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PREFACE

This is the second edition of the published textbook: Tensor Analysis for
Engineers. In this edition, we expand the content on the rigid body rota-
tion and Cartesian tensors by including Euler angles and quaternions meth-
ods. In addition to the rotation matrix method, presented in the first edition
and included in this edition, we collect all three methods in this volume of
the textbook. In this edition, the quaternions and their algebraic calculation
rules are presented. We also discuss the active and passive rotations and pre-
sent several worked-out examples using the Euler angles and quaternions
methods applications and their interrelations. The problem of gimbal lock is
also analyzed and presented with detailed worked out examples. Additional
references have been included in the second edition.

In engineering and science, physical quantities are often represented
by mathematical functions, namely tensors. Examples include tempera-
ture, pressure, force, mechanical stress, electric/magnetic fields, velocity,
enthalpy, entropy, etc. In turn, tensors are categorized based on their rank,
i.e. rank zero, one, and so forth. The so-called scalar quantities (e.g., tem-
perature) are tensors of rank zero. Likewise, velocity and force are tensors
of rank one and mechanical stress and gradient of velocity are tensors of
rank two. In Euclidean space, which could be of dimension N = 3, 4, ..., we
can define several coordinate systems for our calculation and measurement
of physical quantities. For example, in a 3D space, we can have Cartesian,
cylindrical, and spherical coordinate systems. In general, we prefer defining
a coordinate system whose coordinate surfaces (where one of the coordinate
variables is invariant or remains constant) match to the physical problem
geometry at hand. This enables us to easily define the boundary condi-
tions of the physical problem to the related governing equations, written
in terms of the selected coordinate system. This action requires transfor-
mation of the tensor quantities and their related derivatives (e.g., gradient,
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curl, divergence) from Cartesian to the selected coordinate system or vice
versa. The topic of tensor analysis (also referred to as “tensor calculus” or
“Ricci’s calculus” since originally developed by Ricci, 1835-1925, [1], [2]), is
mainly engaged with the definition of tensor-like quantities and their trans-
formation among coordinate systems and others. The topic provides a set of
mathematical tools which enables users to perform transformation and cal-
culations of tensors for any well-defined coordinate systems in a systematic
way—it is a “machine.” The merit of tensor analysis is to provide a systematic
mathematical formulation to derive the general form of the governing equa-
tions for arbitrary coordinate systems.

In this book, we aim to provide engineers and applied scientists the tools
and techniques of tensor analysis for applications in practical problem solv-
ing and analysis activities. The geometry is limited to the Euclidean space/
geometry, where the Pythagorean Theorem applies, with well-defined Car-
tesian coordinate systems as the reference. We discuss quantities defined in
curvilinear coordinate systems, like cylindrical, spherical, parabolic, etc., and
present several examples and coordinates sketches with related calculations.
In addition, we listed several worked-out examples for helping the readers
with mastering the topics provided in the prior sections. A list of exercises is
provided for further practice for readers.

Mehrzad Tabatabaian, PhD, PEng
Vancouver, BC
September 30, 2020
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CHAPTER

INTRODUCTION

Physical quantities can be represented mathematically by tensors. In further
sections of this book we will define tensors more rigorously; however, for the
introduction we will use this definition. An example of a tensor-like quantity
is the temperature in a room (which could be a function of space and time)
expressed as a scalar, a tensor of rank zero. Wind velocity is another example,
which can be defined when we know both its magnitude and speed—a scalar
quantity—and its direction. We define velocity as a vector or a tensor of rank
one. Scalars and vectors are familiar quantities to us and we encounter them
in our daily life. However, there are quantities, or tensors of rank two, three,
or higher that are normally dealt with in technical engineering computa-
tions. Examples include mechanical stress in a continuum, like the wall of a
pressure vessel—a tensor of rank two—the modulus of elasticity or viscosity
in a fluid—tensors of rank four—and so on.

Engineers and scientists calculate and analyze tensor quantities, including
their derivatives, using the laws of physics, mostly in the form of govern-
ing equations related to the phenomena. These laws must be expressed in
an objective form as governing equations, and not subjected to the coor-
dinate system considered. For example, the amount of internal stress in a
continuum should not depend on what coordinate system is used for calcu-
lations. Sometimes tensors and their involved derivatives in a study must be
transformed from one coordinate system to another. Therefore, to satisfy
these technical/engineering needs, a mathematical “machine” is required to
perform these operations accurately and systematically between arbitrary
coordinate systems. Furthermore, the communication of technical compu-
tations requires precise definitions for tensors to guarantee a reliable level
of standardization, i.e., identifying true tensor quantities from apparently
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tensor-like or non-tensor ones. This machine is called tensor analysis [2],

(3], [4], [5]. [6], [7].

The subject of tensor analysis has two major parts: a) definitions and proper-
ties of tensors including their calculus, and b) rules of transformation of ten-
sor quantities among different coordinate systems. For example, consider
again the wind velocity vector. By using tensor analysis, we can show that this
quantity is a true tensor and transform it from a Cartesian coordinate system
to a spherical one, for example. A major outcome of tensor analysis is having
general relations for gradient-like operations in arbitrary coordinate systems,
including gradient, curl, divergence, Laplacian, etc. which appear in many
governing equations in engineering and science. Using tensor notation and
definitions, we can write theses governing equations in explicit coordinate-
independent forms.

1.1 INDEX NOTATION—THE EINSTEIN SUMMATION
CONVENTION

Writing expressions containing tensors could become cumbersome, especially
when higher ranked tensors and higher dimensional space are involved. For
example, we usually use hatted arrow symbol for vectors (like A) and bold-
font symbols for second rank tensors (like A). But this approach is very lim-
ited for expressing, for example, the modulus of elasticity, a 4" ranked tensor.
Another limitation shows up when writing the components of a tensor in

N-dimension space. For example, in 3D we write vector A in a Cartesian coor-
3

dinate system as A = ZAl.Ei =A,E, + A,E, + A,E,, where A, is the compo-

- 1
nent and E; the unit vector. Taking this approach for N -dimension space and
carrying the summation symbol (i.e., £) is cambersome and seems unnecessary.

The Einstein summation convention allows us to dispose of the summa-
tion symbol, if we carry summation operation for repeated indices in prod-
uct-type expressions (unless otherwise specified). Using this approach, we
can write A = AE, and a tensor of rank 4, for example, as T = I}jklEiEjEkEl,
with all indices range for 1 to N. In practice, however, we even ignore writing
the unit vectors and just use the component representing the original tensor;
hence this method is also referred to as component or index notation, or
A=A and T=T, yu- In addition, we represent a tensor’s rank by the number
of free (i.e., not repeated) indices. We use these definitions and conventions
throughout this book.



CHAPTER

COORDINATE SYSTEMS
DEFINITION

For measuring and calculating physical quantities associated with geometrical
points in space we require coordinate systems for reference. These systems
(for example, in a 3D space) are composed of surfaces that mutually
intersect to specify a geometrical point. For reference, an ideal system of
coordinates called a Cartesian system is defined, in Euclidean space, such
that it composes of three flat planes. These planes are considered by default
to be mutually perpendicular to each other to form an orthogonal Cartesian
system. In general, the orthogonality is not required to form a coordinate
system—this kind of coordinate system is an oblique or slanted system.
A Cartesian coordinate system, although ideal, is central to engineering
and scientific calculations, since it is used as the reference compared to
other coordinate systems. It also has properties, as will be shown in further
sections, that enable us to calculate the values of tensors [3].

For practical purposes, sometimes it is more convenient to consider curved
planes instead of flat ones in a coordinate system. For example, for cases
when a cylindrical or a spherical water or an oil tank is involved, we prefer
that all or some of coordinate surfaces match the geometry of the tank. For
a cylindrical coordinate system, we consider the Cartesian system again but
replace one of its planes with a cylinder, whereas for a spherical system we
replace two flat planes with a sphere and a cone.
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FIGURE 2.1 Sketches of Cartesian, Cylindrical, and Spherical coordinate systems.

Many other coordinate systems are defined/used in practice such as
parabolic, bi-spherical, etc. Figure 2.1 shows some examples of common
coordinate systems. Animations of the coordinates shown in Figure 2.1 are
provided in the accompanying files.

For organizing the future usage of symbols for arbitrary coordinate systems
we define coordinate variables with superscripted letters, for reasons that
will be explained in further sections. For Cartesian systems we use y' and
for other arbitrary systems we use x'—note that i is merely an index, not a
raised power. For example, in a 3D space we have y' =X, y* =Y, and ¢’ =Z
where (X,Y,Z ) are common notations for Cartesian coordinates. In general,
for N dimensional systems we have

y' = (yl,yQ,yg,---,yN) Cartesian coordinates

) 2.1
1 2 3 N . . .
x! E(x XA e x ) arbitrary coordinates

In this book, we limit the geometryto that known as Euclidean geometry [2], [4],
[5]. Therefore, curved space geometry (i.e., Riemann geometry), space-time,
and discussions of General Relativity are not included. However, curvilinear
coordinate systems and oblique non-orthogonal systems are covered, where
applicable, and defined with reference to Euclidean geometry/space.



CHAPTER

BASIS VECTORS AND
SCALE FACTORS

For the measurement of quantities we need to define metrics or scales in
whatever coordinate system we use. These scales are, usually, vectors defined
at a point (such as the origin) and are tangent to the coordinate surfaces at
that point. These vectors are called basis vectors. For Cartesian system y we
define basis vector E (see Figure 3.1). Note that subscript i (i.e.,i=1,2,---,N)
is merely an index and the reason why we used it as a subscnpt for basm
vectors will be explained in a further section. Now, considering an incremen-
tal vector ds, from point P to neighboring point P’, we define the direc-

tion of the basis vector as moving from P to P’ or E, =y |P >y +dy' |P,.
For example, E, =’ |P >y +dy1|P,. Now we define the magnitude of E,

such that the magnitude of distance from P to P’ is given as
=|dy'E,| 3.1

Also, we can get the distance PP’ = ds(i)=dy' in a Cartesian coordinate
system. Therefore, the basis vectors magnitude is unity, or ‘Ei‘zl. In
other words, the basis vectors in Cartesian system have unit lengths and

are well-known unit vectors (usually represented by ?} k ). This is more
than a trivial result and as shown in further sections, enables us to calculate/
measure quantities in other coordinate systems with reference to the
Cartesian system. The directed distance vector ds is given as

Erad N .= .=
ds=>dy'E, =dy'E, 3.2
i=1
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The magnitude of this vector is the square root of the dot-product of ds with
itself,

&5 =N - &5 = Jdy'dy'E. - E. 33
Z Jdy' dy'E, - E|

FIGURE 3.1 A Cartesian system with unit vectors and an incremental vector ds.

Assuming the Pythagorean theorem holds in Euclidean space we have

‘d—s‘z,/dyidyi = /Zi:(dyi )2 3.4

From Equations 3.3 and 3.4, we can conclude that

o {1 fori=j

= 3.5
0 fori# j

i

Which also shows that the basis/unit vectors in Cartesian system yi are mutu-
ally perpendicular or the system is orthogonal, as defined.

Now we assume an arbitrary system x', which may be neither rectilinear
nor orthogonal (see Figure 3.2). In this system the distance between two
points—say P and P'—is the same when considering the vector ds. In other
words, the vector components in system x' compared to those in system ¢'
could change along with the basis vector corresponding to system x' such
that the vector itself remains the same, or as an invariant. This requirement
is simply a statement of independence of physical quantities (and the laws of
nature) regardless of the coordinate system we consider for calculation and
analysis. Therefore, we have

ds =dx'é, = dy'E, 3.6
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where ¢, is the basis vector corresponding to system x'. In general the basis
vector ¢, can vary, both in magnitude and/or direction, from point to point
in space. Also, the dx' may be dimensionless, like the angle coordinate in a
polar coordinate system.

FIGURE 3.2 Sketches of a curvilinear coordinate system and basis vectors'.
The magnitude of basis vector ¢, is the scale factor h,, or
h,=|é,| 3.7

Note that A, is unity for a Cartesian coordinate system and may be different
from unity in general curvilinear systems. We will derive formulae for
the calculation of h, in an arbitrary coordinate system in further sections.
The unit vector é(i) can be defined as

é(i)z— (no summation oni) 3.8

Obviously, in a Cartesian system the unit vectors and the basis vectors are
identical, since h;, is unity.

! Common copyright (cc), https://commons.m.wikimedia.org/wiki/File:Vector_1-form.
svg#mw-jump-to-license






CHAPTER

CONTRAVARIANT
COMPONENTS AND
TRANSFORMATIONS

For transformations between systems x' and Cartesian y', we must have the
functional relationships between their coordinate variables. For example,

X =F (v gy 4.1

gives N number of functions transforming y' to x' system. Inversely [4], we
can transform from ' to y' system using function G, given as

y' =G, (x' %) 42

For example, for a 2D polar coordinate system, (r,0)= (xl,xz) with refer-
ence to Cartesian system (X,Y) = (yl 2y ) we have

. Or inversely,

X=rcosd |y =x cos(x*)
Y =rsin@

yz =x' sin(x" )

{r— oy | =) ()

= 2
6 =tan™" %) x* =tan™ (y—lJ
Y
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Now by taking partial derivatives of G, (see Equation 4.2) we can relate
the differentials dy', in a Cartesian system, to dx’ in an arbitrary coordinate

system as
dyi = %dx-i 4.3
ox!

For example, after expanding Equation 4.3 for i=1 we get, dyl =
81]

J

1

1 1 1
o , !
%dxl +L2dx2 +---+%dx‘\. The transformation coefficient can be

ox' ox
~ iy
.
written in matrix form as =—=| :
P

ﬁyN
axl

oy |
o

oy N
o

. The determinant of the

transformation coefficient matrix is defined as the Jacobian of the transfor-
mation, or
dy' ay'

LtegV) O o
J=M= P 4.4
e

oy oy
Lo L

The Jacobian can be interpreted as the density of the space. In other words,
let’s say that we have J =5 for a given system x'. This means that we have
packed 5 units of Cartesian space into a volume in x' space through trans-
formation from Cartesian to the given system. The smaller the Jacobian, the
smaller the space density would be and vice versa.

Similarly, we can use function F, (see Equation 4.1) to have

dx' = %dyj 4.5
It can be shown [4], [2], that the determinant of transformation coefficient
—— is the inverse of J, or
oy’
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o o
-1 a(xl,xz,...’xw) 6?1 | ﬁy"‘
a(y >y ’~..)yA ) axN axN
6y1 6yN

Equations 4.3 and 4.5 show a pattern for the transformation of differentials
dy' and dx', respectively. That is, the partial derivatives of the corresponding
coordinates appear in the numerator of the transformation coefficient.
Nevertheless, one can ask: does this pattern maintain for general system-to-
system transformation? The short answer is “yes” [7]. Hence, for arbitrary
systems x' and x"' we have

i

A= and de =Ly 4.7
ox'’ o/

Any quantity, say A', that transforms according to Equation 4.7 is defined as
a contravariant type, with the standard notation of having the index i as a
superscript. Therefore, transformation A' 22 A" reads

) ri ) ) axj )
A” ZwA] and A‘/ :—.A” 4.8

Obviously, performing the related calculations requires the functional
relations between the two systems, ie., x'= func(x'l,x'z,---,x'N) or
x' = func(xl,xQ,m,xN ) This in turn requires having the Cartesian system
as a reference for calculating the values of A’ or A", since x' and " are arbi-
trary. For example, transforming A’ directly from a spherical to a cylindrical
system requires having the functional relations between these coordinates
with reference to the Cartesian system as the main reference.

The contravariant component of a vector has a geometrical meaning as well.
To show this, we consider a rectilinear non-orthogonal system (x',x%) in 2D,
as shown in Figure 4.1. The components of vector A can be obtained by
drawing parallel lines to the coordinates x' and x” to find contravariant com-
ponents Al and A%, respectively.



12 ° TeNsOR ANALYSIS FOR ENGINEERS, 2E

X

FIGURE 4.1 Contravariant components of a vector in an oblique coordinate system.

With reference to Figure 4.1, we can also find another set of components,
A, and A, of the same vector A by drawing perpendicular lines to the
coordinates x' and x*. This is shown in Figure 4.2. Obviously, components
A, and A, are different in magnitude from the contravariant components.
We define A, and A, as covariant components. In the next section we define
the transformation rule for covariant quantities.

FIGURE 4.2 Covariant components of a vector in an oblique coordinate system.

We can conclude from these definitions that contravariant and covariant
components of a vector in a Cartesian system are identical and there is no
distinction between them.



CHAPTER

COVARIANT COMPONENTS
AND TRANSFORMATIONS

We use the standard notation of writing the index i as a subscript for
covariant quantities. We consider basis vector ¢, as a covariant quantity.
We can rewrite Equation 3.6, considering two arbitrary systems x/ and X"

and the fact that ds is coordinate-system independent or invariant, as
ds = dx™"é, = dx'¢, 5.1

thk—r

. J
After substituting for dx’, using Equation 4.7, we get dx""é, = %dx'ké ; or
J
di (EL —&‘—a) -0 59
ax J

Since dx'™* is arbitrary (i.e., the relation is valid for any choice of system
x™ and selections of dx*" #0anddx™ =0, for all values of i=1,2,---,N)

therefore the expression in the bracket must be equal to zero, or we have

€, =—-¢, 5.3
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All quantities, say A,, that transform according to Equation 5.3 defined
as covariant type, with the standard notation of writing the index i as a
subscript. Therefore, transformation A, 22 A} reads
o' , o
A =—A" and A'=——A 5.4
i o Y I

See Figure 4.2 for the geometrical interpretation of the covariant component
of a vector.
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PHYSICAL COMPONENTS
AND TRANSFORMATIONS

Having defined the contravariant and covariant quantities, like those of the
components of avector, one can ask this question: which one of these two types
of components is the actual vector’s components in magnitude? The short
answer is “none”! However, note that the combination of the contravariant or
covariant components and their corresponding basis vectors (contravariant
basis vectors will be defined in further section) gives the magnitude of the
vector correctly. To find the actual magnitude of the vector, we should find
the unit vectors and then the components of the vector corresponding to
these unit vectors, or the physical components. In other words, the physical
components of a vector (or in general, a tensor) are scalars whose physical
dimensions and magnitudes are those of the components vectors tangent
to the coordinates” lines. Therefore, for vector A, if we designate A(i) as
its physical component and the corresponding unit vector as ¢(i) we can
write, then

A=A"e =A(i)e(i) 6.1

Now, using Equation 3.8 and substituting for ¢, we can write

A'é(i)h, = A(i)é(i). Therefore,
A(i)=A'h,;, (no summation oni) 6.2

Or A(1)=A'h,, A(2) = A’h,, and so forth. The scale factor h, is the param-
eter that turns the contravariant component into the physical component,
when multiplied by it. Again, we can conclude that in a Cartesian system the
physical and contravariant/covariant components are identical, since h, =1.
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Up to this point we have defined contravariant, covariant, and physical com-
ponents of a vector along with covariant and physical/unit basis vectors. In
principle, we can represent a vector by any combination of its components
with the corresponding basis vectors. This requires having the contravariant
basis vector definition. We will define this quantity and how it is transformed
in a further section. First, we must have the definition of a tensor, as well as
a specific tensor called a metric tensor.



CHAPTER

TENSORS—MIXED AND
METRIC

In previous sections, we defined vectors or tensors of rank one. Higher order
tensors could be defined based on similar definitions. For example, a ten-
sor of rank two requires more than one free index, like mechanical stress or
strain tensors. In general, we have the contravariant components written as
A for tensor A. We avoid placing double-arrows over the symbol for ten-
sors, for simplicity and generality. Since, in principle, we can have tensors of
rank N, designating them with N number of hatted arrows is not a practical
exercise. The invariant quantity is written as

A=A"Eg, 71

Since A is invariant, its value remains the same regardless of the coordi-

nate system used. We transform A from an arbitrary coordinate system x
to another system, say x', or A”’e’é' —Ak"‘ . Now, using Equatlon 5.3,

nl

we transform the covariant basis vectors é and ¢, to systema’. Therefore,
ri 1]

o o

ot a0

ox't ox'Y

s k . .

e | AV - —— A" |=0. Therefore, since basis vectors are non-zero,
o

we have A"¢6, =A™ — . Using these last two relations, we obtain

we have
ax” al'] Akm
a,‘ck avm

i _

7.2
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Quantities that transform according to Equation 7.2 are defined as doubly
contravariant tensors, of rank two. Similarly, we can define mixed tensors,
for example of rank two, as
) ax’l axnl
A"l = —A* 7.3
J 8\1‘ 8x'7 m
The rule for transformation of tensors is like those given for vectors, i.e., the
contravariant component of the tensor transforms like a contravariant vector
and the covariant component like a covariant vector. Also, we can expand the
definition to a doubly covariant tensor, like

k m
A= X
Ui axu 83(:']

Equations 7.2-7.4 are useful relations defining second rank tensors and their
transformations. Expanding this rule, we can write the transformation of a
N -rank tensor, for example contravariant components, as

Arij---’V a\” 6x,l ax'N AkmmM

ot at a

In an arbitrary curvilinear system, the Pythagorean Theorem applies but does
not appear in the same form as it does in flat Cartesian systems. This is mainly
due to the fact that basis vectors in an arbitrary system change in magnitude
and/or direction, from point to point. Therefore, measuring the distance ds
between two points on a curved surface, like a sphere, for example, requires
scaling the coordinates by multiplying them with some scalar coefficients.
These coefficients are the components of a tensor, called a metric tensor,
associated with the coordinate system selected. Recalling Equation 3.6,
we can find the square of the magnitude of differential distance ds by dot-
product operation, or ds® =ds-ds = (dx é. ) (dx é. ) The result is

A, 7.4

7.5

ds’ =dx'dy’ (&, -2, ) 76

The term in the bracket, on the R.H.S of Equation 7.6, is a scalar (i.e., a tensor
of rank zero) resulting from a dot-product operation on the basis vectors.
Hence, we can write it as

4

e,-e].=|el.”ej‘cosa=hihjcosa 77
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where ais the angle between the tangents to x' and 1/ axes of the coordinate
system at the selected point in space. Geometrically speaking, Equation 7.7
is the multiplication of the magnitude of a basis vector with the projection of
the other one along the direction of the original one. Therefore, this quantity
could be used to identify whether a system (or at least the basis vectors
selected) is orthogonal or not. Also, it could be a metric for measuring the
distance over a curved surface. It has more properties and applications, which
we will encounter in future sections; hence, it is designated by a symbol and
aname, i.e., metric tensor g

g =€ ¢ 7.8

It is easily seen from Equation 7.8 that a metric tensor is symmetric since
order in a dot-product is irrelevant (i.e. commutatlve) Also, if g; =0 for
i # j then the coordinates of the system x' are orthogonal. For example the
metric tensor in a 3D orthogonal system can be represented by a 3 x 3 matrix
containing null off-diagonal elements,

gn 0 0
g;=| 0 g» 0 | orthogonal system 7.9
0 0 g

It would be useful to apply metric tensor definitions and expand Equation
7.6 using Equations 7.7 and 7.9 for an orthogonal 3D system, which gives

ds® =13 (dx') + 12 () + 12 (dn*) 7.10

For example, in a Cartesian system we recover the familiar form of

the Pythagorean theorem (ie., ds* —(dX) (dY) (dZ) since

gn=8»=8xn= E,. -E, =1. Similarly, for a spherical coordinate system (r,¢,0)
A,—J

we have h} = g” =1,h} =g, =r’, and hj =g, =r*sin’ @ (see Example 8.2
for scale factors). Therefore, we obtain ds” = (dr)2 +r’ (dgz))2 +r%sin® go(dH)Q.

So far, we have not shown that g, is a tensor. To do this, we transform the
metric tensor to another arbltrary coordinate system, say x". We then can
o 8xk 6xm &\‘k axm
write gl’] =8 -¢ ; = o (ek m) Therefore, we have g” P Ciom's
%,_/ ‘ B
. B km. .

that is, when compared to Equation 7.4 we can conclude that g, is a doubly
covariant tensor.
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As mentioned in the previous sections, to calculate or measure tensor-
like quantities we use a Cartesian system as the reference. To evaluate g,
we use Equation 7.8 and transform the covariekmt basis vector ¢, to the
Cartesian system, y'. Therefore, g, = ¢, -¢, :%Gy_j(Ek ‘E, ) The quan-
tity E -E,,, or the dot-product of the basis/unit vectors in the Cartesian
system, is either one or zero, due to orthogonality of the coordinates. Hence,

I 1, whenk=m
Ek. m

. Using this property, we can write
0, whenk #m & Property

k k
_% 9y 711

Using Equation 7.11, we can readily conclude that the metric tensor in
a Cartesian system is the familiar Kronecker delta, 6, =E, -E,. For 3D

1 00
Cartesian coordinates, we receive a diagonal unity matrix o,=(0 1 0]
0 0 1

It can be shown ([3], [4]) that the determinant of a metric tensor is equal to
the square of the Jacobian of the transformation matrix, or

g=lg,|=7° 7.12

Therefore, in an orthogonal system x;, having g; =0 for i # j, we receive
g=g g =hihi ---hy, orthogonal system 7.13
Note that g, =|él.||éi| =h! (no sum on i) (see Equation 7.7). From

Equations 7.12 and 7.13 we can conclude that the Jacobian for an orthogonal
system is equal to the products of the scale factors, or

J =hh,---hy , orthogonal system 7.14

For example, in a spherical coordinate system the Jacobian is
T pherica =R Ny =77 sing (see Example 8.2 for scale factors).



CHAPTER

METRIC TENSOR OPERATION
ON TENSOR INDICES

An important and useful application of metric tensor is that it can be
used to lower and raise indices of a tensor. Therefore, we can change a
contravariant component of a tensor to a covariant one, or vice versa, by
multiplying the appropriate metric tensor to the tensor at hand. For
example, let’s define the covariant component of a vector (i.e., a tensor
of rank one) as A, = A/ g;, where A’ is the given contravanant compo-
nent. Now, we show that the quantity A’g, is transformed like a covari-
ant quantity, according to Equation 5.4. Considering systems x' and x",

rj m n 1j n m
we can write A’jglf, = 6xl A axv & = n &\k o | Akgm”.
g 6xc axn &\‘Vj &\ ax, 8’\”

rj n n 1 n= k
6‘x_k o _ ax =0, , where ¢ = is
ox* o'’ O,n=k
a mixed second rank tensor (a Kronecker delta). Therefore, we have
1j n m m m
Gx_kéx ax—,Akgm” _a (5"A )g”m =6x—.(A"gmn). The expression in
ax &‘:/] ax’l a:xfl %/_J &‘:/l

Note that the expression

the last bracket is actually A

.m

! rj /_a'\
Ai:A]gij—ﬁA

according to our definition. Finally, we have

m>

m >

which clearly shows that the quantity AV g;i is trans-

formed like a covariant component (see Equation 5.4). Therefore, we have,
also using the symmetry property of a metric tensor or g, = g,

A =Alg, =Alg, 8.1
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Using Equation 8.1, we can write the expression for a contravariant basis
vector, or

¢ =é'g, 8.2

which shows that the metric tensor lowers the contravariant index, while the
dummy index is dropped out. This will enable us to write the vector A in
terms of covariant or contravariant basis vectors, as

A=A =A'(gel)=(Ag,)d =A@ 8.3

Note that by using physical components and corresponding unit vectors, we
can write

A=A% =A@ = A(k)é(k) 8.4

So far, we have defined the doubly covariant metric tensor g;. Similarly, the
doubly contravariant metric tensor is defined g =¢" -é’. Therefore, we can
write

A=A =Ag"6 =A¢

Also, the combination of the two types of metric tensor gives the mixed
one, as

gijg]’k = 51: 8.5

Equation 8.5 can be derived as follow: we have A’ =g"A, =g" ¢ jkAk . In this
) —_—
=A,
expression, we write A’ =3,A*, therefor we have A" (512 -g’ g].k)z 0, but

since A" is arbitrary the expression in the bracket is zero. Hence gig i« = Ok
With reference to Figure 3.2, Figure 4.1, Figure 4.2, and Equation 8.3 we
can sketch the vector A in terms of its covariant/contravariant components

with their corresponding basis vectors, as shown in Figure 8.1 (see Example
15.3). Users may also want to watch a related video at

https:/lwww.youtube.com/watchPo=CliW 7k SxxWU.
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FIGURE 8.1 Sketch for covariant and contravariant components of a vector and
basis vectors in a non-orthogonal coordinate system X and alternate system &'.

In the following subsections, we present two examples demonstrating related
calculations for cylindrical and spherical coordinate systems.

EXAMPLE: CYLINDRICAL COORDINATE SYSTEMS

Consider a cylindrical polar coordinate system (xl ,xg,xg) =(r,0,z) where r
is the radial distance, @ the azimuth angle, and z the elevation from X -Y
plane, w.rt. the Cartesian coordinates (yl,yQ,yS) =(X,Y,Z), as shown
in Figure 8.2. The functional relations corresponding to cylindrical and
Cartesian systems are:

FIGURE 8.2 Cylindrical coordinate system.

X =rcosf yl =x'sina’

Y=rsin@ ={y*>=x'sinx’. Find the inverse relations (ie., x' =F (yl,
3 3

Z=xz Yy =x

y2’...’yN ) the basis vectors &, and é' for the cylindrical coordinate system in

terms of the Cartesian unit vectors. Also find the scale factors, unit vectors,
and metric tensors g; and g” and line element magnitude ‘ds‘
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Solution:

The functions F, can be obtained by solving for X,Y,Z, using the functional
relation, given

2 5\2
=JX2+Y? =) + ()
Y y'
6=tan™ (f) =J v’ =tan™ [—zj . To find the covariant basis vectors,
z= Z x3 = Y3

i ' a_ayl—- 5y2~ 5y3—»

we use ¢, =——F,. Therefore, we receive ¢, =—1E +_1E, +>TE, =
Ox Ox Ox Ox

3

1 - &j
ox® ox’ 6x2

Y | Q
é’

cosOF, +sin O E,.Similarly, ¢, = =—rsin@F, +rcosOE,,

ay1E 6y2E+ay3
o’

and &, = += —L_E, =E,. In terms of coordinates notation, we
ox® Ox
have
€, =cosOE, +sin0E,
é, =—rsinfE, +rcosOL,
é: = E3
For calculating contravariant basis vectors, we receive é' =—jE 4 After

expansion and using the functional relations, we get

¢" =cosOE, +sinOE,
50 :_sm@E1 N 0059E2

r r

e =E,

The scale factors are the magnitudes of the covariant basis vectors. Hence,
Jé. -é =1, h,=h,=./é,-€,=r,and h, =h_ =1. The unit vectors

é(i) =Z— are

¢(r)=cosOE, +sin@E,
(6)=—sinOE, + cosOE,
(Z):EB

QU

QU
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Note that unit vectors ¢(r) and €(@) in cylindrical coordinate system change
with location and are not constant vectors.

The metric tensoris g, =¢,-¢,,0or g, =h’ =1, g, =h, =r*,g_=hl=1,and
the off-diagonal elements of the metric tensor are null, hence the coordinate

1 0 O
system is orthogonal, or g; =10 r* 0. The Jacobian is J =h h,h_ =r.
0 0 1
The contravariant metric tensor can be calculated using g’ =é¢'-¢é’, or
1 0 O
g’=|0 r? 0], which is equal to the inverse of covariant metric tensor.
0O 0 1

Another way for calculating the contravariant basis vectors is by using the
relation ¢' =g"¢,, or ¢' =g"'¢, =¢,, & =g¥¢, =r7¢,, and ¢’ =g"¢, =¢,.

For the line element we have, ‘d?‘ = l(h,dx" )2 = \/(dr)2 + (rcl@)2 + (dz)2 .

8.2 EXAMPLE: SPHERICAL COORDINATE SYSTEMS

Consider a spherical polar coordinate system (xl,x2 ,xs)s(r,(o,ﬁ) where
r is the radial distance, ¢ the polar/meridian angle, and & the azimuthal
angle w.rt. the Cartesian coordinates (yl,yz ,yS)E(X,Y,Z), as shown
in Figure 8.3. The functional relations corresponding to spherical and
Cartesian systems are:

FIGURE 8.3 Spherical coordinate system.
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. 1 1 .. 2 3
X =rsingcosd y =x sinx” cosx

Y =rsingsind = y2 =x'sinx’sinx®. Find the inverse relations (i.e.,
Z =rcos@ y3 =x'cosx’
(y Y, yN) the basis vectors ¢, and €' for the spherical coordinate

system in terms of the Cartesian unit vectors. Also find the scale factors and

unit vectors and metric tensors gy and g Yand line element magnitude ‘ds‘

Solution:

The functions F, can be obtained by solving for X,Y,Z, using corresponding func-

o= 1)? 2 2 3)2
r=NX*+Y*+2° y) + )
. . a1 Z
tional relations, or {p=cos™ | ——— x* =cos”"
Iz ) \/( ! y+(y)

Z

6 =tan™' (zj yl
X x* =tan™

To find the covariant basis vectors, we use ¢, =§E Therefore, we get

. 2 31 . 3 . 2 I 2 I
o E, =sinx” cosx’E, +sinx” sinx"E, + cosx”E,

1 2 3
g, =%1E1 +%1E2 U,
ox

Similarly,
ayl ayl ay’i
€, =—+ 5 . =x' cosx” cosx’E, +x' sinx’ cosx’E, —x' sinx’E,, and
> 5y 6y2 ay;} 5 : i 3T 1 3 i 2T
€, = E +—= E2 +——FE, =—x sinx”sinx"E, +x cosx” sinx"E, . In terms of coor-
ox’ ox’ ox’

dinate variables, we have

¢ =sin@cosOF, +sin@sin OF, + cos (DES
€, =T CosQCos OE, + rcos@sin OF, —rsin pF,

€, =—rsin@sin 6El + rsin@cos 9E2
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The scale factors are the magnitudes of the basis vectors. Hence
hy=h, =\¢ -¢ =1, hy=h,=,[é,-é, =r, and hy =h, =/é,-¢, =rsing.

ol

1

The unit vectors é(i) =—L are

1

s

é¢(r)=singcos OE, +sin psin OF, + cos pE,
¢(p)=cosgcos HEl + cos @sin 0E2 —sin (/)E8
¢(0)=-sin 0, + cosOE,
Note that unit vectors in spherical coordinate system change with location
and are not constant vectors. The metric tensor is g, =¢,-¢,, or g, = h?=1,
g, =hy=1", gyp=h;=r’sin®p, and the off-diagonal elements of
the metric tensor are null, hence the coordinate system is orthogonal,
1 O 0
g, =0 0 .The Jacobianis J = h,h,h, = r*sing. The g =h.”,
0 0 (rsin (p)2

1 0 0

or g’ =0 r 0 , then we can calculate the contravariant basis

0 0 (rsinqo)f2

o i 1 . e 1. R 1 R . .
vectors, as ¢’ = g'¢,,or ¢' =¢,, ¢* =—¢,, and &° =————¢, which yields
r- rosi” @

¢" =sin@cosOE, +sin@sin OE, + cos pE,

_ (:OS(pcosé’E1 N cosgosmﬁE2 3 sm(pE3
r r r
50 siné Py cosf P

é"ﬂ

. 1 .
rsing rsing

For the line element we have, ‘%‘ =, l(hidx" )2 = \/(dr)2 +(rdp)’ +(rsinpdd)’.






CHAPTER

DOT AND CROSS PRODUCTS
OF TENSORS

We often must multiply tensors by each other. We consider two vectors for
discussion here, without losing generality. When we multiply two scalars (i.e.,
tensors of rank zero) we just deal with arithmetic multiplication. But a vector
has a direction, in addition to its magnitude, that should be taken into con-
sideration for multiplication operations. In principle we can have two vectors
just multiply by each other like AB, which is a tensor of rank two, called a
dyadic product. Or, multiply the vectors” magnitudes and form a new vector
with the resulting magnitude directed perpendicular to the plane containing
the original vectors, the cross-product A x B, which is a tensor of rank one.
Or, multiply the vectors” magnitudes and reduce the rank of the product by
projecting one vector on the other one, the dot-product A - B, which is a ten-
sor of rank zero. Obviously, for higher than rank-one tensors we would have
a greater number of combinations as the result of their products. In general,
compared to the rank of original tensors, dyadic product increases the rank,
cross-product keeps the rank, and dot-product decreases the rank, i.e., the
result is a tensor quantity of higher, the same, or lower rank (by one level/
rank) w.r.t to the original quantities, respectively.

We start with dot-product operations. Lets consider two vectors A and B;
the dot-product of these two vectors is given by A-B = (A’Ei ) . (Bj ¢ ) using
the contravariant components of the vectors. We expand this expression,
with Equations 7.7 and 7.8, to receive

A-B=A'B'g, = A'B'hh, cosa 9.1
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where « is the angle between the two vectors. Further, using Equation 8.1
we receive

A-B=A'B =A B 9.2

Similarly, we could start with using the covariant components of the vector,
but the conclusive results would be the same as the expression given by
Equation 9.2. Readers may want to do this as an exercise. From Equation 9.2
we can conclude that the order of multiplication does not change the result
of the dot-product, or A'B, =B,A’".

In an orthogonal Cartesian system, either Equation 9.1 or 9.2 would result in
A-B=A'B'5,=A'B' + A’B* +---+ A\BY = AB, + A,B, +---+ A By. The
second equality results from the fact that in orthogonal Cartesian systems
there is no distinction between contravariant and covariant components. An
example of the dot-product quantity of two vectors is the mechanical work—

the dot product of force and distance vectors.

The cross-product operation can be established with a more general
formulation using the permutation symbol (also referred to as the Levi-
Civita symbol) defined as

+1 even permutation

=<-1 odd permutation 9.3

iy iy

0 repeated index

For example, for N=6 we receive € The permutation is consid-
ered even if an even number of interchanges of indices put the indices
in arithmetic order (i.e., 123456), and is considered odd if an odd num-
ber of interchanges of indices put the indices in order. For any case with
a repeated index the permutation symbol is zero. As an example, let’s con-
sider e, .. Examining the indices, we find out that 4 interchanges (i.e.

31 4652 46>3 6<>5
342165(%)142365( - )124365(—))123465( —>)123456) put them in order;
note that the sequence of interchanges is irrelevant. Therefore e, =1.
Similarly, e, s =—1, since 5 interchanges put the indices in order. If any of
the indices is repeated then it is zero, for example e,,,,65 = €,,5,6; =0, etc. We
purposefully called the permutation symbol a symbol and not a tensor, for
reasons that will be explained later in this section. Another way of identifying
the even or odd number of permutations is to write down the given indices
as a set and connect them with the equivalent number set but in arithmetic
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order. Then the number of points at the cross-section of the lines connecting
the same numbers is the order of permutation. This method is shown in the
following figure for e,,, .. The connecting lines intersect at six points; hence
the permutation is even.

3V\| e »2 |/V1 | 6:(>|<x5
T 2 [ %3 | *i | 5 | 6

Now considering two vectors A and B in a Cartesian system the cross-
product of these two vectors is another vector C, given as (we propose this
expression, for now at least)

i i pk j Ak .
C'=ey A'B" =—¢, B'A", Cartesian 9.4
%r_/ %,—/
AxB BxA

for the i-component of C. This relation clearly shows that the order of
multiplication matters for cross-product operation. For example, in a

3D Cartesian system we have A =(A1,A2,A3) and B =(B1,B2,BS) and
we find their cross-product using Equation 9.4, C= CI,CZ,CS)z AxB as,
C'=AB’-A°B*>,C*=A’B'-A'B’, and C* =A'B* - A’B'.

Note that in Equation 9.4, we have written the relation for the contravari-
ant component of the resulting vector C. As we mentioned previously, in a
Cartesian system contravariant or covariant components need not be con-
sidered; hence we usually place all indices as subscripts. But in an arbitrary
system we should make sure that the resulting C' is transformed like a con-
travariant component/quantity. To show this, we set guidelines to form a
tensor expression in an arbitrary coordinate system, x' as follows:

a. Identify the rank of the expression representing the desired quantity
in terms of a tensor; i.e., zero is a scalar, one is a vector, two or more a
tensor of the corresponding rank.

b. Identify and decide if the expression should be in contravariant or
covariant form and place the indices appropriately (i.e., as subscript for
covariant and superscript for contravariant).

c. Form the expression based on guidelines (a) and (b).
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d. Transform the expression from arbitrary system x' to another system,

1i i

say x'* (or vice versa) using the linear operators = o - according to

the combination rule (see Sections 4 and 5).

e. Show that the resulting expression recovers the related familiar form in
Cartesian coordinates.

Usually, starting from an expression form in a Cartesian system (as listed
in part (e), above) gives a reasonable and usually the correct form to start
with. Let’s apply these guidelines to the expression given by Equation 9.4. By
observmg the expression, we conclude that the contravariant components
A’ and B* are correct forms since they transform like contravariant quan-
tities. However, for the permutation symbol we need to make sure that it
is a tensor quantity, i.e., it transforms like a tensor. It can be shown that
the permutation symbol does not transform like a tensor unless a necessary
adjustment is implemented [2], [4], [7] by multiplying it by the Jacobian of
the transformation (see Equation 4.4). Now, we define the covariant and
contravariant permutation tensors by multiplying Jacobian and inverse of
Jacobian to the permutation symbol, respectively, given as

zlzz iy _‘71117'441“\: 95
gllzz iy :j—]e .

iy iy

Therefore, the general expressmn for the vector C, for example, is
C = jelkA]Bk and C' = J ‘e, A, B,. Using permutation tensor, we will get

C = EijkAj B = ﬁiikAj B*  covariant component 96
C'=¢ g7kAjBk =J 'leil.kA By contravariant component .

Note that in Equation 9.6, for the covariant (contravariant) component of
the resulting vector C, we used the combination of covariant (contravariant)
permutation tensor and contravariant (covariant) components of the two
contributing vectors A and B.

To show that, for example, SijkAj B* transforms like a covariant quan-
tity, we write down its transformation between two arbitrary systems, or

" m n 1j rk l
i"kA'jB'k = E’}nm ax i ax i ax k Ap ax ax 5lmn ax 5'”5” =
! ox'' ox' ox't ox” ox’ P

!
(5 A’”B”)gz’i' Similarly, for the contravariant form (i.e., the second

Imn

expression in Equation 9.6) it can be shown that it does indeed transform
like a contravariant quantity. Readers may want to do this as an exercise.
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The cross-product of two vectors can be written in terms of their physical
components as well. This can be done using, for example, the contravariant
component when multiplied by the corresponding scale factor. Therefore,
we can write for an orthogonal system (using Equations 9.5, 9.6, and 11.8)

o hie hie
hC' =hE A B or C(i)= ,jz,k AB, _171”[11 hA(j)B(k) ], or
C(i)

e, '
C(i):%hih]‘hk [A(])B(k)] ,orthogonal 9.7
For orthogonal coordinate systems, using J = h,h,h,, we receive

(AxB)(1)=C(1)=[A(2)B(3)-A(3)B(2)]
(AxB)(2)=C(2)=[A(3)B(1)-A(1)B(3)] 9.8
(AxB)(3)=C(3)=[A(1)B(2)-A(2)B(1)]

Expanding on these results, in a N-dimensional space, the generalized cross-
product of N —1 vectors reads, using Equation 9.6,

12 9.9

C, =&, .. A"B" 7"
Cil zgiliz---iNAizBig "‘ZiN

where now vector (j’ais perpendicular to the hyperplane formed by the N —1
vectors A through Z.

Immediately, using Equation 9.9 we can conclude that in an arbitrary system
the unit volume dV is, [2],

dV = Jdx' dx® -+ dxy 9.10

For example, in the spherical system (r, o, 9) we have dV = r’ sin p drdpd6.
Another useful extension is for the orthogonal systems (i.e., g, y =0), for

which we get ‘gij‘ :Hgii = g1 Cyy- But g, =¢é,-¢, = hi Zoy =656, :hj
and so forth. Hence, ‘gij‘ =h’h; ---h},. Using the relationship ‘gij‘ =J?, we
finally reach at

J= Hhi =h,h, ---hy orthogonal system 9.11
And hence l

dV =] Jhdx' = (hlclxl )(hzdx2 ) - -(hNde) orthogonal system 9.12
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9.1

DETERMINANT OF AN N X N MATRIX USING
PERMUTATION SYMBOLS

Using the permutation symbol " (see Equation 9.3), we can write the
determinant of a 3x3 matrix [M], as |M|=@g;kM1iM2_;M3k = ey MM, M,
given by expansion based on row or column, respectively, and M ; represent
the elements of the matrix [2], [4]. To expand on these results, we consider
[M ] to be an N x N matrix, (N > 3). Therefore, we can write its determinant as

iNMli, MZiz “'MNiN =€y Mi,lMizz"'M

iy iy

9.13

iyN

,,,,

See the application example in Section 16.10.



CHAPTER I O

GRADIENT VECTOR
OPERATOR—CHRISTOFFEL
SYMBOLS

In engineering and science, most if not all governing equations (e.g., equi-
librium, Navier-Stokes, Maxwell’s equations) contain terms that involve
derivatives of tensor quantities. These equations are mathematical models
of related quantity transports, like momentum, mass, energy, etc. Different
forms of derivatives result from the gradient operator, which is a vector that
takes the derivative of and performs dyadic, dot-product, cross-product, etc.
operations on the involved tensors. Depending on the rank of the tensors
under the gradient operation, the result could be complex expressions. In the
previous sections, we have defined and derived necessary formulae to tackle
the derivation of gradient vector transformation and consequently find the
general forms of related derivatives appearing in the governing equations.

10.1 COVARIANT DERIVATIVES OF VECTORS—
CHRISTOFFEL SYMBOLS OF THE 2"° KIND

1

The covariant component of the gradient vector V is defined as V, =

. = ;0
or we can write the full vector as V=¢'—=¢'V,. To show that V, trans-

forms like a covariant component between two arbitrary systems, we can
o o) o o

write V] = — =————=——V . This expression clearly shows that V/ is a
t ax!l axn 6x] axn J t
covariant quantity. The transformation from x" to x* is obvious.
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When a gradient operates on a scalar, or tensor, of rank zero like temperature,
pressure, or concentration, we can write it as Vi and the correspondlng

transformation is Viy'= Vl//—a\—V v, using the fact that scalar y is

invariant (or y =y') and mdependent of the coordinate systems selected.
Now, assuming that the gradient operates on a vector, say A, which is also
an invariant quantity, the result is VA, or a tensor of rank two. The covariant
component is then V, A, which is a vector by itself. Expanding, we get

VA=V, (A%)=¢,(V,A)+A/(VE) 10.1

The first term in the R.H.S of Equation 10.1 is the straight-forward deriva-
tive of the component A’. But the second term involves a gradient of the
basis vector €, which is not necessarily zero in an arbitrary system since the
basis vector’s mdgnltude and/or direction may change from point to point.
Note that in a Cartesian system, V, E =0, i.e., the second term in Equation
10.1, vanishes. Therefore, we can mterpret V /€; as a measure of the curva-
ture of the arbitrary coordinate surface x' = constant (e.g., in a spherical
coordinate system X* +Y? + Z* = is the surface of the sphere). The physi-
cal meaning of V¢ é, is this that it represents the rate of change of ¢, | with
respect to coordinate variable x' in the direction of basis vector é,. This

quantity is represented by I'} j (some authors use { ¢ instead) and is the
Y
Christoffel symbol of the second kind [8].

It may be useful to pause at this point and make sure that the physical/
geometrical meaning of the Christoffel symbol is well understood. To help
with this understanding, we consider a simple 2D polar coordinate system,
(r,0)= (xlxz) as shown in Figure 10.1.

Y A

FIGURE 10.1 2D Polar coordinate system.
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As shown, the covariant basis vectors ¢, and €, change from point to point
in space, e.g., points A and A’, in general. Let’s consider, for example

e L
V¢, =—2% which represents the change for basis vector ¢, with respect to

coordinate variable @. This derivative is a vector and has two components in
the (r,0) coordinate system. Therefore, we can write it as a linear combina-
tion of the basis vectors in polar coordinate system €, and é,, or

. Oe - -
V,é, = 8_6?9 =aé, + fé, 10.2

Similar expressions can be written down for other possible derivatives (i.e.,
V,é., V,é,, V é ). Inour example (see Equation 10.2), the coefficients o
and f are the corresponding Christoffel symbols, also referred to as connec-

. €y . . . -
tion coefficients. a is the component of the vector a—; in the direction of ¢ ,

e .
or 'y, and f is the component of the vector —% in the direction of ¢,, or

I'Y,. Using these definitions, we can write all possible derivatives with their
corresponding Christoffel symbols as

oe
6 _ 17" = 0 =
=T e, +1ge,
aé ro— 0 —
—= Frﬁer + rré’eﬁ
. 10.3
Oe - _ '
- = F;rer + FZreﬁ
or
oe . -
t=T"¢ +I7%8,
or

The values of Christoffel symbols can be calculated using the functional
relations between the polar and Cartesian systems. For this purpose,

we need the relations for the basis vectors. Using Equation 5.3, we have

~ O0X= O0Y - . 0X= 0Y - =

é, =8—XE1 -i—a—E2 and é, =—XE] +—9E2, where E, are unit vectors in
r r

Cartesian system. Performing the calculations, using the functional relation

between the polar and Cartesian systems, as X =rcos@ and Y =rsiné, we
receive
¢, =cosOE, +sinOE,

R - - 10.4
é, =—rsinfE, +rcosOL,
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Using Equations 10.4 we receive

eer =—sin@E, + cosOE, =—e,,

1.

r

€ = . = -
£ = —rcosOFE, —rsinfE, =—re_,

oe,

T

. 1.
—% =—sin0E, +cosOE, =—¢,, and
r

0.

Finally, comparing these results with Equation 10.3, we find the Christoffel

1
symbols values for polar coordinate system as Iy, =—r, I'%, =T =—, and

-
ry, =T’ =r, =TI",=T" =0. Table 10.1 gives the summary of these results
and the matrix form of these symbols for polar coordinate systems.

TABLE 10.1 Christoffel symbols of the 2" kind for a 2D polar coordinate system (r,6).

Symbol | Meaning Value | Symmetry | Matrix form
r, €, change w.r.t @ in €, direction —r -
= — r F:: r:&
I €, change w.r.t r in €, direction 0 -1 =) -’
or ré T T
or L oo
" €, change w.r.t 7 in €, direction 0 -
rr
o R s
' €, change w.r.t @ in €, direction 0 -
_ _ r.r,
re, €, change wrt @ in €, direction | 1/, =% r’= {FZ F;H
! or 66
r’ €, change w.r.t 7" in €, direction 0 -

The number of independent Christoffel symbols can be obtained using

N*(N+1)

dinate system (r,0) with N =2, we receive

, for an N-dimensional system. For example, in a 2D polar coor-

=6 symbols, among them

only two are non-zero. Note that Christoffel symbols are symmetric with
respect to the lower indices (see the next section).

Now we continue with our general formulation and discussion, after
establishing the physical/geometrical meaning of Christoffel symbols of
2" kind with this example.

Rewriting V¢, using the definition of Christoffel symbol (see Equation
10.3), we have

- k=
Vl.ej —Fl.jek

10.5
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Plugging back into Equation 10.1, we receive V,A=¢, SV Al ) +A’ erk In
this relation, for the last term we 1nterchange Jj and k indices, since they are
dummy indices. Then, V, A —e] (V A])+A r/é. —ej (V Al +T} AI‘) The
expression in the bracket is a tensor, since both V A and €. are tensors. We
define the expression in the bracket as A7 where the comma in the subscript
indicates differentiation and index i represents the covariant component of
gradient vector. Hence,

; 6A
A== +T) A" 10.6
Equation 10.6 is the covariant derivative of the contravariant component of
vector A. Or

VA=Al 10.7

CONTRAVARIANT DERIVATIVES OF VECTORS

At this point in our discussion, it seems logical to seek the contravariant
component of gradient vector, V'. We can write this operator as V' = g”V ;
using a metric tensor (see Section 8). Therefore, we can raise the derivative
index by multiplying the contravariant metric tensor to the expression, or

ki ij Ak
AN =giAk 10.8
Equation 10.8 is the contravariant derivative of the contravariant component
of vector A . Or
ViA=Alg, 10.9

From the start we could use the covariant component of vector A, to find
the corresponding covariant and contravariant gradient components as well
(see Equation 10.1). To this end, we can write the covariant derivative of the
covariant component of vector A as

VA=V, (A2)=¢ (VA )+A, (V&) 10.10

The first term on the R.H.S of Equation 10.10 is straight-forward, the
derivative of the component A 4 The second term involves the gradient of
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10.3

the contravariant basis vector &/, for which we require a new expression. To
' . . . L L oe =
find this quantlty we use Equation 10.6 to write &/ =—+T}¢". Due to the

fact that €’ is a tensor (this can be shown by transformatlon of the terms
involved between arbitrary systems, like AJ ) and its value in a Cartesian
system is null, hence it is equal to zero in any arbitrary coordinate system.

oe’
Therefore, ¢, =—+T&" =0, or
ox'

_; _oe -
Vel =X =Tig 10.11
a}):l

Substituting for V&’ from Equation 10.11, into Equation 10.10, we receive
Vv, (Aié" ) =¢’ (VIA/, ) — A, (F[ké") In this relation for the last term we inter-
change j and k indices, since they are dummy indices. Then, after factoring
out &/, we get V, (Ajéj ) =é’ (ViAj - Akl“i}). We define the expression in the
bracket as A, where the comma in subscript indicates differentiation and i
represents the covariant component of gradient vector. Hence

0A,
A, =—L-TA 10.12
B 6xl

Equation 10.12 is the covariant derivative of the covariant component of
vector A. Or

VA=A ¢ 10.13

COVARIANT DERIVATIVES OF A MIXED TENSOR

Comparing Equations 10.6 and 10.12, we observe that for each index a term
involving a Christoffel symbol is added to the expression on the R.H.S and
when a covariant component of a vector is involved in a derivative operation,
a minus sign is multiplied to the corresponding Christoffel symbol, contrary
to a plus sign for when the contravariant component is involved. This rule
can be used to extend the derivative calculation of a tensor of higher ranks.
To show this, we consider a mixed tensor of third rank, for example A] with
the invariant A = Aé E ¢*. The covariant derivative can be written as

ij aAlj i ]m Jj im m A df
Ai{,n = A a ax” +rnmA anA Fnchfn 10]‘4

Therefore, V A= A] éé, " which is the component n of a tensor of rank

four (i.e., VA= A;g,,élé]é"e")
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10.4 CHRISTOFFEL SYMBOL RELATIONS AND
PROPERTIES—1°"T AND 2"° KINDS

The definition of a Christoffel symbol of the first kind, properties, and some
relations for calculation of Christoffel symbols are discussed in this section.
The properties are:

1. Symmetry of the lower indices: The Christoffel symbol of the second
kind is symmetric w.r.t lower indices, or

kK k
ri=r* 10.15

To show this, we use Equation 10.5, after changing index k—n, and

. . . . ~k
perform a dot product operation on it by contravariant basis vector é". Or
k= k= k .
¢ -V, =Iyé -é =T Therefore, we can write

j i ij
N

Ty =2¢"-(vé,) 10.16

We can use Equation 10.16 to calculate Christoffel symbol Ffj in Cartesian
coordinate system variables ¢'. After expanding the R.H.S expression
by appropriate transformation and using chain rule, we will receive

. - n ouP - k P B
¢ (V)= O g | " 0 Y E |- o oy 0 Oy " E )=
J aym axt ayn ax_] ¥ a m a\L ay a‘/

77

n 6’\(] 62 p &q
&yl " —~—. Where, in the last expression we inserted (—=1
Ox oo’ Ox
%{_/
s
or using chain rule). Finally, we receive

3y”

axk azyp
=" 10.17
7oy’ ox'ox’
Equation 10.17 clearly shows the symmetry of I fj for its lower indices, since
82 p 62 p
the order of differentiation is irrelevant, i.e., ,y _ = .y —,
ox'ox!  oxlox!

2. Christoffel symbol is not a tensor: Because its value in a Cartesian
system is zero; hence, if it transforms as a tensor it should be zero in
any arbitrary system as well. But we know that this is not the case (see
Equations 10.10 and 10.17).
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3. Covariant derivative of the metric tensor: This quantity leads to
a useful formula for calculating the value of a Christoffel symbol.
First, we find the covariant derivative of the metric tensor, or
Vigjk=Vi(éj-ék)=éj-(Viék)+(viéj)-ék. Now, wusing Equation
10.5, we can write V@ =Ijé, and Vi =Ié,. Therefore,
Vg =T (€ -¢,)+T}(€,-¢) and finally we receive

g
Zjn Snk

%
axi
Note that by comparing Equation 10.18 with the rule of covariant derivatives
of tensors (see Equation 10.14) we can conclude that g, , =0, a reasonable
result considering that a metric tensor in a Cartesian system is a constant/

unity and hence its derivative is equal to zero in an arbitrary system.

4. Christoffel symbol of the first kind: So far, we have defined the Christ-
offel symbol of the second kind. We now derive formulas that can be
used for calculating its value as well as defining a Christoffel symbol of
the first kind. To do this, we manipulate Equation 10.18 by permuting
the indices (i.e., i > j,j— k,andk — i), twice in sequence. Hence we

Vigi= =l g, +T52. 10.18

Og,.

get two alternative but equivalent relations as ﬁ =T g +T"g, and
ax] Jji Sjn Jjk ©oni

09,

% =T} g, + g, Now we subtract Equation 10.18 from the sum of

t}ie latter two relations, using along the way the symmetry of both metric
tensor and Christoffel symbols. The result reads

dz, g, 0g,

In Equation 10.19, the quantity I';g,, is the Christoffel symbol of the first

kind, also written as ', = [ij.k ]. We can use T ;2 to find a relation for

calculation of the Christoffel symbol of the second kind in terms of metric

tensor. To do this we multiply it by g"* to get Fz;gnkg’”k =0, T =T7}.
. . . mk .

Therefore, after multiplying Equation 10.19 by g™, we get

—— [agfk . % _%}

=B e T 10.20
Equation 10.20 states that the Christoffel symbol of the second kind is equal
to the first kind multiplied by the doubly contravariant metric tensor related
to the coordinate system in use. Observing Equation 10.19, a symmetry
shows up. That is, the derivative is w.r.t. the coordinates indices and for each
term in the bracket the remaining indices are used for the metric tensor.
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5. For an orthogonal coordinate system we can simplify Equation 10.20,
using the property of g, and g’ being diagonal tensors or matrices
(see Equation 7.9). In other words, we can write gy = g/=0fori#j.
Therefore, examining the terms on the R.H.S of Equatlon 10.20, we can

8g y

mk

conclude that —=-=0 and ag—”f #0 only when i =k. Also g™ #0 when
ol

0o .
m=k and —g]ik #0, since j cannot be equal to k. By implementing
these relations among the indices (i.e., i =k =m and i # j) and rewriting
Equation 10.20, we receive

l—wi g agu

’ no summmation on i 10.21
Y 2 axZ

Equation 10.20, for i = j# k =m reduces to

Ik
0.
rk = _E8 G no summmation on i and k 10.22

g ot
For orthogonal coordinate systems, using Equation 7.13, we substitute for
) . h? ol
g, =h} and g" =h;* in Equation 10.21 to obtain I’} =h'—(—.), or
y 2 axj
P
i = h ﬁxj

no summmation on i, (oﬁhogonal ) 10.23

Simply, by letting i = j in Equation 10.23, we receive

1 oh,

L= o no summmation on i, (oﬁhogonal) 10.24
. .1 1 . ¢ . 1 k hlzz a(hlg)
Similarly, Equation 10.22 yields T’ Yy ok or
" h; oh, ) ,
= R no summmation on i and k, (oﬁhogonal ) 10.25
L O

6. Another useful relation can be derived for the value of T, which
is ¢, change w.rt x" in the direction of ¢. We use the fact that the
denvatlve of the permutation tensor, or 5’ is zero, since its value

in the Cartesian coordinates is null. Usmg Equation 10.14, we can
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) ijk , . o )
write & ik =6§;—”+F’ gMk LI gimk LTk gim —(). To simplify the

derivation, without losing generality, we select i =1, j =2, k =3. Hence,

88123 I ne I .

pra —(l"}ml EMP T2 £ 4TS gt ) Collecting non-
123

— _(1—*’111 5123 + riz 5123 + Fi3 8123 ) — _812$31—~i

ni>

we get

zero terms, we have
summation applies on i. Recalling that £ =1/7 and T!, =T}, we

in>

get i[ijz—%ﬁn (recall J is the Jacobian). Performing the

&xn j
differentiation and rearranging terms, we receive
197 10.26
J ox"

Note that Equation 10.26 works for arbitrary coordinate systems and it
recovers Equation 10.23 when the system is orthogonal.

10.4.1. Example: Christoffel symbols for cylindrical and spherical
coordinate systems

In this example, we calculate and derive the relations for Christoffel symbols
of the second kind, for cylindrical and spherical coordinate systems. The
results are also expressed in terms of unit vectors (i.e., the physical com-
ponents) for each coordinate system. Readers should note that the results
depend on the order of coordinate axes, defined. In other words, attention
should be given when reading comparable results from other references in
relation to their defined corresponding coordinates axes.

Cylindrical coordinates

From the results of Example 8.1, for a cylindrical coordinate system (r,6,z)
(note the order of the coordinates defined here, see Figure 8.2) we can
write the non-zero terms of the metric tensor, as g, =h> =1, g,, =h; =r",
and g_ =h?=1. Therefore, the contravariant metric tensor reads g" =1,
g‘% =r2, and g” =1. Using Equations 10.20 and 10.25 and considering that
indices i, j,k,m are various permutations of cylindrical variables r,6,z we
receive the Christoffel symbol of the second kind as
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r:r F:g FTN _O O 0
1—" = r;r 1—‘:99 1—‘)6 = 0 —r 0
r, r, r.| [0 0 0
o, 2| [o 1/r 0
r’= FZ, FZg Fz: =|1/r 0 0 10.97
rgr Ffe Ff~ 0 0o o0
T, T, ri] [oo0 o0
=T, T, I,|={0 0 0
: o(h ) a(h
Forexample, I'y, =Ty, =T, _Lalhy) _Lor_ 1/rand Ty, = —h—i—( o)
]’LH &" r &r hr 61"

—r% =—r. Recall that the symbols, given by Equation 10.27 are defined

based on the covariant basis vectors, ¢, (see Equation 10.5), or % =(1/r)e,
c e,
and %z(—r)ér. It is useful to write the Christoffel symbols in terms of
06 -
the physical components of the vectors involved. This is done by using
o(12(0) ofel0)
Az O =#(0),
00 G
or the Christoffel symbol based on unit vector reads I'y, =—1 (hatted to
distinguish them from the relation given in Equation 10.27). Similarly, for
7 ole ole
%, =(1/r)é, we can write —(e(r)) :l(ré(H)), hence —(zg)) =¢(0), or

00 —— 00 r

0

Equation3.8(i.e. ¢, =h,é(i)),or =—ré(r),hence

r’, o
the Christoffel symbol based on unit vector reads I'?, =1.

We could also calculate the Christoffel symbols [, and T, using the
unit vectors or the physical components, as given in Example 8.1. Writing
cos —sind
these relations in vector form, we have é(r)=4sin@;, é(6)=4 cosf ¢,
0 0
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0
and ¢(z)=10¢. Therefore, the derivatives are; G(r) = %(9) _& (=) =0,
1 or or or
- —sin@ ~ —cosd R -
ae(r) =< cos@ ;= 5(6’), 6@(0) =< —sinf@ :_é(r)’ﬁe(z) =0, 8e(r) —
00 0 06 0 00 0z

oe(6) 0de(z
e( ) = 66(2 ) =0. Therefore, the non-zero Christoffel symbols calculated

based on the unit vectors are 1'%, =1 and I, =—1. The final results can be
summarized as

T Tl o oo
=\, 1, I [=|0 -1 0
r, r, ] 0 00
o, T ro 1 0]
=19 17 1% (=[1 0 0 10.28
o, | 00

1>

Il

=1

D 1 s

Spherical coordinates

From the results of Example 8.2, for a spherical system (r,¢,6), (note
the order of the coordinates defined here, see Figure 8.3) we can write
the non-zero terms of the metric tensor as g, =h; =1,g,, =h; =r*, and
2 _ 2.2 S . -

2o =h, =r"sin” @. Therefore, the contravariant metric tensor reads g” =1,
g”=1/r*, and g% :l/(r2 sin” (/)). Using Equations 10.20 and 10.25 and
considering that indices i, j,k,m are various permutations of spherical
variables r,¢,0 we get the Christoffel symbol of the second kind as
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r.r, r,l[o o 0
r=r, I, T,=0 -r 0
Ly Ty Ty| |00 —rsin® @
e 0 T%] 0 1/r 0
re=re, 9, T%|=|1/r 0 0 10.29
ry. o, T 0 0 _sin2¢p
L 2
reorl Tl [ o 0 1/r
r’=\r;, Ty, Ty|=| 0 0 cotp
T5 T4 Tg| [1/r cotp 0
: h, oh. rsing 0(rsing) . sin2¢
For example, ', =T, = —h_g&_g = _r—ZT =—sinpcosp = —
Recall that the symbols are defined based on the covari-
ant basis vectors, ¢ (see Equation 10.5), or %:(_sm;(pjéw.
%/_/

4
rHH

We can write this relation in terms of the physical components,

d(rsingé(0)) =(—Sin2(pjré((p), o o(¢(0))

00 2 00

=(—cosp)é(p).

Similarly, the other non-zero symbols can be written as;

h,, oh or i h, oh o(rsing) .
=l e =, T}, == 2" =—rsing——2=—rsin’ ¢,
7R or or Y n or LGP me

po pe oLy 10 1 po o 10 1 Orsing) 1

" h, o ror " h, or rsing  or r’
o(rsi

and T, =T} Loy 1 (rsmw)zcot(o. In terms of physical

- Z% - rsing 0@ o
components of the corresponding vectors, we have a—“’z(—r)é or

) = Top
M _ _ré(r) — —E(T), hence f‘;(ﬂ = —1 . AISO, Zi; = (—1" Sin2 ¢)ér

op NI
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O(rsinpeé(d ‘ A
or % =—rsin’ @é(r)=(-sing)é(r), hence I}, =-sing.
o & (r) "
Also, ;(/; =(1/r)é¢ or 68(; =(1/r)ré(p)=¢(p), hence f’fq, =1. Also,
e,
aé’r - aé(r) . — . — ~6 .
= =(1/r)e, or ) =(1/r)(r51n¢e(0))=siriae(0), hence I'Y, =sing.
ré 7

oe o(re
Also, ﬁz(cotgﬁ)ég or M=COt§0(TSin(Dé(9))=COS(DE(9), hence
00 —— 00 ——

0
T

The Christoffel symbols can be obtained directly using the unit vectors as
well. From the results of Example 8.1, writing the physical components rela-

sin@cos @ cospcost
tions in vector form, we have é(r)=1singsiné ¢, é(¢) =1 cos@sinf ¢, and
cos @ —sing
oe(r) _ o () _ oe(6) 0
or or or '

—sin@

¢(0)=1 cos@ ;. Therefore, the derivatives are;

0
0 —si %
5 (r) cosgoc?s ) 5(0) 51'n(pc.os _a(0)
P cospsind y =¢(p), 2y " —singsind y =—é(r), 5 =0,
14 —sing 4 —cosg Y

N —sing@sin @ N —cos@siné

6e(r): singcosf =¢(0)sing, Mz cospcosf +=¢(0)cosg,

06 06

0 0

(0 —cos@

%0): —sin@ p=—¢(r)sing—é(¢p)cosp. Therefore, the non-zero
0

Christoffel symbols calculated based on the unit vectors are
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Lo, Tl o o o0
=0, I, =0 -1 o0
f;r I, f;g 0 0 -—sing
o, o1 o
[ = Ly fﬁ(p IA"ZQ = 0 0 10.30
fzr f“(gw fzg 10 0 —cosg
Iy, rfq) | T o 0 sing
‘= fzr ffw fzg = 0 0 cose
_fgr fz@ fzg | |sing cosp 0

Readers can use the Christoffel symbols of the 2™ kind calculated in this
example and further calculate the Christoffel symbols of the 1 kind using
Equation 10.19.






CHAPTER I I

DERIVATIVE FORMS—CURL,
DIVERGENCE, LAPLACIAN

11.1

In the governing equations for physical phenomena we usually have terms
which contain various forms of gradient operator, including the gradient
vector itself—for example, when the gradient vector operates as cross prod-
uct or dot product with another tensor quantity. The cross-product is called

the curl, V x A and the dot-product is the divergence, V-A. For example, in
fluid mechanics the curl of the velocity vector is the vorticity vector and
divergence of velocity vector vanishes, for incompressible fluids.

As mentioned, one of the objectives of tensor analysis is to provide a tool to
write down the governing equations in coordinate-independent forms while
the covariancy or contravariancy of tensor quantities are correctly imple-
mented in these equations. In the following sections, we derive the coordi-
nate-independent relations for curl, divergence, Laplacian, and biharmonic
operators of tensors for an arbitrary coordinate system.

CURL OPERATIONS ON TENSORS

To form the curl operator expression, we first consider it for a vector in
3D coordinate space and then extend it to higher order dimension.
In Section 9, we gave a list of guidelines for forming expressions for tensors.
Following these guidelines and using Equation 9.6, we can write the
covariant component of the curl of a vector as C, = (6 xA)i =&V’ AF. We

1
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know that & is a tensor (see Section 9). But the expression V/A* does not

transform like a tensor, due to extra terms appearing when transformed to
another arbitrary coordinate system [4], [7]. However, if We use the results
obtained in Section 10 and replace V’ A* with the tensor A*/ (i.e., the con-
travariant derivative of the contravariant component) then we get the proper
expression as (see Equation 10.8)

C, =E,AY 11.1

Similarly, the contravariant component of the curl is written as, using
Equations 9.6 and 10.12,

C'=¢&"A, 11.2

Both expressions given by Equations 11.1 and 11.2 are tensors, since terms
are involved are tensors as well as both reduce to the Cartesian forms when

written in the Cartesian coordinate system (i.e., C, =eiik—§ because the
covariant and contravariant components are identical and Jacobian is unity).
To have a more practical and explicit relation for the curl, we write Equation

11.2 in detail or C' = %A, ;=€ Eiatela GA -& kuf;kA,l examining the last term,

on the R.H.S, using the symmetry property of the Christoffel symbol
(i.e., F';k :FZ]) and the anti-symmetry of the permutation symbol (i.e.,

Et = _gh) yields, & ”IT” A =-€ Zk’l“” A,. But after interchanging j <>k,

dummy indices, only in the term on the R.H.S of the latter expression we
receive —E™ LA, ==¢€ ”IT" A,. After comparing this result with the original
expression (1.e. —E”LF” A, S‘ikF" . A,) we can conclude that S"’T" A, =0.
Therefore, Equation 11 2 can be wr1tten as

cfz(ﬁxA)i o ( 04, 11.3
J ol

The curl vector is then written as C = C'g,

Similarly, we write Equation 11.1 in detail, also using Equation 10.8, or

n aAk n m : :
C = &]kAk]— l.].kg] w+€”kg1 It A" Examining the last term on the

R.H.S, it turns out that it doesn’t vanish. Therefore, we have
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- 8A"
C,=(VxA) =Jg"e, ( fij'"J 11.4
i ox"
Note that the curl operation result is a tensor of the same rank as the original
quantities. As in our example C is a vector, like V and A.

Now, we extend the discussion and find the relation for tensors of higher
rank. For simplicity of writing the expressions, without losing generality,
we consider a mixed tensor of second rank A; The invariant quantity is
A= Aj.él.é" and the curl reads Vx A=V x (A}éié-i ) The gradient operator
just differentiates all the terms in front of it but the vector part of V can
form a cross-product with either é, or ¢/, both are possible and legitimate
operations. One can form, then two forms of the curl of the quantity A. In
general, we can have N number of forms for the curl of a tensor of order N.
For our example here, we have two forms:

1. We consider the case for which the cross-product operation occurring
with ¢,. Therefore, the contravariant component of A} should be involved
with the permutation tensor indices. We can write, using Equation 11.1,
the component of curl of A as (6 Xé, )A;é’ . Careful attention should be

given to pick up the right indices to form the curl expression. Since we
picked the ¢, for cross-product operation with gradient, the covariant
permutation tensor should be used, say &,,,. Therefore, the index m
corresponds to the contravariant differentiation and index n summed up
with the contravariant component of the tensor A. The index k, is then
the covariant component of the result or the curl tensor. The rank of the
result should be the same as the original quantity A (i.e., rank two),
hence the free covariant index j remains intact and We end up with a
doubly-covariant tensor, or

nm mp aA ; noAq 5
C gknmA - Jg Clinn W + F A 1L

2. We consider the case for which the cross- product operation occurs with
¢’. Therefore, the covariant component of A should be involved with
the permutation tensor. We can write, using Equatlon 11.1, the compo-

nent of curl of A as (V xé )A’jei. Careful attentions should be given to
pick up the right indices to form the curl expression. Since we picked
the ¢/ for cross-product operation with gradient, the contravariant
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11.2

permutation tensor should be used, say gk Therefore, the index m
corresponds to the covariant differentiation and index n is summed up
with the covariant component of the tensor A. The index k, is then the
contravariant component of the result or the curl. But the rank of the
result should be the same as the original quantity A; (i.e., rank two),

hence the free contravariant index i remains intact and we end up with

a doubly contravariant tensor, or

C gknmA'zl L= ekmn aA 116
j &xm

A similar operation can be used to write down the curl of a tensor of rank N,
which has N possible outcomes.

PHYSICAL COMPONENTS OF THE CURL OF
TENSORS—3D ORTHOGONAL SYSTEMS

In many applications, we consider orthogonal systems (i.e., g, =0,i# j). In
this section, we derive expressions for the physical components of the curl
of a vector A in 3D orthogonal systems Recalhng from previous sections

(see Sections 3 and 8), we can write A = A'¢ =A¢e —A( )é(i) and A, |ei|.
Using ¢, - ¢’ = &/, for orthogonal systems we have ¢, -¢' =1 which means that
the covariant basis vector ¢, and contravariant basis vector ¢' both point in

the same direction. For example, ¢' and ¢, are along the same line and point
in the same direction. Therefore,

[&'[=1/h, 11.7

Substituting é, =h,é(i)in A(i)é(i)=A'¢,and ¢’ =¢(i)/ h,in A(i)é(i) = Ae’
gives

A(i)=hA"=A,/h, no sum on i 118

Or A(1)=hA'=A /h,, A(2)=h,A* = A, / hy, A(3)=h,A® = A, / h,.
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Now we would like to write the physical components of the curl of vector A.To

ik (8A j
J ox/
But h,C' =C(i) and A, =h A(k) (see Equation 11. 8). Therefore, we will get
the physmal component C (i ) of the curl of vector A in terms of its physical

component A(k), as
. G d(hA(k))

do this we multiply Equation 11.3 by A, , or (V X A) h,=h,C'=h,

C(i)=h,— 7 pw no sum on i, orthogonal 11.9
Or, using J = h,h,h, for orthogonal systems, we have
S 3(h,A(3)) a(h,A(2)) ]
h,h, Ox o
. 1 [o(hA(1) o(h,A(3)) ]
VxA)2)=C(2)= - :
(Vx4)(2)=c(2) hlhi P a 11.10
S a(h,A(2)) a(hA(1))]
(9x4)@)=c(6)= | 2AC) oA
h;h, Ox Ox |

It can be concluded that for a Cartesian system we recover the familiar

o 0A
expressions,or(VXA)1=C1 {%_Ej (VXA) sz(aszx _%j

and (ﬁxg)g =C, :(8(;; 6{;/

Jsmceh =h,=h;=1.

DIVERGENCE OPERATION ON TENSORS

To form the divergence operator expression, we first consider it for a vector in
3D coordinate space and then extend the results to higher order dimension.
In Section 9, we gave a list of guidelines for forming expressions. Following
these guidelines and using Equation 9.2, we can write the divergence (using
the covariant component of the gradient) as

V-A=A] 11.11
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which reduces to proper expression in Cartesian coordinates and shows
that the divergence of a vector results in a scalar, or in general divergence
operation reduces the rank of the tensor, on which it is operating, by one. To
further simplify Equation 11.11, we write it explicitly (see Equation 10.6) as

A= Z\i +T;, A" and plugin for I';, from Equation 10.26 (after interchanging
dummy indices i <> n), to get A’ = (qul Aj Z‘Z After substituting for A,
into Equation 11.11 and performing some maﬁlpulatlons, we receive
- O(JA'
V-A= L ( ) 11.12
J o

In addition, Equation 11.11 can be written in terms of the covariant com-
ponent of the vector using g’, or V-Az(gl]Aj) , after expanding gives

V-A =gij(Aj)J +A, (gi")’i =gijAj,i or after intercﬁanging i <> j and using

[ —]
=0

the symmetry of metric tensor, we receive
V-Azgl]Ai,j 11.13

Now we extend the discussion by considering a tensor of higher rank, for
example and without losing generality a tensor of second rank A = A“ é’.
The divergence of A is V-A—V-(Aj €’ ) in which we have ch01ces

between &, or &’ for the gradient vector performing a dot-product opera-
tion. Therefore, we have two cases for this example:

1. V dot products with &: In this case we get ?-Azﬁ-éi(A;éj ) Note
that the gradient differentiates all terms in front of it but as a vector
onlydotted with ¢,. In other words, the contravariant index i is involved
in the dot-product operation. Using Equation 11.11 we can write
V-A=Al , which is a tensor of rank one, as expected since divergence
reduces the rank of A by one. But using Equation 11.12, we have

- 0A!
A},; :?+F‘ A" —F"’A‘ in which the first two terms on the R.H.S.

m ] m

TS K 04

gives §+FMA ;== T o , using Equation 11.12. Finally, we get

the result as

L 6(‘7A;)—F’,’."Ai 11.14

VA:VEZ,(A"@]'):F . i A

J
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2. V dot products with &': In this case we get V-A=V ¢/ (A;Ei). Note
that the gradient differentiates all terms in front of it but as a vector
only dotted with ¢’. In other words, the index j is involved in the dot-
product operation. Using Equation 11.11 we can write V-A :gij,i,j
which is a tensor of rank one, as expected since divergence reduces the
rank of A; by one. Therefore, we have

V-A=V-&/(Alg,)=A] ¢ 11.15

Using similar operations, we can write the expression for divergence of a
tensor of rank N. Both relations given by Equations 11.14 and 11.15 reduce
to familiar forms for divergence in a Cartesian coordinate system. For
0A, OA, 0A.
rp—ty—=,
o oy ok

example, for divergence of vector A we get V-A=A4A,, =

LAPLACIAN OPERATIONS ON TENSORS

A Laplacian operator is the result of a gradient operator forming a dot-product
with itself, or divergence of gradient, V?= (ﬁ . 6) Performing Laplacian on
ascalar y and using Equation 11.12, we can write Vy =V (?l//) =(Vy) .,

i o(JV! , "
or Viy = lw where V'y =g’ 8_!// Therefore,
J o ox’
1 0 i OW
Viy =——| Jg' — 11.1
4 j o (jb ax]j 6

Since V? is a tensor of rank zero, then Vi is a scalar, as well. In general, the
rank is determined by the quantity that Laplacian is operating on.

We extend the discussion to find the Laplacian of a vector, for example
A=A, Since for Laplacian the dot-product operation is performed
between the two gradients involved, we don’t have many choices, as was the
case for the divergence operator, and hence the formulation is more definite
in terms of the results. Using Equations 11.13 and 11.16, we can write the
contravariant component of the gradient of vector A as g"" A, and the com-
ponents of the Laplacian as (g""lA,in) . Note that index m indicates the dot-
product operation between the contravariant component of the gradient of
A and the covariant derivative of the second gradient involved. Expanding
the last expression, we receive (g”’” A”'n) = g,":: Afn +g™ Afmn. But g"" =0,

LM
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11.5

since it is a tensor and its value is zero in the Cartesian coordinate system,
hence it should be zero for an arbitrary system, as well. Therefore, we have

(VPA)'=(gma;) =g™Al 11.17

,nm

The term A’  which is the second covariant derivative is a new term, so

Snm

o 0(AL) )
far. By expanding this term, we get A’ == (A”n) "= o F;UA] FfmA’

But A’ =%A" +T" A* and after substituting and rearranging similar
terms, we receive

2 A k i
_OA oA o

nm ma.n m mj 7
ox &OAi Ox o O 11.18
-/ 4T T/ A" -T7 T A
mn a}c 711] ni mn ]

Similar expressions can be written for higher order tensors, using hints
from Equation 11.18 for writing the terms 1nvolv1ng Christoffel symbols
with appropriate signs. The higher the rank of A the more complicated the
related expression for V2A becomes.

For an orthogonal coordinate system, Equation 11.17 simplifies, since
o" =0 for m#n, or for N=3)

b
(V A ) =g"A' + @A, +g" Ay (orthogonal )

BIHARMONIC OPERATIONS ON TENSORS

A biharmonic operator is the result of a Laplacian operator operating on
itself, or V* =V (Vz). Performing the operation on a scalar  and using
Equation 11.12, we can write

10 o1 a(, 40
V4W:?W jgkl@[}y(%]_yﬂ 11.19

sz/
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When a biharglonic operates on a vector, the result is a vector as well. For
example, for A=A'¢,, we can write V*A = B'¢,. Since the result is a vector
we can use Equation 11.17 to write

Bi :glmg_jkAi

, jklm

11.20

The quantity A’ is alengthy expression and can be written in detail [2], [4],

[7] using hints taken from Equation 11.18. In principle, one can extend the

discussion to find operators like V¥ =V?*V?...V?  In practice we encounter
%f_/

n times

mostly up to the level of the biharmonic operator in governing equations.

PHYSICAL COMPONENTS OF THE LAPLACIAN OF A
VECTOR—3D ORTHOGONAL SYSTEMS

\%

2

A

In this section, we derive expressions for physical components of the
Laplacian of a vector. Relations for physical components are useful since
they are the magnitude of the components using unit vectors as the scale of
measurement (see Section 6).

We start with Equation 11.18 and write it for a vector, like A =A(i)e(i)
- 190 ; OA
VZA - j l]—,
or 7 8x’( g o
i#j)and g" =1/ h?. Therefore, after substitution into the expression, we
1 0 (g 0[A(1)e(i)]
Jox'| bl ox'

along with using related relations for Christoffel symbols and after some
manipulations, we get the physical j-component as [7]

j. In an orthogonal system, we have g':" =0 (when

will have V2A =

J. Performing the differentiations

1 oh, 0A(1) 1 a_hiaA(i)}

=V?A(j)+ L~ e
) (7) {hihf o ol W or o

A(i\Oh. Oh. i A(j)Oh, oh,
+ A(i) Oh, J+A(l)ahfa_hf:l_{ (]) J J+A(k) a—h"ah"] 11.21

niS o o Wb ax o' || BERE oy o' Byhh? ot oxd

[P elme )

J o (hhar | T o hh? oy
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In Equation 11.21, summation is done on indices i and k but not on index ,
since it is the free index. To show the application of Equation 11.21, we
present two examples to calculate the components of Laplacian of a vector
in cylindrical and spherical coordinate systems. Note that the Laplacian of a
vector is a vector as well, which has three components.

11.6.1 Example: Physical components of the Laplacian of a
vector—cylindrical systems

Consider a cylindrical coordinate system (xl,XQ,x3 ) =(r,0,z) where 7 is the
radial distance, 6 the azimuthal angle, and z the vertical coordinate, w.r.t.
the Cartesian coordinates (yl,y2,1f %E (X,Y,Z). The functional relations are

X=r cos6
Y =rsiné. Find the Laplacian expressions for a scalar and the physical
7=z

components of a vector in this system. Let A(1)=A, A(2)=A4,, and
A(3)=A..

Solution:

J
To find the covariant basis vectors, we use ¢, ZQE ;- Therefore, we get

é, =6—XE1 +a—YE2 +a—ZE3 = cosOE, +sin OE,. Similarly, &, =6—XE] +6—YE2 +
or or or © 00 00
2—(2911"3 =—rsin@E, +rcos@E,. And &, :(Z—XEI +2—YE2 +%E3 = E,. Therefore,

2 % z
we have

€, =cosOE, +sinbE,
€, =—rsinbL, +rcosOE,

¢ =E,

The scale factors are the magnitudes of the basis vectors. Hence

h,=h =\¢ ¢ =1, hy=h,=1[¢, & =r, and h,=h_=.fc.-¢. =1. The
¢

unit vectors ¢ (i) = ]—‘ are
h

é(r) = cosOE, +sinOFE,

=—sin0E, +cosOE,
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1 0 0
The Jacobin is J =hh,h. =r and g"=h*, or ¢"=|0 1/r> 0| Now
0 0 1
using Equation 11.16 for orthogonal system i.e. Vzl/lzii(jg” 6_!//)
J ox' ox'

since gij =0fori# j, and substituting for corresponding values we will get
2 2
Vo - 1&(,&#}& v, Oy

+

In other words, the Laplacian operator

rorl or ) 200 &
in cylindrical coordinate system reads
2 2
v? =13(r3j+i S 11.22
ror\_ or) r*\06* 0z

Similarly, using Equation 11.21 we get the physical components of the
Laplacian for the vector A, as

VA _var—%aAJ—ﬁ
r r- 00 r

vid| =via, 4 29 A 11.23
0 r- o068 r

VAl =V?A,

Where the operator V*is given by Equation 11.22 and A, A,, A_ represent
the physical components of A.

11.6.2 Example: Physical components of the Laplacian of a
vector—spherical systems

Consider a spherical coordinate system (xl, 1% a0 ) = (r, o, 9) where r is the
radial distance, ¢ the polar and € the azimuthal angle, w.r.t. the Cartesian
coordinates (yl ,y2 ,ys ) =(X,Y,Z). The functional relations are

X =r sinpcosb
Y =rsingsin@. Find the Laplacian expressions for a scalar and the
Z =rcos@

physical components of a vector in this system. Let A(1)=A, A(2)=A
and A(3)=A,

¢
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Solution:

J
To find the covariant basis vectors, we use ¢, :%E 4 Therefore, we get

é, = a—XEI + 8_YE2 + a—ZEE =sincosOE, +sinpsin OF, + cospE,. Similarly,
or or or

€, = a—XEI + a—YE, + 6_ZE3 =1COS(COoS 19]:31 +rcosgsin O, — rsin(pES. And
op op = Op -

é, :6_XE1 +8—YE2 +a—ZE3 = —rsin@sin OF, + rsinpcosOE,. Therefore, we
© 00 00 00 - )

have

¢, =sin@cosOF, +sin@sin OE, + cospE,

¢, =rcos@cosOF, +rcos@sin O, —rsin gk,

€, =—rsingsinE, +rsinpcosOE,

The scale factors are the magnitudes of the basis vectors. Hence

hy=h.=\é.-¢é =1, hy=h,=,[é,-é,=r, and hy=h, =[¢, ¢, =rsing.
) NSNS

The unit vectors é(i)=—-, are

¢(r)=singcos HEI + sin @sin HEQ + cos ¢E3

[\

(¢) = cospcos 0E1 + cos @sin 0E2 —sin ¢E3
(¢)=-sin OF, + cosOE,

[\

The Jacobin is J =h,h,h, =r*sing and g'=h?, or g’ =
1 0 0
0 1/r° 0 . Now using Equation 11.16 for orthogonal
0 O 1/ (rz sin” go)
system i.e. Vi 2%%(\75 ((;—l/{j, since g'j =0 for i # j, and substituting
19

for corresponding values we will get V?y =— (rz 8_1//)+ 1 0J
r-or or ) r’sing o

2
sin(pa—w +%al/§. In other words, the Laplacian operator in
Op ) r sin” @ 00

spherical coordinate system reads
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2
r-or\_ oOr) r sing 0@ Op ) rsin” @ 06°

Similarly, using Equation 11.21 we receive the physical components of the
Laplacian for the vector A, as

_yeaq 24, 2 OsingA) 2 04,
r " rsing  Op r’sing 06

VZA

+£8Ar _ 2COS§0 E)AH 11.25

P A,
VA‘ =V'A, -—— D —
? rosincg r- 0p rosin" @ 06

Ay, 2 0A | 2cosp 0A,
r’sin®g  r’sing 00 r’sin’¢@ 06

VA =VA, -

Where the operator V* is given by Equation 11.24 and A, A, A, represent
the physical components of A.

In the next section, we focus on relations pertinent to tensor transformations
between merely Cartesian coordinate systems.






CHAPTER

CARTESIAN TENSOR
TRANSFORMATION—
ROTATIONS

When transformation of tensors is performed from one Cartesian coordinate
system to another one, relations derived in previous sections take simpler
forms, called Cartesian tensors. As mentioned previously, a Cartesian
system consists of three mutually perpendicular flat surfaces for which; the
basis vectors are unit vectors, there is no distinction between covariant and
contravariant components, and the components of a tensor are the physical
components. Therefore, we use subscript indices for all types of components,
regardless.

We will consider two Cartesian systems, y, and y; with a common origin—
otherwise we can always redefine them to have a common origin with
transforming, say, the origin of y; to that of y,. Following the discussion from

Section 3, we can write the differential displacement ds in these systems, as
3. _ -~ 5
ds=dy,E, =dy'E; 12.1
where E, and E; are the corresponding unit vectors. However, we

oy,
have dy, :al—y:dy;, and after substituting in Equation 12.1 we get
Y
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oy, - = R
l: E,—E} |dy;=0. Since dy] is arbitrary, we conclude %: E,=E; or,
;i ;i

by i <> j, we have

E' _%; E 12.2

i 0yy j
Now performing dot-product on both sides of Equation 12.2 with E, gives,

L . 0 o
BB =21 F B =% Hence,
a{/ T ajl

Jk

E -E =2 12.3

This means that the cosine of the angle between y, and y; is equal to ——- ayk
called the cosine direction. i

- oy - -
Similarly, we can write E, = 81_jl E;, and after dot-product with E’; we receive
Yr "
E! E _ ayz E E ay; H . h . . . .
By = =—=". Hence, interchanging i <> j, we receive
ayk T k

BB - 12.4

%,

This means that the cosine of the angle between y, and y, is equal to ——.

ayk
Therefore, comparing Equations 12.3 and 12.4 and considering the commu-

tativity of the dot-product operation, we will have

i _ Oy 125
. Oy;
T

L/ Y Ly and El ==L E,=-ILE , but
ayj ayz abyi ayj

only in Cartesian coordinate systems. In other words, these relations prove
that there is no distinction between covariant and contravariant components
in a Cartesian system (see Equations 4.8 and 5.4, for comparison).

Equation 12.5 yields dy, =
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ROTATION MATRIX

12.2

Now if we assume that coordinate system y; is obtained by rotating coordi-
nates y, at an angle @ about an axis parallel to a unit vector 7 = (ny,ny,my),
) '

oy!
then the quantity D _ Rij is a function of @ and 7 and it can be shown
J
that [9], it reads as
Ry =nn, +(5y —ninj)c059+eijknk sin @ 12.6
Equation 12.6 is Rodrigues’ rotation formula, or the 3D rotation matrix.
Readers should note that the Right-Hand-Rule convention applies to the
rotation of coordinates with respect to the positive direction of unit vector
it when using Equation 12.6. For example, for it =(0,0,1) and 6 = 7 /2, R,
gives the transformation of x —y plane about the positive direction of z-axis
for an angle of 90°.
Ay,

Now we integrate dy; = ady ; =R,dy, which yields, y; =R,y ,. Note that
J
the constant of integration is zero due to having a common origin for both

systems, and R, is a constant for given 7i and 6. Similarly, we can rotate

y; at an angle (—6) about the same unit vector i to recover the original
y; coordinates. Therefore, we can write y, =Ry, =R,y’, by having
R;.l being equal to the inverse or transpose of R, [4]. Further examining
Equation 12.6, we can conclude that R, for a given angle @ is equal to R i
or its transpose, calculated for angle (—@). This is the result of the prop-
erty of the last term on the R.H.S of Equation 12.6 when i <> j to get R,
or eyn, sin@=—e,n sinf=e;,n, sin(-0). The remaining terms are not
affected by this index-change operation.

EQUIVALENT SINGLE ROTATION: EIGENVALUES AND
EIGENVECTORS

It would be useful to write the matrix form of the Cartesian coordinate

rotations, as well. For example (in a 3D space with N =3), y; = R,y; can be
y{ R, R, Ry||y

written as Yy, c=| Ry, R,, Ry |1y, ¢, and after using Equation 12.6, for
yf; Ry, Ry Ry ||y,

n= (nl,nz,nS) and rotation angle 6, we get
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’

L
Ys 1=
’
Ys

cos@+nn, (1-cos@) nn,(1-cos@)+nysind nn;(l-cosd)—n,siné ||y,

12.7

nn, (1-cos@)—nysin@  cos@+n,n,(1—cosd) nyn,(1-cosd)+n,sind 3y,

nny(1—cos@)+n,sin@ nyng(1-cos@)—n,sin@  cos@+nn, (1-cosd) ||y,

From Equation 12.7 (or 12.6) we can conclude that the trace of the rotation
matrix (i.e., the sum of diagonal elements, R,) is equal to 1+ 2cosé, (note

that n,n, = |ﬁ|2 =n; +n; +n. =1, since i is a unit vector), or
a2 R, -1
0=cos™” (”TJ 12.8

Equation 12.8 is a useful relation for finding rotation angle 6, once R, is
known/given. However, readers may ask: if R is known, how can one find
the corresponding unit vector parallel to the axis of rotation? This question
is all the more significant considering that we can have a sequence of
rotations to arrive at a final desired orientation of the coordinate axes. For
example, if we rotate the original system through a sequence of rotations

and arrive at the final system orientation, i.e., y, > yi' = —>y" >y,
%{—/

sequence

then we can apply Equation 12.7 for each sequence and calculate the final
rotation matrix. That is {y,} = [B;” ][R;l’lJ...[R;lJ{yi}. Note that for each
(]

rotation in the sequence, the corresponding rotation matrix is pre-multiplied
to the previous ones, and the normal vector parallel to the rotation axis is
defined based on the current coordinate system at hand in the sequence (see
Example 12.2.1)

Now, if we want to replace all intermediate rotations with just one equivalent
rotation, Equation 12.8 gives the value of the angle for the desired equiva-
lent single rotation. However, to find the axis of rotation parallel to the unit
vector for the equivalent single rotation we need a mathematical procedure/
tool. This tool can be obtained by finding the real eigenvector of the given
rotation matrix since, through all rotations, only the eigenvectors remain in
the same direction [2], [4]. The mathematical procedure is as follows:
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We consider a normal unit vector n, perpendicular to a plane and write the
components of the rotation tensor on this plane, or Ryn,. This quantity is
a vector whose components are the elements of the rotation tensor on the
plane considered. We identify this quantity as Ryn; =T,. In general, the
direction of the vector T, does not necessarily coincide with the normal
vector to the plane, as shown in Figure 12.1.

—
n

~l

FIGURE 12.1 Rotation matrix component T, about an arbitrary plane with normal 7.

In other words, we could demand a specific plane and calculate its
corresponding normal direction such that vector T, ends up in the same
direction as the normal to the plane considered. Therefore, we can write
Tn, =R,n;n,. This quantity, which is the projection of T; in the direction of
n, is a quadratic function of vector n,. To calculate its extremum value with
the constraint that n,n, =1 (which means that having the normal vector as a
unit vector), we use the Lagrange multiplier method for extremizing the scalar

quantity M=R,nn, —A(n;n, —1), where the constant A is the Lagrange

multiplier, or the eigenvalue of R,. This is achieved by letting %:O,

oM
which leads to (note that the Y =0 recovers the constraint, n,n, =1)

(R, =48, )n, =0 12.9

In matrix form, Equation 12.9 can be written as
R, -1 R, R, n

R,, R,-1 &y n, ¢ =0. This system of equations has a non-
R;, Ry, Ry — A (n,

trivial (i.e., non-zero) solution, for n, if the determinant of the matrix is
Zero, or

R,-1 R, R
det(R,~15,)=| Ry Ryu-4 &, [=0 12.10
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By evaluating the determinant, we get a cubic equation in terms of 4 (which
has three roots, or eigenvalues) as

‘ R,R,-R,R,
/1'3—(Rii)ﬂ,2+£Mj/l—Rij‘=O 12.11
Sk 2 -
1 —_—— 3

Iy

Equation 12.11 is known as the characteristic equation for matrix R, where
[, is the first principal scalar invariant, which is equal to the trace of R;;
or I, =R, =4, +4, + A, L, is the second principal scalar invariant, which
is I, = 4,4, + L, A4, + 4,4, or the sum of the diagonal minors; and I, is the

third principal scalar invariant, which is equal to the determinant of R, or
I = eg;kRuszRsk =44

Equation 12.11 contains several important properties and pieces of
information about the system’s rotation matrix. Some examples related to
the discussion here include:

= For symmetric tensors with real components there exist three real value
answers for A (or 4,,4,, and A,). This is not the case for R, since it is not
symmetric, and we get only one real value 4, [10].
The answers for 4 are the eigenvalues (or principal values) of R,.

= The corresponding n,, calculated and normalized for each eigenvalue,
are the eigenvectors (or principal directions) of R,

= A given eigenvector when multiplied by a constant real number (positive
or negative) it gives a new vector, but all have the same direction parallel
to the principal direction.

The method of finding equivalent rotation is very useful in practice for
designing the motion of machine parts in robotic applications, such as a
robot arm’s motion.

12.2.1 Example: Equivalent single rotation to sequential rotations of a
Cartesian system

Having a Cartesian system labeled as y, =(y,,,.y; ) and its transformation
to another system labeled as Y = (?/'1 y;y'g) such that ¢ coincides with Y,
Y5 with y,, and Y5 with y,, as shown in Figure 12.2, find the overall equiva-

lent single rotation matrix for y; = R,y ,, the axis of rotation direction # and
the angle of rotation 6.
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V1 V 1

V3 ¥'3

FIGURE 12.2 Sequential rotations of a Cartesian coordinate system (left) and the equivalent
single rotation (right).

Solution:

We consider two sequential rotations: 1) rotation about y,-axis with normal
vector (0,0,1) with an angle of 90" (R.H.R. applies) to get the intermediate
transformation ?/1>92>?/3)_> (y{y;yg) and 2) rotation about new Yy} with
normal vector (1,0,0) with an angle of 90" (R.H.R. applies) to get the
second transformation (y{ ,y;,ys) = (y1.y5.y5 ) (see Figure 12.2). Therefore,
using Equation 12.7 and the data given for the first transformation with
i 0 1 0ffy
ﬁz(0,0,l) we have qy;e=[-1 0 0|Jy, Similarly, for the second
Ys 0 0 1]y,
yi] [0 0]y
rotation with 7=(1,0,0), we have {y,¢=|0 0 1|{y,. Note that
v} Lo -1 olly,

the second rotation is performed on the current system at hand, which is
the result of the first rotation. Therefore, after substitution we can write

Y 1 0 olfo 1 0]fy Y 0 1 0]}y
ysp=[0 0 1|-1 0 Ofqy,p or <y, =0 0 1|<y,, The final
gl 10 =1 oflo o 1|y, gl |10 ofly,

01 0
rotation matrix is then Ry =|0 0 1| Note that each rotation matrix
1 0 0
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pre-multiplies the previous one in the sequence of rotations. Having the final
rotation matrix, we can calculate the single rotation angle. Using Equation 12.8,

R, -1 0-1) 2
we get 6= cos™! (“T) =cos (T) = ?7[ The corresponding

rotation axis is the eigenvector associated with the real eigenvalue for

010 -4 1 0
R;=[0 0 1| We can write |R,—45,|=| 0 -4 1 |==2°+1=0.
100 1 0 -4

Hence, we get the characteristic equation as (4 — 1)(/12 +A1+1)=0 with its
only real root being 4 =1. Note that we could use Equation 12.11 instead
for calculating the eigenvalues. For 4 =1, we get the eigenvector by solving

0 1 0f|n, n, n, =1n,
0 0 1|<n,¢=(1)4ny¢,or {n, =n,. This system is not determinate but
1 0 0]|n, n, n, =n,

gives n, =n, =n,. However, the constraint for having # as a unit vector

gives nj +n; +n; =1, or 3n; =1. Therefore, n, =n, =n, =?3 and finally

B BB

we have the equivalent rotation axis or the unit vector 7i = [? ??j

In conclusion, we can say that instead of two intermediate sequential

rotations, as mentioned above, we can rotate the original y, =(y,.y,.y;) at

an angle of 120°, using right-hand-rule convention, about an axis parallel
NEENERNE)

to the unit vector (???J (see Figure 12.2). Readers should note

that for calculating the rotation matrix using Equation 12.7, values of the
components of ii should be those of the unit vector. However, to obtain
the direction of the rotation axis we can multiply the components of the

unit vector by a constant—for this example the multiplier is J3. As shown
in Figure 12.2, the result is a vector, or (1,1,1), which is a vector along the
same direction as the unit vector 7. This is consistent with the property of
the eigenvalues. We can examine these results by using Equation 12.6 to

V3 V3 VB

calculate the single rotation matrix, using @ =120° and 7 = (?’?’?]
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2 2
orR,, = (%} + (1 - [g] J cos(120°) = %—% =0, similarly R,, =R;; =0.

2 2
Also, we get R, = [g] + {512 - [?J J cos(120°) + ey, [?} sin(120°) =1.

=1

Similarly, we receive R,;=R; =1, and the remaining elements

R, =R,, =R,; =0. These results are identical with the one obtained using
sequential rotations.






CHAPTER I 3

COORDINATE INDEPENDENT
GOVERNING EQUATIONS

Reliable mathematical models, also referred to as governing equations, are
important tools for engineering analysis. A reliable and validated mathemati-
cal model of a physical phenomenon is a set of algebraic relations among
quantities and their various derivatives, such as Newton’s 2" law of motion,
equilibrium equations for momentum flux, Fourier’s law of heat flux, Fick’s
law of mass flux, Navier-Stokes equations for flow of fluids, Maxwell’s
electromagnetic equations, etc. These governing equations, along with some
fundamental principles (like the 2" law of thermodynamics, conservations
of energy, mass, electric charge, etc.) form the foundation of engineering
science and its applications.

The quantities related to any physical phenomenon can be represented
by tensors of different ranks stated in the relevant governing equations,
such as force and acceleration vectors and mass of a body as a scalar, in
Newton’s 2™ law of motion; gradient of temperature in Fouriers law;
divergence of velocity vector in fluid flow, etc. Sometimes, for analysis and
design purposes, we need to have the relevant governing equations written
in coordinate systems other than the Cartesian system. For example, for
analyzing mechanical stresses in the wall of a cylindrical pressure vessel we
prefer to choose the cylindrical polar coordinate system that is a natural
fit to the shape of the vessel. This requirement has encouraged scientists
and engineers to define various coordinate systems suitable for solving the
governing equations in practice. In other words, and in the context of tensor
analysis, we would like to use the relations derived and discussed in the
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13.1

previous sections to write down the terms involved in well-known governing
equations in engineering in a form that is general enough for application in
an arbitrary but well-defined coordinate system.

In this section, we derive some new relations mostly used in engineering, in
addition to those discussed in the previous sections. We hope that this helps

readers in writing down similar coordinate independent terms involved in
equations of their choice for their applications.

THE ACCELERATION VECTOR—CONTRAVARIANT
COMPONENTS

Newton’s 2™ law is a mathematical model for the motion mechanics of
physical objects—specifically, it is the balance of applied forces and the rate
of change of momentum, or mass times acceleration. Velocity is the time
rate of change of displacement vector ds (see Section 2). Therefore, in an

ds

arbitrary coordinate system x', we can write the velocity vector ¢ as ¥ =—

for the corresponding time increment of dt. Using Equation 3.6, we have

ods  _dY' - S
8 =—=2¢,——. Since ds is a vector, hence ¥ is a vector and we can write it in
dt dt }
terms of its contravariant component v', or
. dx'
v=v'¢, =—F¢, 13.1
dt

Equation 13.1 clearly gives the contravariant component of the velocity

vector as v' =——. Acceleration vector d is the time derivative of the veloci
d
t

vector, or
. do .
i=—=a'e 13.2
dt
ds d(ve) _dav de
Using Equation 13.1, we can write — :u =¢,—+ v —. To relate
dt dt dt dt
. . . . dx’ 0
the time derivative to the space gradient we use chain rule _:d_w
t O
—

ol

hence



COORDINATE INDEPENDENT GOVERNING EQuATIONS © 77

d_9 13.3
dt ox
Substituting into Equation 13.2, we get a =@=éi vj% +0' [U’/ %)
dt ox ox’
But % =T"%8,, using Equation 10.5. Therefore, G =¢,0' — + v'v/T"\¢, and
o’ Yy Yoo/ i

in the last term we interchange dummy indices i <> k and use the symmetry
property of the Christoffel symbol to obtain

i= {0-7 %+ Ukv-jl“;.kjéi 13.4

Comparing Equations 13.2 and 13.4, we get the contravariant component of
the acceleration vector as

a' =v’ (%Jrkazkj 13.5

i

.o . .
In addition, we can write v’ =—+¢'T &> after using Equation 10.6, to
5] a(] J

receive the compact form of Equation 13.5, as

a' = v-’vii 13.6
Equation 13.6 recovers the familiar expression for acceleration in Cartesian
) ov
coordinates (i.e., a' =v/ —).
ond

We can also write the covariant component of the acceleration vector using a
metric tensor, or ¢, = g,a' (see Section 8) for an arbitrary coordinate system.

Now, we can write the Newton’s 2"! law in a general coordinate independ-
ent form. We choose to use the contravariant component of the acceleration
vector; hence, for compatibility we must use the contravariant component of
the total force vector, F = F ‘¢, as well. Therefore, we can write

F'=mv! —+mv"o'T, = mo'v’, 13.7
P j J
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13.2

For example, in a 3D coordinate system we get three equations of motions
for each dimension, with summation on indices j and k only, as

ovt .

1 k 1

F =mv/ —+mo o'l
2

F? =mvjau;,+mvkujfgk 13.8
ox’ !

3
3 j&U k _j13
F° =mv) —+mo o'T
o’ Jk

Note that in a Cartesian system the last term in Equation 13.7, associated with
the Christoffel symbol, is zero and we recover the familiar form of Newton’s
equation. But when we write this equation in a curvilinear coordinate system,
the term associated with the Christoffel symbol is not necessarily equal to
zero. This extra term acts like an inertia force and affects the path of moving
objects. For example, in a spherical coordinate system, like Earth’s geometry,

1

we can write Equation 13.7 as F' —1nvkvjrf'jk =mv’ % The left-hand-side
can be treated as a new total force, or F' = F' —mo*v'T b =mu’ g]l The
term mu*v/I"), is the Coriolis force, F;

F' =mu'o'T), 13.9

For example, from the point of view of an observer at the north pole of the
Earth an object with an initial velocity along a meridian towards the equator
will shift to the right, due to the inertia force resulting from the Coriolis force,
while to an observer at the South Pole it will shift to the left. Or we can say that
a force equivalent to the negative of the Coriolis force is acting on the object.

THE ACCELERATION VECTOR—PHYSICAL
COMPONENTS

Physical components of acceleration vector can be obtained using
Equation 6.2, or a(i)=ha'. Substituting for a', Equation 13.5 yields
ov' o dv' —_—
a(i)zh,vf—,+h.v]1)kl“’.k=h.i+h.vjvkl“'.k. In the latter expression,
1 &r‘} 1 ] 1 dt 1 [
%,—/

p
dt
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we write the velocity components in terms of their physical components

3 d(u(i)/hi) h v(j)v(k)
dt h.h,

d(v(i)/hi) _ do(i) +hyo(i) d(l/hi)
dt d dt

as well to receive a(i)= I, But the first

term can be expanded to get h,

—dils,‘l):b(i) and use Equation 13.3 to write

Now, we define

1(1/h, 1(h, i i)o(h,
hiv(i)((—l)— 1 ‘(z)(( ’):—D(l)v(]) ( .’). Now substituting into
dt h dt hh, o
the relation for d(l) we obtain

Ly L@e() o, ho(j)e(k)
=) e

J

r, 13.10

Equation 13.10 gives the physical components of the acceleration vector in
curvilinear coordinate systems. Note that for Equation 13.10 summation
applies only on indices j and k, but not i.

THE ACCELERATION VECTOR IN ORTHOGONAL
SYSTEMS—PHYSICAL COMPONENTS

A useful application of Equation 13.101is for orthogonal coordinate systems. As
mentioned previously, for an orthogonal system we should have g, = ¢’ =0 for
i # j and we can use relations given by Equations 10.23-10.25 for Christoffel
symbols. Therefore, expanding Equation 13.10, for example for i=1, we

o(o() ok, he()e(k)
hh, ol hh

()| v(1) ok, | o(2) hy  v(3)

h, , h, &' h, &x*  h, &vg‘

sum on j

receive a(1)=0(1)- which after writing the

summationson j and k yields a(1)=o(1)-

(1) “(l)r}l+”(2)r}2+v(3)ﬂs . - !
h, h, h, hy h, hy h, hs

vonk, j=1 sumonk, j=2

ho(2)] v(1 v(2 v(3
@ o)y o)y B |,
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ho(3) U(l)r; +D(2)F§z+v(3)rés _ But from Equations 10.23-10.25, we

h, h, hy, h,
sumonk, j=3
receive I'}, —iahi T, =T}, = L ahé,r}g Ty =i6—h§, % Z—h—22%>
h, ox hy o hy ox (h, ) o
h, oh,

and T}, =—

and Iy, =T, =0. Substituting for the corresponding

o(Do(2) ey
hhy, —ox

(b, ) "
Christoffel symbols and simplifying, we receive a(1) = 6(1) +

v(1)v(3) o, B v(2)v(2) oh, 0(3) (3) oh,

hh, ox° h,h, e h.h, e
calculate the second and third components, i.e., a(2) and a(3). Equation
13.11 lists all the physical components of acceleration vector in a 3D orthog-
onal coordinate system, as

By similar operatlon we can

(1) =51y LD A, P()0(3) oy 0(2)e(2) 3, 0(3)0(3) h,
hh, o  hh, &  hh, o'  hh, o

FER UL UL O LD O U UL MG KL A
' hh, &' hh, o hh, &

a(3)=(3)+ () (3)8h Lo, _v(D)e(l) o _o(2)e(2)

o' hh, '  hh, o  hh, o

Relations given by Equation 13.11 can be written in index form as, summation
on index j only,

o(i)o(j) ah, v(j)v(j) o,

i)=0(i)+ , , 13.12
)= e b, o

In the next section, we use Equation 13.12 to calculate an acceleration
vector’s physical components in cylindrical and spherical coordinate systems.
For a Cartesian system, Equation 13.12 recovers the familiar relation (i.e.,
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13.3.1 Example: Acceleration vector physical components in cylindrical
and spherical coordinate systems

From the results obtained in Examples 8.1 and 8.2, we have the scale
factors for cylindrical and spherical coordinates as (h,.,hg,h:)z(l,r,l)

and (hr,h ol ) =(Lr,rsin (p), respectively. Recall that the cylindrical

coordinates are (xl,xz,xs)s(r,ﬁ,z) and those of a spherical system are
(xl,xz,xg)z(r,(o,é’). Now, using Equation 13.11 we can write the physi-
cal components of the acceleration vector for cylindrical coordinates as

a(l):b(l)_w, 0(2)20(2)4-%, and a(3)=v(3). In terms

. . o . Uy . 0L,
of coordinate notation, we can write it as a, =0, ——=, a, =0, + , and
r r

a, =0_. Note that all components are the physical components of the cor-
responding vectors. Therefore, the acceleration vector is written as

i =(or —%Jé(r)+(ba + ”f:f’ jé(0)+bz_é(z)

Note that &(i) are unit vectors in cylindrical coordinates. We can also write
the acceleration vector in terms of Cartesian unit vectors E, by substitut-
ing for é(r)=cosOE, +sinOE,, ¢(0)=—sinOE, +cosOE,, and é(z)=E, (see
Example 8.1), or

2 - .
a= Kb, —U—HJCOSH - (b‘g 1+ 2l jsin é?ﬂEI
r r
v, v, - .
+K0r ——gjsin9+(i)9 — ngOSQJ:|E2 +0.E,
r r

In terms of coordinates themselves, we have

13.13

a= [(r —r6? )cosH —(ré + 27'"9')5111 H)}El
+ |:(1” —ré? )sint9 + (1’9 + 21'”9.)0055)}E2 + EES

Similarly, for a spherical coordinate system, using Equation 13.11, we can

write the physical components of the acceleration vector for spherical
2 2
[ [
Lo Y b . 2
coordinates as a(1)=a, =0, ——~%-—", a(2)=a, =0, +

5 1 2

0,0, vyCO8Q
. >

roor r rsing

and
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v, UL, COS ,
a(3)=a, =0, +—2+ Al 90. Note that all components are the physical

r rsing
components of the corresponding vectors. Therefore, the acceleration vector is

2,2 . 2 . .
(](>(——¢J(¢)[¢j(e)

r r rsin@ r rsing

Note that é(z) are unit vectors in spherical coordinates. In terms of the
coordinates themselves, we have

a= [%_m"z ~rsin® qoéz]é(r)+[r¢+21”gb—rsin(ocos¢>92]é(¢))
+[résing0+2f6?sin(/)+ 21”(/')9005(/)}6(9),

We can also write the acceleration vector in terms of Cartesian unit
vectors E, by substituting for &(r)=sin@cos@E, + sin@sin E, +cospE,,

é(p)=cosgpcos OF, + cospsin OE, —sinE,, and ¢(0)=-sin OF, + cosOE,
(see Example 8.1), or

2 2 2
_ v, v, ). .00, v;cos . UU, Ua0,Co80)
a=l:(vr—w—”}m¢>cosé’+(uw+"”—”(p]cosgocosé?—(u,,+’”+'” sin@

r r r rsing r rsing

o o v, v 5, Ugl, COS - 13.14
n{(b, -2 L"jsinq)sinBJr[bW e Do COP Coschos(osinent[bg Ik s ¢)jcos¢9:|E2
r

=

r r rsing r rsing

+(cosp—sing)E,
Equations 13.13 and 13.14 are useful relations for calculating acceleration

vectors in cylindrical and spherical coordinate systems, respectively. Similar
calculations can be performed for arbitrary orthogonal curvilinear systems.

13.4 SUBSTANTIAL TIME DERIVATIVES OF TENSORS

Another form of derivative of tensors appearing in governing equations is
the substantial derivative—also referred to as the total or convective time
derivative. For a quantity like A—a scalar, vector, or tensor—that varies
with space and time, we would like to collect all its derivatives. Let’s assume
that we have a body of fluid moving in a fixed coordinate system, for example,
a Cartesian system. We consider two scenarios: a) we “ride” the fluid and
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move with it and register its variation with respect to time, and b) we stay at
a fixed location in space and register the variation of the fluid passing by with
respect to time. In case (a) the changes are due to any variation of the fluid
w.r.t time, since we move with it and relative space change is absent/null. In
other words, the change w.r.t space is implicitly included. But in case (b) we
may have changes w.r.t both time and space for the fluid in motion.

3 3
y® 4 x
2
. - X
xl
» 2
>y

1

y

FIGURE 13.1 Local coordinates attached to a moving fluid body in a fixed Cartesian coordinate system.

Let’s consider function A = A(yi ,t), where A is the tensor quantity, y' is the
fixed Cartesian coordinate system, and ¢ is time (see Figure 13.1). Here, we

1

assume that the ratio 6_y =" applies, or the change of space coordinates of
t

the fluid w.r.t time is the same as the local fluid velocity. Now the total time
0A  0A Oy J
—L_| or

derivative is given by the following limit, DA = lim | —+—
Dt sj.o0( ot oy Ot

DA_A, 24 13.15
Dt ot oy’
An immediate extension is to write the total derivative for A =A;éiéj , a
mixed tensor of the second rank, in an arbitrary system x', or
o(Alee’ o(Alge’
pa_oAee) ol = ) 13.16
Dt ot ox




84 ° TeNsOR ANALYSIS FOR ENGINEERS, 2E
b

Using Equation 10.14, we can write the second term on the right-hand-side

as U ————==U"A} é,¢’. The first term is just equal to —=, if the coor-
ox - ot

dinates x' are also fixed. Note that if the x' system is moving, we should

consider the changes of the basis vectors with reference to time as well (see

Equation 13.16). Therefore, we get the components (mixed contravariant/

covariant) of the substantial time derivative of A, as

i 0(A] ,
(%j :Mw’%;k 13.17
Dt), o -

- O0AT .
Note that A, =ﬁ+rk7lef —-TLA,.

A specific case is to let A be equal to velocity itself, which results in the total
derivative of v', as

(@) _9Y Ly 13.18
Dt ot J

In orthogonal coordinate systems, we can write the physical components the
convective time derivative of a vector as

DA,y _2A() , v() A0 | (DA(]) b,
Dt ot hj ox’ hihj ox’
i i) oh.
—M—Z, nosumoni
hl.hj o'
Using Equation 13.19 we can write the total time derivative of vectors
like velocity or acceleration. The following example demonstrates these
calculations.

13.19

13.4.1 Example: Substantial time derivation of acceleration
vectors—physical components

From previous examples, we have (h,_,hg,h: ) =(Lr,1) for cylindrical coordi-

nate systems and (hr ,hw,hg) = (L r,rsing) for spherical coordinate systems.

We can write the physical components of the total derivative of acceleration

vector a = (ar,ag,a ), in cylindrical coordinates, by using Equation 13.19, as
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( Da j ca, Oa, v, 0a, Ca, a,
— | =—+v,—+Lt—L+v,—L-v, 2%
Dt) ot or r 00 0z r
Da )\ _ da, oa, U, Ca, Oa, U,a,

=4 200 Ly Oy ,
( L o ar  r o0 e r 13.20

( *J oa. Oa. v, Oa, oa.
= — = + — _

SRS

Q

+u 4L =4y
ot "or r 00 " oz

2|

Similarly, for spherical coordinates we receive the physical components of
the total derivative of acceleration vector as

(Dﬁj Ca, 6a, U, 0a, v, O0a, a, a,

| = Oyt 0, Uy

Dt ). ot or r 0p rsinpod ’r r

(%j :%_’_ -r%+u_‘”a‘l_‘/’+ Yo %4_ U(pdr _ Vgt COSP 13.21
Dt ), ot or r Op rsing 00 r rsing

(%) _0y 01y Dy 00y Uy Bay Uyl Vgl COSP
Dt), o "or r Op rsingod @ r rsing

Note that in these relations (i.e., Equations 13.20 and 13.21) all components
are the physical components of the corresponding vectors.

CONSERVATION EQUATIONS—COORDINATE
INDEPENDENT FORMS

A fundamental equation for the transformation of a tensor quantity per

unit volume, W in an arbitrary control volume with a velocity field v,
can be obtained using the Gauss divergence theorem and the law of the
principle of conservation [11]. An integral equation defining the time rate
and divergence of convective transformation balanced with the rate of
production/destruction Q of the quantity leads to the differential relation
given by Equation 13.22, as

a—lP+(‘PVi) =0 13.22
ot

i
B

The second term can be written as (‘PVi) =V'¥,+¥V', since covariant

differentiation follows the differentiation E)roduct rule. Therefore, L.H.S
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of Equation 13.22 can be written as %+V“{’ APV :lz)—qj+\{1v"i. In
: . " ,
_D¥
"Dt
vector form, this equation reads
ﬁ+\PV\7=E+\F\/Q=Q 13.23
Dt Dt ’

Equation 13.22 (or equally Equation 13.23) can be considered the equation
of motion for the control volume or, in general, the medium that the quantity
W transports in it. The source term is associated with the quantity in ques-
tion: for example, the mass, momentum, energy, electric charge, etc.

Now we consider mass conservation, or let ¥ = p where p is mass per
unit volume or density of the quantity in motion. After substitution in
Dp
Dt
the continuity equation, as

Equation 13.23, we get + ,DVi,,- = Q. If mass source is zero, then we get

Do ovi —0 13.24
Dt '

Note that % = %0+ V'p,. Some specific cases can be observed:

= p=p(t) only, i.e., we have an inhomogeneous quantity whose den-
sity changes with time. In this case the continuity equation reads as

0 ; ; )
EP-FV @+pv,i =0, or %OerVlJ =0.

=0
= p= p(xi) only, i.e., we have an inhomogeneous quantity whose density

changes from location to location in the continuum but remains constant
with time at any given location. In this case the continuity equation reads

=0
® o is a constant, i.e., we have a homogeneous quantity with constant
density at all locations and times in the continuum. In this case the

D ; ,
continuity equation reads as (Fﬁj +pV',;=0,0r V', =0.

0
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Now we consider momentum conservation, or let ¥ = pV, i.e., momentum
per unit volume of the quantity in motion. In this case W is a vector quantity.
Substituting in Equation 13.22, the i* contravariant component reads

aopv)

> +(pVV) = 13.25

o J

Equation 13.25 is Newton’s 2" law written in the coordinate independent
form for a medium, for example a fluid moving in the continuum. The L.H.S
is the inertia force and the R.H.S is the applied force on the material, per
unit volume. Considering the material as a fluid, then the applied force
could be, in general, a combination of hydrostatic, viscous, gravitational,
electromagnetic, etc. forces.






CHAPTER I 4

COLLECTION OF RELATIONS
FOR SELECTED COORDINATE
SYSTEMS

141

In this section, we provide a list of some commonly used coordinate systems
as well as relations for an arbitrary orthogonal curvilinear coordinate system.
We categorize the content based on the coordinate systems. All coordinates
are considered in a 3D Euclidean space. Cartesian coordinate systems are
fixed references consisting of three flat planes. The curvilinear coordinates
may include one or more curved coordinate surfaces.

CARTESIAN COORDINATE SYSTEM

We use (2(1).6(2).2(3))=(E..E,.E.). (A(1).A(2).A(3))=(A..A,.A.)
symbols for physical components. Note that in a Cartesian system, all
contravariant, covariant, and physical components of a tensor quantity are
identical, hence all indices are shown as subscripts.



90 ° TENSOR ANALYSIS FOR ENGINEERS, 2E

TABLE 14.1 Relations for tensors and their related derivatives in Cartesian coordinate systems.

Coordinates

(x.y.2)=(X,Y,2)

Basis/Unit vectors, Ei

(EX’EIJI’EZ ) = (2312) orthogonal

Scale factors, h,

(hx,hy,h:)=(1,1,1)

Metric tensors, g,

g =g, =g. =1, the rest are null

Jacobian

J=1

Unit volume

dV = dxdydx

Line element and magnitude

dS = dxE, + dyE,j +dzE,

[058] = ()’ +(dy)’ +(dz)

Vector components

A=(A,A, A )=AE +AFE +AE,

Christoffel symbols

Dot-product (two vectors)

AxB=(AB.—AB,)E +(AB,-AB.)E,
Cross-product (two vectors) ~ )
+(AB,—A,B,)E.
-~ = 0 = 0 = O
adi V=E —+E —+E_—
Gradient vector "o Yoy o
= - 0¥ - 0¥ - oY
Gradient of a scalar, ¥ V¥ =E, r +E, E‘*‘ E, =
oA, 94, oA,
ox  ox  ox
- . O0A
Gradient of a vector, A VA= 0A, 4y oA,
dy oy oy
o, o, o
0z 0z Oz
- — . 0A, . - 0A -
Curl of a vector, A VxA= ai__’f EY+(6AX _%)E]_i_ _y_% P
oy oz ) oz o ) ! ox oy )
~ o 0A
Divergence of a vector, A V-A= ai —4 oA,
ox oy oz

(continued)
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2 2 2
Laplacian of a scalar, ¥ VZLP=§~(§‘P)= 0 ‘34_6 ‘f+6 EJ
VA=
; 9 2 2 2
(62Ax LOA +62ijE {a A, 04, o AyJE
. 2 2 2 x 2 2 2 f
Laplacian of a vector, A Ox %y 0z Ox dy 0z !
DA, DA DA )
+ S+ —+— | E.
Ox oy 0z
., _[o ot o o' o o'
i i Vi=|—+—+—|+2 + +
Biharmonic operator PR [6\2@2 PP &2&2]

14.2 CYLINDRICAL COORDINATE SYSTEMS
We use (2(1).2(2).2(3))=(2(r).2(0).2(2)), A=(A(1).A(2).A(3))=

(A(r),A(H),A(z)) to designate the unit vectors (i) and physical compo-
nents of vector A. Most of the expressions are written in terms of physical
components. For Christoffel symbols, see Equation 10.28.

TABLE 14.2 Relations for quantities and their related derivatives in cylindrical coordinate systems.

Coordinates (x1x2r3) =(r,6,z), 6 is the azimuth angle
(orthogonal)
Coordinate functions x =rcos6 y=rsind 2=z

Coordinate surfaces | x* +y* =r? cylinders y/x =tan6, planes | z = constant, planes

cos@| |—-rsin@| (0
Basis vectors, €, (¢.,6,,¢.)=|{sin@ {,{ rcos@ .40
covariant 0 0 1

cos@| |—sin@/r| |0
Basis vectors, é', (5’75",5:) =|{sin@!.{ cos@/r +,40
contravariant 0 0 1
Scale factors, h, (h, hy,h.)=(1,r,1)

(continued)



92 ° TENSOR ANALYSIS FOR ENGINEERS, 2E

Unit vectors, cos@| [—sin@]| |0
physical (¢(r).é(0).é(z))=| {sin@ . cos@ .50

components 0 0 1

Metric tensors, g, | g, =g.. = (g” )71 = (g:: )71 =1lg, = (g” )71 =r”, the rest are

and g’ null-system is orthogonal

Jacobian J=r

Unit volume dV = rdrd@dz

E:gen‘jtlj?:m T = i (r) + 03 (0)+ s (=) ||| = (dr) +(rd0) +(de)

Vector components | A= A(r)é(r)+A(0)é(0)+A(z)é(z)

Christoffel symbols, A . .

based on Unit Iy, =-1,1% =19 =1, the rest are null
vectors

Christoffel symbols,

based on covariant | Iy, =—r, %, =T% =1/r, the rest are null
Basis vectors

Dotproduct | 55— A(r)B(r) +A(6)B(6)+A()5(:)
AxB=[A(0)B(z)-A(z)B(6)]e(r)

+[A(z) B(r) A(r B(z ]é
+[A(r)B(0)-A(0)B(r)]é(=

Cross-product
(two vectors)

Gradient vect V=¢ +—e +é 0
radient vector =6, —+— L
ror 00 oz

oY 1 8‘1’ 6‘1’

Gradient of a

VW =8 —+~ eg —
scalar, ¥ or 69 * oz
[ 8A(r) dA(0) 0A(z) |
or or or
Gradient of a VA= 0A(r) _A(9) 0A(9) + A(r) 0A(z)
vector, A rof r rof r rof
2A(r) 0A(0)  0A()
L oz oz oz |

(continued)
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o [8A(z) aA(é?)jé( )+[ A(‘r) 0A(z)

- rof 0z oz or
Curl of a vector, A 8(rA(6’)) oA(r)).
+ - é(z)
ror roé
Divergence of a V. 5(1”A(1”)) N 0A(0) . 0A(z)
vector, A ror rod oz

s = (= 10( 0 1 0 ¢
Laplacian operator | V" =V - (V) Gr( a_j+_2ﬁ+§
r r) r

Laplacian of a VP V. (V‘P) 1 8( 8_‘I’j+i262‘£’+62‘f’
scalar, ¥ ror or) P00 o7
VZA:{VQA( )—%—aA('g)—A(f) é(r)
r- 06 r

Laplacialn ofa

vector, A , 2 0A(r) A(6)|. . -
+{V‘A(¢9)+r—2 20 :|6(0)+[V2A(Z):|€(Z)

Biharmonic V4= 10 rﬁ[li(rﬁﬂ +l96_27 %6_20 +6_44

operator ror| or|ror\ or r- 007 | r° 00° oz

14.3 SPHERICAL COORDINATE SYSTEMS
We use (¢(1).2(2).(3))=(¢,.¢,.¢ )(A(l),A(2),A(3))=(A(r),A(¢),A(92)

to designate the unit vectors (i) and physical components of vector A.
Most of the expressions are written in terms of physical components. For

Christoffel symbols, see Equation 10.28.

TABLE 14.3 Relations for quantities and their related derivatives in spherical coordinate systems.

8231()1;)?;13 (r.9.0), 6 azimuth and ¢ polar angle
Coordinate x =rsin@cos6 =rsin@siné 2=7CoS
functions B ¢ J= 14 "
2, 2, 2 _ 2 2, 2 2 2
Coordinate surfaces |~/ ¥% =" (x Y )/z =tante, y/x =tan6, planes
spheres cones

(continued)



94 ° TENSOR ANALYSIS FOR ENGINEERS, 2E

sinpcos@| [rcospcos@| [—rsingsind
Basis vectors, ¢;, (Er,éq],ée) =|<singsinf ¢, rcosesin ;,q rsingcosd
covariant cos —rsing 0

sin @ cos @ cos @ cos —sinf
Basis vectors, €', (E'A,E"’,e ) =|<singsinf ;,—4 cos@sin@ p,— cos @
contravariant cos o sin g rsing 0
Scale factors, h, (hr,hw,hg ) =(Lr,rsing)
Unit vectors, sinpcos@| [cos@pcos@| |—sinf
physical (é(r),é(go),é(@)): sin@sinf ;,q cos@sinf r,q cosd
components cos @ —sing 0

Metric tensors, g;

and g’

g = (gﬂ )71 =Lg,, = (gw )71 =1".gp = (g% )71 =(rsin ¢)2, the rest

are null-system is orthogonal

Jacobian

J =r’sing

Unit volume

dV =’ sin pdrdpd®

Line element and
magnitude

dS = dré (r)+rdgé(p)

< 2 2 ] P
+rsinddé(0) |dS| - \/(dr) +(rdg)” +(rsinpdo)

Vector components

A=A(r)e(r)+A(p)é(p)+A(0)e(0)

Christoffel sym‘bols, . r, = re, = e =17, ,
based on covariant | I, =—r s s [,y =cotp
Basis vectors —rsin“ @ | —sin@cose =1/r
Christoffel symbols - 0 o _

’ r, = rv =1,
based on Unit r,=-1 » ” A I, =cose
vectors —sing —cosg Iy, =sing

Dot-product
(two vectors)

Cross-product
(two vectors)

(continued)
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Gradient vector

(a), 10 1 0.
— e, +| — €+ ————1¢,
or 6(0 rsing 06

Gradient of a

?\P:a_ng{la_w]g +( 1 a—‘PJEQ
a 4

scalar, ¥ or r O rsing 06
VA=
0A(r) 0A(p) 0A(6)

. or or or
Gradlenj of a aA(r) Alo) 2Alo) A(r) 2A(0)
vector, A gy —

rog r rog r rog
L AAK)_A(0) 1 Alp)_AO), 1 A(0) A() Ale),
rsing 060 r rsing 00 r rsing 00 r r
— O0(A(8)si 0A
VxA= 1 ( ( )smq))_ () é(r)
rsing op 06
1( 1 0A(r) o(rA0) ).
+_ —_—
Curl r[sinq) 00 or e((o)
o(rA O0A
r or o
Divergence of a V.A- i@(r A(’”)) 1 6(A((p)sing0) N 1 2A(9)
vector, A r or rsin(o op rsing 060
- A:[a( FAG) | 1 2(A(rp)sing) A(pp)+A(00) | 1 6A(r€)]é(r)
r’or rsing rop r rsing 060
Divergence of a 2™ . a(r 2A(W’)) 1 <3(1‘\(<t’</7)sirl¢>)+A(N/J)Jr 1 6A(¢9)7A('99)Cow #(0)
rank tensor, A r’or rsin(p rog r rsing 060 r

o(r*A(ro p
+[ (r Alr ), 2A(p0) 1 aA(60) A(r6) 2A(p0)
roor rop rsing 00 r r

cot q)] é(0)

Laplacian operator

V? = ?(6) 18( 8j+ 1 88m¢8+g198_“9
r- or or) r’sing o Op ) r7sin” @ 06"

Laplacian of a
scalar, ¥

VY = V(?‘I’) ( J smq)a—qj
r’sing 6(/7 op

oY
r*sin” ¢ 06°

(continued)
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- ¢ O(sinpA ¢
viis|via() 2A0) 2 (sinpA(p)) 2 AO)|
r rsing op r singp 00
i 2 J(A
Lal?la01in of a | v2A(p) - ZA@Z) ++% ( (’"))7 ZZC?SZ¢ 0A(0) #(9)
vector, A rsin” @ r o rosin“@ 00
¢ (A
o|vae)- A0, _2 20, 200 AA0) ;)
risin"@ r'sing 00  r sin“¢o 00
vk ofsof18(.2)
r* or or| r® or or
Biharmonic 1 0| . 0 o . 0
] 7 +—5———|sing—| 5———| sinp—
operator, V resing 0@ Op| r”sing 0 o
L1 Kol
r?sin® @ 06* | r*sin® ¢ 06°

14.4 PARABOLIC COORDINATE SYSTEMS

We use

(2(1),2(2).6(3))=(e(£).2(n).€(0)).

(A(1).A(2).A(3))

(A(§ ),A(?}),A(H)) to designate the unit vectors é(i) and physical compo-
nents of vector A. Most of the expressions are written in terms of physical

components. For Christoffel

symbols, see Example 15.4.

TABLE 14.4 Relations for quantities and their related derivatives in parabolic coordinate systems.

Coordinates
n,0
(orthogonal) (¢.7.6)
f(\]oor(.iinate x=Encosd y=<¢&nsind z=(§2— 772)/2
unctions

Oty = oty =
Coordinate surfaces | -2£2 (z -£ /2), -25° (z -n’ /2), y/x =tané, planes

paraboloids paraboloids

ncos@| (Ecos@| |—-Ensind

Basis vectors, é,- (55 gn’ég) =| 4 nsin@ < Esind b4 En cosh
covariant £ -n 0

(continued)
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) 1 cos @ ) &cosd —sinf
Basis vectors, &, (55,5”,59) =|| 5—=1{7sin@ {,—5——1&sinf p,—1 cosd
contravariant &+ £ S+ 7 0
Scale factors, h, (h,; h, hg) —( Evn® JE+ 17, 577)
(¢(£).2(n).2(0))=

Unlt’vector S, n cosd Ecos@)] [—sind
physical 1 7sind 1 £sind P
components 2 Sme e 2 SmEr.q cos

P Sen’ | g [N, 0

Metric tensors, g

and g’

e =(g5) =&+, =(27) =& +n"gw =(g") =(&n)’

the rest are null

n cos@ &cosd ) —sinf
Basis vectors, €', (gf,é”yég): 17780 ¢, ———1&sind p,—1 cosd
contravariant &+ $+m én
4 -1 0
Jacobian J 2577(52 +772)

Unit volume

AV =én(& +n*)dEdndo

Line element and
magnitude

45]=
J& ) (e +(& +77) (dn) + (ndoy

dS =g +n*[dge (&) +dné(n)]
+ nd6e(6)

Vector components

A= A(£)2()+ A2 (n)+ A(0)2(0)

Christoffel symbols,

based on covariant
Basis vectors

re, =Ty,
=1/¢
I =-T7, rénzrtif & no_ 0 0
-7 =1 . T = o = Lo =T,
T én T g T 2 2 2 2 2 2
o s o | TSNS )| (S +T) | =1/
=&/(& )| =n/(&+n) ( ) ( )
ry, =Ty,
=1/n

Dot-product
(two vectors)

A-B=A(£)B(£)+ Aln)B(n)+ A(0)B(6)

(continued)
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a AxB=[4(n)B(0)- ot Je(@)
Cross-product )
(two vectors) +[A(0)B &) 3(9 ]e n)
+[A(&)B(n)- (£)]e(0)
Gradient vect v LS P a“[lajé
radient vector e I 1 d
§2+772 or ¢ W@n n 577 aq) v
Gradient of a T - ; 6‘1’ 6‘{’ ] ( ) 5_‘I’jé
et ¥ & W an )" \énop)”

Laplacian operator

e 1 o(,0 1 a( @
V=V (V)zrn— | F |4+ —— " | p—
() §(§2+ﬂ2)6§(§8§j+n(§2+f72)5ﬂ(n5n

J

1 &
+ 2 2
(¢n)" 00
Vz\y=€-(§\y)=+ g {56‘{'}%2(,75_‘1’)
Laplacian of a 5(5 +77) s\~ 0g 77(‘:K +n )677 on
scalar, ¥ 1 ¥
t——
({;‘77)2 00*

Laplacie.ln of a

vector. A V°A =, use Equation 11.21.

For this coordinate system, we didn’t list all relations, since they are lengthy.
But readers can use the relations given in the next section, as they are appli-

cable to all orthogonal coordinate systems.

14.5 ORTHOGONAL CURVILINEAR COORDINATE

SYSTEMS

We use (xlxzxg) = (xl,xz,xg) symbols for presentation. Note that all com-

ponents listed in Table 14.5 are given as physical components. The functional
relations for coordinate variables vs. those of Cartesian ones are required for

calculating the values of quantities listed in Table 14.5.
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TABLE 14.5 Relations for quantities and their related derivatives in curvilinear orthogonal coordinate systems.

Coordinates L s 3
X,,%5,%5 ) =(x',x7x
(orthogonal) (01,32,3;) ( )
Basis vectors ¢, I,
N é,,6,,6.
covariant (2.2.2)
Scale factors, h, (hyhy,hy)

Unit vectors ¢ (z) R
physical components

(601).2(2).(3) = 2, /b2, /.2, /)

Metric tensors, g,

and g’

gn = (gn )_1 =(h )2 » 8o = (gzz )_I = (h, )2 2833 = (gss )_1 = (h, )2’ the

rest are null

Basis vectors &' L1 2 =3 S 14 9 3
. (e € ,€ ):(elg 68,638 )

contravariant

Jacobian J =hhyh,

Unit volume

dV = Jdx,dx,dx,

Line element and
magnitude

-

JUdz, ) +(hydx, ) +(hydx, )’

dS = hdx,é (1) +h,dx,é(2)
+hydx,é(3)

Vector components

A=A(1)e(1)+A(2)e(2)+A(3)2(3)

Christoffel symbols

(use Equations 10.20-10.25)

Dot-product
(two vectors)

A-B=A(1)B(1)+A(2)B(2)+A(3)B(3)

Cross-product
(two vectors)

AxB=[A(2)B(3)-A(3)B(2)]é(1)
+[A(3)B(1)-A(1)B(3)]¢(2)
+[A(1)B(2)-A(2)B(1)]¢(3)

= 1 0 _ 1 0 . 1 0
Gradient vector v :h—lax_le(l)"LEax2 é(2)+ h—sgsew)
Gradient of a ﬁ\{;:ia_lpé(l)_i_ia_‘yé(z)_‘_ia_‘yé(?))
scalar, ¥ h, ox, h, ox, h, ox,

(continued)
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Gradient of a S “\= o\ = 8A‘ .
vector, A VA= (V]A)ef =V, (A e, )e] ( A’TA]Je é’, see Example 15.13
— - o(h,A(3 o(h,A(2
hsh, O, O
1 |o(hA(1 o(h,A(3
Curl of a vector, A +hh { ( ]8\( ))_ ( ;t( ))}5(2)
1'"3 3 “*1
o(h,A(2 o(hA(1
h,h, Ox, ox,
Divergence of a v.A 1 a(thSA(l)) N (h h A(Z)) N 6(h1h2A(3))
vector, A h,h,h, Ox, ox, Ox,
1 [a(h2h3A(11)) a(hh,A(21)) 6(hlh2A(31))]
+ +
VA: hlh2h3 6xl &xz axS —(1)
A(12)oh,  A(3L) ok, A(22)3h, _ A(33) b,
hh, ox, hhy, ox, hh, ox, hh, o
[ [6(112h3A(12)) o(hh,A(22)) o(hh,A(32)))]
+ +
Divergence of a N h,hsh, o, ox, Ox, 2(2)
2 rank tensor, 4 A(23) oh, A(12) oh, - A(33) oh, - A(11)
hohy Ox, Wby, 0%, hohy o, hh o
[ o(hssA(13))  0(hoA(23)) a(hlth(szs))]_
R h 113 o, o, ;)
31) oh, A(23) ohy, A(11) &h,  A(22) oh,
h h, ov, W ox, o ov, o ox
VY =V. (Wl)
Laplacian of a
scalar, ¥ L | 0 [hhy 0¥ i huhy 0¥ +i hihy OF
h hyh, h, ox, ) ox,\ h, &x, ) 0Ox,\ hy oOx,

(continued)
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—i(VA)+ ' 3
hy ox, hyhs 0 h, 6(h2A2)_6(h]A])
ox, \ hyh, Ox, ox,
_i( hy (9(h4,) 3(hA)
Laplacian of a o oc | hh ox o
vector, A + i 0 (V-A)—i— 1 LA : ? é,
hy, 0Ox, hhy _i h, 5(h3A3) a(h2A2)
ox; \ hyh, O, On
- ( h (a(hBAS)_a(hQAZ)]]
_ ox, | h,h Ox, Ox
N ii(V-A)+ 1 2ll3 2 3 2,
; O hohi| o ( h, (0(hA) a(hs,)
a"Cl hth axS al’l
1 0 o|1 o .0
V4 - - Y kl_ - y+
J ox* 7 ox' {J 6x’( &HH
) o {hzhg o { 10 [hzhg F) m
Bi . - v -
iharmonic ox, | ox, | hihgh, ox, | ox,

operator, %

__ L ), ofhhy ol 1 o (hh 0
hhohy | ox,| hy v, | hhoh, ox,\ h, ox,

Lo o[ 1 o (o
Oxg | hy Oxy| hhyhy Ox, \ hy Oy

Modern engineering software tools provide facilities to include curvilin-
ear coordinate systems for computer modeling. For example, COMSOL
Multiphysics® has a curvilinear coordinate interface for defining object
orientation in an arbitrary system [12].






CHAPTER

RIGID BODY ROTATION:
EULER ANGLES,
QUATERNIONS, AND
ROTATION MATRIX

In Chapter 12, we discussed Cartesian tensors and rotation of coordinate
system using Rodrigues’ formula (see Equation 12.6). For practical applica-
tions, mainly rigid body rotation, in this chapter we would like to expand on
this topic in relation to Euler angles and quaternions methods.

A rigid body transformation can be composed of two parts: a) translation
and b) rotation. The translation is usually referred to a vector connecting
the origin of the coordinate system to the centre of mass. Therefore, we can
always refer the rotation to the instantaneous center of mass and focus on
the rotation for calculation and analysis of rigid body motion.

In general, there are at least eight methods to represent rotation [13].
Among these three inter-related methods commonly used for calculating
rigid body orientation after it goes through possible rotations in a 3D space.
These are: 1) rotation matrix, 2) single axis-angle, and 3) quaternions. The
first two methods are discussed in Chapter 12 and expanded in this chapter
with the inclusion of Euler angles method. The third method is more robust
and with less limitations compared to the other methods in terms of practical
applications and is new to this second edition.

When dealing with rotation of a rigid body, several confusions may arise
in terms of definition of rotation matrix and rotation variables. To avoid
these ambiguities, identifying two definitions is critical. First, the assumed
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15.1

transformation should be clear by the way the rotation matrix (see
Equation 12.7) is meant to be, i.e., it is meant to relate the coordinates
obtained after rotation to the original ones or vice versa. Second, how the
rotation itself is performed, i.e., is it that the coordinates are rotated and
quantities, like a vector, is kept fixed and we seek to find its new coordinates
with reference to the rotated ones or is it that the quantities, like a vector, are
rotated and the coordinates are kept fixed and we would like to calculate the
coordinates of the rotated vector with reference to the fix-kept coordinates.

In this book, we resolve these confusing issues by following the convention
described in Chapter 12, i.e., rotation matrix relates the known/given coor-
dinates prior to the rotation to those resulted from the rotation through the
rotation matrix (y'; = leyj). Therefore, we assign a passive convention, see
next section. Assuming this definition then the second definition- so-called
active and passive rotations [14]- is discussed in next section. Readers should
note that some authors/references may have different definition assumed
(sometimes implicitly) for the rotation matrix (e.g., y ; =Ry, or using the
transpose of the rotation matrix considered in this book).

Also, readers should note that an important fundamental property of all
methods mentioned above is that the rotation procedure reduces to the rota-
tion of one vector about another vector. This can be shown by finding the
equivalent single axis and angle for any combinations of rotations [14], see
Chapter 12.

Examples of practical applications of the methods mentioned above are:
rigid body rotation and orientation, computer graphics and animation,
aircraft maneuver control, robot arm control, signal processing, quantum
mechanics, special and general relativity-among others, [15], [16].

ACTIVE AND PASSIVE ROTATIONS

Following Section 12.1, let’s assume, without losing generality, a 2D coor-
dinate system (y,,y, ) =(x,y) being transformed to (y;,y, )= (x,y') through
rotation about the axis y; =z with unit vector 7i = n, =(0,0,1) by an angle 4,
according to R.H.R. Therefore, using the rotation matrix R, (see

Equation 12.7) we have Tl cosf sin@ | [x and z' = z. Readers should
y' —sin@ cos@ ||y
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note that the rotation matrix given here relates the rotated coordinates to the
existing/current ones. Now if we have a vector V :(Vx,Vy) given in x—y

system and making angle @ with positive x axis then its components in x" -y’

V., cos@ sind@ ||V,
system, in terms of V,_ and V,,aregivenas § " l=| *{ This
f —sin@ cos@ Vy
type of transformation for which the vector is kept fixed and the coordinate
system rotates is called passive rotation. We can also perform the opposite
operation by rotating the vector and keep the original coordinate system

fixed. Therefore, we keep the system x —y fixed and rotate the vector V by
an angle equal to —@ about the same rotation axis (i.e., n, =(0,0,1)) to get

the vector V'. This type of transformation for which the vector is rotated,
and the coordinate system is kept fixed is called active rotation. See Figure

. (v
15.1. The components of the rotated vector are V' = {V

} and are equivalent
y

to {V‘} in their magnitudes. In other words, passive rotation through an
y'

angle @ is equivalent to corresponding active rotation through an angle equal

to —@. For 3D rotations, we can expand the relationship between passive and

active rotations by using the properties of rotation matrix, see Section 12.1,

or

R, (i,0)=R, (7i,~0) 15.1

Equation 15.1 states that the rotation matrix for a given angle and axis of
rotation is equal to its transpose when the rotation angle is in opposite direc-
tion but about the same rotation axis. As mentioned in this book, we consider
Ry, as given by Equation 12.7, for passive rotations and use its transpose (or
inverse) for active rotations.

15.1.1 Example: Active and Passive Rotations-Numerical Example
Vector V = (WV/) = (3,4) is given in Cartesian coordinate system (xy) as
shown in Figure 15.1. Show that passive and active rotations provide equiva-
lent answers. The absolute value of angle of rotation is 8 = 30" and rotation
is about positive z-axis.
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Solution:

The magnitude of the vector V is “7‘ = \/m =5 and it makes an angle
@=tan” (gj = 53.13° with the x-axis. For passive rotation, we keep the vec-
tor V fixed and rotate the coordinate system (x, y) by 30’ in the counter clock-
wise direction to get the resulted coordinate system (x',y'). Therefore, the

0530 siHSO} {\/5/2 1/2

rotation matrixis { } The components of the

—sin30 cos30 ~1/2 /3/2
VeCtorVinthe(x',y')system are Ve _ V372 172 {3}: {4.598}
y passive -1/2 \/§/2 4 1.964

For active rotation, we keep the coordinate system (x,y) fixed and rotate
the vector by 30" in the clockwise direction (or —30°) to receive the vec-
tor ‘_7;=(V‘_',VU') that makes an angle ¢'=53.13"-30 =23.13" with
the x-axis. Therefore, the components are V/=>5cos(23.13)=4.598
V!
and V) =>5sin(23.13)=1.964, or y :{4'598}. Note that
‘ Y J active 1964
the rotation matrix follows the relation given in Equation 15.1, or
. cos30  sin30 . cos30 —sin30]"
R,(30")=| =R, (-30")=| :
J —sin30 cos30 J sin30  cos30

P <

y
A

5 ¢

Passive Active

FIGURE 15.1 Passive (left) and active (right) transformations for a 2D coordinate system.
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15.2 EULER ANGLES

We expand the discussion presented in the previous section by consider-
ing 3D rotation of a rigid body, for example an airplane. With reference to
Chapter 12, we consider the following. Let’s assume the airplane maneuvers
in the sky, we can then relate its orientation, focusing on its rotation only, at
any given time to its original orientation in a step-wise manner in two ways;
1) by relating its successive rotations to a fixed global Cartesian coordinate
system or 2) by relating its orientations to its instantaneous body-attached
coordinate system resulted from successive rotations. The latter is so-called
Intrinsic, and the former is Extrinsic method. In this book, we use the intrin-
sic approach, [17], [18]. The extrinsic approach is more common for com-
puter graphics applications.

The concept of describing orientation of a rigid body by a limited number
of successive rotations goes back to Euler. His theorem, the Euler’s rotation
theorem [18], [19], [14] from a practical application point of view, states that
any orientation of a rigid body can be calculated through a single rotation
about a specified axis, with reference to its original orientation. This relates
to what we showed and used, single axis-angle method, in Chapter 12, see
Example 12.2.1. Further, Euler showed that the final orientation of a rigid
body can be obtained through at most three successive rotations, so called
Euler angles, [18], [20], [21]. The intrinsic method, as mentioned above, is
mostly used for successive rotations.

There exist several definitions for the body-attached coordinate system in
terms of axis orientations. Here we use the convention mostly used in engi-
neering by defining positive x-axis (roll) direction towards the front/cockpit,
y-axis (pitch) towards the right wing, and z-axis (yaw) downward towards
the ground along with positive rotations about each axis. See Figure 15.2, for
which R.H.R. applies.

Two immediate successive rotations around the same axis are not counted as
two separate/independent rotations since we can equally have a single rota-
tion equal to the algebraic sum of the two and hence the three-axis rotation
reduces to two-axis rotation. Therefore, in 3D space, having (x,y,z) coordi-
nates, we can have 12 (= 3x2x2) combinations of Euler angles as shown in
Table 15.1.
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Aircraft Rotations B
Body Axes Center

Center of
Gravity

Pitch Axis

+ Pitch

Roll Axis

FIGURE 15.2 Body attached coordinates and corresponding Euler angles.

TABLE 15.1 Possible combination of Euler angles for rigid body rotations.

Roll group Pitch group Yaw group
XYz X2y yxz yzx zxy 2yx
(roll-pitch- (roll-yaw- (pitch-roll- (pitch-yaw- (yaw-roll- (yaw-pitch-
yaw) pitch) yaw) roll) pitch) roll)
xyx xXZX yxy yzy Xz zyz
(roll-pitch- (roll-yaw- (pitch-roll- | (pitch-yaw- (yaw-roll- (yaw-pitch-
roll) roll) pitch) pitch) yaw) yaw)

Few points should be noted about the order of executing Euler angles. As pre-
viously explained the rotation matrix related to each successive rotation should
be pre-multiplied by the previous ones. Considering the order of rotations
as the reference. This is a direct consequence of our definition for rotation
matrix that transforms previous axes to the current rotated ones. Conversely,
if one defines the transpose of the rotation matrix given by Equation 12.7
(i.e., transforming current/rotated coordinates to the original ones) then the
sequence of rotations through Euler angles and their multiplications of their
corresponding rotation matrices to generate the final rotation matrix should
be performed in the same order. For example, according to our definition,
see Equation 12.7, considering the combination yxz the order of rotation
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is pitch first, followed by roll and having yaw as the last rotation, or (pitch-

roll-yaw). With this definition, yxz should be read in backward order, ﬁ
to get the correct final rotation matrix resulted from multiplication of rota-
tion matrices combination, see Section 12.2. Therefore, the related rotation

matrices multiplication order is [R,93 ][Rb,_z ][R(,l ] = [Rgl ]T I:Rg_z ]T |:R93 }T,

where 6, is the first angle of rotation (for example pitch), €, second (for
example roll), and 6, third (for example yaw). The resulted rotation matrix
reads

[R]=[ Ry, ][Ry, ][R, ] 15.2

In this book, we use the convention of index-order from 1 to 3 for succes-
sive rotations, i.e., first rotation expressed as 6, and so on. Once the rotation
matrix [R] is given, it is possible to calculate the corresponding Euler angles
which are 12 sets, or mutations of 3 Euler angles corresponding to the rota-
tion matrix, see Table 15.1.

As discussed in Chapter 12, we can use rotation matrix [H] to calculate the sin-
gle axis-angle rotation equivalent to three successive rotations by Euler angles.
The single angle is given by Equation 12.8, repeated here for convenience, or
R,-1 R, +R,+R,, 1

cos@ = "2 =— 222 = X Recall that R, is the trace of matrix [R].
The single axis of rotation is the eigenvalue of [R], refer to Example 12.2.1.
Another method, and may be a quicker one, for calculating the components
of a unit vector along the rotation axis, represented by the unit vector 7 = n,,
can be obtained by manipulating the diagonal elements of [R]. For exam-

ple, considering element R(1,1) = cos 0 + (n1 )2 (1-cos#), see Equation 12.7.

2
2R(1,1)-R, +1
3_Rii .

After substituting for cos@ we receive R(1,1)= R“z_ L, (n,)" (1 - R”—_lj

Factoring out n, gives, after some manipulation, |n,|= \/

Therefore, for component k of the vector i = (n,,n,,n, ), parallel to the rota-
tion axis, we receive
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2R(kK)-R, +1
|”k|=\/ ( 3—)3,, k=123 15.3

As an example, using data given in Example 12.2.1, we receive the trace of
the rotation matrix, R, =0 and R(k,k) =0. Using Equation 15.3, we receive

|nk| =1//3,0r @i =ii(1,1,1). This is identical to the results obtained in

J3
Example 12.2.1.

15.2.1 Example: Euler Angles-Numerical Example

An airplane undergoes a zyz (yaw-pitch-yaw) maneuver. The first yaw angle
is 6, = 30", pitch angle 6, =45°, and the final yaw angle is 6, =15". Calculate
its final orientation in the sky with reference to the earth fixed coordinates
and the equivalent single axis-angle rotation.

Solution:

We calculate the rotation matrices, using Equation 12.6 and multiply them
using Equation 15.2.

First yaw rotation: the rotation is about z-axis with n, = (0,0,1) and 6, = 30"

‘5 o1 ]
cos30 sin30 O ) 0

which gives [ R, |=| -sin30 cos30 0|=| | 3 |
0 o 1] |73 5 °

0 0 1]

Pitch rotation: this rotation is about current y-axis (resulted from
the previous rotation) with n,=(0,1,0) and 6,=45 which gives

V2, 2

cos45 0 —sin45 9

[R,]=] 0 1 0 |= 1

)

0 0
sin45 0 cos45 J2 0 J2

9 2
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Last yaw rotation: this rotation is about current z-axis (resulted from the
immediate previous rotation) with n, =(0,0,1) and 6, =15 which gives

cosl5 sinl5 0
[Bg3 } =|—-sinl5 cosl5 0
0 0 1

J3+1  3-1

22 22

22 22
0 0

0

1

For final rotation matrix, we first calculate [He ][Rgl ] =

2

- N NN
e R I Er
0 1 0 1 3 S ﬁ 0 | The final operation is
-— — 0 2 2
22 2 6 2 2
9 9 0 0 1 - = =
- - - _4 4 2 |
to pre-multiply [Rgg ] to this result, or
- 6 2 2 |
\/§+1 \/§—1 £ £ _£
0l 4 4 2
22 22 -
[B]=| _8-1 B+1 |lI-3 5 ©
PSSR RGRRVRN:
- 14 4 2|
_3+\/§+\/§—\/6 1+3J2+/3-6 _1+\/§_
8 8 4
|32 +3-V6 1+3V2-3+6 -1+43
8 8 4
6 2 V2
I 4 4 2
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0.4621 0.5657 —0.6830
=| -0.6415 0.7450 0.1830
0.6124 0.3536 0.7071

The corresponding single rotation angle is, using Equation 12.8,

6 =cos™ (— - ZJ =62.8". The elements of the unit vector along the single rota-

tion axis are obtained using 15.3, or |n1| = \/2 x0.4621 -19142 +1 =96x1072,
3—-1.9142
2x0.745-1.9142+1 2x0.7071-1.9142+1
ny| = [ZOHA LI 7900 and |n3|=\/ -
3-1.9142 3-1.9142

0.6786. Answers are rounded. In other words, we can obtain the final ori-
entation of the airplane by rotating it through an angle of 62.8" about an
axis in the direction of n, =(0.096,0.7282,0.6786) with reference to the
original coordinate system (x, y,z). The successive rotations are shown in
Figure 15.3.

@’ Aircraft Rotations i
Body Axes

Center

Center of
Gravity

FIGURE 15.3 Successive rotation of an airplane, Euler angels left-to-right, yaw=30, pitch=45, yaw=15 degrees.
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It seems useful to refer the readers to some animation tools for Euler angles.
The following Apps, available through the following links, could be used for
demonstrating the Euler angles.

“Controlling Airplane Flight” [22], “Euler Angles for Space Shuttle” [23],
and “Euler Angles” [24].

CATEGORIZING EULER ANGLES

There are several ways possible to categorize Euler angles. With reference to
Table 15.1, we observe that there are two sets of Euler angles combination.
One set is those six combinations that contain repeated rotations (1* and 3)
about similar (but not the same) axes (xyx, xzx, yxy, yzy, zxz, zyz), the so-
called proper Euler angles and another set that has different axis of rotations
for all three rotations (xyz, xzy, yxz, yzx, zxy, zyx), the so-called Tait-Bryan
angles. The latter is commonly used in engineering, specifically in aerospace
discipline [18], [19]. It is useful to collect all Euler angles types and their
corresponding rotation matrices, as shown in Table 15.2 and Table 15.3. The
corresponding single-axis rotation matrix of each case can be calculated as
well, like those in Section 15.2.1.
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where,
cos (6, ) sin(6, )sin(6,) —cos(8, )sin(6,)
sin(6, )sin(6,) cos(6;)cos(6,) cos(6;)sin(6,)
R, = —sin (6, )cos(6, )sin(6,) +sin(6;)cos(6,)cos(6,)
cos (6, )sin (6, ) —sin(6, )cos(6,) cos (6, )cos (6, )cos(6,)
| —cos (6, )cos(6, )sin(6,) —sin (6, )sin(6),)

Conversely; for a given single-axis rotation matrix the corresponding

1-R*(1,1
0, = tan ™ [—()} , and

: R(1,1)

Euler angles are: 6, =tan‘[ R(L2) }
—R(1,3)
R(2,1
a;ztan"{ ( ’ )}

R(3.1)
cos(6,) cos (6, )sin(6;,) sin(6, )sin(6,)
—sin(6, )cos(6, ) —sin(6, )sin(6;) cos (6, )sin(6,)
- +cos (6, )cos(6, )cos(6,) +sin(6,)cos(6,)cos(6;)
sin(6, )sin (6, ) —sin (6, )cos(6;) cos (6, )cos(6;)
i —cos(6, )cos(6,)sin(8,) —sin(6;)cos(,) sin(6, )_

Conversely; for a given single-axis rotation matrix the corresponding

J1-R* (L1
Euler angles are: 6, =tanl{B(L3)} 0, =tan™' {#] and

R(1,2)| R(L1)
o, =tan"{ R(3.1) }

“R(2.1)
cos(6;)cos(6,) sin(6, )sin(6,) —cos(6;)sin(6,)
—sin(6; )cos(6, )sin(6,) —cos(Hl)cos(Hz)sin(ég)
R,, = sin(6, )sin(6,) cos(6,) cos (6, )sin(6,)
sin(6, )cos(6,) —sin(6,)cos(6,)  cos(6;)cos(6,)cos(6,)
_+Cos(93)cos(¢92)sm(91) —sin (6, )sin(6),)

Conversely; for a given single-axis rotation matrix the corresponding

1-R*(2,2
Euler angles are: 6, =tan™ M , 6, =tan”' # , and
R(2.3) R(2,2)

o R(L2)
0, =tan {m}



116 ° TeNsOR ANALYSIS FOR ENGINEERS, 2E

—sin(6, )sin(6,) sin (6, )cos(6,) —sin(6, )cos(6,)
+cos (6, )cos(6, )cos(6,) —cos (6, )cos(6, )sin(6,)
R,, = —cos(6, )sin(6,) cos(6,) sin(6, )sin(6,)
sin (6, )cos(6;) sin(6,)sin(6,) —sin(6,)cos(8,)sin(6,)
_+cos(81)cos(92)sin(33) +cos (6, )cos(6,)

Conversely; for a given single-axis rotation matrix the corresponding

‘ 1-R*(2,2
Euler angles are: 6, =tan™ {M} 6, =tan™ [AI and

~R(2.1) R(2,2)
0, =tan’ {M}

R(L2)
cos(6;)cos(6,) cos(6;)sin(6,) sin(6, )sin(6,)
—sin(6, )cos(6,)sin(6,) +sin(6;)cos(6,)cos(6,)
R_. = —sin(6; )cos(8,) cos(6;)cos(6,)cos(6,)  cos(6;)sin(6,)
—sin (6, )cos (6, )cos(6;) —sin(6; )sin(6,)
sin(6, )sin(6,) —cos (6, )sin(6,) cos(6,) |

Conversely; for a given single-axis rotation matrix the corresponding

1-R*(3,3
Euler angles are: 6, =tan™ {M}, 0, =tan™ [—()} and

“R(3,2) R(3,3)
| BOS3)
6, =tan {3(2’3)}

—sin (6, )sin(6,) —cos (6, )sin(6, )

sin (0
+cos (6, )cos (6, )cos(6,) +sm( 1;cos( 6, )cos(6;)

._.
=
)
~—
Q
]
w1
—_~
5
~

R, = —sin (6, )cos(6;) —sin(6;)cos(6,) sin(6,)  sin(6,)sin(6,)
—sin(6, )cos(6, )cos(6,) +cos (6, )cos(6,)
cos (6, )sin(6,) sin(6, )sin(6,) cos(6,)

Conversely; for a given single-axis rotation matrix the corresponding

; 1-R*(3,3
Euler angles are: 6, =tan™ {m} 6, =tan™' [#} and

R(3.1) R(3.3)
o, =tan"{ R(2.3) }

~R(1,3)
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where,
cos (8, )cos(6,) cos (6, )sin(6;)
+cos (6, )sin (6, )sin(6, )
R,,. =|—cos(6,)sin(6;) —sin(6,)sin(6,)sin(6),)
+cos(6;)cos(6,)
| sin(6,) —cos(6,)sin(6),)

Conversely; for a given single-axis rotation matrix the correspond-

ing Euler angles are: 6, =tan[

| _3(2’1)
6, =tan {—R(l,l) }

—R(3,2)}

R(3,3)

cos (6, )cos(6,) sin (6, )sin(6),) —sin(6, )cos(6,)
+cos(6;)sin (6, )cos(6,) +cos(6,)sin(6,)sin(6,)

—sin(6,) cos (6, )cos(6,) sin(6, )cos(6,)
sin(6; )cos(6,) —cos (6, )sin(6,) sin(6; )sin(6, )sin(6,)

+cos (6, )sin(6, )sin(6,) +cos (6, )cos(6,)

R(3.1) ]

92=tan" —_—,
J1-R*(3,1)

Conversely; for a given single-axis rotation matrix the correspond-

R(2,3
ing Euler angles are: ﬁlztanl{ (2, )}

6, =tan™
v {R(I,l)

yxz

R(S,l)}

cos (6, )cos(6,)

+s1n((93)51( , )sin(6, )
(6;)cos(,)

+cos (6, )sin (6, )sin(6,)
sin(6, )cos(6,)

—sin

R(2.2) |

cos (6, )sin (6, )
COS(Hz)COS(GS)

—sin(6,)

“R(2.1) ]

0, =tan™' | ———L— |,
J1-R*(2.1)
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Conversely; for a given single-axis rotation matrix the corresponding
R(3,1 —-R(3,2
(5, )] sztan"ll—( ) }, and

Euler angles are: 6, =tan{

R(3,3) 1-R*(3,2)
et | B(L2)
0, = tan {m}
cos(6,)cos(6,) sin(6,) —sin (6, )cos(6,)
sin(6, )sin(6),) cos (6, )cos(6, ) sin(6; )cos(6),)

+cos(6,)sin (6, )sin(6),)
—sin(6, )cos(6,) —sin(6,)sin(6,)sin(6,)
+cos (6, )cos(6,)

Conversely; for a given single-axis rotation matrix the corresponding

Euler angles are: ﬁlztan_{_ﬂ(l’g)}, 0, =tan™ {M] and
R(1.1) 1-R*(1,2)

[-RG2)

0, =tan { R(2.2) }
_ cos (6, )cos(6;) cos(@B)sin(@l) —cos(@z)sin(é’s)_
—sin (@, )sin(6,)sin(6;) +sin(6,)sin(6, )cos(6,)

ay = —sin (6, )cos(6,) cos (6, )cos(6,) sin(6,)

sin(6; )cos(6,) —cos(6;)sin(6, )cos(6,) cos(6,)cos(6;)

_+sin(6’l)sin(02)cos(93) +sin(91)sin(93) |

Conversely; for a given single-axis rotation matrix the corresponding

Euler angles are: letan'l{_R(z’l)}, 0, =tan™ M , and
R(2.2) JI-R*(2.3)

—R(l,S)}

0, =tan™
o {3(3,3)
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cos (6, )cos(6,) sin(6, )cos(6,) —sin(6,)
—cos(6,)sin(6,) cos(6;)cos(6,) cos (6, )sin(6,)
R, = +cos(6, )sin(6,)sin(6,) +sin(6, )sin(6,)sin(6,)
sin(6, )sin(6),) —sin(6; )cos(6,) cos (8, )cos(6,)
_+cos(t93)sin(6’2)cos(6’l) +sin (6, )sin(6, )cos(6,) |

Conversely; for a given single-axis rotation matrix the corresponding

Euler angles are: letan{_R(Lz)] 0, =tan™ ﬂ , and
1-R*(1,3)

R(1,1)
. ,[R@23)
6, =tan {3(3,3)}

15.3.1 Example: Euler Angles- Yaw-Pitch-Yaw, Numerical example

Repeat the example given in Section 15.2.1 using relation ]R ., given in
Table 15.2.

Solution: using Table 15.2, we have 6, =30" for first yaw rotation, 6, =45
for pitch rotation, and 6, =15° for third yaw rotation. Substituting in relation
for R gives

—sin(15)sin(30) sin(15)cos(30) —cos(15)sin(45) |
+cos(15)cos(45)cos(30) +sin(30)cos(45)cos(15)
R, = —sin(30)cos(15) —sin(15)cos(45)sin(30)  sin(15)sin(45)
‘ —sin(15)cos(30)cos(45) +cos(15)cos(30)
cos(30)sin(45) sin(30)sin(45) cos(45) |

0.4621 0.5657 -0.6830
=|-0.6415 0.7450 0.1830 |. These results are identical with those
0.6124 0.3536 0.7071

from  the example given in  Section 15.2.1  Therefore,

x 0.4621 0.5657 -0.6830 |«
y't=|-0.6415 0.7450 0.1830 [{y!- where (x’,y’,z') are coordinates
z 0.6124 0.3536 0.7071 ||z
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of a fixed given point in space with initial coordinates (x,1,2). In other words,
the initially body-attached axes (x,y,z) orient themselves to the (x",y'.z")
after the airplane goes through the given successive yaw-pitch-yaw rotations.

GIMBAL LOCK-EULER ANGLES LIMITATION

For a wide range of applications, the Euler angles method provide us a use-
ful tool for calculating a rigid body orientation. However, for certain val-
ues of rotation angles the process breaks down and ran into a mathematical
“singularity” situation. This is usually referred to gimbal lock. This happens
when the rigid body loses one of its three rotational degrees of freedom and
rotation of two axes coincide when the rotation about the third remaining

. . . T . .
axis is some integer multiple of 5 To see the mathematical explanation

and implication of gimbal lock, we use one of the cases from Table 15.3,
for example roll-pitch-yaw with final rotation matrix R, repeated here for

e

cos (6, )cos(6,) cos(6, )sin(6;) sin(6, )sin(6),)
+cos(6;)sin (6, )sin(6,) —cos(8,)sin(8,)cos(6,)

e = —cos(6,)sin(6,) —sin(6,)sin(6,) sin(6,) cos(é’ )sin(6,)
+cos (6, )cos(6,) +sin (6, )sin (6, )cos(6, )

i sin(6,) —cos (6, )sin(6,) cos(6,) cos(6,)

Let the pitch angle be 6, = g Therefore, we receive, after some trigono-
metric simplifications,
0 sin(6, +6,) —cos(6,+6,)
R,.=0 cos(6, +6,) sin(6,+06;) |. Writing the transformed coordi-
1 0 0

0 sin(f) —cos(B)

x
nates, we receive <y r=(0 cos(B) sin(p)
z 1 0 0

. Where =0, +0,

n L =K
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Writing the system of equations gives x" = ysin( ) —zcos(8), y' =ycos(S)+
zsin( ), and 2’ = x. Therefore, the rotated z-axis and x-axis are coincided, or
so-called locked. Obviously, the roll angle 6, and yaw angle 6, can take on
several different values but their changes are indistinguishable since angle
B changes value if either of §, or 6, changes. When pitch angle is equal

to % (or in general, some odd integer multiple of g ) then the rigid body

degrees of freedom is reduced from three to two, since z’=x and yaw and
roll rotations provide the same result in terms of the rigid body orientation.
Similarly, other rotation matrices as listed in Table 15.2 and Table 15.3 can
be used to show their corresponding gimbal lock orientation, [25].

It seems useful to follow the successive rotations step-by-step as well, for
helping with understanding the gimbal lock. The first rotation is roll by
x, 1 0 0 x
angle 6, which results in orientation 1% =0 cos(,) sin(6,)|1yy.
2, 0 —sin(6,) cos(6,) ||z
Obviously, these leaves x-axis intact, x, =x and rotates y—z plane about
x-axis. The second rotation is pitch by angle 6, which results in orientation
X, cos(6,) 0 —sin(6, )_ X,
Yy = 0 1 0 Yy b Obviously, these leaves y,-axis intact,
Zy sin(6’2) 0 COS(@Z)_ z,
y, =, and rotates x, —z, plane about y,-axis. Now for the value of 6, :%
X, 0 0 -1||x
we receive 1y, r=|0 1 0 |Jy, ¢, or x, ==z, y, =1y, and z, =x, =x.
Zy 1 0 0 ||z

The latter relation shows that original x-axis is coinciding with z, axis, or
so-called gimbal-locked. The last rotation is yaw by angle 6, which results

Xy cos(6;,) sin(6,) 0][x,
in orientation <y, ¢ = —sin(l93 ) cos((93 ) 0 |1y, ¢ - Obviously, these leaves
2, 0 0 1||a

z-axis intact, z;=2z,=x =x and rotates x, -y, plane about z,-axis.
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Performing the matrix multiplication using all three matrices, produces

x' Xy cos(6,) sin(6;,) Of[0 0 -1]1 0 0
y t=13y, r=|-sin(6;,) cos(6,) 0|0 1 0 |[0 cos(6) sin(6,)
z' Z4 0 0 I|I[1 0 0]/0 —sin(6,) cos(6,)

x' 0 sin(6,+6,) —cos(6,+6,)|[x
or 4y +=|0 cos(6,+6;) sin(6,+6,) |{y¢, or again showing the loss of
z' 1 0 0 z

one degrees of freedom out of three as z' = x, or gimbal lock.

To recover the lost degree of freedom due to gimbal lock situation we can
perform manual maneuver, if/when possible to rotate the rigid body as
smoothly as possible out of the gimbal lock position. This approach is not
practical, and the control system should be programmed such that close to
values of rotation angle that creates gimbal lock a warning sent out and users
become aware of it. As shown in the animation video, cited above/below, we
can use other more robust methods for removing gimbal lock. This method
makes use of quaternions. We discuss the mathematics of quaternions and
their applications in rigid body rotation and matrix transformation, in the
following sections. Readers interested in discussion about gimbal lock can
consult with references cited [14], [26], [18].

Readers may also find it helpful to consult with the following lecture series,
specifically those ones related to rigid body kinematics [27]. Also using
Wolfram Alpha, readers can visualize a given quaternion, along with some
related computations.

An example for animation of a gimbal lock position, which could be helpful
to visualize this phenomenon, can be found at references [28] and [29].

QUATERNIONS-APPLICATIONS FOR RIGID
BODY ROTATION

A quaternion is defined as a 4D complex number. Mathematically, it is rep-
resented with a combination of a scalar and a vector-like complex number.
Its development started when William R. Hamilton was visioning and work-
ing on extending the complex numbers to more than 2D space, a real and

n K
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a complex numbers dimension. He first struggled adding one dimension to
the complex number (i.e., defining it in 3D space) and ran into difficul-
ties for performing basic algebraic operations, like multiplications, etc. For
example, the product of two imaginary numbers ij is not defined in 3D space
when having one real and two imaginary dimensions. Then he realized that
adding an additional dimension to the complex numbers and defining it in
3D space would solve the problem, hence Quaternions are defined as com-
plex numbers in 4D space, [30]. This newly discovered mathematical quan-
tity, the quaternions, found to be very useful in several fields of science/
physics and engineering such as kinematics of rigid body orientation, robot-
ics, aerospace, computer graphics/animation and gaming software, relativity
(General and Special), quantum mechanics. In this section, we discuss their
definition, algebraic operations, and their applications for rigid body rotation
[18], [21].

15.5.1 Definition-Quaternion

A quaternion can be defined as the combination of a scalar and a vector, as
q= (qO,E]) . The vector-like part is in principle defined as a 3D complex num-
ber when using their multiplication relation defined as given by Equation
15.4. It is well-known that in 1843 Hamilton, excited with his spark discov-
ery, engraved this expression as a message on Broome Bridge in Dublin,
Ireland [31], [32].

i = =k>=ijk=-1 15.4

Therefore, we can write a quaternion ¢ as

q=4qy +iq, + jq, + kg5 =(Go-G1-92-45) 15.5

where, ¢, is a real number and remaining terms are complex numbers. For
example, 2—i+3j+2k. Using Equation 15.5, we can write complex num-
bers i, j,k as quaternions, or i =(0,1,0,0), j=(0,0,1,0),and k =(0,0,0,1).

Note that the similarity between (i, j,k), here defined as complex num-

bers with those of unit vectors (E1 ,éz,ég) = (1]72 ) that justifies the vector-
like representation of a quaternion and hence to some extent simplifies the
mathematical expressions resulted from algebraic manipulation of quater-
nions. The relations for the product of these complex quantities follows
the cross-product of unit vectors, except for those of identical unit vectors
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(e.g., i =—1, whereas i xi =0and i-i =1, etc.). Please note > =ij is an
expression representing arithmetic multiplication of a complex number i by
itself, hence manipulation of quaternions is relatively easier than those of
vectors.

All possible combinations of complex numbers products are listed in Table
15.4, with clockwise multiplication considered to be positive. From these
relations we can conclude that these relations are not commutative, for
example, ij # ji = —ij, etc.

TABLE 15.4 Hamilton relations, quaternions multiplication rule.

(S::&p i=(0,1,0,0) | j=(0,0,1,0) | k=(0,0,0,1)
j

i 2 =-1 ij=k ik=~j
J ji=—k Fe-l | k=i
k ki=j kj=—i =1

In terms of geometrical visualization, it is difficult to vision a 4D space since
we are accustomed to visioning 3D space intuitively. It may help to imagine
the surface of a hypersphere as representation of a surface defined in 4D
space, like a 2D surface defined in a 3D space [21]. Readers may find it
useful to watch the video clip cited in reference [33], demonstrating some
animations of the geometry of a quaternion in terms of hyperspheres.

15.5.1.1 Example: Derivation of Hamilton Quaternion Relations

Using Equation 15.4, derive the identities given in Table 15.4. Recall that
quaternions are not commutative.

Solution:

We start with ijk =—1 and multlply both sides by i to receive i ]k =—j
Hence, jk=i. Similarly, kj=—i

Now multiply both sides by j to receive ]2 jk=—j. Hence, —i ] k=— j or
ik =—j. Similarly, ki = j. y y
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Now multiply both sides by k to receive kl ]k =—k. Hence, zk] k=k or

,/k

—zﬂ_{j =k. Hence, ij =k. Similarly, ji=—k.
]

15.5.2 Quaternions-Basic Algebraic Operations and Properties

We consider two quaternions, ¢=gq,+iq, + jq, +kq, and p=p,+
ip, + jp, +kp,. The summation/subtraction operation on these quantities
is  straight forward and produces g*p= (q0 p, ) +ilg, £p,)+
7(gs £ py)+k(q; £p,). Obviously, for more than two quaternions it can
be extended to include as many as involved in the operation. However, the
multiplication operation is not as straight forward. As a matter of fact, it
was this operation that held Hamilton back for a while before he realized
that a 4D space is required to properly define quaternions. The multiplica-
tion operation is as follow: gp =(q, +iq, + jg, + kg, )(p, + ip, + jp, +kp;).
Performing the term-by-term multiplications and using the relations given
in Table 15.4, after some rearranging, we receive

qp =qoPo = (1P + GoPs + G5ps )+ Go (ipy + jps +kps )+ po (iq, + jgs +kqs)
+i(qops =GPy )+ (50 — qips ) + K (qups = qopy ) 15.6

This is a long expression and some simplifications is justified. We can make
use of properties of the vector-like part of the quaternion, § =iq, + jq, + kg,
and p =ip, + jp, + kp,, and their dot and cross products when the complex
numbers i, j,k are interpreted as unit vectors. Or §-p =q,p, +GsPs + Gsp5

and §x P =i(qups —qspa )+ j(9sp1 —@ips ) +k(q,p2 —gp, ) - Substituting for
these expressions back into multiplication result (Equation 15.6), we receive

qp =(qopo =G -P)+(qoP+ ol +G*p) 15.7

scalar vector—complex number

Equation 15.7 clearly demonstrates that gp # pq, since Gx p # pxg.

The author’s caution is to note the dual interpretations of complex numbers
i, j,k as unit vectors when the complex part of a quatermon is treated as
a vector (for example i =—1 but we treat as i-i =1 or i xi =0 for vec-
tor operation). Readers should note that simply the results of the product
operations are the same, not necessarily the term-by-term operation, hence
Equation 15.7 provides us with the same answer as that of Equation 15.6.
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However, Equation 15.7 is presented in more compact memorable form of
the quaternions’ product expression.

It is useful to define conjugate of the quaternion, ¢ =(g,-q)=
qo —(iq, + jq, +kq;). We can use Equation 157, to show that
99" =q"q=q; +|E]|2 =q; +q; +q; +q; . This quantity is equal to the square

of the norm or magnitude of the quaternion |q| or

l9l=\9q" =ai +4; + ¢ + 45 =[] 15.8
A unit quaternion, Q = ﬁ =Q, +iQ, + jO, + kQ, is defined as a quaternion
q

with magnitude/norm equal to unity, with having QQ" = 1. Therefore, for a
given unit quaternion its inverse and conjugate are equal, Qf1 =Q". Also,
since ¢ q = |q|2 see Equation 15.8, we can define the inverse of the quater-

q

nion as q"l =——-. Therefore, the division operation of two quaternions can
9

be performed. This, however, has two forms since the quaternions are non-

commutative. For example, the ratio q (assuming p # 0) can be written as
p

gp~" or p™'q. Users should define which quotient is desired for their related

calculations.

15.5.2.1 Quaternions Algebraic Operations-Numerical Example

Given ¢q=3+i-2j+k and p=2—i+2j+ 3k, compute g+ p, gp, their cor-

responding conjugate, norm, inverse, and unit quaternion.

Solution:

q+p=(3+i—2j+k)+(2—i+2j+3k)=5+4k. For the prod-
uct we calculate the dot and cross products of the correspond-
ing  vectors, or  g§-p=(1-21)-(-12,3)=-1-4+3=-2 and
Ggxp=e,.q.,p, =-8i—4j. Therefore, using Equation 15.7, we have
gp=[6+2]+[-3i+6j+9k+2i—4j+2k-8i—4j]=8-9i-2j+11k. The
conjugates are ¢ =3-(i-2j+k) and p'=2-(-i+2j+3k). The

norm |q|:\/9+1+4+l:\/ﬁ and |p|=\/4+1+4+9:3\/§.
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The inverse ¢ =—5=—"_—""—=-—-—i+—j——k and
ql 15 5 15 1 15
Y 24i-2j-3k
;o"l =p—2=+l—]=l+ii—lj—lk. The unit quaternions are,
|P| 18 9 18 9 6
3+z—2]+k:\/15+Jﬁi_2\1/;5j+\1/155k and p_2-it2j+3k _

O=—"75 5 15 32

V2 \/§.+\/§, V2
i —]+7k.

3 6 3

Having the algebraic rules defined for quaternions, in the following sections
we present their application for coordinates system and rigid body rotation.
Since quaternions are basically an extension to the 2D complex numbers,
first we discuss the relation between 2D complex numbers and rotation
matrix followed by similar relations for 4D quaternions.

15.5.3 Complex Numbers and Rotation Matrix

Complex numbers can be used to represent rotation of a rigid body when
Euler formula is used. Euler formula relates an exponential complex num-
ber/variable to periodic sinusoidal functions [25], or

e =cosa+isina 15.9

where i =+/-1. For example, in a 2D space, we can define a complex vari-
able z=z(x,y)=x+iy representing a vector drawn from coordinates ori-

gin to the point z on the x—y plane and making an angle =tan™' [zj,
x

phaselargument, with the positive x-axis and having the magnitude

|z| = \/; = ./(x + iy)(x —iy) . Writing down the components, we get

x= |z|cos¢) and y = |z|singo .Or z= |z|(cos¢) +ising) = |z|e"". Now, we oper-
ate the unit vector ¢’ on z, to get z' = e |z| e’ = |z| ¢ Note that the magni-
tude of the original vector is preserved, but its phase angle changes to (p+0).
Expanding this expression, using Equation 15.9, we receive the components
of transformed vector z'= (r + iy)e“g =xcosf —ysiné + 1(x sin@ + y cos 9) ,
N cos@ —sind |[x L _ ) ]
as (omitting i) ¢ ,r=| . . This is identical to active rotation
y sin@ cosf ||y

operation discussed in Section 15.1. Similarly, operating e onz gives the
equivalent of passive rotation operation.
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15.5.4 Quaternions and Rotation

To extend the application of complex numbers to 3D rotations, we make
use of the process/method mentioned in the previous section and include
quaternions in the discussion. First, we note that an arbitrary vector,
V=iV, + jV, +kV, =(V,,V,,V,) can be considered as a quaternion whose
real partis zero, i.e., pure quaternions. Similarly, areal quaternion is a quater-
nion whose vector part is null with non-zero real part. Now, we consider a unit
quaternion Q =Q, +Q. Therefore, |Q| =Q; + ‘@‘2 =0 +Qi+Q;+Q2 =1

which implies that we can define an angle S such that
Q, =cos B
‘@‘ =sin
Qo____ 0
0] Jor+oi+o;

part (i.e., vector @ ) of the unit quaternion Q. Therefore, we can write the
unit quaternion as Q = cos f +1isin .

15.10

We also define a unit vector as 7= using the vector

Now, we can write as an extension to Euler formula, see Equation 15.9, the
so-called De Moivre’s formula for quaternion Q, [26]

Qzeﬁﬂzcosﬂﬂﬁsinﬂ 15.11

Note that 7i is a 3D imaginary number treated as a vector-like quantity calcu-
lated from the imaginary part of the unit quaternion. Using Equation 15.10,

|| O+ 0+ 05
Qo

. 2 2 2
as a unit vector we have n; +n, +n; =1.

we can write ff = tan” and since 7 = (n;,n,,n,) is defined

Recall that the rotation matrix/operation preserves the magnitude of the
vector which goes under rotation. In other words, magnitude of a vector
under rotation is invariant (see Sections 12.2 and 15.5.3). Therefore, for
using quaternions in rotation operation we look for an operator which is a
combination of relevant quaternion and maintains the magnitude of the vec-
tor on which it operates. The quaternion operation on a vector is done in a
two-step process, using a unit quaternion and its inverse/conjugate to make
sure that the result is a vector with preserved magnitude. For this purpose,

we use the unit quaternion Q and form the combination Qv (= QVQ™ ) to

transform vector V to V' by rotation, or
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=QVQ" =c"Ve 15.12

As mentioned, the reason that we use unit quaternion and its inverse/conjugate

is simply because the combination QV as much as it may intuitively seem the
correct combination, it doesn't result in a new vector and nor maintaining the

magnitude of V, under rotation operation. This can be seen using Equation 15.7
and ertlng Vasa pure quaternion. Or QV (QO,Q1 >Q2>Q3)(0 Vi.V,, V, )
~Q-V+Q,V+QxV,whichis dearly a quaternion quantity and not a vector
due to having a scalar part (i.e. Q-V).

Now, after expanding Equation 15.12, using Equation 15.11, we have QVQ" =
(cos B +iisin B)V(cos f—iisin B) = (Vcosﬂ+ ﬁVsinﬂ)(cos,B —iisin B) =
Veos® f—iiViisin® B+ (71‘7 - Vﬁ)sin L cos f. But using vector identities, we
can write iiVii=V — 2(71 . ‘7)77 and AV — Vi =2iixV. After substituting we
receive, in terms of double angle 23,

QVQ" =Vcos2B+(1-cos2fp)(ii- V)ii+(iix V)sin2 3
Therefore, we can write Equation 15.12 in index notation as (note that in
Equation 15.13 subscripts i, j,k are simply indices, ranging from 1 to 3 and
should not be confused with the imaginary numbers)

V/=V,cos2f+(1-cos2f)nn,V, +eyunV,sin2f 15.13

Writing Equation 15.13 in matrix form, let 8 =2, produces

v/ cos@+nn, (1-cos@)  nn,(l—-cos@)—n,sind nn;(l-cosd)+n,sind ||V,

V, p=|nn,(1—cos@)+n,sin@  cos@+nyn,(1—cos@) nyn, (1—cos@)—n, sind |1V,

Vi |nns(1—cos@)—n,sin@ nyn, (1—cos@)+n,sinf  cos@+nyn, (1-cosb) ||V,
15.14

This is identical to using Rodrigues equation when rotation angle is meas-
ured in the opposite direction, or the transpose of rotation matrix given
in Equation 12.7. In other words, the operation performed according to
Equations 15.12 or 15.14 gives active rotation of vector V through angle
6 =23 about unit vector 7. Therefore, the quaternions should be written as
half-angle of the rotation angle (i.e., f=0/2), Or
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\ (19
Ht‘t)tatian = ( ﬁ )quat(:mion = 2 tan -
0
PR
2 2 2
Joi+0i+ 07

15.15

Readers may recall that for active rotation we keep the coordinate system
fixed and rotate the vector, see Section 15.1. From the above-mentioned
derivation, we can conclude the following theorem (note that Q™' =Q”):

For any given vector V and unit quaternion Q =Q, +@, vector
QVQ™ is equivalent to the active rotation of the vector V through
(19 , 5 ,
an angle 6 =2tan"" | ~—— | about an axis parallel to Q | or equiva-
0

Q

lently the unit vector 1 ==
9
Similarly, it can be shown that the combination

QVQ =e Ve

is equivalent to a passive rotation of vector V.

15.16

Two points worth mentioning, about quaternions and rotations. 1) It takes
two quaternions, the unit quaternion itself and its inverse/conjugate, to per-
form a rotation for a rigid body. Each quaternion carries half of the total

angle of rotation, i.e., f =§. 2) Further transformation follows the same

rule. For example, the vector Q°VQ can be transformed again using unit

quaternion P representing a second rotation, or

P (Q'VQ)P=(QP) V(QP)=W'VW

ond -
1% rotation 2" rotation

15.17
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As seen from Equation 15.17, we can combine the related two quaternions
as their product W = QP and perform the operation on the desired vector as
a single rotation. The first rotation corresponds to Q and the second one to
P. Similarly, for an active rotation we can write the following relation for two
successive rotations,

P(QVQ*)P* =(PQ)V(PQ) =WVW" 519

ognd .
1¥ rotation 2" rotation

Example: Show that following theorem is correct.

For any given vector V and unit quaternion Q =Q, +©, com-

ponents of vector Q"'VQ are equivalent to those of vector V
in the rotated coordinates (i.e., passive rotation) by an angle

© ;
0 =2tan™" | = | about an axis parallel to the vector Q | or equiv-
0

Q

alently unit vector i ==
g

Solution:

Note that quaternions should be written as half of the total rotation angle,
or B =§, Q7'VQ = (cos B —iisin B)V (cos B +iisin f) = (Vcosﬁ—ﬁvsinﬁ)
(cos B+iising) = Vcos® f—iiViisin® f— (m7 - Vﬁ)sinﬂcosﬂ. However,
using vector identities, we can write AVi=V —Z(ﬁ V)FL and AV —Vii=
2nx V. Substituting, we obtain, in terms of double angle 23, Q'VQ =
Veos2f + (1- Cos2ﬁ)(ﬁ V)ﬁ - (ﬁ X V)sin2,8. Or in index notation form
we have (note that in Equations 15.13 and 15.19 subscripts i,j,k are

simply indices range from 1 to 3 and should not be confused with the
imaginary numbers)

V., =V,cos2B+(1-cos2f)nn;V, —e,n,V,sin2f 15.19

LRV

Writing Equation 15.19 in matrix form, let 8 =2/, produces
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| cos@+nn, (1-cos@) nn,(l—cos@)+n,sin@ nn,(l-cosd)—n,sind |[V,

X

\%

ot =| mny (1-cos@)—n,sin@  cos@+nyn, (1-cosf)  nyn, (1-cos@)+n,sinf |1V,

nn, (1-cos@)+n,sin€@ n,n,(l-cos@)—n,sind cos@+nyn, (1—cosd) ||V,

15.20

i

This is identical to the rotation matrix given in Equation 12.7. In other
words, the operation given by Q’IVQ gives the components of vector %
when coordinates are rotated through angle 6 =2 about unit vector i, see
Equation 15.15. Readers may recall that for passive rotation we keep the
vector fixed and rotate the coordinate system, see Section 15.1.

Example: Rotation using quaternions-numerical example
o= 2w
Consider the rotation of vector V =i=(1,0,0) by an angle 6 = Y about an

axis in the direction 7 =(1,1,1). Find the transformed vector assuming active
and passive rotations using following methods:

a. Rodrigues’ formula

b. quaternions
Solution:

. T 1 1 1
a. The unit vector related to the rotation axis is 71 =— ( J )

EISERNEANG]

The transformation matrix is, using Equations 15.13 or 12.7, for active

transformation (vector rotates and coordinates are fixed) gives (note that

0= —2?” for active rotation, when plugged in Equation 12.7)

27 1 o2 1 o2 1 27 1 2 1 . 2«7
cos—+—| 1 —cos— —| 1-cos— |-—=sin— —| l-cos— |+—=sin—
3 3 3 3 3) J3 3 )

1 27 1 2z 27 1 2 1 2r 1 . 2z
—| 1—cos— |+ —=sin— cos—+—| 1 —cos— —|1-cos— |——=sin— [< 0
3 3) J3 3 3 3 3 3 3) J3 3

1 o2 1 27 1 2 1 . 2«7 2r 1 2
—(l—cos—j——sm— —(l—cos—j+—sm— cos—+—(1—cos—]
13 3) 3 3 3 3 3 3) |
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Or
\%4 0 0 1]|1 0
VZ’ =11 0 0l]{0'={1'. Hence active rotation of vector i gives vector
\%A 01 0]|0 0

3’. Similarly, the passive rotation (coordinates rotate and vector is fixed) gives

(note that = 2?7[ for passive rotation, when plugged in Equation 12.7)

b. When quaternions are used for rotation note that half-angle
should be used ( p=0/2 :%j The unit quaternion reads,
using Equation 15.11, Q = cosZ + fisin % = l+ (L +L+Lj£ =

3T BTG

. . 1 . . . k
l+i+i+k. Hence, QO=§ and Q=i+l+§. For active

2 2 2 2 2 2
rotation, we  have QVQ*=[é+é+é+§](i)(é—é—%—§)=
[_14_1_54_1}(1_1_1_5}: j- Similarly, for passive rotation
2 2 2 22 2 2 2
we have Q*VQ=(l—l—l—£j(i)(l+i+l+kJ=k. Readers can
2 2 2 2 2 2 2 2

instead use Equations 15.14 and 15.20, respectively.
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15.6 FROM A GIVEN QUATERNION TO ROTATION MATRIX

In this section, we would like to derive the rotation matrix from a given qua-
ternion related to a rigid body rotation. For a given unit quaternion, we can
use Equations 15.14 in conjunction with Equation 15.15 for active rotation
and Equation 15.20 for passive rotation for calculating the equivalent rota-
tion matrices. However, equivalently we can directly calculate the rotation
matrix by implementing quaternions algebraic product rules on QVQ*, for

example, for a given vector V =iV, + jV, +kV,.

For a given unit quaternion, we have Q=0Q, + @ =Q, +iQ, + jO, +kQ,
along with |Q| = Q2 +Q? + Q2 + Q2 = 1. Therefore, the combination QVQ’
can be written as follow.

QVQ™ =(Qu +1Q, + jQ +5Q3) (Vi + Vo +KV; ) (Q, =101 = jO, =kQy ).
Performing the multiplication on the first two brackets, produces QVQ* =
[_(QLVL + QZVZ + Q3V3 ) + l(Qovl + szs - Q;}Vz ) + j(QOVZ - QlVS + stl ) +
k(Q\V; +Q,V, —Q,V, )] (Qy —iQ, — jQ, —kQ;). Performing the multiplica-
tion on the last bracket produces

QVQ" =i V, (05 + 05 =03 = 03) +2V, (0,0, —Qu05) + 2V, (QuQ: + 0,0; ) |
[ 2V (QuQs +Q10:)+ Va (05 =07 + Q2 —03) + 2V, (0.0, - 0,0, ) |+

K[ 2V (Q10: = 0u2) + 2V, (QuQ1 + Q:05)+ Vs (05 —0F Q2 +03) | Now
using QF +QF +Q; +QF =1 we can substitute for -Q; —Q; =Q; +Q; -1,

-7 -Q:=0Q;+Q; -1, and —Q; —Q; =Q; +Q: —1, to obtain the rotation
matrix as: (1% row is the coefficients of i, 2" row those of j, and 3" row those

of k)
Qg + le -0.5 Ql Qz _QOQS Q()Qz + Ql Qfs
[Ractiue] =21 Q)05 + 0,0, Q(Z) + sz -05 0,05 — QO 15.21
QlQB _Qon Qle + QzQs Qé + Q?Z, -0.5
Or
4 Vi
Vy 1= [Runc V2

Vi Vs
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Similarly, we can calculate the passive rotation matrix using Q"VQ, to receive

Qé + le -05 QOQ3 + Qle QIQB - Qon
[Rpassiue] =2 Qle - Qon Qé + Q§ -0.5 QOQI + QzQ% 15.22
Qon + Q1Q3 QzQa - Q0Q1 Q(z) + Qg -0.5

Or
Ve \4
Vy =] R |1 Vo
V. \4

Reader may note that [Rpas-siue} =[Roie ]T, as expected. Readers should also

note that elements of the above-mentioned matrices are calculated using
related unit quaternions.

Example: Calculating rotation matrix from a given quaternion-numerical
example

The quaternion ¢ =3+i—2j+k is given. Find the equivalent rotation matrix
for both active and passive rotation scenarios. For each scenario calculate
the equivalent single axis and angle of rotation and compare the results.

Solution:

We first check if the given quaternion is a unit quaternion by cal-
culating its norm/magnitude. Hence for ¢=3+i-2j+k we have

|q| =J9+1+4+1=+15#1. Therefore, we need to calculate the corre-

sponding unit quaternion Q = L(3 +i-2j+ k) =[ > ; ! , - , . J :
NG NERNERERE
Now using Equation 15.21 for active rotation and plugging in for Q, = i,
‘ N
——— we receive

1 -2
= N = N c d =
) 5 o3 5 and Q;, 5
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9,11 2.3 6 1 12 2

15 15 2 15 15 15 15 3 3 3

o ]es| 3.2 9.4 1 2.3 21 2
15 15 15 15 2 15 15 15 15 3

1,6 3.2 9.1 1) |4 3 1

L 15 15 15 15 15 15 2] 115 15 3 |

The single axis of rotation is the vector corresponding to the vector part of the

j and the angle is 2tan” [HJ =

0

unit quaternion, or @ :( 1 2

1
J15 V15 15
2tan™ [?]:78.460, see Equation 15.15. Note that the corresponding

unit vector is

1 2 1
- B (12

active =y > >
o i1 (B
15 15 15
Similarly, for passive rotation, using Equation 15.22, we find
12
3 15 15
2 11 2
[R,,mwe] =|—— — —|. We use the resulted rotation matrix to calcu-
! 3 15 15
221
3 3 3]
21
late the single angle of rotation, or cos™'| 15 =78.46", see Equation
2

12.8. The axis of rotation is the vector part of the conjugate unit

uaternion Q*—L(g_i_,_g-_k)_(?’ -1 2 —1] or
! J15 A WEN NN,
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15.7

-1 2 1
L s ).
passive 1 4

ICAREE

A* _1 2 —1
0= 15 V15 /15 ) with the unit vector 7

b
15

a( tive

FEE)

FROM A GIVEN ROTATION MATRIX TO QUATERNION

In this section, we would like to derive the equivalent quaternion from
a given rotation matrix related to a rigid body rotation. Having the rota-
tion matrix, we can use the relations obtained in the previous sec-
tion to obtain the corresponding quaternion. Let us consider a passive
rotation case, given by Equation 15.22. Note that the trace for both
active and passive rotation matrices are equal in their values. The

trace of the rotation matrix is R, = Z(SQS +QI+Q: +0; — 1.5) =

2 2@5 +Q§ +le +Q§ +Q§ -15|= 4Q§ —1. Therefore, we have the real

part of the quaternion as

J1+R,
QO :i trace 1523

2

Knowing the real part, we can calculate the elements of complex
part Q using the diagonal elements of rotation matrix. Therefore,

-20; 2R(1,1)-R,,,, +1
R(l,l):ng +2Q12 —1 or Q] =+ R(l’l) 2@0 +1 :\/ ( ) trace '

2 2
2R22 R +1 2R(3,3)—-R,__+1
Simﬂarly, q2 — +\/ )2 trace , and qg _ i\/ ( )2 trace '
Therefore, component m of the complex part of the quaternion reads
2R(m,m)—R, +1
Q. = i\/ (1)~ B , m=123 15.24

2
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From Equations 15.23 and 15.24, itis shown that for a given rotation matrix we
get two unit quaternions that describes the rotation, or Q =Q, +Q, +Q, +Q,
and P=-Q=-Q,-0Q, -0, —Q,. Here, Q represents the unit quaternion
for a positive (R.H.R.) rotation about the axis of rotation and P represents
the rotation about the same axis but in opposite direction, [27].

Example: Calculating quaternion from a given rotation matrix-numerical
example 0 0 1

The rotation matrix R=|1 0 0] is given. Find the corresponding
quaternions. 01 0

Solution:

Using Equation 15.23, we receive the real part of the corresponding unit

Vv1+0 1
2

=+—. The vector part can be calculated using

VO-0+1 1

quaternion as Q, =%

Equation 15.24, or Q, =Q, =Q, =t———— 5 iE. Therefore the quater-
1111 A 1 1 1 1
nions are ——=—=—land O=—g=| ——=,——=,—,——|.
Q(zzzzj Qq(zzzzj

FROM EULER ANGLES TO A QUATERNION

In this section, we would like to derive the quaternion from given Euler angles

related to arigid body rotation. Using the relations derived in the previous sec-

tion, we can find corresponding quaternions for Euler angles. For example, for
1 0 0

aroll rotation by angle 6, aboutx-axis,wehave [ 0 cos(6,,) sin(6,,) |,
O _Sin(groll ) COS( Hmll )
see Table 15.2, as the rotation matrix. Therefore, using Equation 15.23,

1+1+2cos(8 2-2c05(6,,)—-1+1
| 0|:\/ +1+ 2005( ) _ S%, |Q1|=\/ cos(ZM) tl_ Oy
\/2 cos8 , —2cos(6,,)-1+1
and |Q2|=|Q3|= B =0. This offers the corre-

sponding unit quaternion equivalent to the roll rotation as
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15.9

] 6 15.25
Qg =cos roll +isin roll
roll 2 2
Similarly, the unit quaternions for pitch and yaw rotations are
vitch 0)1’ ch
Q,,, =cos— oy jsin ’2” 15.26
pitch
and
eyuw gy(lﬂ.f
=cos——+ ksin—— 15.27
6,
yaw 9 9

Similarly, we can obtain 12 quaternions related to 12 Euler angles combina-
tions. This can be achieved by equating the elements of each rotation matrix
given in Table 15.2 and Table 15.3 with Equation 15.22. The result would be
nine equations, which can be solved for corresponding quaternion real and
imaginary parts [27]. However, in practice it is more efficient to calculate the
final rotation matrix and extract the corresponding quaternions, as described
in Section 15.7.

Another method of extracting the quaternion related to a given set of Euler
angles (without calculating the single-axis rotation matrix) is to use Equation
15.17 in conjunction with Equations 15.25 through 15.27.

PUTTING IT ALL TOGETHER

It seems useful to collect all related methods and their interrelations, see
Table 15.5. In this table, we list the related equations for calculating param-
eters of a desired method from those of a given method, directly. For exam-
ple, S»E indicates the direct relations for obtaining Euler angles from a
given rotation matrix. Readers should note that it is always possible to calcu-
late the rotation matrix using one of the three methods (i.e., Euler’s angle,
quaternions, single axis-angle) and then use it for calculating the parameters
related to another method.
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CHAPTER I 6

WORKED-OUT EXAMPLES

16.1

In this section, we present several worked-out examples related to the topics
covered in the previous sections.

EXAMPLE: EINSTEIN SUMMATION CONVENTIONS

Write out the expanded expression in full detail for N =3 dimensions for,
i
A=dx' [Ei —a\—,e'jj.
&Yl

Solution:

o
Summation applies on both indices i and j, hence A =dx' (Ei —ge' JJ =

1o n_, 2 . I3
dx'e, — dx' %e'j =dx'é, +dx’é, + dx’é, — dx' (Zxxl e+ (zxx' ey + gj;l eé] -
a,vl] . a(!Z . axlfi . 8x!1 . ax/2 . 8x’3 .
2 7 ' - ’ ’ 3 ’ ’ ’
dx (&cg e + e ey + P esj—dx [st e + P ey + P eSJ.
1 2 13
Re-arranging the terms, we receive A = dx' (61 - ?;xl e — 29;1 el — (ZC‘CI e, j +

of . ' o A’ s(. " o A’
dx*| &, - - - dx’| &, - - -
i PR R e R e e
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16.2

EXAMPLE: CONVERSION FROM VECTOR TO
INDEX NOTATIONS

Write out the following expressions written in vector form in index notation
and expand for 3D coordinates.

a. (V-A)

Solution:

& (VA)Z ZA'jjAlfk:(A}ﬁA%erA‘fg)z

b. A-(VEA)=A'A I=AIA, 4 APA, T+ APA T =AY (A D442 A0
+A2(A1,.i +A1,.22+A1,'33)+A3 (Aui FAS +Au.’§)

. A(V(V-A))=AlAl =AlAl + AL, + AAT = A (A%11 AL +AL )

+ Az (A}” + A%Z] + A?rﬂ ) + IA‘3 (A}” + A%z] + Ai}l)

d. (V-A)(V’®)=A},(V, @) = A}, (V@) + A, (V@) + A, (V,®)" =

Vi) + (Vo) +(V, @) |+ AL (V@) +(V,0) +(V, @) |+

(
(qu))’? + (qu))’.2 + (VB(I)),?}
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V(i)

(AY(V,@)),,
(

AL(V,®)+A*(V,0)+A° (V,@)),,

(A'(V, @)+ A% (V,0)+A°(V,@)),,
+(A'(V, @)+ A (V,0) + A*(V,D)),,°

+(A (V, @)+ A% (V,0)+ A (V,@)),;°

]
2[(V,0)),+(V.0)} +(V,0), ]
A [(V0) (Vi) (Vo)

16.3 EXAMPLE: OBLIQUE RECTILINEAR COORDINATE

SYSTEMS

Consider a 2D oblique/slanted coordinate system, x'in which the coordinate
axes are not at right angles. With reference to the Cartesian coordinate sys-
tem y', as shown in Figure 16.1, for a given vector A find:

Covariant and contravariant components; A, and A’

b. Covariant and contravariant basis vectors; ¢, and ' with sketch on the
coordinate system

c. Show that A=A'¢,=As =AE +A_E,; where E, and E, are
Cartesian unit vectors

d. Verify that é e ;= 5; and sketch all basis vectors
e. Metric tensors

f.  Unit vectors &, /|é,|, or scale factor, and &' / |éi
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Acl

FIGURE 16.1 Oblique coordinate system x’ and Cartesian coordinate system y'.

Solution:

Assume axes x' and x* make angles & and £ with Cartesian axis y', respec-
tively. Therefore, we can write the following functional relations between
the oblique and Cartesian systems:

{

a.

yz =x'sina +x” sin 8

y' =x'cosa + 1% cos B ' =—cse(a —ﬁ)[yl sin f - COSﬂ]

, or inversely

X’ =csc(a —ﬁ)[yl sin —yz COSO(:|

Covariant components of A are obtained by drawing perpendicular

J
lines to the coordinate axes. We have A, :WA

ayZ 61 1 81 2
@Acz =cosaA,, +sinaA . Similarly, A, = @{2 A, +# 5 =COS A, +

sin BA,,. The contravariant components of A are obtained by drawing

o>

oy'
or Al ZgAcl +

parallel lines to the coordinate axes. We have A'= ﬂqu or A' =
atl a\,l

ﬁAd +$AC2 =—sinfSesc(a— B)A,, +cosfesc(a—B)A,,. Similarly,

) axl 6x2
A*=——A +—A, =sinacsc(a-f)A, —cosacsc(a—f)A,. Note
2/

that for the Cartesian system both covariant and contravariant compo-
nents are identical.



b. The covariant basis vectors for oblique system are ¢, =

WORKED-OUT ExampLes © 147

% g

o J’
U O o' 5

or é =——FE +——E,=cosaE +sinaE, Similarly, ¢, =—%F +
P P 1 2 Y: o € o !

9y = s e : : Lo

—2—E, =cos BE, +sin BE, The contravariant basis vectors are ¢' =—E,

ox oy
o' - o' = -

or ¢' =—E, +—E, =—sin fcsc(a— B)E, +cos fesc(a— B)E,.

o' oy
2 2
Similarly, & :8_'E' +WEQ =sinacsc(a - B)E, —cosacsc(a - B)E,.

Note that for the Cartesian system both covariant and contravariant

basis vectors are identical and are unit vectors, i.e. ‘El‘ =1.

A, =A'¢, + A%, =[-sin Besc(a — B) A, +cos fesc(a— B)A,llcosa E, +

sina E, ]+ [sinacsc(a - B)A,, —cosacse(a — f)A,,llcos BE, +sin BE,].
After some manipulations and rearranging the terms, we find A'¢, =
A, E +A,LE, Similarly, Ag =Ag¢" +A,e"=[cosaA, +sinaA,]
[—sin Besc(a — B)E, +cos Besc(a — B)E,]+[cos A, +sin BA,, |[sina

csc(a— B)E, —cosacsc(a—f)E,]. After some manipulations and
rearranging the terms, we find A’ = A, E, + A, E,.

Dot-product of covariant and contravariant basis vectors can

. - _9 2 - _cosasina sinacosa
now be written as ¢ -é"=¢é"-¢ =— —— =0 and
sin(a—f) sin(a-p)

6,5 =55, = COSPSNB | SmBCOSS e
i sin(a—f)  sin(a-p)

firm that ¢, L&° and &, L@, as shown in Figure 16.2. Also, we can

results con-

write 'E]__cosasinﬂ sina cos
' sin(a—f) sin(a-p)

=1. These results verify that é' €= 5]’

1 and & 'Ezzcosﬂsina_
’ sin(a — f3)

sin fcosa

sin(a - /)
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my

» Y
é’l

FIGURE 16.2 Covariant and contravariant basis vectors in oblique coordinate systems.

. . €6 €6
e. The doubly covariant metric tensor g ,=|_ _ _ _|=
Tolé, e é,-é,
1 cos(a —
(=) . We can calculate doubly contravariant metric
cos(a — f3) 1
=1 =1 =l =2
. |le e e -e .
tensor by inverting the g, or using g’ = {J s #9} =csc’ (a - )
‘ e e e e

1 —cos(a—p)
—cos(a—f) 1

orthogonal system, since off-diagonal elements of metric tensors are not

equal to zero for all values of angles @ and S with the condition that

}. These results confirm that x’ is a non-

(a—p)=(2k+ l)z. where, k is an integer.

é, = =
f.  Unit vectors along the covariant basis vectors are; —— = cosaE, +sinaE,

[2]
and-22- = cos PE, +sin SE,. The unit vectors along the contravariant basis
|62|
=1 =1 =2
é é e
vectors are; —=—=—smﬂE +cos,BE and — =

Nl

sina E, —cosa E,.
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16.4 EXAMPLE: QUANTITIES RELATED TO PARABOLIC
COORDINATE SYSTEM

Consider a parabolic coordinate system (acl,xQ,x3 ) =(&,1,0) given in terms
of Cartesian (yl,yz,ys)z (X,Y,Z), as shown in Figure 16.3. The functional
relations are

FIGURE 16.3 Parabolic coordinate system.

X =¢ncost
Y=¢nsin@ . Find the basis vectors é,, é,, €, for the parabolic coordi-
Z=(&-n%)/2

nate system in terms of the Cartesian unit vectors. Also find the scale factors,
unit vectors, metric tensors (covariant and contravariant), ]acobian, volume
element, and Christoffel symbols of the 2" kind.

Solution: .
j

The covariant basis vector (ég,éﬂ,ég) reads, using ¢, = wE ;
€, = ncosOE, +nsinOE, + EE,
¢, =§cos OF, + £sinOE, — nE3
€, =—¢nsin HEI +&ncos 0E2
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The scale factors are h |é§| =&+, hﬂ =|Eq| =&+ n*, and h, =&,

The unit vectors are, using é(k)=¢, / h,

(77(:05491731 + nsinOF, + §E3)/ 4+’

é(¢)=
( ) (fcos@ElJrfsinQEZ—nEB)/W
(6)

—sin@E, + cosOE,

A

A

Covariant metric tensor reads, using g, =¢€,
E+n? 0 0
gi=| 0 E v’ 0 | Therefore, the parabolic coordinate sys-
2
0 0 (&n)

tem is an orthogonal one, since metric tensor is a diagonal matrix with
null off-diagonal elements. The contravariant metric tensor is the inverse

o) 0 o
of the covariant one, or g’ = (gij )71 = 0 (52 +1° )71 0
0 0 (¢n)”

Jacobian is the square root of the determinant of &;, or the product of all scale

factors, J = ‘gy‘ = (,‘77(52 +772). The volume element is dV = Jdédnd6 =

mk a a .
m g g k aglk g’
én (é +n )dédnd@ We use Equation 10.20, or T'; 7[# ; Lf}

11
to calculate the Christoffel symbols. Therefore, T}, = g {ab” } 5 ° R
oc | & +n

11 a ) a
Fiz:g g %’ 1—1320, Fﬁ:g— _%u |__ 277 2,
on | &+n 2| on & +n

a ) 33 8 . 1
rm = %{%} 2 : 2> [y = F?l = rfz =0, Fi’s = g_{ﬁ} =0
Sl ¢ +n 2105] ¢
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r _i__agzg _ g L —o r _i _ags,s _ 5772
29 — P - 9 2 23 — V> 33 9 P) - 2 27
2 o8 S +n g & +n
e _i ¥Mp | 71 2 —o e i _agss _ né
2 — 9 _8 — 22 9> 23 > 33 9 P - 2 2°
Lon | & +n n &+
33 _a .
I, = 5 | % :l, '}, =0. In matrix form, we have
2 | On
9 n 0
52 +772 52 +772
o T, .
ri=|rs, r<ore 7 - : 0
rgé r;m FZH §2+772 §2+772
o¢ oy 00 & 2
0 0 - 277 2
L S +n
_n 9 0
2 2 2 2
rLor, ry] | s
i n
I'"=|1" l—‘j 7 - 5 0
rzﬁf r’;n an §2+772 §2+77“
23 on 00 2
_ng
0 0 2 2
L & +n
0 0 é
0 0 0
rﬁ{f rffﬂ r-’f@ 1
r’=\r;, I, Ty|=l0 0 —
n
e
L& n |
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16.5 EXAMPLE: QUANTITIES RELATED TO BI-POLAR
COORDINATE SYSTEMS

Consider a bi-polar coordinate system (xl,xz,xg)z(f,n,z) given in terms

of Cartesian (yl,yz,yg)z (X,Y,Z), as shown in Figure 16.4. The functional

relations are

Y
Z

asinhn

- coshn —cosé&

asin S,
c . Find the basis vectors ¢,, é,, €, for the

coshn —cosé&

z

bi-polar coordinate system in terms of the Cartesian unit vectors. Also find
the scale factors, unit vectors, metric tensors (covariant and contravariant),
Jacobian, volume element, and Christoffel symbols of the 2" kind.

Y Axis

3

*)

X Axis

FIGURE 16.4 Bipolar coordinates: £ and 77 iso-surfaces (Foci are located at (=1, 0) and (1, 0)".

! (https://commons.wikimedia.org/wiki/File:Bipolar_isosurfaces.png)



Solution:

The covariant basis vector (é,,¢, ,é_ ) reads, using é Y E
[t A k axk J

—asinhpsiné

a(coshncosé —1) 3
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a]’

- (coshn —cos 5)2

(coshz —cos 5)2 )

2

_ a(l—coshncosf)E
(coshny —cosé:)2
¢.=E,

z

asinhnsin& B

(coshz —cos é:)z

The scale factors, after simplification, are h, s |=
P | §| cosh?] cos§ |e,7|
a , and h_ = 1. The unit vectors are, using e(k) =¢, /h,,
coshn —cosé& i
6(&)= —sinhzsin& B coshncosf—lEo
coshn —cosé& coshn—cosé  ~
( _1l-coshpcos§ = sinhzysind B
coshn —cosé& coshn—cosé °
e (z) = E3
The covariant metric tensor reads, using g; = € e It
_ , _
¢ _ 0 0
(coshn —cos¢)
2
g; = 0 a 0|. Therefore, the parabolic

0 0

(coshn —cos 5)2

coordinate system is an orthogonal one, since metric tensor is a diagonal
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null
tensor

with
metric

matrix

ant is

off-diagonal
the

(coshz —cos 5)2

inverse

0

2
a

0
0

(coshz —cos /:)2

2
a

0

elements. The  contravari-
of the covariant one, or
0
0. Jacobian is the
1

square root of the determinant of g, or the product of all scale factors,

2
a

J=\/@=(

2
a

coshn —cos &)

(coshn —cos¢)
symbols can be calculated as

. The volume element is dV =Jdédndd =

s-d&dndz. Similarly, as given in Example 16.5, the Christoffel

siné sinh7 O_
g cosé —coshn  cosé& —cosh
reolre o1 |le sinhn —siné& 0
Fif F’g sz cos& —coshn  cosé —coshn
k24 zn 2z 0 O O
—sinhp siné& O—
cosé —coshny  cos& —coshn
e Th Tk in cinh
"= FZ§ r:]m FZZ = _ N h 0
oo cosé —coshn  cos& —coshn
<& 1 2z O O O
r =[o]
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16.6 EXAMPLE: APPLICATION OF CONTRAVARIANT
METRIC TENSORS
Using the property of contravariant metric tensors, show that the following
relation holds, g'¢, A’B" =" A B,
Solution:
Knowing that metric tensors replace repeated indices with the
free index while raising (contravariant metric tensor) or lowering
(covariant metric tensor) them. We can write the expression in
the L.H.S of the above relation as, g"lgyk A'B* :é’;kAjBk. But we
can write A’ =g”A and B'=g"B, . substituting, gives g's, A/B" =
—
g;kgjnA”gkmBm — g;kg]” gkmA”Bm zglzngkm Aan — gmulAan, after Changing
dummy indices, ie, n—>j and m—>k, we get E"AB, =5§’kAin.
Therefore, the given relation holds. '
16.7 EXAMPLE: DOT AND CROSS PRODUCTS IN

CYLINDRICAL AND SPHERICAL COORDINATES

Given that A(i) and B(i) are the physical components of vectors A and B,
respectively, write down the expressions for physical components of the
cross-product, A x B, and dot-product A - B in terms of A(i) and B(i), for the
following coordinate systems (assume a 3D space, N =3 ):

a. Cylindrical polar (xl a8 ) =(r,0,z)

b. Spherical polar (xl,xz,x3 ) =(r,p,0)

Solution:

The dot-product and cross-product relations are A-B=A'B, C' =&%A By
(contravariant component). We use the relations between covariant/
contravariant and physical components, or A, =h,A(i) and A" = A(i)/h,.
a. For cylindrical coordinates, we have the scale factors as
(hy,hy,hy)=(1,r,1) and the Jacobian is J =r (see Section 11.6.1). We
can write B, =h B(1)=B(1), B, =h,B(2)=rA(2), B, =h,B(3)=B(3).



156 ° TensOR ANALYsIS FOR ENGINEERS, 2E

A(l) A(l) NZM:M, Al =

Similarly, A'=
h, r h,

Therefore, the dot—product reads

A-B=A'B,=A'B, + A’B, + A’B,= A(1)B(1) + A(2) B(2) + A(3) B(3),
a scalar quantity. The physical component of the cross-product
is C(i)zhl.C":hiEﬁkAjBk, no-summation on index i. eExpanding
the  expression  gives  C(1) :thl =h,EYA B, =17jkA].B,< =
~[hA(),B(3)~ A B)LB(2)]=A(2)B(3)-A(3)B(2).nd C(2) -
h,C* =r&*A B, =r7’AjBk =[hBA(3)hlB(1) hA(1)h,B(3)]=

: k

A(3)B(1)—A(1)B(3), and C(3)=h303 =h,&"" A B, :%A]Bk =

%[hlA(l)hZB@) (1)]=A(1)B(2)-A(2)B(1).

b. For spherical coordinates, we have the scale factors as (h,,h,.h;)=
(1,r,rsing) and the Jacobian is J =r’sing, see section 11.6.1. We
can write B, =h,B(1)=B(1), B, =h,B(2)=rA(2), B, =h,B(3)=B(3).

il):A(l), A2 zﬂzﬂ, A :ﬂzA(g).

1 h, r h,

Therefore, the dot-product reads

Similarly, Al =

A-B=A'B,=A'B, + A’B, + A’B, = A(1)B(1)+ A(2) B(2)+ A(3)B(3),
a scalar quantity.

The physical component of the cross-product is C (i) =h,C' = h,E™ A By
no-summation on index i. Expanding the expression gives C(1)=h,C' =

hE"A B, = }’" AB, = [h A(2)h,B(3)—hyA(3)h,B(2)]=

1"
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A(2)B(3)-A(3)B(2), and C(2)=h,C*=r&*A B, :rez7jkAjBk -
[1,A(3)1,B(1) -, A(1)h,B(3)]=A(3)B(1)-A(1)B(3), and C(3)=
h,C® =h,E*" A B, = rsingp%AjBk =%[hlA(l)th(Q)—th(Z)hlB(l)] =

A(1)B(2)-A(2)B(1).

16.8 EXAMPLE: RELATION BETWEEN JACOBIAN AND
METRIC TENSOR DETERMINANTS

Show that determinant g of metric tensor g 18 equal to the square of Jacobian
J, in a coordinate system, when measured against Cartesian system.

Solution:

Let’s consider two arbitrary system x' and 2”'. We can write the metric ten-
koAl
Ox

sor transformation as g, = o o g, since it is a doubly covariant tensor.

. : S et ]| ex! oxt
Taking determinant of the both sides gives ‘gij ‘z ‘W‘ ‘@ |gk1|. But P

I
or Pl is the Jacobian of transformation, hence ‘g:j ‘=] ? |gkl|. Rewriting

the expression and using |g,d| =g and ‘g;‘ =g wegetg'=J%g, or J = \/g
g

Now if the original x' system is the Cartesian system, then g, ... =1 and

. 2
we receive g'=J".
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16.9 EXAMPLE: DETERMINANT OF METRIC TENSORS
USING DISPLACEMENT VECTORS

For an arbitrary coordinate system x' = (£,n,¢) the magnitude of displace-
mentvectoris givenby ds® = 5d&E* +3dn® +7d¢? — 4dEdn —8dEAS +2dndS .
Find ¢ and ¢’ (i.e., the determinant of covariant metric tensor and the
contravariant metric tensor).

Solution:

We have ds® :gydxidxj) expanding for the given coordinate system and
using g, = g, gives ds® = g,,d&” + g, dn® + g3, S +2g,d&dn +2g,,dEdS +
2g,,dndd . Therefore, after comparison we receive g,, =5, g,, =3, g,, =7,

g, =2, g, =—4, and g,; =1. The matrix form of covariant metric tensor

5 -2 -4
is gy = -2 3 1 |. Determinant of g§i=g=5(21—1)+2(—14+4)—
-4 1 7

4(-2+12)=40. Note that the given system is not orthogonal, since off-

diagonal elements of g, are not zero. For contravariant metric tensor, we find

11 1]
5 -2 —4 5 -2 —4| % 145 g

the inverse ofgij =-2 3 1 |,or g':" =-2 3 1 = 7 0 wl
-4 1 7 —4 1 7 l i E
L4 40 40

C, cofactor of g,

This is calculated using the formula g’ =—"= , for
g determinanteof g,
17 _ 41|
example;gn:&:_:EZQO’gZS:CQS: = 5+8=i’
40 40 40 40 40 40 40

etc.
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16.10 EXAMPLE: DETERMINANT OF A 4 X 4 MATRIX USING

PERMUTATION SYMBOLS

16.11

5 8 15 21
4 10 13 11
Calculate determinant of matrix M = , using Equation 9.13.
3 6 9 12
2 4 7 1

Solution:

We expand based on row, hence |M|=eijk1M“M2jM3kM4,. Expanding we
get|M| =

€ 1234Ml 1M22M33M44 + € 1243Ml 1M22M34M43 + € 1342Ml 1M23M34M42 +
61324M11M23M32M44 + e]42’3M11M24]\4322\/I43 + 614'32M M24M33M42 +
62134M12M21M33M44 + 62143M12M21M34M43 + e934lM12M23M34M41 +
62314M12M2‘3M31M44 + e241‘31\4122\4242\431M43 + e2431]\41 M24M33M41 +
e31 24M1 SMZI M32M44 + 6’31 4ZM1 r3M21 M34M42 + 8(3741 Ml r3M22M34M41 +
63214M13M22M31M44 + 63419M13M24M31M42 + 63421M13M24M32M41 +
641213M14M21M32M43 + 64132M14M MS M + 64231M14M22M M +
64213M14M22M31M43 + e4’3121\4 M M M + 84'321M M M M

Substituting for the values of the matrix elements and the permutatlon
symbols (i.e., +1 for even and —1 for odd number of interchanges for
indices), we receive |M | =18. Note that the number of terms out of expansion
is equal to 4! =4x3x2 =24, or in general N! for an N x N matrix.

EXAMPLE: TIME DERIVATIVES OF THE JACOBIAN

Show that the time derivative of the Jacobian reads i% =V -V, where V

is the velocity vector.

Solution:

Considering the transformation from coordinate system x' to that of x",
we can write the Jacobian as the determinant of the transformation, using
1 2 3

knl ax & ax
axlk &vm 8xll

oF o (ad)at ' o o (o)t o' &t o (o
at axlk at axm axrl ax/lc ax/n at axrl axrk axm &x'l Gt :

Equation 4.4, or J = Taking the time derivative, we have
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axl axZ & 3
But we can write — = V', — =V? — =V? i.e., contravariant components
ot ot ot
. . . ox' ox' ox’
of velocity vector. Hence, using chain-rule or Y 52:—, we can write oF _

Jor| VI o o o o o o o oV o o o o o o o' oV e’ |
axi &\"k axj axm axp axrl axj &Y/k a,\'i axm axp axrl axj erk Gxi axm axp axvl

#0;i=1 & j=2 &p=3 #0; j=1 &i=2 &p=3 #0; j=1 &i=2 &p=3

Therefore, after rearranging the terms, in each group, we receive
oJ oV'[ .ot o o’ oV ([ aox' o o’ oVe ([ a Ox' o o’
_:_1 ¢ 1k m 2 + 2 ¢ T m 2 + 3 & 1k !117 :
ot Ox ox'"™ ox'™ Ox ox ox"™ ox™ ox Ox ox"™ ox" Ox

But the terms in each bracket is the Jacobian, and hence we

1 2 3
receive 86{ j[ﬁV v +8V ]zj{—[j v ﬂ JV -V, which
-

ot o o’ J\U o

Vv
1 0T
J ot

yields —

=V-V. For divergence of a vector, see Equation 11.12.

16.12 EXAMPLE: COVARIANT DERIVATIVES OF A
CONSTANT VECTOR

Show that for a constant vector C, the covariant derivative C ji is not
necessarily zero. Find the expression for its derivative.

Solution:

= i . . L ) 0 N
av =(C'¢ ; writing its covariant derivative, we receive —(C'¢, )¢’ .
We have C=C'¢,; , pw .

The covariant component then reads as i(C’E ) [6C J é +C' 0
ax‘l

axf
6C1 ocC! -
¢, +C'T f*,c —+C [}, | Now, since C is a constant, the first

[N —
C’;
term in the bracket vanishes but the second term does not. Therefore, we

. i ki
receive G, =C'T'};.
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16.13 EXAMPLE: COVARIANT DERIVATIVES OF PHYSICAL
COMPONENTS OF A VECTOR

For the vector A=A'¢, =A(i)é(i), write down the expression for A(i)’/'
Use thg covariant derivative of the vector A in terms its physical components,
or VA=V (A(i)2(i))=2(i)A(i)

I]' M
Solution:
The covariant derivative, in terms of contravariant component of the

o

vector is V, A=V, (Aié,)z( . +A'T};)é. Substituting for contravariant
! ax;/ J ¢

components A’ = A(i)/ h, and covariantbasis vector ¢, = h,é (i), we get V].A =
Ali
5] s
/), Alk)
ox’ h,

A A oy

1

T} h,é(i):(

a A i3 3 ) ) .
Therefore, A(i)’], = (8x(’l)) - A}fi) 8{(;;) +%A(k)r}cj =V A(i) —#thi +
. . .

4 1

Z—iA(k)F i Note that the Christoffel symbol could be written in terms of
K

physical components/ Unit vectors, i.e., F};j could be written in terms of @ (i),

designated by 1:;\7 (see Example 10.4.1).

16.14 EXAMPLE: CONTINUITY EQUATIONS IN SEVERAL
COORDINATE SYSTEMS

The continuity for a fluid with density p and velocity V' is given as
——+ ——(iji ) = 0. Write this equation in tensor notation for N =3, and
express the continuity equation in:

a. Cartesian coordinates (x,y,z) with velocity physical components given as

V=(V,.V,.V.).
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b. Cylindrical coordinates (r,6,z) with velocity physical components given

as V=(V.V, V)

c. Spherical coordinates (r, g, §) with velocity physical components given as
V=(V.,V,.V,).
Solution:

ap

Summation on i gives, - + %[%(,jpvl ) + %(ijZ ) + %(jpvfi )] =0.

a.

16.15

Jacobian for a Cartesian system is unity and physical and contravariant
components are identical, hence the continuity equation reads,

o [ o 8 8
E‘{a(ﬂ“)"‘a—y(ﬁ’v_y)"‘a(/ﬂl )} =0.

Jacobian for cylindrical systems is J=r and V'=V, V*=V,/r,
V?=V.. Hence, the continuity reads, after some manipulations,
op 10 10

5
P10 v+ vy LoV =o0.
o TPV o eVe) PV

Jacobian for spherical systems is J = r’sing and V' =V, V? = v, /r,
Vi=V,/ (rsing). Hence, the continuity reads, after some manipulations,
o,

ot  rising

{%(ﬂ singpV, ) +%(rsin¢)pV¢ ) + a%(rpVe )} =0.

EXAMPLE: 4D SPHERICAL COORDINATE SYSTEMS

A 4D spherical system «x'=(r,p,0,p) with two polar angles

and 6 range from 0 to 7 and azimuth angle ¢ from 0 to 2z,

is related to the 4D Cartesian coordinates y' = (x,y,z,w) as

x =rsiny sin @ cos @
y=rsinysinfsing
z=rsiny cosd

w=rcosy
Find the Jacobian for the spherical system and volume of a 4D sphere in
this coordinate system.

Find the expression for the Laplacian of a scalar in the spherical coordi-
nates and write out it in detail.
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Solution:
or oy 00 op
oy o oy
8(xyzw) or Oy 00 OJ¢p
1. Jacobian reads jza(r,t//ﬁ,go): R
o oy 00 op
ow ow oOw Oow
o oy 00 op

sinysinfcosep rcosysinfcos@ rsinysinfcose —rsiny sin@sin @,
sinysin@sing rcosysin@sing rsiny cosfdsing  rsiny sinfcos@
siny cos@ rcosty cos 6 —rsiny sin@ 0 B
cosy —rsiny 0 0

K 2 .
—r®sin” y sin 6.

The differential volume is dV = JdrdydOde, with 0<0 &y <7x
and 0<@<27. Volume is then a quadruplet integral of dV, or

V= fﬂ(—rs)j”sinz dejﬂsin 0do f2ﬁd¢, = ﬂR4I” 1—cos2p _ R |
0 0 0 . .

2.

2 2

The expression for the Laplacian of scalar S reads V*S = %V . (Jg?" \ )

This coordinate system is orthogonal, since g;=0 fori# j. For example

Gy =€ €, = rsiny cosy sin”® @ cos” @ — rsiny cosy sin” @sin® @ + rsiny cosy
1 .
cos® @ —rsiny cosy =0. Therefore, g,=—=h;. For calculating

i

g, =¢€,-¢,, need the covariant basis vectors, or

M

|, =siny sin @ cos (01731 + siny sin @sin (/)E2 + siny cos GES +cos t//E4

QN

= rcost//sinﬁcosgolz‘1 + rcoswsin@sin¢E2 +rcosy cosOE, —rsinyE,
€, =rsiny cos@cos@E, + rsiny cosdsin pE, —rsiniy sin HES

&, =—rsiny sin@sin oE, + rsiny sin  cos pE,
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which vyields, g, =1, g, =r*, g,, =r’sin*y, g, =r’sin’ysin’ 6. Now,
o1 ] o1 . 1 1 \
VIS =2V (V)= VIS = 2V (JVS) =V (Y 1S)+ Vo (T2 V.S +

%VS (jgs"}VSS) + %V4 (jg44V4S). Each term reads, after substitution

_ 2
iV1 (jg”VIS) —1 0 (—r sin l//sm@as) 398 —+— s
J r® sin’ l//smﬁ or or ror or?
iV9 (jg22V28)= S 2_1 0 B o sin2l//sin6?ﬁ
AT r’sin” ysinf Oy oy
oS ©o°S
=3 cot —l//'|'a 3
1 . -1 0 (—r’sin*ysiné oS
—Vg(JgBVsS): 3.2 . 2 . 2
J r°sin” ysin@ 06 rosin“y 00
1 oS 0°S
= COt49—+—2
rosin” 00 06
iV (jg44v S) -1 6 —r” sin’ l//s1n9 oS
J ! r®sin® iy sin @ a¢ r* sin® iy sin’ 6’8(/)
B 1 o°S
r*sin’ ysin® @ 0¢”
2 2
Hence, V* S—ia—s a—2+i2 cott//a—s+ 889 +— .19 cot@as 88 +
ror or r oy Ow” ) risin“y 00 00°
1 o°S

r2sinysin® 0 6p°



WORKED-OUT ExampLEs © 165

16.16 EXAMPLE: COMPLEX DOUBLE DOT-CROSS
PRODUCT EXPRESSIONS

R
The expression ZA ZA is given. The notations mean that the two gradient

vectors (marked by X) are cross product to each other as well as the two
vectors A, then the resulted vectors of the cross-product operations are
dotted. Write the expression in tensor notation and simplify the result.

Solution:

The two cross-product results are dotted; hence we require the contravariant
component of the cross-product of the graglient’s and the covariant
component of the cross-product of the vectors A. Therefore, we can write

.
VA ZA:g’jk (gilmAlA,',f),j. Expanding the resulted expression yields,

e%e (A'A" SIE(A'AM), —8i8F(A'A,™), =(A'AL),, —(A*A), .
( k) ! m( k);/ ml( k)] ( k)l ( k);/

!j_

Performing the covariant derivative operations gives =A'AL+

x{<
B>

x{<
o4}

A'AL, —A,ﬁA,',Z —AkA,jk,. =AlAf—A} A’ . The first term of the result can
J Y ! j k
k=1, j—k )
be written in vector notation as AZA’,{k: (V . A) . Therefore, we finally have

X X

iA i;& = (? A )2 - AfjA;jk . Using the method given in this example, apply

it to the following expressions:

ilmAIAk!i_n ),7_ = 51’75/:1 (A[Ak " ), 5,1,51‘ (A[Ak!l«” ),j = (AjAkf ),j -

50X
LA

a. VAVA=gl (g —
o J
X X

(AkA j)'j = A{jAk,.k —i—A"'Ak,A;C —AI;].A,C,,] —A*A 7. Invector notation, the

K- krj:

o1 e

resulted expression can be written as %é i = (ﬁ-A)Q +A ~(§(§ ~A))—

ANA, - A(V*A).



166 ° TeNSOR ANALYSIS FOR ENGINEERS, 2E

l

b. ?ﬁ éﬁ:g”’“em (A'"A,(),_l]. = (/0 —515, )(A"AL),, =(A*A,), ) -

m m r-j

2

(a'A,) kj =VIA*-2A(V(V-A))-AJA,, (V- 4)

Note that vector-type notation is not sufficient to express some of the terms
in these expressions—another reason to use index/tensor notation for its
generality.

16.17 EXAMPLE: COVARIANT DERIVATIVES OF
METRIC TENSORS

Show that the derivative of metric tensors (i.e., g and g”) is equal to zero.

Solution:

Since metric tensor is a constant in the Cartesian coordinate system,

hence its derivative is null and will be the same for any coordinate system.
_%

" 8xk

using Equation 10.19 we can expand the last two terms on the R.H.S, or

0o Og. 0o, Og . 0g,.

( ) zﬁ_l é.,.ik/__agk}' 1 é.,.%_& . The terms on
e a2l adt o et 2l o

the R.H.S cancel out and the expression is equal to zero, hence (gy)

and similarly (gij ),k =0.

To show this, we use Equation 10.14, or (gy) - g, —Tg, Now

Oa

’k_

16.18 EXAMPLE: ACTIVE ROTATION USING SINGLE-AXIS
AND QUATERNIONS METHODS

Consider the vector OA =(1,-1,2) connecting the origin to point A in the
(x,y,z) coordinate system. Now we rotate this vector by an angle of 60°

143

about an axis in the direction of unit vector 7 2[057] . Calculate the

resulted vector OA’, using a) rotation matrix with Equation 12.7, and b)
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quaternion method with Equation 15.12. Note that the rotation angle here
is given for an active rotation (i.e., vector rotates but coordinate system is
kept fix).

Solution:

a. Since the vector OA is rotated by 60 degrees, active rotation,
then we use #=-60" in Equation 12.7. Therefore, for n, =0,

n,=1/2, and n,=+/3/2 we receive R=

® | Oo|%| »-I>|§|

ANl b
»-lk|§'

|
°°|§¥°°|U‘ | oo

The rotated vector component in the (x,y,z) is given by

1 3 W 1,3,38
2 44|, 2 4 2 10443
2 s Bl s bl
R et IR B e
4 8 8| 4 8 4
5&:(10%*/5,“2*/5,14_3*/5)
8 8 8

b. Using the active quaternion operator, see Equation 15.12, we need to
have the corresponding quaternion based on half of the rotation angle,

Q:;}O", Q =cos30+ lj+£k sin30=£+lj+£k. Now, we
9 2 2 2 4 4

i

calculate OA” = QOAQ" =[gwti]#?k](i—j+2k)[§—i]‘—§kj
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|:1—£+£%+£Ji—ﬁj—(l—ﬁjk}(i—]ﬁrzk)zmﬂ

4 2 2 4 4 4 8

1+23 . 14-33 10+44/3 1+23 14-33
8 J* 8 k s 8 8 '

Alternatively, we can use Equation 15.14. Readers may want to use
Wolfram Alpha (www.wolframalpha.com) to visualize the quaternion
as a rotation operator. After accessing the wolfram Web site, enter the
phrase “quaternions” in the space provided and use the format provided
similar to those examples given on the page.

Or @:[

16.19 EXAMPLE: PASSIVE ROTATION USING SINGLE-AXIS
AND QUATERNIONS METHODS

Repeat Example 16.18 for a passive rotation of an angle 45°. Having passive
rotation we keep vector OA fixed and rotate coordinates (x,y,z). Repeating
the data here, for convenience, OA = (1,-1,2) , ii= (0%%} )

Solution:

a. Since the vector OA is rotated by 45 degrees, passive rotation, then

we use @ =45 in Equation 12.7. Therefore, for n, =0, n, =1/2, and

2 6 2
2 4 4
n3=\/§/2 we receive R = —76 2+:\/§ 2\/58_\/6 . The vector
V2o23-\6 6442
B 8 8 ]

components in the rotated coordinates (x',y',z’) is given by
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V2 6 V2] V2 6 2
2 4 4y 2 4 2
V6 243V2 236 |] [ |_| V6 2+43V2 23-V6|_
4 8 8 ) 4 8 4
V2 2¥3-V6  6+42 V2 2Y3-V6 6442
4 8 8 4 8 4

_2\/6
932+ 4346 . or OA'=
12442 -24/3 ++/6

12+4\/§—2\/§+\/6
8

® |~

(—2\/6 2-3v2+43-446
8 8 ’

J = (-0.61237,-1.13905,2.0803).

. The quaternion related to this rotation, using half of the rotation angle,
8 2 2 8 2 4 4

n

\/2+\/§_\/2—x/§j_

Now, we calculate  (OA) =Q OAQ = [ > n

\/6—43\6 k}(i—j+2k) [Jz;\@ +J2;\/§j+J6—43\/§ k};.

(0.92388—0.191342 j — 0.331414k ) (i — j + 2k)(0.92389 + 0.191342  +
0.331414k) = (0.47149 + 0.20979i — 1.2553 j + 2.03912k ) (0.92389 +
0.191342 +0.331414k) = —0.61237i — 1.13905 j + 2.0803k. Or (OA)' =

(—0.61237,-1.13907,2.08032). Alternatively, we can use Equation 15.20.
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16.20 EXAMPLE: SUCCESSIVE ROTATIONS USING
QUATERNIONS METHOD

Use data given in Example 16.18 and rotate the resulted vector, actively in
that example through a successive rotation of an angle 45°. For this opera-
tion use the quaternion method.

Solution:

From Example 16.18 we have the resulted vector

07\,_(10+4\/§ 1+243 14-343 1 J_j
-8

, and the unit vector 7=|0,—,—
8 8 9’

2
along the axis of rotation. The follow up rotation quaternion is
related to rotation angle of 45 = z . Hence, using half-angle we have

P=cos”+ (lﬁx/_kjsi 7 \/2+J_ \/2 f \/6 3\/—
8 9 S

2 4 4

Now,

>

[

using Equation 15.18 we can write OA” = POA'P" =

(\/2+\/§+\/2—\/§j+\/6—3\/§ k}[10+4ﬁi+ 1+23 ,+14—3\EkJ

2 4 4 S s Ty

2 4

[J2+\/§_J2—\/§j_J6—3\E
4

k} =~ 1.5436i +1.8708 j + 0.3425k.

We can also use the original vector OA with the dual-quaternion as
the product of the two corresponding quaternions, see Equation

15.18, or (PQ)ag(PQ)* Note that the g belongs to the first rota-
tion and p (60° rotation) to the second one (45° rotation). But

M{\/2+\/§ +\/2—\/§].+\/6—3\/§ kj(ngi]ur?kJ; 0.60876 +

2 4 4

0.39668 j + 0.68706k . Therefore, its conjugate (;5[7)* =0.60876 —0.39668 j —
0.68706k. Now, we can write OA" =(p§)OA(pg) = (0.60876+0.39668 j +
0.68706k)  (i— j+2k)(0.60876—0.39668 j—0.68706k)=  1.5436i +
1.8708 j + 0.3425k. As seen the two methods provide us with identical results.
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EXERCISE PROBLEMS

1. Write out the following expression in full detail for N = 3 dimensions
using Einstein summation convention:

a. A=Algg,
b. A-EzA"ngU
1 0 i OW
C. V2 = ._7‘71} —j
v j@x'( o o
e. O(h A(k
d. C(i):hiik—( Al )
J ox’
ij
e. Al =LLor Al T AP -ThAl

5 n nm

2. Byrotating bipolar coordinates about X-axis (the axis where foci are located
on) we obtain the bi-spherical coordinate system, (xl,xz,xs)z(§,f7,(/))

_asin{cosg

coshn —cosé&
given in terms of Cartesian (yl e ,ys) =(X,Y,Z),as 1Y = _asingsing .
coshn —cosé&

asinhn

coshn —cosé&
Find the basis vectors é,, €, ¢, for the bi-spherical coordinate system
in terms of the Cartesian unit vectors. Also find the scale factors, unit
vectors, metric tensors (covariant and contravariant), Jacobian, volume
element, and Christoffel symbols of the 1* kind.
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FIGURE 17.1 Bi-spherical coordinate system. <GNU Free Documentation License>

3. By rotating bipolar coordinates about Y-axis (the axis perpendicular to
the line connecting the foci) we obtain a toroidal coordinate system,

(xl,xz,xs)z(cf,r],go) given in terms of Cartesian (yl,yz,ys)E(X,Y,Z),

_asinhzncosg

coshn —cosé

asinh7sin Lo :
as 1Y =TSP g the basis vectors é,, é,, &, for the toroidal
coshn —cosé&

asiné

- coshn —cosé&

coordinate system in terms of the Cartesian unit vectors. Also find the
scale factors, unit vectors, metric tensors (covariant and contravariant),
Jacobian, volume element, and Christoffel symbols of the 2" kind.

FIGURE 17.2 Toroidal coordinate system. <GNU Free Documentation License>
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11.

12.

13.
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Having displacement vector 7 ='E, defined in Cartesian coordinate
system yi, express 7 in terms of the contravariant and physical compo-
nents in cylindrical, spherical, bi-polar, bi-spherical, and toroidal coor-
dinate systems. Use the definitions of these systems as given in previous
examples and exercises.

Show that for an orthogonal coordinate system the relation g, =1/ g" =h;
holds, i.e., the diagonal elements of covariant and contravariant metric
tensors. Note, no sum on index i.

For an orthogonal coordinate system, show that the following relations
holds for Christoffel symbols of the 2" kind (all indices are set to be
different):

rt=0,T/ :_h_;a_hz r zia_hz r :ia_hz
! h; o 7 hy o h, ox'

Find the relations for Christoffel symbols of the 1% kind for cylindrical
and spherical coordinate systems. Use results from the example given in
Section 10.4.1.

Show that covariant differentiation obeys the same rule as does ordinary

differentiation, when operating on products, e.g., (AiBj ) =A\B’' + A'Bj.

%
Write down the expression for the covariant derivative of a tensor of rank
five, A}, using hints from Section 10.14.

Show that metric tensors behave like a constant under a covariant dif-

ferentiation operation, i.e., (Aigy,) = Afkglj and (Al,gij ),k =A,g".

*
Show that the recursive relation for the curl of a vector A reads
A(n) = —VZA(n —2), for n>2. where n is the number of curl operations
and ;\(n) =VxVx--xVxA (note, A(0)=A).

ntimes

Using the recursive relation for the curl of a vector given in Exercise
11, show that the recursive relation for the biharmonic operator reads

A(n)=V4A(n—4)  for n>4.

Using the results of Exercises 11 and 12, show that the recursive rela-
tions for higher order operator V*" reads A(2n+1)=(-1)"V*'A(1)
and A(Q.n) = —VZ"’QA(Q.) .
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14. For the 4D spherical coordinate system from Example 15.15, calculate
the Christoffel symbols:

T, T, T, T, ., T, T, T,
" = F;/w FJ/H r;;w ,TY = FZV/ FZ;@ Fynga i
T, T ST VA
i F;(p_ rz(p
T’ 10 1% 1] roore T, T
| Fiw FZQ FZ(/) pe | re. re, TY |
Lw Ty, S Y
i qu,_ e o

15. Show that the following expressions simplify as given (see Example 15.16):

TR= A, AU ¢ A (V2A) Ay AT A (9(9-))

a. V
[
X

16. Write the below expressions in index notation:

17. Show that the following relations holds:

i i i
5] 5)11 572
e =67 81 51, b.e"e,, =055 -5/, ele, =25
a & Slmn — (M m n[> . imn — “m%n nOm> Ce ijn n
k k k
51 5)11 571

ke
d. &%, =6



18.
19.

20.

21.

22.

23.
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Using Equation 9.13, write the determinant for a 5 x 5 matrix.

Use Equation 13.19 to find physical components of the convective time
derivative of a velocity vector, and express the results for (3D) (hint: see
Example 15.14):

a. Cartesian coordinates
b. Cylindrical coordinates
c. Spherical coordinates

Show that the non-zero Christoffel symbols of the 1 kind for cylindrical
and spherical coordinates read:

a. Cylindrical coordinates: ', , =r and I'y,, =—r.
2
. ro.
b. Spherical coordinates: T',,,, =—r, T, =—rsin’ @, Ty, = —351112(/),

2

r,,=rand T, =rsin®p, T, =%sin2g0

Using cross-product expression for two vectors, show that (J is the
Jacobian):

1 mn
a. j&/k = ?E lgmigﬂ/glk

1 ijk omn
b. jz :68]1\5 lgmigﬂ/gkl

Calculate the single equivalent rotation angle and rotation axis for trans-
forming Cartesian system (yl,yz,yg) to (y’l,y'z,y’s) such that ', coin-
cides with y,, ', coincides with y,, and y', coincides with , .

Find the rotation matrix for transforming (y,,y,.,ys):

a. Rotate about (0, 0, 1) for 45°

b. Then, rotate about (1, 0, 0) for 60°

Then, rotate about (0, 1, 0) for 75°

o

a

Find the final rotation matrix and equivalent rotation angle

e. Find equivalent axis of rotation
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24,

25.

26.

27.

28.

29.

30.

31.

32.

Show the following relations hold for unit quaternion @ =Q, +@ and
arbitrary vector V.

a. @\7{)* = (Qg - ‘@‘2 )‘7 + 2((:) : \7)(:) +20Q, (@ X ‘7) active rotation

b. Q*V{) = (2Q§ - I)V + 2(V . @)@ +20Q, (V X @), passive rotation
Derive The rotation matrix given by Equation 15.22, using unit quater-
nion Q and arbitrary vector V.

Using Example 16.18 rotation matrix result, calculate the corresponding
Euler angles.

Using Example 16.19 rotation matrix result, calculate the corresponding
Euler angles.

Using the quaternions @thod as shown in Example 16.20, calculate the
components of vector OA =(1,-1,2) after two successive rotations. The
o . , _ 143
first rotation is by an angle of 80° about the unit vector 7 = 057
and the second rotation is by an angle of 50° about the unit vector
_ (V31 . . .
= ?,—,0 . Perform the calculations for both active and passive

rotation scenarios.

For Exercise 28, calculate the corresponding rotation matrix using the
product of the quaternions involved. Also using the resulted rotation
matrix calculate the equivalent axis and angles of single rotation.
A pilot maneuvers its airplane through a pitch-roll-yaw series or rota-
tions. Using the relation for the corresponding rotation matrix R, ana-
lyze the gimbal lock orientation when roll angle is equal to 3_77 )

2

Show that quaternion operation for active rotation (QVQ*) preserves

dot-products and triple products, hence it is a rotation.

Repeat the Exercise 16.20 considering the rotation as a passive one (i.e.,
coordinates are rotated).
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INDEX

A

acceleration vector
contravariant components of, 76-78
physical components in, 78-79
cylindrical coordinate systems, 81-82
orthogonal systems, 79-82
spherical coordinate systems, 81-82
substantial time derivation, 84-85
active rotations, 104-105
definition, 105
example, 105-107
arbitrary coordinate systems, 4, 31

B

basis vectors, 57
biharmonic operations on tensors, 58-59

C

Cartesian coordinate system, 3—4, 89-91
equivalent single rotation to sequential
rotations of, 70-73
fluid in motion, 83
Cartesian tensors, 65—-66
equivalent single rotation, 67-73
rotation matrix, 67
characteristic equation, 70
Christoffel symbols, 52, 58, 59, 77-80
of 2" kind, 35-39
for cylindrical coordinates, 44-46
for 2D polar coordinate system, 38
relations and properties, 41-44
for spherical coordinates, 46-49
of 1* kind, relations and properties, 41-44

complex numbers, 128
component notation, 2
connection coefficients, 37
conservation equations, coordinate independent
forms, 85-87
contravariant components, 31, 33
of acceleration vector, 76-78
of curl, 52
and transformations, 9-12
contravariant derivatives of vectors, 39—40
contravariant metric tensor, 22
contravariant permutation tensors, 32
coordinate systems
Cartesian, 89-91
cylindrical, 91-93
definition, 3—4
orthogonal curvilinear, 98-101
parabolic, 96-98
spherical, 93-96
covariant components, and transformations,
13-14
covariant derivatives
of mixed tensor, 40
of vectors, Christoffel symbols of the
2nd kind, 35-39
covariant/contravariant basis vectors, 22
covariant permutation tensors, 32
cross-product, 29-33, 53
curl operations on tensors, 51-54
cylindrical coordinate systems, 3, 91-93
acceleration vector physical components in,
81-82
Christoffel symbols for, 44-46
example, 23-25
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metric tensor, 23-25
physical components of Laplacian of a vector
in, 60-61

D

determinant of a 3 X 3 matrix using permutation
symbols, 34

divergence operation on tensors, 55-57

dot-product, 29-33, 57. See also cross-product

E

eigenvalues and eigenvectors, 67-73
Einstein summation convention, 2
equivalent single rotation, 67-73
Euler angles, 107-110
categorizing, 113-120
derive the quaternion from given, 139-140
example, 110-113, 120-121
for rigid body rotations, 108
exercises, 171-176

F
first principal scalar invariant, 70
G

Gauss divergence theorem, 85
gimbal lock, 121
gimbal lock-Euler angles limitation, 121-123

H

Hamilton quaternion relations, derivation of,
125-126

index notation, 2
invariant, 6

J
Jacobian
and metric tensor determinants, relation
between, 157
time derivatives of , 159-160

L
Lagrange multiplier method, 69
Laplacian of a vector, physical components of,
59-60

cylindrical systems, 60-61
spherical systems, 61-63
Laplacian operations on tensors, 57-58
Levi Civita symbol, 30

M

metric tensor, 18-22
cylindrical coordinate systems, 23-25
spherical coordinate systems, 25-27
mixed tensor, 18
covariant derivatives of, 40

N
Newton’s 2" law, 74, 76-78, 87

o

orthogonal Cartesian system, 3, 30
orthogonal coordinate systems, 33
acceleration vector physical components in,
79-82
curvilinear, 98-101

P

parabolic coordinate systems, 96-98
passive rotations, 104-105, 105-107
definition, 105
example, 105-107
permutation symbols, determinant of a 3 x 3
matrix using, 34
physical components
of acceleration vector in, 78-79
cylindrical coordinate systems, 81-82
orthogonal systems, 79-82
spherical coordinate systems, 81-82
substantial time derivation, 84-85
curl of tensors-3D orthogonal systems, 54—55
of Laplacian of a vector
cylindrical systems, 60-61
spherical systems, 61-63
and transformations, 15-16
proper Euler angles, 113, 114
Pythagorean theorem, 6, 18, 19

Q

quaternion
algebraic operations
and properties, 126-127



example, 127-128
and rotation, 129-132
definition, 123-125
derive the rotation matrix from a given,
135-138
quaternions multiplication rule, 125

R

right-hand-rule convention, 67, 72

rigid body rotations
Euler angles for, 108
quaternions-applications for, 123-134
direct relations and methods, 141

Rodrigues’ rotation formula, 67

rotation matrix, 67, 114, 117, 128
calculating, 72

derive the equivalent quaternion from,
138-139

rotation, quaternion and, 129-132

example, 133-134

S

scale factor, 7
second principal scalar invariant, 70
spherical coordinate systems, 3, 93-96
acceleration vector physical components in,
81-82
for Christoffel symbols, 46-49
example, 25-27
metric tensor, 25-27
physical components of Laplacian of a vector
in, 61-63
substantial time derivatives of tensors, 82-85

T

Tait-Bryan angles, 113, 117
third principal scalar invariant, 70
total/convective time derivative, 82
transformation coefficient, 10, 11
transformations, 15-16
contravariant components and, 9-12
covariant components and, 13-14
physical components and, 15-16
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U
unit vector, 6, 7
wW

worked-out examples

active rotation using single-axis and
quaternions methods, 166-168

application of contravariant metric tensors,
155

complex double dot-cross product
expressions, 165-166

continuity equations in several coordinate
systems, 160-161

conversion from vector to index notations,
144-145

covariant derivatives of a constant
vector, 160

covariant derivatives of metric
tensors, 166

covariant derivatives of physical components
of a vector, 161

determinant of a 4 x 4 matrix using
permutation symbols, 159

determinant of metric tensors using
displacement vectors, 158

dot and cross products in cylindrical and
spherical coordinates, 155-156

Einstein summation convention, 143

4D spherical coordinate systems,
162-165

oblique rectilinear coordinate systems,
145-148

passive rotation using single-axis and
quaternions methods, 168-169

quantities related to bi-polar coordinate
systems, 152-154

quantities related to parabolic coordinate
system, 149-151

relation between Jacobian and metric tensor
determinants, 157

successive rotations using quaternions
method, 170

time derivatives of the Jacobian, 159-160
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