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ARTIFICIAL  
INTELLIGENCE (AI)
1.1 Computerized Reasoning

From the ancient times, human beings have tried to get their work done 
by using human strength or inanimate machines. One characteristic that is 
constant in the software industry today is that of “change.” Change is one 
the most critical aspects of software development and management. New 
tools and new approaches are announced almost every day. Thanks to the 
industrial revolution, many activities are carried out by machines. With the 
invention of digital computers, error-prone numerical problems and time-
consuming tasks are done with accuracy and relative ease. Then, it struck 
people: “Why not seek the help of computers in the reasoning process?” 
How computers can help with the reasoning process was explained by Alan 
Turing. Before we explain the Turing Test, let’s look at Table 1.1, which 
presents the major differences between humans and computers.

Table 1.1 Differences between humans and computers

Humans Computers

Have emotions “Dumb” and have no emotions

Have a continuous nature Discrete in nature

Have the capacity to learn Must be programmed

Limited memory size Unlimited memory size

Storage “devices” are electrochemical Storage devices are electronic

in nature and magnetic

Living “devices” Non-living devices

Use Fuzzy logic Use binary logic for computation

C H A P T E R1
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1.2 Turing Test 

In 1950, Alan Turing wrote an article in Mind Magazine that considered the 
question “Can a machine think?” This article began the discussion that has 
become part of the philosophy of Artificial Intelligence (AI).

“Thinking” is difficult to define. There are two kinds of questions that 
philosophers have addressed:

a. Can a machine be intelligent? Can it solve all the problems that a 
human can solve by using intelligence?

b. Can a machine be built with a mind and experience a subjective con-
sciousness [a quality of awareness]?

In the Mind Magazine article, Turing proposed the “imitation game,” 
which was later known as the “Turing Test.” The Turing Test measures the 
performance of a supposedly intelligent machine against that of human 
being. Turing’s imitation game places a human and a machine counterpart in 
rooms apart from a second human being, who is referred to as the interroga-
tor. A diagrammatic representation of the Turing Test is given in Figure 1.1.

Human ? 
Machine ?

Human ? 
Machine ?

Room A Room B

Room C

FIGURE 1.1 Representation of Turing Test.

Turing proposed that if the human interrogator in Room C is not able to 
identify who is in Room A or in Room B, then the machine possesses intel-
ligence. Turing considered this test as sufficient for attributing thinking 
capacity to a machine.

However, the test is not easy as it seems. Humans are far superior to 
machines in regards to creativity, common sense, and reasoning. So humans 
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are sure to excel in these areas while machines are faster and more accurate 
for numerical computations. Machines can never be wrong in their com-
putations, whereas there exists a probability that humans may give incor-
rect answers, even after taking a long time. Therefore, Turing argued the 
machine may be assumed to be intelligent.

1.2.1 Weakness of the Turing Test
Turing did not explicitly state that the Turing Test could be used as a measure 
of intelligence or any other human quality. However, the Turing Test has 
come under severe criticism because it has been proposed as a measure of 
a machine’s “ability to think” or its “intelligence.” This proposal has received 
criticism from both philosophers and computer scientists. It assumes that 
an interrogator can determine if a machine is “thinking” by comparing its 
behavior with human behavior. Every element of this assumption has been 
questioned, including the value of comparing only behavior and the value 
of comparing a machine with a human. The reliability of the interrogator’s 
judgment has also been part of the discussion.

Because of these considerations, some AI researchers have questioned 
the relevance of the test, which brings us to the verge of a major question: 
“What is intelligence?”

1.3 What is Intelligence?

A typical definition of intelligence is “the ability to acquire and apply knowl-
edge.” Intelligence includes the ability to benefit from past experience, act 
purposefully to solve problems, and adapt to new situations.

1.3.1 Types of Intelligence
In the 1980s and 1990s, psychologist Howard Gardner proposed the idea of 
eight kinds of intelligence, which are relatively independent of one another. 
These eight types of intelligence are:

1. Linguistic: Spoken and written language skills

2. Logical-Mathematical: Number skills

3. Musical: Performance or composition skills

4. Spatial: Ability to evaluate and analyze the visual world

5. Bodily-Kinesthetic: Dance or athletic ability
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6. Interpersonal: Skills in understanding and relating to others

7. Intrapersonal: Skills in understanding the self

8. Nature: Skills in understanding the natural world.

In the 1980s and 1990s, Robert Sternberg proposed the Triarchic Theory of 
Intelligence that distinguished among three aspects of intelligence:

 Componential Intelligence: The ability assessed by intelligence tests;

 Experimental Intelligence: The ability to adapt to new situations and 
produce new ideas;

 Contextual Intelligence: The ability to function effectively in daily 
situations.

1.4 Artificial Intelligence

The term Artificial Intelligence (AI) was coined by John McCarthy in 1956. 
Numerous definitions for AI have been proposed by scientists and research-
ers such as:

 Artificial Intelligence is the study of how to make computers do things 
at which, at the moment, people are better;

 Artificial Intelligence is a part of computer science that is concerned with 
designing intelligent computer systems, that is, systems that exhibit the 
characteristics we associate with intelligence in human behavior;

 Artificial Intelligence is the branch of computer science that deals 
with the way of representing knowledge using symbols rather than 
numbers and with rules-of-thumb or heuristic methods for processing 
information.

1.5 Goals of Artificial Intelligence

The goals of AI are as follows:

To create expert systems: These are systems that exhibit intelligent 
behavior, learn, demonstrate, explain, and advise users.

To implement human intelligence in machines: Researchers want 
to create systems that understand, think, learn, and behave like humans.
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1.6 History of Artificial Intelligence

1941: The electronic computer was first developed in 1941, but evidence 
of AI can be traced back to ancient Egypt and Greece. Eventually, the 
technology become available to create machine intelligence.

1949: The stored computer program made the job of entering a program 
easier, and advancements in computer theory led to the creation of the 
fields of computer science and AI.

1950: Alan Turing proposed the Turing Test. Turing considered this as a 
sufficient test for attributing thinking capacity to a machine.

1955: Newell and Simon developed the Logic Theorist. The program rep-
resented each problem as a tree model, which it would attempt to solve by 
selecting the branch that would most likely result in the correct conclusion.

1956: The field of AI research was founded at a conference on the cam-
pus of Dartmouth College in the summer of 1956. The father of AI is 
John McCarthy. He wrote programs that solved word problems in algebra, 
proved logical theorems, and used English words.

1958: John McCarthy announced his new development, the LISP lan-
guage. LISP stands for List Processing and was soon adopted as the lan-
guage of choice among most AI developers.

Knowledge Expansion: The next few years would later be called an “AI 
winter,” a period when funding for AI projects was hard to find.

1968: A multitude of programs, notably the SHRDLU and part of the 
MicroWorlds project, which consisted of research and programming using 
small words, were launched.

1970: In 1970, AI achieved commercial success with the “expert system,” 
a form of AI program that simulated the knowledge and analytical skills of 
one or more human experts. Another development during this time was 
the Prolog language.

1985: By 1985, the market for AI had reached over a billion dollars. At the 
same time, Japan’s fifth generation computer project inspired the U.S. and 
British governments to restore funding for academic research in the field.

1990: In the 1990s and early 21st century, AI achieved its greatest suc-
cesses. Now AI is used for logistics, data mining, medical diagnosis, and 
many other areas throughout the technology industry.
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First Electronic Computer 1941

1949

1950

1955

1956

1958

1963

1968

1970

1972

1985

1990

First Commercial Shared 
Program Computer

Turning proposed 
Turing Test

Logic Theorist developed

AI started at Dartmouth 
Conference

LISP Language devaloped

Start of DOD’s advanced  
research project 

MicroWorld program 
SHRDLU Created

First Expert System

Prolog Language 
Revealed

Japanese  generation 
computer project

Al military system used 
effectively in “DESERT STORM”

FIGURE 1.2 A brief history of Artificial Intelligence.
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1.7 Advantages of Artificial Intelligence

It is evident that artificial intelligence will have to fill the gaps of human 
knowledge, and it will make man’s work easier. Some advantages of AI are 
given below:

1. AI machines do not get sick. There is no need for sleep or breaks. AI 
can go, go, go. AI machines can definitely get a lot more work done 
than people can. Take the finance industry, for example, where there 
are numerous stories showing the value of AI.

2. AI techniques play a major role in science and medicine. AI methods 
have been employed recently to discover subtle interactions between 
medications that put patients at risk for serious side effects.

3. AI can help us to plan trips using GPS systems that rely on AI to cut 
through the complexity of millions of routes to find the best one to 
take.

4. AI can help perform calculations that are too challenging for humans.

5. AI algorithms detect faces as we take pictures with our phones and 
recognize the faces of individual people when we post those pictures 
to Facebook. With the help of AI machines, our smart phones can 
understand our speech.

6. AI provides accurate results with few errors and defects.

7. AI easily works in stressful and complex situations where humans may 
struggle or cannot accomplish the task.

8. AI can be used for longer problems, where more direct methods fail.

1.8 Application Areas of Artificial Intelligence

The concept of AI has been implemented in the following fields:

1. Problem Solving: This is first application area of AI research; the ob-
jective of this particular area of research is how to implement the pro-
cedures on AI Systems to solve problems like humans solve problems.

2. Game Playing: Much of early research in state space search was done 
using common board games such as checkers, chess, and 8-puzzle.  
The board configurations used in playing these games are easily  
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represented in computers, requiring no complex formalisms. For 
solving large and complex AI problems, many techniques, like heuris-
tics, are required. Game playing in AI is important because:

The rules of the games are limited. Hence, extensive amounts of 
domain-specific knowledge are seldom needed.

Games provide a structured task where success or failure can be 
measured with the least effort.

Games visualize real life situations in a constricted fashion. 
Moreover, game playing permits one to simulate real life situations.

Unfortunately, developments in computer game playing programs 
are not that easy because of problems with the combinatorial explosion of 
solutions. In chess, the number of positions to be examined is about 35100.

3. Natural Language Processing [NLP]: Natural language is the lan-
guage of our routine; we speak it and understand it very well. The 
main goal of NLP is for people to ask questions to the computer in 
their mother tongue, and the computer will “understand” that par-
ticular language. The system will then give the response in the same 
language. Researchers are trying to make computers so intelligent that 
they can understand our natural language (such as English or any oth-
er language). NLP can be divided into two sub fields:

a. Natural language understanding: NLP researchers investi-
gate some methods of allowing the machine to improve instruc-
tions given in ordinary English so that the computers can under-
stand people more easily.

b. Natural language generation: This aims to have computers 
produce ordinary English so that people can understand the 
computers more easily.

4. Robotics: Robotics can be defined as the science or study of technol-
ogy primarily associated with the design, fabrication, theory, and ap-
plication of robots. The term “robot” is a Czech word meaning “slave.”

“Robots are machines that can be programmed to perform tasks.”

 Many robots do jobs that are hazardous to people, such as defusing 
bombs and mines and exploring shipwrecks. Robots have electrical 
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components which power and control the machinery. The major com-
ponents of a robot are:

 Manipulator: The manipulator arm performs the job that has  
been assigned to it by the control unit.

 Control unit: This provides the necessary control signals for activat-
ing the various parts for manipulation. It acts as an interface to various 
sensors which determine what the external environment is.

 Power source unit: This provides the necessary energy to make 
the robot perform activities. Many different types of batteries can 
be used as a power source for robots. Designing a battery powered 
robot needs to take into account factors such as safety, lifetime 
cycle, and weight.

5. Expert Systems: Expert systems are one of first AI technologies to 
help people solve important problems, and they are very important.

 “Expert systems are comprised of knowledge based programs that can 
solve problems when technical expertise is required.” 

Some examples of expert systems that are in use are as follows:

MYCIN, which is used in the medical field to diagnose diseases and

 DENDRAL, which is used in life science to identify the structure 
of chemical molecules.

6. Vision Systems: These systems understand, interpret, and compre-
hend visual input on the computer. For example,

 A spy plane takes photographs, which are used to figure out spatial 
information or map the area.

 Police use computer software that can recognize the face of a crimi-
nal with a stored portrait created by a forensic artist.

7. Speech Recognition: Some intelligent systems are capable of hearing 
and comprehending language in terms of sentences and their mean-
ing while a human talks to them. These systems can handle different 
accents, slang words, noise in the background, and even changes in a 
human’s voice due to a cold.
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1.9 Components of Artificial Intelligence

Any AI system consists chiefly of the following components, such as a learn-
ing AI programming language, knowledge representation, problem-solving 
(mainly by heuristic search), and AI hardware.

a. Learning: Learning means adding new knowledge to the knowledge 
base and improving or refining previous knowledge.
The success of an AI program is based on the extent of knowledge it 
has and how frequently it acquires knowledge. Learning agents con-
sists of four main components. They are the:

Learning element, the part of the agent responsible for improv-
ing its performance;

Performance element, the part that chooses the actions to take;

Critics, which tells the learning element how the agent is doing;

Problem generator, which suggests actions that could lead to new 
information experiences.

b. AI Programming Language: Today, just as we have specialized lan-
guages and programs for data processing and scientific applications, 
we have specialized languages and tools for AI programming using AI 
language programs and tools for the AI environment. LISP and Prolog 
are the primary languages used in AI programming.

LISP (List Processing): LISP is an AI programming language 
developed by John McCarthy in 1950. LISP is a symbolic process-
ing language that represents information in lists and manipulates 
lists to derive information.

PROLOG (Programming in Logic): Prolog was developed by 
Alain Colmeraver and P. Roussel at Marseilles University in France 
in the early 1970’s. Prolog uses the syntax of predicate logic to per-
form symbolic, logical computations.

c. Knowledge Representation: The quality of the result depends on 
how much knowledge the system possesses. The available knowledge 
must be represented in an efficient way. Hence, knowledge represen-



Artificial Intelligence (AI)  11

tation is a vital component of the system. The best known representa-
tions schemes are:

Associative Networks or Semantic Networks

Frames

Conceptual Dependencies and

Scripts

d. Problem-solving: The objective of this particular area of research is 
how to implement the procedures on AI systems to solve problems 
like humans do. The inference process should also be equally good to 
obtain satisfactory results. The inference process is broadly divided 
into the brute and heuristic search procedures.

e. AI Hardware: Today, most of the AI programs are implemented on 
Von Neumann machines only. However, dedicated workstations have 
emerged for AI programming. Computers are classified into one of 
following four categories:

a) Single Instruction Single Data (SISD) Machines

b) Single Instruction Multiple Data (SIMD) Machines

c) Multiple Instruction Single Data (MISD) Machines

d) Multiple Instruction Multiple Data (MIMD) Machines

In these machines, numeric computations occupy a substantial chunk of 
the processing time, followed by symbolic processing.





PROBLEM REPRESENTATION
2.1 Introduction

We face so many problems in day-to-day life and want to find the solutions 
for them. Our goal in AI is to construct working programs that solve these 
problems. The steps that are required to build a system to solve a particular 
problem are

1. Problem Definition: This must include precise specifications of what 
the initial situation will be, as well as what final situations constitute 
acceptable solutions to the problem.

2. Problem Analysis: This can have an immense impact on the appro-
priateness of various possible techniques for solving the problem.

3. Selection: This involves choosing  the best techniques for solving the 
particular problem.

2.2 Problem Characteristics

In order to choose the most appropriate method for a particular problem, 
it is necessary to check the problem in light of the following considerations:

1. Is the problem decomposable into smaller or easier sub-problems?
A large and composite problem can be easily solved if it can be broken 
into smaller problems and recursion could be used. For example, let’s 
consider ∫x2 + 3x + Sin 2x Cos 2x dx.

This can be done by breaking it into three problems and solving each 
by applying some specific rules. By adding the results of these indi-
vidual solutions, the complete solution can be obtained.

C H A P T E R2
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2. Can the solution steps be ignored or undone?
AI problems fall into three classes: ignorable, recoverable, and irre-
coverable. These classifications are related to the steps of the solution 
to a problem. For example, consider the following:

a. Theorem proving, in which solution steps can be ignored;

b. The 8-puzzle game, in which solution steps can be undone;

c. Chess, in which the solution steps cannot be undone.

3. AI programs use an internally consistent knowledge base.

4. In order to classify a system as an AI program, the fundamental crite-
rion is that it must require a lot of knowledge or it uses knowledge to 
constrain solutions.

5. AI programs require periodic interactions between humans and com-
puter, since the programs assist humans in making the right decisions. 
AI systems also have the capacity to handle uncertainty and incom-
plete and irrelevant information.

6. AI programs use the heuristic search to solve a large class of problems. 
This search includes a variety of techniques. Heuristics are also used 
for problems where no general algorithms are known.

7. A vital characteristic of an AI program is its ability to learn. Learning is 
an essential feature without which the modern systems could not have 
achieved their advanced technological level.

2.3 Problem Representation in AI

Before a solution can be found, the most important condition is that the 
problem must be very precisely defined. By defining it properly, it is easy 
to understand and we can abstract it into different states. These states are 
opened by a set of operators and the decisions of which operators should be 
applied. When and where are dictated by the overall control strategy. The 
most common methods of problem representation in AI are State Space 
Representation and Problem Reduction.

1. State Space Representation: In this method, the problem is de-
fined in the form of states. The straight forward approach for planning 
an algorithm is the state space search because it takes into account 
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everything needed for finding a solution. Hence, “state” here means 
“the position at a certain time.” For example, consider the following:

Water in a pan is in a liquid state, but when the stove is turned on, 
the state of water is changed: now it is boiled water (vapor). The state 
space search involves finding a path from the initial state of a search 
problem to a goal state. To do this, we first build a search graph start-
ing from the initial state (or goal state). We expand the state by apply-
ing search operators to that state which generate all of its successor 
states. The problem must cross the following states:

a. Initial state or starting state

b. Rule applied or operator used

c. Goal state

When we define problems according to states, the problems become 
easier and more understandable because the process shows every 
aspect of the problem. There are two ways available to solve a state 
space search:

The forward state space search, which is sometimes called 
progression planning because it moves in the forward direction; 
and

The backward state space search, which is sometimes called 
regression planning because it finds the solution from the goal 
to the starting stage.

Here are some examples of state space representation:

A.  The 8-puzzle: This is the 8-puzzle with a 3 × 3 grid with 8 consecu-
tively numbered tiles arranged on it. Any tiles adjacent to the space can 
be moved. A number of different goal states are used.

5 4 .
To be translated

1 2 3

6 1 8 8 0 4

7 3 2 7 6 5

Start State Goal State

A state for this problem needs to keep track of the position of all the tiles 
on the game board, with 0 representing the blank position (space) on 
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the board. The initial state could be represented as (5, 4, 0), (6, 1, 8), (7, 
3, 2). The final state could be represented as (1, 2, 3), (8, 0, 4), (7, 6, 5). 
The operators can be thought of in terms of direction: a blank space 
effectively moves up, down, left, or right.

B.  Water Jug Problem: Imagine a 3-liter jug, a 5-liter jug, and an unlim-
ited supply of water. The goal is to get exactly 1 liter of water into either 
jug. Either jug can be emptied or filled, or poured into the other.

A state in this problem could be represented with just a pair of num-
bers, the first representing the number of liters of water in the 5-liter 
(large) jug and the second representing the number of liters of water in 
the 3-liter (small) jug.

Solution Path

Initial State Goal State
One Liter

The initial state would typically be (0, 0), representing the fact that 
both jugs start empty.

The final state would be represented as (0, 1).

The operators for this problem could include

a. Fill the 5-liter jug to capacity from the water source.

b. Fill the 3-liter jug to capacity from the water source.

c. Empty the 5-liter jug into a drain.

d. Pour water from the 3-liter jug into the 5-liter jug until its 
capacity is reached. So, there is space for 2 liters of water in 
the 5-liter jug.

e. Again fill the 3-liter jug and put the water in the 5-liter jug. 
Now, the 5-liter jug is full, and there is exactly 1 liter of water 
remaining in the 3-liter jug.

f. Empty the 5-liter jug into a drain.

g. We have reached our goal state, i.e., (0,1).
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Deficiencies of the state space representation:

a. It is not possible to display all states for a given problem.

b. This approach explores a monolithic (massive) model of the 
world, rather than applying a factored perspective.

c. The resources of the computer system are limited in handling 
this massive state space representation.

d. It is a time consuming process.

e. The program does not learn from mistakes, and hence tends 
to commit the same mistake repeatedly.

2. Problem Reduction: To overcome the problems of the state space 
method, the problem reduction technique is used. Problem reduction 
search is a basic problem-solving technique of AI involving reducing 
a problem to a set of easier sub-problems whose solutions, if found, 
can be combined to form a solution to the complex problem. Such a 
search is easily written as a recursive program. Problem reduction can 
be graphically represented with the help of AND and OR graphs or 
the AND-OR tree. The decomposition of the problem generates AND 
arcs. One AND may point to any number of successor nodes. All these 
must be solved so that the arc will give rise to many arcs, indicating 
several possible solutions.

The AND relationship solutions for a problem is obtained by 
solving all the sub-problems, like the AND gate is true if, and only 
if, all the inputs are true.

In the OR relationship, the solution for the problem is obtained 
by solving any of the sub-problems.

Figures 2.1 and 2.2 are helpful for understanding  the AND-OR graph.

Goal: Acquire TV Set

Steal TV Set
Earn
Some

Money
Buy TV Set

FIGURE 2.1 Problem Reduction Using the AND-OR Graph.
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Goal: Funding for higher learning

Goal: Make
arrangements

for higher learning

Get Loan Ask parent

Goal: Competing
scholarship
examination

Goal: Higher
learning

Return loan
without/with

normal interest

Return with
cumulative

interest

Bank Finance Depositor

Partial

AND Tree

OR Tree

Full

FIGURE 2.2 Problem Reduction Using the AND-OR Graph.

2.4 Production System

The production system is a mechanism that describes and performs the search 
process which consists primarily of a set of rules about behavior. These rules, 
called productions, are a basic representation found useful in automated plan-
ning, expert systems, and action selection. Production systems provide the 
mechanism necessary to execute productions in order to achieve some goal 
for the system. A production system consists of the following components:

A Set of Production Rules

A production system consists of two parts, a sensory precondition (or 
“IF” statement) and an action (or “THEN”). If the production system’s 
precondition matches the current state of the world, then the produc-
tion system is said to be triggered. If the production system’s action is 
executed, it is said to have fired. So, a production system consists of 
a set of rules that are in the “if-then” form. That is, given a particular 
situation, what are the actions to be performed? For example: If it is 
raining, then take an umbrella.
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Working Memory (A Global Database)

Working Memory (WM) is the central data structure used by an AI 
production system. The production rules operate using a global data-
base. Each rule has a precondition that is either satisfied or not by the 
database. If the precondition is satisfied, then the rule can be applied. 
The application of the rule changes the database.

Control System

The control system chooses which applicable rule should be applied 
and ceases computation when a termination condition for the data-
base is satisfied. If several rules are to fire at the same time, then the 
control system resolves the conflict.

A Rule Applier

The rule applier is the core unit of the production system. The rules 
are applied with the help of the rule applier.

2.4.1 Characteristics of Production Systems
We have argued that production systems are a good way to describe the 
operations that can be performed in a search for a solution to a problem. 
This leads us to several questions:

Can production-system-like problems be described by a set of 
characteristics that shed some light on how they can easily be 
implemented?

If so, what relationship is there between the problem types and types 
of production systems best suited for solving the problems?

2.4.2 Types of Production Systems

Monotonic Production System (MPS): This is a system in which 
the application of a rule never prevents the later application of another 
rule that could also have applied at the time that the first rule was 
selected. Some production systems are monotonic, however, and only 
add elements to the working memory, never deleting or modifying 
knowledge through the action of the production rules. Such systems 
may be regarded as implicitly parallel. Since all rules that match will 
be fired regardless of which is first fired.
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Non-Monotonic Production System (NMPS): This is a system in 
which the application of a rule prevents the later application of a rule 
which may not have applied at the time when the first rule was selected, 
i.e., it is a system in which the above rule is not true and the monotonic 
production system in which elements may be added and deleted. The 
addition of new knowledge may obviate previous knowledge. The 
NMPS increases the significance of the conflict resolution scheme, since 
productions which match in one cycle may not match in the following 
because of the action of the intervening production.

Commutative Law Based Production System (CLBPS): This is 
a system that satisfies both the monotonic and partially commutative 
conditions.

Partially Commutative Production System (PCPS): This 
is a system with a property that if the application of those rules is 
allowable, it transforms state x to state y. We present two special 
types of production systems:

i. Commutative Production System
ii. Decomposable Production System

The special features of these production systems are outlined below.

i. Commutative Production System:
A production system is called commutative if, for a given a set of rules 
(R) and a working memory (WM), the following conditions are satisfied:

Freedom in the orderliness of rule firing: The arbitrary order 
of the filing of the applicable rules selected from Set S will not 
make a difference in the content of the working memory. In other 
words, the working memory that results due to an application of 
a sequence of rules from Set S is invariant under the permutation 
of the sequence.

Invariance of the precondition of attaining the goal: If the 
precondition of a goal is satisfied by the working memory before 
the firing of a rule, then it should remain satisfiable after the firing 
of the rule.

Independence of the rules: The “firability” condition of a yet-
unfired Rule R, with respect to the working memory remains 
unaltered, even after firing Rule R, for any condition.
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Significance of the Commutative Production System

1. The rule can be fired in any order without having the risk of losing the 
goal, in case it is attainable.

2. An irrevocable control strategy can be designed for such systems, as an 
application of a rule to the WM never needs to be undone.

ii. Decomposable Production System
The commutative property of the production system facilitates a lim-
ited degree of flexibility in the sequence in which the applicable rules 
are fired. The decomposability property of a production system allows 
for some freedom in the ordering of rule application. A production 
system is called decomposable if the goal, G, and working memory, 
WM, can be partitioned into Gi and WMi such that

G= ANDi (Gi)

WM=U {WMi}

The rules are applied to each WMi independently or concurrently to 
yield Gi.

Significance of the Decomposable Production System

Decomposition allows the parallel firing of rules, without causing a 
difference in the context of the working memory. 

Decomposable production systems have been successfully used 
for the evaluation of symbolic integration. Here, an integral can be 
expressed as a sum of more than one integral, all of which can be 
executed independently.

2.4.3. Advantages of Production Systems

1. Production systems are highly modular because the individual rules 
can be added, removed, or modified independently.

2. The production rules are expressed in a natural form, so the state-
ments contained in the knowledge base should be like a recording of 
an expert thinking out loud.

3. Production systems provide an excellent tool for structuring AI pro-
grams.
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4. An important aspect of the production system model is the lack of any 
syntactic interactions between production rules. The syntactic inde-
pendence supports the incremental development of expert systems by 
successively adding, deleting, or changing the knowledge (rules) of the 
system.

5. The production system is an elegant model of the separation of knowl-
edge and the control system in a computer program. The advantage 
of this separation includes the ease of modifying the knowledge base 
without requiring a change in the code for program control.

6. One of the advantages of the production system is that the computa-
tional complexity of the matcher, while large, is deterministically finite 
and the conflict resolution scheme is trivial.

2.4.4. Limitations of Production Systems

1. Production rules lack expressive power for describing situations; while 
procedural knowledge can be implemented, it is not that easy to make 
use of the production rules for descriptions.

2. When the number of rules is large, it becomes difficult to check 
whether a new rule brought into the system is redundant or in conflict 
with the existing ones.

3. One important disadvantage is the fact that it may be very difficult to 
analyze the flow of control within a production system because the 
individual rules do not call each other.

2.5 Conflict Resolution

Conflict resolution is used in a production system to help in choosing which 
production rule to fire. The need for such a strategy arises when there is 
more than one rule that can be fired in a situation. The rule interpreter 
decides which rule to fire, what is the order of triggering, and whether to 
apply all rules that are applicable or to be selective about the rules.

Most conflict resolution schemes are very simple and are dependent 
on the number of conditions in the production or the time stamps (ages) of 
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the elements to which the conditions matched, or they may be completely 
random. Conflict resolution strategies fall into four main categories:

1. Specificity:
If all of the conditions of two or more rules are satisfied, choose the 
rule with most specific condition. This is also referred to as the “degree 
of specialization.”

For example, consider the following two rules:

a. “It is hot and smokey.”

b. “It is hot.”
The first rule (a) is more specific than the second rule (b). We choose 
the specific rule for the current situation.

2. Recency:
Facts are usually tagged to show how recently they were added. It is 
generally believed that a newly-added rule contains more information 
than the existing ones. When two or more rules could be chosen, the 
system favors the one that matches the most currently relevant facts. 
However, there is a small challenge with using this strategy. The sys-
tem has to keep track of which rule came in at what time and which 
rules were modified.

3. Refraction:
Refraction specifies that once a rule has fired, it may not fire again 
until the working memory elements that match its conditions have 
been modified. This helps the system avoid entering infinite loops.

4. Order:
Pick the first applicable rule in the order of presentation. This is the 
type of strategy that Prolog uses, and it is one of the most common 
ones.





THE SEARCH PROCESS
3.1 Search Process

Searching is defined as a sequence of steps that transforms the initial state 
to the goal state. To perform a search, the following steps are needed:

Initial state (I)

Goal state (G)

A set of legal operators that changes the state.

The following list shows some search terminology:

1. Problem Space: This is the environment in which the search takes 
place. It is a set of states and a set of operators to change those states. 

2. Problem Instance: This is the initial state + goal state.

3. Problem Space Graph: This represents the state + problem state. 
States are shown by nodes, and operators are shown by edges.

4. Depth of a Problem: Length of the shortest path or the shortest se-
quence of operators from the initial state to the goal state

5. Space Complexity: The maximum number of nodes that are stored 
in the memory

6. Time Complexity: The maximum number of nodes that are created

7. Admissibility: The property of an algorithm to always find an optimal 
solution

8. Branching Factor: The average number of child nodes in a problem 
space graph

C H A P T E R3
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3.2 Strategies for Search

A search procedure must find a path between the initial and goal states. 
There are two directions in which a search process could proceed:

Forward Search: Data-driven inference works from the initial 
state. By looking at the premises of the rules (IF-Part), it performs 
the action (THEN-Part), possibly updating the knowledge base or 
working memory. This continues until no more rules can be applied.

For example:

A D

C
F

B
Z

Disadvantage:

Many rules may be applicable, so the whole process is not directed 
toward a goal.

Backward Search: Goal driven inference works toward a final state 
by looking at the working memory to see if a goal is already there. If 
not, it looks at the action (THEN-Parts) of the rules that will establish 
the goal and sets up sub-goals for achieving the premises of the 
rules(IF-Part).This process continues until some rules can be applied 
to achieve the goal state.

Advantage: Search is directed.

Disadvantage: Goal has to be known.

3.3 Search Techniques

The search process in AI can be mainly classified into two types:

1. Uninformed search (also called a Blind Search or Brute Force search)
2. Informed search or heuristic search

1. Uniformed Search: A uniformed search algorithm does not have any 
domain specific knowledge. These algorithms use information like the 
initial state, final state, and a set of logical operators. This search should 
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proceed in a systematic way by exploring the nodes in a predetermined 
order. Uniformed search can be classified into two search technologies:

i.  Depth-First Search
ii. Breadth-First Search

i. Depth-First Search: A depth-first search (DFS) is one of the main search 
processes. It starts off at the root of the tree and works its way down the 
left branch until it gets to the end. If this is not the goal state, then it backs 
up and tries the next branch. This continues until the goal state is reached. 
The algorithm tries to get as deep as possible as fast as possible. It is guar-
anteed to find a goal if one exists, but it does not always find the optimal 
path. The algorithm for the depth-first search is given in Figure 3.1.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If ( A =GOAL), terminate the search with success.

Step 5:  Else if node A  has successors, generate all of them and add 
them at the beginning of START.

Step 6: Go to Step 2.

R

B

E F

A

C D

Root

Goal

FIGURE 3.1 Algorithm for the Depth-First Search.

Look at the above tree, which has nodes starting from the root node R 
at the first level, A and B at the second level, and C, D, E, and F at the 
third level. If we want to search for node E, then the depth-first search will 
search for node E from left to right. First, it will check if E exists at root R. 
After that, it will check the nodes on the left side of the tree. Finally, it will 
check the nodes on the right side of the tree.
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Advantages:

1. It stores only a stack of nodes on the path from the root to the current 
node, which is why less memory space is required.

2. If the depth-first search finds a solution without exploring much in a 
path, then it will use less time and space than it would otherwise.

3. The depth-first search may be useful for problems where any satisfacto-
ry solution will suffice (i.e., we are not looking for the optimal solution).

Disadvantages:

1. There is a possibility that it may go down the left-most path forever. 
Even a finite graph can generate an infinite tree. This depth is called 
the cut-off depth. The value of the cut-off depth is essential because 
otherwise the search will go on and on. If the value of the cut-off is 
less than d, the algorithm will fail to find a solution, whereas, if the 
cut-off depth is greater than d, a large price is paid in terms of the 
execution time.

2. The depth-first search is not guaranteed to find the solution. If more 
than one solution exists, then the depth-first search is not guaranteed 
to find the minimal solution.

3. Its complexity depends on the number of paths. It cannot check du-
plicate nodes.

Performance of the Depth-First Search

Two important factors must be considered in any search procedure, the 
time complexity and space complexity.

Time Complexity: The amount of time taken to generate the nodes is 
called the time complexity. The amount of time is proportional to the 
depth (d) and branching factor (the average number of child nodes for 
a given node) (b). The total number of nodes at level d = bd.

For the depth-first search, total amount of time needed is given by 
1 + b + b2 +.......... + bd.

Thus, the time complexity = O(bd).

Space Complexity: The depth-first search stores only the current 
path that it is pursuing. Hence, the space complexity is a linear 
function of the depth. Thus, the space complexity = O(bd).
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ii. Breadth-First Search: The breadth-first search is another search 
process. It checks all of the nodes at one level starting on the left and 
working towards the right, before expanding the tree one level deeper. 
In other words, it moves back and forth through the search tree, only 
looking at the children of a node when all other nodes at a level have 
been examined. It finds the shallowest solution rather than the first 
solution it reaches. Therefore, it is useful when we want to find a solu-
tion with the minimum number of steps from the starting point. The 
algorithm for the breadth-first search is given in Figure 3.2.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If ( A =GOAL), terminate the search with success.

Step 5:  Else if node A  has successors, generate all of them and add  
them at the end of START.

Step 6: Go to Step 2.

R

B

F

A

C D

Root

Goal

E

FIGURE 3.2 Algorithm for the Breadth-First Search.

Look at the above tree with nodes starting from root node R at the first 
level, A and B at the second level, and C, D, E, and F at the third level. If 
we want to search for node E, then the breadth-first search will search level 
by level. First, it will check if E exists at the root. Then, it will check the 
nodes at the second level. Finally, it will check node E at the third level.

Advantages:

1. The breadth-first search is an exhaustive search algorithm. It is simple 
to implement, and it can be applied to any search problem. If we 
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compare the breadth-first search to the depth-first search algorithm, 
the breadth-first search does not suffer from any potential infinite 
loop problem which may cause the computer to crash. So it will not 
go down a blind alley to find a solution.

2. If there is a solution, then the breadth-first search will definitely find 
it out. However, if there is more than one solution, the breadth-first 
search can find the minimal one that requires the smallest number 
of steps.

Disadvantages:

1. The main drawback of the breadth-first search is its memory require-
ment, since each level of the tree must be saved in order to gener-
ate the next level. The amount of memory used is proportional to the 
number of nodes stored. Hence, the space complexity of the breadth-
first search is O (bd). As a result, the breadth-first search is severely 
space-bound, so it will exhaust the memory available on a typical com-
puter in a matter of minutes.

2. If the solution is further from the root, the breadth-first search will 
consume a lot of time.

3. Its complexity depends on the number of nodes.

Performance of the Breadth-First Search

Similar to the depth-first search, two important factors must be consid-
ered in the search procedure, i.e., the time complexity and space complexity.

Time Complexity: This is the amount of time taken to generate the 
nodes. The amount of time needed is proportional to the depth (d) 
and branching factor (b). The total number of nodes at level d=bd. 
For the breadth-first search, the total amount of time needed is given 
by 1 + b + b2 + b3 + ............ bd

Hence, the time complexity = O(bd).

Space Complexity: This refers to amount of memory needed. 
It keeps track of all children it has generated. The space complexity 
is also proportional to depth d and branching factor b. Thus, the 
space complexity becomes 1 + b + b2 + ....... bd. Hence, the space 
complexity = O(bd).
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2. Informed Search or Heuristic Search
If we consider human problem solving, it is usually a combination of the 
depth-first search and breadth-first search. Blind searches are normally 
very inefficient. By adding domain-specific knowledge, we can improve 
the search process. The idea behind a heuristic search is that we explore 
the node that is most likely to be nearest to a goal state. So, heuristics 
are the “rules of thumb,” almost like tour guides in that they are good at 
pointing in a general direction, but may miss certain paths. Heuristics are 
approximates used to reduce the search process. The following types of 
problems use a heuristic search:

Problems for which no exact algorithms are known, and to find 
an approximate and satisfying solution. For example, speech 
recognition or computer vision;

Problems for which exact solutions are known, but the computations 
for these problems are not feasible, e.g., a Rubik’s Cube or chess.

Heuristic Function

Heuristic search uses a heuristic evaluation function which evalu-
ates each state into numbers. On average, it improves the quality of 
the paths that are explored. It is a means by which humans can per-
form a more efficient search. A heuristic function is normally denoted 
h(n), that is h(n) = the estimated cost of the cheapest path from the 
state at node n to the goal state.

Heuristic Search Techniques

Heuristic techniques are called weak methods since they are vul-
nerable to the combinatorial explosion. Even then, these techniques 
continue to provide a framework into which domain specific knowl-
edge can be placed. The following list includes  some general purpose 
control strategies:

i. Hill climbing
ii. Best first search
iii. A  Algorithm
iv. AO Algorithm
v. Beam search
vi. Constraint satisfaction
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i. Hill Climbing: This is a search method for finding a maximum (or 
minimum) of an evaluation function. It considers the local neighbor-
hood of a node, evaluating those nodes with the largest (or smallest) 
values and next examines those nodes with the largest (or smallest) 
values. Unlike other search strategies that use evaluation functions 
(like the uninformed depth-first search), hill climbing is an irrevocable 
scheme. It does not permit us to shift attention back to previously-
suspended alternatives, even though they may have offered a better 
alternative than the one at hand. This property is the heart of both its 
computational simplicity and its shortcomings. It requires very little 
memory, since alternatives do not need to be retained for future con-
sideration. However, it is not guaranteed to lead to a solution, since it 
can get struck on a local maximum or plateau or even wander or follow 
infinite uncontrolled paths, unless the guiding evaluation function is 
very informative. The algorithm for hill climbing is given in Figure 3.3.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If ( A =GOAL), terminate the search with success.

Step 5:  Else if node A  has successors, generate all of them. Find out 
how far they are from the goal node. Sort them by the remaining 
distance from the goal and add them to the beginning of START.

Step 6: Go to Step 2.

R

CA B

FD E

G

38

2.7 2.9

7

2

Root

Goal node

FIGURE 3.3 Algorithm for the Hill Climbing Search.
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Drawbacks of the Hill Climbing Technique

This technique has three well known drawbacks:

Local maximum: A local maximum is a peak that is lower than 
the highest peak in the state space, but it is better than all its 
neighbors. Once on a local maximum, hill climbing will halt, even 
though there is a better solution.

Plateau: A plateau is an area of the state space where the 
evaluation function is nearly flat. Hill climbing will do a random 
walk in such an area.

Ridge: A ridge is a curve in the search place that leads to a 
maximum, but the orientation of the high region (ridge) compared 
to the available moves that are used to climb is such that each 
move will lead to a smaller point. In other words, each point on a 
ridge looks like a local maximum, even though the point is part of 
a curve leading to a better optimum. So, it is an area in the path 
which must be traversed very carefully because movement in any 
direction might keep one at same level or result in a fast descent.

Figure 3.4 provides a pictorial representation of the local maximum, 
plateau, and the ridge.

Global Maximum
Local

maximum

Evaluation
Function

State Space

×

Plateau

Evaluation
Function

State Space

×

Ridge

Evaluation
Function

State Space

×

FIGURE 3.4 Problems Associated with Hill Climbing: The Local Maximum, Plateau, and Ridge.
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In order to overcome these problems, we can

Backtrack to some earlier node and try to go in a different direction.

Make a big jump to try to get in a new section of the search space. 
A huge jump is recommended because in a plateau, all neighboring 
points have the same value.

Move in several directions at once. This is a particularly good strategy 
for dealing with ridges.

Conclusion

1. Hill climbing is a local method. It decides what to do next by looking 
only at the “immediate” consequences of its choices.

2. Global information might be encoded in heuristic functions.
3. It can be very inefficient in a large, rough problem space.
4. Global heuristics may have to pay for the computational complexity. 

They are often useful when combined with other methods for getting 
the process started right in the correct general neighborhood.

ii. Best-First Search: The best-first search is another heuristic search 
technique and it is a way of uniting the advantages of the depth-first 
search and breadth-first search into a single method. One way of 
combining the two methods is to follow a single path at a time but 
switch paths whenever a rival path looks more promising. This is done 
through applying an appropriate heuristic evaluation function to the 
nodes we have generated so far. The algorithm is given in Figure 3.5.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If ( A =GOAL), terminate the search with success.

Step 5:  Else if node A  has successors, generate all of them. Find out 
how far they are from the goal node. Sort all the children gen-
erated so far by the remaining distance from the goal.

Step 6: Name this list as START 1.

Step 7: Replace START with START 1.

Step 8: Go to Step 2.
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FIGURE 3.5 Algorithm for the Best-First Search.

iii.  A  Algorithm: The A  Algorithm combines features of the uniform 
cost search and pure heuristic search to efficiently compute optimal 
solutions. In the best-first search, we use the evaluation function val-
ue (which estimates how far a particular node is from the goal), i.e., 
h(n). Apart from the evaluation function values, one can also use the 
cost function. The cost function indicates how much of the resources, 
like time, energy, and money, have been spent in reaching a particular 
node from the start, i.e., g(n).
So, A  Algorithm is a best-first search algorithm in which the cost 
associated with a node is f(n) = g(n) + h(n).

The sum of the evaluation function value and cost along the path to that 
state is called the fitness number, i.e., f(n). Therefore, A  Algorithm 
guides an optimal path to a goal if the heuristic function h(n) is admis-
sible, meaning it never overestimates the actual cost. For example, the 
distance a plane flies never overestimates the actual highway distance.

The algorithm is given in Figure 3.6.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If ( A =GOAL), terminate the search with success.

Step 5:  Else if node A  has successors, generate all of them. Estimate 
the fitness number of the successors by totaling the evaluation 
function value and the cost-function value. Sort the list by the 
fitness number.
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Step 6: Name the new list as START 1.

Step 7: Replace START with START 1.

Step 8: Go to Step 2.
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FIGURE 3.6 Algorithm for A  Algorithm.

Here, we associated each node with three numbers: The evaluation func-
tion value, the cost function value, and the fitness number.

The fitness number is the total of the evaluation function value, the cost 
function value. For example, for node K, the fitness number is 20, which is 
obtained as follows.

(Evaluation on function of K)+

(Cost function involved from start node R to node K)

=  1 + (Cost function from R to C + Cost function from C to H + 
Function from H + I + Cost function from I to K)

= 1 + 6 + 5 + 7 + 1

= 20

While best-first search uses the evaluation function value only for 
expanding the best node, A  Algorithm uses the fitness number for its 
computation.

iv. AO  Algorithm (Problem Reduction): When a problem can be divided 
into a set of sub-problems where each problem can be solved separately 
and a combination of these will be a solution, AND-OR graph or AND-
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OR trees are used for representing the solution. The decomposition of 
the problem generates AND arcs. One AND arc may point to any num-
ber of successor nodes. All these must be solved so that the arc will rise 
to many arcs, indicating several possible solutions. The AO  Algorithm 
cannot search AND-OR graphs efficiently because for the AND tree, all 
branches of it must be scanned to arrive at a solution. To highlight this 
idea, consider the small AND/Or tree shown in Figure 3.7.

D

9

R

A B C47

FIGURE 3.7 A Simple AND/OR Tree.

In Figure 3.7, we find the minimal is B, which has value of 4. But B is a part 
of the AND graph, and so we have to take into account the other branch of 
the AND tree. The estimate now has a value of 9. This forces us to rethink  
the options, and now we choose D because it has the lowest value.

The algorithm for the AO  Algorithm is given in Figure 3.8.

Step 1: Create an initial graph GRAPH with a single node NODE. Compute the evaluation 
function value of NODE.

Step 2: Repeat until NODE is solved or the cost reaches a very high value that cannot be 
expanded.

Step 2.1 Select a node NODE1 from NODE. Keep track of the path.

Step 2.2 Expand NODE1 by generating its children. For children that are not the ancestors 
of NODE1, evaluate the evaluation function value. If the child node is a terminal one, label 
it END_NODE.

Step 2.3 Generate a set of nodes DIFF_NODES having only NODE1.

Step 2.4: Repeat until DIFF_NODES is empty.

Step 2.4.1 Choose a node CHOOSE_NODE from DIFF_NODES such that none of the 
descendants of CHOOSE_NODE is in DIFF_NODES.

Step 2.4.2 Estimate the cost of each node emerging from CHOOSE_NODE. This cost is 
the total of the evaluation function value and the cost of the arc.

Step 2.4.3 Find the minimal value and mark a connector through which the minimum is 
achieved, overwriting the previous if it is different.

Step 2.4.4 If all the output nodes of the marked connector are marked END_NODE, label 
CHOOSE_NODE as OVER.

Step 2.4.5 If CHOOSE_NODE has been marked OVER or the cost has changed, add to set 
DIFF_NODES to all ancestors of CHOOSE_NODE.

FIGURE 3.8 The AO* Algorithm.
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v. Beam Search: This is a search method in which heuristics are used 
to prune the search space to a small number of nearly optimal alter-
natives. This set comprises the “beam,” and its members are then 
searched in parallel. Beam search uses the breadth-first search to build 
its search tree. At each level of the tree, it generates all successors of 
the states at the current level, sorting them in increasing order of the 
heuristic cost. However, it only stores a predetermined number of the 
best states at each level (called the beam width) and only those states 
are expanded next.
The algorithm for the beam search is given in Figure 3.9.

Step 1: Let width_of_beam  = w.

Step 2: Put the initial node on a list (START).

Step 3: If (START is empty) or (START=GOAL), terminate the search.

Step 4: Remove the first node from START. Call this node A .

Step 5: If ( A =GOAL), terminate the search with success.

Step 6:  Else if node A  has successors, generate all of them and add 
them at the end of START.

Step 7:  Use a heuristic function to rank and sort all the elements of 
START.

Step 8:  Determine the nodes to be expanded. The number of nodes 
should not be greater than w. Name these START1.

Step 9: Replace START with START1.

Step 10: Go to Step 2.
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FIGURE 3.9 Algorithm for the Beam Search.
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The greater the beam width, the fewer states are pruned. With an infinite beam 
width, no states are pruned and the beam search is identical to the breadth-
first search. The beam width bounds the memory required to perform the 
search. The beam search is not optimal, but it returns the first solution found. 
Speech recognition and vision and learning applications use the beam search.

vi. Constraint Satisfaction: As can be inferred from the name, this set 
of problems deals with constraints. These constraints are no differ-
ent from the ones that inhabit the real world. There are constraints all 
around us, such as temporal constraints (managing work and home life) 
or tangible constraints (making sure we do not go over budget), and 
we figure out ways to deal with them with varying degrees of success. 
For solving problems in this area, human beings use extensive domain-
specific and heuristic knowledge. The following are examples where 
constraint programming has been successfully applied in various fields:

Operations Research (scheduling, timetabling)

Bioinformatics (DNA searches)

Electrical Engineering (Circuit Layout)

So, a constraint satisfaction problem consists of

A set of variables: X1, X2...........,Xn

A set of domains: D1, D2............,Dn

Such that all variables Xi have a value in their respective domain Di.

A set of constraints encompasses Ci, C2,........Cm such that a con-
straint Ci restricts (imposes a constraint on) the possible values in the 
domain of some value in its domain so that every constraint is satisfied. 
Therefore, each assignment of a value to a variable must be a con-
straint. It must not violate any of the constraints.

Cryptarithmetic problems are typical constraint-satisfaction problems. 
To explain cryptarithmetic problems, consider the following example:

SEND + MORE = MONEY

Here, the constraints are

 No two digits can be assigned to the same letter. This means that 
only a single digit can be assigned to a letter, and all letters have 
different numeric values.
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 Assumptions can be made at various levels so that they do not 
contradict each other.

 Any of the search techniques may be used.

 Backtracking may be performed as applicable for the applied search 
technique.

 The rules of arithmetic may be followed.

The solution is to find the value of the letters M, O, N, E, Y, S, R, and D. 
We consider the following:

 5 4 3 2 1 column no. ____
  S E N D
 + M O R E
  c3 c2 c1     carry ____
 M O N E Y

1. From column 5, the initial guess is M = 1. Since it is the only carry-over 
possible, from the sum of the two single digit numbers in column 4.

2. To produce a carry-over from column 4 to column 5,
“S + M” is at least 9 so
“S = 8 or 9”
 “S + M” = “9 or 10,” and so
“O = 0 or 1,” but “M = 1” so “O = 0”

3. If there is a carry-over from column 3 to 4, then
“E = 9” and so “N = 0” but
“O = 0” so there is no carry, and “S = 9” and “C 3 = 0”

4. If there is no carry-over from column 2 to column 3, then
“E = N,” which is impossible; there is a carry-over, and “N = E + 1” 
and “C2 =1”

5. If there is a carry-over from column 1 to column 2, then
“N + R = E mod 10”....................a and “N = E + 1”..........................b
So, put the value of equation b into equation a. Then,
“E + 1 + R = E mod 10.” So, “R = 9” but “s = 9” so, there must be a 
carry from column 1 to column 2. Therefore, “C1 = 1” and “R = 8”
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6. To produce a carry-over from “C1 =1” from column 1 to column 2, we 
must have
“D + E = 10 + 4”
as 4 cannot be 0/1. So “D + E” is at least 12, as D is almost 7 and E is 
at least 5. (D cannot be 8 or 9, as it is already assigned.) N is almost 7 
and “N = F + 1.” So, “E = 5 or 6.” Therefore, E is at least 5.

7. If E were 6 and “D + E” is at least 12, then D would be 7, but 
“N = E + 1,” and N would also be 7, which is impossible. Therefore,  
“E = 5” and “N = 6”

8. “D + E” is at least 12. We then obtain “D = 7” and “Y = 2.”

Then, the solution is

    9 5 6 7
+ 1 0 8 5
1 0 6 5 2

Values: 
S = 9
E = 5
N = 6
D = 7
M = 1
O = 0
R = 8
Y = 2

In the AI literature, constraints satisfaction is characterized as a hill 
climbing technique with only a global maximum.





GAME PLAYING
4.1 Game Playing

Game playing demonstrates several aspects of intelligence, particularly the 
ability to plan (at both the immediate tactical level and long-term strategic 
level) and the ability to learn. Successful gaming is generally deemed to 
require intelligence. Computers can be programmed to play games such as 
tic-tac-toe, checkers, and chess. The board configurations used in playing 
these games are easily represented in computers, requiring no complex for-
malisms. To solve large and complex AI problems, lots of techniques, like 
heuristics, are needed.

These are the following reasons for the importance of game playing 
in AI:

The rules of games are limited. Hence, extensive amounts of 
domain-specific knowledge are seldom needed.

Games provide a structured task where success or failure can be 
measured with the least amount of effort. 

Games visualize real life situations in a constricted fashion. Moreover, 
game playing permits the simulation of  real life situations.

Unfortunately, the development of computer game programs is not 
that easy because of the problem of the combinatorial explosion of solu-
tions. For example, in chess, the number of positions to be examined is 
about 35100.

C H A P T E R4
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4.2 Game Tree

We can represent all possible games (of a given type) using a directed graph 
often called a “game tree.” The nodes of the graph represent the states of 
the game. The arcs of the graph represent the possible moves by the players 
(+ and –). Consider the start of a game:

The game starts with some “start” rules and there is a set of possible 
moves:

m1, m2............., mn

These give rise, respectively, to the states

S1, S2, ................, Sn

By considering the possible moves at any state Si (recursively), we 
develop a game tree.

The leaves of this tree represent the state of play so far. The rules of the 
game assign a value to every terminal position:

W = Won,

L = Lost from the point of view of “+,” and

D = Draw.

One way to guarantee a good game would be to completely analyze the 
game tree.

4.3 Components of a Game Playing Program

There are two major components of a game playing program: a plausible 
move generator and a static evaluation function generator.

Plausible Move Generator

In games where the number of legal moves is too high, it is not possi-
ble to perform a full-width search to a depth sufficient enough to have 
a good game. The plausible move generator is an important search 
alternative in such domains. It expands or generates only the selected 
moves. It is not possible for all moves to be examined because of the 
following:
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1. The amount of time given for a move is limited.

2. The amount of computational power available at the disposal 
for examining the various states is also limited. However, further 
research is going on to enhance the computational power using 
parallel processing architectures.

Static Evaluation Function Generator

This is the most important component of a game playing program, 
and it is used to evaluate the positions at the leaves of the tree or 
every move that is being made. The static evaluation function genera-
tor occupies a crucial role in a game playing program because of the 
following factors:

1. It utilizes heuristic knowledge for evaluating the static evaluation 
function value.

2. The static evaluation faction generator acts like a pointer to point 
the way so the plausible move generator can generate future 
paths.

Designing the static evaluation generator is an art. A good static evalu-
ation generator should be very fast because it is the limiting factor in 
how quickly the search algorithm runs.

4.4 Game Playing Strategies

Games can be classified as either a single-person or multi-person. Games 
like the Rubik’s Cube and 8-puzzle are single person games. For these, the 
search strategies such as the best-first or A  Algorithm can be used. These 
strategies help in identifying paths in a clear fashion.

On the other hand, in a two-person game, like chess or checkers, each 
player tries to outsmart the opponent. Each has their own way of evaluat-
ing the situation. Since each player tries to obtain the maximum benefits, 
the best-first search or A  Algorithm do not serve the purpose. The basic 
methods available for game playing are as follows:

1. minimax strategy
2. minimax strategy with alpha-beta cut-offs
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1. Minimax Strategy

This is the most well known strategy for two player games. Here, one 
player is called a “maximizer” and other is called a “minimizer.” The main 
objective of a player is to minimize the loss and maximize the profit. It 
is a type of mixed strategy. Both the maximizer and minimizer fight it 
out to see which opponent gets the minimum benefit while they get the 
maximum benefit.

Algorithm for the Minimax Strategy

The minimax search procedure is a depth-first, depth-limited search 
procedure. The idea is to start at the current position and use the plausible 
move generator to generate a set of possible successor positions. We apply 
the static evaluation function to those positions and simply choose the best 
one. After doing so, we can back that value up to the starting position to 
represent our evaluation of it. The starting position is exactly as good for 
us as the position generated by the best move we can make next. The algo-
rithm for the minimax strategy is shown in Figure 4.1.

Function MINIMAX (N) is
Begin

If N is a leaf then
Return the estimated score of this leaf

Else

Let N1, N2, ........, Nn be the successor of N;
If N is a MIN node then

Return min{MINIMAX(N1),.....MINIMAX(Nm)}
Else

Return max{MINIMAX(N1),.....MINIMAX(Nm)}
END MINIMAX;

FIGURE 4.1 Algorithm for Minimax.

We can explain the minimax strategy with the help of Figure 4.2. Let’s 
assume that the maximizer will have to play first, followed by the minimizer. 
The search strategy here tries for only two moves, the root being M and the 
leaf nodes being Q, R, S, T, U, V, W, X, Y, and Z
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FIGURE 4.2 A Game Tree Expanded by Two Levels.

Before the maximizer moves to N, O, and P, he will think about which move 
would be highly beneficial to him. In order to evaluate the move, the chil-
dren of the intermediate nodes N, O, and P are generated, and the static 
evaluation function value generator  assigns values for all the leaf nodes.

If M moves to N, it is the minimizer who will have to play next. The 
minimizer always tries to give the minimum benefit to the other and hence 
he will move to R (static evaluation value = −6). This is backed up at N.

If M moves to O, then the minimizer will move to W (static evaluation 
function value = 0), which is the minimum of 3, +5, 7, and 0. So the value 
of 0 is backed up at O. On a similar line, the value that is backed up at P is 
2. The tree now with backed up values is given in Figure 4.3.
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FIGURE 4.3 Maximizer’s Move for the Tree Given in Figure 4.2.

The maximizer will now have to choose between N, O, or P with the values 
–6 and 2. Being a maximizer, he will choose node P because by doing so, he 
is sure of getting a value of 2, which is much better than 0 and –6.
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What will be the move chosen if the minimizer has to make the first 
move?

Figure 4.4. shows this.
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FIGURE 4.4 Maximizer’s Move for the Tree Given in Figure 4.2.

This search has just stopped with two levels only. However, it is possible 
to consider more levels for accurate results. It depends on the following 
factors:

time left forming

the stage of the game

number of pieces one has

2. Minimax Strategy with the Alpha-Beta Cut Off
It is necessary to modify the search procedure slightly to handle both 
the maximizing and minimizing players. It is also necessary to modify 
the branch and bound strategy to include two bounds, one for each 
player. This modified strategy is called “alpha-beta pruning.” It requires 
the maintenance of two threshold values. One represents a lower bound 
on the value that a maximizing node may ultimately be assigned, called 
“alpha.” The other represents the upper bound on the value that a mini-
mizing node may be assigned,  called “beta.” For the MIN nodes, the 
score computed starts with (+) infinity and decreases with time. For the 
MAX nodes, the score computed starts with (-) infinity and increases 
with time. Alpha-beta pruning is strongly affected by the order in which 
branches are explored. The sooner the best moves are discovered, the 
sooner the worst branches can be explored.
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Algorithm for the Alpha-Beta Cut Off

The algorithm maintains two values, alpha and beta, which represent the 
minimum score that the maximizing player is assured of and maximum 
score that the minimizing player is assured of, respectively. Initially, alpha 
is “negative” infinity and beta is “positive” infinity. As the recursion pro-
gresses, the “window” becomes smaller. When beta becomes less than 
alpha, the current position cannot be the result of the best play by both 
players, and hence, it need not be explored further.

The pseudocode for the alpha-beta algorithm is given in Figure 4.5.

Evaluate (node, alpha, beta)

IF Node is a leaf

Return the heuristic value of node

IF node is a minimizing node

For each child of node

Beta =min (beta , evaluate (Child, alpha, beta))

If beta <=alpha

Return beta

Return beta

If node is a maximizing node For

each child of node

alpha = max (alpha, evaluate (Child, alpha, beta))

If beta <=alpha

Return alpha

Return alpha

FIGURE 4.5 Pseudocode for the Alpha-Beta Cut Off.

For example,

MAX NODE: This is generally drawn as a square or possibly an 
upward-pointing triangle, i.e., (  , ).

MIN NODE: This is generally drawn as a circle or possibly downward-
pointing triangle i.e., (  , ).
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The alpha-beta values help develop the tree structure in Figure 4.6.
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FIGURE 4.6 A Sample Tree to Explain the Alpha-Beta Search.

The maximizer has to play first, followed by the minimizer. Here, A is the 
maximizing player. A can branch to B, C, and D. The static evaluation func-
tion generator has assigned values which are given for the leaf nodes since 
E, F, G, H, I, J, K, L, and M are also maximizers.

Thus E, F, G, H, I, J, K, L, and M have the values 9, 8, 7, 6, 5, 4, 3, 2, 
and 1, respectively.

The preceding level (i.e., the nodes B, C, and D) is the minimizer’s. 
Thus, B takes the minimum values of 9, 8, and 7; C takes the minimum val-
ues of 6, 5, and 4; and D takes the minimum values of 3, 2, and 1. Since A is 
the maximizer, then A will obviously opt for B first, then C and D.

Alpha-beta pruning is an improvement over the minimax algorithm. 
The problem with minimax is that the number of game states it has to exam-
ine is exponential in the number of moves. While it is impossible to elimi-
nate the exponent completely, we are able to cut it in half.

4.5 Problems in Computer Game Playing Programs

Even though much has been said about the problem of the combinato-
rial explosion of solutions, computer game playing programs have still been 
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developed. These programs suffer from a few deficiencies, i.e., the horizon 
effect and optimal move question.

1. Horizon Effect
This is a problem that occurs in many games where the number of 
possible states of positions is immense, and the computer can only 
feasibly search a small portion of them, typically a few levels down the 
game tree.

When searching a game tree to depth n, the horizon effect occurs 
when the search goes to depth n+1, which would result in the evalu-
ation of a move being drastically different. When evaluating a large 
game tree using techniques such as the minimax or alpha-beta pruning, 
the search depth is limited for feasibility reasons. However, evaluating 
a partial tree may give misleading results when a significant change 
exists over the horizon of the search depth.

For example, in chess, assume a situation where the computer only 
searches the game tree to six plies (turns). From the current position, it 
determines that the queen is lost in the sixth ply, and suppose there is a 
move in the search depth where it may sacrifice a rook and the loss of the 
queen is pushed to the eighth ply. This is, of course, a worse move than 
sacrificing the queen, because it leads to losing both a queen and rook.

However, because the loss of the queen was pushed over the hori-
zon of the search, it is not discovered and evaluated by the search. We 
think “Losing the rook seems to be better than losing the queen,” so 
the sacrifice is returned as the best option while delaying the sacrifice 
of queen. But the insertion of delaying moves causes an inevitable loss 
of material to occur beyond the program’s horizon (maximum search 
depth). It weakens the computer’s position. The effect is less apparent 
in a program with more knowledgeable quiescence searching. Beside 
an obligatory, quiescence search (the purpose of this search is to only 
evaluate “quiet” positions where there are no winning tactical moves 
to be made), extensions (especially check extensions) are designed to 
reduce the horizon effect.

2. Optimal Move Question
The second major defect is that these programs expect the opponent 
to make the most optimal move, which cannot be expected in real 
games.





KNOWLEDGE 
REPRESENTATION
5.1 Introduction

A knowledge-based management system (KBMS) is a computer system 
that manages the knowledge in a given domain of interest and exhibits rea-
soning power to the level of a human expert in this domain. AI is the part 
of computer science that designs intelligent computer systems, that is, sys-
tems that exhibit the characteristics we associate with intelligence in human 
behavior. Furthermore, operations in a knowledge-based system are more 
complex than those in a traditional database. When a rule is added, the sys-
tem must check for contradictions and redundancy.

5.2 Definition of Knowledge

Knowledge can be defined as the body facts and principles accumulated 
by humankind or the act, fact, or state of knowing. Knowledge is having 
a familiarity with language, concepts, procedure, rules, ideas, abstraction, 
places, custom, facts, and associations, coupled with an ability to use these 
notions effectively in modelling different aspects of the world. Without this 
ability, the facts and concepts are meaningless and therefore worthless.

The meaning of knowledge is closely related to the meaning of intel-
ligence. Intelligence requires the possession of and access to knowledge. 
A characteristic of intelligent people is that they possess a large amount of 
knowledge.

C H A P T E R5
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Human experts have two main types of knowledge:
1. Domain Specific Knowledge

Domain specific knowledge refers to specialized knowledge required 
to perform a particular task. To acquire this knowledge, we have to be 
trained or study it.

2. Commonsense Knowledge
All other pieces of knowledge that help in reasoning other than domain 
specific knowledge are called commonsense knowledge. 

The performance of the system increases when both types of 
knowledge are coupled. Associative literature has also classified knowl-
edge as being either Declarative or Procedure.

5.2.1 Procedural Knowledge
Procedural knowledge  is the compiled or processed form of information. It 
is related to the performance of some task. It gives knowledge/ information 
about how to achieve something. For example, a sequence of steps to solve 
a problem is procedural knowledge.

Advantages of procedural knowledge

1. Meta knowledge: It is knowledge about knowledge and how to gain 
and use pieces of information. It can be easily expressed in procedural 
form.

2. Procedural knowledge involves more senses, such as hands-on experi-
ence, practice at solving problems, and understanding the limitations 
of a specific solution. Thus, it can frequently eclipse theory.

3. Statements can be written without regard for the use that will be made 
of them later in the program, but in practice, the programmer will 
always have this in mind.
Procedural knowledge is implemented via procedural or rule-based 
(production) systems.

These are often structured as IF (condition) – THEN (action). For 
example, consider the following code:

procedure Carnivore(x);

If(x=cheetah) then return true

Else return false; END procedure Carnivore(x). 
procedure sharp_teeth(x);
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If Carnivore(x) then return true

Else return false END procedure sharp_teeth(x).

To see whether “cheetah” has sharp teeth, one should activate proce-
dure sharp_teeth with variable x initialized to the value “cheetah.” This 
procedure calls procedure Carnivore (x), and in turn, the value of (x = 
cheetah). Procedure Carnivore returns a true value and so does proce-
dure sharp_teeth.

5.2.2 Declarative Knowledge
Passive knowledge includes statements of facts about the world. For exam-
ple, the marked assignment of a student is declarative knowledge.

Declarative schemes include logic-based and relational approaches. A 
declarative representation declares every piece of knowledge and permits 
the reasoning system to use the rules of inference like modus pones, modus 
tollens, and the chain rule to come out with new pieces of information.

Advantages of Declarative Knowledge

1. The ability to use knowledge in ways that the system designer did not 
foresee.

2. A statement involving several variables needs only be written once in 
declarative form and can be used in different ways on different occa-
sions according to the results sought.

3. A declarative structure is easy to modify, and new statements can be 
added easily.

For example, consider the following statements:

“All carnivores have sharp teeth” and 

“A cheetah is a carnivore.”

This can be represented using a declarative representation such as

x (carnivore (x) –> sharp_teeth (x)

Carnivore (cheetah)

Using these two representations, it is possible to deduce that “A 
cheetah has sharp teeth.”

So, it is enough that you represent the knowledge only once. In the 
example discussed above, the statement “x (carnivore (x) –> 
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sharp_teeth (x)” is made only once, and the variable x encom-
passes a wide variety of animals which are carnivorous in nature.

5.3 Importance of Knowledge

Intelligence requires knowledge. To exhibit intelligence, knowledge is 
required. Knowledge plays a major role in intelligent systems because they 
use the knowledge of syntax and meaning in order to understand  sen-
tences. They use knowledge to eliminate one useless or time-consuming 
search when solving a problem.

5.4 Knowledge-Based Systems

These are systems that use the knowledge provided to solve problems in 
specific domains. Much of work done in AI has been related to knowledge-
based systems, including work in vision, learning, and general problem solv-
ing and natural language understanding. A knowledge-based system has 
two sub-systems:

A knowledge base

An inference engine

A knowledge base represents the facts about the world. The inference 
engine represents the logical assertions and conditions about the world, 
usually represented via IF-THEN rules.

A knowledge-based system may also incorporate an explanation facil-
ity so that user can determine whether the reasoning used by the system is 
consistent and complete. The reasoning facility also offers a form of tutor-
ing to the uninitiated user.

5.5  Differences Between Knowledge-Based Systems and 
Database Systems

Knowledge Base Database

It is any collection of information. It is used 
very broadly.

It is a collection of data organized in some 
form. A database is a software program that is 
used to create tables, queries, and views.
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Knowledge Base Database

It is significantly smaller than a database, and 
we change the knowledge base gradually.

It contains a large volume of data, and the 
facts change over time. 

Knowledge-based systems are far more 
complex and require far greater computing 
capabilities. They essentially represent the 
attainment of artificial intelligence.

Databases are structured according to 
specific requirements, and enable users to 
access the desired information quickly and 
efficiently.

Updation is performed by domain experts.  Updation is performed by clerical personnel.

The demands of knowledge-based systems 
can be formidable.

Databases are expanded through the continu-
ous inputting of names, places, and data. 
Any conclusions drawn on the basis of the 
searches of those databases are entirely 
dependent upon the skills and knowledge 
level of the people exploiting the data.

It operates on a class of objects. It operates on single objects.

A DBMS provides the user with an inte-
grated language, which serves the purpose of 
the traditional DML of the existing DBMS 
and has the power of a high-level application 
language.

A database can be viewed as a very basic 
knowledge-based system in so far as it man-
ages facts. There will be a continuing need 
for a current DBMS and functionalities that 
co-exist with an integrated KBMS.

5.6 Knowledge Representation Scheme

A knowledge representation scheme is a set of syntactic and semantic con-
ventions used to describe various objects. The syntax and arrangements of 
symbols form expressions. Mylopoulos and Levesque classified the schemes 
into four categories:

Logical Representation Scheme: For example, first order predict 
logic [FOPL]

Procedural Representation Scheme: For example, production rules

Network Representation Scheme: For example, semantic networks

Structured Representation Scheme: For example, scripts, frames, 
and conceptual dependencies.

A knowledge representation system should provide ways of represent-
ing complex knowledge. So, in this chapter, we discuss some of the widely 
known representation schemes. They are:
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1. Semantic Networks or Associative Networks
2. Frames
3. Conceptual Dependency
4. Scripts

1. Semantic Networks of Associative Networks
A semantic network is a structure of representing knowledge as a pattern of 
interconnected nodes and arcs. It is also defined as a graphical representa-
tion of knowledge. The objects under consideration serve as nodes and the 
relationships with other nodes give the arcs. In a semantic network, infor-
mation is represented as a set of nodes connected to each other by a set 
of labelled ones, which represent the relationship among the nodes. The 
network can include many different types of relationships. For example, 
“Is- a,” “form,” “has-attribute,” “used-for,” “adjacent-to,” and “has-value.”

The following are the rules about how nodes and arcs are applied in 
associative networks:

Node in semantic network can be:

a. States
b. Attributes
c. Events

Arcs in the network give the relationship between the nodes and the 
labels on the arcs show what type of relationship exists. Using a simple 
semantic network, it is possible to add more knowledge by linking 
other objects with different relationships. A simple semantic network 
is shown in Figure 5.1.

Vertebra Cat

Mammal Bear

Fur

Whale

WaterFish

Animal
Is-an is-a

is-a

Lives-in
lives-in

has

has

has

FIGURE 5.1 A Sample of a Semantic Network.
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From this, it is possible for us to say that “Mammal” is an animal, and it is a 
“Fish” that lives in water. “Mammal” is also a “Bear” that “has Fur.”

Such a semantic network not only gives details about an object under 
consideration, but also provides facilities to represent variables. The seman-
tic net shown in the above figure, cannot be represented like this on a com-
puter. Every pair and its link are stored separately.

For example, IS-AN in Prolog represents the following:

MAMMAL

ANIMAL

IS-AN

The figure above is a One-Way Link Representation.

As with a knowledge representation scheme, the problem-solving 
power comes from the ability of the program. Inter-section search is used 
to find the relationship between two objects. But a major hurdle in utilizing 
semantic networks is that there is no standardization and formalization as 
far as notations and reasoning are concerned. However, the overall con-
cepts of arcs and nodes in semantic networks have been standardized.

2. Frames
A principle for the large-scale organization of knowledge introduced by 
Minsky, originally in connection with vision, but more generally appli-
cable, is called “frames.” Frames may be arbitrarily complex and have 
procedures attached to the slots. The default values for the slots are help-
ful when the frames are used in the absence of the full instantiation data. 
The character of frames suggests a hierarchical organization of sets of 
frames, but the non-hierarchical filling of one frame slot by another is 
possible. A frame is defined as a combination of declarative and opera-
tional knowledge. A frame is a data structure that has slots for various 
objects and a collection of frames consists of the expectations for a given 
situation. A frame structure provides facilities for describing objects, 
facts about situations, and procedures on what to do when a situation 
is encountered. Frames are also useful for representing commonsense 
knowledge. An example is presented below:
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Slots Fillers

Name: CHAIR

Is-A: FURNITURE

Color: BROWN

MADE-OF: WOOD

LEGS: 4

ARMS: DEFAULT: 0

PRICE: 100

Types of Frames

There are two types of frames, i.e., the Declarative/Factual Frame and 
procedural frame.

Declarative Frame

A frame that merely contains a description about an object is called a 
Declarative Type/Factual/Situation frame (Figure 5.2).

HOTEL BED

PART MATTRESS
FRAME

SUPER CLASS: BED
USE: SLEEPING
SIZE: KING

HOTEL PHONE

BILLING: THROUGH ROOM

SPECIALIZATION OF: PHONE
USE: CALLING ROOM SERVICE

HOTEL CHAIR
IS-A: CHAIR
LOCATION:
HOTEL ROOM
HEIGHT: 20-40 cm
LEGS: 4
COMFORTABLE:
YES
USE: FOR
SITTING

HOTEL ROOM

IS-A: ROOM

LOCATION: HOTEL

CONTAINS: {HOTEL
CHAIR,

 HOTEL BED,

 HOTEL PHONE,

 ..........................}MATTRESS
SUPER CLASS:
CUSHION
FIRMNESS: FIRM

FIGURE 5.2 Frame Description of a Hotel Room.
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Minsky (1975) developed the original idea of frames and defined them as 
“data-structures for representing stereotyped situations,” such as going to 
a hotel room.

Procedural Frame

Apart from the declarative part in a frame, it is also possible to attach slots 
that explain how to perform things. In other words, it is possible to have 
procedural knowledge represented in a frame. Frames with procedural 
knowledge embedded in them are called “action procedure frames.” The 
action frame has the following slots:

Objects Slots: This frame has information about the item to be 
operated in.

Actor Slot: This frame has information about who is performing the 
activity.

Source Slot: This frame has information about where the action has 
to begin.

Destination Slot: This frame has information about where the action 
has to end.

Task Slot: This frame generates the sub-frame required for 
performing the operation.

With the help of Figure 5.3, we can clearly understand the procedure 
of fixing a punctured tire on a scooter.

Mechanic

Tire

Scooter

Source

Remove the
tire

Find the
punctuure

Fix the
puncture

Scooter

Name: Fix the puncture of scooter tire

Destination

FIGURE 5.3 Procedural Frame.
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Advantages of Frames

1. Frames add power and clarity to the semantic net by allowing complex 
objects to be represented as a single frame.

2. Frames provide an easier framework than semantic nets to organize 
information hierarchically.

3. Frames allow for procedural attachment, such as if-needed, if-deleted, 
and if-added, which run a demon (piece of code) as a result of another 
action in the knowledge base.

4. Frames support the class of inheritance

3. Conceptual Dependency
Conceptual dependency was originally developed to represent knowl-
edge acquired from natural language input. The goals of this theory are 
as follows:

To construct a computer program that can understand natural 
language

To help in drawing inferences from sentences and also identify 
conditions in which sentences can have a similar meaning 

To be independent of words used in the original input. That is to say, 
for any two (or more) sentences that are identical in meaning, there 
should be only one representation of that meaning 

To provide a necessary platform so that sentences in one language can 
be easily translated into another language.

Conceptual dependency has been used by many programs that portend 
to understand English (such as MARGIE, PAM, and SAM).

There is a set of allowable dependencies among conceptualizations 
described in a sentence:

1. ACTS (Actions): These are equivalent to verbs or group of verbs.

2. PPs (Picture Producer): These are equivalent to nouns.

3. AAs (Action Aider): These are modifiers of actions (acts) and thus are 
equivalent to adverbs.
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4. PAs (Picture Aider): These are modifiers of PPs and thus are equiva-
lent to adjectives.

5. Conceptual Cases: There are different types of conceptual cases:

Objective case (o)

Directive case (d)

Instrumental case (i)

Recipient case (r)

6. Conceptual Tenses: Schank proposed a list of attachments to the 
relationship. A partial list of these is as follows:

Continuing (k)

Future (f)

Interrogative (?)

Past (p)

Present (nil)

Transition (t)

Transition start (ts)

Transition finished (tf)

Negative (/)

Conditional (c)

7. Conceptual Dependencies: These provide a structure into which 
nodes representing information can be placed with a specific set of 
primitives at a given level of granularity. The following are the concep-
tual dependency primitives:

a. PTRANS: Physical transfer of location of an object [e.g., GO]
Slots for PTRANS are:

ACTOR: A HUMAN (or animate object) that initiates the 
PTRANS;
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OBJECT: A physical object that is PTRANSed;

FROM: A LOCATION at which PTRANS begins;

TO: A LOCATION at which PTRANS ends.

b. ATRANS: Abstract transfer of ownership possession or control of 
an object (e.g., give)

c. MTRANS: Mental transfer of information between agents (e.g., 
tell)

d. MBUILD: Mental construction of a thought or new information 
between agents (e.g., decide)

e. ATTEND: Act of focusing attention of a sense organ toward an 
object (e.g., listen)

f. GRASP: Grasping of an object by an actor for manipulation (e.g., 
hold)

g. PROPEL: The application of physical force to an agent by that 
agent (e.g., throw)

h. MOVE: The movement of a body part of an agent by that agent 
(e.g., kick)

i. INGEST: Taking of an object (such as food, air, or water) by an 
animal (e.g., drink or eat)

j. EXPEL: The expulsion of an object by an animal (e.g., spit)

k. SPEAK: The act of producing sound, including non-communica-
tive sounds.

There are semantic rules for the formation of the dependency structure:

Rule 1: PP  ACT

Indicates that an actor acts

Rule 2: PA  PA

Indicates the object has certain attributes

Rule 3: ACT O  PP

Indicates the object of an action
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Rule 4: ACT R 
PP

PP

Indicates the recipient and the donor of an object within an action

Rule 5: ACT O 
PP

PP

Indicates the direction of an object within an action

Rule 6: ACT I I

Indicates the instrument conceptualization of an action

Rule 7:     X

 
 Y

Indicates the conceptualization where X caused the conceptualization

Y; when written with a C,  this form denotes that X COULD cause Y.

Rule 8: 
PA2

PA1

Indicates a state change of an object

Rule 9: PP1  PP2

Indicates the PP is either PART-OF or the POSSESSOR of PP1

For example,
1. John ate the egg.

P
John

John

John

INGEST

INSIDE

MOUTH

Egg
O
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2. John prevented Mary from giving a book to Bill.

P

R

OC

DO
P

John

Mary

Mary

ATRANS Book

Bill

3. A boy is nice.
boy  nice

4. John pushed the bike.

John  PROPEL O  bike

Advantages of the Conceptual Dependency

1. Using these primitives involves fewer inference rules.

2. Many inference rules are already represented in the conceptual de-
pendency structure.

3. The holes in the initial structure help to focus on the points still to be 
established.

4. Scripts
A script is a structured representation describing a stereotyped sequence 
of events in a particular context. Scripts are used in natural language 
understanding systems to organize a knowledge base using the terms of 
the situations that the system should understand. It could be considered 
to consist of a number of slots or frames, but with more specialized roles. 
The components of scripts include:

Entry conditions: These must be satisfied before events in the scripts 
can occur.

Results: Conditions that will be true after the events in the scripts occur

Props: Slots representing the object involved in events

Roles: People involved in the events



Knowledge Representation  67

Track: Variations on the scripts. Different tracks may share compo-
nents of the same script.

Scenes: The sequence of events that occurs. Events are represented in 
the conceptual dependency form.

Scripts are useful in describing certain situations, such as robbing a 
bank. This might involve the following steps:

getting a gun

holding up a bank

escaping with the money

Here props might be

gun, G

loot, L

bag, B

get-away car, C

The Roles might be

robber, R

cashier, M

bank manager, O

policeman, P

The entry conditions might be

R is poor

R is destitute

The result might be

R has more money;

O is angry;

M is in a state of shock;

P is shot.
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There are three scenes: obtaining the gun, robbing the bank, and making 
the getaway.

The full scripts are described in Figure 5.4.

Scripts: ROBBERY

Props: G=Gun Roles: R=Robber

Entry Conditions: Results:

R is poor R has more money

Scene 1: Getting a gun

R  PTRANS R into gun shop

R MBUILD R Choice of G

R MTRANS Choice

R ATRANS buys G

(Go to Scene 2)

Scene 2: Holding up the bank

R PTRANS R into bank

R ATTEND eyes M,O, and P

R MOVE R to M position

R GRASP G

R MOVE G to point to M

R MTRANS “Give me the money or ELSE” to M

P MTRANS “Hold it! Hands up!” to R

R PROPEL shoots G

P INGEST bullet from G

M ATRANS L to M

M ATRANS L puts in bag B

M PTRANS exits

O ATRANS raises the alarm

 (Go to Scene 3)

Scene 3: The Getaway

M PTRANS C

FIGURE 5.4 Pseudocode For Robbing the Bank.
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Advantages of scripts:

Ability to predict events

A single coherent interpretation may be built from a collection of 
observations.

Disadvantages:

Less general than frames

May not be suitable to represent all kinds of knowledge.





EXPERT SYSTEMS
6.1 Introduction

An expert system is an artificial intelligence program that has expert level 
knowledge about a particular domain and knows how to use its knowledge 
to respond properly. “Domain” refers to the area within which the task 
is being performed. Ideally, the expert system should be a substitute for 
a human expert. Edward Feigenbaum of Stanford University defined an 
expert system as “an intelligent computer program that uses knowledge and 
inference procedures to solve problems that are difficult enough to require 
significant human expertise for their solutions.” It is a branch of AI intro-
duced by researchers in the Stanford Heuristic Programming Project.

6.2 Definition of an Expert System

An expert system is a computer program designed to act as an expert 
in a particular field of knowledge or area of expertise. Expert systems 
are also known as knowledge-based systems. 

Expert systems are sophisticated computer programs that manipulate 
knowledge to solve problems.

An expert system is a system that offers intelligent advice or makes an 
intelligent decision about a processing function.

An expert system is a computer program that contains a knowledge 
base and a set of algorithms or rules that infers new facts from 
knowledge and from incoming data.

C H A P T E R6
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The method used to construct such systems, knowledge engineering, 
extracts a set of rules and data from an expert or experts through extensive 
questioning. This material is then organized in a format suitable for inquiry, 
manipulation, and response. While such systems do not often replace the 
human experts, they can serve as useful assistants.

6.3 Characteristics of an Expert System

Expert systems should have the following characteristics: 

1. the ability to solve complex problems with the same (or greater) sol-
vency as a human expert

2. heuristic reasoning through empirical rules, which properly interacts 
with human experts

3. ability to work with data that contains errors, using uncertainty proce-
dural rules

4. ability to consider multiple hypotheses simultaneously

5. perform at the level of a human expert

6. ability to respond in a reasonable amount of time. Time is crucial, es-
pecially for real-time systems.

7. be reliable and should not crash

8. not be a black box; instead, the expert system should be able to explain 
the steps of the reasoning process. It should justify its conclusions in 
the same way as a human expert explains why he arrived at a particular 
conclusion.

9. need heavy investment, and there should be a considerable Return on 
Investment (ROI).

6.4 Architectures of Expert Systems

There are two types of architectures in expert systems:

Rule-based system architecture (Production Systems)

Non-production system architecture
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Rule-Based System Architecture

This is most common form of architecture used in expert and other knowl-
edge-based systems. This type of system uses knowledge in the form of 
production rules, i.e., if.......then rules.

IF: Condition 1 and condition 2

THEN: Take action 3

Each rule represents a small chunk of knowledge related to a given 
domain of expertise. A number of related rules collectively may corre-
spond to a chain of inferences which lead from some initially-known facts 
to some useful conclusions. Inference in a production system is achieved 
by a process of chaining through the rules recursively, either in a forward or 
backward direction, until a conclusion is reached or until a failure occurs.

Components of an Expert System

Figure 6.1 shows the complete structure of rule-based expert system.

External program

Fact

Inference Engine

Database

Rule-IF-THEN

Knowledge Base

Explanation Facilities

User-
interface

User Knowledge engineer

Expert

Developer
interface

External Database

Expert System

FIGURE 6.1 Complete Structure of a Rule-Based Expert System.
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The fundamental modules of an expert system are the

1. knowledge base

2. inference engine

3. user interface

4. explanation facility

5. knowledge acquisition facility

6. external interface

7. database

1. Knowledge Base
A knowledge base is an organized collection of facts about the system’s 
domain. Facts for a knowledge base must be acquired from human experts 
through interviews and observation. A knowledge base contains domain-
specific and high quality knowledge. Knowledge is required to exhibit 
intelligence. The success of any expert system largely depends upon the 
collection of highly accurate and precise knowledge.

Components of a Knowledge Base

The knowledge base of an expert system is a store of both factual and 
heuristic knowledge.

Factual knowledge: This is the information widely accepted 
by knowledge engineers and scholars in the task domain.

Heuristic knowledge: This is about the practice of generating 
an accurate judgment, one’s ability to make an evaluation, and 
guessing.

Knowledge Representation

This is a method used to organize and formalize the knowledge in the 
knowledge base. This knowledge is then usually represented in the form of 
“IF-THEN” rules (production rules). “If some condition is true, then the fol-
lowing inference can be made (or some action taken).” The knowledge base 
of a major expert system includes thousands of rules. A probability factor 
is often attached to the conclusion of each of the production rules because 
the conclusion is not a certainty. For example, a system for the diagnosis of 
eye diseases might indicate, based on the information supplied to it, a 90 
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percent probability that a person has glaucoma. It might also list conclusions 
with lower probabilities. An expert system may display the sequence of rules 
through which it arrived at its conclusion; tracing this flow helps the user 
to appraise the credibility of its recommendation. The knowledge base is 
formed by readings from various experts, scholars, and  knowledge engineers. 
A knowledge engineer also monitors the development of the expert system.

2. Inference Engine
A very important element of the expert system is also called the inference 
engine. Knowledge of science must always be stored in the knowledge base 
in a formalized form that is understandable to the inference engine. The 
inference engine can be divided into following functional elements:

Control system: This determines the order of testing in the 
knowledge base rules.

Rule-interpreter: This defines the Boolean (the true, not true 
uncertainty factor) application rules.

Explanation mechanism: This justifies the outcome to the user with 
the reasoning process and generates a report.

The inference engine repeatedly applies the rules to the working mem-
ory, adding new information (obtained from the rules’ conclusions) to it 
until a goal state is produced or confirmed. One of several strategies can be 
employed by an inference engine to reach a conclusion. Inference engines 
for rule-based systems generally work by either the forward or backward 
chaining of rules. These two strategies are:

Forward chaining: This is a data-driven strategy. The inference 
process moves from the facts of the case to a goal (conclusion). The 
strategy is thus driven by the facts available in the working memory and 
by the premises that can be satisfied. The inference engine attempts 
to match the condition (IF) part of each rule in the knowledge base 
with the facts currently available in the working memory.

Forward-chaining systems are commonly used to solve the open-
ended problems of a design or those that involve planning, such as 
establishing the configuration of a complex product.

Backward chaining: The inference engine attempts to match the 
assumed conclusion to the goal or sub-goal state with the conclusion 
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(THEN) part of the rule. If such a rule is found, its premise becomes 
the new sub-goal. In an expert system with few possible goal states, 
this is a good strategy to pursue.

 If the assumed goal state cannot be supported by the premises, the system 
will attempt to prove another goal state. Thus, a possible conclusion is to 
perform a review until a goal state that can be supported by the premises 
is encountered. Backward chaining is best suited for applications in 
which the possible conclusions are limited in number and well defined.

3. User Interface
A user must have a way to communicate with the system. The component of 
an expert system that helps its user to communicate with it is known as the 
“user interface.” The function of a user interface is to provide a means for 
bi-directional communication in which the user describes the problem and 
the system responds with solutions or recommendations. The user interface 
helps to explain how the expert system has arrived at a particular recom-
mendation. The explanation may appear in the following forms:

natural language displayed on the screen

verbal narrations in natural language

a listing of rule numbers displayed on the screen.

The user interface makes it easy to trace the credibility of the deductions.

Advantages of the User Interface

1. It should help users to accomplish their goals in the shortest possible 
way.

2. It should be designed to work for users existing or desired work prac-
tices.

3. Its technology should be adaptable to the user’s requirements, not the 
other way around.

4. It should make efficient use of the user’s input.

4. Explanation Facility
This is a part of the user interface. It enables the user to ask the expert system 
how a particular conclusion is reached and why a specific task (fact) is needed. 
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An expert system must be able to explain its reasoning and justify its advice, 
analysis, or conclusion. Hence, the explanation facility must be superb.

5. Knowledge Acquisition Facility
The major bottleneck in expert system development is knowledge acquisi-
tion. This includes the elicitation, collection, analysis, modeling, and valida-
tion of knowledge for knowledge engineering and knowledge management 
projects. Various techniques of knowledge acquisition and the inherent 
problems associated with that will be discussed in later topics.

6. External Interface
This allows an expert system to work with external files using programs 
written in conventional programming languages such as C, Pascal, Fortran, 
and Basic. It provides the communication link between the expert system 
and external environment. When there is a formal consultation, it is done 
via the user interface. In real-time expert systems where they form a part of 
the closed loop system, it is not proper to expect human intervention every 
time conditions must be fed in to get remedies. Moreover, the time-gap is 
too narrow in real-time systems. The external interface with its sensors gets 
minute-by-minute information about the situation and acts accordingly. 
Such real-time expert systems are of tremendous value in industrial process 
controls, nuclear power plants, and supersonic jets.

The communication subsystem is part of the external interface 
that permits the system to communicate with a global database for its 
operation.

7. Database
A database is a collection of information that is organized so that it can eas-
ily be accessed, managed, and updated. It is working storage, a “notepad” 
that the inference engine can use to hold data while it is working on a prob-
lem. It holds all the data about the current task, including:

the user’s answers to questions

any data from outside sources

any intermediate results of the reasoning 

any conclusions reached so far.
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There is a clear distinction between the knowledge base and the data-
base. The knowledge base contains know-how, and it can be applied to 
many different cases. Once built, a knowledge base will be saved and 
used many times over. The database contains data about the particular 
case that is being run at the time. For example, the knowledge base about 
sales problems might be applicable to any small manufacturing business. 
During a run, the database would contain data about a specific company 
and its trading performance. The database can also be called “the world 
model.”

Non-Production System Architecture

Instead of rules, these systems employ more structured representation 
schemes like the semantic (associative) network, frames, tree structure 
(decision trees), or even neural networks.

1. Associative (Semantic) Network

Semantic network representation schemes are networks made up of 
nodes connected by directed arcs. The nodes represent object, attributes, 
concepts, or other basic entities, and the arcs, which are labelled, describe 
the relationship between the two nodes they connect. Special network links 
include the IS-A and HAS-PART links, which designate an object as being 
a certain type of object (belonging to a class of the object) and being a sub-
part of another object, respectively.

Associative network representations are especially useful in depicting 
a hierarchical knowledge structure where property inheritance is common. 
Objects belonging to a class of other objects may inherit many of the char-
acteristics of the class. Inheritance can also be treated as a form of default 
reasoning. This facilitates the storage of information when shared by many 
objects, as well as the inferencing process.

For example, one expert system based on the use of an associative 
network representation is CASNET (Casual Associative Network), which 
was developed at Rutgers University during the 1970s (Weiss et al., 1978). 
CASNET is used to diagnose and recommend treatment for glaucoma, one 
of the leading causes of blindness.
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The network in CASNET is divided into three types of knowledge:

Patient observations (tests, symptoms, and other signs): 
These are provided by the user during an interactive session 
with the system. The system is presented to the user during an 
interactive session. The system presents menu type queries, and 
the user selects one of several possible choices.

Pathophysiological states: These observations help to establish 
the abnormal condition caused by the disease process. The 
condition is established through the casual network model as part 
of the cause and effect relationship relating the symptoms and 
other signs to diseases.

Disease categories: Inference is accomplished by traversing the 
network, following the most possible paths of causes and effects. 
Once a sufficiently strong path is determined through the network, 
the diagnostic conclusions are inferred using classification tables 
that interpret the patterns of the casual network. These tables are 
similar to rule interpretations.

2. Frame Architecture

Frames are structured sets of closely-related knowledge, such as an 
object or concept name, the object’s main attributes, its corresponding 
values, and possibly some attached procedure (if-added, if-needed, or if-
removed procedures). The attribute’s values and procedure are stored in 
specified slots and slot facts of the frame. Individual frames are usually 
linked together as a network, and, much like the nodes, this is an associa-
tive network, including property inheritance and default reasoning. Several 
expert systems have been constructed with frame architecture, and a num-
ber of building tools which create and manipulate frame structured systems 
have been developed.

For example, PIP (Present Illness Program) was used to diagnose 
patients using low cost, easily-obtained information. The medical knowl-
edge in PIP is organized in frame structures, where each frame is com-
posed of the categories of slots with names such as:
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typical findings

logical decision criteria

complimentary relations to other frames

differential diagnosis

scoring.

A special IS-sufficient slot is used to confirm the presence of a disease 
when key findings correlate with the slot contents.

3. Decision-Tree Architecture

When knowledge can be structured in a top-to-bottom manner, it may 
be stored in the form of a decision tree. For example, the identification of 
objects (equipment faults, physical object diseases, and the like) can cor-
respond to an object’s attribute, and the terminal nodes can correspond to 
the identities of objects. A decision tree takes input from an object given 
by a set of properties and outputs a Boolean value (yes/no decision). Each 
internal node in the tree corresponds to a test of one property. Branches are 
labelled with possible values of the test.

For example, assume the problem is waiting for a table at a restaurant. 
A decision tree decides whether to wait (or not) in a given situation. Here 
are some of the following  attributes:

Alternative: Alternative restaurant nearby

Bar: Bar area to wait

Fri/Sat: True on Fridays and Saturdays

Hungry: Whether we are hungry

Patrons: How many people are in the restaurant (none, some, or 
full)

Price: Price range ($, $$, or $$$)

Raining: Raining outside

Reservation: Whether we made a reservation

Type: Kind of restaurant (French, Italian, Thai, or Burger)

Wait Estimate: Estimated wait time (<10, 10–30, 30–60, or >60).
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The above problem can be explained with the help of a decision tree.

Patrons

YES Wait EstimateNO

None Full

>60 <10
30–60 10–30

All leaves YES or NO

Some

Alternate

Alternate

Hungry YESYES

yesFri/SatReservation

yesBar yesNo

No No

NoNo

No

No

yes

yesyes

yes yes

yes

yes

yesNo Noyes

Rainingyes

FIGURE 6.2 A Decision Tree.

Advantages of the Decision Tree Architecture

1. Decision trees are open systems, as it is easy to link the end of a path-
way within a decision tree to start another decision tree.

2. Decision trees are simple natural programs that can adopt to com-
plexity and chaotic conditions.

3. Decision trees are a “white box,” meaning they are transparent and 
simple to understand and interpret. People are able to understand 
decision trees and therefore, they are designed for the organized re-
tention of knowledge.

4. Decision trees can have value very quickly, even with a small number 
of nodes. Important insights can be gained from their usage that often 
stimulates ideas for knowledge evolution that were not obvious at first.
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5. Decision trees can be created by subject matter experts without the 
need for software specialists.

6. Decision tree development enriches inductive and deductive reason-
ing, as they focus on the pathways and outcomes. This value is largely 
diluted with an expert system, as it is in the hands of the knowledge 
engineer and not the subject matter experts.

7. The construction of the decision tree is not just focused on business 
logic, but on a good dialogue and choices that influence behavior and 
decision making. The automated analysis of behavior enables the de-
cisions tree to adopt certain behavioral dynamics.

8. New nodes and branches can be added to the tree when additional 
attributes are needed to further discriminate among new objects. As 
it gains experience, the value associated with the branches can be 
modified or the system can return more accurate results.

4. Blackboard Architecture

Blackboard system architecture refers to a special type of knowledge-
based system which uses a form of opportunistic reasoning. It uses both for-
ward and backward chaining and chooses them dynamically at each stage in 
the problem-solution process. The blackboard system architecture is com-
posed of three functional components:

a. blackboard
b. knowledge source
c. control information/scheduler.

Figure 6.3 shows the architecture of a Blackboard system.

Knowledge Source

Scheduler

Blackboard

FIGURE 6.3 A Blackboard System Architecture.

a. Blackboard: The blackboard is the common data structure of  
knowledge sources. The blackboard is able to represent all states 
of some problem space. The blackboard contains several levels 
of description with respect to the problem space. These levels 
may have several relationships with each other, like IS-PART-OF. 
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The levels are parts of the same data structure. If separate data 
structures are needed, the blackboard is added into panels. Each 
panel, in turn, may contain several levels.

Level

Panel

Level

Level

Blackboard

Level

Panel

Level

Level

b. Knowledge source: This is a component that adds to the solu-
tion of the problem. It may be anything that reads from some 
level of the blackboard and suggests some change to parts of 
the blackboard. Its most common form is the production rule. 
Knowledge sources are completely unconnected to other knowl-
edge sources.

c. The scheduler: This determines which knowledge source gets 
the chance to change the blackboard. Every execution cycle, 
it notices changes to the blackboard, activates the appropriate 
knowledge source, and selects one of these and executes it.

 For example, Hearsay-II is a speech recognition program. Speech 
can be recognized at several levels.

5. Neural Network Architecture

Neural networks are computing systems modeled on the human brain’s 
mesh-like network of interconnected processing elements called neurons. 
Of course, neural networks are much simpler than the human brain (which 
is estimated to have more than 100 billion neurons). Like the brain, how-
ever, such networks can process many pieces of information simultane-
ously and can learn to recognize patterns and programs themselves to solve 
related problems on their own. A neural network is an array of inter-con-
nected processing elements, each of which can accept inputs, process them, 
and produce a single output with the objective of imitating the operation 
human brain. Knowledge is represented in neural networks by the pattern 
of connections formed during the processing of elements and by adjusting 



84  Artificial Intelligence Basics

the weights of these connections. The strength of neural networks is in the 
applications that require sophisticated pattern recognition. The greatest 
weakness of neural networks is that they do not furnish an explanation for 
the conclusions they make. A neural network can be trained to recognize 
certain patterns and then apply what it learned to new cases where it can 
discern the patterns.

6.5 Expert System Life Cycle

A life cycle for an expert system is discussed here, and we outline the 
tasks and activities to be performed at each stage of development. The 
life cycle highlights the role of alternative development paradigms and the 
importance of social and organization characteristics in the system’s trans-
fer to users. There are five major stages in the development of an expert 
system. Each stage has its own unique features and correlation with the 
other stages.

1. Identification Stage: The first step in acquiring knowledge for an 
expert system is to characterize the important aspects of the problem. 
This involves identifying the participants, problems characteristics, re-
sources, and goals.

a.  Participants’ Identification and Roles
Before we begin the knowledge acquisition, we must select the par-
ticipants and their roles. Usually, this is the interaction between a 
single domain expert and a single knowledge engineer. The knowl-
edge acquisition process can also include other participants. They 
may be multiple domain experts and multiple knowledge engineers.

b.  Problem Identification
After we have chosen the knowledge engineer and the domain 
expert, they can proceed towards identifying the problem under 
consideration. This involves an informal exchange of views on 
various aspects of the problem, its definition, characteristics, and 
sub-problems. The objective is to characterize the problem and 
its supporting knowledge structure so that the development of the 
knowledge base may begin.
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c.  Resource Identification
Resources are needed for acquiring the knowledge implemented in 
the system and testing it. Typical resources are knowledge sources, 
time, computing facilities, and money.

d.  Goal Identification
Most likely, the domain expert will identify the goals or objectives of 
building the expert system in the course of identifying the problem. It 
is helpful to separate the goals from the specific tasks of the problem.

2. Conceptualization Stage: The key concepts and relationships 
mentioned during the identification stage are made explicit during 
the conceptualization stage. It may be useful for the knowledge en-
gineer to diagram those concepts and relationships. The following 
questions need to be answered before proceeding with the concep-
tualization process:

What types of data are available?

What is given and what is inferred?

Do the sub-tasks have names?

Do the strategies have name?

Are there identifiable partial hypotheses that are commonly used?

How are objects in the domain related?

What processes are involved in the problem’s solution?

What are the constraints on these processes?

What is the information flow?

3. Formalization Stage: The formalization process involves mapping 
the key concepts, sub-problems, and information flow characteristics 
related during conceptualization into more formal representations 
based on various knowledge engineering tools or frameworks. The 
knowledge engineer now takes a more active role, telling the domain 
expert about the existing tool representations and the problem types 
that seem to match the problem at hand if, as a result of an informal 
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experiment with a preliminary prototype, the knowledge engineer be-
lieves there is a close fit with an existing tool or framework.

4. Implementation Stage: Implementation involves mapping the formal-
ized knowledge from the previous stage into the representational frame-
work associated with the tool chosen for the problem. As the knowledge 
in this framework is made consistent and compatible, and is organized to 
define a particular control and information flow, it becomes an execut-
able program. The knowledge engineer evolves a useful representation 
for the knowledge and uses it to develop a prototype expert system. The 
prototype knowledge base is implemented by using whatever knowledge 
engineering aids are available for the representation (editors, intelligent 
editors, or acquisition programs). When the existing aids are inadequate, 
the knowledge engineer must develop new ones.

5. Testing Stage: The testing stage involves evaluating the prototype 
system and the representation forms used to implement it. Once the 
prototype system runs from start to finish on two or three examples, 
it should be tested with a variety of examples to determine the weak-
nesses in the knowledge base and inference structure. The elements 
that are usually found to cause poor performance because of faulty 
adjustments are the input/output characteristics, inference rules, con-
trol strategies, and test examples. Testing provides an opportunity to 
identify the weaknesses in the structure and implementation of the 
system and to make appropriate corrections.

6.6 Knowledge Engineering Process

The process of building an expert system goes through a number of stages. 
It is similar in many ways to the software engineering life cycle:

Requirements analysis: Customer requirements are ascertained.

Knowledge-Acquisition: Problem solving expertise is transferred 
from some knowledge source to a program.

Architectural Design: High level organization of the system

System Design: Detailed design of the (sub) system

Implementation: Coding

Deployment: Installation, operation, and maintenance.
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Each of these phases includes the appropriate validation, verification, 
and quality assurance tests.

6.7 Knowledge Acquisition

Knowledge acquisition can be regarded as a method in which a knowledge 
engineer gathers information mainly from experts, but also from textbooks, 
technical manuals, research papers, and other authoritative sources, and 
translates this information into a knowledge base that is understandable to 
both machines and humans.

The person undertaking the knowledge acquisition (the knowledge 
engineer) must convert the acquired knowledge into an electronic format 
that a computer program can use.

In the process of knowledge acquisition for an expert system project, 
the knowledge engineer basically performs four major tasks in sequence: 

First, the engineer ensures that he or she understands the aim and 
objective of the proposed expert system to get a feeling for the 
potential scope of the project.

Second, the engineer develops a working knowledge of the 
problem domain by mastering its terminology by looking up 
definitions in technical dictionaries and terminology databases. 
For this task, the key sources of knowledge are identified such as 
textbooks, papers, technical reports, manuals, code of practice, 
users, and domain experts.

Third, the knowledge engineer interacts with experts via meetings 
or interviews to acquire, verify, and validate their knowledge. 

Fourth, the knowledge engineer produces a document or a group 
of documents (nowadays, in electronic format) which forms an 
intermediate stage in the translation of knowledge from the source 
to the computer program.

6.8 Difficulties in Knowledge Acquisition 

Acquiring knowledge from experts is not an easy task. The following list 
includes some factors that add to the complexity of knowledge acquisition 
from experts and the knowledge transfer to a computer:
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Experts may not know how to articulate their knowledge or may be 
unable to do so.

Experts may lack time or may be unwilling to co-operate.

Testing and refining knowledge are complicated.

Methods for knowledge elicitation may be poorly defined.

System builders tend to collect knowledge from one source, but the 
relevant knowledge may be scattered across several sources.

System builders may attempt to collect documented knowledge rather 
than use experts. The knowledge collected may be incomplete.

It is difficult to recognize specific knowledge when it is mixed up with 
irrelevant data.

Experts may change their behavior when they are observed or 
interviewed.

Problematic interpersonal communication factors may affect the 
knowledge engineer and the experts.

6.9 Knowledge Acquisition Strategies

There are several ways by which knowledge is acquired. Some of the promi-
nent methods are discussed below:

1. Protocol Analysis: This is the set of techniques known as the verbal 
protocol analysis. It is a method by which the knowledge engineer ac-
quires detailed knowledge from the expert. A protocol is a record or 
documentation of the expert’s step-by-step information processing and 
decision-making behavior. The expert is asked to talk about a thing out 
loud while performing the task or solve the problem under observa-
tion. In this method, the knowledge engineer does not interrupt while 
the expert is working.

2. Observations: In many ways, this is most obvious and straightforward 
approach to knowledge acquisition. In this method, the knowledge en-
gineer observes the expert performing a task. This prevents the knowl-
edge engineer from inadvertently interfering in the process, but does 
not provide any insight into why decisions are made.
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3. Interview Analysis: This is an explicit technique that appears in sev-
eral variations. It involves a direct dialog between the expert and the 
knowledge engineer. The interview process can be tedious. It places 
great demands on the domain expert, who must be able not only to 
demonstrate expertise but also to express it. Interviews can be un-
structured, semi-structured, or structured. The success of an interview 
session is dependent on the questions asked and ability of the expert to 
articulate their knowledge.

4. Introspection: The expert becomes a knowledge engineer and 
then relies on a combination of introspection and knowledge of the 
expert system’s architecture to convert know-how into the knowl-
edge base. 

5. Teach back: The knowledge engineer attempts to teach the information 
back to the expert, who then provides corrections and fills in the gaps.

These are some methods to help acquire knowledge from experts. 
Generally, no knowledge engineer sticks to one method, but adopts a com-
bination of these methods. The knowledge engineer must aim to extract 
more of the deep knowledge that will help in understanding the fundamen-
tals of the domain.

6.10 Advantages of Expert Systems

1. Availability: Expert systems are easily available due to vast produc-
tion of software.

2. Speed: Expert systems offer great speed. They reduce the amount of 
work an individual puts in.

3. Low Error Rate: Their error rate is lower than that of humans.

4. Steady Response: They work steadily without getting emotional, 
tensed, or fatigued, whereas human experts, under stress, in a bad 
mood, or when time is limited, either make faulty assumptions or for-
get relevant factors.

5. Reproducibility: Many copies of an expert system can be made, but 
training new human experts is time-consuming and expensive, where-
as the time for the duplication of an expert system is very short.
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6. Recovery: Expert systems can be combined with other systems or 
database knowledge to address more complicated situations.

7. Reducing Risk: They can work in  environments that are dangerous 
to humans.

8. Consistency: With expert systems, similar transactions are handled 
in the same way. The system will make comparable recommendations 
for like situations.

9. Multi-Dimensional: An expert system plays three major roles: the 
role of a problem solver, a tutor, and an archive. Even though natural 
language system interfaces are very primitive, expert systems of today 
serve these roles very well. A human expert who is a good problem 
solver need not be a good tutor.

10.  Efficiency: An expert system makes things more efficient by reducing 
the time needed to solve problems. Expert systems provide strategic 
and comparative advantages that may create problems for competitors.

6.11 Limitations of Expert Systems

1. The different types of multidimensional problems that are faced by 
various users while performing activities cannot be efficiently tackled 
by expert systems.

2. Expert systems do not respond well to situations outside their range 
of the expertise.

3. Some of the typical expert system at times are not able to make available 
commonsense knowledge and broad-ranging contextual information.

4. There is no flexibility or ability to adapt to changing environments.

5. The construction process of an expert system is a laborious one. Cur-
rently, a lot of resources are required.

6. Expert systems focus on very specific topics,  like computer faults, 
radiology, and diagnostic skills. The major reason for this situation is 
the difficulty in extracting knowledge, and building and maintaining a 
large knowledge base.

7. The verification of the correctness of any large computer system is 
difficult to prove, and expert systems are particularly difficult to verify. 
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This is a serious problem, as expert system technology is being applied 
to critical applications such as air traffic control, nuclear reactor opera-
tions, and weapon systems.

8. There is little learning from experience. Current expert systems are 
handcrafted; once the system is completed, its performance will not 
improve without further attention from its programmers.

6.12 Examples of Expert Systems

The following are some successful expert systems in different domains that not 
only helped pioneer the development of new techniques and tools, but also 
proved that AI systems can be terribly successful in select areas of expertise.

1. DENDRAL: This was developed at Stanford in the 1960s. DEN-
DRAL was one of the first systems to rival the performance of domain 
experts. DENDRAL stored and reasoned with knowledge from the 
field of organic chemistry using a planned generate-test search para-
digm. Specifically, the task was to determine the molecular structure of 
an organic molecule. It receives as its input a molecular formula with a 
set of constraints which serve to restrict the possible interconnections 
among atoms. A list of all possible ways of assembling the atoms into 
molecules is generated. These are ordered using the knowledge base 
to make testable predictions about candidate molecules.

This enables the pruning of the candidate list. Because organic mol-
ecules tend to be very large, the number of possible structures for 
these molecules tends to be huge. DENDRAL addresses the prob-
lem of this large search space by applying the heuristic knowledge of 
expert chemists to the structure elucidation problem. DENDRAL’s 
methods proved remarkably effective. META-DENDRAL added a 
machine-learning capability in the form of an inductive rule learner 
based on a hill climbing algorithm using raw mass spectrographic 
data. The new heuristics were then used in deducing the structure 
of unknown molecules from their mass spectra. Although META-
DENDRAL is no longer an active program, its contributions to ideas 
about learning and discovery are being applied to new domains.

2. MYCIN: Stanford was also the home of another influential expert sys-
tem called MYCIN. MYCIN established the methodology of contem-
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porary expert systems. MYCIN was originally written in INTERLISP, 
a dialect of the LISP programming language.

MYCIN is a medical expert system that assists a physician who is not 
an expert in the field of antibiotics with the treatment of blood infec-
tions. Figure 6.4 shows the structure of MYCIN.

MYCIN consists of five modules:

a. knowledge base

b. a patient database

c. a consultation program

d. an explanation program

e. a knowledge acquisition program.

User-Interface

Advice and Explanation

Knowledge
Base

ES Building Tools

User

Domain
Expert

Knowledge
Engineer

Details of New Case

Inference
Strategy

FIGURE 6.4 The Structure of MYCIN.

The knowledge is organized as a series of IF-THEN rules. Certain 
factors can be associated with the knowledge. Patient information is 
stored in a contextual form. This includes data such as blood samples, 
recent operative procedures, and drugs. The selection takes place after 
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the diagnosis. It consists of selecting candidate drugs and then choos-
ing a preferred antibiotic. MYCIN itself has never been used in a clini-
cal setting, but descendants of the program have.

3. EMYCIN (Empty MYCIN): This system allows the MYCIN archi-
tecture to be applied to another medical domain besides blood dis-
eases. It is not a general-purpose problem solving architecture, rather, 
it is more suited to diagnostic tasks in medicine. The PUFF system was 
the first program built using EMYCIN. PUFF’s domain is the inter-
pretation of pulmonary functioning tests for patients with lung disease. 
The program can diagnose the presence and severity of lung disease 
and produce reports for the patient’s file. The knowledge acquisition 
program TEIRSIAS was built to assist domain experts in refining the 
EMYCIN knowledge base. TEIRSIAS developed the concept of me-
ta-level knowledge, i.e., knowledge by which a program cannot only 
use its knowledge directly, but can examine it, reason about it, and 
direct its use.

4. PROSPECTOR: A classic expert system is the PROSPECTOR pro-
gram, which determines the probable location and type of ore deposits 
based on geological information about a site. PROSPECTOR attempts 
to predict the minerals to be found there. Like MYCIN, PROSPEC-
TOR is a rule-based system that uses certainty factors to represent the 
strengths of the rules. PROSPECTOR deals with geologic settings, 
structural controls, and the kinds of rocks, minerals, and alternate 
products present or suspected. It compares observations with stored 
models of ore deposits, notes the similarities, differences, and missing 
information, asks for additional information if necessary, and then as-
sesses the mineral potential of the prospect.





LEARNING
7.1 Learning

Although everyone seems to know what it is, learning is actually very dif-
ficult to precisely define. Roughly, any system that improves its perfor-
mance in response to internal changes caused by experience can be said 
to learn. This definition can be related to human beings. In psychology, 
various generalized definitions of learning have been proposed and many 
of them interpret learning as the change in the behavior of a being, subject 
to a given situation or a sequence of his or her repeated experiences in that 
situation.

In AI, machine learning can be defined as the capability of an AI sys-
tem to improve its performance over a period of time. This, of course, 
assumes the capability of the system to acquire new knowledge and skills, 
as well as its capability to recognize the existing knowledge based on the 
newly acquired knowledge. Machine learning has grown into a widespread 
research field devoted to the search for new learning methods and/or learn-
ing algorithms, as well as their implementations.

7.2 General Model for Machine Learning Systems

Machine learning usually starts with some knowledge and the correspond-
ing knowledge organization so that a system can interpret, analyze, and 
test the knowledge acquired. Figure 7.1 is a model of a machine learning 
system.

C H A P T E R7
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Standard System

Expected Output

OutputInput

Knowledge
Base

Performance
Element

Feedback
Element

Learning
Element

FIGURE 7.1 Learning System Model.

The figure shown above is a typical learning system model. It consists of the 
following components:

1. Learning Element
2. Knowledge Base
3. Performance Element
4. Feedback Element
5. Standard System

1. Learning Element: This receives and processes the input obtained 
from a person (i.e., a teacher) from reference materials like magazines, 
journals, or from the environment at large.

2. Knowledge Base: This is somewhat similar to the database. Initially 
it may contain some basic knowledge. Therefore, it may receive more 
knowledge which may be new and so it can be added as it is or it may 
replace the existing knowledge.

3. Performance Element: This uses the updated knowledge base to 
perform some tasks or solves some problems and produces the cor-
responding output.

4. Feedback Element: This receives two inputs, one from the learning 
element and one from the standard (or idealized) system. The feed-
back element identifies the differences between the two inputs. The 
feedback is used to determine what should be done in order to pro-
duce the correct output.

5. Standard System: This is a trained person or a computer program that 
is able to produce the correct output. In order to check whether the 
machine learning system has learned well, the same input is given to the 
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standard system. The output of a standard system and that of the per-
formance element are given as inputs to the feedback element for the 
comparison. The standard system is also called an “idealized system.”

7.3 Characteristics of Machine Learning

There are several characteristics of machine learning:

1. highly accurate predictions using test data (the goal is not to uncover 
the underlying “truth”)

2. methods should be general-purpose, fully automatic, and “off-the-
shelf” (however, in practice, the incorporation of prior, human knowl-
edge is crucial)

3. rich interplay between theory and practice

4. emphasis on methods that can handle large data sets.

7.4 Types of Learning

The definition of learning is too broad and too vague to be of much use. 
Cognitive scientists have given the forms of learning various names: rote 
learning, direct instruction, learning by analogy, learning by deduction, 
learning by induction (also called “learning from examples”), failure-
driven learning, learning by being told (also called “learning by instruc-
tion”), and learning by exploration, to name just a few. Although each of 
these forms of learning emphasize a different aspect of learning, they all 
involve a change to an internal, persistent memory of the system.

7.4.1 Rote Learning or Memorization
Rote learning is known as learning by repetition. It is a method of learning 
that involves memorization. This memorization is usually achieved through 
the repetition of activities, such as reading or recitation and the use of flash-
cards and other learning aids. The theory behind this learning technique 
is that students will commit facts to memory after repeated study and will 
then be able to retrieve those facts whenever necessary.

7.4.2 Direct Instruction
This type of learning is different from rote learning. It is the use of straight-
forward, explicit teaching techniques, usually to teach a specific skill. It is 
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a teacher-directed method, meaning that the teacher stands in front of a 
classroom and presents the information. For example, the teacher might 
give a lesson that very clearly outlines the order of all the planets in the 
solar system.

7.4.3 Learning by Analogy
Learning by analogy is the process of learning a new concept or solution 
through the use of similar known concepts or solutions. We use this type 
of learning when solving problems on an exam where previously learned 
examples serve as a guide or when we make frequent use of analogical 
learning. This form of learning uses more inferring than either of the previ-
ous forms, since difficult transformations must be made between known 
and unknown situations.

7.4.4 Learning by Deduction
Deduction means to draw conclusions from given facts. Deduction is 
applied to obtain a generalization from a domain theory, a solved example, 
and its explanation. It is a logical process in which a conclusion is based 
on the concordance of multiple premises that are generally assumed to be 
true. It is sometimes referred to as top-down logic.

For example,

1. All men are mortal.

2. Socrates is a man.

3. Therefore, Socrates is mortal.

The first premise states that all objects classified as a “men” have the 
attribute “mortal.” The second premise states that “Socrates” is classified 
as a “man,” a member of the set “men.” The conclusion then states that 
“Socrates” must be “mortal” because he inherits this attribute from his clas-
sification as a “man.”

7.4.5 Learning by Induction (Learning by Examples) 
This is a process of learning by example. The system tries to induce a gen-
eral rule from a set of observed instances. The learning method extract 
rules and patterns out of massive data sets. The learning process belongs 
to supervised learning and unsupervised learning, does classification, and 
constructs class definitions, called induction or concept learning.
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Supervised Learning:
The program is “trained” via past experiences based on a predefined 
set of “training examples,” which then facilitate its ability to reach an 
accurate conclusion when given new data. In supervised learning, the 
output datasets are provided, and these are used to train the machine 
and get the desired outputs.

For example, in facial recognition, the system learns by examples as to 
what a face is in terms of the structure and color, so that after several 
iterations, it learns to define a face.

Unsupervised Learning:
No data sets are provided. Instead, the data is clustered into different 
classes.

For example, in facial recognition, since there is no desired output 
(in this case, that is provided) the categorization is done so that the 
algorithm correctly differentiates between the faces of a horse, cat, or 
human (clustering of data).

So, learning by induction is a method that is used frequently by humans. 
It is a powerful form of learning, like analogical learning, which also 
requires more inferring than other methods. We use inductive learning 
of instances or examples of a concept. For example, we learn the 
concepts of color or a sweet taste after experiencing the sensations 
associated with several examples of colored objects or sweet food.

7.4.6 Failure-Driven Learning
Failure-driven learning is based on creating a program that will learn by 
making mistakes and then finding a solution so that the mistake does not 
happen again. This is similar to the way humans learn. If we make a mis-
take, we usually try to learn from that mistake to improve ourselves so we 
do not make it again.

Sussman’s Hacker is an example of a failure-driven learning system that 
operates in the block world. It solves problems by looking up plan schemes 
in its Plan Library and fitting them together. There is a “gallery” of “crit-
ics” that do the plan criticism. Hacker analyzes problems in terms close to 
standard computer programming. The plan it is to execute looks like a pro-
gram that is a linear object containing conditionals and loops. However, the 
program is still hierarchical: problems are solved by programs, whose steps 
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become new problems. Once the program has been completed, Hacker 
executes it. If a bug halts execution, then Hacker corrects the program that 
led to it. The next time this program is used, that particular bug will not 
occur again.

Suppose a programmer has been given the problem to put the “A” block 
on the top of the “B” block in the situation shown in Figure 7.2.

C

A B

FIGURE 7.2 Failure-Driven Learning by the Problem That Puts “A” on the Top of “B.”

At first, the program cannot execute because the “C” block is on the top of 
the “A” block. The program now has to figure a solution to why it cannot lift 
the “A” block. It devises a solution to move the “C” block off the “A” block. 
Once the “C” block has been moved, it can place the “A” block on the top 
of “B” block, and its objective is completed.

The sample code to do this would be as follows (in the example below, 
x is block “A,” y is block “B,” and z is block

“C” or any block that is on top of the block being moved).

Original Code:

[to do ? task ( achieve (on ? x ?y)): To get something 
on something else

(move ? x ? y)] : Use the move operation

Program-altered Code:

[to do ? task (achieve (on ? x ? y)) : To get something 
on something else

(prog (for each ? z (on ? z ? x)
(get-ritdof ? z))
(move ? x ? y)]; Then do the move.

The “program altered code” is code that the program created so it could 
remove any block on top of the block that it was originally supposed to 
move.

The problem with the above example is that the program cannot neces-
sarily know why it cannot lift block “A.” It could just have another box on 
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the top of it, or it could be glued to the ground, or both. It would need some 
way of determining the physical situation of block “A.”

Inside a computer program, it is reasonable to assume that one has 
complete knowledge of the reasons for a bug. However, this assumption is 
actually not reasonable, since there are intermittent bugs in complex soft-
ware, but automatic programming is hard enough without worrying about 
such bugs.

Now take the example of a restaurant. Suppose you go to an ordinary 
restaurant and eat a meal with your fingers. Now, you expect a conflict 
with the scheme, in that normally you would use a knife and fork. This 
kind of contradiction is evident with the current hypothesis, which you 
want to be changed. Next time, you go to another reputed restaurant and 
you eat with a knife and fork or other utensils which were not available 
at the previous restaurant. This will make you recall the past scenario 
and generate new or revised plans to include in your schemes. We learn 
from failures of expectations about what will happen when schemes are 
used for planning or understanding. However, in a sense, all learning is 
failure-driven. We must change the rules whenever something happens 
that should not have happened or fails to happen when it should have 
happened.

7.4.7  Learning by Being Told or Getting Advice (Learning by Instruction) 
Learning by being told is another area of AI learning. It allows a system to 
improve its task performance by the repetition of this task, like an athlete 
who trains himself by the execution of the same movement several times. 
During these repetitions, the system gains know-how and is progressively 
improved. It requires that the learning system select and transform the 
knowledge into a usable form and then integrate it into the existing knowl-
edge of the system. It includes learning from teachers and learning by using 
books, publications, and other types of instruction.

Learning by being told is simply the interaction of a teacher (human) 
and an AI student. The teacher is there to teach the AI how to do things 
in the real world. Because the teacher has a grasp of  real-world situa-
tions, it virtually eliminates the need for induction by the AI. The only 
problem is the communication between the teacher and the AI stu-
dent. Preferably, the teacher would want to teach in English, but the AI 
does not understand English. There is not  sufficient English to code a 
translator.
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One solution is for the teacher is to use limited English. This reduces 
the need to interpret the unnecessary parts of the sentence, such as 
the pronunciation and articles (i.e., instead of saying “It is easier to 
move the little boxes first,” the teacher could say “Move little boxes 
first.” This reduces the commands down to verbs, adjectives, nouns, 
and words telling the program in what order to move the boxes.

Another solution is for the teacher to actually put the instructions 
into code. This is not preferable, since one of the many goals for 
AI is to get it to interpret English commands, sometimes on the 
fly. Short instructions are no problem to put into code, but should 
the instruction set be lengthy, the teacher will spend a lot time 
coding the set of instructions, instruction-by-instruction, until the 
AI understands the way the teacher is teaching it. This can be time 
consuming, especially if the AI does not learn the set of instructions, 
or learns it incorrectly and new instructions need to be created to 
nullify what the program has learned.

7.4.8 Learning by Exploration
Learning by exploration is a little different from the other ways of learning. 
It is a restricted form of learning. The purpose of learning to explore is to 
just gather information and not really pursue a goal. All the system tries to 
do is find interesting information it can store and learn from it. But it does 
not explore until it has nothing left to explore. The system will follow a series 
of tasks. It will perform one task, which may add more tasks, and then move 
onto the next task. This causes the database of concepts to continue to grow.

The program will organize the tasks in order of “interestingness.” The 
program will also not always look at each task. Sometimes, it needs to 
determine what would be a waste of time exploring. This causes a problem 
because the program needs some way of determining what task is worth 
exploring, and should it choose not to explore a task, it has to make sure it 
is not missing out on anything by ignoring it.

Sometimes the program will find that the tasks it has left are not inter-
esting enough to explore. If this happens, it will go through all its tasks and 
explore a “suggestions” slot so it can make the tasks more interesting. This 
way, the program will more than likely not run out of tasks to explore.

The program should also be able to generate concepts from what it already 
contains in its database. This way, it can generate more tasks to explore or just 
create new concepts that may have a purpose in the real world.
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7.5 Advantages of Machine Learning

1. Often, machine learning is much more accurate than human-crafted 
rules since it is data-driven.

2. Humans are often incapable of expressing what they know (e.g., the 
rules of English or how to recognize letters), but can easily classify 
examples.

3. Machine learning does not need a human expert or programmer.

4. The programs use automatic methods to search for hypotheses ex-
plaining data.

5. Machine learning is cheap and flexible, and it can be applied to any 
learning task.

7.6 Disadvantages of Machine Learning

1. Machine learning needs a lot of labeled data.

2. Machine learning is error-prone (it is usually impossible to get perfect 
accuracy).





PROLOG
8.1 Preliminaries of Prolog

This chapter deals with the preliminaries of Prolog, an AI programming 
language. Specialized languages exist for the majority of activities in data 
processing. For example, COBOL is for business applications, FORTRAN 
is for scientific computations, and BASIC is for general purpose comput-
ing. In a similar way, LISP and Prolog are the two major languages used for 
majority of the AI problems. We discussed LISP earlier. In this chapter, we 
discuss the preliminaries of Prolog.

Prolog has been successful as an AI programming language for the fol-
lowing reasons:

The syntax and semantics of Prolog are very close to formal logic. 
By this time, it must be clear to you that most AI programs reason 
using logic.

The Prolog language has a built-in inference engine and automatic 
backtracking facility. This helps in the efficient implementations of 
various search strategies.

This language has a high productivity and allows for easy program 
maintenance.

Prolog is based on the universal formalism of “Horn clauses.” 
The positive feature of this is its immunity to implementation 
dependencies, and programs tend to be uniform.

Because of the inherent AND parallelism, Prolog can be 
implemented with ease on parallel machines.

The clauses of Prolog have a procedural and declarative meaning. 
Because of this, understanding the language is easy.

C H A P T E R8



106  Artificial Intelligence Basics

In Prolog, each clause can be executed separately as though it is a 
separate program. Hence, modular programming and testing are 
possible.

Prolog’s free data structure is amenable to complex data structures.

As an interpreter, Prolog is suitable for quick prototyping and 
incremental system development.

Program tracing during development is possible with modest 
debugging efforts in Prolog.

Logic programming is an approach to computer science in which the 
Horn clause form of first order logic is used as a high level programming 
language. Logic programming allows the programmer to describe a situa-
tion with formulae in predicate logic and use a mechanical problem solver 
to make inferences from the formulae.

8.2 Milestones in Prolog Language Development

1965 Robinson develops the resolution procedure.

1973  Colmeraur at Marseilles develops the Prolog Language in FORTRAN

1974 Kowlaski’s work on predicate logic as a programming language

1977  The University of Edinburgh develops the Prolog interpreter on the 
DEC10 machine.

1980 The Imperial College develops micro-Prolog for personal computers.

1981  Japanese Fifth Generation Computer Systems adopts Prolog as its 
main programming language.

8.3 What is a Horn Clause? 

In a Horn clause, one condition is followed by zero or more conditions. It 
is represented as follows:

conclusion: 
condition_1, 
condition_2,
condition_3, ....... 
condition_n.
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The conclusion is true if, and only if, condition_1 is true and condi-
tion_2 is true and condition_3 is true and so on until condition_n is true.

In simple terms, a Horn clause consists of a set of statements joined by 
logical ANDs.

The basis of Prolog is formed by Horn clauses and Robinson’s resolu-
tion rule.

8.4 Robinson’s Resolution Rule

The principle of the resolution is as follows.

Two clauses can be resolved with one another if one of them contains a 
positive literal and the other contains a corresponding negative literal with 
the same predicate symbols and the same number of arguments. Consider 
the following clauses:

 – X (a) V Y (p, q) ...(1)
 – Y (p, q) V T (r, s) ...(2)

These two clauses can be unified to give

 – T (r, s) V – X (a) ...(3)

Now (1) – (3) can be used for future computations.

8.5 Parts of a Prolog Program

A Prolog program consists of a set of clauses. A clause is either a fact or a 
rule. A fact is used to indicate a simple data relationship between the ele-
ments called objects.

For example, “Kumar likes toffees” is represented as

   objects/items

The word “likes” is a relation that links the objects together.

A predicate is the abstract sense of the relation that holds true between 
a certain number of arguments. A predicate is identified by the predicate 
name and its arity (number of arguments). In the example given above, 
“likes” is the predicate name and its arity is 2.
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A predicate can have any number of arguments.

The simplest Prolog program is a set of facts, referred to as a database. 
Here is a database of “likes” facts: 

likes(ram, aircrafts). 

likes(ram, cars).

8.6 Queries to a Database

Once a database has been created, one can make queries to it. A simple 
query consists of a predicate name and its arguments.

For instance, for the “likes” database created, the query 

likes(ram, cars)

would return the value “True.”

For the query 

likes(murali, jeeps)

the system would return the value “False.”

It is also possible that one can have a variable for an argument. If the 
query has a variable, then the system will try to evaluate those predicates 
for which the variable is “True.” Normally, variables will start with an upper-
case letter. For the query 

like(murali, jeeps)

the system would return the value “False.”

It is also possible that one can have a variable for an argument. If the 
query has a variable, then the system will try to evaluate those predicates 
for which the variable is “True.” Normally, variables start with an uppercase 
letter. The query 

likes(ram, What) 

would have the answer

What = aircrafts 

What = cars
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8.7 How Does Prolog Solve a Query? 

Prolog tries to match (this process is called “unification”) the arguments 
of the query with the facts in the database. If the unification succeeds, the 
variable is said to be instantiated. It is also possible that one can have vari-
ables for all the arguments.

The query 

likes(Who, What)

would result in

Who = kumar,
Who = ram, What = aircrafts
Who = mani,
Who = ram, What = cars

The sequence adopted for this is the same as the sequence in the 
database.

8.8 Compound Queries

The queries that were posed to the system were simple ones. It is also pos-
sible to pose compound queries to the system. For this, consider the “likes” 
database again.

The query 

likes(mani, What),likes(kumar, What)

has the meaning “Is there an item which Kumar and Mani like?” In 
Prolog, the comma symbol represents logical ANDs.

The system will respond 

8.9 The _ Variable

This is a special variable, the anonymous variable, that instructs the system to 
ignore the value of an argument. It unifies with anything but does not print.

The query 

likes(ram,_)
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will return the value “True” because the system can match from the 
database the predicate name and the argument. The anonymous variable 
is ignored.

8.10 Recursion in Prolog

If a function during execution calls itself again, then such a function is said 
to be recursive in nature.

To explain a recursion set of instructions, consider the evaluation of N 
answer books.

To evaluate N answer books,

If N = 0, then stop correction.

If N > 0, value one answer book, then evaluate N-1 answer books.

Recursion is a major built-in function in Prolog.

Let’s discuss how recursion in Prolog works.

Consider the program that finds the “ancestor.” The Prolog program for 
this is as follows.

ancestor(A, B) : /* Clause 1 */

 parent(A, B)

ancestor(A, B) : /* Clause 2 */

 parent(C, B),

 ancestor(A, C).

Together, these rules define two ways of how a person can be the ances-
tor of the other.

Clause 1 states A is an ancestor of B, when A is a parent of B.

Clause 2 states A is an ancestor of B, when C is a parent of B and A is 
an ancestor of C.

To verify how this works, consider the following database.

 parent(person_1, person_2). 

 parent(person_1, person_3).

 parent(person_3, person_4).
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The query 

 ancestor(person_1, Whom) 

will have the answers 

 Whom = person_2.

 Whom = person_3.

 Whom = person_4.

Any recursive procedure has to have

a non-recursive clause to indicate when the recursive has to stop

a recursive rule.

In the example given, Clause 1 will serve to stop the recursion.

8.11 Data Structures in Prolog

The list structure is an important data structure in Prolog. This is 
nothing but a collection of ordered sequences of terms. The elements 
of the list are written between the square brackets separated by the 
commas. For example,[apple, orange mango, grapes] is 
a list of fruits. Since a list is an ordered sequence, the list[apple, 
grapes, orange, mango] is not the same as the first list, even 
though they both have only four elements and the members of the list 
are the same.

8.12 Head and Tail of a List

The symbol “|” divides the list into two parts, the head of the list and the tail 
of the list, respectively.

In the fruit list,

[apple|Rest] 

would give the result

Rest = [orange, mango, grapes].

An empty list (a list with no elements) is represented as [ ].
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Example for List Unification

 (a) [H|T] = [1,2,3,4] (b) [H|T] =[a]

  H = 1    H =[a]

  T = [2,3,4].  T = [ ]

 (c) [H1, H2, H3]  |T] = [a, ,b, c, d, e] 

   [H1, H2,  |  T] = [a]

 H1 = a, H2 = b, H3 = c This is false because there is

 T = [d, e]   an element for T.

Some of the operations possible on the list are given below.

8.13 Print all the Members of the List

The members of a list cannot be written using the write statement available 
in Prolog. For this purpose, one has to write a clause that uses to recursion 
for this purpose. This clause is

writelist([ ]).

writelist([H|T] :-

/* If list is empty, stop 
recursion */tv

write([H]),
the list*/

write([T]). /* Recursive call of the clause 
*/

8.14 Print the List in Reverse Order

This is similar to the writelist clause discussed above. The modification is 
done in the ordering of the sub-goals. The clause is as follows.

rev_print([ ]). /* If the list is empty, stop 
recursion */ 

rev_print([H|T]):-

 rev_print(T), 

write(H)
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8.15 Appending a List

In this, all the arguments are lists. The first are appended together and 
returned in the third argument.

append([ ]), List, List)

append([H|List_1], List_2, [H|List_3]): 

 append(List_1, List_2, List_3).

8.16 Find Whether the Given Item is a Member of the List

the list */ 

for X in the rest of the list.  */ 

member(X, [Y|Rest]): 

member(X, Rest).

8.17 Finding the Length of the List

has_length([ ], 0). 

has_length([H|T], N): 

has_length(T, N1), 

N = N1+1.

8.18 Controlling Execution in Prolog

The two major ways of controlling execution in Prolog is through fail and 
cut (represented as “!”) predicates.

Fail Predicate

The fail predicate will make a clause fail during execution. In order to force 
backtracking, this predicate is useful. The purpose of this predicate and its 
importance is discussed using the following Prolog program.

clause 1:

person(Name, Designation), 
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write(Name), 

write(Designate), 

fail. 

person(raman, researcher). 

person(kumar, manager). 

person(ravi, accountant).

person(selvan, partner).

When this program is executed, the system will bind “raman” to “Name” 
and “researcher” to “Designation” and print them. This clause deliberately 
fails using the fail predicate. This forces backtracking and the system instan-
tiates another value to be the variable. Thus, the system will print all the 
names and designations, and it will fail because of the fail predicate.

In order to make the clause succeed, all that has to be done is to make 
the clause true. This is done by adding the clause without any conditions to 
it. This is done in the following program.

clause 1:

person(Name, Designation), 

write(Name), 

write(Designation), 

fail.

clause 1. /* This clause will make clause 1 succeed */

person(raman, researcher). 

person(kumar, manager). 

person(ravi, accountant).

person(selvan, partner).

The point to be noted here is that the variables in the clause lose their 
bindings every time the rule fails. Backtracking forces a new binding.

However, the fail predicate is not sufficient to achieve total control 
over execution. The necessity of some other predicate is explained with 
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the following example. Consider the previous example of person(Name, 
Designation).

Here, we do not want to print the name of the person whose designa-
tion is “accountant.” The program for that is to check the designation and 
if the designation is “accountant,” the program should not print the name. 
The program for that is shown below.

clause 1:-

person(Name, Designation), 

check_designation(Designation), 

write(Name), 

write(Designation), 

fail.

clause 1:/* This clause will make clause 1  suc-
ceed */

check_designation(accountant):fail

check_designation(_). /* This clause will make 
the predicate  check_designation succeed */

person(raman, researcher). 

person(kumar, manager). 

person(ravi, accountant). 

person(selvan, partner).

When the program is executed, and when check_ 
designation(accountant) fails, the system checks check_desig-
nation(_) and succeeds. The anonymous variable binds any value to the 
variable. So “ravi” and “accountant” will also be printed, which are not the 
solution. The solution for this problem is achieved using the cut predicate.

Cut Predicate

The cut predicate is a built-in predicate that instructs the interpreter not 
to backtrack beyond the point at which it occurs. This is primarily used to 
prune the search space.
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To explain the concept of a cut predicate, consider the following pro-
gram with the facts and clause.

state(tamilnadu).

state(kerala). 

state(andhra_pradesh). 

state(uttar_pradesh). 

state(karnataka). 

state(madhya_pradesh).

 reading(Reply), Reply = “yes”,

 !

Consider what will be the output when a person from Uttar Pradesh 
answers. 

Are you from tamilnadu? 
no

Are you from kerala?
no

Are you from andhra_pradesh? 
yes

So, you are from uttar_pradesh.

In fact, the system reads the user’s variable in Reply. If it is “no,” then 
the Reply sub-goal fails and the system backtracks to get a new variable 
for S. When the user from Uttar Pradesh types “yes,” the system allows the 
program to proceed beyond the cut. The cut will see to it that the query 
will end after the first “yes” answer and will not permit it to backtrack. This 
is the reason the system will not ask about Karnataka and Madhya Pradesh.

This is what is called backtracking because the system backtracks when-
ever the reply is “no.” There are two ways to get out of this.

Exhaust all of the state database.
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Allow the system to pass through the cut. The cut will prevent 
backtracking.

The cut predicate must be used with extreme caution. Otherwise, it is 
likely to disrupt the normal execution of the program by pruning needed 
states.

Here is the solution for the person(Name, Designation) 
problem.

clause 1:-

person(Name, Designation), check_designation 
(Designation), 

write(Name), 

write(Designation),

clause 1./* This clause will make clause 1 suc-
ceed*/ check_designation(accountant):-

!, 

fail.

check_designation(_). /* This clause will make 
the predicate

check_designation succeed */ 

person(raman, researcher). 

person(kumar, manager). 

person(ravi, accountant). 

person(selvan, partner).

Here, when check_designation(accountant) fails, Prolog 
backtracks to the next person’s (Name, Designation) and the next 
variable binding is tried. Thus, “ravi” and “accountant” are not printed.

8.19 About Turbo Prolog

One of the most commonly available types of Prolog is Turbo Prolog, devel-
oped by Borland International. This Prolog runs on IBM compatible PCs 
in a DOS environment.
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Turbo Prolog is a compiler. The general form of the program is as 
follows.

trace /* optional */

project “project_ 
name”

/* optional */

include /* optional */

domains

person = symbol 

shift = symbol 

database

/* the domain used */

w o r k s ( p e r s o n , 
shift)

predicates

/* This section declares */ 

/* the predicates that are to be 
stored in the dynamic database 
*/

k n o w n ( p e r s o n , 
person)

goal

/* This section declares the 
domains of each argument */

knows(A, B).

clauses

/* optional. This is needed when 

*/

/*actual program starts here*/

works(magesh, day).

works(senthil, day). 

knows(X,Y):-

X <> Y.
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Turbo Prolog expects that the domain type of each of its arguments in 
the predicates will be defined. For this purpose, the domains available are 
char, integer, real, string, symbol, and file.

Lists are declared in the domains using*. For example, a list of integers 
(int_list) is declared in the domains as follows:

domains

 int_list = integer*

Turbo Prolog’s development environment is user-friendly, with win-
dows for editing, dialogue, messages, and tracing.

The Turbo Prolog debugger is invoked using the “trace” command. 
This option will trace the execution of the complete program. If one wants 
to trace only certain predicates, then the option “shorttrace” is used.





PYTHON
9.1 Languages Used for Building AI 

LISP is one of the most popular languages for creating AI. Its best features 
include garbage collection, uniform syntax, dynamic typing, and an interac-
tive environment. LISP code is written as s-expressions and consists of lists.

Another popular AI programming language is Prolog. The best thing 
about this language is a built-in unifier. Its main disadvantage is that this 
language is difficult to learn.

C/C++ is used for building simple AI programs in a short period of 
time. Java is not as fast as C, but its portability and built-in types make Java 
the choice of many developers. Finally, there is Python. As many develop-
ers have noted, Python is similar to LISP. It is one of the most popular AI 
languages. Why is this so? Why do developers code AI with Python? Let’s 
check it out.

9.2 Why Do People Choose Python?

Python was created at the end of the 1980s. Its implementation started in 
1989. Python’s philosophy is very interesting, as it includes several apho-
risms: it is explicit rather than implicit, simple rather than complex. Python 
creators value its beautiful design and look. They prefer the complex to the 
complicated, and they stated that readability counts. Python has a clean 
grammar and syntax. It is natural and fluent. Python’s developers said 
that the language’s goal is to be “cool” to use. Since it was named after 
Monty Python, a British comedy group, the language’s users have a playful 
approach to writing many tutorials and other materials.

C H A P T E R9
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Developers have said that they enjoy the variety and quality of Python’s 
features. Though it is not the perfect scientific programming language, its 
features are efficient:

data structure

classes

flexible function calling syntax

iterators

nested functions

kitchen-sink-included standard library

great scientific libraries

“cool” open source libraries (Numpy, Cython, IPython, and 
MatPlotLib).

Other features developers like about Python are as follows: the holistic 
language design, thought-out syntax, language interoperability, balance of 
high-level and low-level programming, documentation generation system, 
modular programming, correct data structures, numerous libraries, and 
testing frameworks. One of the disadvantages is the need for programmers 
to be good at MATLAB, as it is common in general scientific coding. That is 
why many developers publish open research code in MATLAB.

Compared to other OOP languages, Python is relatively easy to learn. It 
has a bunch of image intensive libraries, such as VTK, Maya 3D Visualization 
Toolkits, Scientific Python, Numeric Python, and Python Imaging Library. 
These tools are perfect for numeric and scientific applications.

Python is used everywhere and by everyone: in simple terminal com-
mands, in vitally important scientific projects, and in big enterprise apps. This 
language is well designed and fast. It is scalable, open source, and portable.

9.3 Build AI Using Python

The first step is to get started. Though it sounds a bit stressful and hard, you 
should understand that building an AI in Python will take some time. The 
amount of time needed depends on your motivation, skills, and your level 
of programming experience.
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In order to build an AI program with Python, you need to have some basic 
understanding of this language. This is not just a popular general-purpose 
programming language. It is also widely used for machine learning and com-
puting. First of all, install Python. You may do that by installing Anaconda, 
the open source analytics platform. Include the needed packages for machine 
learning: NumPy, scikit-learn, iPython Notebook, and matplotlib.

The next step is to boost your machine learning skills. Of course, it is 
almost impossible to reach the ultimate understanding of machine learning 
in a short period of time (unless you are a genius or a machine like IBM’s 
Watson). That is why it is better to start with gaining basic machine learn-
ing knowledge or improving your understanding with the help of the fol-
lowing courses: Andrew Ng’s Machine Learning course and Tom Mitchell’s 
Machine Learning lectures. You need a basic understanding of machine 
learning’s theoretical aspects.

We have already mentioned Python’s scientific libraries. These Python 
libraries will be useful when you build an AI. For example, you will use 
NumPy as a container of generic data. Since it contains an N-dimensional 
array object, tools for integrating C/C++ code, Fourier transform, random 
number capabilities, and other functions, NumPy is one of the most useful 
packages for scientific computing.

Another important tool is pandas, an open source library that pro-
vides users with easy-to-use data structures and analytic tools for Python. 
Matplotlib is another service you will like. It is a 2D plotting library that 
creates publication-quality figures. Among the best matplotlib advantages 
is the availability of 6 graphical user interface toolkits, web application serv-
ers, and Python scripts. Scikit-learn is an efficient tool for data analysis. It 
is open source and commercially usable. It is the most popular general-
purpose machine learning library.

After you work with scikit-learn, you may take your AI programming 
using Python to the next level and explore k-means clustering. You should 
also read about decision trees, continuous numeric prediction, and logistic 
regression. If you want to learn more about Python in AI, read about the 
deep learning framework Caffe and a Python library Theano.

There are Python AI libraries, such as AIMA, pyDatalog, SimpleAI, 
and EasyAi. There are also Python libraries for machine learning, such as 
PyBrain, MDP, scikit, and PyML. If you are searching for natural language 
and text processing libraries, check out NLTK.
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As you see, the importance of Python for AI is obvious. Any machine 
learning project will benefit from using Python. As AI needs a lot of 
research, programming artificial intelligence using Python is efficient – you 
may validate almost every idea with up to thirty code lines.

9.4 Running Python

We assume that everything is done with an interactive Python shell. You 
can either do this with an IDE, such as IDLE1, that comes with standard 
Python distributions, or just run iPython3 (or perhaps just ipython) from 
a shell.

Here we describe the  simplest version that uses no IDE. If you down-
load the zip file and change the directory to the “aipython” folder where 
the .py files are, you should be able to do the following, with the associated 
user input. 

The first iPython3 command is in the operating system shell (note that 
the -i is important to enter interactive mode).

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 
10:47:25) 

Type “copyright”, “credits,” or “license” for more information.

IPython 5.1.0 — An enhanced Interactive Python.

? –> Introduction and overview of IPython’s features.

%quickref –> Quick reference. 

help –> Python’s own help system. 

object? –> Details about “object”, use ‘object??’ for extra details.

In [1]: import searchProblem

acyclic_delivery_problem) 

Sixteen paths have been expanded and 5 nodes remain in the frontier. 

o103 –> o109 –> o119 –> o123 –> r123
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Twenty-one paths have been expanded and 6 nodes remain in the frontier.

o103 –> b3 –> b4 –> o109 –> o119 –> o123 –> r123

9.5 Pitfalls

It is important to know when side effects occur. Often, AI programs con-
sider what would happen or what may have happened. In many such cases, 
we do not want side effects. When an agent acts in the world, side effects 
are common.

In Python, you need to be careful to understand the side effects. For 
example, the inexpensive function for adding an element to a list, namely 
append, changes the list. In a functional language like LISP, adding a new 
element to a list, without changing the original list, is a cheap operation. For 
example, if x is a list containing n elements, adding an extra element to the 
list in Python (using append) is fast, but it has the side effect of changing 
the list x. To construct a new list that contains the elements of x plus a new 
element, without changing the value of x, entails copying the list, or using a 
different representation for lists. In the search code, we will use a different 
representation for lists for this reason.

9.6 Features of Python

9.6.1 Lists, Tuples, Dictionaries, and Conditionals

Lists

Python has a flexible and powerful list structure.

Lists are mutable sequences – they can be changed in place.

They are denoted with square brackets. l1 = [1, 2, 3, 4] 

You can create nested sub-lists. l2 = [1, 2, [3, 4, [5], 6], 7]

You can use concatenation. l1 + l2 

You can use repetition. l1 * 4 

You can use slices. l1[3:5], l1[:3], l1[5:]  
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append, extend, sort, and reverse are built in.

You can create a list of integers with range.

Tuples

Tuples are like immutable lists.

Nice for dealing with enumerated types

Can be nested and indexed.

 Ø t1 = (1,2,3), t2 = (1,2,(3,4,5)) 

Can use index, slice, and length, just like lists. 

 Ø t1[3], t1[1:2], t1[-2] 

Tuples are mostly useful when you want to have a list of a 
predetermined size/length.

Tuples have constant-time access to elements (fixed memory 
locations).

Tuples are very useful as keys for dictionaries.

Dictionaries

A dictionary is a Python hash table (or associative list)

They are unordered collections of arbitrary objects.

d1 = {} - new hashtable d2 = {’spam’ : 2, ’eggs’, 3}

Can be indexed by key: d2[’spam’] 

 Keys can be any immutable object.

Can have nested hash tables

 Ø d3 = {’spam’ : 1, ’other’ :{’eggs’ :2, ’spam’ : 3}}

 Ø d3[’other’][’spam’]

have _key, keys(), and values() for k in keys()

Typically, you will insert/delete dictionaries with the following:

 Ø d3[’spam’] = ’delicious!’ Ø del d3[’spam’] 
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Conditionals

The general format for an if statement is as follows. 

if<test1> : 

<statement1>

<statement2> 

elseif:<test2> :

<statement3> 

else:

<statement>

Notice the colons after the conditionals.

Compound statements consist of the colon, followed by an 
indented block.

Logical tests return 1 for “True” and 0 for “False.”

“True” and “False” are shorthand

and, or, and not are available for compound tests.

One of the nice features of Python is the use of list comprehensions 
(and also tuple, set, and dictionary comprehensions).

(fe for e in iter if cond) enumerates the values fe for each 
e in iter for which cond is true. The “if cond” part is optional, 
but the “for” and “in” are not optional. Here, e has to be a variable, and 
iter is an iterator, which can generate a stream of data, such as a list, a set, a 
range object, or a file. cond is an expression that evaluates to either True 
or False for each e, and fe is an expression that will be evaluated for each 
value of e for which cond returns True.

Python for Artificial Intelligence

This can go in a list, but it can be called directly using next. The following 
shows a simple example, where user input is prepended with>>>.

>>> [e*e for e in range(20) if e%2==0]

[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]
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>>> a = (e*e for e in range(20) if e%2==0)

>>> next(a)

0

>>> next(a)

4

>>> next(a)

16

>>> list(a)

[36, 64, 100, 144, 196, 256, 324]

>>> next(a)

Traceback (most recent call last):

File “<stdin>”, line 1, in <module>

Notice how list(a) continued on the enumeration, and got to the 
end of it.

Comprehensions can also be used for dictionaries. The following code 
creates an index for list a:

>>> a = [“a”,”f”,”bar”,”b”,”a”,”aaaaa”]

>>> ind = {a[i]:i for i in range(len(a))}

>>> ind

{‘a’: 4, ‘f’: 1, ‘bar’: 2, ‘b’: 3, ‘aaaaa’: 5}

>>> ind[‘b’] 3

which means that b is the 3rd element of the list.

The assignment of ind could have also been written as >>> ind = 
{val:i for (i,val) in enumerate(a)}, where enumerate 
returns an iterator of the (index, value) pairs.

9.6.2 Functions as Rst-Class Objects
Python can create lists and other data structures that contain functions. 
There is an issue that tricks many newcomers to Python. A function uses 
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the last value of a variable when the function is called, not the value of 
the variable when the function was defined (this is called “late binding”). 
This means if you want to use the value a variable has when the function 
is created, you need to save the current value of that variable. Python uses 
“late binding” by default, but the alternative that newcomers often expect 
is “early binding,” where a function uses the value a variable had when the 
function was defined; this approach can be easily implemented.

Features of Python 11

Consider the following programs designed to create a list of 5 functions, 
where the ith function in the list is meant to add i to its argument: 2 
pythonDemo.py |. Some tricky examples are as follows.

11 fun_list1 = []

12 for i in range(5):
13 def fun1(e):
14 return e+i
15fun_list1.append(fun1)

16 17 fun_list2 = [] 18 for i in range(5):
19 def fun2(e,iv=i):
20 return e+iv
21 fun_list2.append(fun2)

22

23 fun_list3 = [lambda e: e+i for i in range(5)]
24

25 fun_list4 = [lambda e,iv=i: e+iv for i in 
range(5)]

26

27 i=56

Try to predict, and then test,  the output of the following calls, remem-
bering that the function uses the latest value of any variable that is not 
bound in the function call.
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pythonDemo.py | (continued)

30## ipython -i pythonDemo.py

31 # Try these (copy text after the comment 
symbol and paste in the Python prompt):

32 # print([f(10) for f in fun_list1])

33 # print([f(10) for f in fun_list2])

34 # print([f(10) for f in fun_list3])

35 # print([f(10) for f in fun_list4])

In the first for-loop, the function fun uses i, whose value is the last 
value it was assigned. In the second loop, the function fun2 uses iv. There 
is a separate iv variable for each function, and its value is the value of i 
when the function was defined. Thus, fun1 uses late binding, and fun2 
uses early binding. fun list3 and fun list4 are equivalent to the first 
two (except fun list4 uses a different i variable).

One of the advantages of using the embedded definitions (as in fun1 
and fun2 above) over the lambda is that is it possible to add a __doc__ 
string, which is the standard for documenting functions in Python, to the 
embedded definitions.

9.6.3 Generators and Coroutines
Python has generators which can be used as a form of coroutines.

The yield command returns a value that is obtained with next. It is 
typically used to enumerate the values for a for loop or in generators.

A version of the built-in range with 2 or 3 arguments (and positive 
steps) can be implemented as follows. 

pythonDemo.py | (continued)

37 def myrange(start, stop, step=1):
38 “”” enumerates the values from start in steps 

of size step that are 39 less than stop.

40 “””



Python  131

41 assert step>0, “only positive steps imple-
mented in myrange”

42 i = start

43 while i<stop:
44 yield i

45 i += step

46

47 print(“myrange(2,30,3):”,list(myrange(2,30,3)))

Note that the built-in range is unconventional in how it handles a sin-
gle argument, as the single argument acts as the second argument of the 
function.

Note also that the built-in range also allows for indexing (e.g., 
range(2, 30, 3)[2] returns 8), which the above implementation 
does not. However, myrange also works for floats, while the built-in range 
does not.

Exercise 1.1. Implement a version of myrange that acts like the 
built-in version when there is a single argument. (Hint: Make the second 
argument have a default value that can be recognized in the function.) 

pythonDemo.py | (continued) 49 def ga(n):
50 “””generates the square of even nonnegative 

integers less than n””” 

51 for e in range(n): 52 if e%2==0:
53 yield e*e

54 a = ga(20)

The sequence of next(a) and list(a) gives exactly the same results 
as the comprehension.

It is straightforward to write a version of the built-in enumerate.

Let’s call it

myenumerate:
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pythonDemo.py | (continued) 

56 def myenumerate(enum):
57 for i in range(len(enum)):

58 yield i,enum[i]

9.7 Useful Libraries

9.7.1 Timing Code
In order to compare algorithms, we often want to compute how long a pro-
gram takes; this is called the runtime of the program. The most straightfor-
ward way to compute runtime is to use time.perf counter().

import time 

start_time = time.perf_counter() 

compute_for_a_while() 

end_time = time.perf_counter() 

print(“Time:”, end_time - start_time, “seconds”)

If this time is very small (say less than 0.2 seconds), it is probably very 
inaccurate, and it may be better to run your code many times to get a more 
accurate time. For this, you can use timeit (https://docs.python.org/3/
library/timeit.html). To use timeit to time the call  foo.bar(aaa) use 
the following: 

import timeit 

time = timeit.timeit(“foo.bar(aaa)”, 

setup=”from __main__ import foo,aaa”, number=100)

The setup is needed so that Python can find the meaning of the names 
in the string that is called. This returns the number of seconds to execute 
foo.bar(aaa)100 times. The variable number should be set so that the 
runtime is at least 0.2 seconds.

You should not trust a single measurement, as that can be confounded 
by interference from other processes. timeit.repeat can be used for 
running timit a few (say 3) times. Usually, the minimum time is the one to 
report, but you should be explicit and explain what you are reporting.
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9.7.2 Plotting: Matplotlib
The standard plotting for Python is performed with matplotlib (http:// 
matplotlib.org/). We will utilize the most basic plotting feature, the pyplot 
interface.

Here is a simple example that has everything we will use.

pythonDemo.py | (continued)

60 import matplotlib.pyplot as plt
61

62 def myplot(min,max,step,fun1,fun2):
63 plt.ion() # make it interactive

64 plt.xlabel(“The x axis”)

65 plt.ylabel(“The y axis”)

66 plt.xscale(‘linear’) # Makes a ‘log’ or ‘lin-
ear’ scale

67 xvalues = range(min,max,step)
68 plt.plot(xvalues,[fun1(x) for x in xvalues],

70 plt.plot(xvalues,[fun2(x) for x in xvalues], 
linestyle=’—’,color=’k’,

71 label=fun2.__doc__) # use the doc string of 
the function

72 plt.legend(loc=”upper right”) # display the 
legend

73

74 def slin(x):
75 “””y=2x+7”””

76 return 2*x+7 77 def sqfun(x):
78 “””y=(x-40)ˆ2/10-20”””

79 return (x-40)**2/10-20
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80

81 # Try the following:

82 # from pythonDemo import myplot, slin, sqfun

83 # import matplotlib.pyplot as plt

84 # myplot(0,100,1,slin,sqfun)

85 # plt.legend(loc=”best”)

86 # import math

87 # plt.plot([41+40*math.cos(th/10) for th in 
range(50)],

88 # [100+100*math.sin(th/10) for th in range(50)])

89 # plt.text(40,100,”ellipse?”)

90 # plt.xscale(‘log’)

At the end of the code are some commented-out commands you should 
try in interactive mode. Cut these commands from the file and paste them into 
Python (and remember to remove the comments symbol and leading space).

9.8 Utilities

9.8.1 Display
In this distribution, to keep things simple and to only use standard Python, 
we use a text-oriented tracing of the code. A graphical depiction of the code 
could override the definition of display (but we leave it as a project).

The method self .display is used to trace the program. Any call 
self .display (level, to print . . . ) where the level is less than or equal 
to the value for the max display level will be printed. The “to print . . .” part 
can be anything that is accepted by the built-in print (including any key-
word arguments). The definition of display is as follows. 

utilities.py | AIFCA utilities

11 class Displayable(object):

12 max_display_level = 1 # can be overridden in 
subclasses
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1.7. Utilities 15 13

14 def display(self,level,*args,**nargs):

15 “””print the arguments if the level is less 
than or equal to the 16 current max_display_level.

17 level is an integer.

18 the other arguments are whatever arguments 
print can take.

19 “””

20 if level <= self.max_display_level:

21 print(*args, **nargs) ##if error you are using 
Python2, not Python3

Note that args gets a tuple of the positional arguments, and nargs 
gets a dictionary of the keyword arguments). This will not work in Python 
2; it will give an error.

Any class that wants to use display can be made a sub-class of 
Displayable.

To change the maximum display level to say 3, for a class do 
Classname.max display level = 3, which will make calls to 
display in that class print when the value of level is less than or equal to 
3. The default display level is 1. It can also be changed for individual objects 
(the object value overrides the class value).

The values of the max display level by convention are as follows:

0 display nothing,

1 display solutions,

2 also display the values as they change, and 

3 also display more details.

9.8.2 Argmax
Python has a built-in max function that takes a generator (or a list or set) 
and returns the maximum value. The argmax method returns the index 
of an element that has the maximum value. If there are multiple elements 
with the maximum value, one of the indexes to that value is returned at 
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random. This assumes a generator of (element, value) pairs, as for example 
is generated by the built-in enumerate.

utilities.py | (continued)

23 import random
24

25 def argmax(gen):
26 “””gen is a generator of (element,value) pairs, 

where value is a real number.

27 argmax returns an element with maximal 
value.

28 If there are multiple elements with the max 
value, one is returned at random.

29 “””

30 maxv = 

-
vals = [] # list of maximal elements 32 for (e,v) 
in gen:

33 if v>maxv: 34 maxvals,maxv = [e], v 35 elif 
v==maxv:

36 maxvals.append(e)

37 return random.choice(maxvals)
38

39 # Try:

40 # argmax(enumerate([1,6,3,77,3,55,23]))

Exercise 1.3. Change argmax to have an optimal argument that spec-
ifies whether you want the “first,” “last,” or a “random” index of the maxi-
mum value returned.

If you want the first or the last, you do not need to keep a list of the 
maximum elements.
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9.8.3 Probability
For many of the simulations, we want to make a variable True with some 
probability.

 returns True with a probability p, and otherwise returns False.

utilities.py | (continued) 

43 “””return true with probability prob”””

44 return random.random() < prob

9.8.4 Dictionary Union
The function dict union(d1, d2) returns the union of dictionaries 
d1 and d2. If the values for the keys conflict, the values in d2 are used. This 
is similar to dict(d1, _ _ d2), but that only works when the keys of 
d2 are strings.

utilities.py | (continued)

def dict_union(d1,d2):
“”” returns a dictionary that contains the keys 

of d1 and d2.

The value for each key that is in d2 is the value from d2 (49), other-
wise, it is the value from d1.

This does not have side effects.

“””

d = dict(d1) # copy d1

d.update(d2)

return d

9.9 Testing Code

It is important to test code early and test it often. We include here a simple 
form of unit tests. The value of the current module is in __name__ and 
Testing Code 17 runs at the top-level. Its value is __main__.
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The following code tests argmax and dict_union, but only when if 
the utilities are loaded in the top level. If they are loaded in a module, the 
test code is not run.

In your code, you should do more substantial testing than we do here 
(in particular, testing the boundary cases).

utilities.py | (continued) 

56 def test():
57 “””Test part of utilities”””

58 assert argmax(enumerate([1,6,55,3,55,23])) in 
[2,4]

59 assert dict_union({1:4, 2:5, 3:4},{5:7, 2:9}) 
== {1:4, 2:9, 3:4, 5:7}

60 print(“Passed unit test in utilities”)
61

62 if __name__ == “__main__”:
63 test()



ARTIFICIAL INTELLIGENCE 
MACHINES AND ROBOTICS1

10.0 Introduction

This chapter introduces the subject of robotics, which is no longer just a 
look into the future, but has been developing for many years, is happening 
now, and will continue to emerge as a part of human life for the unfore-
seeable future. First, we present the philosophical and pragmatic issues of 
the field; then we review the history of man trying to create machines that 
emulate what he does, or recreate himself. There follows a discussion of 
the technical issues that must be addressed when robots are built. Then a 
number of applications of robotics are presented. The chapter concludes 
with a presentation and discussion of the future from the perspective of 
the “Singularity” as proposed by the great AI inventor, Raymond Kurzweil.  

“In the Year 2525 (Exordium et Terminus)” was the title of the number 
one hit song by Zager and Evans in 1969. The song projects what may hap-
pen to mankind in the coming millennia. Its thesis is the premise that man 
will continue to dehumanize himself in the coming years as he succumbs to 
technological advances. 

That is not the subject of this chapter, but it sets the tone for the kinds 
of considerations for the future of mankind that we are required to look into 
when seeking advances in robotics. Here, we will guess, dream, imagine, or 
“look into the crystal ball” to consider how our lives will change. Robots are 
no longer just a futuristic topic as they were in the early history of AI: They 

1  This chapter appeared as Chapter 15 in Artificial Intelligence in the 21st Century, Second 
Edition by S. Lucci and D. Kopec. Revised and reprinted with permission. ©2016 Mercury 
Learning and Information. All rights Reserved.

C H A P T E R10
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are a reality of life and becoming a greater part of everyday life.  Advances 
in robotics are integrally tied to advances in AI. Let us consider now a small, 
future robot scene in a middle-class American home. Let us consider what 
this dialogue entails and what kinds of information, knowledge, and state of 
the art/technological advances this dialogue entails. Every sentence by both 
five-year-old Bobby and MrTomR gives a significant clue to the state of the 
world when this dialogue could take place.  

MrTomR is a robot whose task is similar to that of a butler or nanny who 
must take care of a five-year-old. The parents of Bobby are away at work 
or on a weekend vacation. MrTomR is doing what he can to simulate the 
interactions that might take place. Let us analyze what kinds of intelligence 
MrTomR must have to be able to conduct this dialogue.

First, MrTomR suggests that Bobby should have breakfast at a 
particular time. That is not a difficult programming task.  The only 
thing that is sophisticated about this is the robot’s ability to speak a 
sentence that is understandable. The sentence can be constructed 
from a menu of commands that MrTomR is programmed to speak 
in certain trigger situations. Those triggers are that Bobby is home 
alone being cared for by MrTomR and it is time for breakfast, which 
Bobby has not yet received (Bobby never gets his own breakfast).  

MrTomR tells Bobby to sit down. This indicates that MrTomR 
understands what it means to be standing, that it has some sense 
of locomotion. In order to eat breakfast “civilly,” Bobby should be 
sitting at the breakfast table. Furthermore, MrTomR is able to point 
and understands where Bobby should be sitting. That is already quite 
a bit of advanced intelligence that MrTomR is demonstrating. 

MrTomR announces the breakfast menu. This indicates that 
MrTomR understands the question from Bobby and can articulately 
state the answer to it. Bobby asks MrTomR for toast and coffee. 
MrTomR knows that Bobby is not allowed coffee (although it 
recognizes that toast was one of the items which comprises part of 
the menu). As children will do, Bobby is trying to see how far he can 
go with his caretaker. MrTomR is intelligent enough to be aware of 
the rules. He responds as an intelligent, experienced human butler or 
nanny might.

Every chapter and topic in our text to this point is or could be related to 
the field of robotics. Whether we are delving into search, games, logic, 
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knowledge representation, production and expert systems, or neural net-
works, genetic algorithms, language, planning, there are easy and natural 
connections to robotics. They are not far-fetched or remote. We now con-
sider some of these connections in more detail.

Robotics and Search: From the early days of robotics (in the sense of 
a machine serving man by trying to accomplish a task), search has been 
integral to robotics. For example, the kinds of search problems that 
we addressed in earlier chapters, including, for example, breadth-first 
search and depth-first search, heuristic search, and search in games, 
are all typical problems that roboticists must address when building a 
system. That is, a robot must be programmed to get from point A to 
point B in the most efficient way, or it must get around some obstacles 
to reach a destination or goal, akin to dealing with certain kinds of 
maze problems.  

Robotics, Logic, and Knowledge Representation: It goes without 
saying that robots and logic go hand-in-hand. The kinds of logical 
problems presented earlier are the foundations of robotics, and 
the methods are the building blocks for constructing sound robotic 
systems. Before any AI system is built, consideration must be made 
of how the elements of that system will be represented. Whether an 
agent-based approach will be used, swarm intelligence, trees, graphs, 
networks, or other approaches, these considerations are fundamental 
in robotic systems. 

Production Systems and Expert Systems: Production systems 
as the foundations of expert systems are closely tied to control 
systems, which are the basic foundation of robotic systems. Tasks 
such as directing a robot across a factory floor or getting a robot to 
pick up packages in an Amazon factory show what kind of tasks 
need to be accomplished in order to be able to accomplish a bigger 
task (hierarchy). These are examples of how robots may depend on 
production systems and expert systems. Furthermore, the expertise 
that humans have developed in various spheres (e.g., machinist 
tools, factory assembly lines, blending of colors for paint generation, 
or choosing the right packaging) are natural arenas for production 
systems comprising expert systems.  

Fuzzy Logic: Even in the robotic world, there are outcomes that are 
not only black and white or “yes” and “no,” but “to a certain degree 
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of.” For example, a robot may encounter resistance along its path 
to a goal, and thereby stumble. The robot must persist in its goal of 
accomplishing an objective. In other words, even the robot world is 
not just discrete, but it depends on certain “degrees of freedom” with 
variations on the degrees of attributes, rather than outcomes which 
are just “on” or “off” or “yes” or “no.”

Machine Learning and Neural Networks: As the sophistication of 
these AI methods has improved, opportunities for their use in robotics 
have emerged. The Google Car comes to mind as a premier example.  

Techniques such as Genetic Algorithms, Tabu Search, and 
Swarm Intelligence: These techniques are naturally utilized by 
robotic systems, especially when they must work in groups. For example, 
these techniques are important for the simulation of crowd behavior 
or walking on New York City streets. Robots use these techniques for 
simulating people rushing to their commutes while avoiding other 
people who are approaching them or are otherwise in their paths. 

Natural Language Understanding and Speech Understanding: 
We continually see improvements in how machines (robots) will 
replace humans in ever-more advanced tasks which involve language 
and speech understanding. Hence, progress in these disciplines is 
integral and important to robotics. The issues and factors involved (for 
example, semantics, syntax, accent, and inflection) are enormous.

Planning: This has always been a subfield of AI that is strongly 
associated with robotics. We have discussed planning in robotics, 
which involves how a program should proceed in accomplishing a task 
or set of tasks.

We will now discuss some of the challenges for robotics and why it is 
both a promising and very difficult field. In constructing robots, we are 
addressing the issues that make mankind unique.  The challenges are 
dependent on how ambitious we want to be. That is, do we only wish 
the robot to be mobile? Do we wish the robot to perform tasks akin to 
the original definition of the word from the play by the Czech playwright 
Karel apek entitled R.U.R. (1921) where it was first introduced? In the 
Czech language robota means “labor” or “work,” but in the context of 
the play it meant “slavery” or forced “labor.” Or do we have much greater 
ambitions for robots: that they not only be able to aid man, but emulate 
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him, enhance him, and be recreated/replaced in his image? Hence, we 
have robots performing mundane tasks that not only people have to do 
(e.g., vacuum, as with the IROBOT Roomba), but also performing sur-
gery,  entering dangerous places, carrying heavy loads, and even  driving 
cars safely without humans! In the new millennium, robots are starting to 
perform such difficult tasks better than humans can, that is, more accu-
rately, more quickly, and more efficiently, thereby freeing people from the 
dangers and challenges of such tasks. Robots are taking on more tasks that 
for hundreds of years humans had customarily performed themselves. 
Robots are even being built to simulate recreational tasks, such as playing 
bridge and soccer. 

These advances have been enabled by improvements in locomotion, 
machine vision, machine learning, planning, and problem solving. In the 
future, we will likely entrust robots with an increasing number of deci-
sions of a vital nature to humans.  Some argue that there are limitations to 
what robots will be able to accomplish until we understand ourselves bet-
ter. Marvin Minsky discussed this perspective in his relatively early work 
on robotics. For nearly thirty years he, Doug Lenat, and others have been 
trying to address the problem of common sense knowledge. He addresses 
questions such as How do children really learn?, What turns short-term 
memories into long-term memories?, and How is knowledge organized for 
people? During the past 25 years, it has become evident that robots are 
and will continue to be able to take advantage of tremendous advances in 
natural language processing and speech understanding. As already men-
tioned, such advances, along with the possibility that machines will be 
built with intelligence on a par with or beyond our own, will pose diffi-
cult philosophical and practical questions. One thing is clear: despite the 
recognizable pros and cons of building highly intelligent robotic systems, 
there is no turning back.

10.1 History: Serving, Emulating, Enhancing, and Replacing Man

The history in “Man Makes Man,” by T. A. Heppinger, is much richer and 
longer than one might imagine. We will consider the historical aspects of 
robotics from a number of perspectives, including:

Robot Lore 

Early Mechanical Robots 
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Robots in Film and Literature 

Early Twentieth-Century Robots.

10.1.1 Robot Lore
One of the earliest examples of robot lore is the story of the brilliant 
thirteenth-century English clergyman-scientist-philosopher, Friar Roger 
Bacon, who wanted to build a wall of brass to protect England against invad-
ers. To accomplish this, he proposed a “brass head” to explain how such a 
wall should be built. That head was watched for three weeks, and it was only 
after the friars had watched carefully over the head that it spoke, “Time is.” 
A half hour later, it said “Time was.” Another half hour later, “Time is past.” 
Certainly, it is just a tale, but it may have been the inspiration for the lead-
ing medieval physician Paracelsus to suggest how an entire living being, a 
“homunculus,” could be built:

Let the semen of a man putrefy by itself in a her-
metically sealed glass with the highest putrefaction 
of horse manure for forty days, or until it begins at 
last to live, move and be agitated, which can easily be 
seen.  After this time it will be in some degree like a 
human being…If now after this, it will be every day 
nourished and fed cautiously and prudently with the 
Arcanum of human blood, and kept for forty days in 
the perpetual and equal heat of horse manure, … This 
we call a homunculus and it should afterwards be edu-
cated with the greatest care and zeal, until it grows 
and begins to display intelligence. 

Although this idea was based on “alchemical lore,” the story reminds us of 
the vast advancements science and the medical profession have been made 
through the centuries. 

Another legend of a man-made man is the lore of golem from the six-
teenth century, several decades after Paracelsus. In the Talmud, the word 
“golem” means “incomplete” or “malformed,” such as an embryo or the 
shapeless mass of dust from which Adam was created. It is said that around 
the year 1550, Elijah of Chelm created an artificial man, called a golem, 
with the Name of God corresponding to the four letters YHWH. This 
golem became a monster that threatened the world until the sacred name 
was removed.
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Thirty years, later there was another golem story. This one centered 
around the Rabbi Judah ben Loew, Chief Rabbi of Prague. The Rabbi 
was known as a sober figure who was friends with the famous astronomers 
Tycho Brahe and Johannes Kepler. To protect his people, the Rabbi is said 
to have gone to the River Moldau with two assistants where they fashioned 
from clay a human figure (see Figure 10.1). 

FIGURE 10.1 Clay Golem

The story continues:

One assistant circled the figure seven times from left 
to right. Loew pronounced an incantation, and the 
golem began to shine like fire. The other assistant 
then began his own incantation which circling seven 
times from right to left. The fire went out, hair grew 
on the figure’s head, and nails developed on its fin-
gers. Now it was Loew’s turn to circle seven times, as 
the three of them chanted words from Genesis. When 
Loew implanted the Holy Name upon its forehead, 
the golem opened its eyes and came to life…

Although the golem was unable to speak, it had superhuman power, and thus 
was useful in defending the Jews of Prague against the Gentiles. The golem 
was also Loew’s servant and worked as a janitor within the temple, with an 
allowance for rest on the Sabbath. Only Rabbi Loew was able to control the 
golem, but eventually it ran amok, attacking its creator. The golem’s reign 
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of destruction ended when Rabbi Loew tricked it into kneeling before him 
and plucked the sacred name from its forehead—and magically the golem 
was again reduced to clay. These three legends—the brass head of Bacon, 
the homunculus of Paracelsus, and the golem of Rabbi Loew—share in 
common the notion of a savant (a respected, accomplished man of intelli-
gence) creating something in the form of a man that will have the power of 
a man. The famous story Frankenstein, authored by Mary Shelley in 1817, 
is actually a statement on the dangers of letting technology run amok; it is 
noteworthy that the story, by analogy, is quite consistent with the story of 
the golem some four centuries earlier.  

10.1.2 Early Mechanical Robots
Perhaps the first accepted mechanical representation of man was the 
Strasbourg cock, a cast-iron rooster built in 1574, intended to be a reminder 
of St. Peter’s denial of Jesus (Figure 10.2). At noon daily, it opened its beak, 
stretched out its tongue, flapped its wings, spread out its feathers, raised its 
head, and crowed three times. Used until 1789, it served as an inspiration 
to Hobbes, Descartes, and Boyle as an example of what might someday be 
achievable by machinery. 

FIGURE 10.2 Strasbourg Cock

In the mid-eighteenth century, there followed the inventions of Jacques 
de Vaucanson, who created various artificial humans and animals that were 
quite realistic. One of his most famous inventions was a 1738 mechanical 
duck which amazed in its ability to quack, splash around in water, eat, drink, 
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and excrete (Figure 10.3). Vaucanson also built two androids in human form 
that played musical instruments (Figure 10.3). One played the flute and the 
other the drums. What most impressed people was that the flutist was actu-
ally playing, rather than producing sounds from a hidden place. The flut-
ist’s breath came directly from its mouth by means of a set of bellows. Lip 
movements were controlled by a mechanism. The flute, a standard instru-
ment, made sounds via finger motions over holes—as would be performed 
by a human. Hence, in the early history of robotics, this was a considered a 
landmark, in that the flute was considered an instrument of skill that only a 
small number of people could play well. Here, we had the first mechanical 
device that performed a learned skill better than most people.

FIGURE 10.3 Vaucanson’s Duck, Flutist, and Drummer

FIGURE 10.3(a) Vaucanson’s Duck with Internal Mechanisms
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The next rather well-known example of a man emulating a man was 
somewhat of a hoax that fooled Europeans for many years. The Turk 
was a contraption built by Baron Wolfgang von Kempelen in the Austro-
Hungarian Court in 1769. Purportedly, a midget Polish chess master was 
inside a box with gears and cogs which played chess. It featured “a man-
nequin in the form of a Turk, with turban and handlebar mustache, seated 
behind a wooden cabinet” (Figure 10.4). The Turk wowed audiences 
across Europe for many years in that it played chess well and could not 
be fooled with illegal moves. It was also impressive in the fact that it was 
the first time that people believed that the distinction between man and 
machine had been blurred. Eventually the Turk was safely transported 
to a Philadelphia museum, which, in the mid-twentieth century, unfortu-
nately burned down. 

FIGURE 10.4 Baron von Kempelen’s “The Turk”

Between 1770 and 1773, the father and son pair, Pierre and Henri-Louis 
Jaquet-Drov, developed and demonstrated three amazing human-like 
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figures known as the Scribe, the Draftsman, and the Musician (Figure 10.5). 
All three operated via clockwork using an intricate array of cams. The Scribe 
and the Draftsman were in the shape of young boys, elegantly dressed. The 
Scribe was capable of dipping a quill pen in an inkwell and then writing 
up to forty letters. The Scribe’s hand, controlled by a cam, could move in 
any of three directions to form one letter. Levers on a disk were used for 
control, and the Scribe could then write any desired text. His brother, the 
Draftsman, could produce drawings of Louis XV and similar figures includ-
ing, for example, a battleship. The eyes of these androids demonstrated an 
attentive attitude while at work by moving their eyes accordingly. 

FIGURE 10.5  The Scribe, the Draftsman, and the Musician Developed By Pierre and Henri 
Louis Jaquet-Drov

The Musician, another Jaquet-Droz android, resembled a girl of 16, wearing 
a powdered wig and a dress appropriate for the court of Vienna. She played 
the organ well, with convincing eye and body movements that made her seem 
alive. The end of a performance was accompanied by a bow. The Jaquet-
Droz androids found permanent homes in the Muséed’Art et d’Histoire in 
Neuchatel, Switzerland. The Draftsman, with its design of a battleship, found 
its way into the Franklin Institute in Philadelphia. In each android, one can 
see the innovation and engineering which led to modern industrial robots. 
The differences are in form and the modern use of hydraulics and program-
ming instead of springs, cams, and clockwork mechanisms. 
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There followed the industrial revolution, and one of its artifacts was a 
mechanism devised by James Watt (credited with the development of the 
first practical steam engine circa 1783). In 1788 Watt devised a “flywheel 
governor” featuring two whirling balls that were able to swing outward via 
centrifugal force. It was linked to a steam engine whereby the outward swing 
of the flyballs measured the engine’s speed; furthermore, using another 
linkage, the outward swing controlled a value that maintained its present 
speed. In essence, this comprised the world’s first feedback-control mecha-
nism. In 1868 James Clerk Maxwell (who discovered Maxwell’s equations 
in electromagnetism) published “On Governors,” the first systematic study 
of feedback control. This turned out to be an essential element of robots in 
the twentieth century.

In 1912, the automatic, mechanical, chess-playing machine built of 
gears and cogs by Leonardo Torres y Quevedo could play the elementary 
endgame King and Rook vs. King via an explicit set of rules to deliver check-
mate in a limited number of moves regardless of the starting position. This 
was believed to be the first machine capable of not only handling informa-
tion but being able to make decisions based on this information.  

10.1.3 Robots in Film and Literature
The play R.U.R. (“Rossum’s Universal Robots”) is about robots who have 
been designed and used as general purpose laborers. They are devoid of 
human feelings and emotions, but are used as soldiers in war. In the play, 
it turns out that an associate at R.U.R. discovers how to add pain and emo-
tions to the robots. Hence, the robots rebel against their human masters, 
virtually exterminating them. However, they are unable to maintain the 
level of production of themselves. A final touch is when  two robots fall in 
love, suggesting  the coming of a new Adam and Eve. 

We must bear in mind the time when R.U.R. appeared, which was just 
after the end of World War I. It was also a statement on the dangers of tech-
nology which, with the invention of machine guns, submarines, and poison 
gas, had turned the war into a bloodbath with mass carnage and massacre. 
Another work in the same vein was the 1926 classic movie Metropolis by 
Fritz Lang, a very popular and highly respected German filmmaker. It was 
based on a book written by his wife Thea Harbou. Metropolis focuses on the 
wretched lives of workers who live beneath a city. Its robot is a labor agita-
tor, Maria, who assumes the appearance of a leader whom the workers can 
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trust. It turns out that Maria leads the robots to self-destruction, and they 
burn her at the stake, where she turns to metal.

Regarding contributions to robotics in film, arts, and literature, the 
work of Isaac Asimov must be introduced. In 1942 as a young science fic-
tion writer, he contributed to Galaxy Science Fiction the story “The Caves 
of Steel,” where he first presented the oft-repeated Three Laws of Robots:

1. A robot may not injure a human being, or through inaction allow a 
human being to come to harm.

2. A robot must obey the orders given it by human beings except 
where such orders would conflict with the First Law. 

3. A robot must protect its own existence as long as such protection 
does not conflict with the First or Second Law.

Many decades passed before Asimov’s ideas captivated the world in such 
films as Forbidden Planet (1956) and the Star Wars Trilogy (1977, Star 
Wars; 1980, The Empire Strikes Back; and 1983, The Return of the Jedi). 

10.1.4 Twentieth-Century Robots
In the twentieth century, a number of robotic systems were built. Many 
were successful. In the 1980s, robots started to become commonplace in 
factories and industrial settings. Here, we limit our discussion to robots that 
were particularly instrumental to research and progress in the field. 

10.1.4.1 Biomimetic Systems

In this section, we present two biomimetic systems that were very impor-
tant to the progress in robotics research. One field that has not been dis-
cussed in our text to this point, considered an early forerunner to AI, 
is the field of cybernetics, which is the study and comparison of com-
munication and control processes in biological and artificial systems. The 
person most credited for defining and doing seminal research in this field 
is Norbert Wiener at MIT. This field combined theories and principles 
from neuroscience and biology with those from engineering, with the goal 
of finding common properties and principles in animals and machines. 

Matari  notes that “a key concept of cybernetics focuses on the coupling, 
combining, and interaction between the mechanism or organism and its 
environment.” Such interactions are necessarily complex, as we shall soon 
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see. Her definition of a robot is as follows: “an autonomous system which 
exists in the physical world, can sense its environment, and can act on it 
to achieve some goals.” 2

Given this definition, Prof. Matari  calls William Grey Walter’s Tortoise 
the first robot that was built with the underlying goals of cybernetics. 
Walter (1910–1977) was born in Kansas City but lived and was educated 
in Great Britain. He was a neurophysiologist with a strong interest in how 
the brain works, and he discovered the theta and delta waves that are pro-
duced during sleep. He built machines with animal-like behavior to study 
how the brain works. Walter was convinced that even organisms with very 
simple nervous systems could exhibit complex and unexpected behavior. 
Walter’s robots were distinct from the robots that preceded them in that 
they behaved in unpredictable ways, had reflexes, and in their environ-
ments were able to avoid repetitious behaviors.  The tortoise consisted of 
a hard plastic shell with three wheels (Figure 10.6). Two wheels were for 
forward and backward motion, while the third was for steering.  Its “sense 
organs” were extremely simple, consisting of only a photoelectric cell to 
provide sensitivity to light and surface electric contacts that served as touch 
sensors. A telephone battery provided power, while the shell provided some 
degree of protection against physical damage.

FIGURE 10.6 Grey Walter’s Tortoise, the First Recognized Robot

2  Note that an autonomous robot acts on the basis of its own decisions, and is not controlled 
by a human.
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With these simple components and a few others, Grey Walter’s Machina 
Speculatrix (“machine that thinks”) exhibited the following behaviors:

find the light

head toward the light

back away from bright light

turn and push to avoid obstacles 

recharge its battery.

The turtles were the earliest examples of artificial life or “Alife.” Their vari-
ety of complex, unprogrammed behaviors were early examples of what we 
now call emergent behavior.

Valentino Braitenberg was a German scientist who was inspired by Grey 
Walter’s work. In 1984, he published a book entitled Vehicles, long after 
the idea of cybernetics was developed and was considered a separate disci-
pline of study. The book presents a series of ideas (or thought experiments) 
demonstrating how simple robots (which he called “vehicles”) can produce 
behaviors which appear very human and lifelike. Although Braitenberg’s 
vehicles were never built, they proved inspirational for roboticists.  

2a

2b

FIGURE 10.7  Example of Braitenberg’s Vehicles. Vehicle 2a moves toward a source of light 
while vehicle 2b moves away from a source of light.
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These started with a single motor and light sensor. Gradually, they increased 
in complexity to several motors and sensors, and the exploration of the vari-
ous permutations of sensors between them. The sensors were connected 
to the motors. Therefore, a light sensor could be connected directly to the 
wheels of a vehicle;  as the light became stronger, the robot would move 
faster toward the light. This is called photophilic attraction or “loving light.” 
The connections could be reversed so that the robot would move more 
slowly and hence be photophobic, or exhibit a “fear of light.” 

Furthermore, akin to the concept of neural networks, the connections 
between the sensors and motors, whereby stronger sensor input produced 
stronger output, were called excitatory connections. Conversely, sensory 
inputs that weakened the motor as they got stronger were called inhibi-
tory connections. Again, the inspiration came from biological neurons and 
their excitatory and inhibitory connections. Continuing with this analogy, it 
is fairly evident how variations in these connections between sensors and 
motors can result in a variety of behaviors. Braitenberg’s book describes 
how such simple mechanisms can be used to store information, build a 
memory, and even achieve learning.

10.1.4.2 Recent Systems

Artificial Intelligence research progressed in many arenas during the twen-
tieth century, a point we have described throughout this text. Research 
incorporating what had and was being learned in the various disciplines 
of AI was focused at three institutions: The Massachusetts Institute of 
Technology (MIT), Stanford, and SRI International (then known as the 
Stanford Research Institute).

Shakey, at SRI (1966–1972), was the first general-purpose mobile robot 
able to reason about its own actions. Shakey (Figure 10.8) was designed 
to analyze commands and break them into a series of actions necessary to 
perform. Its basis was research in computer vision and natural language 
processing. Charles Rosen was the project manager; contributors included 
Nils Nilsson, Alfraed Brain, Sven Wahlstrom, Bertram Raphael, and others. 
STRIPS (Stanford Research Institute Problem Solver) is a premier exam-
ple of an automated planning robot system. It was developed by Richard 
Fikes and Nils Nilsson in 1971 at SRI International. MIT has a long his-
tory of research and contributions to the field of AI and robotics, including 
robots in many environments such as space and sea, and those that exhibit 
locomotion. 
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FIGURE 10.8 SRI’s Shakey

There are many more examples than we can give justice to here. Table 1 
presents diverse robot systems that have been built during the past 55 
years or so. Their increasing sophistication, capabilities, and purpose are  
noteworthy. Problems which involve locomotion in open terrain are much 
harder to solve than those in well-defined spaces or environments. 
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Table 1 Summary of Robotics Projects from 1960–2010

 
SYSTEM 
NAME

YEAR CREATOR
INSTITUTION / 

COMPANY
FEATURES FOOTNOTE

1 Stanford 
Cart

1960–
1980

  James 
Adams

Stanford 
University

Able to move 
around obsta-
cles using a 
camera

[9]

2 Freddy
1969–
1971

Donald 
Michie

University of 
Edinburgh

Assembles 
blocks by 
using its 
camera

[10]

3 WABOT-1
1970–
1973

Waseda 
University

Waseda 
University

First full-
scale anthro-
pomorphic 
robot. Able to 
communicate 
with a person 
in Japanese. 
Could 
measure 
distances with 
receptors.

[11]

4 FAMULUS 1973
KUKA 
Robotics

KUKA Robotics

Material 
handling, i.e., 
moving parts 
and materials 
in factories

[1]

5 Silver Arm 1974 David Silver MIT

Small parts 
assembler 
that reacts 
to feedback 
from touch 
and pressure 
sensors.

[2]

6 WABOT-2
1980–
1984

Waseda 
University

Waseda 
University

Able to read 
a musical 
score and play 
the organ, 
and speak to 
people

[11]
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SYSTEM 
NAME

YEAR CREATOR
INSTITUTION / 

COMPANY
FEATURES FOOTNOTE

7 Omnibot
1980s–
2000

Tomy Tomy

Carry light 
objects with 
arms, had a 
tray to carry 
objects 

[12]

8 Direct 
Drive Arm

1981
Takeo 
Kanade 

Carnegie Mellon 
University

Robotic arm 
that could 
move more 
freely and 
smoothly

[3]

9 Modulus 
Robot

1984–
1990s

Massimo 
Giuliana

Sirius

Domestic 
household 
robot, 
household 
applications

[13]

10 Big Dog
1986–
Present

Buehler, 
Martin

Boston 
Dynamics

Quadruped 
walking, pack 
mule

[7]

11 Kismet 1990s 
Cynthia 
Breazeal

MIT

Low-level fea-
ture extrac-
tion system, 
motivation 
system, motor 
system

[30]

12 COG
1993–
Present

Rodney 
Brooks

MIT

Humanoid, 
emulates 
human 
thought

[4]

13

The 
Walking 
Forest 
Machine

1995
PlusTech 
Ltd.

PlusTech Ltd.

Walking 
backwards, 
forwards, 
sideways, and 
diagonally 
in uneven 
terrain

[5]

14 Scout II 1998
Ambulatory 
Robotic 
Laboratory

Ambulatory 
Robotic 
Laboratory 

Quadruped 
walking

[5]
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SYSTEM 
NAME

YEAR CREATOR
INSTITUTION / 

COMPANY
FEATURES FOOTNOTE

15 AIBO 1999 Sony Sony
Quadruped 
walking, pet

[6]

16 Hiro 
1999–
2010

Kawada KK
Kawada 
Industries INC.

Runs real 
time Linux 
QNX

[14]

17 CosmoBot
1999–
Present

Dr. Corinna 
Lathan with 
Jack Vice

AnthroTronix, 
Inc.

Live Play, 
Simon Says, 
playback

[15]

9 ASIMO
2000–
Present

Honda Honda

Humanoid 
upright, 
two-legged 
walking

[5]

20 Anybots
2001–
Present

Trevor 
Blackwell

ANYBOTS
Virtual pres-
ence systems

[16]

21 Inkha
2002–
2006

mat and 
mrplong

King’s College 
London

Camera to 
track Human 
movement, 
speaks peri-
odically about 
facts

[17]

22 Domo
2004–
Present

Jeff Weber 
and Aaron 
Edsinger

MIT
Perception, 
learning, 
manipulation

[18]

23 Seropi
2005–
Present

KITECH KITECH 

Human-
friendly 
working space 
guidance

[19]

24 Wakamaru
2005–
Present

Mitsubishi 
Heavy 
Industries

Mitsubishi 
Heavy 
Industries

Reminder, 
emergency 
call, Linux 
operating 
system and 
connects to 
the internet

[20]
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SYSTEM 
NAME

YEAR CREATOR
INSTITUTION / 

COMPANY
FEATURES FOOTNOTE

25 Enon
2005–
Present

Fujitsu
Fujitsu 
Corporation

Self-guiding, 
limited 
speech rec-
ognition and 
synthesis

[21]

26 MUSA
2005–
Present

Young Bong 
Bang

Seoul National 
University

Fight using 
kendo

[22]

28 BEAR
2005–
Present

Vecna 
Technologies

Vecna 
Technologies

Six feet tall, 
hydraulic 
upper body 
lifts 500 lbs, 
steel torso, 
maximum 
hydraulic 
exertion of 
3000 psi

[23]

29 Issac
2006–
Present

IssacTeam
Politecnico di 
Torino

Offers many 
solutions 
oriented to 
automation 
industry

[24]

30 Willow 
Garage

2006–
Present

Scott Hassan
Willo Garage 
Inc.

ROS (Robot 
Operating 
System) 
developing 
hardware 
and software 
for robotics 
applications

[25]

31 RuBot II
2006–
Present

Pete 
Redmond

Mechatrons.com
Solves Rubik’s 
Cube

[26]

32 KeepOn 2007
Kozima, 
Hideki

Miyagi 
University

Responds to 
emotions and 
dances

[8]
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SYSTEM 
NAME

YEAR CREATOR
INSTITUTION / 

COMPANY
FEATURES FOOTNOTE

33 Topio Dio
2008–
2010

TOSY 
Robotics 
JSC

Automatica

Remote con-
trol via wire-
less, integrate 
3D vision via 
2 cameras, 
3D opera-
tion space, 
processes 
pre-defined 
images, 
detects 
obstacles by 
ultrasonic 
sensor, three-
wheeled base 
with omni-
directional 
and balanced 
motion

[27]

34 Phobot
2008–
Present

Students
University of 
Amsterdam

Exhibits 
behavior 
that mim-
ics fear and 
overcoming 
it by graded 
exposure

[28]

35 Salvius
2008–
Present

Gunther Cox Salvius Robot

Modular 
design, 
constructed 
using recycled 
materials and 
open source

[29]

36 ROBOTY
2010–
Present

Hamdi M. 
Sahloul

Engineering 
University of 
Sana

Robot capa-
ble of playing 
chess

[30]

10.2 Technical Issues

As we alluded to at the beginning of this chapter, the technical issues for 
developing robots are immense, and in one way or another, they depend on 
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how ambitious and sophisticated one’s goals are for a robot’s capabilities. 
In essence, working in robotics is a multifaceted form of problem solving.  

By analogy, let us consider the problems a human faces when entering 
a shopping mall and attempting to find a particular store in that mall. For a 
human, there are fairly straightforward steps and questions to ask in order to 
find the store you are looking for. You might look for the mall directory, ask 
people at information desks, see store managers who might be familiar, or use 
information sources, such as the internet and phone apps. If we have previ-
ously visited the store, we may even have some memory of where this store is 
located in the mall, i.e., which floor, neighboring stores, and special features. 
Now let us consider what the challenges would be for a mobile robot to find 
a particular store in the mall. One solution would be for the robot to simply 
follow locomotion directions, for example, go straight for .2 miles, turn left, 
and go .1 miles. Or, it may be told to take an elevator up a floor. The means 
of communicating directions to the robot could vary in format. The direc-
tions could be sensory, auditory, written, or visual. The differences in how 
diverse robots could handle this problem and related problems is the subject 
of this section. It is important to bear in mind that whatever the solution 
method chosen for a robot to find the goal store in question, every aspect of 
the solution must be considered by the robot’s developers and programmers. 
Its locomotion, its perception of obstacles, landmarks, and goal points, must 
all be considered in detail by human developers. That is why the possibility of 
employing machine learning in robots represents such an important advance 
in the field. If a robot can learn, then almost anything seems possible.

The early history of robotics focused on locomotion and vision (known 
as machine vision). Closely aligned to the discipline were problems of com-
putational geometry and planning. In the past few decades, the possibilities 
for robots have become more of a reality, with domains such as linguistics, 
neural networks, and fuzzy logic being more integral to the research and 
progress in robotics.  

10.2.1 Robot Components
Before we delve into the typical problems facing roboticists, we feel it is 
important to consider the components which comprise a typical robot. 
These include:

1. the physical body or embodiment

2. sensors for perceiving the environment
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3. effectors and actuators to enable action 

4. controller(s) to enable autonomous behavior.

We will consider the requirements for each of these four components one 
by one.

1. Having a physical body means that a robot may conceivably develop 
a sense of self; that is, it can consider such questions as Where am I?, 
What is my state (or condition)?, and Where am I trying to go? This 
also means that it is subject to the same physical laws that we live by, it 
takes up a certain amount of space, and also needs energy to perform 
functions, such as sensing and thinking.3

2. Sensory perception is a requirement for a real robot. It must be able 
to perceive the environment, react to it, and act on it. Usually such 
reactions involve movement, and that is a fundamental task for robots. 
As is common in computer sciencehardware, states of electronic sys-
tems are often represented by 1s and 0s (binary digits). Depending on 
the number of these sensors involved, there are 2N combinations of 
perceptions (sensor states) that a robot can have. The sensors are used 
to represent the internal and external state of a robot. The internal 
world refers to the robot’s own state as it perceives it. The external 
state refers to how the robot perceives the world it is interacting with. 
Representation of internal and external states (or internal models) of 
robots is an important design issue. 

3. Effectors and Actuators: Effectors are the components that enable 
a robot to take action. They use underlying mechanisms, such as mus-
cles and motors, to perform various functions, but mainly use them 
for locomotion and manipulation. Locomotion and manipulation com-
prise two major subfields of robotics. The former is concerned with 
movement (i.e., the legs of robots), while the latter is concerned with 
handling things (i.e., the arms of a robot). 

4. Controllers are the hardware and/or software that enable a robot to 
be autonomous and hence are the devices that control their decisions 
(or their “brains”). If robots are partially or fully controlled by humans, 
then they are not autonomous.

3  It seems worthwhile mentioning that one of the basic elements of life is considered to be 
motion, or the ability to move. So when considering the possibility of machines moving, we 
are anointing them with one of the most basic accepted ingredients of being alive. 
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It is noteworthy that there are a number of important analogies between 
power supplies for robots and people. Humans need food and water to 
provide energy for their bodies, for locomotion, and for brain functioning. 
Robots’ brains are not presently so developed and therefore need power 
(usually provided by batteries) for locomotion and manipulation. Now con-
sider what happens when our power supply goes down (i.e., when we are 
hungry or require rest). We become incapable of making good decisions, 
make mistakes, and may act poorly or strangely. The same thing can happen 
to robots. Hence, their power supply must be isolated, protected, and effi-
cient, and they should degrade gracefully. That is, robots should be able 
to replenish their power autonomously and without totally breaking down.

Effectors are any device on a robot that has an effect on the environ-
ment. In the world of robotics, they may be arms, legs, or wheels, that 
is, any robot component that can be used to have an effect on the envi-
ronment. Actuators are the mechanisms that enable effectors to perform 
their tasks. Actuators may include electric motors, hydraulic or pneumatic 
cylinders, or temperature-sensitive or chemically-sensitive materials. Such 
actuators may be used to activate wheels, arms, grippers, legs, and other 
effectors. Actuators may be passive or active. Although all actuators require 
energy, some may be passive and require direct power to operate, while 
others may be passive and use physical laws of motion to conserve energy. 
The most common actuators are motors, but there may also be hydraulics 
using fluid pressure, pneumatics using air pressure, photoreactive mate-
rial (responding to light), chemically reactive materials, thermally reactive 
materials, or piezoelectric materials (materials, usually crystals, that create 
electric charges when pushed or pressed).

10.2.1.1 Motors and Gears

The invention of the electromagnet by Joseph Henry in 1831 is considered 
by many the greatest invention since man created the wheel. Closely tied to 
this, and of equal significance, is the invention of the electric motor in 1861 
by Etienne Lenoir. The association and significance of motors to power for 
affecting motion is paramount. Equally significant, therefore, is the impor-
tance of motors to robotics. 

Robots will typically use DC motors comprised of electromagnets and 
current to produce magnetic fields which turn the shafts of the motors. Motors 
must be run by a voltage appropriate for the task(s) so as not to wear them 
down. DC motors are preferred, as they provide constant voltage, drawing 
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current at an amount proportional to the work being done. Motors which 
run into high resistance (e.g., a robot runs into a wall that does not move) will 
eventually stall after running out of power. Recall from physics that

V (voltage) = I (current) × R (resistance).

Hence V/I = R or voltage is proportional to the resistance. However, 
work = force x distance. In the case of the robot stuck against a wall, the 
distance becomes very small (or zero) and thus, despite a high power (volt-
age), the work actually performed is very little or none at all. Perhaps an 
easy analogy to demonstrate this idea is a car that is stuck in the snow with 
its motor revved up and its wheels spinning. If this goes on for too long, the 
car too will eventually stall. 

The more current (electrons transferred per unit of time, measured in 
Amperes) that a motor produces, the more torque (rotational force) is pro-
duced by the motor shaft. Hence, the power of a motor is the product of its 
torque and the rotational speed of the shaft.4 Most DC motors operate at 
the speed of 3,000 – 9,000 revolutions per minute (rpm). This means they 
produce high speeds but low torque. However, robots are usually required 
to perform tasks that require little rotational speed and more torque, such 
as turning wheels, transporting loads, and lifting.  

The problem with robot motors’ need for more torque rather than rota-
tional speed is alleviated by understanding and cleverly applying the theory 
of how gears work. As with robotics in general, simple ideas that are well-
understood can be compounded to develop more complex working systems. 
Small gears will turn more quickly, but are less powerful. Larger gears turn 
more slowly but are more powerful. This is the principle of gears on which 
multi-gear / multi-speed bicycles are based. So if a smaller gear drives a 
larger gear, more torque is created in the ratio of the size of the smaller 
gear to the larger gear (in terms of the number of teeth). Such paired gears 
are called ganged gears. Figure 10.9 illustrates this principle with ganged 
gears called a compound gear train. For example, if the input-output ratio 
of one axle is 40 to 8, it would be reduced to 5 to 1. A second pair of meshed 

4  A colleague of the authors was known to have purchased a 1999 Cadillac in 2004. Shortly 
after he purchased it, a check engine error came up on the dashboard. It was identified as a 
problem with the torque converter, which is part of the transmission. The transmission was 
rebuilt, and this problem was allayed for some 100,000 miles before the torque converter 
problem did actually present itself after some 15 miles of continuous driving, when the car 
could not maintain its highway speed. 
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gears could have the input of an 8-tooth gear to drive a 24-tooth gear. This 
converts to a 3-to-1 ratio. Notice that the 8-tooth gear of the second axle 
may be on the same axle as the 40-tooth gear of the first pair. This gives a 
ganged gear ratio of 5 to 1 × 3 to 1, which is 15 to 1. Hence, the first axle 
(with smaller gears) must turn 15 times for the second axle to turn once. 
Therefore, more torque (in the ratio of 15:1) has been created for the sec-
ond axle.

FIGURE 10.9 Ganged Gears

Another concept in robot motors is the servo motor. These kinds of motors 
(or “servos” for short) are motors that can rotate in such a way that their 
shaft reaches a specific position. They are common in toys, and are used 
for adjusting steering in remote control cars or wing positions in remote 
control planes. Servo motors are made from DC motors with the following 
additional components:

1. gear reduction for torque

2. a position sensor for the motor shaft to tell how much the motor is 
turning and in what direction

3. an electronic circuit to control the motor, telling it how much to turn 
and in what direction .

Electronic signals in the form of a series of pulses will tell the motor shaft 
how much to turn, typically within a range of 180 degrees. Pulse-width 
modulation is a method of controlling the amount that the motor’s shaft 
will turn by the length of the pulse; the larger the pulse, the larger the turn 
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angle of the shaft. This is usually measured in units of microseconds and 
therefore quite precise. Between pulses, the shaft is stopped. 

10.2.1.2 Degrees of Freedom

A common notion in the field of robotics is the concept of the degrees of 
motion for an object. These are a means of expressing the various types of 
motion available to a robot. As an example, consider the degrees of free-
dom of motion (called translational degrees of freedom) of a helicopter. 
There are six degrees of freedom (DOF) which are usually used to describe 
the possible motions of a helicopter: the roll, pitch, and yaw (Figure 10.10). 
Roll means rolling from side to side, pitch means angling up or down, and 
yaw means turning left or right. An object like a car (or a helicopter on 
the ground) has only three DOF (the vertical motion is lost), but only two 
are controllable. That is, a car on the ground can only move forward and 
backward (via the wheels) and turn left or right via its steering wheel. If 
a car could move directly left or right (say by turning each of its wheels 
90 degrees), that would add another DOF. Hence, with more complicated 
robot motions, such as arms or legs trying to move in various directions (as 
is possible in human arms with a rotator cuff), the number of DOF is an 
important issue. 

FIGURE 10.10 A Helicopter and Its Degrees of Freedom (Source: http://commons.wikimedia.
org/wiki/Helicopter#mediaviewer/File:Bell_407_(D-HBEN).jpg)

10.2.2 Locomotion
This is probably the oldest problem in robotics. Whether you are trying to 
get a robot to play soccer, land on the moon, or work under the ocean, the 
most fundamental issue is locomotion. How does the robot move? What are 
its capabilities? The typical actuators which come to mind include:
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wheels for rolling 

legs enabling walking, crawling, running, climbing, and jumping

arms for grabbing hold, swinging, and climbing 

wings for flying

flippers for swimming.

As soon as you start considering movement, you must also think about sta-
bility. After all, it typically takes a child at least a year before it can learn 
how to walk. For people and robots, there is also the notion of the center 
of gravity, which is some point above the ground where we are walking and 
able to stay balanced. Too low a center of gravity means that we are dragged 
down to the ground, while one that is too high means instability. Hand-in-
hand with this concept is the notion of a polygon of support. This is the 
platform that must support a robot to enforce stability. Humans have such 
a support platform as well, somewhere up in our torsos, only we are not 
usually aware of it. For a robot, as it attains more legs (that is, three, four, 
or six), this becomes less of an issue. For example, Figure 10.11 depicts 
NASA’s Jet Propulsion Lab Spiderbot.

FIGURE 10.11 The Jet Propulsion Lab’s “Spiderbot,” Circa 2002

NASA’s Spiderbot

Spiderbot was the first in a line of robots called “Spiderbot” for its spi-
der-like appearance. This first MRE was a proof-of-concept to represent a 
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node in a mobile network of sensors for solid surface exploration. The JPL 
describes it further:

Large robots use large actuators to build large struc-
tures. Fine work requires small, precise actuators and 
often small robots that can fit into confined spaces. 
Spiderbots can provide the small chassis and the mobil-
ity to support this second type of work. The Spiderbot 
is designed to develop and demonstrate hexapods that 
can walk on flat surfaces, crawl on meshes, and assem-
ble simple structures. The task’s current mission is to 
demonstrate complex mobility behaviors, including 
maneuvering (i.e., mesh crawling) in a space analog 
environment (i.e., micro-gravity). http://www.robot-
ics.jpl.nasa.gov/tasks/showTask.cfm?FuseAction=Sho
wTask&TaskID=30&tdaID=2585

10.2.3 Path Planning for a Point Robot
A point robot is the simple notion of an autonomous robot as a single point 
operating in some well-defined environment, typically a Cartesian plane. 
Hence, the point (x,y) will be sufficient to describe the robot’s state. 

The fundamental problem is to find a path for the robot at some start-
ing configuration, S = (a,b), to some goal state, T = (c,d). How can such a 
continuous path be found, if it exists? The most basic solution to this prob-
lem is known as the Bug2 Algorithm.  

The algorithm is fairly straightforward. If a direct, straight-line path 
between S and T exists in the free space between S and T, the robot 
should use it. If the path is obstructed, then the robot uses the path until 
it encounters the obstacle (point P). The robot should then circumnavigate 
the obstacle until it can rejoin the line ST moving towards the goal T. If it 
encounters another obstacle, it should once again circumnavigate it until it 
finds another point on the obstacle on the line ST from which it can leave 
the obstacle in the direction of T that is closer to T than the point P at which 
it started circumnavigating the obstacle. If no such point exists, then the 
robot determines that no path exists from S to T.

Although the Bug2 Algorithm is known to be complete and certain to 
find a path to a goal if such a path exists, there is no guarantee that the path 
will be efficient. In order to be aware of the robot’s position at all times 
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and plan appropriately, sensors must continuously refine their map of the 
environment and update their estimation of its position. In the world of 
robotics this is known as SLAM, the simultaneous localization and mapping 
algorithm.

10.2.4 Mobile Robot Kinematics
Kinematics is the most basic study of how mechanical systems behave. In 
mobile robotics, this is a bottom-up technique that necessarily entails the 
worlds of physics, mechanics, software, and control. As such, it quickly gets 
rather complex because it requires software to control hardware at every 
moment.

For this purpose, much knowledge about kinematics was attained from 
the early programming of robot manipulators. The task was primarily to 
control a robot’s arm. Consideration of the dynamics (force and mass) of 
such situations was important when built into the constraints on workspace 
and trajectory. We introduced the concept of locomotion in the previous 
section. Here we consider further factors which are integral to position 
estimation and motion estimation, which are in themselves very chal-
lenging tasks.

Integral to considering the position and motion of a mobile robot is the 
position and angle of every wheel. Each wheel is considered for its contri-
bution to the robot’s motion, and these kinematic constraints are combined 
to express the entire robot’s kinematic constraints. 

The starting point is the robot’s position in a simple X-Y plane. Consider 
its angle  which helps to create a reference point for the robot’s direction 
of motion. That direction is represented with respect to the X-axis by the 
angle of .

Hence the robot’s global reference can be expressed by  

    X

I =  Y
   

This vector, comprised of X, Y, and , defines what is called the “pose” of a 
robot. From this equation, all movements of the robot in the global plane 
{X1,Y1} can be represented with respect to the local reference frame {XR,YR} 
using an orthogonal rotation matrix.
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Thus, instantaneous changes in the robot’s position can be represented by 
matrix manipulations representing changes in the robot’s wheel angles. 
Naturally, modeling of this kind is necessary and gets increasingly compli-
cated. Adding more wheels and notions of velocity and diverse motions, 
possibly in different directions and dimensions, adds further complexity, 
which is beyond our purpose here. An excellent reference source for the 
further investigation of the technical details of kinematics, robot percep-
tion, mobile robot localization, and planning and navigation is the text by 
Siegwart, Nourbakhsh, and Scaramuzza. 

10.3 Applications: Robotics in the Twenty-First Century

This section presents three major robotic systems that were developed in 
the twenty-first century: Big Dog, Asimo, and Cog. Each project represents 
a major effort that has been ongoing for several decades, starting in the 
late twentieth century. Each addresses complex and sophisticated technical 
issues and problems in robotics introduced in the previous section. Big Dog 
is mainly concerned with locomotion and conveyance of heavy loads, par-
ticularly for military purposes. Asimo displays diverse aspects of locomotion 
with a strong emphasis on anthropomorphic elements, that is, understand-
ing how humans move. Cog is more about thinking, which is also consid-
ered to be special to humans, distinguishing us from other living beings.

10.3.1 BigDog
In 1986, Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob 
Playter, leaders of the BigDog Team at MIT, wanted to achieve animal-like 
mobility on rough terrain that people and vehicles have difficulties navigat-
ing. This effort was motivated by the fact that less than half of the earth’s 
land is navigable by wheeled and tracked vehicles. The goal was to develop 
mobile robots that could perform on a par with humans and animals in 
terms of mobility, autonomy, and speed. Typical challenges included terrain 
that is steep, rutted, rocky, wet, muddy, and covered with snow. The team 
developed a series of robots that had up to four legs to perform movements 
of which humans and animals are capable. These multi-legged robots were 
developed to study dynamic control and the challenges of maintaining bal-
ance for robots on diverse terrain. Dynamically balanced legged systems 
were needed, hence BigDog was invented.
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BigDog is a legged robot developed by Boston Dynamics (c. 1996) and 
was funded by DARPA (Defense Advanced Research Projects Agency). It 
is the size of a large dog, about 3 feet long, 2.5 feet tall, and weighs around 
240 lbs. The goal of the BigDog project was to create an unmanned legged 
robot that could travel anywhere a person or an animal could go. This robot 
has built-in systems for power, actuation, sensing, control, and communica-
tion. Ideally, the system would be able to travel anywhere, run for consecu-
tive hours, and carry its fuel and weight without trouble. 

A human being employs an operator control unit (or OCU) connected 
to an IP radio to control BigDog’s actions. A human employs a controller to 
provide steering and speed parameters to guide the robot through diverse 
terrains. The controller can also start and stop the robot as needed. The 
controller can also direct BigDog to walk, jog, or trot. The data is displayed 
and input. Then the robot’s AI system takes over and operates on its own to 
make sure it stays upright or mobile.

BigDog employs AI for the coordination of its basic posture and to pre-
vent falls, enabling it to learn to distribute weight amongst its four legs. 
This allows BigDog to carry heavy loads and to maneuver through diverse 
and rough terrain with little human support. The goal is to develop a sys-
tem with auto-control. The robot has to be smart enough to navigate with 
little or minimal human guidance or intervention. The robot has 50 sen-
sors which feed information to the onboard computer that monitors how 
BigDog is moving and where it is, and provide data from the field. Future 
projects seek further independence from human control, particularly in 
areas where there is limited human access.

There are high-level and low-level control systems which help maintain 
the robot’s balance. The high-level system coordinates how the legs move 
as well as the speed and height of the body during movement, and the low-
level system positions and moves the joints. This control system also helps 
it learn to adjust to maintain balance through slopes and climbs. It also con-
trols ground actions to help maintain support of the robot’s movements and  
keep it from slipping. If it falls, it learns to get back up and stand on all four 
legs, continuing with its movement through the terrain. The system also 
allows BigDog to have a variety of movement behaviors, including standing 
up on all four legs, squatting down, walking normally, or crawling by moving 
one leg forward at a time or in a diagonal action. 
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BigDog’s power supply consists of water cooled by a two-stroke inter-
nal combustion engine, and the engine delivers high-pressure oil into the 
robot’s leg actuators. Each leg has four hydraulic actuators that power 
BigDog’s joints as well as a passive fifth degree of freedom. These actuators 
have sensors for the joint position, with a heat exchanger mounted on the 
body to stop it from overheating the engine. BigDog’s 50 sensors include 
itertial sensors that measure the attitude and acceleration of the body and 
joint sensors for the actuators that help it move. These features enabled 
and facilitated BigDog through its longest movement of 6.2 consecutive 
miles. It can carry up to 154 kilograms on a flat terrain, but normal loads 
are usually 50 kilograms on a normal day. BigDog also has a visual system 
and a LIDAR, which is a pair of cameras, a computer, and visual software 
(Figure 10.12). These components help point out the terrain that BigDog is 
navigating and assist it in finding a clear path forward. The LIDAR system 
is for the sole purpose of ignoring a human operator and enabling the robot 
to use its sensors to follow a human leader out in the field.

FIGURE 10.12 BigDog Carrying Its Weight in Supplies

BigDog has a quadrupedal walking algorithm for sloped and tough ter-
rains. It can walk on sloped pathways of up to 60 degrees but can also take 
into account unexpected or irregular terrain with the assistance of its con-
trol system. BigDog adapts to different changes in two ways: It fixes itself 
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according to the height and elevation of the terrain and footfall placement 
so that it will not go lopsided and fall over on its side, and it also looks at 
shadows for changes to make its own adjustments in posturewhile traveling 
through diverse terrain. BigDog’s control system is coordinated with kine-
matics and ground reaction forces so that it can optiminze the amount it can 
carry. The control system optimizes the load by splitting it equally among 
the robot’s legs.

Future Outlook: There are many plans for the future of BigDog. The 
team wants to make it possible for BigDog to move through rougher and 
steeper terrain and have it be able to carry more and heavier loads. The 
team wants to upgrade its engine and system to make it quieter, as its motors 
and system are extremly noisy. They also want BigDog to be less reliant on 
humans and employ computer vision to allow it to navigate entirely on its 
own. So far, new items include a head, arm, torso, and various other parts 
to increase versatility. These additions have given BigDog the ability to use 
its entire body to throw heavy objects around or lift and move heavy objects 
aside if they become obstructions.

FIGURE 10.13 BigDog Robots Trot Around in the Shadows

10.3.2 Asimo
Next, we present another robotics project that has been ongoing for many 
years: the Honda Asimo robot. Asimo moves in a very human-like way and 
was designed to be particularly helpful to people. 
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FIGURE 10.14 Honda’s ASIMO

Imagine a world where humans and machine live together, aiding and 
supporting each other in all tasks ranging from carrying the everyday grocery 
shopping bags to helping firefighters rescue people trapped in flaming houses 
or fallen structures. This is a world envisioned by the Honda engineers who 
conceived Asimo in Japan in 1986. Asimo is a two-legged humanoid robot 
created in Honda’s research lab after two decades of research and devel-
opment. The objective of creating a humanoid robot that resembles and 
duplicates the complex structure of a human being is so that it is able to aide 
people with various activities for the advancement of scientific development.

Creating a humanoid robot was not an easy task. However, Honda has 
embraced this challenge by envisioning a world where robots and humans 
interact harmoniously. Having a valuable partner with great mobility and 
ability to maneuver who can interact with humans would be a great support 
for people who need an extra set of helping hands without the expense of 
another human.

Asimo’s design concept was to make it into a people-friendly robot that 
is both lightweight and flexible. The Asimo is compact: 120 cm or 4 feet 
tall and weighing approximately 52 kgs or 115 lbs. The engineers chose this 
size to allow Asimo to operate freely and efficiently in a human living space. 
Based on their research, this height allows Asimo to “operate light switches 
and door knobs, and work at tables and work benches.”

After collecting various data about human mobility and locomotion, 
including walking and other forms of human movement, Honda developed 
Asimo to walk in a very similar way to how humans walk. The two-legged 
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walking concept includes the operation and movement on different sur-
faces. Asimo can perform everyday tasks, such as walking from one point 
to another while avoiding obstacles, climbing or descending stairs, pushing 
a cart, passing through doorways, and carrying things while walking. These 
advanced physical capabilities are achieved by a number of sensors placed 
to determine the leg’s joint angle and speed to mimic humans’ center of 
gravity. These sensors collect data and interpret it into information to be 
processed for the next movement. 

Asimo’s second most prominent feature is its ability to interact with 
humans. Asimo must be able to approach and communicate with them. It 
achieves this by processing information that it captures through replicating 
humans’ five senses. Asimo captures video input through the two cameras 
mounted in its head, which allow it to recognize moving objects and facial 
features on humans for limited facial recognition. It also creates a map of 
the surrounding environment with the visual information that helps for the 
purpose of collision prevention and object positioning.

Asimo is able to distinguish and interpret sounds and voice commands 
that are captured by the microphones installed in its head. Asimo processes 
audio input, enabling it to “recognize when its name is called, and then 
turn to the source of a sound,” as well as react to “unusual sounds, such as 
those of an object falling or a collision, and face in that direction.” Audio 
processing enables Asimo to engage in conversations with humans through 
its abilities in speech and natural language understanding. It is possible for 
Asimo to carry out orders and respond to them with specific feedback; the 
robot has internet connectivity, which enables it to access information via 
the internet to provide answers, such as news and weather conditions.

Future Outlook: Asimo’s prospects for meeting its original goal—to be 
a helper to people in need—seem to be very bright. With all the capabilities 
that Asimo has, it would be able to not only support the sick and elderly, but 
also provide help for situations where it would be dangerous for humans to 
function, such as cleaning a toxic spill or putting out a blazing fire without 
risking lives. Furthermore, Asimo can provide a sense of companionship to 
people. Although it is not currently available for sale or lease in the United 
States, Asimo is featured in Japanese science museums and is “being used 
by a few high-tech companies to welcome guests to their facilities.”

Although Asimo is a robot, it has traveled to many countries and land-
marks around the world, ranging from the Brooklyn Bridge all the way to 
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Europe and Switzerland. It was also featured as a guest in Disney Land, and 
played soccer with President Barack Obama. Its popularity is increasing as 
it keeps encouraging and inspiring young people around the world to study 
the sciences via robotics and AI.

Jaemi the Humanoid Robot

FIGURE 10.15 Jaemi the Humanoid Robot

Children play “Simon Says” with Jaemi, a humanoid robot (HUBO), 
during its visit to the Please Touch Museum in Philadelphia, PA. 
Jaemi was created by a team from Drexel University working in col-
laboration with Korean researchers. The project was supported by the 
National Science Foundation Partnership for International Research 
and Education (PIRE) program.

This image accompanied the NSF press release “U.S. and Korean 
Researchers Unveil Newest Research Team Member: Jaemi the 
Humanoid.”
Credit: Lisa-Joy Zgorski, National Science Foundation.

Next, we present another long-term project that attempts to fulfill some 
of the early original aspirations for robotics discussed in previous sections, 
that is, to be able to mimic how people learn to interact as children and to 
develop cognitive skills. 

10.3.3 Cog
In 1993, a team at MIT headed by Rodney Brooks started to construct a 
robot named Cog, which is short for “cognition.” Cog was built based on the 
theory that “humanoid intelligence requires humanoid interactions with 
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the world,” which would have necessitated the construction of a robot that 
would think and experience the world in the same way that a human would. 
Cog is made of actuators and motors that work similarly to humans’ bones, 
joints, and movements. The MIT team built a robot that has a human-like 
intelligence, mimicking the human body and its behaviors. Nonetheless, 
there are some important aspects of the human body that cannot be mim-
icked by a robot. The team also wanted to be able to use this robot to inter-
act with others as humans would. For the “training,” Cog would interact 
with humans. What better way is there to learn human behaviors than to 
interact with them?

Cog was designed to simulate the same environments and physical con-
straints that adult humans encounter. Although it does not have legs, it does 
have a pair of symmetrical arms, a body, and a head. The lower part of its 
body, beyond the waist, is just a stand. Cog “sees” with two pairs of cameras 
mounted on its head with two DOF, and two microphones enable it to hear. 
Each eye also has its own pair of cameras for wide view and far range. The 
motor system has sensors indicating where the joints are and gives informa-
tion on their current status, as well as if there are any issues or problems 
with them. Cog’s arm also provides feedback by having an electric motor 
there to operate the arm and provide torque feedback information. The 
robot has a total of 22 DOF. It has six degrees in its arms, four degrees 
for its neck, three in its eyes, two degrees in its waist, and one in its torso 
enabling twisting motions.

Cog has a diverse network with many different processors operating 
at different control levels. Devices range from small microcontrollers for 
joint-level control to digital signal processors. The brain controls have been 
revised many times to help improve the way Cog acts like a human. The first 
network contained 16 megahertz Motorola 68332 microcontrollers with cus-
tom boards connected through dual port RAM. The current version of Cog 
consists of a network of 200 megahertz industrial personal computers run-
ning the QNX real-time operating system connected to a 100 VG Ethernet. 
This network currently has 4 nodes, but more can be added if desired.

The robot has a pair of electret condenser microphones mounted on 
its head close to where human ears would be. The microphone is similar 
in functionality to what a hearing aid is to a human. Cog includes a stereo 
system that amplifies the audio system and connects to a C40 DSP system. 
The team wanted to use these hearing systems to allow the robot to be 
aware of sounds that it hears in the same environment that humans do. 
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They also wanted to do the same with the robot’s vision. Each of the robot’s 
eyes rotates in a vertical and horizontal axis. In order to get a better reso-
lution and view of the environment, Cog takes the visual information and 
processes the image in its network for a better image.

FIGURE 10.16 Image of Cog at the MIT Museum

Humans have a vestibular system which they use for movement and a sense 
of balance. Without it, people would fall over or would stay stationary. The 
brain takes  information from this system and helps human beings coordi-
nate everyday activities, such as walking and keeping themselves upright. 
The human system has three sensory organs with a semicircular passage. 
The team at MIT wanted to copy this idea for Cog. Cog includes three 



Artificial Intelligence Machines and Robotics  179

rate gyroscopes placed on an orthogonal axis and two linear accelerometers. 
They put these devices below the eye so it can imitate sensory informa-
tion for balance. The robot amplifies, processes, and converts these sensory 
devices for its computer “brain.”

The team at MIT has created a pointing action that allows Cog to 
extend its arm and point at whatever is there. This action was tested many 
times, even without having the team observe its performance. During these 
actions, Cog’s neck was still and it pointed at a target. In the initial stages 
of experimentation, Cog would perform these actions rather primitively, 
akin to a human infant or someone who is inexperienced at a certain task. 
However, in the process of “maturing,” Cog seemed to learn and become 
more accurate in locating the target. In some sense, Cog became more 
human-like through its ability to mimic human actions; it learned and then 
began to practice achieving perfection in performing actions.

Future Outlook: Cog’s developers seek to continually make improve-
ments that will enable it to behave more like humans (for better or worse!), 
including the manipulation of its facial features. Cog currently does not have 
a face, but in the future, MIT roboticists will try to give Cog organic features 
akin to humans. Researchers also tried to replicate the behavior and thought 
processes of humans. Objectives included getting Cog to learn the relation-
ship between motor commands and sensory inputs so it can observe and 
learn through its own actions. The team at MIT will try to get the neck and 
body to fully rotate as much as possible to simulate the way a human body 
rotates. The robot’s front torso feedback was tested by using resistive force 
sensors. One experiment involved applying considerable force to a surface 
sensor, enabling the simulation of the robot’s perception of forces.

The MIT team’s plans for Cog include a greater number of sensors, 
motors, cameras, and joints so that it will have more DOF. This would allow 
Cog to become  more human-like. Cog has learned to adapt to the way humans 
do things, but there are still some actions that it needs to learn and adapt to. A 
big challenge for Cog is to be able to adapt to new environments as a human 
infant might. Nonetheless, Cog has a long way to go before it becomes a full 
human simulation with thoughts, human-like movements, and interactions.

One of the main questions perplexing scientists and philosophers is how 
to determine whether a machine, robot, or an artificial creation possesses 
any sort of intelligence or conscience at the level of human intelligence. 
However, in order to compare the level of intelligence of different agents 
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we have to define what intelligence, or an intelligent being, means. Humans 
are intelligent beings because they are capable of thinking, rationalizing, 
learning, and conceptualizing information in their brains. Can robots 
with algorithms that possess sufficient case scenarios be able to exhibit 
some form of intelligence? Certainly, that is a very plausible scenario, since  
nowadays robots can look, sound, and act like a person. They are capable 
of learning and storing information in their memory and processing it into 
logical cases. They are able to analyze a given sentence based on its seman-
tics and syntax and come up with a credible and logical answer—but does 
that qualify these machines as intelligent? Is being able to effectively and 
continuously respond correctly the equivalent of understanding?

It was claimed that a chatbot program called Eugene Goostman  fooled 
judges into believing that the program was actually a thirteen-year-old 
Ukranian boy, thus passing the Turing Test. The chatbot program fooled 
the judges by avoiding questions that it did not have a concrete answer to, 
much like how a thirteen-year-old boy would act.  Therefore, it is disputed 
amongst various scientists that the Turing Test only works with low-level 
intelligent (low AI) machines and can in those cases distinguish between 
machine and humans. However, in the case of the new highly  intelligent 
(AI) machines developed today, the Turing Test fails to separate the two. In 
addition, a number of new “Turing Tests” have been proposed. 

10.3.4 The Lovelace Project
The Lovelace Test: In order to design a test capable of distinguish-
ing strong AI, the Lovelace Test was proposed by Bringjord, Bello, and 
Ferrucci to set a new bar for determining intelligent beings. It requires 
the machine to create something original, something that even the creator 
cannot explain how it was created, such as a poem, story, music, or paint-
ing—or any creative act that requires the cognitive capabilities of humans. 
These creative acts would then be evaluated by a human being in order to 
determine whether the creation passes a set of criteria.

Lovelace vs. Lovelace 2.0: Mark O. Riedl enhanced the Lovelace Test 
by proposing the Lovelace Test 2.0, stating that “the artificial agent passes 
if it develops a creative artifact from a subset of artistic genres deemed to 
require human-level intelligence, and the artifact meets certain creative 
constraints given by a human evaluator.” The Lovelace Test 2.0 evaluates 
the creativity instead of only the intelligence of a machine. 
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The Lovelace 2.0 Test is as follows: artificial agent  
passes the Lovelace Test if and only if:

 creates an artifact o of type t,

o conforms to a set of constraints C where ci  C is any 
criterion expressible in natural language,

a human evaluator h, having chosen t and C, is satisfied 
that o is a valid instance of t and meets C, and

a human referee r determines the combination of t 
and C to not be impossible.

FIGURE 10.17  Robot at the Royal Australian Mint, and a Canberra Watercolor Painting 
(www.kopecart.com)
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Riedl believed that a “computational system can originate a creative arti-
fact,” for example, when creating a fictional story, a machine requires com-
mon knowledge, planning, reason, language processing, familiarity with the 
subject, and a cultural artifact. However, no story generation system can 
pass the Lovelace 2.0 Test because most story generation systems require 
a priori (knowledge, or an argument independent of experience) domain 
descriptions.

Thus, although robots and machines have greatly advanced in the field 
of AI, there is a fundamental difference between humans, who possess cre-
ativity, and machines, which still follow a set program or rationalized path.

10.4 Summary

Robotics was once a rather distinct field which was closely related to AI via 
computational geometry and vision. Today, we can see many aspects of AI in 
robotics, especially as embedded systems. This includes search algorithms, 
logic, expert systems, fuzzy logic, machine learning, neural networks, 
genetic algorithms, planning, and games. Robots do not navigate stating, 
“I have AI,” but it is clear that robotics as a field would not be where it is 
without employing AI. We discussed examples of how and where robotics is 
and how it will be used.  Let us not forget the effect that advances in natural 
language and speech understanding have had on improving robotics.  

The history of robotics and man is much richer than one might imagine. 
It starts with notions of robot lore, and the early mechanical systems such 
Vaucanson’s duck and von Kempelen’s Turk from the eighteenth century. 
Robots in film and literature are well-known via Mary Shelley’s Frankenstein 
(1817), Karel apek’s R.U.R. (1921), and Fritz Lang’s Metropolis (1926), all 
of which pose a rather grim picture of the future impact of technology on 
man’s life. In the first half of the twentieth century, science fiction hero Isaac 
Asimov already had the vision to develop the Three Laws of Robotics. More 
recent systems and their capabilities were presented. Technical details were 
presented, as well as some of the standard and more challenging issues. We 
discussed the various applications of robotics, focusing on BigDog, Asimo, 
and Cog, as well as new tests for AI via the Lovelace Project. (The Application 
Boxes on BigDog and Cog were contributed by Peter Tan. Application Boxes 
on Asimo and Lovelace were contributed by Mimi Lin Gao.)
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REVIEW QUESTIONS

Chapter 1

Q1.  Explain the term AI. Differentiate between machine and human 
intelligence.

Q2. Define AI and briefly explain the history of AI.

Q3. Explain the various areas where the concept of AI is used.

Q4. Describe the components of AI.

Q5. What are the advantages of AI?

Q6.  What is the Turing Test? How is it helpful in concluding that the 
machine can think?

Chapter 2

Q1.  What is a problem in AI? How can you solve it with different represen-
tation approaches?

Q2.  What are the characteristics of a problem in AI? How can we represent 
a problem in AI?

Q3.  What is state space representation? Explain it using an example.

Q4.  How is state space representation helpful in representing problems? 
Explain the Water Jug problem.

Q5.  What is “conflict resolution”? How can we address it?

Q6.  What do you understand about production systems? Explain different 
types of production systems.

APPENDIX
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Q7. What are the advantages and disadvantages of production systems?

Q8.  Can a problem be reduced using a graphical method? Show this using 
an example.

Q9. Write short notes on the following:

1. Conflict Resolution

2. 8-Puzzle Game

3. Water Jug Problem

Chapter 3

Q1.  What is meant by search and control strategies? How are these useful 
in AI?

Q2. Explain the different steps involved in search techniques.

Q3.  What is meant by search strategies? Explain data-driven search 
techniques.

Q4. Explain goal-driven search techniques.

Q5. Compare and explain the forward search and backward search.

Q6.  Discuss search techniques by explaining any one of your own choice 
(such as the uniformed searching technique).

Q7. Write an algorithm for the depth-first or breadth-first search technique.

Q8.  Explain the different factors affecting search techniques. Compare the 
depth-first and breadth-first searches.

Q9. What are heuristics? Explain a heuristic search technique.

Q10.  Write an algorithm using the hill-climbing method and explain it using 
an example.

Q11. Explain the different problems of the hill-climbing method.

Q12. What is the best first search? Explain it using an example.

Q13. Explain the A  algorithm.

Q14. What is a beam search? Explain it using an example.

Q15. Write about constraint satisfaction.
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Chapter 4

Q1.  What is game playing in AI? Explain the components of a game playing 
program.

Q2. Describe the basic methods used for game playing programs.

Q3. Explain one of the procedures given below:

1. Minimax

2. Alpha-Beta

Q4. Which problems occur in computer game playing programs?

Chapter 5

Q1. Define knowledge and discuss the types of knowledge.

Q2.  What are the differences between a knowledge-based system and data-
base system?

Q3.  What are the desirable characteristics of knowledge representation 
schemes? Discuss their advantages and disadvantages.

Q4. What is knowledge representation? Explain various techniques. 

Q5.  How are semantic networks helpful in representations of knowledge? 
In what way are they better than others? 

Q6. Explain the concept of conceptual dependency.

Q7. Explain how knowledge is represented with the help of frames.

Q8. What is a script? Explain using an example.

Chapter 6

Q1.  Define an expert system. Explain the different characteristics of expert 
systems.

Q2. What is the rule-based system architecture? Explain.

Q3. Describe the different components of an expert system.

Q4. What is a knowledge base? How does an interface engine work?
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Q5.  What is non-production system architecture? Explain one of these 
types of architecture. How is it better than the others? 

Q6. Explain the different stages of the development of an expert system.

Q7. What is knowledge acquisition?

Q8. Explain the advantages and limitations of an expert system.

Q9. Explain MYCIN and EMYCIN.

Chapter 7

Q1. What is learning? Explain the different sources of learning.

Q2. Describe the components of a machine learning system.

Q3.  What are the advantages and disadvantages of machine learning 
systems?

Q4. Explain the different types of learning.

Q5. What is learning as induction? Explain.

Q6. What is failure-driven learning? How does it work? Explain.

Q7. What is learning by being told or given advice? Explain.

Q8. What is learning by exploration? Explain.

Chapter 8

Q1. What is Prolog? What are the different reasons for using Prolog?

Q2. What is a Horn clause? How is it used in Prolog?

Q3. How can variables be declared in Prolog?

Q4. How is a query solved in Prolog?

Q5. What is recursion? Explain using an example.

Q6. What is a control predicate? Explain.

Q7. Explain 5 predicates used in Prolog.

Q8. Write down the different steps for creating a program.
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Chapter 9

Q1.  Which languages are used for building AI? Why do developers code AI 
programs with Python?

Q2. Describe the features of Python.

Q3. How could we know the side effects occurring in an AI program?

Q4. Name the most well-known libraries and modules in Python.

Q5. What are the supported data types in Python?

Q6. What are the differences between list and tuples?

Q7. What is a dictionary in Python?

Q8. Explain four major utilities used in Python.

Chapter 10

Q1.  Discuss five areas of AI presented in previous chapters and their rela-
tionship to robotics.

Q2.  In the Story Box of MrTomR and Bobby, explain how today’s robots 
may or may not be able to perform the functions of MrTomR. 

Q3.  Describe some of the early myths about robotics that were presented in 
the chapter, including The Brass Head, the Homunculus, and the golem.

Q4.  Describe the inventions of the father-son team Pierre and Henri-Louis 
Jaquet-Drov. When did they occur? 

Q5.  Name and describe two chess-related automata that were built in prior 
centuries. 

Q6.  Describe the literary works of Karel apek, Mary Shelley, and Isaac 
Asimov and how they projected concerns and developments in robotics.

Q7.  Consider Asimov’s Three Laws of Robotics—are they still valid? 

Q8.  Describe the purpose of the field of cybernetics.

Q9.  Discuss the purpose and capabilities of the Tortoise by Grey Walters. 
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Q10.  Describe the purposes and capabilities of the three significant mod-
ern-day robot projects presented in Section 15.3—Big Dog, Asimo, 
and Cog.

Q11.  What is the Lovelace Project about? Do you believe it is sound and 
appropriate?
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critics, 10
cut-off depth, 28
cut predicate, 115–117
cybernetics, 151–153

D

DARPA (Defense Advanced Research 
Projects Agency), 171

database, 77–78
data-driven inference, 26
DC motors, robots, 163–164
decision-tree architecture, 80–82
declarative frame, 60–61
declarative knowledge, 55–56
decomposable production system, 21
degrees of freedom (DOF), 166
DENDRAL, 9
deployment, 86
depth-first search (DFS)

advantages, 28
algorithm for, 27
disadvantages, 28
performance of, 28

depth of problem, 25
destination slot, 61
DFS, see depth-first search (DFS)
dictionaries, Python, 126
Direct Drive Arm, 157
direct instruction, 97–98
DOF, see degrees of freedom (DOF)
domain, 71

specific knowledge, 54

Domo, 158
Draftsman, 148–149

E

early binding, 129
EasyAi, 123
effectors and actuators, robot, 162–163
8-puzzle, 15–16
Elijah of Chelm, 144
The Empire Strikes Back (1980) (film), 

151
Enon, 159
Eugene Goostman, 180
excitatory connections, robot, 154
EXPEL, 64
experimental intelligence, 4
expert systems, 9

advantages, 89–90
architectures

non-production system architecture, 
78–84

rule-based system architecture 
(production systems), 73–78

characteristics, 72
definition, 71–72
DENDRAL, 91
EMYCIN, 93
knowledge acquisition, 87

strategies, 88–89
knowledge engineering process, 

86–87
life cycle, 84–86

conceptualization stage, 85
formalization stage, 85–86
identification stage, 84–85
implementation stage, 86
testing stage, 86

limitations, 90–91
MYCIN, 91–93
PROSPECTOR, 93

explanation
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facility, 76–77
mechanism, inference engine, 75

external interface, 77

F

factual knowledge, 74
fail predicate, 113–115
failure-driven learning, 99–101
FAMULUS, 156
feedback element, 96
fitness number, 35
Forbidden Planet (1956) (film), 151
formalization stage, expert systems, 

85–86
FORTRAN, 105
forward-chaining systems, 75
forward search, 26
frames, 59–62

advantages, 62
architecture, 79–80
declarative frame, 60–61
definition, 59
procedural frame, 61
types, 59

Frankenstein, 146, 182
Freddy, 156
fuzzy logic, 141–142

G

Galaxy Science Fiction, 151
game playing, 7–8

in AI, 43
computer game playing programs, 

problems in
horizon effect, 51
optimal move question, 51

game tree, 44
program, components

plausible move generator, 44–45

static evaluation function generator, 
45

strategies
minimax strategy, 46–48
minimax strategy with the alpha-

beta cut off, 48–50
game tree, 44
ganged gears, 164–165
generators and coroutines, Python, 

130–132
genetic algorithms, 142
goal identification, 85
GRASP, 64

H

HAS-PART links, 78
Henry, Joseph, 163
Heppinger, T. A., 143
heuristic function, 31
heuristic knowledge, 74
heuristic search techniques, 31

A* Algorithm, 35–36
AO* Algorithm (problem reduction), 

36–37
beam search, 38–39
best-first search, 34–35
constraint satisfaction, 39–41
hill climbing, 32–34

hill climbing
algorithm for, 32
drawbacks, 33–34

local maximum, 33
plateau, 33
ridge, 33

problems associated with, 33
Hiro, 158
Honda Asimo robot, 173–176
horizon effect, 51
Horn clause, 106–107
humanoid intelligence, 176–177
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idealized system, 97
IF-THEN rules, 74, 92
implementation stage, expert systems, 

86
induction, 98
inference engine, 75–76
informed search, 31–41

heuristic function, 31
heuristic search techniques, 31

A* Algorithm, 35–36
AO* Algorithm (problem 

reduction), 36–37
beam search, 38–39
best-first search, 34–35
constraint satisfaction, 39–41
hill climbing, 32–34

problems, 31
INGEST, 64
inheritance, 78
inhibitory connections, 154
Inkha, 158
intelligence, 53

definition, 3
knowledge, 56
types, 3–4

inter-section search, 59
iPython Notebook, 123
IS-A link, 78
Issac, 159

J

Jacques de Vaucanson, 146–147
Jaemi, a humanoid robot (HUBO), 

176
Jaquet-Drov, Henri-Louis, 148–149
Jaquet-Drov, Pierre, 148–149
Jaquet-Droz android, 149
Jet Propulsion Lab Spiderbot, 167
Judah ben Loew, 145

K

KeepOn, 159
Kempelen, Wolfgang von, 148
Kepler, Johannes, 145
kinematics, 169–170
Kismet, 157
knowledge

base, 74–75
commonsense knowledge, 54
declarative knowledge, 55–56
definition, 53
domain specific knowledge, 54
engineering process, 86–87
importance, 56
knowledge-based systems, 56

and database systems, 56–57
procedural knowledge, 54–55
representation, 74–75

associative networks, semantic 
networks of, 58–59

conceptual dependency, 
62–66

frames, 59–62
script, 66–69

source, 83
types, 54

knowledge acquisition, 86–87
difficulties in, 87–88
facility, 77
process, 87
strategies

interview analysis, 89
introspection, 89
observations, 88
protocol analysis, 88
teach back, 89

knowledge-based management system 
(KBMS), 53

knowledge-based systems, 56
and database systems, 

56–57
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L

Lang, Fritz, 150, 182
languages used for building AI, 121
late binding, 129
learning, 10

element, 10, 96
from examples, 97
by instruction, 97
machine learning

advantages, 103
characteristics, 97
disadvantages, 103
systems, 95–97

types of, 97–102
direct instruction, 97–98
failure-driven learning, 99–101
learning by analogy, 98
learning by being told or getting 

advice (learning by instruction), 
101–102

learning by deduction, 98
learning by exploration, 102
learning by induction (learning by 

examples), 98–99
rote learning or memorization, 97

Lenoir, Etienne, 163
level of intelligence, 179–180
LISP (list processing), 10, 105
lists, Python, 125–126
local maximum, 33
locomotion, 166–168
logical representation scheme, 57
Logic programming, 106
lore of golem, 144
Lovelace Project, 180–182
Lovelace 2.0 Test, 180–182

M

Machina Speculatrix (“machine that 
thinks”), 153

machine learning and neural networks, 
142

machines and robotics, AI; see also robots
applications

Asimo, 173–176
BigDog, 170–173
Cog, 176–180
Lovelace Project, 180–182

constructing robots, 142–143
fuzzy logic, 141–142
genetic algorithms, 142
history, 143–160

early mechanical robots, 146–150
Robot Lore, 144–146
robots in film and literature, 150–

151
twentieth-century robots, 151–155

logic and knowledge representation, 
141

machine learning and neural 
networks, 142

MrTomR, 140
natural language understanding and 

speech understanding, 142
planning, 142
production systems and expert 

systems, 141
search, 141
swarm intelligence, 142
tabu search, 142
technical issues, 160–170

machine vision, 161
matplotlib, 123, 133–134
maximizer, 46
Maxwell, James Clerk, 150
MBUILD, 64
MDP, 123
mechanical robots, 146–150
meta knowledge, 54
Metropolis (movie), 150, 182
Mind Magazine article, 2
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minimax strategy, 46–48
algorithm for, 46
with alpha-beta cut off, 48–50
game tree expanded by two levels, 47
maximizer’s move, 48

minimizer, 46
mobile robot kinematics, 169–170
Modulus Robot, 157
monotonic production system (MPS), 19
motion estimation, kinematics, 169
motors and gears, robot, 163–166
MOVE, 64
MPS, see monotonic production system 

(MPS)
MrTomR, 140
MTRANS, 64
multi-legged robots, see BigDog
Multiple Instruction Multiple Data 

(MIMD) Machines, 11
Multiple Instruction Single Data (MISD) 

Machines, 11
MUSA, 159
Musician, 148–149
MYCIN, 9

N

NASA’s Spiderbot, 167–168
natural language

generation, 8
understanding, 8

and speech understanding, 142
natural language processing (NLP), 8
Nelson, Gabriel, 170
network representation scheme, 57
neural network architecture, 83–84
NLP, see natural language processing 

(NLP)
NMPS, see non-monotonic production 

system (NMPS)
non-monotonic production system 

(NMPS), 20

non-production system architecture, 
78–84

associative (semantic) network, 78–79
blackboard architecture, 82–83
decision-tree architecture, 80–82
frame architecture, 79–80
neural network architecture, 83–84

NumPy, 123

O

objects slots, 61
Omnibot, 157
One-Way Link Representation, 59
operator control unit (OCU), 171
optimal move question, 51
order, 23
orthogonal rotation matrix, 169

P

pandas, 123
partially commutative production system 

(PCPS), 20
participants’ identification and roles, 84
PAs (picture aider), 63
passive knowledge, 55
PCPS, see partially commutative 

production system (PCPS)
performance element, 10, 96
Phobot, 160
photophilic attraction, 154
physical body, robot, 162
PIP (Present Illness Program), 79
plateau, 33
plausible move generator, 44–45
Playter, Rob, 170
point robot, path planning for, 168–169
polygon of support, 167
position estimation, kinematics, 169
PPs (picture producer), 62
probability, Python, 137



200  Artificial Intelligence Basics

problem
generator, 10
identification, 84
instance, 25
reduction, 17–18

using AND-OR graph, 17–18
solving, 7
space, 25

problem representation
in AI, 14–18

problem reduction, 17–18
state space representation, 14–17

characteristics, 13–14
conflict resolution, 22–23
production system, 18–22

advantages, 21–22
characteristics, 19
control system, 19
limitations, 22
rule applier, 19
set of production rules, 18
special features, 20–21
types, 19–20
working memory (WM), 19

procedural frame, 61
procedural knowledge, 54–55
procedural representation scheme, 57
production rules, 73
production systems, 18–22

advantages, 21–22
characteristics, 19
control system, 19
and expert systems, robots, 141
limitations, 22
rule applier, 19
set of production rules, 18
special features, 20–21
types, 19–20
working memory (WM), 19

program altered code, 100
progression planning, 15

prolog
AI programming language, 105
appending a list, 113
clauses, 105
compound queries, 109
controlling execution in, 113–117

cut predicate, 115–117
fail predicate, 113–115

data structures in, 111
element of the list, 113
free data structure, 106
head and tail of a list, 111–112
Horn clause, 106–107
language, 105–106
length of the list, 113
members write statement, 112
preliminaries, 105–106
print the list in reverse order, 112
program, parts of, 107–108
queries to a database, 108
recursion in, 110–111
Robinson’s resolution rule, 107
solution to query, 109
syntax and semantics of, 105
Turbo Prolog, 117–119
_ variable, 109–110

PROLOG (programming in logic), 10
PROPEL, 64
PTRANS, 63–64
pulse-width modulation, 165–166
PyBrain, 123
pyDatalog, 123
PyML, 123
Python, 121–122

build AI using, 122–124
features

for artificial intelligence, 127–128
conditionals, 127
dictionaries, 126
functions as Rst-class objects, 

128–130
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generators and coroutines, 130–132
lists, 125–126
tuples, 126

languages used for building AI, 121
pitfalls, 125
running, 124–125
testing code, 137–138
useful libraries

matplotlib, 133–134
timing code, 132

utilities
argmax, 135–136
display, 134–135
probability, 137
union of dictionaries, 137

Python 11, features, 129–130

Q

QNX real-time operating system, 177
quadrupedal walking algorithm, 172–173

R

Raibert, Marc, 170
recency, 23
refraction, 23
regression planning, 15
requirements analysis, 86
resource identification, 85
Return of the Jedi (1983) (film), 151
Return on Investment (ROI), 72
ridge, 33
Riedl, Mark O., 180
Robinson’s resolution rule, 107
robotics, 8–9; see also machines and 

robotics, AI
Robot Lore, 144–146
robots; see also machines and robotics, AI

applications
Asimo, 173–176

BigDog, 170–173
Cog, 176–180
Lovelace Project, 180–182

components
controllers, 162
degrees of freedom, 166
effectors and actuators, 162–163
motors and gears, 163–166
physical body, 162
sensory perception, 162

definition, 152
in film and literature, 150–151
global reference, 169
history, 143–160

early mechanical robots, 146–150
Robot Lore, 144–146
robots in film and literature, 

150–151
twentieth-century robots, 151–155

inhibitory connections, 154
locomotion, 166–168
mobile robot kinematics, 169–170
neural networks, 154
photophilic attraction, 154
photophobic, 154
point robot, path planning for, 

168–169
ROBOTY, 160
“Rossum’s Universal Robots” (R.U.R), 

150, 182
rote learning or memorization, 97
Royal Australian Mint, 181
Rst-class objects, functions, 128–130
RuBot II, 159
rule applier, 19
rule-based system architecture 

(production systems), 73–78
database, 77–78
explanation facility, 76–77
external interface, 77
inference engine, 75–76
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knowledge acquisition facility, 77
knowledge base, 74–75
production rules, 73
structure, 73
user interface, 76

rule-interpreter, 75
running, Python, 124–125
runtime, 132

S

Salvius, 160
scheduler, blackboard system 

architecture, 83
scikit, 123
scikit-learn, 123
Scout II, 157
Scribe, 148–149
script, 66–69

advantages, 69
components, 66–67
disadvantages, 69

search process, 25
strategies, 26
techniques

informed search or heuristic search, 
31–41

uniformed search, 26–30
self .display, 134
semantic networks of associative 

networks, 58–59
sensory perception, robot, 162
Seropi, 158
servo motor, 165
Shakey, mobile robot, 154–155
Shelley, Mary, 146, 182
Silver Arm, 156
SimpleAI, 123
Single Instruction Multiple Data (SIMD) 

Machines, 11
Single Instruction Single Data (SISD) 

Machines, 11

SLAM (simultaneous localization and 
mapping algorithm), 169

source slot, 61
space complexity, 25, 28, 30
SPEAK, 64
specificity, 23
speech recognition, 9
Spiderbot, 167–168
standard system, 96–97
Stanford Cart, 156
Stanford Heuristic Programming Project, 

71
Star Wars (1977) (film), 151
state space representation, 14–17

deficiencies, 17
static evaluation function generator, 45
Strasbourg cock, 146
STRIPS (Stanford Research Institute 

Problem Solver), 154
structured representation scheme, 57
supervised learning, 99
swarm intelligence, 142
system design, 86

T

tabu search, 142
Tan, Peter, 182
task slot, 61
TEIRSIAS, 93
testing code, Python, 137–138
testing stage, expert systems, 86
text-oriented tracing, 134
Three Laws of Robotics, 182
time complexity, 25, 28, 30
timing code, Python, 132
top-down logic, 98
Topio Dio, 160
Torres y Quevedo, Leonardo, 150
Tortoise, 152
translational degrees of freedom, 166
tuples, Python, 126
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Turbo Prolog, 117–119
Turing Test, 2, 180

representation, 2
weakness, 3

The Turk, 148
twentieth-century robots, 151–155

biomimetic systems, 151–154
recent systems, 154–155

U

unification, 109
uniformed search

algorithm, 26–27
breadth-first search, 29–30
depth-first search (DFS), 27–28

union of dictionaries, 137
unit tests, 137–138
unprogrammed behaviors, robots, 153
unsupervised learning, 99
user interface, 76

V

Vehicles (book), 153
vehicles, robots, 153
vision systems, 9
voltage, 164

W

WABOT-1, 156
WABOT-2, 156
Wakamaru, 158
The Walking Forest Machine, 157
Walter, William Grey, 152–153
water jug problem, 16
Watt, James, 150
Wiener, Norbert, 151
Willow Garage, 159
working memory (WM), 19
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