logging Service
	
	INLINE pragmas (Repa), Example: Image Rotation–Summary
	
	insert operation, MVar as a Container for Shared State
	
	interleaving messages, Design One: One Giant Lock
	
	interleaving of effects, Basic Concurrency: Threads and MVars
	
	interpreter (Accelerate), GPU Programming with Accelerate
	
	interruptible operations, Masking Asynchronous Exceptions–Masking Asynchronous Exceptions
	
	interruption, mask and forkIO–mask and forkIO, Asynchronous Exceptions: Discussion
	
	IntMap function, Example: Shortest Paths in a Graph
	
	IO action
		in ParIO, The ParIO monad
	
	in STM, What Can We Not Do with STM?
	

	IO monad
		cancellation in, Cancellation and Timeouts
	
	catching exceptions in, Exceptions in Haskell
	
	Process monad vs., Processes and the Process Monad
	
	safety of code for, Asynchronous Exceptions: Discussion
	
	STM monad performed in, Running Example: Managing Windows
	

	IOException data type, building and inspecting, Exceptions in Haskell
	
	IORef
		for concurrent shared data structures, Shared Concurrent Data Structures
	
	to store semaphore values, Limiting the Number of Threads with a Semaphore
	

	isEmptyTChan, More Operations Are Possible
	
	IVar type
		for Par computations, Dataflow Parallelism: The Par Monad
	
	returned from runPar, Limitations of Pipeline Parallelism
	
	to produce new graph, Example: Shortest Paths in a Graph
	

J
	join function, Running the Client
	

K
	K-Means problem, Example: The K-Means Problem–Granularity
		granularity of, Granularity–Granularity
	
	parallelizing, Parallelizing K-Means–Parallelizing K-Means
	
	performance/analysis of, Performance and Analysis–Performance and Analysis
	
	spark activitiy, visualizing, Visualizing Spark Activity–Visualizing Spark Activity
	

	kernels (Accelerate), Example: Shortest Paths
	
	kmeans_seq function, Example: The K-Means Problem, Parallelizing K-Means
	
	kmeans_strat function, Parallelizing K-Means
	

L
	labelThread function, Event Logging and ThreadScope, Event Logging and ThreadScope
	
	large-scale arrays, parallelizing, Data Parallel Programming with Repa
	
	layout of an array, Arrays, Shapes, and Indices
	
	lazy data structures
		and Strategies, Dataflow Parallelism: The Par Monad
	
	parallel skeletons vs., Adding Parallelism
	

	lazy evaluation, Lazy Evaluation and Weak Head Normal Form–Lazy Evaluation and Weak Head Normal Form
		and MVar, MVar as a Container for Shared State
	
	defined, Lazy Evaluation and Weak Head Normal Form
	
	with shared data structures, Shared Concurrent Data Structures
	

	lazy streams, parallelizing, Parallelizing Lazy Streams with parBuffer–Parallelizing Lazy Streams with parBuffer
	
	length function, list evaluation with, Lazy Evaluation and Weak Head Normal Form
	
	less defined (term), The Identity Property
	
	let it crash philosophy, The Philosophy of Distributed Failure
	
	libraries
		DevIL, Example: Image Rotation–Summary
	
	GUI, Threads and Foreign Out-Calls
	
	HTTP, Asynchronous Exceptions
	
	monad-par, Using Different Schedulers
	
	on Hackage, Introduction
	

	lift function, Creating Arrays Inside Acc, Example: A Mandelbrot Set Generator
	
	liftIO, The ParIO monad, Processes and the Process Monad
	
	line buffering mode (server), A Trivial Server
	
	lists
		length function for, Lazy Evaluation and Weak Head Normal Form
	
	parallel evaluation of, A Strategy for Evaluating a List in Parallel–A Strategy for Evaluating a List in Parallel
	

	Lloyds algorithm, Example: The K-Means Problem, Example: The K-Means Problem
	
	locking, of servers, with MVar, Design One: One Giant Lock
	
	locks
		difficulty in programming with, Introduction
	
	in imperative languages, MVar as a Container for Shared State
	

	LogCommand data type, MVar as a Simple Channel: A Logging Service
	
	Logger data type, MVar as a Simple Channel: A Logging Service
	
	logging services, MVar as a Simple Channel: A Logging Service–MVar as a Simple Channel: A Logging Service
	
	logMessage operation, MVar as a Simple Channel: A Logging Service
	
	logStop operation, MVar as a Simple Channel: A Logging Service
	
	lookup function, MVar as a Container for Shared State
	
	lost wakeups, Blocking Until Something Changes
	

M
	main function and program termination, A Simple Example: Reminders
	
	main threads
		as bound threads, Threads and Foreign Out-Calls
	
	deadlocking of, Detecting Deadlock
	

	makeNewClusters function, Example: The K-Means Problem
	
	Mandelbrot set generator, Example: A Mandelbrot Set Generator
	
	manifest arrays, Operations on Arrays
	
	map function
		and lazy data structure, Lazy Evaluation and Weak Head Normal Form
	
	in Accelerate, Running a Simple Accelerate Computation
	
	in Repa, Operations on Arrays–Operations on Arrays
	

	mapM function, Overlapping Input/Output
	
	mapWithKey function, Example: Shortest Paths in a Graph
	
	mask function, Masking Asynchronous Exceptions, Catching Asynchronous Exceptions, mask and forkIO–mask and forkIO, Asynchronous Exceptions: Discussion
	
	MaskedInterruptible constructor, Masking Asynchronous Exceptions
	
	MaskedUninterruptible constructor, Masking Asynchronous Exceptions
	
	masking asynchronous exceptions, Masking Asynchronous Exceptions–Masking Asynchronous Exceptions
	
	masking state, mask and forkIO
	
	mask_, Asynchronous Exception Safety for Channels
	
	master function (distributed servers), Distribution
	
	master nodes in distributed programming, Running with Multiple Nodes on One Machine
	
	memory
		and unbounded channels, Bounded Channels
	
	overhead for threads, Thread Creation and MVar Operations
	
	required by parallelisms, Performance and Scaling
	

	mergePortsBiased function, Merging Channels
	
	mergePortsRR function, Merging Channels
	
	merging
		typed channels, Merging Channels–Merging Channels
	
	with MVar, Merging–Merging
	
	with STM, Merging with STM–Merging with STM
	

	Message constructor, for LogCommand data type, MVar as a Simple Channel: A Logging Service
	
	mkStaticClosure function, The Master Process–The Master Process
	
	modifyMVar, Masking Asynchronous Exceptions
		built-in safety of, Asynchronous Exceptions: Discussion
	
	implementing, Masking Asynchronous Exceptions
	
	variant of, Asynchronous Exception Safety for Channels
	

	modular programs
		concurrency of, Terminology: Parallelism and Concurrency
	
	creating, Parallel Programming Using Threads
	

	monad-par library, schedules and, Using Different Schedulers
	
	MonadIO monad, Processes and the Process Monad
	
	monads, computeP and, Parallelizing the Program–Parallelizing the Program
	
	monitor function, Handling Failure
	
	moveWindow
		concurrent call to, Running Example: Managing Windows
	
	implemented with STM, Running Example: Managing Windows
	

	moveWindowSTM, Running Example: Managing Windows
	
	multi-node programming, Multi-Node Ping–Running on Multiple Machines
		on multiple machines, Running on Multiple Machines
	
	on one machine, Running with Multiple Nodes on One Machine–Running with Multiple Nodes on One Machine
	

	multicast channels, building, MVar as a Building Block: Unbounded Channels
	
	multiclient servers, main function for, A Trivial Server
	
	multiple cores
		and concurrency, How to Achieve Parallelism with Concurrency
	
	NBSem run on, Limiting the Number of Threads with a Semaphore
	

	multiple writers, for one-place channels, Bounded Channels
	
	multiplication (in Accelerate), Example: A Mandelbrot Set Generator–Example: A Mandelbrot Set Generator
	
	mutable containers, for shared data structures, Shared Concurrent Data Structures
	
	mutable state, shared, Communication: MVars, MVar as a Container for Shared State–MVar as a Container for Shared State
	
	mutual deadlock, Detecting Deadlock
	
	MVar, Communication: MVars–MVar as a Building Block: Unbounded Channels
		and merging, Merging
	
	asynchronous I/O and, Overlapping Input/Output–Overlapping Input/Output
	
	creating unbounded channels with, MVar as a Building Block: Unbounded Channels–MVar as a Building Block: Unbounded Channels
	
	implemented with STM, Blocking
	
	implementing channels with, MVar as a Simple Channel: A Logging Service–MVar as a Simple Channel: A Logging Service
	
	implementing NBSem with, Limiting the Number of Threads with a Semaphore
	
	merging asynchronous I/O with, Merging–Merging
	
	merging events into single, Merging with STM
	
	performance compared with STM, What Can We Not Do with STM?
	
	protocol for operations with, Masking Asynchronous Exceptions
	
	shared state container, MVar as a Container for Shared State–MVar as a Container for Shared State
	
	STM vs., Implementing Channels with STM, An Alternative Channel Implementation–An Alternative Channel Implementation
	

N
	N command, Extending the Simple Server with State, Design Four: Use STM
	
	NBSem, Limiting the Number of Threads with a Semaphore
	
	nested arrays, Accelerate and, Arrays and Indices
	
	nested timeouts, Timeouts
	
	nesting calls, Masking Asynchronous Exceptions
		of withAsync, Parallel Version
	
	to runPar, The Par Monad Compared to Strategies
	

	network-transport-tcp package, The Distributed-Process Family of Packages
	
	newClient function, Client Data
	
	newEmptyMVar operation, Communication: MVars
	
	newEmptyTMVarIO, Async Revisited
	
	newfactor function, The Implementation
	
	newUnique, Timeouts
	
	NFData
		in Deepseq, Deepseq
	

	NodeId, The Master Process
	
	nonblocking semaphores, Limiting the Number of Threads with a Semaphore
	
	normal form
		defined, Lazy Evaluation and Weak Head Normal Form
	
	in Deepseq, Deepseq
	

	Notice constructor, Client Data
	
	NVidia, GPU Programming with Accelerate
	

O
	one-place channels
		bounded channels vs., Bounded Channels
	
	MVar as, Communication: MVars–Communication: MVars
	

	onException function, Exceptions in Haskell
	
	OpenCL language, GPU Programming with Accelerate
	
	OpenGL, Threads and Foreign Out-Calls
	
	operations, on Arrays, Operations on Arrays–Operations on Arrays
	
	optimization, Tuning Concurrent (and Parallel) Programs
	
	optimization options, Example: Computing Shortest Paths
	
	ordering
		detecting violations of, Running Example: Managing Windows
	
	imposed on MVars, Running Example: Managing Windows
	

	orElse function, Symmetric Concurrency Combinators, The Implementation
	
	orElse operation, Merging with STM
	
	overflowed sparks, Example: Parallelizing a Sudoku Solver
	
	overhead
		and runPar function, Example: Shortest Paths in a Graph
	
	for threads, Thread Creation and MVar Operations
	
	of atomicModifyIORef, Limiting the Number of Threads with a Semaphore
	

P
	packages, installing, Sample Code
	
	Par monad, Dataflow Parallelism: The Par Monad–Adding Parallelism
		and parallelizing large-scale arrays, Data Parallel Programming with Repa
	
	constraint satisfaction problems, solving with, Example: A Conference Timetable–Adding Parallelism
	
	Floyd-Warshall algorithm, parallelizing, Example: Shortest Paths in a Graph–Example: Shortest Paths in a Graph
	
	force as default in, Example: Parallelizing a Sudoku Solver
	
	implemented as library, Using Different Schedulers
	
	ParIO vs., The ParIO monad
	
	pipleline paralellism and, Pipeline Parallelism–Limitations of Pipeline Parallelism
	
	schedulers available in, Using Different Schedulers
	
	Strategies vs., The Par Monad Compared to Strategies–The Par Monad Compared to Strategies
	

	parallel programs
		defined, Terminology: Parallelism and Concurrency
	
	tuning, Tuning Concurrent (and Parallel) Programs–RTS Options to Tweak
	

	parallelism, Terminology: Parallelism and Concurrency–Terminology: Parallelism and Concurrency, Basic Parallelism: The Eval Monad–Deepseq, Parallel Programming Using Threads–The ParIO monad
		achieving with concurrency, How to Achieve Parallelism with Concurrency–How to Achieve Parallelism with Concurrency
	
	Deepseq, Deepseq–Deepseq
	
	distributed-process framework vs., Distributed Concurrency or Parallelism?
	
	Eval monad, The Eval Monad, rpar, and rseq
	
	garbage collected sparks, GC’d Sparks and Speculative Parallelism–GC’d Sparks and Speculative Parallelism
	
	implementing, Parallel Version–Parallel Version
	
	K-Means example, Example: The K-Means Problem–Granularity
	
	lazy evaluation, Lazy Evaluation and Weak Head Normal Form–Lazy Evaluation and Weak Head Normal Form
	
	ParIO monad and, The ParIO monad–The ParIO monad
	
	performance, Performance and Scaling–Performance and Scaling
	
	rpar operation, The Eval Monad, rpar, and rseq
	
	rseq operation, The Eval Monad, rpar, and rseq
	
	scaling, Performance and Scaling–Performance and Scaling
	
	sequential vs., Sequential Version–Sequential Version
	
	speculative, GC’d Sparks and Speculative Parallelism–GC’d Sparks and Speculative Parallelism
	
	threads, limiting number of, Limiting the Number of Threads with a Semaphore–Limiting the Number of Threads with a Semaphore
	
	weak head normal form, Lazy Evaluation and Weak Head Normal Form–Lazy Evaluation and Weak Head Normal Form
	

	parameterized strategies, Parameterized Strategies–Parameterized Strategies
	
	parBuffer, Parallelizing Lazy Streams with parBuffer–Parallelizing Lazy Streams with parBuffer
	
	parent threads, Symmetric Concurrency Combinators
	
	ParIO monad, Limitations of Pipeline Parallelism, The ParIO monad–The ParIO monad
	
	parList function
		as parameterized Strategy, A Strategy for Evaluating a List in Parallel
	
	defining, A Strategy for Evaluating a List in Parallel–A Strategy for Evaluating a List in Parallel
	
	with chunking, Chunking Strategies–Chunking Strategies
	

	parList Strategy, A Strategy for Evaluating a List in Parallel
		parallelizing lazy streams with, Parallelizing Lazy Streams with parBuffer–Parallelizing Lazy Streams with parBuffer
	

	parMap function, Example: Parallelizing a Sudoku Solver–Example: Parallelizing a Sudoku Solver
		as parallel skeleton, Adding Parallelism
	
	expression of, with Strategies, A Strategy for Evaluating a List in Parallel
	

	parMapM function, Dataflow Parallelism: The Par Monad
	
	parPair Strategy
		evalPair Strategy vs., Parameterized Strategies
	
	evaluating components of a pair with, Parameterized Strategies
	
	parameterized Strategy vs., Parameterized Strategies
	

	parsearch function, Adding Parallelism
	
	parSteps_strat function, Parallelizing K-Means
	
	partitioning
		dynamic, Example: Parallelizing a Sudoku Solver
	
	static, Example: Parallelizing a Sudoku Solver
	

	peer discovery, The Distributed-Process Family of Packages
	
	performance monitoring, program, Thread Creation and MVar Operations–Thread Creation and MVar Operations
	
	phone book example, MVar as a Container for Shared State–MVar as a Container for Shared State
	
	ping example, A First Example: Pings–Summing Up the Ping Example
	
	pipeline operator, Example: Shortest Paths
	
	pipelining, Terminology: Parallelism and Concurrency
	
	pipleline paralellism, Pipeline Parallelism–Limitations of Pipeline Parallelism
		limitations of, Limitations of Pipeline Parallelism
	
	rate-limiting, Rate-Limiting the Producer–Rate-Limiting the Producer
	

	Point (type), Example: The K-Means Problem, Example: The K-Means Problem
	
	PointSum (type)
		Cluster from, Example: The K-Means Problem
	
	constructing, Example: The K-Means Problem
	
	in Lloyds algorithm, Example: The K-Means Problem
	

	PolyType, Example: A Parallel Type Inferencer
	
	POSIX, Threads and Foreign Out-Calls
	
	Prelude functions (in Repa), Data Parallel Programming with Repa
	
	Process API (Control.Distributed), A First Example: Pings
	
	Process monad, Processes and the Process Monad, Data Types
	
	ProcessID, Processes and the Process Monad
	
	ProcessMonitorNotification message, Handling Failure
	
	program analysis problems, parallelism for, Example: A Parallel Type Inferencer
	
	proxies, for forkIO threads, Data Types
	
	put function, Dataflow Parallelism: The Par Monad
		strictness of, Dataflow Parallelism: The Par Monad
	

	putMVar operation, Communication: MVars
		and fairness, What Can We Not Do with STM?
	
	and mutable states, Communication: MVars
	
	implementing, Blocking
	
	interruptibility of, Asynchronous Exception Safety for Channels
	

	putStrLn calls
		and stdout Handle, Event Logging and ThreadScope
	
	debugging with, Event Logging and ThreadScope
	

	put_ operation, Dataflow Parallelism: The Par Monad
	

R
	r0 Strategy, Parameterized Strategies
	
	race function
		for chat server, Recap
	
	for trees of threads, Symmetric Concurrency Combinators
	
	timeouts with, Timeouts Using race–Timeouts Using race
	

	rank operation, Arrays, Shapes, and Indices
	
	rdeepseq, Parameterized Strategies–Parameterized Strategies
	
	read function, The Ping Server Process
	
	read function (POSIX), Threads and Foreign Out-Calls
	
	read pointer (channel), MVar as a Building Block: Unbounded Channels
	
	readChan operations
		concurrent, MVar as a Building Block: Unbounded Channels
	
	definition of, Asynchronous Exception Safety for Channels
	

	readEitherTChan, Composition of Blocking Operations
	
	readImage operation, Example: Image Rotation
	
	readMVar, Asynchronous Exception Safety for Channels
	
	readName function, Setting Up a New Client
	
	receive function, The Implementation
	
	receiveChannel (typed channels), Typed Channels
	
	ReceivePort (typed channels), Typed Channels, Typed Channels
	
	record wildcard pattern, Client Data
	
	RecordWildCards extension, Client Data
	
	releaseNBSem, Limiting the Number of Threads with a Semaphore
	
	reminders, timed, A Simple Example: Reminders
	
	remotable, declaring functions as, The Master Process
	
	removeClient function, Setting Up a New Client
	
	render function, Blocking Until Something Changes
	
	rendering thread
		blocked by window, Running Example: Managing Windows
	
	implementing, Blocking Until Something Changes
	

	Repa, Data Parallel Programming with Repa–Summary
		arrays, Arrays, Shapes, and Indices–Operations on Arrays
	
	DevIL library and, Example: Image Rotation–Summary
	
	Floyd-Warshall algorithm and, Example: Computing Shortest Paths–Parallelizing the Program
	
	folding arrays in, Folding and Shape-Polymorphism–Folding and Shape-Polymorphism
	
	image manipulation in, Example: Image Rotation–Summary
	
	indices, Arrays, Shapes, and Indices–Arrays, Shapes, and Indices
	
	parallelizing programs with, Parallelizing the Program–Parallelizing the Program
	
	running programs on GPU vs., Running on the GPU
	
	shape-polymorphism of arrays, Folding and Shape-Polymorphism–Folding and Shape-Polymorphism
	
	shapes, Arrays, Shapes, and Indices–Arrays, Shapes, and Indices
	

	representation type (of Repa arrays)
		and Accelerate, Arrays and Indices
	
	defined, Arrays, Shapes, and Indices
	

	restore function, Masking Asynchronous Exceptions
	
	retry operation, Blocking
		defined, Blocking
	
	in readTChan, Implementing Channels with STM
	
	performance of, Performance
	
	to block on arbitrary conditions, Blocking Until Something Changes
	

	rnf (Deepseq), Deepseq
	
	roll back, Running Example: Managing Windows
	
	roots, Detecting Deadlock
	
	rotate function, Example: Image Rotation–Example: Image Rotation
	
	rotating points, about the origin, Example: Image Rotation
	
	round-robin scheduler, Fairness
	
	rpar operation, The Eval Monad, rpar, and rseq
		and speculative parallelism, The Par Monad Compared to Strategies
	
	and Strategy, Evaluation Strategies
	
	as a Strategy, Parameterized Strategies–Parameterized Strategies
	

	rparWith Strategy, Parameterized Strategies, GC’d Sparks and Speculative Parallelism
	
	rseq operation (Eval monad), The Eval Monad, rpar, and rseq
		and Strategy, Evaluation Strategies
	

	runClient function, Running the Client
	
	runEval operation, The Eval Monad, rpar, and rseq, The Par Monad Compared to Strategies
	
	runIL function, Example: Image Rotation
	
	runPar function
		and lazy streams, Limitations of Pipeline Parallelism
	
	and ParIO, The ParIO monad
	
	avoiding multiple calls of, The Par Monad Compared to Strategies
	
	overhead of, Example: Shortest Paths in a Graph
	
	returning IVar from, Dataflow Parallelism: The Par Monad
	

	runtime system, options for tuning, RTS Options to Tweak–RTS Options to Tweak
	

S
	scalar arrays, Folding and Shape-Polymorphism, Scalar Arrays
	
	schedulers (Par monad), Using Different Schedulers
	
	search functions, Adding Parallelism
	
	search pattern
		as higher-order function, Adding Parallelism
	
	tree-shaped, Example: A Conference Timetable
	

	search skeleton, Adding Parallelism
	
	selects function, Example: A Conference Timetable
	
	semaphores
		limiting number of threads with, Limiting the Number of Threads with a Semaphore–Limiting the Number of Threads with a Semaphore
	
	nonblocking, Limiting the Number of Threads with a Semaphore
	
	storing semaphore values, Limiting the Number of Threads with a Semaphore
	

	sendChannel (typed channels), Typed Channels
	
	SendPort (typed channels), Typed Channels
	
	seq function
		forcing evaluation with, Lazy Evaluation and Weak Head Normal Form–Lazy Evaluation and Weak Head Normal Form
	
	weak head normal form evaluation in, Lazy Evaluation and Weak Head Normal Form
	

	sequential algorithms, Limiting the Number of Threads with a Semaphore
	
	sequential evaluation, The Eval Monad, rpar, and rseq
	
	Serializable, Typed Channels
	
	serializing data, Defining a Message Type–Defining a Message Type
	
	server applications, Concurrent Network Servers–Recap
		adding state to, Extending the Simple Server with State–The Implementation
	
	and thread interruption, Cancellation and Timeouts
	
	architecture of, Architecture–Architecture
	
	chat server, implementing, A Chat Server–Recap
	
	client side, Client Data–Running the Client
	
	implementing, A Trivial Server–A Trivial Server
	

	server state, implementing, Extending the Simple Server with State–The Implementation
		broadcast channels, Design Three: Use a Broadcast Chan
	
	creating new instance, The Server
	
	one chan per thread, Design Two: One Chan Per Server Thread–Design Two: One Chan Per Server Thread
	
	with MVar, Design One: One Giant Lock–Design One: One Giant Lock
	
	with STM, Design Four: Use STM–The Implementation
	

	server thread, Running the Client
	
	setNumCapabilities, Limiting the Number of Threads with a Semaphore
	
	Shape class, Arrays, Shapes, and Indices, Running a Simple Accelerate Computation
	
	shape-polymorphism of arrays, Folding and Shape-Polymorphism–Folding and Shape-Polymorphism
	
	shared mutable data structures
		concurrent, Shared Concurrent Data Structures–Shared Concurrent Data Structures
	
	containers for, Communication: MVars, MVar as a Container for Shared State–MVar as a Container for Shared State
	

	shared state, MVar as container for, MVar as a Container for Shared State–MVar as a Container for Shared State
	
	Shortest Paths in a Graph (example), Example: Computing Shortest Paths
		in Accelerate, Example: Shortest Paths
	
	in Repa, Example: Computing Shortest Paths
	

	shortestPath, Example: Shortest Paths in a Graph
	
	Show, as exception, Exceptions in Haskell
	
	SIMD divergence, Example: A Mandelbrot Set Generator
	
	simplelocalnet backend, initializing, Failure and Adding/Removing Nodes
	
	single wake up property, Fairness
	
	single wake-up property (threads), Fairness
	
	size operation, for shapes, Arrays, Shapes, and Indices
	
	skeleton
		to parallelize code, Adding Parallelism
	
	with strategies and parallelism, The Par Monad Compared to Strategies
	

	slave nodes in distributed programming, Running with Multiple Nodes on One Machine
	
	SomeException data type, catching, Exceptions in Haskell
	
	spark activitiy, visualizing, Visualizing Spark Activity–Visualizing Spark Activity
	
	spark pool, GC’d Sparks and Speculative Parallelism
	
	sparks
		defined, Example: Parallelizing a Sudoku Solver
	
	garbage-collected, GC’d Sparks and Speculative Parallelism–GC’d Sparks and Speculative Parallelism
	
	in ThreadScope, The Par Monad Compared to Strategies
	

	sparse graph, algorithms run over, Example: Shortest Paths in a Graph
	
	spawn function
		in distributed programming, The Distributed-Process Family of Packages, The Master Process
	
	in Par monad, Dataflow Parallelism: The Par Monad
	

	speculative parallelism, GC’d Sparks and Speculative Parallelism, The Par Monad Compared to Strategies
	
	speedups
		and number of work items, Granularity–Granularity
	
	calculating, Example: Parallelizing a Sudoku Solver
	
	for parallel type inferencer, Example: A Parallel Type Inferencer
	
	for parallelization of K-Means, Performance and Analysis–Performance and Analysis
	
	in NBSem, Limiting the Number of Threads with a Semaphore
	
	in parallel version, Performance and Scaling
	
	in pipeline, Pipeline Parallelism
	

	:sprint command, Lazy Evaluation and Weak Head Normal Form, Lazy Evaluation and Weak Head Normal Form
	
	sqDistance operation, Example: The K-Means Problem
	
	ST monad, Parallel Programming Using Threads
	
	stack overflow, Asynchronous Exceptions: Discussion
	
	stack size, tuning, Thread Creation and MVar Operations
	
	static partitioning, Example: Parallelizing a Sudoku Solver
	
	stdout Handle, Event Logging and ThreadScope
	
	stencil convolutions, Summary
	
	step function
		in Accelerate, Example: Shortest Paths
	
	in K-Means problem, Example: The K-Means Problem
	
	parallelizing, Parallelizing K-Means
	

	STM (Software Transactional Memory), Software Transactional Memory
		and high contention, Limiting the Number of Threads with a Semaphore
	
	blocking, Blocking
	
	bounded channels, Bounded Channels–Bounded Channels
	
	channels, implementing with, Implementing Channels with STM–Asynchronous Exception Safety
	
	defined, Software Transactional Memory
	
	for chat server, Recap
	
	limitations of, What Can We Not Do with STM?–What Can We Not Do with STM?
	
	merging, handling with, Merging with STM–Merging with STM
	
	MVar vs., An Alternative Channel Implementation–An Alternative Channel Implementation
	
	performance of, Performance–Performance
	
	retry operation, Blocking
	
	server state, implementing with, Design Four: Use STM–The Implementation
	

	Stop constructor, for LogCommand data type, MVar as a Simple Channel: A Logging Service
	
	Strategy, Evaluation Strategies–The Identity Property
		evaluating lists in parallel, A Strategy for Evaluating a List in Parallel–A Strategy for Evaluating a List in Parallel
	
	identity property, The Identity Property–The Identity Property
	
	parameterized, Parameterized Strategies–Parameterized Strategies
	
	parBuffer, parallelizing lazy streams with, Parallelizing Lazy Streams with parBuffer–Parallelizing Lazy Streams with parBuffer
	

	Strategy(-ies)
		and lazy data structures, Dataflow Parallelism: The Par Monad, The Par Monad Compared to Strategies
	
	and parallelizing large-scale arrays, Data Parallel Programming with Repa
	
	Par monad vs., The Par Monad Compared to Strategies–The Par Monad Compared to Strategies
	

	Stream, Pipeline Parallelism
	
	Stream data type, MVar as a Building Block: Unbounded Channels
	
	stream elements, Pipeline Parallelism
	
	streamFold, Pipeline Parallelism, Pipeline Parallelism
	
	strictness annotations (in Repa), Example: Image Rotation–Summary
	
	String type, Sequential Version
	
	String, backslash character in, Example: A Parallel Type Inferencer
	
	sum function, Lazy Evaluation and Weak Head Normal Form–Lazy Evaluation and Weak Head Normal Form
	
	sum, of complex numbers, Example: A Mandelbrot Set Generator
	
	sumAllS function, Folding and Shape-Polymorphism
	
	super-linear performance, Performance and Scaling
	
	swap function, Lazy Evaluation and Weak Head Normal Form
	
	symmetric concurrency combinators, Symmetric Concurrency Combinators–Timeouts Using race
	
	synchronous channel, What Can We Not Do with STM?
	
	synchronous exceptions, Asynchronous Exceptions
	

T
	tail-calling of exception handlers, Catching Asynchronous Exceptions
	
	tail-recursive strategies, GC’d Sparks and Speculative Parallelism–GC’d Sparks and Speculative Parallelism
	
	takeEitherTMVar, Composition of Blocking Operations
	
	takeMVar operation, Communication: MVars
		and mutable states, Communication: MVars
	
	deadlock with, Detecting Deadlock
	
	masking exceptions during, Masking Asynchronous Exceptions
	

	takeTMVar operation, Blocking
	
	TChan
		and asynchronous exceptions, Asynchronous Exception Safety
	
	for chat server, Architecture
	
	implementing, Implementing Channels with STM
	

	Tell constructor, Client Data
	
	terminate function, The Master Process
	
	termination of programs, A Simple Example: Reminders
	
	the operation, in Accelerate, Scalar Arrays
	
	thread death
		automatic cancelling of Async with, Avoiding Thread Leakage
	
	trees of threads and, Higher-Level Concurrency Abstractions
	

	thread number, Event Logging and ThreadScope
	
	thread-local state, APIs with, Threads and Foreign Out-Calls
	
	threadDelay function, A Simple Example: Reminders
	
	ThreadId, Asynchronous Exceptions
	
	threading, A Simple Example: Reminders–A Simple Example: Reminders
		asynchronous exceptions and, Cancellation and Timeouts–Asynchronous Exceptions: Discussion
	
	avoiding leakage, Avoiding Thread Leakage–Avoiding Thread Leakage
	
	CPU usage and, Fairness–Fairness
	
	detecting deadlock, Detecting Deadlock–Detecting Deadlock
	
	fairness of, Fairness–Fairness
	
	inspecting thread status, Inspecting the Status of a Thread–Inspecting the Status of a Thread
	
	merging, Merging–Merging, Merging with STM–Merging with STM
	
	models for, in C, Concurrency and the Foreign Function Interface
	
	MVars and, Communication: MVars–MVar as a Building Block: Unbounded Channels
	
	shared state, MVar as a Container for Shared State–MVar as a Container for Shared State
	

	ThreadKilled exception, Asynchronous Exceptions
	
	threads
		additional, used by program, Limiting the Number of Threads with a Semaphore
	
	and timeout exceptions, Timeouts
	
	blocked on each other, Running Example: Managing Windows
	
	blocked, in STM, What Can We Not Do with STM?
	
	bound, Threads and Foreign Out-Calls
	
	cancelling, Asynchronous Exceptions
	
	child, Symmetric Concurrency Combinators, Detecting Deadlock
	
	communication of, Communication: MVars–Communication: MVars
	
	creating, A Simple Example: Reminders, Thread Creation and MVar Operations–Thread Creation and MVar Operations
	
	deadlocking of, Detecting Deadlock
	
	difficulty programming with, Introduction
	
	FFI and, Threads and Foreign Out-Calls–Threads and Foreign Out-Calls
	
	for concurrent web servers, Introduction
	
	foreign in-calls and, Threads and Foreign In-Calls
	
	foreign out-calls and, Threads and Foreign Out-Calls–Threads and Foreign Out-Calls
	
	identifying, Event Logging and ThreadScope
	
	implementing signals between, Blocking Until Something Changes
	
	interrupting, Cancellation and Timeouts–Asynchronous Exceptions: Discussion
	
	lightweight, A Trivial Server
	
	limiting number of, Limiting the Number of Threads with a Semaphore–Limiting the Number of Threads with a Semaphore
	
	locks for, MVar as a Container for Shared State
	
	memory overhead for, Thread Creation and MVar Operations
	
	multi-way communciation between, What Can We Not Do with STM?
	
	trees of, Higher-Level Concurrency Abstractions, Symmetric Concurrency Combinators
	
	unresponsive, Cancellation and Timeouts
	
	wake up property of, Fairness
	

	threads of control, Terminology: Parallelism and Concurrency
	
	ThreadScope (tool), Event Logging and ThreadScope–Event Logging and ThreadScope
		and Eval vs. Par monads, The Par Monad Compared to Strategies
	
	installing, Tools and Resources
	
	profiling programs with, Example: Parallelizing a Sudoku Solver–Example: Parallelizing a Sudoku Solver
	
	showing detailed events in, Performance and Analysis
	
	thread number in, Event Logging and ThreadScope
	
	visualizing sparks with, Visualizing Spark Activity–Visualizing Spark Activity
	

	threadStatus function, Inspecting the Status of a Thread–Inspecting the Status of a Thread
	
	throw function, Exceptions in Haskell
	
	throwIO function, Exceptions in Haskell
	
	throwSTM operation, Asynchronous Exception Safety
	
	throwTo
		and asynchronous exceptions, Timeouts
	
	and synchronous exceptions, Asynchronous Exceptions
	

	thunk(s)
		and defined expressions, Lazy Evaluation and Weak Head Normal Form
	
	creation of, by map function, Lazy Evaluation and Weak Head Normal Form
	
	defined, Lazy Evaluation and Weak Head Normal Form
	
	evaluating thunks that refer to other thunks, Lazy Evaluation and Weak Head Normal Form
	
	unevaluated, Lazy Evaluation and Weak Head Normal Form
	

	time, wall-clock and elapsed, Example: Parallelizing a Sudoku Solver
	
	timed reminders, creation of threads in a program with, A Simple Example: Reminders
	
	timeDownload function, Overlapping Input/Output
	
	timeit function, Overlapping Input/Output
	
	timeouts, Timeouts–Timeouts
		behavior of, Timeouts
	
	implementation of, Timeouts
	
	nesting, Timeouts
	
	with race operation, Timeouts Using race–Timeouts Using race
	

	TimeTable, Example: A Conference Timetable
	
	TList type, Implementing Channels with STM
	
	TMVar data type, Blocking–Blocking
		fairness of, What Can We Not Do with STM?
	
	STM computation vs., Adding a Functor Instance
	

	toIndex function, Arrays, Shapes, and Indices
	
	TopEnv, Example: A Parallel Type Inferencer
	
	TQueue
		Chan vs., An Alternative Channel Implementation
	
	to build bounded channels, Bounded Channels
	

	Trace scheduler (monad-par library), Using Different Schedulers
	
	traceEventIO function, Event Logging and ThreadScope
	
	transaction, rolled back, Running Example: Managing Windows
	
	transactional variable, Running Example: Managing Windows
	
	transport layer packages, The Distributed-Process Family of Packages
	
	Traversable class, Example: Shortest Paths in a Graph
	
	traverseWithKey function, Example: Shortest Paths in a Graph
	
	tree-shaped computations, Limiting the Number of Threads with a Semaphore
	
	trees of threads, Higher-Level Concurrency Abstractions, Symmetric Concurrency Combinators
	
	try function
		catching exceptions with, Exceptions in Haskell
	
	error handling with, Error Handling with Async
	

	tryAquireNBSem, Limiting the Number of Threads with a Semaphore
	
	tuning, Tuning Concurrent (and Parallel) Programs–RTS Options to Tweak
		data structures, shared, Shared Concurrent Data Structures–Shared Concurrent Data Structures
	
	MVar operations, Thread Creation and MVar Operations–Thread Creation and MVar Operations
	
	RTS options for, RTS Options to Tweak–RTS Options to Tweak
	
	thread creation, Thread Creation and MVar Operations–Thread Creation and MVar Operations
	

	tuples, arrays of, Arrays and Indices
	
	TVar
		defined, Running Example: Managing Windows
	
	for concurrent shared data structures, Shared Concurrent Data Structures
	
	locked during commit, Performance
	
	unbounded number of, Performance
	

	type inference engines, parallelizing, Example: A Parallel Type Inferencer–Example: A Parallel Type Inferencer
	
	Typeable
		as exception, Exceptions in Haskell
	
	enabling automatic derivation for, Exceptions in Haskell
	
	message types as, Defining a Message Type
	

	typed channels, Typed Channels–Merging Channels
		merging, Merging Channels–Merging Channels
	
	untyped channels vs., Handling Failure
	

U
	unbounded channels
		bounded channels vs., Bounded Channels
	
	constructing, MVar as a Building Block: Unbounded Channels–MVar as a Building Block: Unbounded Channels
	

	Unbox type class, Arrays, Shapes, and Indices
	
	unboxed arrays, computeS function and, Operations on Arrays
	
	unevaluated computations, Lazy Evaluation and Weak Head Normal Form
	
	unGetChan operation, MVar as a Building Block: Unbounded Channels, More Operations Are Possible
	
	Unicode conversion, Sequential Version
	
	uninterruptibleMask, Masking Asynchronous Exceptions
	
	unit operation, in Accelerate, Scalar Arrays
	
	Unlift class, Creating Arrays Inside Acc
	
	unlift function, Creating Arrays Inside Acc, Example: A Mandelbrot Set Generator
	
	Unmasked constructor, Masking Asynchronous Exceptions
	
	unresponsive threads, deadlocks and, Cancellation and Timeouts
	
	update function, Example: Shortest Paths in a Graph
	
	use function, in Accelerate, Running a Simple Accelerate Computation
	
	user interface, multiple threads with, Cancellation and Timeouts
	
	user interrupt, asynchronous exceptions and, Asynchronous Exceptions: Discussion
	
	using function, Evaluation Strategies
		and garbage-collected sparks, GC’d Sparks and Speculative Parallelism
	

W
	wait function
		error handling with, Error Handling with Async–Error Handling with Async
	
	for asynchronous actions, Overlapping Input/Output
	

	waitAny function, Merging, Async Revisited, Adding a Functor Instance
	
	waitBoth operation
		and orElse combinator, Symmetric Concurrency Combinators
	
	and withAsync function, Symmetric Concurrency Combinators
	

	waitCatch function
		error handling with, Error Handling with Async
	
	implementing, Asynchronous Exceptions
	

	waitCatchSTM function, Async Revisited
	
	waitEither function, Merging, Symmetric Concurrency Combinators
		and symmetric concurrency combinators, Symmetric Concurrency Combinators
	
	in STM, Async Revisited, Async Revisited
	

	waitSTM function, Async Revisited
	
	wall-clock time, elapsed and, Example: Parallelizing a Sudoku Solver
	
	watch list, in TVars, Performance
	
	weak head normal form (WHNF), Lazy Evaluation and Weak Head Normal Form–Lazy Evaluation and Weak Head Normal Form
	
	web browsers, interrupting several activiites with, Cancellation and Timeouts
	
	web pages, concurrent downloading of, Overlapping Input/Output
	
	weight function, Floyd-Warshall algorithm and, Example: Shortest Paths in a Graph
	
	WHNF (weak head normal form), Lazy Evaluation and Weak Head Normal Form–Lazy Evaluation and Weak Head Normal Form
	
	window manager example, Running Example: Managing Windows–Running Example: Managing Windows
	
	withAsync function
		and waitBoth operation, Symmetric Concurrency Combinators
	
	foreign calls with, Asynchronous Exceptions and Foreign Calls–Asynchronous Exceptions and Foreign Calls
	
	installing exception handlers with, Avoiding Thread Leakage
	
	nesting calls of, Parallel Version
	

	withMonitor function, Handling Failure
	
	withStrategy, parallelizing lazy streams with, Parallelizing Lazy Streams with parBuffer
	
	work items, number of, Granularity–Granularity
	
	work pools, Dataflow Parallelism: The Par Monad
	
	work stealing, Example: Parallelizing a Sudoku Solver, The ParIO monad
	
	write pointer (channel), MVar as a Building Block: Unbounded Channels
	
	writeChan operations
		concurrent, MVar as a Building Block: Unbounded Channels
	
	definition of, Asynchronous Exception Safety for Channels
	

	writeImage operation, Example: Image Rotation
	
	writeTBQueue, deadlock caused by, Bounded Channels
	

Y
	yields (term), Event Logging and ThreadScope
	

Z
	Z constructor, Arrays, Shapes, and Indices
	
	zeroPoint operation, Example: The K-Means Problem
	
	zipWith function (Accelerate), Zipping Two Arrays
	

About the Author
One of the lead developers of GHC, by far the most-used Haskell compiler in the world. Simon implemented virtually all the technology that the book would be covering. He taught a summer school on this material last year, and is teaching another one this year http://www-hpc.cea.fr/SummerSchools2012-​CS.htm

Simon is a lead figure in the Haskell community. He chaired the Haskell 2010 committee, and is the editor of the Haskell 2010 report, the latest revision of the language.

Colophon
The animal on the cover of Parallel and Concurrent Programming in Haskell is a scrawled butterflyfish (Chaetodon meyeri). This fish can grow up to 8 inches in length and is characterized by its white or blue-white body and yellow-edged black bar running through its eyes.
This species of butterflyfish can be found in the Pacific and Indian Oceans, at depths of 2 to 25 meters. Because they generally prefer coral-rich areas, these fish are susceptible to habitat loss. Though there have been no population declines documented to date, this species’ food source is live coral and is sensitive to climate-induced coral depletion.
The cover image is of unknown origin. The cover font is Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Parallel and Concurrent Programming in Haskell

Simon Marlow

Editor
Andy Oram

Editor
Mike Hendrickson

	Revision History
	2013-07-10	First release

Copyright © 2013 Simon Marlow

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Parallel and Concurrent Programming in Haskell, the image of a scrawled butterflyfish,
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
 their products are claimed as trademarks. Where those designations appear
 in this book, and O’Reilly Media, Inc., was aware of a trademark claim,
 the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
 the publisher and author assume no responsibility for errors or omissions,
 or for damages resulting from the use of the information contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-07-11T06:18:22-07:00

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/callouts/4.png

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1724955.png.jpg

OEBPS/bk01-toc.html
Parallel and Concurrent Programming in Haskell

Table of Contents
		Special Upgrade Offer

		Preface		Audience

		How to Read This Book

		Conventions Used in This Book

		Using Sample Code

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		1. Introduction		Terminology: Parallelism and Concurrency

		Tools and Resources

		Sample Code

		I. Parallel Haskell		2. Basic Parallelism: The Eval Monad		Lazy Evaluation and Weak Head Normal Form

		The Eval Monad, rpar, and rseq

		Example: Parallelizing a Sudoku Solver

		Deepseq

		3. Evaluation Strategies		Parameterized Strategies

		A Strategy for Evaluating a List in Parallel

		Example: The K-Means Problem		Parallelizing K-Means

		Performance and Analysis

		Visualizing Spark Activity

		Granularity

		GC’d Sparks and Speculative Parallelism

		Parallelizing Lazy Streams with parBuffer

		Chunking Strategies

		The Identity Property

		4. Dataflow Parallelism: The Par Monad		Example: Shortest Paths in a Graph

		Pipeline Parallelism		Rate-Limiting the Producer

		Limitations of Pipeline Parallelism

		Example: A Conference Timetable		Adding Parallelism

		Example: A Parallel Type Inferencer

		Using Different Schedulers

		The Par Monad Compared to Strategies

		5. Data Parallel Programming with Repa		Arrays, Shapes, and Indices

		Operations on Arrays

		Example: Computing Shortest Paths		Parallelizing the Program

		Folding and Shape-Polymorphism

		Example: Image Rotation

		Summary

		6. GPU Programming with Accelerate		Overview

		Arrays and Indices

		Running a Simple Accelerate Computation

		Scalar Arrays

		Indexing Arrays

		Creating Arrays Inside Acc

		Zipping Two Arrays

		Constants

		Example: Shortest Paths		Running on the GPU

		Debugging the CUDA Backend

		Example: A Mandelbrot Set Generator

		II. Concurrent Haskell		7. Basic Concurrency: Threads and MVars		A Simple Example: Reminders

		Communication: MVars

		MVar as a Simple Channel: A Logging Service

		MVar as a Container for Shared State

		MVar as a Building Block: Unbounded Channels

		Fairness

		8. Overlapping Input/Output		Exceptions in Haskell

		Error Handling with Async

		Merging

		9. Cancellation and Timeouts		Asynchronous Exceptions

		Masking Asynchronous Exceptions

		The bracket Operation

		Asynchronous Exception Safety for Channels

		Timeouts

		Catching Asynchronous Exceptions

		mask and forkIO

		Asynchronous Exceptions: Discussion

		10. Software Transactional Memory		Running Example: Managing Windows

		Blocking

		Blocking Until Something Changes

		Merging with STM

		Async Revisited

		Implementing Channels with STM		More Operations Are Possible

		Composition of Blocking Operations

		Asynchronous Exception Safety

		An Alternative Channel Implementation

		Bounded Channels

		What Can We Not Do with STM?

		Performance

		Summary

		11. Higher-Level Concurrency Abstractions		Avoiding Thread Leakage

		Symmetric Concurrency Combinators		Timeouts Using race

		Adding a Functor Instance

		Summary: The Async API

		12. Concurrent Network Servers		A Trivial Server

		Extending the Simple Server with State		Design One: One Giant Lock

		Design Two: One Chan Per Server Thread

		Design Three: Use a Broadcast Chan

		Design Four: Use STM

		The Implementation

		A Chat Server		Architecture

		Client Data

		Server Data

		The Server

		Setting Up a New Client

		Running the Client

		Recap

		13. Parallel Programming Using Threads		How to Achieve Parallelism with Concurrency

		Example: Searching for Files		Sequential Version

		Parallel Version

		Performance and Scaling

		Limiting the Number of Threads with a Semaphore

		The ParIO monad

		14. Distributed Programming		The Distributed-Process Family of Packages

		Distributed Concurrency or Parallelism?

		A First Example: Pings		Processes and the Process Monad

		Defining a Message Type

		The Ping Server Process

		The Master Process

		The main Function

		Summing Up the Ping Example

		Multi-Node Ping		Running with Multiple Nodes on One Machine

		Running on Multiple Machines

		Typed Channels		Merging Channels

		Handling Failure		The Philosophy of Distributed Failure

		A Distributed Chat Server		Data Types

		Sending Messages

		Broadcasting

		Distribution

		Testing the Server

		Failure and Adding/Removing Nodes

		Exercise: A Distributed Key-Value Store

		15. Debugging, Tuning, and Interfacing with Foreign Code		Debugging Concurrent Programs		Inspecting the Status of a Thread

		Event Logging and ThreadScope

		Detecting Deadlock

		Tuning Concurrent (and Parallel) Programs		Thread Creation and MVar Operations

		Shared Concurrent Data Structures

		RTS Options to Tweak

		Concurrency and the Foreign Function Interface		Threads and Foreign Out-Calls

		Asynchronous Exceptions and Foreign Calls

		Threads and Foreign In-Calls

		Index

		About the Author

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages1724936.png
fx

time

fy

return

OEBPS/httpatomoreillycomsourceoreillyimages1724933.png
map

XS

OEBPS/httpatomoreillycomsourceoreillyimages1724960.png
Broadcast Network
Chan socket
Monitor thread Receive thread

Chan

A 4

Server thread

OEBPS/httpatomoreillycomsourceoreillyimages1724959.png.jpg
concurrently ab

OEBPS/httpatomoreillycomsourceoreillyimages1724944.png
835 L.835s Io 845 L.84ss Io 835 L.835s Io 805 L.8bos Io 8is L.8/os Io 885
L L L L L

Activity

e T OO 00O
e T OO0 0O 00O
e T OO0 0O
e T 00000 00O

OEBPS/httpatomoreillycomsourceoreillyimages1724931.png
y ———>

X ——>

OEBPS/callouts/1.png

OEBPS/httpatomoreillycomsourceoreillyimages1724962.png
U.14ass Io 1455 U.14555
L L

pciviy
e ININN GO GTEE| EEINN (NN NN (i
e NEIEN INNIIE (NENINE NNNNIN (INNEEED ONEINDD (WEEED
e I N ENET N EEOET S
e CEMNN_ SEWID OSSN (NENENED NEONEINEY EOENN (EEN

OEBPS/httpatomoreillycomsourceoreillyimages1724949.png
Activity

HECO

HEC1

HEC2

HECS

HECO

Spark
pool size

HEC1

Spark
pool size

HEC2

Spark
pool size

HECS

Spark
pool size

98

a9

a9

a9

a9

OEBPS/httpatomoreillycomsourceoreillyimages1724938.png
‘05 2Ums Io)s L.15s Iozs .55 Ioas U.355 Ioas L.43s Ios; U395 Ios; L.6as Io7
L L L L L L L

Activity

> N O

OEBPS/httpatomoreillycomsourceoreillyimages1724943.png
TTRTITITI V00 O S
. 0 O O O

000 Y 1§

L 00) O

OEBPS/httpatomoreillycomsourceoreillyimages1724946.png
Activty

HECo

HEC1

HeC2

HEC3

HECO

spark
pool size.

HEC1

Spark
pool size

HeC2

Spark

HEC

Spark
pool size.

64

o8 L S WHEEE SRS BEOES SRS L L L g

Y T O O T T (VO T e
1 T
T A A A g T W i
0000000 0 0 i

32

64

32

64

32

OEBPS/orm_front_cover.jpg
Techniques for Multicore and Multithreaded Programming

O’REILLY*® Simon Marlow

OEBPS/httpatomoreillycomsourceoreillyimages1724961.png
Network
socket

Receive thread

A

Server thread

y

<>

<+

OEBPS/callouts/7.png

OEBPS/callouts/8.png

OEBPS/callouts/3.png

OEBPS/httpatomoreillycomsourceoreillyimages1724947.png
time

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

0.78

0.76

0.74

10

chunks

100

1000

OEBPS/httpatomoreillycomsourceoreillyimages1724935.png
fx

fy

v

time

return

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1724937.png
‘05 2Ums Io)s L.15s Iozs .55 Ioas U.355 Ioas L.43s Ios; U395 Ios; L.6as Io7s L.7as Ioss
L L L L L L L L

Activity

HECO

HEC1

OEBPS/httpatomoreillycomsourceoreillyimages1724956.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1724934.png
fx

fy

return

time

v

OEBPS/httpatomoreillycomsourceoreillyimages1724940.png
Lbms 16.oms Lims
1

Activity

T —

GO TN - B B

OEBPS/httpatomoreillycomsourceoreillyimages1724958.png
Read end Write end

First value Second value Third value

OEBPS/callouts/6.png

OEBPS/httpatomoreillycomsourceoreillyimages1724930.png
X ——»

OEBPS/httpatomoreillycomsourceoreillyimages1724954.png.jpg
ofo

OEBPS/httpatomoreillycomsourceoreillyimages1724932.png
y ———>

X ——>

OEBPS/callouts/13.png

OEBPS/httpatomoreillycomsourceoreillyimages1724953.png

OEBPS/httpatomoreillycomsourceoreillyimages1724950.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1724952.png
L.a135s Io 425 L.4205s5 1
L L

Activity

e . f [[
e T — O N B I

OEBPS/callouts/10.png

OEBPS/callouts/11.png

OEBPS/httpatomoreillycomsourceoreillyimages1724942.png

OEBPS/callouts/5.png

OEBPS/httpatomoreillycomsourceoreillyimages1724945.png
ssssssssssssssssssssssss

S . [[[
o o e o o
mmmmm .. /N o
mEmpmDm) |, | OEOEINON O O

OEBPS/httpatomoreillycomsourceoreillyimages1724963.png
L.eaias - L.2aiss L.22ies L.22dis L.2zies L.2279s In.zzss L.zzels - L.2zgss L.2283s
L

Activity

o Hl e . o | T . H
o N, 1) —
N N, NN e e] .
[Eznn, 0. I_ EmE=i L B

OEBPS/httpatomoreillycomsourceoreillyimages1724941.png
5

s

s

10

OEBPS/callouts/12.png

OEBPS/callouts/9.png

OEBPS/httpatomoreillycomsourceoreillyimages1724951.png

OEBPS/httpatomoreillycomsourceoreillyimages1724957.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1724948.png
Xs —P

A 4

— > <

strat

N\

strat

N\

Xs'—

\ 4
e

spark pool

OEBPS/httpatomoreillycomsourceoreillyimages1724939.png
f.ams

ms

6.oms.

oms

2.oms.

2ms

.,

m om gm

OEBPS/callouts/2.png

