

Artificial
Intelligence

Basics

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants per-
mission to use the contents contained herein, but does not give you the right of owner-
ship to any of the textual content in the book or ownership to any of the information or
products contained in it. This license does not permit uploading of the Work onto the
Internet or on a network (of any kind) without the written consent of the Publisher.
Duplication or dissemination of any text, code, simulations, images, etc. contained
herein is limited to and subject to licensing terms for the respective products, and
permission must be obtained from the Publisher or the owner of the content, etc., in
order to reproduce or network any portion of the textual material (in any media) that is
contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accompanying
algorithms, code, or computer programs (“the software”), and any accompanying Web
site or software of the Work, cannot and do not warrant the performance or results that
might be obtained by using the contents of the Work. The author, developers, and the
Publisher have used their best efforts to insure the accuracy and functionality of the
textual material and/or programs contained in this package; we, however, make no war-
ranty of any kind, express or implied, regarding the performance of these contents or
programs. The Work is sold “as is” without warranty (except for defective materials used
in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the algo-
rithms, source code, computer programs, or textual material contained in this publica-
tion. This includes, but is not limited to, loss of revenue or profit, or other incidental,
physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book, and only at the discretion of the Publisher. The use of “implied warranty”
and certain “exclusions” vary from state to state, and might not apply to the purchaser
of this product.

Artificial
Intelligence

Basics
Neeru Gupta, PhD

&
Ramita Mangla

Mercury Learning and Information
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2020 by Mercury Learning And Information LLC. All rights reserved.
Reprinted and revised with permission.

Original title and copyright: Foundation of Artificial Intelligence and Expert Systems.
Copyright ©2019 by Trinity Press (An imprint of Laxmi Publications Pvt. Ltd. All rights reserved.)

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic dis-
play or mechanical display, including, but not limited to, photocopy, recording, Internet postings,
or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning And Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

N. Gupta & R. Mangla. Artificial Intelligence Basics.
ISBN: 978-1-68392-516-3

The publisher recognizes and respects all marks used by companies, manufacturers, and develop-
ers as a means to distinguish their products. All brand names and product names mentioned in this
book are trademarks or service marks of their respective companies. Any omission or misuse (of any
kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2020931301

202122321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital ven-
dors. The sole obligation of Mercury Learning And Information to the purchaser is to
replace the book, based on defective materials or faulty workmanship, but not based on the
operation or functionality of the product.

CONTENTS

Acknowledgments .. ix

1 ARTIFICIAL INTELLIGENCE (AI) 1–12

1.1 Computerized Reasoning .. 1
1.2 Turing Test ... 2
1.3 What is Intelligence? ... 3
1.4 Artificial Intelligence ... 4
1.5 Goals of Artificial Intelligence ... 4
1.6 History of Artificial Intelligence .. 5
1.7 Advantages of Artificial Intelligence ... 7
1.8 Application Areas of Artificial Intelligence 7
1.9 Components of Artificial Intelligence ... 10

2 PROBLEM REPRESENTATION 13–24

2.1 Introduction ... 13
2.2 Problem Characteristics .. 13
2.3 Problem Representation in AI .. 14
2.4 Production System ... 18
2.5 Conflict Resolution .. 22

vi Artificial Intelligence Basics

3 THE SEARCH PROCESS .. 25–42

3.1 Search Process ... 25
3.2 Strategies for Search .. 26
3.3 Search Techniques ... 26

4 GAME PLAYING ... 43–52

4.1 Game Playing ... 43
4.2 Game Tree.. 44
4.3 Components of a Game Playing Program....................................... 44
4.4 Game Playing Strategies .. 45
4.5 Problems in Computer Game Playing Programs 50

5 KNOWLEDGE REPRESENTATION 53–70

5.1 Introduction ... 53
5.2 Definition of Knowledge ... 53
5.3 Importance of Knowledge ... 56
5.4 Knowledge-based Systems .. 56
5.5 Differences between Knowledge-based Systems and
 Database Systems .. 56
5.6 Knowledge Representation Scheme ... 57

6 EXPERT SYSTEMS .. 71–94

6.1 Introduction ... 71
6.2 Definition of an Expert System ... 71
6.3 Characteristics of an Expert System ... 72
6.4 Architectures of Expert Systems ... 72
6.5 Expert System Life Cycle .. 84
6.6 Knowledge Engineering Process ... 86
6.7 Knowledge Acquisition .. 87
6.8 Difficulties in Knowledge Acquisition ... 87
6.9 Knowledge Acquisition Strategies ... 88
6.10 Advantages of Expert Systems .. 89
6.11 Limitations of Expert Systems .. 90
6.12 Examples of Expert Systems ... 91

Contents vii

7 LEARNING .. 95–104

7.1 Learning ... 95
7.2 General Model for Machine Learning Systems 95
7.3 Characteristics of Machine Learning .. 97
7.4 Types of Learning ... 97
7.5 Advantages of Machine Learning ... 103
7.6 Disadvantages of Machine Learning... 103

8 PROLOG .. 105–120

8.1 Preliminaries of Prolog .. 105
8.2 Milestones in Prolog Language Development 106
8.3 What is a Horn Clause? ... 106
8.4 Robinson’s Resolution Rule ... 107
8.5 Parts of a Prolog Program .. 107
8.6 Queries to a Database ... 108
8.7 How does Prolog Solve a Query? .. 109
8.8 Compound Queries ... 109
8.9 The _ Variable .. 109
8.10 Recursion in Prolog ... 110
8.11 Data Structures in Prolog .. 111
8.12 Head and Tail of a List .. 111
8.13 Print all the Members of the List .. 112
8.14 Print the List in Reverse Order ... 112
8.15 Appending a List .. 113
8.16 Find Whether the Given Item is a Member of the List 113
8.17 Finding the Length of the List .. 113
8.18 Controlling Execution in Prolog ... 113
8.19 About Turbo Prolog ... 117

9 PYTHON ... 121–138

9.1 Languages Used for Building AI ... 121
9.2 Why Do People Choose Python? .. 121
9.3 Build AI Using Python ... 122
9.4 Running Python ... 124
9.5 Pitfalls ... 125

viii Artificial Intelligence Basics

9.6 Features of Python... 125
9.7 Useful Libraries ... 132
9.8 Utilities ... 134
9.9 Testing Code .. 137

10 ARTIFICIAL INTELLIGENCE MACHINES AND
ROBOTICS ... 139–186

10.0 Introduction ... 139
10.1 History: Serving, Emulating, Enhancing, and Replacing Man 143
10.2 Technical Issues ... 160
10.3 Applications: Robotics in the Twenty-First Century 170
10.4 Summary .. 182

REVIEW QUESTIONS .. 187–192

INDEX ... 193

ACKNOWLEDGMENTS

While writing this book, many of our nears-and-dears helped us with their
sincere suggestions and comments. We are thankful to them. We also
express our gratitude to the Tata McGraw-Hills, Roger Schank, University of
Texas, Rakesh Sharma, Intelligence Information Technology and Services.
Besides, we also extend our thanks to the Dan W. Patterson, Electrical
Engineering and Computer Science Department of the University of Texas
at El Paso for the unrestrained use of their facilities.

Creative suggestions for improvement of the book shall be acknowl-
edged gratefully.

—Authors

ARTIFICIAL
INTELLIGENCE (AI)
1.1 Computerized Reasoning

From the ancient times, human beings have tried to get their work done
by using human strength or inanimate machines. One characteristic that is
constant in the software industry today is that of “change.” Change is one
the most critical aspects of software development and management. New
tools and new approaches are announced almost every day. Thanks to the
industrial revolution, many activities are carried out by machines. With the
invention of digital computers, error-prone numerical problems and time-
consuming tasks are done with accuracy and relative ease. Then, it struck
people: “Why not seek the help of computers in the reasoning process?”
How computers can help with the reasoning process was explained by Alan
Turing. Before we explain the Turing Test, let’s look at Table 1.1, which
presents the major differences between humans and computers.

Table 1.1 Differences between humans and computers

Humans Computers

Have emotions “Dumb” and have no emotions

Have a continuous nature Discrete in nature

Have the capacity to learn Must be programmed

Limited memory size Unlimited memory size

Storage “devices” are electrochemical Storage devices are electronic

in nature and magnetic

Living “devices” Non-living devices

Use Fuzzy logic Use binary logic for computation

C H A P T E R1

2 Artificial Intelligence Basics

1.2 Turing Test

In 1950, Alan Turing wrote an article in Mind Magazine that considered the
question “Can a machine think?” This article began the discussion that has
become part of the philosophy of Artificial Intelligence (AI).

“Thinking” is difficult to define. There are two kinds of questions that
philosophers have addressed:

a. Can a machine be intelligent? Can it solve all the problems that a
human can solve by using intelligence?

b. Can a machine be built with a mind and experience a subjective con-
sciousness [a quality of awareness]?

In the Mind Magazine article, Turing proposed the “imitation game,”
which was later known as the “Turing Test.” The Turing Test measures the
performance of a supposedly intelligent machine against that of human
being. Turing’s imitation game places a human and a machine counterpart in
rooms apart from a second human being, who is referred to as the interroga-
tor. A diagrammatic representation of the Turing Test is given in Figure 1.1.

Human ?
Machine ?

Human ?
Machine ?

Room A Room B

Room C

FIGURE 1.1 Representation of Turing Test.

Turing proposed that if the human interrogator in Room C is not able to
identify who is in Room A or in Room B, then the machine possesses intel-
ligence. Turing considered this test as sufficient for attributing thinking
capacity to a machine.

However, the test is not easy as it seems. Humans are far superior to
machines in regards to creativity, common sense, and reasoning. So humans

Artificial Intelligence (AI) 3

are sure to excel in these areas while machines are faster and more accurate
for numerical computations. Machines can never be wrong in their com-
putations, whereas there exists a probability that humans may give incor-
rect answers, even after taking a long time. Therefore, Turing argued the
machine may be assumed to be intelligent.

1.2.1 Weakness of the Turing Test
Turing did not explicitly state that the Turing Test could be used as a measure
of intelligence or any other human quality. However, the Turing Test has
come under severe criticism because it has been proposed as a measure of
a machine’s “ability to think” or its “intelligence.” This proposal has received
criticism from both philosophers and computer scientists. It assumes that
an interrogator can determine if a machine is “thinking” by comparing its
behavior with human behavior. Every element of this assumption has been
questioned, including the value of comparing only behavior and the value
of comparing a machine with a human. The reliability of the interrogator’s
judgment has also been part of the discussion.

Because of these considerations, some AI researchers have questioned
the relevance of the test, which brings us to the verge of a major question:
“What is intelligence?”

1.3 What is Intelligence?

A typical definition of intelligence is “the ability to acquire and apply knowl-
edge.” Intelligence includes the ability to benefit from past experience, act
purposefully to solve problems, and adapt to new situations.

1.3.1 Types of Intelligence
In the 1980s and 1990s, psychologist Howard Gardner proposed the idea of
eight kinds of intelligence, which are relatively independent of one another.
These eight types of intelligence are:

1. Linguistic: Spoken and written language skills

2. Logical-Mathematical: Number skills

3. Musical: Performance or composition skills

4. Spatial: Ability to evaluate and analyze the visual world

5. Bodily-Kinesthetic: Dance or athletic ability

4 Artificial Intelligence Basics

6. Interpersonal: Skills in understanding and relating to others

7. Intrapersonal: Skills in understanding the self

8. Nature: Skills in understanding the natural world.

In the 1980s and 1990s, Robert Sternberg proposed the Triarchic Theory of
Intelligence that distinguished among three aspects of intelligence:

 Componential Intelligence: The ability assessed by intelligence tests;

 Experimental Intelligence: The ability to adapt to new situations and
produce new ideas;

 Contextual Intelligence: The ability to function effectively in daily
situations.

1.4 Artificial Intelligence

The term Artificial Intelligence (AI) was coined by John McCarthy in 1956.
Numerous definitions for AI have been proposed by scientists and research-
ers such as:

 Artificial Intelligence is the study of how to make computers do things
at which, at the moment, people are better;

 Artificial Intelligence is a part of computer science that is concerned with
designing intelligent computer systems, that is, systems that exhibit the
characteristics we associate with intelligence in human behavior;

 Artificial Intelligence is the branch of computer science that deals
with the way of representing knowledge using symbols rather than
numbers and with rules-of-thumb or heuristic methods for processing
information.

1.5 Goals of Artificial Intelligence

The goals of AI are as follows:

To create expert systems: These are systems that exhibit intelligent
behavior, learn, demonstrate, explain, and advise users.

To implement human intelligence in machines: Researchers want
to create systems that understand, think, learn, and behave like humans.

Artificial Intelligence (AI) 5

1.6 History of Artificial Intelligence

1941: The electronic computer was first developed in 1941, but evidence
of AI can be traced back to ancient Egypt and Greece. Eventually, the
technology become available to create machine intelligence.

1949: The stored computer program made the job of entering a program
easier, and advancements in computer theory led to the creation of the
fields of computer science and AI.

1950: Alan Turing proposed the Turing Test. Turing considered this as a
sufficient test for attributing thinking capacity to a machine.

1955: Newell and Simon developed the Logic Theorist. The program rep-
resented each problem as a tree model, which it would attempt to solve by
selecting the branch that would most likely result in the correct conclusion.

1956: The field of AI research was founded at a conference on the cam-
pus of Dartmouth College in the summer of 1956. The father of AI is
John McCarthy. He wrote programs that solved word problems in algebra,
proved logical theorems, and used English words.

1958: John McCarthy announced his new development, the LISP lan-
guage. LISP stands for List Processing and was soon adopted as the lan-
guage of choice among most AI developers.

Knowledge Expansion: The next few years would later be called an “AI
winter,” a period when funding for AI projects was hard to find.

1968: A multitude of programs, notably the SHRDLU and part of the
MicroWorlds project, which consisted of research and programming using
small words, were launched.

1970: In 1970, AI achieved commercial success with the “expert system,”
a form of AI program that simulated the knowledge and analytical skills of
one or more human experts. Another development during this time was
the Prolog language.

1985: By 1985, the market for AI had reached over a billion dollars. At the
same time, Japan’s fifth generation computer project inspired the U.S. and
British governments to restore funding for academic research in the field.

1990: In the 1990s and early 21st century, AI achieved its greatest suc-
cesses. Now AI is used for logistics, data mining, medical diagnosis, and
many other areas throughout the technology industry.

6 Artificial Intelligence Basics

First Electronic Computer 1941

1949

1950

1955

1956

1958

1963

1968

1970

1972

1985

1990

First Commercial Shared
Program Computer

Turning proposed
Turing Test

Logic Theorist developed

AI started at Dartmouth
Conference

LISP Language devaloped

Start of DOD’s advanced
research project

MicroWorld program
SHRDLU Created

First Expert System

Prolog Language
Revealed

Japanese generation
computer project

Al military system used
effectively in “DESERT STORM”

FIGURE 1.2 A brief history of Artificial Intelligence.

Artificial Intelligence (AI) 7

1.7 Advantages of Artificial Intelligence

It is evident that artificial intelligence will have to fill the gaps of human
knowledge, and it will make man’s work easier. Some advantages of AI are
given below:

1. AI machines do not get sick. There is no need for sleep or breaks. AI
can go, go, go. AI machines can definitely get a lot more work done
than people can. Take the finance industry, for example, where there
are numerous stories showing the value of AI.

2. AI techniques play a major role in science and medicine. AI methods
have been employed recently to discover subtle interactions between
medications that put patients at risk for serious side effects.

3. AI can help us to plan trips using GPS systems that rely on AI to cut
through the complexity of millions of routes to find the best one to
take.

4. AI can help perform calculations that are too challenging for humans.

5. AI algorithms detect faces as we take pictures with our phones and
recognize the faces of individual people when we post those pictures
to Facebook. With the help of AI machines, our smart phones can
understand our speech.

6. AI provides accurate results with few errors and defects.

7. AI easily works in stressful and complex situations where humans may
struggle or cannot accomplish the task.

8. AI can be used for longer problems, where more direct methods fail.

1.8 Application Areas of Artificial Intelligence

The concept of AI has been implemented in the following fields:

1. Problem Solving: This is first application area of AI research; the ob-
jective of this particular area of research is how to implement the pro-
cedures on AI Systems to solve problems like humans solve problems.

2. Game Playing: Much of early research in state space search was done
using common board games such as checkers, chess, and 8-puzzle.
The board configurations used in playing these games are easily

8 Artificial Intelligence Basics

represented in computers, requiring no complex formalisms. For
solving large and complex AI problems, many techniques, like heuris-
tics, are required. Game playing in AI is important because:

The rules of the games are limited. Hence, extensive amounts of
domain-specific knowledge are seldom needed.

Games provide a structured task where success or failure can be
measured with the least effort.

Games visualize real life situations in a constricted fashion.
Moreover, game playing permits one to simulate real life situations.

Unfortunately, developments in computer game playing programs
are not that easy because of problems with the combinatorial explosion of
solutions. In chess, the number of positions to be examined is about 35100.

3. Natural Language Processing [NLP]: Natural language is the lan-
guage of our routine; we speak it and understand it very well. The
main goal of NLP is for people to ask questions to the computer in
their mother tongue, and the computer will “understand” that par-
ticular language. The system will then give the response in the same
language. Researchers are trying to make computers so intelligent that
they can understand our natural language (such as English or any oth-
er language). NLP can be divided into two sub fields:

a. Natural language understanding: NLP researchers investi-
gate some methods of allowing the machine to improve instruc-
tions given in ordinary English so that the computers can under-
stand people more easily.

b. Natural language generation: This aims to have computers
produce ordinary English so that people can understand the
computers more easily.

4. Robotics: Robotics can be defined as the science or study of technol-
ogy primarily associated with the design, fabrication, theory, and ap-
plication of robots. The term “robot” is a Czech word meaning “slave.”

“Robots are machines that can be programmed to perform tasks.”

 Many robots do jobs that are hazardous to people, such as defusing
bombs and mines and exploring shipwrecks. Robots have electrical

Artificial Intelligence (AI) 9

components which power and control the machinery. The major com-
ponents of a robot are:

 Manipulator: The manipulator arm performs the job that has
been assigned to it by the control unit.

 Control unit: This provides the necessary control signals for activat-
ing the various parts for manipulation. It acts as an interface to various
sensors which determine what the external environment is.

 Power source unit: This provides the necessary energy to make
the robot perform activities. Many different types of batteries can
be used as a power source for robots. Designing a battery powered
robot needs to take into account factors such as safety, lifetime
cycle, and weight.

5. Expert Systems: Expert systems are one of first AI technologies to
help people solve important problems, and they are very important.

 “Expert systems are comprised of knowledge based programs that can
solve problems when technical expertise is required.”

Some examples of expert systems that are in use are as follows:

MYCIN, which is used in the medical field to diagnose diseases and

 DENDRAL, which is used in life science to identify the structure
of chemical molecules.

6. Vision Systems: These systems understand, interpret, and compre-
hend visual input on the computer. For example,

 A spy plane takes photographs, which are used to figure out spatial
information or map the area.

 Police use computer software that can recognize the face of a crimi-
nal with a stored portrait created by a forensic artist.

7. Speech Recognition: Some intelligent systems are capable of hearing
and comprehending language in terms of sentences and their mean-
ing while a human talks to them. These systems can handle different
accents, slang words, noise in the background, and even changes in a
human’s voice due to a cold.

10 Artificial Intelligence Basics

1.9 Components of Artificial Intelligence

Any AI system consists chiefly of the following components, such as a learn-
ing AI programming language, knowledge representation, problem-solving
(mainly by heuristic search), and AI hardware.

a. Learning: Learning means adding new knowledge to the knowledge
base and improving or refining previous knowledge.
The success of an AI program is based on the extent of knowledge it
has and how frequently it acquires knowledge. Learning agents con-
sists of four main components. They are the:

Learning element, the part of the agent responsible for improv-
ing its performance;

Performance element, the part that chooses the actions to take;

Critics, which tells the learning element how the agent is doing;

Problem generator, which suggests actions that could lead to new
information experiences.

b. AI Programming Language: Today, just as we have specialized lan-
guages and programs for data processing and scientific applications,
we have specialized languages and tools for AI programming using AI
language programs and tools for the AI environment. LISP and Prolog
are the primary languages used in AI programming.

LISP (List Processing): LISP is an AI programming language
developed by John McCarthy in 1950. LISP is a symbolic process-
ing language that represents information in lists and manipulates
lists to derive information.

PROLOG (Programming in Logic): Prolog was developed by
Alain Colmeraver and P. Roussel at Marseilles University in France
in the early 1970’s. Prolog uses the syntax of predicate logic to per-
form symbolic, logical computations.

c. Knowledge Representation: The quality of the result depends on
how much knowledge the system possesses. The available knowledge
must be represented in an efficient way. Hence, knowledge represen-

Artificial Intelligence (AI) 11

tation is a vital component of the system. The best known representa-
tions schemes are:

Associative Networks or Semantic Networks

Frames

Conceptual Dependencies and

Scripts

d. Problem-solving: The objective of this particular area of research is
how to implement the procedures on AI systems to solve problems
like humans do. The inference process should also be equally good to
obtain satisfactory results. The inference process is broadly divided
into the brute and heuristic search procedures.

e. AI Hardware: Today, most of the AI programs are implemented on
Von Neumann machines only. However, dedicated workstations have
emerged for AI programming. Computers are classified into one of
following four categories:

a) Single Instruction Single Data (SISD) Machines

b) Single Instruction Multiple Data (SIMD) Machines

c) Multiple Instruction Single Data (MISD) Machines

d) Multiple Instruction Multiple Data (MIMD) Machines

In these machines, numeric computations occupy a substantial chunk of
the processing time, followed by symbolic processing.

PROBLEM REPRESENTATION
2.1 Introduction

We face so many problems in day-to-day life and want to find the solutions
for them. Our goal in AI is to construct working programs that solve these
problems. The steps that are required to build a system to solve a particular
problem are

1. Problem Definition: This must include precise specifications of what
the initial situation will be, as well as what final situations constitute
acceptable solutions to the problem.

2. Problem Analysis: This can have an immense impact on the appro-
priateness of various possible techniques for solving the problem.

3. Selection: This involves choosing the best techniques for solving the
particular problem.

2.2 Problem Characteristics

In order to choose the most appropriate method for a particular problem,
it is necessary to check the problem in light of the following considerations:

1. Is the problem decomposable into smaller or easier sub-problems?
A large and composite problem can be easily solved if it can be broken
into smaller problems and recursion could be used. For example, let’s
consider ∫x2 + 3x + Sin 2x Cos 2x dx.

This can be done by breaking it into three problems and solving each
by applying some specific rules. By adding the results of these indi-
vidual solutions, the complete solution can be obtained.

C H A P T E R2

14 Artificial Intelligence Basics

2. Can the solution steps be ignored or undone?
AI problems fall into three classes: ignorable, recoverable, and irre-
coverable. These classifications are related to the steps of the solution
to a problem. For example, consider the following:

a. Theorem proving, in which solution steps can be ignored;

b. The 8-puzzle game, in which solution steps can be undone;

c. Chess, in which the solution steps cannot be undone.

3. AI programs use an internally consistent knowledge base.

4. In order to classify a system as an AI program, the fundamental crite-
rion is that it must require a lot of knowledge or it uses knowledge to
constrain solutions.

5. AI programs require periodic interactions between humans and com-
puter, since the programs assist humans in making the right decisions.
AI systems also have the capacity to handle uncertainty and incom-
plete and irrelevant information.

6. AI programs use the heuristic search to solve a large class of problems.
This search includes a variety of techniques. Heuristics are also used
for problems where no general algorithms are known.

7. A vital characteristic of an AI program is its ability to learn. Learning is
an essential feature without which the modern systems could not have
achieved their advanced technological level.

2.3 Problem Representation in AI

Before a solution can be found, the most important condition is that the
problem must be very precisely defined. By defining it properly, it is easy
to understand and we can abstract it into different states. These states are
opened by a set of operators and the decisions of which operators should be
applied. When and where are dictated by the overall control strategy. The
most common methods of problem representation in AI are State Space
Representation and Problem Reduction.

1. State Space Representation: In this method, the problem is de-
fined in the form of states. The straight forward approach for planning
an algorithm is the state space search because it takes into account

Problem Representation 15

everything needed for finding a solution. Hence, “state” here means
“the position at a certain time.” For example, consider the following:

Water in a pan is in a liquid state, but when the stove is turned on,
the state of water is changed: now it is boiled water (vapor). The state
space search involves finding a path from the initial state of a search
problem to a goal state. To do this, we first build a search graph start-
ing from the initial state (or goal state). We expand the state by apply-
ing search operators to that state which generate all of its successor
states. The problem must cross the following states:

a. Initial state or starting state

b. Rule applied or operator used

c. Goal state

When we define problems according to states, the problems become
easier and more understandable because the process shows every
aspect of the problem. There are two ways available to solve a state
space search:

The forward state space search, which is sometimes called
progression planning because it moves in the forward direction;
and

The backward state space search, which is sometimes called
regression planning because it finds the solution from the goal
to the starting stage.

Here are some examples of state space representation:

A. The 8-puzzle: This is the 8-puzzle with a 3 × 3 grid with 8 consecu-
tively numbered tiles arranged on it. Any tiles adjacent to the space can
be moved. A number of different goal states are used.

5 4 .
To be translated

1 2 3

6 1 8 8 0 4

7 3 2 7 6 5

Start State Goal State

A state for this problem needs to keep track of the position of all the tiles
on the game board, with 0 representing the blank position (space) on

16 Artificial Intelligence Basics

the board. The initial state could be represented as (5, 4, 0), (6, 1, 8), (7,
3, 2). The final state could be represented as (1, 2, 3), (8, 0, 4), (7, 6, 5).
The operators can be thought of in terms of direction: a blank space
effectively moves up, down, left, or right.

B. Water Jug Problem: Imagine a 3-liter jug, a 5-liter jug, and an unlim-
ited supply of water. The goal is to get exactly 1 liter of water into either
jug. Either jug can be emptied or filled, or poured into the other.

A state in this problem could be represented with just a pair of num-
bers, the first representing the number of liters of water in the 5-liter
(large) jug and the second representing the number of liters of water in
the 3-liter (small) jug.

Solution Path

Initial State Goal State
One Liter

The initial state would typically be (0, 0), representing the fact that
both jugs start empty.

The final state would be represented as (0, 1).

The operators for this problem could include

a. Fill the 5-liter jug to capacity from the water source.

b. Fill the 3-liter jug to capacity from the water source.

c. Empty the 5-liter jug into a drain.

d. Pour water from the 3-liter jug into the 5-liter jug until its
capacity is reached. So, there is space for 2 liters of water in
the 5-liter jug.

e. Again fill the 3-liter jug and put the water in the 5-liter jug.
Now, the 5-liter jug is full, and there is exactly 1 liter of water
remaining in the 3-liter jug.

f. Empty the 5-liter jug into a drain.

g. We have reached our goal state, i.e., (0,1).

Problem Representation 17

Deficiencies of the state space representation:

a. It is not possible to display all states for a given problem.

b. This approach explores a monolithic (massive) model of the
world, rather than applying a factored perspective.

c. The resources of the computer system are limited in handling
this massive state space representation.

d. It is a time consuming process.

e. The program does not learn from mistakes, and hence tends
to commit the same mistake repeatedly.

2. Problem Reduction: To overcome the problems of the state space
method, the problem reduction technique is used. Problem reduction
search is a basic problem-solving technique of AI involving reducing
a problem to a set of easier sub-problems whose solutions, if found,
can be combined to form a solution to the complex problem. Such a
search is easily written as a recursive program. Problem reduction can
be graphically represented with the help of AND and OR graphs or
the AND-OR tree. The decomposition of the problem generates AND
arcs. One AND may point to any number of successor nodes. All these
must be solved so that the arc will give rise to many arcs, indicating
several possible solutions.

The AND relationship solutions for a problem is obtained by
solving all the sub-problems, like the AND gate is true if, and only
if, all the inputs are true.

In the OR relationship, the solution for the problem is obtained
by solving any of the sub-problems.

Figures 2.1 and 2.2 are helpful for understanding the AND-OR graph.

Goal: Acquire TV Set

Steal TV Set
Earn
Some

Money
Buy TV Set

FIGURE 2.1 Problem Reduction Using the AND-OR Graph.

18 Artificial Intelligence Basics

Goal: Funding for higher learning

Goal: Make
arrangements

for higher learning

Get Loan Ask parent

Goal: Competing
scholarship
examination

Goal: Higher
learning

Return loan
without/with

normal interest

Return with
cumulative

interest

Bank Finance Depositor

Partial

AND Tree

OR Tree

Full

FIGURE 2.2 Problem Reduction Using the AND-OR Graph.

2.4 Production System

The production system is a mechanism that describes and performs the search
process which consists primarily of a set of rules about behavior. These rules,
called productions, are a basic representation found useful in automated plan-
ning, expert systems, and action selection. Production systems provide the
mechanism necessary to execute productions in order to achieve some goal
for the system. A production system consists of the following components:

A Set of Production Rules

A production system consists of two parts, a sensory precondition (or
“IF” statement) and an action (or “THEN”). If the production system’s
precondition matches the current state of the world, then the produc-
tion system is said to be triggered. If the production system’s action is
executed, it is said to have fired. So, a production system consists of
a set of rules that are in the “if-then” form. That is, given a particular
situation, what are the actions to be performed? For example: If it is
raining, then take an umbrella.

Problem Representation 19

Working Memory (A Global Database)

Working Memory (WM) is the central data structure used by an AI
production system. The production rules operate using a global data-
base. Each rule has a precondition that is either satisfied or not by the
database. If the precondition is satisfied, then the rule can be applied.
The application of the rule changes the database.

Control System

The control system chooses which applicable rule should be applied
and ceases computation when a termination condition for the data-
base is satisfied. If several rules are to fire at the same time, then the
control system resolves the conflict.

A Rule Applier

The rule applier is the core unit of the production system. The rules
are applied with the help of the rule applier.

2.4.1 Characteristics of Production Systems
We have argued that production systems are a good way to describe the
operations that can be performed in a search for a solution to a problem.
This leads us to several questions:

Can production-system-like problems be described by a set of
characteristics that shed some light on how they can easily be
implemented?

If so, what relationship is there between the problem types and types
of production systems best suited for solving the problems?

2.4.2 Types of Production Systems

Monotonic Production System (MPS): This is a system in which
the application of a rule never prevents the later application of another
rule that could also have applied at the time that the first rule was
selected. Some production systems are monotonic, however, and only
add elements to the working memory, never deleting or modifying
knowledge through the action of the production rules. Such systems
may be regarded as implicitly parallel. Since all rules that match will
be fired regardless of which is first fired.

20 Artificial Intelligence Basics

Non-Monotonic Production System (NMPS): This is a system in
which the application of a rule prevents the later application of a rule
which may not have applied at the time when the first rule was selected,
i.e., it is a system in which the above rule is not true and the monotonic
production system in which elements may be added and deleted. The
addition of new knowledge may obviate previous knowledge. The
NMPS increases the significance of the conflict resolution scheme, since
productions which match in one cycle may not match in the following
because of the action of the intervening production.

Commutative Law Based Production System (CLBPS): This is
a system that satisfies both the monotonic and partially commutative
conditions.

Partially Commutative Production System (PCPS): This
is a system with a property that if the application of those rules is
allowable, it transforms state x to state y. We present two special
types of production systems:

i. Commutative Production System
ii. Decomposable Production System

The special features of these production systems are outlined below.

i. Commutative Production System:
A production system is called commutative if, for a given a set of rules
(R) and a working memory (WM), the following conditions are satisfied:

Freedom in the orderliness of rule firing: The arbitrary order
of the filing of the applicable rules selected from Set S will not
make a difference in the content of the working memory. In other
words, the working memory that results due to an application of
a sequence of rules from Set S is invariant under the permutation
of the sequence.

Invariance of the precondition of attaining the goal: If the
precondition of a goal is satisfied by the working memory before
the firing of a rule, then it should remain satisfiable after the firing
of the rule.

Independence of the rules: The “firability” condition of a yet-
unfired Rule R, with respect to the working memory remains
unaltered, even after firing Rule R, for any condition.

Problem Representation 21

Significance of the Commutative Production System

1. The rule can be fired in any order without having the risk of losing the
goal, in case it is attainable.

2. An irrevocable control strategy can be designed for such systems, as an
application of a rule to the WM never needs to be undone.

ii. Decomposable Production System
The commutative property of the production system facilitates a lim-
ited degree of flexibility in the sequence in which the applicable rules
are fired. The decomposability property of a production system allows
for some freedom in the ordering of rule application. A production
system is called decomposable if the goal, G, and working memory,
WM, can be partitioned into Gi and WMi such that

G= ANDi (Gi)

WM=U {WMi}

The rules are applied to each WMi independently or concurrently to
yield Gi.

Significance of the Decomposable Production System

Decomposition allows the parallel firing of rules, without causing a
difference in the context of the working memory.

Decomposable production systems have been successfully used
for the evaluation of symbolic integration. Here, an integral can be
expressed as a sum of more than one integral, all of which can be
executed independently.

2.4.3. Advantages of Production Systems

1. Production systems are highly modular because the individual rules
can be added, removed, or modified independently.

2. The production rules are expressed in a natural form, so the state-
ments contained in the knowledge base should be like a recording of
an expert thinking out loud.

3. Production systems provide an excellent tool for structuring AI pro-
grams.

22 Artificial Intelligence Basics

4. An important aspect of the production system model is the lack of any
syntactic interactions between production rules. The syntactic inde-
pendence supports the incremental development of expert systems by
successively adding, deleting, or changing the knowledge (rules) of the
system.

5. The production system is an elegant model of the separation of knowl-
edge and the control system in a computer program. The advantage
of this separation includes the ease of modifying the knowledge base
without requiring a change in the code for program control.

6. One of the advantages of the production system is that the computa-
tional complexity of the matcher, while large, is deterministically finite
and the conflict resolution scheme is trivial.

2.4.4. Limitations of Production Systems

1. Production rules lack expressive power for describing situations; while
procedural knowledge can be implemented, it is not that easy to make
use of the production rules for descriptions.

2. When the number of rules is large, it becomes difficult to check
whether a new rule brought into the system is redundant or in conflict
with the existing ones.

3. One important disadvantage is the fact that it may be very difficult to
analyze the flow of control within a production system because the
individual rules do not call each other.

2.5 Conflict Resolution

Conflict resolution is used in a production system to help in choosing which
production rule to fire. The need for such a strategy arises when there is
more than one rule that can be fired in a situation. The rule interpreter
decides which rule to fire, what is the order of triggering, and whether to
apply all rules that are applicable or to be selective about the rules.

Most conflict resolution schemes are very simple and are dependent
on the number of conditions in the production or the time stamps (ages) of

Problem Representation 23

the elements to which the conditions matched, or they may be completely
random. Conflict resolution strategies fall into four main categories:

1. Specificity:
If all of the conditions of two or more rules are satisfied, choose the
rule with most specific condition. This is also referred to as the “degree
of specialization.”

For example, consider the following two rules:

a. “It is hot and smokey.”

b. “It is hot.”
The first rule (a) is more specific than the second rule (b). We choose
the specific rule for the current situation.

2. Recency:
Facts are usually tagged to show how recently they were added. It is
generally believed that a newly-added rule contains more information
than the existing ones. When two or more rules could be chosen, the
system favors the one that matches the most currently relevant facts.
However, there is a small challenge with using this strategy. The sys-
tem has to keep track of which rule came in at what time and which
rules were modified.

3. Refraction:
Refraction specifies that once a rule has fired, it may not fire again
until the working memory elements that match its conditions have
been modified. This helps the system avoid entering infinite loops.

4. Order:
Pick the first applicable rule in the order of presentation. This is the
type of strategy that Prolog uses, and it is one of the most common
ones.

THE SEARCH PROCESS
3.1 Search Process

Searching is defined as a sequence of steps that transforms the initial state
to the goal state. To perform a search, the following steps are needed:

Initial state (I)

Goal state (G)

A set of legal operators that changes the state.

The following list shows some search terminology:

1. Problem Space: This is the environment in which the search takes
place. It is a set of states and a set of operators to change those states.

2. Problem Instance: This is the initial state + goal state.

3. Problem Space Graph: This represents the state + problem state.
States are shown by nodes, and operators are shown by edges.

4. Depth of a Problem: Length of the shortest path or the shortest se-
quence of operators from the initial state to the goal state

5. Space Complexity: The maximum number of nodes that are stored
in the memory

6. Time Complexity: The maximum number of nodes that are created

7. Admissibility: The property of an algorithm to always find an optimal
solution

8. Branching Factor: The average number of child nodes in a problem
space graph

C H A P T E R3

26 Artificial Intelligence Basics

3.2 Strategies for Search

A search procedure must find a path between the initial and goal states.
There are two directions in which a search process could proceed:

Forward Search: Data-driven inference works from the initial
state. By looking at the premises of the rules (IF-Part), it performs
the action (THEN-Part), possibly updating the knowledge base or
working memory. This continues until no more rules can be applied.

For example:

A D

C
F

B
Z

Disadvantage:

Many rules may be applicable, so the whole process is not directed
toward a goal.

Backward Search: Goal driven inference works toward a final state
by looking at the working memory to see if a goal is already there. If
not, it looks at the action (THEN-Parts) of the rules that will establish
the goal and sets up sub-goals for achieving the premises of the
rules(IF-Part).This process continues until some rules can be applied
to achieve the goal state.

Advantage: Search is directed.

Disadvantage: Goal has to be known.

3.3 Search Techniques

The search process in AI can be mainly classified into two types:

1. Uninformed search (also called a Blind Search or Brute Force search)
2. Informed search or heuristic search

1. Uniformed Search: A uniformed search algorithm does not have any
domain specific knowledge. These algorithms use information like the
initial state, final state, and a set of logical operators. This search should

The Search Process 27

proceed in a systematic way by exploring the nodes in a predetermined
order. Uniformed search can be classified into two search technologies:

i. Depth-First Search
ii. Breadth-First Search

i. Depth-First Search: A depth-first search (DFS) is one of the main search
processes. It starts off at the root of the tree and works its way down the
left branch until it gets to the end. If this is not the goal state, then it backs
up and tries the next branch. This continues until the goal state is reached.
The algorithm tries to get as deep as possible as fast as possible. It is guar-
anteed to find a goal if one exists, but it does not always find the optimal
path. The algorithm for the depth-first search is given in Figure 3.1.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If (A =GOAL), terminate the search with success.

Step 5: Else if node A has successors, generate all of them and add
them at the beginning of START.

Step 6: Go to Step 2.

R

B

E F

A

C D

Root

Goal

FIGURE 3.1 Algorithm for the Depth-First Search.

Look at the above tree, which has nodes starting from the root node R
at the first level, A and B at the second level, and C, D, E, and F at the
third level. If we want to search for node E, then the depth-first search will
search for node E from left to right. First, it will check if E exists at root R.
After that, it will check the nodes on the left side of the tree. Finally, it will
check the nodes on the right side of the tree.

28 Artificial Intelligence Basics

Advantages:

1. It stores only a stack of nodes on the path from the root to the current
node, which is why less memory space is required.

2. If the depth-first search finds a solution without exploring much in a
path, then it will use less time and space than it would otherwise.

3. The depth-first search may be useful for problems where any satisfacto-
ry solution will suffice (i.e., we are not looking for the optimal solution).

Disadvantages:

1. There is a possibility that it may go down the left-most path forever.
Even a finite graph can generate an infinite tree. This depth is called
the cut-off depth. The value of the cut-off depth is essential because
otherwise the search will go on and on. If the value of the cut-off is
less than d, the algorithm will fail to find a solution, whereas, if the
cut-off depth is greater than d, a large price is paid in terms of the
execution time.

2. The depth-first search is not guaranteed to find the solution. If more
than one solution exists, then the depth-first search is not guaranteed
to find the minimal solution.

3. Its complexity depends on the number of paths. It cannot check du-
plicate nodes.

Performance of the Depth-First Search

Two important factors must be considered in any search procedure, the
time complexity and space complexity.

Time Complexity: The amount of time taken to generate the nodes is
called the time complexity. The amount of time is proportional to the
depth (d) and branching factor (the average number of child nodes for
a given node) (b). The total number of nodes at level d = bd.

For the depth-first search, total amount of time needed is given by
1 + b + b2 +.......... + bd.

Thus, the time complexity = O(bd).

Space Complexity: The depth-first search stores only the current
path that it is pursuing. Hence, the space complexity is a linear
function of the depth. Thus, the space complexity = O(bd).

The Search Process 29

ii. Breadth-First Search: The breadth-first search is another search
process. It checks all of the nodes at one level starting on the left and
working towards the right, before expanding the tree one level deeper.
In other words, it moves back and forth through the search tree, only
looking at the children of a node when all other nodes at a level have
been examined. It finds the shallowest solution rather than the first
solution it reaches. Therefore, it is useful when we want to find a solu-
tion with the minimum number of steps from the starting point. The
algorithm for the breadth-first search is given in Figure 3.2.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If (A =GOAL), terminate the search with success.

Step 5: Else if node A has successors, generate all of them and add
them at the end of START.

Step 6: Go to Step 2.

R

B

F

A

C D

Root

Goal

E

FIGURE 3.2 Algorithm for the Breadth-First Search.

Look at the above tree with nodes starting from root node R at the first
level, A and B at the second level, and C, D, E, and F at the third level. If
we want to search for node E, then the breadth-first search will search level
by level. First, it will check if E exists at the root. Then, it will check the
nodes at the second level. Finally, it will check node E at the third level.

Advantages:

1. The breadth-first search is an exhaustive search algorithm. It is simple
to implement, and it can be applied to any search problem. If we

30 Artificial Intelligence Basics

compare the breadth-first search to the depth-first search algorithm,
the breadth-first search does not suffer from any potential infinite
loop problem which may cause the computer to crash. So it will not
go down a blind alley to find a solution.

2. If there is a solution, then the breadth-first search will definitely find
it out. However, if there is more than one solution, the breadth-first
search can find the minimal one that requires the smallest number
of steps.

Disadvantages:

1. The main drawback of the breadth-first search is its memory require-
ment, since each level of the tree must be saved in order to gener-
ate the next level. The amount of memory used is proportional to the
number of nodes stored. Hence, the space complexity of the breadth-
first search is O (bd). As a result, the breadth-first search is severely
space-bound, so it will exhaust the memory available on a typical com-
puter in a matter of minutes.

2. If the solution is further from the root, the breadth-first search will
consume a lot of time.

3. Its complexity depends on the number of nodes.

Performance of the Breadth-First Search

Similar to the depth-first search, two important factors must be consid-
ered in the search procedure, i.e., the time complexity and space complexity.

Time Complexity: This is the amount of time taken to generate the
nodes. The amount of time needed is proportional to the depth (d)
and branching factor (b). The total number of nodes at level d=bd.
For the breadth-first search, the total amount of time needed is given
by 1 + b + b2 + b3 + bd

Hence, the time complexity = O(bd).

Space Complexity: This refers to amount of memory needed.
It keeps track of all children it has generated. The space complexity
is also proportional to depth d and branching factor b. Thus, the
space complexity becomes 1 + b + b2 + bd. Hence, the space
complexity = O(bd).

The Search Process 31

2. Informed Search or Heuristic Search
If we consider human problem solving, it is usually a combination of the
depth-first search and breadth-first search. Blind searches are normally
very inefficient. By adding domain-specific knowledge, we can improve
the search process. The idea behind a heuristic search is that we explore
the node that is most likely to be nearest to a goal state. So, heuristics
are the “rules of thumb,” almost like tour guides in that they are good at
pointing in a general direction, but may miss certain paths. Heuristics are
approximates used to reduce the search process. The following types of
problems use a heuristic search:

Problems for which no exact algorithms are known, and to find
an approximate and satisfying solution. For example, speech
recognition or computer vision;

Problems for which exact solutions are known, but the computations
for these problems are not feasible, e.g., a Rubik’s Cube or chess.

Heuristic Function

Heuristic search uses a heuristic evaluation function which evalu-
ates each state into numbers. On average, it improves the quality of
the paths that are explored. It is a means by which humans can per-
form a more efficient search. A heuristic function is normally denoted
h(n), that is h(n) = the estimated cost of the cheapest path from the
state at node n to the goal state.

Heuristic Search Techniques

Heuristic techniques are called weak methods since they are vul-
nerable to the combinatorial explosion. Even then, these techniques
continue to provide a framework into which domain specific knowl-
edge can be placed. The following list includes some general purpose
control strategies:

i. Hill climbing
ii. Best first search
iii. A Algorithm
iv. AO Algorithm
v. Beam search
vi. Constraint satisfaction

32 Artificial Intelligence Basics

i. Hill Climbing: This is a search method for finding a maximum (or
minimum) of an evaluation function. It considers the local neighbor-
hood of a node, evaluating those nodes with the largest (or smallest)
values and next examines those nodes with the largest (or smallest)
values. Unlike other search strategies that use evaluation functions
(like the uninformed depth-first search), hill climbing is an irrevocable
scheme. It does not permit us to shift attention back to previously-
suspended alternatives, even though they may have offered a better
alternative than the one at hand. This property is the heart of both its
computational simplicity and its shortcomings. It requires very little
memory, since alternatives do not need to be retained for future con-
sideration. However, it is not guaranteed to lead to a solution, since it
can get struck on a local maximum or plateau or even wander or follow
infinite uncontrolled paths, unless the guiding evaluation function is
very informative. The algorithm for hill climbing is given in Figure 3.3.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If (A =GOAL), terminate the search with success.

Step 5: Else if node A has successors, generate all of them. Find out
how far they are from the goal node. Sort them by the remaining
distance from the goal and add them to the beginning of START.

Step 6: Go to Step 2.

R

CA B

FD E

G

38

2.7 2.9

7

2

Root

Goal node

FIGURE 3.3 Algorithm for the Hill Climbing Search.

The Search Process 33

Drawbacks of the Hill Climbing Technique

This technique has three well known drawbacks:

Local maximum: A local maximum is a peak that is lower than
the highest peak in the state space, but it is better than all its
neighbors. Once on a local maximum, hill climbing will halt, even
though there is a better solution.

Plateau: A plateau is an area of the state space where the
evaluation function is nearly flat. Hill climbing will do a random
walk in such an area.

Ridge: A ridge is a curve in the search place that leads to a
maximum, but the orientation of the high region (ridge) compared
to the available moves that are used to climb is such that each
move will lead to a smaller point. In other words, each point on a
ridge looks like a local maximum, even though the point is part of
a curve leading to a better optimum. So, it is an area in the path
which must be traversed very carefully because movement in any
direction might keep one at same level or result in a fast descent.

Figure 3.4 provides a pictorial representation of the local maximum,
plateau, and the ridge.

Global Maximum
Local

maximum

Evaluation
Function

State Space

×

Plateau

Evaluation
Function

State Space

×

Ridge

Evaluation
Function

State Space

×

FIGURE 3.4 Problems Associated with Hill Climbing: The Local Maximum, Plateau, and Ridge.

34 Artificial Intelligence Basics

In order to overcome these problems, we can

Backtrack to some earlier node and try to go in a different direction.

Make a big jump to try to get in a new section of the search space.
A huge jump is recommended because in a plateau, all neighboring
points have the same value.

Move in several directions at once. This is a particularly good strategy
for dealing with ridges.

Conclusion

1. Hill climbing is a local method. It decides what to do next by looking
only at the “immediate” consequences of its choices.

2. Global information might be encoded in heuristic functions.
3. It can be very inefficient in a large, rough problem space.
4. Global heuristics may have to pay for the computational complexity.

They are often useful when combined with other methods for getting
the process started right in the correct general neighborhood.

ii. Best-First Search: The best-first search is another heuristic search
technique and it is a way of uniting the advantages of the depth-first
search and breadth-first search into a single method. One way of
combining the two methods is to follow a single path at a time but
switch paths whenever a rival path looks more promising. This is done
through applying an appropriate heuristic evaluation function to the
nodes we have generated so far. The algorithm is given in Figure 3.5.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If (A =GOAL), terminate the search with success.

Step 5: Else if node A has successors, generate all of them. Find out
how far they are from the goal node. Sort all the children gen-
erated so far by the remaining distance from the goal.

Step 6: Name this list as START 1.

Step 7: Replace START with START 1.

Step 8: Go to Step 2.

The Search Process 35

K

L

M

D

E

F

G

I

J

H

R

A

B

C

3
9

8

12
14

7
6

5

1
φ

2

6

5

Root

Goal Node

FIGURE 3.5 Algorithm for the Best-First Search.

iii. A Algorithm: The A Algorithm combines features of the uniform
cost search and pure heuristic search to efficiently compute optimal
solutions. In the best-first search, we use the evaluation function val-
ue (which estimates how far a particular node is from the goal), i.e.,
h(n). Apart from the evaluation function values, one can also use the
cost function. The cost function indicates how much of the resources,
like time, energy, and money, have been spent in reaching a particular
node from the start, i.e., g(n).
So, A Algorithm is a best-first search algorithm in which the cost
associated with a node is f(n) = g(n) + h(n).

The sum of the evaluation function value and cost along the path to that
state is called the fitness number, i.e., f(n). Therefore, A Algorithm
guides an optimal path to a goal if the heuristic function h(n) is admis-
sible, meaning it never overestimates the actual cost. For example, the
distance a plane flies never overestimates the actual highway distance.

The algorithm is given in Figure 3.6.

Step 1: Put the initial node on a list (START).

Step 2: If (START is empty) or (START=GOAL), terminate the search.

Step 3: Remove the first node from START. Call this node A .

Step 4: If (A =GOAL), terminate the search with success.

Step 5: Else if node A has successors, generate all of them. Estimate
the fitness number of the successors by totaling the evaluation
function value and the cost-function value. Sort the list by the
fitness number.

36 Artificial Intelligence Basics

Step 6: Name the new list as START 1.

Step 7: Replace START with START 1.

Step 8: Go to Step 2.

K

L

M

D
9

12
F

G

I

J

H

R

A

B

C

3

2

4

3
14

7 6

6

7

1

1

φ
2

2

2

2

6

Root

Goal Node

Fitness Numbers

Evaluation Function Value

8

6
14

18

19

18

23

23

20

20

21
11

5
5

5

6

FIGURE 3.6 Algorithm for A Algorithm.

Here, we associated each node with three numbers: The evaluation func-
tion value, the cost function value, and the fitness number.

The fitness number is the total of the evaluation function value, the cost
function value. For example, for node K, the fitness number is 20, which is
obtained as follows.

(Evaluation on function of K)+

(Cost function involved from start node R to node K)

= 1 + (Cost function from R to C + Cost function from C to H +
Function from H + I + Cost function from I to K)

= 1 + 6 + 5 + 7 + 1

= 20

While best-first search uses the evaluation function value only for
expanding the best node, A Algorithm uses the fitness number for its
computation.

iv. AO Algorithm (Problem Reduction): When a problem can be divided
into a set of sub-problems where each problem can be solved separately
and a combination of these will be a solution, AND-OR graph or AND-

The Search Process 37

OR trees are used for representing the solution. The decomposition of
the problem generates AND arcs. One AND arc may point to any num-
ber of successor nodes. All these must be solved so that the arc will rise
to many arcs, indicating several possible solutions. The AO Algorithm
cannot search AND-OR graphs efficiently because for the AND tree, all
branches of it must be scanned to arrive at a solution. To highlight this
idea, consider the small AND/Or tree shown in Figure 3.7.

D

9

R

A B C47

FIGURE 3.7 A Simple AND/OR Tree.

In Figure 3.7, we find the minimal is B, which has value of 4. But B is a part
of the AND graph, and so we have to take into account the other branch of
the AND tree. The estimate now has a value of 9. This forces us to rethink
the options, and now we choose D because it has the lowest value.

The algorithm for the AO Algorithm is given in Figure 3.8.

Step 1: Create an initial graph GRAPH with a single node NODE. Compute the evaluation
function value of NODE.

Step 2: Repeat until NODE is solved or the cost reaches a very high value that cannot be
expanded.

Step 2.1 Select a node NODE1 from NODE. Keep track of the path.

Step 2.2 Expand NODE1 by generating its children. For children that are not the ancestors
of NODE1, evaluate the evaluation function value. If the child node is a terminal one, label
it END_NODE.

Step 2.3 Generate a set of nodes DIFF_NODES having only NODE1.

Step 2.4: Repeat until DIFF_NODES is empty.

Step 2.4.1 Choose a node CHOOSE_NODE from DIFF_NODES such that none of the
descendants of CHOOSE_NODE is in DIFF_NODES.

Step 2.4.2 Estimate the cost of each node emerging from CHOOSE_NODE. This cost is
the total of the evaluation function value and the cost of the arc.

Step 2.4.3 Find the minimal value and mark a connector through which the minimum is
achieved, overwriting the previous if it is different.

Step 2.4.4 If all the output nodes of the marked connector are marked END_NODE, label
CHOOSE_NODE as OVER.

Step 2.4.5 If CHOOSE_NODE has been marked OVER or the cost has changed, add to set
DIFF_NODES to all ancestors of CHOOSE_NODE.

FIGURE 3.8 The AO* Algorithm.

38 Artificial Intelligence Basics

v. Beam Search: This is a search method in which heuristics are used
to prune the search space to a small number of nearly optimal alter-
natives. This set comprises the “beam,” and its members are then
searched in parallel. Beam search uses the breadth-first search to build
its search tree. At each level of the tree, it generates all successors of
the states at the current level, sorting them in increasing order of the
heuristic cost. However, it only stores a predetermined number of the
best states at each level (called the beam width) and only those states
are expanded next.
The algorithm for the beam search is given in Figure 3.9.

Step 1: Let width_of_beam = w.

Step 2: Put the initial node on a list (START).

Step 3: If (START is empty) or (START=GOAL), terminate the search.

Step 4: Remove the first node from START. Call this node A .

Step 5: If (A =GOAL), terminate the search with success.

Step 6: Else if node A has successors, generate all of them and add
them at the end of START.

Step 7: Use a heuristic function to rank and sort all the elements of
START.

Step 8: Determine the nodes to be expanded. The number of nodes
should not be greater than w. Name these START1.

Step 9: Replace START with START1.

Step 10: Go to Step 2.

ED

R

A B C
8 10

Value obtained by
applying heuristic

function of each node.

Node discarded
to keep the width
of the beam = 3

} 59

Step-I

3

FIGURE 3.9 Algorithm for the Beam Search.

The Search Process 39

The greater the beam width, the fewer states are pruned. With an infinite beam
width, no states are pruned and the beam search is identical to the breadth-
first search. The beam width bounds the memory required to perform the
search. The beam search is not optimal, but it returns the first solution found.
Speech recognition and vision and learning applications use the beam search.

vi. Constraint Satisfaction: As can be inferred from the name, this set
of problems deals with constraints. These constraints are no differ-
ent from the ones that inhabit the real world. There are constraints all
around us, such as temporal constraints (managing work and home life)
or tangible constraints (making sure we do not go over budget), and
we figure out ways to deal with them with varying degrees of success.
For solving problems in this area, human beings use extensive domain-
specific and heuristic knowledge. The following are examples where
constraint programming has been successfully applied in various fields:

Operations Research (scheduling, timetabling)

Bioinformatics (DNA searches)

Electrical Engineering (Circuit Layout)

So, a constraint satisfaction problem consists of

A set of variables: X1, X2...........,Xn

A set of domains: D1, D2............,Dn

Such that all variables Xi have a value in their respective domain Di.

A set of constraints encompasses Ci, C2,........Cm such that a con-
straint Ci restricts (imposes a constraint on) the possible values in the
domain of some value in its domain so that every constraint is satisfied.
Therefore, each assignment of a value to a variable must be a con-
straint. It must not violate any of the constraints.

Cryptarithmetic problems are typical constraint-satisfaction problems.
To explain cryptarithmetic problems, consider the following example:

SEND + MORE = MONEY

Here, the constraints are

 No two digits can be assigned to the same letter. This means that
only a single digit can be assigned to a letter, and all letters have
different numeric values.

40 Artificial Intelligence Basics

 Assumptions can be made at various levels so that they do not
contradict each other.

 Any of the search techniques may be used.

 Backtracking may be performed as applicable for the applied search
technique.

 The rules of arithmetic may be followed.

The solution is to find the value of the letters M, O, N, E, Y, S, R, and D.
We consider the following:

 5 4 3 2 1 column no. ____
 S E N D
 + M O R E
 c3 c2 c1 carry ____
 M O N E Y

1. From column 5, the initial guess is M = 1. Since it is the only carry-over
possible, from the sum of the two single digit numbers in column 4.

2. To produce a carry-over from column 4 to column 5,
“S + M” is at least 9 so
“S = 8 or 9”
 “S + M” = “9 or 10,” and so
“O = 0 or 1,” but “M = 1” so “O = 0”

3. If there is a carry-over from column 3 to 4, then
“E = 9” and so “N = 0” but
“O = 0” so there is no carry, and “S = 9” and “C 3 = 0”

4. If there is no carry-over from column 2 to column 3, then
“E = N,” which is impossible; there is a carry-over, and “N = E + 1”
and “C2 =1”

5. If there is a carry-over from column 1 to column 2, then
“N + R = E mod 10”....................a and “N = E + 1”..........................b
So, put the value of equation b into equation a. Then,
“E + 1 + R = E mod 10.” So, “R = 9” but “s = 9” so, there must be a
carry from column 1 to column 2. Therefore, “C1 = 1” and “R = 8”

The Search Process 41

6. To produce a carry-over from “C1 =1” from column 1 to column 2, we
must have
“D + E = 10 + 4”
as 4 cannot be 0/1. So “D + E” is at least 12, as D is almost 7 and E is
at least 5. (D cannot be 8 or 9, as it is already assigned.) N is almost 7
and “N = F + 1.” So, “E = 5 or 6.” Therefore, E is at least 5.

7. If E were 6 and “D + E” is at least 12, then D would be 7, but
“N = E + 1,” and N would also be 7, which is impossible. Therefore,
“E = 5” and “N = 6”

8. “D + E” is at least 12. We then obtain “D = 7” and “Y = 2.”

Then, the solution is

 9 5 6 7
+ 1 0 8 5
1 0 6 5 2

Values:
S = 9
E = 5
N = 6
D = 7
M = 1
O = 0
R = 8
Y = 2

In the AI literature, constraints satisfaction is characterized as a hill
climbing technique with only a global maximum.

GAME PLAYING
4.1 Game Playing

Game playing demonstrates several aspects of intelligence, particularly the
ability to plan (at both the immediate tactical level and long-term strategic
level) and the ability to learn. Successful gaming is generally deemed to
require intelligence. Computers can be programmed to play games such as
tic-tac-toe, checkers, and chess. The board configurations used in playing
these games are easily represented in computers, requiring no complex for-
malisms. To solve large and complex AI problems, lots of techniques, like
heuristics, are needed.

These are the following reasons for the importance of game playing
in AI:

The rules of games are limited. Hence, extensive amounts of
domain-specific knowledge are seldom needed.

Games provide a structured task where success or failure can be
measured with the least amount of effort.

Games visualize real life situations in a constricted fashion. Moreover,
game playing permits the simulation of real life situations.

Unfortunately, the development of computer game programs is not
that easy because of the problem of the combinatorial explosion of solu-
tions. For example, in chess, the number of positions to be examined is
about 35100.

C H A P T E R4

44 Artificial Intelligence Basics

4.2 Game Tree

We can represent all possible games (of a given type) using a directed graph
often called a “game tree.” The nodes of the graph represent the states of
the game. The arcs of the graph represent the possible moves by the players
(+ and –). Consider the start of a game:

The game starts with some “start” rules and there is a set of possible
moves:

m1, m2............., mn

These give rise, respectively, to the states

S1, S2,, Sn

By considering the possible moves at any state Si (recursively), we
develop a game tree.

The leaves of this tree represent the state of play so far. The rules of the
game assign a value to every terminal position:

W = Won,

L = Lost from the point of view of “+,” and

D = Draw.

One way to guarantee a good game would be to completely analyze the
game tree.

4.3 Components of a Game Playing Program

There are two major components of a game playing program: a plausible
move generator and a static evaluation function generator.

Plausible Move Generator

In games where the number of legal moves is too high, it is not possi-
ble to perform a full-width search to a depth sufficient enough to have
a good game. The plausible move generator is an important search
alternative in such domains. It expands or generates only the selected
moves. It is not possible for all moves to be examined because of the
following:

Game Playing 45

1. The amount of time given for a move is limited.

2. The amount of computational power available at the disposal
for examining the various states is also limited. However, further
research is going on to enhance the computational power using
parallel processing architectures.

Static Evaluation Function Generator

This is the most important component of a game playing program,
and it is used to evaluate the positions at the leaves of the tree or
every move that is being made. The static evaluation function genera-
tor occupies a crucial role in a game playing program because of the
following factors:

1. It utilizes heuristic knowledge for evaluating the static evaluation
function value.

2. The static evaluation faction generator acts like a pointer to point
the way so the plausible move generator can generate future
paths.

Designing the static evaluation generator is an art. A good static evalu-
ation generator should be very fast because it is the limiting factor in
how quickly the search algorithm runs.

4.4 Game Playing Strategies

Games can be classified as either a single-person or multi-person. Games
like the Rubik’s Cube and 8-puzzle are single person games. For these, the
search strategies such as the best-first or A Algorithm can be used. These
strategies help in identifying paths in a clear fashion.

On the other hand, in a two-person game, like chess or checkers, each
player tries to outsmart the opponent. Each has their own way of evaluat-
ing the situation. Since each player tries to obtain the maximum benefits,
the best-first search or A Algorithm do not serve the purpose. The basic
methods available for game playing are as follows:

1. minimax strategy
2. minimax strategy with alpha-beta cut-offs

46 Artificial Intelligence Basics

1. Minimax Strategy

This is the most well known strategy for two player games. Here, one
player is called a “maximizer” and other is called a “minimizer.” The main
objective of a player is to minimize the loss and maximize the profit. It
is a type of mixed strategy. Both the maximizer and minimizer fight it
out to see which opponent gets the minimum benefit while they get the
maximum benefit.

Algorithm for the Minimax Strategy

The minimax search procedure is a depth-first, depth-limited search
procedure. The idea is to start at the current position and use the plausible
move generator to generate a set of possible successor positions. We apply
the static evaluation function to those positions and simply choose the best
one. After doing so, we can back that value up to the starting position to
represent our evaluation of it. The starting position is exactly as good for
us as the position generated by the best move we can make next. The algo-
rithm for the minimax strategy is shown in Figure 4.1.

Function MINIMAX (N) is
Begin

If N is a leaf then
Return the estimated score of this leaf

Else

Let N1, N2,, Nn be the successor of N;
If N is a MIN node then

Return min{MINIMAX(N1),.....MINIMAX(Nm)}
Else

Return max{MINIMAX(N1),.....MINIMAX(Nm)}
END MINIMAX;

FIGURE 4.1 Algorithm for Minimax.

We can explain the minimax strategy with the help of Figure 4.2. Let’s
assume that the maximizer will have to play first, followed by the minimizer.
The search strategy here tries for only two moves, the root being M and the
leaf nodes being Q, R, S, T, U, V, W, X, Y, and Z

Game Playing 47

wvt z

P

yxs

N

rq

M

O

–4 –6 +2 +4 +3 +2+3 +5 +7 ø

u

FIGURE 4.2 A Game Tree Expanded by Two Levels.

Before the maximizer moves to N, O, and P, he will think about which move
would be highly beneficial to him. In order to evaluate the move, the chil-
dren of the intermediate nodes N, O, and P are generated, and the static
evaluation function value generator assigns values for all the leaf nodes.

If M moves to N, it is the minimizer who will have to play next. The
minimizer always tries to give the minimum benefit to the other and hence
he will move to R (static evaluation value = −6). This is backed up at N.

If M moves to O, then the minimizer will move to W (static evaluation
function value = 0), which is the minimum of 3, +5, 7, and 0. So the value
of 0 is backed up at O. On a similar line, the value that is backed up at P is
2. The tree now with backed up values is given in Figure 4.3.

wvt z

Maximizer’s Move

P

yxs

N

rq

M

O

–4 –6

–6

+2 +4 +3 +2

+2

+3 +5 +7 0

ø

u

Minimizer’s Move

FIGURE 4.3 Maximizer’s Move for the Tree Given in Figure 4.2.

The maximizer will now have to choose between N, O, or P with the values
–6 and 2. Being a maximizer, he will choose node P because by doing so, he
is sure of getting a value of 2, which is much better than 0 and –6.

48 Artificial Intelligence Basics

What will be the move chosen if the minimizer has to make the first
move?

Figure 4.4. shows this.

wvt z

Minimizer’s Move

P

yxs

N

rq

M

O

–4 –6

2

+2 +4 +3 +2

47

+3 +5 +7 ø
u

MoveMaximizer’s

FIGURE 4.4 Maximizer’s Move for the Tree Given in Figure 4.2.

This search has just stopped with two levels only. However, it is possible
to consider more levels for accurate results. It depends on the following
factors:

time left forming

the stage of the game

number of pieces one has

2. Minimax Strategy with the Alpha-Beta Cut Off
It is necessary to modify the search procedure slightly to handle both
the maximizing and minimizing players. It is also necessary to modify
the branch and bound strategy to include two bounds, one for each
player. This modified strategy is called “alpha-beta pruning.” It requires
the maintenance of two threshold values. One represents a lower bound
on the value that a maximizing node may ultimately be assigned, called
“alpha.” The other represents the upper bound on the value that a mini-
mizing node may be assigned, called “beta.” For the MIN nodes, the
score computed starts with (+) infinity and decreases with time. For the
MAX nodes, the score computed starts with (-) infinity and increases
with time. Alpha-beta pruning is strongly affected by the order in which
branches are explored. The sooner the best moves are discovered, the
sooner the worst branches can be explored.

Game Playing 49

Algorithm for the Alpha-Beta Cut Off

The algorithm maintains two values, alpha and beta, which represent the
minimum score that the maximizing player is assured of and maximum
score that the minimizing player is assured of, respectively. Initially, alpha
is “negative” infinity and beta is “positive” infinity. As the recursion pro-
gresses, the “window” becomes smaller. When beta becomes less than
alpha, the current position cannot be the result of the best play by both
players, and hence, it need not be explored further.

The pseudocode for the alpha-beta algorithm is given in Figure 4.5.

Evaluate (node, alpha, beta)

IF Node is a leaf

Return the heuristic value of node

IF node is a minimizing node

For each child of node

Beta =min (beta , evaluate (Child, alpha, beta))

If beta <=alpha

Return beta

Return beta

If node is a maximizing node For

each child of node

alpha = max (alpha, evaluate (Child, alpha, beta))

If beta <=alpha

Return alpha

Return alpha

FIGURE 4.5 Pseudocode for the Alpha-Beta Cut Off.

For example,

MAX NODE: This is generally drawn as a square or possibly an
upward-pointing triangle, i.e., (,).

MIN NODE: This is generally drawn as a circle or possibly downward-
pointing triangle i.e., (,).

50 Artificial Intelligence Basics

The alpha-beta values help develop the tree structure in Figure 4.6.

Alpha Max –≥ inf ≥–7

3 2 1
K L M

Beta
Min ≤ inf ≤ inf

6≤5

6≤4

X

X

3≤2

3≤1

X

X

6≤6
≤ inf
3≤3

Alpha Max ≥ – inf ≥ –7

7≤9
7≤8
7≤7

DB

A

1
9 8 7

7 36

E F G
6 5 4

H I J

C

Alpha Max ≥ -inf Alpha-Beta
cut-off (I)

Alpha-Beta
cutoff (II)

FIGURE 4.6 A Sample Tree to Explain the Alpha-Beta Search.

The maximizer has to play first, followed by the minimizer. Here, A is the
maximizing player. A can branch to B, C, and D. The static evaluation func-
tion generator has assigned values which are given for the leaf nodes since
E, F, G, H, I, J, K, L, and M are also maximizers.

Thus E, F, G, H, I, J, K, L, and M have the values 9, 8, 7, 6, 5, 4, 3, 2,
and 1, respectively.

The preceding level (i.e., the nodes B, C, and D) is the minimizer’s.
Thus, B takes the minimum values of 9, 8, and 7; C takes the minimum val-
ues of 6, 5, and 4; and D takes the minimum values of 3, 2, and 1. Since A is
the maximizer, then A will obviously opt for B first, then C and D.

Alpha-beta pruning is an improvement over the minimax algorithm.
The problem with minimax is that the number of game states it has to exam-
ine is exponential in the number of moves. While it is impossible to elimi-
nate the exponent completely, we are able to cut it in half.

4.5 Problems in Computer Game Playing Programs

Even though much has been said about the problem of the combinato-
rial explosion of solutions, computer game playing programs have still been

Game Playing 51

developed. These programs suffer from a few deficiencies, i.e., the horizon
effect and optimal move question.

1. Horizon Effect
This is a problem that occurs in many games where the number of
possible states of positions is immense, and the computer can only
feasibly search a small portion of them, typically a few levels down the
game tree.

When searching a game tree to depth n, the horizon effect occurs
when the search goes to depth n+1, which would result in the evalu-
ation of a move being drastically different. When evaluating a large
game tree using techniques such as the minimax or alpha-beta pruning,
the search depth is limited for feasibility reasons. However, evaluating
a partial tree may give misleading results when a significant change
exists over the horizon of the search depth.

For example, in chess, assume a situation where the computer only
searches the game tree to six plies (turns). From the current position, it
determines that the queen is lost in the sixth ply, and suppose there is a
move in the search depth where it may sacrifice a rook and the loss of the
queen is pushed to the eighth ply. This is, of course, a worse move than
sacrificing the queen, because it leads to losing both a queen and rook.

However, because the loss of the queen was pushed over the hori-
zon of the search, it is not discovered and evaluated by the search. We
think “Losing the rook seems to be better than losing the queen,” so
the sacrifice is returned as the best option while delaying the sacrifice
of queen. But the insertion of delaying moves causes an inevitable loss
of material to occur beyond the program’s horizon (maximum search
depth). It weakens the computer’s position. The effect is less apparent
in a program with more knowledgeable quiescence searching. Beside
an obligatory, quiescence search (the purpose of this search is to only
evaluate “quiet” positions where there are no winning tactical moves
to be made), extensions (especially check extensions) are designed to
reduce the horizon effect.

2. Optimal Move Question
The second major defect is that these programs expect the opponent
to make the most optimal move, which cannot be expected in real
games.

KNOWLEDGE
REPRESENTATION
5.1 Introduction

A knowledge-based management system (KBMS) is a computer system
that manages the knowledge in a given domain of interest and exhibits rea-
soning power to the level of a human expert in this domain. AI is the part
of computer science that designs intelligent computer systems, that is, sys-
tems that exhibit the characteristics we associate with intelligence in human
behavior. Furthermore, operations in a knowledge-based system are more
complex than those in a traditional database. When a rule is added, the sys-
tem must check for contradictions and redundancy.

5.2 Definition of Knowledge

Knowledge can be defined as the body facts and principles accumulated
by humankind or the act, fact, or state of knowing. Knowledge is having
a familiarity with language, concepts, procedure, rules, ideas, abstraction,
places, custom, facts, and associations, coupled with an ability to use these
notions effectively in modelling different aspects of the world. Without this
ability, the facts and concepts are meaningless and therefore worthless.

The meaning of knowledge is closely related to the meaning of intel-
ligence. Intelligence requires the possession of and access to knowledge.
A characteristic of intelligent people is that they possess a large amount of
knowledge.

C H A P T E R5

54 Artificial Intelligence Basics

Human experts have two main types of knowledge:
1. Domain Specific Knowledge

Domain specific knowledge refers to specialized knowledge required
to perform a particular task. To acquire this knowledge, we have to be
trained or study it.

2. Commonsense Knowledge
All other pieces of knowledge that help in reasoning other than domain
specific knowledge are called commonsense knowledge.

The performance of the system increases when both types of
knowledge are coupled. Associative literature has also classified knowl-
edge as being either Declarative or Procedure.

5.2.1 Procedural Knowledge
Procedural knowledge is the compiled or processed form of information. It
is related to the performance of some task. It gives knowledge/ information
about how to achieve something. For example, a sequence of steps to solve
a problem is procedural knowledge.

Advantages of procedural knowledge

1. Meta knowledge: It is knowledge about knowledge and how to gain
and use pieces of information. It can be easily expressed in procedural
form.

2. Procedural knowledge involves more senses, such as hands-on experi-
ence, practice at solving problems, and understanding the limitations
of a specific solution. Thus, it can frequently eclipse theory.

3. Statements can be written without regard for the use that will be made
of them later in the program, but in practice, the programmer will
always have this in mind.
Procedural knowledge is implemented via procedural or rule-based
(production) systems.

These are often structured as IF (condition) – THEN (action). For
example, consider the following code:

procedure Carnivore(x);

If(x=cheetah) then return true

Else return false; END procedure Carnivore(x).
procedure sharp_teeth(x);

Knowledge Representation 55

If Carnivore(x) then return true

Else return false END procedure sharp_teeth(x).

To see whether “cheetah” has sharp teeth, one should activate proce-
dure sharp_teeth with variable x initialized to the value “cheetah.” This
procedure calls procedure Carnivore (x), and in turn, the value of (x =
cheetah). Procedure Carnivore returns a true value and so does proce-
dure sharp_teeth.

5.2.2 Declarative Knowledge
Passive knowledge includes statements of facts about the world. For exam-
ple, the marked assignment of a student is declarative knowledge.

Declarative schemes include logic-based and relational approaches. A
declarative representation declares every piece of knowledge and permits
the reasoning system to use the rules of inference like modus pones, modus
tollens, and the chain rule to come out with new pieces of information.

Advantages of Declarative Knowledge

1. The ability to use knowledge in ways that the system designer did not
foresee.

2. A statement involving several variables needs only be written once in
declarative form and can be used in different ways on different occa-
sions according to the results sought.

3. A declarative structure is easy to modify, and new statements can be
added easily.

For example, consider the following statements:

“All carnivores have sharp teeth” and

“A cheetah is a carnivore.”

This can be represented using a declarative representation such as

x (carnivore (x) –> sharp_teeth (x)

Carnivore (cheetah)

Using these two representations, it is possible to deduce that “A
cheetah has sharp teeth.”

So, it is enough that you represent the knowledge only once. In the
example discussed above, the statement “x (carnivore (x) –>

56 Artificial Intelligence Basics

sharp_teeth (x)” is made only once, and the variable x encom-
passes a wide variety of animals which are carnivorous in nature.

5.3 Importance of Knowledge

Intelligence requires knowledge. To exhibit intelligence, knowledge is
required. Knowledge plays a major role in intelligent systems because they
use the knowledge of syntax and meaning in order to understand sen-
tences. They use knowledge to eliminate one useless or time-consuming
search when solving a problem.

5.4 Knowledge-Based Systems

These are systems that use the knowledge provided to solve problems in
specific domains. Much of work done in AI has been related to knowledge-
based systems, including work in vision, learning, and general problem solv-
ing and natural language understanding. A knowledge-based system has
two sub-systems:

A knowledge base

An inference engine

A knowledge base represents the facts about the world. The inference
engine represents the logical assertions and conditions about the world,
usually represented via IF-THEN rules.

A knowledge-based system may also incorporate an explanation facil-
ity so that user can determine whether the reasoning used by the system is
consistent and complete. The reasoning facility also offers a form of tutor-
ing to the uninitiated user.

5.5 Differences Between Knowledge-Based Systems and
Database Systems

Knowledge Base Database

It is any collection of information. It is used
very broadly.

It is a collection of data organized in some
form. A database is a software program that is
used to create tables, queries, and views.

Knowledge Representation 57

Knowledge Base Database

It is significantly smaller than a database, and
we change the knowledge base gradually.

It contains a large volume of data, and the
facts change over time.

Knowledge-based systems are far more
complex and require far greater computing
capabilities. They essentially represent the
attainment of artificial intelligence.

Databases are structured according to
specific requirements, and enable users to
access the desired information quickly and
efficiently.

Updation is performed by domain experts. Updation is performed by clerical personnel.

The demands of knowledge-based systems
can be formidable.

Databases are expanded through the continu-
ous inputting of names, places, and data.
Any conclusions drawn on the basis of the
searches of those databases are entirely
dependent upon the skills and knowledge
level of the people exploiting the data.

It operates on a class of objects. It operates on single objects.

A DBMS provides the user with an inte-
grated language, which serves the purpose of
the traditional DML of the existing DBMS
and has the power of a high-level application
language.

A database can be viewed as a very basic
knowledge-based system in so far as it man-
ages facts. There will be a continuing need
for a current DBMS and functionalities that
co-exist with an integrated KBMS.

5.6 Knowledge Representation Scheme

A knowledge representation scheme is a set of syntactic and semantic con-
ventions used to describe various objects. The syntax and arrangements of
symbols form expressions. Mylopoulos and Levesque classified the schemes
into four categories:

Logical Representation Scheme: For example, first order predict
logic [FOPL]

Procedural Representation Scheme: For example, production rules

Network Representation Scheme: For example, semantic networks

Structured Representation Scheme: For example, scripts, frames,
and conceptual dependencies.

A knowledge representation system should provide ways of represent-
ing complex knowledge. So, in this chapter, we discuss some of the widely
known representation schemes. They are:

58 Artificial Intelligence Basics

1. Semantic Networks or Associative Networks
2. Frames
3. Conceptual Dependency
4. Scripts

1. Semantic Networks of Associative Networks
A semantic network is a structure of representing knowledge as a pattern of
interconnected nodes and arcs. It is also defined as a graphical representa-
tion of knowledge. The objects under consideration serve as nodes and the
relationships with other nodes give the arcs. In a semantic network, infor-
mation is represented as a set of nodes connected to each other by a set
of labelled ones, which represent the relationship among the nodes. The
network can include many different types of relationships. For example,
“Is- a,” “form,” “has-attribute,” “used-for,” “adjacent-to,” and “has-value.”

The following are the rules about how nodes and arcs are applied in
associative networks:

Node in semantic network can be:

a. States
b. Attributes
c. Events

Arcs in the network give the relationship between the nodes and the
labels on the arcs show what type of relationship exists. Using a simple
semantic network, it is possible to add more knowledge by linking
other objects with different relationships. A simple semantic network
is shown in Figure 5.1.

Vertebra Cat

Mammal Bear

Fur

Whale

WaterFish

Animal
Is-an is-a

is-a

Lives-in
lives-in

has

has

has

FIGURE 5.1 A Sample of a Semantic Network.

Knowledge Representation 59

From this, it is possible for us to say that “Mammal” is an animal, and it is a
“Fish” that lives in water. “Mammal” is also a “Bear” that “has Fur.”

Such a semantic network not only gives details about an object under
consideration, but also provides facilities to represent variables. The seman-
tic net shown in the above figure, cannot be represented like this on a com-
puter. Every pair and its link are stored separately.

For example, IS-AN in Prolog represents the following:

MAMMAL

ANIMAL

IS-AN

The figure above is a One-Way Link Representation.

As with a knowledge representation scheme, the problem-solving
power comes from the ability of the program. Inter-section search is used
to find the relationship between two objects. But a major hurdle in utilizing
semantic networks is that there is no standardization and formalization as
far as notations and reasoning are concerned. However, the overall con-
cepts of arcs and nodes in semantic networks have been standardized.

2. Frames
A principle for the large-scale organization of knowledge introduced by
Minsky, originally in connection with vision, but more generally appli-
cable, is called “frames.” Frames may be arbitrarily complex and have
procedures attached to the slots. The default values for the slots are help-
ful when the frames are used in the absence of the full instantiation data.
The character of frames suggests a hierarchical organization of sets of
frames, but the non-hierarchical filling of one frame slot by another is
possible. A frame is defined as a combination of declarative and opera-
tional knowledge. A frame is a data structure that has slots for various
objects and a collection of frames consists of the expectations for a given
situation. A frame structure provides facilities for describing objects,
facts about situations, and procedures on what to do when a situation
is encountered. Frames are also useful for representing commonsense
knowledge. An example is presented below:

60 Artificial Intelligence Basics

Slots Fillers

Name: CHAIR

Is-A: FURNITURE

Color: BROWN

MADE-OF: WOOD

LEGS: 4

ARMS: DEFAULT: 0

PRICE: 100

Types of Frames

There are two types of frames, i.e., the Declarative/Factual Frame and
procedural frame.

Declarative Frame

A frame that merely contains a description about an object is called a
Declarative Type/Factual/Situation frame (Figure 5.2).

HOTEL BED

PART MATTRESS
FRAME

SUPER CLASS: BED
USE: SLEEPING
SIZE: KING

HOTEL PHONE

BILLING: THROUGH ROOM

SPECIALIZATION OF: PHONE
USE: CALLING ROOM SERVICE

HOTEL CHAIR
IS-A: CHAIR
LOCATION:
HOTEL ROOM
HEIGHT: 20-40 cm
LEGS: 4
COMFORTABLE:
YES
USE: FOR
SITTING

HOTEL ROOM

IS-A: ROOM

LOCATION: HOTEL

CONTAINS: {HOTEL
CHAIR,

 HOTEL BED,

 HOTEL PHONE,

}MATTRESS
SUPER CLASS:
CUSHION
FIRMNESS: FIRM

FIGURE 5.2 Frame Description of a Hotel Room.

Knowledge Representation 61

Minsky (1975) developed the original idea of frames and defined them as
“data-structures for representing stereotyped situations,” such as going to
a hotel room.

Procedural Frame

Apart from the declarative part in a frame, it is also possible to attach slots
that explain how to perform things. In other words, it is possible to have
procedural knowledge represented in a frame. Frames with procedural
knowledge embedded in them are called “action procedure frames.” The
action frame has the following slots:

Objects Slots: This frame has information about the item to be
operated in.

Actor Slot: This frame has information about who is performing the
activity.

Source Slot: This frame has information about where the action has
to begin.

Destination Slot: This frame has information about where the action
has to end.

Task Slot: This frame generates the sub-frame required for
performing the operation.

With the help of Figure 5.3, we can clearly understand the procedure
of fixing a punctured tire on a scooter.

Mechanic

Tire

Scooter

Source

Remove the
tire

Find the
punctuure

Fix the
puncture

Scooter

Name: Fix the puncture of scooter tire

Destination

FIGURE 5.3 Procedural Frame.

62 Artificial Intelligence Basics

Advantages of Frames

1. Frames add power and clarity to the semantic net by allowing complex
objects to be represented as a single frame.

2. Frames provide an easier framework than semantic nets to organize
information hierarchically.

3. Frames allow for procedural attachment, such as if-needed, if-deleted,
and if-added, which run a demon (piece of code) as a result of another
action in the knowledge base.

4. Frames support the class of inheritance

3. Conceptual Dependency
Conceptual dependency was originally developed to represent knowl-
edge acquired from natural language input. The goals of this theory are
as follows:

To construct a computer program that can understand natural
language

To help in drawing inferences from sentences and also identify
conditions in which sentences can have a similar meaning

To be independent of words used in the original input. That is to say,
for any two (or more) sentences that are identical in meaning, there
should be only one representation of that meaning

To provide a necessary platform so that sentences in one language can
be easily translated into another language.

Conceptual dependency has been used by many programs that portend
to understand English (such as MARGIE, PAM, and SAM).

There is a set of allowable dependencies among conceptualizations
described in a sentence:

1. ACTS (Actions): These are equivalent to verbs or group of verbs.

2. PPs (Picture Producer): These are equivalent to nouns.

3. AAs (Action Aider): These are modifiers of actions (acts) and thus are
equivalent to adverbs.

Knowledge Representation 63

4. PAs (Picture Aider): These are modifiers of PPs and thus are equiva-
lent to adjectives.

5. Conceptual Cases: There are different types of conceptual cases:

Objective case (o)

Directive case (d)

Instrumental case (i)

Recipient case (r)

6. Conceptual Tenses: Schank proposed a list of attachments to the
relationship. A partial list of these is as follows:

Continuing (k)

Future (f)

Interrogative (?)

Past (p)

Present (nil)

Transition (t)

Transition start (ts)

Transition finished (tf)

Negative (/)

Conditional (c)

7. Conceptual Dependencies: These provide a structure into which
nodes representing information can be placed with a specific set of
primitives at a given level of granularity. The following are the concep-
tual dependency primitives:

a. PTRANS: Physical transfer of location of an object [e.g., GO]
Slots for PTRANS are:

ACTOR: A HUMAN (or animate object) that initiates the
PTRANS;

64 Artificial Intelligence Basics

OBJECT: A physical object that is PTRANSed;

FROM: A LOCATION at which PTRANS begins;

TO: A LOCATION at which PTRANS ends.

b. ATRANS: Abstract transfer of ownership possession or control of
an object (e.g., give)

c. MTRANS: Mental transfer of information between agents (e.g.,
tell)

d. MBUILD: Mental construction of a thought or new information
between agents (e.g., decide)

e. ATTEND: Act of focusing attention of a sense organ toward an
object (e.g., listen)

f. GRASP: Grasping of an object by an actor for manipulation (e.g.,
hold)

g. PROPEL: The application of physical force to an agent by that
agent (e.g., throw)

h. MOVE: The movement of a body part of an agent by that agent
(e.g., kick)

i. INGEST: Taking of an object (such as food, air, or water) by an
animal (e.g., drink or eat)

j. EXPEL: The expulsion of an object by an animal (e.g., spit)

k. SPEAK: The act of producing sound, including non-communica-
tive sounds.

There are semantic rules for the formation of the dependency structure:

Rule 1: PP ACT

Indicates that an actor acts

Rule 2: PA PA

Indicates the object has certain attributes

Rule 3: ACT O PP

Indicates the object of an action

Knowledge Representation 65

Rule 4: ACT R
PP

PP

Indicates the recipient and the donor of an object within an action

Rule 5: ACT O
PP

PP

Indicates the direction of an object within an action

Rule 6: ACT I I

Indicates the instrument conceptualization of an action

Rule 7: X

 Y

Indicates the conceptualization where X caused the conceptualization

Y; when written with a C, this form denotes that X COULD cause Y.

Rule 8:
PA2

PA1

Indicates a state change of an object

Rule 9: PP1 PP2

Indicates the PP is either PART-OF or the POSSESSOR of PP1

For example,
1. John ate the egg.

P
John

John

John

INGEST

INSIDE

MOUTH

Egg
O

66 Artificial Intelligence Basics

2. John prevented Mary from giving a book to Bill.

P

R

OC

DO
P

John

Mary

Mary

ATRANS Book

Bill

3. A boy is nice.
boy nice

4. John pushed the bike.

John PROPEL O bike

Advantages of the Conceptual Dependency

1. Using these primitives involves fewer inference rules.

2. Many inference rules are already represented in the conceptual de-
pendency structure.

3. The holes in the initial structure help to focus on the points still to be
established.

4. Scripts
A script is a structured representation describing a stereotyped sequence
of events in a particular context. Scripts are used in natural language
understanding systems to organize a knowledge base using the terms of
the situations that the system should understand. It could be considered
to consist of a number of slots or frames, but with more specialized roles.
The components of scripts include:

Entry conditions: These must be satisfied before events in the scripts
can occur.

Results: Conditions that will be true after the events in the scripts occur

Props: Slots representing the object involved in events

Roles: People involved in the events

Knowledge Representation 67

Track: Variations on the scripts. Different tracks may share compo-
nents of the same script.

Scenes: The sequence of events that occurs. Events are represented in
the conceptual dependency form.

Scripts are useful in describing certain situations, such as robbing a
bank. This might involve the following steps:

getting a gun

holding up a bank

escaping with the money

Here props might be

gun, G

loot, L

bag, B

get-away car, C

The Roles might be

robber, R

cashier, M

bank manager, O

policeman, P

The entry conditions might be

R is poor

R is destitute

The result might be

R has more money;

O is angry;

M is in a state of shock;

P is shot.

68 Artificial Intelligence Basics

There are three scenes: obtaining the gun, robbing the bank, and making
the getaway.

The full scripts are described in Figure 5.4.

Scripts: ROBBERY

Props: G=Gun Roles: R=Robber

Entry Conditions: Results:

R is poor R has more money

Scene 1: Getting a gun

R PTRANS R into gun shop

R MBUILD R Choice of G

R MTRANS Choice

R ATRANS buys G

(Go to Scene 2)

Scene 2: Holding up the bank

R PTRANS R into bank

R ATTEND eyes M,O, and P

R MOVE R to M position

R GRASP G

R MOVE G to point to M

R MTRANS “Give me the money or ELSE” to M

P MTRANS “Hold it! Hands up!” to R

R PROPEL shoots G

P INGEST bullet from G

M ATRANS L to M

M ATRANS L puts in bag B

M PTRANS exits

O ATRANS raises the alarm

 (Go to Scene 3)

Scene 3: The Getaway

M PTRANS C

FIGURE 5.4 Pseudocode For Robbing the Bank.

Knowledge Representation 69

Advantages of scripts:

Ability to predict events

A single coherent interpretation may be built from a collection of
observations.

Disadvantages:

Less general than frames

May not be suitable to represent all kinds of knowledge.

EXPERT SYSTEMS
6.1 Introduction

An expert system is an artificial intelligence program that has expert level
knowledge about a particular domain and knows how to use its knowledge
to respond properly. “Domain” refers to the area within which the task
is being performed. Ideally, the expert system should be a substitute for
a human expert. Edward Feigenbaum of Stanford University defined an
expert system as “an intelligent computer program that uses knowledge and
inference procedures to solve problems that are difficult enough to require
significant human expertise for their solutions.” It is a branch of AI intro-
duced by researchers in the Stanford Heuristic Programming Project.

6.2 Definition of an Expert System

An expert system is a computer program designed to act as an expert
in a particular field of knowledge or area of expertise. Expert systems
are also known as knowledge-based systems.

Expert systems are sophisticated computer programs that manipulate
knowledge to solve problems.

An expert system is a system that offers intelligent advice or makes an
intelligent decision about a processing function.

An expert system is a computer program that contains a knowledge
base and a set of algorithms or rules that infers new facts from
knowledge and from incoming data.

C H A P T E R6

72 Artificial Intelligence Basics

The method used to construct such systems, knowledge engineering,
extracts a set of rules and data from an expert or experts through extensive
questioning. This material is then organized in a format suitable for inquiry,
manipulation, and response. While such systems do not often replace the
human experts, they can serve as useful assistants.

6.3 Characteristics of an Expert System

Expert systems should have the following characteristics:

1. the ability to solve complex problems with the same (or greater) sol-
vency as a human expert

2. heuristic reasoning through empirical rules, which properly interacts
with human experts

3. ability to work with data that contains errors, using uncertainty proce-
dural rules

4. ability to consider multiple hypotheses simultaneously

5. perform at the level of a human expert

6. ability to respond in a reasonable amount of time. Time is crucial, es-
pecially for real-time systems.

7. be reliable and should not crash

8. not be a black box; instead, the expert system should be able to explain
the steps of the reasoning process. It should justify its conclusions in
the same way as a human expert explains why he arrived at a particular
conclusion.

9. need heavy investment, and there should be a considerable Return on
Investment (ROI).

6.4 Architectures of Expert Systems

There are two types of architectures in expert systems:

Rule-based system architecture (Production Systems)

Non-production system architecture

Expert Systems 73

Rule-Based System Architecture

This is most common form of architecture used in expert and other knowl-
edge-based systems. This type of system uses knowledge in the form of
production rules, i.e., if.......then rules.

IF: Condition 1 and condition 2

THEN: Take action 3

Each rule represents a small chunk of knowledge related to a given
domain of expertise. A number of related rules collectively may corre-
spond to a chain of inferences which lead from some initially-known facts
to some useful conclusions. Inference in a production system is achieved
by a process of chaining through the rules recursively, either in a forward or
backward direction, until a conclusion is reached or until a failure occurs.

Components of an Expert System

Figure 6.1 shows the complete structure of rule-based expert system.

External program

Fact

Inference Engine

Database

Rule-IF-THEN

Knowledge Base

Explanation Facilities

User-
interface

User Knowledge engineer

Expert

Developer
interface

External Database

Expert System

FIGURE 6.1 Complete Structure of a Rule-Based Expert System.

74 Artificial Intelligence Basics

The fundamental modules of an expert system are the

1. knowledge base

2. inference engine

3. user interface

4. explanation facility

5. knowledge acquisition facility

6. external interface

7. database

1. Knowledge Base
A knowledge base is an organized collection of facts about the system’s
domain. Facts for a knowledge base must be acquired from human experts
through interviews and observation. A knowledge base contains domain-
specific and high quality knowledge. Knowledge is required to exhibit
intelligence. The success of any expert system largely depends upon the
collection of highly accurate and precise knowledge.

Components of a Knowledge Base

The knowledge base of an expert system is a store of both factual and
heuristic knowledge.

Factual knowledge: This is the information widely accepted
by knowledge engineers and scholars in the task domain.

Heuristic knowledge: This is about the practice of generating
an accurate judgment, one’s ability to make an evaluation, and
guessing.

Knowledge Representation

This is a method used to organize and formalize the knowledge in the
knowledge base. This knowledge is then usually represented in the form of
“IF-THEN” rules (production rules). “If some condition is true, then the fol-
lowing inference can be made (or some action taken).” The knowledge base
of a major expert system includes thousands of rules. A probability factor
is often attached to the conclusion of each of the production rules because
the conclusion is not a certainty. For example, a system for the diagnosis of
eye diseases might indicate, based on the information supplied to it, a 90

Expert Systems 75

percent probability that a person has glaucoma. It might also list conclusions
with lower probabilities. An expert system may display the sequence of rules
through which it arrived at its conclusion; tracing this flow helps the user
to appraise the credibility of its recommendation. The knowledge base is
formed by readings from various experts, scholars, and knowledge engineers.
A knowledge engineer also monitors the development of the expert system.

2. Inference Engine
A very important element of the expert system is also called the inference
engine. Knowledge of science must always be stored in the knowledge base
in a formalized form that is understandable to the inference engine. The
inference engine can be divided into following functional elements:

Control system: This determines the order of testing in the
knowledge base rules.

Rule-interpreter: This defines the Boolean (the true, not true
uncertainty factor) application rules.

Explanation mechanism: This justifies the outcome to the user with
the reasoning process and generates a report.

The inference engine repeatedly applies the rules to the working mem-
ory, adding new information (obtained from the rules’ conclusions) to it
until a goal state is produced or confirmed. One of several strategies can be
employed by an inference engine to reach a conclusion. Inference engines
for rule-based systems generally work by either the forward or backward
chaining of rules. These two strategies are:

Forward chaining: This is a data-driven strategy. The inference
process moves from the facts of the case to a goal (conclusion). The
strategy is thus driven by the facts available in the working memory and
by the premises that can be satisfied. The inference engine attempts
to match the condition (IF) part of each rule in the knowledge base
with the facts currently available in the working memory.

Forward-chaining systems are commonly used to solve the open-
ended problems of a design or those that involve planning, such as
establishing the configuration of a complex product.

Backward chaining: The inference engine attempts to match the
assumed conclusion to the goal or sub-goal state with the conclusion

76 Artificial Intelligence Basics

(THEN) part of the rule. If such a rule is found, its premise becomes
the new sub-goal. In an expert system with few possible goal states,
this is a good strategy to pursue.

 If the assumed goal state cannot be supported by the premises, the system
will attempt to prove another goal state. Thus, a possible conclusion is to
perform a review until a goal state that can be supported by the premises
is encountered. Backward chaining is best suited for applications in
which the possible conclusions are limited in number and well defined.

3. User Interface
A user must have a way to communicate with the system. The component of
an expert system that helps its user to communicate with it is known as the
“user interface.” The function of a user interface is to provide a means for
bi-directional communication in which the user describes the problem and
the system responds with solutions or recommendations. The user interface
helps to explain how the expert system has arrived at a particular recom-
mendation. The explanation may appear in the following forms:

natural language displayed on the screen

verbal narrations in natural language

a listing of rule numbers displayed on the screen.

The user interface makes it easy to trace the credibility of the deductions.

Advantages of the User Interface

1. It should help users to accomplish their goals in the shortest possible
way.

2. It should be designed to work for users existing or desired work prac-
tices.

3. Its technology should be adaptable to the user’s requirements, not the
other way around.

4. It should make efficient use of the user’s input.

4. Explanation Facility
This is a part of the user interface. It enables the user to ask the expert system
how a particular conclusion is reached and why a specific task (fact) is needed.

Expert Systems 77

An expert system must be able to explain its reasoning and justify its advice,
analysis, or conclusion. Hence, the explanation facility must be superb.

5. Knowledge Acquisition Facility
The major bottleneck in expert system development is knowledge acquisi-
tion. This includes the elicitation, collection, analysis, modeling, and valida-
tion of knowledge for knowledge engineering and knowledge management
projects. Various techniques of knowledge acquisition and the inherent
problems associated with that will be discussed in later topics.

6. External Interface
This allows an expert system to work with external files using programs
written in conventional programming languages such as C, Pascal, Fortran,
and Basic. It provides the communication link between the expert system
and external environment. When there is a formal consultation, it is done
via the user interface. In real-time expert systems where they form a part of
the closed loop system, it is not proper to expect human intervention every
time conditions must be fed in to get remedies. Moreover, the time-gap is
too narrow in real-time systems. The external interface with its sensors gets
minute-by-minute information about the situation and acts accordingly.
Such real-time expert systems are of tremendous value in industrial process
controls, nuclear power plants, and supersonic jets.

The communication subsystem is part of the external interface
that permits the system to communicate with a global database for its
operation.

7. Database
A database is a collection of information that is organized so that it can eas-
ily be accessed, managed, and updated. It is working storage, a “notepad”
that the inference engine can use to hold data while it is working on a prob-
lem. It holds all the data about the current task, including:

the user’s answers to questions

any data from outside sources

any intermediate results of the reasoning

any conclusions reached so far.

78 Artificial Intelligence Basics

There is a clear distinction between the knowledge base and the data-
base. The knowledge base contains know-how, and it can be applied to
many different cases. Once built, a knowledge base will be saved and
used many times over. The database contains data about the particular
case that is being run at the time. For example, the knowledge base about
sales problems might be applicable to any small manufacturing business.
During a run, the database would contain data about a specific company
and its trading performance. The database can also be called “the world
model.”

Non-Production System Architecture

Instead of rules, these systems employ more structured representation
schemes like the semantic (associative) network, frames, tree structure
(decision trees), or even neural networks.

1. Associative (Semantic) Network

Semantic network representation schemes are networks made up of
nodes connected by directed arcs. The nodes represent object, attributes,
concepts, or other basic entities, and the arcs, which are labelled, describe
the relationship between the two nodes they connect. Special network links
include the IS-A and HAS-PART links, which designate an object as being
a certain type of object (belonging to a class of the object) and being a sub-
part of another object, respectively.

Associative network representations are especially useful in depicting
a hierarchical knowledge structure where property inheritance is common.
Objects belonging to a class of other objects may inherit many of the char-
acteristics of the class. Inheritance can also be treated as a form of default
reasoning. This facilitates the storage of information when shared by many
objects, as well as the inferencing process.

For example, one expert system based on the use of an associative
network representation is CASNET (Casual Associative Network), which
was developed at Rutgers University during the 1970s (Weiss et al., 1978).
CASNET is used to diagnose and recommend treatment for glaucoma, one
of the leading causes of blindness.

Expert Systems 79

The network in CASNET is divided into three types of knowledge:

Patient observations (tests, symptoms, and other signs):
These are provided by the user during an interactive session
with the system. The system is presented to the user during an
interactive session. The system presents menu type queries, and
the user selects one of several possible choices.

Pathophysiological states: These observations help to establish
the abnormal condition caused by the disease process. The
condition is established through the casual network model as part
of the cause and effect relationship relating the symptoms and
other signs to diseases.

Disease categories: Inference is accomplished by traversing the
network, following the most possible paths of causes and effects.
Once a sufficiently strong path is determined through the network,
the diagnostic conclusions are inferred using classification tables
that interpret the patterns of the casual network. These tables are
similar to rule interpretations.

2. Frame Architecture

Frames are structured sets of closely-related knowledge, such as an
object or concept name, the object’s main attributes, its corresponding
values, and possibly some attached procedure (if-added, if-needed, or if-
removed procedures). The attribute’s values and procedure are stored in
specified slots and slot facts of the frame. Individual frames are usually
linked together as a network, and, much like the nodes, this is an associa-
tive network, including property inheritance and default reasoning. Several
expert systems have been constructed with frame architecture, and a num-
ber of building tools which create and manipulate frame structured systems
have been developed.

For example, PIP (Present Illness Program) was used to diagnose
patients using low cost, easily-obtained information. The medical knowl-
edge in PIP is organized in frame structures, where each frame is com-
posed of the categories of slots with names such as:

80 Artificial Intelligence Basics

typical findings

logical decision criteria

complimentary relations to other frames

differential diagnosis

scoring.

A special IS-sufficient slot is used to confirm the presence of a disease
when key findings correlate with the slot contents.

3. Decision-Tree Architecture

When knowledge can be structured in a top-to-bottom manner, it may
be stored in the form of a decision tree. For example, the identification of
objects (equipment faults, physical object diseases, and the like) can cor-
respond to an object’s attribute, and the terminal nodes can correspond to
the identities of objects. A decision tree takes input from an object given
by a set of properties and outputs a Boolean value (yes/no decision). Each
internal node in the tree corresponds to a test of one property. Branches are
labelled with possible values of the test.

For example, assume the problem is waiting for a table at a restaurant.
A decision tree decides whether to wait (or not) in a given situation. Here
are some of the following attributes:

Alternative: Alternative restaurant nearby

Bar: Bar area to wait

Fri/Sat: True on Fridays and Saturdays

Hungry: Whether we are hungry

Patrons: How many people are in the restaurant (none, some, or
full)

Price: Price range ($, $$, or $$$)

Raining: Raining outside

Reservation: Whether we made a reservation

Type: Kind of restaurant (French, Italian, Thai, or Burger)

Wait Estimate: Estimated wait time (<10, 10–30, 30–60, or >60).

Expert Systems 81

The above problem can be explained with the help of a decision tree.

Patrons

YES Wait EstimateNO

None Full

>60 <10
30–60 10–30

All leaves YES or NO

Some

Alternate

Alternate

Hungry YESYES

yesFri/SatReservation

yesBar yesNo

No No

NoNo

No

No

yes

yesyes

yes yes

yes

yes

yesNo Noyes

Rainingyes

FIGURE 6.2 A Decision Tree.

Advantages of the Decision Tree Architecture

1. Decision trees are open systems, as it is easy to link the end of a path-
way within a decision tree to start another decision tree.

2. Decision trees are simple natural programs that can adopt to com-
plexity and chaotic conditions.

3. Decision trees are a “white box,” meaning they are transparent and
simple to understand and interpret. People are able to understand
decision trees and therefore, they are designed for the organized re-
tention of knowledge.

4. Decision trees can have value very quickly, even with a small number
of nodes. Important insights can be gained from their usage that often
stimulates ideas for knowledge evolution that were not obvious at first.

82 Artificial Intelligence Basics

5. Decision trees can be created by subject matter experts without the
need for software specialists.

6. Decision tree development enriches inductive and deductive reason-
ing, as they focus on the pathways and outcomes. This value is largely
diluted with an expert system, as it is in the hands of the knowledge
engineer and not the subject matter experts.

7. The construction of the decision tree is not just focused on business
logic, but on a good dialogue and choices that influence behavior and
decision making. The automated analysis of behavior enables the de-
cisions tree to adopt certain behavioral dynamics.

8. New nodes and branches can be added to the tree when additional
attributes are needed to further discriminate among new objects. As
it gains experience, the value associated with the branches can be
modified or the system can return more accurate results.

4. Blackboard Architecture

Blackboard system architecture refers to a special type of knowledge-
based system which uses a form of opportunistic reasoning. It uses both for-
ward and backward chaining and chooses them dynamically at each stage in
the problem-solution process. The blackboard system architecture is com-
posed of three functional components:

a. blackboard
b. knowledge source
c. control information/scheduler.

Figure 6.3 shows the architecture of a Blackboard system.

Knowledge Source

Scheduler

Blackboard

FIGURE 6.3 A Blackboard System Architecture.

a. Blackboard: The blackboard is the common data structure of
knowledge sources. The blackboard is able to represent all states
of some problem space. The blackboard contains several levels
of description with respect to the problem space. These levels
may have several relationships with each other, like IS-PART-OF.

Expert Systems 83

The levels are parts of the same data structure. If separate data
structures are needed, the blackboard is added into panels. Each
panel, in turn, may contain several levels.

Level

Panel

Level

Level

Blackboard

Level

Panel

Level

Level

b. Knowledge source: This is a component that adds to the solu-
tion of the problem. It may be anything that reads from some
level of the blackboard and suggests some change to parts of
the blackboard. Its most common form is the production rule.
Knowledge sources are completely unconnected to other knowl-
edge sources.

c. The scheduler: This determines which knowledge source gets
the chance to change the blackboard. Every execution cycle,
it notices changes to the blackboard, activates the appropriate
knowledge source, and selects one of these and executes it.

 For example, Hearsay-II is a speech recognition program. Speech
can be recognized at several levels.

5. Neural Network Architecture

Neural networks are computing systems modeled on the human brain’s
mesh-like network of interconnected processing elements called neurons.
Of course, neural networks are much simpler than the human brain (which
is estimated to have more than 100 billion neurons). Like the brain, how-
ever, such networks can process many pieces of information simultane-
ously and can learn to recognize patterns and programs themselves to solve
related problems on their own. A neural network is an array of inter-con-
nected processing elements, each of which can accept inputs, process them,
and produce a single output with the objective of imitating the operation
human brain. Knowledge is represented in neural networks by the pattern
of connections formed during the processing of elements and by adjusting

84 Artificial Intelligence Basics

the weights of these connections. The strength of neural networks is in the
applications that require sophisticated pattern recognition. The greatest
weakness of neural networks is that they do not furnish an explanation for
the conclusions they make. A neural network can be trained to recognize
certain patterns and then apply what it learned to new cases where it can
discern the patterns.

6.5 Expert System Life Cycle

A life cycle for an expert system is discussed here, and we outline the
tasks and activities to be performed at each stage of development. The
life cycle highlights the role of alternative development paradigms and the
importance of social and organization characteristics in the system’s trans-
fer to users. There are five major stages in the development of an expert
system. Each stage has its own unique features and correlation with the
other stages.

1. Identification Stage: The first step in acquiring knowledge for an
expert system is to characterize the important aspects of the problem.
This involves identifying the participants, problems characteristics, re-
sources, and goals.

a. Participants’ Identification and Roles
Before we begin the knowledge acquisition, we must select the par-
ticipants and their roles. Usually, this is the interaction between a
single domain expert and a single knowledge engineer. The knowl-
edge acquisition process can also include other participants. They
may be multiple domain experts and multiple knowledge engineers.

b. Problem Identification
After we have chosen the knowledge engineer and the domain
expert, they can proceed towards identifying the problem under
consideration. This involves an informal exchange of views on
various aspects of the problem, its definition, characteristics, and
sub-problems. The objective is to characterize the problem and
its supporting knowledge structure so that the development of the
knowledge base may begin.

Expert Systems 85

c. Resource Identification
Resources are needed for acquiring the knowledge implemented in
the system and testing it. Typical resources are knowledge sources,
time, computing facilities, and money.

d. Goal Identification
Most likely, the domain expert will identify the goals or objectives of
building the expert system in the course of identifying the problem. It
is helpful to separate the goals from the specific tasks of the problem.

2. Conceptualization Stage: The key concepts and relationships
mentioned during the identification stage are made explicit during
the conceptualization stage. It may be useful for the knowledge en-
gineer to diagram those concepts and relationships. The following
questions need to be answered before proceeding with the concep-
tualization process:

What types of data are available?

What is given and what is inferred?

Do the sub-tasks have names?

Do the strategies have name?

Are there identifiable partial hypotheses that are commonly used?

How are objects in the domain related?

What processes are involved in the problem’s solution?

What are the constraints on these processes?

What is the information flow?

3. Formalization Stage: The formalization process involves mapping
the key concepts, sub-problems, and information flow characteristics
related during conceptualization into more formal representations
based on various knowledge engineering tools or frameworks. The
knowledge engineer now takes a more active role, telling the domain
expert about the existing tool representations and the problem types
that seem to match the problem at hand if, as a result of an informal

86 Artificial Intelligence Basics

experiment with a preliminary prototype, the knowledge engineer be-
lieves there is a close fit with an existing tool or framework.

4. Implementation Stage: Implementation involves mapping the formal-
ized knowledge from the previous stage into the representational frame-
work associated with the tool chosen for the problem. As the knowledge
in this framework is made consistent and compatible, and is organized to
define a particular control and information flow, it becomes an execut-
able program. The knowledge engineer evolves a useful representation
for the knowledge and uses it to develop a prototype expert system. The
prototype knowledge base is implemented by using whatever knowledge
engineering aids are available for the representation (editors, intelligent
editors, or acquisition programs). When the existing aids are inadequate,
the knowledge engineer must develop new ones.

5. Testing Stage: The testing stage involves evaluating the prototype
system and the representation forms used to implement it. Once the
prototype system runs from start to finish on two or three examples,
it should be tested with a variety of examples to determine the weak-
nesses in the knowledge base and inference structure. The elements
that are usually found to cause poor performance because of faulty
adjustments are the input/output characteristics, inference rules, con-
trol strategies, and test examples. Testing provides an opportunity to
identify the weaknesses in the structure and implementation of the
system and to make appropriate corrections.

6.6 Knowledge Engineering Process

The process of building an expert system goes through a number of stages.
It is similar in many ways to the software engineering life cycle:

Requirements analysis: Customer requirements are ascertained.

Knowledge-Acquisition: Problem solving expertise is transferred
from some knowledge source to a program.

Architectural Design: High level organization of the system

System Design: Detailed design of the (sub) system

Implementation: Coding

Deployment: Installation, operation, and maintenance.

Expert Systems 87

Each of these phases includes the appropriate validation, verification,
and quality assurance tests.

6.7 Knowledge Acquisition

Knowledge acquisition can be regarded as a method in which a knowledge
engineer gathers information mainly from experts, but also from textbooks,
technical manuals, research papers, and other authoritative sources, and
translates this information into a knowledge base that is understandable to
both machines and humans.

The person undertaking the knowledge acquisition (the knowledge
engineer) must convert the acquired knowledge into an electronic format
that a computer program can use.

In the process of knowledge acquisition for an expert system project,
the knowledge engineer basically performs four major tasks in sequence:

First, the engineer ensures that he or she understands the aim and
objective of the proposed expert system to get a feeling for the
potential scope of the project.

Second, the engineer develops a working knowledge of the
problem domain by mastering its terminology by looking up
definitions in technical dictionaries and terminology databases.
For this task, the key sources of knowledge are identified such as
textbooks, papers, technical reports, manuals, code of practice,
users, and domain experts.

Third, the knowledge engineer interacts with experts via meetings
or interviews to acquire, verify, and validate their knowledge.

Fourth, the knowledge engineer produces a document or a group
of documents (nowadays, in electronic format) which forms an
intermediate stage in the translation of knowledge from the source
to the computer program.

6.8 Difficulties in Knowledge Acquisition

Acquiring knowledge from experts is not an easy task. The following list
includes some factors that add to the complexity of knowledge acquisition
from experts and the knowledge transfer to a computer:

88 Artificial Intelligence Basics

Experts may not know how to articulate their knowledge or may be
unable to do so.

Experts may lack time or may be unwilling to co-operate.

Testing and refining knowledge are complicated.

Methods for knowledge elicitation may be poorly defined.

System builders tend to collect knowledge from one source, but the
relevant knowledge may be scattered across several sources.

System builders may attempt to collect documented knowledge rather
than use experts. The knowledge collected may be incomplete.

It is difficult to recognize specific knowledge when it is mixed up with
irrelevant data.

Experts may change their behavior when they are observed or
interviewed.

Problematic interpersonal communication factors may affect the
knowledge engineer and the experts.

6.9 Knowledge Acquisition Strategies

There are several ways by which knowledge is acquired. Some of the promi-
nent methods are discussed below:

1. Protocol Analysis: This is the set of techniques known as the verbal
protocol analysis. It is a method by which the knowledge engineer ac-
quires detailed knowledge from the expert. A protocol is a record or
documentation of the expert’s step-by-step information processing and
decision-making behavior. The expert is asked to talk about a thing out
loud while performing the task or solve the problem under observa-
tion. In this method, the knowledge engineer does not interrupt while
the expert is working.

2. Observations: In many ways, this is most obvious and straightforward
approach to knowledge acquisition. In this method, the knowledge en-
gineer observes the expert performing a task. This prevents the knowl-
edge engineer from inadvertently interfering in the process, but does
not provide any insight into why decisions are made.

Expert Systems 89

3. Interview Analysis: This is an explicit technique that appears in sev-
eral variations. It involves a direct dialog between the expert and the
knowledge engineer. The interview process can be tedious. It places
great demands on the domain expert, who must be able not only to
demonstrate expertise but also to express it. Interviews can be un-
structured, semi-structured, or structured. The success of an interview
session is dependent on the questions asked and ability of the expert to
articulate their knowledge.

4. Introspection: The expert becomes a knowledge engineer and
then relies on a combination of introspection and knowledge of the
expert system’s architecture to convert know-how into the knowl-
edge base.

5. Teach back: The knowledge engineer attempts to teach the information
back to the expert, who then provides corrections and fills in the gaps.

These are some methods to help acquire knowledge from experts.
Generally, no knowledge engineer sticks to one method, but adopts a com-
bination of these methods. The knowledge engineer must aim to extract
more of the deep knowledge that will help in understanding the fundamen-
tals of the domain.

6.10 Advantages of Expert Systems

1. Availability: Expert systems are easily available due to vast produc-
tion of software.

2. Speed: Expert systems offer great speed. They reduce the amount of
work an individual puts in.

3. Low Error Rate: Their error rate is lower than that of humans.

4. Steady Response: They work steadily without getting emotional,
tensed, or fatigued, whereas human experts, under stress, in a bad
mood, or when time is limited, either make faulty assumptions or for-
get relevant factors.

5. Reproducibility: Many copies of an expert system can be made, but
training new human experts is time-consuming and expensive, where-
as the time for the duplication of an expert system is very short.

90 Artificial Intelligence Basics

6. Recovery: Expert systems can be combined with other systems or
database knowledge to address more complicated situations.

7. Reducing Risk: They can work in environments that are dangerous
to humans.

8. Consistency: With expert systems, similar transactions are handled
in the same way. The system will make comparable recommendations
for like situations.

9. Multi-Dimensional: An expert system plays three major roles: the
role of a problem solver, a tutor, and an archive. Even though natural
language system interfaces are very primitive, expert systems of today
serve these roles very well. A human expert who is a good problem
solver need not be a good tutor.

10. Efficiency: An expert system makes things more efficient by reducing
the time needed to solve problems. Expert systems provide strategic
and comparative advantages that may create problems for competitors.

6.11 Limitations of Expert Systems

1. The different types of multidimensional problems that are faced by
various users while performing activities cannot be efficiently tackled
by expert systems.

2. Expert systems do not respond well to situations outside their range
of the expertise.

3. Some of the typical expert system at times are not able to make available
commonsense knowledge and broad-ranging contextual information.

4. There is no flexibility or ability to adapt to changing environments.

5. The construction process of an expert system is a laborious one. Cur-
rently, a lot of resources are required.

6. Expert systems focus on very specific topics, like computer faults,
radiology, and diagnostic skills. The major reason for this situation is
the difficulty in extracting knowledge, and building and maintaining a
large knowledge base.

7. The verification of the correctness of any large computer system is
difficult to prove, and expert systems are particularly difficult to verify.

Expert Systems 91

This is a serious problem, as expert system technology is being applied
to critical applications such as air traffic control, nuclear reactor opera-
tions, and weapon systems.

8. There is little learning from experience. Current expert systems are
handcrafted; once the system is completed, its performance will not
improve without further attention from its programmers.

6.12 Examples of Expert Systems

The following are some successful expert systems in different domains that not
only helped pioneer the development of new techniques and tools, but also
proved that AI systems can be terribly successful in select areas of expertise.

1. DENDRAL: This was developed at Stanford in the 1960s. DEN-
DRAL was one of the first systems to rival the performance of domain
experts. DENDRAL stored and reasoned with knowledge from the
field of organic chemistry using a planned generate-test search para-
digm. Specifically, the task was to determine the molecular structure of
an organic molecule. It receives as its input a molecular formula with a
set of constraints which serve to restrict the possible interconnections
among atoms. A list of all possible ways of assembling the atoms into
molecules is generated. These are ordered using the knowledge base
to make testable predictions about candidate molecules.

This enables the pruning of the candidate list. Because organic mol-
ecules tend to be very large, the number of possible structures for
these molecules tends to be huge. DENDRAL addresses the prob-
lem of this large search space by applying the heuristic knowledge of
expert chemists to the structure elucidation problem. DENDRAL’s
methods proved remarkably effective. META-DENDRAL added a
machine-learning capability in the form of an inductive rule learner
based on a hill climbing algorithm using raw mass spectrographic
data. The new heuristics were then used in deducing the structure
of unknown molecules from their mass spectra. Although META-
DENDRAL is no longer an active program, its contributions to ideas
about learning and discovery are being applied to new domains.

2. MYCIN: Stanford was also the home of another influential expert sys-
tem called MYCIN. MYCIN established the methodology of contem-

92 Artificial Intelligence Basics

porary expert systems. MYCIN was originally written in INTERLISP,
a dialect of the LISP programming language.

MYCIN is a medical expert system that assists a physician who is not
an expert in the field of antibiotics with the treatment of blood infec-
tions. Figure 6.4 shows the structure of MYCIN.

MYCIN consists of five modules:

a. knowledge base

b. a patient database

c. a consultation program

d. an explanation program

e. a knowledge acquisition program.

User-Interface

Advice and Explanation

Knowledge
Base

ES Building Tools

User

Domain
Expert

Knowledge
Engineer

Details of New Case

Inference
Strategy

FIGURE 6.4 The Structure of MYCIN.

The knowledge is organized as a series of IF-THEN rules. Certain
factors can be associated with the knowledge. Patient information is
stored in a contextual form. This includes data such as blood samples,
recent operative procedures, and drugs. The selection takes place after

Expert Systems 93

the diagnosis. It consists of selecting candidate drugs and then choos-
ing a preferred antibiotic. MYCIN itself has never been used in a clini-
cal setting, but descendants of the program have.

3. EMYCIN (Empty MYCIN): This system allows the MYCIN archi-
tecture to be applied to another medical domain besides blood dis-
eases. It is not a general-purpose problem solving architecture, rather,
it is more suited to diagnostic tasks in medicine. The PUFF system was
the first program built using EMYCIN. PUFF’s domain is the inter-
pretation of pulmonary functioning tests for patients with lung disease.
The program can diagnose the presence and severity of lung disease
and produce reports for the patient’s file. The knowledge acquisition
program TEIRSIAS was built to assist domain experts in refining the
EMYCIN knowledge base. TEIRSIAS developed the concept of me-
ta-level knowledge, i.e., knowledge by which a program cannot only
use its knowledge directly, but can examine it, reason about it, and
direct its use.

4. PROSPECTOR: A classic expert system is the PROSPECTOR pro-
gram, which determines the probable location and type of ore deposits
based on geological information about a site. PROSPECTOR attempts
to predict the minerals to be found there. Like MYCIN, PROSPEC-
TOR is a rule-based system that uses certainty factors to represent the
strengths of the rules. PROSPECTOR deals with geologic settings,
structural controls, and the kinds of rocks, minerals, and alternate
products present or suspected. It compares observations with stored
models of ore deposits, notes the similarities, differences, and missing
information, asks for additional information if necessary, and then as-
sesses the mineral potential of the prospect.

LEARNING
7.1 Learning

Although everyone seems to know what it is, learning is actually very dif-
ficult to precisely define. Roughly, any system that improves its perfor-
mance in response to internal changes caused by experience can be said
to learn. This definition can be related to human beings. In psychology,
various generalized definitions of learning have been proposed and many
of them interpret learning as the change in the behavior of a being, subject
to a given situation or a sequence of his or her repeated experiences in that
situation.

In AI, machine learning can be defined as the capability of an AI sys-
tem to improve its performance over a period of time. This, of course,
assumes the capability of the system to acquire new knowledge and skills,
as well as its capability to recognize the existing knowledge based on the
newly acquired knowledge. Machine learning has grown into a widespread
research field devoted to the search for new learning methods and/or learn-
ing algorithms, as well as their implementations.

7.2 General Model for Machine Learning Systems

Machine learning usually starts with some knowledge and the correspond-
ing knowledge organization so that a system can interpret, analyze, and
test the knowledge acquired. Figure 7.1 is a model of a machine learning
system.

C H A P T E R7

96 Artificial Intelligence Basics

Standard System

Expected Output

OutputInput

Knowledge
Base

Performance
Element

Feedback
Element

Learning
Element

FIGURE 7.1 Learning System Model.

The figure shown above is a typical learning system model. It consists of the
following components:

1. Learning Element
2. Knowledge Base
3. Performance Element
4. Feedback Element
5. Standard System

1. Learning Element: This receives and processes the input obtained
from a person (i.e., a teacher) from reference materials like magazines,
journals, or from the environment at large.

2. Knowledge Base: This is somewhat similar to the database. Initially
it may contain some basic knowledge. Therefore, it may receive more
knowledge which may be new and so it can be added as it is or it may
replace the existing knowledge.

3. Performance Element: This uses the updated knowledge base to
perform some tasks or solves some problems and produces the cor-
responding output.

4. Feedback Element: This receives two inputs, one from the learning
element and one from the standard (or idealized) system. The feed-
back element identifies the differences between the two inputs. The
feedback is used to determine what should be done in order to pro-
duce the correct output.

5. Standard System: This is a trained person or a computer program that
is able to produce the correct output. In order to check whether the
machine learning system has learned well, the same input is given to the

Learning 97

standard system. The output of a standard system and that of the per-
formance element are given as inputs to the feedback element for the
comparison. The standard system is also called an “idealized system.”

7.3 Characteristics of Machine Learning

There are several characteristics of machine learning:

1. highly accurate predictions using test data (the goal is not to uncover
the underlying “truth”)

2. methods should be general-purpose, fully automatic, and “off-the-
shelf” (however, in practice, the incorporation of prior, human knowl-
edge is crucial)

3. rich interplay between theory and practice

4. emphasis on methods that can handle large data sets.

7.4 Types of Learning

The definition of learning is too broad and too vague to be of much use.
Cognitive scientists have given the forms of learning various names: rote
learning, direct instruction, learning by analogy, learning by deduction,
learning by induction (also called “learning from examples”), failure-
driven learning, learning by being told (also called “learning by instruc-
tion”), and learning by exploration, to name just a few. Although each of
these forms of learning emphasize a different aspect of learning, they all
involve a change to an internal, persistent memory of the system.

7.4.1 Rote Learning or Memorization
Rote learning is known as learning by repetition. It is a method of learning
that involves memorization. This memorization is usually achieved through
the repetition of activities, such as reading or recitation and the use of flash-
cards and other learning aids. The theory behind this learning technique
is that students will commit facts to memory after repeated study and will
then be able to retrieve those facts whenever necessary.

7.4.2 Direct Instruction
This type of learning is different from rote learning. It is the use of straight-
forward, explicit teaching techniques, usually to teach a specific skill. It is

98 Artificial Intelligence Basics

a teacher-directed method, meaning that the teacher stands in front of a
classroom and presents the information. For example, the teacher might
give a lesson that very clearly outlines the order of all the planets in the
solar system.

7.4.3 Learning by Analogy
Learning by analogy is the process of learning a new concept or solution
through the use of similar known concepts or solutions. We use this type
of learning when solving problems on an exam where previously learned
examples serve as a guide or when we make frequent use of analogical
learning. This form of learning uses more inferring than either of the previ-
ous forms, since difficult transformations must be made between known
and unknown situations.

7.4.4 Learning by Deduction
Deduction means to draw conclusions from given facts. Deduction is
applied to obtain a generalization from a domain theory, a solved example,
and its explanation. It is a logical process in which a conclusion is based
on the concordance of multiple premises that are generally assumed to be
true. It is sometimes referred to as top-down logic.

For example,

1. All men are mortal.

2. Socrates is a man.

3. Therefore, Socrates is mortal.

The first premise states that all objects classified as a “men” have the
attribute “mortal.” The second premise states that “Socrates” is classified
as a “man,” a member of the set “men.” The conclusion then states that
“Socrates” must be “mortal” because he inherits this attribute from his clas-
sification as a “man.”

7.4.5 Learning by Induction (Learning by Examples)
This is a process of learning by example. The system tries to induce a gen-
eral rule from a set of observed instances. The learning method extract
rules and patterns out of massive data sets. The learning process belongs
to supervised learning and unsupervised learning, does classification, and
constructs class definitions, called induction or concept learning.

Learning 99

Supervised Learning:
The program is “trained” via past experiences based on a predefined
set of “training examples,” which then facilitate its ability to reach an
accurate conclusion when given new data. In supervised learning, the
output datasets are provided, and these are used to train the machine
and get the desired outputs.

For example, in facial recognition, the system learns by examples as to
what a face is in terms of the structure and color, so that after several
iterations, it learns to define a face.

Unsupervised Learning:
No data sets are provided. Instead, the data is clustered into different
classes.

For example, in facial recognition, since there is no desired output
(in this case, that is provided) the categorization is done so that the
algorithm correctly differentiates between the faces of a horse, cat, or
human (clustering of data).

So, learning by induction is a method that is used frequently by humans.
It is a powerful form of learning, like analogical learning, which also
requires more inferring than other methods. We use inductive learning
of instances or examples of a concept. For example, we learn the
concepts of color or a sweet taste after experiencing the sensations
associated with several examples of colored objects or sweet food.

7.4.6 Failure-Driven Learning
Failure-driven learning is based on creating a program that will learn by
making mistakes and then finding a solution so that the mistake does not
happen again. This is similar to the way humans learn. If we make a mis-
take, we usually try to learn from that mistake to improve ourselves so we
do not make it again.

Sussman’s Hacker is an example of a failure-driven learning system that
operates in the block world. It solves problems by looking up plan schemes
in its Plan Library and fitting them together. There is a “gallery” of “crit-
ics” that do the plan criticism. Hacker analyzes problems in terms close to
standard computer programming. The plan it is to execute looks like a pro-
gram that is a linear object containing conditionals and loops. However, the
program is still hierarchical: problems are solved by programs, whose steps

100 Artificial Intelligence Basics

become new problems. Once the program has been completed, Hacker
executes it. If a bug halts execution, then Hacker corrects the program that
led to it. The next time this program is used, that particular bug will not
occur again.

Suppose a programmer has been given the problem to put the “A” block
on the top of the “B” block in the situation shown in Figure 7.2.

C

A B

FIGURE 7.2 Failure-Driven Learning by the Problem That Puts “A” on the Top of “B.”

At first, the program cannot execute because the “C” block is on the top of
the “A” block. The program now has to figure a solution to why it cannot lift
the “A” block. It devises a solution to move the “C” block off the “A” block.
Once the “C” block has been moved, it can place the “A” block on the top
of “B” block, and its objective is completed.

The sample code to do this would be as follows (in the example below,
x is block “A,” y is block “B,” and z is block

“C” or any block that is on top of the block being moved).

Original Code:

[to do ? task (achieve (on ? x ?y)): To get something
on something else

(move ? x ? y)] : Use the move operation

Program-altered Code:

[to do ? task (achieve (on ? x ? y)) : To get something
on something else

(prog (for each ? z (on ? z ? x)
(get-ritdof ? z))
(move ? x ? y)]; Then do the move.

The “program altered code” is code that the program created so it could
remove any block on top of the block that it was originally supposed to
move.

The problem with the above example is that the program cannot neces-
sarily know why it cannot lift block “A.” It could just have another box on

Learning 101

the top of it, or it could be glued to the ground, or both. It would need some
way of determining the physical situation of block “A.”

Inside a computer program, it is reasonable to assume that one has
complete knowledge of the reasons for a bug. However, this assumption is
actually not reasonable, since there are intermittent bugs in complex soft-
ware, but automatic programming is hard enough without worrying about
such bugs.

Now take the example of a restaurant. Suppose you go to an ordinary
restaurant and eat a meal with your fingers. Now, you expect a conflict
with the scheme, in that normally you would use a knife and fork. This
kind of contradiction is evident with the current hypothesis, which you
want to be changed. Next time, you go to another reputed restaurant and
you eat with a knife and fork or other utensils which were not available
at the previous restaurant. This will make you recall the past scenario
and generate new or revised plans to include in your schemes. We learn
from failures of expectations about what will happen when schemes are
used for planning or understanding. However, in a sense, all learning is
failure-driven. We must change the rules whenever something happens
that should not have happened or fails to happen when it should have
happened.

7.4.7 Learning by Being Told or Getting Advice (Learning by Instruction)
Learning by being told is another area of AI learning. It allows a system to
improve its task performance by the repetition of this task, like an athlete
who trains himself by the execution of the same movement several times.
During these repetitions, the system gains know-how and is progressively
improved. It requires that the learning system select and transform the
knowledge into a usable form and then integrate it into the existing knowl-
edge of the system. It includes learning from teachers and learning by using
books, publications, and other types of instruction.

Learning by being told is simply the interaction of a teacher (human)
and an AI student. The teacher is there to teach the AI how to do things
in the real world. Because the teacher has a grasp of real-world situa-
tions, it virtually eliminates the need for induction by the AI. The only
problem is the communication between the teacher and the AI stu-
dent. Preferably, the teacher would want to teach in English, but the AI
does not understand English. There is not sufficient English to code a
translator.

102 Artificial Intelligence Basics

One solution is for the teacher is to use limited English. This reduces
the need to interpret the unnecessary parts of the sentence, such as
the pronunciation and articles (i.e., instead of saying “It is easier to
move the little boxes first,” the teacher could say “Move little boxes
first.” This reduces the commands down to verbs, adjectives, nouns,
and words telling the program in what order to move the boxes.

Another solution is for the teacher to actually put the instructions
into code. This is not preferable, since one of the many goals for
AI is to get it to interpret English commands, sometimes on the
fly. Short instructions are no problem to put into code, but should
the instruction set be lengthy, the teacher will spend a lot time
coding the set of instructions, instruction-by-instruction, until the
AI understands the way the teacher is teaching it. This can be time
consuming, especially if the AI does not learn the set of instructions,
or learns it incorrectly and new instructions need to be created to
nullify what the program has learned.

7.4.8 Learning by Exploration
Learning by exploration is a little different from the other ways of learning.
It is a restricted form of learning. The purpose of learning to explore is to
just gather information and not really pursue a goal. All the system tries to
do is find interesting information it can store and learn from it. But it does
not explore until it has nothing left to explore. The system will follow a series
of tasks. It will perform one task, which may add more tasks, and then move
onto the next task. This causes the database of concepts to continue to grow.

The program will organize the tasks in order of “interestingness.” The
program will also not always look at each task. Sometimes, it needs to
determine what would be a waste of time exploring. This causes a problem
because the program needs some way of determining what task is worth
exploring, and should it choose not to explore a task, it has to make sure it
is not missing out on anything by ignoring it.

Sometimes the program will find that the tasks it has left are not inter-
esting enough to explore. If this happens, it will go through all its tasks and
explore a “suggestions” slot so it can make the tasks more interesting. This
way, the program will more than likely not run out of tasks to explore.

The program should also be able to generate concepts from what it already
contains in its database. This way, it can generate more tasks to explore or just
create new concepts that may have a purpose in the real world.

Learning 103

7.5 Advantages of Machine Learning

1. Often, machine learning is much more accurate than human-crafted
rules since it is data-driven.

2. Humans are often incapable of expressing what they know (e.g., the
rules of English or how to recognize letters), but can easily classify
examples.

3. Machine learning does not need a human expert or programmer.

4. The programs use automatic methods to search for hypotheses ex-
plaining data.

5. Machine learning is cheap and flexible, and it can be applied to any
learning task.

7.6 Disadvantages of Machine Learning

1. Machine learning needs a lot of labeled data.

2. Machine learning is error-prone (it is usually impossible to get perfect
accuracy).

PROLOG
8.1 Preliminaries of Prolog

This chapter deals with the preliminaries of Prolog, an AI programming
language. Specialized languages exist for the majority of activities in data
processing. For example, COBOL is for business applications, FORTRAN
is for scientific computations, and BASIC is for general purpose comput-
ing. In a similar way, LISP and Prolog are the two major languages used for
majority of the AI problems. We discussed LISP earlier. In this chapter, we
discuss the preliminaries of Prolog.

Prolog has been successful as an AI programming language for the fol-
lowing reasons:

The syntax and semantics of Prolog are very close to formal logic.
By this time, it must be clear to you that most AI programs reason
using logic.

The Prolog language has a built-in inference engine and automatic
backtracking facility. This helps in the efficient implementations of
various search strategies.

This language has a high productivity and allows for easy program
maintenance.

Prolog is based on the universal formalism of “Horn clauses.”
The positive feature of this is its immunity to implementation
dependencies, and programs tend to be uniform.

Because of the inherent AND parallelism, Prolog can be
implemented with ease on parallel machines.

The clauses of Prolog have a procedural and declarative meaning.
Because of this, understanding the language is easy.

C H A P T E R8

106 Artificial Intelligence Basics

In Prolog, each clause can be executed separately as though it is a
separate program. Hence, modular programming and testing are
possible.

Prolog’s free data structure is amenable to complex data structures.

As an interpreter, Prolog is suitable for quick prototyping and
incremental system development.

Program tracing during development is possible with modest
debugging efforts in Prolog.

Logic programming is an approach to computer science in which the
Horn clause form of first order logic is used as a high level programming
language. Logic programming allows the programmer to describe a situa-
tion with formulae in predicate logic and use a mechanical problem solver
to make inferences from the formulae.

8.2 Milestones in Prolog Language Development

1965 Robinson develops the resolution procedure.

1973 Colmeraur at Marseilles develops the Prolog Language in FORTRAN

1974 Kowlaski’s work on predicate logic as a programming language

1977 The University of Edinburgh develops the Prolog interpreter on the
DEC10 machine.

1980 The Imperial College develops micro-Prolog for personal computers.

1981 Japanese Fifth Generation Computer Systems adopts Prolog as its
main programming language.

8.3 What is a Horn Clause?

In a Horn clause, one condition is followed by zero or more conditions. It
is represented as follows:

conclusion:
condition_1,
condition_2,
condition_3,
condition_n.

Prolog 107

The conclusion is true if, and only if, condition_1 is true and condi-
tion_2 is true and condition_3 is true and so on until condition_n is true.

In simple terms, a Horn clause consists of a set of statements joined by
logical ANDs.

The basis of Prolog is formed by Horn clauses and Robinson’s resolu-
tion rule.

8.4 Robinson’s Resolution Rule

The principle of the resolution is as follows.

Two clauses can be resolved with one another if one of them contains a
positive literal and the other contains a corresponding negative literal with
the same predicate symbols and the same number of arguments. Consider
the following clauses:

 – X (a) V Y (p, q) ...(1)
 – Y (p, q) V T (r, s) ...(2)

These two clauses can be unified to give

 – T (r, s) V – X (a) ...(3)

Now (1) – (3) can be used for future computations.

8.5 Parts of a Prolog Program

A Prolog program consists of a set of clauses. A clause is either a fact or a
rule. A fact is used to indicate a simple data relationship between the ele-
ments called objects.

For example, “Kumar likes toffees” is represented as

 objects/items

The word “likes” is a relation that links the objects together.

A predicate is the abstract sense of the relation that holds true between
a certain number of arguments. A predicate is identified by the predicate
name and its arity (number of arguments). In the example given above,
“likes” is the predicate name and its arity is 2.

108 Artificial Intelligence Basics

A predicate can have any number of arguments.

The simplest Prolog program is a set of facts, referred to as a database.
Here is a database of “likes” facts:

likes(ram, aircrafts).

likes(ram, cars).

8.6 Queries to a Database

Once a database has been created, one can make queries to it. A simple
query consists of a predicate name and its arguments.

For instance, for the “likes” database created, the query

likes(ram, cars)

would return the value “True.”

For the query

likes(murali, jeeps)

the system would return the value “False.”

It is also possible that one can have a variable for an argument. If the
query has a variable, then the system will try to evaluate those predicates
for which the variable is “True.” Normally, variables will start with an upper-
case letter. For the query

like(murali, jeeps)

the system would return the value “False.”

It is also possible that one can have a variable for an argument. If the
query has a variable, then the system will try to evaluate those predicates
for which the variable is “True.” Normally, variables start with an uppercase
letter. The query

likes(ram, What)

would have the answer

What = aircrafts

What = cars

Prolog 109

8.7 How Does Prolog Solve a Query?

Prolog tries to match (this process is called “unification”) the arguments
of the query with the facts in the database. If the unification succeeds, the
variable is said to be instantiated. It is also possible that one can have vari-
ables for all the arguments.

The query

likes(Who, What)

would result in

Who = kumar,
Who = ram, What = aircrafts
Who = mani,
Who = ram, What = cars

The sequence adopted for this is the same as the sequence in the
database.

8.8 Compound Queries

The queries that were posed to the system were simple ones. It is also pos-
sible to pose compound queries to the system. For this, consider the “likes”
database again.

The query

likes(mani, What),likes(kumar, What)

has the meaning “Is there an item which Kumar and Mani like?” In
Prolog, the comma symbol represents logical ANDs.

The system will respond

8.9 The _ Variable

This is a special variable, the anonymous variable, that instructs the system to
ignore the value of an argument. It unifies with anything but does not print.

The query

likes(ram,_)

110 Artificial Intelligence Basics

will return the value “True” because the system can match from the
database the predicate name and the argument. The anonymous variable
is ignored.

8.10 Recursion in Prolog

If a function during execution calls itself again, then such a function is said
to be recursive in nature.

To explain a recursion set of instructions, consider the evaluation of N
answer books.

To evaluate N answer books,

If N = 0, then stop correction.

If N > 0, value one answer book, then evaluate N-1 answer books.

Recursion is a major built-in function in Prolog.

Let’s discuss how recursion in Prolog works.

Consider the program that finds the “ancestor.” The Prolog program for
this is as follows.

ancestor(A, B) : /* Clause 1 */

 parent(A, B)

ancestor(A, B) : /* Clause 2 */

 parent(C, B),

 ancestor(A, C).

Together, these rules define two ways of how a person can be the ances-
tor of the other.

Clause 1 states A is an ancestor of B, when A is a parent of B.

Clause 2 states A is an ancestor of B, when C is a parent of B and A is
an ancestor of C.

To verify how this works, consider the following database.

 parent(person_1, person_2).

 parent(person_1, person_3).

 parent(person_3, person_4).

Prolog 111

The query

 ancestor(person_1, Whom)

will have the answers

 Whom = person_2.

 Whom = person_3.

 Whom = person_4.

Any recursive procedure has to have

a non-recursive clause to indicate when the recursive has to stop

a recursive rule.

In the example given, Clause 1 will serve to stop the recursion.

8.11 Data Structures in Prolog

The list structure is an important data structure in Prolog. This is
nothing but a collection of ordered sequences of terms. The elements
of the list are written between the square brackets separated by the
commas. For example,[apple, orange mango, grapes] is
a list of fruits. Since a list is an ordered sequence, the list[apple,
grapes, orange, mango] is not the same as the first list, even
though they both have only four elements and the members of the list
are the same.

8.12 Head and Tail of a List

The symbol “|” divides the list into two parts, the head of the list and the tail
of the list, respectively.

In the fruit list,

[apple|Rest]

would give the result

Rest = [orange, mango, grapes].

An empty list (a list with no elements) is represented as [].

112 Artificial Intelligence Basics

Example for List Unification

 (a) [H|T] = [1,2,3,4] (b) [H|T] =[a]

 H = 1 H =[a]

 T = [2,3,4]. T = []

 (c) [H1, H2, H3] |T] = [a, ,b, c, d, e]

 [H1, H2, | T] = [a]

 H1 = a, H2 = b, H3 = c This is false because there is

 T = [d, e] an element for T.

Some of the operations possible on the list are given below.

8.13 Print all the Members of the List

The members of a list cannot be written using the write statement available
in Prolog. For this purpose, one has to write a clause that uses to recursion
for this purpose. This clause is

writelist([]).

writelist([H|T] :-

/* If list is empty, stop
recursion */tv

write([H]),
the list*/

write([T]). /* Recursive call of the clause
*/

8.14 Print the List in Reverse Order

This is similar to the writelist clause discussed above. The modification is
done in the ordering of the sub-goals. The clause is as follows.

rev_print([]). /* If the list is empty, stop
recursion */

rev_print([H|T]):-

 rev_print(T),

write(H)

Prolog 113

8.15 Appending a List

In this, all the arguments are lists. The first are appended together and
returned in the third argument.

append([]), List, List)

append([H|List_1], List_2, [H|List_3]):

 append(List_1, List_2, List_3).

8.16 Find Whether the Given Item is a Member of the List

the list */

for X in the rest of the list. */

member(X, [Y|Rest]):

member(X, Rest).

8.17 Finding the Length of the List

has_length([], 0).

has_length([H|T], N):

has_length(T, N1),

N = N1+1.

8.18 Controlling Execution in Prolog

The two major ways of controlling execution in Prolog is through fail and
cut (represented as “!”) predicates.

Fail Predicate

The fail predicate will make a clause fail during execution. In order to force
backtracking, this predicate is useful. The purpose of this predicate and its
importance is discussed using the following Prolog program.

clause 1:

person(Name, Designation),

114 Artificial Intelligence Basics

write(Name),

write(Designate),

fail.

person(raman, researcher).

person(kumar, manager).

person(ravi, accountant).

person(selvan, partner).

When this program is executed, the system will bind “raman” to “Name”
and “researcher” to “Designation” and print them. This clause deliberately
fails using the fail predicate. This forces backtracking and the system instan-
tiates another value to be the variable. Thus, the system will print all the
names and designations, and it will fail because of the fail predicate.

In order to make the clause succeed, all that has to be done is to make
the clause true. This is done by adding the clause without any conditions to
it. This is done in the following program.

clause 1:

person(Name, Designation),

write(Name),

write(Designation),

fail.

clause 1. /* This clause will make clause 1 succeed */

person(raman, researcher).

person(kumar, manager).

person(ravi, accountant).

person(selvan, partner).

The point to be noted here is that the variables in the clause lose their
bindings every time the rule fails. Backtracking forces a new binding.

However, the fail predicate is not sufficient to achieve total control
over execution. The necessity of some other predicate is explained with

Prolog 115

the following example. Consider the previous example of person(Name,
Designation).

Here, we do not want to print the name of the person whose designa-
tion is “accountant.” The program for that is to check the designation and
if the designation is “accountant,” the program should not print the name.
The program for that is shown below.

clause 1:-

person(Name, Designation),

check_designation(Designation),

write(Name),

write(Designation),

fail.

clause 1:/* This clause will make clause 1 suc-
ceed */

check_designation(accountant):fail

check_designation(_). /* This clause will make
the predicate check_designation succeed */

person(raman, researcher).

person(kumar, manager).

person(ravi, accountant).

person(selvan, partner).

When the program is executed, and when check_
designation(accountant) fails, the system checks check_desig-
nation(_) and succeeds. The anonymous variable binds any value to the
variable. So “ravi” and “accountant” will also be printed, which are not the
solution. The solution for this problem is achieved using the cut predicate.

Cut Predicate

The cut predicate is a built-in predicate that instructs the interpreter not
to backtrack beyond the point at which it occurs. This is primarily used to
prune the search space.

116 Artificial Intelligence Basics

To explain the concept of a cut predicate, consider the following pro-
gram with the facts and clause.

state(tamilnadu).

state(kerala).

state(andhra_pradesh).

state(uttar_pradesh).

state(karnataka).

state(madhya_pradesh).

 reading(Reply), Reply = “yes”,

 !

Consider what will be the output when a person from Uttar Pradesh
answers.

Are you from tamilnadu?
no

Are you from kerala?
no

Are you from andhra_pradesh?
yes

So, you are from uttar_pradesh.

In fact, the system reads the user’s variable in Reply. If it is “no,” then
the Reply sub-goal fails and the system backtracks to get a new variable
for S. When the user from Uttar Pradesh types “yes,” the system allows the
program to proceed beyond the cut. The cut will see to it that the query
will end after the first “yes” answer and will not permit it to backtrack. This
is the reason the system will not ask about Karnataka and Madhya Pradesh.

This is what is called backtracking because the system backtracks when-
ever the reply is “no.” There are two ways to get out of this.

Exhaust all of the state database.

Prolog 117

Allow the system to pass through the cut. The cut will prevent
backtracking.

The cut predicate must be used with extreme caution. Otherwise, it is
likely to disrupt the normal execution of the program by pruning needed
states.

Here is the solution for the person(Name, Designation)
problem.

clause 1:-

person(Name, Designation), check_designation
(Designation),

write(Name),

write(Designation),

clause 1./* This clause will make clause 1 suc-
ceed*/ check_designation(accountant):-

!,

fail.

check_designation(_). /* This clause will make
the predicate

check_designation succeed */

person(raman, researcher).

person(kumar, manager).

person(ravi, accountant).

person(selvan, partner).

Here, when check_designation(accountant) fails, Prolog
backtracks to the next person’s (Name, Designation) and the next
variable binding is tried. Thus, “ravi” and “accountant” are not printed.

8.19 About Turbo Prolog

One of the most commonly available types of Prolog is Turbo Prolog, devel-
oped by Borland International. This Prolog runs on IBM compatible PCs
in a DOS environment.

118 Artificial Intelligence Basics

Turbo Prolog is a compiler. The general form of the program is as
follows.

trace /* optional */

project “project_
name”

/* optional */

include /* optional */

domains

person = symbol

shift = symbol

database

/* the domain used */

w o r k s (p e r s o n ,
shift)

predicates

/* This section declares */

/* the predicates that are to be
stored in the dynamic database
*/

k n o w n (p e r s o n ,
person)

goal

/* This section declares the
domains of each argument */

knows(A, B).

clauses

/* optional. This is needed when

*/

/*actual program starts here*/

works(magesh, day).

works(senthil, day).

knows(X,Y):-

X <> Y.

Prolog 119

Turbo Prolog expects that the domain type of each of its arguments in
the predicates will be defined. For this purpose, the domains available are
char, integer, real, string, symbol, and file.

Lists are declared in the domains using*. For example, a list of integers
(int_list) is declared in the domains as follows:

domains

 int_list = integer*

Turbo Prolog’s development environment is user-friendly, with win-
dows for editing, dialogue, messages, and tracing.

The Turbo Prolog debugger is invoked using the “trace” command.
This option will trace the execution of the complete program. If one wants
to trace only certain predicates, then the option “shorttrace” is used.

PYTHON
9.1 Languages Used for Building AI

LISP is one of the most popular languages for creating AI. Its best features
include garbage collection, uniform syntax, dynamic typing, and an interac-
tive environment. LISP code is written as s-expressions and consists of lists.

Another popular AI programming language is Prolog. The best thing
about this language is a built-in unifier. Its main disadvantage is that this
language is difficult to learn.

C/C++ is used for building simple AI programs in a short period of
time. Java is not as fast as C, but its portability and built-in types make Java
the choice of many developers. Finally, there is Python. As many develop-
ers have noted, Python is similar to LISP. It is one of the most popular AI
languages. Why is this so? Why do developers code AI with Python? Let’s
check it out.

9.2 Why Do People Choose Python?

Python was created at the end of the 1980s. Its implementation started in
1989. Python’s philosophy is very interesting, as it includes several apho-
risms: it is explicit rather than implicit, simple rather than complex. Python
creators value its beautiful design and look. They prefer the complex to the
complicated, and they stated that readability counts. Python has a clean
grammar and syntax. It is natural and fluent. Python’s developers said
that the language’s goal is to be “cool” to use. Since it was named after
Monty Python, a British comedy group, the language’s users have a playful
approach to writing many tutorials and other materials.

C H A P T E R9

122 Artificial Intelligence Basics

Developers have said that they enjoy the variety and quality of Python’s
features. Though it is not the perfect scientific programming language, its
features are efficient:

data structure

classes

flexible function calling syntax

iterators

nested functions

kitchen-sink-included standard library

great scientific libraries

“cool” open source libraries (Numpy, Cython, IPython, and
MatPlotLib).

Other features developers like about Python are as follows: the holistic
language design, thought-out syntax, language interoperability, balance of
high-level and low-level programming, documentation generation system,
modular programming, correct data structures, numerous libraries, and
testing frameworks. One of the disadvantages is the need for programmers
to be good at MATLAB, as it is common in general scientific coding. That is
why many developers publish open research code in MATLAB.

Compared to other OOP languages, Python is relatively easy to learn. It
has a bunch of image intensive libraries, such as VTK, Maya 3D Visualization
Toolkits, Scientific Python, Numeric Python, and Python Imaging Library.
These tools are perfect for numeric and scientific applications.

Python is used everywhere and by everyone: in simple terminal com-
mands, in vitally important scientific projects, and in big enterprise apps. This
language is well designed and fast. It is scalable, open source, and portable.

9.3 Build AI Using Python

The first step is to get started. Though it sounds a bit stressful and hard, you
should understand that building an AI in Python will take some time. The
amount of time needed depends on your motivation, skills, and your level
of programming experience.

Python 123

In order to build an AI program with Python, you need to have some basic
understanding of this language. This is not just a popular general-purpose
programming language. It is also widely used for machine learning and com-
puting. First of all, install Python. You may do that by installing Anaconda,
the open source analytics platform. Include the needed packages for machine
learning: NumPy, scikit-learn, iPython Notebook, and matplotlib.

The next step is to boost your machine learning skills. Of course, it is
almost impossible to reach the ultimate understanding of machine learning
in a short period of time (unless you are a genius or a machine like IBM’s
Watson). That is why it is better to start with gaining basic machine learn-
ing knowledge or improving your understanding with the help of the fol-
lowing courses: Andrew Ng’s Machine Learning course and Tom Mitchell’s
Machine Learning lectures. You need a basic understanding of machine
learning’s theoretical aspects.

We have already mentioned Python’s scientific libraries. These Python
libraries will be useful when you build an AI. For example, you will use
NumPy as a container of generic data. Since it contains an N-dimensional
array object, tools for integrating C/C++ code, Fourier transform, random
number capabilities, and other functions, NumPy is one of the most useful
packages for scientific computing.

Another important tool is pandas, an open source library that pro-
vides users with easy-to-use data structures and analytic tools for Python.
Matplotlib is another service you will like. It is a 2D plotting library that
creates publication-quality figures. Among the best matplotlib advantages
is the availability of 6 graphical user interface toolkits, web application serv-
ers, and Python scripts. Scikit-learn is an efficient tool for data analysis. It
is open source and commercially usable. It is the most popular general-
purpose machine learning library.

After you work with scikit-learn, you may take your AI programming
using Python to the next level and explore k-means clustering. You should
also read about decision trees, continuous numeric prediction, and logistic
regression. If you want to learn more about Python in AI, read about the
deep learning framework Caffe and a Python library Theano.

There are Python AI libraries, such as AIMA, pyDatalog, SimpleAI,
and EasyAi. There are also Python libraries for machine learning, such as
PyBrain, MDP, scikit, and PyML. If you are searching for natural language
and text processing libraries, check out NLTK.

124 Artificial Intelligence Basics

As you see, the importance of Python for AI is obvious. Any machine
learning project will benefit from using Python. As AI needs a lot of
research, programming artificial intelligence using Python is efficient – you
may validate almost every idea with up to thirty code lines.

9.4 Running Python

We assume that everything is done with an interactive Python shell. You
can either do this with an IDE, such as IDLE1, that comes with standard
Python distributions, or just run iPython3 (or perhaps just ipython) from
a shell.

Here we describe the simplest version that uses no IDE. If you down-
load the zip file and change the directory to the “aipython” folder where
the .py files are, you should be able to do the following, with the associated
user input.

The first iPython3 command is in the operating system shell (note that
the -i is important to enter interactive mode).

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016,
10:47:25)

Type “copyright”, “credits,” or “license” for more information.

IPython 5.1.0 — An enhanced Interactive Python.

? –> Introduction and overview of IPython’s features.

%quickref –> Quick reference.

help –> Python’s own help system.

object? –> Details about “object”, use ‘object??’ for extra details.

In [1]: import searchProblem

acyclic_delivery_problem)

Sixteen paths have been expanded and 5 nodes remain in the frontier.

o103 –> o109 –> o119 –> o123 –> r123

Python 125

Twenty-one paths have been expanded and 6 nodes remain in the frontier.

o103 –> b3 –> b4 –> o109 –> o119 –> o123 –> r123

9.5 Pitfalls

It is important to know when side effects occur. Often, AI programs con-
sider what would happen or what may have happened. In many such cases,
we do not want side effects. When an agent acts in the world, side effects
are common.

In Python, you need to be careful to understand the side effects. For
example, the inexpensive function for adding an element to a list, namely
append, changes the list. In a functional language like LISP, adding a new
element to a list, without changing the original list, is a cheap operation. For
example, if x is a list containing n elements, adding an extra element to the
list in Python (using append) is fast, but it has the side effect of changing
the list x. To construct a new list that contains the elements of x plus a new
element, without changing the value of x, entails copying the list, or using a
different representation for lists. In the search code, we will use a different
representation for lists for this reason.

9.6 Features of Python

9.6.1 Lists, Tuples, Dictionaries, and Conditionals

Lists

Python has a flexible and powerful list structure.

Lists are mutable sequences – they can be changed in place.

They are denoted with square brackets. l1 = [1, 2, 3, 4]

You can create nested sub-lists. l2 = [1, 2, [3, 4, [5], 6], 7]

You can use concatenation. l1 + l2

You can use repetition. l1 * 4

You can use slices. l1[3:5], l1[:3], l1[5:]

126 Artificial Intelligence Basics

append, extend, sort, and reverse are built in.

You can create a list of integers with range.

Tuples

Tuples are like immutable lists.

Nice for dealing with enumerated types

Can be nested and indexed.

 Ø t1 = (1,2,3), t2 = (1,2,(3,4,5))

Can use index, slice, and length, just like lists.

 Ø t1[3], t1[1:2], t1[-2]

Tuples are mostly useful when you want to have a list of a
predetermined size/length.

Tuples have constant-time access to elements (fixed memory
locations).

Tuples are very useful as keys for dictionaries.

Dictionaries

A dictionary is a Python hash table (or associative list)

They are unordered collections of arbitrary objects.

d1 = {} - new hashtable d2 = {’spam’ : 2, ’eggs’, 3}

Can be indexed by key: d2[’spam’]

 Keys can be any immutable object.

Can have nested hash tables

 Ø d3 = {’spam’ : 1, ’other’ :{’eggs’ :2, ’spam’ : 3}}

 Ø d3[’other’][’spam’]

have _key, keys(), and values() for k in keys()

Typically, you will insert/delete dictionaries with the following:

 Ø d3[’spam’] = ’delicious!’ Ø del d3[’spam’]

Python 127

Conditionals

The general format for an if statement is as follows.

if<test1> :

<statement1>

<statement2>

elseif:<test2> :

<statement3>

else:

<statement>

Notice the colons after the conditionals.

Compound statements consist of the colon, followed by an
indented block.

Logical tests return 1 for “True” and 0 for “False.”

“True” and “False” are shorthand

and, or, and not are available for compound tests.

One of the nice features of Python is the use of list comprehensions
(and also tuple, set, and dictionary comprehensions).

(fe for e in iter if cond) enumerates the values fe for each
e in iter for which cond is true. The “if cond” part is optional,
but the “for” and “in” are not optional. Here, e has to be a variable, and
iter is an iterator, which can generate a stream of data, such as a list, a set, a
range object, or a file. cond is an expression that evaluates to either True
or False for each e, and fe is an expression that will be evaluated for each
value of e for which cond returns True.

Python for Artificial Intelligence

This can go in a list, but it can be called directly using next. The following
shows a simple example, where user input is prepended with>>>.

>>> [e*e for e in range(20) if e%2==0]

[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

128 Artificial Intelligence Basics

>>> a = (e*e for e in range(20) if e%2==0)

>>> next(a)

0

>>> next(a)

4

>>> next(a)

16

>>> list(a)

[36, 64, 100, 144, 196, 256, 324]

>>> next(a)

Traceback (most recent call last):

File “<stdin>”, line 1, in <module>

Notice how list(a) continued on the enumeration, and got to the
end of it.

Comprehensions can also be used for dictionaries. The following code
creates an index for list a:

>>> a = [“a”,”f”,”bar”,”b”,”a”,”aaaaa”]

>>> ind = {a[i]:i for i in range(len(a))}

>>> ind

{‘a’: 4, ‘f’: 1, ‘bar’: 2, ‘b’: 3, ‘aaaaa’: 5}

>>> ind[‘b’] 3

which means that b is the 3rd element of the list.

The assignment of ind could have also been written as >>> ind =
{val:i for (i,val) in enumerate(a)}, where enumerate
returns an iterator of the (index, value) pairs.

9.6.2 Functions as Rst-Class Objects
Python can create lists and other data structures that contain functions.
There is an issue that tricks many newcomers to Python. A function uses

Python 129

the last value of a variable when the function is called, not the value of
the variable when the function was defined (this is called “late binding”).
This means if you want to use the value a variable has when the function
is created, you need to save the current value of that variable. Python uses
“late binding” by default, but the alternative that newcomers often expect
is “early binding,” where a function uses the value a variable had when the
function was defined; this approach can be easily implemented.

Features of Python 11

Consider the following programs designed to create a list of 5 functions,
where the ith function in the list is meant to add i to its argument: 2
pythonDemo.py |. Some tricky examples are as follows.

11 fun_list1 = []

12 for i in range(5):
13 def fun1(e):
14 return e+i
15fun_list1.append(fun1)

16 17 fun_list2 = [] 18 for i in range(5):
19 def fun2(e,iv=i):
20 return e+iv
21 fun_list2.append(fun2)

22

23 fun_list3 = [lambda e: e+i for i in range(5)]
24

25 fun_list4 = [lambda e,iv=i: e+iv for i in
range(5)]

26

27 i=56

Try to predict, and then test, the output of the following calls, remem-
bering that the function uses the latest value of any variable that is not
bound in the function call.

130 Artificial Intelligence Basics

pythonDemo.py | (continued)

30## ipython -i pythonDemo.py

31 # Try these (copy text after the comment
symbol and paste in the Python prompt):

32 # print([f(10) for f in fun_list1])

33 # print([f(10) for f in fun_list2])

34 # print([f(10) for f in fun_list3])

35 # print([f(10) for f in fun_list4])

In the first for-loop, the function fun uses i, whose value is the last
value it was assigned. In the second loop, the function fun2 uses iv. There
is a separate iv variable for each function, and its value is the value of i
when the function was defined. Thus, fun1 uses late binding, and fun2
uses early binding. fun list3 and fun list4 are equivalent to the first
two (except fun list4 uses a different i variable).

One of the advantages of using the embedded definitions (as in fun1
and fun2 above) over the lambda is that is it possible to add a __doc__
string, which is the standard for documenting functions in Python, to the
embedded definitions.

9.6.3 Generators and Coroutines
Python has generators which can be used as a form of coroutines.

The yield command returns a value that is obtained with next. It is
typically used to enumerate the values for a for loop or in generators.

A version of the built-in range with 2 or 3 arguments (and positive
steps) can be implemented as follows.

pythonDemo.py | (continued)

37 def myrange(start, stop, step=1):
38 “”” enumerates the values from start in steps

of size step that are 39 less than stop.

40 “””

Python 131

41 assert step>0, “only positive steps imple-
mented in myrange”

42 i = start

43 while i<stop:
44 yield i

45 i += step

46

47 print(“myrange(2,30,3):”,list(myrange(2,30,3)))

Note that the built-in range is unconventional in how it handles a sin-
gle argument, as the single argument acts as the second argument of the
function.

Note also that the built-in range also allows for indexing (e.g.,
range(2, 30, 3)[2] returns 8), which the above implementation
does not. However, myrange also works for floats, while the built-in range
does not.

Exercise 1.1. Implement a version of myrange that acts like the
built-in version when there is a single argument. (Hint: Make the second
argument have a default value that can be recognized in the function.)

pythonDemo.py | (continued) 49 def ga(n):
50 “””generates the square of even nonnegative

integers less than n”””

51 for e in range(n): 52 if e%2==0:
53 yield e*e

54 a = ga(20)

The sequence of next(a) and list(a) gives exactly the same results
as the comprehension.

It is straightforward to write a version of the built-in enumerate.

Let’s call it

myenumerate:

132 Artificial Intelligence Basics

pythonDemo.py | (continued)

56 def myenumerate(enum):
57 for i in range(len(enum)):

58 yield i,enum[i]

9.7 Useful Libraries

9.7.1 Timing Code
In order to compare algorithms, we often want to compute how long a pro-
gram takes; this is called the runtime of the program. The most straightfor-
ward way to compute runtime is to use time.perf counter().

import time

start_time = time.perf_counter()

compute_for_a_while()

end_time = time.perf_counter()

print(“Time:”, end_time - start_time, “seconds”)

If this time is very small (say less than 0.2 seconds), it is probably very
inaccurate, and it may be better to run your code many times to get a more
accurate time. For this, you can use timeit (https://docs.python.org/3/
library/timeit.html). To use timeit to time the call foo.bar(aaa) use
the following:

import timeit

time = timeit.timeit(“foo.bar(aaa)”,

setup=”from __main__ import foo,aaa”, number=100)

The setup is needed so that Python can find the meaning of the names
in the string that is called. This returns the number of seconds to execute
foo.bar(aaa)100 times. The variable number should be set so that the
runtime is at least 0.2 seconds.

You should not trust a single measurement, as that can be confounded
by interference from other processes. timeit.repeat can be used for
running timit a few (say 3) times. Usually, the minimum time is the one to
report, but you should be explicit and explain what you are reporting.

Python 133

9.7.2 Plotting: Matplotlib
The standard plotting for Python is performed with matplotlib (http://
matplotlib.org/). We will utilize the most basic plotting feature, the pyplot
interface.

Here is a simple example that has everything we will use.

pythonDemo.py | (continued)

60 import matplotlib.pyplot as plt
61

62 def myplot(min,max,step,fun1,fun2):
63 plt.ion() # make it interactive

64 plt.xlabel(“The x axis”)

65 plt.ylabel(“The y axis”)

66 plt.xscale(‘linear’) # Makes a ‘log’ or ‘lin-
ear’ scale

67 xvalues = range(min,max,step)
68 plt.plot(xvalues,[fun1(x) for x in xvalues],

70 plt.plot(xvalues,[fun2(x) for x in xvalues],
linestyle=’—’,color=’k’,

71 label=fun2.__doc__) # use the doc string of
the function

72 plt.legend(loc=”upper right”) # display the
legend

73

74 def slin(x):
75 “””y=2x+7”””

76 return 2*x+7 77 def sqfun(x):
78 “””y=(x-40)ˆ2/10-20”””

79 return (x-40)**2/10-20

134 Artificial Intelligence Basics

80

81 # Try the following:

82 # from pythonDemo import myplot, slin, sqfun

83 # import matplotlib.pyplot as plt

84 # myplot(0,100,1,slin,sqfun)

85 # plt.legend(loc=”best”)

86 # import math

87 # plt.plot([41+40*math.cos(th/10) for th in
range(50)],

88 # [100+100*math.sin(th/10) for th in range(50)])

89 # plt.text(40,100,”ellipse?”)

90 # plt.xscale(‘log’)

At the end of the code are some commented-out commands you should
try in interactive mode. Cut these commands from the file and paste them into
Python (and remember to remove the comments symbol and leading space).

9.8 Utilities

9.8.1 Display
In this distribution, to keep things simple and to only use standard Python,
we use a text-oriented tracing of the code. A graphical depiction of the code
could override the definition of display (but we leave it as a project).

The method self .display is used to trace the program. Any call
self .display (level, to print . . .) where the level is less than or equal
to the value for the max display level will be printed. The “to print . . .” part
can be anything that is accepted by the built-in print (including any key-
word arguments). The definition of display is as follows.

utilities.py | AIFCA utilities

11 class Displayable(object):

12 max_display_level = 1 # can be overridden in
subclasses

Python 135

1.7. Utilities 15 13

14 def display(self,level,*args,**nargs):

15 “””print the arguments if the level is less
than or equal to the 16 current max_display_level.

17 level is an integer.

18 the other arguments are whatever arguments
print can take.

19 “””

20 if level <= self.max_display_level:

21 print(*args, **nargs) ##if error you are using
Python2, not Python3

Note that args gets a tuple of the positional arguments, and nargs
gets a dictionary of the keyword arguments). This will not work in Python
2; it will give an error.

Any class that wants to use display can be made a sub-class of
Displayable.

To change the maximum display level to say 3, for a class do
Classname.max display level = 3, which will make calls to
display in that class print when the value of level is less than or equal to
3. The default display level is 1. It can also be changed for individual objects
(the object value overrides the class value).

The values of the max display level by convention are as follows:

0 display nothing,

1 display solutions,

2 also display the values as they change, and

3 also display more details.

9.8.2 Argmax
Python has a built-in max function that takes a generator (or a list or set)
and returns the maximum value. The argmax method returns the index
of an element that has the maximum value. If there are multiple elements
with the maximum value, one of the indexes to that value is returned at

136 Artificial Intelligence Basics

random. This assumes a generator of (element, value) pairs, as for example
is generated by the built-in enumerate.

utilities.py | (continued)

23 import random
24

25 def argmax(gen):
26 “””gen is a generator of (element,value) pairs,

where value is a real number.

27 argmax returns an element with maximal
value.

28 If there are multiple elements with the max
value, one is returned at random.

29 “””

30 maxv =

-
vals = [] # list of maximal elements 32 for (e,v)
in gen:

33 if v>maxv: 34 maxvals,maxv = [e], v 35 elif
v==maxv:

36 maxvals.append(e)

37 return random.choice(maxvals)
38

39 # Try:

40 # argmax(enumerate([1,6,3,77,3,55,23]))

Exercise 1.3. Change argmax to have an optimal argument that spec-
ifies whether you want the “first,” “last,” or a “random” index of the maxi-
mum value returned.

If you want the first or the last, you do not need to keep a list of the
maximum elements.

Python 137

9.8.3 Probability
For many of the simulations, we want to make a variable True with some
probability.

 returns True with a probability p, and otherwise returns False.

utilities.py | (continued)

43 “””return true with probability prob”””

44 return random.random() < prob

9.8.4 Dictionary Union
The function dict union(d1, d2) returns the union of dictionaries
d1 and d2. If the values for the keys conflict, the values in d2 are used. This
is similar to dict(d1, _ _ d2), but that only works when the keys of
d2 are strings.

utilities.py | (continued)

def dict_union(d1,d2):
“”” returns a dictionary that contains the keys

of d1 and d2.

The value for each key that is in d2 is the value from d2 (49), other-
wise, it is the value from d1.

This does not have side effects.

“””

d = dict(d1) # copy d1

d.update(d2)

return d

9.9 Testing Code

It is important to test code early and test it often. We include here a simple
form of unit tests. The value of the current module is in __name__ and
Testing Code 17 runs at the top-level. Its value is __main__.

138 Artificial Intelligence Basics

The following code tests argmax and dict_union, but only when if
the utilities are loaded in the top level. If they are loaded in a module, the
test code is not run.

In your code, you should do more substantial testing than we do here
(in particular, testing the boundary cases).

utilities.py | (continued)

56 def test():
57 “””Test part of utilities”””

58 assert argmax(enumerate([1,6,55,3,55,23])) in
[2,4]

59 assert dict_union({1:4, 2:5, 3:4},{5:7, 2:9})
== {1:4, 2:9, 3:4, 5:7}

60 print(“Passed unit test in utilities”)
61

62 if __name__ == “__main__”:
63 test()

ARTIFICIAL INTELLIGENCE
MACHINES AND ROBOTICS1

10.0 Introduction

This chapter introduces the subject of robotics, which is no longer just a
look into the future, but has been developing for many years, is happening
now, and will continue to emerge as a part of human life for the unfore-
seeable future. First, we present the philosophical and pragmatic issues of
the field; then we review the history of man trying to create machines that
emulate what he does, or recreate himself. There follows a discussion of
the technical issues that must be addressed when robots are built. Then a
number of applications of robotics are presented. The chapter concludes
with a presentation and discussion of the future from the perspective of
the “Singularity” as proposed by the great AI inventor, Raymond Kurzweil.

“In the Year 2525 (Exordium et Terminus)” was the title of the number
one hit song by Zager and Evans in 1969. The song projects what may hap-
pen to mankind in the coming millennia. Its thesis is the premise that man
will continue to dehumanize himself in the coming years as he succumbs to
technological advances.

That is not the subject of this chapter, but it sets the tone for the kinds
of considerations for the future of mankind that we are required to look into
when seeking advances in robotics. Here, we will guess, dream, imagine, or
“look into the crystal ball” to consider how our lives will change. Robots are
no longer just a futuristic topic as they were in the early history of AI: They

1 This chapter appeared as Chapter 15 in Artificial Intelligence in the 21st Century, Second
Edition by S. Lucci and D. Kopec. Revised and reprinted with permission. ©2016 Mercury
Learning and Information. All rights Reserved.

C H A P T E R10

140 Artificial Intelligence Basics

are a reality of life and becoming a greater part of everyday life. Advances
in robotics are integrally tied to advances in AI. Let us consider now a small,
future robot scene in a middle-class American home. Let us consider what
this dialogue entails and what kinds of information, knowledge, and state of
the art/technological advances this dialogue entails. Every sentence by both
five-year-old Bobby and MrTomR gives a significant clue to the state of the
world when this dialogue could take place.

MrTomR is a robot whose task is similar to that of a butler or nanny who
must take care of a five-year-old. The parents of Bobby are away at work
or on a weekend vacation. MrTomR is doing what he can to simulate the
interactions that might take place. Let us analyze what kinds of intelligence
MrTomR must have to be able to conduct this dialogue.

First, MrTomR suggests that Bobby should have breakfast at a
particular time. That is not a difficult programming task. The only
thing that is sophisticated about this is the robot’s ability to speak a
sentence that is understandable. The sentence can be constructed
from a menu of commands that MrTomR is programmed to speak
in certain trigger situations. Those triggers are that Bobby is home
alone being cared for by MrTomR and it is time for breakfast, which
Bobby has not yet received (Bobby never gets his own breakfast).

MrTomR tells Bobby to sit down. This indicates that MrTomR
understands what it means to be standing, that it has some sense
of locomotion. In order to eat breakfast “civilly,” Bobby should be
sitting at the breakfast table. Furthermore, MrTomR is able to point
and understands where Bobby should be sitting. That is already quite
a bit of advanced intelligence that MrTomR is demonstrating.

MrTomR announces the breakfast menu. This indicates that
MrTomR understands the question from Bobby and can articulately
state the answer to it. Bobby asks MrTomR for toast and coffee.
MrTomR knows that Bobby is not allowed coffee (although it
recognizes that toast was one of the items which comprises part of
the menu). As children will do, Bobby is trying to see how far he can
go with his caretaker. MrTomR is intelligent enough to be aware of
the rules. He responds as an intelligent, experienced human butler or
nanny might.

Every chapter and topic in our text to this point is or could be related to
the field of robotics. Whether we are delving into search, games, logic,

Artificial Intelligence Machines and Robotics 141

knowledge representation, production and expert systems, or neural net-
works, genetic algorithms, language, planning, there are easy and natural
connections to robotics. They are not far-fetched or remote. We now con-
sider some of these connections in more detail.

Robotics and Search: From the early days of robotics (in the sense of
a machine serving man by trying to accomplish a task), search has been
integral to robotics. For example, the kinds of search problems that
we addressed in earlier chapters, including, for example, breadth-first
search and depth-first search, heuristic search, and search in games,
are all typical problems that roboticists must address when building a
system. That is, a robot must be programmed to get from point A to
point B in the most efficient way, or it must get around some obstacles
to reach a destination or goal, akin to dealing with certain kinds of
maze problems.

Robotics, Logic, and Knowledge Representation: It goes without
saying that robots and logic go hand-in-hand. The kinds of logical
problems presented earlier are the foundations of robotics, and
the methods are the building blocks for constructing sound robotic
systems. Before any AI system is built, consideration must be made
of how the elements of that system will be represented. Whether an
agent-based approach will be used, swarm intelligence, trees, graphs,
networks, or other approaches, these considerations are fundamental
in robotic systems.

Production Systems and Expert Systems: Production systems
as the foundations of expert systems are closely tied to control
systems, which are the basic foundation of robotic systems. Tasks
such as directing a robot across a factory floor or getting a robot to
pick up packages in an Amazon factory show what kind of tasks
need to be accomplished in order to be able to accomplish a bigger
task (hierarchy). These are examples of how robots may depend on
production systems and expert systems. Furthermore, the expertise
that humans have developed in various spheres (e.g., machinist
tools, factory assembly lines, blending of colors for paint generation,
or choosing the right packaging) are natural arenas for production
systems comprising expert systems.

Fuzzy Logic: Even in the robotic world, there are outcomes that are
not only black and white or “yes” and “no,” but “to a certain degree

142 Artificial Intelligence Basics

of.” For example, a robot may encounter resistance along its path
to a goal, and thereby stumble. The robot must persist in its goal of
accomplishing an objective. In other words, even the robot world is
not just discrete, but it depends on certain “degrees of freedom” with
variations on the degrees of attributes, rather than outcomes which
are just “on” or “off” or “yes” or “no.”

Machine Learning and Neural Networks: As the sophistication of
these AI methods has improved, opportunities for their use in robotics
have emerged. The Google Car comes to mind as a premier example.

Techniques such as Genetic Algorithms, Tabu Search, and
Swarm Intelligence: These techniques are naturally utilized by
robotic systems, especially when they must work in groups. For example,
these techniques are important for the simulation of crowd behavior
or walking on New York City streets. Robots use these techniques for
simulating people rushing to their commutes while avoiding other
people who are approaching them or are otherwise in their paths.

Natural Language Understanding and Speech Understanding:
We continually see improvements in how machines (robots) will
replace humans in ever-more advanced tasks which involve language
and speech understanding. Hence, progress in these disciplines is
integral and important to robotics. The issues and factors involved (for
example, semantics, syntax, accent, and inflection) are enormous.

Planning: This has always been a subfield of AI that is strongly
associated with robotics. We have discussed planning in robotics,
which involves how a program should proceed in accomplishing a task
or set of tasks.

We will now discuss some of the challenges for robotics and why it is
both a promising and very difficult field. In constructing robots, we are
addressing the issues that make mankind unique. The challenges are
dependent on how ambitious we want to be. That is, do we only wish
the robot to be mobile? Do we wish the robot to perform tasks akin to
the original definition of the word from the play by the Czech playwright
Karel apek entitled R.U.R. (1921) where it was first introduced? In the
Czech language robota means “labor” or “work,” but in the context of
the play it meant “slavery” or forced “labor.” Or do we have much greater
ambitions for robots: that they not only be able to aid man, but emulate

Artificial Intelligence Machines and Robotics 143

him, enhance him, and be recreated/replaced in his image? Hence, we
have robots performing mundane tasks that not only people have to do
(e.g., vacuum, as with the IROBOT Roomba), but also performing sur-
gery, entering dangerous places, carrying heavy loads, and even driving
cars safely without humans! In the new millennium, robots are starting to
perform such difficult tasks better than humans can, that is, more accu-
rately, more quickly, and more efficiently, thereby freeing people from the
dangers and challenges of such tasks. Robots are taking on more tasks that
for hundreds of years humans had customarily performed themselves.
Robots are even being built to simulate recreational tasks, such as playing
bridge and soccer.

These advances have been enabled by improvements in locomotion,
machine vision, machine learning, planning, and problem solving. In the
future, we will likely entrust robots with an increasing number of deci-
sions of a vital nature to humans. Some argue that there are limitations to
what robots will be able to accomplish until we understand ourselves bet-
ter. Marvin Minsky discussed this perspective in his relatively early work
on robotics. For nearly thirty years he, Doug Lenat, and others have been
trying to address the problem of common sense knowledge. He addresses
questions such as How do children really learn?, What turns short-term
memories into long-term memories?, and How is knowledge organized for
people? During the past 25 years, it has become evident that robots are
and will continue to be able to take advantage of tremendous advances in
natural language processing and speech understanding. As already men-
tioned, such advances, along with the possibility that machines will be
built with intelligence on a par with or beyond our own, will pose diffi-
cult philosophical and practical questions. One thing is clear: despite the
recognizable pros and cons of building highly intelligent robotic systems,
there is no turning back.

10.1 History: Serving, Emulating, Enhancing, and Replacing Man

The history in “Man Makes Man,” by T. A. Heppinger, is much richer and
longer than one might imagine. We will consider the historical aspects of
robotics from a number of perspectives, including:

Robot Lore

Early Mechanical Robots

144 Artificial Intelligence Basics

Robots in Film and Literature

Early Twentieth-Century Robots.

10.1.1 Robot Lore
One of the earliest examples of robot lore is the story of the brilliant
thirteenth-century English clergyman-scientist-philosopher, Friar Roger
Bacon, who wanted to build a wall of brass to protect England against invad-
ers. To accomplish this, he proposed a “brass head” to explain how such a
wall should be built. That head was watched for three weeks, and it was only
after the friars had watched carefully over the head that it spoke, “Time is.”
A half hour later, it said “Time was.” Another half hour later, “Time is past.”
Certainly, it is just a tale, but it may have been the inspiration for the lead-
ing medieval physician Paracelsus to suggest how an entire living being, a
“homunculus,” could be built:

Let the semen of a man putrefy by itself in a her-
metically sealed glass with the highest putrefaction
of horse manure for forty days, or until it begins at
last to live, move and be agitated, which can easily be
seen. After this time it will be in some degree like a
human being…If now after this, it will be every day
nourished and fed cautiously and prudently with the
Arcanum of human blood, and kept for forty days in
the perpetual and equal heat of horse manure, … This
we call a homunculus and it should afterwards be edu-
cated with the greatest care and zeal, until it grows
and begins to display intelligence.

Although this idea was based on “alchemical lore,” the story reminds us of
the vast advancements science and the medical profession have been made
through the centuries.

Another legend of a man-made man is the lore of golem from the six-
teenth century, several decades after Paracelsus. In the Talmud, the word
“golem” means “incomplete” or “malformed,” such as an embryo or the
shapeless mass of dust from which Adam was created. It is said that around
the year 1550, Elijah of Chelm created an artificial man, called a golem,
with the Name of God corresponding to the four letters YHWH. This
golem became a monster that threatened the world until the sacred name
was removed.

Artificial Intelligence Machines and Robotics 145

Thirty years, later there was another golem story. This one centered
around the Rabbi Judah ben Loew, Chief Rabbi of Prague. The Rabbi
was known as a sober figure who was friends with the famous astronomers
Tycho Brahe and Johannes Kepler. To protect his people, the Rabbi is said
to have gone to the River Moldau with two assistants where they fashioned
from clay a human figure (see Figure 10.1).

FIGURE 10.1 Clay Golem

The story continues:

One assistant circled the figure seven times from left
to right. Loew pronounced an incantation, and the
golem began to shine like fire. The other assistant
then began his own incantation which circling seven
times from right to left. The fire went out, hair grew
on the figure’s head, and nails developed on its fin-
gers. Now it was Loew’s turn to circle seven times, as
the three of them chanted words from Genesis. When
Loew implanted the Holy Name upon its forehead,
the golem opened its eyes and came to life…

Although the golem was unable to speak, it had superhuman power, and thus
was useful in defending the Jews of Prague against the Gentiles. The golem
was also Loew’s servant and worked as a janitor within the temple, with an
allowance for rest on the Sabbath. Only Rabbi Loew was able to control the
golem, but eventually it ran amok, attacking its creator. The golem’s reign

146 Artificial Intelligence Basics

of destruction ended when Rabbi Loew tricked it into kneeling before him
and plucked the sacred name from its forehead—and magically the golem
was again reduced to clay. These three legends—the brass head of Bacon,
the homunculus of Paracelsus, and the golem of Rabbi Loew—share in
common the notion of a savant (a respected, accomplished man of intelli-
gence) creating something in the form of a man that will have the power of
a man. The famous story Frankenstein, authored by Mary Shelley in 1817,
is actually a statement on the dangers of letting technology run amok; it is
noteworthy that the story, by analogy, is quite consistent with the story of
the golem some four centuries earlier.

10.1.2 Early Mechanical Robots
Perhaps the first accepted mechanical representation of man was the
Strasbourg cock, a cast-iron rooster built in 1574, intended to be a reminder
of St. Peter’s denial of Jesus (Figure 10.2). At noon daily, it opened its beak,
stretched out its tongue, flapped its wings, spread out its feathers, raised its
head, and crowed three times. Used until 1789, it served as an inspiration
to Hobbes, Descartes, and Boyle as an example of what might someday be
achievable by machinery.

FIGURE 10.2 Strasbourg Cock

In the mid-eighteenth century, there followed the inventions of Jacques
de Vaucanson, who created various artificial humans and animals that were
quite realistic. One of his most famous inventions was a 1738 mechanical
duck which amazed in its ability to quack, splash around in water, eat, drink,

Artificial Intelligence Machines and Robotics 147

and excrete (Figure 10.3). Vaucanson also built two androids in human form
that played musical instruments (Figure 10.3). One played the flute and the
other the drums. What most impressed people was that the flutist was actu-
ally playing, rather than producing sounds from a hidden place. The flut-
ist’s breath came directly from its mouth by means of a set of bellows. Lip
movements were controlled by a mechanism. The flute, a standard instru-
ment, made sounds via finger motions over holes—as would be performed
by a human. Hence, in the early history of robotics, this was a considered a
landmark, in that the flute was considered an instrument of skill that only a
small number of people could play well. Here, we had the first mechanical
device that performed a learned skill better than most people.

FIGURE 10.3 Vaucanson’s Duck, Flutist, and Drummer

FIGURE 10.3(a) Vaucanson’s Duck with Internal Mechanisms

148 Artificial Intelligence Basics

The next rather well-known example of a man emulating a man was
somewhat of a hoax that fooled Europeans for many years. The Turk
was a contraption built by Baron Wolfgang von Kempelen in the Austro-
Hungarian Court in 1769. Purportedly, a midget Polish chess master was
inside a box with gears and cogs which played chess. It featured “a man-
nequin in the form of a Turk, with turban and handlebar mustache, seated
behind a wooden cabinet” (Figure 10.4). The Turk wowed audiences
across Europe for many years in that it played chess well and could not
be fooled with illegal moves. It was also impressive in the fact that it was
the first time that people believed that the distinction between man and
machine had been blurred. Eventually the Turk was safely transported
to a Philadelphia museum, which, in the mid-twentieth century, unfortu-
nately burned down.

FIGURE 10.4 Baron von Kempelen’s “The Turk”

Between 1770 and 1773, the father and son pair, Pierre and Henri-Louis
Jaquet-Drov, developed and demonstrated three amazing human-like

Artificial Intelligence Machines and Robotics 149

figures known as the Scribe, the Draftsman, and the Musician (Figure 10.5).
All three operated via clockwork using an intricate array of cams. The Scribe
and the Draftsman were in the shape of young boys, elegantly dressed. The
Scribe was capable of dipping a quill pen in an inkwell and then writing
up to forty letters. The Scribe’s hand, controlled by a cam, could move in
any of three directions to form one letter. Levers on a disk were used for
control, and the Scribe could then write any desired text. His brother, the
Draftsman, could produce drawings of Louis XV and similar figures includ-
ing, for example, a battleship. The eyes of these androids demonstrated an
attentive attitude while at work by moving their eyes accordingly.

FIGURE 10.5 The Scribe, the Draftsman, and the Musician Developed By Pierre and Henri
Louis Jaquet-Drov

The Musician, another Jaquet-Droz android, resembled a girl of 16, wearing
a powdered wig and a dress appropriate for the court of Vienna. She played
the organ well, with convincing eye and body movements that made her seem
alive. The end of a performance was accompanied by a bow. The Jaquet-
Droz androids found permanent homes in the Muséed’Art et d’Histoire in
Neuchatel, Switzerland. The Draftsman, with its design of a battleship, found
its way into the Franklin Institute in Philadelphia. In each android, one can
see the innovation and engineering which led to modern industrial robots.
The differences are in form and the modern use of hydraulics and program-
ming instead of springs, cams, and clockwork mechanisms.

150 Artificial Intelligence Basics

There followed the industrial revolution, and one of its artifacts was a
mechanism devised by James Watt (credited with the development of the
first practical steam engine circa 1783). In 1788 Watt devised a “flywheel
governor” featuring two whirling balls that were able to swing outward via
centrifugal force. It was linked to a steam engine whereby the outward swing
of the flyballs measured the engine’s speed; furthermore, using another
linkage, the outward swing controlled a value that maintained its present
speed. In essence, this comprised the world’s first feedback-control mecha-
nism. In 1868 James Clerk Maxwell (who discovered Maxwell’s equations
in electromagnetism) published “On Governors,” the first systematic study
of feedback control. This turned out to be an essential element of robots in
the twentieth century.

In 1912, the automatic, mechanical, chess-playing machine built of
gears and cogs by Leonardo Torres y Quevedo could play the elementary
endgame King and Rook vs. King via an explicit set of rules to deliver check-
mate in a limited number of moves regardless of the starting position. This
was believed to be the first machine capable of not only handling informa-
tion but being able to make decisions based on this information.

10.1.3 Robots in Film and Literature
The play R.U.R. (“Rossum’s Universal Robots”) is about robots who have
been designed and used as general purpose laborers. They are devoid of
human feelings and emotions, but are used as soldiers in war. In the play,
it turns out that an associate at R.U.R. discovers how to add pain and emo-
tions to the robots. Hence, the robots rebel against their human masters,
virtually exterminating them. However, they are unable to maintain the
level of production of themselves. A final touch is when two robots fall in
love, suggesting the coming of a new Adam and Eve.

We must bear in mind the time when R.U.R. appeared, which was just
after the end of World War I. It was also a statement on the dangers of tech-
nology which, with the invention of machine guns, submarines, and poison
gas, had turned the war into a bloodbath with mass carnage and massacre.
Another work in the same vein was the 1926 classic movie Metropolis by
Fritz Lang, a very popular and highly respected German filmmaker. It was
based on a book written by his wife Thea Harbou. Metropolis focuses on the
wretched lives of workers who live beneath a city. Its robot is a labor agita-
tor, Maria, who assumes the appearance of a leader whom the workers can

Artificial Intelligence Machines and Robotics 151

trust. It turns out that Maria leads the robots to self-destruction, and they
burn her at the stake, where she turns to metal.

Regarding contributions to robotics in film, arts, and literature, the
work of Isaac Asimov must be introduced. In 1942 as a young science fic-
tion writer, he contributed to Galaxy Science Fiction the story “The Caves
of Steel,” where he first presented the oft-repeated Three Laws of Robots:

1. A robot may not injure a human being, or through inaction allow a
human being to come to harm.

2. A robot must obey the orders given it by human beings except
where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection
does not conflict with the First or Second Law.

Many decades passed before Asimov’s ideas captivated the world in such
films as Forbidden Planet (1956) and the Star Wars Trilogy (1977, Star
Wars; 1980, The Empire Strikes Back; and 1983, The Return of the Jedi).

10.1.4 Twentieth-Century Robots
In the twentieth century, a number of robotic systems were built. Many
were successful. In the 1980s, robots started to become commonplace in
factories and industrial settings. Here, we limit our discussion to robots that
were particularly instrumental to research and progress in the field.

10.1.4.1 Biomimetic Systems

In this section, we present two biomimetic systems that were very impor-
tant to the progress in robotics research. One field that has not been dis-
cussed in our text to this point, considered an early forerunner to AI,
is the field of cybernetics, which is the study and comparison of com-
munication and control processes in biological and artificial systems. The
person most credited for defining and doing seminal research in this field
is Norbert Wiener at MIT. This field combined theories and principles
from neuroscience and biology with those from engineering, with the goal
of finding common properties and principles in animals and machines.

Matari notes that “a key concept of cybernetics focuses on the coupling,
combining, and interaction between the mechanism or organism and its
environment.” Such interactions are necessarily complex, as we shall soon

152 Artificial Intelligence Basics

see. Her definition of a robot is as follows: “an autonomous system which
exists in the physical world, can sense its environment, and can act on it
to achieve some goals.” 2

Given this definition, Prof. Matari calls William Grey Walter’s Tortoise
the first robot that was built with the underlying goals of cybernetics.
Walter (1910–1977) was born in Kansas City but lived and was educated
in Great Britain. He was a neurophysiologist with a strong interest in how
the brain works, and he discovered the theta and delta waves that are pro-
duced during sleep. He built machines with animal-like behavior to study
how the brain works. Walter was convinced that even organisms with very
simple nervous systems could exhibit complex and unexpected behavior.
Walter’s robots were distinct from the robots that preceded them in that
they behaved in unpredictable ways, had reflexes, and in their environ-
ments were able to avoid repetitious behaviors. The tortoise consisted of
a hard plastic shell with three wheels (Figure 10.6). Two wheels were for
forward and backward motion, while the third was for steering. Its “sense
organs” were extremely simple, consisting of only a photoelectric cell to
provide sensitivity to light and surface electric contacts that served as touch
sensors. A telephone battery provided power, while the shell provided some
degree of protection against physical damage.

FIGURE 10.6 Grey Walter’s Tortoise, the First Recognized Robot

2 Note that an autonomous robot acts on the basis of its own decisions, and is not controlled
by a human.

Artificial Intelligence Machines and Robotics 153

With these simple components and a few others, Grey Walter’s Machina
Speculatrix (“machine that thinks”) exhibited the following behaviors:

find the light

head toward the light

back away from bright light

turn and push to avoid obstacles

recharge its battery.

The turtles were the earliest examples of artificial life or “Alife.” Their vari-
ety of complex, unprogrammed behaviors were early examples of what we
now call emergent behavior.

Valentino Braitenberg was a German scientist who was inspired by Grey
Walter’s work. In 1984, he published a book entitled Vehicles, long after
the idea of cybernetics was developed and was considered a separate disci-
pline of study. The book presents a series of ideas (or thought experiments)
demonstrating how simple robots (which he called “vehicles”) can produce
behaviors which appear very human and lifelike. Although Braitenberg’s
vehicles were never built, they proved inspirational for roboticists.

2a

2b

FIGURE 10.7 Example of Braitenberg’s Vehicles. Vehicle 2a moves toward a source of light
while vehicle 2b moves away from a source of light.

154 Artificial Intelligence Basics

These started with a single motor and light sensor. Gradually, they increased
in complexity to several motors and sensors, and the exploration of the vari-
ous permutations of sensors between them. The sensors were connected
to the motors. Therefore, a light sensor could be connected directly to the
wheels of a vehicle; as the light became stronger, the robot would move
faster toward the light. This is called photophilic attraction or “loving light.”
The connections could be reversed so that the robot would move more
slowly and hence be photophobic, or exhibit a “fear of light.”

Furthermore, akin to the concept of neural networks, the connections
between the sensors and motors, whereby stronger sensor input produced
stronger output, were called excitatory connections. Conversely, sensory
inputs that weakened the motor as they got stronger were called inhibi-
tory connections. Again, the inspiration came from biological neurons and
their excitatory and inhibitory connections. Continuing with this analogy, it
is fairly evident how variations in these connections between sensors and
motors can result in a variety of behaviors. Braitenberg’s book describes
how such simple mechanisms can be used to store information, build a
memory, and even achieve learning.

10.1.4.2 Recent Systems

Artificial Intelligence research progressed in many arenas during the twen-
tieth century, a point we have described throughout this text. Research
incorporating what had and was being learned in the various disciplines
of AI was focused at three institutions: The Massachusetts Institute of
Technology (MIT), Stanford, and SRI International (then known as the
Stanford Research Institute).

Shakey, at SRI (1966–1972), was the first general-purpose mobile robot
able to reason about its own actions. Shakey (Figure 10.8) was designed
to analyze commands and break them into a series of actions necessary to
perform. Its basis was research in computer vision and natural language
processing. Charles Rosen was the project manager; contributors included
Nils Nilsson, Alfraed Brain, Sven Wahlstrom, Bertram Raphael, and others.
STRIPS (Stanford Research Institute Problem Solver) is a premier exam-
ple of an automated planning robot system. It was developed by Richard
Fikes and Nils Nilsson in 1971 at SRI International. MIT has a long his-
tory of research and contributions to the field of AI and robotics, including
robots in many environments such as space and sea, and those that exhibit
locomotion.

Artificial Intelligence Machines and Robotics 155

FIGURE 10.8 SRI’s Shakey

There are many more examples than we can give justice to here. Table 1
presents diverse robot systems that have been built during the past 55
years or so. Their increasing sophistication, capabilities, and purpose are
noteworthy. Problems which involve locomotion in open terrain are much
harder to solve than those in well-defined spaces or environments.

156 Artificial Intelligence Basics

Table 1 Summary of Robotics Projects from 1960–2010

SYSTEM
NAME

YEAR CREATOR
INSTITUTION /

COMPANY
FEATURES FOOTNOTE

1 Stanford
Cart

1960–
1980

 James
Adams

Stanford
University

Able to move
around obsta-
cles using a
camera

[9]

2 Freddy
1969–
1971

Donald
Michie

University of
Edinburgh

Assembles
blocks by
using its
camera

[10]

3 WABOT-1
1970–
1973

Waseda
University

Waseda
University

First full-
scale anthro-
pomorphic
robot. Able to
communicate
with a person
in Japanese.
Could
measure
distances with
receptors.

[11]

4 FAMULUS 1973
KUKA
Robotics

KUKA Robotics

Material
handling, i.e.,
moving parts
and materials
in factories

[1]

5 Silver Arm 1974 David Silver MIT

Small parts
assembler
that reacts
to feedback
from touch
and pressure
sensors.

[2]

6 WABOT-2
1980–
1984

Waseda
University

Waseda
University

Able to read
a musical
score and play
the organ,
and speak to
people

[11]

Artificial Intelligence Machines and Robotics 157

SYSTEM
NAME

YEAR CREATOR
INSTITUTION /

COMPANY
FEATURES FOOTNOTE

7 Omnibot
1980s–
2000

Tomy Tomy

Carry light
objects with
arms, had a
tray to carry
objects

[12]

8 Direct
Drive Arm

1981
Takeo
Kanade

Carnegie Mellon
University

Robotic arm
that could
move more
freely and
smoothly

[3]

9 Modulus
Robot

1984–
1990s

Massimo
Giuliana

Sirius

Domestic
household
robot,
household
applications

[13]

10 Big Dog
1986–
Present

Buehler,
Martin

Boston
Dynamics

Quadruped
walking, pack
mule

[7]

11 Kismet 1990s
Cynthia
Breazeal

MIT

Low-level fea-
ture extrac-
tion system,
motivation
system, motor
system

[30]

12 COG
1993–
Present

Rodney
Brooks

MIT

Humanoid,
emulates
human
thought

[4]

13

The
Walking
Forest
Machine

1995
PlusTech
Ltd.

PlusTech Ltd.

Walking
backwards,
forwards,
sideways, and
diagonally
in uneven
terrain

[5]

14 Scout II 1998
Ambulatory
Robotic
Laboratory

Ambulatory
Robotic
Laboratory

Quadruped
walking

[5]

158 Artificial Intelligence Basics

SYSTEM
NAME

YEAR CREATOR
INSTITUTION /

COMPANY
FEATURES FOOTNOTE

15 AIBO 1999 Sony Sony
Quadruped
walking, pet

[6]

16 Hiro
1999–
2010

Kawada KK
Kawada
Industries INC.

Runs real
time Linux
QNX

[14]

17 CosmoBot
1999–
Present

Dr. Corinna
Lathan with
Jack Vice

AnthroTronix,
Inc.

Live Play,
Simon Says,
playback

[15]

9 ASIMO
2000–
Present

Honda Honda

Humanoid
upright,
two-legged
walking

[5]

20 Anybots
2001–
Present

Trevor
Blackwell

ANYBOTS
Virtual pres-
ence systems

[16]

21 Inkha
2002–
2006

mat and
mrplong

King’s College
London

Camera to
track Human
movement,
speaks peri-
odically about
facts

[17]

22 Domo
2004–
Present

Jeff Weber
and Aaron
Edsinger

MIT
Perception,
learning,
manipulation

[18]

23 Seropi
2005–
Present

KITECH KITECH

Human-
friendly
working space
guidance

[19]

24 Wakamaru
2005–
Present

Mitsubishi
Heavy
Industries

Mitsubishi
Heavy
Industries

Reminder,
emergency
call, Linux
operating
system and
connects to
the internet

[20]

Artificial Intelligence Machines and Robotics 159

SYSTEM
NAME

YEAR CREATOR
INSTITUTION /

COMPANY
FEATURES FOOTNOTE

25 Enon
2005–
Present

Fujitsu
Fujitsu
Corporation

Self-guiding,
limited
speech rec-
ognition and
synthesis

[21]

26 MUSA
2005–
Present

Young Bong
Bang

Seoul National
University

Fight using
kendo

[22]

28 BEAR
2005–
Present

Vecna
Technologies

Vecna
Technologies

Six feet tall,
hydraulic
upper body
lifts 500 lbs,
steel torso,
maximum
hydraulic
exertion of
3000 psi

[23]

29 Issac
2006–
Present

IssacTeam
Politecnico di
Torino

Offers many
solutions
oriented to
automation
industry

[24]

30 Willow
Garage

2006–
Present

Scott Hassan
Willo Garage
Inc.

ROS (Robot
Operating
System)
developing
hardware
and software
for robotics
applications

[25]

31 RuBot II
2006–
Present

Pete
Redmond

Mechatrons.com
Solves Rubik’s
Cube

[26]

32 KeepOn 2007
Kozima,
Hideki

Miyagi
University

Responds to
emotions and
dances

[8]

160 Artificial Intelligence Basics

SYSTEM
NAME

YEAR CREATOR
INSTITUTION /

COMPANY
FEATURES FOOTNOTE

33 Topio Dio
2008–
2010

TOSY
Robotics
JSC

Automatica

Remote con-
trol via wire-
less, integrate
3D vision via
2 cameras,
3D opera-
tion space,
processes
pre-defined
images,
detects
obstacles by
ultrasonic
sensor, three-
wheeled base
with omni-
directional
and balanced
motion

[27]

34 Phobot
2008–
Present

Students
University of
Amsterdam

Exhibits
behavior
that mim-
ics fear and
overcoming
it by graded
exposure

[28]

35 Salvius
2008–
Present

Gunther Cox Salvius Robot

Modular
design,
constructed
using recycled
materials and
open source

[29]

36 ROBOTY
2010–
Present

Hamdi M.
Sahloul

Engineering
University of
Sana

Robot capa-
ble of playing
chess

[30]

10.2 Technical Issues

As we alluded to at the beginning of this chapter, the technical issues for
developing robots are immense, and in one way or another, they depend on

Artificial Intelligence Machines and Robotics 161

how ambitious and sophisticated one’s goals are for a robot’s capabilities.
In essence, working in robotics is a multifaceted form of problem solving.

By analogy, let us consider the problems a human faces when entering
a shopping mall and attempting to find a particular store in that mall. For a
human, there are fairly straightforward steps and questions to ask in order to
find the store you are looking for. You might look for the mall directory, ask
people at information desks, see store managers who might be familiar, or use
information sources, such as the internet and phone apps. If we have previ-
ously visited the store, we may even have some memory of where this store is
located in the mall, i.e., which floor, neighboring stores, and special features.
Now let us consider what the challenges would be for a mobile robot to find
a particular store in the mall. One solution would be for the robot to simply
follow locomotion directions, for example, go straight for .2 miles, turn left,
and go .1 miles. Or, it may be told to take an elevator up a floor. The means
of communicating directions to the robot could vary in format. The direc-
tions could be sensory, auditory, written, or visual. The differences in how
diverse robots could handle this problem and related problems is the subject
of this section. It is important to bear in mind that whatever the solution
method chosen for a robot to find the goal store in question, every aspect of
the solution must be considered by the robot’s developers and programmers.
Its locomotion, its perception of obstacles, landmarks, and goal points, must
all be considered in detail by human developers. That is why the possibility of
employing machine learning in robots represents such an important advance
in the field. If a robot can learn, then almost anything seems possible.

The early history of robotics focused on locomotion and vision (known
as machine vision). Closely aligned to the discipline were problems of com-
putational geometry and planning. In the past few decades, the possibilities
for robots have become more of a reality, with domains such as linguistics,
neural networks, and fuzzy logic being more integral to the research and
progress in robotics.

10.2.1 Robot Components
Before we delve into the typical problems facing roboticists, we feel it is
important to consider the components which comprise a typical robot.
These include:

1. the physical body or embodiment

2. sensors for perceiving the environment

162 Artificial Intelligence Basics

3. effectors and actuators to enable action

4. controller(s) to enable autonomous behavior.

We will consider the requirements for each of these four components one
by one.

1. Having a physical body means that a robot may conceivably develop
a sense of self; that is, it can consider such questions as Where am I?,
What is my state (or condition)?, and Where am I trying to go? This
also means that it is subject to the same physical laws that we live by, it
takes up a certain amount of space, and also needs energy to perform
functions, such as sensing and thinking.3

2. Sensory perception is a requirement for a real robot. It must be able
to perceive the environment, react to it, and act on it. Usually such
reactions involve movement, and that is a fundamental task for robots.
As is common in computer sciencehardware, states of electronic sys-
tems are often represented by 1s and 0s (binary digits). Depending on
the number of these sensors involved, there are 2N combinations of
perceptions (sensor states) that a robot can have. The sensors are used
to represent the internal and external state of a robot. The internal
world refers to the robot’s own state as it perceives it. The external
state refers to how the robot perceives the world it is interacting with.
Representation of internal and external states (or internal models) of
robots is an important design issue.

3. Effectors and Actuators: Effectors are the components that enable
a robot to take action. They use underlying mechanisms, such as mus-
cles and motors, to perform various functions, but mainly use them
for locomotion and manipulation. Locomotion and manipulation com-
prise two major subfields of robotics. The former is concerned with
movement (i.e., the legs of robots), while the latter is concerned with
handling things (i.e., the arms of a robot).

4. Controllers are the hardware and/or software that enable a robot to
be autonomous and hence are the devices that control their decisions
(or their “brains”). If robots are partially or fully controlled by humans,
then they are not autonomous.

3 It seems worthwhile mentioning that one of the basic elements of life is considered to be
motion, or the ability to move. So when considering the possibility of machines moving, we
are anointing them with one of the most basic accepted ingredients of being alive.

Artificial Intelligence Machines and Robotics 163

It is noteworthy that there are a number of important analogies between
power supplies for robots and people. Humans need food and water to
provide energy for their bodies, for locomotion, and for brain functioning.
Robots’ brains are not presently so developed and therefore need power
(usually provided by batteries) for locomotion and manipulation. Now con-
sider what happens when our power supply goes down (i.e., when we are
hungry or require rest). We become incapable of making good decisions,
make mistakes, and may act poorly or strangely. The same thing can happen
to robots. Hence, their power supply must be isolated, protected, and effi-
cient, and they should degrade gracefully. That is, robots should be able
to replenish their power autonomously and without totally breaking down.

Effectors are any device on a robot that has an effect on the environ-
ment. In the world of robotics, they may be arms, legs, or wheels, that
is, any robot component that can be used to have an effect on the envi-
ronment. Actuators are the mechanisms that enable effectors to perform
their tasks. Actuators may include electric motors, hydraulic or pneumatic
cylinders, or temperature-sensitive or chemically-sensitive materials. Such
actuators may be used to activate wheels, arms, grippers, legs, and other
effectors. Actuators may be passive or active. Although all actuators require
energy, some may be passive and require direct power to operate, while
others may be passive and use physical laws of motion to conserve energy.
The most common actuators are motors, but there may also be hydraulics
using fluid pressure, pneumatics using air pressure, photoreactive mate-
rial (responding to light), chemically reactive materials, thermally reactive
materials, or piezoelectric materials (materials, usually crystals, that create
electric charges when pushed or pressed).

10.2.1.1 Motors and Gears

The invention of the electromagnet by Joseph Henry in 1831 is considered
by many the greatest invention since man created the wheel. Closely tied to
this, and of equal significance, is the invention of the electric motor in 1861
by Etienne Lenoir. The association and significance of motors to power for
affecting motion is paramount. Equally significant, therefore, is the impor-
tance of motors to robotics.

Robots will typically use DC motors comprised of electromagnets and
current to produce magnetic fields which turn the shafts of the motors. Motors
must be run by a voltage appropriate for the task(s) so as not to wear them
down. DC motors are preferred, as they provide constant voltage, drawing

164 Artificial Intelligence Basics

current at an amount proportional to the work being done. Motors which
run into high resistance (e.g., a robot runs into a wall that does not move) will
eventually stall after running out of power. Recall from physics that

V (voltage) = I (current) × R (resistance).

Hence V/I = R or voltage is proportional to the resistance. However,
work = force x distance. In the case of the robot stuck against a wall, the
distance becomes very small (or zero) and thus, despite a high power (volt-
age), the work actually performed is very little or none at all. Perhaps an
easy analogy to demonstrate this idea is a car that is stuck in the snow with
its motor revved up and its wheels spinning. If this goes on for too long, the
car too will eventually stall.

The more current (electrons transferred per unit of time, measured in
Amperes) that a motor produces, the more torque (rotational force) is pro-
duced by the motor shaft. Hence, the power of a motor is the product of its
torque and the rotational speed of the shaft.4 Most DC motors operate at
the speed of 3,000 – 9,000 revolutions per minute (rpm). This means they
produce high speeds but low torque. However, robots are usually required
to perform tasks that require little rotational speed and more torque, such
as turning wheels, transporting loads, and lifting.

The problem with robot motors’ need for more torque rather than rota-
tional speed is alleviated by understanding and cleverly applying the theory
of how gears work. As with robotics in general, simple ideas that are well-
understood can be compounded to develop more complex working systems.
Small gears will turn more quickly, but are less powerful. Larger gears turn
more slowly but are more powerful. This is the principle of gears on which
multi-gear / multi-speed bicycles are based. So if a smaller gear drives a
larger gear, more torque is created in the ratio of the size of the smaller
gear to the larger gear (in terms of the number of teeth). Such paired gears
are called ganged gears. Figure 10.9 illustrates this principle with ganged
gears called a compound gear train. For example, if the input-output ratio
of one axle is 40 to 8, it would be reduced to 5 to 1. A second pair of meshed

4 A colleague of the authors was known to have purchased a 1999 Cadillac in 2004. Shortly
after he purchased it, a check engine error came up on the dashboard. It was identified as a
problem with the torque converter, which is part of the transmission. The transmission was
rebuilt, and this problem was allayed for some 100,000 miles before the torque converter
problem did actually present itself after some 15 miles of continuous driving, when the car
could not maintain its highway speed.

Artificial Intelligence Machines and Robotics 165

gears could have the input of an 8-tooth gear to drive a 24-tooth gear. This
converts to a 3-to-1 ratio. Notice that the 8-tooth gear of the second axle
may be on the same axle as the 40-tooth gear of the first pair. This gives a
ganged gear ratio of 5 to 1 × 3 to 1, which is 15 to 1. Hence, the first axle
(with smaller gears) must turn 15 times for the second axle to turn once.
Therefore, more torque (in the ratio of 15:1) has been created for the sec-
ond axle.

FIGURE 10.9 Ganged Gears

Another concept in robot motors is the servo motor. These kinds of motors
(or “servos” for short) are motors that can rotate in such a way that their
shaft reaches a specific position. They are common in toys, and are used
for adjusting steering in remote control cars or wing positions in remote
control planes. Servo motors are made from DC motors with the following
additional components:

1. gear reduction for torque

2. a position sensor for the motor shaft to tell how much the motor is
turning and in what direction

3. an electronic circuit to control the motor, telling it how much to turn
and in what direction .

Electronic signals in the form of a series of pulses will tell the motor shaft
how much to turn, typically within a range of 180 degrees. Pulse-width
modulation is a method of controlling the amount that the motor’s shaft
will turn by the length of the pulse; the larger the pulse, the larger the turn

166 Artificial Intelligence Basics

angle of the shaft. This is usually measured in units of microseconds and
therefore quite precise. Between pulses, the shaft is stopped.

10.2.1.2 Degrees of Freedom

A common notion in the field of robotics is the concept of the degrees of
motion for an object. These are a means of expressing the various types of
motion available to a robot. As an example, consider the degrees of free-
dom of motion (called translational degrees of freedom) of a helicopter.
There are six degrees of freedom (DOF) which are usually used to describe
the possible motions of a helicopter: the roll, pitch, and yaw (Figure 10.10).
Roll means rolling from side to side, pitch means angling up or down, and
yaw means turning left or right. An object like a car (or a helicopter on
the ground) has only three DOF (the vertical motion is lost), but only two
are controllable. That is, a car on the ground can only move forward and
backward (via the wheels) and turn left or right via its steering wheel. If
a car could move directly left or right (say by turning each of its wheels
90 degrees), that would add another DOF. Hence, with more complicated
robot motions, such as arms or legs trying to move in various directions (as
is possible in human arms with a rotator cuff), the number of DOF is an
important issue.

FIGURE 10.10 A Helicopter and Its Degrees of Freedom (Source: http://commons.wikimedia.
org/wiki/Helicopter#mediaviewer/File:Bell_407_(D-HBEN).jpg)

10.2.2 Locomotion
This is probably the oldest problem in robotics. Whether you are trying to
get a robot to play soccer, land on the moon, or work under the ocean, the
most fundamental issue is locomotion. How does the robot move? What are
its capabilities? The typical actuators which come to mind include:

Artificial Intelligence Machines and Robotics 167

wheels for rolling

legs enabling walking, crawling, running, climbing, and jumping

arms for grabbing hold, swinging, and climbing

wings for flying

flippers for swimming.

As soon as you start considering movement, you must also think about sta-
bility. After all, it typically takes a child at least a year before it can learn
how to walk. For people and robots, there is also the notion of the center
of gravity, which is some point above the ground where we are walking and
able to stay balanced. Too low a center of gravity means that we are dragged
down to the ground, while one that is too high means instability. Hand-in-
hand with this concept is the notion of a polygon of support. This is the
platform that must support a robot to enforce stability. Humans have such
a support platform as well, somewhere up in our torsos, only we are not
usually aware of it. For a robot, as it attains more legs (that is, three, four,
or six), this becomes less of an issue. For example, Figure 10.11 depicts
NASA’s Jet Propulsion Lab Spiderbot.

FIGURE 10.11 The Jet Propulsion Lab’s “Spiderbot,” Circa 2002

NASA’s Spiderbot

Spiderbot was the first in a line of robots called “Spiderbot” for its spi-
der-like appearance. This first MRE was a proof-of-concept to represent a

168 Artificial Intelligence Basics

node in a mobile network of sensors for solid surface exploration. The JPL
describes it further:

Large robots use large actuators to build large struc-
tures. Fine work requires small, precise actuators and
often small robots that can fit into confined spaces.
Spiderbots can provide the small chassis and the mobil-
ity to support this second type of work. The Spiderbot
is designed to develop and demonstrate hexapods that
can walk on flat surfaces, crawl on meshes, and assem-
ble simple structures. The task’s current mission is to
demonstrate complex mobility behaviors, including
maneuvering (i.e., mesh crawling) in a space analog
environment (i.e., micro-gravity). http://www.robot-
ics.jpl.nasa.gov/tasks/showTask.cfm?FuseAction=Sho
wTask&TaskID=30&tdaID=2585

10.2.3 Path Planning for a Point Robot
A point robot is the simple notion of an autonomous robot as a single point
operating in some well-defined environment, typically a Cartesian plane.
Hence, the point (x,y) will be sufficient to describe the robot’s state.

The fundamental problem is to find a path for the robot at some start-
ing configuration, S = (a,b), to some goal state, T = (c,d). How can such a
continuous path be found, if it exists? The most basic solution to this prob-
lem is known as the Bug2 Algorithm.

The algorithm is fairly straightforward. If a direct, straight-line path
between S and T exists in the free space between S and T, the robot
should use it. If the path is obstructed, then the robot uses the path until
it encounters the obstacle (point P). The robot should then circumnavigate
the obstacle until it can rejoin the line ST moving towards the goal T. If it
encounters another obstacle, it should once again circumnavigate it until it
finds another point on the obstacle on the line ST from which it can leave
the obstacle in the direction of T that is closer to T than the point P at which
it started circumnavigating the obstacle. If no such point exists, then the
robot determines that no path exists from S to T.

Although the Bug2 Algorithm is known to be complete and certain to
find a path to a goal if such a path exists, there is no guarantee that the path
will be efficient. In order to be aware of the robot’s position at all times

Artificial Intelligence Machines and Robotics 169

and plan appropriately, sensors must continuously refine their map of the
environment and update their estimation of its position. In the world of
robotics this is known as SLAM, the simultaneous localization and mapping
algorithm.

10.2.4 Mobile Robot Kinematics
Kinematics is the most basic study of how mechanical systems behave. In
mobile robotics, this is a bottom-up technique that necessarily entails the
worlds of physics, mechanics, software, and control. As such, it quickly gets
rather complex because it requires software to control hardware at every
moment.

For this purpose, much knowledge about kinematics was attained from
the early programming of robot manipulators. The task was primarily to
control a robot’s arm. Consideration of the dynamics (force and mass) of
such situations was important when built into the constraints on workspace
and trajectory. We introduced the concept of locomotion in the previous
section. Here we consider further factors which are integral to position
estimation and motion estimation, which are in themselves very chal-
lenging tasks.

Integral to considering the position and motion of a mobile robot is the
position and angle of every wheel. Each wheel is considered for its contri-
bution to the robot’s motion, and these kinematic constraints are combined
to express the entire robot’s kinematic constraints.

The starting point is the robot’s position in a simple X-Y plane. Consider
its angle which helps to create a reference point for the robot’s direction
of motion. That direction is represented with respect to the X-axis by the
angle of .

Hence the robot’s global reference can be expressed by

 X

I = Y

This vector, comprised of X, Y, and , defines what is called the “pose” of a
robot. From this equation, all movements of the robot in the global plane
{X1,Y1} can be represented with respect to the local reference frame {XR,YR}
using an orthogonal rotation matrix.

170 Artificial Intelligence Basics

Thus, instantaneous changes in the robot’s position can be represented by
matrix manipulations representing changes in the robot’s wheel angles.
Naturally, modeling of this kind is necessary and gets increasingly compli-
cated. Adding more wheels and notions of velocity and diverse motions,
possibly in different directions and dimensions, adds further complexity,
which is beyond our purpose here. An excellent reference source for the
further investigation of the technical details of kinematics, robot percep-
tion, mobile robot localization, and planning and navigation is the text by
Siegwart, Nourbakhsh, and Scaramuzza.

10.3 Applications: Robotics in the Twenty-First Century

This section presents three major robotic systems that were developed in
the twenty-first century: Big Dog, Asimo, and Cog. Each project represents
a major effort that has been ongoing for several decades, starting in the
late twentieth century. Each addresses complex and sophisticated technical
issues and problems in robotics introduced in the previous section. Big Dog
is mainly concerned with locomotion and conveyance of heavy loads, par-
ticularly for military purposes. Asimo displays diverse aspects of locomotion
with a strong emphasis on anthropomorphic elements, that is, understand-
ing how humans move. Cog is more about thinking, which is also consid-
ered to be special to humans, distinguishing us from other living beings.

10.3.1 BigDog
In 1986, Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob
Playter, leaders of the BigDog Team at MIT, wanted to achieve animal-like
mobility on rough terrain that people and vehicles have difficulties navigat-
ing. This effort was motivated by the fact that less than half of the earth’s
land is navigable by wheeled and tracked vehicles. The goal was to develop
mobile robots that could perform on a par with humans and animals in
terms of mobility, autonomy, and speed. Typical challenges included terrain
that is steep, rutted, rocky, wet, muddy, and covered with snow. The team
developed a series of robots that had up to four legs to perform movements
of which humans and animals are capable. These multi-legged robots were
developed to study dynamic control and the challenges of maintaining bal-
ance for robots on diverse terrain. Dynamically balanced legged systems
were needed, hence BigDog was invented.

Artificial Intelligence Machines and Robotics 171

BigDog is a legged robot developed by Boston Dynamics (c. 1996) and
was funded by DARPA (Defense Advanced Research Projects Agency). It
is the size of a large dog, about 3 feet long, 2.5 feet tall, and weighs around
240 lbs. The goal of the BigDog project was to create an unmanned legged
robot that could travel anywhere a person or an animal could go. This robot
has built-in systems for power, actuation, sensing, control, and communica-
tion. Ideally, the system would be able to travel anywhere, run for consecu-
tive hours, and carry its fuel and weight without trouble.

A human being employs an operator control unit (or OCU) connected
to an IP radio to control BigDog’s actions. A human employs a controller to
provide steering and speed parameters to guide the robot through diverse
terrains. The controller can also start and stop the robot as needed. The
controller can also direct BigDog to walk, jog, or trot. The data is displayed
and input. Then the robot’s AI system takes over and operates on its own to
make sure it stays upright or mobile.

BigDog employs AI for the coordination of its basic posture and to pre-
vent falls, enabling it to learn to distribute weight amongst its four legs.
This allows BigDog to carry heavy loads and to maneuver through diverse
and rough terrain with little human support. The goal is to develop a sys-
tem with auto-control. The robot has to be smart enough to navigate with
little or minimal human guidance or intervention. The robot has 50 sen-
sors which feed information to the onboard computer that monitors how
BigDog is moving and where it is, and provide data from the field. Future
projects seek further independence from human control, particularly in
areas where there is limited human access.

There are high-level and low-level control systems which help maintain
the robot’s balance. The high-level system coordinates how the legs move
as well as the speed and height of the body during movement, and the low-
level system positions and moves the joints. This control system also helps
it learn to adjust to maintain balance through slopes and climbs. It also con-
trols ground actions to help maintain support of the robot’s movements and
keep it from slipping. If it falls, it learns to get back up and stand on all four
legs, continuing with its movement through the terrain. The system also
allows BigDog to have a variety of movement behaviors, including standing
up on all four legs, squatting down, walking normally, or crawling by moving
one leg forward at a time or in a diagonal action.

172 Artificial Intelligence Basics

BigDog’s power supply consists of water cooled by a two-stroke inter-
nal combustion engine, and the engine delivers high-pressure oil into the
robot’s leg actuators. Each leg has four hydraulic actuators that power
BigDog’s joints as well as a passive fifth degree of freedom. These actuators
have sensors for the joint position, with a heat exchanger mounted on the
body to stop it from overheating the engine. BigDog’s 50 sensors include
itertial sensors that measure the attitude and acceleration of the body and
joint sensors for the actuators that help it move. These features enabled
and facilitated BigDog through its longest movement of 6.2 consecutive
miles. It can carry up to 154 kilograms on a flat terrain, but normal loads
are usually 50 kilograms on a normal day. BigDog also has a visual system
and a LIDAR, which is a pair of cameras, a computer, and visual software
(Figure 10.12). These components help point out the terrain that BigDog is
navigating and assist it in finding a clear path forward. The LIDAR system
is for the sole purpose of ignoring a human operator and enabling the robot
to use its sensors to follow a human leader out in the field.

FIGURE 10.12 BigDog Carrying Its Weight in Supplies

BigDog has a quadrupedal walking algorithm for sloped and tough ter-
rains. It can walk on sloped pathways of up to 60 degrees but can also take
into account unexpected or irregular terrain with the assistance of its con-
trol system. BigDog adapts to different changes in two ways: It fixes itself

Artificial Intelligence Machines and Robotics 173

according to the height and elevation of the terrain and footfall placement
so that it will not go lopsided and fall over on its side, and it also looks at
shadows for changes to make its own adjustments in posturewhile traveling
through diverse terrain. BigDog’s control system is coordinated with kine-
matics and ground reaction forces so that it can optiminze the amount it can
carry. The control system optimizes the load by splitting it equally among
the robot’s legs.

Future Outlook: There are many plans for the future of BigDog. The
team wants to make it possible for BigDog to move through rougher and
steeper terrain and have it be able to carry more and heavier loads. The
team wants to upgrade its engine and system to make it quieter, as its motors
and system are extremly noisy. They also want BigDog to be less reliant on
humans and employ computer vision to allow it to navigate entirely on its
own. So far, new items include a head, arm, torso, and various other parts
to increase versatility. These additions have given BigDog the ability to use
its entire body to throw heavy objects around or lift and move heavy objects
aside if they become obstructions.

FIGURE 10.13 BigDog Robots Trot Around in the Shadows

10.3.2 Asimo
Next, we present another robotics project that has been ongoing for many
years: the Honda Asimo robot. Asimo moves in a very human-like way and
was designed to be particularly helpful to people.

174 Artificial Intelligence Basics

FIGURE 10.14 Honda’s ASIMO

Imagine a world where humans and machine live together, aiding and
supporting each other in all tasks ranging from carrying the everyday grocery
shopping bags to helping firefighters rescue people trapped in flaming houses
or fallen structures. This is a world envisioned by the Honda engineers who
conceived Asimo in Japan in 1986. Asimo is a two-legged humanoid robot
created in Honda’s research lab after two decades of research and devel-
opment. The objective of creating a humanoid robot that resembles and
duplicates the complex structure of a human being is so that it is able to aide
people with various activities for the advancement of scientific development.

Creating a humanoid robot was not an easy task. However, Honda has
embraced this challenge by envisioning a world where robots and humans
interact harmoniously. Having a valuable partner with great mobility and
ability to maneuver who can interact with humans would be a great support
for people who need an extra set of helping hands without the expense of
another human.

Asimo’s design concept was to make it into a people-friendly robot that
is both lightweight and flexible. The Asimo is compact: 120 cm or 4 feet
tall and weighing approximately 52 kgs or 115 lbs. The engineers chose this
size to allow Asimo to operate freely and efficiently in a human living space.
Based on their research, this height allows Asimo to “operate light switches
and door knobs, and work at tables and work benches.”

After collecting various data about human mobility and locomotion,
including walking and other forms of human movement, Honda developed
Asimo to walk in a very similar way to how humans walk. The two-legged

Artificial Intelligence Machines and Robotics 175

walking concept includes the operation and movement on different sur-
faces. Asimo can perform everyday tasks, such as walking from one point
to another while avoiding obstacles, climbing or descending stairs, pushing
a cart, passing through doorways, and carrying things while walking. These
advanced physical capabilities are achieved by a number of sensors placed
to determine the leg’s joint angle and speed to mimic humans’ center of
gravity. These sensors collect data and interpret it into information to be
processed for the next movement.

Asimo’s second most prominent feature is its ability to interact with
humans. Asimo must be able to approach and communicate with them. It
achieves this by processing information that it captures through replicating
humans’ five senses. Asimo captures video input through the two cameras
mounted in its head, which allow it to recognize moving objects and facial
features on humans for limited facial recognition. It also creates a map of
the surrounding environment with the visual information that helps for the
purpose of collision prevention and object positioning.

Asimo is able to distinguish and interpret sounds and voice commands
that are captured by the microphones installed in its head. Asimo processes
audio input, enabling it to “recognize when its name is called, and then
turn to the source of a sound,” as well as react to “unusual sounds, such as
those of an object falling or a collision, and face in that direction.” Audio
processing enables Asimo to engage in conversations with humans through
its abilities in speech and natural language understanding. It is possible for
Asimo to carry out orders and respond to them with specific feedback; the
robot has internet connectivity, which enables it to access information via
the internet to provide answers, such as news and weather conditions.

Future Outlook: Asimo’s prospects for meeting its original goal—to be
a helper to people in need—seem to be very bright. With all the capabilities
that Asimo has, it would be able to not only support the sick and elderly, but
also provide help for situations where it would be dangerous for humans to
function, such as cleaning a toxic spill or putting out a blazing fire without
risking lives. Furthermore, Asimo can provide a sense of companionship to
people. Although it is not currently available for sale or lease in the United
States, Asimo is featured in Japanese science museums and is “being used
by a few high-tech companies to welcome guests to their facilities.”

Although Asimo is a robot, it has traveled to many countries and land-
marks around the world, ranging from the Brooklyn Bridge all the way to

176 Artificial Intelligence Basics

Europe and Switzerland. It was also featured as a guest in Disney Land, and
played soccer with President Barack Obama. Its popularity is increasing as
it keeps encouraging and inspiring young people around the world to study
the sciences via robotics and AI.

Jaemi the Humanoid Robot

FIGURE 10.15 Jaemi the Humanoid Robot

Children play “Simon Says” with Jaemi, a humanoid robot (HUBO),
during its visit to the Please Touch Museum in Philadelphia, PA.
Jaemi was created by a team from Drexel University working in col-
laboration with Korean researchers. The project was supported by the
National Science Foundation Partnership for International Research
and Education (PIRE) program.

This image accompanied the NSF press release “U.S. and Korean
Researchers Unveil Newest Research Team Member: Jaemi the
Humanoid.”
Credit: Lisa-Joy Zgorski, National Science Foundation.

Next, we present another long-term project that attempts to fulfill some
of the early original aspirations for robotics discussed in previous sections,
that is, to be able to mimic how people learn to interact as children and to
develop cognitive skills.

10.3.3 Cog
In 1993, a team at MIT headed by Rodney Brooks started to construct a
robot named Cog, which is short for “cognition.” Cog was built based on the
theory that “humanoid intelligence requires humanoid interactions with

Artificial Intelligence Machines and Robotics 177

the world,” which would have necessitated the construction of a robot that
would think and experience the world in the same way that a human would.
Cog is made of actuators and motors that work similarly to humans’ bones,
joints, and movements. The MIT team built a robot that has a human-like
intelligence, mimicking the human body and its behaviors. Nonetheless,
there are some important aspects of the human body that cannot be mim-
icked by a robot. The team also wanted to be able to use this robot to inter-
act with others as humans would. For the “training,” Cog would interact
with humans. What better way is there to learn human behaviors than to
interact with them?

Cog was designed to simulate the same environments and physical con-
straints that adult humans encounter. Although it does not have legs, it does
have a pair of symmetrical arms, a body, and a head. The lower part of its
body, beyond the waist, is just a stand. Cog “sees” with two pairs of cameras
mounted on its head with two DOF, and two microphones enable it to hear.
Each eye also has its own pair of cameras for wide view and far range. The
motor system has sensors indicating where the joints are and gives informa-
tion on their current status, as well as if there are any issues or problems
with them. Cog’s arm also provides feedback by having an electric motor
there to operate the arm and provide torque feedback information. The
robot has a total of 22 DOF. It has six degrees in its arms, four degrees
for its neck, three in its eyes, two degrees in its waist, and one in its torso
enabling twisting motions.

Cog has a diverse network with many different processors operating
at different control levels. Devices range from small microcontrollers for
joint-level control to digital signal processors. The brain controls have been
revised many times to help improve the way Cog acts like a human. The first
network contained 16 megahertz Motorola 68332 microcontrollers with cus-
tom boards connected through dual port RAM. The current version of Cog
consists of a network of 200 megahertz industrial personal computers run-
ning the QNX real-time operating system connected to a 100 VG Ethernet.
This network currently has 4 nodes, but more can be added if desired.

The robot has a pair of electret condenser microphones mounted on
its head close to where human ears would be. The microphone is similar
in functionality to what a hearing aid is to a human. Cog includes a stereo
system that amplifies the audio system and connects to a C40 DSP system.
The team wanted to use these hearing systems to allow the robot to be
aware of sounds that it hears in the same environment that humans do.

178 Artificial Intelligence Basics

They also wanted to do the same with the robot’s vision. Each of the robot’s
eyes rotates in a vertical and horizontal axis. In order to get a better reso-
lution and view of the environment, Cog takes the visual information and
processes the image in its network for a better image.

FIGURE 10.16 Image of Cog at the MIT Museum

Humans have a vestibular system which they use for movement and a sense
of balance. Without it, people would fall over or would stay stationary. The
brain takes information from this system and helps human beings coordi-
nate everyday activities, such as walking and keeping themselves upright.
The human system has three sensory organs with a semicircular passage.
The team at MIT wanted to copy this idea for Cog. Cog includes three

Artificial Intelligence Machines and Robotics 179

rate gyroscopes placed on an orthogonal axis and two linear accelerometers.
They put these devices below the eye so it can imitate sensory informa-
tion for balance. The robot amplifies, processes, and converts these sensory
devices for its computer “brain.”

The team at MIT has created a pointing action that allows Cog to
extend its arm and point at whatever is there. This action was tested many
times, even without having the team observe its performance. During these
actions, Cog’s neck was still and it pointed at a target. In the initial stages
of experimentation, Cog would perform these actions rather primitively,
akin to a human infant or someone who is inexperienced at a certain task.
However, in the process of “maturing,” Cog seemed to learn and become
more accurate in locating the target. In some sense, Cog became more
human-like through its ability to mimic human actions; it learned and then
began to practice achieving perfection in performing actions.

Future Outlook: Cog’s developers seek to continually make improve-
ments that will enable it to behave more like humans (for better or worse!),
including the manipulation of its facial features. Cog currently does not have
a face, but in the future, MIT roboticists will try to give Cog organic features
akin to humans. Researchers also tried to replicate the behavior and thought
processes of humans. Objectives included getting Cog to learn the relation-
ship between motor commands and sensory inputs so it can observe and
learn through its own actions. The team at MIT will try to get the neck and
body to fully rotate as much as possible to simulate the way a human body
rotates. The robot’s front torso feedback was tested by using resistive force
sensors. One experiment involved applying considerable force to a surface
sensor, enabling the simulation of the robot’s perception of forces.

The MIT team’s plans for Cog include a greater number of sensors,
motors, cameras, and joints so that it will have more DOF. This would allow
Cog to become more human-like. Cog has learned to adapt to the way humans
do things, but there are still some actions that it needs to learn and adapt to. A
big challenge for Cog is to be able to adapt to new environments as a human
infant might. Nonetheless, Cog has a long way to go before it becomes a full
human simulation with thoughts, human-like movements, and interactions.

One of the main questions perplexing scientists and philosophers is how
to determine whether a machine, robot, or an artificial creation possesses
any sort of intelligence or conscience at the level of human intelligence.
However, in order to compare the level of intelligence of different agents

180 Artificial Intelligence Basics

we have to define what intelligence, or an intelligent being, means. Humans
are intelligent beings because they are capable of thinking, rationalizing,
learning, and conceptualizing information in their brains. Can robots
with algorithms that possess sufficient case scenarios be able to exhibit
some form of intelligence? Certainly, that is a very plausible scenario, since
nowadays robots can look, sound, and act like a person. They are capable
of learning and storing information in their memory and processing it into
logical cases. They are able to analyze a given sentence based on its seman-
tics and syntax and come up with a credible and logical answer—but does
that qualify these machines as intelligent? Is being able to effectively and
continuously respond correctly the equivalent of understanding?

It was claimed that a chatbot program called Eugene Goostman fooled
judges into believing that the program was actually a thirteen-year-old
Ukranian boy, thus passing the Turing Test. The chatbot program fooled
the judges by avoiding questions that it did not have a concrete answer to,
much like how a thirteen-year-old boy would act. Therefore, it is disputed
amongst various scientists that the Turing Test only works with low-level
intelligent (low AI) machines and can in those cases distinguish between
machine and humans. However, in the case of the new highly intelligent
(AI) machines developed today, the Turing Test fails to separate the two. In
addition, a number of new “Turing Tests” have been proposed.

10.3.4 The Lovelace Project
The Lovelace Test: In order to design a test capable of distinguish-
ing strong AI, the Lovelace Test was proposed by Bringjord, Bello, and
Ferrucci to set a new bar for determining intelligent beings. It requires
the machine to create something original, something that even the creator
cannot explain how it was created, such as a poem, story, music, or paint-
ing—or any creative act that requires the cognitive capabilities of humans.
These creative acts would then be evaluated by a human being in order to
determine whether the creation passes a set of criteria.

Lovelace vs. Lovelace 2.0: Mark O. Riedl enhanced the Lovelace Test
by proposing the Lovelace Test 2.0, stating that “the artificial agent passes
if it develops a creative artifact from a subset of artistic genres deemed to
require human-level intelligence, and the artifact meets certain creative
constraints given by a human evaluator.” The Lovelace Test 2.0 evaluates
the creativity instead of only the intelligence of a machine.

Artificial Intelligence Machines and Robotics 181

The Lovelace 2.0 Test is as follows: artificial agent
passes the Lovelace Test if and only if:

 creates an artifact o of type t,

o conforms to a set of constraints C where ci C is any
criterion expressible in natural language,

a human evaluator h, having chosen t and C, is satisfied
that o is a valid instance of t and meets C, and

a human referee r determines the combination of t
and C to not be impossible.

FIGURE 10.17 Robot at the Royal Australian Mint, and a Canberra Watercolor Painting
(www.kopecart.com)

182 Artificial Intelligence Basics

Riedl believed that a “computational system can originate a creative arti-
fact,” for example, when creating a fictional story, a machine requires com-
mon knowledge, planning, reason, language processing, familiarity with the
subject, and a cultural artifact. However, no story generation system can
pass the Lovelace 2.0 Test because most story generation systems require
a priori (knowledge, or an argument independent of experience) domain
descriptions.

Thus, although robots and machines have greatly advanced in the field
of AI, there is a fundamental difference between humans, who possess cre-
ativity, and machines, which still follow a set program or rationalized path.

10.4 Summary

Robotics was once a rather distinct field which was closely related to AI via
computational geometry and vision. Today, we can see many aspects of AI in
robotics, especially as embedded systems. This includes search algorithms,
logic, expert systems, fuzzy logic, machine learning, neural networks,
genetic algorithms, planning, and games. Robots do not navigate stating,
“I have AI,” but it is clear that robotics as a field would not be where it is
without employing AI. We discussed examples of how and where robotics is
and how it will be used. Let us not forget the effect that advances in natural
language and speech understanding have had on improving robotics.

The history of robotics and man is much richer than one might imagine.
It starts with notions of robot lore, and the early mechanical systems such
Vaucanson’s duck and von Kempelen’s Turk from the eighteenth century.
Robots in film and literature are well-known via Mary Shelley’s Frankenstein
(1817), Karel apek’s R.U.R. (1921), and Fritz Lang’s Metropolis (1926), all
of which pose a rather grim picture of the future impact of technology on
man’s life. In the first half of the twentieth century, science fiction hero Isaac
Asimov already had the vision to develop the Three Laws of Robotics. More
recent systems and their capabilities were presented. Technical details were
presented, as well as some of the standard and more challenging issues. We
discussed the various applications of robotics, focusing on BigDog, Asimo,
and Cog, as well as new tests for AI via the Lovelace Project. (The Application
Boxes on BigDog and Cog were contributed by Peter Tan. Application Boxes
on Asimo and Lovelace were contributed by Mimi Lin Gao.)

Artificial Intelligence Machines and Robotics 183

References for Chapter 10.:

References for Table 10.1

 1. RobotWorx. The History of...KUKA Robotics. December 9, 2014.
Retrieved from http://www.used-robots.com/articles/viewing/
the-history-of-kuka-robotics.

 2. Nocks, L. 2007. The Robot: The Life Store of Technology. Westport:
Greenwood Publishing Group.

 3. Williams, J. D. Direct Drive Robotic Arms. December 9, 2014.
Retrieved from http://diva.library.cmu.edu/Kanade/kanadearm.html.

 4. Ahmad, N. 2003. The humanoid robot Cog. Crossroads 10 (2): 3.

 5. Carbone, G. and Ceccarelli, M. Legged Robotic Systems. December 9,
2014. Retrieved from http://cdn.intechopen.com/pdfs-wm/33.pdf.

 6. Sony. ERS-1010. December 9, 2014. Retrieved from http://www.sony.
net/Fun/design/history/product/1990/ers-110.html.

 7. Buehler, M. 2006. BigDog – a dynamic quadruped robot. Robotics
Institute Seminar. Boston Dynamics. BigDog - The Most Advanced
Rough-Terrain Robot. December 9, 2014. Retrieved from http://www.
bostondynamics.com/robot_bigdog.html.

 8. Cox, W. Top 10 Robots of the Past 10 Years – Robots of the Decade
Awards. 4 January 2010. December 9, 2014. Retrieved from http://www.
robotshop.com/blog/en/top-10-robots-of-the-past-10-years-robots-of-the-
decade-awards-3743.

 9. Earnest, L. December 2012. Stanford Cart. December 9, 2014.
Retrieved from http://web.stanford.edu/~learnest/cart.htm.

10. Tate, A. December 14, 2012. Edinburgh Freddy Robot. December 9,
2014. Retrieved from http://www.aiai.ed.ac.uk/project/freddy/.

11. Humanoid Robotics Institute, Waseda University. Humanoid History
-WABOT-. December 9, 2014. Retrieved from http://www.humanoid.
waseda.ac.jp/booklet/kato_2.html.

12. Tomy. http://www.theoldrobots.com/omnibot.html

13. Sirius. http://www.megadroid.com/Robots/mody.htm

184 Artificial Intelligence Basics

14. Kawada Industries. http://global.kawada.jp/mechatronics/

15. AnthroTronics Inc. http://www.anthrotronix.com/?option=com_content
&view=article&id=81&Itemid=144

16. Anybots. http://www.anybots.com/

17. King’s College London. http://www.whoosh.co.uk/inkha/TextLifeStory.
htm

18. MIT. http://people.csail.mit.edu/edsinger/domo_research.htm

19. KITECH. http://www.plasticpals.com/?p=12155

20. Mitsubishi Heavy Industries. https://www.mhi-global.com/products/
detail/wakamaru_about.html

21. Fjitsu. http://thefutureofthings.com/5191-fujitsus-enon-robot/

22. MUSA. http://www.technovelgy.com/ct/Science-Fiction-News.
asp?NewsNum=423

23. Vecna Technologies. http://www.vecna.com/labs; http://www.gizmag.
com/battlefield-extraction-assist-robot/17059/

24. ISAAC Team. http://www.isaacrobot.it/

25. Willow Garage. http://www.willowgarage.com/

26. Mechatrons. http://mechatrons.com/rubot-ii/

27. Automatica. http://techcrunch.com/2010/06/18/topio-dio-meet-
vietnams-first-robot/; http://en.akihabaranews.com/51330/robot/
meet-topio-dio-vietnams-first-humanoid-service-robot

28. University of Amsterdam. http://www.foxnews.com/story/2008/03/17/
cowardly-phobot-steals-show-at-amsterdam-robot-conference/

29. Salvius Robot. http://salviusrobot.blogspot.com/

30. Engineering University of Sana. http://www.scribd.com/doc/57089754/
Roboty

1. Heppenheimer, T. A. 1985. Man makes man. In Robotics, edited by M.
L. Minsky. Omni Press: New York.

2. Minsky, M. L. 1985. Ch 1, Introduction. In Robotics, edited by M. L.
Minsky. Omni Press: New York.

Artificial Intelligence Machines and Robotics 185

3. Wiener, N. 1948. Cybernetics: Or Control and Communication in the
Animal and the Machine. Paris (Hermann & Cie) & Cambridge, MA:
MIT Press. 2nd revised ed. 1961.

4. Mataric, M. 2007. The Robotics Primer. Cambridge, MA: MIT Press.

5. Levy, D. N. L. 2006. Robots Unlimited. A.K. Peters, Ltd: Wellesley, MA.

6. Dudek, G. and Jenkin, M. 2010. Computational Principles of Mobile Ro-
botics, 2nd edition. Cambridge, England: Cambridge University Press.

7. Siegwart, R., Nourbaksh, I, and Scaramuzza, D. 2011. Introduction
to Autonomous Mobiles Robots, 2nd ed. Cambridge, MA: MIT Press.

Big Dog References
Raibert, M. 1986. Legged Robots that Balance. MIT Press. Retrieved from
http://www.bostondynamics.com/img/BigDog_IFAC_Apr-8-2008.pdfhttp://
phys.org/news/2013-03-boston-dynamics-bigdog-toss-video.html

Asimo References
1. http://asimo.honda.com/

2. http://asimo.honda.com/downloads/pdf/asimo-technical-faq.pdf

3. http://asimo.honda.com/downloads/pdf/asimo-technical-information.
pdf

Cog References
1. Overview of the Cog project. Retrieved from http://www.ai.mit.edu/

projects/cog/OverviewOfCog/cog_overview.html

2. Naveed, Ahmad. The Humanoid Robot Cog (page 2)

Lovelace References
1. Cole, D. The Chinese Room Argument. The Stanford Encyclopedia

of Philosophy (Summer 2014 Edition), Edited by Edward N. Zalta.
Retrieved from http://plato.stanford.edu/archives/sum2014/entries/
chinese-room

2. Amlen, D.2014. Our Interview with Turing Test Winner Eugene Goost-
man. Retrieved from https://www.yahoo.com/tech/our-interview-with-
turing-test-winner-eugene-goostman-88482732919.html

186 Artificial Intelligence Basics

3. Bringsjord, S.; Bello, P.; and Ferrucci, D. 2001. Creativity, the Turing
Test, and the (better) Lovelace Test. Minds and Machines 11: 3–27.

4. Riedl, M. O. 2014. The Lovelace 2.0 Test of Artificial Creativity and
Intelligence. Retrieved from http://arxiv.org/pdf/1410.6142v1.pdf

REVIEW QUESTIONS

Chapter 1

Q1. Explain the term AI. Differentiate between machine and human
intelligence.

Q2. Define AI and briefly explain the history of AI.

Q3. Explain the various areas where the concept of AI is used.

Q4. Describe the components of AI.

Q5. What are the advantages of AI?

Q6. What is the Turing Test? How is it helpful in concluding that the
machine can think?

Chapter 2

Q1. What is a problem in AI? How can you solve it with different represen-
tation approaches?

Q2. What are the characteristics of a problem in AI? How can we represent
a problem in AI?

Q3. What is state space representation? Explain it using an example.

Q4. How is state space representation helpful in representing problems?
Explain the Water Jug problem.

Q5. What is “conflict resolution”? How can we address it?

Q6. What do you understand about production systems? Explain different
types of production systems.

APPENDIX

188 Appendix

Q7. What are the advantages and disadvantages of production systems?

Q8. Can a problem be reduced using a graphical method? Show this using
an example.

Q9. Write short notes on the following:

1. Conflict Resolution

2. 8-Puzzle Game

3. Water Jug Problem

Chapter 3

Q1. What is meant by search and control strategies? How are these useful
in AI?

Q2. Explain the different steps involved in search techniques.

Q3. What is meant by search strategies? Explain data-driven search
techniques.

Q4. Explain goal-driven search techniques.

Q5. Compare and explain the forward search and backward search.

Q6. Discuss search techniques by explaining any one of your own choice
(such as the uniformed searching technique).

Q7. Write an algorithm for the depth-first or breadth-first search technique.

Q8. Explain the different factors affecting search techniques. Compare the
depth-first and breadth-first searches.

Q9. What are heuristics? Explain a heuristic search technique.

Q10. Write an algorithm using the hill-climbing method and explain it using
an example.

Q11. Explain the different problems of the hill-climbing method.

Q12. What is the best first search? Explain it using an example.

Q13. Explain the A algorithm.

Q14. What is a beam search? Explain it using an example.

Q15. Write about constraint satisfaction.

Review Questions 189

Chapter 4

Q1. What is game playing in AI? Explain the components of a game playing
program.

Q2. Describe the basic methods used for game playing programs.

Q3. Explain one of the procedures given below:

1. Minimax

2. Alpha-Beta

Q4. Which problems occur in computer game playing programs?

Chapter 5

Q1. Define knowledge and discuss the types of knowledge.

Q2. What are the differences between a knowledge-based system and data-
base system?

Q3. What are the desirable characteristics of knowledge representation
schemes? Discuss their advantages and disadvantages.

Q4. What is knowledge representation? Explain various techniques.

Q5. How are semantic networks helpful in representations of knowledge?
In what way are they better than others?

Q6. Explain the concept of conceptual dependency.

Q7. Explain how knowledge is represented with the help of frames.

Q8. What is a script? Explain using an example.

Chapter 6

Q1. Define an expert system. Explain the different characteristics of expert
systems.

Q2. What is the rule-based system architecture? Explain.

Q3. Describe the different components of an expert system.

Q4. What is a knowledge base? How does an interface engine work?

190 Appendix

Q5. What is non-production system architecture? Explain one of these
types of architecture. How is it better than the others?

Q6. Explain the different stages of the development of an expert system.

Q7. What is knowledge acquisition?

Q8. Explain the advantages and limitations of an expert system.

Q9. Explain MYCIN and EMYCIN.

Chapter 7

Q1. What is learning? Explain the different sources of learning.

Q2. Describe the components of a machine learning system.

Q3. What are the advantages and disadvantages of machine learning
systems?

Q4. Explain the different types of learning.

Q5. What is learning as induction? Explain.

Q6. What is failure-driven learning? How does it work? Explain.

Q7. What is learning by being told or given advice? Explain.

Q8. What is learning by exploration? Explain.

Chapter 8

Q1. What is Prolog? What are the different reasons for using Prolog?

Q2. What is a Horn clause? How is it used in Prolog?

Q3. How can variables be declared in Prolog?

Q4. How is a query solved in Prolog?

Q5. What is recursion? Explain using an example.

Q6. What is a control predicate? Explain.

Q7. Explain 5 predicates used in Prolog.

Q8. Write down the different steps for creating a program.

Review Questions 191

Chapter 9

Q1. Which languages are used for building AI? Why do developers code AI
programs with Python?

Q2. Describe the features of Python.

Q3. How could we know the side effects occurring in an AI program?

Q4. Name the most well-known libraries and modules in Python.

Q5. What are the supported data types in Python?

Q6. What are the differences between list and tuples?

Q7. What is a dictionary in Python?

Q8. Explain four major utilities used in Python.

Chapter 10

Q1. Discuss five areas of AI presented in previous chapters and their rela-
tionship to robotics.

Q2. In the Story Box of MrTomR and Bobby, explain how today’s robots
may or may not be able to perform the functions of MrTomR.

Q3. Describe some of the early myths about robotics that were presented in
the chapter, including The Brass Head, the Homunculus, and the golem.

Q4. Describe the inventions of the father-son team Pierre and Henri-Louis
Jaquet-Drov. When did they occur?

Q5. Name and describe two chess-related automata that were built in prior
centuries.

Q6. Describe the literary works of Karel apek, Mary Shelley, and Isaac
Asimov and how they projected concerns and developments in robotics.

Q7. Consider Asimov’s Three Laws of Robotics—are they still valid?

Q8. Describe the purpose of the field of cybernetics.

Q9. Discuss the purpose and capabilities of the Tortoise by Grey Walters.

192 Appendix

Q10. Describe the purposes and capabilities of the three significant mod-
ern-day robot projects presented in Section 15.3—Big Dog, Asimo,
and Cog.

Q11. What is the Lovelace Project about? Do you believe it is sound and
appropriate?

INDEX

A

A* Algorithm
algorithm, 35–36
fitness number, 35–36

AAs (action aider), 62
action procedure frames, 61
actor slots, 61
ACTS (actions), 62
admissibility, 25
AI, see artificial intelligence (AI)
AIBO, 158
AIMA, 123
alpha-beta cut off, minimax strategy with

algorithm for, 49
alpha-beta pruning, 48–49
MAX NODE, 49
MIN NODE, 49
tree structure, 50

Anybots, 158
AO* Algorithm (problem reduction),

36–37
algorithm, 37
AND-OR graphs, 36–37
AND/OR Tree, 37

architectural design, 86
architectures, expert systems

non-production system architecture,
78–84

rule-based system architecture
(production systems), 73–78

argmax, 135–136
artificial intelligence (AI)

advantages, 7
application areas of, 7–9

expert systems, 9
game playing, 7–8
natural language processing (NLP),

8
problem solving, 7
robotics, 8–9
speech recognition, 9
vision systems, 9

components, 10–11
computerized reasoning, 1
definitions, 4
goals, 4
hardware, 11
history, 5–6
human intelligence in machines, 4
intelligence, 3–4
knowledge representation, 10–11
machines and robotics. see machines

and robotics, AI
problem-solving, 11
programming language, 10
Python for, 127–128
turing test, 2–3

Asimo, 158, 173–176
audio processing, 175
design concept, 174
future, 175–176
interaction capability, 175
two-legged, 174–175

Asimov, Isaac, 151, 182
associative (semantic) network,

78–79
ATRANS, 64
ATTEND, 64

194 Artificial Intelligence Basics

B

backtracking forces, 114
backward chaining, 75–76
backward search, 26
Bacon, Friar Roger, 144
beam search, 38–39

algorithm for, 38
learning applications, 39
speech recognition and vision, 39

beam width, 38
BEAR, 159
best-first search, 34–35

algorithm for, 35
beta, 48
BigDog, 157, 170–173

AI and, 171
control systems, 171
future, 173
goal, 171
multi-legged robots, 170
power supply, 172
quadrupedal walking algorithm,

172–173
sensors, 172

biomimetic systems, twentieth-century
robots, 151–154

blackboard, 82–83
architecture, 82–83

Blankespoor, Kevin, 170
Blind Search, see uniformed search
Boston Dynamics, 171
Brahe, Tycho, 145
Braitenberg, Valentino, 153
branching factor, 25
breadth-first search

advantages, 29–30
algorithm for, 29
disadvantages, 30
performance of, 30

Brooks, Rodney, 176–177

Brute Force search, see uniformed search
Bug2 Algorithm, 168

C

Canberra Watercolor Painting, 181
apek, Karel, 182

CASNET (Casual Associative Network),
78–79

clay golem, 145
CLBPS, see commutative law based

production system (CLBPS)
COBOL, 105
Cog, 157, 176–180

actuators and motors, 177
chatbot program, 180
Eugene Goostman, 180
future, 179–180
gyroscopes, 179
level of intelligence, 179–180
microphones, 177
network, 177
QNX real-time operating system, 177
version, 177

commonsense knowledge, 54
commutative law based production

system (CLBPS), 20
commutative production system, 20–21
componential intelligence, 4
compound gear train, 164
computer game playing programs,

problems in
horizon effect, 51
optimal move question, 51

concept learning, 98
conceptual cases, 63
conceptual dependencies, 62–66
conceptualization stage, expert systems,

85
conceptual tenses, 63
conditionals, Python, 127

Index 195

conflict resolution, 22–23
constraint satisfaction, 39–41

cryptarithmetic problems, 39
problem, 39

constructing robots, 142–143
contextual intelligence, 4
controllers, robot, 162
control system, 19, 75
CosmoBot, 158
critics, 10
cut-off depth, 28
cut predicate, 115–117
cybernetics, 151–153

D

DARPA (Defense Advanced Research
Projects Agency), 171

database, 77–78
data-driven inference, 26
DC motors, robots, 163–164
decision-tree architecture, 80–82
declarative frame, 60–61
declarative knowledge, 55–56
decomposable production system, 21
degrees of freedom (DOF), 166
DENDRAL, 9
deployment, 86
depth-first search (DFS)

advantages, 28
algorithm for, 27
disadvantages, 28
performance of, 28

depth of problem, 25
destination slot, 61
DFS, see depth-first search (DFS)
dictionaries, Python, 126
Direct Drive Arm, 157
direct instruction, 97–98
DOF, see degrees of freedom (DOF)
domain, 71

specific knowledge, 54

Domo, 158
Draftsman, 148–149

E

early binding, 129
EasyAi, 123
effectors and actuators, robot, 162–163
8-puzzle, 15–16
Elijah of Chelm, 144
The Empire Strikes Back (1980) (film),

151
Enon, 159
Eugene Goostman, 180
excitatory connections, robot, 154
EXPEL, 64
experimental intelligence, 4
expert systems, 9

advantages, 89–90
architectures

non-production system architecture,
78–84

rule-based system architecture
(production systems), 73–78

characteristics, 72
definition, 71–72
DENDRAL, 91
EMYCIN, 93
knowledge acquisition, 87

strategies, 88–89
knowledge engineering process,

86–87
life cycle, 84–86

conceptualization stage, 85
formalization stage, 85–86
identification stage, 84–85
implementation stage, 86
testing stage, 86

limitations, 90–91
MYCIN, 91–93
PROSPECTOR, 93

explanation

196 Artificial Intelligence Basics

facility, 76–77
mechanism, inference engine, 75

external interface, 77

F

factual knowledge, 74
fail predicate, 113–115
failure-driven learning, 99–101
FAMULUS, 156
feedback element, 96
fitness number, 35
Forbidden Planet (1956) (film), 151
formalization stage, expert systems,

85–86
FORTRAN, 105
forward-chaining systems, 75
forward search, 26
frames, 59–62

advantages, 62
architecture, 79–80
declarative frame, 60–61
definition, 59
procedural frame, 61
types, 59

Frankenstein, 146, 182
Freddy, 156
fuzzy logic, 141–142

G

Galaxy Science Fiction, 151
game playing, 7–8

in AI, 43
computer game playing programs,

problems in
horizon effect, 51
optimal move question, 51

game tree, 44
program, components

plausible move generator, 44–45

static evaluation function generator,
45

strategies
minimax strategy, 46–48
minimax strategy with the alpha-

beta cut off, 48–50
game tree, 44
ganged gears, 164–165
generators and coroutines, Python,

130–132
genetic algorithms, 142
goal identification, 85
GRASP, 64

H

HAS-PART links, 78
Henry, Joseph, 163
Heppinger, T. A., 143
heuristic function, 31
heuristic knowledge, 74
heuristic search techniques, 31

A* Algorithm, 35–36
AO* Algorithm (problem reduction),

36–37
beam search, 38–39
best-first search, 34–35
constraint satisfaction, 39–41
hill climbing, 32–34

hill climbing
algorithm for, 32
drawbacks, 33–34

local maximum, 33
plateau, 33
ridge, 33

problems associated with, 33
Hiro, 158
Honda Asimo robot, 173–176
horizon effect, 51
Horn clause, 106–107
humanoid intelligence, 176–177

Index 197

I

idealized system, 97
IF-THEN rules, 74, 92
implementation stage, expert systems,

86
induction, 98
inference engine, 75–76
informed search, 31–41

heuristic function, 31
heuristic search techniques, 31

A* Algorithm, 35–36
AO* Algorithm (problem

reduction), 36–37
beam search, 38–39
best-first search, 34–35
constraint satisfaction, 39–41
hill climbing, 32–34

problems, 31
INGEST, 64
inheritance, 78
inhibitory connections, 154
Inkha, 158
intelligence, 53

definition, 3
knowledge, 56
types, 3–4

inter-section search, 59
iPython Notebook, 123
IS-A link, 78
Issac, 159

J

Jacques de Vaucanson, 146–147
Jaemi, a humanoid robot (HUBO),

176
Jaquet-Drov, Henri-Louis, 148–149
Jaquet-Drov, Pierre, 148–149
Jaquet-Droz android, 149
Jet Propulsion Lab Spiderbot, 167
Judah ben Loew, 145

K

KeepOn, 159
Kempelen, Wolfgang von, 148
Kepler, Johannes, 145
kinematics, 169–170
Kismet, 157
knowledge

base, 74–75
commonsense knowledge, 54
declarative knowledge, 55–56
definition, 53
domain specific knowledge, 54
engineering process, 86–87
importance, 56
knowledge-based systems, 56

and database systems, 56–57
procedural knowledge, 54–55
representation, 74–75

associative networks, semantic
networks of, 58–59

conceptual dependency,
62–66

frames, 59–62
script, 66–69

source, 83
types, 54

knowledge acquisition, 86–87
difficulties in, 87–88
facility, 77
process, 87
strategies

interview analysis, 89
introspection, 89
observations, 88
protocol analysis, 88
teach back, 89

knowledge-based management system
(KBMS), 53

knowledge-based systems, 56
and database systems,

56–57

198 Artificial Intelligence Basics

L

Lang, Fritz, 150, 182
languages used for building AI, 121
late binding, 129
learning, 10

element, 10, 96
from examples, 97
by instruction, 97
machine learning

advantages, 103
characteristics, 97
disadvantages, 103
systems, 95–97

types of, 97–102
direct instruction, 97–98
failure-driven learning, 99–101
learning by analogy, 98
learning by being told or getting

advice (learning by instruction),
101–102

learning by deduction, 98
learning by exploration, 102
learning by induction (learning by

examples), 98–99
rote learning or memorization, 97

Lenoir, Etienne, 163
level of intelligence, 179–180
LISP (list processing), 10, 105
lists, Python, 125–126
local maximum, 33
locomotion, 166–168
logical representation scheme, 57
Logic programming, 106
lore of golem, 144
Lovelace Project, 180–182
Lovelace 2.0 Test, 180–182

M

Machina Speculatrix (“machine that
thinks”), 153

machine learning and neural networks,
142

machines and robotics, AI; see also robots
applications

Asimo, 173–176
BigDog, 170–173
Cog, 176–180
Lovelace Project, 180–182

constructing robots, 142–143
fuzzy logic, 141–142
genetic algorithms, 142
history, 143–160

early mechanical robots, 146–150
Robot Lore, 144–146
robots in film and literature, 150–

151
twentieth-century robots, 151–155

logic and knowledge representation,
141

machine learning and neural
networks, 142

MrTomR, 140
natural language understanding and

speech understanding, 142
planning, 142
production systems and expert

systems, 141
search, 141
swarm intelligence, 142
tabu search, 142
technical issues, 160–170

machine vision, 161
matplotlib, 123, 133–134
maximizer, 46
Maxwell, James Clerk, 150
MBUILD, 64
MDP, 123
mechanical robots, 146–150
meta knowledge, 54
Metropolis (movie), 150, 182
Mind Magazine article, 2

Index 199

minimax strategy, 46–48
algorithm for, 46
with alpha-beta cut off, 48–50
game tree expanded by two levels, 47
maximizer’s move, 48

minimizer, 46
mobile robot kinematics, 169–170
Modulus Robot, 157
monotonic production system (MPS), 19
motion estimation, kinematics, 169
motors and gears, robot, 163–166
MOVE, 64
MPS, see monotonic production system

(MPS)
MrTomR, 140
MTRANS, 64
multi-legged robots, see BigDog
Multiple Instruction Multiple Data

(MIMD) Machines, 11
Multiple Instruction Single Data (MISD)

Machines, 11
MUSA, 159
Musician, 148–149
MYCIN, 9

N

NASA’s Spiderbot, 167–168
natural language

generation, 8
understanding, 8

and speech understanding, 142
natural language processing (NLP), 8
Nelson, Gabriel, 170
network representation scheme, 57
neural network architecture, 83–84
NLP, see natural language processing

(NLP)
NMPS, see non-monotonic production

system (NMPS)
non-monotonic production system

(NMPS), 20

non-production system architecture,
78–84

associative (semantic) network, 78–79
blackboard architecture, 82–83
decision-tree architecture, 80–82
frame architecture, 79–80
neural network architecture, 83–84

NumPy, 123

O

objects slots, 61
Omnibot, 157
One-Way Link Representation, 59
operator control unit (OCU), 171
optimal move question, 51
order, 23
orthogonal rotation matrix, 169

P

pandas, 123
partially commutative production system

(PCPS), 20
participants’ identification and roles, 84
PAs (picture aider), 63
passive knowledge, 55
PCPS, see partially commutative

production system (PCPS)
performance element, 10, 96
Phobot, 160
photophilic attraction, 154
physical body, robot, 162
PIP (Present Illness Program), 79
plateau, 33
plausible move generator, 44–45
Playter, Rob, 170
point robot, path planning for, 168–169
polygon of support, 167
position estimation, kinematics, 169
PPs (picture producer), 62
probability, Python, 137

200 Artificial Intelligence Basics

problem
generator, 10
identification, 84
instance, 25
reduction, 17–18

using AND-OR graph, 17–18
solving, 7
space, 25

problem representation
in AI, 14–18

problem reduction, 17–18
state space representation, 14–17

characteristics, 13–14
conflict resolution, 22–23
production system, 18–22

advantages, 21–22
characteristics, 19
control system, 19
limitations, 22
rule applier, 19
set of production rules, 18
special features, 20–21
types, 19–20
working memory (WM), 19

procedural frame, 61
procedural knowledge, 54–55
procedural representation scheme, 57
production rules, 73
production systems, 18–22

advantages, 21–22
characteristics, 19
control system, 19
and expert systems, robots, 141
limitations, 22
rule applier, 19
set of production rules, 18
special features, 20–21
types, 19–20
working memory (WM), 19

program altered code, 100
progression planning, 15

prolog
AI programming language, 105
appending a list, 113
clauses, 105
compound queries, 109
controlling execution in, 113–117

cut predicate, 115–117
fail predicate, 113–115

data structures in, 111
element of the list, 113
free data structure, 106
head and tail of a list, 111–112
Horn clause, 106–107
language, 105–106
length of the list, 113
members write statement, 112
preliminaries, 105–106
print the list in reverse order, 112
program, parts of, 107–108
queries to a database, 108
recursion in, 110–111
Robinson’s resolution rule, 107
solution to query, 109
syntax and semantics of, 105
Turbo Prolog, 117–119
_ variable, 109–110

PROLOG (programming in logic), 10
PROPEL, 64
PTRANS, 63–64
pulse-width modulation, 165–166
PyBrain, 123
pyDatalog, 123
PyML, 123
Python, 121–122

build AI using, 122–124
features

for artificial intelligence, 127–128
conditionals, 127
dictionaries, 126
functions as Rst-class objects,

128–130

Index 201

generators and coroutines, 130–132
lists, 125–126
tuples, 126

languages used for building AI, 121
pitfalls, 125
running, 124–125
testing code, 137–138
useful libraries

matplotlib, 133–134
timing code, 132

utilities
argmax, 135–136
display, 134–135
probability, 137
union of dictionaries, 137

Python 11, features, 129–130

Q

QNX real-time operating system, 177
quadrupedal walking algorithm, 172–173

R

Raibert, Marc, 170
recency, 23
refraction, 23
regression planning, 15
requirements analysis, 86
resource identification, 85
Return of the Jedi (1983) (film), 151
Return on Investment (ROI), 72
ridge, 33
Riedl, Mark O., 180
Robinson’s resolution rule, 107
robotics, 8–9; see also machines and

robotics, AI
Robot Lore, 144–146
robots; see also machines and robotics, AI

applications
Asimo, 173–176

BigDog, 170–173
Cog, 176–180
Lovelace Project, 180–182

components
controllers, 162
degrees of freedom, 166
effectors and actuators, 162–163
motors and gears, 163–166
physical body, 162
sensory perception, 162

definition, 152
in film and literature, 150–151
global reference, 169
history, 143–160

early mechanical robots, 146–150
Robot Lore, 144–146
robots in film and literature,

150–151
twentieth-century robots, 151–155

inhibitory connections, 154
locomotion, 166–168
mobile robot kinematics, 169–170
neural networks, 154
photophilic attraction, 154
photophobic, 154
point robot, path planning for,

168–169
ROBOTY, 160
“Rossum’s Universal Robots” (R.U.R),

150, 182
rote learning or memorization, 97
Royal Australian Mint, 181
Rst-class objects, functions, 128–130
RuBot II, 159
rule applier, 19
rule-based system architecture

(production systems), 73–78
database, 77–78
explanation facility, 76–77
external interface, 77
inference engine, 75–76

202 Artificial Intelligence Basics

knowledge acquisition facility, 77
knowledge base, 74–75
production rules, 73
structure, 73
user interface, 76

rule-interpreter, 75
running, Python, 124–125
runtime, 132

S

Salvius, 160
scheduler, blackboard system

architecture, 83
scikit, 123
scikit-learn, 123
Scout II, 157
Scribe, 148–149
script, 66–69

advantages, 69
components, 66–67
disadvantages, 69

search process, 25
strategies, 26
techniques

informed search or heuristic search,
31–41

uniformed search, 26–30
self .display, 134
semantic networks of associative

networks, 58–59
sensory perception, robot, 162
Seropi, 158
servo motor, 165
Shakey, mobile robot, 154–155
Shelley, Mary, 146, 182
Silver Arm, 156
SimpleAI, 123
Single Instruction Multiple Data (SIMD)

Machines, 11
Single Instruction Single Data (SISD)

Machines, 11

SLAM (simultaneous localization and
mapping algorithm), 169

source slot, 61
space complexity, 25, 28, 30
SPEAK, 64
specificity, 23
speech recognition, 9
Spiderbot, 167–168
standard system, 96–97
Stanford Cart, 156
Stanford Heuristic Programming Project,

71
Star Wars (1977) (film), 151
state space representation, 14–17

deficiencies, 17
static evaluation function generator, 45
Strasbourg cock, 146
STRIPS (Stanford Research Institute

Problem Solver), 154
structured representation scheme, 57
supervised learning, 99
swarm intelligence, 142
system design, 86

T

tabu search, 142
Tan, Peter, 182
task slot, 61
TEIRSIAS, 93
testing code, Python, 137–138
testing stage, expert systems, 86
text-oriented tracing, 134
Three Laws of Robotics, 182
time complexity, 25, 28, 30
timing code, Python, 132
top-down logic, 98
Topio Dio, 160
Torres y Quevedo, Leonardo, 150
Tortoise, 152
translational degrees of freedom, 166
tuples, Python, 126

Index 203

Turbo Prolog, 117–119
Turing Test, 2, 180

representation, 2
weakness, 3

The Turk, 148
twentieth-century robots, 151–155

biomimetic systems, 151–154
recent systems, 154–155

U

unification, 109
uniformed search

algorithm, 26–27
breadth-first search, 29–30
depth-first search (DFS), 27–28

union of dictionaries, 137
unit tests, 137–138
unprogrammed behaviors, robots, 153
unsupervised learning, 99
user interface, 76

V

Vehicles (book), 153
vehicles, robots, 153
vision systems, 9
voltage, 164

W

WABOT-1, 156
WABOT-2, 156
Wakamaru, 158
The Walking Forest Machine, 157
Walter, William Grey, 152–153
water jug problem, 16
Watt, James, 150
Wiener, Norbert, 151
Willow Garage, 159
working memory (WM), 19

	Cover
	Half-Title page
	Title page
	Copyright page
	Contents
	Acknowledgments
	Chapter 1: ARTIFICIALINTELLIGENCE (AI)
	1.1 Computerized Reasoning
	1.2 Turing Test
	1.3 What is Intelligence?
	1.4 Artificial Intelligence
	1.5 Goals of Artificial Intelligence
	1.6 History of Artificial Intelligence
	1.7 Advantages of Artificial Intelligence
	1.8 Application Areas of Artificial Intelligence
	1.9 Components of Artificial Intelligence

	Chapter 2: PROBLEM REPRESENTATION
	2.1 Introduction
	2.2 Problem Characteristics
	2.3 Problem Representation in AI
	2.4 Production System
	2.5 Conflict Resolution

	Chapter 3: THE SEARCH PROCESS
	3.1 Search Process
	3.2 Strategies for Search
	3.3 Search Techniques

	Chapter 4: GAME PLAYING
	4.1 Game Playing
	4.2 Game Tree
	4.3 Components of a Game Playing Program
	4.4 Game Playing Strategies
	4.5 Problems in Computer Game Playing Programs

	Chapter 5: KNOWLEDGEREPRESENTATION
	5.1 Introduction
	5.2 Definition of Knowledge
	5.3 Importance of Knowledge
	5.4 Knowledge-Based Systems
	5.5 Differences Between Knowledge-Based Systems andDatabase Systems
	5.6 Knowledge Representation Scheme

	Chapter 6: EXPERT SYSTEMS
	6.1 Introduction
	6.2 Definition of an Expert System
	6.3 Characteristics of an Expert System
	6.4 Architectures of Expert Systems
	6.5 Expert System Life Cycle
	6.6 Knowledge Engineering Process
	6.7 Knowledge Acquisition
	6.8 Difficulties in Knowledge Acquisition
	6.9 Knowledge Acquisition Strategies
	6.10 Advantages of Expert Systems
	6.11 Limitations of Expert Systems
	6.12 Examples of Expert Systems

	Chapter 7: LEARNING
	7.1 Learning
	7.2 General Model for Machine Learning Systems
	7.3 Characteristics of Machine Learning
	7.4 Types of Learning
	7.5 Advantages of Machine Learning
	7.6 Disadvantages of Machine Learning

	Chapter 8: PROLOG
	8.1 Preliminaries of Prolog
	8.2 Milestones in Prolog Language Development
	8.3 What is a Horn Clause?
	8.4 Robinson’s Resolution Rule
	8.5 Parts of a Prolog Program
	8.6 Queries to a Database
	8.7 How Does Prolog Solve a Query?
	8.8 Compound Queries
	8.9 The _ Variable
	8.10 Recursion in Prolog
	8.11 Data Structures in Prolog
	8.12 Head and Tail of a List
	8.13 Print all the Members of the List
	8.14 Print the List in Reverse Order
	8.15 Appending a List
	8.16 Find Whether the Given Item is a Member of the List
	8.17 Finding the Length of the List
	8.18 Controlling Execution in Prolog
	8.19 About Turbo Prolog

	Chapter 9: PYTHON
	9.1 Languages Used for Building AI
	9.2 Why Do People Choose Python?
	9.3 Build AI Using Python
	9.4 Running Python
	9.5 Pitfalls
	9.6 Features of Python
	9.7 Useful Libraries
	9.8 Utilities
	9.9 Testing Code

	Chapter 10: ARTIFICIAL INTELLIGENCEMACHINES AND ROBOTICS
	10.0 Introduction
	10.1 History: Serving, Emulating, Enhancing, and Replacing Man
	10.2 Technical Issues
	10.3 Applications: Robotics in the Twenty-First Century
	10.4 Summary

	REVIEW QUESTIONS
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	INDEX

