

XML
BASICS

XML Basics_Ch00_FM_2pp.indd 1 8/20/2020 5:58:45 PM

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY
By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of
the Publisher. Duplication or dissemination of any text, code, simulations, images,
etc. contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner of the
content, etc., in order to reproduce or network any portion of the textual material (in
any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accompanying
algorithms, code, or computer programs (“the software”), and any accompanying Web
site or software of the Work, cannot and do not warrant the performance or results
that might be obtained by using the contents of the Work. The author, developers,
and the Publisher have used their best efforts to insure the accuracy and functionality
of the textual material and/or programs contained in this package; we, however,
make no warranty of any kind, express or implied, regarding the performance of
these contents or programs. The Work is sold “as is” without warranty (except for
defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book, and only at the discretion of the Publisher. The use of “implied warranty”
and certain “exclusions” vary from state to state, and might not apply to the purchaser
of this product.

XML Basics_Ch00_FM_2pp.indd 2 8/20/2020 5:58:45 PM

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Shashi Banzal

XML
BASICS

XML Basics_Ch00_FM_2pp.indd 3 8/20/2020 5:58:45 PM

Copyright ©2020 by Mercury Learning and Information LLC. All rights reserved.
Reprinted and revised with permission.

Original title and copyright: Learning XML.
Copyright ©2017 by University Science Press (An imprint of Laxmi Publications Pvt. Ltd. All rights
reserved.)

This publication, portions of it, or any accompanying software may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display or
mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning,
without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

S. Banzal. XML Basics.
ISBN: 978-1-68392-546-0

The publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this book
are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of
service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2020942355

202122321  Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For
additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at www.academiccourseware.com and other digital vendors.
The sole obligation of Mercury Learning and Information to the purchaser is to replace the book,
based on defective materials or faulty workmanship, but not based on the operation or functionality of
the product.

XML Basics_Ch00_FM_2pp.indd 4 8/20/2020 5:58:45 PM

CONTENTS

Preface� xxiii

Chapter 1:	 Understanding XML� 1
Markup Languages� 1
Specific Markup Languages� 1
Generalized Markup Language� 2
SGML - A Metalanguage� 2
Why is XML so Adaptable?� 3
XML Over SGML� 3
Introduction to XML� 4
Extensible� 5
Markup� 5
Language� 5
History of XML� 6
HTML and XML� 6
XML Structure� 7
Logical Structure� 8
XML Declaration� 8
XML Syntax� 8
How Do I Structure My XML Documents?� 9
Need for XML-Based Languages� 10
XML Benefits� 11
XML Disadvantages� 13
Lack of Application Processing� 13

XML Basics_Ch00_FM_2pp.indd 5 8/20/2020 5:58:45 PM

vi • Contents

General Weaknesses of XML� 13
XML and Unicode Disadvantages� 14
Characteristics of an XML Document� 16
Open and Extensible� 17
Application Independence� 17
Data Format Integration� 17
One Data Source, Multiple Views� 17
Data Presentation Modification� 17
Internationalization� 17
Future-Oriented� 18
Improved Data Searches� 18
Enables E-Commerce Transactions� 18
XML Documents form a Tree Structure� 18
All XML Elements Must have a Closing Tag� 20
XML Tags are Case Sensitive� 20
XML Elements Must be Properly Nested� 21
XML Documents Must have a Root Element� 21
XML Attribute Values Must be Quoted� 21
XML is Free� 22
XML Technology� 22
Uses� 23
Sample XML Document� 24
XML in Practical World� 25
Property Inheritance� 31
Combining Stylesheets� 32
Questions for Discussion� 32

Chapter 2:	 XML Syntax� 35
The Well-Formed Document� 35
XML Document Structure� 36
Prolog Section� 37
The Standalone Attribute� 37
The Encoding Attribute� 38

XML Basics_Ch00_FM_2pp.indd 6 8/20/2020 5:58:45 PM

Contents • vii

Instance Section� 38
Elements� 38
Character Data� 40
CDATA� 41
Comment� 42
Processing Instruction� 42
Entities� 43
General Entities� 44
Parameter Entities� 44
Entity References� 45
Attributes� 46
Entities’ References and Constants� 47
Unparsed Data� 48
Character Data (CDATA)� 49
Processing Instructions (PIS)� 49
Questions for Discussion� 50

Chapter 3:	 Document Type Definition (DTD)� 53
Physical Structure in XML� 53
Parsed and Unparsed Entities� 53
Predefined Entities� 54
Internal and External Entity� 54
XML General Syntax� 55
Attributes� 55
Valid Documents� 56
Well-Formed Documents� 56
Well-Formed XML Documents� 57
XML Documents� 58
The XML Declaration� 58
Processing Instructions� 59
Comments� 59
Document Type Declaration� 59
XML Application Classification� 60

XML Basics_Ch00_FM_2pp.indd 7 8/20/2020 5:58:45 PM

viii • Contents

Parsers� 60
XML Processing-Attribute Values� 61
XML Processing� 62
Event-Driven Parsers� 62
Tree-Based Parsers� 62
XML Parser� 62
Parse an XML Document� 63
Parse an XML String� 63
Document Type Definitions (DTDS)� 64
Example DTD� 64
DTD <!DOCTYPE>� 65
DOCTYPE Syntax� 65
XML Syntax Rules� 67
DTDs (Well-Formed vs. Valid)� 68
General Principles in Writing DTDs� 68
Document Validation� 68
Validating an XML Document with a DTD� 69
The Purpose of DTDs� 70
Creating DTDs� 71
Code Sample: DTDs/Demos/Beatles.DTD� 71
Internal DTD� 71
Example Internal DTD� 72
External DTD� 72
Example External DTD� 72
Combined DTD� 73
DTD Elements� 74
Basic Syntax� 74
Plain Text� 74
Unrestricted Elements� 75
Empty Elements� 75
Child Elements� 76
Other Elements� 76

XML Basics_Ch00_FM_2pp.indd 8 8/20/2020 5:58:45 PM

Contents • ix

Choice of Elements� 77
Empty Elements� 77
Mixed Content� 77
Multiple Child Elements (Sequences)� 78
An XML Application without a DTD� 78
DTD Element Operators� 79
DTD Operators with Sequences� 81
Subsequences� 81
The Document Element� 82
Location of Modifier� 82
Using Parentheses for Complex Declarations� 83
XML CDATA� 83
PCDATA-Parsed Character Data� 83
CDATA-(Unparsed) Character Data� 83
Notes on CDATA Sections� 84
Internal & External Subsets� 84
Standalone Attribute� 85
DOCTYPE Declaration� 86
Internal DTD Subset Declarations� 86
External DTDs� 86
Basic Markup Declarations� 88
Formal DTD Structure-Entities� 88
Predefined Entities� 89
General Entities� 89
Parameter Entities� 90
Formal DTD Structure-Elements� 91
Content Model� 91
Cardinality Operators� 92
Attributes� 93
Default Values� 94
Attribute Types� 95
CDATA� 95

XML Basics_Ch00_FM_2pp.indd 9 8/20/2020 5:58:45 PM

x • Contents

ID� 96
IDREF� 96
Entity� 97
Entity, Entities� 97
NMTOKEN, NMTOKENS� 98
Notation� 98
Enumerations� 99
Declaring Attributes� 100
Conditional Sections� 100
Limitations of DTDs� 101
Designing XML Documents� 101
XML for Messages� 102
XML for Persistent Data� 102
Mapping the Information Model to XML� 103
A Document Type Declaration� 105
Elements� 105
Empty Elements� 106
Attributes� 106
CDATA� 107
White Space� 107
Special Characters� 108
Questions for Discussion� 108

Chapter 4:	 Namespaces� 111
Namespaces� 111
Purpose of Namespaces� 112
Declaring a Namespace� 112
Scope� 114
Qualified� 114
XML Namespace� 115
Example Namespace� 116
XML Local Namespace� 116
Example Local Namespace� 117

XML Basics_Ch00_FM_2pp.indd 10 8/20/2020 5:58:45 PM

Contents • xi

Multiple Namespaces� 117
XML Default Namespace� 118
Understanding Namespaces� 118
Naming Namespaces� 119
Declaring and Using Namespaces� 120
Default Namespaces� 122
Explicit Namespaces� 123
XML Namespaces� 126
Name Conflicts� 126
Solving the Name Conflict Using a Prefix� 127
Locally Declared Elements and Attributes� 129
Using Multiple Namespaces� 132
Uniform Resource Identifier (URI)� 134
Default Namespaces� 134
Namespaces in Real Use� 135
Questions for Discussion� 135

Chapter 5:	 Introduction to XHTML� 141
A Quick History of HTML� 141
XML Over HTML� 142
Getting Multilingual with XML� 143
The Convergence of HTML and XML� 144
Add HTML to XML Data� 146
Differences Between XHTML and HTML� 147
XHTML� 149
Benefits of XHTML� 150
XHTML Coding� 150
XML Declaration� 151
XHTML DTDs� 151
The DOCTYPE Declaration� 152
XHTML Strict� 152
XHTML Transitional� 152
XHTML Frameset� 153

XML Basics_Ch00_FM_2pp.indd 11 8/20/2020 5:58:45 PM

xii • Contents

The Document Element� 153
A Sample XHTML Document� 153
Document Formation� 155
XHTML Tags� 155
Questions for Discussion� 159

Chapter 6:	 CSS Style Sheets� 161
CSS Documents� 161
XML and CSS� 161
Limitations of CSS for Complex Applications� 162
Advantages of Authoring XML Documents with CSS� 162
Authoring Approaches� 163
Authoring XML Documents with CSS� 163
Associating CSS Stylesheets with XML� 164
Rendering XML Documents with CSS� 164
CSS Syntax� 165
CSS Example� 166
CSS Comments� 166
CSS Selectors� 167
Embedding CSS in Web Page� 171
CSS Styles� 172
Displaying XML with CSS� 173
XSL Transformation� 175
Using XSL to Present XML Documents� 176
XSL Patterns� 177
XML Styles (Revisited)� 177
Questions for Discussion� 178

Chapter 7:	 XML Schema Basics� 179
XML Schema� 179
Role of a Schema� 179
DTD as a Schema� 180
Schema Languages and Notations� 180
The Purpose of XML Schema� 180

XML Basics_Ch00_FM_2pp.indd 12 8/20/2020 5:58:45 PM

Contents • xiii

The Power of XML Schema� 181
A First Look� 182
A Simple XML Schema� 188
Schema as a Set of Constraints� 188
Schema as an Explanation� 189
DTD vs XML Schema� 196
Structures� 197
Preamble� 198
Sample Preamble� 198
Attributes and Attribute Groups� 199
Content Models� 199
Element Declaration� 200
Derivation� 200
Data Types� 201
Primitive Types� 201
Generated and User Defined Types� 203
Hyperlinks� 204
Links� 204
Linking and Querying� 206
XML Information Set� 206
Link Elements� 207
Locators� 207
XLinks� 208
Simple Links� 208
Extended Links� 208
Extended Link Groups� 209
Validating an XML Instance Document� 210
Simple-Type Elements� 210
Built-in Simple Types� 211
19 Primitive Data Types� 211
Built-in Derived Data Types� 212
Defining a Simple-Type Element� 213

XML Basics_Ch00_FM_2pp.indd 13 8/20/2020 5:58:45 PM

xiv • Contents

User-Derived Simple Types� 214
Controlling Length� 215
Specifying Patterns� 216
Working with Numbers� 217
Mins and Maxs� 217
Number of Digits� 218
Enumerations� 219
Whitespace Handling� 220
Specifying Element Type Locally� 221
Nonatomic Types� 222
Lists� 222
Unions� 223
Declaring Global Simple-Type Elements� 225
Global vs. Local Simple-Type Elements� 225
Default Values� 227
Fixed Values� 228
Nil Values� 229
Complex-Type Elements� 230
Content Models� 231
Complex Model Groups� 233
Occurrence Constraints� 235
Declaring Global Complex-Type Elements� 236
Mixed Content� 237
Defining Complex Types Globally� 239
Empty Elements� 240
Adding Attributes to Elements with Complex Content� 241
Adding Attributes to Elements with Simple Content� 241
Restricting Attribute Values� 243
Default and Fixed Values� 245
Fixed Values� 246
Requiring Attributes� 247
Groups� 248

XML Basics_Ch00_FM_2pp.indd 14 8/20/2020 5:58:45 PM

Contents • xv

Extending Complex Types� 252
Abstract Types� 254
XML Schema Keys� 256
Keys� 257
Annotating XML Schemas� 260
Annotating a Schema� 260
XSD Indicators� 269
But This is No Longer Valid� 279
Create an XML Schema� 280
XSD Date and Time Data Types� 288
XML Editors� 296
Questions for Discussion� 298

Chapter 8:	 XSL Basics� 299
Introduction to XSL� 299
An XML Syntax� 300
An XSL Processor� 300
The XSL Templates� 301
Location Paths� 302
Template Ordering� 307
Axes� 308
Repetitions and Sortings in XSL� 313
XSL Sorting� 315
Uppercase and Lowercase Sorting� 318
XSL Conditional Processing� 324
Number Generation and Formatting in XSL� 327
Formatting Multilevel Numbers� 331
Numeric Calculation in XSL� 335
Ceiling, Floor, and Round� 339
String Function� 341
XSL String Functions� 348
Concatination� 349
XSL Output Element� 355

XML Basics_Ch00_FM_2pp.indd 15 8/20/2020 5:58:45 PM

xvi • Contents

HTML Output Method� 356
Text Output Method� 358
Copy and Copy-of Constructs in XSL� 359
Use-Attribute-Sets Attribute� 361
Miscellaneous Additional Functions� 362
Combining XSL� 366
Importing Stylesheets� 366
Apply-Import Function� 368
Questions for Discussion� 371

Chapter 9:	 XSLT Basics� 373
XSLT (Extensible Stylesheet Language)� 373
XSLT Sample Program� 374
The Transformation Process� 375
Processing a Transformation� 376
Applying XSLT to an XML Document� 376
XSLT Syntax� 377
XML Version� 378
XSL Root Element� 378
Selecting the Root Node� 379
Usage Example� 380
XSLT <value-of> Element� 380
Usage Example� 380
XSLT <for-each> Element� 381
<xsl:for-each> Example� 382
Result� 383
Before� 383
After� 384
XSLT <if> Element� 384
The Source File� 384
The Solution� 387
The Source File� 388
The Solution� 390
Questions for Discussion� 392

XML Basics_Ch00_FM_2pp.indd 16 8/20/2020 5:58:45 PM

Contents • xvii

Chapter 10:	 SOAP� 395
SOAP� 395
Communication Over Distributed Systems� 397
Remote Procedure Call (RPC)� 399
SOAP Syntax� 399
SOAP Message Structure� 400
The SOAP Envelope Element� 401
The SOAP Header Element� 402
The SOAP Body Element� 404
The SOAP Fault Element� 405
The HTTP Protocol� 407
SOAP HTTP Binding� 407
Content-Type� 408
Content-Length� 408
A SOAP Example� 408
Transport Methods in SOAP� 409
SOAP and the Request/Response Model� 410
HTTP Headers and SOAP� 410
Request Headers� 411
Response Headers� 412
Sending Messages Using M-Post� 412
A Schema for the Body Content of the SOAP Message� 413
SOAP Encoding� 414
Encoding Style Attribute� 415
Questions for Discussion� 416

Chapter 11:	 DOM Programming Interface� 417
DOM (Document Object Model)� 417
XML DOM Tree� 418
High Level Architecture of a DOM/XML Application� 418
DOM Implementation� 421
The DOM Specification� 423
XML DOM Nodes� 424
XML DOM Node Tree� 426

XML Basics_Ch00_FM_2pp.indd 17 8/20/2020 5:58:45 PM

xviii • Contents

First Child - Last Child� 427
DOM Level 2 Specification� 428
XML Document Structure� 428
Working with DOM� 430
Client Side and Server Side DOM� 431
XML DOM Parser� 431
XML Parser� 431
Load an XML Document� 432
Questions for Discussion� 433

Chapter 12:	 SAX (Simple API for XML)� 435
Introduction to SAX� 435
SAX (Simple API for XML)� 435
DOM and Tree-Based Processing� 437
PROS and CONS of Tree-Based Processing� 437
How to Choose Between SAX and DOM� 438
The SAX API is Defined in 4 Interfaces Under the
org.xml.sax Package� 438
SAX Sample Program� 439
Three Steps to SAX� 441
Creating the SAX Parser the Sample File� 446
SAX Interface Java Example� 447
SAX Parsing Pattern Example� 449
Questions for Discussion� 450

Chapter 13:	 XPath� 451
XPath Introduction� 451
XPath Syntax� 452
The XML Example Document� 452
Navigating a Document with XPath Patterns� 455
Referencing Nodes� 456
XPath (XML Path) Language� 458
Data Types, Literals, and Variables� 458
XPath Operators� 459

XML Basics_Ch00_FM_2pp.indd 18 8/20/2020 5:58:45 PM

Contents • xix

Evaluation Context� 460
Built-in Functions� 461
Using XPath Functions� 462
Node Functions� 463
String Functions� 463
Boolean Functions� 464
Number Functions� 465
The Role of XPath� 465
Using XPath in XSLT Templates� 466
XPath Location Path� 469
Location Path Example� 469
XPath Location Step� 470
XPath Location Path – Absolute� 471
Example of an Absolute Location Path� 471
Selecting Nodes� 472
Predicates� 473
Selecting Unknown Nodes� 474
Selecting Several Paths� 474
The Root Node� 475
XPath Location Path – Relative� 475
Example of a Relative Location Path� 475
Children� 476
The Wildcard� 477
XPath Attributes� 477
XPath – Expressions� 478
XPath—Our Sample XML File� 478
A Simple XPath Expression� 479
Questions for Discussion� 479

Chapter 14:	 XLink, XQuery, and XPointer� 481
Introduction to XQuery� 481
XQuery Example� 481
XQuery Syntax� 488

XML Basics_Ch00_FM_2pp.indd 19 8/20/2020 5:58:45 PM

xx • Contents

XQuery Basic Syntax Rules� 488
XQuery Selecting and Filtering Elements� 491
XQuery Functions� 493
XQuery User-Defined Functions� 494
XLink and XPointer Introduction� 494
XLink and XPointer Syntax� 495
HTML, XML, and Linking� 496
Linking with XLink� 499
XLink Example� 501
The XML Example Document� 501
Understanding XLink Attributes� 502
Creating Links with XLink� 504
XPointer Syntax� 506
Addressing with XPointer� 507
Building XPointer Expressions� 507
Creating XPointers� 508
XPointer Example� 510
The Linking XML Document� 510
XPointer Example� 511
The Linking XML Document� 512
Questions for Discussion� 513

Chapter 15: 	 XForms� 515
Introduction to XForms� 515
Features of XForms� 515
Parts of XForms� 516
The Form Controls� 519
The Form Controls Listed� 521
The XForms Processor� 522
The XForms Namespace� 522
XForms and XPath� 524
XForms Properties� 526
XForms Actions� 527
Questions for Discussion� 528

XML Basics_Ch00_FM_2pp.indd 20 8/20/2020 5:58:45 PM

Contents • xxi

Chapter 16: 	 XSL-FO� 529
Introduction to XSL-FO� 529
XSL-FO Documents� 530
XSL-FO Document Structure� 531
Font and Text Attributes� 535
XSL-FO Areas� 537
XSL-FO Output� 538
Page Layout� 539
XSL-FO Blocks� 543
Styling Text in XSL-FO� 545
Controlling Spacing and Borders� 546
More Complex Structures� 546
Tables� 550
XSL-FO Objects� 552
Graphics� 553
XSL-FO Processors� 553
XSL-FO Software� 554
XSL-FO and XSLT� 554
Questions for Discussion� 555

Chapter 17: 	 XML with Databases� 557
Introduction� 557
XML Documents as Databases� 557
Why Use a Database?� 559
Data versus Documents� 559
Data-Centric Documents� 560
Document-Centric Documents� 562
Data, Documents, and Databases� 563
Storing and Retrieving Data� 564
Mapping Document Schemas to Database Schemas� 564
Relational Database Primer� 565
The World’s Shortest Guide to SQL� 566
Retrieving Records Using Select� 567
Inserting Records� 569

XML Basics_Ch00_FM_2pp.indd 21 8/20/2020 5:58:45 PM

xxii • Contents

Updating Records� 570
Deleting Records� 571
Databases and XML� 571
Resolving XML Data into Database Tables� 572
Storing XML Documents in a Database� 573
Exporting an XML Document from a Database� 573
Accessing Data from a Database as XML� 574
Questions for Discussion� 576

Chapter 18: 	 Web Services� 577
Web Services� 577
The Web Services Platform� 578
Web Services Platform Elements� 578
Types of Web Services� 578
Web Service Architectures� 579
Web Services Example� 580
How to Use Web Services� 581
SOAP� 583
WSDL and UDDI� 585
UDDI Benefits� 586
How Can UDDI be Used� 586
Questions for Discussion� 587

Appendix: A: 	 XML Basics� 589

Appendix: B: 	 Well Formed XML Documents� 597

Appendix: C:	 XML Overview� 605

Glossary� 613
Index� 631

XML Basics_Ch00_FM_2pp.indd 22 8/20/2020 5:58:45 PM

PREFACE

This book focuses on standards that are relevant to almost all developers
working with XML. We investigate XML technologies that span a wide
range of XML applications, not just those that are relevant only within a few
restricted domains. XML is not a programming language. It is a markup
language; but it is successfully used by many programmers. The book also
covers generic supporting technologies that have been layered on top of XML
and are used across a wide range of XML applications. These technologies
include XLinks, XSLT, Namespaces, Schemas, XHTML, RDDL, XPointers,
XPath, SAX, and DOM.

� S. Banzal
� August 2020

XML Basics_Ch00_FM_2pp.indd 23 8/20/2020 5:58:45 PM

XML Basics_Ch00_FM_2pp.indd 24 8/20/2020 5:58:45 PM

C H A P T E R 1
UNDERSTANDING XML

MARKUP LANGUAGES

The term Markup is a concatenation of the words “mark up.” This refers to
the traditional way of marking up a document in the print and design worlds.

Markup is used to modify the look and formatting of text or to establish
the structure and meaning of the document for output to some medium, such
as the printer or the World Wide Web. Markup consists of codes, or tags, that
are added to text to change the look or meaning of the tagged text. The tagged
text for a document is usually called the source code for that document. Most
word processors use some sort of markup languages to produce formatted
text. There are two types of Markup languages: Specific Markup Languages
and Generalized Markup Languages.

SPECIFIC MARKUP LANGUAGES

Specific markup languages were developed for specific purposes. These
markup languages cannot be used for any other purpose other than that for
what it was developed for. Hypertext Markup Language, or HTML, was
designed for simplicity and it has a flexible structure. It allows text and graph-
ics to be displayed in any Web browser.

Many markup languages have served quite well as document formatting
tools for printing on the Web. However, they do not perform well in describ-
ing the data they contain or at providing contextual information for the data.
For example, Hyper Text Markup Language describes how the text should

XML Basics_Ch01_2pp.indd 1 8/7/2020 12:27:18 PM

2 • XML Basics

be formatted, but conveys nothing about the kind of text data included in the
document.

When using specific markup languages, the authors are limited to a par-
ticular set of tags. If a set of tags does not meet a need, authors must find an
alternative way to meet those needs. A document might not be portable to
other applications, as the data is not self-describing. It cannot be used for
any other purpose than that for which it was originally intended. The lan-
guage probably has a proprietary way of marking up text that is not compat-
ible with other markup languages. This can create confusion and additional
work for authors who must use several languages to accommodate different
applications.

GENERALIZED MARKUP LANGUAGE

In the 1970s, Dr. C. F. Goldfarb and two of his colleagues proposed a method
of describing text that was not specific to an application or a device. The
method had two suggestions:

●● The markup should describe the structure of a document and not its for-
matting or style characteristics.

●● The syntax of the markup should be strictly enforced so that the code can
clearly be read by a software program or by a human being.

The result of these suggestions was the Standardized General Markup
Language (SGML) that was adopted as a standard by the International Orga-
nization for Standardization in 1986.

SGML - A METALANGUAGE

SGML has added provisions for identifying the characters to be used in a
document. This makes it easier to ensure that a processor can understand
everything in a document by allowing a document to specify the character set
that it uses.

SGML provides a way to identify objects that will be used throughout a
document. These objects, called entities, are convenient to use when a text
fragment or any other data appears in several places in a document. If an entity
is declared in one place of the document, any changes to that declaration will
be reflected in all occurrences of the entity throughout the document.

XML Basics_Ch01_2pp.indd 2 8/7/2020 12:27:18 PM

Understanding XML • 3

SGML – Example

<!DOCTYPE CARS PUBLIC "//EXT/DTD CATALOG//EN">

<CAR>

<COLOR> Red

<PRICE> $20,000

</CAR>

The code snippet shown is an example of an SGML document. We can see
that the content is the same as that of the HTML document. These simi-
larities exist because HTML is an application of SGML. HTML was created
using SGML standards. The main difference between SGML and HTML
is that SGML is extensible, which means that it allows an author to define
a particular structure by defining the parts that fit that structure. HTML is
not extensible, which means that HTML cannot be used to create another
markup language with its own rules and purposes.

WHY IS XML SO ADAPTABLE?

If XML is a new generation, then SGML is its mother. SGML is likely one of
the most adaptable languages of all time, allowing the use of constructs that
even XML won’t allow. Unfortunately, SGML is more complex and not as
universally supported as XML, so the use of SGML instead of XML isn’t really
recommended.

XML has inherited many of the key features of SGML, however, and puts
them to good use; in many cases, the ways that it differs from its predecessor
are inconsequential. While you may occasionally run across strange circum-
stances that would work better with SGML, it’s best to focus on XML since
that’s where most of the support and interest lies.

XML OVER SGML

Even though XML is a subset of Standard Generalized Markup Language
(SGML), XML is optimized for use on the World Wide Web. XML is designed
in such a way that it has some benefits that are not found in SGML. XML is a
smaller language than SGML. The designers of XML removed some specifi-
cations in SGML that were not needed for Web delivery.

XML includes a specification for the hyperlinking scheme, which is
described as a separate language called eXtensible Linking Language (XLL).

XML Basics_Ch01_2pp.indd 3 8/7/2020 12:27:18 PM

4 • XML Basics

XML supports the basic hyperlinking found in HTML as well as extended
linking. XML includes specification for a style sheet language called eXtensi-
ble Stylesheet Language (XSL). XSL provides support for a style sheet mech-
anism, which allows an author to create a template of various styles.

XML documents are self-describing documents. That is, each document
contains a set of rules to which its data must conform. Since the same set of
rules can be reused in another document, other authors can easily create the
same class of document, if necessary.

XML can be used as the data interchange format. Many legacy systems
can contain data in disparate forms, and developers are doing a lot of work to
connect these legacy systems using the Internet. Since the XML text format
is standards-based, data can be converted to XML and then easily read by
another system or application.

XML can be used for Web data. For example, the content is stored in
an XML file and the HTML page is used simply for formatting and display.
So, the content can be updated and translated into another language without
modifying anything in the HTML code.

INTRODUCTION TO XML

XML (eXtensible Markup Language) was invented for the purpose of hav-
ing a standard and powerful way of describing any kind of data. XML offers
a widely adopted standard way of representing text and data in a format that
can be processed without much human or machine intelligence. Information
formatted in XML can be exchanged across platforms, languages, and applica-
tions, and can be used with a wide range of development tools and utilities.

XML is a meta-language; that is, it is a language in which other languages
are created. In XML, data is “marked up” with tags similar to HTML tags. In
fact, the latest version of HTML, called XHTML, is an XML-based language,
which means that XHTML follows the syntax rules of XML.

XML is used to store data or information. This data might be intended to
be by read by people or by machines. It can be highly structured data, such as
data typically stored in databases or spreadsheets, or loosely structured data,
such as data stored in letters or manuals.

XML is all about preserving useful information—information that com-
puters can use to be more intelligent about what they do with our data. The
best part of XML is that it liberates information from the shackles of a fixed-
tag set.

XML Basics_Ch01_2pp.indd 4 8/7/2020 12:27:18 PM

Understanding XML • 5

XML provides a standard approach for describing, capturing, processing,
and publishing information. It is a language that has significant benefits over
HTML.

Unlike most markup languages, XML is a flexible framework in which you
can create your own customized markup languages. All XML-based languages
share the same look and feel, and they share a common basic syntax. The
essence of XML is in its name: Extensible Markup Language.

●● Markup – It is a collection of tags.
●● XML Tags – Identify the content of the data
●● Extensible – User-defined tags

EXTENSIBLE

XML is extensible. It lets you define your own tags, the order in which they
occur, and how they should be processed or displayed. Another way to think
about extensibility is to consider that XML allows us to extend our notion of
what a document is: it can be a file that lives on a file server, or it can be a
transient piece of data that flows between two computer systems (as in the
case of Web Services).

MARKUP

The most recognizable feature of XML is its tags, or elements (to be more
accurate). In fact, the elements you’ll create in XML will be very similar to the
elements you’ve already been creating in your HTML documents. However,
XML allows you to define your own set of tags.

LANGUAGE

XML is a language that’s very similar to HTML. It’s much more flexible than
HTML because it allows you to create your own custom tags. However, it’s
important to realize that XML is not just a language. XML is a meta-language:
a language that allows us to create or define other languages. For example,
with XML we can create other languages, such as RSS, MathML (a math-
ematical markup language), and even tools like XSLT.

XML Basics_Ch01_2pp.indd 5 8/7/2020 12:27:18 PM

6 • XML Basics

HISTORY OF XML

In 1970, IBM introduced SGML (Standard Generalized Markup Language).
SGML was developed out of the General Markup Language (GML), which was
developed by IBM in the late 1960s. SGML is a semantic and structural language
for text documents, but it is very complicated. HTML is a subset of SGML.

In 1996, XML Working Group was formed under W3C. The World Wide
Web Consortium (W3C) is an international consortium where Member orga-
nizations, a full-time staff, and the public work together to develop Web stan-
dards. W3C was created by Tim Berners-Lee in 1994 who also invented the
World Wide Web in 1989. In 1998, W3C introduced XML 1.0.

XML (Extensible Markup Language) is a dialect of SGML. XML is not a
programming language. Rather, it is a set of rules that allows you to represent
data in a structured manner. Since the rules are standard, the XML docu-
ments can be automatically generated and processed.

XML was designed to describe data and is a cross-platform, software- and
hardware-independent tool for transmitting or exchanging information. It is
an open-standards-based technology which is both human and machine read-
able. XML is best suited for use in documents that are similar. In future Web
development, it is most likely that XML will be used to describe the data,
while HTML will be used to format and display the same data. The XML spec-
ification includes the syntax and grammar of XML documents as well as DTD.

Website creation is a fast-growing sector. In the early days, Website
design consisted primarily of creating fancy graphics and nice-looking, easy-
to-read Web pages.

As today’s Websites are interactive, the steps in Website design have
changed. Although creating a pleasant-looking Website is still important, the
primary focus has shifted from graphical design to programmatic design.

Consider a company wanting to sell its product on the Web. In such cases,
the Webpages will collect and store a user’s billing information. This calls for
storing and manipulating such data in a database. This is where XML comes
into the picture.

XML is the solution for the problems that arise when using database
Webpages.

HTML AND XML

HTML and XML were designed with different purposes in mind. XML is sim-
ilar to HTML—they are both closely related to the SGML markup definition

XML Basics_Ch01_2pp.indd 6 8/7/2020 12:27:18 PM

Understanding XML • 7

language that has been an ISO standard since 1986. SGML is an early attempt
to combine the metadata (data about the data) with the data and it was used
primarily in large document management systems. Because SGML is a very
complex language, it has limited mass appeal.

HTML is the most recognized application of SGML and it allows any
Web browser or application which understands HTML to display information
in a consistent form. A HTML document is effective when it comes to laying
out and displaying data, but it is a fixed set of tags, and it does not have the
flexibility to describe different document and data types. HTML, in conjunc-
tion with Cascading Style Sheets (CSS), is reasonably good at displaying data,
but it is not as good as XML at transporting data that is meant to be viewed or
parsed in dozens of different ways by a variety of devices. In essence, where
HTML is a presentation language, we require a richer communication means
that can help with exchanging information from one computer to another.

The need to extract data and put a structure around information led to the
creation of XML. Since it was released in 1997, XML use has been growing
rapidly. There are two major fundamental differences between HTML and
XML:

●● Separation of form and content—HTML mostly consists of tags defining
the appearance of text; in XML, the tags generally define the structure
and content of the data, with the actual appearance specified by a specific
application or associated stylesheet.

●● XML is extensible—tags can be defined by individuals or organisations for
some specific application, whereas the HTML standard tagset is defined
by the World Wide Web Consortium (W3C).

XML is not intended as a replacement for HTML and both are com-
plementary technologies. XML is a more general and better solution to the
problem of sharing data on the Web than extending HTML.

XML STRUCTURE

One of XML’s best features is its ability to provide structure to a document.
Every XML document includes both a logical and a physical structure. The
logical structure is like a template that details the elements to be included in
a document and the order in which they have to be included. The physical
structure contains the actual data used in a document.

XML Basics_Ch01_2pp.indd 7 8/7/2020 12:27:18 PM

8 • XML Basics

LOGICAL STRUCTURE

Logical Structure refers to the organization of the different parts of a docu-
ment. It indicates how a document is built, as opposed to what a document
contains. The first structural element in an XML document is an optional pro-
log element. The prolog is the base for the logical structure of an XML docu-
ment. The prolog consists of two basic components, the XML Declaration and
the Document Type Declaration. These two components are also optional.

XML DECLARATION

The XML Declaration identifies the version of the XML specification to
which the document conforms. Although the XML declaration is an optional
element, we should always include it in the XML document.

The code snippet here gives an example of basic XML declaration. Here,
the line of code must use only lowercase letters.

<?xml version="1.0"?>

An XML declaration can also contain an encoding declaration and a stand-
alone document declaration.

The encoding declaration identifies the character-encoding scheme, such
as UTF-8 or EUC-JP. Different encoding schemas map to different character
formats or languages. For example, UTF-8, the default scheme, includes rep-
resentations for most of the characters in the English Language.

XML SYNTAX

The first thing that you’ll need to do is open up your text editor of choice. At
this point, your document is going to look something like this (if you’re using
XML version 1.0):

<?xml version="1.0"?>

Once you’ve typed your directive, it’s time to start adding some content to
the page. Information on an XML page is handled in a very precise and struc-
tured format, using tags to define your data. White space can be included in
the document to make it more easily readable, though you should be careful
not to use that white space inside of your tags, as it can create problems when
being read by a browser.

XML Basics_Ch01_2pp.indd 8 8/7/2020 12:27:18 PM

Understanding XML • 9

Let’s say that you’ve decided to create a new XML document to tell the
world about your two favorite cats. You want to use the tag <cats>. Your doc-
ument now looks a little something like this:

<?xml version="1.0"?>

<cats>Tooter and Shade are the best cats in the world!</cats>

Note the white space in between the directive and the first tags. You could
also have put both of the tags on their own line, with the content of the tags
between them, as long as you don’t add additional white space within the tags.

Of course, the <cats> tags don’t do anything. If you load this page into a
Web browser, you’ll end up with more or less a copy of the file contents dis-
played on the screen with the tags in some pretty colors. You’ll have to define
the tags, which can be done in 1 of 4 ways:

●● Using Cascading Style Sheets (CSS)
●● Using the eXtensible Style Language (XSL) Style Sheets
●● Using a Data Island plus Script
●● Using a Data Object Model plus Script or Client-Side Program

All of this might sound complicated, but it’s really not. It does involve cre-
ating and referencing other pages, though for now we’re still working on just
the basic structure of XML. Save the document (in Text-Only mode) under
the name cats.xml (making sure to use the .xml extension).

HOW DO I STRUCTURE MY XML DOCUMENTS?

Structure in an XML document is very important. Small errors in the struc-
ture of your document can have large effects on the overall outcome; pieces
may not be displayed correctly, or might not appear at all. If the structure is
too damaged, then the entire document might fail to work.

As previously mentioned, all XML documents begin with the XML direc-
tive. Open up the previously-saved file, cats.xml, and you’ll find your directive
already in place.

<?xml version="1.0"?>

<cats>Tooter and Shade are the best cats in the world!</cats>

Unfortunately, your file is still missing a few vital elements. The <cats>
tags don’t work, and the browser has no idea how to make them work. If
you load it up in a browser, you’ll just see a copy of the file, with the various
elements in different colors. This is actually useful, however; as long as you

XML Basics_Ch01_2pp.indd 9 8/7/2020 12:27:18 PM

10 • XML Basics

see this, then your code is good. The browser doesn’t know what else to do
with it, in this case because some of the elements are missing, but the lack of
definitive error codes tells you that it’s at least well-coded.

Go into the file, between your directive and the content, and get ready to
add another vital element to your page. Type the following:

<?xml-stylesheet type="text/css" href="cats.css"?>

Of course, this doesn’t mean much to you right now. In time, though, it’s
going to be a vital part of your page. What you just typed is the directions that
the browser needs to find the XML processor, or the file that tells it how it
should handle the information in the XML document. The line that you just
typed tells the browser to find the file called cats.css, and that the file is a Cas-
cading Style Sheet. It also tells it that it’s the stylesheet that it needs for this
page. Now your cats.xml file should look like the following, which looks a lot
more like an XML file.

<?xml version="1.0"?>

<?xml-stylesheet type="text/css" href="cats.css"?>

<cats>Tooter and Shade are the best cats in the world!</cats>

NEED FOR XML-BASED LANGUAGES

The main advantage of being able to define your own markup language is that
it gives you the freedom to capture and publish useful information about what
your data is and how it is structured. To show the difference, consider a com-
pany wanting to sell books on the Web. If they want to publish the information
about the books on a Webpage, then we need to write an HTML document
like the one shown.

The original data has been formed into HTML for publishing purposes.
In the course of that transformation, useful information about what the infor-
mation really is has been lost. If the same content were written in XML, it
would look like the following code snippet.

<!-Book Snippet in HTML —>

<h1> Books for Sale </h1>

<table border=1>

<tr>

<td>Title</td><td>Paradise Lost</td>

</tr>

<tr>

XML Basics_Ch01_2pp.indd 10 8/7/2020 12:27:18 PM

Understanding XML • 11

<td>Author</td><td>John Milton</td>

</tr></table>

<!-Book snippet in XML —>

<BooksForSale>

<Title>Paradise Lost</Title>

<Author>John Milton</Author>

</BooksForSale>

If this code were to be published on the Web, this representation opens
up some interesting possibilities. No image is shown.

XML BENEFITS

Initially, XML received a lot of excitement, but that has now died down some.
This isn’t because XML is not as useful, but rather because it doesn’t provide
the “Wow! factor” that other technologies, such as HTML, do. When you
write an HTML document, you see a nicely formatted page in a browser—
instant gratification. When you write an XML document, you see an XML
document—not so exciting. However, with a little more effort, you can make
that XML document sing.

XML is Everywhere

XML is now as important for the Web as HTML was to the foundation of the
Web. XML is the most common tool for data transmissions between all sorts
of applications. XML is used in many aspects of Web development, often to
simplify data storage and sharing.

XML Separates Data from HTML

If you need to display dynamic data in your HTML document, it will take a lot
of work to edit the HTML each time the data changes. With XML, data can be
stored in separate XML files. This way you can concentrate on using HTML
for layout and display and be sure that changes in the underlying data will not
require any changes to the HTML. With a few lines of JavaScript code, you
can read an external XML file and update the data content of Webpage.

XML Simplifies Data Sharing

In the real world, computer systems and databases contain data in incom-
patible formats. XML data is stored in plain text format. This provides a

XML Basics_Ch01_2pp.indd 11 8/7/2020 12:27:19 PM

12 • XML Basics

software- and hardware-independent way of storing data. This makes it much
easier to create data that can be shared by different applications.

XML Simplifies Data Transport

One of the most time-consuming challenges for developers is to exchange
data between incompatible systems over the Internet. Exchanging data as
XML greatly reduces this complexity, since the data can be read by different
incompatible applications.

XML Simplifies Platform Changes

Upgrading to new systems (hardware or software platforms) is always time
consuming. Large amounts of data must be converted and incompatible data
is often lost.

XML data is stored in text format. This makes it easier to expand or
upgrade to new operating systems, new applications, or new browsers without
losing data.

XML Makes Your Data More Readily Available

Different applications can access your data, not only from HTML pages, but
also from XML data sources. With XML, your data can be available to all
kinds of “reading machines” (handheld computers, voice machines, and news
feeds), and make it available for blind people or people with other disabilities.

XML is Used to Create New Internet Languages

New Internet languages are created with XML. Here are some examples:

●● XHTML
●● WSDL for describing the available Webservices
●● WAP and WML as markup languages for handheld devices
●● RSS languages for news feeds
●● RDF and OWL for describing resources and ontology
●● SMIL for describing multimedia for the Web

The future might give us word processors, spreadsheet applications, and
databases that can read each other’s data in XML format, without any conver-
sion utilities in between. XML documents form a tree structure that starts at
the “root” and branches to the “leaves.”

XML Basics_Ch01_2pp.indd 12 8/7/2020 12:27:19 PM

Understanding XML • 13

XML DISADVANTAGES

XML is useful for developing future Web applications, and it almost defines
the future of Web development. However, XML also has some drawbacks.
One of the biggest drawbacks of XML is that it lacks adequate applications
for processing.

LACK OF APPLICATION PROCESSING

XML needs an application processing system. There are no browsers yet that
can read XML. For HTML, anyone can write up a program that can be read
using any browser anywhere in the world. To be able to be read in a browser,
XML still depends on HTML and is not independent of it. XML documents
have to be converted to HTML before they are deployed. The most common
method is to write the parsing routes in either DHTML or Java applications
and parse them through the XML document. The formatting rules can be
applied by the style sheet to convert the entire document into HTML.

Other disadvantages of XML include the fact that it is more difficult,
more demanding, and more precise when compared to HTML. XML does
not have any browser support and does not have anything to support the end
user applications.

XML is very flexible, but its flexibility can potentially become one of its
disadvantages, since there may be disagreements in its tags. If an XML object
has too many constraints, it might become very difficult to construct the file.
While just describing tags and building a system sounds easy, it may not be
that easy in reality. For example, a business or professional organization may
have hundreds of functions related to one set of documents. XML does not
have the capability to synthesize all the information related to the document.

GENERAL WEAKNESSES OF XML

Since XML is a verbose language, it is dependent on who is writing it. A ver-
bose language may pose problems for other users. XML is not specific to any
platform and has a neutral platform requirement that may be a disadvantage
in a few circumstances. All the standards of XML are not yet fully compliant.
Users have reported problems with the parser and there are problems with
XML and HTTP that are still being resolved.

XML Basics_Ch01_2pp.indd 13 8/7/2020 12:27:19 PM

14 • XML Basics

XML documents can be difficult and expensive to set up. A freelancer,
for example, can sit at his home and at his own pace create, write, and format
a document or a manuscript using any of the free software available. How-
ever, the moment he introduces XML, the whole process becomes more
complicated.

XML AND UNICODE DISADVANTAGES

Implementing multiple programs that are incompatible can be challenging.
When XML is tied closely to Unicode, the Unicode changes XML’s attributes,
which might result in a file that is totally different from the original.

The XML parsers, when used along with the RSS and the component
called next, cannot disable the external entities. Instead they recognize them
as their own, which can prove to be a major disadvantage. XML by itself can-
not work along with Netscape, which makes it dependent on HTML. XML
is not a super efficient model, it is not platform independent, and it cannot
be deployed on every operating system. The limitation here is also very basic
since it cannot talk to the browsers.

There are sample codes that belong to HTML and XHTML which con-
tain a doctype and point to a DTD. The common belief is that this actually
works, but browsers do not actually retrieve these DTDs. Whenever the DTD
is unavailable, then the entire application breaks down. This is a problem
because the DTD can be unavailable for other reasons, and it doesn’t mean
that the service itself has to become unavailable.

XML creates an abundant amount of dependency on single factors that
can create problems for programs. DTD, when available, is totally not useful,
and an outside program has to be used to create a backup system, so users and
developers might as well use an outside program made from scratch, which
has the back up at intermediary levels.

External entities pose a problem, which is a major disadvantage for XML.
The best way to fix the external entities’ problems with XML DTD is to not
to use them at all, or if you have to use them, then don’t use them on the pro-
ducer side. Do not attempt to retrieve them on the client’s side.

When you write the specifications for an XML document, do not mention
the specifications for DTD in the vocabulary. There is a need for the pro-
grams to run their parsers for XML by disabling the external entity resolution.
Otherwise, the external entities’ problem will invariably crop up, triggering
a series of problems that cannot be solved by the XML environment alone.

XML Basics_Ch01_2pp.indd 14 8/7/2020 12:27:19 PM

Understanding XML • 15

While layering the specifications, it is against the rules to disable or ban cer-
tain document types, which is allowed in SOAP.

If your job is to implement a Web application which is based on XML, you
may need to configure the parser not to perform the DTD-based validations,
and also not to try and resolve the external entities. This could be an answer to
some problems, so taking precautionary measures is worthwhile. Publishing
documents on the Web requires the same precautions; the document types
should not be included.

A document may not be valid in the way XML describes it to be, and some
people even believe that document validation in XML is overrated. Docu-
ment data types are not very powerful when it comes to validation and it has
been forgotten that the document has its own language and grammar which
are not efficient for getting validated. There is also the problem of other pro-
grams not trusting the XML DTD. The doctype in HTML is much different
from the doctype in XML. You may not be able to use the doctype in XML
as an indicator, which helps programs understand what type of document it
is dealing with.

If there is an application which exists that can handle multiple vocabular-
ies of XML, and also knows to dispatch the respective documents to the con-
cerned handlers by checking the namespace at the root of the element, then
you can consider yourself lucky. If the vocabularies are not mentioned in the
namespace, then you can look for them in the mime type. In some cases,
the vocabularies are not present in the name space, nor are they specific to
the mime. Such language is certainly a bad example and will create problems
because you will have to use the root element name.

XML specifications define three kinds of file processing. The first one
is DTD based validations which do not perform or retrieve external entities.
The second one is the DTD based validation, which does not perform or
retrieve external entities so that the information set and the reference library
can be expanded. The third one is to perform the DTD-based validation by
retrieving the external entities so that the information set and the entity ref-
erence can be expanded.

The point of having many profiles is so that the application has a choice
and it chooses the right one. Character entities are considered unsafe for Web
applications. It is a disadvantage because there will be a problem with the
input and its editor. On the World Wide Web, there may be other options
available when there is such a problem. The situation need not be so unfor-
tunate because there may be a solution which exists, and there is an input
method which can solve the problem with the editor. If the XHTML entities
were pre-defined, then there wouldn’t be many problems.

XML Basics_Ch01_2pp.indd 15 8/7/2020 12:27:19 PM

16 • XML Basics

CHARACTERISTICS OF AN XML DOCUMENT

There are a range of characteristics associated with XML.

Simplicity

Information coded in XML is easy to read and understand, and it can be pro-
cessed easily by computers.

Self-Describing

Unlike records in traditional database systems, XML data does not require
relational schemata, file description tables, or external data type definitions
because the data itself contains this information. XML also guarantees the
total usability of data, which is imperative for business applications whose
tasks extend beyond the mere presentation of content.

XML documents use a self-describing and simple syntax:
<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

<to>Susan</to>

<from>Sullivan</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The first line is the XML declaration. It defines the XML version (1.0)
and the encoding used (ISO-8859-1 = Latin-1/West European character set).

The next line describes the root element of the document (like saying:
“this document is a note”):

<note>

The next 4 lines describe 4 child elements of the root (to, from, heading,
and body):

<to>Susan</to>

<from>Sullivan</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

And finally the last line defines the end of the root element:
</note>

XML Basics_Ch01_2pp.indd 16 8/7/2020 12:27:19 PM

Understanding XML • 17

OPEN AND EXTENSIBLE

XML allows you to add other elements when needed. This means you can
always adapt your system to address specification modifications.

APPLICATION INDEPENDENCE

Using XML, data is no longer dependent on a specific application for creation,
viewing or editing. In this sense, XML is to data what Java is to applications. Java
allows programs to run anywhere—XML allows data to be used by any application.

DATA FORMAT INTEGRATION

XML documents can contain any imaginable data type—from classical data
like text and numbers, or multimedia objects such as sounds and video, or
active components like Applets.

ONE DATA SOURCE, MULTIPLE VIEWS

By formatting our data in a markup language, we allow computer applications
to process and present this data to us in different ways. In contrast, HTML
presents data in one fixed way.

DATA PRESENTATION MODIFICATION

You can change the look and feel of documents, or even entire Websites, with
XSL Style Sheets without manipulating the data itself.

INTERNATIONALIZATION

Internationalization is important for electronic worldwide business applica-
tions. XML supports multilingual documents and the Unicode standard.

XML Basics_Ch01_2pp.indd 17 8/7/2020 12:27:19 PM

18 • XML Basics

FUTURE-ORIENTED

XML is the endorsed industry standard of the World Wide Web Consortium
(W3C) and is supported by all leading software providers. Furthermore, XML
is also the standard today in an increasing number of other industries, such as
health care.

IMPROVED DATA SEARCHES

Tags, attributes, and element structure provide context information that can
be used to interpret the meaning of content, opening up new possibilities
for highly efficient search engines, and intelligent data mining. An intelligent
search engine for a body of XML-compliant markup languages would search
both the content and the metadata, which would drastically improve the accu-
racy of searches. This will obviously cause an increase in the relevant and
accessible data on a global basis.

ENABLES E-COMMERCE TRANSACTIONS

An ecommerce transaction requires instant cooperation between a host of
agents involved in a single purchase. For example, a customer ordering an
item from a supplier involves a number of transactions, including those with
the customer (“B2C ecommerce”), businesses in a supply chain (“B2B ecom-
merce”), and banks (“B2B”), and between systems (“enterprise integration”).
The initial reaction of most companies was to integrate these diverse opera-
tions by building or buying software that employed protocols, such as DCOM
or CORBA, to perform such integrations. However, XML offers the option of
performing the necessary integration by exchanging standardized data.

XML DOCUMENTS FORM A TREE STRUCTURE

XML documents must contain a root element. This element is the parent of
all other elements. The elements in an XML document form a document tree.
The tree starts at the root and branches to the lowest level of the tree. All ele-
ments can have sub-elements (child elements):

XML Basics_Ch01_2pp.indd 18 8/7/2020 12:27:19 PM

Understanding XML • 19

<root>

<child>

<subchild>.....</subchild>

</child>

</root>

The terms parent, child, and sibling are used to describe the relationships
between elements. Parent elements have children. Children on the same level
are called siblings (brothers or sisters). All elements can have text content and
attributes (just like in HTML).

FIGURE 1.1  Tree structure of an XML document

The image above represents one book in the XML below:
<bookstore>

<book category="COOKING">

<title lang="en">Indian Food</title>

<author>Swati Jain</author>

<year>2011</year>

<price>200.00</price>

</book>

<book category="CHILDREN">

<title lang="en">Dolls</title>

<author>J K Jain </author>

<year>2010</year>

<price>29.95</price>

</book>

XML Basics_Ch01_2pp.indd 19 8/7/2020 12:27:19 PM

20 • XML Basics

<book category="WEB">

<title lang="en">Learning XML</title>

<author>G.Ram</author>

<year>2009</year>

<price>13.95</price>

</book>

</bookstore>

The root element in the example is <bookstore>. All <book> elements in
the document are contained within <bookstore>.

The syntax rules of XML are very simple and logical. The rules are easy to
learn and easy to use.

ALL XML ELEMENTS MUST HAVE A CLOSING TAG

In HTML, elements do not have to have a closing tag:
<p>This is a paragraph

<p>This is another paragraph

In XML, it is illegal to omit the closing tag. All elements must have a
closing tag:

<p>This is a paragraph</p>

<p>This is another paragraph</p>

You might have noticed from the previous example that the XML decla-
ration did not have a closing tag. This is not an error. The declaration is not a
part of the XML document itself, and it has no closing tag.

XML TAGS ARE CASE SENSITIVE

XML tags are case sensitive. The tag <Letter> is different from the tag
<letter>. Opening and closing tags must be written with the same case:

<Message>This is incorrect</message>

<message>This is correct</message>

Opening and closing tags are often referred to as Start and end tags. Use
whatever terms you prefer.

XML Basics_Ch01_2pp.indd 20 8/7/2020 12:27:19 PM

Understanding XML • 21

XML ELEMENTS MUST BE PROPERLY NESTED

In HTML, you might see improperly nested elements:
<i>This text is bold and italic</i>

In XML, all elements must be properly nested within each other:
<i>This text is bold and italic</i>

In the example above, “properly nested” simply means that since the <i>
element is opened inside the element, it must be closed inside the
element.

XML DOCUMENTS MUST HAVE A ROOT ELEMENT

XML documents must contain one element that is the parent of all other ele-
ments. This element is called the root element.

<root>

<child>

<subchild>.....</subchild>

</child>

</root>

XML ATTRIBUTE VALUES MUST BE QUOTED

XML elements can have attributes in name/value pairs just like in HTML.
In XML, the attribute values must always be quoted. Study the two XML

documents below. The first one is incorrect, and the second is correct:
<note date=12/11/2019>

<to>Tonu</to>

<from>John</from>

</note>

<note date="12/11/2019">

<to>Tonu</to>

<from>John</from>

</note>

The error in the first document is that the date attribute in the note ele-
ment is not quoted.

XML Basics_Ch01_2pp.indd 21 8/7/2020 12:27:19 PM

22 • XML Basics

XML IS FREE

XML doesn’t cost anything to use. It can be written with a simple text edi-
tor or one of the many freely available XML authoring tools, such as XML
Notepad. In addition, many Web development tools, such as Dream-weaver
and Visual Studio .NET, have built-in XML support. There are also many free
XML parsers, such as Microsoft’s MSXML (downloadable from microsoft.
com) and Xerces (downloadable at apache.org).

XML TECHNOLOGY

The structured data is contained in an XML document, a text file with .xml
as the extension. You can use CSS as in HTML to provide style sheets for
XML data display. For more advanced features, power, and flexibility for the
presentations, you could use XSL (XML Style sheet Language) to build the
style sheets.

To enforce the structural constraints and rules on the data contained in an
XML document, you could code a DTD (Document Type Definition). Due
to certain limitations that were inherent in DTDs, the W3C came up with a
specification to serve the same purpose as DTDs—the schemas. The schemas
are contained in a .xsd file, and DTDs in a .dtd file. XML schema is an XML-
based alternative to DTD.

FIGURE 1.2  XML Technology

XSD - XML Schema Definition

DTD - Document Type Definition

XSL - Extensible Stylesheet Language

XML Basics_Ch01_2pp.indd 22 8/7/2020 12:27:20 PM

Understanding XML • 23

USES

XML is widely used for the following purposes.

●● Storing configuration information—typically data in an application which
is not stored in a database. Most server software has configuration files in
XML formats.

●● XML documents can also be used as a mini data store. This data can be
used to present it on a variety of targets including browsers, and print
media.

●● Transmitting data between applications—overcomes problems in client
server applications which are cross-platform in nature. Ex: A Windows
program talking to a mainframe, Little and Big Endian problems, and
data type size variations across platforms.

FIGURE 1.3  Variant uses of XML

When XML data is transferred across different systems, the data contained
in an XML document can be read using a software entity called a parser. Most
of the popular databases (Oracle, MS SQL Server, Sybase, and DB2) provide
their own mechanisms to store and retrieve data as XML. Some of them also
provide parsers to work with the XML documents programmatically. XML is
a key technology when it comes to Web Services. .NET uses XML extensively.
It is used as a data format for everything—configuration files, metadata, RPC,
and object serialization.

XML Basics_Ch01_2pp.indd 23 8/7/2020 12:27:20 PM

24 • XML Basics

SAMPLE XML DOCUMENT

The following is a sample section from a possible XML document. It is ∗not∗
a full XML document—we will discuss the structure of XML documents
shortly and you will notice that we need a few extra lines to consider it to be
a full document.

<employee>

 <ident>3348498</ident>

 <name>

 <lastname>Peterson</lastname>

 <firstname>Sam</firstname>

<title>Dr.</title>

</name>

<phonedetails>

 <extension>8221</extension>

 <companyprefix>700</companyprefix>

 <regionprefix>1</regionprefix>

 <intprefix>+353</intprefix>

</phonedetails>

<department>

 <title>Software Development</title>

 <depid>8</depid>

</department>

<location>

 <building>Aston Quay</building>

 <room>A142</room>

</location>

</employee>

While not necessarily the optimum structure for information such as
above, it illustrates a major point of XML. The tags are defined by individu-
als, rather than some predefined standard structure. There are two different
kinds of information in the above example:

●● markup - such as <department> and <firstname>
●● text/character data - such as “Peterson” and “+353”

XML documents mix markup and text together into a single file: the
markup describes the structure of the document, while the text is the docu-
ment’s content.

XML Basics_Ch01_2pp.indd 24 8/7/2020 12:27:20 PM

Understanding XML • 25

XML IN PRACTICAL WORLD

Content Management

Almost all of the leading content management systems use XML in one way or
another. A typical use would be to store a company’s marketing content in one
or more XML documents. These XML documents could then be transformed
for output on the Web as Word documents, as PowerPoint slides, in plain text,
or audio format. The content can also easily be shared with partners who can
then output the content in their own formats. Storing the content in XML
makes it much easier to manage content for two reasons.

Content changes, additions, and deletions are made in a central location
and the changes will cascade out to all formats of presentation. There is no
need to be concerned about keeping the Word documents in sync with the
Website, because the content itself is managed in one place and then trans-
formed for each output medium.

Formatting changes are made in a central location. To illustrate, suppose
a company had many marketing Web pages, all of which were produced from
XML content being transformed to HTML. The format for all of these pages
could be controlled from a single XSLT and a sitewide formatting change
could be made modifying that XSLT.

WEB Services

XML Web services are small applications or pieces of applications that are
made accessible on the Internet using open standards based on XML. Web
services generally consist of three components:

●● SOAP—an XML-based protocol used to transfer Web services over the
Internet.

●● WSDL (Web Services Description Language)—an XML-based lan-
guage for describing a Web service and how to call it.

●● Universal Discovery Description and Integration (UDDI)—The
yellow pages of Web services. UDDI directory entries are XML docu-
ments that describe the Web services a group offers. This is how people
find available Web services.

It might be a bit easier to list what you can’t use it for! In addition to
making simple Webpages about your cats, you can use XML to create more
complex applications such as online databases, custom-built pages, and more.
By combining XML with Style Sheets and dynamic elements, you can even
create a storefront for online shopping! The possibilities are nearly endless.

XML Basics_Ch01_2pp.indd 25 8/7/2020 12:27:20 PM

26 • XML Basics

XML Web services are a relatively new development, designed to become
the fundamental building block in distributed computing on the Internet.
In other words, Web services allow business and personal users to interface
online without the need for a third-party program.

Imagine having an application running on your computer. You enter
information into that application, while a business partner in another part of
the country does the same in an application they’re working with. Instead of
you having to use an Instant Messenger or some other third-party program so
that you can communicate with your partner (even simple email is considered
a third party in this example), the applications that the two of you are using
share the information directly, providing both of you with the results. Now
imagine that the applications that the two of you are using are simply built
into a Webpage. That’s the integration of Web services with XML.

When it comes down to it, all that Web services are is a new way for users
to interface with applications. The Web services application uses an XML
messaging system to make itself available over the Internet, and because the
core of the communications is XML, it doesn’t have to communicate with the
systems that it would normally be compatible with. Windows can communi-
cate with Unix, and Java can send messages to Perl. Web services use XML as
a sort of “universal translator.”

Web services are still a relatively new technology, with new Web services
being developed by programmers everyday. Some of the Web services that
have already been created, though, are nothing short of amazing. Examples of
these Web services are

●● News syndication services that present the most recent headlines to users
●● Stock market analysis, with up-to-date tickers of the ups and downs of the

market
●● Weather reports giving current information for the users area
●● Shipping systems, giving up-to-date tracking information
●● Traffic reports for different localities
●● Interactive sites offering products
●● Up-to-date currency exchanges
●● Applications that need to be used by large numbers of users, some of

whom are behind firewalls

More Web services are being developed every day. It’s still a growing
technology, so advances that are made which might seem minor at first stand
a chance of becoming ground-breaking work.

XML Basics_Ch01_2pp.indd 26 8/7/2020 12:27:20 PM

Understanding XML • 27

RDF/RSS Feeds

RDF (Resource Description Framework) is a framework for writing XML-
based languages to describe information on the Web (e.g., Web pages). RSS
(RDF Site Summary) is an implementation of this framework; it is a language
that adheres to RDF and is used to describe Web content. Website publish-
ers can use RSS to make content available as a “feed,” so that Web users can
access some of their content without actually visiting their site. Often, RSS is
used to provide summaries with links to the company’s Website for additional
information.

Limitations

Not surprisingly, there are limits to what you can do with style sheets.
Languages for style sheets are optimized for different purposes. You need to
be aware of how a style sheet language works to use it most effectively.

CSS, for example, is designed to be compact and efficient. Documents
have to be rendered quickly because people don’t want to wait a long time for
something to read. The style sheet processor is on the client end, and doesn’t
have a lot of computing power at its disposal. So the algorithm for applying
styles needs to be very simple. Each rule that matches an element can only
apply a set of styles. There is no other processing allowed, no looking back-
ward or forward in the document for extra information. You have only one
pass through the document to get it right.

Sometimes, information is stored in an order other than the way you want
it to be rendered. If that is the case, then you need something more powerful
than CSS. XSLT works on a tree representation of the document. It provides
the luxury of looking ahead or behind to pull together all the data you need to
generate output. This freedom comes at the price of increased computational
requirements. Although some browsers support client-side XSLT processing
(e.g., Internet Explorer), it’s more likely you’ll want transformations to be
done on the server side, where you have more control and can cache the
results.

Property sets are finite, so no matter how many features are built into a
style sheet language, there will always be something lacking, some effect you
want to achieve but can’t. When that happens, you should be open to other
options, such as post-processing with custom software.

Unquestionably, implementation among clients has been the biggest
obstacle. The pace of standards development was much faster than actual
implementation. Browsers either didn’t support them or had buggy and
incomplete implementations. This is quite frustrating for designers who want

XML Basics_Ch01_2pp.indd 27 8/7/2020 12:27:20 PM

28 • XML Basics

to support multiple platforms but are stymied by differing behaviors among
user agents. Not only does behavior vary among vendors, but among versions
and platforms, too. Internet Explorer, for example, behaves very differently
on a Macintosh than it does on Windows for versions that came out at the
same time.

The CSS Specification

The goal of a CSS specification was to create a simple yet expressive language
that could combine style descriptions from different sources. Another style
description language, DSSSL, was already being used to format SGML docu-
ments. Though very powerful, DSSSL was too big and complex to be practical
for the Web. It is a full programming language, capable of more precision and
logical expression than CSS, which is a simple language, and focused on the
basic needs of small documents.

While other style sheet languages existed when CSS was proposed, none
offered the ability to combine multiple sources into one style description set.
CSS makes the Web truly accessible and flexible by allowing a reader to over-
ride the author’s styles to adapt a document to the reader’s particular require-
ments and applications.

The W3C put forward the first CSS recommendation (later called CSS1)
in 1996. A short time later, a W3C working group formed around the subject
of “Cascading Style Sheets and Formatting Properties” to add the missing
functionality.

Syntax

Below is a sample CSS style sheet:
/* A simple example */

addressbook {

 display-type: block;

 font-family: sans-serif;

 font-size: 12pt;

 background-color: white;

 color: blue;

}

entry {

 display-type: block;

 border: thin solid black;

 padding: 5em;

XML Basics_Ch01_2pp.indd 28 8/7/2020 12:27:20 PM

Understanding XML • 29

 margin: 5em;

}

name, phone, email, address {

 display-type: block;

 margin-top: 2em;

 margin-bottom: 2em;

}

This style sheet has three rules. The first matches any addressbook ele-
ment. The name to the left of the open bracket is a selector, which tells the
processor what element this rule matches. The items inside the brackets are
the property declaration, a list of properties to apply.

CSS also has a syntax for comments. Anything inside a comment is ignored
by the processor. The start delimiter is /∗ and the end delimiter is ∗/. A com-
ment can span multiple lines and may be used to enclose CSS rules to remove
them from consideration:

/* this part will be ignored

gurble { color: red }

burgle { color: blue; font-size: 12pt; }

*/

White space is generally ignored and provides a nice way to make style sheets
more readable. The exception is when spaces act as delimiters in lists. Some
properties take multiple arguments separated with spaces like border below:

sidebar {

 border: thin solid black

}

Matching Properties to Elements

Let’s look more closely at this rule:
addressbook {

 display-type: block;

 font-family: sans-serif;

 font-size: 12pt;

 background-color: white;

 color: blue;

}

Qualitatively, this rule is like saying, “for every addressbook element, dis-
play it like a block, set the font family to any sans serif typeface with size

XML Basics_Ch01_2pp.indd 29 8/7/2020 12:27:20 PM

30 • XML Basics

12 point, set the background color to white, and make the foreground (text)
blue.” Whenever the CSS processor encounters an addressbook element, it
will set apply these properties to the current formatting context.

To understand how it works, think of painting-by-numbers. In front of
you is a canvas with outlines of shapes and numbers inside the shapes. Each
number corresponds to a paint color. You go to each shape, find the paint that
corresponds to the number inside it, and fill it in with that color. In an hour
or so, you’ll have a lovely stylized pastoral scene with a barn and wildflowers.
In this analogy, the rule is a paint can with a numbered label. The color is the
property and the number is the selector.

The selector can be more complex than just one element name. It can be
a comma-separated list of elements. It could be qualified with an attribute, as
in this example, which matches a foo element with class=“flubber”:

foo.flubber { color: green; }

This dot-qualified selector matches an element with a class attribute,
which is supported in HTML and SVG.

The CSS processor tries to find the best rule (or rules) for each element.
In a stylesheet, several rules may apply. For example:

p.big {

 font-size: 18pt;

}

p {

 font-family: garamond, serif;

 font-size: 12pt;

}

* {

 color: black;

 font-size: 10pt;

}

The first rule matches a p with attribute class=“big.” The second matches
any p regardless of attributes, and the last matches any element at all. Sup-
pose the next element to process is a p with the attribute class=“big.” All three
rules match this element.

How does CSS decide which properties to apply? The solution to this
dilemma has two parts. The first is that all rules that match are used. It’s as
if the property declarations for all the applicable rules were merged into one
set. That means all of these properties potentially apply to the element:

font-size: 18pt;

font-family: garamond, serif;

XML Basics_Ch01_2pp.indd 30 8/7/2020 12:27:20 PM

Understanding XML • 31

font-size: 12pt;

color: black;

font-size: 10pt;

The second part is that redundant property settings are resolved according
to an algorithm. As you can see, there are three different font-size property
settings. Only one of the settings can be used, so the CSS processor has to
weed out the worst two using a property clash resolution system. As a rule of
thumb, you can assume that the property from the rule with the most specific
selector will win out. The first font-size property originates from the rule with
selector p.big, which is more descriptive than p or ∗, so it’s the winner.

In the final analysis, these three properties will apply:
font-size: 18pt;

font-family: garamond, serif;

color: black;

PROPERTY INHERITANCE

XML documents have a hierarchy of elements. CSS uses that hierarchy to pass
along properties in a process called inheritance. Going back to our DocBook
example, a sect1 contains a para. Consider the following style sheet:

sect1 {

 margin-left: 25pt;

 margin-right: 25pt;

 font-size: 18pt;

 color: navy;

}

para {

 margin-top: 10pt;

 margin-bottom: 10pt;

 font-size: 12pt;

}

The para’s set of properties is a combination of those explicitly declared
for it and those it inherits from the elements in its ancestry. Not all proper-
ties are inherited. Margins are never inheritable, so in the above example,
only font size and color may be inherited. However, the font-size property is
not inherited by para because it is redefined there. So the para’s properties
include those specifically defined for it, plus the one it inherited, color: navy.

XML Basics_Ch01_2pp.indd 31 8/7/2020 12:27:20 PM

32 • XML Basics

COMBINING STYLESHEETS

A very powerful feature of CSS is its ability to combine multiple style sheets by
importing one into another. This lets you borrow predefined style definitions
so you don’t have to continuously reinvent the wheel. Any style settings that
you want to redefine or don’t need can be overridden in the local style sheet.

One reason to combine style sheets is modularity. It may be more man-
ageable to break up a large style sheet into several smaller files. For example,
we could store all the styles pertaining to math equations in math.css and all
the styles for regular text in text.css. The command @import links the current
style sheet to another and causes the style settings in the target to be imported:

@import url(http://www.example.org/mystyles/math.css);

@import url(http://www.example.org/mystyles/text.css);

Some of the imported style rules may not suit your taste, or they may not
fit the presentation. You can override those rules by redefining them in your
own style sheet. Here, we’ve decided that the rule for h1 elements defined in
text.css needs to be changed:

@import url(http://www.example.org/mystyles/text.css);

h1: { font-size: 3em; } /* redefinition */

QUESTIONS FOR DISCUSSION

1.	 What is XML?

2.	 What is a markup language?

3.	 Where should we use XML?

4.	 Why is XML such an important development?

5.	 Describe the differences between XML and HTML.

6.	 What is SGML?

7.	 Aren’t XML, SGML, and HTML all the same thing?

8.	 Who is responsible for XML?

9.	 Give a few examples of types of applications that can benefit from
using XML.

10.	 Why not just carry on extending HTML?

XML Basics_Ch01_2pp.indd 32 8/7/2020 12:27:20 PM

Understanding XML • 33

11.	 Can you walk us through the steps necessary to parse XML
documents?

12.	 What is the difference between XML and C or C++ or Java?

13.	 Does XML replace HTML?

14.	 Is it necessary to know HTML or SGML before learning XML?

15.	 What does an XML document actually look like (inside)?

16.	 How can XML data be displayed using HTML?

17.	 How you define the tree structure in XML?

18.	 What are the disadvantage of XML?

19.	 What are the advantages of XML?

20.	 Why is XML referred to as having self-describing data?

21.	 How we define an empty XML element?

22.	 How we use xml.onload?

23.	 Where data is stored in XML?

24.	 How we can say that XML is extensible?

25.	 How do you create an XML document? Explain it with an example.

XML Basics_Ch01_2pp.indd 33 8/7/2020 12:27:20 PM

XML Basics_Ch01_2pp.indd 34 8/7/2020 12:27:20 PM

C H A P T E R 2
XML SYNTAX

THE WELL-FORMED DOCUMENT

XML is a tool used to generate markup languages in a general, rather than a
specific, markup language. Thus, rather than pre-defining a set of tags, XML
defines a methodology for tag creation. Once defined, tags are mixed with
plain text to form an “XML document.”

It is worth mentioning that the word “document” can be a little mislead-
ing because although XML markup can certainly be contained in a file, (as the
word document would imply), it can also be sent as a data stream, a database
result set, or be dynamically-generated by one application and sent to another.
More correctly, an XML document can be thought of as a “data object,” but
for simplicity, document will work just fine.

However, though you are free to be as innovative as you want with the
tag sets you create, you must follow the constraints of the XML tag set gen-
eration standards exactly. When an XML document is presented to an XML-
processor, in order for the XML processor to understand how to process it,
the XML must follow the XML standard. Specifically, the document must be
“well-formed.” If the document is not well-formed the processor will stop,
complaining about a “fatal error.”

Well-formedness has an exact meaning in XML. Specifically, a well-
formed document adheres to the syntax rules specified by the XML 1.0 speci-
fication in that it must satisfy both the physical and logical structures.

XML Basics_Ch02_2pp.indd 35 8/7/2020 12:37:17 PM

36 • XML Basics

XML DOCUMENT STRUCTURE

XML documents are intended to store data, not necessarily to be viewed.
They follow a layout very similar to HTML. In HTML, there are two main
sections in a document defined by the HEAD and BODY tags. An XML docu-
ment also contains two sections: the document prolog at the head of the docu-
ment and the instance or the body.

XML documents have a logical structure and a physical structure. Logi-
cally, documents are composed of declarations, elements, comments, charac-
ter references, and processing instructions, all of which are indicated in the
document by explicit markup.

All XML documents may be understood in terms of the data they contain
and the markup that describes that data. Data is typically “character data”
(letters, numbers, punctuation—anything within the boundaries of valid Uni-
code), but can also be binary data. Markup includes tags, comments, process-
ing instructions, DTDs, and references.

A simple example of character data and markup is as follows:
<NAME>Selena Sol</NAME>

In this case, the <NAME> and </NAME> tags comprise the markup and
“Selena Sol” comprises the character data. As you can imagine, there are few
rules that manage your data (content) other than what type of data is allowed
(binary or ASCII, for example). On the other hand, there are many rules that
define how you must code your markup.

To begin an XML document, it is a good idea to include the XML decla-
ration as the very first line of the document. I say “good idea” because, though
the XML declaration is optional, it is suggested by the W3C specification.

Essentially, the XML declaration is a processing instruction that notifies
the processing agent that the following document has been marked up as an
XML document. It will look something like the following:

<?xml version = "1.0"?>

We’ll talk more about the details of processing instructions later, but we
can at least explain how the XML declaration works.

All processing instructions, including the XML declaration, begin with
<? and end with ?>. Following the initial <?, you will find the name of the
processing instruction, which in this case is “xml.”

The XML processing instruction, requires that you specify a “version”
attribute and allows you to specify optional “standalone” and “encoding”
attributes.

XML Basics_Ch02_2pp.indd 36 8/7/2020 12:37:18 PM

XML Syntax • 37

In its full regalia, the XML declaration might look like the following:
<?xml version = "1.0" standalone = "yes" encoding = "UTF-8"?>

As we said before, if you do decide to use the optional XML declaration,
you must define the “version” attribute. As of this writing, the current version
of XML is 1.0. Note that if you include the optional attributes, “version” must
be specified first.

PROLOG SECTION

The document prolog must be the first thing in an XML document—it is the
introduction to the document. Here is a sample prolog of an XML document:

<?xml version="1.0"?>

<!DOCTYPE book SYSTEM "DTD/book.dtd">

The specification states that both parts of the prolog are optional. The
first part is called the XML declaration and the second part the Document
Type Definition. A Document Type Definition (DTD) sets all the rules for
the document regarding elements, attributes, and other components. This
DTD may be either an external DTD or Internal DTD.

●● Internal DTD—An internal DTD document is contained completely
within the XML document.

●● External DTD—An external DTD document is a separate document, ref-
erenced from within the XML document.

The example prolog above refers to an external DTD that can be found
in the local system path “DTD/book.dtd.” Any time you use a relative or abso-
lute file path or a URL, you must use the SYSTEM keyword. The other option
is using the PUBLIC keyword, and follow it with a public identifier. This
means that the W3C or another consortium has defined a standard DTD that
is associated with that public identifier. For example,

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

THE STANDALONE ATTRIBUTE

The standalone attribute specifies whether the document has any markup
declarations that are defined in a separate document. Thus, if standalone is

XML Basics_Ch02_2pp.indd 37 8/7/2020 12:37:18 PM

38 • XML Basics

set to “yes,” there will be no markup declarations in external DTD’s. Setting it
to “no” leaves the issue open. The document may or may not access external
DTD’s.

THE ENCODING ATTRIBUTE

All XML parsers must support 8-bit and 16-bit Unicode encoding correspond-
ing to ASCII. However, XML parsers may support a larger set.

Once you have written your XML declaration, you are ready to begin
coding your XML document. To do so, you should understand the concept of
elements.

Elements are the basic unit of XML content. Syntactically, an element
consists of a start tag, an end tag, and everything in between. For example,
consider the following element:

<NAME>Frank Lee</NAME>

XML defines the text between the start and end tags to be “character
data” and the text within the tags to be “markup.”

INSTANCE SECTION

The instance contains the remaining parts of the XML document, including
the actual contents of the document, such as characters, paragraphs, pages,
and graphics.

ELEMENTS

Elements are the most important part of an XML document. An element con-
sists of content enclosed in an opening tag and a closing tag. An element can
contain several different types of content:

●● Element Content—Contains only other elements. Example: the <name>
element in <name><firstname>Tom</firstname><lastname>Smith</
lastname></name>

●● Mixed Content—Contains both text and other elements. Example: the
<para> element in <para>This point is a <emphasis>very important</
emphasis> point.</para>

XML Basics_Ch02_2pp.indd 38 8/7/2020 12:37:18 PM

XML Syntax • 39

●● Simple Content—Contains only text. Example: <lastname>Molloy</
lastname>

●● Empty Content—Does not contain information. Example: <image
src=“test.jpg”></image>

XML element names are case-sensitive, meaning that opening and clos-
ing tags must be written in the same case. XML documents require both a
begin and an end tag. Although you can frequently omit the closing tags with
some elements in HTML (such as
), all XML elements must include
an end tag. Otherwise, the XML would not be properly structured and would
result in an error. For example, the following is incorrect:

<title>Introduction to XML

The correct format would be
<title>Introduction to XML</title>

When dealing with elements such as empty elements it is possible to spec-
ify them using the following shorthand:

<image src="test.jpg"></image>

 <image src="test.jpg" />

XML documents must be well-formed. First, this means that you must
follow the rules regarding case-sensitivity and always include closing tags.
Additionally, you cannot mix the order of the nested tags: the first opened ele-
ment must always be the last closed element. If any of the rules for XML syn-
tax are not followed in an XML document, the document is not well-formed.
The following is an example of an XML fragment that is not well-formed:

<tag1>

<tag2>

</tag1>

</tag2>

A well-formed document is not necessarily valid. Valid XML must addi-
tionally follow the constraints set upon an XML document by its Document
Type Definition or schema.

In XML, you can only have a single root element. That root element has
sub-elements which may also further have sub-elements. The structure of
an XML document is a tree of elements. So if you think of an element as a
container, an XML document becomes a container of containers. Containers
have a name associated with them (the element name) and possible additional

XML Basics_Ch02_2pp.indd 39 8/7/2020 12:37:18 PM

40 • XML Basics

characteristics (called attributes). The containers hold the content (or data) of
the document. The start and end tags define the boundaries of the container.

root element
sub element
sub element

<book>
<title> Understanding XML <title>
<author>

<firstname>Tom<firstname>
<lastname>Smith<lastname>

<author>

<chapter>

<title>Introduction</title>
<sect1>

<para>blah blah blah...
</para>
<sect2>
<title>A subsection!</title>
<para> More blah blah
<para>

</chapter>

<sect2>
<sect1>

......

......
</book> root element

......

....

..

.

FIGURE 2.1  XML element structure

CHARACTER DATA

Character data may be any legal (Unicode) character with the exception of
“<.” The “<” character is reserved for the start of a tag. XML also provides
useful entity references that you can use so as not to create any doubt whether
you are specifying character data versus markup. Table 2.1 shows the entity
references in XML.

Table 2.1  Character Data and its Entity References

Character Entity Reference

> >

< <

& &

” "

’ '

Note that all values are not typed. That is, they are considered strings.
Thus, if you were to process the tag

XML Basics_Ch02_2pp.indd 40 8/7/2020 12:37:18 PM

XML Syntax • 41

<ROOM_SIZE RADIUS = "10" DEPTH = "13">

you would have to convert “10” and “13” to their numeric values outside of
the XML environment.

CDATA

It is a pretty good rule of thumb to consider anything outside of tags to be
character data and anything inside of tags to be considered markup. But alas,
in one case this is not true. In the special case of CDATA blocks, all tags and
entity references are ignored by an XML processor that treats them just like
character data.

CDATA blocks serve as a convenience measure when you want to include
large blocks of special characters a character data, but you do not want to have
to use entity references all the time. What if you wanted to write about an
XML document in XML? Consider the following example in which you would
have an example tag in your XML Guide written in XML:

<EXAMPLE>

<DOCUMENT>

<NAME>Coleen Merriman</NAME>

<EMAIL>cm@mydomain.com</EMAIL>

</DOCUMENT>

</EXAMPLE>

As you can see, you would be forced to use entity references for all the
tags.

To avoid the inconvenience of translating all special characters, you can
use a CDATA block to specify that all character data should be considered
character data whether or not it “looks” like a tag or entity reference.

Consider the following example:
<EXAMPLE>

<![CDATA[

<DOCUMENT>

<NAME>Coleen Merriman</NAME>

<EMAIL>cm@mydomain.com</EMAIL>

</DOCUMENT>

]]>

</EXAMPLE>

XML Basics_Ch02_2pp.indd 41 8/7/2020 12:37:18 PM

42 • XML Basics

COMMENT

Not only will you sometimes want to include tags in your XML document
that you want the XML processor will ignore (display as character data), but
sometimes you will want to put character data in your document that you want
the XML processor to ignore (not display at all). This type of text is called
comment text.

You will be familiar with comments from HTML. In HTML, you speci-
fied comments using the <!-- and --> syntax. In XML, comments are done in
just the same way. So the following would be a valid XML comment:

<!-- Begin the Names -->

<NAME>Jim Nelson</NAME>

<NAME>Jim Sanger</NAME>

<NAME>Les Moore</NAME>

<!-- End the names -->

When using comments in your XML documents, however, you should
keep in mind a couple of rules.

First, you should never have “-” or “--” within the text of your comment as
it might be confusing to the XML processor.

Second, never place a comment within a tag. Thus, the following code
would be poorly-formed XML:

<NAME <!--The name --> >Peter Williams</NAME>

Likewise, never place a comment inside of an entity declaration and never
place a comment before the XML declaration that must always be the first
line in any XML document.

PROCESSING INSTRUCTION

We have already seen a processing instruction. The XML declaration is a pro-
cessing instruction. And if you recall, when we introduced the XML decla-
ration, we promised to return to the concept of processing instructions to
explain them as a category.

A processing instruction is a bit of information meant for the application
using the XML document. That is, they are not really of interest to the XML
parser. Instead, the instructions are passed intact straight to the application
using the parser.

XML Basics_Ch02_2pp.indd 42 8/7/2020 12:37:18 PM

XML Syntax • 43

The application can then pass this on to another application or interpret
it itself.

All processing instructions follow the generic format of:
<?NAME_OF_APPLICATION_INSTRUCTION_IS_FOR INSTRUCTIONS?>

As you might imagine, you cannot use any combination of “xml” as the
NAME_OF_APPLICATION_INSTRUCTION_IS_FOR since “xml” is
reserved. However, you might have something like

<?JAVA_OBJECT JAR_FILE = "/java/myjar.jar"?>

ENTITIES

To a large, degree much of the discussion of entities is more relevant in the
next section, writing “valid” documents, rather than in this section, writing
“well-formed” documents.

Entities are essentially aliases that allow you to refer to large sections of
text without having to type them out every time you want to use them.

Suppose you have your letterhead saved as an entity in a shared file. Then,
every time you write a letter in XML, you might say something like

<LETTER>

 &letterhead;

 <TO>Bobby Rosy</TO>

 <BODY>

 blah blah blah

 </BODY>

 <FROM>Shashi Banzal</FROM>

</LETTER>

Notice that the letterhead might expand out to:
S & B Company

 37,I G Nagar

 Indore,MP

However, instead of typing that out in every letter, you just use &
letterhead;

There are two types of entities, general and parameter entities and each
entity has two parts, the declaration and the entity reference.

XML Basics_Ch02_2pp.indd 43 8/7/2020 12:37:18 PM

44 • XML Basics

GENERAL ENTITIES

General entities look something like
<!ENTITY NAME "text that you want to be represented by the entity">

which might look like the following in the real world:
<!ENTITY full_name "Shashi Banzal">

PARAMETER ENTITIES

Parameter entities, that can also be either internal or external, are only used
within the DTD that we will discus in the next section so we will defer a serious
discussion until then. However, we will mention that a well-formed parameter
entity will look the same as a general entity except that it will include the “%”
specifier. Consider the following example:

<!ENTITY % NAME "text that you want to be represented by the entity">

If you want to declare entities, you MUST do so within the document
DOCTYPE declaration that always follows the prolog (DTD and xml
Declaration).

<?xml version="1.0"?>

 <!DOCTYPE myDocument [

 ...here is where you declare your entities....

]>

 <myDocument>

 ...here is the body of your document....

 </myDocument>

Thus, you might have something like the following (Consider how much
easier changing office addresses is when you use entities!):

<?xml version="1.0"?>

<!DOCTYPE CLIENTS [

<!ENTITY ninthFloorAddress "2345 Broadway St Floor 9">

<!ENTITY eighthFloorAddress "2345 Broadway St Floor 8">

<!ENTITY seventhFloorAddress "2345 Broadway St Floor 7">

]>

<CLIENTS>

<CLIENT>

XML Basics_Ch02_2pp.indd 44 8/7/2020 12:37:18 PM

XML Syntax • 45

<NAME>Fred Jenkins</NAME>

<ADDRESS>&ninthFloorAddress;</ADDRESS>

<PHONE>x345</PHONE>

</CLIENT>

<CLIENT>

<NAME>Ravi Gupta</NAME>

<ADDRESS>&ninthFloorAddress;</ADDRESS>

<PHONE>x111</PHONE>

</CLIENT>

<CLIENT>

<NAME>Natalia Kinski</NAME>

<ADDRESS>&ninthFloorAddress;</ADDRESS>

<PHONE>x346</PHONE>

</CLIENT>

<CLIENT>

<NAME>Mary Smith</NAME>

<ADDRESS>&seventhFloorAddress;</ADDRESS>

<PHONE>x289</PHONE>

</CLIENT>

<CLIENT>

<NAME>Kristin Mancuso</NAME>

<ADDRESS>&eighthFloorAddress;</ADDRESS>

<PHONE>x945</PHONE>

</CLIENT>

</CLIENTS>

ENTITY REFERENCES

Entity references refer to the key that unlocks an entity which has been
declared in an entity declaration. Entity references follow the simple syntax of

&ENTITY_NAME;

such as

&letterhead;

Parameter entity references work much like general entity references. In
this case, we use a “%” sign instead of a “&.”

%PARAMETER_ENTITY_NAME;

XML Basics_Ch02_2pp.indd 45 8/7/2020 12:37:18 PM

46 • XML Basics

Now, you have already seen that entity references can take the place of
regular character data and you have seen how useful that is. You could also use
entity references within tag attributes. For example, consider the following:

<INVOICE CLIENT = "&IBM;" PRODUCT = "&PRODUCT_ID_8762;" QUANTITY = "5">

ATTRIBUTES

In additional to content, elements may have attributes. XML attributes are
identical to HTML attributes, allowing you to attach characteristics to an ele-
ment. For example, in HTML:

and XML

 <image src="images/test.jpg" />

Attributes have a name and a value and are placed within the start tag. In
the document type definition (DTD), you define the legal attributes for an
element and what values are legal for that attribute.

An element can have multiple attributes. While you can get away with
omitting quotes for attributes in HTML, in XML the value must be sur-
rounded by single or double quotes. When you use one type of quotes, the
other type is legal within the quotes - for example

<topic name=" Brian O'Sullivan">

or
<topic name=' The Use of "s in Popular Literature '>

In addition to learning how to use attributes, there is an issue of when to
use attributes. Because XML allows such a variety of data formatting, it is rare
that an attribute cannot be represented by an element, or that an element
could not be easily converted to an attribute.

Although there’s no specification or widely accepted standard for deter-
mining when to use an attribute and when to use an element, there is a
good rule of thumb: use elements for multiple-valued data and attributes for
single-valued data. If data can have multiple values, or is very lengthy, the
data most likely belongs in an element. To understand this, let us consider two
formats for storing phone information:

<phone number="+35318008583" />

and

XML Basics_Ch02_2pp.indd 46 8/7/2020 12:37:18 PM

XML Syntax • 47

<phone>

 <intcode>+353</intcode>

 <localcode>1</localcode>

 <prefix>800</prefix>

 <extension>8583</extension>

</phone>

Using attributes in this case is obviously far simpler to write and less ver-
bose. However, it would make searching our data for all phone numbers with
an 800 prefix quite difficult. Equally, the multiple element format would make
it easy to generate an internal phone book only showing the local extensions.

Both formats are correct data formats. Essentially, which you use comes
down to your own preference.

ENTITIES’ REFERENCES AND CONSTANTS

Let us consider a XML file where we wish to include the data <HTML>.
<chapter>

 <sect1>

 <title>Using HTML</title>

 <para>

 HTML is defined using tags, such as <HTML> and <BODY>

 </para>

 </sect1>

</chapter>

The problem here is that XML parsers will attempt to handle this data as
an XML tag, and then generate an error because there is no closing tag. This
is a common problem, as any use of angle brackets results in this behavior.
Entity references provide a way to overcome this problem. An entity refer-
ence is a special data type in XML used to refer to another piece of data. The
entity reference consists of a unique name, preceded by an ampersand and
followed by a semicolon: &[entityname];. When an XML parser sees an entity
reference, the specified substitution value is inserted and no processing of
that value occurs. XML defines five special entities to address this problem:
< for <, > for >, & for &, " for “and ' for”. Using these
entities, it is possible to define the above example:

XML Basics_Ch02_2pp.indd 47 8/7/2020 12:37:18 PM

48 • XML Basics

<chapter>

<sect1>

<title>Using HTML</title>

<para>

HTML uses tags, such as <HTML> and <BODY>.
 </para>

 </sect1>

</chapter>

Once this document is parsed, the data is interpreted as “<HTML> and
<BODY>” and the document is still considered well-formed.

Using entities is not restricted to simply handling difficult escape charac-
ters within data. It is possible to use entities to effectively define variables or
constants within your XML data. Consider the case where we repeatedly use
the data “Royal Society for the Prevention of Cruelty to Animals (RSPCA)” in
our XML document. Rather than repeatedly type this every time, in our XML
document (or root XML document, if we use multiple subdocs) we define the
following:

<!ENTITY rspca "Royal Soc. for the Prevention of Cruelty to Animals">

Then, when we wish to use this text within our XML document at any
subsequent stage, we simply use the entity: &rspca; to represent our con-
stant. Likewise, the variable representing the author’s current email could be
defined as an entity and referenced throughout the rest of the document. If
the author’s email address changes at a later date, then a simple change to the
entity would modify the data throughout the rest of the document.

UNPARSED DATA

In XML, there are three kinds of data that are ignored by the parser: com-
ments, processing instructions (PIs), and character data (CDATA). When
the parser encounters one of these, normal operation is suspended while the
parser looks for the end marker.

Comments in XML are exactly like comments in HTML. Typically, they
are ignored by most XML parsers.

<!-- this is a comment -->

XML Basics_Ch02_2pp.indd 48 8/7/2020 12:37:18 PM

XML Syntax • 49

CHARACTER DATA (CDATA)

Sections allow you to put information that might be recognised as markup any-
where characters may occur. CDATA sections begin with <![CDATA[and end
with]]>. The parser ignore everything within the CDATA section. CDATA is
also used when a significant amount of data should be passed to the calling
application without any XML parsing or when spacing must be preserved.
Throughout these notes, CDATA is almost always used when it comes to dis-
playing listings of programs or samples of XML and HTML where brackets
and ampersands are frequently used. It would not be practical in these situ-
ations to also use entity references repeatedly (although it could be done) so
we just use CDATA to display the block of unparsed code. Additionally, when
it comes to program listings, it allows us to preserve the spacing and layout of
our sample code. So for example,

 <para>

<![CDATA[

 <HTML>

 <HEAD>

 <TITLE>Test HTML Page</TITLE>

 </HEAD>

 <BODY>

 <H1>Hello World!</H1>

 </BODY>

 </HTML>

]]>

 </para>

PROCESSING INSTRUCTIONS (PIS)

Processing instructions (PIs) allow XML documents to contain instructions
for applications. Like comments, they are not part of the document’s char-
acter data, so they are of little interest to the XML processor. However, they
must be passed through to the proper application. The PI begins with <? and
ends with ?>. The only PI we have encountered so far has been in the prolog:

<?xml version="1.0"?>

XML Basics_Ch02_2pp.indd 49 8/7/2020 12:37:18 PM

50 • XML Basics

QUESTIONS FOR DISSCUSSION

1.	 Give examples of XML editors.

2.	 Define the syntax rules in XML in brief.

3.	 Define XML elements and attributes with examples.

4.	 What are the basic problems with using Attributes?

5.	 What are the basic problems with using Attributes?

6.	 In XML, elements have to be nested properly. Explain.

7.	 How does XML handle white-space in documents?

8.	 Which parts of an XML document are case-sensitive?

9.	 How would you build a search engine for large volumes of XML data?

10.	 What is a well-formed XML document?

11.	 What is a valid XML document?

12.	 What is the structure of an XML document?

13.	 What is a processing instruction in XML?

14.	 How is the XML structure defined?

15.	 What do you know about the XML parser?

16.	 How does XML support UNICODE characters?

17.	 Write some basic rules of XML.

18.	 How is XML element defined?

19.	 How do you define attributes in XML?

20.	 How do you define an XML entity?

21.	 How can you write comments in XML?

22.	 How you define DTD in XML?

23.	 What is the XML prolog?

24.	 What you understand with document validity?

25.	 What is the CDATA section in HTML?

XML Basics_Ch02_2pp.indd 50 8/7/2020 12:37:18 PM

XML Syntax • 51

26.	 “<?xml version=”1.0 “encoding=”UTF-8“standalone=”no“?>” in brief.

27.	 Explain \“<!doctype document system \”R4R.dtd\“>\”.

28.	 Explain <!-- Here is a comment -->.

29.	 Explain <?xml-stylesheet type=“text/css” href=“myStyles.css”?>.

30.	 Explain Child Elements and Content in any XML Program.

31.	 In XML, elements have to be nested properly. Explain.

32.	 What are some terms used when naming an element in XML?

33.	 What essential components of security do the XML Signatures
provide?

34.	 What is a validating parser?

35.	 What is URN?

XML Basics_Ch02_2pp.indd 51 8/7/2020 12:37:18 PM

XML Basics_Ch02_2pp.indd 52 8/7/2020 12:37:18 PM

C H A P T E R 3
DOCUMENT TYPE
DEFINITION (DTD)

PHYSICAL STRUCTURE IN XML

The physical structure of an XML document is composed of all the content
used in that document. The storage units, called entities, can be part of the
document or external to the document. Each entity is identified by a unique
name and contains its own content, from a single character inside the docu-
ment to a large file that exists outside the document.

In terms of the logical structure of an XML document, entities declared
in the prolog and referenced in the document element, an entity directs the
processor to retrieve the content of the entity, as declared in the entity decla-
ration, and use it in the document.

Entities in an XML document can be handled in the following ways. Enti-
ties may either be parsed or unparsed, may be predefined entities, or the
entities may be an external or an internal entity.

PARSED AND UNPARSED ENTITIES

An entity can be either parsed or unparsed. A parsed entity, also called a text
entity, contains text data that becomes part of the XML document once that
data is processed. An unparsed entity is a container whose contents may or
may not be text. If the content is text, the content is not parsable XML.

XML Basics_Ch03_2pp.indd 53 8/7/2020 12:32:17 PM

54 • XML Basics

A parsed entity is intended to be read by the XML processor, which
will extract the content. After the content is extracted, a parsed entity’s con-
tent appears as part of the document at the location of the entity reference.
For example, in our Book document, a publisher information entity may be
declared as shown in the following code snippet. Whenever this entity dec-
laration is referenced in the document, it will be replaced by its content. So,
if we need to change it in only one place, the declaration, the change will be
reflected wherever the entity is used in the document.

<!ENTITY Publisher1 "McGrawHill Publishing Company.">

An unparsed entity is sometimes referred to as a binary entity because its
content is often a binary file (such as an image) that is not directly interpreted
by the XML processor. An unparsed entity requires a notation. A notation
identifies the format, or type, of resource to which the entity is declared. The
following code snippet shows the declaration of an unparsed entity.

<!NOTATION GIF SYSTEM "/Utils/Gifview.exe">

PREDEFINED ENTITIES

In XML, certain characters are used specifically for marking up the docu-
ment. For example, in the following element, the angle brackets (< >) and
forward slash (/) are interpreted as markup and not as actual character data.

The characters that are reserved for markup cannot be used as content.
If we intend to use these characters as displayed data, they must be escaped.
To escape a character, we must use an entity to insert the character into a
document. So, if the text <bookname> is entered in the document, we use
the following sequence.

<BOOKNAME>

INTERNAL AND EXTERNAL ENTITY

An internal entity is one in which no separate physical storage exists. The
content of the entity is provided in its declaration as shown in the following
piece of code.

<! ENTITY Publisher1 "Fireworks publishing">

XML Basics_Ch03_2pp.indd 54 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 55

An external entity refers to a storage unit in its declaration by using a
system or public identifier. The system identifier provides a pointer to a loca-
tion at which the entity content can be found, such as the URI (Uniform
Resource Identifier). The following code snippet gives an example of how the
file book1.gif is used by the XML processor to read and retrieve the content
of this entity.

<ENTITY FirstImg SYSTEM "www.books.com/images/book1.gif" NDATA GIF>

XML GENERAL SYNTAX

In HTML code, an element usually contains an opening tag and an optional
closing tag. XML, unlike HTML, requires a closing tag for every element.

HTML is based on a predefined structure that allows processors to assume
where certain tags should be located in a document. Since a paragraph in
HTML cannot be nested inside another paragraph, the processor can read an
opening paragraph tag and assume that it also marks the end of the preceding
paragraph. Such minimization techniques are not allowed in XML.

Although XML requires the usage of a closing tag, it supports a shortcut
for empty elements called the empty-element tag. The empty-element tag
effectively combines the opening and closing tags for an element containing
no content. It uses a special format: <TAGNAME/>. In this format, the forward
slash follows the tag name, which is not supported in HTML.

ATTRIBUTES

Attributes provide a method of associating values to an element without mak-
ing the attributes a part of the content of that element.

<PRICE CURRENCY="USD">315.00</PRICE>

The code snippet provides an example. Here, we can see that a currency
attribute can be added to the price element of the book document instead of
adding a separate currency element to the document.

The attribute in XML is used in the same way as an HTML attribute, but
we can define our own attribute names. One important point is that the value
of the attribute must be within single or double quotes.

XML Basics_Ch03_2pp.indd 55 8/7/2020 12:32:17 PM

56 • XML Basics

VALID DOCUMENTS

The DTD (Document Type Definition) specified in the prolog outlines all
the rules for the document. A valid document must obey the rules specified
in the DTD. A valid document also obeys all the validity constraints identified
in the XML specification.

The processor must understand the validity constraints of the XML speci-
fication and check the document for possible violations. If the processor finds
any errors, it must report them to the XML application. The processor must
also read the DTD, validate the documents against it, and again report any
violations to the XML application.

As all the above-mentioned processing and checking take time, and
because validation might not always be necessary, XML supports the concept
of a well-formed document.

WELL-FORMED DOCUMENTS

A document is described as well-formed if it meets the well-formedness con-
straints of the XML recommendation. Principally, this means it must have a
single root element and all the other elements must be correctly nested. If a
document is well formed, it can be correctly parsed by a computer program.

Well-formedness can reduce the amount of work a client has to do.
For example, if the server has already validated a document, it is not nec-
essary to burden the client with validating the document again. As a result,
well-formedness can save download time because the client does not need to
download the DTD, and it can save processing time as the DTD need not be
processed again.

In many cases, authoring a DTD or validating a document is unnecessary.
For example, someone at a small company might want to use XML to provide
structure to a departmental Website, but all the features that validation pro-
vides are not needed for the site.

According to the XML specifications, a well-formed document must meet
the following criteria:

●● A well-formed document must match the definition of a document. The
definition of a document is that it should contain one or more elements. It
contains exactly one root element, also called the document element, and
all other elements must be properly nested.

XML Basics_Ch03_2pp.indd 56 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 57

●● All of the parsed entities referenced in the document are well-formed.
Since parsed entities become part of the document once the XML proces-
sor parses them, they must satisfy the well-formedness constraints for the
document to be considered well-formed.

●● A well-formed document must observe the constraints for a well-formed
document as defined by the XML specifications.

The data objects, also referred to as documents that conform to the syn-
tax specification in XML, are called well-formed XML documents. These
documents describe the structure, and are also known as standalone XML
documents.

These documents are not dependent on external declarations, and the
attribute values receive no special processing or default values.

A well-formed XML document contains one or more elements in it that
are delimited by the start and end tags. There is one element, the document
element, that contains all the other elements within the document. All the
elements are in the form of a hierarchical tree, thus, the relationship between
the elements is in the form of a parent-child relationship. So, to summarize,
data objects are well-formed documents if

●● The syntax conforms to the XML specifications,
●● elements are in the form of a simple hierarchical tree with a single node
●● there are no external references to entities

An XML parser that encounters a construct in XML and finds the con-
struct not to be well-formed will report an error to the application as a “fatal”
error. This approach to error handling is the result of the compact design of
XML and the intention that XML is to be used for much more than document
display.

WELL-FORMED XML DOCUMENTS

A well-formed XML document has the correct XML syntax. The syntax rules
were described in the previous chapters:

●● XML documents must have a root element
●● XML elements must have a closing tag
●● XML tags are case sensitive
●● XML elements must be properly nested
●● XML attribute values must be quoted

XML Basics_Ch03_2pp.indd 57 8/7/2020 12:32:17 PM

58 • XML Basics

<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

<to>Tonu</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

XML DOCUMENTS

An XML document is made up of the following parts:

●● An optional prolog
●● A document element, usually containing nested elements
●● Optional comments or processing instructions

The Prolog

The prolog of an XML document can contain the following items:

●● An XML declaration
●● Processing instructions
●● Comments
●● A Document Type Declaration

THE XML DECLARATION

The XML declaration, if it appears at all, must appear on the very first line of
the document with no preceding white space. It looks like this:

<?xml version="1.0" encoding="UTF-8"standalone="yes"?>

This declares that the document is an XML document. The version attri-
bute is required, but the encoding and standalone attributes are not. If the
XML document uses any markup declarations that set defaults for attributes
or declare entities then standalone must be set to “no.”

XML Basics_Ch03_2pp.indd 58 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 59

PROCESSING INSTRUCTIONS

Processing instructions are used to pass parameters to an application. These
parameters tell the application how to process the XML document. For exam-
ple, the following processing instruction tells the application that it should
transform the XML document using the XSL stylesheet beatles.xsl.

<?xml-stylesheet href="beatles.xsl"type="text/xsl"?>

As shown above, processing instructions begin with <? and end with ?>.

COMMENTS

Comments can appear throughout an XML document. Like in HTML, they
begin with <!— and end with—>.

<!—This is a comment—>

DOCUMENT TYPE DECLARATION

The Document Type Declaration consists of markup code that indicates the
grammar rules, or Document Type Definition (DTD), for the particular class
of the document. The document type declaration can also point to an external
file that contains all or part of the DTD.

<?xml version="1.0"?>

<!DOCTYPE Book SYSTEM "Book.dtd">

The code snippet here conveys to the XML processor that the document
is of the class Catalog and conforms to the rules formed in the DTD file
named “book.dtd.”

The second structural element in an XML document is the document
element, where the actual content lies. Each XML document must have only
one root element, and all other elements must be completely enclosed in that
element. The document element contains all the data in an XML document.
This element can comprise any number of nested sub-elements and external
entities.

<?xml version="1.0"?>

<!DOCTYPE Book SYSTEM "Book.dtd">

<Book>

XML Basics_Ch03_2pp.indd 59 8/7/2020 12:32:17 PM

60 • XML Basics

<Bookname>Paradise Lost</Bookname>

<Authorname>John Milton</Authorname>

</Book>

The code snippet given here shows the book element in Book.dtd. Here,
we can see that the element tags can include one or more optional or manda-
tory attributes that give further information about the elements they delimit.
Attributes can only be specified in the start tag.

<element.type.name attribute.name="attribute value">

The code snippet here gives the syntax for specifying an attribute. In direct
contrast to SGML and HTML, in which multiple declarations are considered
as errors, XML deals with multiple declarations of attributes in a unique man-
ner. If an element appears once with one set of attributes and then appears
again with a different set of attributes, the two sets of attributes are merged.
The first declaration for a particular element is the only one that counts, and
any other declarations are ignored.

XML APPLICATION CLASSIFICATION

The following two broad categories of XML applications are expected:
XML Applications without a DTD. This can be considered as the sim-

plest case. The author creates his/her own elements to be used with the con-
tent, and may or may not decide to provide a corresponding DTD. Without
appropriate documentation, these elements are “meaningless” and without
a formal DTD, the use of the elements is limited to that XML document
instance.

XML Applications with a DTD. The DTD could be internal, where it
is embedded in the XML document. This is usually recommeded for small
DTDs. The DTD can also be external as a “standalone” or available “publicly.”
In the latter case, it can be referenced via an FPI (Formal Public Identifier).

PARSERS

The W3C Recommendation has also described the behavior of parsers or the
XML processor, or the lower tier of the XML’s architecture. This has been
defined with the objective of easing the burden on the applications that han-
dle the XML data.

XML Basics_Ch03_2pp.indd 60 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 61

There are two types of parsers: non-validating and validating.
The non-validating type of parser merely ensures that a data object is in

well-formed XML.
In the validating type, the parser uses a DTD to ensure the validity of

a well-formed data object’s form and content. Some parsers support both
types along with configuration switches that determine the validation of the
document.

The behavior of XML parsers has been defined with the purpose of eas-
ing the burden on the application’s handling of the XML data. For example,
the sequences of characters that are used as delimiters of the end of texts are
operating system specific.

Nevertheless, the XML application need not be concerned about this,
as the parser will normalize all the delimiters to a single line-feed character.
White spaces are another area where the parsers are constrained, as unlike
HTML or SGML all white spaces must be passed from the document to the
application. The general entity strings are expanded by the parser as defined
by the internal or external DTD subset.

XML PROCESSING-ATTRIBUTE VALUES

XML parsers are required to normalize the attribute values (AttValue) before
passing them to the XML application. The table shows how the parsers handle
the characters and references.

Table 3.1  Handling of Characters and References by Parsers

Reference Handling

Character Reference Append referenced character to AttValue.

Entity Reference Expand the replacement text of that entity, appending
it to the AttValue.

White Space
Characters

Replace any carriage return/line-feed pairs that are a
part of an external parsed entity or the literal entity
value of an internal parsed entity, or any single white
space character with the space character and then
append the space of the AttValue.

Other Characters Append the character to the AttValue.

XML Basics_Ch03_2pp.indd 61 8/7/2020 12:32:17 PM

62 • XML Basics

XML PROCESSING

The AttValue is then processed by removing any leading or trailing spaces and
converting the multiple spaces into single spaces. The exception to this rule
arises if the attribute value is declared as CDATA in the DTD and a validating
parser is used.

There are two approaches in implementing an XML parser. They are the
event-driven parsers and the tree-based parsers.

EVENT-DRIVEN PARSERS

In this approach of XML processing, namely the event-driven parser—the
model which is familiar to the programmers of modern GUIs and operating
systems—the parser executes a call-back to the application for each class of
XML data that includes an element with attributes, character data, processing
instructions, notation, or comments.

Data handling in XML depends on the application as data is provided
through the call-backs. The XML parser does not maintain the element tree
structure or any of the data after it has been parsed.

TREE-BASED PARSERS

The most widely used structure in software engineering is the simple hierar-
chical tree.

In this approach, the well-formed documents are defined as a tree, and
common and mature algorithms are used to traverse the nodes of an XML
document.

This approach conforms to the Document Object Model as specified
by W3C. The DOM is a platform and language neutral interface that allows
manipulation of tree-structured documents.

MSXML, a Java-based XML, was developed by Microsoft. XML was later
included as a part of the Internet Explorer 5 with a different parser.

XML PARSER

All modern browsers have a built-in XML parser. An XML parser converts an
XML document into an XML DOM object—which can then be manipulated
with JavaScript.

XML Basics_Ch03_2pp.indd 62 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 63

PARSE AN XML DOCUMENT

The following code fragment parses an XML document into an XML DOM
object:

if (window.XMLHttpRequest)

{// code for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp=new XMLHttpRequest();

}

else

{// code for IE6, IE5

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

}

xmlhttp.open("GET","books.xml",false);

xmlhttp.send();

xmlDoc=xmlhttp.responseXML;

PARSE AN XML STRING

The following code fragment parses an XML string into an XML DOM object:
txt="<bookstore><book>";

txt=txt+"<title>Everyday Italian</title>";

txt=txt+"<author>Giada De Laurentiis</author>";

txt=txt+"<year>2005</year>";

txt=txt+"</book></bookstore>";

if (window.DOMParser)

{

parser=new DOMParser();

xmlDoc=parser.parseFromString(txt,"text/xml");

}

else // Internet Explorer

{

xmlDoc=new ActiveXObject("Microsoft.XMLDOM");

xmlDoc.async="false";

xmlDoc.loadXML(txt);

}

Internet Explorer uses the loadXML() method to parse an XML string,
while other browsers use the DOMParser object.

XML Basics_Ch03_2pp.indd 63 8/7/2020 12:32:17 PM

64 • XML Basics

DOCUMENT TYPE DEFINITIONS (DTDS)

DTD stands for Document Type Definition. A DTD allows you to create rules
for the elements within your XML documents. Although XML itself has rules,
the rules defined in a DTD are specific to your own needs.

So, for an XML document to be well-formed, it needs to use correct XML
syntax, and it needs to conform to its DTD or schema.

The DTD is declared at the top of your XML document. The actual con-
tents of the DTD can be included within your XML document or included in
another document and linked to (or both).

A DTD uses a formal grammar to specify the structure and permissible
values of XML documents. The well-formed XML just conforms to the basic
syntactic rules in XML. With DTD, we are going to create valid XML: XML
that conforms to the syntactic rules of XML as well as the vocabulary we create.

There are several benefits when a DTD is used. A DTD created in a for-
mal and precise manner identifies the vocabulary. The rules of the vocabulary
are contained in the DTD.

The parsers could also use the DTD to validate an instance of the doc-
ument. A simple declaration in the document instance allows the parser to
retrieve the DTD and compare the document instance to the rules in the DTD.

The DTD must have a formal structure. A question arises regarding the
need for a formal structure. The answer is a clear, precise set of syntactic
rules that capture everything permitted in the vocabulary. There are encoded
rules in the vocabulary in the source code. The code enforces a certain struc-
ture: when the structure changes, the code must also change. This helps the
designer to convey the information he wants to and the user understands what
the programmer wants him to know.

The XML document is a snapshot of the data structures in a program. The
XML documents communicate with one another. The DTD, on the other
hand, captures the information in the vocabulary by definition. Everything
learned that went into the design of the vocabulary must be in the DTD.

EXAMPLE DTD

The following example demonstrates what a DTD could look like:
<!ELEMENT tutorials (tutorial)+>

<!ELEMENT tutorial (name, url)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ATTLIST tutorials type CDATA #REQUIRED>

XML Basics_Ch03_2pp.indd 64 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 65

DTD <!DOCTYPE>

If you’ve had the opportunity to view some XML documents, you may have
noticed a line starting with <!DOCTYPE appearing near the top of the docu-
ment. For example, if you’ve viewed the source code of a (valid) XHTML file,
you may have seen a line like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://

www.abc.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The purpose of this line is to declare the Document Type Definition
(DTD). Actually, we even use the DOCTYPE declaration in a previous lesson
to define an entity.

DOCTYPE SYNTAX

To use a DTD within your XML document, you need to declare it. The DTD
can either be internal or external (located in another document).You declare a
DTD at the top of your XML document (in the prolog) using the <!DOCTYPE
declaration. The basic syntax is

<!DOCTYPE rootname [DTD]>

where, rootname is the root element, and [DTD] is the actual definition.
Actually, there are slight variations depending on whether your DTD is

internal or external (or both), public or private.

Table 3.2  DOCTYPE Declaration Syntax

DOCTYPE
Variation

Example Description

<!DOCTYPE rootname
[DTD]>

<!DOCTYPE tutorials [
<!ELEMENT tutorials
(tutorial)+>
<!ELEMENT tutorial
(name,url)>
<!ELEMENT name
(#PCDATA)>
<!ELEMENT url (#PCDATA)>
<!ATTLIST tutorials type
CDATA #REQUIRED>
]>

This is an internal DTD (the
DTD is defined between the
square brackets within the
XML document).

(continued)

XML Basics_Ch03_2pp.indd 65 8/7/2020 12:32:17 PM

66 • XML Basics

DOCTYPE
Variation

Example Description

<!DOCTYPE rootname
SYSTEM URL>

<!DOCTYPE tutorials
SYSTEM "abcd.dtd">

The keyword SYSTEM
indicates that it’s a private
DTD (not for public
distribution).
The presence of a URL
indicates that this is an
external DTD (the DTD
is defined in a document
located at the URL).

<!DOCTYPE rootname
SYSTEM URL
[DTD]>

<!DOCTYPE tutorials
SYSTEM "abcd. dtd" [
<!ELEMENT tutorial
(summary)>
<!ELEMENT summary
(#PCDATA)>
]>

The keyword SYSTEM
indicates that it’s a private
DTD (not for public
distribution).
The presence of the URL
and [DTD] together indicates
that this is both an external
and internal DTD (part
of the DTD is defined in
a document located at the
URL, and the other part
is defined within the XML
document).

<!DOCTYPE rootname
PUBLIC identifier
URL>

<!DOCTYPE html PUBLIC
"-//W3C//
DTD XHTML 1.0
Transitional//EN" "http://
www.abc.org/TR/xhtml1/
DTD/ xhtml1-transitional.
dtd">

The keyword PUBLIC
indicates that it’s a
public DTD (for public
distribution).
The presence of the URL
indicates that this is an
external DTD (the DTD
is defined in a document
located at the URL).
The identifier indicates the
formal public identifier and is
required when using a public
DTD.

(continued)

(continued)

XML Basics_Ch03_2pp.indd 66 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 67

DOCTYPE
Variation

Example Description

<!DOCTYPE rootname
PUBLIC identifier
URL [DTD]>

<!DOCTYPE html PUBLIC
"-//W3C//
DTD XHTML 1.0
Transitional//EN" "http://www.
abc.org/TR/xhtml1/DTD/
xhtml1-transitional.dtd" [
<!ELEMENT abcd
(tutorial)+>
<!ELEMENT xyz
(name,url)>
<!ELEMENT name
(#PCDATA)>
<!ELEMENT url
(#PCDATA)>
<!ATTLIST abcd type
CDATA #REQUIRED>
]>

The keyword PUBLIC
indicates that it’’s a public
DTD (for public distribution).
The presence of the URL
and [DTD] together indicates
that this is both an external
and internal DTD (part of the
DTD is defined in a document
located at the URL, the other
part is defined within the
XML document).
The identifier indicates the
formal public identifier and is
required when using a public
DTD.

XML SYNTAX RULES

XML has relatively straightforward, but very strict, syntax rules. A document
that follows these syntax rules is said to be well-formed.

●● There must be one, and only one, document element.
●● Every open tag must be closed.
●● If an element is empty, it still must be closed.

	 Poorly-formed: <tag>
	 Well-formed: <tag></tag>
	 Also well-formed: <tag />
●● Elements must be properly nested.

	 Poorly-formed: <a>
	 Well-formed: <a>
●● Tag and attribute names are case sensitive.
●● Attribute values must be enclosed in single or double quotes.

XML Basics_Ch03_2pp.indd 67 8/7/2020 12:32:17 PM

68 • XML Basics

DTDS(WELL-FORMED VS. VALID)

A well-formed XML document is one that follows the syntax rules described
in the XML Syntax Rules. A valid XML document is one that conforms to a
specified structure. For an XML document to be validated, it must be checked
against a schema, which is a document that defines the structure for a class
of XML documents. XML documents that are not intended to conform to a
schema can be well-formed, but they cannot be valid.

GENERAL PRINCIPLES IN WRITING DTDS

XML documents consist of elements and their attributes. There are some
other items, but documents support only the above two main concepts. In
addition, an element’s content is defined in terms of other elements or some
basic concepts defined in the XML standard. A DTD, therefore, must define
all the elements in a document and the relationship between elements.

DTDs are associated with documents. When a validating parser reads the
instruction by which documents are associated with a DTD, that tells the
parser to get the DTD and validate the document according to the rules pro-
vided therein. We will now see how to tie DTDs to document instances.

XML provides the DOCTYPE tag to connect the DTD declarations to a
document instance. The DOCTYPE declaration must follow the XML decla-
ration and precede any elements in the document. However, comments and
processing instructions may appear between the XML declaration and the
DOCTYPE declaration.

The DOCTYPE declaration must contain the keyword DOCTYPE fol-
lowed by the name of the root element of the document, followed by a con-
struction that brings in the content declaration.

DOCUMENT VALIDATION

A well-formed document written using implicit rules cannot be checked for
errors. We rely on the integrity of the applications that create and consume the
XML for the integrity of the overall system. Errors in the code cannot be caught.
They could either cause the program to break or cause bad errors. This is the
reason that the W3C specifies the behavior of a validating parser. If an XML
document refers a DTD, a validating parser is required to retrieve the DTD and
ensure that the document conforms to the grammar that the DTD describes.

XML Basics_Ch03_2pp.indd 68 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 69

To check errors, simply use DTDs and a validating parser. The parser will
check for errors in the document syntax, vocabulary, and any specified values.

After the parser has validated the document, the document can be passed
on to the application logic. The application logic does protect the document
from faulty application logic but filters the bad data. This is particularly
important in case of Internet applications.

One cannot assume that the quality control over the application subject
and the codes written are the same. A programming team working for one
organization might be implementing a public XML vocabulary for a partic-
ular business. Their interpretation of the vocabulary may not be the same.
The same case applies for the testing as well. But, with a DTD and a validat-
ing parser, we can have an immediate and effective check of the document’s
integrity. This check depends on the DTD. With this in mind, we now delve
into the principles needed to write effective DTDs.

VALIDATING AN XML DOCUMENT WITH A DTD

The DOCTYPE declaration in an XML document specifies the DTD to which
it should conform. In the code sample below, the DOCTYPE declaration indi-
cates the file should be validated against Beatles.dtd in the same directory.

Code Sample: DTDs/Demos/Beatles.xml

<?xml version="1.0"?>

<!DOCTYPE beatles SYSTEM "Beatles.dtd">

<beatles>

 <beatle link="http://www.paulmccartney.com">

 <name>

 <firstname>Paul</firstname>

 <lastname>McCartney</lastname>

 </name>

 </beatle>

 <beatle link="http://www.johnlennon.com">

 <name>

 <firstname>John</firstname>

 <lastname>Lennon</lastname>

 </name>

 </beatle>

 <beatle link="http://www.georgeharrison.com">

XML Basics_Ch03_2pp.indd 69 8/7/2020 12:32:17 PM

70 • XML Basics

 <name>

 <firstname>George</firstname>

 <lastname>Harrison</lastname>

 </name>

 </beatle>

 <beatle link="http://www.ringostarr.com">

 <name>

 <firstname>Ringo</firstname>

 <lastname>Starr</lastname>

 </name>

 </beatle>

 <beatle link="http://www.webucator.com" real="no">

 <name>

 <firstname>Nat</firstname>

 <lastname>Dunn</lastname>

 </name>

 </beatle>

</beatles>

THE PURPOSE OF DTDS

The purpose of a DTD is to define the structure of an XML document. It
defines the structure with a list of legal elements:

<!DOCTYPE note

[

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

A Document Type Definition (DTD) is a type of schema. The purpose of
DTDs is to provide a framework for validating XML documents. By defining a
structure that XML documents must conform to, DTDs allow different orga-
nizations to create share able data files.

Imagine, for example, a company that creates technical courseware and
sells it to technical training companies. Those companies may want to display
the outlines for that courseware on their Websites, but they do not want to
display it in the same way as every other company who buys the courseware.

XML Basics_Ch03_2pp.indd 70 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 71

By providing the course outlines in a predefined XML format, the course-
ware vendor makes it possible for the training companies to write programs to
read those XML files and transform them into HTML pages with their own
formatting styles (perhaps using XSLT or CSS). If the XML files had no pre-
defined structure, it would be very difficult to write such programs.

CREATING DTDS

DTDs are simple text files that can be created with any basic text editor.
Although they look a little cryptic at first, they are not terribly complicated
once you get used to them.

A DTD outlines what elements can be in an XML document and the
attributes and sub-elements that they can take. Let’s start by taking a look at
a complete DTD and then dissecting it.

CODE SAMPLE: DTDS/DEMOS/BEATLES.DTD

<!ELEMENT beatles (beatle+)>

<!ELEMENT beatle (name)>

<!ATTLIST beatle

 link CDATA #IMPLIED

 real (yes|no) "yes">

<!ELEMENT name (firstname, lastname)>

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

INTERNAL DTD

Whether you use an external or internal DTD, the actual syntax for the DTD
is the same—the same code could just as easily be part of an internal DTD or
an external one. The only difference between internal and external is in the
way it’s declared with DOCTYPE.

Using an internal DTD, the code is placed between the DOCTYPE tags
(i.e., <!DOCTYPE tutorials [and]>.

XML Basics_Ch03_2pp.indd 71 8/7/2020 12:32:17 PM

72 • XML Basics

EXAMPLE INTERNAL DTD

This is an example of an internal DTD. It’s internal because the DTD is
included in the target XML document:

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE tutorials [

<!ELEMENT tutorials (tutorial)+>

<!ELEMENT tutorial (name,url)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ATTLIST tutorials type CDATA #REQUIRED>

]>

<tutorials>

 <tutorial>

 <name>XML Tutorial</name>

 <url>http://www.abc.com/xml/tutorial</url>

 </tutorial>

 <tutorial>

 <name>HTML Tutorial</name>

 <url>http://www.abc.com/html/tutorial</url>

 </tutorial>

</tutorials>

EXTERNAL DTD

An external DTD is one that resides in a separate document. To use the DTD,
you need to link to it from your XML document by providing the URI of the
DTD file. This URI is typically in the form of a URL. The URL can point to
a local file using a relative reference or a remote one (i.e., using HTTP) using
an absolute reference.

EXAMPLE EXTERNAL DTD

Here’s an example of an XML document that uses an external DTD. Note
that the “standalone” attribute is set to “no.” This is because the document
relies on an external resource (the DTD):

<?xml version="1.0" standalone="no"?>

<!DOCTYPE tutorials SYSTEM "tutorials.dtd">

XML Basics_Ch03_2pp.indd 72 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 73

<tutorials>

 <tutorial>

 <name>XML Tutorial</name>

 <url>http://www.abc.com/xml/tutorial</url>

 </tutorial>

 <tutorial>

 <name>HTML Tutorial</name>

 <url>http://www.abc.com/html/tutorial</url>

 </tutorial>

</tutorials>

And, using the above XML document as an example, here’s an example
of what “tutorials.dtd” (the external DTD file) could look like. Note that the
external DTD file doesn’t need the DOCTYPE declaration—it is already on
the XML file that is using this DTD:

<!ELEMENT tutorials (tutorial)+>

<!ELEMENT tutorial (name,url)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ATTLIST tutorials type CDATA #REQUIRED>

COMBINED DTD

You can use both an internal DTD and an external one at the same time. This
could be useful if you need to adhere to a common DTD, but also need to
define your own definitions locally.

Example

This is an example of using both an external DTD and an internal one for the
same XML document. The external DTD resides in “tutorials.dtd” and is called
first in the DOCTYPE declaration. The internal DTD follows the external
one, but still resides within the DOCTYPE declaration:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE tutorials SYSTEM "tutorials.dtd" [

<!ELEMENT tutorial (summary)>

<!ELEMENT summary (#PCDATA)>

]>

<tutorials>

 <tutorial>

 <name>XML Tutorial</name>

XML Basics_Ch03_2pp.indd 73 8/7/2020 12:32:17 PM

74 • XML Basics

 <url>http://www.abc.com/xml/tutorial</url>

 <summary>Best XML tutorial on the web!</summary>

 </tutorial>

 <tutorial>

 <name>HTML Tutorial</name>

 <url>http://www.abc.com/html/tutorial</url>

 <summary>Best HTML tutorial on the web!</summary>

 </tutorial>

</tutorials>

DTD ELEMENTS

Creating a DTD is straight forward. It’s really just a matter of defining your
elements, attributes, and/or entities.

To define an element in your DTD, you use the <!ELEMENT> declaration.
The actual contents of your <!ELEMENT> declaration will depend on the syntax
rules you need to apply to your element.

BASIC SYNTAX

The <!ELEMENT> declaration has the following syntax:
<!ELEMENT element_name content_model>

Here, element_name is the name of the element you’re defining. The
content model could indicate a specific rule, data or another element.

If it specifies a rule, it will be set to either ANY or EMPTY.
If specifies data or another element, the data type/element name needs to

be surrounded by brackets (i.e. (tutorial) or (#PCDATA)).
The following examples show you how to use this syntax for defining your

elements.

PLAIN TEXT

If an element should contain plain text, you define the element using
#PCDATA. PCDATA stands for Parsed Character Data and it is the way you
specify non-markup text in your DTDs.

Using this example - <name>XML Tutorial</name> - the “XML Tutorial”
part is the PCDATA. The other part consists of the markup.

XML Basics_Ch03_2pp.indd 74 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 75

Syntax

<!ELEMENT element_name (#PCDATA)>

Example

<!ELEMENT name (#PCDATA)>

The above line in your DTD allows the “name” element to contain non-
markup data in your XML document:

<name>XML Tutorial</name>

UNRESTRICTED ELEMENTS

If it doesn’t matter what your element contains, you can create an element
using the content_model of ANY. Note that doing this removes all syntax
checking, so you should avoid using this if possible. You’re better off defining
a specific content model.

Syntax

<!ELEMENT element_name ANY>

Example

<!ELEMENT tutorials ANY>

EMPTY ELEMENTS

You might remember that an empty element is one without a closing tag. For
example, in XHTML, the
 and tags are empty elements. Here’s
how you define an empty element:

Syntax

<!ELEMENT element_name EMPTY>

Example

<!ELEMENT header EMPTY>

The above line in your DTD defines the following empty element for
your XML document:

<header/>

XML Basics_Ch03_2pp.indd 75 8/7/2020 12:32:17 PM

76 • XML Basics

CHILD ELEMENTS

You can specify that an element must contain another element by providing
the name of the element it must contain. Here’s how you do that:

Syntax

<!ELEMENT element_name (child_element_name)>

Example

<!ELEMENT tutorials (tutorial)>

The above line in your DTD allows the “tutorials” element to contain one
instance of the“tutorial” element in your XML document:

<tutorials>

 <tutorial></tutorial>

</tutorials>

When defining child elements in DTDs, you can specify how many times
those elements can appear by adding a modifier after the element name. If
no modifier is added, the element must appear once and only once. The other
options are shown in the table below.

Table 3.3  List of Modifiers

Modifier Description

? Zero or one times.

+ One or more times.

* Zero or more times.

It is not possible to specify a range of times that an element may appear
(e.g., 2-4 appearances).

OTHER ELEMENTS

The other elements are declared in the same way as the document element—
with the <!ELEMENT> declaration. The Beatles DTD declares four addi-
tional elements.

XML Basics_Ch03_2pp.indd 76 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 77

Each beatle element must contain a child element name, which must
appear once and only once.

<!ELEMENT beatle (name)>

Each name element must contain a firstname and lastname element,
which each must appear once and only once and in that order.

<!ELEMENT name (firstname, lastname)>

Some elements contain only text. This is declared in a DTD as #PCDATA.
The data will be parsed for XML tags and entities. The firstname and last-
name elements contain only text.

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

CHOICE OF ELEMENTS

It is also possible to indicate that one of several elements may appear as a
child element. For example, the declaration below indicates that an img ele-
ment may have a child element name or a child element id, but not both.

<!ELEMENT img (name|id)>

EMPTY ELEMENTS

Empty elements are declared as follows.
<!ELEMENT img EMPTY>

MIXED CONTENT

Sometimes elements can have elements and text intermingled. For example,
the following declaration is for a body element that may contain text in addi-
tion to any number of link and img elements.

<!ELEMENT body (#PCDATA | link | img)*>

XML Basics_Ch03_2pp.indd 77 8/7/2020 12:32:17 PM

78 • XML Basics

MULTIPLE CHILD ELEMENTS (SEQUENCES)

You can also provide a comma-separated list of elements if it needs to contain
more than one element. This is referred to as a sequence. The XML document
must contain the tags in the same order that they’re specified in the sequence.

Syntax

<!ELEMENT element_name (child_element_name, child_element_name,...)>

Example

<!ELEMENT tutorial (name, url)>

The above line in your DTD allows the “tutorial” element to contain one
instance of the “name” element and one instance of the “url” element in your
XML document:

<tutorials>

 <tutorial>

 <name></name>

 <url></url>

 </tutorial>

</tutorials>

AN XML APPLICATION WITHOUT A DTD

The following is a simple XML fragment:

<?xml version="1.0" standalone="yes"encoding="UTF-8"?>

<quote>

 <title>

The quick brown fox jumps over the lazy dog

 </title>

 <comment>

This quote has <property>all the alphabets</property> of the English
language.

 </comment>

</quote>

XML Basics_Ch03_2pp.indd 78 8/7/2020 12:32:17 PM

Document Type Definition (DTD) • 79

To display this fragment in a document-like fashion, we must first declare
which elements are inline-level (i.e., do not cause line breaks) and which are
block-level (i.e., cause line breaks). After that, we can “decorate” the rest of
the content. Here is a sample CSS stylesheet:

property {display: inline; font-style: italic; color: rgb(000,000,128);}
quote, title, comment {display: block; margin: 0.5em;}
title {font-size: 1.5em;}

The first rule declares property to be inline, in italic, and navy; the second
rule, with its comma-separated list of selectors, declares all the other ele-
ments to be block-level (with a bit of a margin added in the end).

Finally, the title is given a larger font size than the rest of the text. The
presentation of the document can be further improved by adding more rules
to the stylesheet.

DTD ELEMENT OPERATORS

One of the examples in the previous lesson demonstrated how to specify
that an element (“tutorials”) must contain one instance of another element
(“tutorial”).

This is fine if there only needs one instance of “tutorial,” but what if we
didn’t want a limit? What if the “tutorials” element should be able to contain
any number of “tutorial” instances? Fortunately, we can do that using DTD
operators.

Table 3.4  List of Operators/Syntax Rules

Operator Syntax Description

+ a+ One or more occurences of a

∗ a∗ Zero or more occurences of a

? a? Either a or nothing

, a, b a followed by b

| a | b a followed by b

() (expression) An expression surrounded by parentheses is
treated as a unit and could have any one of the
following suffixes?, ∗, or +.

Examples of usage follow.

XML Basics_Ch03_2pp.indd 79 8/7/2020 12:32:18 PM

80 • XML Basics

Zero or More

To allow zero or more of the same child element, use an asterisk (∗).

Syntax

<!ELEMENT element_name (child_element_name*)>

Example

<!ELEMENT tutorials(tutorial*)>

One or More

To allow one or more of the same child element, use a plus sign (+).

Syntax

<!ELEMENT element_name (child_element_name+)>

Example

<!ELEMENT tutorials (tutorial+)>

Zero or One

To allow either zero or one of the same child element, use a question mark (?).

Syntax

<!ELEMENT element_name (child_element_name?)>

Example

<!ELEMENT tutorials (tutorial?)>

Choices

You can define a choice between one or another element by using the pipe (|)
operator. For example, if the “tutorial” element requires a child called either
“name”, “title,” or “subject” (but only one of these), you can do the following
document type definition (DTD).

Syntax

<!ELEMENT element_name (choice_1|choice_2|choice_3)>

XML Basics_Ch03_2pp.indd 80 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 81

Example

<!ELEMENT tutorial (name|title|subject)>

Mixed Content

You can use the pipe (|) operator to specify that an element can contain both
PCDATA and other elements.

Syntax

<!ELEMENT element_name (#PCDATA | child_element_name)>

Example

<!ELEMENT tutorial (#PCDATA|name|title|subject)*>

DTD OPERATORS WITH SEQUENCES

You can apply any of the DTD operators to a sequence.

Syntax

�<!ELEMENT element_name (child_element_name dtd_operator, child_

element_name dtd_operator,...)>

Example

<!ELEMENT tutorial (name+, url?)>

The above example allows the “tutorial” element to contain one or more
instances of the “name” element, and zero or one instance of the “url” element.

SUBSEQUENCES

You can use parentheses to create a subsequence (i.e., a sequence within a
sequence). This enables you to apply DTD operators to a subsequence.

Syntax

<!ELEMENT element_name ((sequence) dtd_operator sequence)>

XML Basics_Ch03_2pp.indd 81 8/7/2020 12:32:18 PM

82 • XML Basics

Example

<!ELEMENT tutorial ((author,rating?)+ name, url*)>

The above example specifies that the “tutorial” element can contain one
or more “author” elements, with each occurence having an optional “rating”
element.

THE DOCUMENT ELEMENT

When creating a DTD, the first step is to define the document element.

<!ELEMENT beatles (beatle+)>

The element declaration above states that the “beatles” element must
contain one or more “beatles” elements.

LOCATION OF MODIFIER

The location of modifiers in a declaration is important. If the modifier is out-
side of a set of parentheses, it applies to the group; if the modifier is immedi-
ately next to an element name, it applies only to that element. The following
examples illustrate.

In the example below, the body element can have any number of inter-
spersed child link and img elements.

<!ELEMENT body (link|img)*>

In the example below, the body element can have any number of child
link elements or any number of child img elements, but it cannot have both
link and img elements.

<!ELEMENT body (link*|img*)>

In the example below, the body element can have any number of child
link and img elements, but they must come in pairs, with the link element
preceding the img element.

<!ELEMENT body (link, img)*>

In the example below, the body element can have any number of child
link elements followed by any number of child img elements.

<!ELEMENT body (link*, img*)>

XML Basics_Ch03_2pp.indd 82 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 83

USING PARENTHESES FOR COMPLEX DECLARATIONS

Element declarations can be more complex than the examples above. For
example, you can specify that a person element either contains a single name
element or a firstname and lastname element. To group elements, wrap them
in parentheses as shown below.

<!ELEMENT person (name|(firstname,lastname))>

XML CDATA

All text in an XML document is parsed by the parser, but text inside a CDATA
section is ignored by the parser.

PCDATA-PARSED CHARACTER DATA

XML parsers normally parse all the text in an XML document. When an XML
element is parsed, the text between the XML tags is also parsed:

<message>This text is also parsed</message>

The parser does this because XML elements can contain other elements,
as in this example, where the <name> element contains two other elements
(first and last):

<name><first>Bill</first><last>Gates</last></name>

and the parser will break it up into sub-elements:
<name>

 <first>Bill</first>

 <last>Gates</last>

</name>

This term is defined earlier.

CDATA-(UNPARSED) CHARACTER DATA

The term CDATA is used about text data that should not be parsed by the
XML parser. Characters like “<” and “&” are illegal in XML elements. “<”

XML Basics_Ch03_2pp.indd 83 8/7/2020 12:32:18 PM

84 • XML Basics

will generate an error because the parser interprets it as the start of a new ele-
ment. “&” will generate an error because the parser interprets it as the start
of a character entity.

Some text, like JavaScript code, contains a lot of “<” or “&” characters.
To avoid errors, script code can be defined as CDATA. Everything inside
a CDATA section is ignored by the parser. A CDATA section starts with
"<![CDATA[" and ends with "]]>":

<script>

<![CDATA[

function matchwo(a,b)

{

if (a < b && a < 0) then

 {

 return 1;

 }

else

 {

 return 0;

 }

}

]]>

</script>

In the example above, everything inside the CDATA section is ignored
by the parser.

NOTES ON CDATA SECTIONS

A CDATA section cannot contain the string “]]>”. Nested CDATA sections
are not allowed. The “]]>” that marks the end of the CDATA section.

INTERNAL & EXTERNAL SUBSETS

<?xml version="1.0?>

<!DOCTYPE Catalog...>

<Catalog>...

XML Basics_Ch03_2pp.indd 84 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 85

Before we discuss the DOCTYPE tag, we need an example of the position
of the DOCTYPE declaration in a document instance. Shown in the image
are the three lines of an XML document. The first line states that this doc-
ument conforms to the syntax of XML 1.0. This is done by using the XML
declaration at the top. We have declared that this document falls under the
CATALOG vocabulary.

This is done by specifying the word CATALOG after the document type
“CATALOG”. The first element, the root of the document, must be CATA-
LOG or the parser will return an error.

The ellipsis concealing the DOCTYPE declaration is not very satisfying.
Where are the declarations? There are two ways to provide declarations. There
can be an external subset of declarations in a separate DTD file or include an
internal subset within the body of a DOCTYPE declaration or both.

In the instance of mixing the external and internal subsets, the internal
DTD may add declarations or override declarations found in the external
DTD. Parsers, generally, read the internal subset first, and the declarations
therein take priority, because of the XML specifications.

STANDALONE ATTRIBUTE

There is one further variation to be considered before we further discuss how
to provide declarations. The XML declaration can have a standalone attrib-
ute. The standalone attribute is, however, seldom seen in practice. The figure
shows the declaration of the standalone attribute.

<?xml version="1.0" standalone="YES" ?>

<!DOCTYPE Catalog…

This attribute can have two values: YES and NO.
If the value of the attribute is YES, then there are no declarations exter-

nal to the document instance that would affect the information in the docu-
ment passed to the application using it. The presence of the attribute with
the value YES does not guarantee that the document does not have external
dependencies of any type. It merely states that the document has no external
dependencies that if not included in the processing would make the docu-
ment erroneous as far as the receiving application is concerned.

A value of NO indicates that there are external declarations that contain
values that are necessary to properly define the document content. The stand-
alone attribute serves as a flag for parsers and other applications to indicate
whether they need to retrieve external content.

XML Basics_Ch03_2pp.indd 85 8/7/2020 12:32:18 PM

86 • XML Basics

DOCTYPE DECLARATION

The DOCTYPE declaration formally consists of the keyword followed by the
name of the document’s root element’s root element in our example the word
CATALOG. This is followed by an optional external identifier, which is again
followed by an optional block of markup characters.

The external identifier locates the external DTD (external subset).The
markup declaration block actually contains markup declarations (internal subset).

INTERNAL DTD SUBSET DECLARATIONS

Declarations, such as entity references, can be declared in the internal subset.
This markup declaration block is delimited within the DOCTYPE declaration
using square brackets ([……]). A list of declarations is declared within these
brackets. An example of the declaration is shown below.

<!DOCTYPE Catalog […internal subset declaration here…]>

Internal DTDs are very useful. An internal DTD, however, adds a sub-
stantial size to the document. The declarations must be transmitted with the
document even if the consumer of the document does not intend to verify the
document. Internal DTDs are very useful for simple vocabularies when using
prototypes of a markup.

Sometimes, programmers might feel the need to use both the internal
as well as external DTD. In such cases, the internal DTD adds declarations.
Nonetheless, when an internal DTD declares some item that is also declared
in the external DTD, the internal DTD supersedes the external DTD. This
permits some fine-tuning of the declarations for a particular document’s
needs, but enough care must be taken, as, if we override the external DTD, it
starts to loose relevance, which is a sign of poor initial design.

EXTERNAL DTDS

An external DTD is more flexible in certain aspects. In this case, the
DOCTYPE declaration comprises the usual keyword and the root element
name, followed by another keyword denoting the source of the external DTD,
which is then followed by the location of that DTD.

The keyword can either be SYSTEM or PUBLIC.

XML Basics_Ch03_2pp.indd 86 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 87

In case, the keyword is SYSTEM, and a URL directly and explicitly locates
the DTD. Thus, the parser should be able to find the DTD given the URL
alone. Hence, what follows SYSTEM is a URL naming the DTD file. The
URLs used to locate DTDs should not contain fragment identifiers, that is,
the character # followed by a name, as XML 1.0 indicates that parsers may
signal an error if the URL contains such an identifier.

<DOCTYPE Catalog SYSTEM http://myserver/Catalog.dtd>

<DOCTYPE Catalog SYSTEM http://www.universallibrary.org/Catalog.dtd>

The image shows an example of the DOCTYPE declaration using the
SYSTEM keyword. All the declarations needed to validate the document con-
taining the first DOCTYPE declaration will be found in the file Catalog.dtd.
In the second case, the DTD file is found on a Web server that is operated by
a hypothetical universal library organization. In both cases, an element decla-
ration for the CATALOG element is to be found within the Catalog.dtd file.

The PUBLIC keyword is used for well-known vocabularies. Going back
to our CATALOG example, let us suppose considerable consensus has been
built upon the catalog DTD in the publishing industry. In that case, an appli-
cation parsing a document from this vocabulary might employ some strategy
for locating the DTD. If possible, the application might have a local copy.
Hence, using it would be preferable to making a roundabout trip to a Web
server.

Using the PUBLIC keyword with a Uniform Resource Identifier (URI),
applications are given the opportunity to locate the DTD using their own
algorithms. The URI could be a URL or simply a unique name.

If the URI universal/Book is well known to the application processing
documents of this type, the application can go and find the DTD on its own.
It might even have a local copy of the DTD, or it might access a DTD main-
tained on a local database server. Thus, it can be inferred that the means of
finding the DTD is left primarily to the application processing the DOCTYPE
declaration.

The term “well known” is normally relative. XML 1.0, however, it permits
a PUBLIC declaration to have both a public URI and a system identifier. If
the application or parser consuming the document cannot locate a DTD from
the URI provided with the PUBLIC keyword, it must use the system iden-
tifier. In the example shown, the author of the document gave the receiving
application a chance to find the DTD based on the public URI. If that fails,
which can expected from a general-purpose parser with no knowledge of our
publishing domain, the application would be expected to request the name
from the Web server at www.universallibrary.org.

XML Basics_Ch03_2pp.indd 87 8/7/2020 12:32:18 PM

88 • XML Basics

BASIC MARKUP DECLARATIONS

The content of an XML document is defined in terms of four kinds of markup
declarations used in the DTD.

Table 3.5  List of DTD Constructs and Meanings

DTD Construct Meaning

ELEMENT Declaration of an XML element type

ATTLIST Declaration of the attributes that may be assigned to a
specific element type and the permissible values of those
attributes

ENTITY Declaration of reusable content

NOTATION Format declaration for external content not meant to
be parsed and the external application that handles the
content

The keywords associated with these declarations and their meanings are
shown in the table. The first two declarations deal with the information found
in an XML document element, namely ELEMENTS and ATTRIBUTES.
The last two types could be considered supporting players. Entities in par-
ticular are designed to make an XML vocabulary designer’s life easier. They
normally consist of content that recurs in the DTD or document to warrant
creating a special declaration. Notations deal with content other than XML.
A notation is used to declare a particular class of data and associate it with
an external program. That external program becomes the handler for the
declared class of data.

FORMAL DTD STRUCTURE-ENTITIES

XML provides a facility for declaring chunks of content and referencing them
as many times as we like where they are needed, saving space and sparing doc-
ument authors a lot of typing. With the declaration of an entity in the DTD,
we can define a name and the content it refers to. When needed, we can refer
to it by name with a particular syntax that the name is an entity reference.

An entity used within the content of a document is called as a general
entity.

A parsed entity is an XML document. The value of the entity is known as
the replacement text. In contrast, an unparsed entity need not even be text. If

XML Basics_Ch03_2pp.indd 88 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 89

it is text, it need not be XML. If the replacement content is not XML, there is
no need in using a parser on it. On the other hand, a parsed entity is XML that
is pasted into the document content, so it must be passed through the parser.

PREDEFINED ENTITIES

XML reserves some characters, such as the angle brackets, for its own use.
In addition, some characters are unprintable. XML therefore provides

some predefined entities so that authors can use these characters in their
documents without conflict. Hence, in the text content of an element, for
example, certain characters can be referred to without using them and may be
confused with the markup by the document processor during parsing.

Any character can be referred to by a numeric reference. This is done
by writing the characters followed immediately by the numeric value of the
character and a semicolon. For example, the “greater than” symbol is written
as >.

Some characters are so prevalent in XML that XML provides some pre-
defined entities.

GENERAL ENTITIES

General entities allow us to declare a piece of parsed text associated with a
name by which we shall refer to the text. The entity is declared with the key-
word ENTITY, a name, and a replacement value.

With this declaration in place, we can plug in the copyright text anywhere
in a document’s content when we need it simply by referring to the name
“copyright.” Of course, the parser needs to be told when we are making an
entity reference so that it will not confuse the entity name with the markup
text. To signal this intent, we delimit the name with an ampersand in front of
the name and a semicolon following. There cannot be a white space between
the name and its delimiters.

The ampersand character is reserved for this role in XML. If we need to
use an ampersand for something else in a document, we must use the pre-
defined entity for the character.

<!ENTITY Entity1 SYSTEM http://www.vvco.com/boilerplate/copyrighttext.txt>

General entities also have an external form, where the replacement text is
given in an external file. The declaration takes the form as shown in the figure.

XML Basics_Ch03_2pp.indd 89 8/7/2020 12:32:18 PM

90 • XML Basics

The keyword SYSTEM is used to indicate an external source followed by the
URL for the file.

Lastly, entities must not contain references to themselves, directly or
indirectly.

PARAMETER ENTITIES

Parsed entities that are used solely within the DTD are called parameter
entities.

Parameter entities allow the user to easily reference or change commonly
used constructs in the DTD by keeping them in one place.

This is easier than changing a construct everywhere it appears in a DTD,
but it still must be edited when a construct is extended.

The keyword CDATA refers to character data. The replacement text is a
part of an attribute list declaration containing three common attributes. This
is processed as if it had been written into the DTD. Whenever this set of
attributes turns up in the DTD, we can simply refer to the entity people-
Parameters.

All the parameter entities must be declared before they are referred to in
the DTD.

This means that the parameter entity declared in the external subset of
the DTD cannot be referred to in the internal subset as the latter is read first
by the parser, thus, the reference will be seen before the declaration.

A parameter entity reference consists of the name delimited by a percent
sign in front of the name and a semicolon following. There cannot be any
white space between the delimiters and the name.

<!ATTLIST InsuredPerson

age CDATA # IMPLIED

weight CDATA #IMPLIED

height CDATA #REQUIRED

carrier CDATA #REQUIRED

Thus, the reference for the example would be as shown. For the moment,
the InsuredPerson element is declared to have four attributes: one carrier,
which is explicitly declared, and the other three, namely age, weight and
height, that appeared in the parameter entity and have already been declared
when the replacement text is substituted for the entity reference by the parser.

XML Basics_Ch03_2pp.indd 90 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 91

The above example is thus equivalent to the following:
<ATTLIST InsuredPerson

%peopleParameters;

carrier CDATA #REQUIRED>

All the rules for well-formed documents apply to parameter entities. The
document must be well-formed after the replacement text has been substi-
tuted for the entity reference.

Just as in the case of general entities, parameter entities can also have a
replacement text that resides in an external file.

FORMAL DTD STRUCTURE-ELEMENTS

Element types are declared in DTDs using the ELEMENT tag. In addition
to the keyword, the tag provides a name for the declared type and a content
specification.

The element type names have some restrictions that apply to names
throughout XML. Names may use letters, digits, and punctuation marks
(colon, underscore, hyphen, and period). Names may not begin with a digit.
They may only begin with a letter, underscore or colon. The element content
can be classified into four categories: empty, element, mixed, and any.

An empty element neither has text nor child elements contained in it. It
may, however, have attributes. The empty element is denoted by the keyword
EMPTY.

Element content is the condition where the element contains child ele-
ments but no text. Mixed content is a mix of elements and parsed character
data (#PCDATA) or content.

Element and mixed are the two types where we can use structure to
express meaning. Mixed and element content is indicated with a content
model.

If we wish to leave the content of an element open to any content that does
not violate XML well-formed syntax, we declare it using the keyword ANY.

CONTENT MODEL

A content model is a specification of the internal structure of an element’s
content.

XML Basics_Ch03_2pp.indd 91 8/7/2020 12:32:18 PM

92 • XML Basics

A content model consists of a set of parentheses enclosing some combi-
nation of child element names, operators, and the #PCDATA keyword. The
operators denote the cardinality and indicate how elements and character
data can be combined. The table shows the operators and their meaning.

Table 3.6  List of Order Operators

Order Operators Meaning

, (comma) strict sequence

| (pipe) choice

Taking the first of these, the elements may be combined in a sequence
using a comma delimiting the list. The figure shows the declaration for a Per-
sonName element and FruitBasket element. The elements First, Middle,
and Last must appear in the order specified. The declaration for FruitBasket
element type could contain Apple or Cherry, but not both.

<!ELEMENT PersonName (First, Middle,Last)>

<!ELEMENT FruitBasket (Apple | Cherry)>

CARDINALITY OPERATORS

The operators seen so far lack something important—cardinality, such as how
many instances of an element type are permitted? The table shows the cardi-
nality operators.

Table 3.7  List of Cardinality Operators

Cardinality Operators Meaning

? Optional; may or may not appear

∗ Zero or more

+ One or more

If no cardinality operator is used, then the cardinality is one. These oper-
ators can be used with elements or content model groups to form very com-
plicated structures. Let us now see an example using the FruitBasket element
type declaration.

<!ELEMENT FruitBasket (Cherry+, (Apple | Orange)*>

This content model group says that the basket contains one or more
instances of the element type Cherry, followed by zero or more instances

XML Basics_Ch03_2pp.indd 92 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 93

of the choice between Apple and Orange. Note that all the elements must
appear together. This would lead to an instance as shown.

<FruitBasket>

<Cherry>…</Cherry>

<Cherry>…</Cherry>

<Apple>…</Apple>

<Orange>…</Orange>

<Orange>…</Orange>

</FruitBasket>

To indicate mixed content, one must include #PCDATA in the content
model. The elements in the content model must be separated by the pipe
(|) operator and the whole group as a whole declared as having zero or more
cardinality.

When using mixed content model, the #PCDATA keyword must be the
first choice in the model. This would indicate zero or more choices from
ItemA, ItemB, and #PCDATA. This could lead to an instance as shown.

<MixedBag>

<ItemA>…</ItemA>

This is the text that we wanted to include as PCDATA:
<ItemA>…</ItemA>

<ItemB>…</ItemB>

</MixedBag>

ATTRIBUTES

Attributes complement and modify elements by means of associating simple
properties with elements. Attributes are a rich feature in XML that allows us
to include a significant amount of information.

In HTML, SRC is an attribute in the IMG tag. Attributes are declared in
XML using the ATTLIST tag. Each element that has attributes declared for
it will have at least one ATTLIST that declares the attribute for the element.

The ATTLIST declaration consists of the ATTLIST keyword followed by
the element to which the attribute applies, followed by zero or more attribute
definitions. For readability purposes, it is better to place the attribute defini-
tion on a separate line.

Each attribute definition consists of the name of the attribute, its type,
and a default definition.

XML Basics_Ch03_2pp.indd 93 8/7/2020 12:32:18 PM

94 • XML Basics

<!ATTLIST ourElement AttributeName CDATA #REQUIRED>

Here, we are declaring a single attribute AttributeName that must occur
in the start-tag of every instance of ourElement element, and that the value of
the attribute is a character data string (CDATA) #REQUIRED is the default
definition.

An attribute can have one of the several different defaults that define the
way the attribute appears in the document.

DEFAULT VALUES

There are four defaults for attribute declarations. They are shown in the table.

Table 3.8  List of a Default Attributes

Attribute Defaults Meaning

#REQUIRED Attributes must appear on every instance of element.

#IMPLIED Attribute may optionally appear on an instance of an
element.

#FIXED plus default
value

Attribute must have default value; if attribute does not
appear, value is assumed by the parser.

Default value only If attribute does not appear, default value assumed by
parser. If attribute appears it may have another value.

If the default attribute value is provided in the ATTLIST and omitted in
the instance of the element in a document, an XML parser behaves as though
the attribute appeared with the default value. Thus, for the example, both
instances are the same.

<!ATTLIST SomeCol color "blue">

<SomeCol color="blue">...</SomeCol>

<SomeCol>…</SomeCol>

From the example, we can see that the declaration of the color attribute
gave us a default value that is blue. In the first instance, this has been explicitly
declared, but left off in the second instance of the element. A parser would
treat both as having a value of blue for the attribute color.

XML Basics_Ch03_2pp.indd 94 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 95

ATTRIBUTE TYPES

The attribute type specifies whether the attribute is needed. The table shows
the various types of the attributes and their meanings.

Table 3.9  List of Attribute Types and Meanings

Attribute Types Meaning

CDATA Character data (String)

ID Name unique within a given document

IDREF Reference of some element bearing an ID attribute
possessing the same value as the IDREF attribute

IDREFS Series of IDREFs delimited by whitespaces

ENTITY Name of a predefined external entity

ENTITIES Series of ENTITY names delimited by whitespaces

NMTOKEN A Name

NMTOKENS A series of NMTOKENS delimited by whitespaces

NOTATION Accepts one of a set of names indicating notation types
declared in the DTD

[Enumerated Value] Accepts one of a series of explicitly user-defined values
that the attributes can take on

CDATA

Eventually, all the content turns up as text. When there is an attribute type
whose value consists of just text, it may be declared as CDATA.

The value of the attribute could be any character data string of any length.
The only restriction is that the attribute value cannot contain markup. An
example is shown. As long as the attribute value is simple text, the parser will
declare it valid.

<!ATTLIST SomeCol someText CDATA #IMPLIED

<SomeCol someText= "This is a validtext">…</SomeCol>

XML Basics_Ch03_2pp.indd 95 8/7/2020 12:32:18 PM

96 • XML Basics

ID

The ID attribute type will have a value that is a unique identifying name.
The value of the ID attribute must be unique throughout the document. This
allows us to uniquely name an element. No element can have more than one
ID for an element.

The attribute type must be #IMPLIED or #REQUIRED but never
#FIXED or defaulted. It makes no sense if the default value is provided,
especially the fixed default for an ID, as that would violate the uniqueness
constraint.

What can we do with an ID type attribute to make it useful? Refer to it,
of course. It can be used to model a one-to-one relationship between two
objects modeled by elements in our vocabulary. As the example shows, the
declaration attaches a personal identification number to their details within a
file as a unique identifier.

<!ATTLIST Person

PIN ID #REQUIRED>

IDREF

The IDREF allows us to create links and cross references within the docu-
ment. The values of IDREF must meet the same conditions as ID. They must
also be the same as the value of some ID attribute value within the document.

We cannot use an IDREF to point to a document that is not within the
document. In such a case, we can use ID and IDREF to cross reference infor-
mation instead of repeating it. If a document contained the declaration as the
Person element, we can have the declarations as shown elsewhere in the DTD.

<!ELEMENT AccountHolder EMPTY>

<!ATTLIST AccountHolder

id IDREF #REQUIRED>

In such cases, we have to know implicitly that the attribute id refers to
the PIN attribute in Person. Instead of duplicating the entire Person ele-
ment within the AccountHolder, we have an empty element with an IDREF.
Whenever we need the Person information, the application searches for a
Person element with the PIN attribute whose value matches the id attribute
in a specified AccountHolder.

<Person PIN= "405060">

<Name>…</Name>

XML Basics_Ch03_2pp.indd 96 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 97

…

</Person>

…

<AccountHolder>

The IDREFS type is used when we want to link to many other elements.
It allows us to model one-to-many relationships. The value of this attri-

bute is a series of ID values separated by white space. The individual Ids must
meet the ID type constraints and must match up with ID attribute values
elsewhere in the document.

ENTITY

Entities are used within the declarations of the attributes for efficiency and
reuse. If there is a construction that appears many times, we can declare an
entity representing the construction and then refer to it, whenever the con-
struction is needed. ENTITY is therefore referred to as replaceable content.

Entities may also be used to include unparsed entities as valid attribute
values. This is exactly the mechanism by which a document’s author can point
to data other than the XML markup.

For example, if we want to include some XML data, we can do this with
an entity as shown. We start by declaring the attribute to be of type ENTITY.

<!ENTITY Turnover_chart SYSTEM "Turnover_chart.gif" NDATAgif>

Elsewhere in the DTD we declare the entity.
We can refer to the image through the attribute.
<ATTLIST MonthlyTurnover

Month_graph ENTITY #IMPLIED>

ENTITY, ENTITIES

To use an ENTITY as an attribute type, four things need to be done. Of these
four, three are declarations in the DTD. The fourth involves a specific docu-
ment instance. They are declaring a notation, declaring one or more entities
for use with the attribute, declaring an attribute of type ENTITY for some
element, and creating an instance of the element type in a document, and
providing the attribute and an entity name as the value.

XML Basics_Ch03_2pp.indd 97 8/7/2020 12:32:18 PM

98 • XML Basics

Just as we were able to use multiple IDREF values as a single attribute
value, we can also do the same with entities. This type is called as ENTITIES.
This works similarly to IDREFS.

Each name in the attribute value must conform to the rules of the ENTITY
type, and individual entity names are separated by white space.

NMTOKEN, NMTOKENS

Sometimes we might want to treat the value of an attribute as a distinct token
rather than text and want to leave the list of values imprecise. In such a case, we
can use name token, which is abbreviated as NMTOKEN and NMTOKENS.

Similar to IDREFS and ENTITIES, attributes of type NMTOKENS can
be declared, and they have values comprised of multiple name tokens. Each
name must be a valid name token and items must be separated by white space.

Although, they must conform to the rules for names that were discussed for
elements, they are free of one restriction. They are to be comprised of letters,
digits, and punctuation marks like colon, underscore, period, and hyphen, unlike
element and attribute names; any of these can be used as the first character of
an NMTOKEN. The following shows an example of an NMTOKEN attribute.

<!ATTLIST Employee

security_level NMTOKEN #REQUIRED>

<employee security_level="trusted">…

The example says that an Employee element may have an attribute
named security level whose level conforms to the rules for XML name tokens.
We could use this to control access to confidential information. By choos-
ing NMTOKEN, the document authors will be able to accommodate new
security level designations as they are created without editing the DTD every
time. Any value that conforms to the rules for comprising NMTOKEN values
will be accepted as the value for this attribute.

NOTATION

An XML parser is not set to deal with binary data formats. To overcome this
problem, notations are used which identify the format of external data items
that we would want to link to XML documents.

XML Basics_Ch03_2pp.indd 98 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 99

We need the notation declaration to declare a name for the notation and
associate the name with an external handler. The parser refers the foreign
data to the handler for processing.

The handler declaration works in same manner as DTD locating files
in the DOCTYPE declaration. It can be PUBLIC or STATIC, and it must
include the name of the external handler. The figure shows an example of
NOTATION declaration.

With notations, XML documents can be used as the unifying document
of a collection of dissimilar data types. This is useful for legal reports, medi-
cal reports, and multimedia presentations. XML, however, only provides the
minimal set of tools. Considerable effort is needed to build the proper presen-
tation semantics into an application.

<!ATTLIST Imager type NOTATION (gif | jpg) "gif">

<Image type="jpg">…

An attribute can be typed as a notation name using the keyword NOTA-
TION as shown. The above declaration says that an Image that is a notation.
The acceptable values of the attribute are gif and jpg. On leaving the attribute
without an instance, the parser would assume that the attribute appeared with
the default value, gif. In the instance shown, however, the value jpg overrides
the default.

ENUMERATIONS

Name tokens are open ended. The format of values of NMTOKEN and
NMTOKENS are restricted by name rules; otherwise, the set of permissible
values are open. In many cases, we have a small set of character string values
that we want to be permitted, such as YES or NO. These are the useful enu-
merations for decision-making.

The enumeration attribute is declared by placing a group of values where
the type keyword appears. The group consists of parentheses enclosing the
permitted values separated by the pipe symbol (|). The values are not enclosed
by quotation marks, but like names as in XML, are case sensitive.

The instance of an attribute in the document must include only one of
the permitted values as it appears in the attribute declaration. Like any other
attribute value, the enumerated value should be enclosed by quotation marks.

<!ATTLIST Employee

manager (yes|no) #REQUIRED>

XML Basics_Ch03_2pp.indd 99 8/7/2020 12:32:18 PM

100 • XML Basics

<!ATTLIST ClassifiedDoc

security_level (unclassified | secret | Top_secret) #REQUIRED>

In the first case, only the values YES and NO are allowed. YES, NO, and
MAYBE will all be rejected as invalid. It is important to respect case sensitiv-
ity, as it is to emphasize the values provided in the enumeration declaration.
When composing an enumeration for values that may be manually entered by
a user, all the variations produced by modifying the case of the values must
be considered.

DECLARING ATTRIBUTES

Attributes are declared using the <!ATTLIST > declaration. The syntax is
shown below.

<!ATTLIST ElementName

AttributeName AttributeType State DefaultValue?>

ElementName is the name of the element taking the attributes.
AttributeName is the name of the attribute.
AttributeType is the type of data that the attribute value may hold.

Although there are many types, the most common are CDATA (unparsed
character data) and ID (a unique identifier). A list of options can also be given
for the attribute type.

DefaultValue is the value of the attribute if it is not included in the
element.

State can be one of three values: #REQUIRED, #FIXED (set value), and
#IMPLIED (optional).

The beatle element has two possible attributes: link, which is optional
and may contain any valid XML text, and real, which defaults to yes if it is not
included.

<!ATTLIST beatle

 link CDATA #IMPLIED

 real (yes|no) "yes">

CONDITIONAL SECTIONS

Conditional sections are those statements that are parsed by the compiler
only if certain conditions are met. But in DTDs, this feature is restricted;
there is no conditional expression to be evaluated at runtime. DTDs include

XML Basics_Ch03_2pp.indd 100 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 101

conditional sections that instruct the parser to include or ignore a section of
declarations. These are useful for controlling blocks of declarations in a DTD.
The conditional sections are, however, not allowed in the internal subset of
the DTD.

The declaration of conditional sections consists of exclamation mark,
square left bracket, and a keyword followed by a block of declarations delim-
ited by square brackets. If the keyword is INCLUDE, the declarations in the
block are considered a part of the DTD for validation. On the other hand,
the DTD declarations in the block are read but passed by the parser if the
keyword is IGNORE.

LIMITATIONS OF DTDS

DTDs have propelled XML through its early adoption phase. However, they
suffer from a few limitations. They use a syntax all of their own, distinct from
that of document instances. Importantly, it would be beneficial if XML pars-
ers could give an application easy access to the declarations in DTDs they
process. We cannot use parsers to build dynamic DTDs.

DTDs are closed constructs. The rules of an XML are wholly contained
in the DTD. The DTD contains only the vocabulary and nothing else. There
is no simple and clear way to promote extensibility in DTDs.

DTDs also lack datatype information. The only tool that is provided is the
notation. This does little to allow us define our own types based on existing types.

DESIGNING XML DOCUMENTS

While discussing data flow models, we saw that there are two kinds of data
in the system, data stores and message flows. XML is useful for both kinds of
data, but the design considerations are rather different. One is the XML for
messages, and one is the XML for persistent data.

FIGURE 3.1  Data flow models for XML roles

XML Basics_Ch03_2pp.indd 101 8/7/2020 12:32:18 PM

102 • XML Basics

XML FOR MESSAGES

Using XML for messages in systems poses fewer design problems than it does
for persistent data.

This is mainly because each message is fairly self-contained, and the
question of what to include in a message usually falls out naturally from the
process model. The term message is usually used in a very general sense,
which might be an EDI-style message sent between organizations to repre-
sent a transaction.

There are some general rules that are to be applied to all XML messages
whatever their precise role might be. The design must reflect the information
and not the intended use. This means that the use of the information may
change over time, whereas the information content is more likely to remain
stable. This applies particularly to presentation details.

The design must foresee change. The design of XML itself gives an advan-
tage to this area, by avoiding traditional drawbacks such as fixed sized fields
and fixed column ordering. But the document designer also has the responsi-
bility to structure information in a way that foresees change.

XML FOR PERSISTENT DATA

The dynamic information model determines the design of messages. By con-
trast, for persistent data, it is the static model that is important.

The first thing that is to be decided is the vastness of the document.
The most difficult part of the design is to decide what the granularity of data
should be and what needs to get into the document. There are some applica-
tions where it makes sense to have a single XML document run into gigabytes
of data. In such a case, it will be necessary to parse the whole document,
which might take hours. On the opposite extreme, having a large number of
documents is usually not ideal either.

When document XML persistent data is used, finding information is
always a two-part operation. First, find the right document, then the facts
interested in the information. To locate the right document, there are four
options.

First, use the directory structure in the operating system to locate the
documents.

Second, index the documents from each other, like in a traditional Web-
site where documents are always found by following links, but typically in a
more structured manner.

XML Basics_Ch03_2pp.indd 102 8/7/2020 12:32:18 PM

Document Type Definition (DTD) • 103

Third, index the documents from a relational database. In this case, we
have the choice of holding the XML documents in files referenced from the
database or holding them in the database itself.

Fourth, index the documents using a free-text search engine. A large
number of search engines offer native support for XML.

Another option would be to use the XML server. An XML server not only
holds the XML data in a raw unparsed form, but in the form of a persistent
DOM, that is, it stores the nodes of the Document Object Model as objects
in an object database.

MAPPING THE INFORMATION MODEL TO XML

This basically deals with how to map the different parts of the information
model to an XML document structure. One of the ways is through represen-
tation of object types. Generally, an object type in the information model will
translate into an element type in the XML structure. We can use the name of
the object type as the element name or abbreviate it.

Most people use short names as their elements not to save space, but
because XML seems to be more readable that way, and perhaps to avoid the
tags distracting too much from the content. The advantage of using a specific
type is that the DTD can define more precisely exactly attributes and child
elements are associated with this element.

Nested elements in the XML document structure can used to represent
some of the relationships in the model. The obvious ones to represent this way
are the “contains” relationships.

There are several ways to represent a link from one element to another
in XML. We can use ID, IDREF attributes, and Xpointer references that are
equivalent to the HREF tag in HTML. We can also use application-defined
primary keys and foreign keys in XML documents.

All the three approaches have their own merit. The main advantage of
using ID, IDREF is that the validation is done by the XML parser.

Xpointer references are much more flexible than ID, IDREF, but they
are not yet fully standardized.

The option of handling relationships through primary and foreign key is a
perfectly viable approach, but the XML parser does not give any help in this
matter.

When we have identified a property in the information model, a dilemma
arises whether we represent it in the XML document using an XML attribute

XML Basics_Ch03_2pp.indd 103 8/7/2020 12:32:18 PM

104 • XML Basics

or using a nested element. In this case, there are no rules and we are free to
choose the way we want either using an attribute or using a nested element.
The table gives the pros and cons of each approach.

Table 3.10  Pros and Cons of Using an Attribute or Using a Nested Element

Advantages Disadvantages

XML Attributes DTD can constrain the
values; useful when there is
a small set of allowed values,
such as “yes” or “no.”

Simple string values. No
support for metadata (or
attributes of attributes).

DTD can define a default
value

Unordered

ID and IDREF Validation

Lower source overhead
(makes a difference when
sending gigabytes of data
over the network)

White space normalization
available for certain data
types that save application
some parsing effort

Easier to process DOM and
SAX interfaces

Child elements Support arbitrarily complex
values and repeating values

Slightly higher space usage.
More complex programming

Ordered

Support “attributes of
attributes”

Extensible when data model
changes

To represent the properties of an object using elements or attributes, we
have to make a decision on how to encode their values. Some of the com-
mon situations that are encountered are quantities such as height, width, and
weight, Yes/No values, dates and times, property names, and binary data.

XML Basics_Ch03_2pp.indd 104 8/7/2020 12:32:19 PM

Document Type Definition (DTD) • 105

A DOCUMENT TYPE DECLARATION

The Document Type Declaration (or DOCTYPE Declaration) has three roles.

●● It specifies the name of the document element.
●● It may point to an external Document Type Definition (DTD).
●● It may contain an internal DTD.

The DOCTYPE Declaration shown below simply states that the docu-
ment element of the XML document is beatles.

<!DOCTYPE beatles>

If a DOCTYPE Declaration points to an external DTD, it must either
specify that the DTD is on the same system as the XML document itself or
that it is in some public location. To do so, it uses the keywords SYSTEM and
PUBLIC. It then points to the location of the DTD using a relative Uniform
Resource Indicator (URI) or an absolute URI. Here are a couple of examples.

Syntax

<!--DTD is on the same system as the XML document-->

<!DOCTYPE beatles SYSTEM "dtds/beatles.dtd">

Syntax

<!--DTD is publicly available-->

<!DOCTYPE beatles PUBLIC "-//Webucator//DTD Beatles 1.0//EN"

"http://www.webucator.com/beatles/DTD/beatles.dtd">

As shown in the second declaration above, public identifiers are divided
into three parts:

●● An organization (e.g., Webucator)
●● A name for the DTD (e.g., Beatles 1.0)
●● A language (e.g., EN for English)

ELEMENTS

Every XML document must have at least one element, called the document
element. The document element usually contains other elements, which con-
tain other elements, and so on. Elements are denoted with tags. Let’s look
again at the Paul.xml.

XML Basics_Ch03_2pp.indd 105 8/7/2020 12:32:19 PM

106 • XML Basics

Code Sample: XMLBasics/Demos/Paul.xml

<?xml version="1.0"?>

<person>

 <name>

 <firstname>Paul</firstname>

 <lastname>McCartney</lastname>

 </name>

 <job>Singer</job>

 <gender>Male</gender>

</person>

The document element is person. It contains three elements: name, job,
and gender. Further, the name element contains two elements of its own:
firstname and lastname. As you can see, XML elements are denoted with tags,
just as in HTML. Elements that are nested within another element are said to
be children of that element.

EMPTY ELEMENTS

Not all elements contain other elements or text. For example, in XHTML,
there is an img element that is used to display an image. It does not contain
any text or elements within it, so it is called an empty element. In XML, empty
elements must be closed, but they do not require a separate close tag. Instead,
they can be closed with a forward slash at the end of the open tag as shown
below.

The above code is identical in function to the code below.

ATTRIBUTES

XML elements can be further defined with attributes, which appear inside of
the element’s open tag as shown below.

Syntax

<name title="Sir">

 <firstname>Paul</firstname>

XML Basics_Ch03_2pp.indd 106 8/7/2020 12:32:19 PM

Document Type Definition (DTD) • 107

 <lastname>McCartney</lastname>

</name>

CDATA

Sometimes it is necessary to include sections in an XML document that should
not be parsed by the XML parser. These sections might contain content that
will confuse the XML parser, perhaps because it contains content that appears
to be XML, but is not meant to be interpreted as XML. Such content must be
nested in CDATA sections. The syntax for CDATA sections is shown below.

Syntax

<![CDATA[

This section will not get parsed by the XML parser.
]]>

WHITE SPACE

In XML data, there are only four white space characters.

●● Tab
●● Line feed
●● Carriage return
●● Single space

There are several important rules to remember with regards to white
space in XML.

White space within the content of an element is significant; that is, the
XML processor will pass these characters to the application or user agent.

White space in attributes is normalized; that is, neighboring white spaces
are condensed to a single space. White space in between elements is ignored.

xml:space Attribute

The xml:space attribute is a special attribute in XML. It can only take one
of two values: default and preserve. This attribute instructs the application
how to treat white space within the content of the element. Note that the
application is not required to respect this instruction.

XML Basics_Ch03_2pp.indd 107 8/7/2020 12:32:19 PM

108 • XML Basics

SPECIAL CHARACTERS

There are five special characters that can not be included in XML documents.
These characters are replaced with predefined entity references as shown in
the table below.

Table 3.11  List of Special Characters

Special Characters

Character Entity Reference

< <

> >

& &

“ "

‘ '

QUESTIONS FOR DISCUSSION

1.	 What is DTD?

2.	 How do we declare DTD?

3.	 Give the main reasons to use DTD.

4.	 How you define building blocks in an XML document?

5.	 How you define DTD elements?

6.	 How you define attributes in DTD?

7.	 How we can store data in both child elements and attributes?

8.	 How you define entities in DTD?

9.	 How is validation performed in DTD?

10.	 What are the differences between DTDs and schema?

11.	 What is a simple element?

12.	 What is a complex element?

XML Basics_Ch03_2pp.indd 108 8/7/2020 12:32:19 PM

Document Type Definition (DTD) • 109

13.	 What is the relevance of the Element Form Default attribute in the
schema?

14.	 What is the XML parser?

15.	 Give some examples of XML DTDs or schemas that you have worked
with.

16.	 When constructing an XML DTD, how do you create an external entity
reference in an attribute value?

17.	 Can you use an attribute default in a DTD to declare an XML
namespace?

18.	 Do the default values of xmlns attributes declared in the DTD apply to
the DTD?

19.	 Does the scope of an XML namespace declaration ever include the
DTD?

20.	 Can you use XML namespaces in DTDs?

21.	 Do XML namespace declarations apply to DTDs?

22.	 Can you use qualified names in DTDs?

23.	 What are the limitations of DTD?

24.	 Give some examples of XML DTDs or schemas.

25.	 Using dynamic DOCTYPE generation, we want to generate an XML
document using JAXP parsers. We want to include a DOCTYPE tag
that references a DTD. How is this accomplished?

26.	 Can you use a arbitrary defined DTD to generate all possible XML
templates?

27.	 Defining SQL statements in the DTD: How can we declare XML
embedded SQL statements in the DTD?

XML Basics_Ch03_2pp.indd 109 8/7/2020 12:32:19 PM

XML Basics_Ch03_2pp.indd 110 8/7/2020 12:32:19 PM

C H A P T E R 4
NAMESPACES

NAMESPACES

A namespace is a collection of names that is identified by a Uniform Resource
Identifier (URI). Namespaces is a methodology for creating universally
unique names in an XML document by identifying element names with a
unique external resource.

Namespaces help XML vocabulary designers to break complex problems
into smaller pieces. Namespaces mix multiple vocabularies as needed to fully
describe a problem in a single XML document.

A URI is a unique name for resource that resides on a network. A Uni-
form Resource Locator (URL) locates the resource using an access protocol
and network location.

Namespaces are used to group elements and attributes that relate to
each other in some special way. Namespaces are held in a unique URI. Note
that, although it is possible that an XML schema is kept at this URI, it is not
required. This can be a bit confusing. It is important to understand that a
namespace is a set of rules that can be enforced by an application in whatever
way the application wishes.

It is unlikely that these editors ever visit the URI that holds the XHTML
namespace. Instead, these applications have built-in functionality to support
the namespace. The main reason a URI is used is to provide a unique variable
name to hold the namespace. Namespace authors should use URIs that they
own to prevent conflicts with each other.

XML Basics_Ch04_2pp.indd 111 8/8/2020 11:00:37 AM

112 • XML Basics

PURPOSE OF NAMESPACES

As described above, one purpose of namespaces is to provide a unique identi-
fier for a group of elements and attribute declarations.

Another purpose is to allow instance documents to be made up of a com-
bination of such groups without having name conflicts. For example, we could
hold the book schema and song schema we have worked on in separate name-
spaces. Now suppose you wanted to use both schemas to create a book of
songs. Both songs and books can have Title elements. This could potentially
be a source of confusion as an application might not understand which Title
element to apply. By specifying which namespace the Title elements come
from, the confusion is removed.

DECLARING A NAMESPACE

Two XML documents might contain elements with the same names but dif-
ferent meanings. If both the documents need to be used in a single environ-
ment, there will be confusion about the overlapping elements. For example,
consider the following XML code.

<CUSTOMER>

 <NAME>Shashi</NAME>

</CUSTOMER>

<BOOK>

 <NAME>Yashasvi</Name>

</BOOK>

<BILL>

 <CUSTOMER>

 <NAME>Shashi</NAME>

 </CUSTOMER>

 <BOOK>

 <NAME>Yashasvi</NAME>

 </BOOK>

</BILL>

Here, the CUSTOMER element and the BOOK element have NAME
element, but the NAME element has different meanings in each case. If these
elements are combined into a single document as shown in the following code,
the NAME elements will lose their meaning.

This is a very big problem and the solution is XML namespaces, which offer a
way to create names that remain unique no matter where the elements are used.

XML Basics_Ch04_2pp.indd 112 8/8/2020 11:00:37 AM

Namespaces • 113

A namespace can be qualified or unqualified. It does us no good to declare
a namespace if we can’t tie it to a specific name we want to use. This is done
through the use of qualified names.

The two parts of qualified name are the namespace and local part. The
namespace name is a URI and selects the namespace. The local part is the
local document element or attribute name. To use a namespace in an XML
document, a namespace declaration in the prolog of the document must be
included. A namespace prefix can also be included in the declaration. The
prefix with a colon can be attached to local part to associate the local part
with the namespace name. The following code declares two namespaces with
prefixes and then uses those namespaces in the document.

Here cust:NAME and book:NAME are fully qualified names and they are
unique no matter where they are used.

<xmlns version = "1 . 0"?>

<xmlns : namespace ns="http://books/schema/ns" prefix = "books"?>

<xmlns : namespace ns="http://customer/schema/ns" prefix = "cust"?>

<BILL>

 <CUSTOMER>

 <cust:NAME>Shashi</cust:NAME>

 </CUSTOMER>

 <BOOK>

 <books:NAME>Yashasvi</books:NAME>

 </BOOK>

</BILL>

QUALIFIED NAME “BK” NAME SPACE DECLARATION

PREFIX

LOCAL NAME

PREFIX

NAME SPACE NAME (URI)

<BK: BOOK STORE XMLNS:BK=“http://www.example.org/bookstore”/>

QUALIFIED NAME DEFAULT NAME SPACE DECLARATION

NO PREFIX

LOCAL NAME

NO PREFIX

NAMESPACE NAME (URI)

<BOOK STORE XMLNS=“http://www.example.org/bookstore”/>

FIGURE 4.1  Namespace declaration representation

XML Basics_Ch04_2pp.indd 113 8/8/2020 11:00:38 AM

114 • XML Basics

One of our prime motivations for using namespaces is to be able to mix
name from different sources. It might be useful for you to be able to provide
an alias you could use throughout a document that would refer to the declara-
tion. You do this by appending a colon and your alias to xmlns.

SCOPE

Namespace declarations have scope in the same way that variable declarations
do in the programming. This is important because it is not always the case that
namespaces are declared at the beginning as XML document; they can be
included within a later section of the document.

A name can refer to a namespace only if it is used within the scope of the
namespace declaration. However, we will also need to mix namespaces where
elements would otherwise inherit the scope of a namespace, so there are two
ways in which scope can be declared. It can be either default or qualified.

To use namespaces, we need to prefix every name in a document; this
could be tiresome when we have many namespaces in the document.

By introducing the concept of name scope to our tool set, we can dispense
with a lot of prefixes. If we define a default namespace, all unqualified names
within the scope of the declaration are presumed to belong to that default. So,
if you declare a default namespace in the root element, it is treated as default
namespace for the whole document, and can only be overridden by more spe-
cific namespace declared within the document.

QUALIFIED

Though we clearly separate the various namespaces, sometimes we need to
sprinkle names from foreign namespaces through a document. For this, a
finer degree of granularity is needed. Hence, we can make use of qualified
names instead of declaring namespaces all over the space. The namespaces
are to be declared at the beginning of the document and then qualified at the
point of use.

<Measurements xmlns="urn:mydecs-science-measurements">

 xmlns:units="urn:mydecs-science-unitsofmeasure"

 xmlns:prop="urn:mydecs-science-thingsmeasured"

 <OutsideAir units:units="Fahrenheit">86</OutsideAir>

 <FuelTank>

XML Basics_Ch04_2pp.indd 114 8/8/2020 11:00:38 AM

Namespaces • 115

 <prop:Volume units:units="liters">120</prop:Volume>

 <prop:Temperature units:units="Celsius">20</prop:Temperature>

 </FuelTank>

</Measurements>

In the root element, Measurements, we have declared three namespaces.
The default takes care of the elements <OutsideAir>, <FuelTank>, and
<Measurements>. However, we need to qualify some readings with units of
measure, which we have done with the units namespace and the attribute
units: units drawn from that namespace. Finally, we need to differentiate
between some types of measurements, prop:Volume and prop:Temperature.

XML NAMESPACE

In XML, a namespace is used to prevent any conflicts with element names.
Because XML allows you to create your own element names, there’s

always the possibility of naming an element exactly the same as one in another
XML document.

This might be OK if you never use both documents together. But what if
you need to combine the content of both documents? You would have a name
conflict. You would have two different elements, with different purposes,
both with the same name.

Imagine we have an XML document containing a list of books.
<books>

 <book>

 <title>XML Programming</title>

 <author>Shashi Banzal</author>

 </book>

 ...

</books>

And imagine we want to combine it with the following HTML page:
<html>

 <head>

 <title>Cool Books</title>

</head>

<body>

<p>Here's a list of cool books...</p>

XML Basics_Ch04_2pp.indd 115 8/8/2020 11:00:38 AM

116 • XML Basics

(XML content goes here)
 </body>

</html>

We will encounter a problem if we try to combine the above documents.
This is because they both have an element called title. One is the title of the
book, and the other is the title of the HTML page.

EXAMPLE NAMESPACE

Using the above example, we could change the XML document to look some-
thing like this:

<bk:books xmlns:bk="http://somebooksite.com/book_spec">

 <bk:book>

 <bk:title>XML Programming</bk:title>

 <bk:author>Shashi Banzal</bk:author>

 </bk:book>

 ...

</bk:books>

We have added the xmlns:{prefix} attribute to the root element. We have
assigned this attribute a unique value. This unique value is usually in the form
of a URI. This defines the namespace.

And, now that the namespace has been defined, we have added a bk pre-
fix to our element names.

Now, when we combine the two documents, the XML processor will see
two different element names: bk:title (from the XML document) and title
(from the HTML document).

If you have defined your tags and attributes in a DTD, you need to update
your DTD in order to make the new element names legal.

XML LOCAL NAMESPACE

In the previous lesson, we created a namespace to avoid a name conflict
between the elements of two documents we wanted to combine. When we
defined the namespace, we defined it against the root element. This meant

XML Basics_Ch04_2pp.indd 116 8/8/2020 11:00:38 AM

Namespaces • 117

that the namespace was to be used for the whole document, and we prefixed
all child elements with the same namespace.

You can also define namespaces against a child node. This way, you could
use multiple namespaces within the same document, if required.

EXAMPLE LOCAL NAMESPACE

Here, we apply the namespace against the title element only:
<books>

 <book>

 <bk:title xmlns:bk="http://somebooksite.com/book_spec">

 XML Programming

 </bk:title>

 <author>Shashi Banzal</author>

 </book>

 ...

</books>

MULTIPLE NAMESPACES

You could also have multiple namespaces within your XML document. For
example, you could define one namespace against the root element, and
another against a child element.

Example

<bk:books xmlns:bk="http://somebooksite.com/book_spec">

 <bk:book>

 <bk:title>XML Programming</bk:title>

 <bk:author>Shashi Banzal</bk:author>

 <pub:name xmlns:pub="http://somepublishingsite.com/spec">

 Sid Harta Publishers

 </pub:name>

 <pub:email>author@shashi .com.au</pub:email>

 </bk:book>

 ...

</bk:books>

XML Basics_Ch04_2pp.indd 117 8/8/2020 11:00:38 AM

118 • XML Basics

XML DEFAULT NAMESPACE

The namespaces we created in the previous two lessons involved applying a
prefix. We applied the prefix when we defined the namespace, and we applied
a prefix to each element that referred to the namespace.

You can also use what is known as a default namespace within your XML
documents. The only difference between a default namespace and the name-
spaces we covered in the previous two lessons is a default namespace is one
where you don’t apply a prefix.

You can also define namespaces against a child node. This way, you could
use multiple namespaces within the same document if required.

Here, we define the namespace without a prefix:
<books xmlns="http://somebooksite.com/book_spec">

 <book>

 <title>XML Programming</title>

 <author>Shashi Banzal</author>

 </book>

 ...

</books>

When you define the namespace without a prefix, all descendant ele-
ments are assumed to belong to that namespace, unless specified otherwise
(i.e., with a local namespace).

UNDERSTANDING NAMESPACES

In XML, when different markup languages have elements and attributes
that are named the same, the XML problem is much more severe, how-
ever, because XML applications aren’t smart enough to judge the difference
between the context of elements from different markup languages that share
the same name. For example, a tag named <goal> would have a very different
meaning in a sports markup language than the same tag in a markup language
for a daily planner. If you ever used these two markup languages within the
same application, it would be very important for the application to know when
you’re talking about a goal in hockey and when you’re talking about a personal
goal. The responsibility falls on the XML developer to ensure that uniqueness
abounds when it comes to the elements and attributes used in documents.

Fortunately, namespaces make it possible to enforce such uniqueness
without too much of a hassle.

XML Basics_Ch04_2pp.indd 118 8/8/2020 11:00:39 AM

Namespaces • 119

A namespace is a collection of element and attribute names that can be used
in an XML document. To draw a comparison between an XML namespace and
the real world, if you considered the first names of all the people in your imme-
diate family, they would belong to a namespace that encompasses your last
name. When I call my brother by his first name, Steve, it is implied that his last
name is Morrison because he is within the Morrison namespace. XML name-
spaces are similar because they represent groups of names for related elements
and attributes. Most of the time an individual namespace corresponds directly
to a custom markup language, but that doesn’t necessarily have to be the case.
You also know that namespaces aren’t a strict requirement of XML documents,
as you haven’t really used them throughout the book thus far.

The purpose of namespaces is to eliminate name conflicts between ele-
ments and attributes. To better understand how this type of name clash might
occur in your own XML documents, consider an XML document that con-
tains information about a video and music collection. You might use a cus-
tom markup language unique to each type of information (video and music),
which means that each language would have its own elements and attributes.
However, you are using both languages within the context of a single XML
document, which is where the potential for problems arises. If both markup
languages include an element named “title” that represents the title of a video
or music compilation, there is no way for an XML application to know which
language you intended to use for the element. The solution to this problem is
to assign a namespace to each of the markup languages, which will then pro-
vide a clear distinction between the elements and attributes of each language
when they are used.

“Defining Data with DTD Schemas” is used to demonstrate how an
XML document consists of a hierarchical tree of elements. Each node in the
tree of an XML document has its own scope, and can therefore have its own
namespace.

Scope is important to namespaces because it’s possible to use a name-
space within a given scope, which means it affects only elements and attri-
butes beneath a particular node. Contrast this with a namespace that has
global scope, which means the namespace applies to the entire document.

NAMING NAMESPACES

The whole point of namespaces is that they provide a means of establishing
unique identifiers for elements and attributes. It is therefore imperative that
each and every namespace have a unique name. Obviously, there would be no

XML Basics_Ch04_2pp.indd 119 8/8/2020 11:00:39 AM

120 • XML Basics

way to enforce this rule if everyone was allowed to make up their own names,
so a clever naming scheme was established that tied namespaces to URIs.
URIs usually reference physical resources on the Internet and are guaranteed
to be unique. So, a namespace is essentially the name of a URI. For example,
consider the Website http://www.michaelmorrison.com. To help guarantee
name uniqueness in any XML documents that created, we could associate the
documents with the namespace:

<mediacollection xmlns:mov="http://www.michaelmorrison.com/ns/movies">

The ns in the namespace name http://www.michaelmorrison.com/ns/
movies stands for “namespace” and is often used in URL namespace names. It
isn’t a necessity, but it’s not a bad idea in terms of being able to quickly iden-
tify namespaces. If you don’t want to use a URI as the basis for a namespace
name, you could also use the URN (Universal Resource Name) of a Web
resource to guarantee uniqueness. URNs are slightly different from URLs
and define a unique location-independent name for a resource that maps to
one or more URLs. The following is an example of using a URN to specify a
namespace for a Website:

<mediacollection xmlns:mov="urn:michaelmorrison.com:ns:movies">

Keep in mind that a namespace doesn’t actually point to a physical
resource, even if its URI does. In other words, the only reason namespaces
are named after URIs is because URIs are guaranteed to be unique. They
could just as easily be named after social security numbers. This means that
within a domain name, you can create URIs that don’t actually reference
physical resources.

DECLARING AND USING NAMESPACES

Namespaces are associated with documents by way of elements, which means
that you declare a namespace for a particular element with the scope you want
for the namespace. More specifically, you use a namespace declaration, which
looks a lot like an attribute of the element. In many cases, you want a names-
pace to apply to an entire document, which means you’ll use the namespace
declaration with the root element. A namespace declaration takes the follow-
ing form:

xmlns:Prefix="NameSpace"

XML Basics_Ch04_2pp.indd 120 8/8/2020 11:00:39 AM

Namespaces • 121

The xmlns attribute is what notifies an XML processor that a namespace
is being declared. The NameSpace portion of the namespace declaration is
where the namespace itself is identified. This portion of the declaration iden-
tifies a URI that guarantees the uniqueness for elements and attributes used
within the scope of the namespace declaration.

The Prefix part of the namespace declaration allows you to set a prefix that
will serve as a shorthand reference for the namespace throughout the scope of
the element in which the namespace is declared. The prefix of a namespace
is optional and ultimately depends on whether you want to use qualified or
unqualified element and attribute names throughout a document. A qualified
name includes the Prefix portion of the namespace declaration and consists
of two parts: the prefix and the local portion of the name. Examples of quali-
fied names include mov:title, mov:director, and mov:rating. To use qualified
names, you must provide Prefix in the namespace declaration. The following
is a simple example of a qualified name:

<mov:title>Raising Arizona</mov:title>

Declaring a namespace in an XML document is a little like declaring a
variable in a programming language. The declared namespace is available for
use, but doesn’t actually enter the picture until you specify an element with a
qualified name.

In this example, the prefix is mov and the local portion of the name is
title. Unqualified names don’t include a prefix and are either associated with
a default namespace or no namespace at all. The prefix of the namespace
declaration isn’t required when declaring a default namespace. Examples of
unqualified names are title, director, and rating. Unqualified names in a doc-
ument look no different than if you weren’t using namespaces at all. The fol-
lowing code shows how the movie example would be coded using unqualified
names:

<title>Raising Arizona</title>

Notice that in this example, the <title> and </title> tags are used so that
you would never know a namespace was involved. In this case, you are either
assuming a default namespace is in use or that there is no namespace at all.

It’s important to clarify why you would use qualified or unqualified names
because the decision to use one or the other determines the manner in which
you declare a namespace. There are two different approaches to declaring
namespaces:

XML Basics_Ch04_2pp.indd 121 8/8/2020 11:00:39 AM

122 • XML Basics

●● Default declaration: The namespace is declared without a prefix; all ele-
ment and attribute names within its scope are referenced using unquali-
fied names and are assumed to be in the namespace.

●● Explicit declaration: The namespace is declared with a prefix; all element
and attribute names associated with the namespace must use the prefix
as part of their qualified names or else they are not considered part of the
namespace.

The next sections dig a little deeper into these namespace declarations.

DEFAULT NAMESPACES

Default namespaces represent the simpler of the two approaches to names-
pace declaration. A default namespace declaration is useful when you want
to apply a namespace to an entire document or section of a document. When
declaring a default namespace, you don’t use a prefix with the xmlns attrib-
ute. Instead, elements are specified with unqualified names and are there-
fore assumed to be part of the default namespace. In other words, a default
namespace declaration applies to all unqualified elements within the scope
in which the namespace is declared. The following is an example of a default
namespace declaration for a movie collection document:

<mediacollection xmlns="http://www.michaelmorrison.com/ns/movies">

 <movie type="comedy" rating="PG-13" review="5" year="1987">

 <title>Raising Arizona</title>

 <comments>A classic one-of-a-kind screwball love story.</comments>

 </movie>

 <movie type="comedy" rating="R" review="5" year="1988">

 <title>Midnight Run</title>

 <comments>The quintessential road comedy.</comments>

 </movie>

</mediacollection>

In this example, the http://www.michaelmorrison.com/ns/movies name-
space is declared as the default namespace for the movie document. This
means that all the unqualified elements in the document (mediacollection,
movie, title, and so on) are assumed to be part of the namespace. A default
namespace can also be set for any other element in a document, in which case
it applies only to that element and its children. For example, you could set a

XML Basics_Ch04_2pp.indd 122 8/8/2020 11:00:39 AM

Namespaces • 123

namespace for one of the title elements, which would override the default
namespace that is set in the mediacollection element. The following is an
example of how this is done:

<mediacollection xmlns="http://www.michaelmorrison.com/ns/movies">

 <movie type="comedy" rating="PG-13" review="5" year="1987">

 <title>Raising Arizona</title>

 <comments>A classic one-of-a-kind screwball love story.</comments>

 </movie>

 <movie type="comedy" rating="R" review="5" year="1988">

 <title xmlns="http://www.michaelmorrison.com/ns/title">Midnight Run</title>

 <comments>The quintessential road comedy.</comments>

 </movie>

</mediacollection>

Notice in the title element for the second movie element that a different
namespace is specified. This namespace applies only to the title element and
overrides the namespace declared in the mediacollection element. Although
this admittedly simple example doesn’t necessarily make a good argument for
why you would override a namespace, it can be a bigger issue in documents
where you mix different XML languages.

EXPLICIT NAMESPACES

An explicit namespace is useful whenever you want exacting control over the
elements and attributes that are associated with a namespace. This is often
necessary in documents that rely on multiple schemas because there is a
chance of having a name clash between elements and attributes defined in
the two schemas. Explicit namespace declarations require a prefix that is used
to distinguish elements and attributes that belong to the namespace being
declared. The prefix in an explicit declaration is used as a shorthand notation
for the namespace throughout the scope in which the namespace is declared.
More specifically, the prefix is paired with the local element or attribute name
to form a qualified name of the form Prefix:Local. The following is the movie
example with qualified element and attribute names:

<mediacollection xmlns:mov="http://www.michaelmorrison.com/ns/movies">

 <mov:movie mov:type="comedy" mov:rating="PG-13" mov:review="5" mov:year="1987">

 <mov:title>Raising Arizona</mov:title>

 <mov:comments>A classic one-of-a-kind screwball love story.</mov:comments>

XML Basics_Ch04_2pp.indd 123 8/8/2020 11:00:39 AM

124 • XML Basics

 </mov:movie>

 <mov:movie mov:type="comedy" mov:rating="R" mov:review="5" mov:year="1988">

 <mov:title>Midnight Run</mov:title>

 <mov:comments>The quintessential road comedy.</mov:comments>

 </mov:movie>

</mediacollection>

The namespace in this code is explicitly declared by the shorthand name
mov in the namespace declaration; this is evident in the fact that the name
mov is specified after the xmlns keyword. Once the namespace is declared,
you can use it with any element and attribute names that belong in the name-
space, which in this case is all of them.

Listing 4.1: The Media Collection Example Document

 1: <?xml version="1.0"?>

 2:

 3: <mediacollection xmlns:mov="http://www.michaelmorrison.com/ns/movies"

 4: xmlns:mus="http://www.michaelmorrison.com/ns/music">

 5: <mov:movie mov:type="comedy" mov:rating="PG-13" mov:review="5"

 6: mov:year="1987">

 7: <mov:title>Raising Arizona</mov:title>

 8: <mov:comments>A classic one-of-a-kind screwball love story.

 9: </mov:comments>

10: </mov:movie>

11:

12: <mov:movie mov:type="comedy" mov:rating="R" mov:review="5" mov:year="1988">

13: <mov:title>Midnight Run</mov:title>

14: <mov:comments>The quintessential road comedy.</mov:comments>

15: </mov:movie>

16:

17: <mus:music mus:type="indy" mus:review="5" mus:year="1990">

18: <mus:title>Cake</mus:title>

19: <mus:artist>The Trash Can Sinatras</mus:artist>

20: <mus:label>Polygram Records</mus:label>

21: <mus:comments>Excellent acoustical instruments and extremely witty

22: lyrics.</mus:comments>

23: </mus:music>

24:

25: <mus:music mus:type="rock" mus:review="5" mus:year="1991">

XML Basics_Ch04_2pp.indd 124 8/8/2020 11:00:39 AM

Namespaces • 125

26: <mus:title>Travelers and Thieves</mus:title>

27: <mus:artist>Blues Traveler</mus:artist>

28: <mus:label>A&M Records</mus:label>

29: <mus:comments>The best Blues Traveler recording, period.</mus:comments>

30: </mus:music>

31: </mediacollection>

In this code, the mov and mus namespaces (lines 3 and 4) are explicitly
declared in order to correctly identify the elements and attributes for each
type of media. Notice that without these explicit namespaces it would be dif-
ficult for an XML processor to tell the difference between the title and com-
ments elements because they are used in both movie and music entries.

Just to help hammer home the distinction between default and explicit
namespace declarations, let’s take a look at one more example. This time, the
media collection declares the movie namespace as the default namespace and
then explicitly declares the music namespace using the mus prefix. The end
result is that the movie elements and attributes don’t require a prefix when
referenced, whereas the music elements and attributes do.

Listing 4.2: A Different Version of the Media Collection Example
Document That Declares the Movie Namespace as a Default Namespace

 1: <?xml version="1.0"?>

 2:

 3: <mediacollection xmlns="http://www.michaelmorrison.com/ns/movies"

 4: xmlns:mus="http://www.michaelmorrison.com/ns/music">

 5: <movie type="comedy" rating="PG-13" review="5" year="1987">

 6: <title>Raising Arizona</title>

 7: <comments>A classic one-of-a-kind screwball love story.</comments>

 8: </movie>

 9:

10: <movie type="comedy" rating="R" review="5" year="1988">

11: <title>Midnight Run</title>

12: <comments>The quintessential road comedy.</comments>

13: </movie>

14:

15: <mus:music mus:type="indy" mus:review="5" mus:year="1990">

16: <mus:title>Cake</mus:title>

17: <mus:artist>The Trash Can Sinatras</mus:artist>

18: <mus:label>Polygram Records</mus:label>

XML Basics_Ch04_2pp.indd 125 8/8/2020 11:00:39 AM

126 • XML Basics

19: <mus:comments>Excellent acoustical instruments and extremely witty

20: lyrics.</mus:comments>

21: </mus:music>

22:

23: <mus:music mus:type="rock" mus:review="5" mus:year="1991">

24: <mus:title>Travelers and Thieves</mus:title>

25: <mus:artist>Blues Traveler</mus:artist>

26: <mus:label>A&M Records</mus:label>

27: <mus:comments>The best Blues Traveler recording, period.</mus:comments>

28: </mus:music>

29: </mediacollection>

The key to this code is the default namespace declaration, which is iden-
tified by the lone xmlns attribute (line 3); the xmlns:mus attribute explicitly
declares the music namespace (line 4). When the xmlns attribute is used by
itself with no associated prefix, it is declaring a default namespace, which in
this case is the music namespace.

XML NAMESPACES

XML namespaces provide a method to avoid element name conflicts.

NAME CONFLICTS

In XML, element names are defined by the developer. This often results in
a conflict when trying to mix XML documents from different XML applica-
tions. This XML carries HTML table information:

<table>

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

This XML carries information about a table (a piece of furniture):
<table>

 <name>African Coffee Table</name>

XML Basics_Ch04_2pp.indd 126 8/8/2020 11:00:39 AM

Namespaces • 127

 <width>80</width>

 <length>120</length>

</table>

If these XML fragments were added together, there would be a name
conflict. Both contain a <table> element, but the elements have different
content and meaning.

An XML parser will not know how to handle these differences.

SOLVING THE NAME CONFLICT USING A PREFIX

Name conflicts in XML can easily be avoided using a name prefix.
This XML carries information about an HTML table and a piece of

furniture:
<h:table>

 <h:tr>

 <h:td>Apples</h:td>

 <h:td>Bananas</h:td>

 </h:tr>

</h:table>

<f:table>

 <f:name>African Coffee Table</f:name>

 <f:width>80</f:width>

 <f:length>120</f:length>

</f:table>

In the example above, there will be no conflict because the two <table>
elements have different names.

Code Sample: Namespaces/Demos/Artist.xsd
<?xml version="1.0"?>

 <xs:schema targetNamespace="http://www.webucator.com/Artist"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.webucator.com/Artist">

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 <xs:element name="Name">

 <xs:complexType>

XML Basics_Ch04_2pp.indd 127 8/8/2020 11:00:39 AM

128 • XML Basics

 <xs:sequence>

 <xs:element ref="Title"/>

 <xs:element ref="FirstName"/>

 <xs:element ref="LastName"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Artist">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name"/>

 </xs:sequence>

 <xs:attribute name="BirthYear" type="xs:gYear" use="required"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

This schema would be invalid if the xmlns=“http://www.webucator.com/
Artist” attribute were removed. That’s because the Name and Artist element
declarations have child elements that reference elements declared in this
schema. We can only reference elements that are declared globally in name-
spaces used in the document (as indicated by the xmlns attributes).

Instance documents of this XML schema would take the xmlns and
xsi:schemaLocation attributes. Again, the xmlns attribute allows global ele-
ments declared in the specified namespace to be used in this instance. The
xsi:schemaLocation attribute is used to point to the schema associated with
a namespace. Its value is the namespace name and the path to the schema
separated by a space.

Code Sample: Namespaces/Demos/MichaelJackson.xml
<?xml version="1.0"?>

<Artist BirthYear="1958"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.webucator.com/Artist"

 xsi:schemaLocation="http://www.webucator.com/Artist Artist.xsd">

 <Name>

 <Title>Mr.</Title>

 <FirstName>Michael</FirstName>

 <LastName>Jackson</LastName>

 </Name>

</Artist>

XML Basics_Ch04_2pp.indd 128 8/8/2020 11:00:39 AM

Namespaces • 129

LOCALLY DECLARED ELEMENTS AND ATTRIBUTES

By default, locally declared elements and attributes in an instance document
do not need to be qualified. This can be changed in the schema by includ-
ing the elementFormDefault and attributeFormDefault attributes of the
xs:schema element with the value of “qualified.”

Code Sample: Namespaces/Demos/ArtistLocal.xsd
<?xml version="1.0"?>

<xs:schema targetNamespace="http://www.webucator.com/Artist"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.webucator.com/Artist"

 elementFormDefault="unqualified"

 attributeFormDefault="unqualified">

 <xs:element name="Artist">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="BirthYear" type="xs:gYear" use="required"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Notice that the elementFormDefault and attributeFormDefault attri-
butes are set to “unqualified.” This is the default value, so the attributes could
just have well been left out.

Code Sample: Namespaces/Demos/MichaelJacksonLocal.xml
<?xml version="1.0"?>

<art:Artist BirthYear="1958"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

XML Basics_Ch04_2pp.indd 129 8/8/2020 11:00:39 AM

130 • XML Basics

 xmlns:art="http://www.webucator.com/Artist"

 xsi:schemaLocation="http://www.webucator.com/Artist ArtistLocal.xsd">

 <Name>

 <Title>Mr.</Title>

 <FirstName>Michael</FirstName>

 <LastName>Jackson</LastName>

 </Name>

</art:Artist>

When using unqualified locals, it is not valid to use a default namespace.
The schema processor must know that these elements are locally declared
within a specific namespace. If a default namespace were used, the schema
processor would not be able to differentiate between locally declared and
globally declared elements. Therefore, we use the art: prefix to qualify the
Artist namespace.

If the elementFormDefault and attributeFormDefault attributes in the
xs:schema element are set to “qualified” all locals must be qualified with a
prefix.

Code Sample: Namespaces/Demos/ArtistLocalQualified.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://www.webucator.com/Artist"

 targetNamespace="http://www.webucator.com/Artist"

 elementFormDefault="qualified"

 attributeFormDefault="qualified">

<xs:element name="Artist">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="BirthYear" type="xs:gYear" use="required"/>

XML Basics_Ch04_2pp.indd 130 8/8/2020 11:00:39 AM

Namespaces • 131

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: Namespaces/Demos/MichaelJacksonLocalQualified.xml
<?xml version="1.0"?>

<art:Artist art:BirthYear="1958"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:art="http://www.webucator.com/Artist"

 xsi:schemaLocation=

 "http://www.webucator.com/Artist ArtistLocalQualified.xsd">

 <art:Name>

 <art:Title>Mr.</art:Title>

 <art:FirstName>Michael</art:FirstName>

 <art:LastName>Jackson</art:LastName>

 </art:Name>

</art:Artist>

The result of qualifying all locals is that instance authors do not have to
differentiate between local and global declarations. They simply prefix all ele-
ments and attributes with a qualifier. This has two major advantages over
using unqualified locals.

Clarity - it is easy to tell which namespace each element belongs to.
Flexibility - the schema author can mix global and local declarations

without worrying that the instance author will get confused. As both local and
global declarations require prefixes, the instance author doesn’t need to know
how an element or attribute is declared.

Code Sample: Namespaces/Demos/XMLSchema-instance.xsd
<?xml version='1.0'?>

<xs:schema targetNamespace="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:attribute name="nil"/>

 <xs:attribute name="type"/>

 <xs:attribute name="schemaLocation"/>

 <xs:attribute name="noNamespaceSchemaLocation"/>

</xs:schema>

By specifying that an XML document uses the XMLSchema-instance
namespace, the instance author gets access to the four attributes declared
above. We have already seen three of these attributes used.

XML Basics_Ch04_2pp.indd 131 8/8/2020 11:00:39 AM

132 • XML Basics

●● xsi:nil is used to specify that an element has no value.
●● xsi:schemaLocation is used to specify the location of a schema for a par-

ticular namespace.
●● xsi:noNamespaceSchemaLocation is used to specify the location of a

schema when no namespace is used.
●● xsi:type is infrequently used to specify that the element in the instance is

of a different type than the one declared in the schema for that element.

USING MULTIPLE NAMESPACES

Often, it makes sense to use multiple namespaces for a single instance docu-
ment. As an example, take a look at the following document.

Code Sample: Namespaces/Demos/TheGirlIsMine.xml
<?xml version="1.0"?>

<Song xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.webucator.com/Song"

 xmlns:art="http://www.webucator.com/Artist"

 xsi:schemaLocation="http://www.webucator.com/SongSong.xsd

 http://www.webucator.com/Artist Artist.xsd">

 <Title>The Girl Is Mine</Title>

 <Year>1983</Year>

 <Artists>

 <art:Artist BirthYear="1958">

 <art:Name>

 <art:Title>Mr.</art:Title>

 <art:FirstName>Michael</art:FirstName>

 <art:LastName>Jackson</art:LastName>

 </art:Name>

 </art:Artist>

 <art:Artist BirthYear="1942">

 <art:Name>

 <art:Title>Mr.</art:Title>

 <art:FirstName>Paul</art:FirstName>

 <art:LastName>McCartney</art:LastName>

 </art:Name>

XML Basics_Ch04_2pp.indd 132 8/8/2020 11:00:39 AM

Namespaces • 133

 </art:Artist>

 </Artists>

</Song>

The default namespace is the Song namespace. The Artist namespace is
qualified with the art: prefix. Locally declared elements (there are none) and
attributes (e.g., BirthYear) are unqualified.

Code Sample: Namespaces/Demos/Song.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:art="http://www.webucator.com/Artist"

 xmlns="http://www.webucator.com/Song"

 targetNamespace="http://www.webucator.com/Song">

 <xs:import namespace="http://www.webucator.com/Artist"

 schemaLocation="Artist.xsd"/>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Year" type="xs:gYear"/>

 <xs:element name="Artists">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="art:Artist" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Song">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Title"/>

 <xs:element ref="Year"/>

 <xs:element ref="Artists"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

By importing the Artist namespace with xs:import and specifying that ele-
ments in that namespace can be referenced with the xmlns:art attribute of
xs:schema, elements and attributes in the Artist namespace are accessible to
this schema.

XML Basics_Ch04_2pp.indd 133 8/8/2020 11:00:39 AM

134 • XML Basics

If you are likely to be working with data-centric content (e.g., more struc-
tured data that maps to a database), you should build a schema for the trans-
action log described below.

A networking Website has a feature that allows people to make connec-
tions through other connections they have made in the past. A member can
search the member list and on finding someone with whom (s)he would like
to connect, (s)he can ask a mutual connection to pass on a message to that
person.

UNIFORM RESOURCE IDENTIFIER (URI)

A Uniform Resource Identifier (URI) is a string of characters that identifies
an Internet resource.

The most common URI is the Uniform Resource Locator (URL) which
identifies an Internet domain address. Another, not so common type of URI,
is the Universal Resource Name (URN).

DEFAULT NAMESPACES

Defining a default namespace for an element saves us from using prefixes in
all the child elements. It has the following syntax:

xmlns="namespaceURI"

This XML carries HTML table information:
<table xmlns="http://www.w3.org/TR/html4/">

 <tr>

 <td>Apples</td>

 <td>Bananas</td>

 </tr>

</table>

This XML carries information about a piece of furniture:
<table xmlns="http://www.w3schools.com/furniture">

 <name>African Coffee Table</name>

 <width>80</width>

 <length>120</length>

</table>

XML Basics_Ch04_2pp.indd 134 8/8/2020 11:00:39 AM

Namespaces • 135

NAMESPACES IN REAL USE

XSLT is an XML language that can be used to transform XML documents into
other formats, like HTML.

In the XSLT document below, you can see that most of the tags are
HTML tags.

The tags that are not HTML tags have the prefix xsl, identified by the
namespace xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr>

 <th align="left">Title</th>

 <th align="left">Artist</th>

</tr>

<xsl:for-each select="catalog/cd">

<tr>

<td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="artist"/></td>

 </tr>

</xsl:for-each>

</table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

QUESTIONS FOR DISCUSSION

1.	 What are namespaces? Why are they important?

2.	 What is an XML namespace name?

XML Basics_Ch04_2pp.indd 135 8/8/2020 11:00:39 AM

136 • XML Basics

3.	 What software is needed to process XML Namespaces?

4.	 What are the ways to use namespaces?

5.	 Can you give an executive summary of what XML namespaces are?

6.	 Can you give an executive summary of what XML namespaces are not?

7.	 What is a traditional namespace?

8.	 What is the relationship between different traditional namespaces?

9.	 What are traditional namespaces used for?

10.	 What is the purpose of XML namespaces?

11.	 What are some examples of how XML namespaces are used?

12.	 Do XML namespaces recommendation define anything except a two-
part naming system for element types and attributes?

13.	 What do XML namespaces actually contain?

14.	 Are the names of all element types and attributes in some XML
namespace?

15.	 Do XML namespaces apply to entity names, notation names, or pro-
cessing instruction targets?

16.	 Who can create an XML namespace?

17.	 Do you need to use XML namespaces?

18.	 What is the relationship between XML namespaces and the XML 1.0
recommendation?

19.	 What are the differences between versions 1.0 and 1.1 of the XML
namespaces recommendation?

20.	 How do you declare an XML namespace in an XML document?

21.	 Where can you declare an XML namespace?

22.	 How do you override an XML namespace declaration that uses a
prefix?

23.	 How do you override a default XML namespace declaration?

24.	 How do you undeclare an XML namespace prefix?

25.	 How do you undeclare the default XML namespace?

XML Basics_Ch04_2pp.indd 136 8/8/2020 11:00:39 AM

Namespaces • 137

26.	 Why are special attributes used to declare XML namespaces?

27.	 How do different XML technologies treat XML namespace
declarations?

28.	 How do you use prefixes to refer to element type and attribute names
in an XML namespace?

29.	 How do you use the default XML namespace to refer to element type
names in an XML namespace?

30.	 How do you use the default XML namespace to refer to attribute
names in an XML namespace?

31.	 When should you use the default XML namespace instead of prefixes?

32.	 What is the scope of an XML namespace declaration?

33.	 Does the scope of an XML namespace declaration include the element
it is declared on?

34.	 If an element or attribute is in the scope of an XML namespace decla-
ration, is its name in that namespace?

35.	 What happens when an XML namespace declaration goes out of
scope?

36.	 What happens if no XML namespace declaration is in scope?

37.	 Can multiple XML namespace declarations be in scope at the same
time?

38.	 How can you declare XML namespaces so that all elements and attrib-
utes are in their scope?

39.	 Can the content model in an element type declaration contain element
types whose names come from other XML namespaces?

40.	 Can the attribute list of an element type contain attributes whose
names come from other XML namespaces?

41.	 How can you construct an XML document that is valid and conforms to
the XML namespaces recommendation?

42.	 How can you allow the prefixes in my document to be different from
the prefixes in my DTD?

43.	 How can you validate an XML document that uses XML namespaces?

XML Basics_Ch04_2pp.indd 137 8/8/2020 11:00:39 AM

138 • XML Basics

44.	 If you start using XML namespaces, do you need to change the existing
DTDs?

45.	 How do you use XML namespaces with XML schemas?

46.	 What are qualified and unqualified local names in XML schemas?

47.	 Do you have to use XML namespaces with XML schemas?

48.	 What is a chameleon schema?

49.	 Is everything defined or declared in an XML schema in an XML
namespace?

50.	 Is there a one-to-one relationship between XML namespaces and XML
schemas?

51.	 How do you validate documents that use XML namespaces against
XML schemas?

52.	 How do you validate documents that use XML namespaces?

53.	 What is the Namespace-based Validation Dispatching Language
(NVDL)?

54.	 How do you create documents that use XML namespaces?

55.	 How can you check that a document conforms to the XML namespaces
recommendation?

56.	 Can you use the same document with both namespace-aware and
namespace-unaware applications?

57.	 What software is needed to process XML namespaces?

58.	 How can you use XML namespaces to combine documents that use
different element type and attribute names?

59.	 How do you use XML namespaces with Internet Explorer 5.0 and/or
the MSXML parser?

60.	 How do applications process documents that use XML namespaces?

61.	 Can an application process documents that use XML namespaces and
documents that don’t use XML namespaces?

62.	 Can an application be both namespace-aware and namespace-unaware?

XML Basics_Ch04_2pp.indd 138 8/8/2020 11:00:39 AM

Namespaces • 139

63.	 What does a namespace-aware application do when it encounters an
error?

64.	 What is a qualified name?

65.	 What is a QName?

66.	 What characters are allowed in a qualified name?

67.	 Where can qualified names appear?

68.	 Can qualified names be used in attribute values?

69.	 How are qualified names mapped to names in XML namespaces?

70.	 What is a prefixed name?

71.	 What is an unprefixed name?

72.	 Are unprefixed names in an XML namespace?

73.	 What is a local name?

74.	 What is a namespace name?

75.	 What is an expanded name?

76.	 What is an expanded QName?

77.	 What is a universal name?

78.	 How are expanded names represented?

79.	 Are expanded names universally unique?

80.	 What is an XML namespace prefix?

81.	 What characters are allowed in an XML namespace prefix?

82.	 Are prefixes significant?

83.	 Can you use the same prefix for more than one XML namespace?

84.	 Can you use more than one prefix for the same XML namespace?

85.	 How are prefixes declared?

86.	 Can you undeclare a prefix—that is, dissociate a prefix from an XML
namespace?

87.	 What happens if you use a prefix that is not declared?

88.	 What happens if there is no prefix on an element type name?

XML Basics_Ch04_2pp.indd 139 8/8/2020 11:00:39 AM

140 • XML Basics

89.	 What happens if there is no prefix on an attribute name?

90.	 What is an XML namespace name?

91.	 What is an XML namespace URI?

92.	 What characters are allowed in XML namespace names?

93.	 Can you use a relative URI reference as a namespace name?

94.	 What does the URI reference used as an XML namespace name point to?

95.	 Can you resolve the URI reference used as an XML namespace name?

96.	 Are any XML namespace names reserved?

97.	 Why does the XML namespaces recommendation use both prefixes
and namespace names? Why not use one or the other?

98.	 Why are XML namespaces so hard to understand and use?

99.	 Are there any alternatives to XML namespaces?

100.	 How controversial are XML namespaces?

101.	 What resources are available for learning about XML namespaces?

102.	 What utilities are available for working with XML namespaces?

103.	 What do you understand about XML namespaces and linking?

XML Basics_Ch04_2pp.indd 140 8/8/2020 11:00:39 AM

C H A P T E R 5
INTRODUCTION TO XHTML

A QUICK HISTORY OF HTML

To understand the need for XML, at least as it applies to the Web, you have
to first consider the role of HTML. In the early days of the Internet, some
European physicists created HTML by simplifying another markup language
known as SGML (Standard Generalized Markup Language). SGML was
overly complicated, at least for the purpose of sharing scientific documents on
the Internet. So, pioneering physicists created a simplified version of SGML
called HTML that could be used to create what we now know as Web pages.
The creation of HTML represented the birth of the World Wide Web, a layer
of visual documents that resides on the global network known as the Internet.

HTML was great in its early days because it allowed scientists to share
information over the Internet in an efficient and relatively structured manner.
It wasn’t until later that HTML started to become an all-encompassing for-
matting and display language for Web pages. It didn’t take long before Web
browsers caught on and HTML started being used to code more than sci-
entific papers. HTML quickly went from a tidy little markup language for
researchers to a full-blown online publishing language. And once it was estab-
lished that HTML could be jazzed up simply by adding new tags, the creators
of Web browsers added new features to the language. Although these new
features were neat at first, they compromised the simplicity of HTML and
introduced of inconsistencies when it came to how browsers rendered Web
pages. HTML had started to resemble a bad remodeling job on a house that
really should’ve been left alone.

XML Basics_Ch05_2pp.indd 141 8/8/2020 11:03:47 AM

142 • XML Basics

As with most revolutions, the birth of the Web was chaotic, and the mod-
ifications to HTML reflected that chaos. More recently, a significant effort
has been made to address the inconsistencies of HTML and to attempt to
restore some order to the language. The problem with disorder in HTML is
that Web browsers have to guess at how a page is to be displayed. Ideally, a
Web page designer should be able to define exactly how a page is to look and
have it look the same regardless of what kind of browser or operating system
someone is using. This utopia is still off in the future somewhere, but XML is
playing a significant role in leading us toward it, and significant progress has
been made.

XML OVER HTML

XML is an acronym; it stands for eXtensible Markup Language. XML is a
computer language for describing information. You could say HTML also
describes information. But that is not true. XML improves on the HTML
approach and makes the Web a better place to do business, to learn, and to
have fun.

HTML is a great technology, and it has changed the world. However, a
great deal of useful information is lost when data is converted into HTML.
The information that if preserved can be used to build a whole new world of
computer applications on the Web. To clarify this point, look into the follow-
ing code snippets.

<!-- HTML Snippet -->

<h1>Employee</h1>

<p>Name : Rohit

<p>Age : 25

<<! p>Designation : Marketing Executive

<!-- XML Snippet -->

<Employee>

<Name>Rohit</Name>

<Age>25</Age>

<Designation>Marketing Executive</Designation>

</Employee>

Now, if you view these code snippets from the computer’s point of view,
you would find that the XML document would be easier to process. XML
captures the most useful information and has potential uses. This distinction
is the very essence of XML.

XML Basics_Ch05_2pp.indd 142 8/8/2020 11:03:47 AM

Introduction to XHTML • 143

GETTING MULTILINGUAL WITH XML

XML is a meta-language, which is a fancy way of saying that it is a language
used to create other markup languages. It means that XML provides a basic
structure and set of rules to which any markup language must adhere. Using
XML, you can create a unique markup language to model just about any kind
of information, including Web page content. Knowing that XML is a language
for creating other markup languages, you could create your own version of
HTML using XML. You could also create a markup language called VPML
(Virtual Pet Markup Language), for example, which you could use to create
and manage virtual pets. The point is that XML lays the ground rules for
organizing information in a consistent manner, and that information can be
anything from Web pages to virtual pets.

You might be thinking that virtual pets don’t necessarily have anything to
do with the Web, so why mention them? The reason is because XML is not
entirely about Web pages. In fact, XML in the purest sense really has nothing
to do with the Web, and can be used to represent any kind of information on
any kind of computer. If you can visualize all the information whizzing around
the globe between computers, mobile phones, televisions, and radios, you
can start to understand why XML has much broader ramifications than just
cleaning up Web pages.

However, one of the first applications of XML is to restore some order to
the Web. One of the main benefits of XML is the ability to develop XML doc-
uments once and then have them viewable on a range of devices, such as desk-
top computers, handheld computers, mobile phones, and Internet appliances.

XML looks very familiar to anyone who has used HTML to create Web
pages. Going back to our virtual pet example, look at the following XML code,
which reveals what a hypothetical VPML document might look like:

<pets>

 <pet name="Maximillian" type="pot bellied pig"age="3">

 <friend name="Augustus"/>

 <friend name="Nigel"/>

 </pet>

 <pet name="Augustus" type="goat" age="2">

 <friend name="Maximillian"/>

 </pet>

 <pet name="Nigel" type="chipmunk" age="2">

 <friend name="Maximillian"/>

 </pet>

</pets>

XML Basics_Ch05_2pp.indd 143 8/8/2020 11:03:47 AM

144 • XML Basics

This XML (VPML) code includes three virtual pets: Maximillian the
pot-bellied pig, Augustus the goat, and Nigel the chipmunk. If you study the
code, you’ll notice that tags are used to describe the virtual pets much as tags
are used in HTML code to describe Web pages. However, in this example
the tags are unique to the VPML language. It’s not too hard to understand
the meaning of the code, thanks to the descriptive tags. In fact, an important
design parameter of XML was for XML content to always be human-readable.

Unlike HTML, which consists of a predefined set of tags such as <head>,
<body>, and <p>, XML allows you to create custom markup languages with
tags that are unique to a certain type of data, such as virtual pets.

The virtual pet example demonstrates how flexible XML is in solving data
structuring problems. Unlike a traditional database, XML data is pure text,
which means it can be processed and manipulated very easily, in addition to
being readable by people. For example, you can open up any XML document
in a text editor such as Windows Notepad (or TextEdit on Macintosh comput-
ers) and view or edit the code.

The fact that XML is pure text also makes it very easy for applications to
transfer data between one another, across networks, and also across different
computing platforms such as Windows, Macintosh, and Linux. XML essen-
tially establishes a platform-neutral means of structuring data, which is ideal
for networked applications, including Web-based applications.

THE CONVERGENCE OF HTML AND XML

Just as some Americans are apprehensive about the proliferation of spoken
languages other than English, some Web developers initially feared XML’s
role in the future of the Web. Is it valid to view XML as posing a risk to the
future of HTML? And if you’re currently an HTML expert and have yet to
explore XML, will you have to throw all you know out the window and start
anew with XML? The answer to both of these questions is a resounding no!
In fact, once you fully come to terms with the relationship between XML
and HTML, you’ll realize that XML actually complements HTML as a Web
technology. Perhaps more interesting is the fact that XML is in many ways a
parent to HTML, as opposed to a rival sibling.

To better understand XML and its relationship to HTML, you need to
know why HTML has gotten messy. HTML was originally designed as a means
of sharing written ideas among scientific researchers. We say “written ideas”
because there were no graphics or images in the early versions of HTML.

XML Basics_Ch05_2pp.indd 144 8/8/2020 11:03:47 AM

Introduction to XHTML • 145

So, in its inception, HTML was never intended to support fancy graphics,
formatting, or page-layout features. Instead, HTML was intended to focus on
the meaning of information or the content of information. It wasn’t until Web
browser vendors got excited that HTML was expanded to address the pre-
sentation of information. In fact, HTML was in many ways changed to focus
entirely on how information appears, which is what ultimately prompted the
creation of XML.

There are a variety of reasons why this is a good idea, and they all have
to do with improving the organization and structure of information. Although
presentation plays an important role in any Web site, modern Web applica-
tions have evolved to become driven by data of very specific types, such as
financial transactions. HTML is a very poor markup language for represent-
ing such data. With its support for custom markup languages, XML makes
it possible to carefully describe data and the relationships between pieces of
data. By focusing on content, XML allows you to describe the information
in Web documents. More importantly, XML makes it possible to precisely
describe information that is shuttled across the Net between applications. For
example, Amazon.com uses XML to describe products on its site and allow
developers to create applications that intelligently analyze and extract infor-
mation about those products.

XML is not a replacement for HTML or even a competitor of HTML.
XML’s impact on HTML has to do more with cleaning up HTML than it does
with dramatically altering HTML. The best way to compare XML and HTML
is to remember that XML establishes a set of strict rules that any markup
language must follow. HTML is a relatively unstructured markup language
that could benefit from the rules of XML. The natural merger of the two
technologies is to make HTML adhere to the rules and structure of XML. To
accomplish this merger, a new version of HTML has been formulated that
adheres to the stricter rules of XML. The new XML-compliant version of
HTML is known as XHTML.

XML’s relationship with HTML doesn’t end with XHTML, however.
Although XHTML is a great idea that is already making Web pages cleaner
and more consistent for Web browsers to display, we’re a ways off from seeing
a Web that consists of cleanly structured XHTML documents (pages). It’s
currently still too convenient to take advantage of the freewheeling flexibil-
ity of the HTML language. Where XML is making a significant immediate
impact on the Web is in Web-based applications that must shuttle data across
the Internet. XML is an excellent medium for representing data that is trans-
ferred back and forth across the Internet as part of a complete Web-based

XML Basics_Ch05_2pp.indd 145 8/8/2020 11:03:47 AM

146 • XML Basics

application. In this way, XML is used as a behind-the-scenes data transport
language, whereas HTML is still used to display traditional Web pages to
the user.

ADD HTML TO XML DATA

In the following example, we loop through an XML file (“cd_catalog.xml”),
and display the content of each CD element as an HTML table row:

Example

<html>

<body>

<script type="text/javascript">

if (window.XMLHttpRequest)

{// code for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp=new XMLHttpRequest();

}

else

{// code for IE6, IE5

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

}

xmlhttp.open("GET","cd_catalog.xml",false);

xmlhttp.send();

xmlDoc=xmlhttp.responseXML;

document.write("<table border='1'>");

var x=xmlDoc.getElementsByTagName("CD");

for (i=0;i<x.length;i++)

 {

 document.write("<tr><td>");

        document.write(x[i].getElementsByTagName("ARTIST")[0].childNodes[0].nodeValue);

 docum1ent.write("</td><td>");

             document.write(x[i].getElementsByTagName("TITLE")[0].childNodes[0].nodeValue);

 document.write("</td></tr>");

}

document.write("</table>");

</script>

</body>

</html>

XML Basics_Ch05_2pp.indd 146 8/8/2020 11:03:47 AM

Introduction to XHTML • 147

DIFFERENCES BETWEEN XHTML AND HTML

1.	 Lower case element and attribute names: The difference between
HTML and XHTML is that XHTML must also meet the requirements
of XML. The first important requirement is that XML is case sensitive.
XHTML meets this requirement by making all element names and attribute
names lower case. In HTML, you can use either upper case or lower case.

Example

This is valid HTML, but invalid XHTML. Do NOT use these.

 item 1

This is valid HTML, and valid XHTML. Use these.

 item 1

2.	 Close all container elements: All container elements must be closed in
XHTML. You can sometimes get away without closing them in HTML.

Example

This is valid HTML, but invalid XHTML. Do NOT use these.

This is valid HTML, and valid XHTML. Use these.

3.	 Close empty elements with space slash: Some container elements do
not have a closing tag. In XHTML, you must close them with a space
slash. The space slash is not required in HTML.

XML Basics_Ch05_2pp.indd 147 8/8/2020 11:03:47 AM

148 • XML Basics

Example

This is valid HTML, but invalid XHTML. Do NOT use these.
<hr>

This is valid in both HTML and XHTML.
<hr/>

4.	 Do not mix up the closing tags: All elements within a container ele-
ments must be closed before the container is closed. You must do this in
XHTML. You should do this in HTML, but can sometimes get by with
tags in the wrong order.

Example

Bad. Do NOT use this.
<i> This text may not work correctly. </i>

Good. The i element is inside the b container element

<i> This text will be bold italic. </i>

5.	 Every attribute must have a value: Every attribute you code must
have a value in XHTML. A few attribute values may be omitted
HTML.

Example

This is valid HTML, but invalid XHTML. Do NOT use these.
<hr noshade />

Valid in both HTML and XHTML.

<hr noshade="noshade" />

6.	 Every attribute value must be in quotes: Every attribute value
must be in single quotes or double quotes in XHTML. Sometimes
quotes may be omitted HTML.

Example

This is valid HTML, but invalid XHTML. Do NOT use these.
<hr width=4>

This is valid in both HTML and XHTML.

XML Basics_Ch05_2pp.indd 148 8/8/2020 11:03:47 AM

Introduction to XHTML • 149

<hr width='4' />

<hr width="4" />

7.	 One each of the HTML head, title, and body tags are required in
XHTML: Sometimes one may be omitted or there may be two of one in
HTML.

Example

This example is valid in both HTML and XHTML.
<html>

 <head>

 <title> sample page </title>

 </head>

 <body>

 Hello.

 </body>

</html>

8.	 A DOCTYPE element is required in XHTML: A DOCTYPE ele-
ment is required in XHTML. It is optional in HTML.

XHTML

All Web markup languages are based on SGML, a complicated language that
is not designed for humans to write. SGML is what is called a metalanguage;
that is, a language that is used to define other languages. To make its power
available to Web developers, SGML was used to create XML, a simplified
version, and also a metalanguage.

XML is a powerful format—you create your own tags and attributes to
suit the type of document you’re writing. By using a set group of tags and attri-
butes and following the rules of XML, you’ve created a new Markup language.

This is what has been done to create XHTML (eXtensible HyperText
Markup Language)—which is why you’ll see XHTML being called a subset
or application of XML. The pre-existing HTML 4.01 tags and attributes were
used as the vocabulary of this new Markup language, with XML providing the
rules of how they are put together.

So, using XHTML, you are really writing XML code, but restricting your-
self to a predetermined set of elements. This gives you all the benefits of XML

XML Basics_Ch05_2pp.indd 149 8/8/2020 11:03:47 AM

150 • XML Basics

(see below), while avoiding the complications of true XML; bridging the gap
for developers who might not fancy taking on something as tricky as full-on
XML. As you’re coding under the guise of XHTML, all of the tags available to
you should be familiar. Writing XHTML requires that you follow the rules of
conformant XML, such as correct syntax and structure. As XHTML looks so
much like classic HTML, it faces no compatibility problems as long as some
simple coding guidelines are followed.

If all of this sounds a bit challenging, don’t worry. Transitioning to XHTML
is a simple process, with only a few rules to remember.

BENEFITS OF XHTML

The benefits of adopting XHTML now or migrating your existing site to the
new standards are many. First, they ensure excellent forward-compatibility
for your creations. XHTML is the new set of standards that the Web will be
built on in the years to come, so future-proofing your work early will save you
much trouble later on. Future browser versions might stop supporting dep-
recated elements from old HTML drafts, and so many old basic-HTML sites
may start displaying incorrectly and unpredictably.

Once you have used XHTML for a short time, it is no more difficult to use
than HTML, and in some ways, is easier since it is built on a more simplified
set of standards. Writing code is a more streamlined experience, as the days
of browser hacks and display tricks are gone. Editing your existing code is
also a nicer experience, as it is infinitely cleaner and more self-explanatory.
Browsers can also interpret and display a clean XHTML page quicker than
one with errors.

XHTML CODING

The first thing you need to know about changing over to XHTML as the new
standard is that there really isn’t much new to learn. No new tags or attributes
have been added into your repertoire, like HTML 4 (although a few have
been deprecated); this is just a move towards good, valid, and efficient coding.
XHTML documents stress logical structure and simplicity, and use CSS for
nearly all presentational concerns. It just means you have to change the way
you write code. Even if you always wrote great code before, there’re a few
new practices you need to add in.

XML Basics_Ch05_2pp.indd 150 8/8/2020 11:03:47 AM

Introduction to XHTML • 151

XML DECLARATION

An XML declaration at the very top of your document defines both the ver-
sion of XML you’re using as well as the character encoding.

<?xml version="1.0" encoding="UTF-8"?>

Instead, you use a meta tag in the heading of your document. If you’re
using Unicode, this is as follows:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

And if you’re using the more common ISO-8859-1 encoding, use
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />

XHTML DTDs

Whether you use the XML declaration or not, every XHTML document must
be defined as such by a line of code at the start of the page, and some attrib-
utes in the main <html> tag, which tell the browser what language the text
is in. The opening line is the DTD (Document Type Declaration). This tells
your browser and validators the nature of your page.

A DTD is the file your browser reads with the names and attributes of
all of the possible tags that you can use in your markup defined in it. Newer
browsers will usually have the latest specs written into their DTDs. Declare it
by putting this at the very top of your code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

That DTD is the one you use if you’re committed to writing entirely cor-
rect XHTML code. Strict XHTML dispenses with many presentational tags
and attributes, and it is very strict.

You won’t be permitted to use the font tag at all, nor will attributes like
width and height be allowed in your tables. You won’t be able to use the bor-
der attribute on images, and will have to use the alt attribute on all images if
you want to validate. You get the idea—almost all presentational attributes are
restricted in favour of wider CSS utilization, so unless you know your stuff in
this regard, it’d be best to use the XHTML Transitional below.

If you’re going to hover between HTML and XHTML, use the next DTD,
which is a bit looser, and if you’re putting together a frameset page, use the
last one.

XML Basics_Ch05_2pp.indd 151 8/8/2020 11:03:47 AM

152 • XML Basics

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Most people will opt for the XHTML Transitional, as changing to Strict
can be a daunting prospect.

A correct DTD allows the browser to go into standards mode, which will
render your page correctly, and similarly across browsers. Without a full DTD,
your browser enters “compatibility,” or “quirks” mode, behaving like a version
4 browser, including all of their associated quirks and inconsistencies. Also,
these declarations are all case-sensitive, so don’t change them in any way.

Finally, you need to define the XML namespace your document uses. It
is a definition of which set of tags you’re going to be using, and it concerns
the modular properties of XHTML. It’s set by adding an attribute into the
<html> tag. While we’re at it, we specify the language of our pages too. Mod-
ify your tags to this:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"> </html>

THE DOCTYPE DECLARATION

There are three DTDs for XHTML: Strict, Transitional, and Frameset. All
XHTML documents must conform to the XML syntax rules.

XHTML STRICT

XHTML documents that conform to the Strict DTD may not use any depre-
cated HTML tags. The DOCTYPE declaration looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML TRANSITIONAL

XHTML documents that conform to the Transitional DTD may use depre-
cated HTML tags, but may not use the <frameset> and <frame> tags. The
DOCTYPE declaration looks like this:

XML Basics_Ch05_2pp.indd 152 8/8/2020 11:03:47 AM

Introduction to XHTML • 153

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1

transitional.dtd">

XHTML FRAMESET

XHTML documents that conform to the Frameset DTD may use deprecated
HTML tags including the <frameset> and <frame> tags. The DOCTYPE
declaration looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

THE DOCUMENT ELEMENT

In XHTML, the document element (<html>) must contain a namespace dec-
laration as shown below.

<html xmlns="http://www.w3.org/1999/xhtml">

A SAMPLE XHTML DOCUMENT

Below is an example XHTML document.
Code Sample: XHTML/Demos/Xml101.html

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<title>Introduction to XML</title>

</head>

<body>

<h1>Introduction to XML</h1>

<div id="courseNum">XML101</div>

<div id="courseLength">3 days</div>

<h2>Prerequisites</h2>

XML Basics_Ch05_2pp.indd 153 8/8/2020 11:03:47 AM

154 • XML Basics

 Experience with Word Processing

 Experience with HTML (optional, but recommended)

<h2>Course Outline</h2>

<div id="outline">

 XML Basics

 What is XML?

 XML Benefits

 XML Holds Data, Nothing More

 XML Separates Structure from Formatting

 XML Promotes Data Sharing

 XML is Human-Readable

 XML is Free

 XML Documents

 The Prolog

 Elements

 Attributes

 CDATA

 XML Syntax Rules

 Special Characters

 Creating a Simple XML File

XML Basics_Ch05_2pp.indd 154 8/8/2020 11:03:47 AM

Introduction to XHTML • 155

</div>

</body>

</html>

DOCUMENT FORMATION

The actual XHTML content can be placed. After the Doctype line, as with
HTML, XHTML has <html>, <head>, <title>, and <body> tags but, unlike
with HTML, they must all be included in a valid XHTML document. The
correct setup of your file is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Page Title</title>

OTHER HEAD DATA

</head>

<body>

CONTENT

</body>

</html>

It is important that your document follows this basic pattern. This example
uses the transitional Doctype, but you can use either of the others (although
frames pages are not structured in the same way).

XHTML TAGS

One of the major changes to HTML introduced to XHTML is that tags must
always be properly formed. With the old HTML specification, you could be
very sloppy in your coding, with missing tags and incorrect formation without
many problems, but in XHTML this is very important.

Lower Case

Probably the biggest change in XHTML is that the way in which you write
tags must be correct. Luckily, this major change can be easily implemented
into a normal HTML document without a problem.

XML Basics_Ch05_2pp.indd 155 8/8/2020 11:03:47 AM

156 • XML Basics

In XHTML, tags must always be lowercase. This means that

are all incorrect tags and must not be used. The font tag must now be used as
follows:

If you are not writing your code, but instead use a WYSIWYG editor, you
can still begin to migrate your documents to XHTML by setting the editor to
output all code in lowercase. For example, in Dreamweaver 4 you can do this
by going to

Edit -> Preferences -> Code Format

and making sure that Case For Tags is set to
<lowercase>

and also that Case For Attributes is set to
lowercase="value"

Nesting

The second change to the HTML tags in XHTML is that they must all be
properly nested. This means that if you have multiple tags applying to some-
thing on your page, you must make sure you open and close them in the cor-
rect order. For example, if you have some bold red text in a paragraph, the
correct nesting would be one of the following:

<p>Your Text</p>

<p>Your Text</p>

<p>Your Text</p>

These are only examples, though, and there are other possibilities for
these tags. What you must not do, though, is to close tags in the wrong order,
for example:

<p>Your Text</p>

Although code in this form would be shown correctly using HTML, this
is incorrect in the XHTML specification and you must be very careful to nest
your tags correctly.

XML Basics_Ch05_2pp.indd 156 8/8/2020 11:03:47 AM

Introduction to XHTML • 157

Closing Tags

The previous two changes to HTML should not be a particular problem if
your HTML code is already well-formed. The final change to HTML tags
probably will require quite a lot of changes to your HTML documents to
make them XHTML compliant.

All tags in XHTML must be closed. Most tags in HTML are already closed
(for example <p></p>, , and), but there are several
standalone tags which do not get closed. The main three are

<hr>

There are two ways you can deal with the change in the specification. The
first way is quite obvious if you know HTML. You can just add a closing tag
to each one, e.g.,

</br>

<hr></hr>

Although you must be careful that you do not accidentally place anything
between the opening and closing tags, as this would be incorrect coding. The
second way is slightly different but will be familiar to anyone who has written
WML. You can include the closing in the actual tag:

<hr />

This is probably the best way to close your tags, as it is the recommended
way by the W3C who set the XHTML standard. You should notice that, in
these examples, there is a space before the />. This is not actually neces-
sary in the XHTML specification (you could have
), but the reason it is
included here is that, as well as being correct XHTML, it also makes the tag
compatible with past browsers. As every other XHTML change is backwards
compatible, it would not be very good to have a space causing problems with
site compatibility.

In case you are wondering how the tag works if it has all the nor-
mal attributes included, here is an example:

Again, notice the space before the />

XML Basics_Ch05_2pp.indd 157 8/8/2020 11:03:47 AM

158 • XML Basics

Attributes

HTML attributes are the extra parts you can add onto tags (such as src in the
img tag) to change the way in which they are shown. There are four changes
to the way in which attributes are changed.

Lowercase

As with XHTML tags, the attributes for them must be in lowercase. This
means that, although in the past, code like

<table Width="100%">

would have worked, this must now be given as
<table width="100%">

Although this is a minor issue, it is important to check your code for this
mistake.

Correct Quotation

Another change in the HTML syntax is that all attributes in XHTML must be
quoted. In HTML you could have used the following:

<table width=100%>

with absolutely no compatibility problems. This all changes in XHTML. If
you use code in this format with XHTML it will be incorrect and must be
changed. All attributes must be surrounded by quotes (“) so the correct for-
mat of this code would be

<table width="100%">

Attribute Shortening

It has become common practice in HTML to shorten a few of the attributes to
save on typing and transfer times. As with other common practices in HTML,
this has been removed from the XHTML specification as it causes incompat-
ibilities between browsers and other devices.

An example of a commonly shortened tag is
<input type="checkbox" value="yes" name="agree" checked>

In this, it is the checked part which is incorrect. In XHTML, all shortened
attributes must be given in their “long” format. For example

checked="checked"

XML Basics_Ch05_2pp.indd 158 8/8/2020 11:03:47 AM

Introduction to XHTML • 159

so the checkbox code earlier would now need to be written as
<input type="checkbox" value="yes" name="agree"
checked="checked">

There are other attributes (such as noresize) that also must be given in full.

The ID Attribute

Probably the biggest change from HTML to XHTML is the one tag attribute
change. All other differences just make tags more compatible. This is the only
full change.

In HTML, the tag has an attribute “name.” This is usually used
to refer to the image in javascript for doing actions like image rollovers. This
attribute has now been changed to the “id” attribute. So, the HTML code

would need to be written in XHTML as

Of course, this would not be backward compatible with older browsers,
so if you still want your site to work fully in all old browsers (as XHTML is
intended to do), you will need to include both id and name attributes (this
would also be correct XHTML):

QUESTIONS FOR DISCUSSION

1.	 What is XHTML?

2.	 What does an XHTML document Look Like?

3.	 What is the relationship between XHTML and HTML?

4.	 What is the relationship between XHTML and XML?

5.	 What is the relationship between XHTML and the Web?

6.	 What is the relationship between XHTML and HTTP?

7.	 What is the relationship between XHTML and URL?

8.	 What is a URI?

9.	 What is the relationship between XHTML and SGML?

XML Basics_Ch05_2pp.indd 159 8/8/2020 11:03:47 AM

160 • XML Basics

10.	 What is the relationship between XHTML and CSS?

11.	 What is the relationship between XHTML and DTD?

12.	 Who developed XHTML?

13.	 What is the latest XHTML specification?

14.	 How many tags are defined in XHTML 1.0?

15.	 How can XHTML documents be validated online?

16.	 What tools can be used to write XHTML documents?

17.	 What tools can be used to view XHTML documents?

18.	 What is an XHTML element?

19.	 How can we enter comments into XHTML documents?

20.	 How can we write the opening tag of an XHTML element?

21.	 How can we close an XHTML element?

22.	 What is wrong with
 tags?

23.	 What is wrong with <meta> tags?

24.	 Are XHTML elements’ names case senstive?

25.	 How can we enter element content?

26.	 What is an XHTML element attribute?

XML Basics_Ch05_2pp.indd 160 8/8/2020 11:03:47 AM

C H A P T E R 6
CSS STYLE SHEETS

CSS DOCUMENTS

CSS documents allow you to define a style for any HTML element. Thus, you
can define the style for an h1 element to be red with a font size of 6. This style
can then be applied to every h1 element on your Website. CSS documents
allow you to create a uniform style throughout your Web documents without
having to enter specific information for each h1 element in each page. If you
need to change the style for an h1 element, you need to change it only in the
CSS document. If you need to override the style defined in the CSS document
for one or more of your h1 elements in a specific page, you can do this, too.

One major problem with using CSS documents is that they are not sup-
ported in every browser. Microsoft Internet Explorer 5 supports nearly all the
features of CSS documents, and Internet Explorer 4 also supports most of the
CSS features. Netscape has released version 6 that supports CSS level 1 and
the DOM. If you were to create an XHTML document, you could use CSS
documents to define the presentation of the XHTML information. While CSS
documents can work for XHTML, they will not work for XML documents
that do not contain presentation information. For XML documents without
presentation information, you must use XSL.

XML AND CSS

Cascading Style Sheets (CSS) is a style sheet mechanism specifically devel-
oped to meet the needs of Web designers and users. CSS provides HTML
with far greater control over document presentation in a way that is independ-
ent of document content. CSS style sheets can be used to set fonts, colors,

XML Basics_Ch06_2pp.indd 161 8/8/2020 11:05:54 AM

162 • XML Basics

white space, positioning, backgrounds, and many other presentational aspects
of a document. It is also possible for several documents to share the same
style sheet, which allows users to maintain consistent presentation within a
collection of related documents without having to modify each document
separately.

XML uses markup to describe the structure and data content of a docu-
ment, making it easy both for authors to write it and for computer programs to
process it. CSS, on the other hand, makes it possible to present that document
to the user in a browser. CSS or some type of style sheet mechanism is, in fact,
a requisite for browsing XML on the Web.

LIMITATIONS OF CSS FOR COMPLEX APPLICATIONS

Although CSS style sheets can be very effective for improving the presenta-
tion of HTML documents, the CSS1 standard has a number of important
omissions which can limit the effectiveness of CSS style sheets for more com-
plex applications. The following list describes just a few of the major limita-
tions of the CSS standard:

●● CSS cannot grab an item (such as a chapter title) from one place and use
it again in another place (such as a page header).

●● CSS has no concept of sibling relationships. For example, it is impossible
to write a CSS stylesheet that will render every other paragraph in bold.

●● CSS is not a programming language; it does not support decision struc-
tures and cannot be extended by the stylesheet designer.

●● CSS cannot calculate quantities or store variables. This means, at the very
least, that it cannot store commonly used parameters in one location that
is easy to update.

●● CSS cannot generate text (page numbers, etc).
●● CSS uses a simple box-oriented formatting model that works for current

Web browsers, but will not extend to more advanced applications of the
markup, such as multiple column sets.

ADVANTAGES OF AUTHORING XML DOCUMENTS WITH CSS

●● Presentability: This is the most obvious benefit; the style sheets are used
to style or “decorate” the document.

XML Basics_Ch06_2pp.indd 162 8/8/2020 11:05:54 AM

CSS Style Sheets • 163

●● Servability: CSS is, as the above quote points out, a requisite for brows-
ing XML documents on the Web. However, XML is a meta-language and
authors can construct their own elements (and/or DTDs). The freedom
in XML of authors creating their own tags comes with a price: XML tag
names have no predefined semantics. This results in all sorts of ambigui-
ties: an could mean an image, or an imaginary number; even the
seemingly obvious <manual> could mean a technical book or a form of
human labor. (In an informal language (such as English), we (humans)
know the difference due to the “context.” However, such semantical
distinctions are not possible in formal languages being processed by
machines.) In such a case, a user agent would not know how to “display”
elements of these “home-brewed” languages. This is where the use of a
stylesheet language such as CSS becomes necessary, which provides the
display semantics to an XML document.

●● Accessibility: Use of CSS in the document makes it accessible, particu-
larly to people with visual or aural disability. There are various accessibil-
ity features of CSS.

AUTHORING APPROACHES

The use of CSS in XML involves the following steps:

●● Authoring the XML document
●● Authoring the CSS style sheet
●● Associating the CSS style sheet with the XML document
●● Rendering the XML document associated with the CSS style sheet

AUTHORING XML DOCUMENTS WITH CSS

Authoring software

XML Spy is a professional validating XML editor that provides three inte-
grated views of XML documents: an enhanced grid view for structured display
and editing, a low-level source view with syntax coloring, and an integrated
browser view that supports CSS stylesheets. Among other features, it includes
Unicode and character-set encoding as well as support for XHTML and XML
namespaces. Another useful feature of XML Spy is that a DTD may be edited
simultaneously with the XML document that references it.

XML Basics_Ch06_2pp.indd 163 8/8/2020 11:05:54 AM

164 • XML Basics

FIGURE 6.1  XML Spy

XMetaL is another notable environment for authoring XML documents
with CSS. These visual environments simplify the editing process (and thus
reducing the burden on the author) by including required directives or tags.
For simple documents, any text-editor (such as Emacs) can be used (assuming
that the author is well-versed in XML as well as CSS).

ASSOCIATING CSS STYLESHEETS WITH XML

The association consists of inserting the XML processing instruction at the
top of the document, before the root element of the XML document and after
the XML prolog. The processing instruction has two required attributes type
and href which respectively specify the type of stylesheet (Internet Media
Type text/css) and its address (path). An example is

<?xml-stylesheet type="text/css" href="fox.css"?>

RENDERING XML DOCUMENTS WITH CSS

Browsers that support the combination of XML and CSS are
Microsoft Internet Explorer 5: The CSS2 support is incomplete, but

the rendering of XML documents with CSS2 is fairly stable. The caveats are
it uses an obsolete version to associate stylesheets, the document is required
to use “html” as the namespace name prefix if HTML elements/attributes

XML Basics_Ch06_2pp.indd 164 8/8/2020 11:05:54 AM

CSS Style Sheets • 165

are being used, XML entity expansion has problems, and printing can lead to
unpredictable results.

Mozilla: This Netscape Communicator 5 in the beta releases (called
“milestones”). The CSS2 support in Mozilla is incomplete and the rendering
of XML documents with CSS2 is unstable. NGLayout, a native document
format for Mozilla’s graphics-rendering engine, is able to format XML docu-
ments using external CSS stylesheets.

Amaya: This is a W3C test-bed browser. It also natively supports XHTML,
an XML application that reformulates (or “XMLizes”) HTML and CSS2.

CSS SYNTAX

A CSS rule has two main parts: a selector, and one or more declarations:

FIGURE 6.2  A CSS rule representation

●● Selector: This is the hook used to choose what part(s) of your HTML to
apply the CSS to. Following the selector is the…

●● Declaration Block: Everything within the curly brackets, “{” and “}”;
this is called the declaration block.

●● Declaration: Inside a declaration block, you can have as many declara-
tions as you want and each declaration is a combination of a CSS Property
and a value.

●● Property: This is one of the CSS Properties used to tell what part of the
selector will be changed (or styled).

●● Value: This assigns a value to the property.

XML Basics_Ch06_2pp.indd 165 8/8/2020 11:05:54 AM

166 • XML Basics

CSS EXAMPLE

CSS declarations always ends with a semicolon and declaration groups are
surrounded by curly brackets:

p {color:red;text-align:center;}

To make the CSS more readable, you can put one declaration on each line
<html>

<head>

<style type="text/css">

p

{

color:red;

text-align:center;

}

</style>

</head>

<body>

<p>Welcome!</p>

<p>This line is styled with CSS.</p>

</body>

</html>

Result:
Welcome!
This line is styled with CSS.

CSS COMMENTS

Comments are used to explain your code, and may help you when you edit the
source code at a later date. Comments are ignored by browsers.

A CSS comment begins with “/∗”, and ends with “∗/”:
/*This is a comment*/

p

{

text-align:center;

/*This is another comment*/

color:black;

font-family:arial;

}

XML Basics_Ch06_2pp.indd 166 8/8/2020 11:05:54 AM

CSS Style Sheets • 167

CSS SELECTORS

CSS Selectors allow us to target specific HTML elements with our style
sheets. While there are many different types of CSS Selectors, here we focus
on the four essential selectors: type, id, class, and descendant selectors.

1.	 Type selectors correspond with HTML elements

2.	 ID selectors are used by adding # in front of an elements ID

3.	 Class selectors are used by adding a period in front of an element’s class

4.	 Descendant selectors are similar to family trees; you start with the parent
element you wish to select, add a space, and continue naming any interior
elements until you’re arrived at the specific element you wish to select

1. Type Selector: Type selectors are very simple. They correspond with
any HTML element type. For example, add the following code to your blank
CSS file; these are three simple type selectors:

body {

font-family: Arial, sans-serif;

font-size: small;

}

h1{

color: green;

}

em { color:red;

}

This code selects and styles our <body> element, as well as all <h1> and
 elements on our page.

2. Id Selector: The id selector is used to specify a style for a single,
unique element. The id selector uses the id attribute of the HTML element,
and is defined with a “#”. The style rule below will be applied to the element
with id=“para1”:

<html>

<head>

<style type="text/css">

#para1

{

text-align:center;

color:red;

}

XML Basics_Ch06_2pp.indd 167 8/8/2020 11:05:54 AM

168 • XML Basics

</style>

</head>

<body>

<p id="para1">Welcome!</p>

<p>This paragraph is not affected by the style.</p>

</body>

</html>

Result:
Welcome!
This paragraph is not affected by the style.

3. Class Selector: The class selector is used to specify a style for a group
of elements. Unlike the id selector, the class selector is most often used on
several elements. This allows you to set a particular style for any HTML ele-
ments with the same class.

The class selector uses the HTML class attribute, and is defined with a “.”
In the example below, all HTML elements with class=“center” will be

center-aligned:
<html>

<head>

<style type="text/css">

.center

{

text-align:center;

}

</style>

</head>

<body>

<h1 class="center">Center-aligned heading</h1>

<p class="center">Center-aligned paragraph.</p>

</body>

</html>

Result:
Center-aligned heading
Center-aligned paragraph.

You can also specify that only specific HTML elements should be affected
by a class. In the example below, all p elements with class=“center” will be
center-aligned:

XML Basics_Ch06_2pp.indd 168 8/8/2020 11:05:54 AM

CSS Style Sheets • 169

<html>

<head>

<style type="text/css">

p.center

{

text-align:center;

}

</style>

</head>

<body>

<h1 class="center">This heading will not be affected</h1>

<p class="center">This paragraph will be center-aligned.</p>

</body>

</html>

Result:
This heading will not be affected
This paragraph will be center-aligned.

Class attributes: The class attribute that allows you to create subclasses
of elements in HTML is also not likely to be available in the majority of XML-
based document formats. Of course, CSS lets you select elements based on
any attribute, not just class, but the syntax is less convenient.

<?xml-stylesheet href="#s1"type="text/css"?>

<doc>

<s id="s1">

s { display: none }

p { display: block }

p .note { color: red }

</s>

<p>Some text... </p>

<p class="note">A note... </p>

</doc>

If the document format doesn’t specify that class creates a subclass, then
you’ll have to use the longer selectors with “[]:”

<?xml-stylesheet href="#s1"type="text/css"?>

<doc>

<s id="s1">

s { display: none }

p { display: block }

XML Basics_Ch06_2pp.indd 169 8/8/2020 11:05:54 AM

170 • XML Basics

p[class~=note] { color: red }

</s>

<p>Some text... </p>

<p class="note">A note... </p>

</doc>

If there is no class attribute, but there is something else we can use, the
attribute selectors “[]” still apply:

<?xml-stylesheet href="#s1" type="text/css"?>

<doc>

<s id="s1">

s { display: none }

p { display: block }

p[warning="yes"] { color: red }

</s>

<p>Some text... </p>

<p warning="yes">A note... </p>

</doc>

4. Descendant Selectors: Imagine we wanted the important paragraph
in the “intro” Div to look different than the important paragraph at the bot-
tom of the page. We can use a descendant selector to achieve this. Add the
following CSS rule at the bottom of our CSS file:

#intro .important {

background-color: orange;

}

It begins with “#intro” which selects our Intro Div. This is followed by
a space, and then “.important.” So essentially our selector is telling the Web
browser to (1) find the element with the id of intro, (2) go inside that element
and find any elements with the class of important.

Within the orange paragraph, the word “important” is red. Let’s imagine
we want to change the color, since red text on an orange background is diffi-
cult to read. The word “important” is inside an element, so we’ll use the
following code to select and style it:

#intro .important em {

color: white;

}

This code is telling the browser to (1) find the element with an id of intro,
(2) go inside that element and find any elements with a class of important, and
(3) go inside that element and select any elements.

XML Basics_Ch06_2pp.indd 170 8/8/2020 11:05:54 AM

CSS Style Sheets • 171

EMBEDDING CSS IN WEB PAGE

When a browser reads a style sheet, it will format the document according to
it. There are three ways of inserting a style sheet:

1.	 External style sheet

2.	 Internal style sheet

3.	 Inline style

●● External Style Sheet: An external style sheet is ideal when the style is
applied to many pages. With an external style sheet, you can change the
look of an entire Website by changing one file. Each page must link to
the style sheet using the <link> tag. The <link> tag goes inside the head
section:
<head>

<link rel="stylesheet" type="text/css" href="mystyle.css" />

</head>

�An external style sheet can be written in any text editor. The file should
not contain any html tags. Your style sheet should be saved with a .css
extension. An example of a style sheet file is shown below:
hr {color:sienna;}

p {margin-left:20px;}

body {background-image:url("images/back40.gif");}

�Do not leave spaces between the property value and the units!
“margin-left:20 px” (instead of “margin-left:20px”) will work in IE, but
not in Firefox or Opera.

●● Internal Style Sheet: An internal style sheet should be used when a
single document has a unique style. You define internal styles in the head
section of an HTML page, by using the <style> tag
<head>

<style type="text/css">

hr {color:sienna;}

p {margin-left:20px;}

body {background-image:url("images/back40.gif");}

</style>

</head>

XML Basics_Ch06_2pp.indd 171 8/8/2020 11:05:54 AM

172 • XML Basics

●● Inline Styles: An inline style loses many of the advantages of style sheets
by mixing content with presentation. To use inline styles you use the style
attribute in the relevant tag. The style attribute can contain any CSS prop-
erty. The example shows how to change the color and the left margin of
a paragraph:
<p style="color:sienna;margin-left:20px">This is a paragraph.</p>

�If some properties have been set for the same selector in different style
sheets, the values will be inherited from the more specific style sheet. For
example, an external style sheet has these properties for the h3 selector:
h3

{

color:red;

text-align:left;

font-size:8pt;

}

And an internal style sheet has these properties for the h3 selector:
h3

{

text-align:right;

font-size:20pt;

}

�If the page with the internal style sheet also links to the external style
sheet, the properties for h3 are
color:red;

text-align:right;

font-size:20pt;

�The color is inherited from the external style sheet and the text-alignment
and the font-size is replaced by the internal style sheet.

CSS STYLES

There are different types of style such as backgrounds, text, fonts, links, lists,
and tables.

XML Basics_Ch06_2pp.indd 172 8/8/2020 11:05:54 AM

CSS Style Sheets • 173

DISPLAYING XML WITH CSS

To demonstrate how XML files can be formatted with CSS, we have compiled
the following XML files:

Take a look at this pure XML file: The BOOKSTORE

Then look at this style sheet: The CSS file

Finally, view The BOOKSTORE formatted with the CSS file

Even if it looks right to use CSS this way, we strongly believe that format-
ting with XSL will be the standard way to format XML in future. This XML
file does not appear to have any style information associated with it. The doc-
ument tree is shown in next page.

–

<BOOKSTORE>

–

<BOOK>

<BOOKTITLE> Internet and its applications </BOOKTITLE>

<AUTHOR> K. Ram </ AUTHOR >

<PUBLISHER> RK Publications </ PUBLISHER >

<PRICE> 400.00 </PRICE>

<EDITION>2006 </ EDITION >

</BOOK>

–

<BOOK>

<BOOKTITLE> Java Programming </BOOKTITLE>

<AUTHOR> AK Sharma </ AUTHOR >

<PUBLISHER> Jam Publications </ PUBLISHER >

<PRICE>550.00 </PRICE>

<EDITION>2008 </ EDITION >

</BOOK>

–

<BOOK>

<BOOKTITLE> VB .NET </BOOKTITLE>

<AUTHOR> S. Banzal </ AUTHOR >

<PUBLISHER> Popular Publications </ PUBLISHER >

<PRICE>320.00 </PRICE>

<EDITION>2007</ EDITION >

</BOOK>

.

.

XML Basics_Ch06_2pp.indd 173 8/8/2020 11:05:54 AM

174 • XML Basics

.

.

</BOOKSTORE>

BOOKSTORE

{

background-color: #ffffff;

width: 100%;

}

BOOK

 {

display: block;

margin-bottom: 30pt;

margin-left: 0;

}

BOOKTITLE

{

color: #FF0000;

font-size: 20pt;

}

AUTHOR

{

color: #0000FF;

font-size: 20pt;

}

PUBLISHER, PRICE, EDITION

{

Display: block;

color: #000000;

margin-left: 20pt;

}

Result:

Internet and its applications

K. Ram

RK Publications

400.00

2006

 Java Programming

AK Sharma

Jam Publications

550.00

2008

XML Basics_Ch06_2pp.indd 174 8/8/2020 11:05:54 AM

CSS Style Sheets • 175

XSL TRANSFORMATION

Applying an XSL stylesheet to the XML feed has the advantage of being able
to fully customize the display, like being able to add links or change the order
of the nodes. The transformation needs to happen on the client so that the
XML remains intact.

First we add the reference to the XSL file inside the feed:
1<?xml version="1.0" encoding="ISO-8859-1" ?>

2<?xml-stylesheet type="text/xsl" href="latest.xsl" ?>

3<?xml-stylesheet type="text/css" href="latest.css" ?>

4<rss version="2.0">

We can add the XSLT specification, as well as leave the CSS link there.
Having both added is perfectly fine, as only one of them is going to be used in
the end. If the browser understands XSL, then it will use that and ignore the
CSS. See the complete XSL file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/rss">

<html>

<head>

 <link href="xsl.css" rel="stylesheet" type="text/css"/>

 <style type="text/css">

 body {

 font-size:0.83em;

 }

 </style>

</head>

<body>

 <div id="logo">

 <xsl:element name="a">

 <xsl:attribute name="href">

 <xsl:value-of select="channel/link" />

 </xsl:attribute>

 <xsl:value-of select="channel/title" />

 </xsl:element>

</div>

<div class="Snippet" style="border-width:0; background-color:#FFF; margin:1em">

 <div class="titleWithLine">

 <xsl:value-of select="channel/description" />

XML Basics_Ch06_2pp.indd 175 8/8/2020 11:05:54 AM

176 • XML Basics

 </div>

 <dl style="padding-right:1em">

 <xsl:for-each select="channel/item">

 <dd>

 <xsl:element name="a">

 <xsl:attribute name="href">

 <xsl:value-of select="link"/>

 </xsl:attribute>

 <xsl:value-of select="title"/>

 </xsl:element>

 </dd>

 <dt>

 <xsl:value-of select="description" />

 <xsl:value-of select="pubDate" />

 </dt>

 </xsl:for-each>

 </dl>

 </div>

<div id="footer">

 <xsl:value-of select="channel/copyright" />

 </div>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

The important thing to notice here is that you can output complete
HTML, together with links to external CSS files, for an improved customiza-
tion of the display. If you already have a stylesheet that you use on your site,
you can make a reference to it, and use it in the XSL file to create a similar
look and feel. This is what is shown above, with the link to the CSS file “xsl.
css.” There are also many ways to define an XSLT file, like using templates.

USING XSL TO PRESENT XML DOCUMENTS

XSL documents are similar to CSS documents in that they both define styles
that apply to certain elements, but there are a few differences. CSS defines
the typographical style of only XHTML elements, whereas the styles defined

XML Basics_Ch06_2pp.indd 176 8/8/2020 11:05:54 AM

CSS Style Sheets • 177

in XSL documents apply to entire XML documents. Moreover, XSL might
use the styles specified in CSS to produce the output code from XML data.
The XSL document must be placed on the same Web server as the file that
references it.

As mentioned, most XML data does not contain elements that define how
the data should be presented; therefore, you must use XSL documents to
transform this XML data into a form that can be presented to the user. In this
way, XSL provides a powerful tool to transform XML documents in virtually
any way that is necessary.

XSL PATTERNS

XML documents represent a tree of nodes. XSL patterns provide a query
language for locating nodes in XML documents. After the nodes in the XML
document are identified using a pattern, the nodes will be transformed using
a template. The XSL patterns we will be using have the same format as the
patterns we used with XPath, such as / (child), // (ancestor), .(current node),
@ (attribute), and ∗ (wildcard). In addition to the patterns we already men-
tioned, XSL also has filter operators to manipulate, sort, and filter XML data.

XML STYLES (REVISITED)

Remember earlier when you referenced an XML processor and sent the
browser looking for a file called cats.css? The “css” part of the file that it was
looking for indicated that it was a Cascading Style Sheet, which is a special
type of file used in XML and some other markup languages to tell the browser
how it should position and lay out the information that it has. In other words,
it’s a sheet the browser uses to figure out the style of the layout.

A Cascading Style Sheet (henceforth known as CSS) can be used to define
a number of important items on the page: they can tell the browser what
color a portion of text should be, where the section should be located, and
any special instructions that the browser should follow when displaying any
particular piece of data.While it’s true that all of that information could be
coded onto the page itself, the use of a style sheet means that multiple pages
with the same elements or layout can all reference the same file. This means
that you don’t have to have all the same information on each and every page
something that saves on both loading time and coding time.

XML Basics_Ch06_2pp.indd 177 8/8/2020 11:05:54 AM

178 • XML Basics

One of the best things about CSSs is the fact that they can be used by a
multitude of languages, not just XML. You can create a CSS file that’s used
to define how certain elements are formatted in an XML document, and then
turn around and use it in a DHTML document.

CSSs uses data as it encounters it in the document, and isn’t as adaptable
as some other languages when dealing with XML. It is fairly common and
has support in multiple browsers, however and as long as you code with care,
many of the drawbacks of using CSS can be easily avoided.

QUESTIONS FOR DISCUSSION

1.	 What are cascading style sheets?

2.	 Explain some of the features of CSS.

3.	 Explain the rules in style sheets.

4.	 Explain the hover element.

5.	 State some of the uses of CSS.

6.	 State the different type of author styles.

7.	 What are the main goals of applying style sheets?

8.	 Explain CSS1.

9.	 Compare CSS2 to CSS1.

10.	 Explain the CSS filter.

11.	 Explain the Internet Explorer box model bug.

12.	 Explain vertical control limitation.

13.	 Explain the absence of expressions.

14.	 Explain the lack of orthogonally.

15.	 Explain the ease of maintenance with CSS.

16.	 Explain float containment.

17.	 State some limitations of style sheets.

18.	 How can we use CSS with XML?

XML Basics_Ch06_2pp.indd 178 8/8/2020 11:05:54 AM

C H A P T E R 7
XML SCHEMA BASICS

XML SCHEMA

Generically, we can refer to schema as metadata, or data about data. Some of
the schema efforts are not just concerned with defining a vocabulary; they go
beyond attempting to explain the relationships between certain types of data.

Schemas refine DTDs by permitting more precision in expressing some
concepts in the vocabulary. Schemas use a wholly different syntax than DTDs.
They permit us to borrow vocabulary from other schemas, thereby solving the
validation problem. Overall, schemas are better answers to the problem of
specifying vocabularies.

ROLE OF A SCHEMA

The concept of a schema has been present for many years in both the data-
base and the document world.

The formal role of the schema is to define the set of all possible valid
documents.

We need to be careful in using the words “validity schema.” In the XML
standard, being “valid” means something specific. Informally, it means that a
document conforms to the rules in its DTD. A document is said to be valid if
it satisfies all the constraints defined by the information model.

W3C supports an XML-based alternative to DTD, called the XML schema.
<xs:element name="note">

<xs:complexType>

 <xs:sequence>

XML Basics_Ch07_2pp.indd 179 8/7/2020 2:00:29 PM

180 • XML Basics

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

</xs:element>

DTD AS A SCHEMA

As a constraint language, DTDs are very limited. They provide some control
over which elements can be nested within each other, but say nothing about
the text contained within the elements. They offer slightly more control over
attributes, but even this is very limited. For example, there is no way of say-
ing that an attribute must be numeric. It is the document itself that decides
whether it is going to reference a DTD or not, which DTD it is going to refer-
ence, and whether it is going to override any of the declarations in the DTD
in its private internal subset.

SCHEMA LANGUAGES AND NOTATIONS

The formal role of a schema is to define the set of all possible valid docu-
ments, or in other words, to define what constraints, beyond XML itself, the
documents must meet for them to be more meaningful.

One purpose of a schema is to define the difference between a valid doc-
ument and an invalid one.

The second purpose of a schema is to explain to the document the inter-
pretation and usage of the constructs provided so that the sender and the
recipient share a common understanding of the meaning of the message.

As a constraint language, DTDs are very limited. They provide some con-
trol over which of the elements can be nested within each other but say noth-
ing about the text contained within the elements.

THE PURPOSE OF XML SCHEMA

XML schema is an XML-based language used to create XML-based languages
and data models. An XML schema defines element and attribute names for a

XML Basics_Ch07_2pp.indd 180 8/7/2020 2:00:29 PM

XML Schema Basics • 181

class of XML documents. The schema also specifies the structure that those
documents must adhere to and the type of content that each element can hold.

XML documents that attempt to adhere to an XML schema are said to
be instances of that schema. If they correctly adhere to the schema, then they
are valid instances. This is not the same as being well-formed. A well-formed
XML document follows all the syntax rules of XML, but it does necessarily
adhere to any particular schema. So, an XML document can be well-formed
without being valid, but it cannot be valid unless it is well-formed.

THE POWER OF XML SCHEMA

DTDs are similar to XML schemas in that they are used to create classes of
XML documents. DTDs were around long before the advent of XML. They
were originally created to define languages based on SGML, the parent of
XML. Although DTDs are still common, XML Schema is a much more pow-
erful language.

As a means of understanding the power of XML schema, let’s look at the
limitations of DTD.

●● DTDs do not have built-in datatypes.
●● DTDs do not support user-derived datatypes.
●● DTDs allow only limited control over cardinality (the number of occur-

rences of an element within its parent).
●● DTDs do not support namespaces or any simple way of reusing or import-

ing other schemas.

XML Schema Example

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="note">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

XML Basics_Ch07_2pp.indd 181 8/7/2020 2:00:29 PM

182 • XML Basics

 </xs:complexType>

</xs:element>

</xs:schema>

A FIRST LOOK

An XML schema describes the structure of an XML instance document by
defining what each element must or may contain. An element is limited by
its type. For example, an element of complex type can contain child elements
and attributes, whereas a simple-type element can only contain text. The dia-
gram below gives a first look at the types of XML schema elements.

FIGURE 7.1  XML schema elements diagram

Schema authors can define their own types or use the built-in types.
The following is a high-level overview of schema types.

●● Elements can be of a simple type or complex type.
●● Simple type elements can only contain text. They cannot have child ele-

ments or attributes.
●● All the built-in types are simple types (e.g, xs:string).
●● Schema authors can derive simple types by restricting another simple

type. For example, an email type could be derived by limiting a string to
a specific pattern.

XML Basics_Ch07_2pp.indd 182 8/7/2020 2:00:29 PM

XML Schema Basics • 183

●● Simple types can be atomic (e.g, strings and integers) or non-atomic (e.g, lists).
●● Complex-type elements can contain child elements and attributes as well

as text.
●● By default, complex-type elements have complex content, meaning that

they have child elements.
●● Complex-type elements can be limited to having simple content, meaning

they only contain text. They are different from simple type elements in
that they have attributes.

●● Complex types can be limited to having no content, meaning they are
empty, but they have may have attributes.

●● Complex types may have mixed content-a combination of text and child
elements.

A Simple XML Document

Look at this simple XML document called “note.xml:”
<?xml version="1.0"?>

<note>

 <to>Shashi</to>

 <from>Yashasvi</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

A DTD File

The following example is a DTD file called “note.dtd” that defines the ele-
ments of the XML document above (“note.xml”):

<!ELEMENT note (to, from, heading, body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

The first line defines the note element to have four child elements: to,
from, heading, and body.

Lines 2–5 defines the to, from, heading, and body elements to be of type
“#PCDATA.”

XML Basics_Ch07_2pp.indd 183 8/7/2020 2:00:29 PM

184 • XML Basics

An XML Schema

The following example is an XML schema file called “note.xsd” that defines
the elements of the XML document above (“note.xml”):

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.abc.com"

xmlns="http://www.abc.com"

elementFormDefault="qualified">

<xs:element name="note">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The note element is a complex type because it contains other elements.
The other elements (to, from, heading, and body) are simple types because
they do not contain other elements. You will learn more about simple and
complex types in the following chapters.

A Reference to a DTD

This XML document has a reference to a DTD:
<?xml version="1.0"?>

<!DOCTYPE note SYSTEM

"http://www.abc.com/dtd/note.dtd">

<note>

 <to>Shashi</to>

 <from>Yashasvi</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

XML Basics_Ch07_2pp.indd 184 8/7/2020 2:00:29 PM

XML Schema Basics • 185

A Reference to an XML Schema

This XML document has a reference to an XML schema:
<?xml version="1.0"?>

<note

xmlns="http://www.abc.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.abc.com note.xsd">

 <to>Shashi</to>

 <from>Yashasvi</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

XSD - The <schema> Element

The <schema> element is the root element of every XML schema.
The <schema> element
The <schema> element is the root element of every XML schema:
<?xml version="1.0"?>

<xs:schema>

...

...

</xs:schema>

The <schema> element may contain some attributes. A schema declara-
tion often looks something like this:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.abc.com"

xmlns="http://www.abc.com"

elementFormDefault="qualified">

...

...

</xs:schema>

The following fragment
xmlns:xs="http://www.w3.org/2001/XMLSchema"

indicates that the elements and data types used in the schema come from
the “http://www.w3.org/2001/XMLSchema” namespace. It also specifies that
the elements and data types that come from the “http://www.w3.org/2001/
XMLSchema” namespace should be prefixed with xs:

XML Basics_Ch07_2pp.indd 185 8/7/2020 2:00:29 PM

186 • XML Basics

This fragment
targetNamespace="http://www.abc.com"

indicates that the elements defined by this schema (note, to, from, heading,
and body) come from the “http://www.abc.com” namespace.

This fragment
xmlns="http://www.abc.com"

indicates that the default namespace is “http://www.abc.com”.

This fragment
elementFormDefault="qualified"

indicates that any elements used by the XML instance document which were
declared in this schema must be namespace qualified. Referencing a schema
in an XML document.

This XML document has a reference to an XML schema:
<?xml version="1.0"?>

<note xmlns="http://www.abc.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.abc.com note.xsd">

<to>Shashi</to>

<from>Yashasvi</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The following fragment
xmlns="http://www.abc.com"

specifies the default namespace declaration. This declaration tells the schema-
validator that all the elements used in this XML document are declared in the
“http://www.abc.com” namespace.

Once you have the XML schema instance namespace available:
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

you can use the schema location attribute. This attribute has two values. The
first value is the namespace to use. The second value is the location of the
XML schema to use for that namespace:

xsi:schemaLocation="http://www.abc.com note.xsd"

XSD Simple Elements

XML schemas define the elements of your XML files. A simple element is an XML
element that contains only text. It cannot contain any other elements or attributes.

XML Basics_Ch07_2pp.indd 186 8/7/2020 2:00:29 PM

XML Schema Basics • 187

However, the “only text” restriction is quite misleading. The text can
be of many different types. It can be one of the types included in the XML
schema definition (boolean, string, and date) or it can be a custom type that
you define yourself.

You can also add restrictions (facets) to a data type in order to limit its
content or you can require the data to match a specific pattern.

The syntax for defining a simple element is:
<xs:element name="xxx" type="yyy"/>

where xxx is the name of the element and yyy is the data type of the element.
The XML schema has a lot of built-in data types. The most common

types are
xs:string

xs:decimal

xs:integer

xs:boolean

xs:date

xs:time

Example: Here are some XML elements:
<lastname>Refsnes</lastname>

<age>36</age>

<dateborn>1970-03-27</dateborn>

And here are the corresponding simple element definitions:
<xs:element name="lastname" type="xs:string"/>

<xs:element name="age" type="xs:integer"/>

<xs:element name="dateborn" type="xs:date"/>

Default and Fixed Values for Simple Elements

Simple elements may have a default value OR a fixed value specified.
A default value is automatically assigned to the element when no other

value is specified.
In the following example, the default value is “red:”
<xs:element name="color" type="xs:string" default="red"/>

A fixed value is also automatically assigned to the element, and you cannot
specify another value.

In the following example the fixed value is “red:”
<xs:element name="color" type="xs:string" fixed="red"/>

XML Basics_Ch07_2pp.indd 187 8/7/2020 2:00:29 PM

188 • XML Basics

A SIMPLE XML SCHEMA

Let’s take a look at a simple XML schema, which is made up of one complex
type element with two child simple type elements.

Code Sample: SchemaBasics/Demos/Author.xsd
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string" />

 <xs:element name="LastName" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

An XML schema is an XML document and must follow all the syntax
rules of any other XML document; that is, it must be well formed. XML sche-
mas also have to follow the rules defined in the “schema of schemas,” which
defines, among other things, the structure of and element and attribute names
in an XML schema.

Although it is not required, it is a common practice to use the xs qualifier
to identify schema elements and types.

The document element of XML schemas is xs:schema. It takes the attri-
bute xmlns:xs with the value of http://www.w3.org/2001/XMLSchema, indi-
cating that the document should follow the rules of XML schema. This will be
clearer after you learn about namespaces.

In this XML schema, we see a xs:element element within the xs:schema ele-
ment. xs:element is used to define an element. In this case, it defines the element
Author as a complex type element, which contains a sequence of two elements:
FirstName and LastName, both of which are of the simple type, string.

SCHEMA AS A SET OF CONSTRAINTS

One purpose of a schema is to define the difference between a valid docu-
ment and an invalid one. As far as possible, the rules should be expressed in
such a way that software can decide whether a document is valid or not. For
example, a rule for scientific journal that authors address should include the
city and country only, or that the abstract must be in French.

XML Basics_Ch07_2pp.indd 188 8/7/2020 2:00:29 PM

XML Schema Basics • 189

There is a need for constraints for two reasons: stylistic reasons and
processing reasons. The processing reasons define the information require-
ments of the next stage in the process, i.e., handling the document.

There is a great temptation to use the ability to impose rules thought-
lessly to make the system unnecessarily rigid. Information systems have a bad
reputation for inflexibility, and the aim should be to use constraints sensi-
bly to allow the humans in the process the maximum scope for using their
intelligence.

SCHEMA AS AN EXPLANATION

The purpose of schema is to explain the document, the interpretation, and
usage of the constructs provided. This purpose facilitates a common under-
standing of the message between the sender and the recipient.

In both the document and database traditions, this role of a schema is only
secondary, though it is the more important role.

The schema is often not properly understood by the person who enters
the data on the screen. As a result, the user interprets the schema in differ-
ent ways, and hence attaches various meanings to the data fields, though the
structure remains unchanged. Consequently, the system suffers from what is
called semantic drift.

XSD Attributes

Simple elements cannot have attributes. If an element has attributes, it is
considered to be of a complex type. But the attribute itself is always declared
as a simple type.

The syntax for defining an attribute is
<xs:attribute name="xxx" type="yyy"/>

where xxx is the name of the attribute and yyy specifies the data type of the
attribute.

The XML schema has a lot of built-in data types. The most common
types are

xs:string

xs:decimal

xs:integer

xs:Boolean

xs:date

xs:time

XML Basics_Ch07_2pp.indd 189 8/7/2020 2:00:29 PM

190 • XML Basics

Example: Here is an XML element with an attribute:
<lastname lang="EN">Banzal</lastname>

And here is the corresponding attribute definition:
<xs:attribute name="lang" type="xs:string"/>

Default and Fixed Values for Attributes

Attributes may have a default value OR a fixed value specified.
A default value is automatically assigned to the attribute when no other

value is specified.
In the following example, the default value is “EN:”
<xs:attribute name="lang" type="xs:string" default="EN"/>

A fixed value is also automatically assigned to the attribute, and you can-
not specify another value. In the following example, the fixed value is “EN:”

<xs:attribute name="lang" type="xs:string" fixed="EN"/>

Optional and Required Attributes

Attributes are optional by default. To specify that the attribute is required, use
the “use” attribute:

<xs:attribute name="lang" type="xs:string" use="required"/>

Restrictions on Content

When an XML element or attribute has a data type defined, it puts restric-
tions on the element’s or attribute’s content. If an XML element is of type
“xs:date” and contains a string like “Hello World,” the element will not vali-
date. With XML schemas, you can also add your own restrictions to your XML
elements and attributes.

XSD Restrictions/Facets

Restrictions are used to define acceptable values for XML elements or attrib-
utes. Restrictions on XML elements are called facets.

Restrictions on Values

The following example defines an element called “age” with a restriction. The
value of age cannot be lower than 0 or greater than 120:

XML Basics_Ch07_2pp.indd 190 8/7/2020 2:00:29 PM

XML Schema Basics • 191

<xs:element name="age">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="120"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Restrictions on a Set of Values

To limit the content of an XML element to a set of acceptable values, we use
the enumeration constraint. The example below defines an element called
“car” with a restriction. The only acceptable values are Audi, Golf, and BMW:

<xs:element name="car">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Audi"/>

 <xs:enumeration value="Golf"/>

 <xs:enumeration value="BMW"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The example above could also have been written like this:
<xs:element name="car" type="carType"/>

<xs:simpleType name="carType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Audi"/>

 <xs:enumeration value="Golf"/>

 <xs:enumeration value="BMW"/>

 </xs:restriction>

</xs:simpleType>

In this case, the type “carType” can be used by other elements because it
is not a part of the “car” element.

Restrictions on a Series of Values

To limit the content of an XML element to define a series of numbers or
letters that can be used, we would use the pattern constraint. The example

XML Basics_Ch07_2pp.indd 191 8/7/2020 2:00:29 PM

192 • XML Basics

below defines an element called “letter” with a restriction. The only accept-
able value is ONE of the LOWERCASE letters from a to z:

<xs:element name="letter">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-z]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example defines an element called “initials” with a restriction.
The only acceptable value is THREE of the UPPERCASE letters from a to z:

<xs:element name="initials">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[A-Z][A-Z][A-Z]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example also defines an element called “initials” with a restric-
tion. The only acceptable value is THREE of the LOWERCASE OR UPPER-
CASE letters from a to z:

<xs:element name="initials">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-zA-Z][a-zA-Z][a-zA-Z]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example defines an element called “choice” with a restriction.
The only acceptable value is ONE of the following letters: x, y, OR z:

<xs:element name="choice">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[xyz]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

XML Basics_Ch07_2pp.indd 192 8/7/2020 2:00:30 PM

XML Schema Basics • 193

The next example defines an element called “prodid” with a restriction.
The only acceptable value is FIVE digits in a sequence, and each digit must
be in a range from 0 to 9:

<xs:element name="prodid">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:pattern value="[0-9][0-9][0-9][0-9][0-9]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Other Restrictions on a Series of Values

The example below defines an element called “letter” with a restriction. The
acceptable value is zero or more occurrences of lowercase letters from a to z:

<xs:element name="letter">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="([a-z])*"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example also defines an element called “letter” with a restric-
tion. The acceptable value is one or more pairs of letters, each pair consisting
of a lower case letter followed by an upper case letter. For example, “sToP”
will be validated by this pattern, but not “Stop” or “STOP” or “stop:”

<xs:element name="letter">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="([a-z][A-Z])+"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example defines an element called “gender” with a restriction.
The only acceptable value is male OR female:

<xs:element name="gender">

 <xs:simpleType>

 <xs:restriction base="xs:string">

XML Basics_Ch07_2pp.indd 193 8/7/2020 2:00:30 PM

194 • XML Basics

 <xs:pattern value="male|female"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

The next example defines an element called “password” with a restriction.
There must be exactly eight characters in a row and those characters must be
lowercase or uppercase letters from a to z or a number from 0 to 9:

<xs:element name="password">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-zA-Z0-9]{8}"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Restrictions on Whitespace Characters

To specify how whitespace characters should be handled, we would use the
whiteSpace constraint. This example defines an element called “address” with
a restriction. The whiteSpace constraint is set to “preserve,” which means that
the XML processor WILL NOT remove any white space characters:

<xs:element name="address">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="preserve"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

This example also defines an element called “address” with a restriction.
The whiteSpace constraint is set to “replace,” which means that the XML pro-
cessor WILL REPLACE all white space characters (line feeds, tabs, spaces,
and carriage returns) with spaces:

<xs:element name="address">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="replace"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

XML Basics_Ch07_2pp.indd 194 8/7/2020 2:00:30 PM

XML Schema Basics • 195

This example also defines an element called “address” with a restriction.
The whiteSpace constraint is set to “collapse,” which means that the XML pro-
cessor WILL REMOVE all white space characters (line feeds, tabs, spaces,
and carriage returns are replaced with spaces, leading and trailing spaces are
removed, and multiple spaces are reduced to a single space):

<xs:element name="address">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="collapse"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Restrictions on Length

To limit the length of a value in an element, we would use the length, max-
Length, and minLength constraints. This example defines an element called
“password” with a restriction. The value must be exactly eight characters:

<xs:element name="password">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="8"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

This example defines another element called “password” with a restric-
tion. The value must be a minimum of five characters and a maximum of eight
characters:

<xs:element name="password">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="5"/>

 <xs:maxLength value="8"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

XML Basics_Ch07_2pp.indd 195 8/7/2020 2:00:30 PM

196 • XML Basics

Restrictions for Datatypes

Table 7.1  Restrictions for Datatypes

Constraint Description

enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of decimal places allowed.
Must be equal to or greater than zero

length Specifies the exact number of characters or list items allowed.
Must be equal to or greater than zero

maxExclusive Specifies the upper bounds for numeric values (the value must
be less than this value)

maxInclusive Specifies the upper bounds for numeric values (the value must
be less than or equal to this value)

maxLength Specifies the maximum number of characters or list items
allowed. Must be equal to or greater than zero

minExclusive Specifies the lower bounds for numeric values (the value must
be greater than this value)

minInclusive Specifies the lower bounds for numeric values (the value must
be greater than or equal to this value)

minLength Specifies the minimum number of characters or list items
allowed. Must be equal to or greater than zero

pattern Defines the exact sequence of characters that are acceptable

totalDigits Specifies the exact number of digits allowed. Must be greater
than zero

whiteSpace Specifies how white space (line feeds, tabs, spaces, and carriage
returns) is handled

DTD VS XML SCHEMA

Schemas show you how dramatically things will change between current prac-
tice of DTDs and future practice. Consider the following DTD for naming a
person.

<!ELEMENT Name (Honorific?, First, MI?, Last, Suffix?)>

<!ELEMENT Honorific (#PCDATA)>

<!ELEMENT First (#PCDATA)>

XML Basics_Ch07_2pp.indd 196 8/7/2020 2:00:30 PM

XML Schema Basics • 197

<!ELEMENT MI (#PCDATA)>

<!ELEMENT Last (#PCDATA)>

<!ELEMENT Suffix (#PCDATA)>

We must minimally have first and last names, but we may optionally have
a middle initial, honorific (such as Mr., Ms., and Dr.), and a suffix (such as Jr.
and III). When we use the DTD for doing this, we are constrained by the fact
that the DTD needs to be changed each time we want to have an element. We
cannot possibly have an element, which can be optional. For performing such
operations, we can use what can be called as schema-enabled DTD, wherein
we can have schema within a DTD.

To start with, we can have a <Schema> element as the root of the schema.
Then we have an element called Name, the name of which is set in the name
attribute of the <element> tag.

<Schema …>

 <element name="Name">

    <type>

 <element name="Honorific" type="string" minOccurs="0" maxOccurs="1"/>

   <element name="First" type="string"/>

     <element name="MI" type="string" minOccurs="0" maxOccurs="1"/>

 <element name="last" type="string"/>

 <element name="suffix" type="string" minOccurs="0" maxOccurs="1"/>

 </type>

 </element>

</Schema>

<element name="Name">

So <element name=“Name”> declares a <name> element. We have used it
in its simplest form here, but we should know it can be given a name and enclose
element declarations. In such a form, it is suitable for reuse elsewhere, and spec-
ifies the content model of the <Name> element. Note how the element con-
tained within <Name> is declared. Since they are simple types, we can declare
them within the body of the <Name> declaration without further elaboration.

STRUCTURES

Everything we can define with a DTD is accounted for in the structures por-
tion of XML schemas. As XML schemas are written in XML syntax, and struc-
tures refer to the XML constructs that we can use to define our markup. This
means that XML schemas are really just another application of XML.

XML Basics_Ch07_2pp.indd 197 8/7/2020 2:00:30 PM

198 • XML Basics

The structures section of the XML specification is the part where the
elements and attributes for defining schemas are set out. More importantly,
the content model for elements is described in this part. The content model
clearly specifies the allowable internal structure of an element.

PREAMBLE

A schema consists of a preamble and zero or more definitions and declaration.
The preamble is found within the root element, schema. This must

include at least three pieces of information attributes. The following are some
of the most commonly used information attributes.

Table 7.2  Information Attributes

TargetNS contains the namespace and URI of the schema that is
being used

version attribute is used to specify the version of the schema

xmlns attribute provides the namespace for the XML schemas specification

finalDefault and
exactDefault

provide defaults for two types of extensions

SAMPLE PREAMBLE

<?xml version="1.0"?>

<schema targetNS="http://myserver/myschema.xsd"

 version="1.0"

 xmlns="http://www.w3.org/2003/XMLSchema">

</schema>

The code snippet here shows how schema is used in XML with a few attri-
butes. Here, the schema is residing on myserver, and is called myschema.xsd,
.xsd being the file extension for XML schemas. The version attribute specifies
that the XML used in this schema is of version 1. The default namespace
declaration is the schema reference to XML schemas. This is a closed model
schema, which means that all documents conforming to this schema will be
completely defined by the schema and must not have any outside content.

XML Basics_Ch07_2pp.indd 198 8/7/2020 2:00:30 PM

XML Schema Basics • 199

ATTRIBUTES AND ATTRIBUTE GROUPS

Attribute declarations consist of an <attribute> element, which must mini-
mally include a name attribute.

The <attribute> element also has optional cardinality attributes, minOc-
curs and maxOccurs, which are used to indicate whether the attribute must
appear, and if so, how often.

Attribute declaration may have DEFAULT and FIXED attributes. These
function much like the IMPLIED and FIXED keywords in DTDs. The value
of the fixed attribute is the value the attribute must always have. The value of
the default attribute is the value, which is assumed if the attribute does not
explicitly appear in an element within an XML document.

Here are a couple of sample attribute declarations.
<attribute name="simpleAttr"/>

<attribute name="seqenceNo" type="integer" default="0"/>

CONTENT MODELS

XML schemas provide us with mechanisms for describing content model with
a lot more accuracy than DTDs. These use complex type definitions and a
new structure, the <group> element, to build the internal contents of an ele-
ment declaration.

The content attribute tells us what elements describe, although it says
nothing about the permitted attributes.

Table 7.3 shows the content attribute value and meaning.

Table 7.3  Content Attribute Value and its Meanings

Content Attribute Value Meaning

Unconstrained Content of any kind

Empty Empty element

Mixed Elements and character data

Compositors in the schema draft show how the content may be composed.
These compositors are values of the order attribute of a <group> element.
This new element gives us a way to provide ordered bodies of elements in a
declaration. The compositors are shown in Table 7.4.

XML Basics_Ch07_2pp.indd 199 8/7/2020 2:00:30 PM

200 • XML Basics

Table 7.4  Compositor Keyword with its Meaning and DTD Equivalent

Compositor Keyword Meaning DTD Equivalent

Seq Elements must follow in
exact order

, (comma)

Choice Exactly one of the model
elements appears

| (pipe)

ELEMENT DECLARATION

Syntax of schemas must be in such a way so as to make it usable in XML. The
schemas are hence written using the syntax of XML, so as to make them appli-
cable to XML documents.

<element name="Book" />

Supposing we had used <!ELEMENT> syntax to declare a <Book> ele-
ment in a DTD, we now use element declarations inside an XML element.
This is declared as shown in the code snippet. Here, the <element /> element
is used to declare an element. The name attribute simply takes a value of the
element we are creating.

Simple elements are composed of a reference to a data type and a series
of attribute declarations or a reference to an attribute group. This is similar to
a DTD declaration, where the element contains only PCDATA, except that
the content is strongly typed.

DERIVATION

A new type extends another when it adds additional content to its source type.
In this case, all the content declared in the source type appears in the derived
type.

The code here gives an example of how types are derived. Here, the type
FormalPersonName extends from PersonName and adds an additional prop-
erty of adding an honorific element to the derived type.

<type name="PersonName">

 <element name="FirstName" type="string" />

 <element name="MI" type="string" />

 <element name="LastName" type="string" />

</type>

XML Basics_Ch07_2pp.indd 200 8/7/2020 2:00:30 PM

XML Schema Basics • 201

<type name="FormalPersonName" source="PersonName" derivedBy="extension">

 <element name="honorefic" type="string" />

</type>

<type name="ShortName" source="PersonName" derivedBy="restriction">

 <restrictions>

 <element name="MI" maxOccurs="0" />

 </restrictions>

</type>

We can also impose restrictions on a derived type by giving a restriction
value in the derived By attribute and adding the restriction’s element, as
shown in the piece of code given here.

DATA TYPES

The real world relies on the concepts of numbers, strings, and sets. Hence,
the programs written in modern programming languages support elaborate
systems of built-in types and procedures for defining new types. Therefore,
the addition of data types to XML schemas are a great asset to programmers
using XML for data in their applications.

The support for data types includes the ability to check the validity of a
value in a document. This also includes aiding an appropriate conversion from
text to the native type when processing an XML document.

Schema data types are said to have a set of distinct values called their
value space.

PRIMITIVE TYPES

Primitive data types are those that are not defined in terms of other types.
They are axiomatic. It is natural for the XML schema proposal to include the
classic XML 1.0 types, but it also adds some types of its own.

Table 7.5 gives a list of primitive types introduced by XML schema.

Table 7.5  List of Primitive Types

Schema Primitive Type Definition

String Finite Sequence of ISO 10646 or Unicode
characters, such as “thisisastring”.

Boolean The set (true, false).

(continued)

XML Basics_Ch07_2pp.indd 201 8/7/2020 2:00:30 PM

202 • XML Basics

Schema Primitive Type Definition

Float Standard mathematical concept of real numbers,
corresponding to a single precision 32-bit
floating point type.

Double Standard mathematical concept of real numbers,
corresponding to a double precision 64-bit
floating point type; doubles consist of a decimal
mantissa, followed optionally by the letter E and
an integer exponent, (for example 1.06E19).

Decimal Standard mathematical concept of a real numeric
type; it covers a smaller range than doubles, and
consists of a sequence of digits separated by a
period, such as 0.58.

Timeinstant The combination of the date and time to define
a specific instant in time, encoded as a string.
2003-02-28T10:10:45:00 represents 10:10on 28
Feb 2003, expressed with seconds and fractional
seconds. This type is always expressed YYYY-
MM DDThh:mm:ss:sss, but can be immediately
followed by a Z, to specify that the time is a
coordinated universal time. Alternatively, the
time zone can be specified by supplying a
difference from CUT, using a+ or a- followed by
hh:mm.

timeDuration A combination of data and time to define
a period, interval, or duration of time. For
example, one month is represented by
P0Y1M0T0H0M0S, where the lexical pattern is
PnYnMnDTnHnMnS, and can be preceded by
a +(or)-. The representation may be truncated
on the right when the finer time intervals are
not needed, for example P2Y3M for 2 years and
3 months. Note that the number pre-codes the
character representing the intervals. Seconds
may be expressed by a number including a
decimal to represent fractional second. A
minus sign preceding the lexical representation
indicates a negative duration.

(continued)

(continued)

XML Basics_Ch07_2pp.indd 202 8/7/2020 2:00:30 PM

XML Schema Basics • 203

Schema Primitive Type Definition

recurringInstant An instant of time that recurs with some regular
frequency, such as every day; represented by
substituting a dash for any period not provided in
the lexical pattern for timeInstant. For example,
an instant that occurs at 08:00 every day would
be expressed - T08:00:00:000.

Binary Arbitrarily long bodies of binary data

URI URI reference

GENERATED AND USER DEFINED TYPES

As the name suggests, a generated data type is built from an existing type.
The existing type, on which the generated type is built, is called the base
type. XML schemas specify some generated types that are broadly useful.
Generated and user defined types are shown in the table.

Table 7.6  Generated and User Defined Types

Generated Type Base Type Meaning

Language String Natural Language identifier; a token
that meets the Language ID production
in XML, for example “en”

NM TOKEN NMTOKENS XML 1.0 NMTOKEN

NMTOKENS String XML 1.0 NMTOKENS

Name NMTOKEN XML 1.0 name

Qname Name XML 1.0 Qualified Name

NCNAME Name XML 1.0 “non-colonized” name

ID NCNAME XML 1.0 attribute type ID

IDREF IDREFS XML 1.0 attribute type IDREF

IDREFS String XML 1.0 attribute type IDREFS

ENTITY ENTITIES XML 1.0 ENTITY

ENTITIES String XML 1.0 ENTITIES

(continued)

XML Basics_Ch07_2pp.indd 203 8/7/2020 2:00:30 PM

204 • XML Basics

Generated Type Base Type Meaning

NOTATION NCNAME XML 1.0 NOTATION

integer decimal Standard mathematical concept of
discrete numeric types

non-negative-
integer

integer Standard mathematical concept of
non-negative integers

positive-integer integer Standard mathematical concept of
positive integers

non-positive-
integer

integer Standard mathematical concept of a
negative integer or zero

negative-integer
integer

integer Standard mathematical concept of a
strictly negative integer

Date recurringInstant Standard concept of a day, that is, an
interval beginning at midnight and
lasting 24 hours

Time recurringInstant Same as the left-truncated
representation for timeInstant
hh:mm:ss:sss

HYPERLINKS

Hypertext differs from the normal text in that it has hyperlinks. The hyper-
links are identified by the characteristic blue color underlined text that identi-
fies hotspots. These hotspots, when clicked, will take us to the Web pages that
are specified as links. Linking or cross-referencing can be done when

●● There is a need to provide context-sensitive help, for instance, when we
navigate tutorials, it will be easy to understand if elaborations for some
technical terms or external references are provided.

●● A file has to be referred or displayed on clicking the mouse at a particular
point of the document.

LINKS

Link is a functionality that is associated with a text or an object in a document
using markup language.

(continued)

XML Basics_Ch07_2pp.indd 204 8/7/2020 2:00:30 PM

XML Schema Basics • 205

Providing links enables us to refer to an object or a file within the same
document or a document in some other location. The object referred to can
be an image file or any other file, or text within the same document, or a
different document. Within a HTML or an XML document, there may be
several links. The active document, which contains these links, is called the
source file.

The linked file or file that has been referred to is called the destination file
or the target. The target file may be directly opened on clicking a hotspot or it
may in turn lead to some other link. In simple terms, a link is the association
between a source and the target.

The target may be completely a new HTML page, in which case, the
description of the target (locator) would be a Universal Resource Identifier
(URI). The target may be a named element within an HTML page. It can be
identified using the # symbol, called a fragment identifier. Then, the fragment
identifier has to be followed by the NAME attribute of the target element.

Both the source and the target file can be viewed simultaneously. One of
the best examples of viewing both the source and the target simultaneously
is the search index provided in the HELP menu of any application, wherein
selecting a particular index opens the corresponding document.

The differences between HTML links and XML links are depicted in
Table 7.7.

Table 7.7  Differences between HTML Links and XML Links

HTML Links XML Links

The linking mechanism is simple. The linking mechanism is complex.

HTML links are about sources and
targets.

XML’s Xlink is about linking elements
instead of sources.

Links are unidirectional, that is, one
link lead the other end of a link in a
straight.

Links can be bidirectional, so the other
end of link could be a source as well as
a target.

The source link leads to the target link. The source link could refer to the
resource, which could be a piece of
data obtained as a result of a database
query or an external link that acts as
an intermediary en route to the final
destination. XML’s X links allows us
to specify multiple or group linked
locators.

XML Basics_Ch07_2pp.indd 205 8/7/2020 2:00:30 PM

206 • XML Basics

LINKING AND QUERYING

There are six different areas that need to be addressed while dealing with
linking and querying. They are as follows.

●● XML information set: The World Wide Web Consortium (W3C)’s
document defines what an XML information set is. It says that an XML
information set comprises various pieces of information, which together
make up the XML document.

●● Xlink is W3C’s mechanism for linking to other resources within an XML
document. Xlink also allows no-XML document to be linked together.
XPath is the general language specification for addressing parts of an
XML document framed by W3C’s.

●● XPointer is W3C’s mechanism for pointing to a particular location within
an XML document.

●● XML fragment Interchange for transmitting a part of XML document as
per the W3C specifications.

●● Querying XML document: The XML document can be queried using
the XSLT technology recommended by W3C.

XML INFORMATION SET

The XML information set, or info set, is a working draft created by the W3C to
describe various pieces of information that together form an XML document.
There are fifteen distinct types of information that forms the XML document.
They are represented in the table.

●● Exactly one document information item
●● One or more element information items
●● Attribute information items
●● Processing instruction information items
●● Character information items
●● Reference to skipped entity information items
●● Comment information items
●● Document type declaration information items
●● Entity information items

XML Basics_Ch07_2pp.indd 206 8/7/2020 2:00:30 PM

XML Schema Basics • 207

●● Notation information items
●● Entity start marker information items
●● Entity end marker information items
●● CDATA start marker information items
●● CDATA end marker information items
●● Namespace declaration items

LINK ELEMENTS

HTML has two link elements namely, A and IMG, whereas in XML links, the
link elements are identified by the element attributes.

Any XML element can act as a link element provided it has the right kind
of attributes.

<|ELEMENT CORRELATION ANY> <!ATTLIST CORRELATION
xlink:form CDATA #FIXED value>

The primary attribute that identifies the XML element as a link is the
xlink:form attribute, whose declaration in an XML DTD would be as shown.
Here, the value should be a locator and not the linking elements. The value
can be simple or extended.

LOCATORS

XML links work with link elements. The link elements contain locators.
Locators are in the form of attributes or other elements that point to spe-

cific locations.
In general, a locator is a URI, a fragment identifier, or a URI combined

with a fragment identifier. Locators for XML documents are extended pointers.
The syntax of locators allows us to use the two variations as shown here.
URI#fragment: This fetches the whole of the resource identified by the

URI and then extracts the part identified by the fragment identifier.
URI|fragment: The application can decide how it will process the URI in

order to extract the resource. This could be used to retrieve a particular part
of the document.

If the fragment identifier is a character string, the string is treated as the
value of the id attribute of an XML element. For instance, the locator sample.
html#sa2 points to the element with attribute value of sa2 in the file sample.html.

XML Basics_Ch07_2pp.indd 207 8/7/2020 2:00:30 PM

208 • XML Basics

XLINKS

XML’s Xlinks are used to establish hyperlinks in XML documents.
The W3C Xlink working draft defines two categories of links. They are

simple links and extended links.
The xml:link attribute is used for specifying a link or location term as

shown here. xml:link=“simple”| “extended” | “locator” | “group” | “document”

FIGURE 7.2  The outline classification of XML links

SIMPLE LINKS

Simple links are similar to HTML links, which are formed using the element
A in HTML.

Simple links are used to jump from one source document to a specified
destination either within the same document or another document. Simple
links have only one locator and hence move in one direction from source to
target location. A simple link contains a piece of text that acts as a resource
and one end of the link.

An example for a simple link in a XML document is given here.
<sample.link xlink:form="sample" href="http:// m.com/title.XML" >see also

<sample.link>

EXTENDED LINKS

Extended links allow us to link together any number of resources, resulting in
multiple targets instead of a simple one-to-one link in HTML.

XML Basics_Ch07_2pp.indd 208 8/7/2020 2:00:30 PM

XML Schema Basics • 209

Extended links allow XML documents to link to and from resources that
cannot contain the links themselves. This includes graphic files, sound files,
read-only documents, and so on, which does not allow us to modify the con-
tents or embed links.

They enable manipulations like filtering, addition, and modification of
links. For instance, imagine that we are able to modify the links at a certain
point, so experienced readers of a technical manual can traverse a different
path from that of novice readers.

Extended links also enable application software to process the links in
different ways depending upon the requirements. An extended link does not
directly point to anything or link anything together.

An extended link element identifies itself through its xlink:form attribute
value and contains a set of locator elements that together form the extended
link as shown. Here, the comment element declares itself to be an extended
link and an opinion element declares itself to be a locator element.

<comment xlink:form="extended">

 <opinion xlink:form="locator" href="link1"/>

 <reference href="#division1"/>

 <reference href="http://one.com/ first.html ">

 <reference href="references.htm"/>

</comment>

EXTENDED LINK GROUPS

Links can be located in external documents. This is accomplished through the
use of extended link groups. Similar to that of an extended link, an extended
link group does not point or link to anything. Instead, it contains a set of docu-
ment elements, in which each document contains the link resources as shown.

<xternal.refs >

<ref.doc href="http:// first.com/one.html"/>

<ref.doc href="list.htm"/>

</xternal.refs>

When using extended link groups, there is a possibility of a link element
pointing to an extended link group. If an extended link group points back to
the original document, or to a document containing another extended link
group, then it would lead to infinite loops and links. To prevent infinite link-
ing, we declare a value for the steps attribute of the group element. This spec-
ifies the limit of the number of layers that can be nested.

XML Basics_Ch07_2pp.indd 209 8/7/2020 2:00:30 PM

210 • XML Basics

VALIDATING AN XML INSTANCE DOCUMENT

In the last section, you saw an example of a simple XML schema, which
defined the structure of an Author element. The code sample below shows a
valid XML instance of this XML schema.

Code Sample: SchemaBasics/Demos/MarkTwain.xml
<?xml version="1.0"?>

<Author xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Author.xsd">

 <FirstName>Mark</FirstName>

 <LastName>Twain</LastName>

</Author>

This is a simple XML document. Its document element is Author, which
contains two child elements, FirstName and LastName, just as the associated
XML schema requires.

The xmlns:xsi attribute of the document element indicates that this XML
document is an instance of an XML schema. The document is tied to a spe-
cific XML schema with the xsi:noNamespaceSchemaLocation attribute.

There are many ways to validate the XML instance. If you are using
an XML authoring tool, it very likely is able to perform the validation for
you. Alternatively, a couple of simple online XML schema validator tools are
available.

SIMPLE-TYPE ELEMENTS

Simple-type elements have no children or attributes. For example, the Name
element below is a simple-type element; whereas the Person and HomePage
elements are not.

Code Sample: SimpleTypes/Demos/SimpleType.xml
<?xml version="1.0"?>

<Person>

 <Name>Mark Twain</Name>

 <HomePage URL="http://www.marktwain.com"/>

</Person>

A simple type can either be built-in or user-derived.

XML Basics_Ch07_2pp.indd 210 8/7/2020 2:00:30 PM

XML Schema Basics • 211

FIGURE 7.3  Classification of the simple-type element

BUILT-IN SIMPLE TYPES

XML schema specifies 44 built-in types, 19 of which are primitive.

19 PRIMITIVE DATA TYPES

The 19 built-in primitive types are as follows:

●● string
●● boolean
●● decimal
●● float
●● double
●● duration
●● dateTime
●● time
●● date

XML Basics_Ch07_2pp.indd 211 8/7/2020 2:00:31 PM

212 • XML Basics

●● gYearMonth
●● gYear
●● gMonthDay
●● gDay
●● gMonth
●● hexBinary
●● base64Binary
●● anyURI
●● QName
●● NOTATION

BUILT-IN DERIVED DATA TYPES

The other 25 built-in data types are derived from one of the primitive types
listed below.

●● normalizedString
●● token
●● language
●● NMTOKEN
●● NMTOKENS
●● Name
●● NCName
●● ID
●● IDREF
●● IDREFS
●● ENTITY
●● ENTITIES
●● integer
●● nonPositiveInteger
●● negativeInteger
●● long
●● int

XML Basics_Ch07_2pp.indd 212 8/7/2020 2:00:31 PM

XML Schema Basics • 213

●● short
●● byte
●● nonNegativeInteger
●● unsignedLong
●● unsignedInt
●● unsignedShort
●● unsignedByte
●● positiveInteger

DEFINING A SIMPLE-TYPE ELEMENT

A simple-type element is defined using the type attribute.
Code Sample: SimpleTypes/Demos/Author.xsd
<?xml version="1.0" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Notice the FirstName and LastName elements in the code sample below.
They are not explicitly defined as simple-type elements. Instead, the type is
defined with the type attribute. Because the value (string in both cases) is a
simple type, the elements themselves are simple-type elements.

Code Sample: SimpleTypes/Exercises/Song.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Song">

 <xs:complexType>

 <xs:sequence>

 <!--

XML Basics_Ch07_2pp.indd 213 8/7/2020 2:00:31 PM

214 • XML Basics

Add three simple-type elements:

1.	 Title
2.	 Year
3.	 Artist

 -->

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

USER-DERIVED SIMPLE TYPES

A schema author can derive a new simple type using the <xs:simpleType> ele-
ment. This simple type can then be used in the same way that built-in simple
types are.

Simple types are derived by restricting built-in simple types or other
user-derived simple types. For example, you might want to create a simple
type called password that is an eight-character string. To do so, you would start
with the xs:string type and restrict its length to eight characters. This is done
nesting the <xs:restriction> element inside of the <xs:simpleType> element.

Code Sample: SimpleTypes/Demos/Password.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Password">

 <xs:restriction base="xs:string">

 <xs:length value="8"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="User">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PW" type="Password"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

XML Basics_Ch07_2pp.indd 214 8/7/2020 2:00:31 PM

XML Schema Basics • 215

Code Sample: SimpleTypes/Demos/Password.xml
<?xml version="1.0"?>

<User xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Password.xsd">

 <PW>MyPasWrd</PW>

</User>

Simple types can be derived by applying one or more of the following
facets.

●● length
●● minLength
●● maxLength
●● pattern
●● enumeration
●● whiteSpace
●● minInclusive
●● minExclusive
●● maxInclusive
●● maxExclusive
●● totalDigits
●● fractionDigits

CONTROLLING LENGTH

The length of a string can be controlled with the length, minLength, and
maxLength facets. We used the length facet in the example above to create a
Password simple type as an eight-character string. We could use minLength
and maxLength to allow passwords that were between six and twelve charac-
ters in length.

The schema below shows how this is done. The two XML instances shown
below it are both valid, because the length of the password is between six and
twelve characters.

Code Sample: SimpleTypes/Demos/Password2.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Password">

XML Basics_Ch07_2pp.indd 215 8/7/2020 2:00:31 PM

216 • XML Basics

 <xs:restriction base="xs:string">

 <xs:minLength value="6"/>

 <xs:maxLength value="12"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="User">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PW" type="Password"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/Password2.xml
<?xml version="1.0"?>

<User xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Password2.xsd">

 <PW>MyPass</PW>

</User>

Code Sample: SimpleTypes/Demos/Password2b.xml
<?xml version="1.0"?>

<User xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Password2.xsd">

 <PW>MyPassWord</PW>

</User>

SPECIFYING PATTERNS

Patterns are specified using the xs:pattern element and regular expressions.
For example, you could use the xs:pattern element to restrict the Password
simple type to consist of between six and twelve characters, which can only be
lowercase and uppercase letters and underscores.

Code Sample: SimpleTypes/Demos/Password3.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Password">

 <xs:restriction base="xs:string">

XML Basics_Ch07_2pp.indd 216 8/7/2020 2:00:31 PM

XML Schema Basics • 217

 <xs:pattern value="[A-Za-z_]{6,12}"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="User">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PW" type="Password"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/Password3.xml
<?xml version="1.0"?>

<User xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Password3.xsd">

 <PW>MyPassword</PW>

</User>

WORKING WITH NUMBERS

Numeric simple types can be derived by limiting the value to a certain range
using minExclusive, minInclusive, maxExclusive, and maxInclusive. You can
also limit the total number of digits and the number of digits after the decimal
point using totalDigits and fractionDigits, respectively.

MINS AND MAXS

The following example shows how to derive a simple type called Salary, which
is a decimal between 10,000 and 90,000.

Code Sample: SimpleTypes/Demos/Employee.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Salary">

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="10000"/>

 <xs:maxInclusive value="90000"/>

 </xs:restriction>

XML Basics_Ch07_2pp.indd 217 8/7/2020 2:00:31 PM

218 • XML Basics

 </xs:simpleType>

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Salary" type="Salary"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/ShashiBanzal.xml
<?xml version="1.0"?>

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Employee.xsd">

 <Salary>55000</Salary>

</Employee>

NUMBER OF DIGITS

Using totalDigits and fractionDigits, we can further specify that the Salary
type should consist of seven digits, two of which come after the decimal point.
Both totalDigits and fractionDigits are maximums. That is, if totalDigits is
specified as 5 and fractionDigits is specified as 2, a valid number could have
no more than five digits total and no more than two digits after the decimal
point.

Code Sample: SimpleTypes/Demos/Employee2.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Salary">

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="10000"/>

 <xs:maxInclusive value="90000"/>

 <xs:fractionDigits value="2"/>

 <xs:totalDigits value="7"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

XML Basics_Ch07_2pp.indd 218 8/7/2020 2:00:31 PM

XML Schema Basics • 219

 <xs:element name="Salary" type="Salary"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/MaryBanzal.xml
<?xml version="1.0"?>

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Employee2.xsd">

 <Salary>55000.00</Salary>

</Employee>

ENUMERATIONS

A derived type can be a list of possible values. For example, the JobTitle ele-
ment could be a list of pre-defined job titles.

Code Sample: SimpleTypes/Demos/Employee3.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Salary">

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="10000"/>

 <xs:maxInclusive value="90000"/>

 <xs:fractionDigits value="2"/>

 <xs:totalDigits value="7"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="JobTitle">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Sales Manager"/>

 <xs:enumeration value="Salesperson"/>

 <xs:enumeration value="Receptionist"/>

 <xs:enumeration value="Developer"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Employee">

 <xs:complexType>

XML Basics_Ch07_2pp.indd 219 8/7/2020 2:00:31 PM

220 • XML Basics

 <xs:sequence>

 <xs:element name="Salary" type="Salary"/>

 <xs:element name="Title" type="JobTitle"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/SteveBanzal.xml
<?xml version="1.0"?>

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Employee3.xsd">

 <Salary>90000.00</Salary>

 <Title>Sales Manager</Title>

</Employee>

WHITESPACE HANDLING

By default, whitespace in elements of the datatype xs:string is preserved in
XML documents; however, this can be changed for datatypes derived from
xs:string. This is done with the xs:whiteSpace element, the value of which
must be one of the following:

●● preserve—Whitespace is not normalized. That is to say, it is kept as-is.
●● replace—All tabs, line feeds, and carriage returns are replaced by single

spaces.
●● collapse—All tabs, line feeds, and carriage returns are replaced by single

spaces and then all groups of single spaces are replaced with one single
space. All leading and trailing spaces are then removed (i.e., trimmed).

In SimpleTypes/Demos/Password.xsd, we looked at restricting the length
of a Password datatype to eight characters using the xs:length element. If
whitespace is preserved, then leading and trailing spaces are considered part
of the password. In the following example, we set xs:whiteSpace to collapse,
thereby discounting any leading or trailing whitespace. As you can see, this
allows the XML instance author to format the document without the consid-
eration of the whitespace.

Code Sample: SimpleTypes/Demos/Password4.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

XML Basics_Ch07_2pp.indd 220 8/7/2020 2:00:31 PM

XML Schema Basics • 221

 <xs:simpleType name="Password">

 <xs:restriction base="xs:string">

 <xs:length value="8"/>

 <xs:whiteSpace value="collapse"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="User">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PW" type="Password"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/Password4.xml
<?xml version="1.0"?>

<User xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Password4.xsd">

 <PW>

 12345678

 </PW>

</User>

SPECIFYING ELEMENT TYPE LOCALLY

We defined simple types globally and then set the type attribute of element
declarations to be of our derived simple types. This makes it easy to reuse a
simple type across multiple elements, as we saw with the ProperName type
in the last exercise.

It is also possible to define the type of an element locally. The type is then
unnamed and applicable only to that element. The only reason to do this is to
clearly show that the type is specific to that element and not meant for reuse.

Code Sample: SimpleTypes/Demos/PasswordLocal.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="User">

 <xs:complexType>

 <xs:sequence>

XML Basics_Ch07_2pp.indd 221 8/7/2020 2:00:31 PM

222 • XML Basics

 <xs:element name="PW">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:length value="8"/>

 <xs:whiteSpace value="collapse"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

NONATOMIC TYPES

All of XML schema’s built-in types are atomic, meaning that they cannot be
broken down into meaningful bits. The XML schema provides for two nona-
tomic types: lists and unions.

LISTS

List types are sequences of atomic types separated by whitespace; you can
have a list of integers or a list of dates. Lists should not be confused with
enumerations. Enumerations provide optional values for an element. Lists
represent a single value within an element.

Code Sample: SimpleTypes/Demos/EmployeeList.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Salary">

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="10000"/>

 <xs:maxInclusive value="90000"/>

 <xs:fractionDigits value="2"/>

 <xs:totalDigits value="7"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="JobTitle">

 <xs:restriction base="xs:string">

XML Basics_Ch07_2pp.indd 222 8/7/2020 2:00:31 PM

XML Schema Basics • 223

 <xs:enumeration value="Sales Manager"/>

 <xs:enumeration value="Salesperson"/>

 <xs:enumeration value="Receptionist"/>

 <xs:enumeration value="Developer"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="DateList">

 <xs:list itemType="xs:date"/>

 </xs:simpleType>

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Salary" type="Salary"/>

 <xs:element name="Title" type="JobTitle"/>

 <xs:element name="VacationDays" type="DateList"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/SandyBanzal.xml
<?xml version="1.0"?>

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="EmployeeList.xsd">

 <Salary>44000</Salary>

 <Title>Salesperson</Title>

 <VacationDays>2006-8-13 2006-08-14 2006-08-15</VacationDays>

</Employee>

UNIONS

Union types are groupings of types, essentially allowing for the value of an ele-
ment to be of more than one type. In the example below, two atomic simple
types are derived: RunningRace and Gymnastics. A third simple type, Event,
is then derived as a union of the previous two. The Event element is of the
Event type, which means that it can either be of the RunningRace or the
Gymnastics type.

XML Basics_Ch07_2pp.indd 223 8/7/2020 2:00:31 PM

224 • XML Basics

Code Sample: SimpleTypes/Demos/Program.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="RunningRace">

 <xs:restriction base="xs:string">

 <xs:enumeration value="100 meters"/>

 <xs:enumeration value="10 kilometers"/>

 <xs:enumeration value="440 yards"/>

 <xs:enumeration value="10miles"/>

 <xs:enumeration value="Marathon"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="Gymnastics">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Vault"/>

 <xs:enumeration value="Floor"/>

 <xs:enumeration value="Rings"/>

 <xs:enumeration value="Beam"/>

 <xs:enumeration value="Uneven Bars"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="Event">

 <xs:union memberTypes="RunningRace Gymnastics"/>

 </xs:simpleType>

 <xs:element name="Program">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Event" type="Event"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/100Meters.xml
<?xml version="1.0"?>

<Program xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Program.xsd">

 <Event>100 meters</Event>

</Program>

XML Basics_Ch07_2pp.indd 224 8/7/2020 2:00:31 PM

XML Schema Basics • 225

DECLARING GLOBAL SIMPLE-TYPE ELEMENTS

When an element declaration is a child of the xs:schema element, the declared
element is global. Global elements can be referenced by other element dec-
larations, allowing for element reuse. Take a look at the following example.

Code Sample: SimpleTypes/Demos/AuthorGlobal.xsd
<?x�ml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="FirstName"/>

 <xs:element ref="LastName"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

In this example, the FirstName and LastName elements are both declared
globally. The global elements are then referenced as children of the Author
sequence.

GLOBAL VS. LOCAL SIMPLE-TYPE ELEMENTS

The major advantage of declaring an element globally is that the element
can then be referenced throughout the schema. This makes the code more
modular and easier to maintain. For example, suppose that the song schema
contained MusicWriter, LyricsWriter, and Singer elements. Each of these ele-
ments might have the child element Name. If the Name element is declared
globally, any changes to that element can be made in one location.

The major disadvantage of declaring elements globally is that all global
elements must have unique names.

Code Sample: SimpleTypes/Demos/BookLocal.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="PersonTitle">

XML Basics_Ch07_2pp.indd 225 8/7/2020 2:00:31 PM

226 • XML Basics

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="PersonTitle"/>

 <xs:element name="Name" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Notice that there are two elements named Title, which can appear in
different locations in the XML instance and are of different types. When the
Title element appears at the root of the XML instance, its value can be any
string; when it appears as a child of Author, its value is limited to “Mr.,” “Ms.,”
or “Dr.”

The example below defines a similar content model; however, because
the elements are declared globally, the name Title cannot be used twice.

Code Sample: SimpleTypes/Demos/BookGlobal.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="PersonTitle">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

XML Basics_Ch07_2pp.indd 226 8/7/2020 2:00:31 PM

XML Schema Basics • 227

 </xs:simpleType>

 <xs:element name="BookTitle" type="xs:string"/>

 <xs:element name="Title" type="PersonTitle"/>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="BookTitle"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Title"/>

 <xs:element ref="Name"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

DEFAULT VALUES

Elements that do not have any children can have default values. To specify a
default value, use the default attribute of the xs:element element.

Code Sample: SimpleTypes/Demos/EmployeeDefault.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 ---- Code Omitted ----

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Salary" type="Salary"/>

 <xs:element name="Title" type="JobTitle" default="Salesperson"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

XML Basics_Ch07_2pp.indd 227 8/7/2020 2:00:31 PM

228 • XML Basics

When defaults are set in the XML schema, the following rules apply for
the instance document.

●● If the element appears in the document with content, the default value
is ignored.

●● If the element appears without content, the default value is applied.
●● If the element does not appear, the element is left out. In other words,

providing a default value does not imply that the element should be
inserted if the XML instance author leaves it out.

Examine the following XML instance. The Title element cannot be
empty; it requires one of the values from the enumeration defined in the
JobTitle simple type. However, in accordance with the second item from the
list, the schema processor applies the default value of Salesperson to the Title
element, so the instance validates successfully.

Code Sample: SimpleTypes/Demos/MikeBanzal.xml
<?xml version="1.0"?>

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="EmployeeDefault.xsd">

 <Salary>90000</Salary>

 <Title/>

</Employee>

FIXED VALUES

Element values can be fixed, meaning that if they appear in the instance docu-
ment, they must contain a specified value. Fixed elements are often used for
boolean switches.

Code Sample: SimpleTypes/Demos/EmployeeFixed.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Salary">

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="10000"/>

 <xs:maxInclusive value="90000"/>

 <xs:fractionDigits value="2"/>

 <xs:totalDigits value="7"/>

 </xs:restriction>

 </xs:simpleType>

XML Basics_Ch07_2pp.indd 228 8/7/2020 2:00:31 PM

XML Schema Basics • 229

 <xs:simpleType name="JobTitle">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Sales Manager"/>

 <xs:enumeration value="Salesperson"/>

 <xs:enumeration value="Receptionist"/>

 <xs:enumeration value="Developer"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Salary" type="Salary"/>

 <xs:element name="Title" type="JobTitle"/>

 <xs:element name="Status" type="xs:string" fixed="current"

 minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The MinOccurs attribute is used to make the Status element optional.
However, if it is used, it must contain the value current or be left empty,
in which case, the value “current” is implied. The file SimpleTypes/Demos/
LauraBanzal.xml in the Demos folder validates against this schema.

NIL VALUES

When an optional element is left out of an XML instance, it has no clear
meaning. For example, suppose a schema declares a Name element as having
required FirstName and LastName elements and an optional MiddleName
element. And suppose a particular instance of this schema does not include
the MiddleName element. Does this mean that the instance author did not
know the middle name of the person in question or does it mean the person
in question has no middle name?

Setting the nillable attribute of xs:element to true indicates that such ele-
ments can be set to nil by setting the xsi:nil attribute to true.

Code Sample: SimpleTypes/Demos/AuthorNillable.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Author">

XML Basics_Ch07_2pp.indd 229 8/7/2020 2:00:31 PM

230 • XML Basics

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="MiddleName" type="xs:string" nillable="true"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: SimpleTypes/Demos/MarkTwain.xml
<?xml version="1.0"?>

<Author xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="AuthorNillable.xsd">

 <FirstName>Mark</FirstName>

 <MiddleName xsi:nil="true"/>

 <LastName>Twain</LastName>

</Author>

By including the MiddleName element and setting xsi:nil to true, we are
explicitly stating that Mark Twain has no middle name.

COMPLEX-TYPE ELEMENTS

Complex-type elements have attributes, child elements, or some combination
of the two. For example, the Name and HomePage elements below are both
complex-type elements.

Code Sample: ComplexTypes/Demos/ComplexType.xml
<?xml version="1.0"?>

<Person>

 <Name>

 <FirstName>Mark</FirstName>

 <LastName>Twain</LastName>

 </Name>

 <HomePage URL="http://www.marktwain.com"/>

</Person>

As the diagram below shows, a complex-type element can be empty, con-
tain simple content such as a string, or can contain complex content such as a
sequence of elements.

XML Basics_Ch07_2pp.indd 230 8/7/2020 2:00:31 PM

XML Schema Basics • 231

FIGURE 7.4  Classification of complex-type element

Whereas it is not necessary to explicitly declare that a simple-type element
is a simple type, it is necessary to specify that a complex-type element is a
complex type. This is done with the xs:complexType element as shown below.

Syntax
<xs:element name="ElementName">

 <xs:complexType>

 <!--Content Model Goes Here-->

 </xs:complexType>

</xs:element>

CONTENT MODELS

Content models are used to indicate the structure and order in which child
elements can appear within their parent element. Content models are made
up of model groups. The three types of model groups are listed below.

●● xs:sequence—the elements must appear in the order specified
●● xs:all—the elements must appear, but order is not important
●● xs:choice—only one of the elements can appear.
●● xs:sequence

XML Basics_Ch07_2pp.indd 231 8/7/2020 2:00:31 PM

232 • XML Basics

The following sample shows the syntax for declaring a complex-type ele-
ment as a sequence, meaning that the elements must show up in the order
they are declared.

Syntax
<xs:element name="ElementName">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Child1" type="xs:string"/>

 <xs:element name="Child2" type="xs:string"/>

 <xs:element name="Child3" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

xs:all

The following sample shows the syntax for declaring a complex-type ele-
ment as a conjunction, meaning that the elements can show up in any order.

Syntax
<xs:element name="ElementName">

 <xs:complexType>

 <xs:all>

 <xs:element name="Child1" type="xs:string"/>

 <xs:element name="Child2" type="xs:string"/>

 <xs:element name="Child3" type="xs:string"/>

 </xs:all>

 </xs:complexType>

</xs:element>

xs:choice

The following sample shows the syntax for declaring a complex-type ele-
ment as a choice, meaning that only one of the child elements may show up.

Syntax
<xs:element name="ElementName">

 <xs:complexType>

 <xs:choice>

 <xs:element name="Child1" type="xs:string"/>

 <xs:element name="Child2" type="xs:string"/>

 <xs:element name="Child3" type="xs:string"/>

 </xs:choice>

XML Basics_Ch07_2pp.indd 232 8/7/2020 2:00:31 PM

XML Schema Basics • 233

 </xs:complexType>

</xs:element>

COMPLEX MODEL GROUPS

In the examples above, the model groups are all made up of simple-type elements.
However, complex-type elements can contain other complex-type elements.

Syntax

<xs:element name="ElementName">

 <xs:complexType>

 <xs:choice>

 <xs:element name="Child1" type="xs:string"/>

 <xs:element name="Child2">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="GC1" type="xs:string"/>

 <xs:element name="GC2" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Child3" type="xs:string"/>

 </xs:choice>

 </xs:complexType>

</xs:element>

Furthermore, model groups can be nested within each other. The following
example illustrates this. Notice that the choice model group, which allows for
either a Salary element or a Wage element, is nested within a sequence model
group. Both of the subsequent instances are valid according to this schema.

Code Sample: ComplexTypes/Demos/Employee.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Salary">

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="10000"/>

 <xs:maxInclusive value="90000"/>

 </xs:restriction>

 </xs:simpleType>

XML Basics_Ch07_2pp.indd 233 8/7/2020 2:00:31 PM

234 • XML Basics

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName"/>

 <xs:element name="LastName"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:choice>

 <xs:element name="Salary" type="Salary"/>

 <xs:element name="Wage" type="xs:decimal"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Sample: ComplexTypes/Demos/DaveBanzal.xml
<?xml version="1.0"?>

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Employee.xsd">

 <Name>

 <FirstName>Dave</FirstName>

 <LastName>Banzal</LastName>

 </Name>

 <Salary>90000</Salary>

</Employee>

Code Sample: ComplexTypes/Demos/JillBanzal.xml
<?xml version="1.0"?>

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Employee.xsd">

 <Name>

 <FirstName>Jill</FirstName>

 <LastName>Banzal</LastName>

 </Name>

 <Wage>20.50</Wage>

</Employee>

XML Basics_Ch07_2pp.indd 234 8/7/2020 2:00:31 PM

XML Schema Basics • 235

OCCURRENCE CONSTRAINTS

By default, elements that are declared locally must show up once, and only
once, within their parent. This constraint can be changed using the minOc-
curs and maxOccurs attributes. The default value of each of these attributes
is 1. The value of minOccurs can be any non-negative integer. The value of
maxOccurs can be any positive integer or unbounded, meaning that the ele-
ment can appear an infinite number of times.

The example below shows how minOccurs can be used to make an ele-
ment optional and how maxOccurs can be used to allow an element to be
repeated indefinitely.

Code Sample: ComplexTypes/Demos/Employee2.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Salary">

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="10000"/>

 <xs:maxInclusive value="90000"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName"/>

 <xs:element name="MiddleName" minOccurs="0"/>

 <xs:element name="LastName"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:choice>

 <xs:element name="Salary" type="Salary"/>

 <xs:element name="Wage" type="xs:decimal"/>

 </xs:choice>

 <xs:element name="Responsibilities">

 <xs:complexType>

 <xs:sequence>

XML Basics_Ch07_2pp.indd 235 8/7/2020 2:00:32 PM

236 • XML Basics

 <�xs:element name="Responsibility" type="xs:string"
maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Note that minOccurs and maxOccurs can also be applied to model groups
(e.g., xs:sequence) to control the number of times a model group can be
repeated.

DECLARING GLOBAL COMPLEX-TYPE ELEMENTS

As with simple-type elements, complex-type elements can be declared glob-
ally by making the element declaration a child of the xs:schema element.

Globally declared elements cannot take occurrence constraints. How-
ever, the minOccurs and maxOccurs constraints can be applied to references
to globally declared elements. To illustrate, look at the following example.
Notice that all elements, both simple-type and complex-type, are declared
globally and then referenced within the model groups. Some of the refer-
ences (e.g., Responsibilities) have occurrence constraints assigned to them.

Code Sample: ComplexTypes/Demos/Employee3.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="Salary">

 <xs:restriction base="xs:decimal">

 <xs:minInclusive value="10000"/>

 <xs:maxInclusive value="90000"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="FirstName"/>

 <xs:element ref="MiddleName" minOccurs="0"/>

XML Basics_Ch07_2pp.indd 236 8/7/2020 2:00:32 PM

XML Schema Basics • 237

 <xs:element ref="LastName"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="FirstName"/>

 <xs:element name="MiddleName"/>

 <xs:element name="LastName"/>

 <xs:element name="Wage" type="xs:decimal"/>

 <xs:element name="Salary" type="Salary"/>

 <xs:element name="Responsibilities">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Responsibility" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Responsibility" type="xs:string"/>

 <xs:element name="Employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Name"/>

 <xs:choice>

 <xs:element ref="Salary"/>

 <xs:element ref="Wage"/>

 </xs:choice>

 <xs:element ref="Responsibilities" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

MIXED CONTENT

Sometimes an element will contain both child elements and character text.
For example, a para element might contain mostly plain character text, but it
could also have other elements (e.g., emphasis) littered throughout the char-
acter text. As an example, let’s examine the following XML instance document.

XML Basics_Ch07_2pp.indd 237 8/7/2020 2:00:32 PM

238 • XML Basics

Code Sample: ComplexTypes/Demos/PaulMcCartney.xml
<?xml version="1.0"?>

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Employee4.xsd">

 <Name>

 <FirstName>Paul</FirstName>

 <LastName>McCartney</LastName>

 </Name>

 <Salary>90000</Salary>

 <Bio>

 Worked for <Company>the Beatles</Company> as a

 <JobTitle>Singer</JobTitle>.

 Worked for <Company>the Beatles</Company> as a

 <JobTitle>Bass Guitarist</JobTitle>.

 Worked for <Company>the Wings</Company> as a

 <JobTitle>Singer</JobTitle>.

 </Bio>

</Employee>

Notice that the Bio element contains child elements Company and JobTi-
tle as well as character text. Such elements are said to contain mixed content.
The syntax for declaring elements with mixed content is shown below.

Syntax

<xs:element name="ElementName">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:element name="Child1" type="xs:string"/>

 <xs:element name="Child2" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The following example illustrates how to define this in our employee
schema.

Code Sample: ComplexTypes/Demos/Employee4.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 ---- Code Omitted ----

XML Basics_Ch07_2pp.indd 238 8/7/2020 2:00:32 PM

XML Schema Basics • 239

 <xs:element name="Bio">

 <xs:complexType mixed="true">

 <xs:sequence maxOccurs="unbounded">

 <xs:element name="Company" type="xs:string"/>

 <xs:element name="JobTitle" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 ---- Code Omitted ----

</xs:schema>

DEFINING COMPLEX TYPES GLOBALLY

As with simple types, complex types can be defined globally. The example
below shows how this is done.

Code Sample: ComplexTypes/Demos/Author.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="Person">

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Author" type="Person"/>

</xs:schema>

As you can see, complex types are defined with the xs:complexType ele-
ment. The major advantage of defining a complex type globally is that it can
be reused. For example, a schema might allow for an Illustrator element as
well as an Author element. Both elements could be of type Person. This way,
if the Person type is changed later, the change will apply to both elements.

The instance document below will validate properly against the schema
above.

Code Sample: ComplexTypes/Demos/MarkTwain.xml
<?xml version="1.0"?>

<Author xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Author.xsd">

XML Basics_Ch07_2pp.indd 239 8/7/2020 2:00:32 PM

240 • XML Basics

 <FirstName>Mark</FirstName>

 <LastName>Twain</LastName>

</Author>

Attributes

While attributes themselves must be of the simple type, only complex-type
elements can contain attributes.

EMPTY ELEMENTS

An empty element is an element that contains no content, but it may have
attributes. The HomePage element in the instance document below is an
empty element. Below the instance is the snippet from the Author.xsd schema
that declares the HomePage element.

Code Sample: Attributes/Demos/MarkTwain.xml
<?xml version="1.0"?>

<Author xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Author.xsd">

 <Name>

 <FirstName>Mark</FirstName>

 <LastName>Twain</LastName>

 </Name>

 <HomePage URL="http://www.marktwain.com"/>

</Author>

Code Sample: Attributes/Demos/Author.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 ---- Code Omitted ----

 <xs:element name="HomePage">

 <xs:complexType>

 <xs:attribute name="URL" type="xs:anyURI"/>

 </xs:complexType>

 </xs:element>

 ---- Code Omitted ----

</xs:schema>

XML Basics_Ch07_2pp.indd 240 8/7/2020 2:00:32 PM

XML Schema Basics • 241

ADDING ATTRIBUTES TO ELEMENTS WITH COMPLEX CONTENT

Elements that have child elements are said to contain complex content.
Attributes for such elements are declared after the element’s model group.
For example, the Name element in the XML instance below has two child ele-
ments and two attributes. Below the instance is the snippet from the Author2.
xsd schema that declares the Name element.

Code Sample: Attributes/Demos/MarkTwain2.xml
<?xml version="1.0"?>

<Author xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Author2.xsd">

 <Name Pseudonym="true" HomePage="http://www.marktwain.com">

 <FirstName>Mark</FirstName>

 <LastName>Twain</LastName>

 </Name>

</Author>

Code Sample: Attributes/Demos/Author2.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 ---- Code Omitted ----

 <xs:element name="Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="Pseudonym" type="xs:boolean"/>

 <xs:attribute name="HomePage" type="xs:anyURI"/>

 </xs:complexType>

 </xs:element>

 ---- Code Omitted ----

</xs:schema>

ADDING ATTRIBUTES TO ELEMENTS WITH SIMPLE CONTENT

An element with simple content is one that only contains character data. If
such an element contains one or more attributes, then it is a complex-type
element. Elements with simple content and attributes are declared using

XML Basics_Ch07_2pp.indd 241 8/7/2020 2:00:32 PM

242 • XML Basics

the xs:simpleContent element and then extending the element with the
xs:extension element, which must specify the type of simple content con-
tained with the base attribute. The syntax is shown below.

Syntax

<xs:element name="ElementName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="AttName" type="xs:string"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

For example, the FirstName element in the next XML instance contains
only simple content and has a single attribute. Below the instance is the snip-
pet from the Author3.xsd schema that declares the FirstName element.

Code Sample: Attributes/Demos/NatHawthorne.xml
<?xml version="1.0"?>

<Author xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Author3.xsd">

 <Name Pseudonym="true" HomePage="http://www.nathanielhawthorne.com">

 <FirstName Full="false">Nat</FirstName>

 <LastName>Hawthorne</LastName>

 </Name>

</Author>

Code Sample: Attributes/Demos/Author3.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 ---- Code Omitted ----

 <xs:element name="FirstName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Full" type="xs:boolean"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

XML Basics_Ch07_2pp.indd 242 8/7/2020 2:00:32 PM

XML Schema Basics • 243

 </xs:element>

 ---- Code Omitted ----

</xs:schema>

RESTRICTING ATTRIBUTE VALUES

Attribute values are restricted in the same way that the values of simple-type
elements are restricted. Below are three examples.

This first example shows how to restrict an attribute value by defining its
type locally. Test Attributes/Demos/HuckFinn.xml against this schema.

Code Sample: Attributes/Demos/Book.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="Title">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

XML Basics_Ch07_2pp.indd 243 8/7/2020 2:00:32 PM

244 • XML Basics

This second example shows how to restrict an attribute value by applying
a globally defined simple type. You may test Attributes/Demos/TomSawyer.
xml against this schema.

Code Sample: Attributes/Demos/Book2.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="PersonTitle">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="Title" type="PersonTitle"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

This third example shows how to declare an attribute with a derived type
globally. You may test Attributes/Demos/LifeOnTheMississippi.xml against
this schema.

Code Sample: Attributes/Demos/Book3.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:attribute name="Title">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

XML Basics_Ch07_2pp.indd 244 8/7/2020 2:00:32 PM

XML Schema Basics • 245

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 </xs:sequence>

 <xs:attribute ref="Title"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

DEFAULT AND FIXED VALUES

Default Values

Attributes can have default values. To specify a default value, use the default
attribute of the xs:attribute element. Default values for attributes work slightly
differently than they do for elements. If the attribute is not included in the
instance document, the schema processor inserts it with the default value. You
may test Attributes/Demos/NatHawthorne2.xml against this schema.

Code Sample: Attributes/Demos/Author4.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 ---- Code Omitted ----

 <xs:element name="FirstName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

XML Basics_Ch07_2pp.indd 245 8/7/2020 2:00:32 PM

246 • XML Basics

  <xs:attribute name="Full" type="xs:boolean" default="true"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 ---- Code Omitted ----

</xs:schema>

FIXED VALUES

Attribute values can be fixed, meaning that, if they appear in the instance
document, they must contain a specified value. Like with simple-type ele-
ments, this is done with the fixed attribute. You may test Attributes/Demos/
NatHawthorne3.xml against this schema.

Code Sample: Attributes/Demos/Author5.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

---- Code Omitted ----

 <xs:element name="Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Full" type="xs:boolean" default="true"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

   <xs:attribute name="Pseudonym" type="xs:boolean" fixed="true"/>

 <xs:attribute name="HomePage" type="xs:anyURI"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

---- Code ----

</xs:schema>

XML Basics_Ch07_2pp.indd 246 8/7/2020 2:00:32 PM

XML Schema Basics • 247

REQUIRING ATTRIBUTES

By default, attributes are optional, but they can be required by setting the use
attribute of xs:attribute to required as shown in the next code snippet.

Code Sample: Attributes/Demos/Author6.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

---- Code Omitted ----

 <xs:element name="Name">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="Full" type="xs:boolean" default="true"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="Pseudonym" type="xs:boolean" fixed="true"/>

 <xs:attribute name="HomePage" type="xs:anyURI" use="required"/>

 </xs:complexType>

 </xs:element>

 ---- Code Omitted ----

</xs:schema>

Reusing Schema Components

We have already seen several methods of reusing schema parts.

●● Declaring elements globally
●● Declaring attributes globally
●● Defining global simple types
●● Defining global complex types

We will now look at some other methods of reuse.

XML Basics_Ch07_2pp.indd 247 8/7/2020 2:00:32 PM

248 • XML Basics

GROUPS

Element and attribute groups can be used to create a set structure for reuse.
To illustrate the benefit of groups, let’s first look at a simple XML instance and
its (rather long) schema that does not use groups.

Code Sample: ReusingComponents/Demos/WinnieThePooh.xml
<?xml version="1.0"?>

<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="Book.xsd">

 <Title>Winnie the Pooh</Title>

 <Author Title="Mr." BirthYear="1882">

 <FirstName>A.</FirstName>

 <MiddleName>A.</MiddleName>

 <LastName>Milne</LastName>

 <Specialty>Childrens</Specialty>

 </Author>

 <Illustrator Title="Mr." BirthYear="1879">

 <FirstName>Ernest</FirstName>

 <MiddleName>H.</MiddleName>

 <LastName>Shepard</LastName>

 </Illustrator>

</Book>

Code Sample: ReusingComponents/Demos/Book.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

     <xs:element name="MiddleName" type="xs:string" minOccurs="0"/>

 <xs:element name="LastName" type="xs:string"/>

 <xs:element name="Specialty">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mystery"/>

XML Basics_Ch07_2pp.indd 248 8/7/2020 2:00:32 PM

XML Schema Basics • 249

 <xs:enumeration value="Humor"/>

 <xs:enumeration value="Horror"/>

 <xs:enumeration value="Childrens"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Title">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="BirthYear" type="xs:gYear"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Illustrator" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="MiddleName" type="xs:string" minOccurs="0"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 <xs:attribute name="Title">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="BirthYear" type="xs:gYear"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

XML Basics_Ch07_2pp.indd 249 8/7/2020 2:00:32 PM

250 • XML Basics

The Author element and the Illustrator element have some elements and
attributes in common. Let’s see how we can make this code more modular.

Element Groups

First, we’ll look at how we can group the FirstName, MiddleName, and
LastName elements with xs:group to avoid rewriting the elements.

Code Sample: ReusingComponents/Demos/Book2.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:group name="GroupName">

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="MiddleName" type="xs:string" minOccurs="0"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 </xs:group>

<xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="GroupName"/>

---- Code ----

 </xs:complexType>

 </xs:element>

 <xs:element name="Illustrator" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="GroupName"/>

 </xs:sequence>

---- Code ----

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

XML Basics_Ch07_2pp.indd 250 8/7/2020 2:00:32 PM

XML Schema Basics • 251

Attribute Groups

Now let’s look at how we can use the xs:attributeGroup element to avoiding
rewriting those attributes.

Code Sample: ReusingComponents/Demos/Book3.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:group name="GroupName">

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="MiddleName" type="xs:string" minOccurs="0"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 </xs:group>

 <xs:attributeGroup name="AttGroupPerson">

 <xs:attribute name="Title">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="BirthYear" type="xs:gYear"/>

</xs:attributeGroup>

<xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="GroupName"/>

 <xs:element name="Specialty">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mystery"/>

 <xs:enumeration value="Humor"/>

XML Basics_Ch07_2pp.indd 251 8/7/2020 2:00:32 PM

252 • XML Basics

 <xs:enumeration value="Horror"/>

 <xs:enumeration value="Childrens"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 <xs:attributeGroup ref="AttGroupPerson"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Illustrator" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="GroupName"/>

 </xs:sequence>

 <xs:attributeGroup ref="AttGroupPerson"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

EXTENDING COMPLEX TYPES

New complex types can be derived by extending existing complex types. Both
elements and attributes can be added in the new type, but nothing in the
existing type can be overridden. New elements are appended to the content
model, such that the original elements and new elements act as two groups
that must appear in sequence.

The next example shows how the Person element can be extended.
Code Sample: ReusingComponents/Demos/Book4.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="Person">

 <xs:sequence>

 <xs:element name="FirstName" type="xs:string"/>

XML Basics_Ch07_2pp.indd 252 8/7/2020 2:00:32 PM

XML Schema Basics • 253

 <xs:element name="MiddleName" type="xs:string" minOccurs="0"/>

 <xs:element name="LastName" type="xs:string"/>

 </xs:sequence>

 <xs:attributeGroup ref="AttGroupPerson"/>

 </xs:complexType>

 <xs:complexType name="PersonExtended">

 <xs:complexContent>

 <xs:extension base="Person">

 <xs:sequence>

 <xs:element name="Specialty">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mystery"/>

 <xs:enumeration value="Humor"/>

 <xs:enumeration value="Horror"/>

 <xs:enumeration value="Childrens"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

---- Code ----

<xs:element name="Book">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author" type="PersonExtended"/>

 <xs:element name="Illustrator" type="Person" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

No material changes have been made from Book.xsd to Book4.xsd.

XML Basics_Ch07_2pp.indd 253 8/7/2020 2:00:32 PM

254 • XML Basics

ABSTRACT TYPES

When a type is made abstract, it cannot be used directly in an XML instance.
One of its derived types must be used instead. The derived type is identi-
fied in the instance document using the xsi:type attribute. The schema below
includes an abstract type with two derivations.

Code Sample: ReusingComponents/Demos/Animals.xsd
<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="Measurement">

 <xs:simpleContent>

 <xs:extension base="xs:integer">

 <xs:attribute name="units" type="xs:string"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="Weight" type="Measurement"/>

 <xs:element name="Name" type="xs:string"/>

 <!--Abstract Type-->

 <xs:complexType name="Animal" abstract="true">

 <xs:sequence>

 <xs:element ref="Name"/>

 <xs:element ref="Weight"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="Dog">

 <xs:complexContent>

 <xs:extension base="Animal"/>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="Bird">

 <xs:complexContent>

 <xs:extension base="Animal">

 <xs:sequence>

 <xs:element name="WingSpan" type="Measurement"/>

 </xs:sequence>

 </xs:extension>

XML Basics_Ch07_2pp.indd 254 8/7/2020 2:00:32 PM

XML Schema Basics • 255

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="Animals">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Animal" type="Animal" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Code Explanation

The Animal type is declared as abstract by setting the abstract attribute to
true. It is extended by the Dog and Bird types. The Dog type doesn’t actually
modify the original type at all, but the Bird type addes a WingSpan element.

Note that the Animal element declared within the Animals element is of
the abstract type Animal.

Let’s now look at an instance document of this schema:
Code Sample: ReusingComponents/Demos/Animals.xml
<?xml version="1.0" encoding="UTF-8"?>

<Animals xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Animals.xsd">

 <Animal xsi:type="Dog">

 <Name>Rover</Name>

 <Weight units="pounds">80</Weight>

 </Animal>

 <Animal xsi:type="Bird">

 <Name>Tweetie</Name>

 <Weight units="grams">15</Weight>

 <WingSpan units="cm">20</WingSpan>

 </Animal>

</Animals>

Notice that each of the Animal elements includes an xsi:type attribute.
If we were to remove that attribute, the instance would be become invalid
because the Animal element is of an abstract type.

XML Basics_Ch07_2pp.indd 255 8/7/2020 2:00:32 PM

256 • XML Basics

XML SCHEMA KEYS

Uniqueness

XML schema provides a mechanism for requiring that each element be
unique among like elements. This is best illustrated with an example.

Code Sample: SchemaKeys/Demos/Unique.xsd
---- Code ----

 <xs:element name="Artists">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Artist" maxOccurs="unbounded">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

    <xs:attribute name="aID" type="xs:string" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Lyrics">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Stanza" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Line" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="Artist" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

XML Basics_Ch07_2pp.indd 256 8/7/2020 2:00:32 PM

XML Schema Basics • 257

 <xs:unique name="ArtistKey">

 <xs:selector xpath="Artists/Artist"/>

 <xs:field xpath="@aID"/>

 </xs:unique>

 </xs:element>

</xs:schema>

The Artist element has an aID attribute, which we would like to be able
to use to uniquely identify the artist. The XML schema xs:unique element is
used to enforce this. It takes two children:

●● xs:selector—takes an xpath attribute, which holds an XPath 1.0 expression
referencing the elements affected by this constraint.

●● xs:field—takes an xpath attribute, which holds an XPath 1.0 expression
specifying the part of the selected elements that must be unique.

In the example above, the selector XPath identifies all Artist elements
that are children of an Artists element. The field XPath identifies the aID
attribute as the part of the Artist element that must be unique.

In the XML instance below, each Artist must have a unique aID attribute.
Try making them the same and validating.

Code Sample: SchemaKeys/Demos/Unique.xml
<?xml version="1.0"?>

<Song xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Unique.xsd">

 <Title Type="duet">The Girl Is Mine</Title>

 <Year>1983</Year>

 <Length>Medium</Length>

 <Artists>

 <Artist aID="MJ">Michael Jackson</Artist>

 <Artist aID="PM">Paul McCartney</Artist>

 </Artists>

 ---- Code Omitted ----

</Song>

KEYS

The XML schema also provides a mechanism for keys and key references—
that is, for creating a relationship between elements through the value of an
attribute or contained element. The xs:key and xs:keyref elements are used to
create such a relationship.

XML Basics_Ch07_2pp.indd 257 8/7/2020 2:00:32 PM

258 • XML Basics

Code Sample: SchemaKeys/Demos/Keys.xsd
---- Code ----

 <xs:element name="Artists">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Artist" maxOccurs="unbounded">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

     <xs:attribute name="aID" type="xs:string" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Lyrics">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Stanza" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Line" type="xs:string" maxOccurs="unbounded"/>

    </xs:sequence>

         <xs:attribute name="Artist" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:key name="ArtistKey">

 <xs:selector xpath="Artists/Artist"/>

 <xs:field xpath="@aID"/>

 </xs:key>

 <xs:keyref name="ArtistKeyRef" refer="ArtistKey">

 <xs:selector xpath="Lyrics/Stanza"/>

XML Basics_Ch07_2pp.indd 258 8/7/2020 2:00:32 PM

XML Schema Basics • 259

 <xs:field xpath="@Artist"/>

 </xs:keyref>

 </xs:element>

</xs:schema>

Like the xs:unique element, the xs:key and xs:keyref elements each con-
tain xs:selector and xs:field child elements.

The xs:key element is used to identify the elements being referenced by
the elements specified by the xs:keyref element.

In the example above, the Artist attribute of the Stanza element must
point to an Artist element’s aID attribute, which must be unique.

In the following XML instance, each Artist must have a unique aID attri-
bute and each Stanza element must have an Artist attribute with the same
value as one of the Artist’s aID attributes. Try changing the value of a Stanza’s
Artist attribute to something arbitrary and validating.

Code Sample: SchemaKeys/Demos/Keys.xml
<?xml version="1.0"?>

<Song xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="Keys.xsd">

 <Title Type="duet">The Girl Is Mine</Title>

 <Year>1983</Year>

 <Length>Medium</Length>

 <Artists>

 <Artist aID="MJ">Michael Jackson</Artist>

 <Artist aID="PM">Paul McCartney</Artist>

 </Artists>

 <Lyrics>

 <Stanza Artist="MJ">

 <Line>Every night she walks right in my dreams</Line>

 <Line>Every night she walks right in my dreams</Line>

 ---- Code Omitted ----

 </Stanza>

 <Stanza Artist="PM">

 <Line>I don't understand the way you think</Line>

 <Line>Saying that she's yours not mine</Line>

 ---- Code Omitted ----

 </Stanza>

 <Stanza Artist="MJ">

 <Line>I know she'll tell you I'm the one for her</Line>

XML Basics_Ch07_2pp.indd 259 8/7/2020 2:00:32 PM

260 • XML Basics

 <Line>'Cause she said I blow her mind</Line>

 ---- Code Omitted ----

 </Stanza>

 </Lyrics>

</Song>

ANNOTATING XML SCHEMAS

One of the nice features of XML schema is that comments about the schema
itself can be made within built-in XML elements. This makes it possible to
run a transformation against a schema to build documentation in HTML or
some other human-readable format.

ANNOTATING A SCHEMA

The xs:annotation element is used to document a schema. It can take two ele-
ments, xs:documentation and xs:appInfo, which are used to provide human-
readable and machine-readable notes, respectively.

The xs:annotation element can go at the beginning of most schema
constructions, including xs:schema, xs:element, xs:attribute, xs:simpleType,
xs:complexType, xs:group, and xs:attributeGroup.

Both the xs:documentation and xs:appInfo elements can contain any con-
tent, including undeclared elements and attributes. This allows the schema
author to insert elements (e.g., HTML elements) to structure or format the
documentation.

Code Sample: AnnotatingXMLSchemas/Demos/Book.xsd
<xs:attributeGroup name="AttGroupPerson">

 <xs:annotation>

 <xs:documentation>

This attribute group can be used with any element that represents a per-
son. It provides for Title (?) and BirthYear (?).

 </xs:documentation>

</xs:annotation>

<xs:attribute name="Title">

 <xs:annotation>

 <xs:documentation>

XML Basics_Ch07_2pp.indd 260 8/7/2020 2:00:32 PM

XML Schema Basics • 261

This optional attribute provides the title of the person in question. There
is no default value.

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Mr."/>

 <xs:enumeration value="Ms."/>

 <xs:enumeration value="Dr."/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="BirthYear" type="xs:gYear"/>

</xs:attributeGroup>

<xs:element name="Book">

 <xs:annotation>

 <xs:documentation>

Root Element: Contains the Title, Author, and Illustrator elements.
 </xs:documentation>

</xs:annotation>

<xs:complexType>

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Author">

 <xs:annotation>

 <xs:documentation>

The Author element contains the elements defined in the GroupName
element group followed by the Specialty element and the attributes defined
in the AttGroupPerson attribute group.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="GroupName"/>

 <xs:element name="Specialty">

 <xs:simpleType>

 <xs:restriction base="xs:string">

XML Basics_Ch07_2pp.indd 261 8/7/2020 2:00:32 PM

262 • XML Basics

 <xs:enumeration value="Mystery"/>

 <xs:enumeration value="Humor"/>

 <xs:enumeration value="Horror"/>

 <xs:enumeration value="Childrens"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 <xs:attributeGroup ref="AttGroupPerson"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Illustrator" minOccurs="0">

 <xs:annotation>

 <xs:documentation>

The Illustrator element contains the elements defined in the GroupName
element group and the attributes defined in the AttGroupPerson attribute
group.

 </xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:group ref="GroupName"/>

 </xs:sequence>

 <xs:attributeGroup ref="AttGroupPerson"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

XSD Complex Elements

A complex element contains other elements and/or attributes. A complex
element is an XML element that contains other elements and/or attributes.
There are four kinds of complex elements:

●● empty elements
●● elements that contain only other elements

XML Basics_Ch07_2pp.indd 262 8/7/2020 2:00:32 PM

XML Schema Basics • 263

●● elements that contain only text
●● elements that contain both other elements and text

Examples of Complex Elements

A complex XML element, “product,” which is empty, is as follows:
<product pid="1345"/>

A complex XML element, “employee,” which contains only other ele-
ments, is as follows:

<employee>

 <firstname>Shashi</firstname>

 <lastname>Banzal</lastname>

</employee>

A complex XML element, “food,” which contains only text is as follows:
<food type="dessert">Ice cream</food>

A complex XML element, “description”, which contains both elements
and text, is as follows:

<description>

It happened on <date lang=“norwegian”>03.03.99</date>
</description>

How to Define a Complex Element

Look at this complex XML element, “employee,” which contains only other
elements:

<employee>

 <firstname>Shashi</firstname>

 <lastname>Banzal</lastname>

</employee>

We can define a complex element in an XML schema two different ways:

1.	 The “employee” element can be declared directly by naming the element:

<xs:element name="employee">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

XML Basics_Ch07_2pp.indd 263 8/7/2020 2:00:32 PM

264 • XML Basics

 </xs:sequence>

 </xs:complexType>

</xs:element>

�If you use the method described above, only the “employee” element can
use the specified complex type. Note that the child elements, “firstname”
and “lastname,” are surrounded by the <sequence> indicator. This means
that the child elements must appear in the same order as they are declared.
You will learn more about indicators in the XSD Indicators chapter.

2.	 The “employee” element can have a type attribute that refers to the name
of the complex type to use:
<xs:element name="employee" type="personinfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

�If you use the method described above, several elements can refer to the
same complex type, like this:
<xs:element name="employee" type="personinfo"/>

<xs:element name="student" type="personinfo"/>

<xs:element name="member" type="personinfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

�You can also base a complex element on an existing complex element and
add some elements, like this:
<xs:element name="employee" type="fullpersoninfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

XML Basics_Ch07_2pp.indd 264 8/7/2020 2:00:32 PM

XML Schema Basics • 265

<xs:complexType name="fullpersoninfo">

 <xs:complexContent>

 <xs:extension base="personinfo">

 <xs:sequence>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

XSD Empty Elements

An empty complex element cannot have contents, only attributes. An empty
XML element is as follows:

<product prodid="1345" />

The “product” element above has no content at all. To define a type with
no content, we must define a type that allows elements in its content, but we
do not actually declare any elements, like this:

<xs:element name="product">

 <xs:complexType>

 <xs:complexContent>

 <xs:restriction base="xs:integer">

 <xs:attribute name="prodid" type="xs:positiveInteger"/>

 </xs:restriction>

 </xs:complexContent>

 </xs:complexType>

</xs:element>

In the example above, we define a complex type with a complex content.
The complexContent element signals that we intend to restrict or extend the
content model of a complex type, and the restriction of integer declares one
attribute but does not introduce any element content.

However, it is possible to declare the “product” element more compactly,
like this:

<xs:element name="product">

 <xs:complexType>

 <xs:attribute name="prodid" type="xs:positiveInteger"/>

 </xs:complexType>

</xs:element>

XML Basics_Ch07_2pp.indd 265 8/7/2020 2:00:32 PM

266 • XML Basics

Or you can give the complexType element a name, and let the “product”
element have a type attribute that refers to the name of the complexType (if
you use this method, several elements can refer to the same complex type):

<xs:element name="product" type="prodtype"/>

<xs:complexType name="prodtype">

 <xs:attribute name="prodid" type="xs:positiveInteger"/>

</xs:complexType>

XSD Elements Only

An “elements-only” complex type contains an element that contains only other
elements. An XML element, “person,” that contains only other elements:

<person>

 <firstname>Shashi</firstname>

 <lastname>Banzal</lastname>

</person>

You can define the “person” element in a schema, like this:
<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Notice the <xs:sequence> tag. It means that the elements defined (“first-
name” and “lastname”) must appear in that order inside a “person” element.

Or you can give the complexType element a name, and let the “person”
element have a type attribute that refers to the name of the complexType (if
you use this method, several elements can refer to the same complex type):

<xs:element name="person" type="persontype"/>

<xs:complexType name="persontype">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

XML Basics_Ch07_2pp.indd 266 8/7/2020 2:00:32 PM

XML Schema Basics • 267

XSD Text-Only Elements

A complex text-only element can contain text and attributes. This type contains
only simple content (text and attributes), therefore we add a simpleContent
element around the content. When using simple content, you must define an
extension OR a restriction within the simpleContent element, like this:

<xs:element name="somename">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="basetype">

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

OR
<xs:element name="somename">

 <xs:complexType>

 <xs:simpleContent>

 <xs:restriction base="basetype">

 </xs:restriction>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

Use the extension/restriction element to expand or to limit the base sim-
ple type for the element. Here is an example of an XML element, “shoesize,”
that contains text only:

<shoesize country="france">35</shoesize>

The following example declares a complexType, “shoesize.” The content
is defined as an integer value, and the “shoesize” element also contains an
attribute named “country:”

<xs:element name="shoesize">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:integer">

XML Basics_Ch07_2pp.indd 267 8/7/2020 2:00:33 PM

268 • XML Basics

 <xs:attribute name="country" type="xs:string" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

We could also give the complexType element a name, and let the “shoe-
size” element have a type attribute that refers to the name of the complexType
(if you use this method, several elements can refer to the same complex type):

<xs:element name="shoesize" type="shoetype"/>

<xs:complexType name="shoetype">

 <xs:simpleContent>

 <xs:extension base="xs:integer">

 <xs:attribute name="country" type="xs:string" />

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

XSD Mixed Content

A mixed complex type element can contain attributes, elements, and text. An
XML element, “letter,” that contains both text and other elements:

<letter>

 Dear Mr.<name>Ram Mandal</name>.

 Your order <orderid>1032</orderid>

 will be shipped on <shipdate>2001-07-13</shipdate>.

</letter>

The following schema declares the “letter” element:
<xs:element name="letter">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="orderid" type="xs:positiveInteger"/>

 <xs:element name="shipdate" type="xs:date"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

To enable character data to appear between the child-elements of “let-
ter,” the mixed attribute must be set to “true.” The <xs:sequence> tag means

XML Basics_Ch07_2pp.indd 268 8/7/2020 2:00:33 PM

XML Schema Basics • 269

that the elements defined (name, ordered, and shipdate) must appear in that
order inside a “letter” element.

We could also give the complexType element a name, and let the “letter”
element have a type attribute that refers to the name of the complexType (if
you use this method, several elements can refer to the same complex type):

<xs:element name="letter" type="lettertype"/>

<xs:complexType name="lettertype" mixed="true">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="orderid" type="xs:positiveInteger"/>

 <xs:element name="shipdate" type="xs:date"/>

 </xs:sequence>

</xs:complexType>

XSD INDICATORS

We can control HOW elements are to be used in documents with indicators.
There are seven indicators.

Order indicators:
●● All
●● Choice
●● Sequence

Occurrence indicators:
●● maxOccurs
●● minOccurs

Group indicators:
●● Group name
●● attributeGroup name

Order indicators
●● Order indicators are used to define the order of the elements.

All Indicator
●● The <all> indicator specifies that the child elements can appear in any

order, and that each child element must occur only once:

XML Basics_Ch07_2pp.indd 269 8/7/2020 2:00:33 PM

270 • XML Basics

<xs:element name="person">

 <xs:complexType>

 <xs:all>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:all>

 </xs:complexType>

</xs:element>

When using the <all> indicator you can set the <minOccurs> indicator to
0 or 1 and the <maxOccurs> indicator can only be set to 1 (the <minOccurs>
and <maxOccurs> are described later).

Choice Indicator

The <choice> indicator specifies that either one child element or another can
occur:

<xs:element name="person">

 <xs:complexType>

 <xs:choice>

 <xs:element name="employee" type="employee"/>

 <xs:element name="member" type="member"/>

 </xs:choice>

 </xs:complexType>

</xs:element>

Sequence Indicator

The <sequence> indicator specifies that the child elements must appear in a
specific order:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Occurrence Indicators

Occurrence indicators are used to define how often an element can occur.

XML Basics_Ch07_2pp.indd 270 8/7/2020 2:00:33 PM

XML Schema Basics • 271

For all “Order” and “Group” indicators (any, all, choice, sequence, group
name, and group reference) the default value for maxOccurs and minOccurs is 1.

maxOccurs Indicator

The <maxOccurs> indicator specifies the maximum number of times an ele-
ment can occur:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="full_name" type="xs:string"/>

 <xs:element name="child_name" type="xs:string" maxOccurs="10"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The example above indicates that the “child_name” element can occur a
minimum of one time (the default value for minOccurs is 1) and a maximum
of ten times in the “person” element.

minOccurs Indicator

The <minOccurs> indicator specifies the minimum number of times an ele-
ment can occur:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="full_name" type="xs:string"/>

 <xs:element name="child_name" type="xs:string"

 maxOccurs="10" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

The example above indicates that the “child_name” element can occur a
minimum of zero times and a maximum of ten times in the “person” element.

To allow an element to appear an unlimited number of times, use the
maxOccurs=“unbounded” statement:

A working example:
An XML file called “Myfamily.xml” is as follows:

XML Basics_Ch07_2pp.indd 271 8/7/2020 2:00:33 PM

272 • XML Basics

<?xml version="1.0" encoding="ISO-8859-1"?>

<persons xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="family.xsd">

<person>

 <full_name>Hege Refsnes</full_name>

 <child_name>Cecilie</child_name>

</person>

<person>

 <full_name>Shashi Refsnes</full_name>

 <child_name>Hege</child_name>

 <child_name>Stale</child_name>

 <child_name>Jim</child_name>

 <child_name>Borge</child_name>

</person>

<person>

 <full_name>Stale Refsnes</full_name>

</person>

</persons>

The XML file above contains a root element named “persons.” Inside
this root element, we have defined three “person” elements. Each “person”
element must contain a “full_name” element and it can contain up to five
“child_name” elements.

Here is the schema file “family.xsd.”
<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="persons">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="person" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="full_name" type="xs:string"/>

 <xs:element name="child_name" type="xs:string"

 minOccurs="0" maxOccurs="5"/>

 </xs:sequence>

 </xs:complexType>

XML Basics_Ch07_2pp.indd 272 8/7/2020 2:00:33 PM

XML Schema Basics • 273

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Group Indicators

Group indicators are used to define related sets of elements.

Element Groups

Element groups are defined with the group declaration, like this:
<xs:group name="groupname">

...

</xs:group>

You must define an all, choice, or sequence element inside the group dec-
laration. The following example defines a group named “persongroup,” that
defines a group of elements that must occur in an exact sequence:

<xs:group name="persongroup">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 <xs:element name="birthday" type="xs:date"/>

 </xs:sequence>

</xs:group>

After you have defined a group, you can reference it in another definition,
like this:

<xs:group name="persongroup">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 <xs:element name="birthday" type="xs:date"/>

 </xs:sequence>

</xs:group>

<xs:element name="person type="personinfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

XML Basics_Ch07_2pp.indd 273 8/7/2020 2:00:33 PM

274 • XML Basics

 <xs:group ref="persongroup"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

Attribute Groups

Attribute groups are defined with the attributeGroup declaration, like this:
<xs:attributeGroup name="groupname">

...

</xs:attributeGroup>

The following example defines an attribute group named “personattrgroup:”
<xs:attributeGroup name="personattrgroup">

 <xs:attribute name="firstname" type="xs:string"/>

 <xs:attribute name="lastname" type="xs:string"/>

 <xs:attribute name="birthday" type="xs:date"/>

</xs:attributeGroup>

After you have defined an attribute group, you can reference it in another
definition, like this:

<xs:attributeGroup name="personattrgroup">

 <xs:attribute name="firstname" type="xs:string"/>

 <xs:attribute name="lastname" type="xs:string"/>

 <xs:attribute name="birthday" type="xs:date"/>

</xs:attributeGroup>

<xs:element name="person">

 <xs:complexType>

 <xs:attributeGroup ref="personattrgroup"/>

 </xs:complexType>

</xs:element>

XSD The <any> Element

The <any> element enables us to extend the XML document with ele-
ments not specified by the schema.

The <any> Element

The following example is a fragment from an XML schema called “family.
xsd.” It shows a declaration for the “person” element. By using the <any>
element we can extend (after <lastname>) the content of “person” with any
element:

XML Basics_Ch07_2pp.indd 274 8/7/2020 2:00:33 PM

XML Schema Basics • 275

 <xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 <xs:any minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

Now we want to extend the “person” element with a “children” element. In
this case we can do so, even if the author of the schema above never declared
any “children” element. Look at this schema file, called “children.xsd:”

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.abc.com"

xmlns="http://www.abc.com"

elementFormDefault="qualified">

<xs:element name="children">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="childname" type="xs:string"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The XML file below (called “Myfamily.xml”) uses components from two
different schemas, “family.xsd” and “children.xsd:”

<?xml version="1.0" encoding="ISO-8859-1"?>

<persons xmlns="http://www.microsoft.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:SchemaLocation="http://www.microsoft.com family.xsd

http://www.abc.com children.xsd">

<person>

 <firstname>Hege</firstname>

 <lastname>Refsnes</lastname>

 <children>

XML Basics_Ch07_2pp.indd 275 8/7/2020 2:00:33 PM

276 • XML Basics

 <childname>Cecilie</childname>

 </children>

</person>

<person>

 <firstname>Stale</firstname>

 <lastname>Refsnes</lastname>

</person>

</persons>

The XML file above is valid because the schema “family.xsd” allows
us to extend the “person” element with an optional element after the “last
name”element.

The <any> and <anyAttribute> elements are used to make EXTENSI-
BLE documents. They allow documents to contain additional elements that
are not declared in the main XML schema.

XSD The <anyAttribute> Element

The <anyAttribute> element enables us to extend the XML document
with attributes not specified by the schema.

The <anyAttribute> Element

The following example is a fragment from an XML schema called “family.
xsd.” It shows a declaration for the “person” element. By using the <anyAttri-
bute> element, we can add any number of attributes to the “person” element:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

 <xs:anyAttribute/>

 </xs:complexType>

</xs:element>

Now, we want to extend the “person” element with a “gender” attribute. In
this case, we can do so, even if the author of the schema above never declared
any “gender” attribute. Look at this schema file, called “attribute.xsd:”

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.abc.com"

xmlns="http://www.abc.com"

XML Basics_Ch07_2pp.indd 276 8/7/2020 2:00:33 PM

XML Schema Basics • 277

elementFormDefault="qualified">

<xs:attribute name="gender">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="male|female"/>

 </xs:restriction>

 </xs:simpleType>

</xs:attribute>

</xs:schema>

The XML file below (called “Myfamily.xml”) uses components from two
different schemas, “family.xsd” and “attribute.xsd:”

<?xml version="1.0" encoding="ISO-8859-1"?>

<persons xmlns="http://www.microsoft.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:SchemaLocation="http://www.microsoft.com family.xsd

http://www.abc.com attribute.xsd">

<person gender="female">

 <firstname>Hege</firstname>

 <lastname>Refsnes</lastname>

</person>

<person gender="male">

 <firstname>Stale</firstname>

 <lastname>Refsnes</lastname>

</person>

</persons>

The XML file above is valid because the schema “family.xsd” allows us to
add an attribute to the “person” element.

XSD Element Substitution

With XML schemas, one element can be substituted for another element.

Element Substitution

Let’s say that we have users from two different countries: England and Norway.
We would like the ability to let the user choose whether he or she would like
to use the Norwegian element names or the English element names in the
XML document.

XML Basics_Ch07_2pp.indd 277 8/7/2020 2:00:33 PM

278 • XML Basics

To solve this problem, we could define a substitutionGroup in the XML
schema. First, we declare a head element and then we declare the other ele-
ments that state that they are substitutable for the head element.

<xs:element name="name" type="xs:string"/>

<xs:element name="navn" substitutionGroup="name"/>

In the example above, the “name” element is the head element and the
“navn” element is substitutable for “name.” Look at this fragment of an XML
schema:

<xs:element name="name" type="xs:string"/>

<xs:element name="navn" substitutionGroup="name"/>

<xs:complexType name="custinfo">

 <xs:sequence>

 <xs:element ref="name"/>

 </xs:sequence>

</xs:complexType>

<xs:element name="customer" type="custinfo"/>

<xs:element name="kunde" substitutionGroup="customer"/>

A valid XML document (according to the schema above) could look like this:
<customer>

 <name>Ram Mandal</name>

</customer>

or like this:
<kunde>

 <navn>Ram Mandal</navn>

</kunde>

Blocking Element Substitution

To prevent other elements from substituting another specified element, use
the block attribute:

<xs:element name="name" type="xs:string" block="substitution"/>

Look at this fragment of an XML schema:
<xs:element name="name" type="xs:string" block="substitution"/>

<xs:element name="navn" substitutionGroup="name"/>

<xs:complexType name="custinfo">

XML Basics_Ch07_2pp.indd 278 8/7/2020 2:00:33 PM

XML Schema Basics • 279

 <xs:sequence>

 <xs:element ref="name"/>

 </xs:sequence>

</xs:complexType>

<xs:element name="customer" type="custinfo" block="substitution"/>

<xs:element name="kunde" substitutionGroup="customer"/>

A valid XML document (according to the schema above) looks like this:
<customer>

 <name>Ram Mandal</name>

</customer>

BUT THIS IS NO LONGER VALID

<kunde>

 <navn>Ram Mandal</navn>

</kunde>

Using SubstitutionGroup

The type of the substitutable elements must be the same as, or derived from,
the type of the head element. If the type of the substitutable element is the
same as the type of the head element, you will not have to specify the type of
the substitutable element.

Note that all elements in the substitutionGroup (the head element and
the substitutable elements) must be declared as global elements, otherwise it
will not work.

Global Elements

Global elements are elements that are immediate children of the “schema”
element. Local elements are elements nested within other elements.

An XML Document

Let’s have a look at this XML document called “shiporder.xml:”
<?xml version="1.0" encoding="ISO-8859-1"?>

<shiporder orderid="889923"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

XML Basics_Ch07_2pp.indd 279 8/7/2020 2:00:33 PM

280 • XML Basics

xsi:noNamespaceSchemaLocation="shiporder.xsd">

 <orderperson>Ram Mandal</orderperson>

 <shipto>

 <name>Kshitij Banzal</name>

 <address>20, I.G. Nagar</address>

 <city>Indore</city>

 <country>India</country>

 </shipto>

 <item>

 <title>World wide web</title>

 <note>Special Edition</note>

 <quantity>1</quantity>

 <price>120.00</price>

 </item>

 <item>

 <title>Summer special</title>

 <quantity>1</quantity>

 <price>239.00</price>

 </item>

</shiporder>

The XML document above consists of a root element, “shiporder,” that
contains a required attribute called “ordered.” The “shiporder” element con-
tains three different child elements: “orderperson,” “shipto” and “item.” The
“item” element appears twice, and it contains a “title,” an optional “note” ele-
ment, a “quantity”, and a “price” element.

The line above: xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
tells the XML parser that this document should be validated against a
schema. The line xsi:noNamespaceSchemaLocation=“shiporder.xsd” specifies
WHERE the schema resides (here it is in the same folder as “shiporder.xml”).

CREATE AN XML SCHEMA

Now we want to create a schema for the XML document above.
We start by opening a new file that we will call “shiporder.xsd.” To create

the schema, we could simply follow the structure in the XML document and
define each element as we find it. We will start with the standard XML decla-
ration followed by the xs:schema element that defines a schema:

XML Basics_Ch07_2pp.indd 280 8/7/2020 2:00:33 PM

XML Schema Basics • 281

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

...

</xs:schema>

In the schema above, we use the standard namespace (xs), and the URI
associated with this namespace is the schema language definition, which has
the standard value of http://www.w3.org/2001/XMLSchema.

Next, we have to define the “shiporder” element. This element has an
attribute and it contains other elements, therefore we consider it as a com-
plex type. The child elements of the “shiporder” element are surrounded by a
xs:sequence element that defines an ordered sequence of sub elements:

<xs:element name="shiporder">

 <xs:complexType>

 <xs:sequence>

 ...

 </xs:sequence>

 </xs:complexType>

</xs:element>

Then, we have to define the “orderperson” element as a simple type
(because it does not contain any attributes or other elements). The type
(xs:string) is prefixed with the namespace prefix associated with XML schema
that indicates a predefined schema data type:

<xs:element name="orderperson" type="xs:string"/>

Next, we have to define two elements that are of the complex type:
“shipto” and “item.” We start by defining the “shipto” element:

<xs:element name="shipto">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

XML Basics_Ch07_2pp.indd 281 8/7/2020 2:00:33 PM

282 • XML Basics

With schemas, we can define the number of possible occurrences for an
element with the maxOccurs and minOccurs attributes. maxOccurs specifies
the maximum number of occurrences for an element and minOccurs specifies
the minimum number of occurrences for an element. The default value for
both maxOccurs and minOccurs is 1.

Now we can define the “item” element. This element can appear multiple
times inside a “shiporder” element. This is specified by setting the maxOccurs
attribute of the “item” element to “unbounded,” which means that there can
be as many occurrences of the “item” element as the author wishes. Notice
that the “note” element is optional. We have specified this by setting the min-
Occurs attribute to zero:

<xs:element name="item" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="note" type="xs:string" minOccurs="0"/>

 <xs:element name="quantity" type="xs:positiveInteger"/>

 <xs:element name="price" type="xs:decimal"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

We can now declare the attribute of the “shiporder” element. Since this
is a required attribute, we specify use=“required.” The attribute declarations
must always come last:

<xs:attribute name="orderid" type="xs:string" use="required"/>

Here is the complete listing of the schema file called “shiporder.xsd:”
<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="shiporder">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="orderperson" type="xs:string"/>

 <xs:element name="shipto">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="address" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

XML Basics_Ch07_2pp.indd 282 8/7/2020 2:00:33 PM

XML Schema Basics • 283

 <xs:element name="country" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="item" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="note" type="xs:string" minOccurs="0"/>

 <xs:element name="quantity" type="xs:positiveInteger"/>

 <xs:element name="price" type="xs:decimal"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="orderid" type="xs:string" use="required"/>

 </xs:complexType>

</xs:element>

</xs:schema>

Divide the Schema

The previous design method is very simple, but can be difficult to read and
maintain when documents are complex.

The next design method is based on defining all elements and attributes
first, and then referring to them using the ref attribute. Here is the new design
of the schema file (“shiporder.xsd”):

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of simple elements -->

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

<xs:element name="title" type="xs:string"/>

<xs:element name="note" type="xs:string"/>

<xs:element name="quantity" type="xs:positiveInteger"/>

<xs:element name="price" type="xs:decimal"/>

XML Basics_Ch07_2pp.indd 283 8/7/2020 2:00:33 PM

284 • XML Basics

<!-- definition of attributes -->

<xs:attribute name="orderid" type="xs:string"/>

<!-- definition of complex elements -->

<xs:element name="shipto">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="name"/>

 <xs:element ref="address"/>

 <xs:element ref="city"/>

 <xs:element ref="country"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="item">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="title"/>

 <xs:element ref="note" minOccurs="0"/>

 <xs:element ref="quantity"/>

 <xs:element ref="price"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="shiporder">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="orderperson"/>

 <xs:element ref="shipto"/>

 <xs:element ref="item" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute ref="orderid" use="required"/>

 </xs:complexType>

</xs:element>

</xs:schema>

Using Named Types

The third design method defines classes or types that enable us to reuse ele-
ment definitions. This is done by naming the simpleTypes and complexTypes

XML Basics_Ch07_2pp.indd 284 8/7/2020 2:00:33 PM

XML Schema Basics • 285

elements, and then point to them through the type attribute of the element.
Here is the third design of the schema file (“shiporder.xsd”):

<?xml version="1.0" encoding="ISO-8859-1" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="stringtype">

 <xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="inttype">

 <xs:restriction base="xs:positiveInteger"/>

</xs:simpleType>

<xs:simpleType name="dectype">

 <xs:restriction base="xs:decimal"/>

</xs:simpleType>

<xs:simpleType name="orderidtype">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]{6}"/>

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="shiptotype">

 <xs:sequence>

 <xs:element name="name" type="stringtype"/>

 <xs:element name="address" type="stringtype"/>

 <xs:element name="city" type="stringtype"/>

 <xs:element name="country" type="stringtype"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="itemtype">

 <xs:sequence>

 <xs:element name="title" type="stringtype"/>

 <xs:element name="note" type="stringtype" minOccurs="0"/>

 <xs:element name="quantity" type="inttype"/>

 <xs:element name="price" type="dectype"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="shipordertype">

 <xs:sequence>

 <xs:element name="orderperson" type="stringtype"/>

 <xs:element name="shipto" type="shiptotype"/>

XML Basics_Ch07_2pp.indd 285 8/7/2020 2:00:33 PM

286 • XML Basics

 <xs:element name="item" maxOccurs="unbounded" type="itemtype"/>

 </xs:sequence>

 <xs:attribute name="orderid" type="orderidtype" use="required"/>

</xs:complexType>

<xs:element name="shiporder" type="shipordertype"/>

</xs:schema>

The restriction element indicates that the datatype is derived from a W3C
XML schema namespace datatype. So, the following fragment means that the
value of the element or attribute must be a string value:

<xs:restriction base="xs:string">

The restriction element is more often used to apply restrictions to ele-
ments. Look at the following lines from the schema above:

<xs:simpleType name="orderidtype">

 <xs:restriction base="xs:string">

 <xs:pattern value="[0-9]{6}"/>

 </xs:restriction>

</xs:simpleType>

This indicates that the value of the element or attribute must be a string,
it must be exactly six characters in a row, and those characters must be a num-
ber from 0 to 9.

XSD String Data Types

String data types are used for values that contains character strings.

String Data Type

The string data type can contain characters, line feeds, carriage returns, and
tab characters. The following is an example of a string declaration in a schema:

<xs:element name="customer" type="xs:string"/>

An element in your document might look like this:
<customer>Ram Mandal</customer>

Or it might look like this:
<customer>Ram Mandal</customer>

The XML processor will not modify the value if you use the string
data type.

XML Basics_Ch07_2pp.indd 286 8/7/2020 2:00:33 PM

XML Schema Basics • 287

Normalized String Data Type

The normalizedString data type is derived from the String data type.
The normalizedString data type also contains characters, but the XML

processor will remove line feeds, carriage returns, and tab characters. The
following is an example of a normalizedString declaration in a schema:

<xs:element name="customer" type="xs:normalizedString"/>

An element in your document might look like this:
<customer>Ram Mandal</customer>

Or it might look like this:
<customer>   RamMandal   </customer>

In the example above, the XML processor will replace the tabs with
spaces.

Token Data Type

The token data type is also derived from the String data type.
The token data type also contains characters, but the XML processor will

remove line feeds, carriage returns, tabs, leading and trailing spaces, and mul-
tiple spaces.

The following is an example of a token declaration in a schema:
<xs:element name="customer" type="xs:token"/>

An element in your document might look like this:
<customer>Ram Mandal</customer>

Or it might look like this:
<customer>   RamMandal   </customer>

In the example above, the XML processor will remove the tabs.

String Data Types

Note that all of the data types below derive from the String data type (except
for string itself).

Name Description

ENTITIES

ENTITY

(continued)

XML Basics_Ch07_2pp.indd 287 8/7/2020 2:00:33 PM

288 • XML Basics

Name Description

ID A string that represents the ID attribute in XML (only
used with schema attributes)

IDREF A string that represents the IDREF attribute in XML
(only used with schema attributes)

IDREFS

language A string that contains a valid language id

Name A string that contains a valid XML name

NCName

NMTOKEN A string that represents the NMTOKEN attribute in
XML (only used with schema attributes)

NMTOKENS

normalizedString A string that does not contain line feeds, carriage
returns, or tabs

QName

string A string

token A string that does not contain line feeds, carriage
returns, tabs, leading or trailing spaces, or multiple
spaces

Restrictions on String Data Types

Restrictions that can be used with String data types:

●● enumeration
●● length
●● maxLength
●● minLength
●● pattern (NMTOKENS, IDREFS, and ENTITIES cannot use this

constraint)
●● whiteSpace

XSD DATE AND TIME DATA TYPES

Date and time data types are used for values that contain the date and time.

(continued)

XML Basics_Ch07_2pp.indd 288 8/7/2020 2:00:33 PM

XML Schema Basics • 289

Date Data Type

The date data type is used to specify a date.
The date is specified in the following form “YYYY-MM-DD” where

●● YYYY indicates the year
●● MM indicates the month
●● DD indicates the day

The following is an example of a date declaration in a schema:
<xs:element name="start" type="xs:date"/>

An element in your document might look like this:
<start>2002-09-24</start>

Time Zones

To specify a time zone, you can either enter a date in UTC time by adding a
“Z” behind the date—like this:

<start>2002-09-24Z</start>

or you can specify an offset from the UTC time by adding a positive or nega-
tive time behind the date—like this:

<start>2002-09-24-06:00</start>

or
<start>2002-09-24+06:00</start>

Time Data Type

The time data type is used to specify a time. The time is specified in the fol-
lowing form “hh:mm:ss” where

●● hh indicates the hour
●● mm indicates the minute
●● ss indicates the second

The following is an example of a time declaration in a schema:
<xs:element name="start" type="xs:time"/>

An element in your document might look like this:
<start>09:00:00</start>

Or it might look like this:
<start>09:30:10.5</start>

XML Basics_Ch07_2pp.indd 289 8/7/2020 2:00:33 PM

290 • XML Basics

Time Zones

To specify a time zone, you can either enter a time in UTC time by adding a
“Z” behind the time—like this:

<start>09:30:10Z</start>

or you can specify an offset from the UTC time by adding a positive or nega-
tive time behind the time—like this:

<start>09:30:10-06:00</start>

or
<start>09:30:10+06:00</start>

DateTime Data Type

The dateTime data type is used to specify a date and a time. The dateTime is
specified in the following form “YYYY-MM-DDThh:mm:ss” where

●● YYYY indicates the year
●● MM indicates the month
●● DD indicates the day
●● T indicates the start of the required time section
●● hh indicates the hour
●● mm indicates the minute
●● ss indicates the second

The following is an example of a dateTime declaration in a schema:
<xs:element name="startdate" type="xs:dateTime"/>

An element in your document might look like this:
<startdate>2002-05-30T09:00:00</startdate>

Or it might look like this:
<startdate>2002-05-30T09:30:10.5</startdate>

Time Zones

To specify a time zone, you can either enter a dateTime in UTC time by add-
ing a “Z” behind the time—like this:

<startdate>2002-05-30T09:30:10Z</startdate>

or you can specify an offset from the UTC time by adding a positive or nega-
tive time behind the time—like this:

XML Basics_Ch07_2pp.indd 290 8/7/2020 2:00:33 PM

XML Schema Basics • 291

<startdate>2002-05-30T09:30:10-06:00</startdate>

or
<startdate>2002-05-30T09:30:10+06:00</startdate>

Duration Data Type

The duration data type is used to specify a time interval.
The time interval is specified in the following form “PnYnMnDTnHnMnS”

where

●● P indicates the period (required)
●● nY indicates the number of years
●● nM indicates the number of months
●● nD indicates the number of days
●● T indicates the start of a time section (required if you are going to specify

hours, minutes, or seconds)
●● nH indicates the number of hours
●● nM indicates the number of minutes
●● nS indicates the number of seconds

The following is an example of a duration declaration in a schema:
<xs:element name="period" type="xs:duration"/>

An element in your document might look like this:
<period>P5Y</period>

The example above indicates a period of five years.

Or it might look like this:
<period>P5Y2M10D</period>

The example above indicates a period of five years, two months, and
10 days.

Or it might look like this:
<period>P5Y2M10DT15H</period>

The example above indicates a period of five years, two months, 10 days,
and 15 hours.

Or it might look like this:
<period>PT15H</period>

The example above indicates a period of 15 hours.

XML Basics_Ch07_2pp.indd 291 8/7/2020 2:00:33 PM

292 • XML Basics

Negative Duration

To specify a negative duration, enter a minus sign before the P:
<period>-P10D</period>

The example above indicates a period of minus 10 days.

Date and Time Data Types

Name Description

date Defines a date value

dateTime Defines a date and time value

duration Defines a time interval

gDay Defines a part of a date - the day (DD)

gMonth Defines a part of a date - the month (MM)

gMonthDay Defines a part of a date - the month and day (MM-DD)

gYear Defines a part of a date - the year (YYYY)

gYearMonth Defines a part of a date - the year and month (YYYY-MM)

time Defines a time value

Restrictions on Date Data Types

Restrictions that can be used with Date data types are as follows:

●● enumeration
●● maxExclusive
●● maxInclusive
●● minExclusive
●● minInclusive
●● pattern
●● whiteSpace

XSD Numeric Data Types

Decimal data types are used for numeric values.

Decimal Data Type

The decimal data type is used to specify a numeric value. The following is an
example of a decimal declaration in a schema:

XML Basics_Ch07_2pp.indd 292 8/7/2020 2:00:33 PM

XML Schema Basics • 293

<xs:element name="prize" type="xs:decimal"/>

An element in your document might look like this:
<prize>999.50</prize>

Or it might look like this:
<prize>+999.5450</prize>

Or it might look like this:
<prize>-999.5230</prize>

Or it might look like this:
<prize>0</prize>

Or it might look like this:
<prize>14</prize>

The maximum number of decimal digits you can specify is 18.

Integer Data Type

The integer data type is used to specify a numeric value without a frac-
tional component. The following is an example of an integer declaration in a
schema:

<xs:element name="prize" type="xs:integer"/>

An element in your document might look like this:
<prize>999</prize>

Or it might look like this:
<prize>+999</prize>

Or it might look like this:
<prize>-999</prize>

Or it might look like this:
<prize>0</prize>

Numeric Data Types

Note that all of the data types below derive from the Decimal data type
(except for decimal itself).

XML Basics_Ch07_2pp.indd 293 8/7/2020 2:00:33 PM

294 • XML Basics

Name Description

byte A signed 8-bit integer

decimal A decimal value

int A signed 32-bit integer

integer An integer value

long A signed 64-bit integer

negativeInteger An integer containing only negative values (..,−2,−1)

nonNegativeInteger An integer containing only non-negative values (0,1,2,..)

nonPositiveInteger An integer containing only non-positive values (..,−2,−1,0)

positiveInteger An integer containing only positive values (1,2,..)

short A signed 16-bit integer

unsignedLong An unsigned 64-bit integer

unsignedInt An unsigned 32-bit integer

unsignedShort An unsigned 16-bit integer

unsignedByte An unsigned 8-bit integer

Restrictions on Numeric Data Types

Restrictions that can be used with Numeric data types are as follows:

●● enumeration
●● fractionDigits
●● maxExclusive
●● maxInclusive
●● minExclusive
●● minInclusive
●● pattern
●● totalDigits
●● whiteSpace

XSD Miscellaneous Data Types

Other miscellaneous data types are boolean, base64Binary, hexBinary, float,
double, anyURI, QName, and NOTATION.

XML Basics_Ch07_2pp.indd 294 8/7/2020 2:00:33 PM

XML Schema Basics • 295

Boolean Data Type

The boolean data type is used to specify a true or false value. The following is
an example of a boolean declaration in a schema:

<xs:attribute name="disabled" type="xs:boolean"/>

An element in your document might look like this:
<prize disabled="true">999</prize>

Legal values for boolean are true, false, 1 (which indicates true), and 0
(which indicates false).

Binary Data Types

Binary data types are used to express binary-formatted data. We have two
binary data types:

●● base64Binary (Base64-encoded binary data)
●● hexBinary (hexadecimal-encoded binary data)

The following is an example of a hexBinary declaration in a schema:
<xs:element name="blobsrc" type="xs:hexBinary"/>

AnyURI Data Type

The anyURI data type is used to specify a URI. The following is an example
of an anyURI declaration in a schema:

<xs:attribute name="src" type="xs:anyURI"/>

An element in your document might look like this:
<pic src="http://www.abc.com/images/smiley.gif" />

If a URI has spaces, replace them with %20.

Miscellaneous Data Types

Name Description

anyURI

base64Binary

Boolean

double

(continued)

XML Basics_Ch07_2pp.indd 295 8/7/2020 2:00:33 PM

296 • XML Basics

Name Description

float

hexBinary

NOTATION

QName

Restrictions on Miscellaneous Data Types

Restrictions that can be used with the other data types are as follows:

●● enumeration (a Boolean data type cannot use this constraint)
●● length (a Boolean data type cannot use this constraint)
●● maxLength (a Boolean data type cannot use this constraint)
●● minLength (a Boolean data type cannot use this constraint)
●● pattern
●● whiteSpace

XML EDITORS

If you are serious about XML, you will benefit from using a professional XML
editor.

XML is Text-based

XML is a text-based markup language. One great thing about XML is that
XML files can be created and edited using a simple text-editor like Notepad.
However, when you start working with XML, you will soon find that it is better
to edit XML documents using a professional XML editor.

Many Web developers use Notepad to edit both HTML and XML doc-
uments because Notepad is included with the most common OS and it is
simple to use.

But, if you use Notepad for XML editing, you will soon run into problems.
Notepad does not know that you are writing XML, so it will not be able to
assist you.

XML is an important technology, and development projects use XML-
based technologies like

(continued)

XML Basics_Ch07_2pp.indd 296 8/7/2020 2:00:33 PM

XML Schema Basics • 297

●● XML schema to define XML structures and data types
●● XSLT to transform XML data
●● SOAP to exchange XML data between applications
●● WSDL to describe Web services
●● RDF to describe Web resources
●● XPath and XQuery to access XML data
●● SMIL to define graphics
●● To be able to write error-free XML documents, you will need an intel-

ligent XML editor.

Professional XML editors will help you to write error-free XML docu-
ments, validate your XML against a DTD or a schema, and force you to stick
to a valid XML structure.

An XML editor should be able to

●● Add closing tags to your opening tags automatically
●● Force you to write valid XML
●● Verify your XML against a DTD
●● Verify your XML against a schema
●● Color code your XML syntax

We have been using XMLSpy for many years. XMLSpy, our favorite XML
editor, includes a built-in graphical XML schema editor. These are some of
the features we especially like:

●● Easy to use, graphical schema editing
●● Context-sensitive entry helpers
●● Display of all globally defined particles in a list view
●● Detailed visual views of content models with drag & drop editing
●● Built in DTD and/or XML schema-based validation
●● Enhanced support for editing identity constraints
●● Find and replace in single or multi-file schemas
●● Schema-based code generation in Java, C#, and C++
●● XML schema documentation generation in HTML or Word

XML Basics_Ch07_2pp.indd 297 8/7/2020 2:00:33 PM

298 • XML Basics

QUESTIONS FOR DISCUSSION

1.	 What do you understand about schema?

2.	 What is an XML schema?

3.	 Why use an XML schema?

4.	 How do you write an XML schema?

5.	 Define simple types in an XML schema.

6.	 Define complex types in an XML schema.

7.	 Why we can say XML schemas are the successors of DTDs?

8.	 Explain why XML schemas are extensible.

9.	 How you define elements of XML document in an XML schema?

10.	 How you define complex and simple types of elements?

11.	 Give an example that shows an XML document has a reference to an
XML schema.

12.	 How you use the schema element in an XML Document?

13.	 What do you mean by a simple element?

14.	 Which data types do we use in XML schema?

15.	 How you set default and fixed values for simple elements?

16.	 How you define attributes in the XML schema?

17.	 How you set default and fixed values for attributes?

18.	 How you define optional and required attributes?

XML Basics_Ch07_2pp.indd 298 8/7/2020 2:00:34 PM

C H A P T E R 8
XSL BASICS

INTRODUCTION TO XSL

XSL stands for EXtensible Stylesheet Language. It started with XSL and
ended up with XSLT, XPath, and XSL-FO. The World Wide Web Consortium
(W3C) started to develop XSL because there was a need for an XML-based
Stylesheet Language. XML does not use predefined tags (we can use any tag
names we like), and therefore the meaning of each tag is not well understood.

A <table> tag could mean an HTML table, a piece of furniture, or some-
thing else—and a browser does not know how to display it. XSL describes how
the XML document should be displayed. XSL consists of three parts:

●● XSLT—a language for transforming XML documents
●● XPath—a language for navigating in XML documents
●● XSL-FO—a language for formatting XML documents

With the XSL, you can freely do modify any of the source text. Stylesheet
1 and the Stylesheet 2 produce different output from the same source file.

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<H1><xsl:value-of select="//title"/></H1>

<H2><xsl:value-of select="//author"/></H2>

</xsl:template>

</xsl:stylesheet>

XML Basics_Ch08_2pp.indd 299 8/7/2020 2:01:28 PM

300 • XML Basics

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<H2><xsl:value-of select="//author"/></H2>

<H1><xsl:value-of select="//title"/></H1>

</xsl:template>

</xsl:stylesheet>

AN XML SYNTAX

An every XSL stylesheet should start with the xsl:stylesheet element. Attribute
xmlns:xsl specifies the version of the XSL(T) specification. This example shows
the simplest possible stylesheet. The default is used here because this does
not contain any information.

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

</xsl:stylesheet>

AN XSL PROCESSOR

The XSL processors parses the XML source and tries to find the matching
template rule. If it can find it, then the instructions inside the matching tem-
plate are evaluated.

The contents of the original elements can be recovered from a original
sources in two basic ways. Stylesheet 1 uses the xsl:value-of a construct. In
this case, the contents of the element are used without any further process-
ing. The xsl:apply-templates in Stylesheet 2 are different. The parser further
processes the selected elements.

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="employee">

<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="surname">

<i><xsl:value-of select="."/></i>

</xsl:template>

</xsl:stylesheet>

XML Basics_Ch08_2pp.indd 300 8/7/2020 2:01:28 PM

XSL Basics • 301

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="employee">

<xsl:apply-templates select="firstName"/>

<xsl:apply-templates select="surname"/>

</xsl:template>

<xsl:template match="surname">

<i> <xsl:value-of select="."/></i>

</xsl:template>

</xsl:stylesheet>

THE XSL TEMPLATES

The XSL processor parses the XML source and tries to find the matching
template rule. If it finds it, then the instructions inside the matching template
are evaluated.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<bold>Hello, world.</bold>

<red>I am </red>

<italic>fine.</italic>

</xslTutorial>

HTML Output 1

<P>

Hello, world.</P>

<P style="color:red">I am </P>

<P>

<i>fine.</i></P>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="bold">

<P><xsl:value-of select="."/></P>

XML Basics_Ch08_2pp.indd 301 8/7/2020 2:01:28 PM

302 • XML Basics

</xsl:template>

<xsl:template match="red">

<P style="color:red"><xsl:value-of select="."/></P>

</xsl:template>

<xsl:template match="italic">

<P><i><xsl:value-of select="."/></i></P>

</xsl:template>

</xsl:stylesheet>

LOCATION PATHS

The parts of the XML document to which the template should be applied are
determined by the location paths. A required syntax is specified in the XPath
specification. Simple cases look similar to file system addressing.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA id='a1' pos='start'>

<BBB id='b1'/>

<BBB id='b2'/>

</AAA>

<AAA id='a2'>

<BBB id='b3'/>

<BBB id='b4'/>

<CCC id='c1'>

<DDD id='d1'/>

</CCC>

<BBB id='b5'>

<CCC id='c2'/>

</BBB>

</AAA>

</xslTutorial>

HTML Output 1

<DIV style="color:purple">BBB id=b1</DIV>

<DIV style="color:purple">BBB id=b2</DIV>

XML Basics_Ch08_2pp.indd 302 8/7/2020 2:01:28 PM

XSL Basics • 303

<DIV style="color:purple">BBB id=b3</DIV>

<DIV style="color:purple">BBB id=b4</DIV>

<DIV style="color:red">DDD id=d1</DIV>

<DIV style="color:purple">BBB id=b5</DIV>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="BBB">

<DIV style="color:purple">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

</xsl:template>

<xsl:template match="/xslTutorial/AAA/CCC/DDD">

<DIV style="color:red">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

</xsl:template>

</xsl:stylesheet>

The processing always starts with the template match=“/”. This is a root
element and its only child is the document element, in our case, it is XSl
tutorial. Many of the stylesheets do not contain this element explicitly. When
the explicit template does not exist, the implicit template, which contains the
instructions, is called. It processes the children of the current node, including
the text nodes.

Wildcard

A template can match the selection of a location path, and the individual paths
are separated with the“|” (see Stylesheet 1). The wildcard * selects all the pos-
sibilities. Compare Stylesheet 1 with Stylesheet 2.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<employee>

XML Basics_Ch08_2pp.indd 303 8/7/2020 2:01:28 PM

304 • XML Basics

<firstName>Joe</firstName>

<surname>Smith</surname>

</employee>

</xslTutorial>

HTML Output 1

<DIV>[template: firstName outputs Joe]</DIV>

<DIV>[template: surname outputs Smith]</DIV>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="firstName|surname">

<DIV><xsl:text> [template: </xsl:text>

<xsl:value-of select="name()"/>

<xsl:text> outputs </xsl:text>

<xsl:apply-templates/ >

<xsl:text>]</xsl:text> </DIV>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="*">

<DIV><xsl:text> [template: </xsl:text>

<xsl:value-of select="name()"/>

<xsl:text> outputs </xsl:text>

<xsl:apply-templates/ >

<xsl:text>]</xsl:text> </DIV>

</xsl:template>

</xsl:stylesheet>

Modes in XSL allow the element to be processed multiple times, each
time producing a different result. In Stylesheet 2, one of the modes does not
exist.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA id='a1' pos='start'>

XML Basics_Ch08_2pp.indd 304 8/7/2020 2:01:28 PM

XSL Basics • 305

<BBB id='b1'/>

<BBB id='b2'/>

</AAA>

<AAA id='a2'>

<BBB id='b3'/>

<BBB id='b4'/>

<CCC id='c1'>

<CCC id='c2'/>

</CCC>

<BBB id='b5'>

<CCC id='c3'/>

</BBB>

</AAA>

</xslTutorial>

HTML Output 1

<DIV style="color:red">CCC id=c1</DIV>

<DIV style="color:red">CCC id=c2</DIV>

<DIV style="color:red">CCC id=c3</DIV>

<DIV style="color:blue">CCC id=c1</DIV>

<DIV style="color:blue">CCC id=c2</DIV>

<DIV style="color:blue">CCC id=c3</DIV>

<DIV style="color:purple">CCC id=c1</DIV>

<DIV style="color:purple">CCC id=c2</DIV>

<DIV style="color:purple">CCC id=c3</DIV>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<xsl:apply-templates select="//CCC" mode="red"/>

<xsl:apply-templates select="//CCC" mode="blue"/>

<xsl:apply-templates select="//CCC"/>

</xsl:template>

<xsl:template match="CCC" mode="red">

<DIV style="color:red">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

XML Basics_Ch08_2pp.indd 305 8/7/2020 2:01:28 PM

306 • XML Basics

</xsl:template>

<xsl:template match="CCC" mode="blue">

<DIV style="color:blue">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

</xsl:template>

<xsl:template match="CCC">

<DIV style="color:purple">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<xsl:apply-templates select="//CCC" mode="red"/>

<xsl:apply-templates select="//CCC" mode="yellow"/>

</xsl:template>

<xsl:template match="CCC" mode="red">

<DIV style="color:red">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

</xsl:template>

<xsl:template match="CCC">

<DIV style="color:purple">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

</xsl:template>

</xsl:stylesheet>

XML Basics_Ch08_2pp.indd 306 8/7/2020 2:01:28 PM

XSL Basics • 307

TEMPLATE ORDERING

Very often, several of the templates match the selected element in the XML
source. It should be therefore decided which one to use. Templates are
ordered according to their priority, which can be specified with the priority
attribute. If a template does not contain this attribute, its priority is calculated
according to several rules.

XSL Attributes

An attribute can be accessed in the way similar to the elements. Notice @ in
front of the attribute name.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<dog name='Joe'>

<data weight='18 kg' color="black"/>

</dog>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<P>

Dog: Joe</P>

<P>

Color: black</P>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="dog">

<P><xsl:text> Dog: </xsl:text>

<xsl:value-of select="@name"/></P>

<P><xsl:text> Color: </xsl:text>

XML Basics_Ch08_2pp.indd 307 8/7/2020 2:01:28 PM

308 • XML Basics

<xsl:value-of select="data/@color"/></P>

</xsl:template>

</xsl:stylesheet>

You can process the attribute in the same way as the element. You can
also select the elements which that contain or do not contain a given attribute.

HTML Output 2

<HTML>

<HEAD> </HEAD>

<BODY>

<P>Car: a005</P>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="car[@checked]">

<P><xsl:text> Car: </xsl:text>

<xsl:value-of select="@id"/></P>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="car[not(@checked)]">

<P><xsl:text> Car: </xsl:text>

<xsl:value-of select="@id"/></P>

</xsl:template>

</xsl:stylesheet>

AXES

Axes play very a important role in XSL. All the axes are used in the example
given below.

XML Basics_Ch08_2pp.indd 308 8/7/2020 2:01:28 PM

XSL Basics • 309

XML Source

<?xml version="1.0"?>

<xslTutorial >

<doc>

<ancprec>

<p>Preceeding Ancestor.
</p>

</ancprec>

<gf>

<p>Ancestor.
</p>

<pprec choice="a">

<p>Preceeding Parent.
 </p>

</pprec>

<par>

<p>Parent.
</p>

<sibprec>

<p>Preceeding sibling.
 </p>

</sibprec>

<me id="id001">

<p>Me.
 </p>

<!-- Comment after Me -->

<chprec >

<p>Preceeding child.
 </p >

</chprec>

<child idref="id001">

<p>Child.
</p>

<?pi Processing Instruction ?>

<dprec>

<p>preceeding Descendant.
 </p>

</dprec>

<desc>

<p>Descendant.
 </p>

</desc>

<dfoll>

<p>Following Descendant.
 </p>

</dfoll>

</child>

<chfoll>

<p>following child.
 </p>

XML Basics_Ch08_2pp.indd 309 8/7/2020 2:01:28 PM

310 • XML Basics

</chfoll>

</me>

<sibfoll>

<p>Following Sibling.
 </p>

</sibfoll>

</par>

<pfoll>

<p>Following Parent.
 </p>

</pfoll>

</gf>

<ancfoll>

<p>following Ancestor.
</p>

</ancfoll>

</doc>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD></HEAD>

<BODY>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>

<title>Document</title> </head>

<body>

<H2>Following Axis</H2>

Following Sibling.

 Following Parent.

 following Ancestor.

<H2>Descendant or Self Axis</H2>

Me.

 Preceeding child.

 Child.

preceeding Descendant.

 Descendant.

 Following Descendant.

 following child.

XML Basics_Ch08_2pp.indd 310 8/7/2020 2:01:28 PM

XSL Basics • 311

<H2>Descendant Axis</H2>

Preceeding child.

 Child.

preceeding Descendant.

 Descendant.

 Following Descendant.

 following child.

<H2>Self Axis</H2>

Me.

<H2>Child Axis</H2>

Preceeding child.

 Child.

following child.

<H2>Following Axis</H2>

<p>

Following Sibling.

 Following Parent.

 following Ancestor.

<i>Note the lack of ancestors here?

Learned anything about document order yet?</i> </p>

<H2>Following Sibling Axis</H2>

 Following Sibling.

<H2>Attribute Axis</H2>

id001

<H2>Parent Axis</H2>

Parent.

<H2>Ancestor or Self Axis</H2>

Ancestor.

Parent.

Me.

<H2>Ancestor Axis</H2>

XML Basics_Ch08_2pp.indd 311 8/7/2020 2:01:28 PM

312 • XML Basics

Ancestor.

Parent.

<H2>Preceding Sibling Axis</H2>

Preceeding sibling.

<H2>Preceeding Axis</H2>

<i>Not Implemented in XT 22 09 99</i>

<H2>Namespace Axis</H2>

<i>Not Implemented in XT 22 09 99</i>

</body>

</html>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

Note how the initial context node is reduced by the apply templates; this
stops the “leaking” of content when all we want is a subset of the whole in the
result tree.

<xsl:apply-templates select="//me"/>

</xsl:template>

<xsl:template match="br">

</xsl:template>

<xsl:template match="me" priority="10">

<html>

<head>

<title> <xsl:text> Document</xsl:text> </title>

</head>

<body>

<H2>Following Axis</H2>

<xsl:apply-templates select="following::*/p"/>

<H2>Descendant or Self Axis</H2>

<xsl:apply-templates select="descendant-or-self::*/p"/>

<H2>Descendant Axis</H2>

XML Basics_Ch08_2pp.indd 312 8/7/2020 2:01:29 PM

XSL Basics • 313

<xsl:apply-templates select="descendant::*/p"/>

<H2>Self Axis</H2>

<xsl:apply-templates select="self::*/p"/>

<H2>Child Axis</H2>

<xsl:apply-templates select="child::*/p"/>

<H2>Following Axis</H2>

<p><xsl:apply-templates select="following::*/p"/>

<i>Note the lack of ancestors here?
Learned anything

about document order yet?</i></p>

<H2>Following Sibling Axis</H2>

<xsl:apply-templates select="following-sibling::*"/>

<H2>Attribute Axis</H2>

<H2>Parent Axis</H2>

<xsl:apply-templates select="parent::*/p"/>

<H2>Ancestor or Self Axis</H2>

<xsl:apply-templates select="ancestor-or-self::*/p"/>

<H2>Ancestor Axis</H2>

<xsl:apply-templates select="ancestor::*/p"/>

<H2>Preceding Sibling Axis</H2>

<xsl:apply-templates select="preceding-sibling::*/p"/>

<H2>Preceeding Axis</H2>

<i>Not Implemented in XT 22 09 99</i>

<H2>Namespace Axis</H2>

<i>Not Implemented in XT 22 09 99</i>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

The child axis:: can be omitted from the location step as it is a default axis.
The Axis attribute:: can be abbreviated to an @. // is short for the /descendant-
or-self::, is short for self:: and .. is the short for parent::.

REPETITIONS AND SORTINGS IN XSL

XSL for-each Instruction

An xsl:for-each instruction contains the template, which is been applied to
each node selected with the select attribute.

XML Basics_Ch08_2pp.indd 313 8/7/2020 2:01:29 PM

314 • XML Basics

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA id='a1' pos='start'>

<BBB id='b1'/>

<BBB id='b2'/>

</AAA>

<AAA id='a2'>

<BBB id='b3'/>

<BBB id='b4'/>

<CCC id='c1'>

<DDD id='d1'/>

</CCC>

<BBB id='b5'>

<CCC id='c2'/>

</BBB>

</AAA>

</xslTutorial>

HTML Output 1

<DIV style="color:red">BBB id=b1</DIV>

<DIV style="color:red">BBB id=b2</DIV>

<DIV style="color:red">BBB id=b3</DIV>

<DIV style="color:red">BBB id=b4</DIV>

<DIV style="color:red">BBB id=b5</DIV>

<DIV style="color:navy">CCC id=c1</DIV>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<xsl:for-each select="//BBB">

<DIV style="color:red">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

</xsl:for-each>

XML Basics_Ch08_2pp.indd 314 8/7/2020 2:01:29 PM

XSL Basics • 315

<xsl:for-each select="xslTutorial/AAA/CCC">

<DIV style="color:navy">

<xsl:value-of select="name()"/>

<xsl:text> id=</xsl:text>

<xsl:value-of select="@id"/>

</DIV>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

XSL SORTING

The nodes selected with an xsl:for-each (see Stylesheet 1 and Stylesheet 2) or
the xsl:apply-templates (see Stylesheet 3) can be sorted. Order of the sorting
determines the order of an attribute. Stylesheet 1 sorts in ascending order and
Stylesheet 2 sorts in descending mode.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<name>John</name>

<name>Josua</name>

<name>Charles</name>

<name>Alice</name>

<name>Martha</name>

<name>George</name>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE>

<TR>

<TH>Alice</TH></TR>

<TR>

<TH>George</TH></TR>

XML Basics_Ch08_2pp.indd 315 8/7/2020 2:01:29 PM

316 • XML Basics

<TR>

<TH>Charles</TH></TR>

<TR>

<TH>John</TH></TR>

<TR>

<TH>Josua</TH></TR>

<TR>

<TH>Martha</TH></TR>

</TABLE>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE>

<xsl:for-each select="//name">

<xsl:sort order="ascending" select="."/>

<TR><TH><xsl:value-of select="."/></TH></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

Stylesheet 1 sorts the text and the Stylesheet 2 sorts the numeric mode.
Notice the most important difference. “Two” comes after “one” alphabeti-
cally, so 2 goes after 10 in text mode.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<car id="11"/>

<car id="6"/>

<car id="105"/>

<car id="28"/>

<car id="9"/>

</xslTutorial>

XML Basics_Ch08_2pp.indd 316 8/7/2020 2:01:29 PM

XSL Basics • 317

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE>

<TR>

<TH>Car-105</TH></TR>

<TR>

<TH>Car-11</TH></TR>

<TR>

<TH>Car-28</TH></TR>

<TR>

<TH>Car-6</TH></TR>

<TR>

<TH>Car-9</TH></TR>

</TABLE>

</BODY>

</HTML>

HTML Output 2

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE>

<TR>

<TH>Car-6</TH></TR>

<TR>

<TH>Car-9</TH></TR>

<TR>

<TH>Car-11</TH></TR>

<TR>

<TH>Car-28</TH></TR>

<TR>

<TH>Car-105</TH></TR>

</TABLE>

</BODY>

</HTML>

XML Basics_Ch08_2pp.indd 317 8/7/2020 2:01:29 PM

318 • XML Basics

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE>

<xsl:for-each select="//car">

<xsl:sort data-type="text" select="@id"/>

<TR><TH><xsl:text> Car-</xsl:text> <xsl:value-of

select="@id"/></TH></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE>

<xsl:for-each select="//car">

<xsl:sort data-type="number" select="@id"/>

<TR><TH><xsl:text> Car-</xsl:text> <xsl:value-of

select="@id"/></TH></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

UPPERCASE AND LOWERCASE SORTING

Stylesheet 1 sorts the uppercase letters first, and Stylesheet 2 sorts the lower-
case letters first.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<word id="czech"/>

<word id="Czech"/>

<word id="cook"/>

XML Basics_Ch08_2pp.indd 318 8/7/2020 2:01:29 PM

XSL Basics • 319

<word id="TooK"/>

<word id="took"/>

<word id="Took"/>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE>

<TR>

<TH>cook</TH></TR>

<TR>

<TH>Czech</TH></TR>

<TR>

<TH>czech</TH></TR>

<TR>

<TH>TooK</TH></TR>

<TR>

<TH>Took</TH></TR>

<TR>

<TH>took</TH></TR>

</TABLE>

</BODY>

</HTML>

HTML Output 2

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE>

<TR>

<TH>cook</TH></TR>

<TR>

<TH>czech</TH></TR>

<TR>

<TH>Czech</TH></TR>

<TR>

<TH>took</TH></TR>

XML Basics_Ch08_2pp.indd 319 8/7/2020 2:01:29 PM

320 • XML Basics

<TR>

<TH>Took</TH></TR>

<TR>

<TH>TooK</TH></TR>

</TABLE>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE>

<xsl:for-each select="//word">

<xsl:sort case-order="upper-first" select="@id"/>

<TR><TH><xsl:value-of

select="@id"/></TH></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE>

<xsl:for-each select="//word">

<xsl:sort case-order="lower-first" select="@id"/>

<TR><TH><xsl:value-of

select="@id"/></TH></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

\XSl Element

The xsl:element generates the elements at the time of processing.

XML Source

<?xml version="1.0"?>

<xslTutorial >

XML Basics_Ch08_2pp.indd 320 8/7/2020 2:01:29 PM

XSL Basics • 321

<text size="H1">Header1</text>

<text size="H3">Header3</text>

<text size="b">Bold text</text>

<text size="sub">Subscript</text>

<text size="sup">Superscript</text>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<H1>Header1</H1>

<H3>Header3</H3>

Bold text

_{Subscript}

^{Superscript}

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<xsl:for-each select="//text">

<xsl:element name="{@size}"><xsl:value-of select="."/></xsl:element>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

The XSL Attribute

The xsl:attribute generates the elements at the time of processing. It creates
the attribute in the element in which it is enclosed.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<color>blue</color>

<color>navy</color>

XML Basics_Ch08_2pp.indd 321 8/7/2020 2:01:29 PM

322 • XML Basics

<color>green</color>

<color>lime</color>

<color>red</color>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE>

<TR>

<TD style=" color:blue">blue</TD></TR></TABLE>

<TABLE>

<TR>

<TD style=" color:navy">navy</TD></TR></TABLE>

<TABLE>

<TR>

<TD style=" color:green">green</TD></TR></TABLE>

<TABLE>

<TR>

<TD style=" color:lime">lime</TD></TR></TABLE>

<TABLE>

<TR>

<TD style=" color:red">red</TD></TR>

</TABLE>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="color">

<TABLE>

<TR><TD>

<xsl:attribute name="style">

color:<xsl:value-of select="."/>

</xsl:attribute>

<xsl:value-of select="."/>

</TD></TR>

XML Basics_Ch08_2pp.indd 322 8/7/2020 2:01:29 PM

XSL Basics • 323

</TABLE>

</xsl:template>

</xsl:stylesheet>

The Copy and Copy-of Constructs

The copy and copy-of constructs are used for the node copying. The copy ele-
ment copies down only the current node without the children and the attrib-
utes, while the copy-of copies everything.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<p id="a12">

Compare these constructs

</p>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<DIV>

copy-of :

<p id="a12"> Compare

these constructs. </p></DIV>

<DIV>

copy :

<p/></DIV>

<DIV>

value-of : Compare these constructs.

</DIV>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="p">

XML Basics_Ch08_2pp.indd 323 8/7/2020 2:01:29 PM

324 • XML Basics

<DIV><xsl:text> copy-of : </xsl:text>

; <xsl:copy-of select="."/>

</DIV>

<DIV><xsl:text> copy : </xsl:text>

<xsl:copy/ >

</DIV>

<DIV><xsl:text> value-of : </xsl:text>

<xsl:value-of select="."/>

</DIV>

</xsl:template>

</xsl:stylesheet>

XSL CONDITIONAL PROCESSING

The xsl:if instruction enables the conditional processing. Stylesheet 1 dem-
onstrates the typical case of a xsl:for-each usage, adding up the text between
the individual entries. Often, you do not want to add up the text after the last
element. The xsl-if construct comes in handy here (see Stylesheet 2).

XML Source

<?xml version="1.0"?>

<xslTutorial >

<list>

<entry name="A"/>

<entry name="B"/>

<entry name="C"/>

<entry name="D"/>

</list>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY> A, B, C, D,

</BODY>

</HTML>

XML Basics_Ch08_2pp.indd 324 8/7/2020 2:01:29 PM

XSL Basics • 325

HTML Output 2

<HTML>

<HEAD> </HEAD>

<BODY> A, B, C, D

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="list">

<xsl:for-each select="entry">

<xsl:value-of select="@name"/>

<xsl:text> , </xsl:text>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="list">

<xsl:for-each select="entry">

<xsl:value-of select="@name"/>

<xsl:if test="not(position()=last())">

<xsl:text> , </xsl:text>

</xsl:if>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

The Choose Element

The xsl:choose element is used to make a choice among the several possibilities.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<SECTION>

XML Basics_Ch08_2pp.indd 325 8/7/2020 2:01:29 PM

326 • XML Basics

<DATA>I need a pen.</DATA>

<DATA>I need some paper.</DATA>

<SUMMARY>I need a pen and some paper.</SUMMARY>

</SECTION>

<SECTION>

<DATA>I need bread.</DATA>

<DATA>I need butter.</DATA>

</SECTION>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<P>SUMMARY: I need a pen and some paper.</P>

<P>DATA: I need bread.</P>

<P>DATA: I need butter.</P>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' > <xsl:template
match="//SECTION">

<xsl:choose>

<xsl:when test='SUMMARY'>

<P><xsl:text> SUMMARY: </xsl:text>

<xsl:value-of select="SUMMARY"/></P>

</xsl:when>

<xsl:otherwise>

<xsl:for-each select="DATA">

<P><xsl:text> DATA: </xsl:text>

<xsl:value-of select="."/></P>

</xsl:for-each>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:stylesheet>

XML Basics_Ch08_2pp.indd 326 8/7/2020 2:01:29 PM

XSL Basics • 327

NUMBER GENERATION AND FORMATTING IN XSL

Stylesheet 1 demonstrates a default behavior of the xsl:number element.
Numbering of the individual chapter elements depends on the position of
a chapter element. Each level of the chapter is numbered independently.
Setting an attribute level to multiple in Stylesheet 2 enables more natural
numbering.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<chapter>First Chapter</chapter>

<chapter>Second Chapter

<chapter>Subchapter 1</chapter>

<chapter>Subchapter 2</chapter>

</chapter>

<chapter>Third Chapter

<chapter>Subchapter A</chapter>

<chapter>Subchapter B

<chapter>sub a</chapter>

<chapter>sub b</chapter>

</chapter>

<chapter>Subchapter C</chapter>

</chapter>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE BORDER="1">

TR>

<TH>Number</TH>

; <TH>text</TH></TR>

<TR>

<TD>1</TD>

<TD>First Chapter</TD></TR>

<TR>

<TD>2</TD>

XML Basics_Ch08_2pp.indd 327 8/7/2020 2:01:29 PM

328 • XML Basics

<TD>Second Chapter </TD></TR>

<TR>

<TD>1</TD>

<TD>Subchapter 1</TD></TR>

<TR>

<TD>2</TD>

<TD>Subchapter 2</TD></TR>

<TR>

<TD>3</TD>

<TD>Third Chapter </TD></TR>

<TR>

<TD>1</TD>

<TD>Subchapter A</TD></TR>

<TR>

<TD>2</TD>

<TD>Subchapter B </TD></TR>

<TR>

<TD>1</TD>

<TD>sub a</TD></TR>

<TR>

<TD>2</TD>

<TD>sub b</TD></TR>

<TR>

<TD>3</TD>

<TD>Subchapter C</TD></TR>

</TABLE>

</BODY>

</HTML>

HTML Output 2

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE BORDER="1">

<TR>

<TH>Number</TH>

<TH>text</TH></TR>

<TR>

XML Basics_Ch08_2pp.indd 328 8/7/2020 2:01:29 PM

XSL Basics • 329

<TD>1</TD>

<TD>First Chapter</TD></TR>

<TR>

<TD>2</TD>

<TD>Second Chapter </TD></TR>

<TR>

<TD>2.1</TD>

<TD>Subchapter 1</TD></TR>

<TR>

<TD>2.2</TD>

<TD>Subchapter 2</TD></TR>

<TR>

<TD>3</TD>

<TD>Third Chapter </TD></TR>

<TR>

<TD>3.1</TD>

<TD>Subchapter A</TD></TR>

<TR>

<TD>3.2</TD>

<TD>Subchapter B </TD></TR>

<TR>

<TD>3.2.1</TD>

<TD>sub a</TD></TR>

<TR>

<TD>3.2.2</TD>

<TD>sub b</TD></TR>

<TR>

<TD>3.3</TD>

<TD>Subchapter C</TD></TR>

</TABLE>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE BORDER="1">

<TR><TH>Number</TH><TH>text</TH></TR>

XML Basics_Ch08_2pp.indd 329 8/7/2020 2:01:29 PM

330 • XML Basics

<xsl:for-each select="//chapter">

<TR><TD>

<xsl:number/ >

</TD><TD>

<xsl:value-of select="./text()"/>

</TD></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

The Format Attribute

An xsl:numbers inserts formatted numbers into the output. The format is
given with the format attribute. An attribute starts with a format identificator
followed by separator characters.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<n>one</n>

<n>two</n>

<n>three</n>

<n>four</n>

</xslTutorial>

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE>

<TR>

<TD>1. one</TD></TR>

<TR>

<TD>2. two</TD></TR>

<TR>

<TD>3. three</TD></TR>

<TR>

<TD>4. four</TD></TR>

XML Basics_Ch08_2pp.indd 330 8/7/2020 2:01:29 PM

XSL Basics • 331

</TABLE>

</BODY>

</HTML>

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE>

<xsl:for-each select="//n">

<TR><TD>

<xsl:number value="position()" format="1. "/>

<xsl:value-of select="."/>

</TD></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 1

FORMATTING MULTILEVEL NUMBERS

Stylesheet 1 and Stylesheet 2 are examples of formatting multilevel numbers.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<chapter>First Chapter</chapter>

<chapter>Second Chapter

<chapter>Subchapter 1</chapter>

<chapter>Subchapter 2</chapter>

</chapter>

<chapter>Third Chapter

<chapter>Subchapter A</chapter>

<chapter>Subchapter B

<chapter>sub a</chapter>

<chapter>sub b</chapter>

</chapter>

<chapter>Subchapter C</chapter>

</chapter>

</xslTutorial>

XML Basics_Ch08_2pp.indd 331 8/7/2020 2:01:29 PM

332 • XML Basics

HTML Output 1

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE BORDER="1">

<TR>

<TH>Number</TH>

<TH>text</TH></TR>

<TR>

<TD>1 </TD>

<TD>First Chapter</TD></TR>

<TR>

<TD>2 </TD>

<TD>Second Chapter </TD></TR>

<TR>

<TD>2.A </TD>

<TD>Subchapter 1</TD></TR>

<TR>

<TD>2.B </TD>

<TD>Subchapter 2</TD></TR>

<TR>

<TD>3 </TD>

<TD>Third Chapter </TD></TR>

<TR>

<TD>3.A </TD>

<TD>Subchapter A</TD></TR>

<TR>

<TD>3.B </TD>

<TD>Subchapter B </TD></TR>

<TR>

<TD>3.B.a </TD>

<TD>sub a</TD></TR>

<TR>

<TD>3.B.b </TD>

<TD>sub b</TD></TR>

<TR>

<TD>3.C </TD>

<TD>Subchapter C</TD></TR>

XML Basics_Ch08_2pp.indd 332 8/7/2020 2:01:29 PM

XSL Basics • 333

</TABLE>

</BODY>

</HTML>

HTML Output 2

<HTML>

<HEAD> </HEAD>

<BODY>

<TABLE BORDER="1">

<TR>

<TH>Number</TH>

<TH>text</TH></TR>

<TR>

<TD>I:</TD>

<TD>First Chapter</TD></TR>

<TR>

<TD>II:</TD>

<TD>Second Chapter </TD></TR>

<TR>

<TD>II-1:</TD>

<TD>Subchapter 1</TD></TR>

<TR>

<TD>II-2:</TD>

<TD>Subchapter 2</TD></TR>

<TR>

<TD>III:</TD>

<TD>Third Chapter </TD></TR>

<TR>

<TD>III-1:</TD>

<TD>Subchapter A</TD></TR>

<TR>

<TD>III-2:</TD>

<TD>Subchapter B

<TR>

<TD>III-2-a:</TD>

<TD>sub a</TD></TR>

<TR>

<TD>III-2-b:</TD>

XML Basics_Ch08_2pp.indd 333 8/7/2020 2:01:29 PM

334 • XML Basics

<TD>sub b</TD></TR>

<TR>

<TD>III-3:</TD>

<TD>Subchapter C</TD></TR>

</TABLE>

</BODY>

</HTML>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE BORDER="1">

<TR><TH>Number</TH><TH>text</TH></TR>

<xsl:for-each select="//chapter">

<TR><TD>

<xsl:number level="multiple" format="1.A.a "/>

</TD><TD>

<xsl:value-of select="./text()"/>

</TD></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<TABLE BORDER="1">

<TR><TH>Number</TH><TH>text</TH></TR>

<xsl:for-each select="//chapter">

<TR><TD>

<xsl:number level="multiple" format="I-1-a:"/>

</TD><TD>

<xsl:value-of select="./text()"/>

</TD></TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

XML Basics_Ch08_2pp.indd 334 8/7/2020 2:01:29 PM

XSL Basics • 335

NUMERIC CALCULATION IN XSL

A function transform its argument into number. XSL stylesheet 1 demon-
strates the string conversion, and XSL stylesheet 2 converts the boolean val-
ues to either true or false.

XSL Stylesheet 1

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<TABLE border="1">

<TR>

<TH>text</TH>

<TH>number</TH>

</TR>

<xsl:for-each select="//text">

<TR>

<TD>

<xsl:value-of select="."/>

</TD>

<TD>

<xsl:value-of select="number()"/>

</TD>

</TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<TABLE border="1">

<TR>

<TH>text</TH>

<TH>number</TH>

</TR>

XML Basics_Ch08_2pp.indd 335 8/7/2020 2:01:29 PM

336 • XML Basics

<xsl:for-each select="//text[text() = 'true' or text() = 'false()']">

<TR>

<TD>

<xsl:value-of select="."/>

</TD>

<TD>

<xsl:value-of select="number()"/>

</TD>

</TR>

</xsl:for-each>

</TABLE>

<P>

<xsl:text>but:</xsl:text>

</P>

<TABLE border="1">

<TR>

<TH>function</TH>

<TH>number</TH>

</TR>

<TR>

<TD>true()</TD>

<TD>

<xsl:value-of select="number(true())"/>

</TD>

</TR>

<TR>

<TD>false()</TD>

<TD>

<xsl:value-of select="number(false())"/>

</TD>

</TR>

<TR>

<TD>5>7</TD>

<TD>

<xsl:value-of select="number(5 > 7)"/>

</TD>

</TR>

<TR>

<TD>5<7</TD>

XML Basics_Ch08_2pp.indd 336 8/7/2020 2:01:29 PM

XSL Basics • 337

<TD>

<xsl:value-of select="number(5<7)"/>

</TD>

</TR>

</TABLE>

</xsl:template>

</xsl:stylesheet>

Add, subtract a and multiply use, common syntax, (see the XSL Stylesheet
1). The division syntax is less familiar. A slash “ / ” symbol is used in the pat-
terns, and so the keyword div is used instead (see XSL Stylesheet 2). The
operator mod returns a remainder from truncating the division.

XML Source

<source>

<number>1</number>

<number>3</number>

<number>4</number>

<number>17</number>

<number>8</number>

<number>11</number>

</source>

Output

<P>1 + 3 = 4</P>

<P>4 - 17 = -13</P>

<P>8 * 11 = 88</P>

XSL Stylesheet 1

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<P>

<xsl:value-of select="//number[1]"/>

<xsl:text> + </xsl:text>

<xsl:value-of select="//number[2]"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="//number[1] + //number[2]"/>

XML Basics_Ch08_2pp.indd 337 8/7/2020 2:01:29 PM

338 • XML Basics

</P>

<P>

<xsl:value-of select="//number[3]"/>

<xsl:text> - </xsl:text>

<xsl:value-of select="//number[4]"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="//number[3] - //number[4]"/>

</P>

<P>

<xsl:value-of select="//number[5]"/>

<xsl:text> * </xsl:text>

<xsl:value-of select="//number[6]"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="//number[5] * //number[6]"/>

</P>

</xsl:template>

</xsl:stylesheet>

XML Source

<source>

<number>1</number>

<number>3</number>

<number>4</number>

<number>17</number>

<number>8</number>

<number>11</number>

</source>

Output

<P>8 / 11 = 0.7272727272727273</P>

<P>8 mod 11 = 8</P>

XSL Stylesheet 2

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<P>

XML Basics_Ch08_2pp.indd 338 8/7/2020 2:01:29 PM

XSL Basics • 339

<xsl:value-of select="//number[5]"/>

<xsl:text> / </xsl:text>

<xsl:value-of select="//number[6]"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="//number[5] div //number[6]"/>

</P>

<P>

<xsl:value-of select="//number[5]"/>

<xsl:text> mod </xsl:text>

<xsl:value-of select="//number[6]"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="//number[5] mod //number[6]"/>

</P>

</xsl:template>

</xsl:stylesheet>

CEILING, FLOOR, AND ROUND

The functions ceiling(), floor(), and the round() transform a floating point
number into an integer in a specified way.

XML Source

<source>

<number>6</number>

<number>3.8</number>

<number>1.234</number>

<number>-6</number>

<number>-3.8</number>

<number>-1.234</number>

</source>

Output

<TABLE border="1">

<TR>

<TH>number</TH>

<TH>floor</TH>

<TH>ceiling</TH>

XML Basics_Ch08_2pp.indd 339 8/7/2020 2:01:29 PM

340 • XML Basics

<TH>round</TH>

</TR>

<TR>

<TD>6</TD>

<TD>6</TD>

<TD>6</TD>

<TD>6</TD>

</TR>

<TR>

<TD>3.8</TD>

<TD>3</TD>

<TD>4</TD>

<TD>4</TD>

</TR>

<TR>

<TD>1.234</TD>

<TD>1</TD>

<TD>2</TD>

<TD>1</TD>

</TR>

<TR>

<TD>-6</TD>

<TD>-6</TD>

<TD>-6</TD>

<TD>-6</TD>

</TR>

<TR>

<TD>-3.8</TD>

<TD>-4</TD>

<TD>-3

<td>-4></td>-4>

</TR>

<TR>

<TD>-1.234</TD>

<TD>-2</TD>

<TD>-1</TD>

<TD>-1</TD>

</TR>

</TABLE>

XML Basics_Ch08_2pp.indd 340 8/7/2020 2:01:29 PM

XSL Basics • 341

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<TABLE border="1">

<TR>

<TH>number</TH>

<TH>floor</TH>

<TH>ceiling</TH>

<TH>round</TH>

</TR>

<xsl:for-each select="//number">

<TR>

<TD>

<xsl:value-of select="."/>

</TD>

<TD>

<xsl:value-of select="floor(.)"/>

</TD>

<TD>

<xsl:value-of select="ceiling(.)"/>

</TD>

<TD>

<xsl:value-of select="round(.)"/>

</TD>

</TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

STRING FUNCTION

The function string() transforms all its argument into a string. This func-
tion is not used directly in the stylesheets since it is called by default. XSL
stylesheet 1 shows examples of the number-to-string conversions. Notice the
results of a zero division.

XML Basics_Ch08_2pp.indd 341 8/7/2020 2:01:29 PM

342 • XML Basics

XML Source

<source>

<number>9</number>

<number>0</number>

<number>-9</number>

<number/>

</source>

Output

<P>9</P>

<P>NaN</P>

<P>9/0 = Infinity</P>

<P>-9/0 = -Infinity</P>

<P>0/0 = NaN</P>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:variable name="A" select="number(//number[1])"/>

<xsl:variable name="B" select="number(//number[2])"/>

<xsl:variable name="C" select="number(//number[3])"/>

<xsl:variable name="D" select="number(//number[4])"/>

<xsl:template match="/">

<P>

<xsl:value-of select="string(number($A))"/>

</P>

<P>

<xsl:value-of select="string(number($D))"/>

</P>

<P>

<xsl:value-of select="$A"/>

<xsl:text>/</xsl:text>

<xsl:value-of select="$B"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="string($A div $B)"/>

</P>

<P>

XML Basics_Ch08_2pp.indd 342 8/7/2020 2:01:29 PM

XSL Basics • 343

<xsl:value-of select="$C"/>

<xsl:text>/</xsl:text>

<xsl:value-of select="$B"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="string($C div $B)"/>

</P>

<P>

<xsl:value-of select="$B"/>

<xsl:text>/</xsl:text>

<xsl:value-of select="$B"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="$B div $B"/>

</P>

</xsl:template>

</xsl:stylesheet>

In XSL Stylesheet 1, strings are the arguments of the boolean() function.
The string is true if, and only if, the length of it is a non-zero integer.

XML Source

<source>

<text>124</text>

<text>AB234</text>

<text>-16</text>

<text>0</text>

<text/>

<text>false</text>

</source>

Output

<TABLE border="1">

<TR>

<TH>text</TH>

<TH>boolean</TH>

</TR>

<TR>

<TD>124</TD>

<TD>true</TD>

XML Basics_Ch08_2pp.indd 343 8/7/2020 2:01:29 PM

344 • XML Basics

</TR>

<TR>

<TD>AB234</TD>

<TD>true</TD>

</TR>

<TR>

<TD>-16</TD>

<TD>true</TD>

</TR>

<TR>

<TD>0</TD>

<TD>true</TD>

</TR>

<TR>

<TD/>

<TD>false</TD>

</TR>

<TR>

<TD>false</TD>

<TD>true</TD>

</TR>

</TABLE>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<TABLE border="1">

<TR>

<TH>text</TH>

<TH>boolean</TH>

</TR>

<xsl:for-each select="//text">

<TR>

<TD>

<xsl:value-of select="."/>

<xsl:text/>

</TD>

XML Basics_Ch08_2pp.indd 344 8/7/2020 2:01:29 PM

XSL Basics • 345

<TD>

<xsl:value-of select="boolean(text())"/>

</TD>

</TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

Not Function

The not function returns true if the argument passed to it is false, and returns
false otherwise.

XML Source

<source>

<car id="a234" checked="yes"/>

<car id="a111" checked="yes"/>

<car id="a005"/>

</source>

Output

<P>

<B style="color:blue">a234

</P>

<P>

<B style="color:blue">a111

</P>

<P>

<B style="color:red">a005

</P>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="car[not(@checked)]">

<P>

<B style="color:red">

XML Basics_Ch08_2pp.indd 345 8/7/2020 2:01:29 PM

346 • XML Basics

<xsl:value-of select="@id"/>

</P>

</xsl:template>

<xsl:template match="car[@checked]">

<P>

<B style="color:blue">

<xsl:value-of select="@id"/>

</P>

</xsl:template>

</xsl:stylesheet>

The functions true() and false() are useful for testing conditions.

XML Source

<source>

<number>0</number>

<number>1</number>

</source>

Output

<P>true not false</P>

<P>true not false</P>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="number">

<P>

<xsl:if test="true()">

<xsl:text>true </xsl:text>

</xsl:if>

<xsl:if test="not(false())">

<xsl:text>not false</xsl:text>

</xsl:if>

</P>

</xsl:template>

</xsl:stylesheet>

XML Basics_Ch08_2pp.indd 346 8/7/2020 2:01:29 PM

XSL Basics • 347

The lang function returns true or false depending on the language of the
context node as specified by the xml:lang attributes. It is the same as or is
the sublanguage of the language that is specified by an argument string. The
language of the context node is determined by a value of the xml:lang attri-
bute on the context node, or, if the context node has no xml:lang attribute,
by a value of the xml:lang attribute on the nearest ancestor of a context node
that has an xml:lang attribute. If there exists no such attribute, then the lang
returns false. If such an attribute exists, then the lang returns true if the attri-
bute value is equal to an argument ignoring the case, or if there is some suffix
starting with it, such that an attribute value is equal to an argument ignoring
the suffix of an attribute value and ignoring the case.

XML Source

<source>

<P xml:lang="de">

<text xml:lang="cs">a</text>

<text xml:lang="en">and</text>

<text>und</text>

</P>

</source>

Output

<P>Czech: a</P>

<P>English: and</P>

<P>German: und</P>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="text">

<P>

<xsl:choose>

<xsl:when test='lang("cs")'>

<xsl:text>Czech: </xsl:text>

</xsl:when>

<xsl:when test='lang("en")'>

<xsl:text>English: </xsl:text>

XML Basics_Ch08_2pp.indd 347 8/7/2020 2:01:29 PM

348 • XML Basics

</xsl:when>

<xsl:when test='lang("de")'>

<xsl:text>German: </xsl:text>

</xsl:when>

</xsl:choose>

<xsl:value-of select="."/>

</P>

</xsl:template>

</xsl:stylesheet>

XSL STRING FUNCTIONS

string()

The function string() transforms the argument into a string. This function
is not usually directly used in the stylesheets, as in most cases called by a
default. XSL stylesheet 1 shows the examples of the number-to-string conver-
sion. Notice the results of the zero divisions.

XML Source

<source>

<number>9</number>

<number>0</number>

<number>-9</number>

<number/>

</source>

Output

<P>9</P>

<P>NaN</P>

<P>9/0 = Infinity</P>

<P>-9/0 = -Infinity</P>

<P>0/0 = NaN</P>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

XML Basics_Ch08_2pp.indd 348 8/7/2020 2:01:29 PM

XSL Basics • 349

<xsl:variable name="A" select="number(//number[1])"/>

<xsl:variable name="B" select="number(//number[2])"/>

<xsl:variable name="C" select="number(//number[3])"/>

<xsl:variable name="D" select="number(//number[4])"/>

<xsl:template match="/">

<P>

<xsl:value-of select="string(number($A))"/>

</P>

<P>

<xsl:value-of select="string(number($D))"/>

</P>

<P>

<xsl:value-of select="$A"/>

<xsl:text>/</xsl:text>

<xsl:value-of select="$B"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="string($A div $B)"/>

</P>

<P>

<xsl:value-of select="$C"/>

<xsl:text>/</xsl:text>

<xsl:value-of select="$B"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="string($C div $B)"/>

</P>

<P>

<xsl:value-of select="$B"/>

<xsl:text>/</xsl:text>

<xsl:value-of select="$B"/>

<xsl:text> = </xsl:text>

<xsl:value-of select="$B div $B"/>

</P>

</xsl:template>

</xsl:stylesheet>

CONCATINATION

The string concat function returns the concatenation of the arguments passed
to it.

XML Basics_Ch08_2pp.indd 349 8/7/2020 2:01:30 PM

350 • XML Basics

XML Source

<source>

<text>Start</text>

<text>Body</text>

<text>Finish</text>

</source>

Output

<P>Start - Body - Finish</P>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
<xsl:variable name="T" select="concat(//text[1],' - ',//text[2],' - ',//text[3])"/>

<xsl:template match="/">

<P>

<xsl:value-of select="$T"/>

</P>

</xsl:template>

</xsl:stylesheet>

A starts-with function returns true if the first argument string starts with
a second argument string, otherwise it will return false. The contains function
returns true if the first argument string contains the second argument string,
otherwise it will return false.

XML Source

<source>

<text>Welcome to XSL world.</text>

<string>Welcome</string>

<string>XSL</string>

<string>XML</string>

</source>

Output

<TABLE border="1">

<TR>

XML Basics_Ch08_2pp.indd 350 8/7/2020 2:01:30 PM

XSL Basics • 351

<TH colspan="3">Welcome to XSL world.</TH>

</TR>

<TR>

<TH>string</TH>

<TH>starts-with</TH>

<TH>contains</TH>

</TR>

<TR>

<TD>Welcome</TD>

<TD>true</TD>

<TD>true</TD>

</TR>

<TR>

<TD>XSL</TD>

<TD>false</TD>

<TD>true</TD>

</TR>

<TR>

<TD>XML</TD>

<TD>false</TD>

<TD>false</TD>

</TR>

</TABLE>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<TABLE border="1">

<TR>

<TH colspan="3">

<xsl:value-of select="//text"/>

</TH>

</TR>

<TR>

<TH>string</TH>

<TH>starts-with</TH>

<TH>contains</TH>

XML Basics_Ch08_2pp.indd 351 8/7/2020 2:01:30 PM

352 • XML Basics

</TR>

<xsl:for-each select="//string">

<TR>

<TD>

<xsl:value-of select="."/>

</TD>

<TD>

<xsl:value-of select="starts-with(//text,.)"/>

</TD>

<TD>

<xsl:value-of select="contains(//text,.)"/>

</TD>

</TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

The substring-before function returns a substring of the first argument
string that precedes the substring after the function that follows first occur-
rence of a second argument string in first argument string. The substring
function returns a substring of the first argument starting at a position speci-
fied in the second argument with the length specified in the third argument.
If the third argument is not specified, returns the substring starting at a posi-
tion specified in a second argument and continues until the end of a string.
The counting starts with 1.

Output

<DIV>

Text: Welcome to XSL world.</DIV>

Text before XSL: Welcome to <DIV>

Text after XSL: world.</DIV>

<DIV>

Text from position 4: come to XSL world.</DIV>

<DIV> Text from position 4 of length 10: come to XS</DIV>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

XML Basics_Ch08_2pp.indd 352 8/7/2020 2:01:30 PM

XSL Basics • 353

<xsl:template match="/">

<DIV>

<xsl:text>Text: </xsl:text>

<xsl:value-of select="//text"/>

</DIV>

<xsl:text>Text before </xsl:text>

<xsl:value-of select="//string"/>

<xsl:text>: </xsl:text>

<xsl:value-of select="substring-before(//text,//string)"/>

<DIV>

<xsl:text>Text after </xsl:text>

<xsl:value-of select="//string"/>

<xsl:text>: </xsl:text>

<xsl:value-of select="substring-after(//text,//string)"/>

</DIV>

<DIV>

<xsl:text>Text from position </xsl:text>

<xsl:value-of select="//start"/>

<xsl:text>: </xsl:text>

<xsl:value-of select="substring(//text,//start)"/>

</DIV>

<DIV>

<xsl:text>Text from position </xsl:text>

<xsl:value-of select="//start"/>

<xsl:text> of length </xsl:text>

<xsl:value-of select="//end"/>

<xsl:text>: </xsl:text>

<xsl:value-of select="substring(//text,//start,//end)"/>

XML Basics_Ch08_2pp.indd 353 8/7/2020 2:01:30 PM

354 • XML Basics

</DIV>

</xsl:template>

</xsl:stylesheet>

The string-length function returns the number of characters in a string.
The normalize-space function returns the argument string with a white space
normalized by the stripping leading and trailing a whitespace. It replaces the
sequences of whitespace characters a single white space.

Output

<TABLE>

<TR>

<TH colspan="4">Normalized text</TH>

</TR>

<TR>

<TD>Starting length:</TD>

<TD>15</TD>

<TD>Normalized length:</TD>

<TD>15</TD>

</TR>

<TR>

<TH colspan="4">Sequences of whitespace characters</TH>

</TR>

<TR>

<TD>Starting length:</TD>

<TD>41</TD>

<TD>Normalized length:</TD>

<TD>34</TD>

</TR>

<TR>

<TH colspan="4"> Leading and trailing whitespace. </TH>

</TR>

<TR>

<TD>Starting length:</TD>

<TD>40</TD>

<TD>Normalized length:</TD>

<TD>32</TD>

</TR>

</TABLE>

XML Basics_Ch08_2pp.indd 354 8/7/2020 2:01:30 PM

XSL Basics • 355

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<TABLE>

<xsl:for-each select="//text">

<TR>

<TH colspan="4">

<xsl:value-of select="."/>

</TH>

</TR>

<TR>

<TD>Starting length:</TD>

<TD>

<xsl:value-of select="string-length(.)"/>

</TD>

<TD>Normalized length:</TD>

<TD>

<xsl:value-of select="string-length(normalize-space(.))"/> </TD>

</TR>

</xsl:for-each>

</TABLE>

</xsl:template>

</xsl:stylesheet>

XSL OUTPUT ELEMENT

An xsl:output element allows the stylesheet authors to specify how they wish a
result tree to be output. If the XSL processor outputs a result tree, it must do
so as specified by a xsl:output element; however, it is not required to do so. An
xsl:output element is allowed only as the top-level element.

XML Source

<source>

<hr/>

<hr/>

<hr/>

</source>

XML Basics_Ch08_2pp.indd 355 8/7/2020 2:01:30 PM

356 • XML Basics

Output

<source>

<hr>

<hr>

<hr>

</source>

When an xml:output element is not present, the default output method
is “xml” (see XSL Stylesheet 1). If the document element of the output has a
value “html” that is case insensitive and it does not have the xmlns attribute,
then the html method is used.

Output

<h1> XML output </h1>

<hr/>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<xsl:copy-of select="/source/*"/>

</xsl:template>

</xsl:stylesheet>

HTML OUTPUT METHOD

An html output method must not output the end tag for an empty element
specified in the HTML specification. An html output method must not per-
form the escape for a script or the style elements.

XML Source

<source>

<h1> HTML output </h1>

<AAA/>

<HR/>

<script>if (a < b) foo(); if (cc < dd) foo() </script>

<hr/>

XML Basics_Ch08_2pp.indd 356 8/7/2020 2:01:30 PM

XSL Basics • 357

<hr/>

<Hr/>

<hR/>

</source>

Output

<h1> HTML output </h1>

<AAA></AAA>

<HR><script>if (a < b)foo();

if (cc < dd) foo()

</script><hr>

<hr>

<Hr>

<hR>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:output method="html"/>

<xsl:template match="/">

<xsl:copy-of select="/source/*"/>

</xsl:template>

</xsl:stylesheet>

The encoding attribute specifies the preferred encoding to be used. An
html output method must add the META element immediately after start tag
of the HEAD element specifying the character encoding actually being used.
XSL Stylesheet 1 outputs in the UTF-8. An xml source contains the characters
which are not present in the specified character set and they are therefore
escaped.

XML Source

<source>

<html>

<head>

<title>HTML</title>

</head>

<body>

<h1> HTML output </h1> ?í?ala ?nek ko?ka pa?ez be?ka me?ec vyr

XML Basics_Ch08_2pp.indd 357 8/7/2020 2:01:30 PM

358 • XML Basics

</body>

</html>

</source>

Output

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>HTML</title>

</head>

<body>

<h1> HTML output </h1>

?í?ala ?nek

ko?ka pa?ez

be?ka m??ec vyr

</body>

</html>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:output method="html" encoding="UTF-8"/>

<xsl:template match="/">

<xsl:copy-of select="/source/*"/>

</xsl:template>

</xsl:stylesheet>

TEXT OUTPUT METHOD

A text output method outputs the result tree by outputting a string value of
every text node in a result tree in the document order without doing any
escaping.

XML Source

<source>

<AAA id="12"/>

</source>

XML Basics_Ch08_2pp.indd 358 8/7/2020 2:01:30 PM

XSL Basics • 359

Output

<!ELEMENT AAA ANY><!ATTLIST AAAid ID #REQUIRED>Look at my source in your browser

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:output method="text"/>

<xsl:template match="AAA">

<xsl:text><!ELEMENT </xsl:text>

<xsl:value-of select="name()"/>

<xsl:text> ANY></xsl:text>

<xsl:text><!ATTLIST </xsl:text>

<xsl:value-of select="name()"/>

<xsl:text/>

<xsl:value-of select="name(@*)"/>

<xsl:text> ID #REQUIRED></xsl:text>

<xsl:text>Look at my source in your browser</xsl:text>

</xsl:template>

</xsl:stylesheet>

COPY AND COPY-OF CONSTRUCTS IN XSL

The copy and copy-of constructs are used for copying the nodes. Copy the
element copies only a current node without the children and the attributes,
while the copy-of copies everything, including the children and the attributes.

XML Source

<source>

<p id="a12"> Compare

these constructs.

</p>

</source>

Output

<DIV>

copy-of :

XML Basics_Ch08_2pp.indd 359 8/7/2020 2:01:30 PM

360 • XML Basics

<p id="a12">

Compare these constructs.

</p>

</DIV>

<DIV>

copy :

<p/>

</DIV>

<DIV>

value-of :

Compare these constructs.

</DIV>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="p">

<DIV>

<xsl:text>copy-of : </xsl:text>

<xsl:copy-of select="."/>

</DIV>

<DIV>

<xsl:text>copy : </xsl:text>

<xsl:copy/>

</DIV>

<DIV>

<xsl:text>value-of : </xsl:text>

<xsl:value-of select="."/>

</DIV>

</xsl:template>

</xsl:stylesheet>

XML Basics_Ch08_2pp.indd 360 8/7/2020 2:01:30 PM

XSL Basics • 361

USE-ATTRIBUTE-SETS ATTRIBUTE

An xsl:copy element may have the use-attribute-sets attribute. In this way, the
attributes for the copied element can be specified. XSL Stylesheet 2 does not
work as been expected because the expressions in the attributes that do refer
to the named XSL objects are not evaluated.

XML Source

<source>

<h1>GREETING</h1>

<p>Hello, world!</p>

</source>

Output

<h1 align="center" style="color:red">GREETING</h1>

<p align="left" style="color:blue">Hello, world!</p>

XSL Stylesheet

<xsl:stylesheet version = '1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<xsl:apply-templates select="/source/*"/>

</xsl:template>

<xsl:template match="h1">

<xsl:copy use-attribute-sets="H1">

<xsl:value-of select="."/>

</xsl:copy>

</xsl:template>

<xsl:template match="p">

<xsl:copy use-attribute-sets="P ">

<xsl:value-of select="."/>

</xsl:copy>

</xsl:template>

<xsl:attribute-set name="H1">

<xsl:attribute name="align">center</xsl:attribute>

<xsl:attribute name="style">color:red</xsl:attribute>

</xsl:attribute-set>

XML Basics_Ch08_2pp.indd 361 8/7/2020 2:01:30 PM

362 • XML Basics

<xsl:attribute-set name="P">

<xsl:attribute name="align">left</xsl:attribute>

<xsl:attribute name="style">color:blue</xsl:attribute>

</xsl:attribute-set>

</xsl:stylesheet>

MISCELLANEOUS ADDITIONAL FUNCTIONS

The Current Function

A current function returns the node-set that has the current node as the only
member. For the outermost expression that is not occurring within another
expression, current node is always same as a context node. However, within
the square brackets, the current node is usually different from the context
node.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA name="first">

<BBB name="first">11111</BBB>

<BBB name="second">22222</BBB>

</AAA>

<AAA name="second">

<BBB name="first">33333</BBB>

; <BBB name="second">44444</BBB>

</AAA>

</xslTutorial>

HTML Output 1

<TABLE border="1">

<TR>

<TH> . </TH>

<TH>current()</TH></TR>

<TR>

<TD>first</TD>

<TD>first</TD></TR>

XML Basics_Ch08_2pp.indd 362 8/7/2020 2:01:30 PM

XSL Basics • 363

<TR>

<TD>11111</TD>

<TD>1111122222</TD></TR>

<TR>

<TD>second</TD>

<TD>second</TD></TR>

<TR>

<TD>33333</TD>

<TD/></TR></TABLE>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<TABLE border="1">

<TR><TH> . </TH><TH>current()</TH></TR>

<xsl:apply-templates select="//AAA"/>

</TABLE>

</xsl:template>

<xsl:template match="AAA">

<TR>

<TD>

<xsl:value-of select="./@name"/>

</TD><TD>

<xsl:value-of select="current()/@name"/>

</TD></TR>

<TR><TD>

<xsl:apply-templates select="BBB[./@name='first']"/>

</TD><TD>

<xsl:apply-templates select="BBB[current()/@name='first']"/>

</TD></TR>

</xsl:template>

</xsl:stylesheet>

Generate Id

The function generate-id generates the id conforming to the XML spec.
Stylesheet 2 does uses the generate-id function to add the id to all the ele-
ments in the source XML.

XML Basics_Ch08_2pp.indd 363 8/7/2020 2:01:30 PM

364 • XML Basics

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA name='top'>

<BBB pos='1' val='bbb'>11111</BBB>

<BBB>22222</BBB>

</AAA>

<AAA name='bottom'>

<BBB>33333</BBB>

<BBB>44444</BBB>

</AAA>

</xslTutorial>

HTML Output 1

<DIV>

generate-id(//AAA) : N3</DIV>

<DIV>

generate-id(//BBB) : N6</DIV>

<DIV>

generate-id(//AAA[1]) : N3</DIV>

<DIV>

generate-id(//*[1]) : N1</DIV>

<DIV>

generate-id(//xslTutorial/*[1]) : N3</DIV>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >

<xsl:template match="/">

<DIV><xsl:text> generate-id(//AAA) : </xsl:text>

<xsl:value-of select="generate-id(//AAA) "/></DIV>

<DIV><xsl:text> generate-id(//BBB) : </xsl:text>

<xsl:value-of select="generate-id(//BBB) "/></DIV>

<DIV><xsl:text> generate-id(//AAA[1]) : </xsl:text>

<xsl:value-of select="generate-id(//AAA[1]) "/></DIV>

<DIV><xsl:text> generate-id(//*[1]) : </xsl:text>

<xsl:value-of select="generate-id(//*[1]) "/></DIV>

<DIV><xsl:text> generate-id(//xslTutorial/*[1]) : </xsl:text>

XML Basics_Ch08_2pp.indd 364 8/7/2020 2:01:30 PM

XSL Basics • 365

<xsl:value-of select="generate-id(//xslTutorial/*[1]) "/></DIV>

</xsl:template>

</xsl:stylesheet>

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA name='top'>

<BBB pos='1' val='bbb'>11111</BBB>

<BBB>22222</BBB>

</AAA>

<AAA name='bottom'>

<BBB>33333</BBB>

<BBB>44444</BBB>

</AAA>

</xslTutorial>

HTML Output 2

<xslTutorial id="N1">

<AAA id="N3" name="top">

<BBB id="N6" pos="1" val="bbb">11111</BBB>

<BBB id="N11">22222</BBB> </AAA>

<AAA id="N15" name="bottom">

<BBB id="N18">33333</BBB>

<BBB id="N21">44444</BBB> </AAA> </xslTutorial>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="*">

<xsl:copy select=".">

<xsl:attribute name="id">

<xsl:value-of select="generate-id()"/>

</xsl:attribute>

<xsl:for-each select="@*">

<xsl:attribute name="{name()}">

<xsl:value-of select="."/>

</xsl:attribute>

XML Basics_Ch08_2pp.indd 365 8/7/2020 2:01:30 PM

366 • XML Basics

</xsl:for-each>

<xsl:apply-templates/ >

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

COMBINING XSL

Many other stylesheets can be imported using xsl:import or xsl:include.
Importing the stylesheet is the same as including, except that the defini-

tions and the template rules for importing the stylesheet takes precedence over
the template rules and the definitions in an imported stylesheet. Stylesheet 1
was imported into Stylesheet 2.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<H1>IMPORTING STYLESHEETS</H1>

</xslTutorial>

HTML Output 1

IMPORTING STYLESHEETS

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:variable name="id2">Stylesheet 1(id2.xsl)</xsl:variable>

<xsl:variable name="t">Variable t from id2.xsl</xsl:variable>

</xsl:stylesheet>

The xsl:import element children should precede all the other element
children of the xsl:stylesheet element, including any of the xsl:include ele-
ment children. When the xsl:include is used to include the stylesheet, any of
the xsl:import elements in an included document are moved up in an includ-
ing document to after any of the existing xsl:import elements in an including
document.

XML Basics_Ch08_2pp.indd 366 8/7/2020 2:01:30 PM

XSL Basics • 367

HTML Output 3

<P>Stylesheet 1(id2.xsl)

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:include href="id2.xsl"/>

<xsl:template match="/">

<P><xsl:value-of select="$id2"/></P>

<P><xsl:value-of select="$id3"/></P>

</xsl:template>

</xsl:stylesheet>

The Results of Stylesheet Combining

The results of combining stylesheets depends on the position of a
xsl:include or the xsl:import function.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA/>

<BBB/>

<CCC/>

</xslTutorial>

HTML Output 4

<DIV style="color:red">AAA (according to Stylesheet 1 (id2.xsl)</DIV>

<DIV style="color:red">BBB (according to Stylesheet 1 (id2.xsl)</DIV>

<DIV style="color:red">CCC (according to Stylesheet 1 (id2.xsl)</DIV>

XSL Stylesheet 4

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<xsl:apply-templates/ >

</xsl:template>

<xsl:template match="/*/*">

<DIV style="color:blue">

XML Basics_Ch08_2pp.indd 367 8/7/2020 2:01:30 PM

368 • XML Basics

<xsl:value-of select="name()"/>

<xsl:text> (according to this stylesheet)</xsl:text>

</DIV>

</xsl:template>

<xsl:include href="id2.xsl"/>

</xsl:stylesheet>

APPLY-IMPORT FUNCTION

You can use the xsl:apply-imports element to get the information from the
imported template for the elements whose behavior is changing. Stylesheet 2
imports Stylesheet 1 and overrides the template.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA/>

<BBB/>

<CCC/>

</xslTutorial>

HTML Output 1

<DIV style="color:red">AAA</DIV>

<DIV style="color:red">BBB</DIV>

<DIV style="color:red">CCC</DIV>

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/*/*">

<DIV style="color:red">

<xsl:value-of select="name()"/>

</DIV>

</xsl:template>

</xsl:stylesheet>

XML Basics_Ch08_2pp.indd 368 8/7/2020 2:01:30 PM

XSL Basics • 369

Overrides

Stylesheet 2 imports Stylesheet 1 and overrides the template.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA/>

<BBB/>

<CCC/>

</xslTutorial>

HTML Output 2

AAA

BBB

CCC

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:import href="id2.xsl"/>

<xsl:template match="/*/*">

<xsl:value-of select="name()"/>

</xsl:template>

</xsl:stylesheet>

Import Precedence

The import precedence is more important than the priority precedence.

XML Source

<?xml version="1.0"?>

<xslTutorial >

<AAA id='a1' pos='start'>

<BBB id='b1'/>

<BBB id='b2'/>

</AAA>

XML Basics_Ch08_2pp.indd 369 8/7/2020 2:01:30 PM

370 • XML Basics

<AAA id='a2'>

<BBB id='b3'/>

<BBB id='b4'/>

<CCC id='c1'>

<CCC id='c2'/>

</CCC>

<BBB id='b5'>

<CCC id='c3'/>

</BBB>

</AAA>

</xslTutorial>

HTML Output 1

<H3 style="color:blue">CCC (id=c1)</H3>

<H3 style="color:blue">CCC (id=c2)</H3>

<H3 style="color:blue">CCC (id=c3)</H3>

HTML Output 2

XSL Stylesheet 1

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:template match="/">

<xsl:apply-templates select="//CCC"/>

</xsl:template>

<xsl:template match="CCC" priority="10">

<H3 style="color:blue">

<xsl:value-of select="name()"/>

<xsl:text> (id=</xsl:text>

<xsl:value-of select="@id"/>

<xsl:text>)</xsl:text>

</H3>

</xsl:template>

</xsl:stylesheet>

XSL Stylesheet 2

<xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

<xsl:import href="id2.xsl"/>

<xsl:template match="/">

XML Basics_Ch08_2pp.indd 370 8/7/2020 2:01:30 PM

XSL Basics • 371

<xsl:apply-templates select="//CCC"/>

</xsl:template>

<xsl:template match="CCC" priority="-100">

<H3 style="color:red">

<xsl:value-of select="name()"/>

<xsl:text> (id=</xsl:text>

<xsl:value-of select="@id"/>

<xsl:text>)</xsl:text>

</H3>

</xsl:template>

</xsl:stylesheet>

QUESTIONS FOR DISCUSSION

1.	 Describe the role that XSL can play when dynamically generating
HTML pages from a relational database.

2.	 What tool is the most in-demand for XSL?

3.	 How you can enhance your XSL tests?

4.	 What is an XSL checkpoint?

5.	 What is XSL?

6.	 How is XSL different from Cascading Style Sheets? Why is a new
Stylesheet language needed?

7.	 What is the role of an XSL transformer?

8.	 What is an XSL template?

XML Basics_Ch08_2pp.indd 371 8/7/2020 2:01:30 PM

XML Basics_Ch08_2pp.indd 372 8/7/2020 2:01:30 PM

C H A P T E R 9
XSLT BASICS

XSLT (EXTENSIBLE STYLESHEET LANGUAGE)

The eXtensible Stylesheet Language is divided into two sub-languages, eXten-
sible Stylesheet Language Transformations (XSLT) and eXtensible Stylesheet
Language-Formatting Objects (XSL-FO). In this chapter, we look at the
basics of XSLT, which is used to transform XML documents.

XSLT documents are well-formed XML documents that describe how
another XML document should be transformed. For XSLT to work, it needs
an XML document to transform and an engine to make the transformation take
place. In addition, parameters can be passed in to XSLTs, providing further
instructions on how to do the transformation. Figure 9.1 shows how this all works.

XML Document XSL Stylesheet Parameters

XSL Transformation HTML

WML

XH
TM

L

SQ
L

Pl
ai

n
Te

xt

XML

Email message

FIGURE 9.1  XSL Transformation representation

XML Basics_Ch09_2pp.indd 373 8/7/2020 2:02:50 PM

374 • XML Basics

XSLT SAMPLE PROGRAM

XSL Transformations is a language for describing how to transform an XML
document (explicitly or implicitly represented as a tree) into another. XSLT is
a tree-to-tree transformation from a source tree to a result tree. It allows for
defining templates (rules) that are applied on elements from the source docu-
ment and inserting elements in the result tree. The resulting document can be
another well-formed XML document (XML or WML), an HTML document,
a text document, or any other format provided that the proper output method
is available. XSLT uses XPath expressions to query elements from the source
tree or to evaluate document fragments to be inserted into the result tree.

XML Source
Document

XSLT
Style Sheet

HTML Result
Document

Parsing (SAX/DOM) Output Method

Tr
an

sf
or

m
at

io
nSource Tree Result Tree

HTML

TableTitle

Head

CHESSBOARD

BLACK PIECES

WHITE PIECES

Body

FIGURE 9.2  XSL Transformations transform an XML source document into another document that
can be of any format (XML, HTML, text, and so on) by applying a style sheet.

An XSLT processor reads both a source XML document and an XSL style
sheet. The XSL style sheet is itself a well-formed XML document. Depending
on the implementation, an XSLT engine may be able to read an input source
as SAX events or DOM trees and also generates SAX events or DOM trees.

This program uses an XSLT engine and a style sheet to transform an XML
document describing a set of chessboard configurations into its corresponding
text format. A TransformerFactory is used to create a new Transformer from
the style sheet and the Transformer is then used to process the source docu-
ment generated.

XML Basics_Ch09_2pp.indd 374 8/7/2020 2:02:51 PM

XSLT Basics • 375

THE TRANSFORMATION PROCESS

An XSLT looks at an XML document as a collection of nodes of the fol-
lowing types:

●● Root node
●● Element nodes
●● Attribute nodes
●● Text nodes
●● Processing instruction nodes
●● Comment nodes

An XSLT document contains one or more templates, which are created
with the <xsl:template /> tag. When an XML document is transformed with
an XSLT, the XSLT processor reads through the XML document starting
at the root, which is one level above the document element, and progresses
from top to bottom, just as a person would read the document. Each time
the processor encounters a node, it looks for a matching template in the
XSLT.

If it finds a matching template, it applies it; otherwise, it uses a default
template as defined by the XSLT specification. The default templates are
shown in Table 9.1.

Table 9.1  Default Templates

Node Type Default Template

Root Apply templates for child nodes.

Element Apply templates for child nodes.

Attribute Output attribute value.

Text Output text value.

Processing Instruction Do nothing.

Comment Do nothing.

In this context, attributes are not considered children of the elements that
contain them, so attributes get ignored by the XSLT processor unless they are
explicitly referenced by the XSLT document.

XML Basics_Ch09_2pp.indd 375 8/7/2020 2:02:51 PM

376 • XML Basics

PROCESSING A TRANSFORMATION

A transformation can take place in one of three locations:

●● On the server
●● On the client (for example, your Web browser)
●● With a standalone program

The examples in this chapter use the client for transforming the XML
documents.

You might have noticed that the “After” shot contains more than the
raw XML file. It contains a heading (“Good Books”) and some text (“Yes, go
through these books!”). This is one of the benefits of XSLT.

APPLYING XSLT TO AN XML DOCUMENT

Instead of linking to a CSS file, we link to an XSL file.

Step 1 (XML file): Create an XML file with the following content and save it.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?xml-stylesheet type="text/xsl" href="Books.xsl"?>

<Books>

<Book>

<authorname>Shashi Banzal</authorname>

<booktitle >XML Book</booktitle>

</Book>

<Book>

<authorname>S Sharma</authorname>

<booktitle >HTML Book</booktitle>

</Book>

</Books>

Step 2 (XSL file): Create a file with the following content and save it as
Books.xsl into the same directory as the XML file.

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<head>

<title>XML XSL Example</title>

<style type="text/css">

XML Basics_Ch09_2pp.indd 376 8/7/2020 2:02:51 PM

XSLT Basics • 377

body

{

margin:10px;

background-color:#ccff00;

font-family:verdana,helvetica,sans-serif;

}

.Book-authorname

{

display:block;

font-weight:bold;

}

.Book-booktitle

{

display:block;

color:#636363;

font-size:small;

font-style:italic;

}

</style>

</head>

<body>

<h2>Good Books</h2>

<p> Yes, go through these books!</p>

 <xsl:apply-templates/>

</body>

</html>

</xsl:template>

<xsl:template match="Book">

 <xsl:value-of select="authorname"/>

 <xsl:value-of select="booktitle "/>

</xsl:template>

</xsl:stylesheet>

This XSL file contains XSL markup, HTML markup, and CSS.

XSLT SYNTAX

All XSLT documents need to be well-formed and valid XML documents, so
you need to follow the same syntax rules that apply to any other XML docu-
ment. As well as ensuring that your XSLT documents are valid XML, you
need to ensure they are valid XSLT documents.

XML Basics_Ch09_2pp.indd 377 8/7/2020 2:02:51 PM

378 • XML Basics

XML VERSION

XSL documents are also XML documents and so we should include the XML
version in the document’s prolog. We should also set the standalone attribute
to “no” as we now rely on an external resource (i.e., the external XSL file).

<?xml version="1.0" standalone="no"?>

XSL ROOT ELEMENT

Then we open the root element—xsl:stylesheet. The root element needs to
include the XSL version as well as the XSL namespace (hence the xsl prefix
and the xmlns... part).

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

XSL Namespace Prefix

All XSL elements in your XSLT document must include the XSL prefix.

Syntax

<xsl:element_authorname>

Example

<xsl:template match="/">

....

</xsl:template>

XSLT <template> Element

XSLT is all about being able to select one or more nodes from your XML
document and transforming or replacing that content with something else.
A node could be any of the following: elements, attributes, text, namespaces,
processing-instructions, and comments.

The <xsl:template> element is what you use to select a node from your
XML document and transform its contents.

To select an element, you use the match attribute. To transform its con-
tents, you simply place the new content between the opening (<xsl:template>)
and closing (</xsl:template>) tags.

XML Basics_Ch09_2pp.indd 378 8/7/2020 2:02:51 PM

XSLT Basics • 379

Example

In this case, we select the root node (i.e., Books). By selecting this node, the
template element tells the XSLT processor how to transform the output. We
tell the processor to replace the root node (i.e., the whole XML document)
with what is written between the <xsl:template> tags.

In this case, the contents of an HTML document are written inside the
<xsl:template> tags. When a user views any XML document that uses this
XSL document, they will simply see the line “New content...” and the brows-
er’s title bar will read “My XSLT Example.”

<xsl:template match="Books">

 <html>

 <head>

 <title>My XSLT Example</title>

 </head>

 <body>

 <p>New content...</p>

 </body>

 </html>

</xsl:template>

SELECTING THE ROOT NODE

In the example above, we selected the “Books” node which happens to be the
root node of our XML document. Another way of selecting the root node is to
use a forward slash in place of the node’s authorname. The following example
results in the same output as the above example.

Example

<xsl:template match="/">

 <html>

 <head>

 <title>My XSLT Example</title>

 </head>

 <body>

 <p>New content...</p>

 </body>

 </html>

</xsl:template>

XML Basics_Ch09_2pp.indd 379 8/7/2020 2:02:51 PM

380 • XML Basics

XSLT <apply-templates> Element

We’ve already learned that the <xsl:template> element allows us to select any
node in our XML document and transform its contents. You’ll probably be happy
to learn that we can also use this element to work with the children of that node.

The XSLT <xsl:apply-templates/> element allows us to determine where
the content of its children appear on our transformed document.

USAGE EXAMPLE

Here, we are using two <xsl:template> elements; one for the root node and
one for its children. We have placed the <xsl:apply-templates/> element
within the <xsl:template> element for the root node. Doing this applies the
results of our other <xsl:template> element.

<xsl:template match="/">

 (other content/HTML markup goes here)

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="child">

 (other content/XSLT/HTML markup goes here)

</xsl:template>

So, by doing this, we can use other XSLT elements to retrieve data from
the child elements, and pass it to the main template for display. In particular,
the XSLT <xsl:value-of/> element is useful for retrieving data from an XML
element. We’ll look at that element next.

XSLT <value-of> ELEMENT

The <xsl:value-of> element allows you to retrieve the value from a node.
When using the <xsl:value-of> element, you use the select attribute to

specify which node you want to retrieve data from.

USAGE EXAMPLE

This example is a continuation of the example from the previous lesson. Here,
we have added the <xsl:value-of/> element to extract data from the child
nodes called “authorname” and “booktitle.”

XML Basics_Ch09_2pp.indd 380 8/7/2020 2:02:51 PM

XSLT Basics • 381

<xsl:template match="/">

(other content/HTML markup goes here)

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="Book">

 <xsl:value-of select="authorname"/>

 <xsl:value-of select="booktitle "/>

</xsl:template>

So, let’s have another look at our XML document, and see which values
will be selected:

<?xml version="1.0" standalone="no"?>

<?xml-stylesheet type="text/xsl" href="Books.xsl"?>

<Books>

<Book>

<authorname>Shashi Banzal</authorname>

<booktitle >XML Book</booktitle>

</Book>

<Book>

<authorname>S Sharma</authorname>

<booktitle>HTML Book</booktitle >

</Book>

</Books>

And just to refresh your memory, these values will be displayed where we
choose to place the XSLT <xsl:apply-templates> element.

XSLT <for-each> ELEMENT

The XSLT <xsl:for-each> element allows you to loop through multiple nodes
that match the selection criteria. This, in turn, enables you to retrieve data
from these nodes.

For example, imagine if our XML file had two elements called “author-
name,” each under the “Book” element.

<?xml version="1.0" standalone="no"?>

<?xml-stylesheet type="text/xsl" href="Books.xsl"?>

<Books>

<Book>

<authorname>Shashi Banzal</authorname>

<authorname>R. Gupta</authorname>

XML Basics_Ch09_2pp.indd 381 8/7/2020 2:02:51 PM

382 • XML Basics

<booktitle>XML Book</booktitle >

</Book>

<Book>

<authorname>S Sharma</authorname>

<authorname>Ram Joshi</authorname>

<booktitle >HTML Book</booktitle >

</Book>

</Books>

To extract data from both “authorname” elements, we can use
<xsl:for-each> in conjunction with <xsl:value-of>.

<xsl:for-each> EXAMPLE

Here, we use <xsl:for-each> to loop through each “authorname” element and
<xsl:value-of> to extract data from each node.

Note the value of the select attribute (“.”). This expression specifies the
current node. The <xsl:element authorname=“br”/> element/attribute is there
simply for readibility purposes. It provides a line break after each iteration.

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="Book">

 <xsl:for-each select="authorname">

 <xsl:value-of select="."/><xsl:element authorname="br"/>

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

XSLT <sort> Element

The XSLT <xsl:sort> element allows you to sort the output of the <xsl:for-
each> element.

<xsl:sort> Example

Here, we use <xsl:for-each> to loop through each “Book” element and
<xsl:sort> to sort by the “authorname” node. We then use the <xsl:value-of>
to extract data from the “authorname” node.

XML Basics_Ch09_2pp.indd 382 8/7/2020 2:02:51 PM

XSLT Basics • 383

<?xml version="1.0" standalone="no"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/
XSL/Transform">

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="Books">

<xsl:for-each select="Book">

<xsl:sort select="authorname"/>

<xsl:value-of select="authorname"/><xsl:element
authorname="br"/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

RESULT

So, let’s see what would happen if we applied the above XSLT document to
the following XML document:

<Books>

 <Book>

 <authorname>Shashi Banzal</authorname>

 <booktitle>XML Book</booktitle>

 </Book>

 <Book>

 <authorname>S Sharma</authorname>

 <booktitle>HTML Book</booktitle>

 </Book>

</Books>

BEFORE

This is how the contents would be displayed before applying the <xsl:sort>
element:
XML Book
HTML Book

XML Basics_Ch09_2pp.indd 383 8/7/2020 2:02:51 PM

384 • XML Basics

AFTER

This is how the contents would be displayed after applying the <xsl:sort>
element:
HTML Book
XML Book

XSLT <if> ELEMENT

The XSLT <xsl:if> element allows you to perform conditional statements
against the contents of your XML document. For example, you can present
different content only if a given condition is met.

This element can be used in conjunction with the <xsl:for-each> element
to present different content depending on the contents of the XML file.

<xsl:if> Example

THE SOURCE FILE

Imagine you have an XML file containing a list of food and its nutritional
value.

<?xml version="1.0"?>

<food_list>

 <food_item type="vegetable">

 <name>Tomato</name>

 <carbs_per_serving>81</carbs_per_serving>

 <fiber_per_serving>8</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>1280</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Spinach</name>

 <carbs_per_serving>1</carbs_per_serving>

 <fiber_per_serving>1</fiber_per_serving>

 <fat_per_serving>0</fat_per_serving>

 <kj_per_serving>40</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>French beans</name>

XML Basics_Ch09_2pp.indd 384 8/7/2020 2:02:51 PM

XSLT Basics • 385

 <carbs_per_serving>0</carbs_per_serving>

 <fiber_per_serving>1</fiber_per_serving>

 <fat_per_serving>0</fat_per_serving>

 <kj_per_serving>14</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Lady finger</name>

 <carbs_per_serving>21.5</carbs_per_serving>

 <fiber_per_serving>2</fiber_per_serving>

 <fat_per_serving>1</fat_per_serving>

 <kj_per_serving>460</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Broccoli</name>

 <carbs_per_serving>6</carbs_per_serving>

 <fiber_per_serving>1</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>150</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Carrots</name>

 <carbs_per_serving>30.5</carbs_per_serving>

 <fiber_per_serving>2</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>550</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Sweet Potatoes</name>

 <carbs_per_serving>1.5</carbs_per_serving>

 <fiber_per_serving>1.5</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>55</kj_per_serving>

 </food_item>

 <food_item type="seafood">

 <name>Crab</name>

 <carbs_per_serving>0</carbs_per_serving>

 <fiber_per_serving>0</fiber_per_serving>

 <fat_per_serving>1</fat_per_serving>

 <kj_per_serving>400</kj_per_serving>

 </food_item>

XML Basics_Ch09_2pp.indd 385 8/7/2020 2:02:51 PM

386 • XML Basics

 <food_item type="seafood">

 <name>Crawfish</name>

 <carbs_per_serving>0</carbs_per_serving>

 <fiber_per_serving>0</fiber_per_serving>

 <fat_per_serving>2</fat_per_serving>

 <kj_per_serving>390</kj_per_serving>

 </food_item>

 <food_item type="fruit">

 <name>Orange</name>

 <carbs_per_serving>15</carbs_per_serving>

 <fiber_per_serving>2.5</fiber_per_serving>

 <fat_per_serving>0</fat_per_serving>

 <kj_per_serving>250</kj_per_serving>

 </food_item>

 <food_item type="fruit">

 <name>Banana</name>

 <carbs_per_serving>7.5</carbs_per_serving>

 <fiber_per_serving>2.5</fiber_per_serving>

 <fat_per_serving>0</fat_per_serving>

 <kj_per_serving>150</kj_per_serving>

 </food_item>

 <food_item type="grain">

 <name>Rice</name>

 <carbs_per_serving>62</carbs_per_serving>

 <fiber_per_serving>14</fiber_per_serving>

 <fat_per_serving>7</fat_per_serving>

 <kj_per_serving>1400</kj_per_serving>

 </food_item>

 <food_item type="grain">

 <name>Corn</name>

 <carbs_per_serving>1.5</carbs_per_serving>

 <fiber_per_serving>1</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>70</kj_per_serving>

 </food_item>

</food_list>

Now, imagine we’re only interested in the vegetables—we only want to
display the food that have a type attribute of “vegetable.” We can display it
nicely formatted in an HTML table.

XML Basics_Ch09_2pp.indd 386 8/7/2020 2:02:51 PM

XSLT Basics • 387

THE SOLUTION

To achieve the above outcome, we use <xsl:for-each> to loop through each
“food_item” element and <xsl:if> to check the value of the “type” attribute
(we do this by using the @ symbol—that’s how you specify an attribute). If the
attribute value equals “vegetable,” we output the details.

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="food_list">

 <table>

 <tr style="background-color:#ccff00">

 <th>Food Item</th>

 <th>Carbs (g)</th>

 <th>Fiber (g)</th>

 <th>Fat (g)</th>

 <th>Energy (kj)</th>

 </tr>

 <xsl:for-each select="food_item">

 <xsl:if test="@type = 'vegetable'">

 <tr style="background-color:#00cc00">

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="carbs_per_serving"/></td>

 <td><xsl:value-of select="fiber_per_serving"/></td>

 <td><xsl:value-of select="fat_per_serving"/></td>

 <td><xsl:value-of select="kj_per_serving"/></td>

 </tr>

 </xsl:if>

 </xsl:for-each>

 </table>

</xsl:template>

</xsl:stylesheet>

XSLT <choose> Element

The XSLT <xsl:choose> element allows you to compare a value against a
range of possible values in your XML document.

XML Basics_Ch09_2pp.indd 387 8/7/2020 2:02:51 PM

388 • XML Basics

This element is used in conjunction with the <xsl:when> and (optionally)
<xsl:otherwise> elements to present different content depending on the out-
come of each test.

<xsl:choose> Example

THE SOURCE FILE

Imagine we have an XML file containing different food items and their nutri-
tional value—like this:

<?xml version="1.0"?>

<food_list>

 <food_item type="vegetable">

 <name>Tomato</name>

 <carbs_per_serving>81</carbs_per_serving>

 <fiber_per_serving>8</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>1280</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Spinach</name>

 <carbs_per_serving>1</carbs_per_serving>

 <fiber_per_serving>1</fiber_per_serving>

 <fat_per_serving>0</fat_per_serving>

 <kj_per_serving>40</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>French beans</name>

 <carbs_per_serving>0</carbs_per_serving>

 <fiber_per_serving>1</fiber_per_serving>

 <fat_per_serving>0</fat_per_serving>

 <kj_per_serving>14</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Lady finger</name>

 <carbs_per_serving>21.5</carbs_per_serving>

 <fiber_per_serving>2</fiber_per_serving>

 <fat_per_serving>1</fat_per_serving>

 <kj_per_serving>460</kj_per_serving>

 </food_item>

XML Basics_Ch09_2pp.indd 388 8/7/2020 2:02:51 PM

XSLT Basics • 389

 <food_item type="vegetable">

 <name>Broccoli</name>

 <carbs_per_serving>6</carbs_per_serving>

 <fiber_per_serving>1</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>150</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Carrots</name>

 <carbs_per_serving>30.5</carbs_per_serving>

 <fiber_per_serving>2</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>550</kj_per_serving>

 </food_item>

 <food_item type="vegetable">

 <name>Sweet Potatoes</name>

 <carbs_per_serving>1.5</carbs_per_serving>

 <fiber_per_serving>1.5</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>55</kj_per_serving>

 </food_item>

 <food_item type="seafood">

 <name>Crab</name>

 <carbs_per_serving>0</carbs_per_serving>

 <fiber_per_serving>0</fiber_per_serving>

 <fat_per_serving>1</fat_per_serving>

 <kj_per_serving>400</kj_per_serving>

 </food_item>

 <food_item type="seafood">

 <name>Crawfish</name>

 <carbs_per_serving>0</carbs_per_serving>

 <fiber_per_serving>0</fiber_per_serving>

 <fat_per_serving>2</fat_per_serving>

 <kj_per_serving>390</kj_per_serving>

 </food_item>

 <food_item type="fruit">

 <name>Orange</name>

 <carbs_per_serving>15</carbs_per_serving>

 <fiber_per_serving>2.5</fiber_per_serving>

 <fat_per_serving>0</fat_per_serving>

XML Basics_Ch09_2pp.indd 389 8/7/2020 2:02:51 PM

390 • XML Basics

 <kj_per_serving>250</kj_per_serving>

 </food_item>

 <food_item type="fruit">

 <name>Banana</name>

 <carbs_per_serving>7.5</carbs_per_serving>

 <fiber_per_serving>2.5</fiber_per_serving>

 <fat_per_serving>0</fat_per_serving>

 <kj_per_serving>150</kj_per_serving>

 </food_item>

 <food_item type="grain">

 <name>Rice</name>

 <carbs_per_serving>62</carbs_per_serving>

 <fiber_per_serving>14</fiber_per_serving>

 <fat_per_serving>7</fat_per_serving>

 <kj_per_serving>1400</kj_per_serving>

 </food_item>

 <food_item type="grain">

 <name>Corn</name>

 <carbs_per_serving>1.5</carbs_per_serving>

 <fiber_per_serving>1</fiber_per_serving>

 <fat_per_serving>0.5</fat_per_serving>

 <kj_per_serving>70</kj_per_serving>

 </food_item>

</food_list>

Now, imagine if we want to present the contents of our XML file in a table
and highlight the rows a different color depending on the type of food it is.

THE SOLUTION

We could do this using the following XSL file. In this file, we check the type
attribute of the <food_item> element. We can find the value of the attribute
by typing its name with a @. If the value is “grain,” we specify one color. If it’s
“vegetable,” we specify another. If it’s neither of these, we specify a default
color using the following code:

<xsl:otherwise>.

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

XML Basics_Ch09_2pp.indd 390 8/7/2020 2:02:51 PM

XSLT Basics • 391

<xsl:template match="/">

 <xsl:apply-templates/>

</xsl:template>

<xsl:template match="food_list">

<table>

<tr style="background-color:#ccff00">

<th>Food Item</th>

<th>Carbs (g)</th>

<th>Fiber (g)</th>

<th>Fat (g)</th>

<th>Energy (kj)</th>

</tr>

<xsl:for-each select="food_item">

 <xsl:choose>

 <xsl:when test="@type = 'grain'">

 <tr style="background-color:#cccc00">

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="carbs_per_serving"/></td>

 <td><xsl:value-of select="fiber_per_serving"/></td>

 <td><xsl:value-of select="fat_per_serving"/></td>

 <td><xsl:value-of select="kj_per_serving"/></td>

 </tr>

 </xsl:when>

 <xsl:when test="@type = 'vegetable'">

 <tr style="background-color:#00cc00">

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="carbs_per_serving"/></td>

 <td><xsl:value-of select="fiber_per_serving"/></td>

 <td><xsl:value-of select="fat_per_serving"/></td>

 <td><xsl:value-of select="kj_per_serving"/></td>

 </tr>

 </xsl:when>

 <xsl:otherwise>

 <tr style="background-color:#cccccc">

 <td><xsl:value-of select="name"/></td>

 <td><xsl:value-of select="carbs_per_serving"/></td>

 <td><xsl:value-of select="fiber_per_serving"/></td>

 <td><xsl:value-of select="fat_per_serving"/></td>

 <td><xsl:value-of select="kj_per_serving"/></td>

XML Basics_Ch09_2pp.indd 391 8/7/2020 2:02:52 PM

392 • XML Basics

 </tr>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </table>

 </xsl:template>

</xsl:stylesheet>

QUESTIONS FOR DISCUSSION

1.	 What is XSLT?

2.	 Who developed XSLT?

3.	 What do XSLT processing models involve?

4.	 Can you use the XSLT to convert HTML into VXML?

5.	 Do you feel that you are a good XSLT programmer?

6.	 Which was the first processor related to XSLT?

7.	 Do you feel that you have chosen the right technology (XSLT)?

8.	 How do you use filtering in XSLT?

9.	 How do you use <xsl:sort> element in XSLT?

10.	 How do you define templates in XSLT?

11.	 How do you transform an XML document into XHTML document?

12.	 How do you transform an XML document into another XML
document?

13.	 Compare XSLT and XPath.

14.	 How do you use filtering function in XSLT?

15.	 Can we encode mathematics using XML?

16.	 Explain non-XML resources.

17.	 Using XSLT, how would you extract a specific attribute from an ele-
ment in an XML document?

18.	 What is the structure of XSLT?

XML Basics_Ch09_2pp.indd 392 8/7/2020 2:02:52 PM

XSLT Basics • 393

19.	 What is XSLT?

20.	 Can we use the same XSLT processor and still specify different
processing options for different pipelines?

21.	 Can we use different XSLT processors when processing different
pipelines?

22.	 How does Internet Explorer format XML files in a collapsible view, and
how can we modify this behavior?

23.	 How can we call MSXML from the command line to do batch process-
ing of XSLT?

24.	 Where does Microsoft provide documentation about compliance with
MSXML?

25.	 Does IE5.5 include a newer XSLT processor?

26.	 By using XSLT, how do we map an XML file to another XML file? We
have data in a particular format. How can we automatically generate
the XSL mapping file so that it can become input to XSLT?

27.	 Is it possible to use XSLT to remove elements with duplicate values
from an XML file?

28.	 What is XML-RPC?

XML Basics_Ch09_2pp.indd 393 8/7/2020 2:02:52 PM

XML Basics_Ch09_2pp.indd 394 8/7/2020 2:02:52 PM

C H A P T E R 10
SOAP

SOAP

SOAP is a protocol for accessing a Web service. SOAP is a simple XML-based
protocol that lets applications exchange information over HTTP.

SOAP acts as a medium to provide basic messaging framework. Abstract
layers are built on these basic messaging frameworks. It transfers messages
across the board in different protocols; it also acts as a medium to transmit
XML-based messages over the network.

The Simple Object Access Protocol (SOAP) uses XML to define a proto-
col for the exchange of information in distributed computing environments.
SOAP consists of three components: an envelope, a set of encoding rules, and
a convention for representing remote procedure calls. Unless experience with
SOAP is a direct requirement for the open position, knowing the specifics
of the protocol, or how it can be used in conjunction with HTTP, it is not as
important as identifying it as a natural application of XML.

Simple Object Access Protocol (SOAP) version 1.1 is an industry standard
designed to improve cross-platform interoperability using the Web and XML.
The Web has evolved from simply pushing out static pages to creating cus-
tomized content that performs services for users. A user can be a customer
retrieving specialized Web pages for placing orders or a business partner using
a customized form for reviewing stock and sales figures. A wide range of com-
ponents located on various computers are involved in performing these Web-
based services. Because these systems consist of many computers, including
the client computer, middle-tier servers, and usually a database server, these
systems are called distributed systems. To understand how SOAP works, let’s
take a look at the distributed system first.

XML Basics_Ch10_2pp.indd 395 8/7/2020 2:07:48 PM

396 • XML Basics

SOAP version 1.2 provides a simple and lightweight mechanism for
exchanging structured and typed information between peers in a decen-
tralized, distributed environment using XML. SOAP does not itself define
any application semantics such as a programming model or implementa-
tion specific semantics; rather it defines a simple mechanism for expressing
application semantics by providing a modular packaging model and encoding
mechanisms for encoding application defined data. This allows SOAP to be
used in a large variety of systems, ranging from messaging systems to remote
procedure calls (RPC).

SOAP is a simple XML-based protocol to let applications exchange infor-
mation over HTTP. Or more simply: SOAP is a protocol for accessing a Web
Service.

●● SOAP stands for Simple Object Access Protocol. It is a communication
protocol.

●● SOAP is platform and language independent. It is based on XML and is
simple.

It is important for application development to allow Internet communica-
tion between programs.

Today’s applications communicate using Remote Procedure Calls (RPC)
between objects like DCOM and CORBA, but HTTP was not designed for
this. RPC represents a compatibility and security problem; firewalls and proxy
servers normally block this kind of traffic.

A better way to communicate between applications is over HTTP, because
HTTP is supported by all Internet browsers and servers. SOAP was created
to accomplish this.

SOAP provides a way to communicate between applications running on
different operating systems, with different technologies and programming
languages.

Role of XML in SOAP

XML was chosen as a standard format because it was already in use by many
large companies due to its open source nature. A wide variety of tools are
available which ease the process of transition to SOAP.

Advantages and Disadvantages of SOAP

There are some advantages and some disadvantages of SOAP.

XML Basics_Ch10_2pp.indd 396 8/7/2020 2:07:48 PM

SOAP • 397

Advantages

There are some advantages of SOAP, such as:

1.	 SOAP bypasses all firewalls.

2.	 It has a huge collection of protocols.

3.	 It is platform- and language-independent.

4.	 It is simple and extensible.

Disadvantages

There are some disadvantages of SOAP, such as

1.	 SOAP is slower than middleware technologies (CORBA or RMI or IIOP)
due to the lengthy XML format that it has to follow and the parsing of the
envelope that is required.

2.	 SOAP depends on WSDL and does not have any standardized mecha-
nism for the dynamic discovery of the services.

3.	 The usage of HTTP for transporting messages, and not the defined ESB
or WS-Addressing interaction of parties over a message, is fixed.

4.	 Information regarding the usability of HTTP for different purposes is not
present, which makes the application protocol level problematic.

COMMUNICATION OVER DISTRIBUTED SYSTEMS

Distributed systems commonly use two models for communication: message
passing (which can be combined with message queuing) and request/response
messaging. A message passing system allows messages to be sent at any time.
Once a message has been sent, the application that sent the message usu-
ally moves on. This type of system is called asynchronous. An asynchronous
system typically uses messages, but it can also be based on other models.
With the request/response model, the request and the response are paired
together and can be thought of as a synchronous system. The request is sent
by an application, and the application usually waits until a response is received
before continuing. When one application calls an object on another computer
by making a Remote Procedure Call (RPC), we can think of this call as syn-
chronous request/response message passing.

XML Basics_Ch10_2pp.indd 397 8/7/2020 2:07:48 PM

398 • XML Basics

The remote call procedure is a very important function in SOAP. In RCP,
a user (node) sends a request to another node (server) where the information
is processed and sent to the user. It immediately sends the message across the
network.

RPC is useful in implementing the client-to-server interaction model.
When the server is interacting and searching for information, the client side
messaging is blocked and the server activity goes on. RPC has a huge pool of
protocols which can be difficult to work with. Client server interaction is best
achieved by RPC.

The request/response model is commonly used to allow components on
different computers to communicate with each other using RPCs. Over the
last several years, many attempts have been made to develop a standard that
would allow this communication between components on different com-
puters. Currently, the two most commonly used standards are Distributed
Component Object Model (DCOM) and the Object Management Group’s
Internet Inter-Orb Protocol (IIOP). Both of these standards work well; their
greatest shortcoming is that they do not natively interoperate with each other.
Therefore, you cannot arbitrarily make a call to a component on a server from
a client without first knowing what standard that server is using. Usually, you
will also have to configure the client so that it can communicate with the
server, especially when there are security issues. DCOM works best when all
the computers in the system are using Microsoft operating systems. An IIOP
system works best when all the computers in the system use the same CORBA
Object Request Broker (ORB).

When you are working on an internal system, it might be possible to limit
the system to one platform or the other. Once you start working with the
Internet or expanding an intranet out to extranets (for example, networks that
include the corporation and its partners), it is impossible to have a uniform
platform across the entire system. At this point, DCOM and IIOP will no
longer allow communication between any two components within the system,
and neither of these two standards allows users to cross trust domains easily.
Thus, for larger systems expanding across computers with multiple platforms,
we need a way to enable objects to communicate with each other. The solu-
tion to this problem is SOAP.

In SOAP there are several different types of messaging patterns, but by
far the most common is the Remote Procedure Call (RPC) pattern, in which
one network node (the client) sends a request message to another node (the
server) and the server immediately sends a response message to the client.

A major design goal for SOAP is simplicity and extensibility.

XML Basics_Ch10_2pp.indd 398 8/7/2020 2:07:48 PM

SOAP • 399

REMOTE PROCEDURE CALL (RPC)

RPC is a protocol that allows a computer program running on one computer
to cause a subroutine on another computer to be executed without the pro-
grammer explicitly coding the details for this interaction.

RPC is a powerful technique for constructing distributed, client-server
based applications.

It is a client/server infrastructure that increases the interoperability, por-
tability, and flexibility of an application by allowing the application to be dis-
tributed over multiple heterogeneous platforms.

RPC increases the flexibility of an architecture by allowing a client compo-
nent of an application to employ a function call to access a server on a remote
system. It allows the remote component to be accessed without knowledge of
the network address or any other lower-level information. Most RPCs use a
synchronous, request-reply (“call/wait”) protocol, which involves the blocking
of the client until the server fulfills its request.

SOAP SYNTAX

SOAP Building Blocks

A SOAP message is an ordinary XML document containing the following
elements.

Envelope Element

It identifies the XML document as a SOAP message. A SOAP message always
appears within an envelope.

Header Element

The header element is optional and it contains header information.

Body Element

The body element is required and it contains call and response information.

Fault Element

The fault element is optional. It provides information about the errors that
occurred while processing the message.

XML Basics_Ch10_2pp.indd 399 8/7/2020 2:07:48 PM

400 • XML Basics

All the elements above are declared in the default namespace for the
SOAP envelope:

http://www.w3.org/2001/12/soap-envelope
and the default namespace for SOAP encoding and data types is
http://www.w3.org/2001/12/soap-encoding

Syntax Rules in SOAP

Some of the important syntax rules are as follows:

1.	 SOAP should be coded in XML.

2.	 A SOAP envelope should be used for a SOAP message.

3.	 A SOAP encoding namespace must be used by SOAP.

4.	 A DTD reference and a XML processing instruction should not be
contained.

SOAP MESSAGE STRUCTURE

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

...

</soap:Header>

<soap:Body>

...

 <soap:Fault>

 ...

 </soap:Fault>

</soap:Body>

</soap:Envelope>

A SOAP message always appears within an envelope. The envelope can
have a header, just like an HTML document would, but this is not required.
The message must have a body. The message content appears within the body.

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope" soap:encodingStyle="http:
//www.w3.org/2001/12/soap-encoding">

XML Basics_Ch10_2pp.indd 400 8/7/2020 2:07:49 PM

SOAP • 401

<soap:Head>

<soap:/Head>

<soap:Body>

 <GetName>

 <FirstName>ABC</FirstName>

 <LastName>XYZ</LastName>

 </GetName>

</soap:Body>

</soap:Envelope>

THE SOAP ENVELOPE ELEMENT

The SOAP envelope element is the root element of a SOAP message.
The required SOAP envelope element is the root element of a SOAP

message. This element defines the XML document as a SOAP message.

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

</soap:Envelope>

The xmlns:soap Namespace

Notice the xmlns:soap namespace in the example above. It should always
have the value of http://www.w3.org/2001/12/soap-envelope. The namespace
defines the envelope as a SOAP envelope. If a different namespace is used,
the application generates an error and discards the message.

The encodingStyle Attribute

The encodingStyle attribute is used to define the data types used in the docu-
ment. This attribute may appear on any SOAP element, and it applies to the
element’s contents and all child elements. A SOAP message has no default
encoding.

XML Basics_Ch10_2pp.indd 401 8/7/2020 2:07:49 PM

402 • XML Basics

Syntax

soap:encodingStyle="URI"

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

</soap:Envelope>

The SOAP header element contains header information.

THE SOAP HEADER ELEMENT

The optional SOAP header element contains application-specific information
(like authentication and payment) about the SOAP message. If the header
element is present, it must be the first child element of the envelope element.

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

 <m:Trans xmlns:m="http://www.abc.com/transaction/"

 soap:mustUnderstand="1">234

 </m:Trans>

</soap:Header>

...

...

</soap:Envelope>

The example above contains a header with a “Trans” element, a
“mustUnderstand” attribute with a value of 1 and a value of 234.

XML Basics_Ch10_2pp.indd 402 8/7/2020 2:07:49 PM

SOAP • 403

SOAP defines three attributes in the default namespace (“http://www.
w3.org/2001/12/soap-envelope”). These attributes are

1.	 mustUnderstand

2.	 actor

3.	 encodingStyle

The attributes defined in the SOAP header defines how a recipient should
process the SOAP message.

The mustUnderstand Attribute

The SOAP mustUnderstand attribute can be used to indicate whether a
header entry is mandatory or optional for the recipient to process.

If you add mustUnderstand=“1” to a child element of the header ele-
ment, it indicates that the receiver processing the header must recognize the
element. If the receiver does not recognize the element, it will fail when pro-
cessing the header.

Syntax

soap:mustUnderstand="0|1"

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

 <m:Trans xmlns:m="http://www.abc.com/transaction/"

 soap:mustUnderstand="1">234

 </m:Trans>

</soap:Header>

...

...

</soap:Envelope>

The Actor Attribute

A SOAP message may travel from a sender to a receiver by passing different
endpoints along the message path. However, not all parts of a SOAP message

XML Basics_Ch10_2pp.indd 403 8/7/2020 2:07:49 PM

404 • XML Basics

may be intended for the ultimate endpoint; instead, it may be intended for
one or more of the endpoints on the message path.

The SOAP actor attribute is used to address the header element to a spe-
cific endpoint.

Syntax

soap:actor="URI"

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

<m:Trans xmlns:m="http://www.abc.com/transaction/"

 soap:actor="http://www.abc.com/appml/">234

 </m:Trans>

</soap:Header>

...

...

</soap:Envelope>

The encodingStyle Attribute

The encodingStyle attribute is used to define the data types used in the doc-
ument. This attribute may appear on any SOAP element, and it will apply
to that element’s contents and all child elements. A SOAP message has no
default encoding.

Syntax

soap:encodingStyle="URI"

THE SOAP BODY ELEMENT

The SOAP body element contains the actual SOAP message. The required
SOAP body element contains the actual SOAP message intended for the ulti-
mate endpoint of the message. Immediate child elements of the SOAP body
element may be namespace-qualified.

XML Basics_Ch10_2pp.indd 404 8/7/2020 2:07:49 PM

SOAP • 405

Example

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

 <m:GetPrice xmlns:m="http://www.abc.com/prices">

 <m:Item>Apples</m:Item>

 </m:GetPrice>

</soap:Body>

</soap:Envelope>

The example above requests the price of apples. Note that the m:Get-
Price and the Item elements above are application-specific elements. They
are not a part of the SOAP namespace. A SOAP response could look some-
thing like this:

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body>

 <m:GetPriceResponse xmlns:m="http://www.abc.com/prices">

 <m:Price>1.90</m:Price>

 </m:GetPriceResponse>

</soap:Body>

</soap:Envelope>

THE SOAP FAULT ELEMENT

The SOAP fault element holds errors and status information for a SOAP
message.

The optional SOAP fault element is used to indicate error messages. If a
fault element is present, it must appear as a child element of the Body ele-
ment. A fault element can only appear once in a SOAP message. The SOAP
fault element has several sub elements.

XML Basics_Ch10_2pp.indd 405 8/7/2020 2:07:49 PM

406 • XML Basics

Table 10.1  The SOAP Fault Element

Sub Element Description

<faultcode> A code for identifying the fault

<faultstring> A human readable explanation of the fault

<faultactor> Information about who caused the fault to happen

<detail> Holds application-specific error information related to
the body element

Soap Fault Codes

The faultcode values shown in Table 10.2 must be used in the faultcode ele-
ment when describing faults.

Table 10.2  The Faultcode Values

Error Description

VersionMismatch Found an invalid namespace for the SOAP envelope element

MustUnderstand An immediate child element of the header element, with the
mustUnderstand attribute set to “1”, was not understood

Client The message was incorrectly formed or contained
incorrect information

Server There was a problem with the server so the message
could not proceed

Faultstring

<faultstring xmlns="> string </faultstring>

The faultstring element is of type string. It provides a human-readable
description of whatever fault occurred.

Faultactor

<faultactor xmlns="> uriReference </faultactor>

The faultactor element is of type uriReference. It indicates the source of
the fault.

Detail
<detail xmlns="> any number of elements in any namespace </detail>

XML Basics_Ch10_2pp.indd 406 8/7/2020 2:07:49 PM

SOAP • 407

The detail element is used to carry application-specific error information. It
may be annotated with any number of attributes from any namespace and may
have any number of namespace-qualified element children. The detail element
must be present if the fault is the result of the recipient being unable to process
the body element. This element is not used to provide error information in the
case of the recipient being unable to process an element child of the header
element. In such cases, error information is placed inside the header element.

THE HTTP PROTOCOL

HTTP communicates over TCP/IP. An HTTP client connects to an HTTP
server using TCP. After establishing a connection, the client can send an
HTTP request message to the server:

POST/item HTTP/1.1
Host: 189.123.345.239
Content-Type: text/plain
Content-Length: 200

The server then processes the request and sends an HTTP response back
to the client. The response contains a status code that indicates the status of
the request:

200 OK
Content-Type: text/plain
Content-Length: 200

In the example above, the server returned a status code of 200. This is the
standard success code for HTTP. If the server could not decode the request,
it could have returned something like this:

400 Bad Request
Content-Length: 0

SOAP HTTP BINDING

A SOAP method is an HTTP request/response that complies with the SOAP
encoding rules.

HTTP + XML = SOAP

A SOAP request could be an HTTP POST or an HTTP GET request.

XML Basics_Ch10_2pp.indd 407 8/7/2020 2:07:49 PM

408 • XML Basics

The HTTP POST request specifies at least two HTTP headers:

1.	 Content-Type

2.	 Content-Length

CONTENT-TYPE

The Content-Type header for a SOAP request and response defines the
MIME type for the message and the character encoding (optional) used for
the XML body of the request or response.

Syntax

Content-Type: MIMEType; charset=character-encoding

Example

POST /item HTTP/1.1
Content-Type: application/soap+xml; charset=utf-8

CONTENT-LENGTH

The Content-Length header for a SOAP request and response specifies the
number of bytes in the body of the request or response.

Syntax

Content-Length: bytes

Example

POST/item HTTP/1.1
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 250

A SOAP EXAMPLE

In the example below, a GetStockPrice request is sent to a server. The
request has a StockName parameter, and a Price parameter that will be

XML Basics_Ch10_2pp.indd 408 8/7/2020 2:07:49 PM

SOAP • 409

returned in the response. The namespace for the function is defined in http://
www.example.org/stock.

A SOAP Request

POST/InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetStockPrice>

 <m:StockName>IBM</m:StockName>

 </m:GetStockPrice>

</soap:Body>

</soap:Envelope>

The SOAP Response

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

 <m:GetStockPriceResponse>

 <m:Price>34.5</m:Price>

 </m:GetStockPriceResponse>

</soap:Body>

</soap:Envelope>

TRANSPORT METHODS IN SOAP

The Internet application layer is used to transfer messages from one end to
another end. Various products have been transported successfully from one

XML Basics_Ch10_2pp.indd 409 8/7/2020 2:07:49 PM

410 • XML Basics

end to another end using SOAP. Both SMTP and HTTP are successful trans-
port protocols used in transmitting information.

SOAP AND THE REQUEST/RESPONSE MODEL

The SOAP standard introduces no new concepts—it’s built completely from
existing technology. It currently uses HTTP as its request/response messaging
transport and is completely platform independent. HTTP connects comput-
ers across the entire world. HTTP can go through firewalls and is the easiest
means to transport messages to any computer in the world. It’s likely that
SOAP will evolve to use other protocols in the future.

HTTPS is similar to HTTP but it has an additional layer underneath the
Internet application layer that encrypts data. This protocol is more widely
used than IOP or DCOM because those protocols are filtered by firewalls.
The HTTPS protocol advocates the WS-I method to provide security for
transmission of secured data.

A SOAP package contains information that can be used to invoke a
method. How that method is called is not defined in the SOAP specification.
SOAP also does not handle distributed garbage collection, message box car-
rying, type safety, or bidirectional HTTP. What SOAP does allow you to do is
pass parameters and commands between HTTP clients and servers, regard-
less of the platforms and applications on the client and server. The parameters
and commands are encoded using XML. Let’s take a look at how SOAP uses
the standard HTTP headers.

HTTP HEADERS AND SOAP

Two types of headers are available in HTTP: request headers and response
headers. When you are using your Web browser to surf the Internet, each
time you navigate to a new URL, the Web browser will create a request and
send it to the Web server. These requests are written in plain text; each has
headers in a standard format. When creating SOAP messages, you will be
adding additional information to these standard formats. HTTP servers gen-
erate a response message upon receiving the client request. This message
contains a status line and response headers.

XML Basics_Ch10_2pp.indd 410 8/7/2020 2:07:49 PM

SOAP • 411

REQUEST HEADERS

A typical HTTP message in a SOAP request being passed to a Web server
looks like this:

POST/Order HTTP/1.1
Host: www.northwindtraders.com
Content-Type: text/xml
Content-Length: nnnn
SOAPAction: “urn:northwindtraders.com:PO#UpdatePO”

Information being sent is located here.
The first line of the message contains three separate components: the

request method, the request URI, and the protocol version. In this case, the
request method is POST; the request URI is /Order; and the version number
is HTTP/1.1. The Internet Engineering Task Force (IETF) has standardized
the request methods. The GET method is commonly used to retrieve infor-
mation on the Web. The POST method is used to pass information from the
client to the server. The information passed by the POST method is then used
by applications on the server. Only certain types of information can be sent
using GET; any type of data can be sent using POST. SOAP also supports
sending messages using M-POST. When working with the POST method in
a SOAP package, the request URI contains the name of the method to be
invoked.

The second line is the URL of the server that the request is being sent
to. The request URL is implementation-specific—that is, each server defines
how it will interpret the request URL. In the case of a SOAP package, the
request URL usually represents the name of the object that contains the
method being called.

The third line contains the content type, text/xml, which indicates that the
payload is XML in the plain text format. The payload refers to the essential
data being carried to the destination. The payload information could be used
by a server or a firewall to validate the incoming message. A SOAP request
must use the text/xml as its content type. The fourth line specifies the size of
the payload in bytes. The content type and content length are required with
a payload.

The SOAPAction header field must be used in a SOAP request to specify
the intent of the SOAP HTTP request. The fifth line of the message, SOAPAc-
tion: “urn: northwindtraders.com:PO#UpdatePO,” is a namespace followed
by the method name. By combining this namespace with the request URL,
our example calls the UpdatePO method of the Order object and is scoped

XML Basics_Ch10_2pp.indd 411 8/7/2020 2:07:49 PM

412 • XML Basics

by the urn:northwindtraders.com:PO namespace URI. The following are also
valid SOAPAction header field values:

SOAPAction: “UpdatePO”
SOAPAction: “”
SOAPAction:

The header field value of the empty string means that the HTTP request
URI provides the intent of the SOAP message. A header field without a spec-
ified value indicates that the intent of the SOAP message isn’t available.

Notice that there is a single blank line between the fifth line and the
payload request. When you are working with message headers, the carriage-
return/line-feed sequence delimits the headers and an extra carriage-return/
line-feed sequence is used to signify that the header information is complete
and that what follows is the payload.

RESPONSE HEADERS

A typical response message that contains the response headers is shown here:

200 OK
Content-Type: text/plain
Content-Length: nnnn

The first line of this message contains a status code and a message associ-
ated with that status code. In this case, the status code is 200 and the message
is OK, meaning that the request was successfully decoded and that an appro-
priate response was returned. If an error had occurred, the following headers
might have been returned:

400 Bad Request
Content-Type: text/plain
Content-Length: 0

In this case, the status code is 400 and the message is Bad Request, mean-
ing that the request cannot be decoded by the server because of incorrect
syntax.

SENDING MESSAGES USING M-POST

We can restrict messages coming through a firewall or a proxy server by using
the M-POST method instead of POST. M-POST is a new HTTP method

XML Basics_Ch10_2pp.indd 412 8/7/2020 2:07:49 PM

SOAP • 413

defined using the HTTP Extension Framework. This method is used when
you are including mandatory information in the HTTP header, just as you
used the mustUnderstand attribute in the SOAP header element.

SOAP supports both POST and M-POST requests. A client first makes a
SOAP request using M-POST. If the request fails and either a 501 status code
or a 510 status code returns, the client should retry the request using the POST
method. If the client fails the request again and a 405 status code returns, the
client should fail the request. If the returning status code is 200, the message
has been received successfully. Firewalls can force a client to use the M-POST
method to submit SOAP requests by blocking regular POSTs of the text/xml-
SOAP content type.

If you use M-POST, you must use a mandatory extension declaration that
refers to a namespace in the envelope element declaration. The namespace
prefix must precede the mandatory headers. The following example illustrates
how to use M-POST and the mandatory headers:

M-POST /Order HTTP/1.1
Host: www.northwindtraders.com
Content-Type: text/xml
Content-Length: nnnn
Man: “http://schemas.xmlsoap.org/soap/envelope; ns=49”
49-SOAPAction: “urn:northwindtraders.com:PO#UpdatePO”

A SCHEMA FOR THE BODY CONTENT OF THE SOAP
MESSAGE

As you can see, we have not yet defined the NPO schema located at http://
www.northwindtraders.com/schemas/NPOSchema.xsd. This schema can be
defined as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema"

 targetNamespace="http://schemas.xmlsoap.org/soap/envelope"

 xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope">

 <xsd:complexType name="NorthwindHeader">

 <xsd:element name="GUID" type="string"/>

 </xsd:complexType>

 <xsd:complexType name="NorthwindBody">

 <xsd:element name="UpdatePO">

 <xsd:complexType>

 <element name="orderID" type="integer"/>

XML Basics_Ch10_2pp.indd 413 8/7/2020 2:07:49 PM

414 • XML Basics

 <element name="customerNumber" type="integer"/>

 <element name="item" type="double"/>

 <element name="quantity" type="double"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:complexType>

</xsd:schema>

This schema creates two elements: NorthwindBody and Northwind-
Header. Using the xsi:type attribute, we can extend the SOAP body element
with the NorthwindBody complex type and extend the header element with
the NorthwindHeader complex type. You can then create the following SOAP
document:

<SOAP-ENV:Envelope

 xmlns:xsi="http://www.w3.org/1999/XMLSchema/instance"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope"

 xsi:schemaLocation=

 "http://www.northwindtraders.com/schemas/NPOSchema.xsd">

 <SOAP-ENV:Header xsi:type="NorthwindHeader">

 <COM:GUID xmlns:COM="http://comobject.northwindtraders.com">

 10000000-0000-abcd-0000-000000000001

 </COM:GUID>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body xsi:type="NorthwindBody">

 <UpdatePO>

 <orderID>0</orderID>

 <customerNumber>999</customerNumber>

 <item>89</item>

 <quantity>3000</quantity>

 </UpdatePO>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP ENCODING

The SOAP encoding style provides a means to define data types similar to
what is found in most programming languages, including types and arrays.
SOAP defines simple and complex data types just as the schema standard

XML Basics_Ch10_2pp.indd 414 8/7/2020 2:07:49 PM

SOAP • 415

does. The simple type elements are the same as those defined in the second
schema standard. The complex type elements include those defined in the
first SOAP standard and are a special way of defining arrays. Structures follow
the definitions of the complex type. For example, we could have the following
structure:

<e:Customer>

 <CName>Janson Maru</CName>

 <Address>18,I.G. NAGAR</Address>

 <ID>4</ID>

</e:Customer>

This structure would be defined as follows:
<element name=Customer>

 <element name="CName" type="xsd:string"/>

 <element name="Address" type="xsd:string"/>

 <element name="ID" type="xsd:string"/>

</element>

Arrays will have an additional attribute, type=“SOAP-ENC:Array”, to
define an element as an array. An array could be as follows:

<CustomerIDs SOAP-ENC:arrayType="xsd:int[3]">

 <number>345</number>

 <number>354</number>

 <number>399</number>

</CustomerIDs>

The schema would be as follows:
<element name="CustomerIDs" type="SOAP-ENC:Array"/>

In this example, the array CustomerIDs contains three members; each
member has a value of type xsd:int.

ENCODING STYLE ATTRIBUTE

This is used to define the data types in the document. Any SOAP element
may use this format and it gets implemented on the child and contents of the
SOAP. The SOAP element never has a default encoding.

XML Basics_Ch10_2pp.indd 415 8/7/2020 2:07:49 PM

416 • XML Basics

QUESTIONS FOR DISCUSSION

1.	 Explain SOAP.

2.	 Give an example of how SOAP works.

3.	 Explain remote call procedure.

4.	 Explain transport methods in SOAP.

5.	 Explain HTTPS in SOAP.

6.	 Explain the role of XML in SOAP.

7.	 What are the advantages of SOAP?

8.	 State some disadvantages of SOAP.

9.	 Explain message passing in RPC.

10.	 Explain the difference between RPC and local calls.

11.	 What are the elements in a SOAP message?

12.	 Explain the syntax rules in SOAP.

13.	 Explain the encoding style attribute.

14.	 Explain the SOAP envelope element.

15.	 Explain the actor element.

16.	 Explain the mustUnderstand Attribute.

17.	 Explain the SOAP body element.

18.	 What is SOAP and how does it relate to XML?

XML Basics_Ch10_2pp.indd 416 8/7/2020 2:07:49 PM

C H A P T E R 11
DOM PROGRAMMING
INTERFACE

DOM (DOCUMENT OBJECT MODEL)

DOM is an Application Programming Interface (API) that represents an XML
file as a document object, which allows application programs to manage the
information contained in the document object through the interface.

When accessing XML files, the DOM should always be the access method
of choice. Using the DOM has several advantages over other available mech-
anisms for the generation of XML documents, such as writing directly to a
stream.

Since the DOM transforms the text into an abstract representation of a
node tree, problems like unclosed tags and improperly nested tags can be
completely avoided.

When manipulating an XML document with a DOM, the developer need
not worry about the text expression of the document, but only about the
parent-child relationships and associated information.

The node tree created by the DOM is a logical representation of the con-
tent found in the XML file; it shows what information is present and how is it
related without necessarily being bound to the XML grammar.

A developer using the DOM to change the structure of an XML file will
have a much simpler task than one who is attempting to do so using traditional
file manipulation mechanisms.

The way in which the DOM represents the relationship between data
elements is very similar to the way that this information is represented in

XML Basics_Ch11_2pp.indd 417 8/7/2020 2:42:02 PM

418 • XML Basics

modern hierarchical and relational databases. This makes it very easy to move
information between a database and an XML file using DOM.

We learned the ways to handle the structure of an XML document and
the ways to describe the hierarchical information. We now discuss the ways to
access the XML document from the programs. One of these ways is through
the Document Object Model.

The W3C specifies that the DOM is a language; it is a platform neutral
definition, that is, interfaces are defined for the different objects comprising
this DOM, but no specifics of implementation are provided, and it could be
done in any programming language.

The DOM layout a standard functionality for document navigation and
the manipulation of the content and structure of HTML and XML documents.

XML DOM TREE

The XML DOM defines a standard way for accessing and manipulating XML
documents. The DOM presents an XML document as a tree structure. XML
DOM is a must for anyone working with XML.

title

doc

abstract chapter chapterchapter

title section section

title
ID=“p13”

p p p p

a

ID=“intro” ID=“details” ID=“summary”

FIGURE 11.1  An XML document as a tree-structure

HIGH LEVEL ARCHITECTURE OF A DOM/XML APPLICATION

An XML application reads an XML file, after which it can modify and rewrite
the XML, and/or it can print output based on that XML (commonly called
“rendering”). Note that “rendering” can take widely diverse forms, including
changing which fields are available on a form, printing a vector graphic, or

XML Basics_Ch11_2pp.indd 418 8/7/2020 2:42:02 PM

DOM Programming Interface • 419

rendering marked up text. Rendering can even take the form of configuring
an application or executing remote procedures.

The DOM model is easy to understand. Figure 11.2 shows the architec-
ture of an XML app using DOM.

FIGURE 11.2  The architecture of an XML app using DOM

A parser reads the XML file and builds a DOM document to match the
XML file. From that point until a save is performed, all interaction between
the app and XML hits the DOM document rather than the corresponding
XML file. It’s interesting to note that almost all XML parsers use SAX. The
reason is simple enough. Before you build a DOM document, you must
detect events such as the start of an element (start tag encountered), end of
element (end tag encountered), new attribute (name followed by equal sign
followed by quoted string encountered), and the like. DOM can be thought
of as an extra abstraction to lessen the programmer’s workload at the expense
of memory usage.

Modifications are made directly to the DOM document. Elements can be
added, deleted, renamed, and rearranged. Text nodes can be added, deleted,
or changed. Elements can be moved either within the same level or promoted
or demoted to different levels.

Obviously, the DOM is modified in apps that rewrite the XML file. But
DOM modification is also often done in an app that only renders the XML.
The classic example is in a “DOMWalker” app, which simply walks the DOM
tree and prints what it finds in a hierarchical outline. In fact, the new lines
and spaces intended to make the XML file more readable are actually legiti-
mate text nodes in XML, but in an XML app concerned only with a hierarchy,
they’re extraneous. Therefore, the first thing a DOMWalker program does is
delete text nodes made up only of whitespace.

Rendering is the challenging part of most XML apps. It’s often graphics
intensive. Consider the Dia vector drawing program, which keeps all drawing

XML Basics_Ch11_2pp.indd 419 8/7/2020 2:42:03 PM

420 • XML Basics

information in XML but renders it as geometric shapes. Often, there are sev-
eral rendering processes, one for each kind of output. Thus a book authored
in XML could be rendered as a paper book, as a PDF, as a Postscript file, or
as an HTML page or series of HTML pages. Indeed, this is one of the primary
benefits of stylesheet-based documents. Often the rendering itself is decou-
pled from the app by use of XSL (eXtensible Style Language), much the same
as program logic is decoupled from the app using XML.

Rewriting the XML file is easy—about what you’d expect for your last
class project in a college Programming 101 course. In the case of DOM,
you’ve already assembled the output in a DOM document, so you just walk its
tree and write the markup.

In the case of SAX-based XML apps it’s a little harder because you often
don’t read the information in the same order you want to write it. In other
words, if your app’s specification calls for something occurring later in the
input modifying something earlier in the output, you can’t just use a read-
write loop. So you do the typical stuff—keep some things in memory, or may
be write an intermediate file and then sort it, or run 2 passes through the
XML. This is why for apps interacting with small XML files, DOM are better.

DOM Sample Program

The DOM is a W3C specification presented as “a platform-and language-
neutral interface that will allow programs and scripts to dynamically access
and update the content, structure and style of documents.” It is essentially
a tree data structure and a set of methods to access and edit that structure.
Since it’s an in-memory data structure, the memory usage is much higher than
for SAX, but the document model can be accessed randomly and processed
multiple times.

The DOM API defines interfaces for each of the entities of an XML
document:

●● org.w3c.dom.Node interface: a single node in the document tree
–– Defines methods to access, insert, remove, and replace the child

nodes
–– Defines methods to access the parent node
–– Defines methods to access the document

●● org.w3c.dom.Document interface is a node that represents the entire XML
document

●● org.w3c.dom.Element interface is a node that represents an XML element

XML Basics_Ch11_2pp.indd 420 8/7/2020 2:42:03 PM

DOM Programming Interface • 421

●● org.w3c.dom.Text interface is a node that represents the textual content
of an XML element

The application may apply its business logic directly to the DOM tree or
go first through an additional stage of mapping relevant information from the
DOM tree to business objects.

FIGURE 11.3  When using the DOM API, the application has to access or edit an in-memory represen-
tation of the source document.

The program presented below uses the DOM API to parse and load in
memory an XML document describing a set of chessboard configurations. It
then walks through the resulting DOM tree and outputs the same chessboard
configurations in text format.

Two different implementations are used to highlight the potential differ-
ences in performance when using different methods of the DOM API: either
accessing the elements by their names or relative to their parents.

DOM IMPLEMENTATION

DOM has been implemented in many languages:

●● DOM has been implemented in Java in J2SDK 1.4.1.
●● DOM has been implemented in PHP 4.
●● DOM has been implemented in Perl. XML::DOM is a DOM Perl imple-

mentation developed by Enno Derkson.
●● DOM has been implemented in JavaScript and Web browsers supporting

JavaScript.

XML Basics_Ch11_2pp.indd 421 8/7/2020 2:42:03 PM

422 • XML Basics

●● DOM has been implemented in VBScript and Web browsers supporting
VBScript.

The Apache Xerces is an Apache project that produces implementations
of DOM for 3 programming languages. (See http://xerces.apache.org/ for
more information.)

●● Apache Xerces C++ — A processor for parsing, validating, serializing, and
manipulating XML, written in C++

●● Apache Xerces2 Java — A processor for parsing, validating, serializing,
and manipulating XML, written in Java

●● Apache Xerces Perl — A processor for parsing, validating, serializing, and
manipulating XML, written in Perl

DOM Specifications and the DOM Node Interface

Currently, DOM has 4 levels of specifications:

●● DOM Level 0 — No formal specifications published: A collection of
HTML document functionalities offered by Web browsers in 1996

●● DOM Level 1 — Latest version published in 1998: Two modules: the
Core module is for XML documents; and the HTML module is for
HTML documents

●● DOM Level 2 — Published in 2000: 14 modules such as Core, XML,
HTML, Views, StyleSheets, and CSS

●● DOM Level 3 — Published in 2004: 21 modules such as Core, XML,
HTML, XPath, Traversal, Range, and Validation

Based the Core module of the DOM Level 1 specification, an XML file is
represented with a tree structure, called a document. Each node in the tree is
a node object, which represents a unit of information in the XML file.

A node object is actually an instance of classes that implement the node
interface, which contains these methods:

●● getNodeType(): Returns the node type
●● getNodeName(): Returns the node name
●● getNodeValue(): Returns the value associated with this node
●● getChildNodes(): Returns a list of nodes nested inside this node

XML Basics_Ch11_2pp.indd 422 8/7/2020 2:42:03 PM

DOM Programming Interface • 423

●● getAttributes(): Returns a list of nodes that represents the attributes of
this node

The DOM Level 1 Core module specifies these nodes type, each of which
could be implemented as a separate class:

 2 ATTRIBUTE_NODE

 4 CDATA_SECTION_NODE

 8 COMMENT_NODE

11 DOCUMENT_FRAGMENT_NODE

 9 DOCUMENT_NODE

10 DOCUMENT_TYPE_NODE

 1 ELEMENT_NODE

 6 ENTITY_NODE

 5 ENTITY_REFERENCE_NODE

12 NOTATION_NODE

 7 PROCESSING_INSTRUCTION_NODE

 3 TEXT_NODE

THE DOM SPECIFICATION

As with any other Internet standards, the DOM specification is maintained by
the W3C. At present, the W3C has prepared two documents, the Level 1 and
Level 2 documents.

The W3C document for DOM Level 1 has a status of Recommendation.
This document contains two main sections. The Document Object Model
(Core) Level 1 contains the specification for interfaces that can access any
structured document, with some specific extensions that allow access to XML
documents.

The second section explains the HTML-specific extensions to DOM.
The DOM specification explains how strings are to be manipulated by

the DOM by defining the data type DOMString. The DOMString data type
is defined as a double-byte character set string, encoded using the UTF-16
encoding scheme.

XML Basics_Ch11_2pp.indd 423 8/7/2020 2:42:03 PM

424 • XML Basics

FIGURE 11.4  DOM implementation

We now take a look at the objects, methods, and properties that make up
the DOM Level 1 specification. The behavior that is specified applies only
to XML documents; the DOM may behave differently when used to access
HTML documents.

XML DOM NODES

According to the DOM, everything in an XML document is a node.

The DOM says

●● The entire document is a document node.
●● Every XML element is an element node.
●● The text in the XML elements are text nodes.
●● Every attribute is an attribute node.
●● Comments are comment nodes.

DOM Example

Look at the following XML file (books.xml):

XML Basics_Ch11_2pp.indd 424 8/7/2020 2:42:03 PM

DOM Programming Interface • 425

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

 <book category="Litrature">

 <title lang="en">World war</title>

 <author>Ram sharma</author>

 <year>2009</year>

 <price>300.00</price>

 </book>

 <book category="children">

 <title lang="en">A sweet play</title>

 <author>M. Rashmi</author>

 <year>2010</year>

 <price>424.00</price>

 </book>

 <book category="GK">

 <title lang="en">A good knowledge maker</title>

 <author>s. John</author>

 <author>Preet Moare</author>

 <author>K. Raute</author>

 <author>Raj Ben</author>

 <year>2008</year>

 <price>249.99</price>

 </book>

 <book category="Internet" cover="paperback">

 <title lang="en">Learning HTML</title>

 <author> Ramesh Arya</author>

 <year>2010</year>

 <price>239.00</price>

 </book>

</bookstore>

The root node in the XML above is named <bookstore>. All other nodes
in the document are contained within <bookstore>. The root node <book-
store> holds four <book> nodes.

The first <book> node holds four nodes: <title>, <author>, <year>, and
<price>, which contain one text node each. Text is Always Stored in Text
Nodes a, s, t, n.

A common error in DOM processing is to expect an element node to
contain text. However, the text of an element node is stored in a text node.

XML Basics_Ch11_2pp.indd 425 8/7/2020 2:42:03 PM

426 • XML Basics

XML DOM NODE TREE

The XML DOM views an XML document as a node tree. All the nodes in the
tree have a relationship to each other.

The XML DOM views an XML document as a tree structure. The tree
structure is called a node tree. All nodes can be accessed through the tree.
Their contents can be modified or deleted, and new elements can be created.

The node tree shows the set of nodes and the connections between
them. The tree starts at the root node and branches out at the lowest level of
the tree.

FIGURE 11.5  HTML node tree

Node Parents, Children, and Siblings

The nodes in the node tree have a hierarchical relationship to each other. The
terms parent, child, and sibling are used to describe the relationships. Parent
nodes have children. Children on the same level are called siblings (brothers
or sisters).

●● In a node tree, the top node is called the root.
●● Every node, except the root, has exactly one parent node.
●● A node can have any number of children.
●● A leaf is a node with no children.
●● Siblings are nodes with the same parent.

Figure 11.6 illustrates a part of the node tree and the relationship between
the nodes.

XML Basics_Ch11_2pp.indd 426 8/7/2020 2:42:04 PM

DOM Programming Interface • 427

FIGURE 11.6  A part of the node tree and the relationship between the nodes

Because the XML data is structured in a tree form, it can be traversed
without knowing the exact structure of the tree and without knowing the type
of data contained within.

FIRST CHILD - LAST CHILD

Look at the following XML fragment:
<bookstore>

 <book category="Litrature">

 <title lang="en">World war</title>

 <author>Ram sharma</author>

 <year>2009</year>

 <price>300.00</price>

 </book>

</bookstore>

In the XML above, the <title> element is the first child of the <book>
element, and the <price> element is the last child of the <book> element.

Furthermore, the <book> element is the parent node of the <title>,
<author>, <year>, and <price> elements.

XML Basics_Ch11_2pp.indd 427 8/7/2020 2:42:04 PM

428 • XML Basics

DOM LEVEL 2 SPECIFICATION

As of press time, the W3C DOM level 2 specification has the status of
Candidate Recommendation. In addition to the objects we just discussed, the
DOM 2 specification includes support for namespaces, style sheets, filtering,
event model, and ranges.

Namespaces are used to distinguish discrete data elements with the same
name in XML. The DOM Level 2 provides mechanisms for interrogating and
modifying the namespace for a document.

The DOM Level 2 specification includes an object model for style sheets,
as well as methods to query and manipulate the style sheet for a particular
object.

The DOM Level 2 specification adds methods for filtering the content in
an XML document.

An event model is in the planning stages as far as the DOM Level 2 spec-
ification is concerned.

This includes the functions for manipulating large blocks of text that will
be useful to those working with traditional documents in XML.

XML DOCUMENT STRUCTURE

<INVOICE>

 <CUSTOMER> Sam </CUSTOMER>

 <ADDRESS>57, M.G.Road</ADDRESS>

 <CITY>Bangalore</CITY>

 <STATE>Karnataka</STATE>

 <PRODUCT1>Cheese</PRODUCT1>

 <UNITS>2</UNITS>

 <PRODUCT2>Champagne</PRODUCT2>

 <UNITS2>3</UNITS2>

 <PRODUCT3>Gel</PRODUCT3>

 <UNITS3>5</UNITS3>

 <PRODUCT4>Bread</PRODUCT4>

 <UNITS4>4</UNITS4>

</INVOICE>

Developers new to XML assume that the main purpose of XML is to
enable pieces of information in a file to be named so that others may eas-
ily understand them. As a result, documents prepared by beginners to XML

XML Basics_Ch11_2pp.indd 428 8/7/2020 2:42:04 PM

DOM Programming Interface • 429

often resemble “tag soup“—an unordered list of data elements with mean-
ingful tag names, but containing the same level of information as a flat file.
The ability of XML that many developers overlook is its ability to show rela-
tionships between elements-specifically, the ability to imply a parent-child
relationship between two elements. The invoice example shows the prepara-
tion of an XML document called INVOICE that could be better expressed in
XML as shown in the following code.

<INVOICE>

 <CUSTOMER NAME = "Sam"

 ADDRESS = "57, M.G. Road"

 CITY = "Bangalore"

 STATE = "Karnataka">

 <LINEITEM PRODUCT = "Cheese"

 UNITS = "2"/>

 <LINEITEM PRODUCT = "Champagne"

 UNITS = "3"/>

 <LINEITEM PRODUCT = "Gel"

 UNITS = "5"/>

 <LINEITEM PRODUCT = "Bread"

 UNITS = "4"/>

</INVOICE>

In this document, it immediately becomes apparent that the INVOICE
element has four children, that is, the line item elements. It also makes the
search in the document easier. If we are searching for the orders for CHEESE,
we can do so by looking for the LINEITEM elements with a PRODUCT
attribute value of CHEESE, instead of looking at the PRODUCT1 element,
PRODUCT2 element, and so on.

FIGURE 11.7  Flow diagram of INVOICE and its child elements

XML Basics_Ch11_2pp.indd 429 8/7/2020 2:42:04 PM

430 • XML Basics

This document structure can be represented as a node tree that shows all
the elements and their relationships to one another.

With the DOM, we would be able to operate on the document in the
node form with its tree structure. We would be able to add any information
easily and attach it as a child to the node rather than to read through the infor-
mation and go past the last item to insert new information.

When the DOM is used to manipulate an XML text file, the first thing it
does is parse the file, breaking the file out into individual elements, attributes,
and comments.

The next thing it does is create, in the memory, a representation of the
XML file as a node tree. The developer may access the contents of the docu-
ment through the node tree and make the necessary modifications.

The DOM goes a step further and treats every item as a node—elements,
attributes, comments, processing instructions, and text. The DOM provides a
robust set of interfaces to facilitate the manipulation of the DOM node tree.

WORKING WITH DOM

We have discussed the structure of the DOM, taking XML documents and
transforming them into node trees that may be accessed programmatically.
We have also talked about the specification provided by W3C, and that it is
only a description of the access mechanisms. How do we take this information
and implement it? This can be done using the DOM API.

When writing a piece of software that accesses XML files using the DOM,
a particular implementation of the DOM must be used. The implementation,
the DOM API, is a library designed to run on a particular hardware and soft-
ware platform and to access a particular data store.

API is the acronym for Application Programming Interface. It is a set of
libraries used by a component to instruct another component to carry out
lower level services. As such, the API must be an implementation of an inter-
face with the appropriate code to connect to other components and instruct
them to carry out their functions.

The W3C DOM specification only provides the interface definition for
the DOM libraries, not the specifics of their implementation. It therefore falls
to third parties to provide implementations of the DOM that may be used by
programmers.

XML Basics_Ch11_2pp.indd 430 8/7/2020 2:42:04 PM

DOM Programming Interface • 431

CLIENT SIDE AND SERVER SIDE DOM

There are many applications for the DOM and XML, and they can loosely be
classified into two types: those deployed on the server and those deployed on
the client.

The first applications of DOM were on the server side. The DOM can
be used to simplify the data interchange between disparate business systems,
as well as provide an ideal mechanism for the archiving and retrieval of data.

XML facilitates inter-process or inter-business communications. This
is mainly because XML allows for the use of platform-independent, self-
describing and hierarchical information.

XML is an ideal storage medium for archived information, especially if it
comes from an object-oriented or hierarchical database.

As of now, only Internet Explore 5.0 comes with DOM functionality
built-in. Netscape and other browser developers are in the process of adding
DOM support to their systems. Once they are in use, Internet developers will
be able to take advantage of the DOM on the client to improve the way infor-
mation is rendered and decrease roundtrips to the server.

XML DOM PARSER

Most browsers have a built-in XML parser to read and manipulate XML.
The parser converts XML into a JavaScript accessible object (the XML

DOM).

XML PARSER

The XML DOM contains methods (functions) to traverse XML trees, and
access, insert, and delete nodes. However, before an XML document can be
accessed and manipulated, it must be loaded into an XML DOM object. An
XML parser reads XML and converts it into an XML DOM object that can be
accessed with JavaScript.

Most browsers have a built-in XML parser.

XML Basics_Ch11_2pp.indd 431 8/7/2020 2:42:04 PM

432 • XML Basics

XML Document
XML Processor Application

XML Tree

FIGURE 11.8  XML parser mechanism

LOAD AN XML DOCUMENT

The following JavaScript fragment loads an XML document (“books.xml”):
<html>

<body>

<script type="text/javascript">

if (window.XMLHttpRequest)

 {

 xhttp=new XMLHttpRequest();

 }

else // for IE 5/6

 {

 xhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

xhttp.open("GET","books.xml",false);

xhttp.send();

xmlDoc=xhttp.responseXML;

document.write("XML document loaded into an XML DOM Object.");

</script>

</body>

</html>

Result:
To load an XML document into an XML DOM Object

●● Create an XML HTTP object
●● Open the XML HTTP object
●● Send an XML HTTP request to the server
●● Set the response as an XML DOM object

XML Basics_Ch11_2pp.indd 432 8/7/2020 2:42:04 PM

DOM Programming Interface • 433

QUESTIONS FOR DISCUSSION

1.	 What is DOM?

2.	 What is DOM and how does it relate to XML?

3.	 How do you use XML namespaces with DOM Level 1?

4.	 How do you use XML namespaces with DOM Level 2?

5.	 How do you use XML namespaces with DOM Level 3?

6.	 How you define DOM in XML?

7.	 Explain the architecture of DOM/XML applications.

8.	 Do SAX and DOM validating parsers take the same amount of memory
while validating a document?

9.	 Can you use a generic SAX/DOM XML parser for Tomcat instead of
parser.jar?

10.	 How do you convert a DOM document object into an XML file using
JAXP?

11.	 You want to parse an XML file stored on a remote server. Can you use
the DOM without downloading the file?

12.	 Is there some API which can modify a very large XML file? DOM runs
out of memory and SAX just doesn’t fit the bill.

13.	 You have to build an XML document from pieces of existing ones, and
then output it as a string. What libraries should you use?

14.	 How do you write a DOM document as an XML file?

15.	 Does DOM include APIs for diffing and merging XML documents?

16.	 How can you map a DOM tree to javax.swing.tree.TreeNode or some
object so that you can view an XML document as JTree?

17.	 Where can you get an XML parser/DOM implementation that allows
you to programmatically query the DTD?

XML Basics_Ch11_2pp.indd 433 8/7/2020 2:42:04 PM

XML Basics_Ch11_2pp.indd 434 8/7/2020 2:42:04 PM

C H A P T E R 12
SAX (SIMPLE API FOR XML)

INTRODUCTION TO SAX

XML 1.0 allows you to encode your information in textual form and create
tags which allow you to structure the information stored in XML documents.
This information must, be read by some program to do something useful, like
viewing, modifying or printing it.

In order for your programs to access this information, you can use the
SAX (Simple API for XML) or the DOM (Document Object Model) APIs.
Both of these APIs must be implemented by the XML parser of your choice
(which also must be written in the programming language of your choice).

For Java, these parsers include the Sun TR2 XML Parser, Data channel
XJ2, IBM XML Parser for Java, and OpenXML (among many others). All of
these parsers implement the SAX API (and also the DOM API). There are
fewer differences in the implementation of SAX compared to the implemen-
tation of DOM 1.0 (simply because SAX is so much smaller and simpler than
DOM).

So, Java programs must use an XML Parser written in Java that imple-
ments the SAX API in order to use SAX.

SAX (SIMPLE API FOR XML)

Unlike the DOM, which creates a tree based representation for the informa-
tion in our XML documents, SAX does not have a default object model. This
means that when you create a SAX parser and read in a document (unlike
DOM), you will not be given a default object model.

XML Basics_Ch12_2pp.indd 435 8/7/2020 2:44:12 PM

436 • XML Basics

The benefit of SAX is that processing can be conducted while analyzing
the XML document—there is no need to load the entire document first as
with DOM. On the other hand, not having an API for XML document updat-
ing means that any XML document updates have to be handled from within
the application.

Also, SAX only loads an XML document in order from top to bottom, so
the forward or backward referencing of XML documents must be performed
by the application. SAX is especially suited for searching for and extracting
data from XML documents.

SAX is a specification created through the XML-DEV mailing list, rather
than being a W3C-recommended specification. Processing via SAX is light
and quick in contrast to DOM. SAX loads an XML document in order from
top to bottom, and is an event-driven API that notifies the application of an
event regarding information associated with the detection of an element’s
start tag or end tag or occurrences of text. On the application side, the event
received is processed to acquire the data from within the XML document.

A SAX parser is only required to read in your XML document and fire
events based on the things it encounters in your XML document. Events are
fired when the following things happen:

●● Open element tags are encountered in your document
●● Close element tags are encountered in your document
●● #PCDATA and CDATA sections are encountered in your document
●● Processing instructions, comments, entity declarations, are encountered

in your document.

We start by looking at the open and close element tag events and the
#PCDATA and CDATA events. One thing to remember about SAX is that the
sequence of these events is very important, because the sequence in which
events are fired determines how you will have to interpret each event.

SAX is an event-driven API that allows applications to process XML files
by handling events fired by the parser while it traverses the XML structure.

If an application wants to use SAX to process XML files, it must provide
SAX event handlers and call back methods to perform whatever the applica-
tion want to do. If no event handler is provided, nothing will be performed on
the XML files.

SAX was originally developed for Java language by David Megginson in
1998. Now SAX has been implemented in all major languages:

●● SAX Project—The original SAX Java project is an open source project
located at http://www.saxproject.org/.

XML Basics_Ch12_2pp.indd 436 8/7/2020 2:44:12 PM

SAX (Simple Api for Xml) • 437

●● SAX has been implemented in Java in J2SDK 1.4.1.
●● SAX has been implemented in PHP. Sax4PHP is a PHP5 class to manage

XML with a Java like SAX API. See http://sax4php.sourceforge.net/ for
more information.

●● SAX has been implemented in Perl. Perl SAX is a SAX Perl implementa-
tion developed as an open source product.

The Apache Xerces is an Apache project that produces implementations
of SAX for 3 programming languages.

●● Apache Xerces C++—A processor for parsing, validating, serializing, and
manipulating XML, written in C++.

●● Apache Xerces2 Java—A processor for parsing, validating, serializing, and
manipulating XML, written in Java.

●● Apache Xerces Perl—A processor for parsing, validating, serializing, and
manipulating XML, written in Perl.

DOM AND TREE-BASED PROCESSING

The DOM is the “traditional” way of handling XML data. With DOM, the
data is loaded into memory in a tree-like structure. For instance, the same
document used as an example in the preceding example would be repre-
sented as nodes.

The rectangular boxes represent element nodes and the ovals repre-
sent text nodes. DOM uses a root node and parent-child relationships. For
instance, in this case, samples would be the root node with five children: three
text nodes (the white space), and the two element nodes, server and monitor.
One important thing to realize is that the server and monitor actually have
values of null.

PROS AND CONS OF TREE-BASED PROCESSING

DOM, and by extension tree-based processing, has several advantages. First,
because the tree is persistent in memory, it can be modified so an applica-
tion can make changes to the data and the structure. It can also work its way
up and down the tree at any time, as opposed to the “one-shot deal” of SAX.
DOM can also be much simpler to use. On the other hand, there is a lot of

XML Basics_Ch12_2pp.indd 437 8/7/2020 2:44:12 PM

438 • XML Basics

overhead involved in building these trees in memory. It’s not unusual for large
files to completely overrun a system’s capacity. In addition, creating a DOM
tree can be a very slow process.

HOW TO CHOOSE BETWEEN SAX AND DOM

Whether you choose DOM or SAX is going to depend on several factors:

●● Purpose of the application: If you are going to have to make changes
to the data and output it as XML, then in most cases, DOM is the way
to go. This is particularly true if the changes are to the data itself, as
opposed to a simple structural change that can be accomplished with XSL
transformations.

●● Amount of data: For large files, SAX is a better bet.
●● The need for speed: SAX implementations are normally faster than

DOM implementations.

It’s important to remember that SAX and DOM are not mutually exclu-
sive. You can use DOM to create a SAX stream of events, and you can use
SAX to create a DOM tree.

THE SAX API IS DEFINED IN 4 INTERFACES UNDER THE
ORG.XML.SAX PACKAGE

org.xml.sax.DocumentHandler: This is the main interface of SAX. It
defines event handler methods (callback methods) that an application should
implement to handle events fired by the parser while it traverses the input
XML files.

org.xml.sax.ErrorHandler: It defines error handler methods (callback
methods) that an application should implement to add special handling logics
when the parse encounters parsing errors.

org.xml.sax.DTDHandler: If an application needs to work with nota-
tions and unparsed (binary) entities, it must implement this interface to
receive notification of the NOTATION and ENTITY declarations.

org.xml.sax.EntityResolver: If an application needs to redirect URIs in
documents (or other types of custom handling), it must provide an implemen-
tation of this interface.

XML Basics_Ch12_2pp.indd 438 8/7/2020 2:44:12 PM

SAX (Simple Api for Xml) • 439

The main interface of SAX, org.xml.sax.ContentHandler, defines the fol-
lowing event handler methods to be implemented by applications:

●● startDocument(): Called when parsing reaches the beginning of the XML
document

●● endDocument(): Called when parsing reaches the end of the XML
document

●● startElement(): Called when parsing reaches the beginning of an XML
element

●● endElement(): Called when parsing reaches the end of an XML element
●● characters(): Called when parsing reaches the end of an character section
●● ignorableWhitespace(): Called when parsing reaches any ignorable white

spaces between elements

Of course, some of the event handlers will receive information parsed
from the XML file as parameters. For example,

●● startElement() passes all the attributes as an org.xml.sax.Attributes object.
●● characters() passes all the characters of the parsed text as char[] object.

SAX SAMPLE PROGRAM

The SAX API (Simple API for XML) uses an event-based model and allows
the processing of a source document as a stream of events. The events are
fired while parsing as a continuous flow of callback method invocations. The
events are nested in the same way as the document elements, therefore no
intermediate document model is created. While the memory usage is low, the
programming model can be complex, especially if the document structure
doesn’t faithfully match the application data structures. Because it generates a
transient flow of events, the SAX API cannot be used when a document model
has to be edited or processed several times.

The SAX API defines several interfaces (some of the interfaces from SAX
1.0 were renamed in SAX 2.0):

●● org.xml.sax.Parser (XMLReader in SAX 2.0) interface for SAX parsers:

–– Parses an XML document

–– Allows an application to register

XML Basics_Ch12_2pp.indd 439 8/7/2020 2:44:12 PM

440 • XML Basics

•• A document event handler

•• An error handler

•• A DTD handler

•• An entity resolver
●● org.xml.sax.DocumentHandler (ContentHandler in SAX 2.0) interface to

receive document events, the notification of

–– The start or end of a document

–– The start or end of an element

–– Character data

–– Ignorable whitespace in element content

–– A processing instruction
●● org.xml.sax.ErrorHandler interface to receive SAX error events, the

notification of

–– A recoverable error

–– A non-recoverable/fatal error

–– A warning
●● org.xml.sax.DTDHandler interface to receive notification of basic DTD-

related events, the notification of

–– A notation declaration event

–– An unparsed entity declaration event
●● org.xml.sax.EntityResolver interface for resolving external entity

references
●● org.xml.sax.HandlerBase (DefaultHandler in SAX 2.0) default imple-

mentation of the four previous interfaces.

An application must provide at least a document (or content) handler in
order to catch relevant events and process them.

XML Basics_Ch12_2pp.indd 440 8/7/2020 2:44:13 PM

SAX (Simple Api for Xml) • 441

FIGURE 12.1  When using the SAX API, the bare minimum a developer has to do is to implement
a DocumentHandler (ContentHandler in SAX 2.0) or subclass BaseHandler (DefaultHandler)

The sample program presented next implements the interface, Handler-
Base, and the startElement callback method. A SAXParserFactory is used to
create a new SAXParser. The custom implementation of the interface Han-
dlerBase and the path of the XML source document to be processed is then
passed to the parser. While parsing, the startElement method is called for
every single start tag in the source document.

THREE STEPS TO SAX

Since SAX does not come with a default object model representation for the
data in your XML document, the first thing you have to when using SAX is
create your own custom Java object model for your data. This could be some-
thing as simple as creating an AddressBook class if your XML document is an
address book. After your custom object model has been created to “hold” your
data (inside your Java program), the next step is creating a SAX document
handler to create instances of your custom object models from the informa-
tion stored in the XML document. This “document handler” is a listener for
the various events that are fired by the SAX parser based on the contents of
your XML document. This is very similar to the AWT 1.1 Event Delegation
Model, where UI components generate events based on user input and event
listeners perform some useful function when these events are fired. Most of
the work in using SAX is in creating this document handler. Once you have

XML Basics_Ch12_2pp.indd 441 8/7/2020 2:44:13 PM

442 • XML Basics

created the custom object model and the SAX document handler you can use
the SAX parser to create instances of your custom object model based on the
data stored in your XML documents.

This process is illustrated using an example in the following paragraphs.
This example shows you how to perform these 3 steps for an AddressBook
example. The example problem is that you have an XML document which
contains your address book and you would like to view this address book using
a Swing program and a Servlet. Also, you would like to use a SAX parser
to do this instead of using a DOM parser. The first thing to do is create an
object model and deal with the SAX parser issues before even thinking about
the presentation layers (Swing and Servlet) for object model (AddressBook).
Here is what the address book XML document looks like:

1: <?xml version = "1.0"?>

2:

3: <addressbook>

4:

5: <person>

6:

7: <lastname>Idris</lastname>

8: <firstname>Nazmul</firstname>

9: <company>The Bean Factory, LLC.</company>

10: <email>xml@beanfactory.com</email>

11:

12: </person>

13:

14: </addressbook>

The three steps to using SAX in our programs are

●● Create a custom object model (like Person and AddressBook classes)
●● Create a SAX parser
●● Create a DocumentHandler (to turn your XML document into instances

of your custom object model)

Step 1: Create a custom object model
We have created a simple Java object model to represent the information

in the address book XML document. We created 2 classes, an AddressBook
class and a Person class. The object model is a simple mapping from the ele-
ments into classes. The following is a description of these classes.

XML Basics_Ch12_2pp.indd 442 8/7/2020 2:44:13 PM

SAX (Simple Api for Xml) • 443

The AddressBook class is a container of the Person objects. The Address-
Book class is a simple adapter over the java.util.List interface. The Address-
Book class has methods to allow you to add Person objects, get Person objects,
and find out how many Person objects are in the AddressBook. The address-
book element maps to the AddressBook class.

The Person class simply holds 4 String objects: the last name, first
name, email, and company name. This information is embedded within the
<person> tag. The person element maps into the Person class. The firstname,
lastname, company, and email elements map into the String class.

Here is a listing of the Person class:
1: public class Person{

2:

3: // Data Members

4: String fname, lname, company, email;

5:

6:

7: // accessor methods

8: public String getCompany(){return company;}

9: public String getEmail(){return email;}

10: public String getFirstName(){return fname;}

11: public String getLastName(){return lname;}

12:

13:

14: // mutator methods

15: public void setLastName(String s){lname = s;}

16: public void setFirstName(String s){fname = s;}

17: public void setCompany(String s){company = s;}

18: public void setEmail(String s){email = s;}

19:

20:

21: // toXML() method

22: public String toXML(){

23: StringBuffer sb = new StringBuffer();

24: sb.append("<PERSON>\n");

25: sb.append("\t<LASTNAME>"+lname+"</LASTNAME>\n");

26: sb.append("\t<FIRSTNAME>"+fname+"</FIRSTNAME>\n");

27: sb.append("\t<COMPANY>"+company+"</COMPANY>\n");

28: sb.append("\t<EMAIL>"+email+"</EMAIL>\n");

29: sb.append("</PERSON>\n");

XML Basics_Ch12_2pp.indd 443 8/7/2020 2:44:13 PM

444 • XML Basics

30: return sb.toString();

31: }}

Please note the toXML() method. This method returns a string that con-
tains the XML representation of a Person object. This kind of method is not
only very useful for debugging, but it can be used to save Person objects to an
XML file (or other kind of XML persistence/storage engine). The Address-
Book class also has an toXML() method, and that method uses the Person
class’s toXML() method, too.

Here is a listing of the AddressBook class:
1: public class AddressBook{

2:

3: // Data Members

4: List persons = new java.util.ArrayList();

5:

6:

7: // mutator method

8: public void addPerson(Person p){persons.add(p);}

9:

10:

11: // accessor methods

12: public int getSize(){ return persons.size();}

13: public Person getPerson(int i){

14: return (Person)persons.get(i);}

15:

16: // toXML method

17: public String toXML(){

18: StringBuffer sb = new StringBuffer();

19: sb.append("<?xml version=\"1.0\"?>\n");

20: sb.append("<ADDRESSBOOK>\n\n");

21: for(int i=0; i<persons.size(); i++) {

22: sb.append(getPerson(i).toXML());

23: sb.append("\n");

24: }

25: sb.append("</ADDRESSBOOK>");

26: return sb.toString();

27: }}

As you can see, these are very simple classes. The interesting part (in this
case) is Step 3.

XML Basics_Ch12_2pp.indd 444 8/7/2020 2:44:13 PM

SAX (Simple Api for Xml) • 445

Step 2: Creating a SAX parser
You have to create an XML document handler class for the parser (so that

something useful gets done as the parser parses the XML document).
Here is code to create a SAX parser:
1: import java.net.*;

2: import java.io.*;

3: import org.xml.sax.*;

4:

5: ...

6:

7: try{

8:	 //create an InputSource from the XML document source

9:	 InputStreamReader isr = new InputStreamReader(

10: new URL("http://host/AddressBook.xml").openStream();

11: //new FileReader(new File("AddressBook.xml"))

12:);

13:

14: InputSource is = new InputSource(isr);

15:

16: //create an documenthandler to create obj model

17: DocumentHandler handler = //new YourHandler();

18:

19: //create a SAX parser using SAX interfaces and classes

20: String parserClassName = "com.sun.xml.parser.Parser";

21:

22: org.xml.sax.Parser.parser = org.xml.sax.helpers.ParserFactory.

23: makeParser(parserClassName);

24:

25: //create document handler to do something useful

26: //with the XML document being parsed by the parser.

27: parser.setDocumentHandler(handler);

28:

29: parser.parse(is);

30: }

31: catch(Throwable t){

32: System.out.println(t);

33: t.printStackTrace();

34: }

XML Basics_Ch12_2pp.indd 445 8/7/2020 2:44:13 PM

446 • XML Basics

The code example above uses the Sun TR2 parser. The classes used
from TR2 include the com.sun.xml.parser.Parser, which is used to create a
non-validating SAX parser.

Step 3: Creating a DocumentHandler
The SAX parser that was created in Step 2 reads an XML document and

fires events as it encounters open tags, close tags, CDATA, and #PCDATA
sections. These events are fired as the SAX parser reads the XML document
from top to bottom, a tag at a time. In order for the SAX parser to notify some
object that these events are occurring, an interface called DocumentHandler
is used (it’s in the org.xml.sax package). There are 3 other interfaces that exist
called EntityResolver, DTDHandler, and ErrorHandler. These 4 interfaces
together include all the methods that correspond to all possible events that
the SAX parser can fire (as its reading an XML document). The most fre-
quently used interface is the DocumentHandler interface. You have to pro-
vide an implementation of at least the DocumentHandler interface to the
SAX parser, which then will invoke the right methods in the right sequence
on your DocumentHandler implementation class. As the SAX parser reads
an XML document, events are fired, which are then translated into method
calls on all the “registered document event listeners” (which is your Docu-
mentHandler implementation class). So as these events are fired as the XML
document is read, method calls are made on your Document Handler imple-
mentation class. This class must do something useful with these method calls
and the sequence of the calls.

CREATING THE SAX PARSER THE SAMPLE FILE

This chapter demonstrates the construction of an application that uses SAX to
tally the responses from a group of users asked to take a survey regarding their
alien abduction experiences. The XML code for the survey form and resultant
form are shown below.

<?xml version="1.0"?>

<surveys>

<response username="bob">

<question subject="appearance">A</question>

<question subject="communication">B</question>

<question subject="ship">A</question>

<question subject="inside">D</question>

<question subject="implant">B</question>

XML Basics_Ch12_2pp.indd 446 8/7/2020 2:44:13 PM

SAX (Simple Api for Xml) • 447

</response>

<response username="sue">

<question subject="appearance">C</question>

<question subject="communication">A</question>

<question subject="ship">A</question>

<question subject="inside">D</question>

<question subject="implant">A</question>

</response>

<response username="carol">

<question subject="appearance">A</question>

<question subject="communication">C</question>

<question subject="ship">A</question>

<question subject="inside">D</question>

<question subject="implant">C</question>

</response>

</surveys>

SAX INTERFACE JAVA EXAMPLE

SAXBrowser.java

Let’s build a simple SAX based XML browser by implementing those event
handler methods defined in the org.xml.sax.DocumentHandler interface:

/**

 * SAXBrowser.java

 import java.io.File;

 import java.io.IOException;

 import javax.xml.parsers.SAXParserFactory;

 import javax.xml.parsers.SAXParser;

 import javax.xml.parsers.ParserConfigurationException;

 import org.xml.sax.Attributes;

 import org.xml.sax.SAXException;

 import org.xml.sax.helpers.DefaultHandler;

 class SAXBrowser {

 public static void main(String[] args) {

 try {

 File x = new File(args[0]);

 SAXParserFactory f = SAXParserFactory.newInstance();

 SAXParser p = f.newSAXParser();

 DefaultHandler h = new MyContentHandler();

XML Basics_Ch12_2pp.indd 447 8/7/2020 2:44:13 PM

448 • XML Basics

 p.parse(x,h);

 } catch (ParserConfigurationException e) {

 System.out.println(e.toString());

 } catch (SAXException e) {

 System.out.println(e.toString());

 } catch (IOException e) {

 System.out.println(e.toString());

 }

 }

 private static class MyContentHandler extends DefaultHandler {

 static String p = "_";

 public void startDocument() throws SAXException {

 System.out.println("Starting document...");

 }

 public void endDocument() throws SAXException {

 System.out.println("Ending document...");

 }

 public void startElement(String ns, String sName, String qName,

 Attributes attrs) throws SAXException {

 String eName = sName;

 if (sName.equals("")) eName = qName;

 System.out.println("e"+p+eName);

 if (attrs!=null) {

 for (int i=0; i<attrs.getLength(); i++) {

 String aName = attrs.getLocalName(i);

 if (aName.equals("")) aName = attrs.getQName(i);

 System.out.println("a"+p+" "+aName+"="

 +attrs.getValue(i));

 }

 }

 p = p + "_";

 }

 public void endElement(String ns, String sName, String qName)

 throws SAXException {

 p = p.replaceFirst("___ ", "_");

 }

 public void characters(char buf[], int offset, int len)

 throws SAXException {

 String s = new String(buf, offset, len);

 System.out.println("c"+p+s);

XML Basics_Ch12_2pp.indd 448 8/7/2020 2:44:13 PM

SAX (Simple Api for Xml) • 449

 }

 public void ignorableWhitespace(char buf[], int offset, int len)

 throws SAXException {

 String s = new String(buf, offset, len);

 System.out.println(“i"+p+s);

 }

 }

}

Instead of implementing the ContentHandler interface directly, extended
the DefaultHandler class, which implemented handling methods for all events
(by doing nothing). In this way, we only need to override the handling meth-
ods that we are interested in.

The “_” character is used to indent sub-elements in nested elements.
Let’s try this with hello.xml:
<?xml version="1.0"?>

<p>Hello world!</p>

Ran java SAXBrowser hello.xml, I got:

Starting document...

e_p

c_Hello world!

Ending document...

SAX PARSING PATTERN EXAMPLE

Now let’s use another XML file, user.xml, with more elements to show the
SAX parsing pattern:

<?xml version="1.0"?>

<user status="active">

 <!-- This is not a real user. -->

 <first_name>John</first_name>

 <last_name>Smith</last_name>

</user>

RUNNING java SAXBrowser user.xml:
Starting document...

e_user

a_ status=active

c__

c__

XML Basics_Ch12_2pp.indd 449 8/7/2020 2:44:13 PM

450 • XML Basics

c__

c__

c__

c__

e__first_name

c__John

c__

c__

c__

e__last_name

c__Smith

c__

c__

Ending document...

The program still works. But why did the parser fire so many “charac-
ters()” events? It looks like the parser didn’t group the space character, line
feed, and cartridge return into a single char[] and fire one “characters()”
event. It fired multiple events, one per character.

QUESTIONS FOR DISCUSSION

1.	 What is SAX?

2.	 How do you use XML namespaces with SAX 1.0?

3.	 How do you use XML namespaces with SAX 2.0?

4.	 What are the interfaces of SAX?

5.	 What is the difference between the SAX parser and DOM parser?

6.	 How do you define SAX in XML?

7.	 How is SAX different than DOM?

8.	 How do you define XMLA?

XML Basics_Ch12_2pp.indd 450 8/7/2020 2:44:13 PM

C H A P T E R 13
XPATH

XPATH INTRODUCTION

XML was created to be a self-describing markup format. As XML matured,
new XML-related creations were invented. XPath is a syntax for defining parts
of an XML document.

Although you could create a nicely structured document with XML, there
didn’t seem to be an easy way to find information inside the document.

XML documents can be thought of as a tree structure, made up of parent,
child, and sibling relationships. Because of this very logical layout of an XML
document, it seems like there should be a standard way to find information.

XPath is a language that enables you to navigate and find data within your
XML documents. Using XPath, you can select one or more nodes to retrieve
the data they contain. XPath is used quite extensively with XSLT and is a
major element in XSLT.

XPath uses path expressions to select nodes or node-sets in an XML
document. These path expressions look very much like the expressions you
see when you work with a traditional computer file system.

XPath is a technology that enables you to address parts of an XML docu-
ment, such as a specific element or set of elements. XPath is implemented as
a non-XML expression language, which makes it suitable for use in situations
where XML markup isn’t really applicable, such as within attribute values.
Attribute values are simple text and therefore can’t contain additional XML
markup. So, although XPath expressions are used within XML markup, they
don’t directly use tags and attributes themselves. This makes XPath consider-
ably different from its XSL counterparts (XSLT and XSL-FO) in that it isn’t

XML Basics_Ch13_2pp.indd 451 8/7/2020 2:46:36 PM

452 • XML Basics

implemented as an XML language. XPath’s departure from XML syntax also
makes it both flexible and compact, which are important benefits when you
consider that XPath is typically used in constrained situations, such as attri-
bute values.

XPath is a very important XML technology that provides a flexible means
of addressing XML document parts. Any time you need to reference a por-
tion of an XML document, such as with XSLT, you ultimately must rely on
XPath. The XPath language is not based upon XML, but it is somewhat famil-
iar because it relies on a path notation that is commonly used in computer file
systems. In fact, the name XPath stems from the fact that the path notation
used to address XML documents is similar to path names used in file systems
to describe the locations of files. Not surprisingly, the syntax used by XPath is
extremely concise because it is designed for use in URIs and XML attribute
values.

XPATH SYNTAX

XPath uses path expressions to select nodes or node sets in an XML docu-
ment. The node is selected by following a path or steps.

THE XML EXAMPLE DOCUMENT

We use the following XML document in the examples below.
<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

<book>

 <title lang="eng">Children </title>

 <price>9.00</price>

</book>

<book>

 <title lang="eng">Learning XML</title>

 <price>39.00</price>

</book>

</bookstore>

Similar to other XML technologies, XPath operates under the notion that
a document consists of a tree of nodes. XPath defines different types of nodes

XML Basics_Ch13_2pp.indd 452 8/7/2020 2:46:36 PM

Xpath • 453

that are used to describe nodes that appear within a tree of XML content.
There is always a single root node that serves as the root of an XPath tree, and
that appears as the first node in the tree. Every element in a document has
a corresponding element node that appears in the tree under the root node.
Within an element node, there are other types of nodes that correspond to
the element’s content. Element nodes may have a unique identifier associated
with them that is used to reference the node with XPath. Figure 13.1 shows
the relationship between different kinds of nodes in an XPath tree.

FIGURE 13.1  XPath is based upon the notion of an XML document consisting of a
hierarchical tree of nodes

Nodes within an XML document can generally be broken down into ele-
ment nodes, attribute nodes, and text nodes. Some nodes have names, which
can consist of an optional namespace URI and a local name; a name that
includes a namespace prefix is known as an expanded name. The following is
an example of an expanded element name:

<xsl:value-of select="."/>

In this example, the local name is value-of and the namespace prefix is
xsl. If you were to declare the XSL namespace as the default namespace for a
document, you could get away with dropping the namespace prefix part of the
expanded name, in which case the name becomes this:

<value-of select="."/>

If you declare more than one namespace in a document, you will have to
use expanded names for at least some of the elements and attributes. It’s gen-
erally a good idea to use them for all elements and attributes in this situation
just to make the code clearer and eliminate the risk of name clashes.

XML Basics_Ch13_2pp.indd 453 8/7/2020 2:46:36 PM

454 • XML Basics

Getting back to node types in XPath, following are the different types of
nodes that can appear in an XPath tree:

●● Root node
●● Element nodes
●● Text nodes
●● Attribute nodes
●● Namespace nodes
●● Processing instruction nodes
●● Comment nodes

You should have a pretty good feel for these node types, considering that
you’ve learned enough about XML and have dealt with each type of node.
The root node in XPath serves the same role as it does in the structure of a
document: it serves as the root of an XPath tree and appears as the first node
in the tree. Every element in a document has a corresponding element node
that appears in the tree under the root node. Within an element node appear
all of the other types of nodes that correspond to the element’s content.
Element nodes may have a unique identifier associated with them, which is
useful when referencing the node with XPath.

The point of all this naming and referencing of nodes is to provide a means
of traversing an XML document to arrive at a given node. You use XPath to
build expressions, which are typically used in the context of some other oper-
ation, such as a document transformation. Upon being processed and evalu-
ated, XPath expressions result in a data object of one of the following types:

●● Node set A collection of nodes
●● String A text string
●● Boolean A true/false value
●● Number A floating-point number

Similar to a database query, the data object resulting from an XPath
expression can then be used as the basis for some other process, such as an
XSLT transformation. For example, you might create an XPath expression
that results in a node set that is transformed by an XSLT template. On the
other hand, you can also use XPath with XLink, where a node result of an
expression could form the basis of a linked document.

XML Basics_Ch13_2pp.indd 454 8/7/2020 2:46:36 PM

Xpath • 455

NAVIGATING A DOCUMENT WITH XPATH PATTERNS

XPath expressions are usually built out of patterns, which describe a branch
of an XML tree. A pattern therefore is used to reference one or more hier-
archical nodes in a document tree. Patterns can be constructed to perform
relatively complex pattern matching tasks and ultimately form somewhat of
a mini-query language that is used to query documents for specific nodes.
Patterns can be used to isolate specific nodes or groups of nodes and can be
specified as absolute or relative. An absolute pattern spells out the exact loca-
tion of a node or node set, whereas a relative pattern identifies a node or node
set relative to a certain context.

The next few sections examine the ways in which patterns are used to access
nodes within XML documents. To better understand how patterns are used,
it’s worth seeing them in the context of a real XML document. The following
program contains the code for the familiar training log sample document.

01: <?xml version="1.0"?>

02: <!DOCTYPE trainlog SYSTEM "etml.dtd"> 03:

04: <trainlog>

05:	 <!This session was part of the marathon training group run. >

06: <session date="11/19/05" type="running" heartrate="158">

07: <duration units="minutes">45</duration>

08: <distance units="miles">5.5</distance>

09: <location>Warner Park</location>

10:      <comments>Mid-morning run, a little winded throughout.</comments>

11: </session>

12:

13: <session date="11/21/05" type="cycling" heartrate="153">

14: <duration units="hours">2.5</duration>

15: <distance units="miles">37.0</distance>

16: <location>Natchez Trace Parkway</location>

17:	 <comments>Hilly ride, felt strong as an ox.</comments>

18: </session>

19:

20: <session date="11/24/05" type="running" heartrate="156">

21: <duration units="hours">1.5</duration>

22: <distance units="miles">8.5</distance>

23: <location>Warner Park</location>

24: <comments>Afternoon run, felt reasonably strong.</comments>

25: </session>

26: </trainlog>

XML Basics_Ch13_2pp.indd 455 8/7/2020 2:46:36 PM

456 • XML Basics

You may want to keep a bookmark around for this page, as several of
the XPath examples throughout the next section rely on the training log
sample code.

REFERENCING NODES

The most basic of all XPath patterns is the pattern that references the current
node, which consists of a simple period:

.
If you’re traversing a document tree, a period obtains the current node.

The current node pattern is therefore a relative pattern because it makes
sense only in the context of a tree of data. As a contrast to the current pattern,
which is relative, consider the pattern that is used to select the root node of a
document. This pattern is known as the root pattern and consists of a single
forward slash:

/
If you were to use a single forward slash in an expression for the training

log sample document, it would refer to the trainlog element (line 4) because
this element is the root element of the document. Because the root pattern
directly references a specific location in a document (the root node), it is con-
sidered an absolute pattern. The root pattern is extremely important to XPath
because it represents the starting point of any document’s node tree.

XPath relies on the hierarchical nature of XML documents to refer-
ence nodes. The relationship between nodes in this type of hierarchy is best
described as a familial relationship, which means that nodes can be described
as parent, child, or sibling nodes, depending upon the context of the tree. For
example, the root node is the parent of all nodes. Nodes might be parents of
some nodes and siblings of others. To reference child nodes using XPath, you
use the name of the child node as the pattern. So, in the training log example,
you can reference a session element (line 6, for example) as a child of the root
node by simply specifying the name of the element: session. Of course, this
assumes that the root node (line 4) is the current context for the pattern, in
which case a relative child path is okay. If the root node isn’t the current con-
text, you should fully specify the child path as /session. Notice in this case that
the root pattern is combined with a child pattern to create an absolute path.

If there are child nodes, there must also be parent nodes. To access a
parent node, you must use two periods:

..

XML Basics_Ch13_2pp.indd 456 8/7/2020 2:46:36 PM

Xpath • 457

As an example, if the current context is one of the distance elements (line
15, for example) in the training log document, the .. parent pattern will refer-
ence the parent of the node, which is a session element (line 13). You can put
patterns together to get more interesting results. For example, to address a
sibling node, you must first go to the parent and then reference the sibling as
a child. In other words, you use the parent pattern (..) followed by a forward
slash (/) followed by the sibling node name, like this:

../duration
This pattern assumes that the context is one of the child elements of the

session element (other than duration). Assuming this context, the ../duration
pattern will reference the duration element (line 14) as a sibling node.

Thus far, we’ve focused on referencing individual nodes. However, it’s
also possible to select multiple nodes. For example, you can select all of the
child nodes (descendants) of a given node using the double slash pattern:

//
As an example, if the context is one of the session elements in the training

log document (line 20, for example), you can select all of its child nodes by
using double slashes. This results in the duration (line 21), distance (line 22),
location (line 23), and comments (line 24) elements being selected. Another
way to select multiple nodes is to use the wildcard pattern, which is an asterisk:

∗
The wildcard pattern selects all of the nodes in a given context. So, if the

context was a session element and you used the pattern ∗/distance, all of the
distance elements in the document would be selected. This occurs because
the wildcard pattern first results in all of the sibling session elements being
selected, after which the selection is limited to the child distance elements.

To summarize, the following are the primary building blocks used to ref-
erence nodes in XPath:

●● Current node.
●● Root node/
●● Parent node..
●● Child nodeChild
●● Sibling node/Sibling
●● All child nodes//
●● All nodes∗

These pattern building blocks form the core of XPath, but they don’t tell
the whole story.

XML Basics_Ch13_2pp.indd 457 8/7/2020 2:46:36 PM

458 • XML Basics

XPATH (XML PATH) LANGUAGE

XPath is an expression evaluation language to produce a value that represents
the sub-structure of an XML document.

You can compare XPath with regular expression, which is an expression
language used to produce a value that represents the sub-structure of a text
string.

You can compare XPath with the DOS path naming convention, which is a
simple expression language to produce a value that represents a sub-structure
of a file system.

Writing an XPath expression involves following aspects:

●● Data types, literals, and variables
●● Evaluation context
●● Operations
●● Built-in functions

XPath is used currently in both XSLT and XPointer. Here are some exam-
ples of XPath expressions:

.	 Represents the current node

img	 Represents child elements named "img"

@color	 Represents the attribute named "id"

/html	 Represents the root element named "html"

p[1]	 Represents the first occurrence of child "p" elements

p[@id=open]	Represents child "p" elements with id="open" attribute

DATA TYPES, LITERALS, AND VARIABLES

This section provides a quick introduction of data types used in XPath:
Boolean, Number, String, and Node Set.

XPath supports 4 data types:

●● Boolean: A data type with two possible values: true and false
●● Number: A data type representing floating-point numbers with double-

precision defined by IEEE 754
●● String: A data type representing sequences of characters from the same

character used by XML
●● Node set: A data type representing unordered collections of nodes

defined by the Document Object Model (DOM)

XML Basics_Ch13_2pp.indd 458 8/7/2020 2:46:36 PM

Xpath • 459

Boolean: A data type with two possible values: true and false. Operations
that produce boolean type of data objects are as follows:

= Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

or Logical or

and Logical and

Number: A data type representing floating-point numbers with
double-precision defined by IEEE 754. Operations that produce numbers
are as follows:

+ Addition

- Subtraction

* Multiplication

div Division

mod Remainder

String: A data type representing sequences of characters from the same
character used by XML

Node set: A data type representing unordered collections of nodes
defined by the Document Object Model (DOM)

XPATH OPERATORS

An XPath expression returns either a node-set, a string, a Boolean, or a
number.

Table 13.1 shows a list of the operators that can be used in XPath expressions:

Table 13.1  List of the Operators used in XPath Expressions

Operator Description Example Return value

| Computes two
node sets

//book | //cd Returns a node set
with all book and cd
elements

+ Addition 6 + 4 10

- Subtraction 6 – 4 2

(continued)

XML Basics_Ch13_2pp.indd 459 8/7/2020 2:46:36 PM

460 • XML Basics

Operator Description Example Return value

∗ Multiplication 6 ∗ 4 24

div Division 8 div 4 2

= Equal price=9.80 true if price is 9.80
false if price is 9.90

!= Not equal price!=9.80 true if price is 9.90
false if price is 9.80

< Less than price<9.80 true if price is 9.00
false if price is 9.80

<= Less than or
equal to

price<=9.80 true if price is 9.00
false if price is 9.90

> Greater than price>9.80 true if price is 9.90
false if price is 9.80

>= Greater than or
equal to

price>=9.80 true if price is 9.90
false if price is 9.70

or or price=9.80 or
price=9.70

true if price is 9.80
false if price is 9.50

and and price>9.00 and
price<9.90

true if price is 9.80
false if price is 8.50

mod Modulus (division
remainder)

5 mod 2 1

EVALUATION CONTEXT

XPath expressions are always evaluated with respect to a context, which con-
sists of the following:

Context node: A node referring to the current node in the source XML
structure

Context position: An integer indicating position of the context node in
the current node set

Context size: An integer indicating the number of nodes in the current
node set

Variable bindings: A collection of pairs of variable names and values

(continued)

XML Basics_Ch13_2pp.indd 460 8/7/2020 2:46:37 PM

Xpath • 461

The context node is referring to the current node in the source XML
structure, which is represented as a tree of different types of nodes according
to the Document Object Model (DOM):

●● Root node: A top and first node of the XML structure
●● Element node: A node that has child nodes
●● Text node: A node representing a unit of text in the content of a parent

node
●● Attribute node: A node representing an attribute
●● Namespace node: A node representing a name declaration statement
●● Processing instruction node: A node representing a processing instruc-

tion statement
●● Comment node: A node representing a comment statement

BUILT-IN FUNCTIONS

XPath also supports built-in functions. Commonly used build-in functions are

●● boolean(number): Returns true, if the number is not a zero
●● boolean(string): Returns true, if the length of the string is great than

zero
●● boolean(node_set): Returns true, if the set is not empty
●● concat(string, string, ...): Returns the concatenation of all given string

objects
●● contains(string_1, string_2): Returns true if the first string object

contains the second string object
●● count(node_set): Returns the number of nodes in the given node set

object
●● last(): Returns the context size of the evaluation context
●● name(): Returns the qualified name of the context node
●● name(node_set): Returns the qualified name of the first node in the

given node set object
●● not(boolean): Returns true, if the given boolean object is false
●● position(): Returns the context position of the evaluation context
●● string(): Returns the string value of the context node

XML Basics_Ch13_2pp.indd 461 8/7/2020 2:46:37 PM

462 • XML Basics

●● string(boolean): Returns true or false based on the given boolean object
●● string(number): Returns the string presentation of the given number

object
●● string(node_set): Returns the string value of the first node in the given

node set object

XPath Nodes

In XPath, there are seven kinds of nodes: element, attribute, text, namespace,
processing-instruction, comment, and document nodes. XML documents are
treated as trees of nodes. The topmost element of the tree is called the root
element. Look at the following XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

 <book>

 <title lang="en">Children</title>

 <author> Param Sen </author>

 <year>2019</year>

 <price>9.00</price>

 </book>

</bookstore>

Example of nodes in the XML document above:
<bookstore> (root element node)

<author> Param Sen </author> (element node)

lang="en" (attribute node)

USING XPATH FUNCTIONS

Before getting into the specifics of the XPath functions at your disposal, it’s
worth taking a look at their general use. The functions supported by XPath,
which are available for use in creating XPath expressions, can be roughly
divided along the lines of the data types on which they operate:

●● Node functions
●● String functions
●● Boolean functions
●● Number functions

XML Basics_Ch13_2pp.indd 462 8/7/2020 2:46:37 PM

Xpath • 463

NODE FUNCTIONS

Node functions are XPath functions that relate to the node tree. Although all of
XPath technically relates to the node tree, node functions are very direct in that
they allow you to ascertain the position of nodes in a node set, as well as how many
nodes are in a set. The following are the most common XPath node functions:

●● position() determines the numeric position of a node.
●● last() determines the last node in a node set.
●● count() determines the number of nodes in a node set.

Although these node functions might seem somewhat abstract, keep in
mind that they can be used to carry out some interesting tasks when used in
the context of a broader expression. For example, the following code shows
how to use the count() function to calculate the total distance in the training
log document for sessions whose distances are recorded in miles:

count(*/distance[@units='miles'])

The following is another example that shows how to reference a child
node based solely upon its position within a document:

child::item[position()=3]

Assuming there are several child elements of the type item, this code ref-
erences the third child item element of the current context. To reference the
last child item, you use the last() function instead of an actual number, like this:

child::item[position()=last()]

STRING FUNCTIONS

XPath string functions are used to manipulate strings of text. With the string
functions, you can concatenate strings, slice them up into substrings, and
determine the length of them. The following are the most popular string func-
tions in XPath:

●● concat() concatenates two strings together.
●● starts-with() determines if a string begins with another string.
●● contains() determines if a string contains another string.
●● substring-before() retrieves a substring that appears before another string.
●● substring-after() retrieves a substring that appears after another string.

XML Basics_Ch13_2pp.indd 463 8/7/2020 2:46:37 PM

464 • XML Basics

●● substring() retrieves a substring of a specified length starting at an index
within another string.

●● string-length() determines the length of a string.

These XPath string functions can come in quite handy when build-
ing expressions, especially when you consider that XML content is always
specified as raw text. In other words, it is possible to manipulate most XML
content as a string, regardless of whether the underlying value of the content
is numeric or some other data type. The following is an example that demon-
strates how to extract the month of a training session from a date attribute in
the training log document:

substring-after(/session[1]@date, "/")

In this example, the substring-after() function is called and passed the
date attribute. Because a forward slash (/) is passed as the second argument to
the function, it is used as the basis for finding the substring. If you look back at
one of the date attributes in the document (line 6, for example), you’ll notice
that the month appears just after the first forward slash. As a comparison, you
could extract the year as a substring by providing the same arguments but
instead using the substring-before() function:

substring-before(/session[1]@date, '/')

Another use of the string functions is finding nodes that contain a partic-
ular substring. For example, if you wanted to analyze your training data and
look for training sessions where you felt strong, you could use the contains()
function to select session elements where the comments child element con-
tains the word “strong:”

*/session[contains(comments, 'strong')]

In this example, the second and third session elements would be selected
because they both contain the word “strong” in their comments child ele-
ments (lines 17 and 24).

BOOLEAN FUNCTIONS

Boolean functions are pretty simple in that they operate solely on Boolean
(true/false) values. The following are the two primary Boolean functions that
you may find useful in XPath expressions:

●● not() negates a Boolean value.
●● lang() determines if a certain language is being used.

XML Basics_Ch13_2pp.indd 464 8/7/2020 2:46:37 PM

Xpath • 465

The not() function is straightforward in that it simply reverses a Boolean
value: true becomes false and false becomes true. The lang() function is a
little more interesting because it actually queries a node to see what lan-
guage it uses. As an example, many English-language XML documents set
the xml:lang attribute to en in the root element. Although this value typically
cascades down to all elements within the document, it’s possible for a docu-
ment to use multiple languages. The lang() function allows you to check the
language setting for any node. The following is an example of how to use the
not() and lang() functions to determine if the English language is not being
used in a document:

not(lang("en"))

NUMBER FUNCTIONS

The XPath number functions should be somewhat familiar to you from when
you created XSLT stylesheets that relied on the number functions. The fol-
lowing are the most commonly used number functions in XPath:

●● ceiling() rounds up a decimal value to the nearest integer.
●● floor() rounds down a decimal value to the nearest integer.
●● round() rounds a decimal value to the nearest integer.
●● sum() adds a set of numeric values.

The following is an example of how to use the sum() function to add up
attribute values:

sum(cart/item/@price)

Of course, you can make nested calls to the XPath number functions. For
example, you can round the result of the sum() function by using the round()
function, like this:

round(sum(cart/item/@price))

THE ROLE OF XPATH

You may have noticed that we used the word “select” often in this chapter
when explaining how an XPath expression effectively selects part of a docu-
ment. However, this selection process doesn’t take place within XPath alone.
XPath is always used in the context of another technology such as XSLT,

XML Basics_Ch13_2pp.indd 465 8/7/2020 2:46:37 PM

466 • XML Basics

XPointer, or XLink. The examples of XPath that you’ve seen in this lesson
must therefore be used in conjunction with additional code. For example, the
following code shows how one of the training log expressions from earlier in
the chapter might be used in an XSLT stylesheet:

<xsl:value-of select="*/session[@type='running']" />

In this code, the XPath expression appears within the select attribute of
the xsl: value-of element, which is responsible for inserting content from a
source XML document into an output document during the transformation of
the source document. The point is that the XSLT xsl:value-of element is what
makes the XPath expression useful.

Similar to its role in XSLT, XPath serves as the addressing mechanism
in XPointer. XPointer is used to address parts of XML documents and is
used heavily in XLink. XPointer uses XPath to provide a means of navigating
the tree of nodes that comprise an XML document. Sounds familiar, right?
XPointer takes XPath a step further by defining a syntax for fragment iden-
tifiers, which are in turn used to specify parts of documents. In doing so,
XPointer provides a high degree of control over the addressing of XML doc-
uments. When coupled with XLink, the control afforded by XPointer makes
it possible to create interesting links between documents that simply aren’t
possible in HMTL, at least in theory.

USING XPATH IN XSLT TEMPLATES

XPath expressions can be used in XSLT templates to produce a set of nodes
of the source XML document that can be matched or selected. For example,

<xsl:template match="LocationPathExpression">

<xsl:apply-templates select="LocationPathExpression"/>

<xsl:for-each select="LocationPathExpression"/>

XPath expressions can also be used in XSLT “value-of” elements to prod-
uct a string output. For example,

<xsl:value-of select="StringExpression"/>

Note that in this case, the resulting value of data types, including node set,
will be converted to a string.

Let’s review a sample XML file, dictionary_xsl.xml:

XML Basics_Ch13_2pp.indd 466 8/7/2020 2:46:37 PM

Xpath • 467

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="dictionary.xsl"?>

<dictionary>

<!— dictionary_xsl.xml

-->

 <word acronym="true">

 <name>XML</name>

 <definition referenece="Hero's Notes">eXtensible Markup
Language.</definition>

 <update date="2002-12-23"/>

 </word>

 <word symbol="true">

 <name><</name>

 <definition>Mathematical symbol representing the "less than" logical
operation, like: 1<2.</definition>

 <definition>Reserved symbol in XML representing the beginning of
tags, like: <![CDATA[<p>Hello world!</p>]]>

 </definition>

 </word>

 <word symbol="false" acronym="false">

 <name>extensible</name>

 <definition>Capable of being extended.</definition>

 </word>

</dictionary>

And apply the following XSL file:
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!— dictionary.xsl, version 3.0

 -->

 <xsl:template match="/child::*">

 <pre>

d_<xsl:value-of select="name(self::node())"/>

 <xsl:for-each select="child::word">

w__<xsl:value-of select="name(self::node())"/>

 <xsl:apply-templates select="self::node()"/>

 </xsl:for-each>

 </pre>

 </xsl:template>

XML Basics_Ch13_2pp.indd 467 8/7/2020 2:46:37 PM

468 • XML Basics

 <xsl:template match="child::word">

 <xsl:for-each select="attribute::*">

a___<xsl:value-of select="name(.)"/>=<xsl:value-of select="."/>

 </xsl:for-each>

 <xsl:for-each select="child::*">

e___<xsl:value-of select="name(self::node())"/>

 <xsl:apply-templates select="self::node()"/>

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="child::name | child::definition | child::update">

 <xsl:for-each select="attribute::*">

a____<xsl:value-of select="name(.)"/>=<xsl:value-of select="."/>

 </xsl:for-each>

 <xsl:for-each select="child::text()">

t____<xsl:value-of select="self::node()"/>

 </xsl:for-each>

 </xsl:template>

 </xsl:stylesheet>

The following output:
d_dictionary

w__word

a___acronym=true

e___name

t____XML

e___definition

a____referenece=Herong's Notes

t____eXtensible Markup Language.

e___update

a____date=2002-12-23

w___word

a___symbol=true

e___name

t____<

e___definition

t____Mathematical symbol representing the "less than" logical operation, like:

1<2.

e___definition

t____Reserved symbol in XML representing the beginning of tags, like:

XML Basics_Ch13_2pp.indd 468 8/7/2020 2:46:37 PM

Xpath • 469

t____<p>Hello world!</p>

w__word

a___symbol=false

a___acronym=false

e___name

t____extensible

e___definition

t____Capable of being extended.

XPATH LOCATION PATH

XPath programming consists of writing expressions to select the node/s you
need to work with. Often, you’re selecting the data within the nodes, but you
could also be applying some programming logic in order to modify the output
of your XML document.

To select a node (or set of nodes) in XPath, you use a location path. A
location path is used to specify the exact path to the node you need to select.
It’s a bit like using the HTML tag to specify the location of an
image only XPath is more powerful.

LOCATION PATH EXAMPLE

For example, here’s a simple XPath expression to select the “title” node, which
is a child of the “rock” node, which in turn is a child of the “albums” node:

albums/rock/title

The above expression could be applied against the following XML
document:

<albums>

 <rock>

 <title>Tool Box</title>

 <artist>Green Velly</artist>

 </rock>

 <blues>

 <title>Summer Occasion</title>

 <artist>Marris Mano</artist>

 </blues>

XML Basics_Ch13_2pp.indd 469 8/7/2020 2:46:37 PM

470 • XML Basics

 <country>

 <title> Atlas </title>

 <artist>Romi</artist>

 </country>

</albums>

If we wanted to select the artist instead, we would use this location path:
albums/rock/artist

The above expression would select the artist node instead:
<albums>

 <rock>

 <title>Tool Box</title>

 <artist>Green Velly</artist>

 </rock>

 <blues>

 <title>Summer Occasion</title>

 <artist>Marris Mano</artist>

 </blues>

 <country>

 <title> Atlas </title>

 <artist>Romi</artist>

 </country>

</albums>

XPATH LOCATION STEP

A location path consists of one or more location steps. The location steps are
separated by either one forward slash (/) or two forward slashes (//) depending
on the node you’re trying to select.

1.	 Absolute Location Path

Your location path can be absolute or relative. If your location path starts
with the root node or a forward slash (/), you are using an absolute location
path and your location path begins from the root node.

2.	 Relative Location Path

If your location path begins with the name of a descendant, you’re using a
relative location path. This node is referred to as the context node.

XML Basics_Ch13_2pp.indd 470 8/7/2020 2:46:37 PM

Xpath • 471

XPATH LOCATION PATH – ABSOLUTE

A location path specifies the path through the XML document’s hierarchy that
you’d like to work with.

Your location path can be absolute or relative. If your location path starts
with the root node or a forward slash (/), you are using an absolute location
path and your location path begins from the root node. If your location path
begins with the name of a descendant, you’re using a relative location path.
This node is referred to as the context node.

EXAMPLE OF AN ABSOLUTE LOCATION PATH

Consider the following XML document:
<albums>

 <rock>

 <title>Tool Box</title>

 <artist>Green Velly</artist>

 </rock>

 <blues>

 <title>Summer Occasion</title>

 <artist>Marris Mano</artist>

 </blues>

 <country>

 <title> Atlas </title>

 <artist>Romi</artist>

 </country>

</albums>

If we wanted to select the “title” node of all albums, we could use the
following (absolute) location paths:

albums/rock/title

albums/blues/title

albums/country/title

Here are the nodes that are selected using the above location path.
<albums>

 <rock>

 <title>Tool Box</title>

 <artist>Green Velly</artist>

XML Basics_Ch13_2pp.indd 471 8/7/2020 2:46:37 PM

472 • XML Basics

 </rock>

 <blues>

 <title>Summer Occasion</title>

 <artist>Marris Mano</artist>

 </blues>

 <country>

 <title>Atlas</title>

 <artist>Romi</artist>

 </country>

</albums>

SELECTING NODES

XPath uses path expressions to select nodes in an XML document. The node
is selected by following a path or steps. The most useful path expressions are
listed in Table 13.2:

Table 13.2  Most Useful Path Expressions

Expression Description

nodename Selects all child nodes of the named node

/ Selects from the root node

// Selects nodes in the document from the current node that
match the selection no matter where they are

. Selects the current node

.. Selects the parent of the current node

@ Selects attributes

In Table 13.3, we have listed some path expressions and the result of the
expressions.

Table 13.3  Path Expression Examples

Path Expression Result

bookstore Selects all the child nodes of the bookstore element

/bookstore Selects the root element bookstore
Note: If the path starts with a slash (/), it always
represents an absolute path to an element

(continued)

XML Basics_Ch13_2pp.indd 472 8/7/2020 2:46:37 PM

Xpath • 473

Path Expression Result

bookstore/book Selects all book elements that are children of
bookstore

//book Selects all book elements no matter where they are in
the document

bookstore//book Selects all book elements that are descendant of the
bookstore element, no matter where they are under
the bookstore element

//@lang Selects all attributes that are named lang

PREDICATES

Predicates are used to find a specific node or a node that contains a specific
value.

Predicates are always embedded in square brackets. In Table 13.4, we have
listed some path expressions with predicates and the result of the expressions.

Table 13.4  Path Expression Examples with Predicates

Path Expression Result

/bookstore/book[1] Selects the first book element that is the child of
the bookstore element.
Note: IE5 and later implemented that [0] should
be the first node, but according to the W3C
standard, it should have been [1]

/bookstore/book[last()] Selects the last book element that is the child of
the bookstore element

/bookstore/book[last()-1] Selects the last but one book element that is the
child of the bookstore element

/bookstore/book[position()<3] Selects the first two book elements that are
children of the bookstore element

//title[@lang] Selects all the title elements that have an
attribute named lang

//title[@lang=‘eng’] Selects all the title elements that have an
attribute named lang with a value of eng

(continued)

XML Basics_Ch13_2pp.indd 473 8/7/2020 2:46:37 PM

474 • XML Basics

Path Expression Result

/bookstore/book[price>35.00] Selects all the book elements of the bookstore
element that have a price element with a value
greater than 35.00

/bookstore/book[price>35.00]/
title

Selects all the title elements of the book
elements of the bookstore element that have a
price element with a value greater than 35.00

SELECTING UNKNOWN NODES

XPath wildcards can be used to select unknown XML elements.

Table 13.5  XPath Wildcards

Wildcard Description

∗ Matches any element node

@∗ Matches any attribute node

node() Matches any node of any kind

In the following table, we have listed some path expressions and the result
of the expressions.

Path Expression Result

/bookstore/∗ Selects all the child nodes of the bookstore element

//∗ Selects all elements in the document

//title[@∗] Selects all title elements which have any attribute

SELECTING SEVERAL PATHS

By using the | operator in an XPath expression, you can select several paths.
In Table 13.6, we have listed some path expressions and the result of the

expressions.

(continued)

XML Basics_Ch13_2pp.indd 474 8/7/2020 2:46:37 PM

Xpath • 475

Table 13.6  Path Expressions and the Result of the Expressions

Path Expression Result

//book/title | //book/price Selects all the title AND price elements of all
book elements

//title | //price Selects all the title AND price elements in the
document

/bookstore/book/title | //price Selects all the title elements of the book element
of the bookstore element AND all the price
elements in the document

THE ROOT NODE

If we wanted to select the root node, we could use either the node’s name or
a forward slash. Both of these options are absolute location paths and select
the root node.

Option 1—use the root node’s name:albums
Option 2—use a forward slash:/

XPATH LOCATION PATH – RELATIVE

A relative location path is one where the path starts from the node of your
choosing—it doesn’t need to start from the root node. This can reduce the
amount of code you need to write—especially if you need to select many
nodes that share the same name.

EXAMPLE OF A RELATIVE LOCATION PATH

Consider the following XML document:
<albums>

 <rock>

 <title>Tool Box</title>

 <artist>Green Velly</artist>

 </rock>

XML Basics_Ch13_2pp.indd 475 8/7/2020 2:46:37 PM

476 • XML Basics

 <blues>

 <title>Summer Occasion</title>

 <artist>Marris Mano</artist>

 </blues>

 <country>

 <title> Atlas </title>

 <artist>Romi</artist>

 </country>

</albums>

If we wanted to select the “title” node of all albums, we could use the
following (relative) location:path:title.

Result

This single line of code has exactly the same result as the example in the pre-
vious lesson. The only difference is that, in the previous lesson, we needed 3
lines of code to provide the same result.

This line of code is selecting all title nodes within our XML document.
We don’t need to provide the full path—just the name of the node we need
to work with. This makes our life easier and keeps our code nice and clean.

<albums>

 <rock>

 <title>Tool Box</title>

 <artist>Green Velly</artist>

 </rock>

 <blues>

 <title>Summer Occasion</title>

 <artist>Marris Mano</artist>

 </blues>

 <country>

 <title> Atlas </title>

 <artist>Romi</artist>

 </country>

</albums>

CHILDREN

We can also select a node’s children using relative location paths.

XML Basics_Ch13_2pp.indd 476 8/7/2020 2:46:37 PM

Xpath • 477

Example 1: Select the two children of the “rock” node (“title” and “art-
ist”). The context node is “rock,” because that’s where our relative path starts:

rock/title

rock/artist

Example 2: Using a wildcard to select all children of the “rock” node.
This (single line of code) has the same result as the above two lines of code.
Further, if another node was added to the XML document under the “rock”
node, it would be automatically included using the wildcard:

rock/*

THE WILDCARD

The “wildcard” is represented by the asterisk (∗). The wildcard represents any
node that would be located where the wildcard is positioned. Therefore, using
our example, it is representing any node that comes under the “rock” node.

Wildcards don’t have to appear at the end of a location path—they can
also appear in the middle of a location path. We aren’t limited to just one
either—we could use as many as we like within a location path.

XPATH ATTRIBUTES

To select an attribute using XPath, you prefix the attribute’s name with a
@ symbol.

Example 1

Consider the following XML document. Note that the “artist” node now has
an attribute called “status:”

<albums>

 <rock>

 <title>Tool Box</title>

 <artist status="active">Green Velly</artist>

 </rock>

 <blues>

 <title>Summer Occasion</title>

 <artist status="active">Marris Mano</artist>

XML Basics_Ch13_2pp.indd 477 8/7/2020 2:46:37 PM

478 • XML Basics

 </blues>

 <country>

 <title>Atlas </title>

 <artist status="disbanded">Romi</artist>

 </country>

</albums>

If we wanted to select the “status” attribute of the “artist” node under the
“rock” node, we could use the following expression:

albums/rock/artist/@status

Example 2

Attributes, just like any other node, can be the subject of a conditional state-
ment. For example, imagine we’re using XSLT to transform our XML docu-
ment, and we want to select all “artist” nodes where the “status” attribute is
set to “active.” We could use the XSL “if ” element to test the value.

Here’s what we would write:
<xsl:if test="@status = 'active'">

 (content goes here)

</xsl:if>

XPATH – EXPRESSIONS

XPath can locate any type of information in an XML document with one line
of code. These one liners are referred to as “expressions,” and every piece of
XPath that you write will be an expression.

An XPath expression is exactly that: it’s a line of code that we use to get
information from our XML document.

XPATH—OUR SAMPLE XML FILE

We have slightly modified our lemonade XML document to make it more
interesting. Our new XML document is lemonade2.xml, and it has new attrib-
utes and elements added to it.

XML Basics_Ch13_2pp.indd 478 8/7/2020 2:46:37 PM

Xpath • 479

XML Code, lemonade2.xml:

<inventory>

 <drink>

 <lemonade supplier="mother" id="1">

 <price>$2.50</price>

 <amount>20</amount>

 </lemonade>

 <pop supplier="store" id="2">

 <price>$1.50</price>

 <amount>10</amount>

 </pop>

 </drink>

 <snack>

 <chips supplier="store" id="3">

 <price>$4.50</price>

 <amount>60</amount>

 <calories>180</calories>

 </chips>

 </snack>

</inventory>

A SIMPLE XPATH EXPRESSION

An XPath expression describes the location of an element or attribute in our
XML document. By starting at the root element, we can select any element
in the document by carefully creating a chain of children elements. Each ele-
ment is separated by a slash “/ ”.

QUESTIONS FOR DISCUSSION

1.	 What is XPath?

2.	 What is New in XPath 2.0?

3.	 What is XLink?

4.	 What is XLL?

XML Basics_Ch13_2pp.indd 479 8/7/2020 2:46:37 PM

480 • XML Basics

5.	 What is server-side XPointer?

6.	 What is a URL path?

7.	 What are non-XML resources?

8.	 How do we configure an XPointer processor?

9.	 Give some examples of XML DTDs or schemas.

10.	 What is SOAP and how does it relate to XML?

11.	 What is a Web application?

12.	 Write about XPath 2.0.

XML Basics_Ch13_2pp.indd 480 8/7/2020 2:46:37 PM

C H A P T E R 14
XLINK, XQUERY, AND
XPOINTER

INTRODUCTION TO XQUERY

XQuery for XML is like SQL for databases. XQuery is the language for query-
ing XML data only. XQuery is to XML what SQL is to database tables. XQuery
is designed to query XML data—not just XML files, but anything that can
appear as XML, including databases. XQuery is supported by all the major
database engines (Oracle, IBM, and Microsoft). XQuery is built on XPath
expressions. XQuery is a language for finding and extracting the elements and
attributes from XML documents.

XQUERY EXAMPLE

We will use the following XML document in the example below.

The XML Example Document

"bookdetails.xml":

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

<book category="COOKING">

<title lang="en">Pizza & Pasta</title>

<author>Bill Smith</author>

<year>2019</year>

XML Basics_Ch14_2pp.indd 481 8/7/2020 2:53:59 PM

482 • XML Basics

<price>30.00</price>

</book>

<book category="CHILDREN">

<title lang="en">The Internet</title>

<author>S. Banzal</author>

<year>2019</year>

<price>49.00</price>

</book>

<book category="WEB">

<title lang="en">MYSQL Queries</title>

<author>S. Jain</author>

<author>P. Agrawal</author>

<author>K. Rai</author>

<author>R. Ram</author>

<author>Vivek Banzal</author>

<year>2018</year>

<price>65.00</price>

</book>

<book category="WEB">

<title lang="en">Learning XML</title>

<author>Erik T. Ray</author>

<year>2019</year>

<price>79.00</price>

</book>

</bookstore>

Functions

XQuery uses functions to extract the data from XML documents.
The doc() function is basically used to open the “bookdetails.xml” file:
doc("bookdetails.xml")

Path Expressions

XQuery uses path expressions to navigate through elements in the XML docu-
ment. The following path expression is used to select all the title elements in
the “bookdetails.xml” file:

doc("bookdetails.xml")/bookstore/book/title

(/bookstore selects the bookstore element, /book selects all the book elements
under the bookstore element, and /title selects all the title element under
each book element).

XML Basics_Ch14_2pp.indd 482 8/7/2020 2:53:59 PM

Xlink, Xquery, and Xpointer • 483

The XQuery code above will extract the following result:
<title lang="en">Pizza & Pasta</title>

<title lang="en">The Internet</title>

<title lang="en">MYSQL Queries</title>

<title lang="en">Learning XML</title>

Predicates

XQuery uses predicates to limit the extracted data from the XML documents.
The following predicate is used as to select all the book elements under

the bookstore element that have a price element with a value that is less
than 30:

doc("bookdetails.xml")/bookstore/book[price<30]

The XQuery above will extract the following result:
<book category="CHILDREN">

<title lang="en">The Internet</title>

<author>S. Banzal</author>

<year>2011</year>

<price>200.00</price>

</book>

XQuery FLWOR Expressions

We will use the “booksdetail.xml” document in the example below.
FLWOR is an acronym for the “For, Let, Where, Order by, Return”.
How to Select Nodes From “books.xml”

With FLWOR

Look at the path expression given below:
doc("bookdetails.xml")/bookstore/book[price>30]/title

The expression above will select all the title elements under the book ele-
ments that are under the bookstore element that have a price element with a
value that is higher than 30. The following FLWOR expression selects exactly
the same as the path expression above:

for $x in doc("bookdetails.xml")/bookstore/book

where $x/price>30

return $x/title

XML Basics_Ch14_2pp.indd 483 8/7/2020 2:53:59 PM

484 • XML Basics

The result is
<title lang="en">MYSQL Queries</title>

<title lang="en">Learning XML</title>

With FLWOR, you can sort the result like this:
for $x in doc("bookdetails.xml")/bookstore/book

where $x/price>30

order by $x/title

return $x/title

The for clause is used to select all book elements under the bookstore
element into a variable called $x.

The where clause selects only the book elements with a price element
with a value greater than 30.

The order by clause defines the sort-order.
The return clause specifies what should be returned. Here, it returns the

title elements.
The result of the XQuery expression above is as follows:
<title lang="en">Learning XML</title>

<title lang="en">MYSQL Queries</title>

XQuery FLWOR +HTML

Look at the XQuery FLWOR expression given below:
for $x in doc("bookdetails.xml")/bookstore/book/title

order by $x

return $x

The expression above selects all the title elements under the book ele-
ments that are under the bookstore element and returns the title elements
in the alphabetical order. Now we want to list all the book-titles in our book-
store element in an HTML list. So we add and tags to the FLWOR
expression:

{

for $x in doc("bookdetails.xml")/bookstore/book/title

order by $x

return

{$x}

}

XML Basics_Ch14_2pp.indd 484 8/7/2020 2:53:59 PM

Xlink, Xquery, and Xpointer • 485

The result of the above code:

<title lang="en">Pizza & Pasta</title>

<title lang="en">The Internet</title>

<title lang="en">Learning XML</title>

<title lang="en">MYSQL Queries</title>

Now we want to eliminate the title element, and show only the data inside
the title elements:

{

for $x in doc("books.xml")/bookstore/book/title

order by $x

return {data($x)}

}

The result will be in the form of an HTML list:

Pizza & Pasta

The Internet

Learning XML

MYSQL Queries

XQuery Terms

In XQuery, there are seven kinds of nodes: element, attribute, text, names-
pace, processing-instruction, comment, and document nodes.

Nodes

XML documents are treated as tree of nodes. The root of the tree is called the
document node or root node.

Look at the XML document given below:
<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

<book>

<title lang="en">The Internet</title>

XML Basics_Ch14_2pp.indd 485 8/7/2020 2:53:59 PM

486 • XML Basics

<author>S. Banzal</author>

<year>2011</year>

<price>200.00</price>

</book>

Example of nodes in the XML document above:
<bookstore> (document node)

<author>S. Banzal</author> (element node)

lang="en" (attribute node)

Atomic Values

Atomic values are nodes with no parent or children. Examples of the atomic
values are as follows:

S. Banzal

"en"

Items

Items are the atomic values or nodes.

Relationship of the Nodes

Parent

Each element and attribute has one parent only. In the example given below,
the book element is the parent of the title, author, year, and price:

<book>

<title>The Internet</title>

<author>S. Banzal</author>

<year>2011</year>

<price>200.00</price>

</book>

Children

Element nodes may have zero, one or more than one children. In the exam-
ple given title, author, year, and price elements are all children of the book
element:

<book>

<title>The Internet</title>

<author>S. Banzal</author>

<year>2011</year>

XML Basics_Ch14_2pp.indd 486 8/7/2020 2:53:59 PM

Xlink, Xquery, and Xpointer • 487

<price>200.00</price>

</book>

Siblings

Nodes that have the same parent is called siblings. In the example given
below; the title, author, year, and price elements are all siblings:

<book>

<title>The Internet</title>

<author>S. Banzal</author>

<year>2011</year>

<price>200.00</price>

</book>

Ancestors

A node’s parent and parent’s parent are called ancesters. In the example that
follows the ancestors of the title element are the book element and the book-
store element:

<bookstore>

<book>

<title>The Internet</title>

<author>S. Banzal</author>

<year>2011</year>

<price>200.00</price>

</book>

<bookstore>

Descendants

A node’s children and children’s children are called descendants. In the exam-
ple given below; descendants of the bookstore element are the book, title,
author, year, and price elements:

<bookstore>

<book>

<title>The Internet</title>

<author>S. Banzal</author>

<year>2011</year>

<price>200.00</price>

</book>

<bookstore>

XML Basics_Ch14_2pp.indd 487 8/7/2020 2:53:59 PM

488 • XML Basics

XQUERY SYNTAX

XQuery is case-sensitive and XQuery elements, attributes, and variables must
have valid XML names.

XQUERY BASIC SYNTAX RULES

Some basic syntax rules are as follows:

●● XQuery is case-sensitive.
●● XQuery elements, attributes, and variables must have valid XML names.
●● An XQuery string value can be in single or double quotes.
●● An XQuery variable is defined with a $ sign followed by a name, e.g.,

$bookstore.
●● XQuery comments are always delimited by (: and :), e.g., (: XQuery

Comment :).

XQuery Conditional Expressions

“If-Then-Else” expressions are allowed in XQuery.
for $x in doc("books.xml")/bookstore/book

return if ($x/@category="CHILDREN")

then <child>{data($x/title)}</child>

else <adult>{data($x/title)}</adult>

Note that on the “if-then-else” syntax, parentheses around the if expres-
sion are always required. For the else expression, it is required, but it can be
just else (). The result of the example above

<adult>Pizza & Pasta</adult>

<child>The Internet</child>

<adult>Learning XML</adult>

<adult>MYSQL Queries</adult>

XQuery Comparisons

There are two ways of comparing values in XQuery.

1.	 General comparisons: =, !=, >, >=, <, <=

2.	 Value comparisons: eq, ne, gt, ge, lt, le

XML Basics_Ch14_2pp.indd 488 8/7/2020 2:54:00 PM

Xlink, Xquery, and Xpointer • 489

The differences between the two comparison methods are given below.
$bookstore//book/@q>10

The expression above returns true if any q attributes have values greater
than 10.

$bookstore//book/@q gt 10

The expression above returns true if there is only one q attribute returned
by the expression, and its value is greater than 10. If more than one q is
returned, an error occurs.

XQuery Adding Elements and Attributes to the Result

We will use the “bookdetails.xml” document in the next example below.
As we have seen in a previous chapter, we may include element and attri-

bute from the input document (“bookdetails.xml”) in the result:
for $x in doc("bookdetails.xml")/bookstore/book/title

order by $x

return $x

The XQuery expression above will include both the title elements and the
lang attribute in the result:

<title lang="en">Pizza & Pasta</title>

<title lang="en">The Internet</title>

<title lang="en">Learning XML</title>

<title lang="en">MYSQL Queries</title>

The XQuery expression above return the title elements the exact same
way as they are described in the input document. We now want to add our
own element and attribute to the result.

Add HTML Elements and Text

<html>

<body>

<h1>Bookstore</h1>

	

{

for $x in doc("booksdetail.xml")/bookstore/book

order by $x/title

return {data($x/title)}. Category: {data($x/@category)}

XML Basics_Ch14_2pp.indd 489 8/7/2020 2:54:00 PM

490 • XML Basics

}

</body>

</html>

The XQuery expression above will generate the following output:
<html>

<body>

<h1>Bookstore</h1>

Pizza & Pasta. Category: COOKING

The Internet. Category: CHILDREN

Learning XML. Category: WEB

MYSQL Queries. Category: WEB

</body>

</html>

Add Attributes to HTML Elements

Next, we want to use the category attribute as a class attribute in to the
HTML list:

<html>

<body>

<h1>Bookstore</h1>

{

for $x in doc("bookdetails.xml")/bookstore/book

order by $x/title

return <li class="{data($x/@category)}">{data($x/title)}

}

</body>

</html>

The XQuery expression above generates the following output:
<html>

<body>

<h1>Bookstore</h1>

XML Basics_Ch14_2pp.indd 490 8/7/2020 2:54:00 PM

Xlink, Xquery, and Xpointer • 491

<li class="COOKING">Pizza & Pasta

<li class="CHILDREN">The Internet

<li class="WEB">Learning XML

<li class="WEB">MYSQL Queries

</body>

</html>

XQUERY SELECTING AND FILTERING ELEMENTS

Selecting and Filtering Elements

We select and filter elements with either a FLWOR expression or with a Path
expression.

for $x in doc(“bookdetails.xml”)/bookstore/book where $x/price>30 order
by $x/title return $x/title

for—(optional) binds the variable to each item returned by the in expres-
sion

let—optional
where—(optional) specify a criteria
order by—(optional) specify the sort-order of the result
return—specify what to return in the result
The for clause binds a variable to each item returned by the expression.

The for clause results in iteration. There may be multiple for clauses in the
same FLWOR expression.

To loop a specific number of times in a for clause, you may have to use
the to keyword:

for $x in (1 to 5)

return <test>{$x}</test>

Result

<test>1</test>

<test>2</test>

<test>3</test>

<test>4</test>

<test>5</test>

The at keyword can be used to count the number of iterations:
for $x at $i in doc("bookdetails.xml")/bookstore/book/title

return <book>{$i}. {data($x)}</book>

XML Basics_Ch14_2pp.indd 491 8/7/2020 2:54:00 PM

492 • XML Basics

Result

<book>1. Pizza & Pasta</book>

<book>2. The Internet</book>

<book>3. MYSQL Queries</book>

<book>4. Learning XML</book>

You can use more than one in expression in the for clause. Use a comma
to separate the parts of the expression:

for $x in (10,20), $y in (100,200)

return <test>x={$x} and y={$y}</test>

Result

<test>x=10 and y=100</test>

<test>x=10 and y=200</test>

<test>x=20 and y=100</test>

<test>x=20 and y=200</test>

The Let Clause

The let clause allows variable assignments. The let clause does not result in
an iteration.

let $x := (1 to 5)

return <test>{$x}</test>

Result

<test>1 2 3 4 5</test>

The Where Clause

The where clause is used to specify one or more criteria for the particular
result:

where $x/price>30 and $x/price<100

The Order by Clause

The order by clause is used to specify the sort order of the results. Here, we
want to order the result by the category and title:

for $x in doc("bookdetails.xml")/bookstore/book

order by $x/@category, $x/title

return $x/title

XML Basics_Ch14_2pp.indd 492 8/7/2020 2:54:00 PM

Xlink, Xquery, and Xpointer • 493

Result

<title lang="en">The Internet</title>

<title lang="en">Pizza & Pasta</title>

<title lang="en">Learning XML</title>

<title lang="en">MYSQL Queries</title>

The Return Clause

The return clause specifies what is to be returned.
for $x in doc("bookdetails.xml")/bookstore/book return $x/title

Result

<title lang="en">Pizza & Pasta</title>

<title lang="en">The Internet</title>

<title lang="en">MYSQL Queries</title>

<title lang="en">Learning XML</title>

XQUERY FUNCTIONS

XQuery includes over 100 built-in functions. There are functions for string
values, numeric values, date and time comparison, node and QName manipu-
lation, sequence manipulation, Boolean values, and many more. You can also
define your own function in XQuery.

Examples of Function Calls

A call to the function can appear where an expression may appear. Look at the
examples below:

Example 1: In an element
<name>{uppercase($booktitle)}</name>

Example 2: In the predicate of a path expression
doc("bookdetails.xml")/bookstore/book[substring(title,1,5)='Harry']

Example 3: In the let clause
let $name := (substring($booktitle,1,4))

XML Basics_Ch14_2pp.indd 493 8/7/2020 2:54:00 PM

494 • XML Basics

XQUERY USER-DEFINED FUNCTIONS

If you cannot find the XQuery function you need, you can write your own
functions. User-defined functions are always defined in the query or in a sepa-
rate library.

Syntax

declare function prefix:function_name($parameter AS datatype)

AS returnDatatype

{

(: ...function code here... :)

};

Note that on user-defined functions,
●● The user always declares the function’s keyword.
●● The name of the function must have a prefix.
●● The data types of the parameters are mostly the same as the data types

defined in the XML schemas
●● The body of the function must be surrounded by curly braces only

Example of a User-defined Function Declared in the Query

declare function local:minPrice(

$price as xs:decimal?,

$discount as xs:decimal?)

AS xs:decimal?

{

let $disc := ($price * $discount) div 100

return ($price - $disc)

};

(: Below is an example of how to call the function above :)

<minPrice>{local:minPrice($book/price, $book/discount)}</minPrice>

XLINK AND XPOINTER INTRODUCTION

XLink is short for XML Linking Language. XLink defines a standard way of
creating hyperlinks in XML documents. XLink is used to create hyperlinks in
XML documents. With XLink, the links can be defined outside the linked files.

XML Basics_Ch14_2pp.indd 494 8/7/2020 2:54:00 PM

Xlink, Xquery, and Xpointer • 495

XPointer allows the hyperlinks to point to more specific parts (fragments)
in the XML document.

XPath

XSLT

XLinkXQuery XPointer

FIGURE 14.1  Relationship between XLink and XPointer

XLINK AND XPOINTER SYNTAX

In HTML, the <a> element defines a hyperlink. However, this is not how it
works with XML. In XML documents, you can use whatever element names
you want; therefore, it is impossible for browsers to predict what hyperlink
elements will be called in XML documents.

The solution for creating links in XML documents is to put a marker on
elements that should act as hyperlinks.

Below is a simple example of how to use XLink to create links in an XML
document:

<?xml version="1.0"?>

<homepages xmlns:xlink="http://www.w3.org/1999/xlink">

<homepage xlink:type="simple"

xlink:href="http://www.abc.com">Visit Abc</homepage>

<homepage xlink:type="simple"

xlink:href="http://www.w3.org">Visit W3C</homepage>

</homepages>

To get access to the XLink attributes and features, we must declare the
XLink namespace at the top of the document. The XLink namespace is “http://
www.w3.org/1999/xlink”.

The xlink:type and the xlink:href attributes in the <homepage> elements
define that the type and href attributes come from the xlink namespace. The

XML Basics_Ch14_2pp.indd 495 8/7/2020 2:54:00 PM

496 • XML Basics

xlink:type=“simple” creates a simple, two-ended link (means “click from here
to go there”). We will look at multi-ended (multidirectional) links later.

HTML, XML, AND LINKING

Similar to HTML Web pages, XML documents can also benefit greatly from
links that connect them together. Knowing this, the architects of XML created
a linking mechanism for XML that provides support for traditional one-way
links, such as those you may be familiar with in HTML, along with more
advanced links, such as two-way links. Links in XML considerably more pow-
erful than HTML links, as you will learn in a moment when you begin explor-
ing XLink and XPointer. Before getting into that, however, it’s worth taking a
moment to assess the role of links in HTML.

HTML links (hyperlinks) are based on the concept of connecting one
resource to another resource source linked to a target. The source of an
HTML link is typically displayed on a Web page (via text or an image) so as
to call out the fact that it links to another resource. Text links are typically
displayed with an underline, and the mouse pointer usually changes when the
user drags it over a link source. Traversing a link in HTML typically involves
clicking the source resource, which results in the Web browser navigating to
the target resource. This navigation can occur in the same browser window, in
which case the target resource replaces the current page or in a new browser
window.

The important thing to understand about HTML links is that although
they involve two resources, they always link in one direction. In other words,
one side of the link is always the source and the other side is always the target,
which means you can follow a link only one way. You might think that the
Back button in a Web browser allows HTML links to serve as two-way links,
but the Back button has nothing to do with HTML. The Back button in a Web
browser is a browser feature that involves keeping a running list of Web pages
so that the user can move back through them. There is nothing inherent in
HTML links that supports backing up from the target of a link to the source;
the target of a link knows nothing about its source. HTML links are somewhat
limited in that they can link only in one direction.

If your only exposure to document linking is HTML, you probably regard
link resources as existing completely separate of one another, at least in terms
of how they are displayed in a Web browser. XML links shatter this notion by
allowing you to use links to embed resources within other resources. In other

XML Basics_Ch14_2pp.indd 496 8/7/2020 2:54:00 PM

Xlink, Xquery, and Xpointer • 497

words, the content of a target resource can be inserted in place of the link in
a source document. Granted, images are handled much like this in HTML
already, but XML links offer the possibility of embedding virtually any kind
of data in a document, not just an external image. Traversing embedded links
in this manner ultimately results in compound documents that are built out
of other resources, which has some interesting implications for the Web. For
example, you could build a news Web page out of paragraphs of text that are
dynamically pulled from other documents around the Web via links.

Speaking of link traversal, HTML links are limited in that the user must
trigger their traversal. For example, the only way to invoke a link on a Web
page is to click the linked text or image, as shown in Figure 14.2.

In order to traverse an HTML link, the user must click on linked text or a
linked image, which points to another document or resource.

FIGURE 14.2  Document linking in HTML

You may be wondering why it would be desirable to have it any other
way. Well, consider the situation where a linked resource is to be embedded
directly in a document to form a compound document. You might want the
embedding to take place immediately upon opening the document, in which
case the user would have nothing to do with the link being invoked. In this
sense, the link is serving as a kind of connective tissue for components of a
compound Web document (see Figure 14.3), which is far beyond the role of
links in HTML. Again, images already work like this in HTML via the img tag,
but XML links open the door for many other possibilities with flexible linking.

XML Basics_Ch14_2pp.indd 497 8/7/2020 2:54:00 PM

498 • XML Basics

XML links are flexible enough to allow you to construct compound docu-
ments by pulling content together from other documents.

Web Browser

Document A

Document B
Contents of
Document B

FIGURE 14.3  Document linking in XML

XML links, which are made possible by the XLink technology, are much
more abstract than HTML links, and therefore can be used to serve more
purposes than just providing users a way of moving from one Web page to
the next.

Yet another facet of XLink is its support for creating links that reside out-
side of the documents they link. In other words, you can create a link in one
document that connects two resources contained in other documents (see
Figure 14.4). This can be particularly useful when you don’t have the capabil-
ity of editing the source and target documents. These kinds of links are known
as out-of-line links and will probably foster the creation of link repositories. A
link repository is a database of links that describe useful connections between
resources on the Web.

XML links allow you to do interesting things, such as referencing multiple
documents from a link within another document.

One example of a link repository that could be built using XLink is an
intricately cross-referenced legal database, where court cases are linked in
such a way that a researcher in a law office could quickly find and verify prec-
edents and track similar cases. Though it’s certainly possible to create such a
database and incorporate it into HTML Web pages, it is cumbersome. XLink
provides the exact feature set to make link repositories a practical reality.

XML Basics_Ch14_2pp.indd 498 8/7/2020 2:54:00 PM

Xlink, Xquery, and Xpointer • 499

FIGURE 14.4  Multiple document linking of XML

XLink is designed to support simple one-way links similar to those in
HTML, as well as a variety of different extended links that offer interesting
new ways of linking documents. XLink is implemented as an XML language,
which means that it can be easily integrated into XML applications. XPointer
is a non-XML language based upon XPath that is used to address internal
structures in XML documents. XPointer is an important part of XLink because
it specifies the syntax used to create fragment identifiers, which are used to
reference internal document constructs.

LINKING WITH XLINK

The whole point of XPointer (no pun intended) is to provide a means of refer-
encing portions of XML documents for the purpose of creating powerful XML
links. XLink ultimately makes links possible through linking elements, which
are elements that describe the characteristics of links. The anchor element

XML Basics_Ch14_2pp.indd 499 8/7/2020 2:54:00 PM

500 • XML Basics

in HTML is a good example of a linking element. Although linking elements
form the basis of XLink, there are no predefined linking elements in the XLink
language. Although it may seem strange at first, you won’t find any standard
element in the XLink language. The reason is because XML is all about the
creation of custom tags (elements), which precludes the use of a fixed linking
element in XLink. In other words, you are encouraged to define your own link-
ing elements specific to a particular XML-based language, as opposed to being
locked into a fixed element, such as HTML’s anchor element (a).

Even though HTML’s anchor element is somewhat limiting in the context
of XML, there still must be some kind of mechanism in XLink that identifies
links. This mechanism comes in the form of standard linking attributes that
can be associated with any element. There are several of these attributes,
which you learn about in the next section. For now, just understand that the
presence of XLink attributes is sufficient to identify an element as a linking
element.

A linking element uses a construct called a locator to connect resources
involved in a link. In both HTML and XML, the HRef attribute serves as
the locator for links. Although HTML and XML share this attribute, links
in XML are described in much more detail than their HTML counterparts.
Perhaps the most important difference is the fact that XML links completely
describe the resources involved, even if a target resource is just a document
fragment. In HTML, it is necessary to place an anchor element in a target
fragment resource and identify it using the id attribute. This is not the case
in XML because XLink provides the necessary ingredients to fully describe
the resources involved in a link. There are two types of linking elements sup-
ported in XLink:

●● Inline links
●● Out-of-line links

An inline link is a link whose content serves as one of the link’s partici-
pating resources. Typically, an inline link has a linking element that contains
content that serves as the source for the link. HTML anchor links are good
examples of inline links because an anchor link contains text or an image that
acts as the source for the link. Due to HTML’s use of inline links, you may be
curious as to how a link could work any other way. Out-of-line links extend the
concept of linking in XML by allowing you to create links that are indepen-
dent of the linked resources.

An out-of-line link is a link whose content doesn’t serve as one of the link’s
participating resources. This means that out-of-line links are independent of
their participating resources and therefore serve a very different purpose than

XML Basics_Ch14_2pp.indd 500 8/7/2020 2:54:00 PM

Xlink, Xquery, and Xpointer • 501

inline links. Out-of-line links are useful for linking information in documents
that you can’t modify for one reason or another. For example, if you wanted
to create a link between two resources that reside on other Web sites, you’d
use an out-of-line link. Such a link is possible because out-of-line links are
geared toward opening up interesting new opportunities for how links are
used to connect documents. More specifically, it would be possible to create
link databases that describe relationships between information spread across
the Web.

Out-of-line links partially form the concept of extended links in XML.
Extended links 	 are basically any links that extend the linking functionality
of HTML. Out-of-line links obviously are considered extended links because
HTML doesn’t support any type of out-of-line linking mechanism. Extended
links also support the association of more than one target resource with a
given link. With extended links, you could build a table of contents for a Web
site that consists solely of extended links that point to the various pages in the
site. If the links were gathered in a single document separate from the table
of contents page itself, they would also be considered out-of-line links.

XLINK EXAMPLE

Let’s try to learn some basic XLink syntax by looking at an example.

THE XML EXAMPLE DOCUMENT

Look at the following XML document, “bookstore.xml,” that represents a few
books:

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore xmlns:xlink="http://www.w3.org/1999/xlink">

<book title="The Internet">

<description

xlink:type="simple"

xlink:href="http://book.com/images/HPotter.gif"

xlink:show="new">

As his fifth year at Hogwarts School of Witchcraft and

Wizardry approaches, 15-year-old.......

</description>

</book>

XML Basics_Ch14_2pp.indd 501 8/7/2020 2:54:00 PM

502 • XML Basics

<book title="MYSQL Queries">

<description

xlink:type="simple"

xlink:href="http://book.com/images/XQuery.gif"

xlink:show="new">

MYSQL Queries delivers a concise introduction

to the XQuery standard.......

</description>

</book>

</bookstore>

In the example above the XLink namespace is declared at the top of the
document (xmlns:xlink=“http://www.w3.org/1999/xlink”). This means that
the document has access to the XLink attributes and features.

The xlink:type=“simple” creates a simple “HTML-like” link. You can also
specify more complex links (multidirectional links), but for now, we will only
use simple links.

The xlink:href attribute specifies the URL to link to, and the xlink:show
attribute specifies where to open the link. xlink:show=“new” means that the
link (in this case, an image) should open in a new window.

In the example above, we only demonstrated simple links. XLink is more
interesting when we want to access remote locations as resources, instead of
standalone pages. The <description> element in the example above sets the
value of the xlink:show attribute to “new.” This means that the link should open
in a new window. We could have set the value of the xlink:show attribute to
“embed.” This means that the resource should be processed inline within the
page. When you consider that this could be another XML document and not
just an image, you could, for example, build a hierarchy of XML documents.

With XLink, you can also specify WHEN the resource should appear. This
is handled by the xlink:actuate attribute. xlink:actuate=“onLoad” specifies that
the resource should be loaded and shown when the document loads. How-
ever, xlink:actuate=“onRequest” means that the resource is not read or shown
before the link is clicked. This is very handy for low-bandwidth settings.

UNDERSTANDING XLINK ATTRIBUTES

XLink defines standard attributes that are used to establish linked elements
in XML documents. The following are the XLink attributes that can be used
to create linked elements:

XML Basics_Ch14_2pp.indd 502 8/7/2020 2:54:01 PM

Xlink, Xquery, and Xpointer • 503

●● type A string, which specifies the type of link
●● href A locator, which addresses a target resource using a URI
●● from A string, which identifies the resource being linked from when

describing an arc
●● to A string, which identifies the resource being linked to when describing

an arc
●● show A string, which determines how a target resource is to be revealed

to the user
●● actuate A string, which determines how a link is initiated
●● role: An application-specific string used to describe the function of a link’s

content
●● title A string, which serves as a name for a link

The type attribute determines the type of a link and can have one of
the following values: simple, extended, locator, resource, arc, or group. The
href attribute is one with which you are already familiar, based on its use
in HTML. The from and to attributes are used by arcs, which describe the
traversal behavior of links. More specifically, an arc defines where a two-way
link comes from and where it goes. Arcs could be used to establish Web rings,
where Web pages are linked from one to the next using the from and to attri-
butes to traverse the ring.

The show attribute determines how a target resource for a link is revealed
to the user. There are three main values for the show attribute:

●● replace the target resource: replaces the current document (default value).
●● new: the target resource is shown in a new window.
●● embed: the target resource is inserted into the current document in place

of the link.

The functionality of the show attribute follows that of the HTML
anchor links until you get to the last possible value, parsed. If you
set the show attribute to parsed, the link will be replaced by the tar-
get resource. This type of link allows you to divide a document into
sub-documents and then link them together to form a compound document,
which can help improve the organization of the data.

The actuate attribute determines how a link is initiated and is typically set
to one of the following values:

XML Basics_Ch14_2pp.indd 503 8/7/2020 2:54:01 PM

504 • XML Basics

●● onRequest: The link must be manually traversed by the user (default
value).

●● onLoad: The link is automatically traversed upon loading the source
document.

Setting the actuate attribute to onRequest makes a link act like an HTML
link, which means that you have to click the link in order to activate it. The
onLoad value offers functionality not directly available in HTML by allowing
a link to be traversed when a document is first loaded. The onLoad value
is particularly useful when used in conjunction with the embed value for
the show attribute; this results in a resource being automatically loaded and
placed directly in a document.

The last two XLink attributes are role and title, which are used primarily
for descriptive purposes. The role attribute describes the role of the content
in a link, whereas title provides a human-readable title for the link that may
be displayed in a browser.

CREATING LINKS WITH XLINK

You’re now finally ready to put all of your XPointer and XLink knowledge to
work and create some links that would never be possible in HTML. As an
example, consider an element named employees that is used to identify a
group of employees for a company. The following is an example of how you
might create a simple link for the employees element:

<employees xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:href="employees.xml">

Current Employees

</employees>

This example is the simplest possible link you can create using XLink, and
it actually carries out the same functionality as an HTML anchor link, which is
known as a simple link in XML. Notice in the code that the XLink namespace
is declared and assigned to the xlink prefix, which is then used to reference
the href attribute; this is the standard approach used to access all of the XLink
attributes. What you may not realize is that this link takes advantage of some
default attribute values. The following is another way to express the exact
same link by spelling all of the pertinent XLink attribute values:

<employees xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple"

XML Basics_Ch14_2pp.indd 504 8/7/2020 2:54:01 PM

Xlink, Xquery, and Xpointer • 505

xlink:href="employees.xml"

xlink:show="replace"

xlink:actuate="user"

xlink:role="employees"

xlink:title="Employee List">

Current Employees

</employees>

In this code, you can more clearly see how the XLink attributes are spec-
ified in order to fully describe the link. The type attribute is set to simple,
which indicates that this is a simple link. The show attribute has the value
replace, which indicates that the target resource is to replace the current doc-
ument when the link is traversed. The actuate attribute has the value user,
which indicates that the link must be activated by the user for traversal to take
place. And finally, the role and title attributes are set to indicate the meaning
of the link and its name.

The previous example demonstrated how to create a link that imitates the
familiar HTML anchor link. You can dramatically change a simple link just by
altering the manner in which it is shown and activated. For example, take a
look at the following link:

<resume xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="simple"

xlink:href="resume_e1.xml"

xlink:show="parsed"

xlink:actuate="auto"

xlink:role="employee1 resume"

xlink:title="Employee 1 Resume"/>

This code shows how to effectively embed another XML document into
the current document at the position where the link is located. This is accom-
plished by simply setting the show attribute to parsed and the actuate attribute
to auto. When a Web browser or XML application encounters this link, it will
automatically load the resume_e1.xml document and insert it into the current
document in place of the link. When you think about it, the img element in
HTML works very much like this link except that it is geared solely toward
images; the link in this example can be used with any kind of XML content.

XPointer impacts links through the href attribute, which is where you
specify the location of a source or target resource for a link. All of the flexibil-
ity afforded by XPointer in specifying document parts can be realized in the
href attribute of any link.

XML Basics_Ch14_2pp.indd 505 8/7/2020 2:54:01 PM

506 • XML Basics

Although simple links such as the previous example are certainly import-
ant, they barely scratch the surface in terms of what XLink is really capable
of doing. Links get much more interesting when you venture into extended
links. A powerful use of extended links is the linkset, which allows you to link
to a set of target resources via a single source resource. For example, you
could use an extended link to establish a link to each individual employee in
a company. To create an extended link, you must create child elements of
the linking element that are set to type locator; these elements are where you
set each individual target resource via the href attribute. The following is an
example of an extended link, which should help clarify how they work:

<employees xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="extended"

xlink:role="employees"

xlink:title="Employee List"

xlink:show="replace"

xlink:actuate="user">

<employee xlink:type="locator" xlink:href="employee1.xml">

Frank Rizzo

</employee>

<employee xlink:type="locator" xlink:href="employee2.xml">

 Sol Rosenberg

</employee>

<employee xlink:type="locator" xlink:href="employee3.xml">

Jack Tors

</employee>

</employees>

This example creates an extended link out of the employees element, but
the most interesting thing about the link is that it has multiple target resources
that are identified in the child employee elements. This is evident by the fact
that each of the employee elements has an href attribute that is set to their
respective target resources.

XPOINTER SYNTAX

In HTML, we can create a hyperlink that either points to an HTML page or
to a bookmark inside an HTML page (using #).

Sometimes it is more useful to point to more specific content. For exam-
ple, let’s say that we want to link to the third item in a particular list, or to the
second sentence of the fifth paragraph. This is easy with XPointer.

XML Basics_Ch14_2pp.indd 506 8/7/2020 2:54:01 PM

Xlink, Xquery, and Xpointer • 507

If the hyperlink points to an XML document, we can add an XPointer part
after the URL in the xlink:href attribute, to navigate (with an XPath expres-
sion) to a specific place in the document.

For example, below we use XPointer to point to the fifth item in a list with
a unique id of “rock:”

href="http://www.example.com/cdlist.xml#id('rock').child(5,item)"

ADDRESSING WITH XPOINTER

XPointer allows you to walk the tree of nodes that an XML document is com-
prised of to address a specific node or nodes. XPointer expands the syntax set
forth by XPath to provide a means of creating fragment identifiers, which are
used to specify parts of documents. XPointer provides considerably more con-
trol over the referencing of XML document data than the hyperlink approach
employed by HTML. For example, XPointer allows you to do things such as
address an element with a given value within a list of elements of a given type.
You use XPointer expressions in XML links by appending them onto the end
of URIs with a pound symbol (#), as in the separation between a URI and an
XPointer expression. The next few sections break down XPointer into further
detail and demonstrate exactly how to create XPointer expressions.

BUILDING XPOINTER EXPRESSIONS

The most important component of XPointer expressions is the location path,
which is a construct used to describe the path that must be followed to arrive
at a node within an XML document tree. Location paths are the building
blocks of XPointer expressions, which are evaluated to arrive at a specific
location within a tree. More specifically, location paths allow you to traverse
siblings, ancestors, children, and descendants of nodes, not to mention attrib-
utes. Location paths are broken down into two basic types absolute paths and
general paths.

Absolute location paths point to a specific location within an XML tree,
and therefore aren’t dependent on context. The following are the different
absolute location paths defined in XPointer:

●● / locates the root node, which is the parent node for the entire document
tree

●● id(Name) locates the element with an attribute ID value of Name

XML Basics_Ch14_2pp.indd 507 8/7/2020 2:54:01 PM

508 • XML Basics

●● here() locates the node containing the current XPointer expression
●● origin() locates the sub-resource from which the user initiated a link (used

with out-of-line links)

The most important absolute location paths are the root and id() paths.
The root path is represented by a forward slash (/), and is often used at the
start of an XPointer expression as the basis for absolute location paths. The
id() location path is used to locate an element with a specific attribute value.

In addition to absolute location paths, XPointer also defines a rich set
of relative location paths. Relative location paths are always relative to some
node, which is known as the context node for the path. The following are the
relative location paths available for use in XPointer expressions:

●● child locates the child nodes of the context node
●● descendant locates the nodes within the context node
●● descendant-or-self is the same as descendant except the context node is

also included
●● parent locates the nodes one level above the context node that contain the

context node
●● ancestor locates all the nodes above the context node that contain the

context node
●● ancestor-or-self is the same as the ancestor except the context node is also

included
●● preceding-sibling locates the sibling nodes that precede the context node
●● following-sibling locates the sibling nodes that follow the context node
●● preceding locates the nodes that precede the context node
●● following locates the nodes that follow the context node
●● self locates the individual context nodes within a list of context nodes
●● attribute locates the attributes of the context node

CREATING XPOINTERS

Seeing a few examples of XPointer expressions can make all the difference in
understanding how XPointer is used to define document fragment identifiers.
The following is an example of a simple XPointer expression:

child::factoid

XML Basics_Ch14_2pp.indd 508 8/7/2020 2:54:01 PM

Xlink, Xquery, and Xpointer • 509

This example uses the child relative location path to locate all of the chil-
dren of the context node that are of element type factoid. Let me rephrase it
in a different way: The sample expression locates element nodes of type fac-
toid that are child nodes of the context node. Keep in mind that the context
node is the node from which you are issuing the expression, which is like the
current path of a file system when you’re browsing for files. Also, it’s worth
clarifying that the XPointer expression child::factoid simply describes the
fragment identifier for a resource and is not a complete resource reference.
When used in a complete expression, you would pair this fragment identifier
with a URI that is assigned to an href attribute, like this:

href="http://www.stalefishlabs.com/factoids.xml#child::factoid"

In this example, a URI is specified that references the XML document
named factoids.xml. The XPointer expression is then provided as a fragment
identifier, which is separated from the URI by a pound symbol (#). This is the
typical way in which XPointers are used, although expressions can certainly
get more complex than this. For example, the following code shows how to
use location paths to create a more elaborate expression that carries out a
more intricate reference:

child::factoid/following-sibling::legend

This example first locates all child elements that are of type factoid and
then finds the second siblings following each of those element nodes that
are of type legend. To understand how this code works, let’s break it down.
You begin with the familiar child::factoid expression, which locates element
nodes of type factoid that are child nodes of the context node. Adding on
the following-sibling::legend location path causes the expression to locate
sibling elements of type legend. Granted, this may seem like a strange use of
XPointer, but keep in mind that it is designed as an all-purpose language for
addressing the internal structure of XML documents. It’s impossible to say
how different applications might want to address document parts, which is
why XPointer is so flexible.

In addition to location paths, XPointer defines several functions that
perform different tasks within XPointer expressions. One class of functions
is node test functions, which are used to determine the type of a node. Of
course, you can use the name of an element to check if a node is of a certain
element type, but the node test functions allow you to check and see if a node
contains a comment, text, or processor instruction. The following is an exam-
ple of how to use one of these functions:

/child::processing-instruction()

XML Basics_Ch14_2pp.indd 509 8/7/2020 2:54:01 PM

510 • XML Basics

This expression results in the location of any processing instructions that
are children of the root element. The reason the expression results in children
of the root element is because the root element (/) is specified as the basis for
the expression.

As you can see in these few examples, XPointer is a comprehensive yet
flexible technology that is capable of doing some interesting things.

XPOINTER EXAMPLE

In this example, we will show you how to use XPointer in conjunction with
XLink to point to a specific part of another document.

The Target XML Document

The target XML document is called “dogbreeds.xml” and it lists a few differ-
ent dog breeds:

<?xml version="1.0" encoding="ISO-8859-1"?>

<dogbreeds>

 <dog breed="Poodle" id="Poodle">

 <picture url="http://dog.com/Poodle.gif" />

 <history>The Poodle's ancestors were probably Roman

 drover dogs.....</history>

 <temperament>Confident, bold, alert and imposing, the Poodle

 is a popular choice for its ability to protect....</temperament>

</dog>

<dog breed="Boxer" id="Boxer">

<picture url="http://dog.com/Boxer.gif" />

 <history>One of the earliest uses of retrieving dogs was to

 help fishermen retrieve fish from the water....</history>

 <temperament>The flat-coated retriever is a sweet, exuberant,

 lively dog that loves to play and retrieve....</temperament>

 </dog>

</dogbreeds>

THE LINKING XML DOCUMENT

Instead of linking to the entire document (as with XLink), XPointer allows
you to link to specific parts of the document. To link to a specific part of a

XML Basics_Ch14_2pp.indd 510 8/7/2020 2:54:01 PM

Xlink, Xquery, and Xpointer • 511

page, add a number sign (#) and an XPointer expression after the URL in the
xlink:href attributes.

The expression: #xpointer(id(“Poodle”)) refers to the element in the tar-
get document, with the id value of “Poodle.” So the xlink:href attribute would
look like this:

xlink:href="http://dog.com/dogbreeds.xml#xpointer(id('Poodle'))"

However, XPointer allows a shorthand form when linking to an element
with an id. You can use the value of the id directly, like this:

xlink:href=http://dog.com/dogbreeds.xml#Poodle

The following XML document refers to information of the dog breed for
each of my dogs :-), all through XLink and XPointer references:

<?xml version="1.0" encoding="ISO-8859-1"?>

<mydogs xmlns:xlink="http://www.w3.org/1999/xlink">

<mydog xlink:type="simple"

xlink:href="http://dog.com/dogbreeds.xml#Poodle">

<description xlink:type="simple"

xlink:href="http://myweb.com/mydogs/anton.gif">

Anton is my favorite dog. He has won a lot of.....

</description>

</mydog>

<mydog xlink:type="simple"

xlink:href="http://dog.com/dogbreeds.xml#Boxer">

<description xlink:type="simple"

xlink:href="http://myweb.com/mydogs/pluto.gif">

Pluto is the sweetest dog on earth......

</description>

</mydog>

</mydogs>

XPOINTER EXAMPLE

In this example, we will show you that how to use XPointer in conjunction
with XLink to point to a specific part of another document.

The Target XML Document

The target XML documents is called “dogbreeds.xml” and it lists a few differ-
ent dog breeds:

XML Basics_Ch14_2pp.indd 511 8/7/2020 2:54:01 PM

512 • XML Basics

<?xml version="1.0" encoding="ISO-8859-1"?>

<dogbreeds>

<dog breed="Poodle" id="Poodle">

<picture url="http://dog.com/Poodle.gif" />

<history>

The Poodle's ancestors were probably Roman

drover dogs.....

</history>

<temperament>

Confident, bold, alert and imposing, the poodle is a popular choice for its
ability to protect.

</temperament>

</dog>

<dog breed="Boxer" id="Boxer">

<picture url="http://dog.com/Boxer.gif" />

<history>

One of the earliest uses of retrieving dogs was to help fishermen retrieve
fish from the water.

</history>

<temperament>

The flat-coated retriever is a sweet, exuberant, lively dog that loves to play
and retrieve...

. </temperament>

</dog>

</dogbreeds>

THE LINKING XML DOCUMENT

Instead of linking to the entire document (as with XLink), XPointer allows you
to link to specific part of the document. To link to a specific part of a page, add
a number sign (#) and an XPointer expression after the URL in the xlink:href
attribute.

The expression: #xpointer(id(“Poodle”)) refer to the element in the target
document, with the id value of “Poodle.”

So the xlink:href attribute would looks like this:
xlink:href="http://dog.com/dogbreeds.xml#xpointer(id('Poodle'))"

XML Basics_Ch14_2pp.indd 512 8/7/2020 2:54:01 PM

Xlink, Xquery, and Xpointer • 513

However, XPointer allows a shorthand form when linking to an element
with the id. You can also use the value of the id directly, like this:

xlink:href="http://dog.com/dogbreeds.xml#Poodle"

The following XML document refer to information of the dog breed for
each of my dogs:-), all through XLink and XPointer references:

<?xml version="1.0" encoding="ISO-8859-1"?>

<mydogs xmlns:xlink="http://www.w3.org/1999/xlink">

<mydog xlink:type="simple"

xlink:href="http://dog.com/dogbreeds.xml#Poodle">

<description xlink:type="simple"

xlink:href="http://myweb.com/mydogs/anton.gif">

Anton is my favorite dog. He has won a lot of.....

</description>

</mydog>

<mydog xlink:type="simple"

xlink:href="http://dog.com/dogbreeds.xml#Boxer">

<description xlink:type="simple"

xlink:href="http://myweb.com/mydogs/pluto.gif">

Pluto is the sweetest dog on earth......

</description>

</mydog>

</mydogs>

QUESTIONS FOR DISCUSSION

1.	 What is the primary difference in how XSLT and XQuery transform an
XML document (in terms of schema)?

2.	 How you define atomic values?

3.	 How you define terms in XQuery?

4.	 What does it mean to select and filter elements in XQuery?

5.	 How do you define functions in XQuery?

6.	 How do you add elements and attributes with XQuery in XML data?

7.	 How do you perform comparisons in XQuery?

XML Basics_Ch14_2pp.indd 513 8/7/2020 2:54:01 PM

514 • XML Basics

8.	 How do you perform conditional operations in XQuery?

9.	 Give the syntax rules of XQuery.

10.	 How do you use XQuery FLWOR with HTML?

11.	 What is server-side XPointer?

12.	 What is the difference between XLink and XPointer?

13.	 How do you transform XLink/XPointer into HTML using XSL?

14.	 Why don’t you use XPath/XPointer?

15.	 What does the following XPointer link statement point to? href=?http://
www.example.com/cdlist.xml#.

16.	 What types of IDs are currently supported for XPointers?

17.	 Does the XInclude processor support XPointer?

18.	 What’s the concept of XPointer?

19.	 What are non-XML resources?

20.	 What is server-side XPointer?

21.	 What XPointer schemes are supported in this release?

22.	 How do you implement an application-specific XPointer scheme?

23.	 How do you integrate XPointer into my application?

24.	 How do you configure an XPointer processor?

25.	 What are XPointer resources?

26.	 What is server-side XPointer?

27.	 How the use XPointer?

28.	 What is XPointer?

29.	 How do you define do you syntax of XPointer?

XML Basics_Ch14_2pp.indd 514 8/7/2020 2:54:01 PM

C H A P T E R 15
XFORMS

INTRODUCTION TO XFORMS

XForms is the next generation of HTML forms. XForms uses XML to cre-
ate input forms on the Web. XForms is the next generation of HTML forms.
It is richer and more flexible than HTML forms. XForms will be the forms
standard in XHTML 2.0. XForms is platform- and device-independent. It
separates data and logic from presentation. XForms uses XML to define form
data. It stores and transports data in XML documents. It contains features like
calculations and validations of forms. XForms reduces or eliminates the need
for scripting.

Like an XHTML, SVG, and RSS, XForms is also an XML-based language
written with the tags that can be identified by surrounding the angle brack-
ets (the XML purists perfer to call these elements). Learning the XForms is
largely a matter of understanding what an individual elements do, as well as
how do they interrelate. XForms provides a more elements for forms than
authors might be accustomed to. As a result, several tasks that would have
otherwise required complicated scripting can be accomplished declaratively,
just by putting a right elements in the place.

FEATURES OF XFORMS

●● XForms are the successor of HTML forms

Forms are an important part of many Web applications today. An HTML
form makes it possible for Web applications to accept input from a user.

XML Basics_Ch15_2pp.indd 515 8/7/2020 2:55:53 PM

516 • XML Basics

Today, ten years after HTML forms became a part of the HTML stan-
dard, Web users do complex transactions that are starting to exceed the lim-
itations of standard HTML forms.

XForms provides a richer, more secure, and device-independent way of
handling Web input. We should expect future Web solutions to demand the
use of XForms-enabled browsers (all future browsers should support XForms).

●● XForms separate data from presentation

XForms uses XML for data definition and HTML or XHTML for data
display. XForms separates the data logic of a form from its presentation. This
way, the XForms data can be defined independently of how the end-user will
interact with the application.

●● XForms uses XML to define form data

With XForms, the rules for describing and validating data are expressed
in XML.

●● XForms uses XML to store and transport data

With XForms, the data displayed in a form are stored in an XML docu-
ment, and the data submitted from the form, are transported over the internet
using XML.

The data content is coded in, and transported as Unicode bytes.

●● XForms is device independent

Separating the data from the presentation makes XForms device-
independent because the data model can be used for all devices. The pre-
sentation can be customized for different user interfaces, like mobile phones,
handheld devices, and Braille readers for the blind.

Since XForms is device independent and based on XML, it is also possible
to add XForms elements directly into other XML applications like VoiceXML
(speaking Web data), WML (Wireless Markup Language), and SVG (Scalable
Vector Graphics).

PARTS OF XFORMS

Structurally, the form can be throught of having two parts: a specification
of what it must do and a specification of how it must look. In the XForms
these two parts are called the XForms Model and the XForms User Interface
respectively.

XML Basics_Ch15_2pp.indd 516 8/7/2020 2:55:53 PM

Xforms • 517

1.	 The XForms Model

The XForms model defines a template for the data to be collected from
a form.

The XForms Framework

The purpose of an HTML form is to collect data. XForms has the same
purpose.

With XForms, input data is described in two different parts:

●● The XForm model—defines what the form is, what it should do, what
data it contains

●● The XForm user interface—defines the input fields and how they should
be displayed

The XForms model describes the data. The XForms model defines a data
model inside a model element:

<model>

 <instance>

 <person>

 <fname/>

 <lname/>

 </person>

 </instance>

 <submission id="form1" action="submit.asp" method="get"/>

</model>

In the example above, the XForms model uses an instance element to
define the XML-template for the data to be collected, and a submission ele-
ment to describe how to submit the data.

The XForms model does not say anything about the visual part of the
form (the user interface).

The Instance Element

The instance element defines the data to be collected. XForms is always col-
lecting data for an XML document. The instance element in the XForms
model defines the XML document. In the example above, the “data instance”
(the XML document) the form is collecting data for looks like this:

<person>

 <fname/>

 <lname/>

</person>

XML Basics_Ch15_2pp.indd 517 8/7/2020 2:55:54 PM

518 • XML Basics

After collecting the data, the XML document might look like this:
<person>

 <fname>Kshitij</fname>

 <lname>Banzal</lname>

</person>

The Submission Element

The submission element describes how to submit the data. The submission
element defines a form and how it should be submitted. In the example above,
the id=“form1” identifies a form, the action=“submit.asp” defines the URL to
where the form should be submitted, and the method=“get” attribute defines
the method to use when submitting the form data.

2.	 The XForms User Interface

The XForms user interface defines the input fields and how they should be
displayed. The user interface elements are called controls (or input controls):

<input ref="fname"><label>First Name</label></input>

<input ref="lname"><label>Last Name</label></input>

<submit submission="form1"><label>Submit</label></submit>

In the example above, the two <input> elements define two input fields.
The ref=“fname” and ref=“lname” attributes point to the <fname> and
<lname> elements in the XForms model.

The <submit> element has a submission=“form1” attribute, which refers
to the <submission> element in the XForms model. A submit element is usu-
ally displayed as a button.

Notice the <label> elements in the example. With XForms, every input
control element has a required <label> element. This means that there must
be a container.

XForms is not designed to work alone. There is no such thing as an
XForms document. XForms has to run inside another XML document. It
could run inside XHTML 1.0, and it will run inside XHTML 2.0.

If we put it all together, the document will look like this:
 <xforms>

<model>

 <instance>

 <person>

 <fname/>

 <lname/>

XML Basics_Ch15_2pp.indd 518 8/7/2020 2:55:54 PM

Xforms • 519

 </person>

 </instance>

 <submission id="form1" action="submit.asp" method="get"/>

 </model>

 <input ref="fname"><label>First Name</label></input>

 <input ref="lname"><label>Last Name</label></input>

 <submit submission="form1"><label>Submit</label></submit>

</xforms>

And the page will display like this:

Top of Form
First Name ----------
Last Name ----------
Bottom of Form

THE FORM CONTROLS

Individual user interface elements in the XForms are called the form controls,
each of which are represented by the element. The two most commonly used
elements are input and submit.

The user interface elements in XForms are called XForms controls. The
most commonly used control elements are <input> and <submit>. Each con-
trol element has a ref attribute pointing back to the XForms data model.

Device Independent Controls

It is important to know that the XForms user interface does not describe
exactly how to display the XForms controls. Because XForms is platform- and
device-independent, XForms leaves it up to the browser to decide how to
display the controls.

This way XForms can be used for all types of devices, personal computers,
cell phones, and hand held computers. XForms is also the perfect solution for
defining user interfaces for people with disabilities.

The Input Control

The input control is the most common XForms control. It can hold one line
of text:

<input ref="name/fname"><label>First Name</label></input>

XML Basics_Ch15_2pp.indd 519 8/7/2020 2:55:54 PM

520 • XML Basics

Most often, the input control will display as an input field, like this:

First Name: ----------

The <label> Element

The <label> element is a mandatory child element for all XForms input controls.
The reason for this is to secure that the form can be used for all types of

devices (because labels can be treated in different ways). For voice software,
the label has to be spoken, and for some hand held computers, the label has
to follow the input, screen by screen.

The Secret Control

The secret control is designed to input passwords or other hidden information:
<secret ref="name/password"><label>Password:</label></secret>

Most often the secret control will display as an input field like this:

Password: ∗ ∗ ∗ ∗ ∗ ∗

The Textarea Control

The textarea control is used for multi-line input:
<textarea ref="message"><label>Message</label></textarea>

The textarea control might display as an input field like this:

Message:

The Submit Control
The submit control is used to submit the data:
<submit submission="form1"><label>Submit</label></submit>

The Trigger Control
The trigger control is used to trigger an action:
<trigger ref="calculate"><label>Calculate!</label></trigger>

The Output Control
The output control is used to display XForms data.The example below will

simply output the content of the <fname> and <lname> node in the XForms
XML document (XForms instance):

XML Basics_Ch15_2pp.indd 520 8/7/2020 2:55:54 PM

Xforms • 521

Example
<model>

 <instance>

 <person>

 <fname>Hege</fname>

 <lname>Refsnes</lname>

 </person>

 </instance>

</model>

<output ref="fname"/>

<output ref="lname"/>

The Upload Control
The upload control is designed for uploading files to a server:
<upload bind="name">

 <label>File to upload:</label>

 <filename bind="file"/>

 <mediatype bind="media"/>

</upload>

THE FORM CONTROLS LISTED

The list of the form controls shown in Table 15.1 helps you to focus on the
intent behind each of the form controls. After that, you will learn how to fine-
tune the presentation of the form controls.

Table 15.1  A Form Controls

Form Control Intent Examples

input Entry of free-form values The edit box, The voice
prompt

textarea Entry of the large
amounts of free-form text

An email body, Weblog
entry

secret Entry of sensitive
information

The password prompt

select1 Choice of one-and-only-
one item from the list

The radio buttons,
drop-list

(continued)

XML Basics_Ch15_2pp.indd 521 8/7/2020 2:55:54 PM

522 • XML Basics

Form Control Intent Examples

select Choice of one or more
items from the list

The checkbox group,
listbox

range Selecting a value from the
range

The slider, volume control

upload Selecting the data source The file picker, a digital
camera interface

trigger Activating the defined
process

The button, hyperlink

submit Activating submission of
a form

The submit button

output Display only of the form
data

The inline text

Every form control has a required label child (except output, where it’s
optional). This enforces the good design habit of always associating a label
with a form control. Other common child elements are help for a message at
the user’s request, hint for a message at the user agent’s request, and alert,
which is available for error messages.

THE XFORMS PROCESSOR

An XForms processor built into the browser is responsible for submitting the
XForms data to a target. The data can be submitted as XML and could look
something like this:

<person>

 <fname>Hege</fname>

 <lname>Refsnes</lname>

</person>

Or it can be submitted as text:
fname=Hege;lname=Refsnes

THE XFORMS NAMESPACE

The official namespace for XForms is: http://www.w3.org/2002/xforms

(continued)

XML Basics_Ch15_2pp.indd 522 8/7/2020 2:55:54 PM

Xforms • 523

If you want to use XForms in HTML (or XHTML 1.0), you should declare
all XForms elements with an XForms namespace. XForms is expected to be
a standard part of XHTML 2.0, eliminating the need for the XForms name-
space. This example uses the XForms namespace:

<html xmlns:xf="http://www.w3.org/2002/xforms">

 <head>

 <xf:model>

 <xf:instance>

 <person>

 <fname/>

 <lname/>

 </person>

 </xf:instance>

 <xf:submission id="form1" method="get" action="submit.asp"/>

 </xf:model>

</head>

<body>

<xf:input ref="fname"><xf:label>First Name</xf:label></xf:input>

<xf:input ref="lname"><xf:label>Last Name</xf:label></xf:input>

<xf:submit submission="form1"><xf:label>Submit</xf:label></xf:submit>

</body>

</html>

In the example above, we have used the xf: prefix for the XForms name-
space, but you are free to call the prefix anything you want.

XForms Example
You can test XForms with Internet Explorer (XForms will not work in IE

prior version 5). Just click on the “Try it Yourself ” button under the example.
<xforms>

<model>

 <instance>

 <person>

 <fname/>

 <lname/>

 </person>

 </instance>

 <submission id="form1" method="get"

 action="submit.asp"/>

XML Basics_Ch15_2pp.indd 523 8/7/2020 2:55:54 PM

524 • XML Basics

</model>

<input ref="fname">

<label>First Name</label>

</input>

<input ref="lname">

<label>Last Name</label>

</input>

<submit submission="form1">

<label>Submit</label>

</submit>

</xforms>

First Name ----------
Last Name ----------
Submit

XFORMS AND XPATH

XForms uses XPath to address data. This is called binding.

XForms Binding
XForms uses two sections to define data: the XForms model and the

XForms user interface.
The XForms model is an XML template (instance) for the data, and the

XForms user interface is a description of the input and display of the data.
XForms uses XPath to define the connection between the two sections.

This binding is defined differently above.

XPath
XPath is a W3C standard syntax for defining parts of XML documents.
XPath uses path expressions to identify nodes in an XML document.

These path expressions look much like the expressions you see when you work
with a computer file system. This XPath expression

/person/fname

addresses the fname node in the XML document:
<person>

 <fname>Hege</fname>

 <lname>Refsnes</lname>

</person>

XML Basics_Ch15_2pp.indd 524 8/7/2020 2:55:54 PM

Xforms • 525

Binding Using Ref
With an XForms model instance like this:
<instance>

 <person>

 <name>

 <fname/>

 <lname/>

 </name>

 </person>

</instance>

the XForms user interface can bind <input> elements using the ref attribute:
<input ref="name/fname"><label>First Name</label></input>

<input ref="name/lname"><label>Last Name</label></input>

The ref=“name/fname” attribute in the example above is an XPath expres-
sion pointing to the <fname> element in the instance model. This binds the
input field to the <fname> element in the XML document (instance) that is
collecting data from the form.

The XForms user interface could also use a reference like this:
<input ref="/person/name/fname"><label>First Name</label></input>

<input ref="/person/name/lname"><label>Last Name</label></input>

In the example above, the slash (/) at the beginning of the XPath expres-
sion indicates the root of the XML document.

Binding Using Bind
With an XForms model instance like this:
<model>

 <instance>

 <person>

 <name>

 <fname/>

 <lname/>

 </name>

 </person>

 </instance>

 <bind nodeset="/person/name/fname" id="firstname"/>

 <bind nodeset="/person/name/lname" id="lastname"/>

</model>

XML Basics_Ch15_2pp.indd 525 8/7/2020 2:55:54 PM

526 • XML Basics

the XForms user interface can bind <input> elements using the bind attribute:
<input bind="firstname"><label>First Name</label></input>

<input bind="lastname"><label>Last Name</label></input>

When you start using XForms in complex applications, you will find bind-
ing using bind to be a more flexible way to deal with multiple forms and mul-
tiple instance models.

XFORMS PROPERTIES

XForms uses properties to define data restrictions, types, and behaviors.
Examples
A required=“true()” property means that the input field is required (can-

not be empty on submit). A type=“decimal” property will only allow a decimal
value to be submitted. A calculate property can calculate a value.

Bind Properties to Data
XForms uses the bind element to bind XForms properties to XForms

data:
<model>

 <instance>

 <person>

 <fname/>

<lname/>

 </person>

 </instance>

 <bind nodeset="person/lname" required="true()"/>

</model>

In the example above, the <bind nodeset=“person/lname” required =
“true()”> specifies that the lname input field is required (cannot be empty on
submit).

XForms Properties Reference

Table 15.2  XForms Properties Description

Name Description

calculate Defines a calculation to be performed on the item

constraint Defines a constraint for the item

(continued)

XML Basics_Ch15_2pp.indd 526 8/7/2020 2:55:54 PM

Xforms • 527

Name Description

p3ptype Defines a P3P data type for the item

readonly Defines an edit restriction for the item (cannot be changed)

relevant Defines how relevant the data is (for display or submission)

required Defines that a data item is required (cannot be blank)

type Defines the data type for the item

XFORMS ACTIONS

XForms actions handle response to events.

The message Element
The XForms message element defines a message to be displayed in the

XForms user interface. Look at this simplified example:
<input ref="fname">

 <label>First Name</label>

 <message level="ephemeral" event="DOMFocusIn">

 Input Your First Name

 </message>

</input>

In the example above, the message “Input Your First Name” should be
displayed as a tool tip when the input field gets focus.

The event="DomFocusIn" defines the event to trigger the message.

The level="ephemeral" defines the message to be displayed as a tool tip.

Other values for the level attribute are modal and modeless, defining dif-
ferent types of message boxes.

The setvalue Element
The XForms setvalue element defines a value to be set in response to an

event. Look at this simplified example:
<input ref="size">

 <label>Size</label>

 <setvalue value="50" event="xforms-ready"/>

</input>

In the example above, the value 50 will be stored in the “size” input field
when the form opens.

XML Basics_Ch15_2pp.indd 527 8/7/2020 2:55:54 PM

528 • XML Basics

QUESTIONS FOR DISCUSSION

1.	 How you define data types in XForms?

2.	 How do you bind datatypes in XForms?

3.	 How do you perform actions in XForms?

4.	 How do you define functions in XForms?

5.	 Will XForms work on PDAs and mobile phones?

6.	 What servers (currently) support XForms?

7.	 Who is backing XForms?

8.	 Is XForms more complicated than HTML forms?

9.	 What can we do with XForms that we can’t do with old HTML forms?

10.	 What are the advantages of XForms?

11.	 How do you define data types in XForms?

12.	 How do you perform selection control in XForms?

13.	 How do you define controls in XForms?

14.	 What is binding in XForms?

15.	 How do you define the XForms Namespace?

16.	 How do you define the XForms Processor?

17.	 How do you use both XForms Model and XForms User Interface
together?

18.	 How do you define the XForms User Interface?

19.	 How do you define the XForms model?

20.	 How do you define the XForms Framework?

XML Basics_Ch15_2pp.indd 528 8/7/2020 2:55:54 PM

C H A P T E R 16
XSL-FO

INTRODUCTION TO XSL-FO

XSL-FO is about formatting XML data for output. It is a language for for-
matting XML data. XSL-FO stands for Extensible Stylesheet Language
Formatting Objects. It is based on XML. XSL-FO is now formally named
XSL. XSL-FO describes the formatting of XML data for output to screen,
paper, or other media. XSL-FO is formally named XSL.

XSL-FO is an XML-based markup language that describes the format-
ting of XML data for output to the screen. After several years of develop-
ment, Extensible Stylesheet Language (XSL) Version 1.0 became a W3C
Recommendation on October 15, 2001. It enhances the flexibility of the XML
(Extensible Markup Language) standard. XSL draws on earlier specifications,
including CSS and DSSSL.

XSL-FO is an XML language designed for describing all visual aspects of
paginated documents. HTML is another language for specifying formatting
semantics, but is more for documents that are presented on screen and less for
materials created for printing because it does not support pagination elements
like headers and footers, page size specifications, and footnotes. XSL-FO is
part of the XSL language family:

●● XSLT: (XSL Transformations) a language for transforming XML
●● XSL-FO: (XSL Formatting Objects) a language that can be used in XSLT

for the purpose of “presenting” the XML
●● XPATH: A syntax for addressing parts of a document, a syntax which is

also significant in XPointer and to the emerging XQuery, an XML query
language

XML Basics_Ch16_2pp.indd 529 8/7/2020 2:57:00 PM

530 • XML Basics

XSL Formatting Objects is a W3C standard used by XF Rendering Server
2008 to produce print ready documents in PDF, AFP, Postscript, TIFF, and
other formats.

XF Designer can edit XSL-FO documents like an HTML editor can edit
HTML pages.

Figure 16.1 depicts the steps required to produce a PDF document (or
any other supported output format) using XSL.

XML Data

XSL Template

XSL
Transformation XSL-FO

Document

XF Rendering
Server

FIGURE 16.1  Steps required to produce a PDF document using XSL

As you can see, the XML data is transformed together with the XSL
stylesheet to produce an XSL-FO document, and the document is then con-
verted to PDF.

XSL-FO DOCUMENTS

XSL-FO documents are XML files with output information. XSL-FO docu-
ments are stored in files with a .fo or a .fob file extension. You can also store
XSL-FO documents with an .xml extension (to make them more accessible to
XML editors).

XSL-FO documents contain two required sections. The first section
details a list of named page layouts. The second section is a list of document
data, with markup, that uses the various page layouts to determine how the
content fills the various document pages.

The properties of the page are define by the page layout. They can define
the directions for the flow of text, so as to match the conventions for the lan-
guage in question. They define the size of a page as well as the margins of that
page. Most important that they can define sequences of pages that allow for
effects where the odd and even pages look different. Example one can define

XML Basics_Ch16_2pp.indd 530 8/7/2020 2:57:01 PM

XSL-FO • 531

a page layout sequence that gives extra space to the inner margins for printing
purposes; this allows more space to be given to the margin where the book
will be bound.

The document data portion is brake up into a sequence of flow, where
each flow is attached to a page layout. The flows contain a list of blocks and
each contain a list of text data, inline markup elements, or a combination of
the two. Content may also be added to the margins of the document, for page
numbers, chapter headings and the like.

Blocks and inline element function are the same way as for CSS, though
some of the rules for padding and margins differ between CSS and FO. The
direction, relative to the page orientation, for the progression of inlines and
blocks can be fully specified, thus allowing FO documents to function under
languages that are read different from English. The language of the FO speci-
fication, unlike that of CSS 2.1, uses direction-neutral terms like start and end
rather than left and right when describing these directions.

Comparisons are often made between XSL-FO and CSS, and for the most
part they are valid. One critical distinction between the two technologies is
that CSS styles are always attached to an existing document tree, whereas
XSL-FO establishes its own document structure. In other words, you apply
CSS styles to XML data, whereas XSL-FO represents a complete merger of
data and styles. In practice, XML data is typically still maintained separately
from its XSLT stylesheet, which is then used to combine the data and XSL-FO
styles into a complete XSL-FO document.

XSL-FO’s basic content markup is derived from CSS and its cascading
rules. Many attributes in XSL-FO propagate into the child elements unless
explicitly overridden.

XSL-FO DOCUMENT STRUCTURE

XSL Formatting Objects documents are XML documents but they do not
have to conform to any schema. Instead, they conform to a syntax defined in
the XSL-FO specification. XSL-FO documents have a structure like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>

 <fo:simple-page-master master-name="A4">

 <!-- Page template goes here -->

XML Basics_Ch16_2pp.indd 531 8/7/2020 2:57:01 PM

532 • XML Basics

 </fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference=”A4”>

 <!-- Page content goes here -->

</fo:page-sequence>

</fo:root>

Explanation

XSL-FO documents are XML documents and must always start with an XML
declaration:

<?xml version="1.0" encoding="ISO-8859-1"?>

The <fo:root> element is the root element of XSL-FO documents. The
root element also declares the namespace for XSL-FO:

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <!-- The full XSL-FO document goes here -->

</fo:root>

The <fo:layout-master-set> element contains one or more page templates:
<fo:layout-master-set>

 <!-- All page templates go here -->

</fo:layout-master-set>

Each <fo:simple-page-master> element contains a single page template.
Each template must have a unique name (master-name):

<fo:simple-page-master master-name="A4">

 <!-- One page template goes here -->

</fo:simple-page-master>

One or more <fo:page-sequence> elements describe the page contents.
The master-reference attribute refers to the simple-page-master template
with the same name:

<fo:page-sequence master-reference=”A4”>

 <!-- Page content goes here -->

</fo:page-sequence>

The master-reference “A4” does not actually describe a predefined page
format. It is just a name. You can use any name, like “MyPage” or “MyTem-
plate.” XSL-FO uses rectangular boxes (areas) to display output.

XML Basics_Ch16_2pp.indd 532 8/7/2020 2:57:01 PM

XSL-FO • 533

Example: 1

<?xml version="1.0" encoding="ISO-8859-1"?><fo:

root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>

<fo:simple-page-master master-name="A4">

<!-- Page template goes here -->

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-reference="A4">

<!-- Page content goes here -->

</fo:page-sequence></fo:root>

Explanation

XSL-FO documents always start with an XML declaration:
<?xml version="1.0" encoding="ISO-8859-1"?>

The <fo:root> element is the root element of XSL-FO documents.
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<!-- The full XSL-FO document goes here -->

</fo:root>

<fo:layout-master-set> tag element contains one or more page
templates

<fo:layout-master-set>

<!-- All page templates go here -->

</fo:layout-master-set>

Each <fo:simple-page-master> tag element contains a single page tem-
plate. Each template must have a unique name:

<fo:simple-page-master master-name="A4">

<!-- One page template goes here -->

</fo:simple-page-master>

One or more <fo:page-sequence> tag describe the page contents. The
master-reference attribute refers to the simple-page-master template with
the same name:

<fo:page-sequence master-reference="A4">

<!-- Page content goes here -->

</fo:page-sequence>

XML Basics_Ch16_2pp.indd 533 8/7/2020 2:57:01 PM

534 • XML Basics

Example: 2

<?xml version="1.0" encoding="iso-8859-1"?>➊
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">➋
 <fo:layout-master-set>➌
 <fo:simple-page-master master-name="my-page">

 <fo:region-body margin="1in"/>

 </fo:simple-page-master>

 </fo:layout-master-set>

<fo:page-sequence master-reference="my-page">➍
 <fo:flow flow-name="xsl-region-body">➎
 <fo:block>Hello, world!</fo:block>➏
 </fo:flow>

 </fo:page-sequence>

</fo:root>

Explanation

1.	 This is an XML declaration. XSL FO (XSLFO) belongs to XML family, so
this is obligatory.

2.	 Root element. The obligatory namespace attribute declares the XSLFO
namespace.

3.	 Layout master set. This element contains one or more declarations of
page masters and page sequence masters—elements that define layouts
of single pages and page sequences. In the example, we defined a rudi-
mentary page master with only one area in it. The area should have a 1
inch margin from all sides of the page.

4.	 Page sequence. Pages in the document are grouped into sequences; each
sequence starts from a new page. The master-reference attribute selects
an appropriate layout scheme from the masters listed inside <fo:layout-
master-set>. Setting the master-reference to a page master name means
that all pages in this sequence are formatted using this page master.

5.	 Flow. This is the container object for all user text in the document. Eve-
rything contained in the flow is formatted into regions on pages gener-
ated inside the page sequence. The flow name links the flow to a specific
region on the page (defined in the page master); in our example, it is the
body region.

XML Basics_Ch16_2pp.indd 534 8/7/2020 2:57:01 PM

XSL-FO • 535

6.	 Block. This object roughly corresponds to <DIV> in HTML and nor-
mally includes a paragraph of text. We need it here because text cannot
be placed directly into a flow.

FONT AND TEXT ATTRIBUTES

Let us now enrich the text with character-level formatting. Several proper-
ties control font styles—family, size, color, and weight. Let’s look at some
examples:

<fo:block font-family="Times" font-size="14pt">

Hello, world!

</fo:block>

The font family is Times, and the font size is 14 points.
<fo:block font-family="Times" font-size="14pt" font-style="italic">

 <fo:inline color="red">H</fo:inline>ello,

 <fo:inline font-weight="bold">world!</fo:inline>

</fo:block>

Same as above, plus

●● the text is italicized (font-style=“italic”)
●● the first letter of the first word is written in red (color=“red”)
●● the second word is written in bold (font-weight=“bold”)

Note a new formatting object—<fo:inline>. It corresponds to in
HTML, and ascribes formatting to chunks of text within a block.

Font properties are inheritable. It means that, once defined for a for-
matting object, they apply to all formatting objects inside it. That’s why the
first inline sequence affects only the color of the font, leaving its family, size,
and slant unmodified. Inheritable properties can be put almost everywhere
on the formatting objects tree; as a rule, you specify default font for a docu-
ment by applying these properties to <fo:flow>, <fo:page-sequence> or even
<fo:root>.

To reduce typing, you can use a shorthand notation for setting font attri-
butes as a group. For example, the above example can be rewritten as follows:

<fo:block font="italic 14pt Times">

 <fo:inline color="red">H</fo:inline>ello,

 <fo:inline font-weight="bold">world!</fo:inline>

</fo:block>

XML Basics_Ch16_2pp.indd 535 8/7/2020 2:57:01 PM

536 • XML Basics

The font property has the following syntax:

[<style, weight, and/or variant>] <size>[/<line height>] <family>

It sets all mentioned attributes to specified values, and resets all other
font-related attributes to their default values, overriding inherited values. Be
careful when using this feature: font=“14pt Times” is not equivalent to a con-
junction of font-size=“14pt” and font-family=“Times”!

Let’s now build a full XSL-FO (XSL-FO) example with the font attributes
introduced above:

<?xml version="1.0" encoding="iso-8859-1"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>

 <fo:simple-page-master master-name="my-page">

 <fo:region-body margin="1in"/>

 </fo:simple-page-master>

 </fo:layout-master-set>

 <fo:page-sequence master-reference="my-page">

 <fo:flow flow-name="xsl-region-body" font="12pt Times"➊>
 <fo:block font="italic 24pt Helvetica">

 <fo:inline color="red">F</fo:inline>ont

 <fo:inline color="red">A</fo:inline>ttributes

 </fo:block>

 <fo:block>➋

The inherited font for this block is 12pt Times.
</fo:block>

<fo:block>

Font attributes:
<fo:inline color="red">colored</fo:inline>,

<fo:inline font-weight="bold">bold</fo:inline>,

<fo:inline font-style="italic">italic</fo:inline>,

<fo:inline font-size="75%">small</fo:inline>,

<fo:inline font-size="133%">large</fo:inline>.

</fo:block>

<fo:block>

Text attributes: ➌
 <fo:inline text-decoration="underline">underlined</fo:inline>,

 <fo:inline letter-spacing="3pt"> expanded </fo:inline>,

XML Basics_Ch16_2pp.indd 536 8/7/2020 2:57:01 PM

XSL-FO • 537

 <fo:inline word-spacing="6pt">

 text with extra spacing between words

 </fo:inline>,

 <fo:inline text-transform="uppercase">all capitals</fo:inline>,

 <fo:inline text-transform="capitalize">capitalized</fo:inline>,

 text with <fo:inline baseline-shift="sub"

 font-size="smaller">subscripts</fo:inline>

 and <fo:inline baseline-shift="super"

 font-size="smaller">superscripts</fo:inline>.

 </fo:block>

 </fo:flow>

 </fo:page-sequence>

</fo:root>

1 A common font for the whole flow is specified.

2 This block inherits font attributes from the flow.

3 In this block, we introduce several other text-level properties:
•	 text decoration
•	 underline/overline/strikethrough
•	 letter and word spacing
•	 a positive value expands text, a negative value condenses it
•	 text transformations
•	 upper/lower case, capitalize
•	 shifted text
•	 subscripts and superscripts

XSL-FO AREAS

The XSL formatting model defines a number of rectangular areas (boxes) to
display output. All output (text, pictures, etc.) will be formatted into these
boxes and then displayed or printed to a target media. We now take a closer
look at the following areas:

●● Pages
●● Regions

XML Basics_Ch16_2pp.indd 537 8/7/2020 2:57:01 PM

538 • XML Basics

●● Block areas
●● Line areas
●● Inline areas

XSL-FO Pages

XSL-FO output is formatted into pages. Printed output normally goes into
many separate pages. Browser output often goes into one long page.

XSL-FO Pages contain Regions.

XSL-FO Regions

Each XSL-FO Page contains a number of regions:
●● region-body (the body of the page)
●● region-before (the header of the page)
●● region-after (the footer of the page)
●● region-start (the left sidebar)
●● region-end (the right sidebar)
●● XSL-FO regions contain Block areas.

XSL-FO Block Areas

XSL-FO Block areas define small block elements (the ones that normally
starts with a new line) like paragraphs, tables, and lists.

XSL-FO Block areas can contain other Block areas, but most often they
contain Line areas.

XSL-FO Line Areas

XSL-FO Line areas define text lines inside Block areas. XSL-FO Line areas
contain Inline areas.

XSL-FO Inline Areas

XSL-FO Inline areas define text inside Lines (bullets, single character, graph-
ics, and more).

XSL-FO OUTPUT

XSL-FO defines output inside elements.

XML Basics_Ch16_2pp.indd 538 8/7/2020 2:57:01 PM

XSL-FO • 539

XSL-FO Block, Flow, and Page

“Blocks” of content “Flow” into “Pages” and are transferred to output media.
XSL-FO output is normally nested inside <fo:block> elements, <fo:flow>

elements, and <fo:page-sequence> elements:
<fo:page-sequence>

<fo:flow flow-name="xsl-region-body">

<fo:block>

<!-- Output goes here -->

</fo:block>

</fo:flow>

</fo:page-sequence>

XSL-FO Flow

XSL-FO pages are filled with data from <fo:flow> elements.
XSL-FO pages are filled with data from <fo:flow> elements. XSL-FO

pages are filled with content from the <fo:flow> element. The <fo:flow> ele-
ment contains all the elements to be printed to the page. When the page is
full, the same page master will be used over (and over) again until all the text
is printed.

The <fo:flow> element has a “flow-name” attribute. The value of the
flow-name attribute defines where the content of the <fo:flow> element will
go. The legal values are

●● xsl-region-body (into the region-body)
●● xsl-region-before (into the region-before)
●● xsl-region-after (into the region-after)
●● xsl-region-start (into the region-start)
●● xsl-region-end (into the region-end)

PAGE LAYOUT

XSL-FO Page Sequences

XSL-FO uses <fo:page-sequence> tag to define output pages. Each Page out-
put refers to a page master which defines the layout. Each output page has
a <fo:flow> tag defining the output. Each output is displayed in a sequence.

XML Basics_Ch16_2pp.indd 539 8/7/2020 2:57:01 PM

540 • XML Basics

Page Sequence Masters

So far, we have used only single page masters in examples. In this section,
more complex cases are analyzed. To start, let’s design a page sequence with
two page masters: one for the first page, the other one for the rest of the
document.

<?xml version="1.0" encoding="iso-8859-1"?>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>

 <fo:simple-page-master master-name="first-page">

 <fo:region-body margin="1in" border="thin silver ridge" ➊
 padding="6pt"/>

 </fo:simple-page-master>

<fo:simple-page-master master-name="all-pages">

 <fo:region-body margin="1in"/>

</fo:simple-page-master>

<fo:page-sequence-master master-name="my-sequence">➋
 <fo:single-page-master-reference master-reference="first-page"/>➌
 <fo:repeatable-page-master-reference master-reference="all-pages"/>➍
 </fo:page-sequence-master>

</fo:layout-master-set>

<fo:page-sequence master-reference="my-sequence"➎>
 <fo:flow flow-name="xsl-region-body" font="72pt Times">

 <fo:block space-before="2in" space-after="2in">➏

First Block

</fo:block>

<fo:block break-before="page" space-before="2in" space-after="2in">➐

Second Block

</fo:block>

<fo:block break-before="page" space-before="2in" space-after="2in">

Third Block

 </fo:block>

 </fo:flow>

 </fo:page-sequence>

</fo:root>

XML Basics_Ch16_2pp.indd 540 8/7/2020 2:57:01 PM

XSL-FO • 541

Explanation

1 In XSL-FO, you can specify borders, padding, and background on regions
in exactly the same way as you do it on blocks. The first page in this
example has a border around it, while the others remain borderless.

2 The page sequence master defines the chain of page masters to use for a
page sequence.

3 <fo:single-page-master-reference> inserts a single page master in the
chain.

4 <fo:repeatable-page-master-reference> makes the specified page masters
repeat up to the end of the chain.

5 Note that master-reference attribute of a <fo:page-sequence> can refer
to either <fo:page-sequence-master> or <fo:simple-page-master>. In the
latter, all pages generated by this <fo:page-sequence> use the same page
master.

6, 7 Spaces are not inheritable: you cannot specify them on a surrounding
block. There’s no alternative to specifying them explicitly on every block
involved.

Where To Flow?

The <fo:flow> tag consist “flow-name” attribute. The value of the flow-name
attribute describes where the content of the <fo:flow> element will go. These
values are legal:

●● xsl-region-body
●● xsl-region-before
●● xsl-region-after
●● xsl-region-start
●● xsl-region-end

XSL-FO Pages

To define the layout of pages, XSL-FO uses page templates called “Page
Masters.”

Page Templates

To define the layout of pages, XSL-FO uses page templates called “Page
Masters” and each template must have a unique name. In the following

XML Basics_Ch16_2pp.indd 541 8/7/2020 2:57:01 PM

542 • XML Basics

example, three <fo:simple-page-master> elements define three different
templates and each template has a different name.

The first template is called “intro” and it is used for the introduction pages.
The second and third templates are called “left” and “right” and used for

even and odd page numbers.
<fo:simple-page-master master-name="intro">

<fo:region-body margin="5in" />

</fo:simple-page-master>

<fo:simple-page-master master-name="left">

<fo:region-body margin-left="2in" margin-right="3in" />

</fo:simple-page-master>

<fo:simple-page-master master-name="right">

<fo:region-body margin-left="3in" margin-right="2in" />

</fo:simple-page-master>

In the example above, three <fo:simple-page-master> elements define
three different templates. Each template (page-master) has a different name.

The first template is called “intro.” It could be used as a template for
the introduction pages. The second and third templates are called “left” and
“right.” They could be used as templates for even and odd page numbers.

Page Size

To define the page size of a page XSL-FO page size, use the following
attributes:

●● page-width defines the width of a page
●● page-height defines the height of a page

XSL-FO Page Margins

To define the margins of a page, XSL-FO page margins, use the following
attributes:

●● margin-top
●● margin-bottom
●● margin-left
●● margin-right
●● margin defines all four margins

XML Basics_Ch16_2pp.indd 542 8/7/2020 2:57:01 PM

XSL-FO • 543

XSL-FO Page Regions

To define the regions of a page, XSL-FO page regions use the following
attributes:

●● region-body: For the body region
●● region-before: For the top region
●● region-after: For the bottom region
●● region-start: For the left region
●● region-end: For the right region

The region-start, region-end, region-before, and region-after are part of
the body region. To avoid text in the body region and to overwrite text in these
regions, the body region must have margins set as the minimum size of these
regions.

Margin Top

M
a

r
g

i
n

REGION BEFORE

R
E

G
I
O

N

S
T
A

R
T

REGION BODY

REGION AFTER

M
a

r
g
i

n

R
i
g

h
t

Margin Bottom

L

e
f

t

R

E
G

I
O
N

E
N

D

FIGURE 16.2  XSL-FO Page

XSL-FO BLOCKS

XSL-FO output goes into blocks. This output is normally nested inside
<fo:block> elements. “Blocks” of content “Flow” into “Pages” of the output

XML Basics_Ch16_2pp.indd 543 8/7/2020 2:57:01 PM

544 • XML Basics

media. XSL-FO output is normally nested inside <fo:block> elements, nested
inside <fo:flow> elements, nested inside <fo:page-sequence> elements:

Syntax

<fo:page-sequence>

<fo:flow flow-name="xsl-region-body">

<fo:block>

<!-- Output goes here -->

</fo:block>

</fo:flow>

</fo:page-sequence>

Block Area Attributes

Blocks are sequences of output in rectangular boxes.
Since block areas are rectangular boxes, they share many common area

properties:
<fo:block

border-width="1mm">

This block contains a one millimeter border around it.
</fo:block>

Rectangular block area boxes share many common area properties:

●● space before
●● space after
●● margin
●● border
●● padding
●● font-weight
●● font-style
●● font-size
●● font-variant

Text attributes:
●● text-align
●● text-align-last

XML Basics_Ch16_2pp.indd 544 8/7/2020 2:57:02 PM

XSL-FO • 545

●● text-indent
●● start-indent
●● end-indent
●● wrap-option (defines word wrap)
●● break-before (defines page breaks)
●● break-after (defines page breaks)
●● reference-orientation (defines text rotation in 90" increments)
●● XSL-FO Lists

STYLING TEXT IN XSL-FO

Finally, it’s time to see where XSL-FO has some similarity with other tech-
nologies that you may be more familiar with. XSL-FO’s text styling properties
are very similar to those used in CSS. In XSL-FO, you set the font specifics for
text using attributes on the <fo:block> and <fo:inline> tags. More specifically,
the font-size, font-family, and font-weight attributes can all be used to set the
font for a block or inline content. These attributes are set just like their CSS
counterparts.

The following is an example of setting the font size and font family for a
block in XSL-FO:

<fo:block text-align="end" font-size="10pt" font-family="serif"

background-color="black" color="white">

Great Sporting Events

</fo:block>

In this example, the text content Great Sporting Events is styled using a
10-point, serif font. Furthermore, the alignment of the text is set to end via
the text-align attribute, which is equivalent to right-alignment in CSS. There
is no concept of left or right in XSL-FO. Instead, you use start and end when
referring to the alignment of content that you might otherwise think of as
being left-aligned or right-aligned. Of course, center is used in XSL-FO when
it comes to alignment.

The background-color and color attributes in this code are direct
carry-overs from CSS. You can use them just as you would the similarly named
CSS styles.

XML Basics_Ch16_2pp.indd 545 8/7/2020 2:57:02 PM

546 • XML Basics

CONTROLLING SPACING AND BORDERS

There are a few spacing and border properties that you can set when it comes
to XSL-FO content. The space-before and space-after attributes are used
to control the spacing before and after a block. Because we’re talking about
blocks, the spacing applies vertically to the top (space-before) and bottom
(space-after) of the block. In this way, the space-before and space-after attrib-
utes work sort of like top and bottom margins, except they apply outside of
the margins.

The following is an example of setting the space after a block so that the
next content is spaced a little further down the page:

<fo:block font-size="18pt" font-family="sans-serif" space-after="5pt"

background-color="black" color="white" text-align="center" padding-top="0pt">

Welcome to the Computer Center

</fo:block>

Notice in this code that the padding-top attribute is set, which controls
the padding along the top of the block. All of the standard CSS margin and
padding styles are available for you in XSL-FO as attributes of the <fo:block>
tag. These attributes include margin, margin-left, margin-right, margin-top,
margin-bottom, padding, padding-left, padding-right, padding-top, and
padding-bottom. There are also several familiar border attributes that you
can use with blocks: border, border-left, border-right, border-top, and bor-
der-bottom.

MORE COMPLEX STRUCTURES

Lists

Lists in XSL-FO are much more than just a bulleted sequence of paragraphs:
they form a general-purpose mechanism to align two blocks adjacent to each
other. They may be used to format ordinary lists, footnotes, image lists, and
even to produce some table-like layout patterns.

A list is created by a <fo:list-block> object. Inside it, there are one or
more <fo:list-item> elements. Each list item contains one <fo:list-item-label>
followed by one <fo:list-item-body>. These two elements contain blocks that
are aligned vertically and placed side-by-side. Let’s start with an ordinary
bulleted list:

XML Basics_Ch16_2pp.indd 546 8/7/2020 2:57:02 PM

XSL-FO • 547

<fo:list-block provisional-distance-between-starts="18pt"➊
 provisional-label-separation="3pt"➋>
 <fo:list-item>

 <fo:list-item-label end-indent="label-end()"➌)>
 <fo:block>•➍</fo:block>
 </fo:list-item-label>

 <fo:list-item-body start-indent="body-start()"➎>
 <fo:block>First item</fo:block>

 </fo:list-item-body>

 </fo:list-item>

 <fo:list-item>

 <fo:list-item-label end-indent="label-end()">

 <fo:block>•</fo:block>

 </fo:list-item-label>

 <fo:list-item-body start-indent="body-start()">

 <fo:block>Second item</fo:block>

 </fo:list-item-body>

 </fo:list-item>

</fo:list-block>

1 This property specifies how far the left side of the label is from the left side
of the body.

2 This property specifies the separation between the right side of the label
and the left edge of the body.

3 The end-indent attribute specifies the offset of the right edge of <fo:list-
item-label> from the right edge of the reference area (i.e., page). A
special label-end() function sets it to the value calculated from provisional-
distance- between-starts and provisional-label-separation values. However,
this is not a default value: you have to specify end-indent=“label-end()” on
each <fo:list-item-label> in the list. Alternatively, you can use an explicit
value of end-indent.

4 This is a Unicode for a round bullet.

5 The start-indent attribute specifies the left offset of the <fo:list-item-body>
from the left. A special body-start() function sets it to the value calculated
from provisional-distance-between-starts. Like for the <fo:list- item-label>,
this is not a default value; don’t forget to specify it on each <fo:list-item-
body>.

XML Basics_Ch16_2pp.indd 547 8/7/2020 2:57:02 PM

548 • XML Basics

XSL-FO List Blocks

To create a lists there are four XSL-FO objects:

●● o:list-block (it contains the whole list)
●● fo:list-item (it contains each item in the list)
●● fo:list-item-label (it contains the label for the list-item like number and

character)
●● fo:list-item-body (contains the body of the list-item—typically one or

more <fo:block> objects)

●● provisional-distance-between-starts
●● provisional-label-separation
●● start-indent for list-item-label
●● start-indent for list-item-body
●● end-indent for list-item-label
●● end-indent for list-item-body

<xsl:template match="ol">

<fo:list-block

space-before="0.25em" space-after="0.25em">

<xsl:apply-templates/>

</fo:list-block>

</xsl:template>

<xsl:template match="ol/li">

<fo:list-item space-after="0.5ex">

<fo:list-item-label start-indent="1em">

XML Basics_Ch16_2pp.indd 548 8/7/2020 2:57:02 PM

XSL-FO • 549

<fo:block>

<xsl:number/>.

</fo:block>

</fo:list-item-label>

<fo:list-item-body>

<fo:block>

<xsl:apply-templates/>

</fo:block>

</fo:list-item-body>

</fo:list-item>

</xsl:template>

XSL-FO Lists

XSL-FO uses the <fo:list-block> element to define lists.

XSL-FO Lists Blocks

There are four XSL-FO objects used to create lists.

●● fo:list-block (contains the whole list)
●● fo:list-item (contains each item in the list)
●● fo:list-item-label (contains the label for the list-item—typically an

<fo:block> containing a number and character)
●● fo:list-item-body (contains the content/body of the list-item—typically

one or more <fo:block> objects)

An XSL-FO list example is as follows:
<fo:list-block>

<fo:list-item>

 <fo:list-item-label>

 <fo:block>*</fo:block>

 </fo:list-item-label>

 <fo:list-item-body>

 <fo:block>Volvo</fo:block>

 </fo:list-item-body>

</fo:list-item>

<fo:list-item>

 <fo:list-item-label>

 <fo:block>*</fo:block>

XML Basics_Ch16_2pp.indd 549 8/7/2020 2:57:02 PM

550 • XML Basics

 </fo:list-item-label>

 <fo:list-item-body>

 <fo:block>Saab</fo:block>

 </fo:list-item-body>

</fo:list-item>

</fo:list-block>

The output from the code above would be something like this:

●● Volvo
●● Saab

TABLES

Tables in XSL-FO resemble HTML ones: they are made of cells grouped into
rows; rows are further grouped into row groups—table header, table footer,
and table bodies (one or more). There are also column descriptors.

Tables are described in XSL-FO using the fo:table element. A table can
have a header (fo:tableheader), a body (fo:table-body), and a footer (fo:table-
footer). Each of these groups contain rows (fo:table-row), which in turn con-
tain cells (fo:table-cell). The columns are described using the fo:table-column
elements.

A basic 2x2 table is as follows:
<fo:table border="0.5pt solid black" text-align="center">

 <fo:table-body>

 <fo:table-row>

 <fo:table-cell padding="6pt" border="0.5pt solid black">➊
 <fo:block> upper left </fo:block>

 </fo:table-cell>

 <fo:table-cell padding="6pt" border="0.5pt solid black">

 <fo:block> upper right </fo:block>

 </fo:table-cell>

 </fo:table-row>

 <fo:table-row>

 <fo:table-cell padding="6pt" border="0.5pt solid black">

 <fo:block> lower left </fo:block>

 </fo:table-cell>

 <fo:table-cell padding="6pt" border="0.5pt solid black">

 <fo:block> lower right </fo:block>

XML Basics_Ch16_2pp.indd 550 8/7/2020 2:57:02 PM

XSL-FO • 551

 </fo:table-cell>

 </fo:table-row>

 </fo:table-body>

</fo:table>

Table Columns

A column can have a proportional width or a fixed width. A fixed width
includes the length units (in, pt, cm; for example<fo:table-column
column-width=“3in”/>).

A proportional width is expressed via the proportional-column-width
function (for example, <fo:table-column column-width= “proportional-
column-width(20)”/>) or by using a percentage sign (<fo:table-column col-
umn-width=“20%”/>). There is a third way to specify a column width: by
omitting the column-width attribute, the column will size itself automatically,
depending on its content.

A table can mix fixed, proportional, and automatic columns. When a table
contains only proportional columns, XF will resize them even if the sum of
percentages is not 100.

For example:
<fo:table>

<fo:table-column column-width="50%"/>

<fo:table-column column-width="50%"/>

..

</fo:table>

And
<fo:table>

<fo:table-column column-width="proportional-column-width(1)"/>

<fo:table-column column-width="proportional-column-width(1)"/>

..

</fo:table>

And
<fo:table>

<fo:table-column column-width="proportional-column-width(60)"/>

<fo:table-column column-width="proportional-column-width(60)"/>

..

</fo:table>

will produce the same result.

XML Basics_Ch16_2pp.indd 551 8/7/2020 2:57:02 PM

552 • XML Basics

XSL-FO OBJECTS

There are nine XSL-FO objects used to create tables:

●● fo:table-and-caption
●● fo:table
●● fo:table-caption
●● fo:table-column
●● fo:table-header
●● fo:table-footer
●● fo:table-body
●● fo:table-row
●● fo:table-cell

Example

The <fo:table-and-caption> element is used to define a table. It contains a
<fo:table> and an optional <fo:caption> element.

The <fo:table> element contains optional element like <fo:table-
column>, <fo:table-header>, <fo:table-body>, and <fo:table-footer>. Each of
these elements has one or more <fo:table-row> elements, with one or more
<fo:table-cell> elements:

<xsl:template match="ol">

<fo:list-block

space-before="0.25em" space-after="0.25em">

<xsl:apply-templates/>

</fo:list-block>

</xsl:template>

<xsl:template match="ol/li">

<fo:list-item space-after="0.5ex">

<fo:list-item-label start-indent="1em">

<fo:block>

<xsl:number/>.

</fo:block>

</fo:list-item-label>

<fo:list-item-body>

<fo:block>

<xsl:apply-templates/>

</fo:block>

</fo:list-item-body>

XML Basics_Ch16_2pp.indd 552 8/7/2020 2:57:02 PM

XSL-FO • 553

</fo:list-item>

</xsl:template>

Output

Car Price

Volve $50000

SAAB $48000

GRAPHICS

There is a special inline element for including graphics into XSL-FO—
<fo:external-graphic>. The source image is specified by the src attribute
whose value is a URI. XEP handles HTTP, FTP, data and filesystem resource
locators in URIs. An unqualified URI is treated as a path to a file in the local
file system; if the path is relative, it is calculated from the location of the
source XSL-FO document. Here’s an example:

<fo:block>

This text includes a picture:
<fo:external-graphic src="url('smile.gif')"➊
 content-height="1em"➋ content-width="1em"➌/>
</fo:block>

1. Note the url(‘…’) function-like wrapper around the file name: this is
required by the XSL 1.0 Recommendation. (XEP recognizes unwrapped
URLs, too).

2. In this example, the height and the width of the image are expressed in
units relative to the nominal font size.

3. This is a convenient technique to scale small inlined images proportion-
ally to the text height.

XSL-FO PROCESSORS

XSL-FO processors are a type of software program for formatting XSL
documents. Most XSL-FO processors output in PDF documents as well as
HTML and other formats. Some well-known XSL-FO processors are FOP,
PassiveTeX, and xmlroff.

XML Basics_Ch16_2pp.indd 553 8/7/2020 2:57:02 PM

554 • XML Basics

XSL-FO processors are really typesetting engines. An XSL-FO file is a
mixture of text from your XML source document and XSL-FO tags that sug-
gest how the text should be formatted. It is the XSL-FO processor that actu-
ally creates the typeset lines of text and lays them out on pages. An XSL-FO
processor typically generates a PDF or PostScript file which can be fed to a
printer to produce hard-copy output.

Currently there are many XSL-FO processors, but few of them have com-
pletely implemented the standard. There are at least three reasons for this:

●● The XSL-FO standard was finalized almost two years after the XSLT
standard.

●● The XSL-FO standard is big and complicated.
●● Typesetting is hard.

The authors of the XSL-FO standard recognized how difficult it would
be to implement, and so divided it into three levels of conformance: basic,
extended, and complete. That way a processor can claim conformance to the
lower conformance levels and produce useful output, while still being under
development for the higher conformance levels.

XSL-FO SOFTWARE

Scriptura

Scriptura is a cross-platform document that generates solutions based on
XSLT and XSL-FO. Scriptura has a WYSIWYG design tool and engine. The
XSL-FO formatter used in the engine is no longer based on Apache FOP,
but was written from scratch by inventive designers. The new features in
this release are bulleted and numbered lists, break-after and break-before
properties, extended bar code options, and improved number and currency
formatting.

XSL-FO AND XSLT

XSL-FO and XSLT can help each other.
<fo:block font-size="14pt" font-family="verdana" color="red"

space-before="5mm" space-after="5mm">

XML Basics_Ch16_2pp.indd 554 8/7/2020 2:57:02 PM

XSL-FO • 555

 W3Schools

</fo:block>

<fo:block text-indent="5mm" font-family="verdana" font-size="12pt">

Welcome to the computer center !

</fo:block>

Result:

Welcome to the computer center!

QUESTIONS FOR DISCUSSION

1.	 What are XSL-FO processors?

2.	 What are XSL-FO Documents? Explain XSL-FO documents’
structure.

3.	 What is XSL-FO?

4.	 Why do we need XSL-FO?

5.	 Write a comparative feature list for XSL-FO.

6.	 What are XSL-FO Block areas?

7.	 Explain XSL-FO areas.

8.	 How can XSL-FO and XSLT can help each other?

9.	 Write a short note on Scriptura software.

XML Basics_Ch16_2pp.indd 555 8/7/2020 2:57:02 PM

XML Basics_Ch16_2pp.indd 556 8/7/2020 2:57:02 PM

C H A P T E R 17
XML WITH DATABASES

INTRODUCTION

This chapter gives a high-level overview of how to use XML with databases.
It describes how the differences between data-centric and document-centric
documents affect their usage with databases, how XML is commonly used
with relational databases, and what native XML databases are and when to
use them.

Although the information discussed in this chapter is (mostly) up-to-date,
the idea that the world of XML and databases can be seen through the
data-centric/document-centric divide is somewhat dated. It used to be a con-
venient metaphor for introducing native XML databases, which were then not
widely understood, even in the database community. However, it was always
somewhat unrealistic, as many XML documents are not strictly data-centric
or document-centric, but somewhere in between. So while the data-centric/
document-centric divide is a convenient starting point, it is better to under-
stand the differences between XML-enabled databases and native XML
databases and to choose the appropriate database based on your processing
needs.

XML DOCUMENTS AS DATABASES

Before we start talking about XML and databases, we need to answer a
question that occurs to many people: “Is an XML document a database?”

XML Basics_Ch17_2pp.indd 557 8/8/2020 11:08:26 AM

558 • XML Basics

An XML document is a database only in the loosest sense of the term.
That is, it is a collection of data. In many ways, this makes it no different
from any other file—after all, all files contain data of some sort. As a “data-
base” format, XML has some advantages. For example, it is self-describing
(the markup describes the structure and type names of the data, although
not the semantics), it is portable (Unicode), and it can describe data in tree
or graph structures. It also has some disadvantages. For example, it is verbose
and access to the data is slow due to parsing and text conversion.

A more useful question to ask is whether XML and its surrounding tech-
nologies constitute a “database” in another sense of the term—that is, a data-
base management system (DBMS). The answer to this question is, “Sort of.”
On the plus side, XML provides many of the things found in databases: storage
(XML documents), schemas (DTDs, XML Schemas, and RELAX NG), query
languages (XQuery, XPath, XQL, XML-QL, and QUILT), programming
interfaces (SAX, DOM, and JDOM), and so on. On the minus side, it lacks
many of the things found in real databases: efficient storage, indexes, security,
transactions and data integrity, multi-user access, triggers, and queries across
multiple documents.

Thus, while it may be possible to use an XML document or documents as
a database in environments with small amounts of data, few users, and modest
performance requirements, this will fail in most production environments,
which have many users, strict data integrity requirements, and the need for
good performance.

A good example of the type of “database” for which an XML document
is suitable is an .ini file—that is, a file that contains application configuration
information. It is much easier to invent a small XML language and write a
SAX application for interpreting that language than it is to write a parser for
comma-delimited files. In addition, XML allows you to have nested entries,
something that is harder to do in comma-delimited files. However, this is
hardly a database, since it is read and written linearly, and then only when the
application is started and ended.

Examples of more sophisticated data sets for which an XML document
might be suitable as a database are personal contact lists (names, phone
numbers, and addresses). However, given the low price and ease of use of
databases like dBASE and Access, there seems little reason to use an XML
document as a database even in these cases. The only real advantage of XML
is that the data is portable, and this is less of an advantage than it seems due to
the widespread availability of tools for serializing databases as XML.

XML Basics_Ch17_2pp.indd 558 8/8/2020 11:08:26 AM

XML with Databases • 559

WHY USE A DATABASE?

The first question you need to ask yourself when you start thinking about
XML and databases is why you want to use a database in the first place. Do
you have legacy data you want to expose? Are you looking for a place to store
your Web pages? Is the database used by an e-commerce application in which
XML is used as a data transport? The answers to these questions will strongly
influence your choice of database and middleware (if any), as well as how you
use that database.

For example, suppose you have an e-commerce application that uses
XML as a data transport. It is a good bet that your data has a highly regular
structure and is used by non-XML applications. Furthermore, things like enti-
ties and the encodings used by XML documents probably aren’t important to
you—after all, you are interested in the data, not how it is stored in an XML
document. In this case, you’ll probably need a relational database and soft-
ware to transfer the data between XML documents and the database. If your
applications are object-oriented, you might even want a system that can store
those objects in the database or serialize them as XML.

On the other hand, suppose you have a Website built from a number of
prose-oriented XML documents. Not only do you want to manage the site,
you would like to provide a way for users to search its contents. Your docu-
ments are likely to have a less regular structure and things such as entity usage
are probably important to you because they are a fundamental part of how
your documents are structured. In this case, you might want a product like a
native XML database or a content management system. This will allow you to
preserve physical document structure, support document-level transactions,
and execute queries in an XML query language.

DATA VERSUS DOCUMENTS

Perhaps the most important factor in choosing a database is whether you are
using the database to store data or documents. For example, is XML used
simply as a data transport between the database and a (possibly non-XML)
application? Or is its use integral, as in the case of XHTML and DocBook
documents? This is usually a matter of intent, but it is important because all
data-centric documents share a number of characteristics, as do all document-
centric documents, and these influence how XML is stored in the database.
The next two sections examine these characteristics.

XML Basics_Ch17_2pp.indd 559 8/8/2020 11:08:26 AM

560 • XML Basics

DATA-CENTRIC DOCUMENTS

Data-centric documents are documents that use XML as a data transport.
They are designed for machine consumption and the fact that XML is used at
all is usually superfluous. That is, it is not important to the application or the
database that the data is, for some length of time, stored in an XML document.
Examples of data-centric documents are sales orders, flight schedules, scien-
tific data, and stock quotes.

Data-centric documents are characterized by fairly regular structure,
fine-grained data (that is, the smallest independent unit of data is at the level
of a PCDATA-only element or an attribute), and little or no mixed content.
The order in which sibling elements and PCDATA occurs is generally not
significant, except when validating the document.

Data of the kind that is found in data-centric documents can originate
both in the database (in which case you want to expose it as XML) and outside
the database (in which case you want to store it in a database). An example
of the former is the vast amount of legacy data stored in relational databases;
an example of the latter is scientific data gathered by a measurement system
and converted to XML. For example, the following sales order document is
data-centric:

<SalesOrder SONumber="12345">

 <Customer CustNumber="543">

 <CustName>ABC Industries</CustName>

 <Street>123 Main St.</Street>

 <City>Chicago</City>

 <State>IL</State>

 <PostCode>60609</PostCode>

 </Customer>

 <OrderDate>981215</OrderDate>

 <Item ItemNumber="1">

 <Part PartNumber="123">

 <Description>

 <p>Turkey wrench:

 Stainless steel, one-piece construction,

 lifetime guarantee.</p>

 </Description>

 <Price>9.95</Price>

 </Part>

 <Quantity>10</Quantity>

XML Basics_Ch17_2pp.indd 560 8/8/2020 11:08:26 AM

XML with Databases • 561

</Item>

 <Item ItemNumber="2">

 <Part PartNumber="456">

 <Description>

 <p>Stuffing separator:

 Aluminum, one-year guarantee.</p>

 </Description>

 <Price>13.27</Price>

 </Part>

 <Quantity>5</Quantity>

 </Item>

</SalesOrder>

In addition to such obviously data-centric documents as the sales order
shown above, many prose-rich documents are also data-centric. For example,
consider a page on Amazon.com that displays information about a book.
Although the page is largely text, the structure of that text is highly regu-
lar, much of it is common to all pages describing books, and each piece of
page-specific text is limited in size. Thus, the page could be built from a sim-
ple, data-centric XML document that contains the information about a single
book and is retrieved from the database, and an XSL stylesheet that adds the
boilerplate text. In general, any Website that dynamically constructs HTML
documents today by filling a template with database data can probably be
replaced by a series of data-centric XML documents and one or more XSL
stylesheets. For example, consider the following document describing a flight:

<FlightInfo>

 <Airline>ABC Airways</Airline> provides <Count>three</Count>

 non-stop flights daily from <Origin>Dallas</Origin> to

 <Destination>Fort Worth</Destination>. Departure times are

 <Departure>09:15</Departure>, <Departure>11:15</Departure>,

 and <Departure>13:15</Departure>. Arrival times are minutes later.

</FlightInfo>

This could be built from the following XML document and a simple
stylesheet:

<Flights>

 <Airline>ABC Airways</Airline>

 <Origin>Dallas</Origin>

 <Destination>Fort Worth</Destination>

 <Flight>

XML Basics_Ch17_2pp.indd 561 8/8/2020 11:08:26 AM

562 • XML Basics

 <Departure>09:15</Departure>

 <Arrival>09:16</Arrival>

 </Flight>

 <Flight>

 <Departure>11:15</Departure>

 <Arrival>11:16</Arrival>

 </Flight>

 <Flight>

 <Departure>13:15</Departure>

 <Arrival>13:16</Arrival>

 </Flight>

</Flights>

DOCUMENT-CENTRIC DOCUMENTS

Document-centric documents are (usually) documents that are designed for
human consumption. Examples are books, email, advertisements, and almost
any hand-written XHTML document. They are characterized by a less regular
or irregular structure, larger grained data (that is, the smallest independent
unit of data might be at the level of an element with mixed content or the entire
document itself), and considerable amounts of mixed content. The order in
which sibling elements and PCDATA occurs is almost always significant.

Document-centric documents are usually written by hand in XML or some
other format, such as RTF, PDF, or SGML, which is then converted to XML.
Unlike data-centric documents, they usually do not originate in the database.
For example, the following product description is document-centric:

<Product>

 <Intro>

 The <ProductName>Turkey Wrench</ProductName> from <Developer>Full

 Fabrication Labs, Inc.</Developer> is <Summary>like a monkey wrench,

 but not as big.</Summary>

 </Intro>

<Description>

 <Para>The turkey wrench, which comes in <i>both right- and left-

 handed versions (skyhook optional)</i>, is made of the finest

 stainless steel. The Readi-grip rubberized handle quickly adapts

 to your hands, even in the greasiest situations. Adjustment is

 possible through a variety of custom dials.</Para>

 <Para>You can:</Para>

XML Basics_Ch17_2pp.indd 562 8/8/2020 11:08:26 AM

XML with Databases • 563

 <List>

 <Item><Link URL="Order.html">Order your own turkey wrench</Link></Item>

 <Item><Link URL="Wrenches.htm">Read more about wrenches</Link></Item>

 <Item><Link URL="Catalog.zip">Download the catalog</Link></Item>

 </List>

 <Para>The turkey wrench costs just $19.99 and, if you

 order now, comes with a hand-crafted shrimp hammer as a

 bonus gift.</Para>

</Description>

</Product>

DATA, DOCUMENTS, AND DATABASES

In practice, the distinction between data-centric and document-centric docu-
ments is not always clear. For example, an otherwise data-centric document,
such as an invoice, might contain large-grained, irregularly structured data,
such as a part description. And an otherwise document-centric document,
such as a user’s manual, might contain fine-grained, regularly structured data
(often metadata), such as an author’s name and a revision date. Other exam-
ples include legal and medical documents, which are written as prose but con-
tain discrete pieces of data, such as dates, names, and procedures, and often
must be stored as complete documents for legal reasons.

In spite of this, characterizing your documents as data-centric or
document-centric will help you decide what kind of database to use. As a
general rule, data is stored in a traditional database, such as a relational,
object-oriented, or hierarchical database. This can be done by third-party
middleware or by capabilities built in to the database itself. In the latter case,
the database is said to be XML-enabled. Documents are stored in a native
XML database (a database designed especially for storing XML) or a content
management system (an application designed to manage documents and built
on top of a native XML database).

These rules are not absolute. Data—especially semi-structured data—can
be stored in native XML databases and documents can be stored in tradi-
tional databases when few XML-specific features are needed. Furthermore,
the boundaries between traditional databases and native XML databases are
beginning to blur, as traditional databases add native XML capabilities and
native XML databases support the storage of document fragments in external
(usually relational) databases.

XML Basics_Ch17_2pp.indd 563 8/8/2020 11:08:26 AM

564 • XML Basics

STORING AND RETRIEVING DATA

In order to transfer data between XML documents and a database, it is neces-
sary to map the XML document schema (DTD, XML Schemas, and RELAX
NG) to the database schema. The data transfer software is then built on top of
this mapping. The software may use an XML query language (such as XPath,
XQuery, or a proprietary language) or simply transfer data according to the
mapping (the XML equivalent of SELECT ∗ FROM Table).

In the latter case, the structure of the document must exactly match the
structure expected by the mapping. Since this is often not the case, prod-
ucts that use this strategy are often used with XSLT. That is, before transfer-
ring data to the database, the document is first transformed to the structure
expected by the mapping; the data is then transferred. Similarly, after trans-
ferring data from the database, the resulting document is transformed to the
structure needed by the application.

MAPPING DOCUMENT SCHEMAS TO DATABASE SCHEMAS

Mappings between document schemas and database schemas are performed
on element types, attributes, and text. They almost always omit physical struc-
ture (such as entities, CDATA sections, and encoding information) and some
logical structure (such as processing instructions, comments, and the order in
which elements and PCDATA appear in their parent). This is more reason-
able than it may sound, as the database and application are concerned only
with the data in the XML document. For example, in the sales order shown
above, it doesn’t matter if the customer number is stored in a CDATA section,
an external entity, or directly as PCDATA, nor does it matter if the customer
number is stored before or after the order date.

One consequence of this is that “round-tripping” a document—that is,
storing the data from a document in the database and then reconstructing
the document from that data—often results in a different document, even in
the canonical sense of the term. Whether this is acceptable depends on your
needs and might influence your choice of software.

Two mappings are commonly used to map an XML document schema
to the database schema: table-based mapping and object-relational
mapping.

XML Basics_Ch17_2pp.indd 564 8/8/2020 11:08:26 AM

XML with Databases • 565

RELATIONAL DATABASE PRIMER

Before you can learn about relating XML to databases, you need to learn about
databases themselves. When most people think of databases, they’re thinking
specifically about relational databases. All of the popular database products
(Microsoft SQL Server, Oracle, IBM DB2, MySQL) use the relational model.
In turn, most Web and business applications use one relational database or
another for data storage.

The relational database model is all about tables. All of the data is stored
in a tabular format and relationships between tables are expressed through
data shared among those tables. Tables in relational databases are just like
tables in HTML or tables in this book. They consist of rows and columns.
Each row represents a record in the database, and each column represents
one field in each of the records.

A group of tables is generally referred to as a schema, which conceptually
isn’t all that different from an XML schema. In a schema, some or all of the
tables are generally related to one another. Let’s look at how those relation-
ships work. Ordinarily, every table contains a column (or group of columns)
that contains data that uniquely identifies that row in the table. In most cases,
this is an ID field that simply contains a number that sets that row apart from
the others in the table. This value is referred to as the primary key. In rela-
tional database design, the primary key is extremely important because it is
the root of relationships between tables.

Here’s a simple example. Let’s say you have a table called students. The
students table contains, among other bits of data, a column called id_students.
The table might also include the student’s name, address, and phone number.
You might also have a second table, called majors. This table contains the
major and minor for all of the students, under the assumption that no student
has more than one major or minor.

This is what is referred to as a one-to-one relationship. Each record
in the students table can have one corresponding row in the majors table.
There are two other types of relationships between tables: one-to-many and
many-to-many. The students table contains a column called id_students,
which serves as its primary key. The majors table should contain a column
that contains student IDs. This is referred to as a foreign key, because it’s a
reference to a primary key in another table. The foreign key is used to imple-
ment the one-to-one relationship between the records in the two tables.

In a one-to-many relationship, a record in one table can have a reference
to many records in a second table, but each record in the second table can

XML Basics_Ch17_2pp.indd 565 8/8/2020 11:08:26 AM

566 • XML Basics

have a reference to only one record in the first table. Here’s an example:
Let’s say you create a table called grades, which contains a column for student
IDs as well as columns for class names and the grades themselves. Because a
student can take multiple classes, but each grade applies to only one student,
the relationship between students and grades is a one-to-many relationship.

In this case, id_students in the grades table is a foreign key relating to the
students table.

An example of a many-to-many relationship is the relationship between
students and classes. Each student is usually enrolled in several classes, and
each class usually contains multiple students. In a relational database, such a
relationship is expressed using what is sometimes referred to as a joining table
a table that exists solely to express the relationship between two pieces of data.
The schema contains two tables, students and classes. You already know about
the students table; the classes table contains information about the classes
offered the name of the professor, the room where the class is held, and the
time at which the class is scheduled.

Before you can deal with integrating databases and XML, you need to
understand both databases and XML. You’ve been learning about XML for a
while now, so consider this a crash course in database theory.

To relate students to classes, you need a third table, called classes_students
(or a similarly descriptive name). At a bare minimum, this table must include
two columns, id_students and id_classes, both of which are foreign keys point-
ing to the students and classes tables, respectively. These two columns are used
to express the many-to-many relationship. In other words, both of the other
two tables have one-to-many relationships with this table. Using this table, each
student can be associated with several classes, and each class can be associated
with any number of students. It may also contain properties that are specific to
the relationship, rather than to either a student or a class specifically.

THE WORLD’S SHORTEST GUIDE TO SQL

One term you can’t go far into databases without encountering is SQL, which
stands for Structured Query Language. SQL is the language used to retrieve,
add, modify, and delete records in databases. Let’s look at each of these fea-
tures in turn.

Incidentally, the pronunciation of SQL is somewhat of a contentious
issue. The official party line is that SQL should be pronounced “es queue
el.” However, many people opt for the more casual and also more efficient
pronunciation, “sequel.”

XML Basics_Ch17_2pp.indd 566 8/8/2020 11:08:26 AM

XML with Databases • 567

RETRIEVING RECORDS USING SELECT

Just about everything in SQL is carried out via a query, which is simply the
act of communicating with the database according to an established set of
SQL commands. The query used to retrieve data from a database is called the
SELECT statement. It has several parts, not all of which are mandatory. The
most basic SELECT statement is composed of two parts the select list and the
FROM clause. A very simple SELECT statement looks like this:

SELECT ∗
FROM students

Table 17.1 shows the database records returned as the results of the query.

Table 17.1  Database Records as the Results of the Above Query

Id_Students Student_
Name

City State Classification Tuition

1 Franklin
Pierce

Hillsborough NH senior 5000

2 James Polk Mecklenburg
County

NC freshman 11000

2 Warren
Harding

Marion OH junior 3500

In this case, the ∗ is the select list. The select list indicates which database
columns should be included in the query results. When a ∗ is supplied, it indi-
cates that all of the columns in the table or tables listed in the FROM clause
should be included in the query results.

The FROM clause contains the list of tables from which the data will be
retrieved. In this case, the data is retrieved from just one table, students. We
now explain how to retrieve data from multiple tables in a bit.

Let’s go back to the select list. If you use a select list that isn’t simply ∗,
you include a list of column names separated by commas. You can also rename
columns in the query results (useful in certain situations), using the AS key-
word, as follows:

SELECT id_students AS id, student_name, state
FROM students

As the results in Table 17.2 show, only the student name and state col-
umns are returned for the records.

XML Basics_Ch17_2pp.indd 567 8/8/2020 11:08:26 AM

568 • XML Basics

Table 17.2  Database Records as the Results of the Above Query

Id Student_Name State

1 Franklin Pierce NH

2 James Polk NC

2 Warren Harding OH

The id_students column is renamed id in the query results using the
reserved word AS. The other keyword you’ll often use in a select statement is
DISTINCT. When you include DISTINCT at the beginning of a select state-
ment, it indicates that no duplicates should be included in the query results.
Here’s a sample query:

SELECT DISTINCT city
FROM students

The results are shown in Table 17.3.

Table 17.3  Database Records as the Results of the Above Query

City

Hillsborough
Mecklenburg County
Marion

Without DISTINCT, this query would return the city of every student in
the students table. In this case, it returns only the distinct values in the table,
regardless of how many of each of them there are. In this case, there are only
three records in the table and each of them has a unique city, so the result set
is the same as it would be if DISTINCT were left off.

The WHERE Clause

Both of the previous queries simply return all of the records in the students
table. Often, you’ll want to constrain the resultset so that it returns only those
records you’re actually interested in. The WHERE clause is used to specify
which records in a table should be included in the results of a query. Here’s
an example:

SELECT student_name
FROM students
WHERE id_students = 1

As shown in Table 17.4, only the record with the matching ID is returned
in the results.

XML Basics_Ch17_2pp.indd 568 8/8/2020 11:08:26 AM

XML with Databases • 569

Table 17.4  Database Records as the Results of the Above Query

Student_Name

Franklin Pierce

When you use the WHERE clause, you must include an expression that
filters the query results. In this case, the expression is very simple. Given
that id_students is the primary key for this table, this query is sure to return
only one row. You can use other comparison operators as well, like the > or
!= operators. It’s also possible to use Boolean operators to create compound
expressions. For example, you can retrieve all of the students who pay more
than $10,000 per year in tuition and who are classified as freshmen using the
following query:

SELECT student_name
FROM students
WHERE tuition > 10000
AND classification = ‘freshman’

Table 17.5 shows the results of this query.

Table 17.5  Database Records as the Results of the Above Query

Student_name

James Polk

There are also several other functions you can use in the WHERE clause
that enable you to write more powerful queries. The LIKE function allows
you to search for fields containing a particular string using a regular expres-
sion like syntax. The BETWEEN function allows you to search for values
between the two you specify, and IN allows you to test whether a value is a
member of a set you specify.

INSERTING RECORDS

The INSERT statement is used to insert records into a table. The syntax is
simple, especially if you plan on populating every column in a table. To insert
a record into majors, use the following statement:

INSERT INTO majors
VALUES (115, 50, ‘Math’, ‘English’)

XML Basics_Ch17_2pp.indd 569 8/8/2020 11:08:26 AM

570 • XML Basics

The values in the list correspond to the id_majors, id_students, major, and
minor columns, respectively. If you only want to specify values for a subset of
the columns in the table, you must specify the names of the columns as well:

INSERT INTO students
(id_students, student_name)
VALUES (50, ‘Milton James’)

When you create tables, you can specify whether values are required in
certain fields, and you can also specify default values for fields. For exam-
ple, the classification column might default to freshman because most new
student records being inserted will be for newly enrolled students, who are
classified as freshmen.

UPDATING RECORDS

When you want to modify one or more records in a table, the UPDATE state-
ment is used. Here’s an example:

UPDATE students
SET classification = ‘senior’

The previous SQL statement will work, but you can figure out what’s
wrong with it. Nowhere is it specified which records to update. If you don’t
tell it which records to update, it just assumes that you want to update all of
the records in the table, thus the previous query would turn all of the stu-
dents into seniors. That’s probably not what you have in mind. Fortunately,
the UPDATE statement supports the WHERE clause, just like the SELECT
statement.

UPDATE students
SET classification = ‘senior’
WHERE id_students = 1

That’s more like it. This statement updates the classification of only one
student. You can also update multiple columns with one query:

UPDATE students
SET classification = ‘freshman’, tuition = 7500
WHERE id_students = 5

As you can see from the example, you can supply a list of fields to update
with your UPDATE statement, and they will all be updated by the same query.

XML Basics_Ch17_2pp.indd 570 8/8/2020 11:08:26 AM

XML with Databases • 571

DELETING RECORDS

The last SQL statement, the DELETE statement, is similar to the UPDATE
statement. It accepts a FROM clause and optionally a WHERE clause. If you
leave out the WHERE clause, it deletes all the records in the table. Here’s an
example:

DELETE FROM students
WHERE id_students = 1

You now know just enough about SQL to get into trouble! Actually, your
newfound SQL knowledge will come in handy a bit later in the lesson when
you develop an application that carefully extracts data from a database and
encodes it in XML. But first, you find out how to export an entire database
table as XML.

DATABASES AND XML

When you integrate XML with databases, the first question that you must
look at is how you’re using XML in your application. There are two broad cat-
egories of XML applications: those that use XML for data storage and those
that use XML as a document format. The approach for database integration
depends on which category your application falls into.

Although XML is commonly thought of as a document format, it’s also very
popular as a format for data storage. Many applications use XML files to store
their configuration, as well as rely on remote procedure calling services like
XML-RPC and SOAP to format the messages that they exchange using XML.

The fact that XML is highly structured and can be tested to ensure that
it’s both well-formed and valid in a standardized, programatic fashion takes a
lot of the burden of reading and modifying the data file off of the application
developer when he or she is writing a program.

Let’s look at a couple of real world examples where XML might need to
be integrated with a relational database. The structured nature of XML makes
it a good choice to use as a data interchange format. Let’s say that a company
periodically receives inventory information from a supplier. That information
might be stored in an Oracle database on a server in the supplier’s system
but might need to be imported into an Access database when the company
receives it. XML would make a good intermediate format for the data because
it’s easy to write programs that import and export the data and because, by
using XML, the data can be used in future applications that require it as well.

XML Basics_Ch17_2pp.indd 571 8/8/2020 11:08:26 AM

572 • XML Basics

The news articles could be distributed via XML files so that they could
easily be transformed for presentation on the Web, or they could be imported
into a relational database and published from there.

RESOLVING XML DATA INTO DATABASE TABLES

The question you face when you integrate applications that use XML for
data storage with relational databases is the degree to which you want to take
advantage of the features of the relational database. If you simply insert entire
XML documents into the database, you can’t use advanced SQL features to
retrieve specific bits of information from the XML documents.

Here’s an XML document that is used to store information related to
automobiles:

<dealership>

 <automobile make="Buick" model="Century" color="blue">

 <options>

 <option>cruise control</option>

 <option>CD player</option>

 </options>

 </automobile>

 <automobile make="Ford" model="Thunderbird" color="red">

 <options>

 <option>convertible</option>

 <option>leather interior</option>

 <option>heated seats</option>

 </options>

 </automobile>

</dealership>

Now, let’s look at how you might design a database to store this informa-
tion. As mentioned earlier, the path of least resistance is just to stick the whole
XML document in a field. However, that probably isn’t a good idea for this
file because it contains more than one automobile “record.”

As you can see, the XML document has been turned into two tables,
automobiles and options. The automobiles table contains all the information
stored in the attributes of the automobile tag in the XML document. Because
automobiles have a one-to-many relationship to options, we created a sepa-
rate table for them. In the options table, id_automobiles is a foreign key that
relates back to a specific automobile in the automobiles table.

XML Basics_Ch17_2pp.indd 572 8/8/2020 11:08:26 AM

XML with Databases • 573

To make sure you understand why the automobile options were broken
out into a separate database table, consider that the number of options for
a single automobile can vary from one automobile to the next. This is a sce-
nario where a single database field in the automobiles table can’t account for
a varying amount of data (hence the one-to-many relationship). Therefore,
the solution is to break out the options into a separate table where each row
is tied back to a specific automobile. Then you can add as many options as
you want for one automobile as long as each option includes the appropriate
automobile ID.

STORING XML DOCUMENTS IN A DATABASE

If you’re storing entire XML documents in a database, you don’t need to
worry about translating the XML document format into a tabular database
structure. Instead, you just need to extract the information from the docu-
ment that you need to use in the relational database world and create columns
for that. As an example, if you store newspaper articles as XML documents,
the section, headline, author, body, and perhaps more information will all be
included in the XML document within their own tags. It is then possible to
process the XML code to access each portion of the document.

If you store those documents in a database and plan on publishing them
on the Web from that database, you may want to consider breaking up the
XML data so that it can be retrieved more easily. For example, you might
want separate columns for the section and writer so that you can write simple
SQL statements that retrieve the documents based on those values. Either
way, you would be retrieving XML code from the database, which is far dif-
ferent than the earlier automobile example where the database data has been
translated from XML into pure database content.

EXPORTING AN XML DOCUMENT FROM A DATABASE

If you need to pull data from a database for processing as XML on a one-
time basis, or maybe periodically but not necessarily in real-time, you might
consider just exporting the data manually. Most databases offer an “export
as XML” option that converts a database table into a structured XML docu-
ment with the database columns turned into XML tags. This is a very simple
approach to quickly generating an XML document from a database that you
might now otherwise be able to access without database tools.

XML Basics_Ch17_2pp.indd 573 8/8/2020 11:08:26 AM

574 • XML Basics

MySQL is a very popular open source database that does a great job for
small- to medium-scale applications. A nice front-end is available for MySQL
called phpMyAdmin, which provides a Web-based user interface for interact-
ing with a MySQL database. phpMyAdmin provides a very easy-to-use export
feature that will export any MySQL database as an XML document.

To get started exporting an XML document from a MySQL database,
open the database in phpMyAdmin, and select the table you want to export.
Then click the Export tab. Within the Export options, click XML to indicate
that XML is the output data format. If you want to generate an XML file that
is stored on the Web server, click the Save Now. You can choose to save the
XML file locally or otherwise use the XML code for further processing and
manipulation. The key point to realize is that with one button click, you’ve
converted an entire tabular database into a well-formed XML document.

ACCESSING DATA FROM A DATABASE AS XML

Although manually exporting an XML document from a database can be use-
ful, it isn’t quite the same as drilling into a database via a SQL query and
extracting exactly the data you need. A more realistic example would involve
generating XML code on the fly based upon a SQL query.

The example you’re about to see extracts data from a real database cre-
ated to manage the statistics for a recreational hockey team, Music City Mafia.
The database is a MySQL database that stores statistics for both games and
players. In this example, you’re only concerned with game data, which is
stored in a database table called games. To access the data and initiate a SQL
query, we use PHP, which is an open source scripting language used to create
dynamic Web pages. PHP has very good integration with MySQL, and is a
great option for dynamic Web page development that involves MySQL data-
bases and XML.

PHP is a recursive acronym that stands for PHP Hypertext Processer.
Although the code you’re about to see is written in PHP, you don’t have to
understand the PHP language in order to get the gist of what’s going on. The
key things to pay attention to are the SQL query being made on the database
and the generation of the XML code. PHP is used to carry out these tasks but
the code isn’t too terribly difficult to decipher.

Listing 19.1 contains the code for the mcm_schedule.php sample Web
page that uses PHP to dynamically generate an XML file based upon a
MySQL database query.

XML Basics_Ch17_2pp.indd 574 8/8/2020 11:08:26 AM

XML with Databases • 575

Listing 17.1. The Hockey Game Schedule PHP Example Document
 1: <?php

 2: // Connect to the database

 3: $mcm_db = mysql_connect("localhost", "admin", "password");

 4: mysql_select_db("mcm_hockey", $mcm_db);

 5:

 6: // Issue the query

 7: $mcm_query = sprintf("SELECT date, time, opponent, location, type, outcome,

 8: gf, ga, overtime FROM games WHERE season=\"%s\" ORDER BY

 9: date", $season);

10: $mcm_result = mysql_query($mcm_query, $mcm_db);

11:

12: // Format the query results as XML

13: if (mysql_num_rows($mcm_result) > 0) {

14: // Assemble the XML code

15: $xml ="<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\r\n";

16: $xml.="<games>\r\n";

17: while (list($date, $time, $opponent, $location, $type, $outcome,

18: $gf, $ga, $overtime) = mysql_fetch_array($mcm_result)) {

19: $formatted_date = date("F j, Y", strtotime($date));

20: $formatted_time = date("g:ia", strtotime($time));

21: $xml.= sprintf(" <game date=\"%s\" time=\"%s\">\r\n",

22: $formatted_date, $formatted_time);

23: $xml.= sprintf(" <opponent>%s</opponent>\r\n", $opponent);

24: $xml.= sprintf(" <location>%s</location>\r\n", $location);

25: $xml.= sprintf(" <score outcome=\"%s\" overtime=\"%s\">

26: %s - %s</score>\r\n", $outcome, $overtime, $gf, $ga);

27: $xml.= " </game>\r\n";

28: }

29: $xml.="</games>";

30:

31: // Write the XML code to the file mcm_results.xml

32: $file= fopen("mcm_results.xml", "w");

33: fwrite($file, $xml);

34: fclose($file);

35:

36: echo "The XML document has been written -

37: view the XML code.";

38: } else {

39: echo "Sorry, no matching records found.";

40: }

41: // Close the database

42: mysql_close($mcm_db);

43:?>

XML Basics_Ch17_2pp.indd 575 8/8/2020 11:08:27 AM

576 • XML Basics

The first few lines of the page establish a database connection and open
the Music City Mafia hockey database. A SQL query is then constructed
based upon a parameter ($season) that is passed into the page via the URL.
The point of this parameter is to allow you to limit the XML file to a par-
ticular season of data (http://www.musiccitymafia.com/mcm_schedule.php?­
season=Summer%202005).

The %20 near the end of URL is just a separator to provide a space
between the word Summer and the word 2005. The result of this URL is
that the mcm_schedule.php Web page assigns the value Summer 2005 to the
variable $season, which can then be used throughout the PHP code. And,
in fact, it is when the SQL query is issued in lines 7 through 9 of the listing.
More specifically, the date, time, opponent, location, type, outcome, goals for,
goals against, and overtime database fields are selected from the games table
but only for the Summer 2005 season. The result of this query is stored in the
$mcm_result variable (line 10).

In PHP programming, all variable names are preceded by a dollar sign
($). The next big chunk of code goes through the results of the SQL query
one record at a time, formatting the data into XML code. Notice that the
XML processor directive is first generated (line 15), followed by a root tag,
<games> (line 16). Each piece of pertinent game data is then further format-
ted into XML code in lines 17 through 28. The document is wrapped up with
a closing </games> tag in line 29.

The last important step in the PHP code is writing the XML data to a file.
The file is named mcm_results.xml, and the XML data is written to it with just a
few lines of code (lines 32 to 34). A simple line of HTML code is then written to
the browser so that you can access the XML file. More specifically, a link is gen-
erated that allows you to click and view the XML document (lines 36 and 37).

QUESTIONS FOR DISCUSSION

1.	 What is an XML database?

2.	 Why are XML databases interesting?

3.	 What is the XML:DB initiative for?

4.	 Who is behind the organization that developed the initiative?

5.	 What license is used for reference implementations?

6.	 What happens after the specifications are written?

7.	 How can you lay claim to the XML: namespace prefix?

XML Basics_Ch17_2pp.indd 576 8/8/2020 11:08:27 AM

C H A P T E R 18
WEB SERVICES

WEB SERVICES

Web Services, in the general meaning of the term, are services offered via the
Web. In a typical Web services scenario, a business application sends a request
to a service at a given URL using the SOAP protocol over HTTP. The service
receives the request, processes it, and returns a response. As example of this,
consider a stock quote service, in which the request asks for the current price
of a specified stock, and the response gives the stock price. This is one of the
simplest forms of a Web service in that the request is filled almost immedi-
ately, with the request and response being parts of the same method call.

Another example could be a service that maps out an efficient route for
the delivery of goods. In this case, a business sends a request containing the
delivery destinations, which the service processes to determine the most
cost-effective delivery route. The time it takes to return the response depends
on the complexity of the routing, so the response will probably be sent as an
operation that is separate from the request.

Technically, Web services are actually application components which
communicate using open protocols. They are self-contained, self-describing
and modular applications that can be published, located, and can be invoked
across the Web. Web Services define a platform-independent standard based
on XML to communicate within distributed systems. XML is used to tag the
data.

Web services can convert an application into a Web-application, which
can publish its function or message to the world.

XML Basics_Ch18_2pp.indd 577 8/7/2020 3:02:54 PM

578 • XML Basics

THE WEB SERVICES PLATFORM

The basic platform is XML plus HTTP. HTTP is the ubiquitous protocol,
which is running practically everywhere on the Internet.

XML provides the meta-language you use to write specialized languages
to express the complex interactions between the clients and the services or
between the components of a composite service. Behind the facade of the
Web server, an XML message gets converted to the middleware request and
the results are converted back to the XML.

A Web needs to be augmented with few other platform services, which
can maintain the ubiquity and the simplicity of Web, to constitute more func-
tional platform. A full-function Web services platform can be thought of as the
XML plus HTTP plus SOAP plus WSDL plus the UDDI. At the higher levels,
one may also add the technologies such as the XAML, XLANG, XKMS, and
the XFS—services which are not universally been accepted as the mandatory.

WEB SERVICES PLATFORM ELEMENTS

Web Services have three basic platform elements:

●● SOAP (Simple Object Access Protocol): SOAP is used to transfer the data.
●● UDDI (Universal Description, Discovery, and Integration): UDDI is used

for listing what services are available.
●● WSDL (Web Services Description Language): WSDL is used for describ-

ing the services available.

TYPES OF WEB SERVICES

However, there are two types of Web applications:
Presentation-oriented: A presentation-oriented Web application gen-

erates interactive Web pages containing various types of markup language
(HTML or XML) and dynamic content in response to requests. This is the
form of Web application we are familiar with and we have covered practical
implementations of such applications through the vast majority of this module.

Service-oriented: A service-oriented Web application implements the
endpoint of a Web service. Presentation-oriented applications are often cli-
ents of service-oriented Web applications.

XML Basics_Ch18_2pp.indd 578 8/7/2020 3:02:55 PM

Web Services • 579

WEB SERVICE ARCHITECTURES

The diagram in Figure 18.1 shows a generic architecture for Web Services.
The core element of this relates to the communication between the service
requester and the service provider. This communication is handled via the
Simple Object Access Protocol (SOAP).

Service
provider

Service
broker

Service
requesterFind

BindPu
bli

sh

FIGURE 18.1  Web Services Architecture 1

UDDI

WSDLWSDL

SOAP

Service
Requester

Service
Provider

Service
Broker

i

f(x)

FIGURE 18.2  Web Services Architecture 2

XML Basics_Ch18_2pp.indd 579 8/7/2020 3:02:55 PM

580 • XML Basics

WEB SERVICES EXAMPLE

Any application can have a Web Service component. Web Services can be cre-
ated regardless of programming language. In the following example, we will
use ASP.NET to create a simple Web Service that converts the temperature
from Fahrenheit to Celsius and vice versa:

<%@ WebService Language="VBScript" Class="TempConvert" %>

Imports System
Imports System.Web.Services

Public Class TempConvert :Inherits WebService

<WebMethod()> Public Function FahrenheitToCelsius

(ByVal Fahrenheit As String) As String

 dim fahr

 fahr=trim(replace(Fahrenheit,",","."))

 if fahr="" or IsNumeric(fahr)=false then return "Error"

 return ((((fahr) - 32) / 9) * 5)

end function

<WebMethod()> Public Function CelsiusToFahrenheit

  (ByVal Celsius As String) As String

 dim cel

 cel=trim(replace(Celsius,",","."))

 if cel="" or IsNumeric(cel)=false then return "Error"

 return ((((cel) * 9) / 5) + 32)

end function

end class

This document is saved as an .asmx file. This is the ASP.NET file exten-
sion for XML Web Services.

The first line in the example states that this is a Web Service, written in
VBScript, and has the class name “TempConvert:”

<%@ WebService Language="VBScript" Class="TempConvert" %>

The next lines import the namespace “System.Web.Services” from the
.NET framework:

Imports System
Imports System.Web.Services

The next line defines that the "TempConvert" class is a WebService class type:

Public Class TempConvert :Inherits WebService

XML Basics_Ch18_2pp.indd 580 8/7/2020 3:02:55 PM

Web Services • 581

The next steps are basic VB programming. This application has two func-
tions: one to convert from Fahrenheit to Celsius and one to convert from
Celsius to Fahrenheit.

The only difference from a normal application is that this function is
defined as a “WebMethod()”. Use “WebMethod()” to convert the functions
in your application into Web services:

<WebMethod()> Public Function FahrenheitToCelsius

(ByVal Fahrenheit As String) As String

 dim fahr

 fahr=trim(replace(Fahrenheit,",","."))

 if fahr="" or IsNumeric(fahr)=false then return "Error"

 return ((((fahr) - 32) / 9) * 5)

end function

<WebMethod()> Public Function CelsiusToFahrenheit

(ByVal Celsius As String) As String

 dim cel

 cel=trim(replace(Celsius,",","."))

 if cel="" or IsNumeric(cel)=false then return "Error"

 return ((((cel) * 9) / 5) + 32)

end function

Then, end the class:

end class

Publish the .asmx file on a server with .NET support, and you will have
your first working Web Service.

HOW TO USE WEB SERVICES

The FahrenheitToCelsius() function can be tested here: FahrenheitToCelsius
include link?

The CelsiusToFahrenheit() function can be tested here: CelsiusToFahr-
enheit include link?

These functions will send an XML response like this:
<?xml version="1.0" encoding="utf-8" ?>

<string xmlns="http://tempuri.org/">38</string>

Put the Web Service on Your Web Site

Using a form and the HTTP POST method, you can put the Web service on
your site.

XML Basics_Ch18_2pp.indd 581 8/7/2020 3:02:55 PM

582 • XML Basics

How To Do It

Here is the code to add the Web Service to a Web page:
<form action='tempconvert.asmx/FahrenheitToCelsius'

method="post" target="_blank">

<table>

 <tr>

 <td>Fahrenheit to Celsius:</td>

 <td>

 <input class="frmInput" type="text" size="30" name="Fahrenheit">

 </td>

 </tr>

 <tr>

 <td></td>

 <td align="right">

 <input type="submit" value="Submit" class="button">

 </td>

 </tr>

 </table>

</form>

<form action='tempconvert.asmx/CelsiusToFahrenheit'

method="post" target="_blank">

<table>

 <tr>

 <td>Celsius to Fahrenheit:</td>

 <td>

 <input class="frmInput" type="text" size="30" name="Celsius">

 </td>

 </tr>

<tr>

<td></td>

 <td align="right">

 <input type="submit" value="Submit" class="button">

 </td>

 </tr>

 </table>

</form>

Substitute the “tempconvert.asmx” with the address of your Web service like:
http://www.example.com/webservices/tempconvert.asmx

XML Basics_Ch18_2pp.indd 582 8/7/2020 3:02:55 PM

Web Services • 583

SOAP

SOAP is the protocol specification that defines a uniform way of passing the
XML-encoded data. It also defines the way to perform the remote procedure
calls (RPCs) using the HTTP as a underlying communication protocol.

SOAP arises from a realization that no matter how nifty a current middle-
ware offerings are, they need the WAN wrapper. Architecturally, sending the
messages as a plain XML has advantages in terms of ensuring the interopera-
bility (and debugging). Middleware players seem willing to put up with costs
of parsing and serializing the XML in order to scale their approach to wider
networks.

UDDI (Universal Description, Discovery, and Integration)

The UDDI provides the mechanism for clients to dynamically find other Web
services. Using the UDDI interface, a business can dynamically connect to
the services provided by external business partners. The UDDI registry is
similar to the CORBA trader, or it can be thought of as the DNS service for
the business applications. The UDDI registry has two kinds of the clients:
businesses which want to publish the service (and the usage interfaces) and
the clients who want to obtain the services of certain kind and bind program-
matically to them. Table 18.1 is the overview of what an UDDI provides.
The UDDI is layered over the SOAP and assumes that the requests and the
responses are UDDI objects sent around as the SOAP messages. A sample
query is included.

WSDL (Web Services Definition Language)

WSDL defines the services as the collection of the network endpoints or the
ports. In a WSDL, the abstract definition of the endpoints and the messages
are separated from their concrete network deployment or the data format
bindings. This allows the reuse of the abstract definitions of the messages,
which are the abstract descriptions of the data being exchanged, and the port
types, which are the abstract collections of the operations. The concrete pro-
tocol and the data format specifications for the particular port type constitute
the reusable binding. The port is defined by associating the network address
with the reusable binding; the collection of ports defines the service. And,
thus, the WSDL document uses the following elements in a definition of the
network services:

●● Types—the container for data type definitions using some type of system
(such as XSD)

XML Basics_Ch18_2pp.indd 583 8/7/2020 3:02:55 PM

584 • XML Basics

●● Message—the abstract, typed definition of the data being communicated
●● Operation—the abstract description of the action supported by a service
●● Port Type—the abstract set of the operations supported by the one or

more endpoints
●● Binding—the concrete protocol and the data format specification for a

particular port type
●● Port—the single endpoint defined as the combination of binding and the

network address
●● Service—the collection of related endpoints

So, WSDL is the template for how the services should be described and
bound by the clients.

WSDL Documents

A WSDL document is just a simple XML document. It contains set of defini-
tions to describe a Web service.

The WSDL Document Structure

A WSDL document describes a Web service using the major elements shown
in Table 18.1.

Table 18.1  Web Service Elements Description

Element Defines

<types> The data types used by the Web service

<message> The messages used by the Web service

<portType> The operations performed by the Web service

<binding> The communication protocols used by the Web service

The main structure of a WSDL document looks like this:
<definitions>

<types>

 definition of types........

</types>

<message>

 definition of a message....

</message>

<portType>

XML Basics_Ch18_2pp.indd 584 8/7/2020 3:02:55 PM

Web Services • 585

 definition of a port.......

</portType>

<binding>

 definition of a binding....

</binding>

</definitions>

A WSDL document can also contain other elements, like extension ele-
ments, and a service element that makes it possible to group together the
definitions of several Web services in one single WSDL document.

WSDL Example

This is a simplified fraction of a WSDL document:
<message name="getTermRequest">

 <part name="term" type="xs:string"/>

</message>

<message name="getTermResponse">

 <part name="value" type="xs:string"/>

</message>

<portType name="glossaryTerms">

 <operation name="getTerm">

 <input message="getTermRequest"/>

 <output message="getTermResponse"/>

 </operation>

</portType>

In this example, the <portType> element defines “glossaryTerms” as the
name of a port and “getTerm” as the name of an operation.

The “getTerm” operation has an input message called “getTermRequest”
and an output message called “getTermResponse.”

The <message> elements define the parts of each message and the asso-
ciated data types. Compared to traditional programming, glossaryTerms is
a function library, getTerm is a function with getTermRequest as the input
parameter and getTermResponse as the return parameter.

WSDL AND UDDI

Universal Description, Discovery, and Integration (UDDI) is a directory
service where businesses can register and search for Web services. UDDI
is a platform-independent framework for describing services, discovering

XML Basics_Ch18_2pp.indd 585 8/7/2020 3:02:55 PM

586 • XML Basics

businesses, and integrating business services by using the Internet. UDDI is a
directory for storing information about Web services. UDDI is a directory of
Web service interfaces described by WSDL. UDDI communicates via SOAP.
UDDI is built into the Microsoft .NET platform.

UDDI uses World Wide Web Consortium (W3C) and Internet Engineer-
ing Task Force (IETF) Internet standards such as XML, HTTP, and DNS
protocols.

UDDI uses WSDL to describe interfaces to Web services. Addition-
ally, cross platform programming features are addressed by adopting SOAP,
known as XML Protocol messaging specifications on the W3C Web site.

UDDI BENEFITS

Any industry or businesses of all sizes can benefit from UDDI.
Before UDDI, there was no Internet standard for businesses to reach

their customers and partners with information about their products and ser-
vices. Nor was there a method of how to integrate into each other’s systems
and processes. Problems the UDDI specification can help to solve:

Making it possible to discover the right business from the millions cur-
rently online.

●● Defining how to enable commerce once the preferred business is
discovered.

●● Reaching new customers and increasing access to current customers.
●● Expanding offerings and extending market reach.
●● Solving customer-driven need to remove barriers to allow for rapid par-

ticipation in the global Internet economy.
●● Describing services and business processes programmatically in a single,

open, and secure environment.

HOW CAN UDDI BE USED

If the industry published an UDDI standard for flight rate checking and res-
ervation, airlines could register their services in an UDDI directory. Travel
agencies could then search the UDDI directory to find the airline’s reservation
interface. When the interface is found, the travel agency can communicate

XML Basics_Ch18_2pp.indd 586 8/7/2020 3:02:56 PM

Web Services • 587

with the service immediately because it uses a well-defined reservation
interface.

UDDI is a cross-industry effort driven by all major platform and soft-
ware providers like Dell, Fujitsu, HP, Hitachi, IBM, Intel, Microsoft, Oracle,
SAP, and Sun, as well as a large community of marketplace operators and
e-business leaders.

QUESTIONS FOR DISCUSSION

1.	 Are there toolkits that automatically generate service proxy code from a
WSDL service description?

2.	 Are there tools to test SOAP-based Web Services?

3.	 What are Web Services? What are the Web Services Standards?

4.	 Where can you find a sample SOAP client using Apache SOAP for
Java?

5.	 What is UDDI?

6.	 What is WSDL?

7.	 How do you send attachment using soap? Where can you find article or
example on how to send attachments using SOAP?

8.	 How can you find SOAP Services that other people/companies have
developed?

9.	 Exception handling in Apache-SOAP—Is there a way of catching
server exceptions in the client side?

10.	 Are there any Web sites that will validate the well-formed ness of an
XML document?

11.	 What are the Web services in ASP.NET?

12.	 Does the W3C support any Web service standards?

13.	 How do you get started with Web Services?

14.	 What is the Web service protocol stack?

15.	 What is the use of SOAP (Simple Object Access Protocol) in .Net Web
Services?

16.	 What is new about Web services?

XML Basics_Ch18_2pp.indd 587 8/7/2020 3:02:56 PM

XML Basics_Ch18_2pp.indd 588 8/7/2020 3:02:56 PM

A P P E N D I X A
XML BASICS

1.	 In the XML sample, we see that information is seeded over several lines.
However, this was generated by the parser (Microsoft Internet Explorer).
In general, an XML document is a continuous document without a car-
riage return or line feed characters in it.

2.	 Any XML document that meets the basic rules as defined by the XML
specification is called a well-formed XML document. An XML document
can be checked to determine whether it is well-formed—that is, whether
the document has the correct structure (syntax).

3.	 When an XML document meets the rules defined in the DTD, it is called
a valid XML document. (DTD: Document Type Definiton)

4.	 Schemas are similar to DTDs, but they use a different format. DTDs and
schemas are useful when the content of a group of documents shares a
common set of rules.

5.	 XML gives you the opportunity to create messages in standard forms.

6.	 XML separates data from presentation.

7.	 XML gives you the possibility to call methods behind firewalls and
between different platforms.

8.	 XML describes the contents but not the layout.

9.	 XML is tagged-based: every tag begins with <descr> and an end tag
</descr>, where descr is the name of the tag.

10.	 You can define the character encoding used by encoding = “UTF-8.”

XML Basics_Ch19_App-A.indd 589 14-Aug-20 4:37:55 PM

590 • XML Basics

11.	 Tags should only be written in lowercase to be compatible with the
XHTML definitions (upcoming format).

12.	 You have some predefined tokens that can’t be used unless they actually are
part of a CDATA section. These tokens are also referred to as Predefined.
entieis

Î < Î > Î & &

Î &apos '

Î " "

13.	 The most basic components of an XML document are elements, attributes,
and comments.

14.	 Every tag should have an end-tag.
Correct is: <tag> <element> … </element></tag>

Incorrect is: <tag> <element> … </tag> </element>

15.	 All attribute values should be written between single or double quotes.
i.e. <element id="myvalue">

16.	 The designer of the XML document defines the structure of the document
and the mark-up elements.

17.	 XML must be properly written to get interpreted (not with HTML). This
means that every tag must have an end tag.

Elements can be nested, i.e.,
<Patient>

<PatientName>John Smith</PatientName>

<PatientAge>108</PatientAge>

<PatientWeight>155</PatientWeight>

</Patient>

18.	 -Names consist of one or more “no space” characters. If a name has only
one character, that character must be a letter, either uppercase (A-Z) or
lowercase (a-z).

-A name can only begin with a letter or an underscore.

�-Beyond the first character, any character can be used, including those
defined in the Unicode standard.

-Element names are case sensitive.

XML Basics_Ch19_App-A.indd 590 14-Aug-20 4:37:55 PM

Appendix A: XML Basics • 591

19.	 An attribute is a mechanism for adding descriptive information to an
element.
<PatientWeight unit="KG">81</PatientWeight>

or
<PatientWeight unit="KG"/> (=empty element)

20.	 Comments are descriptions embedded in an XML document to provide
additional information about the document. They are placed between the
tags.
<!-- and -->

<!-- Comment text -->

21.	 An element without a value can be written as <sample/>, a.k.a., a singleton.

22.	 Some HTML tools can’t interpret the singletons. Therefore, you might
want to change the code towards <sample> … </sample>. Another
solution is to add a comment field.

The XML Tag and Namespaces

XML files begin with an <?xml> version tag:
<?xml version="1.0" encoding="UTF-8"?>

Following the version tag, markup consists of one or more elements. An
audience file, for example, uses an <audience> element that contains all addi-
tional markup:

<?xml version="1.0" encoding="UTF-8"?>

<audience xmlns="http://ns.real.com/tools/audience.2.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://ns.real.com/tools/audience.2.0

http://ns.real.com/tools/audience.2.0.xsd">

...audience information...

</audience>

Each xmlns attribute shown above defines an XML namespace. This
namespace tells RealProducer how to handle the markup contained within
the file. The namespace identifier is in the form of a URL only to ensure
uniqueness. RealProducer does not contact the URL.

XML Basics_Ch19_App-A.indd 591 14-Aug-20 4:37:55 PM

592 • XML Basics

Tags, Attributes, and Values

The elements within an XML file take the following form:
<tag type="type">value</tag>

The following are the basic parts to an XML element:

tag The tag name comes just after a left angle bracket. Some tags may
consist of just the name, as in the <stream> tag. Other tags may
have attributes. Except for the XML version tag and the comment
tag, all tags in an XML file have a corresponding end tag. For
example, the <audience> tag has the end tag <Iaudience>.

type The type attributes define the type of data that the element
provides. For more information.

value The value is a character string, integer, or time value, that defines
the feature.

Lowercase or Camel Case for Tags and Attributes

In RealProducer markup, single-word tags and attributes are lowercase.
When a tag, attribute, or predefined value consists of a compound word, the
first letter of all words after the first word is generally capitalized, as in encod-
ingComplexity. This is referred to as “camel case.”

Attribute Values Enclosed in Double Quotation Marks

Attribute values, such as string in type=“string”, must be enclosed in double
quotation marks. Do not add any blank spaces between the quotation marks
and the value they enclose.

Data Type Values

Most XML elements within the RealProducer files must include a type attrib-
ute that indicates the type of value.

Value Types

Type Value Notes

type=“bag” group Indicates a group of properties

type=“bool” true|false True or false values use this type, which
stands for “Boolean.” You can also use 1 for
true and 0 for false.

(continued)

XML Basics_Ch19_App-A.indd 592 14-Aug-20 4:37:55 PM

Appendix A: XML Basics • 593

Value Types

Type Value Notes

type=“double” decimal values A double type is used for very large values,
values that include a decimal point, and
values that may be negative.

type=“duration” time value A duration type indicates a time value in the
format [d:][h:][m:]s[.xyz].

type=“string” text string A string can include letters and numbers.
Do not use double quotation marks within
the value string. Maximum lengths may vary,
but are typically at least 256 characters

type=“uint” unsigned
integer

Values that are positive integers, including
0, use this type.

xsi:type=“value” customized
value

An xsi: prefix allows for customized value
types.

Value Type Examples

The following examples illustrate the use of the type attribute in RealProducer
XML files:

<outputWidth type="uint">360</outputWidth>

<maxFrameRate type="double">15.000000</maxFrameRate>

<streamContext type="bag">

...stream context elements...

</streamContext>

<stream xsi:type="audioStream">

...audio stream elements...

</stream>

<deinterlace type="bool">true</deinterlace>

<pluginName type="string">rn-prefilter-deinterlace</pluginName>

Duration Syntax

The format for the value of a parameter that specifies a duration is the
following:

[d:][h:][m:]s[.xyz]

Only the seconds value is required. If a value is omitted, it is assumed to
be zero. You must specify intermediate values. To indicate hours, for example,
you must include the minutes and seconds field. Here are some sample values:

XML Basics_Ch19_App-A.indd 593 14-Aug-20 4:37:55 PM

594 • XML Basics

30 30 seconds

45.5 45–1/2 seconds

5:35 5 minutes, 35 seconds

1:0.0 1 hour

1:22:30:0 1 day, 22 hours, 30 minutes

File Names and Paths Observe Letter Cases

In tags that specify files or other input, paths and file names can be uppercase,
lowercase, or mixed case, corresponding to their actual names on the operat-
ing system. All of the following path and file name examples are allowable, for
example:

<filename type="string">C:\media\video\video1.rm</filename>

<filename type="string">C:\media\video\Video1.rm</filename>

<filename type="string">C:\media\video\VIDEO1.rm</filename>

XML Recommendations

Although not strict rules, the following recommendations will help you keep
your XML markup organized and understandable.

XML Comments

As in HTML, XML has a comment tag that starts with these characters:
<!--

and ends with these characters:
-->

There is no corresponding end tag:
<!-- This is a comment -->

A comment can be any number of lines long. It can start and end any-
where in a XML file. Multiple comments cannot be nested, though. Use com-
ments to describe what various sections of your XML file are meant to do.
This helps other people understand your file more easily.

Indentation Between Elements

Although indenting XML markup is not required, it helps you to keep track of
the XML file’s structure. You typically indent markup by pressing the Tab key

XML Basics_Ch19_App-A.indd 594 14-Aug-20 4:37:55 PM

Appendix A: XML Basics • 595

once for each level of indentation. In a stream section, for example, the element
tags are indented one level from the <stream> tag. The two tags that make
up the stream context are indented one level from the <streamContext> tag:

<stream xsi:type="audioStream">

 <codecFlavor type="uint">25</codecFlavor>

 <codecName type="string">cook</codecName>

 <encodingComplexity type="string">high</encodingComplexity>

 <pluginName type="string">rn-audiocodec-realaudio</pluginName>

 <streamContext type="bag">

 <audioMode type="string">voice</audioMode>

 <presentationType type="string">audio-only</presentationType>

 </streamContext>

</stream>

XML Basics_Ch19_App-A.indd 595 14-Aug-20 4:37:55 PM

XML Basics_Ch19_App-A.indd 596 14-Aug-20 4:37:55 PM

A P P E N D I X B
WELL FORMED XML
DOCUMENTS

Well-formed XML documents can be created by using elements, attributes,
and comments. These components define content within the document.
Using these definitions, applications can be created that will manipulate the
content. To be well-formed, your XML document must meet the following
requirements:

1.	 The document must contain a single root element.

2.	 Every element must be correctly nested.

3.	 Each attribute can have only one value.

4.	 All attribute values must be enclosed in double quotation marks or single
quotation marks.

5.	 Elements must have begin and end tags, unless they are empty elements.

6.	 Empty elements are denoted by a single tag ending with a slash (/).

7.	 Isolated markup characters are not allowed in content. The special char-
acters <, &, and > are represented as >, &, < in content sections.

8.	 A double quotation mark is represented as ", and a single quotation
mark is represented as &apos in content sections.

9.	 The sequence <[[and]]> cannot be used.

10.	 If a document does not have a DTD, the values for all attributes must be
of type CDATA by default.

XML Basics_Ch20_App-B.indd 597 14-Aug-20 4:38:17 PM

598 • XML Basics

XML Declaration

<?xml version="version_number" encoding="encoding_declaration"

standalone="standalone status"?>

The version attribute is the version of the XML standard that this docu-
ment complies with. The encoding attribute is the Unicode character set that
this document complies with. Using this encoding, you can create documents
in any language or character set. The standalone attribute specifies whether
the document is dependent on other files (standalone

= “no”) or complete by itself (standalone = “yes”).

Document Type Definition

The DTD can be used to verify that a set of XML documents is created accord-
ing to the rules defined in the DTD by checking the validity of the documents.

●● Every element used in your XML documents has to be declared by using
the <!ELEMENT> tag in the DTD. The format for declaring an element
in a DTD is shown here:
<!ELEMENT ElementName Rule>

The rule component defines the rule for the content contained in the
element. These rules define the logical structure of the XML document and
can be used to check the document’s validity. The rule can consist of a generic
declaration and one or more elements, either grouped or unordered.
●● The Predefined Content Declarations

Three generic content declarations are predefined for XML DTDs:
PCDATA, ANY, and EMPTY.

1.	 PCDATA: The PCDATA declaration can be used when the content
within an element is only text—that is, when the content contains no child
elements. Our sample document- snippet contains several such elements,
including title, a, h1, and b. These elements can be declared as follows
(the pound sign identifies a special predefined name).
<!ELEMENT title (#PCDATA)>

<!ELEMENT a (#PCDATA)>

<!ELEMENT h1 (#PCDATA)>

<!ELEMENT b (#PCDATA)>

PCDATA is also valid with empty elements.

XML Basics_Ch20_App-B.indd 598 14-Aug-20 4:38:17 PM

Appendix B: Well Formed XML Documents • 599

2.	 ANY: The ANY declaration can include both text content and child ele-
ments.The html element, for example, could use the ANY declaration as
<!ELEMENT html ANY>

�The ANY declaration allows any content to be marked by the element
tags, provided the content is well-formed XML. Although this flexibility
might seem useful, it defeats the purpose of the DTD, which is to define
the structure of the XML document so that the document can be vali-
dated. In brief, any element that uses ANY cannot be checked for validity,
only for being well formed.

3.	 EMPTY: It is possible for an element to have no content—that is, no
child elements or text. The img element is an example of this scenario.
The following is its definition: <!ELEMENT img EMPTY>

●● ONE or MORE elements: This (head, body) declaration signifies that
the html element will have two child elements: head and body. You
can list one child element within the parentheses or as many child ele-
ments as are required. You must separate each child element in your
declaration with a comma. For the XML document to be valid, the
order in which the child elements are declared must match the order
of the elements in the XML document. The comma that separates
each child element is interpreted as followed by; therefore, the pre-
ceding declaration tells us that the HTML element will have a head
child element followed by a body child element.

●● REOCCURENCE XML Element Markers:

Marker Meaning

? The element either does not appear or can
appear only once (0 or 1).

+ The element must appear at least once (1 or
more).

∗ The element can appear any number of times, or
it might not appear at all (0 or more).

�Putting no marker after the child element indicates that the element
must be included and that it can appear only one time. The head ele-
ment contains an optional base child element. Here are some sample
markers.

XML Basics_Ch20_App-B.indd 599 14-Aug-20 4:38:17 PM

600 • XML Basics

�To declare this element as optional, modify the preceding declaration
as follows:

<!ELEMENT head (title, base?)>

�The body element contains a basefont element and an a element that
are also optional. In our example, the table element is a required ele-
ment used to format the page, so you want to make table a required
element that appears only once in the body element. You can now
rewrite the Body element as follows:

<!ELEMENT body (basefont?, a?, table)>

�The table element can have as many rows as needed to format the
page but must include at least one row. The table element should now
be written as follows:

<!ELEMENT table (tr+)>

�The same conditions hold true for the tr element. The row element
must have at least one column, as shown here:

<!ELEMENT tr (td+)>

�The a, ul, and ol elements might not be included in the p element, or
they might be included many times, as shown here:

<!ELEMENT p (font+, img, br, a∗, ul∗, ol∗)>

�Because the br element formats text around an image, the img and br
tags should always be used together.

●● Grouping child objects

(1)	 You can also group child objects.
<!ELEMENT p (font*, (img, br?)*, a*, ul*, ol*)> or

<!ELEMENT p (font*, (img, br?)*, a*, ul*, ol*)+> or

<!ELEMENT p (font | (img, br?) | a | ul | ol)+>

(2)	 You can separate the elements by a comma (,) or with a pipe (|).
If you use the pipe, it indicates that one or the other child ele-
ment will be included, but not both. The latest sample defines
an unsorted set of child elements.

XML Basics_Ch20_App-B.indd 600 14-Aug-20 4:38:17 PM

Appendix B: Well Formed XML Documents • 601

The !ATTLIST Statement

Every element can have a set of attributes associated with it. The attributes
for an element are defined in an !ATTLIST statement. The format for the
!ATTLIST statement is shown here:

<!ATTLIST ElementName AttributeDefinition>

ElementName is the name of the element to which these attributes belong.
AttributeDefinition consists of the following components:

AttributeName AttributeType DefaultDeclaration

AttributeName is the name of the attribute. AttributeType refers to the
data type of the attribute.

DefaultDeclaration contains the default declaration section of the attri-
bute definition.

Attribute Data Types

XML DTD attributes can have the following data types: CDATA, enu-
merated, ENTITY, ENTITIES, ID, IDREF, IDREFS, NMTOKEN, and
NMTOKENS.

CDATA: The CDATA data type indicates that the attribute can be set to
any allowable character value.

Enumerated: The enumerated data type lists a set of values that are
allowed for the attribute. The declaration is case sensitive.

ENTITY and ENTITIES: The ENTITY and ENTITIES data types are
used to define reusable strings that are represented by a specific name.

ID, IDREF, and IDREFS: Within a document, you may want to be able
to identify certain elements with an attribute that is of the ID data type. The
name of the attribute with an ID data type must be unique for all of the ele-
ments in the document. Other elements can reference this ID by using the
IDREF or IDREFS data types. IDREFS can be used to declare multiple
attributes as IDREF.

NMTOKEN and NMTOKENS: The NMTOKEN and NMTOKENS data
types are similar to the CDATA data type in that they represent character
values. The name tokens are strings that consist of letters, digits, underscores,
colons, hyphens, and periods. They cannot contain spaces.

The Default Declaration: The default declaration can consist of any valid
value for your attributes, or it can consist of one of three predefined key-
words: #REQUIRED, #IMPLIED, or #FIXED.

XML Basics_Ch20_App-B.indd 601 14-Aug-20 4:38:17 PM

602 • XML Basics

●● The #REQUIRED keyword indicates that the attribute must be included
with the element and that it must be assigned a value. There are no default
values when #REQUIRED is used.

●● The #IMPLIED keyword indicates that the attribute does not have to be
included with the element and that there is no default value.

●● The #FIXED keyword sets the attribute to one default value that cannot
be changed. The default value is listed after the #FIXED keyword.

●● If none of these three keywords are used, a default value can be assigned
if an attribute is not set in the XML document.

Associating the DTD With an XML Document

There are two ways to associate a DTD with an XML document: the first is to
place the DTD code within the XML document and the second is to create a
separate DTD document that is referenced by the XML document. Creating
a separate DTD document allows multiple XML documents to reference
the same DTD. We use the external DTD in our project connecting to the
accounting package. All defined DTD’s are stored in a DTD Base Container.

<!DOCTYPE DocName [DTD]>
or
<!DOCTYPE RootElementName SYSTEM|PUBLIC [Name]DTD-URI>
The SYSTEM keyword is needed when you are using an unpublished

DTD.
We will use the second set of our own defined XML definitions. It guar-

antees we only send well formed and valid messages. We define it as PUBLIC
with a reference to the DTD-container expressed as a UNC coded location.

Entities

Entities are like macros in the C programming language in that they allow
you to associate a string of characters with a name. This name can then be
used in either the DTD or the XML document; the XML parser will replace
the name with the string of characters. All entities consist of three parts: the
word ENTITY, the name of the entity (called the literal entity value), and
the replacement text—that is, the string of characters that the literal entity
value will be replaced with. All entities are declared in either an internal or
an external DTD.

XML Basics_Ch20_App-B.indd 602 14-Aug-20 4:38:17 PM

Appendix B: Well Formed XML Documents • 603

Internal General Entities

Internal general entities are the simplest among the five types of entities.
They are defined in the DTD section of the XML document.

Declaring an internal general entity: The syntax for the declaration of an
internal general entity is shown here:

<!ENTITY name "string_of_characters">

To reference a general entity in the XML document, you must precede
the entity with an ampersand (&) and follow it with a semicolon (;).

Internal Parameter Entities

Internal parameter entities are interpreted and replaced within the DTD and
can be used only within the DTD. While you need to use an ampersand (&)
when referencing general entities, you need to use a percent sign (%) when
referencing parameter entities.

Declaring an internal parameter entity

The syntax for declaring an internal parameter entity is shown here:
<!ENTITY % name "string_of_characters">

The XHTML Standard and Internal Parameter Entities

XHTML is currently out of the scope of this document. We just mention
some key strokes. Whenever, applicable, consult a book concerning XHTML.

Inline entities and elements

The XHTML standard provides the following declarations for defining
a series of internal parameter entities to be used to define the inline
elements

<!ELEMENT p %Inline;>

Block entities and elements
The XHTML standard also declares a set of internal parameter entities

that can be used in the declarations of the block elements
<!ELEMENT body %Block;>

XML Basics_Ch20_App-B.indd 603 14-Aug-20 4:38:17 PM

XML Basics_Ch20_App-B.indd 604 14-Aug-20 4:38:17 PM

A P P E N D I X C
XML OVERVIEW

C.1 Introduction to XML

XML is the most popular way to store data and exchange information over the
Internet. Since so many languages can read and write XML files, use XML
when you want to share data among different applications and platforms. One
of XML’s greatest features is its ubiquity.

XML also benefits from being easy to learn. Since XML looks like HTML,
Web developers are familiar with its tag-based syntax. However, XML is not
HTML. HTML has a fixed set of elements, such as <a>, , and <h1>.
With XML, you have the flexibility to use whatever element names best rep-
resent your data.

When choosing how to represent data, developers seem to fall into one
of two camps. Some people think of XML as a record format, similar to
comma-separated files. But instead of separating entries with newlines and
fields with commas, XML provides rich classification options.

Other developers view XML as a document specification format. The
online PHP Manual (http://www.php.net/manual) is produced from XML
files. The PHP Documentation Team’s documents use tags such as <func-
tion>, <parameter>, and <example>. This allows them to release the manual
in multiple formats, including two versions of HTML, Windows CHM help
files, and PDF.

C.2 Well-Formed XML

For an XML document to be considered valid, it must satisfy the following
restrictions:

XML Basics_Ch21_App-C.indd 605 14-Aug-20 4:39:04 PM

606 • XML Basics

●● The document must have only one top-level element. This element is
called the root element.

●● Every element must have both a start and an end tag.
●● All attributes must have values, and those values must be quoted.
●● Elements must not overlap. You cannot use <a>, because

the ending tag comes before .
●● You must convert &, <, and > to their entity equivalents. You can use

htmlentities() to solve this.
●● When a document meets these rules, it’s valid, or well-formed, XML.

C.3 Schemas

When you validate HTML, your file is checked not only to see if it’s well-
formed, but also that your markup corresponds to the specification. While
your application parses XML instead of HTML, it also expects data in a cer-
tain format. When it gets anything else, it can’t work correctly.

Therefore, it’s beneficial to create a data specification, or schema, that
outlines the layout of the XML document your program requires. This allows
you to check the input XML file against a specification to see if the XML is not
only well-formed, but also valid. There are three different schema formats:
DTDs, XML Schema, and RelaxNG.

DTD: DTDs, short for Document Type Definitions, are the old way to
write a schema. They come from SGML and have a more limited syntax than
other formats. They’re not written in XML, so they can be difficult to read.
Try to avoid DTDs when you can.

XML Schema: The XML schema is the W3-approved document speci-
fication format. XML schemas are written in XML, so your XML parser can
also validate the schema.

C.4 Transformations

One of XML’s great advantages is that you can easily manipulate an XML
document into another format. It could be HTML, PDF, or even another
XML document. For instance, you could create an RSS feed for the articles
in your XML-based CMS.

XSLT, short for Extensible Stylesheet Language Transformations, is a
W3C-defined language for modifying XML documents. With XSLT, you can
create templates (written, of course, in XML) that act as a series of instruc-
tions for how an XML document provided as input should end up as output.

XML Basics_Ch21_App-C.indd 606 14-Aug-20 4:39:04 PM

Appendix C: XML Overview • 607

If you’re unfamiliar with XSLT, check out XSLT, by Doug Tidwell, or
Sal Mangano’s XSLT Cookbook (both published by O’Reilly). XSLT assumes
no knowledge of XSLT, while XSLT Cookbook is more useful for program-
mers who want a grab bag of recipes to solve commonly encountered XSLT
tasks, such as renaming attributes and elements. The complete specification
is located at http://www.w3.org/TR/xslt.

C.5 XML Namespaces

XML Namespaces let you place a set of XML elements inside a separate
“area” to avoid tag name clashes. This is an important feature because it allows
XML documents to be extended and combined. Unfortunately, using XML
namespaces is tricky. For something that initially seems very straightforward,
there’s a surprising amount of explanation required.

C.5.1 Why Use Namespaces?

Using XML Namespaces, developers can work together to define a common
set of markup for different sets of data, such as RSS items, meta-information
about pages on the Internet, or books. When programmers everywhere rep-
resent related information using the same set of elements in the same names-
pace, then everyone can create powerful applications based on a large set of
shared data.

On a more practical side, avoiding tag name clashes is still an issue because
it’s useful to modify XML documents. Clashes aren’t a problem when every-
one is working with a fixed set of elements. However, you can run into trouble
if you allow others to extend a document by adding their own elements.

For example, you may decide to use <title> to refer to the title of a Web
page, but your friend used <title> as the title of a person, such as Mister
or Doctor. With XML Namespaces, you can keep <html:title> distinct from
<person:title>.

Some languages have a similar concept, where functions and objects
belonging to a package can be namespaced together. PHP does not support
namespaces, which is why you may see the PHP function and class names
prefixed with a unique string. For example, the PEAR::DB MySQL module
is named DB_mysql. The leading DB_ means that this class will not conflict
with a class named simply mysql.

Another example of namespaces is the domain name system: columbia.
com is the Columbia Sportswear company, while columbia.edu is Columbia
University. Both hosts are columbia, but one lives in the .com namespace and
the other lives in .edu.

XML Basics_Ch21_App-C.indd 607 14-Aug-20 4:39:04 PM

608 • XML Basics

C.5.2 Syntax

In XML, a namespace name is a string that looks like a URL, for example,
http:// www.example.org/namespace/. This URL doesn’t have to resolve to an
actual Web page that contains information about the namespace, but it can. A
namespace is not a URL, but a string that is formatted the same way as a URL.

This URL-based naming scheme is just a way for people to easily create
unique namespaces. Therefore, it’s best only to create namespaces that point
to a URL that you control. If everyone does this, there won’t be any name-
space conflicts. Technically, you can create a namespace that points at a loca-
tion you don’t own or use in any way, such as http:// www.yahoo.com. This is
not invalid, but it is confusing.

Unlike domain names, there’s no official registration process required
before you can use a new XML namespace. All you need to do is define the
namespace inside an XML document. That “creates” the namespace. To do
this, add an xmlns attribute to an XML element. For instance:

<tag xmlns:example="http://www.example.com/namespace/">

When an attribute name begins with the string xmlns, you’re defining a
namespace. The namespace’s name is the value of that attribute. In this case,
it’s http://www.example.com/ namespace/.

C.5.3 Namespace Prefixes

Since URLs are unwieldy, a namespace prefix is used as a substitute for the
URL when referring to elements in a namespace (in an XML document or an
XPath query, for example). This prefix comes after xmlns and a :. The prefix
name in the previous example is example. Therefore, xmlns:example=“http://
www.example.com/namespace/” not only creates a namespace, but assigns the
token example as a shorthand name for the namespace.

Namespace prefixes can contain letters, numbers, periods, underscores,
and hyphens. They must begin with a letter or underscore, and they can’t
begin with the string xml. That sequence is reserved by XML for XML-related
prefixes, such as xmlns.

When you create a namespace using xmlns, the element in which you
place the attribute and any elements or attributes that live below it in your
XML document are eligible to live in the namespace. However, these ele-
ments aren’t placed there automatically. To actually place an element or attri-
bute in the namespace, put the namespace prefix and a colon in front of the
element name. For example, to put the element title inside of the http:// www.
example.com/namespace/ namespace, use an opening tag of <example:title>.

XML Basics_Ch21_App-C.indd 608 14-Aug-20 4:39:04 PM

Appendix C: XML Overview • 609

The entire string example:title is called a qualified name, since you’re
explicitly mentioning which element you want. The element or attribute
name without the prefix and colon, in this case title, is called the local name.

Note that while the xmlns:example syntax implies that xmlns is a name-
space prefix, this is actually false. The XML specification forbids using any
name or prefix that begins with xml, except as detailed in various XML and
XML-related specifications. In this case, xmlns is merely a sign that the name
following the colon (:) is a namespace prefix, not an indication that xmlns is
itself a prefix.

C.5.4 Examples

Example: This code snippet updates the address book from Example C-1
and places all the elements inside the http://www.example.com/address-book/
namespace.

Example: Simple address book in a namespace
<ab:address-book xmlns:ab="http://www.example.com/address-book/">

 <ab:person id="1">

 <ab:firstname>Rasmus</ab:firstname>

 <ab:lastname>Lerdorf</ab:lastname>

 <ab:city>Sunnyvale</ab:city>

 <ab:state>CA</ab:state>

 <ab:email>rasmus@php.net</ab:email>

 </ab:person>

<!— more entries here —>

</ab:address-book>

If two XML documents map the same namespace to different prefixes,
the elements still live inside the same namespace. The URL string defines a
namespace, not the prefix. Also, two namespaces are equivalent only if they
are identical, including their case. Even if two URLs resolve to the same loca-
tion, they’re different namespaces.

Therefore, this document is considered identical to Example C-2:
<bigbird:address-book xmlns:bigbird="http://www.example.com/address-book/">

 <bigbird:person id="1">

 <bigbird:firstname>Rasmus</bigbird:firstname>

 <bigbird:lastname>Lerdorf</bigbird:lastname>

 <bigbird:city>Sunnyvale</bigbird:city>

 <bigbird:state>CA</bigbird:state>

 <bigbird:email>rasmus@php.net</bigbird:email>

XML Basics_Ch21_App-C.indd 609 14-Aug-20 4:39:04 PM

610 • XML Basics

</bigbird:person>

<!— more entries here —>

</bigbird:address-book>

The ab prefix has been changed to bigbird, but the namespace is still
http:// www.example.com/address-book/. Therefore, an XML parser would
treat these documents as if they were the same.

C.5.5 Default Namespaces

As you can see, prepending a namespace prefix not only becomes tedious, it
clutters up your document. Therefore, XML lets you specify a default names-
pace. Wherever a default namespace is applied, nonprefixed elements and
attributes automatically live inside the default namespace.

A default namespace definition is similar to that of other namespaces, but
you omit the colon and prefix name:

xmlns=“http://www.example.com/namespace/”
This means there’s yet another way to rewrite the example:
<address-book xmlns="http://www.example.com/address-book/">

 <person id="1">

 <firstname>Rasmus</firstname>

 <lastname>Lerdorf</lastname>

 <city>Sunnyvale</city>

 <state>CA</state>

 <email>rasmus@php.net</email>

</person>

<!— more entries here —>

</address-book>

It is not uncommon to find a document that uses multiple namespaces.
One is declared the default namespace, and the others are given prefixes.

C.6 XPath

XPath is a W3C standard (http://www.w3.org/TR/xpath) for locating portions
of an XML document that match a set of criteria. Use XPath to find the names
of all the people in your XML address book who live in New York, all the
URLs for articles written on PHP in a Meerkat RSS feed, or the most recent
entry into your XML-based content management system.

Think of XPath as SQL for XML documents. You can do all kinds of
advanced queries using XPath, such as finding items with a certain parent,

XML Basics_Ch21_App-C.indd 610 14-Aug-20 4:39:04 PM

Appendix C: XML Overview • 611

attribute, or location in the tree. XPath uses the same syntax as XSLT, so you
might be familiar with parts of it, even if you’re not an XPath expert.

There are two parts to an XPath query: the portion of the XML document
you wish to retrieve and the restrictions you want to place upon your query.
This is analogous to SQL SELECT and WHERE clauses.

For example, you can search the XML address book in Example C-1 for
all the email addresses:

/address-book/person/email

Levels in an XML document are separated by a /, similar to the sepa-
rators for folders in a directory path. When the query begins with a slash, it
tells XPath to start looking at the top-level element. Therefore, /address-book/
person/email means gather all the email elements under a person element
under an address-book element.

This is like a SQL SELECT without a WHERE. However, if you’re plan-
ning a trip to Manhattan and just want to find all your friends who live in New
York, NY, use this:

/address-book/person[city = "New York" and state = "NY"]/email

The text inside square brackets refines the XPath query. [city = “New
York” and state = “NY”] restricts the search to entries where the city element
under person is New York and the state is NY. To check attributes instead
of elements, prepend an @:

/address-book/person[@id = "1"]

This finds all persons with an id attribute of 1.

XML Basics_Ch21_App-C.indd 611 14-Aug-20 4:39:04 PM

XML Basics_Ch21_App-C.indd 612 14-Aug-20 4:39:04 PM

GLOSSARY

DEFINITIONS OF STANDARD XML TERMS

Attributes

Attributes are a name/value pairings that sit inside element tags. For example,
an attribute for an inventory listing might include a date the product became
available.

<lamps date="01/01/2010"> - lamps is the element and date is the attribute

Child Element

A child element sits inside of the parent and further itemizes the tags within
the file. In an inventory listing of lamps, the element tag “desktop,” might be
a child element of both “lamps” and “inventory.”

<inventory> - root/parent element

<lamps> - parent element

<desktop> - child element

Comments

Comments are data strings not meant to be seem by those visiting a Web
page. Comments are intended to define or explain a coding section to anyone
who must update or review the XML file.

<!--this is a comment -->

XML Basics_Ch22_Glossary_2pp.indd 613 14-Aug-20 4:40:18 PM

614 • XML Basics

CDATA

Character data. CDATA is text in a document that should not be parsed by the
XML parser. Any entities included in the CDATA block will not be replaced
by their value and markup (such as HTML tags) will not be treated as markup.

CDF (Channel Definition Format)

CDF is a push technology based on XML syntax (submitted to W3C by
Microsoft and Marimba). CDF is an XML vocabulary designed to specify
metadata about Web pages which will enable filtering to create “Web Push
Channels.” With CDF, we can describe content ratings, scheduling, logos,
and abstract information. Today, the channels we see in the IE4.0 browser
are powered by XML and the CDF vocabulary. An XML-based data for-
mat is used in Microsoft® Internet Explorer 4.0 and later to describe Active
Channel™ content and desktop components.

Character

A character is an atomic unit of text as specified by ISO/IEC 10646. A charac-
ter is a single alpha, numeric, or punctuation mark.

Character Set

A mapping of a set of characters to their numeric values. For example, Unicode
is a 16-bit character set capable of encoding all known characters; it is used as
a worldwide character-encoding standard.

Component

An object that encapsulates both data and code, and provides a well-specified
set of publicly available services.

Content

Content is all data between the start tag and end tag of an element. Content
may be made up of markup characters and character data.

Content Model

The content model in XML is the expression specifying what elements and
data are allowed within an element.

XML Basics_Ch22_Glossary_2pp.indd 614 14-Aug-20 4:40:18 PM

Glossary • 615

CSS (Cascading Style Sheets, Level 1)

CSS is a formatting description that provides augmented control over the
presentation and layout of HTML and XML elements. CSS can be used for
describing the formatting behavior of simply structured XML documents, but
does not provide a display structure that deviates from the structure of the
source data. See also Extensible Stylesheet Language. It is an earlier specifi-
cation of a W3C Recommendation.

CSS2 (Cascading Style Sheets, Level 2)

(supersedes CSS1); a W3C Recommendation.

Document Type Definition (DTD)

A DTD provides the legal structure of the core XML file for validation.

Declaration Statement

The declaration statement gives the browser information to recognize the lan-
guage and syntax of the file. Without a declaration statement, the Internet
processor is unable to compute the code. This is the first line of any XML
document and defines the language, version, specifies encoding, and declares
the standalone status of the file. Only the language definition and version are
required for a declaration statement. Encoding and standalone are optional
attributes.

<?xml version="1.0" encoding="UTF-8" standalone="yes">

Data Strings

A data string is the information you want the viewer to see. For example,
a description of an inventory item would be a data string. Data strings sit
between the opening and closing tags of element.

<description> - element tag

This lamp sits on top of a table. - data string viewable on a Webpage
</description> - closing tag

Data Island

Data islands are a proposed format for putting XML-based data inside HTML
pages (<XML> or <SCRIPT language=“XML”>). HTML is used as the pri-
mary document or display format, and XML is used to embed data within the
document.

XML Basics_Ch22_Glossary_2pp.indd 615 14-Aug-20 4:40:18 PM

616 • XML Basics

Data Type

The type of content that an element contains such as a number or a date. In
XML, an author can specify an element’s data type.

Delimiter

A delimiter is a special character that marks the beginning and end of a string
or text field.

DHTML (Dynamic HTML)

DHTML, is a term introduced by Netscape and Microsoft, but not accepted
by W3C; “the combination of HTML, style sheets and scripts that allows
documents to be animated” is how W3C describes DHTML; see also DOM,
CSS2, and ECMAScript.

Document Element

Document element is the top-level element of an XML document. Only one
top-level element is allowed. The document element is a child of the docu-
ment root.

Document Root

Document root is the top-level node of an XML document. Its descendants
branch out from it to form the XML tree for that document. The document
root contains the document element and can also contain a set of processing
instructions and comments.

DSO (Data Source Objects)

Provides data, embedded by use of data binding, into an HTML page. Users
can then sort and filter the data as they would in a database, without needing
to return to the server. DSOs supply data asynchronously to the page, similar
to the way GIF images are displayed incrementally as they are transmitted.

DSSSL (Dynamic Style Semantics and Specification Language)

DSSSL It is a powerful formatting language, more so than CSS and XSL (not
a W3C standard).

EBNF (Extended Backus-Naur Form)

A formal set of production rules that comprise a grammar defining another
language, such as XML.

XML Basics_Ch22_Glossary_2pp.indd 616 14-Aug-20 4:40:18 PM

Glossary • 617

ECMA Script

ECMA Script is W3C’s evolving scripting specification (based on JavaScript).
ECMA is an international, Europe-based industry association founded in
1961 and dedicated to the standardization of information and communication
systems.

Empty Declaration

Empty declaration in XML is the DTD declaration for an empty tag. For exam-
ple, if <xyz/> is an empty tag, the empty declaration looks like: <!ELEMENT
xyz EMPTY>.

Empty Element

Not all elements have content. Those elements that do not have content are
empty elements and in XML may be noted with a special empty element
tag that ends with a slash directly preceding the closing angle bracket of the
tag, so an XML parser can immediately recognize it as an empty tag and not
bother looking for a matching end tag. If “xyz” is an empty tag, it looks like
<xyz/>.

Entity

Entity in XML is a virtual storage unit. It is often a separate file, but may be
a string or even a database record. In XML, an entity declaration provides
the ability to have constants or replacement strings, which are expanded by a
pre-processor. An entity declaration maps some token to a replacement string.
Later the token can be prefixed with the & character and the replacement
string is put in its place. An entity is a XML structural construct. It is a char-
acter sequence or well-formed XML hierarchy associated with a name. The
entity can be referred to by an entity reference to insert the entity’s contents
into the tree at that point. The function of an XML entity is similar to that of
a macro definition. Entity declarations occur in the DTD.

Entity Reference

XML structural construct. Refers to the content of a named entity. The name
is delimited by the ampersand and semicolon characters; for example, &book-
name; and <. It is used in much the same way as a macro.

Event Handler

The code that is executed when an event occurs.

XML Basics_Ch22_Glossary_2pp.indd 617 14-Aug-20 4:40:18 PM

618 • XML Basics

Element Tags

Element tags are created by the author and establish a hierarchical syntax
to the code. When designing elements for an XML information file, supply
names to tags that are recognizable and easily managed. For example, when
creating an inventory file, you might use key names, such as “table” to supply
structure to the code. Within the element “table” you might list more tags
the further identify the inventory, such as “desktop” or “floor.” The simplicity
of XML lies is this process of naming the element tags. XML does not have
static tags that you must memorize in order to write valid code. All element
tags must have closing tags.

<table> - element tag

</table> - closing tag

Generic Identifier

Generic identifiers, often called the “GI” is the XML tag name. So <head>
has a generic identifier equal to “head.” A generic identifier is unique in its
namespace.

Grammar

The syntax of a language. It is expressed formally by a set of production rules,
such as the EBNF rules.

Granular Updating

Changing only an element of a page, rather than rebuilding the entire page.
The new element is sent from the server to the client, which replaces the old
element while leaving the rest of the page intact.

Graphing

A very generalized way to represent certain data relationships.

HGML (Hyper Graphics Markup Language)

HGML is a graphically-oriented alternative to HTML specifically designed
for use in wireless contexts.

HTML (Hypertext Markup Language)

Hyper Text Markup Language (HTML) is the pervasive data format for the
World Wide Web. While HTML provides an outstanding mechanism to

XML Basics_Ch22_Glossary_2pp.indd 618 14-Aug-20 4:40:18 PM

Glossary • 619

deliver simple documents over the Web, its simplicity imposes limitations
that significantly raise the cost of deploying complex Websites. Currently, ver-
sion HTML 4.0 is the official W3C Recommendation, but many authors and
browsers are still using HTML 3.2.

ICE (Information and Content Exchange)

ICE is an XML vocabulary that provides an exchange protocol for content on
the Web. ICE defines the roles and responsibilities of syndicators (data pro-
viders) and subscribers (data consumers). While ICE was initially developed
to support commercial publishing applications on the Web, it is expected to
prove useful in automating content exchange and reuse in both traditional
publishing environments and in business-to-business relationships.

ID

A special attribute type within the XML language. The ID attribute on the
XML element provides a unique name, enabling links to that element using
the IDREF attribute type. The value associated with the ID attribute must be
unique within that XML document. IDs are currently declared with a DTD
or schema.

Java Script

Java Script is Netscape’s scripting language; current version is 1.2.

JScript

JScript is Microsoft’s scripting language derived from JavaScript.

Markup

Markup is a text character that identifies the storage and logical structures of
the data. Tags and entities are markup characters of an XML document. It is
the text in an XML document that does not represent character data: start
tags, end tags, empty-element tags, entity references, character references,
comments, CDATA section delimiters, DTDs, and processing instructions.

MathML (Mathematical Markup Language)

MathML is an XML vocabulary for describing mathematical notation and
capturing both its structure and content. MathML is designed to enable
mathematics to be served, received, and processed on the Web. MathML can
be used to encode both mathematical notation and mathematical content.

XML Basics_Ch22_Glossary_2pp.indd 619 14-Aug-20 4:40:18 PM

620 • XML Basics

Twenty-eight of the MathML tags describe abstract notational structures,
while another seventy-five provide a way of unambiguously specifying the
intended meaning of an expression.

MCF (Meta Content Framework)

MCF is a data model for metadata.

Metadata

Metadata is generally a machine understandable information about data, spe-
cifically for data describing Web resources.

Mixed Content

An element type has mixed content when elements of that type can contain
character data, optionally interspersed with child elements. In this case, the
types of the child elements can be constrained, but not their order or their
number of occurrences.

Namespace

A namespace is a set of unique identifiers. It is a mechanism to resolve naming
conflicts between elements in an XML document when each comes from a
different vocabulary. It allows the commingling of like tag names from differ-
ent namespaces. A namespace identifies an XML vocabulary defined within a
URN. An attribute on an element, attribute, or entity reference associates a
short name with the URN that defines the namespace; that short name is then
used as a prefix to the element, attribute, or entity reference name to uniquely
identify the namespace. Namespace references have scope. All child nodes
beneath the node that specifies the namespace inherit that namespace. This
allows nonqualified names to use the default namespace.

NDATA

The literal string “NDATA” is used as part of a notation declaration.

Normalize

To collapse two or more adjacent text nodes in the document tree into one
text node. This ensures that the tree structure will match the tree structure
generated when the document is stored and reloaded. The element object
offers a normalize method.

XML Basics_Ch22_Glossary_2pp.indd 620 14-Aug-20 4:40:18 PM

Glossary • 621

Notation

Usually refers to a data format, such as BMP. A notation identifies by name
the format of unparsed entities, the format of elements that bear a notation
attribute, or the application to which a processing instruction is addressed.

Notation Declaration

A notation declaration provides a name and an external identifier for a nota-
tion. The name is used in the entity and attribute-list declarations and in
attribute specifications.

The external identifier is used for the notation, which can allow an XML
processor or its client application to locate a helper application capable of
processing data in the given notation.

OFX (Open Financial Exchange)

(from Microsoft, Intuit and CheckFree; not W3C); supports banking, bill
payment, bill presentment and investments. A data format used by personal-
finance applications to communicate with financial institutions over the Web.
Although it is currently described using SGML, OFX will soon be based on
XML.

OSD (Open Software Description)

OSD is for platform-independent software installation and updates. It is an
XML-based data format for advertising and installing software components
over the Internet (from Microsoft and Marimba; not W3C).

Parent Element

A parent element holds other related element tags. For example, a file that
lists inventory might have a parent tag called lamps‚ and contain tags the list
the individual lamps available in the product line. The root element is the par-
ent tag for all other elements in the XML file.

<inventory> - parent element

<lamps> - element tag

Prolog

An XML prolog consists of a declaration of the version of XML being used as
well as the DTD that the document will validate against.

XML Basics_Ch22_Glossary_2pp.indd 621 14-Aug-20 4:40:18 PM

622 • XML Basics

XML documents do not have to have the DTD to be well-formed, but it
is required to be valid. Examples:

<?xml version="1.0">

html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.
w3.org/TR/xhtml1/ DTD/xhtml1-transitional.dtd”>

P3P (Platform for Privacy Preferences)

Websites state their privacy practices which user agents match against the
preferences defined by the user (giving the user better control) based on
RDF, which is based in turn on XML syntax. The W3C Platform for Privacy
Preference Project Vocabulary Working Group presents a basic model for the
P3P privacy conversation between a user agent and a service. P3P provides a
grammatical model for expressing P3P service practices and user preferences
over data in the semantic framework of RDF and a data design model for
expressing and referencing data elements, classes, and categories.

PGML (Precision Graphics Markup Language)

PGML is a 2D scalable graphics useful for precision graphics as well as for
simple vector graphics; it is based on XML syntax and the object model of
PostScript and Portable Document Format (PDF).

PI (Processing Instruction)

PIs are instructions that are passed through to the application. The target is
specified as part of the PI. The syntax for a PI is <?pi-name content?>.

PICS (Platform for Internet Content Selection)

PICS is an infrastructure for associating labels (metadata) with Internet con-
tent. PICS 2.0 is based on RDF which is based in turn on XML syntax (the
earlier PICS version 1.1 pre-dates XML and therefore uses a different syntax).

RDF (Resource Description Framework)

RDF is a language for writing metadata. It is useful for defining sitemaps,
content ratings (see), search engine data collection (resource discovery),
intelligent agents, etc. An object model similar in function to an application
programming interface (API), RDF can be used by developers to access the
logical meaning of designated content in XML documents.

XML Basics_Ch22_Glossary_2pp.indd 622 14-Aug-20 4:40:18 PM

Glossary • 623

RDF Namespace

RDF namespace is a specialized XML syntax designed to provide a limited
form of RDF on the Web.

Reference Node

The reference node for a search context is the node that is the immediate par-
ent of all nodes in the search context. Every search context has an associated
reference node.

Root Element

The root element is the first named tag of every XML file and is a container
for all other elements.

<inventory> - root element

<lamps> - element tag

SGML (Standard Generalized Markup Language)

In 1986, the Standard Generalized Markup Language (SGML) became an
international standard for the format of text and documents. SGML has with-
stood the test of time. Its popularity is rapidly increasing among organiza-
tions with large amounts of document data to create, manage, and distribute.
However, various barriers exist to delivering SGML over the Web. These
barriers include the lack of widely supported stylesheets, complex software
because of SGML’s broad and powerful options, and obstacles to the inter-
change of SGML data because of varying levels of SGML compliance among
SGML software packages. The international standard for defining descrip-
tions of structure and content of electronic documents. XML is a subset of
SGML designed to deliver SGML-type information over the Web.

SMIL (Synchronized Multimedia Integration Language, SMIL 1.0,
pronounced “smile”)

SMIL, a W3C Recommendation, is an XML vocabulary that allows integrat-
ing a set of independent multimedia objects into a synchronized multimedia
presentation. With SMIL you can describe the temporal behavior of the pres-
entation, describe the layout of the presentation on a screen, and associate
hyperlinks with media objects.

XML Basics_Ch22_Glossary_2pp.indd 623 14-Aug-20 4:40:18 PM

624 • XML Basics

SOAP

SOAP is an acronym that stands for Simple Object Access Protocol.
SOAP is an XML-based protocol that allows you to activate an applica-

tion or object within an application across the Internet. SOAP is used for
distributed computing and Internet applications. It was developed by a group
of vendors, including Microsoft, to revolutionize how Web applications are
developed.

Outside of Web development, SOAP stands for Symbolic Optimal Assem-
bly Programming.

SAX

Stands for Simple API for XML. An event driven method of dealing with an
XML file.

Instead of containing the entire hierarchy in memory at one time, it pres-
ents elements as events which can then be exploited by your code. SAX has
the advantage of less memory consumption for large files, but has the disad-
vantage that the programmer must write code to save anything he wants saved
and must write changes to the XML file in sequential order. DOM allows
random changes to elements. Because it doesn’t need to keep entire files in
memory all at once, SAX is universally useful, whereas DOM is not useful for
truly large XML files.

Tags

Tags are text structures that mark the beginning and end of elements within
the XML document. Tags are markup characters.

Target

The application to which a processing instruction is directed. The target
names beginning with “XML” and “xml” are reserved. The target appears as
the first token in the PI. For example, in the XML declaration <?xml ver-
sion=“1.0”?>, the target is “xml.”

Text Markup

Inserting tags into the middle of an element’s text flow to mark certain parts
of the element with additional meta-information.

XML Basics_Ch22_Glossary_2pp.indd 624 14-Aug-20 4:40:18 PM

Glossary • 625

Tokenized Attribute Type

Each attribute has an attribute type. Seven attribute types are characterized
as tokenized: ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, and
NMTOKENS.

TEI (Text Encoding Initiative)

TEI it is not a W3C Standard and predates the Web.

UCLP (Universal Commerce Language and Protocol)

The Universal Commerce Language and Protocol (UCLP) is an XML vocab-
ulary for tagging metadata that can be used in identifying and retrieving com-
merce data residing across the Internet. UCLP presents a tagging schema
which captures the relevant parameters describing an object, but is not bound
to a prescriptive DTD. UCLP is designed to evolve to capture changes in
the marketplace in the same time frame in which these are occurring. The
system using these tags would have to be flexible in incorporating changes,
would have to provide the industry domain with means to monitor and regu-
late changes according to their own policies, and must be sufficiently general
so that advances made in one domain can be transferred to others. UCLP is
intended to introduce a new paradigm for dynamic data tagging for which
data typing is only a required tool.

Unicode

Unicode is a standard for representing characters from languages around the
world. Unicode standards are synchronized with UCS-2 subset of ISO 10646.

Updategram

XML generated by agents to notify the client of changes to data on the server,
or vice versa; the agents could run on the middle tier to access multiple exist-
ing database management systems (DBMSs) and output XML.

URI (Uniform Resource Identifier)

URI is the system used for naming all the resources on the Web. This includes
URL (Uniform Resource Locators) and all future resource categories. It is
defined in Berners-Lee, T., R. Fielding, and L. Masinter, Uniform Resource
Identifiers (URI): Generic Syntax and Semantics - 1997. The Layman-Bray
proposal for namespaces makes every element name subordinate to a URI,
which would ensure that element names are always unambiguous.

XML Basics_Ch22_Glossary_2pp.indd 625 14-Aug-20 4:40:18 PM

626 • XML Basics

URL (Uniform Resource Locator)

The set of URI schemes that have explicit instructions on how to access the
resource on the Internet.

URN (Uniform Resource Identifier)

A Uniform Resource Name identifies a persistent Internet resource.

Valid

An XML document is valid if it conforms to the vocabulary specified in a
DTD or schema. In other words, an XML document with an associated docu-
ment type declaration that follows all the rules of that declaration is valid.

VML (Vector Markup Language)

VML defines markup formatting for vector graphics along with style informa-
tion to assist in display and editing.

Well Formed

A well-formed XML document follows all the rules of the XML specifica-
tion but is not necessarily valid according to an associated document type
declaration. A well formed XML document contains one or more elements;
it has a single document element, with any other elements properly nested
under it; each of the parsed entities referenced directly or indirectly within
the document is well-formed. A well-formed XML document does not neces-
sarily include a DTD.

WIDL (Web Interface Definition Language)

WIDL is an XML vocabulary that that implements a service-based archi-
tecture over the document-based resources of the World Wide Web. WIDL
allows interactions with Web servers to be defined as functional interfaces
that can be accessed by remote systems over standard Web protocols, and
provides the structure necessary for generating client code in languages such
as Java, C/C++, COBOL, and Visual Basic. WIDL enables a practical and
cost-effective means for diverse systems to be rapidly integrated.

XLL (Extensible Link Language)

XLL, now called XLink, is a simple and extended linking mechanism. XLL
provides links in XML similar to those in HTML but with more functionality.

XML Basics_Ch22_Glossary_2pp.indd 626 14-Aug-20 4:40:18 PM

Glossary • 627

Linking could be multidirectional, and links could exist at the object level
rather than just at a page level.

XMI (XML Metadata Interchange)

Format, IBM, and Unisys response to the OMG’s request for proposals
for a stream-based model interchange format for UML (Unified Modeling
Language) models.

XML Aware

Any software application that recognizes the XML data format and under-
stands XML concepts. Often XML aware software contains an embedded
XML parser.

XML Data

XML data is a proposal, submitted by Microsoft and others to the W3C, to
define a number of common scalar data types that can be applied to elements.
The XML-Data proposal includes the concept of XML schemas.

XML Declaration

An XML declaration is an optional declaration at the top of an XML docu-
ment that specifies the version of XML and an encoding declaration. The first
line of an XML file can optionally contain the “xml” processing instruction,
which is known as the XML declaration. The XML declaration can contain
pseudo-attributes to indicate the XML language version, the character set,
and whether the document can be used as a standalone entity.

XML Document

A data object that is well-formed, according to the XML recommendation,
and that might (or might not) be valid. The XML document has a logical
structure (composed of declarations, elements, comments, character refer-
ences, and processing instructions) and a physical structure (composed of
entities, starting with the root, or document entity).

XML Engine

Software that supports XML functionality on the client; Internet Explorer 4.0
and Internet Explorer 5 include XML engines.

XML Basics_Ch22_Glossary_2pp.indd 627 14-Aug-20 4:40:18 PM

628 • XML Basics

XML OM (XML Object Model)

An API that defines a standard way in which developers can interact with the
elements of the XML structured tree. The object model controls how users
communicate with trees, and exposes all tree elements as objects, which can
be accessed without any return trips to the server. The XML OM uses the
W3C standard Document Object Model.

XML Vocabulary

An XML vocabulary is an XML tag set with a specific functionality. SMIL,
WIDL, MathML, and ICE are all examples of XML vocabularies. The actual
elements used in particular data formats. Channel Definition Format, for
example, is a format for describing collections of pages and when these pages
should be downloaded. Vocabularies, along with the structural relationships
between the elements, can be defined in a DTD or a schema.

XML (Extensible Markup Language)

A subset of ISO 8879, Standard Generalized Markup Language (SGML).
The XML subset of SGML has been specifically designed to function on the
Web. A subset of SGML that provides a uniform method for describing and
exchanging structured data in an open, text-based format, and delivers this
data by use of the standard HTTP protocol. At the time of this writing, XML
1.0 is a World Wide Web Consortium Recommendation, which means that it
is in the final stage of the approval process.

XML-QLA (Query Language for XML) - XQL

XML with similarities to SQL.

XSL Pattern

Part of XSL that provides simple querying capability against an XML docu-
ment. Internet Explorer 5 supports XSL Patterns with some of the extensions
described in XML Query Language.

XML DOM

XML DOM provides a standard for structure and navigational properties of
all XML files.

XML Basics_Ch22_Glossary_2pp.indd 628 14-Aug-20 4:40:18 PM

Glossary • 629

XSL (Extensible Stylesheet Language)

XSL is a family of languages designed to render XML to an output stream
readable on various platforms.

XSL Transformations (XSLT)

XSLT is an XSL document that transforms the data of an XML file into
XHTML to be read by a parser and displayed on a browser.

XPath

XPath is a language that provides navigation through XML using path
expressions.

XQuery

XQuery is a language that provides a way to search and extract elements and
attributes within an XML document.

XML Linking Language (XLink)

XLink creates hyperlinks within XML documents.

XML Pointer Language (XPointer)

XPointer serves as a partner to XLink that allows links to the individual parts
of an XML document.

XML Schema

Schemas are XSL documents designed to provide structure to the linked
XML file for validation and output.

Extensible Stylesheet Language Formatting Objects (XSL-FO)

XSLO-FO is a language that formats XML data for output for various media
platforms.

XForms

XForms provides a way to display forms within XML to create interactive
pages.

XML Basics_Ch22_Glossary_2pp.indd 629 14-Aug-20 4:40:18 PM

630 • XML Basics

XML Editor

An XML editor is a software application that facilitates coding in the XML
markup language. There are many levels of XML editors. Some programmers
prefer a basic text editor, such as Notepad, to write XML documents. When
creating a platform that utilizes XML for Web design, a savvy author will look
to more advanced XML editors, such as Oxygen XML Editor. This package
provides not only text files to create a core data file, but also XSL formatting
and an HTML output stream. With the right editor, a designer can organize
the data and create the page all in one place.

XML Validator

XML is easy to create, but unwavering in the rules. Syntax must be followed
in order to provide pages on the internet. A validator will examine an XML
document and certify that all tags are closed and properly nested. XML makes
demands on the designer. It requires structure and proper format. Unlike
HTML, elements without closing tags or misplaced in the hierarchical stage
will generate an error. A validator will look closely at the file and help develop
well-formed XML. It is a valuable tool for both novices and veterans alike.

XML DOM

Document Object Model (DOM) is the interface that defines how data is
accessed. This is the place that allows programmers to create dynamic content
that will display the same basic way on any browser. The DOM is a standard
interface that enable all languages to work cohesively. It is not a language on
its own, but a mechanism that allows programming languages to exist. All
structured documents work within a DOM system. Without the DOM, pars-
ers would not be able to identify and processes any part of a file. It works to
locate and move the information. The DOM supplies a method for the ever
growing list of browsers to read and process code.

XML Parser

An XML parser is a module that reads the code and converts it into the XML
DOM. From this point, the file can be manipulated into presentable form.
Without a parser, computers would not understand the meaning of the files.
A parser reads the code within the XML file, determines it is well-formed,
and then assigns meaning to it. You cannot display information on a Web page
without a parser to read it.

XML Basics_Ch22_Glossary_2pp.indd 630 14-Aug-20 4:40:18 PM

INDEX

A

Absolute location path, 470–472
Abstract types, 254–255
Accessing data from a database, 574–576
Actor attribute, 403–404
Adding attributes

to elements with complex content, 241
to elements with simple content,

241–243
Amaya, 165
Ancestors, 487
Annotating XML schemas, 260–269
ANY declaration, 74, 599
anyURI data type, 295
API. See Application Programming

Interface
Application Programming Interface (API),

430
Apply-import function, 368–371
asterisk (∗), 477
Asynchronous system, 397
Atomic values, 486
ATTLIST declaration, 93
!ATTLIST statement, 601
Attribute data types, 601–602
Attribute groups, 199, 251–252, 274–277
AttributeName, 601
Attribute node, 461
Attributes, 46–47, 55, 93–94, 106–107, 199
Attribute type, 95

AttValue, 62
Axes, 308–313

B

Basic syntax, 74
Beatles DTD, 76
Binary data types, 295
Binary entity. See Unparsed entity
Binding using bind, 525–526
Binding using ref, 525
Blocking element substitution, 278–279
Body element, 600
bookdetails.xml, 489
Boolean, 458, 459
Boolean data type, 295
boolean(node_set) function, 461
boolean(number) function, 461
boolean(string) function, 461
Boolean functions, 464–465
Built-in derived data types, 212–213
Built-in functions, XPath, 461–462
Built-in primitive types, 211–212

C

Cardinality operators, 92–93
Cascading Style Sheets (CSS)

associating with XML, 164
authoring XML documents with, 163–164

advantages of, 162–163
class attribute, 169–170

XML Basics_Ch23_Index_1pp.indd 631 8/20/2020 6:11:36 PM

632 • Index

class selector, 168–169
combining feature, 32
comments, 166
descendant selectors, 170
displaying XML with, 173–174
embedding in webpage, 171–172
example, 166
ID selector, 167–168
inserting style sheets, 171–172
languages for, 27
limitations, 27

for complex applications, 162
processor, 30, 31
rendering XML documents with,

164–165
specification, 28–31
styles, 172
syntax, 165
type selector, 167
XML and, 161–162

Case sensitive XML tags, 20
CDATA. See Character data; Unparsed

character data
CDATA blocks, 41
CDATA data type, 601
ceiling() function, 339, 465
Character data (CDATA), 40–41, 49,

95, 107
section, notes on, 84

Child element, 19, 76, 599
Children, 19, 486–487
Choice indicator, 270
Closing tag, 20
Code explanation, 255
colon (:), 609
Comment node, 461
Comments, 42, 59
Communication over distributed systems,

397–398
Complex element

defining, 263–265
examples of, 263

Complex model groups, 233–234
Complex-type elements, 230–231
Concatenation, 349–355
concat() function, 463
concat(string, string, ...) function, 461
Conditional sections, 100–101
contains() function, 463, 464
contains(string_1, string_2) function, 461
Content-Length header, 408
Content management, 25
Content models, 91–92, 199–200
Content-Type header, 408
Context node, 460
Context position, 460
Context size, 460
Controlling length, 215–216
Copy and copy-of constructs, 323, 359–360
count() function, 463
count(node_set) function, 461
CSS. See Cascading Style Sheets
CSS documents, 161
Current function, 362–363
Custom object model, 442

D

Data, 563
versus documents, 559

Databases, 563
and XML, 571–572
XML documents as, 557–558

Data-centric documents, 560–563
Data types, 201
Date data type, 289
Datetime data type, 290
DCOM. See Distributed Component

Object Model
Decimal data type, 292–293
Decimal property, 526
Declaring attributes, 100
DefaultDeclaration, 601
Default namespaces, 122–123, 134, 610

XML, 118

XML Basics_Ch23_Index_1pp.indd 632 8/20/2020 6:11:36 PM

Index • 633

Default values, 94–95, 227–228, 245–246.
See also Fixed values

for attributes, 190
for simple elements, 187

Defining a simple-type element, 213–214
Defining complex types globally, 239–240
“Defining Data with DTD Schemas”, 119
DELETE statement, 571
Deleting records, 571
Derivation, 200–201
Descendants, 487
Designing XML documents, 101
Detail element, 406–407
Device independent controls, 519
Distributed Component Object Model

(DCOM), 398
Distributed systems, 395, 397–398

communication over, 397–398
doc() function, 482
DOCTYPE declaration, 68, 85–87, 105, 152
DOCTYPE syntax, 65–67
Document element, 82, 105–106
DocumentHandler, 446
Document node, 485
Document object model (DOM), 62,

417–418
application, high level architecture of,

418–421
client side and server side, 431
implementation, 421–424
sample program, 420–421
specification, 423–424
and tree-based processing, 437
working with, 430

Documents, 563
Document Type Declaration, 59–60
Document Type Definition (DTD), 14–15,

37, 56, 59, 64, 598–600, 606
basic markup declarations in, 88
basic syntax, 74
child elements, 76
choice of elements, 77

creating, 71
element operators, 79–81
elements, 74
empty elements, 75, 77
example, 64
external, 72–73
general principles in writing, 68
internal, 71–72
internal and external (combined), 73–74
limitations of, 101
operators with sequences, 81
other elements, 76–77
plain text, 74–75
purpose of, 70–71
reference to, 184
as a schema, 180
unrestricted elements, 75
validating XML document with, 69–70
vs. XML schema, 196–197
well-formed vs. valid, 68
for XHTML, 151–152
XML application without, 78–79

Document validation, 68–69
dogbreeds.xml, 511
DOM. See Document object model
DOM API, 417, 420–421, 430
DOM Level 2 specification, 428
DOMWalker app, 419
DTD. See Document Type Definition
DTD !DOCTYPE, 65
Duration data type, 291

E

e-commerce transaction, 18
Editors, XML, 296–297
Element declaration, 200
Element groups, 250, 273–274
ElementName, 601
Element node, 461
Element operators, DTD, 79–81
Elements, 38–40
Element substitution, 277–278

XML Basics_Ch23_Index_1pp.indd 633 8/20/2020 6:11:36 PM

634 • Index

blocking, 278–279
EMPTY declaration, 74, 599
Empty elements, 75, 77, 106, 240
Empty-element tag, 55
Encoding attribute, 38
Encoding declaration, 8
EncodingStyle attribute, 401, 404
Encoding style attribute, 415
ENTITIES, 95, 98, 601
Entities, 2, 43, 53, 602–603
ENTITY, 95, 97, 601
Entity references, 45–46

and constants, 47–48
Enumerated data type, 601
Enumeration attribute, 95, 99–100
Enumerations, 219–220
Event-driven parsers, 62
Expanded name, 453
Explicit namespaces, 123–126
Exporting XML document from a database,

573–574
Extended link groups, 209
Extended links, 208–209
Extending complex types, 252–253
eXtensible HyperText Markup Language

(XHTML), 149–150
benefits of, 150
coding, 150
declaration, 151
differences between HTML and,

147–149
document element, 153
document formation, 155
DTDs, 151–152
Frameset DTD, 153
standard and internal parameter entities,

603
Strict DTD, 152
tags

attributes, 158
attribute shortening, 158–159
closing tags, 157

correct quotation, 158
ID attribute, 159
lower case, 155–156, 158
nesting, 156

Transitional DTD, 152–153
eXtensible Linking Language (XLL), 3
Extensible Markup Language (XML)

adaptable, 3
application

classification, 60
high level architecture of, 418–421

application independence, 17
attributes, 592
attribute values enclosed in double

quotation marks, 592
basics, 589–595
benefits, 11–12
comments, 594
convergence of HTML and, 144–146
and CSS, 161–162
data presentation modification, 17
data type values, 592–593
default namespace, 118
disadvantages, 13
duration syntax, 593–594
e-commerce transactions, 18
editors, 296–297
element markers, 599
elements, 5
example document, 501–502
extensible, 5
feature of, 5
file names, 594
freely available, 22
future-oriented, 18
general syntax, 55
general weaknesses of, 13–14
getting multilingual with, 143–144
history of, 6
HTML AND, 6–7
improved data searches, 18
indentation between elements, 594–595

XML Basics_Ch23_Index_1pp.indd 634 8/20/2020 6:11:37 PM

Index • 635

information set, 206–207
internationalization, 17
introduction to, 4–5, 605
lack of application processing, 13
local namespace, 116–117
lowercase or camel case for tags and

attributes, 592
for messages, 102
as meta-language, 4
namespaces, 115–116, 126, 591, 607
one data source, multiple views, 17
open and extensible, 17
over HTML, 142
over SGML, 3–4
parser, 14, 62, 431–432
paths observe letter cases, 594
for persistent data, 102–103
recommendations, 594
specifications, 15
structure, 7
styles (revisited), 177–178
syntax, 8–9
tags, 5, 591, 592
technology, 22
as text-based markup language, 296–297
and unicode disadvantages, 14–15
uses, 23
values, 592
value type examples, 593
Web services, 25–26
well-formed, 57–58, 68, 605–606

eXtensible Stylesheet Language (XSL), 4,
299–300

conditional processing, 324–326
copy and copy-of constructs, 359–360
number generation and formatting in,

327–331
numeric calculation in, 335–339
output element, 355–356
patterns, 177
processors, 300–301
repetitions and sortings in, 313–315

root element, 378–379
sortings, 315–318
string function, 348–349
template, 301–302
transformation, 175–176

Extensible Stylesheet Language Formatting
Objects (XSL-FO), 529–530

areas, 537–538
blocks, 543–545
controlling spacing and borders, 546
font and text attributes, 535–537
graphics, 553
list blocks, 548–550
lists, 546–557
objects, 552–553
output, 538–539
page layout, 539–543
processors, 553–554
Scriptura software, 554
styling text in, 545
tables, 550–551
and XSLT, 554–555

eXtensible Stylesheet Language
Transformations (XSLT), 27, 135, 373,
554, 606–607

applying to XML document, 376–377
sample program, 374
syntax, 377
XSL-FO and, 554–555

External DTD, 72, 86–87
example of, 72–73

External entities, 14, 55
External style sheet, 171

F

Faultactor element, 406
Fault codes, 406
Faultstring element, 406
#FIXED, 94, 96, 100, 602
Fixed values, 228–229, 246

for attributes, 190
for simple elements, 187

XML Basics_Ch23_Index_1pp.indd 635 8/20/2020 6:11:37 PM

636 • Index

floor() function, 339, 465
Flow, defined, 534
Font and text attributes, 535–537
For clause, 491
Formal DTD structure-elements, 91
Formal DTD structure-entities, 88–89
Formatting multilevel numbers, 331–334
Form controls, XFORMS, 519–521

listed, 521–522
Function calls, 493

G

General entity, 44, 88, 89–90
Generalized markup language, 2
Generated and user defined types, 203–204
Generate Id, 363–366
Global complex-type elements declaration,

236–237
Global elements, 279
Global simple-type elements declaration,

225
Global vs. local simple-type elements,

225–227
Group indicators, 273
Grouping child objects, 600
Groups, 248–252

H

Head element, 599
HTML. See Hypertext Markup Language
HTTP, 410
HTTP headers, 410
HTTP protocol, 407
HTTPS protocol, 410
Hyperlinks, 204
Hypertext Markup Language (HTML), 1,

55, 500, 529
add to XML data, 146
convergence of XML and, 144–146
differences between XHTML and,

147–149

history, 141–142
links, 205, 496–499
output method, 356–358
and XML, 6–7

I

ID attribute, 96, 103, 601
id() location path, 508
IDREFS type, 95, 97, 601
IDREF type, 95–97, 103, 601
IETF. See Internet Engineering Task Force
If-Then-Else expressions, 488
IIOP. See Object Management Group’s

Internet Inter-Orb Protocol
#IMPLIED, 94, 96, 100, 602
Importing stylesheets, 366–368
Indicators, XSD, 269–279
Information attributes, 198
Inline link, 500
Inline style, 172
Input control, 519–520
Inserting records, 569–570
INSERT statement, 569–570
Instance element, 517–518
Instance section, 38
Integer data type, 293
Internal and external (combined) DTD,

73–74
Internal DTD, 71

example of, 72
subset declarations, 86

Internal entity, 54
Internal & external subsets, 84–85
Internal general entities, 603
Internal parameter entities, 603
Internal style sheet, 171
Internet Engineering Task Force (IETF),

411
item element, 282
Items, 485

XML Basics_Ch23_Index_1pp.indd 636 8/20/2020 6:11:37 PM

Index • 637

J

Joining table, 566

K

Keys, 257–260

L

<label> element, 518, 520
lang() function, 464–465
Language, XPath, 458
last() function, 461, 463
Layout master set, defined, 534
lemonade2.xml, 479
Let clause, 492
Link elements, 207
Linking, 206
Links, 204–205
Lists, 222–223
Locally declared elements and attributes,

129–132
Local namespace, 115–116

example, 117
Location of modifiers, 82
Location path, 302–306, 507–508
Locators, 207
Logical Structure, 8

M

Mapping
document schemas to database

schemas, 564
information model to XML, 103–104

markup, defined, 1
Markup languages, 1
MaxOccurs indicator, 271
Message element, 527
Message passing system, 397
Message, XML for, 102
Microsoft Internet Explorer 5, 164–165
MinOccurs indicator, 271–273
Mins and maxs, 217–218

Miscellaneous data types, 295–296
Mixed content, 77, 237–239
Morrison namespace, 119
Mozilla, 165
M-POST method, sending messages using,

412–413
Multiple child elements (sequences), 78
Multiple namespaces, 117

using, 132–134
mustUnderstand attribute, 403
MySQL, 574

N

Name conflicts, 126–127
solving using, 127–128

Named types, 284–286
name() function, 461
name(node_set) function, 461
Namespace node, 461
Namespace prefixes, 608–609
Namespaces, 111, 118–119

declaring, 112–114
scope, 114
and using, 120–122

example, 116
purpose of, 112, 119
in real use, 135
reason to use, 607

Naming namespaces, 119–120
Negative duration, 292
Nested XML elements, 21
Nil values, 229–230
NMTOKEN, 95, 98, 601
NMTOKENS, 95, 98, 601
Node functions, 463
Nodes, 485–486

relationship of, 486–487
Node set, 458, 459
Node tree, 426
Nonatomic types, 222
Normalized string data type, 287
Notation, 98–99

XML Basics_Ch23_Index_1pp.indd 637 8/20/2020 6:11:37 PM

638 • Index

note.dtd, 183
note.xml, 183
note.xsd, 184
not() function, 345, 464–465
not(boolean) function, 461
Number data type, 458, 459
Number functions, 465
Number of digits, 218–219
Numeric data types, 293–294

O

Object Management Group’s Internet
Inter-Orb Protocol (IIOP), 398

Occurrence constraints, 235–236
Occurrence indicators, 270–271
Operators with sequences, DTD, 81
Operators, XPath, 459–460
Optional and required attributes, 190
Order by clause, 492
orderperson element, 281
org.xml.sax.ContentHandler, 439
org.xml.sax.DocumentHandler, 438,

440, 447
org.xml.sax.DTDHandler, 438, 440
org.xml.sax.EntityResolver, 438, 440
org.xml.sax.ErrorHandler, 438, 440
org.xml.sax.HandlerBase, 440
Out-of-line link, 500–501
Output control, 520–521

P

Page sequence, defined, 534
Parameter entities, 44–45, 90–91
Parent, 19, 486
Parentheses for complex declarations, 83
Parsed Character Data (PCDATA), 74, 83
Parsed entity, 53–54
Parser, 23, 60–61
Path expressions, 482–483
PCDATA. See Parsed Character Data
PCDATA declaration, 598

Persistent data, 102–103
PHP, 574–576, 607
Physical structure, 53
PIS. See Processing instruction
Plain text, 74–75
position() function, 461, 463
POST method, 411, 413
Preamble, 198
Predefined entities, 54, 89
Predicates, 473–474, 483
Presentation-oriented Web application, 578
Primitive data types, 201–203
Processing a transformation, 376
Processing instruction (PIS), 42–43, 49, 59
Processing instruction node, 461
Prolog section, 37
Property inheritance, 31
PUBLIC keyword, 87

Q

Qualified names, 114–115
Querying, 206
Quoted XML attribute values, 21

R

RDF. See Resource Description Framework
RDF Site Summary (RSS), 27
Referencing nodes, 456–457
Relational database primer, 565–566
Relative location path, 470, 475–476
Remote Procedure Call (RPC), 396, 397,

398, 399
Replaceable content, 97
Request headers, 411–412
Request/response model, 397–398, 410
#REQUIRED, 94, 96, 602
Requiring attributes, 247
Resolving XML data into database tables,

572–573
Resource Description Framework

(RDF), 27

XML Basics_Ch23_Index_1pp.indd 638 8/20/2020 6:11:37 PM

Index • 639

Response headers, 412
Restricting attribute values, 243–245
Restrictions

for datatypes, 196
on date data types, 292
on length, 195
on miscellaneous data types, 296
on numeric data types, 294
on a series of values, 191–194
on a set of values, 191
on string data types, 288
on values, 190–191
on whitespace characters, 194–195

Retrieving data, 564
Retrieving records using SELECT, 567–569
Return clause, 493
Role attribute, 504
Role of a schema, 179
Root element, 21, 462

defined, 534
Root node, 461, 475, 485
Root path, 508
round() fuction, 339, 465
RPC. See Remote Procedure Call
RSS. See RDF Site Summary

S

Sample preamble, 198
Sample XML document, 24
SAX. See Simple API for XML
SAX API interfaces, 438–439
SAXBrowser.java, 447–449
SAX interface java example, 447–449
SAX parser, 436

creating, 435–447
SAXParserFactory, 441
SAX parsing pattern example, 449–450
Schema, 606

for body content of SOAP message,
413–414

dividing, 283–284
as explanation, 189–196

languages and notations, 180
role of a, 179
as set of constraints, 188–189

Scope, 114, 119
Scriptura, 554
Secret control, 520
Selecting the root node, 379–380
Semantic drift, 189
Sequence indicator, 270
Service-oriented Web application, 578
Setvalue element, 527
SGML. See Standard Generalized Markup

Language
Shiporder element, 281
Show attribute, 503, 504
Siblings, 19, 487
Simple API for XML (SAX), 435–437

benefit of, 436
choosing DOM and, 438
sample program, 439–441
three steps to using, 441–446

Simple links, 208
Simple Object Access Protocol (SOAP), 25,

395–396, 583–585
advantages, 397
body element, 404–405
disadvantages, 397
encoding, 414–415
envelope element, 401–402
example, 408–409
fault element, 405–407
HTTP headers and, 410
message structure, 400–401
and request/response model, 410
role of XML in, 396
syntax, 399–400
transport methods in, 409–410

Simple-type elements, 210–211
defining, 213–214

Simple XML schema, 188
Simple XPATH expression, 479
SOAP. See Simple Object Access Protocol

XML Basics_Ch23_Index_1pp.indd 639 8/20/2020 6:11:37 PM

640 • Index

SOAP HTTP binding, 407–408
SOAP version 1.2, 396
Source code, 1
Special characters, 108
Specific markup languages, 1–2
Specifying element type locally, 221–222
Specifying patterns, 216–217
SQL. See Structured Query Language
SQL query, 574, 576
Standalone attribute, 37–38, 85
Standard Generalized Markup Language

(SGML), 2–3, 141, 149
and HTML, 3

starts-with() function, 463
Storing data, 564
Storing XML documents in a database, 573
Strict DTD, 152
String, 458, 459
String data type, 286–288
string() function, 341–348, 461
string(boolean) function, 462
string(node_set) function, 462
string(number) function, 462
String functions, 463–464
String-length function, 354
string-length() function, 464
Structured Query Language (SQL), 566
Submission element, 518–519
Submit control, 520
<submit> element, 518
Subsequences, 81–82
SubstitutionGroup, 279
substring-after() function, 463, 464
substring-before() function, 352, 463, 464
substring() function, 464
sum(), 465
Syntax rules, 67
SYSTEM keyword, 87, 105

T

Table columns, XSL-FO, 551
Table element, 600

Target XML documents, 511–512
Template ordering, 307–308
Textarea control, 520–521
Text node, 461
Text output method, 358–359
Time data type, 289
Time zones, 289, 290–291
Token data type, 287
Transformation process, 375
Transitional DTD, 152–153
Tree-based parsers, 62
Tree-based processing

DOM and, 437
pros and cons of, 437–438

Trigger control, 520
true() property, 526
Type attribute, 503

U

UDDI. See Universal Description,
Discovery, and Integration

Unicode disadvantages of XML, 14–15
Uniform Resource Identifier (URI), 111,

120, 134
Uniform Resource Locator (URL), 120, 134
Unions, 223–224
Universal Description, Discovery, and

Integration (UDDI), 25, 583, 585–586
benefits, 586
use of, 586–587

Universal Resource Name (URN), 120, 134
Unparsed character data (CDATA), 83–84
Unparsed data, 48
Unparsed entity, 53–54
Unrestricted elements, 75
UPDATE statement, 570
Updating records, 570
Upload control, 521
Uppercase and lowercase sorting, 318–324
URI. See Uniform Resource Identifier
URL. See Uniform Resource Locator
URL namespace names, 120

XML Basics_Ch23_Index_1pp.indd 640 8/20/2020 6:11:37 PM

Index • 641

URN. See Universal Resource Name
Use-attribute-sets attribute, 361–362
User-defined function, 494
User-derived simple types, 214–215

V

Validating XML instance document, 210
Valid documents, 56, 68
Value space, 201
Variable bindings, 460
VPML code, 144

W

Web Services, 25–26, 577
architecture, 579
example, 580–581
platform, 578
platform elements, 578
types, 578
use of, 581–582

Web Services Definition Language
(WSDL), 25, 583–586

Well-formed document, 35, 56–57
Well-formed XML document, 57–58, 68,

597–603, 605–606
Where clause, 492, 568–569
Whitespace, 107, 220–221
Wildcard, 303, 477
Working with numbers, 217
World Wide Web Consortium (W3C), 6, 18,

206, 299, 418
recommendation, 28, 60

WSDL. See Web Services Definition
Language

X

XFORMS, 515
actions, 527
binding, 524
example, 523–524
features of, 515–516

form controls, 519–521
listed, 521–522

framework, 517
and HTML, 515–516
location path, 507–508
namespace, 522–524
parts of, 516–519
processor, 522
properties, 526–527
user interface, 518–519
and XML, 516
and XPath, 524–526

XForms model, 517
XHTML. See eXtensible HyperText

Markup Language
XHTML document example, 153–155
XLink, 206, 208, 466, 494–495, 498

attributes, 502–504
creating links with, 504–506
linking with, 499–501
syntax, 495–496

XLL. See eXtensible Linking Language
XMetaL, 164
XML. See Extensible Markup Language
XML CDATA, 83
XML database, reason to use, 559
XML declaration, 8, 58, 598
XML documents, 58, 279–280

associating the DTD with, 602
characteristics of, 16
as database, 557–558
data format integration, 17
designing, 101
example, 452–454
to form a tree structure, 18–20
loading, 432
parsing, 63
in practical world, 25–31
sample, 24
structure, 36–37, 428–430
structure in, 9–10, 24

XML DOM nodes, 424–425

XML Basics_Ch23_Index_1pp.indd 641 8/20/2020 6:11:37 PM

642 • Index

XML DOM node tree, 426–427
XML DOM parser, 431
XML DOM tree, 418
XML DTD attributes, 601–602
XML elements

closing tags, 20
nested, 21
root element, 21

XML Links, 205, 496–499
xmlns:soap namespace, 401
XML plus HTTP, 578
XML processing, 62
XML processing-attribute values, 61
XML schema, 179, 606

built-in types, 211
creating, 280–288
DTD vs., 196–197
elements, 182
first look, 182–187
keys, 256–257
nonatomic types, 222
power of, 181–182
purpose of, 180–181
reference to, 185–186
simple, 188
structures, 197–198
types, 182–183
validating XML instance of, 210

XML Schema Definition (XSD)
attributes, 189–190
combining, 366
complex elements, 262–263
date and time data types, 288–296
elements only, 266
element substitution, 277
empty elements, 265
indicators, 269–279
miscellaneous data types, 294
mixed content, 268–269
numeric data types, 292
restrictions/facets, 190
simple elements, 186–187

string data types, 286
text-only elements, 267–268

XML Spy, 163
XML string, parsing, 63
XML syntax, 300
XML tags, case sensitive, 20
XML version, 378
XPath, 451–452, 610–611

absolute location path, 470–472
attributes, 477–478
built-in functions, 461–462
data types, 458
evaluation context, 460–461
expression, 478
functions, 462–465
language, 458
location path, 469–470
location step, 470
navigating a document with, 455–456
nodes, 462
operators, 459–460
referencing nodes, 456–457
relative location path, 475–476

select a node’s children using,
476–477

role of, 465–466
sample XML file, 478–479
selecting nodes, 472–473
select several paths, 474–475
select unknown nodes, 474
syntax, 452
using in XSLT templates, 466–469
XFORMS and, 524–526

XPointer, 206, 466, 495, 499
addressing with, 507
creating, 508–510
example, 510–512
expressions, 507–508
linking XML document, 510–511
references, 103
syntax, 495–496, 506–507

XML Basics_Ch23_Index_1pp.indd 642 8/20/2020 6:11:37 PM

Index • 643

XQUERY, 481
basic syntax rules, 488–491
example, 481–487
functions, 493
selecting and filtering elements, 491–493
syntax, 488
user-defined functions, 494

XQuery FLWOR expression, 483–484
XQuery FLWOR +HTML, 484–485
XSD. See XML Schema Definition
XSL. See eXtensible Stylesheet Language
<xsl:apply-templates/>, 380
<xsl:choose> element, 387–390
XSL documents, to present XML

documents, 176–177

XSL-FO. See Extensible Stylesheet
Language Formatting Objects

XSL-FO documents, 530–531
structure, 531–534

<xsl:for-each> element, 381–382
<xsl:if> element, 384–386
<xsl:otherwise> elements, 388
<xsl:sort> element, 382–383
XSLT. See eXtensible Stylesheet Language

Transformations
<xsl:template> element, 378, 380
<xsl:value-of> element, 380–381
<xsl:when> elements, 388

XML Basics_Ch23_Index_1pp.indd 643 8/20/2020 6:11:37 PM

XML Basics_Ch23_Index_1pp.indd 644 8/20/2020 6:11:37 PM

	Cover
	Half-Title
	Title
	Copyright
	Contents
	Preface
	Chapter 1: Understanding XML
	Markup Languages
	Specific Markup Languages
	Generalized Markup Language
	SGML - A Metalanguage
	Why is XML so Adaptable?
	XML Over SGML
	Introduction to XML
	Extensible
	Markup
	Language
	History of XML
	HTML and XML
	XML Structure
	Logical Structure
	XML Declaration
	XML Syntax
	How Do I Structure My XML Documents?
	Need for XML-Based Languages
	XML Benefits
	XML Disadvantages
	Lack of Application Processing
	General Weaknesses of XML
	XML and Unicode Disadvantages
	Characteristics of an XML Document
	Open and Extensible
	Application Independence
	Data Format Integration
	One Data Source, Multiple Views
	Data Presentation Modification
	Internationalization
	Future-Oriented
	Improved Data Searches
	Enables E-Commerce Transactions
	XML Documents form a Tree Structure
	All XML Elements Must have a Closing Tag
	XML Tags are Case Sensitive
	XML Elements Must be Properly Nested
	XML Documents Must have a Root Element
	XML Attribute Values Must be Quoted
	XML is Free
	XML Technology
	Uses
	Sample XML Document
	XML in Practical World
	Property Inheritance
	Combining Stylesheets
	Questions for Discussion

	Chapter 2: XML Syntax
	The Well-Formed Document
	XML Document Structure
	Prolog Section
	The Standalone Attribute
	The Encoding Attribute
	Instance Section
	Elements
	Character Data
	CDATA
	Comment
	Processing Instruction
	Entities
	General Entities
	Parameter Entities
	Entity References
	Attributes
	Entities’ References and Constants
	Unparsed Data
	Character Data (CDATA)
	Processing Instructions (PIS)
	Questions for Discussion

	Chapter 3: Document Type Definition (DTD)
	Physical Structure in XML
	Parsed and Unparsed Entities
	Predefined Entities
	Internal and External Entity
	XML General Syntax
	Attributes
	Valid Documents
	Well-Formed Documents
	Well-Formed XML Documents
	XML Documents
	The XML Declaration
	Processing Instructions
	Comments
	Document Type Declaration
	XML Application Classification
	Parsers
	XML Processing-Attribute Values
	XML Processing
	Event-Driven Parsers
	Tree-Based Parsers
	XML Parser
	Parse an XML Document
	Parse an XML String
	Document Type Definitions (DTDS)
	Example DTD
	DTD <!DOCTYPE>
	DOCTYPE Syntax
	XML Syntax Rules
	DTDs (Well-Formed vs. Valid)
	General Principles in Writing DTDs
	Document Validation
	Validating an XML Document with a DTD
	The Purpose of DTDs
	Creating DTDs
	Code Sample: DTDs/Demos/Beatles.DTD
	Internal DTD
	Example Internal DTD
	External DTD
	Example External DTD
	Combined DTD
	DTD Elements
	Basic Syntax
	Plain Text
	Unrestricted Elements
	Empty Elements
	Child Elements
	Other Elements
	Choice of Elements
	Empty Elements
	Mixed Content
	Multiple Child Elements (Sequences)
	An XML Application without a DTD
	DTD Element Operators
	DTD Operators with Sequences
	Subsequences
	The Document Element
	Location of Modifier
	Using Parentheses for Complex Declarations
	XML CDATA
	PCDATA-Parsed Character Data
	CDATA-(Unparsed) Character Data
	Notes on CDATA Sections
	Internal & External Subsets
	Standalone Attribute
	DOCTYPE Declaration
	Internal DTD Subset Declarations
	External DTDs
	Basic Markup Declarations
	Formal DTD Structure-Entities
	Predefined Entities
	General Entities
	Parameter Entities
	Formal DTD Structure-Elements
	Content Model
	Cardinality Operators
	Attributes
	Default Values
	Attribute Types
	CDATA
	ID
	IDREF
	Entity
	Entity, Entities
	NMTOKEN, NMTOKENS
	Notation
	Enumerations
	Declaring Attributes
	Conditional Sections
	Limitations of DTDs
	Designing XML Documents
	XML for Messages
	XML for Persistent Data
	Mapping the Information Model to XML
	A Document Type Declaration
	Elements
	Empty Elements
	Attributes
	CDATA
	White Space
	Special Characters
	Questions for Discussion

	Chapter 4: Namespaces
	Namespaces
	Purpose of Namespaces
	Declaring a Namespace
	Scope
	Qualified
	XML Namespace
	Example Namespace
	XML Local Namespace
	Example Local Namespace
	Multiple Namespaces
	XML Default Namespace
	Understanding Namespaces
	Naming Namespaces
	Declaring and Using Namespaces
	Default Namespaces
	Explicit Namespaces
	XML Namespaces
	Name Conflicts
	Solving the Name Conflict Using a Prefix
	Locally Declared Elements and Attributes
	Using Multiple Namespaces
	Uniform Resource Identifier (URI)
	Default Namespaces
	Namespaces in Real Use
	Questions for Discussion

	Chapter 5: Introduction to XHTML
	A Quick History of HTML
	XML Over HTML
	Getting Multilingual with XML
	The Convergence of HTML and XML
	Add HTML to XML Data
	Differences Between XHTML and HTML
	XHTML
	Benefits of XHTML
	XHTML Coding
	XML Declaration
	XHTML DTDs
	The DOCTYPE Declaration
	XHTML Strict
	XHTML Transitional
	XHTML Frameset
	The Document Element
	A Sample XHTML Document
	Document Formation
	XHTML Tags
	Questions for Discussion

	Chapter 6: CSS Style Sheets
	CSS Documents
	XML and CSS
	Limitations of CSS for Complex Applications
	Advantages of Authoring XML Documents with CSS
	Authoring Approaches
	Authoring XML Documents with CSS
	Associating CSS Stylesheets with XML
	Rendering XML Documents with CSS
	CSS Syntax
	CSS Example
	CSS Comments
	CSS Selectors
	Embedding CSS in Web Page
	CSS Styles
	Displaying XML with CSS
	XSL Transformation
	Using XSL to Present XML Documents
	XSL Patterns
	XML Styles (Revisited)
	Questions for Discussion

	Chapter 7: XML Schema Basics
	XML Schema
	Role of a Schema
	DTD as a Schema
	Schema Languages and Notations
	The Purpose of XML Schema
	The Power of XML Schema
	A First Look
	A Simple XML Schema
	Schema as a Set of Constraints
	Schema as an Explanation
	DTD vs XML Schema
	Structures
	Preamble
	Sample Preamble
	Attributes and Attribute Groups
	Content Models
	Element Declaration
	Derivation
	Data Types
	Primitive Types
	Generated and User Defined Types
	Hyperlinks
	Links
	Linking and Querying
	XML Information Set
	Link Elements
	Locators
	XLinks
	Simple Links
	Extended Links
	Extended Link Groups
	Validating an XML Instance Document
	Simple-Type Elements
	Built-in Simple Types
	19 Primitive Data Types
	Built-in Derived Data Types
	Defining a Simple-Type Element
	User-Derived Simple Types
	Controlling Length
	Specifying Patterns
	Working with Numbers
	Mins and Maxs
	Number of Digits
	Enumerations
	Whitespace Handling
	Specifying Element Type Locally
	Nonatomic Types
	Lists
	Unions
	Declaring Global Simple-Type Elements
	Global vs. Local Simple-Type Elements
	Default Values
	Fixed Values
	Nil Values
	Complex-Type Elements
	Content Models
	Complex Model Groups
	Occurrence Constraints
	Declaring Global Complex-Type Elements
	Mixed Content
	Defining Complex Types Globally
	Empty Elements
	Adding Attributes to Elements with Complex Content
	Adding Attributes to Elements with Simple Content
	Restricting Attribute Values
	Default and Fixed Values
	Fixed Values
	Requiring Attributes
	Groups
	Extending Complex Types
	Abstract Types
	XML Schema Keys
	Keys
	Annotating XML Schemas
	Annotating a Schema
	XSD Indicators
	But This is No Longer Valid
	Create an XML Schema
	XSD Date and Time Data Types
	XML Editors
	Questions for Discussion

	Chapter 8: XSL Basics
	Introduction to XSL
	An XML Syntax
	An XSL Processor
	The XSL Templates
	Location Paths
	Template Ordering
	Axes
	Repetitions and Sortings in XSL
	XSL Sorting
	Uppercase and Lowercase Sorting
	XSL Conditional Processing
	Number Generation and Formatting in XSL
	Formatting Multilevel Numbers
	Numeric Calculation in XSL
	Ceiling, Floor, and Round
	String Function
	XSL String Functions
	Concatination
	XSL Output Element
	HTML Output Method
	Text Output Method
	Copy and Copy-of Constructs in XSL
	Use-Attribute-Sets Attribute
	Miscellaneous Additional Functions
	Combining XSL
	Importing Stylesheets
	Apply-Import Function
	Questions for Discussion

	Chapter 9: XSLT Basics
	XSLT (Extensible Stylesheet Language)
	XSLT Sample Program
	The Transformation Process
	Processing a Transformation
	Applying XSLT to an XML Document
	XSLT Syntax
	XML Version
	XSL Root Element
	Selecting the Root Node
	Usage Example
	XSLT <value-of> Element
	Usage Example
	XSLT <for-each> Element
	<xsl:for-each> Example
	Result
	Before
	After
	XSLT <if> Element
	The Source File
	The Solution
	The Source File
	The Solution
	Questions for Discussion

	Chapter 10: SOAP
	SOAP
	Communication Over Distributed Systems
	Remote Procedure Call (RPC)
	SOAP Syntax
	SOAP Message Structure
	The SOAP Envelope Element
	The SOAP Header Element
	The SOAP Body Element
	The SOAP Fault Element
	The HTTP Protocol
	SOAP HTTP Binding
	Content-Type
	Content-Length
	A SOAP Example
	Transport Methods in SOAP
	SOAP and the Request/Response Model
	HTTP Headers and SOAP
	Request Headers
	Response Headers
	Sending Messages Using M-Post
	A Schema for the Body Content of the SOAP Message
	SOAP Encoding
	Encoding Style Attribute
	Questions for Discussion

	Chapter 11: DOM Programming Interface
	DOM (Document Object Model)
	XML DOM Tree
	High Level Architecture of a DOM/XML Application
	DOM Implementation
	The DOM Specification
	XML DOM Nodes
	XML DOM Node Tree
	First Child - Last Child
	DOM Level 2 Specification
	XML Document Structure
	Working with DOM
	Client Side and Server Side DOM
	XML DOM Parser
	XML Parser
	Load an XML Document
	Questions for Discussion

	Chapter 12: SAX (Simple API for XML)
	Introduction to SAX
	SAX (Simple API for XML)
	DOM and Tree-Based Processing
	PROS and CONS of Tree-Based Processing
	How to Choose Between SAX and DOM
	The SAX API is Defined in 4 Interfaces Under the org.xml.sax Package
	SAX Sample Program
	Three Steps to SAX
	Creating the SAX Parser the Sample File
	SAX Interface Java Example
	SAX Parsing Pattern Example
	Questions for Discussion

	Chapter 13: XPath
	XPath Introduction
	XPath Syntax
	The XML Example Document
	Navigating a Document with XPath Patterns
	Referencing Nodes
	XPath (XML Path) Language
	Data Types, Literals, and Variables
	XPath Operators
	Evaluation Context
	Built-in Functions
	Using XPath Functions
	Node Functions
	String Functions
	Boolean Functions
	Number Functions
	The Role of XPath
	Using XPath in XSLT Templates
	XPath Location Path
	Location Path Example
	XPath Location Step
	XPath Location Path – Absolute
	Example of an Absolute Location Path
	Selecting Nodes
	Predicates
	Selecting Unknown Nodes
	Selecting Several Paths
	The Root Node
	XPath Location Path – Relative
	Example of a Relative Location Path
	Children
	The Wildcard
	XPath Attributes
	XPath – Expressions
	XPath—Our Sample XML File
	A Simple XPath Expression
	Questions for Discussion

	Chapter 14: XLink, XQuery, and XPointer
	Introduction to XQuery
	XQuery Example
	XQuery Syntax
	XQuery Basic Syntax Rules
	XQuery Selecting and Filtering Elements
	XQuery Functions
	XQuery User-Defined Functions
	XLink and XPointer Introduction
	XLink and XPointer Syntax
	HTML, XML, and Linking
	Linking with XLink
	XLink Example
	The XML Example Document
	Understanding XLink Attributes
	Creating Links with XLink
	XPointer Syntax
	Addressing with XPointer
	Building XPointer Expressions
	Creating XPointers
	XPointer Example
	The Linking XML Document
	XPointer Example
	The Linking XML Document
	Questions for Discussion

	Chapter 15: XForms
	Introduction to XForms
	Features of XForms
	Parts of XForms
	The Form Controls
	The Form Controls Listed
	The XForms Processor
	The XForms Namespace
	XForms and XPath
	XForms Properties
	XForms Actions
	Questions for Discussion

	Chapter 16: XSL-FO
	Introduction to XSL-FO
	XSL-FO Documents
	XSL-FO Document Structure
	Font and Text Attributes
	XSL-FO Areas
	XSL-FO Output
	Page Layout
	XSL-FO Blocks
	Styling Text in XSL-FO
	Controlling Spacing and Borders
	More Complex Structures
	Tables
	XSL-FO Objects
	Graphics
	XSL-FO Processors
	XSL-FO Software
	XSL-FO and XSLT
	Questions for Discussion

	Chapter 17: XML with Databases
	Introduction
	XML Documents as Databases
	Why Use a Database?
	Data versus Documents
	Data-Centric Documents
	Document-Centric Documents
	Data, Documents, and Databases
	Storing and Retrieving Data
	Mapping Document Schemas to Database Schemas
	Relational Database Primer
	The World’s Shortest Guide to SQL
	Retrieving Records Using Select
	Inserting Records
	Updating Records
	Deleting Records
	Databases and XML
	Resolving XML Data into Database Tables
	Storing XML Documents in a Database
	Exporting an XML Document from a Database
	Accessing Data from a Database as XML
	Questions for Discussion

	Chapter 18: Web Services
	Web Services
	The Web Services Platform
	Web Services Platform Elements
	Types of Web Services
	Web Service Architectures
	Web Services Example
	How to Use Web Services
	SOAP
	WSDL and UDDI
	UDDI Benefits
	How Can UDDI be Used
	Questions for Discussion

	Appendix: A: XML Basics
	Appendix: B: Well Formed XML Documents
	Appendix: C: XML Overview
	Glossary
	Index

