

You Don’t Know JS Yet:
Scope & Closures

Kyle Simpson

This book is for sale at
http://leanpub.com/ydkjsy-scope-closures

This version was published on 2020-04-27

ISBN 978-1-64786-221-3

Published by GetiPub (http://getipub.com), a division of
Getify Solutions, Inc., and produced by Leanpub
(https://leanpub.com/fljs).

© 2020 Getify Solutions, Inc.

http://leanpub.com/ydkjsy-scope-closures

Tweet This Book!
Please help Kyle Simpson by spreading the word about this
book on Twitter!

The suggested tweet for this book is:

#YDKJSYet Still getting to know JS more deeply... Now
reading ”Scope & Closures”, the second book in @YDKJS
2nd Edition series!
https://leanpub.com/ydkjsy-scope-closures +@YDKJSY

The suggested hashtag for this book is #YDKJSYet.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

#YDKJSYet

http://twitter.com
https://twitter.com/intent/tweet?text=%23YDKJSYet%20Still%20getting%20to%20know%20JS%20more%20deeply...%20Now%20reading%20%22Scope%20&%20Closures%22,%20the%20second%20book%20in%20@YDKJS%202nd%20Edition%20series!%20https://leanpub.com/ydkjsy-scope-closures%20+@YDKJSY
https://twitter.com/intent/tweet?text=%23YDKJSYet%20Still%20getting%20to%20know%20JS%20more%20deeply...%20Now%20reading%20%22Scope%20&%20Closures%22,%20the%20second%20book%20in%20@YDKJS%202nd%20Edition%20series!%20https://leanpub.com/ydkjsy-scope-closures%20+@YDKJSY
https://twitter.com/intent/tweet?text=%23YDKJSYet%20Still%20getting%20to%20know%20JS%20more%20deeply...%20Now%20reading%20%22Scope%20&%20Closures%22,%20the%20second%20book%20in%20@YDKJS%202nd%20Edition%20series!%20https://leanpub.com/ydkjsy-scope-closures%20+@YDKJSY
https://twitter.com/intent/tweet?text=%23YDKJSYet%20Still%20getting%20to%20know%20JS%20more%20deeply...%20Now%20reading%20%22Scope%20&%20Closures%22,%20the%20second%20book%20in%20@YDKJS%202nd%20Edition%20series!%20https://leanpub.com/ydkjsy-scope-closures%20+@YDKJSY
https://twitter.com/search?q=%23YDKJSYet
https://twitter.com/search?q=%23YDKJSYet

Published by GetiPub (http://getipub.com), a division of Getify
Solutions, Inc., and produced by Leanpub (https://leanpub.com/fljs).

Editor: Simon St.Laurent Copy Editor: Jasmine Kwityn

Cover Art: David Neal (@reverentgeek)

March 2020: Second Edition

Revision History for the Second Edition

2020-03-03: First Release

While the publisher and the author have used good faith
efforts to ensure that the information and instructions con-
tained in this work are accurate, the publisher and the author
disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk.
If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

 

 

 

 

 

 

 

I must first thank my wife and kids, whose constant support
is what allows me to keep going. I also want to thank the 500
original backers of the Kickstarter for “You Don’t Know JS”
(1st ed), as well as the hundreds of thousands of folks who
bought and read those books since. Without your financial
support, this second edition wouldn’t be happening. Thanks
also to the interviewer at a certain avian social media com-
pany who said I didn’t “know enough about JS”… you helped
me name the series.

Next, I owemuch of my current career path to Marc Grabanski
and Frontend Masters. Marc took a chance on me and gave me
my first shot at teaching years ago, and I wouldn’t have then
become a writer had it not been for that! Frontend Masters
is the Premier Sponsor of YDKJSY 2nd Edition. Thank you,
Frontend Masters (and Marc).

Lastly, my editor, Simon St.Laurent, who helped me conceive
the original YDKJS and was my first book editor. Simon’s
support and guidance have profoundly impacted me and been
an integral part of shapingme into the writer I am today. From
those drinks we enjoyed at the Driskill all those years back,
where YDKJS was born, through today, thank you so much
Simon for shepherding and improving these books!

CONTENTS

Contents

Foreword . i

Preface . iii
The Parts . iii
The Title? . v
The Mission . vi
The Path . vii

Chapter 1: What’s the Scope? 1
About This Book . 1
Compiled vs. Interpreted 2
Compiling Code . 4
Compiler Speak . 11
Cheating: Runtime Scope Modifications 15
Lexical Scope . 16

Chapter 2: Illustrating Lexical Scope 18
Marbles, and Buckets, and Bubbles… Oh My! 18
A Conversation Among Friends 24
Nested Scope . 30
Continue the Conversation 35

Chapter 3: The Scope Chain 37
“Lookup” Is (Mostly) Conceptual 38
Shadowing . 40

You Don’t Know JS Yet: Scope & Closures

CONTENTS

Function Name Scope 49
Arrow Functions . 52
Backing Out . 54

Chapter 4: Around the Global Scope 55
Why Global Scope? 55
Where Exactly is this Global Scope? 60
Global This . 70
Globally Aware . 73

Chapter 5: The (Not So) Secret Lifecycle of Variables 74
When Can I Use a Variable? 74
Hoisting: Yet Another Metaphor 78
Re-declaration? . 81
Uninitialized Variables (aka, TDZ) 93
Finally Initialized . 98

Chapter 6: Limiting Scope Exposure 100
Least Exposure . 100
Hiding in Plain (Function) Scope 103
Scoping with Blocks 111
Function Declarations in Blocks (FiB) 124
Blocked Over . 130

Chapter 7: Using Closures 131
See the Closure . 132
The Closure Lifecycle and Garbage Collection (GC) 150
An Alternative Perspective 158
Why Closure? . 162
Closer to Closure . 167

Chapter 8: The Module Pattern 168
Encapsulation and Least Exposure (POLE) 169
What Is a Module? . 170

You Don’t Know JS Yet: Scope & Closures

CONTENTS

Node CommonJS Modules 177
Modern ES Modules (ESM) 180
Exit Scope . 184

Appendix A: Exploring Further 185
Implied Scopes . 186
Anonymous vs. Named Functions 191
Hoisting: Functions and Variables 202
The Case for var . 207
What’s the Deal with TDZ? 214
Are Synchronous Callbacks Still Closures? 218
Classic Module Variations 225

Appendix B: Practice . 230
Buckets of Marbles . 230
Closure (PART 1) . 231
Closure (PART 2) . 235
Closure (PART 3) . 236
Modules . 240
Suggested Solutions 243

You Don’t Know JS Yet: Scope & Closures

CONTENTS 1

Frontend Masters is the premier sponsor of the 2nd edition of
the You Don’t Know JS Yet book series.

Frontend Masters helps you advance your skills with in-
depth, modern front-end engineering courses, the highest
quality video content available anywhere on the web. With
over 150 courses to choose from, the expert content you need
to take your development to the next level is here, so get
started by joining today!

Among the amazing courses in the Frontend Masters library,
Kyle’s courses are the perfect companion materials to this
book series. Check them all out, including these few specif-
ically:

• Getting Started with JavaScript
• Deep JavaScript Foundations
• JavaScript: The Recent Parts

You Don’t Know JS Yet: Scope & Closures

https://frontendmasters.com/
https://frontendmasters.com/courses/
https://frontendmasters.com/join
https://frontendmasters.com/join
https://frontendmasters.com/kyle-simpson
https://frontendmasters.com/courses/getting-started-javascript-v2/
https://frontendmasters.com/courses/deep-javascript-v3/
https://frontendmasters.com/courses/js-recent-parts/

Foreword i

Foreword
If I look over the books on my bookshelf, I can clearly see
which of these titles are well loved. Well loved in this sense
meaning they are a little worn. Their binding is broken, their
pages are tattered, there might even be a spilled drink smear
or two.What’s ironic to me is that the most loved of my books
often look the least cared for, though honestly the opposite is
true.

Scope and Closures (1st ed.) is one of my most loved books.
It’s small, but the binding is coming undone. The pages are
worn and dog-eared. It’s a bit rumpled. It’s not a book I’ve
read once. I’ve picked it up again and again in the many years
since it was originally published.

For me, it’s also been a benchmark for my own personal pro-
gression through JavaScript. When I first read it in 2014, I was
familiar with the concepts but the depth of my understanding
was admittedly not as deep as the thin volume.

Over the years, even though I wasn’t necessarily feeling my
own improvement on a day-to-day basis, each one of the
concepts became more approachable. I’d smile to myself,
realizing how far I’d come with the help of these guides. It
became apparent there was an inverse correlation between
how well I treated the book and how much I loved it.

When Kyle asked me to write the Foreword for the 2nd edi-
tion, I was floored. It’s not often you’re asked to write about
a book that’s been so formative for your own understanding
and career, Scope and Closures in particular. I remember the

You Don’t Know JS Yet: Scope & Closures

Foreword ii

day I first understood closures, the first time I used one well.
The satisfaction was great, in part because the symmetry of
the idea was compelling to me. Before I even picked this book
up, I was already enamoured with closures. And yet, there’s
a difference between being able to execute code successfully
and fully explore the concepts with any depth. This book took
my base understanding and drew it out, helped me master it.

This book is deceptively short. It’s helpful that it’s small
because it’s dense with useful knowledge. Since it is compact,
I’d suggest you give yourself time to absorb each page. Take
your timewith it. Treat the bookwith care, and by that I mean,
wear it down.

∼∼

Sarah Drasner

Head of Developer Experience

Netlify

You Don’t Know JS Yet: Scope & Closures

Preface iii

Preface
Welcome to the 2nd edition of the widely acclaimed You
Don’t Know JS (YDKJS) book series: You Don’t Know JS Yet
(YDKJSY).

If you’ve read any of the 1st edition books, you can expect a
refreshed approach in these new ones, with plenty of updated
coverage of what’s changed in JS over the last five years.
But what I hope and believe you’ll still get is the same
commitment to respecting JS and digging into what really
makes it tick.

If this is your first time reading these books, I’m glad you’re
here. Prepare for a deep and extensive journey into all the
corners of JavaScript.

If you are new to programming or JS, be aware that these
books are not intended as a gentle “intro to JavaScript.” This
material is, at times, complex and challenging, and goes much
deeper than is typical for a first-time learner. You’re welcome
here no matter what your background is, but these books
are written assuming you’re already comfortable with JS and
have at least 6–9 months experience with it.

The Parts

These books approach JavaScript intentionally opposite of
how The Good Parts treats the language. No, that doesn’t

You Don’t Know JS Yet: Scope & Closures

Preface iv

mean we’re looking at the bad parts, but rather, exploring all
the parts.

You may have been told, or felt yourself, that JS is a deeply
flawed language that was poorly designed and inconsistently
implemented. Many have asserted that it’s the worst most
popular language in the world; that nobody writes JS because
they want to, only because they have to given its place at the
center of the web. That’s a ridiculous, unhealthy, and wholly
condescending claim.

Millions of developers write JavaScript every day, and many
of them appreciate and respect the language.

Like any great language, it has its brilliant parts as well as its
scars. Even the creator of JavaScript himself, Brendan Eich,
laments some of those parts as mistakes. But he’s wrong:
they weren’t mistakes at all. JS is what it is today—the
world’s most ubiquitous and thus most influential program-
ming language—precisely because of all those parts.

Don’t buy the lie that you should only learn and use a small
collection of good partswhile avoiding all the bad stuff. Don’t
buy the “X is the new Y” snake oil, that some new feature of
the language instantly relegates all usage of a previous feature
as obsolete and ignorant. Don’t listen when someone says
your code isn’t “modern” because it isn’t yet using a stage-
0 feature that was only proposed a few weeks ago!

Every part of JS is useful. Some parts are more useful than
others. Some parts require you to be more careful and inten-
tional.

I find it absurd to try to be a truly effective JavaScript
developer while only using a small sliver of what the language
has to offer. Can you imagine a construction worker with a

You Don’t Know JS Yet: Scope & Closures

Preface v

toolbox full of tools, who only uses their hammer and scoffs at
the screwdriver or tape measure as inferior? That’s just silly.

My unreserved claim is that you should go about learning all
parts of JavaScript, and where appropriate, use them! And if I
may be so bold as to suggest: it’s time to discard any JS books
that tell you otherwise.

The Title?

So what’s the title of the series all about?

I’m not trying to insult you with criticism about your current
lack of knowledge or understanding of JavaScript. I’m not
suggesting you can’t or won’t be able to learn JavaScript. I’m
not boasting about secret advanced insider wisdom that I and
only a select few possess.

Seriously, all those were real reactions to the original series
title before folks even read the books. And they’re baseless.

The primary point of the title “You Don’t Know JS Yet” is to
point out that most JS developers don’t take the time to really
understand how the code that they write works. They know
that it works—that it produces a desired outcome. But they
either don’t understand exactly how, or worse, they have an
inaccurate mental model for the how that falters on closer
scrutiny.

I’m presenting a gentle but earnest challenge to you the
reader, to set aside the assumptions you have about JS, and
approach it with fresh eyes and an invigorated curiosity that
leads you to ask why for every line of code you write. Why
does it do what it does? Why is one way better or more
appropriate than the other half-dozen ways you could have

You Don’t Know JS Yet: Scope & Closures

Preface vi

accomplished it? Why do all the “popular kids” say to do
X with your code, but it turns out that Y might be a better
choice?

I added “Yet” to the title, not only because it’s the second edi-
tion, but because ultimately I want these books to challenge
you in a hopeful rather than discouraging way.

But let me be clear: I don’t think it’s possible to ever fully
know JS. That’s not an achievement to be obtained, but a goal
to strive after. You don’t finish knowing everything about JS,
you just keep learning more and more as you spend more
time with the language. And the deeper you go, the more you
revisit what you knew before, and you re-learn it from that
more experienced perspective.

I encourage you to adopt a mindset around JavaScript, and
indeed all of software development, that you will never fully
have mastered it, but that you can and should keep working
to get closer to that end, a journey that will stretch for the
entirety of your software development career, and beyond.

You can always know JS better than you currently do. That’s
what I hope these YDKJSY books represent.

The Mission

The case doesn’t really need to be made for why developers
should take JS seriously—I think it’s alreadymore than proven
worthy of first-class status among the world’s programming
languages.

But a different, more important case still needs to be made,
and these books rise to that challenge.

You Don’t Know JS Yet: Scope & Closures

Preface vii

I’ve taught more than 5,000 developers from teams and com-
panies all over the world, in more than 25 countries on six
continents. And what I’ve seen is that far too often, what
counts is generally just the result of the program, not how
the program is written or how/why it works.

My experience not only as a developer but in teaching many
other developers tells me: youwill always bemore effective in
your development work if you more completely understand
how your code works than you are solely just getting it to
produce a desired outcome.

In other words, good enough to work is not, and should not
be, good enough.

All developers regularly struggle with some piece of code not
working correctly, and they can’t figure out why. But far too
often, JS developers will blame this on the language rather
than admitting it’s their own understanding that is falling
short. These books serve as both the question and answer:
why did it do this, and here’s how to get it to do that instead.

My mission with YDKJSY is to empower every single JS
developer to fully own the code they write, to understand it
and to write with intention and clarity.

The Path

Some of you have started reading this book with the goal of
completing all six books, back to back.

I would like to caution you to consider changing that plan.

It is not my intention that YDKJSY be read straight through.
The material in these books is dense, because JavaScript is

You Don’t Know JS Yet: Scope & Closures

Preface viii

powerful, sophisticated, and in parts rather complex. Nobody
can really hope to download all this information to their
brains in a single pass and retain any significant amount of it.
That’s unreasonable, and it’s foolish to try.

My suggestion is you take your time going through YDKJSY.
Take one chapter, read it completely through start to finish,
and then go back and re-read it section by section. Stop in
between each section, and practice the code or ideas from
that section. For larger concepts, it probably is a good idea to
expect to spend several days digesting, re-reading, practicing,
then digesting some more.

You could spend a week or two on each chapter, and a month
or two on each book, and a year or more on the whole series,
and you would still not be squeezing every ounce of YDKJSY
out.

Don’t binge these books; be patient and spread out your
reading. Interleave reading with lots of practice on real code
in your job or on projects you participate in. Wrestle with the
opinions I’ve presented along the way, debate with others,
and most of all, disagree with me! Run a study group or book
club. Teach mini-workshops at your office. Write blog posts
on what you’ve learned. Speak about these topics at local JS
meetups.

It’s never my goal to convince you to agree with my opinion,
but to encourage you to own and be able to defend your
opinions. You can’t get there with an expedient read-through
of these books. That’s something that takes a long while to
emerge, little by little, as you study and ponder and re-visit.

These books are meant to be a field-guide on your wanderings
through JavaScript, fromwherever you currently are with the
language, to a place of deeper understanding. And the deeper

You Don’t Know JS Yet: Scope & Closures

Preface ix

you understand JS, the more questions you will ask and the
more you will have to explore! That’s what I find so exciting!

I’m so glad you’re embarking on this journey, and I am so
honored you would consider and consult these books along
the way. It’s time to start getting to know JS.

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 1

Chapter 1: What’s the
Scope?
By the time you’ve written your first few programs, you’re
likely getting somewhat comfortable with creating variables
and storing values in them. Working with variables is one of
the most foundational things we do in programming!

But you may not have considered very closely the underlying
mechanisms used by the engine to organize andmanage these
variables. I don’t mean how the memory is allocated on the
computer, but rather: how does JS know which variables are
accessible by any given statement, and how does it handle
two variables of the same name?

The answers to questions like these take the form of well-
defined rules called scope. This book will dig through all
aspects of scope—how it works, what it’s useful for, gotchas
to avoid—and then point toward common scope patterns that
guide the structure of programs.

Our first step is to uncover how the JS engine processes our
program before it runs.

About This Book

Welcome to book 2 in the You Don’t Know JS Yet series! If
you already finished Get Started (the first book), you’re in

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 2

the right spot! If not, before you proceed I encourage you to
start there for the best foundation.

Our focus will be the first of three pillars in the JS language:
the scope system and its function closures, as well as the
power of the module design pattern.

JS is typically classified as an interpreted scripting language,
so it’s assumed by most that JS programs are processed in a
single, top-down pass. But JS is in fact parsed/compiled in a
separate phase before execution begins. The code author’s
decisions on where to place variables, functions, and blocks
with respect to each other are analyzed according to the rules
of scope, during the initial parsing/compilation phase. The
resulting scope structure is generally unaffected by runtime
conditions.

JS functions are themselves first-class values; they can be
assigned and passed around just like numbers or strings. But
since these functions hold and access variables, they maintain
their original scope no matter where in the program the
functions are eventually executed. This is called closure.

Modules are a code organization pattern characterized by
public methods that have privileged access (via closure) to
hidden variables and functions in the internal scope of the
module.

Compiled vs. Interpreted

You may have heard of code compilation before, but perhaps
it seems like a mysterious black box where source code slides
in one end and executable programs pop out the other.

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 3

It’s not mysterious or magical, though. Code compilation is
a set of steps that process the text of your code and turn
it into a list of instructions the computer can understand.
Typically, the whole source code is transformed at once, and
those resulting instructions are saved as output (usually in a
file) that can later be executed.

You also may have heard that code can be interpreted, so how
is that different from being compiled?

Interpretation performs a similar task to compilation, in that
it transforms your program into machine-understandable
instructions. But the processing model is different. Unlike a
program being compiled all at once, with interpretation the
source code is transformed line by line; each line or statement
is executed before immediately proceeding to processing the
next line of the source code.

Fig. 1: Compiled vs. Interpreted Code

Figure 1 illustrates compilation vs. interpretation of programs.

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 4

Are these two processing models mutually exclusive? Gen-
erally, yes. However, the issue is more nuanced, because
interpretation can actually take other forms than just oper-
ating line by line on source code text. Modern JS engines
actually employ numerous variations of both compilation and
interpretation in the handling of JS programs.

Recall that we surveyed this topic in Chapter 1 of the Get
Started book. Our conclusion there is that JS is most accu-
rately portrayed as a compiled language. For the benefit of
readers here, the following sections will revisit and expand on
that assertion.

Compiling Code

But first, why does it even matter whether JS is compiled or
not?

Scope is primarily determined during compilation, so un-
derstanding how compilation and execution relate is key in
mastering scope.

In classic compiler theory, a program is processed by a com-
piler in three basic stages:

1. Tokenizing/Lexing: breaking up a string of characters
into meaningful (to the language) chunks, called tokens.
For instance, consider the program: var a = 2;. This
program would likely be broken up into the following
tokens: var, a, =, 2, and ;. Whitespace may or may
not be persisted as a token, depending on whether it’s
meaningful or not.

(The difference between tokenizing and lexing is subtle
and academic, but it centers on whether or not these

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 5

tokens are identified in a stateless or stateful way. Put
simply, if the tokenizer were to invoke stateful parsing
rules to figure out whether a should be considered a
distinct token or just part of another token, that would
be lexing.)

2. Parsing: taking a stream (array) of tokens and turning
it into a tree of nested elements, which collectively
represent the grammatical structure of the program. This
is called an Abstract Syntax Tree (AST).

For example, the tree for var a = 2; might start with
a top-level node called VariableDeclaration, with a
child node called Identifier (whose value is a), and
another child called AssignmentExpression which it-
self has a child called NumericLiteral (whose value is
2).

3. Code Generation: taking an AST and turning it into ex-
ecutable code. This part varies greatly depending on the
language, the platform it’s targeting, and other factors.

The JS engine takes the just described AST for var a
= 2; and turns it into a set of machine instructions to
actually create a variable called a (including reserving
memory, etc.), and then store a value into a.

Note
The implementation details of a JS engine (uti-
lizing system memory resources, etc.) is much
deeper than wewill dig here.We’ll keep our focus
on the observable behavior of our programs and
let the JS engine manage those deeper system-
level abstractions.

The JS engine is vastly more complex than just these three

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 6

stages. In the process of parsing and code generation, there
are steps to optimize the performance of the execution (i.e.,
collapsing redundant elements). In fact, code can even be re-
compiled and re-optimized during the progression of execu-
tion.

So, I’m painting only with broad strokes here. But you’ll see
shortly why these details we do cover, even at a high level,
are relevant.

JS engines don’t have the luxury of an abundance of time to
perform their work and optimizations, because JS compilation
doesn’t happen in a build step ahead of time, as with other
languages. It usually must happen in mere microseconds (or
less!) right before the code is executed. To ensure the fastest
performance under these constraints, JS engines use all kinds
of tricks (like JITs, which lazy compile and even hot re-
compile); these are well beyond the “scope” of our discussion
here.

Required: Two Phases

To state it as simply as possible, the most important observa-
tion we can make about processing of JS programs is that it
occurs in (at least) two phases: parsing/compilation first, then
execution.

The separation of a parsing/compilation phase from the sub-
sequent execution phase is observable fact, not theory or opin-
ion. While the JS specification does not require “compilation”
explicitly, it requires behavior that is essentially only practical
with a compile-then-execute approach.

There are three program characteristics you can observe to
prove this to yourself: syntax errors, early errors, and hoisting.

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 7

Syntax Errors from the Start

Consider this program:

var greeting = "Hello";

console.log(greeting);

greeting = ."Hi";
// SyntaxError: unexpected token .

This program produces no output ("Hello" is not printed),
but instead throws a SyntaxError about the unexpected .
token right before the "Hi" string. Since the syntax error
happens after the well-formed console.log(..) statement,
if JS was executing top-down line by line, one would expect
the "Hello" message being printed before the syntax error
being thrown. That doesn’t happen.

In fact, the only way the JS engine could know about the
syntax error on the third line, before executing the first
and second lines, is by the JS engine first parsing the entire
program before any of it is executed.

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 8

Early Errors

Next, consider:

console.log("Howdy");

saySomething("Hello","Hi");
// Uncaught SyntaxError: Duplicate parameter name not
// allowed in this context

function saySomething(greeting,greeting) {
"use strict";
console.log(greeting);

}

The "Howdy" message is not printed, despite being a well-
formed statement.

Instead, just like the snippet in the previous section, the
SyntaxError here is thrown before the program is exe-
cuted. In this case, it’s because strict-mode (opted in for only
the saySomething(..) function here) forbids, among many
other things, functions to have duplicate parameter names;
this has always been allowed in non-strict-mode.

The error thrown is not a syntax error in the sense of be-
ing a malformed string of tokens (like ."Hi" prior), but in
strict-mode is nonetheless required by the specification to be
thrown as an “early error” before any execution begins.

But how does the JS engine know that the greeting pa-
rameter has been duplicated? How does it know that the
saySomething(..) function is even in strict-mode while
processing the parameter list (the "use strict" pragma
appears only later, in the function body)?

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 9

Again, the only reasonable explanation is that the code must
first be fully parsed before any execution occurs.

Hoisting

Finally, consider:

function saySomething() {
var greeting = "Hello";
{

greeting = "Howdy"; // error comes from here
let greeting = "Hi";
console.log(greeting);

}
}

saySomething();
// ReferenceError: Cannot access 'greeting' before
// initialization

The noted ReferenceError occurs from the line with the
statement greeting = "Howdy". What’s happening is that
the greeting variable for that statement belongs to the
declaration on the next line, let greeting = "Hi", rather
than to the previous var greeting = "Hello" statement.

The only way the JS engine could know, at the line where
the error is thrown, that the next statement would declare
a block-scoped variable of the same name (greeting) is if
the JS engine had already processed this code in an earlier
pass, and already set up all the scopes and their variable
associations. This processing of scopes and declarations can
only accurately be accomplished by parsing the program
before execution.

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 10

The ReferenceError here technically comes from greeting
= "Howdy" accessing the greeting variable too early, a con-
flict referred to as the Temporal Dead Zone (TDZ). Chapter 5
will cover this in more detail.

Warning
It’s often asserted that let and const declara-
tions are not hoisted, as an explanation of the
TDZ behavior just illustrated. But this is not
accurate. We’ll come back and explain both the
hoisting and TDZ of let/const in Chapter 5.

Hopefully you’re now convinced that JS programs are parsed
before any execution begins. But does it prove they are
compiled?

This is an interesting question to ponder. Could JS parse
a program, but then execute that program by interpreting
operations represented in the AST without first compiling
the program? Yes, that is possible. But it’s extremely unlikely,
mostly because it would be extremely inefficient performance
wise.

It’s hard to imagine a production-quality JS engine going to
all the trouble of parsing a program into an AST, but not then
converting (aka, “compiling”) that AST into the most efficient
(binary) representation for the engine to then execute.

Many have endeavored to split hairs with this terminology,
as there’s plenty of nuance and “well, actually…” interjections
floating around. But in spirit and in practice, what the engine
is doing in processing JS programs is much more alike
compilation than not.

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 11

Classifying JS as a compiled language is not concerned with
the distribution model for its binary (or byte-code) executable
representations, but rather in keeping a clear distinction in
our minds about the phase where JS code is processed and
analyzed; this phase observably and indisputedly happens
before the code starts to be executed.

We need proper mental models of how the JS engine treats
our code if we want to understand JS and scope effectively.

Compiler Speak

With awareness of the two-phase processing of a JS program
(compile, then execute), let’s turn our attention to how the
JS engine identifies variables and determines the scopes of a
program as it is compiled.

First, let’s examine a simple JS program to use for analysis
over the next several chapters:

var students = [
{ id: 14, name: "Kyle" },
{ id: 73, name: "Suzy" },
{ id: 112, name: "Frank" },
{ id: 6, name: "Sarah" }

];

function getStudentName(studentID) {
for (let student of students) {

if (student.id == studentID) {
return student.name;

}
}

}

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 12

var nextStudent = getStudentName(73);

console.log(nextStudent);
// Suzy

Other than declarations, all occurrences of variables/identi-
fiers in a program serve in one of two “roles”: either they’re
the target of an assignment or they’re the source of a value.

(When I first learned compiler theory while earning my com-
puter science degree, we were taught the terms “LHS” (aka,
target) and “RHS” (aka, source) for these roles, respectively.
As you might guess from the “L” and the “R”, the acronyms
mean “Left-Hand Side” and “Right-Hand Side”, as in left and
right sides of an = assignment operator. However, assignment
targets and sources don’t always literally appear on the left or
right of an =, so it’s probably clearer to think in terms of target
/ source rather than left / right.)

How do you know if a variable is a target? Check if there is
a value that is being assigned to it; if so, it’s a target. If not,
then the variable is a source.

For the JS engine to properly handle a program’s variables,
it must first label each occurrence of a variable as target or
source. We’ll dig in now to how each role is determined.

Targets

What makes a variable a target? Consider:

students = [// ..

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 13

This statement is clearly an assignment operation; remember,
the var students part is handled entirely as a declaration
at compile time, and is thus irrelevant during execution; we
left it out for clarity and focus. Same with the nextStudent
= getStudentName(73) statement.

But there are three other target assignment operations in the
code that are perhaps less obvious. One of them:

for (let student of students) {

That statement assigns a value to student for each iteration
of the loop. Another target reference:

getStudentName(73)

But how is that an assignment to a target? Look closely: the
argument 73 is assigned to the parameter studentID.

And there’s one last (subtle) target reference in our program.
Can you spot it?

..

..

..

Did you identify this one?

function getStudentName(studentID) {

A function declaration is a special case of a target refer-
ence. You can think of it sort of like var getStudentName
= function(studentID), but that’s not exactly accurate.
An identifier getStudentName is declared (at compile time),

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 14

but the = function(studentID) part is also handled at
compilation; the association between getStudentName and
the function is automatically set up at the beginning of the
scope rather than waiting for an = assignment statement to
be executed.

Note
This automatic association of function and vari-
able is referred to as “function hoisting”, and is
covered in detail in Chapter 5.

Sources

So we’ve identified all five target references in the program.
The other variable references must then be source references
(because that’s the only other option!).

In for (let student of students), we said that stu-
dent is a target, but students is a source reference. In the
statement if (student.id == studentID), both student
and studentID are source references. student is also a
source reference in return student.name.

In getStudentName(73), getStudentName is a source refer-
ence (which we hope resolves to a function reference value).
In console.log(nextStudent), console is a source refer-
ence, as is nextStudent.

Note
In case you were wondering, id, name, and log
are all properties, not variable references.

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 15

What’s the practical importance of understanding targets vs.
sources? In Chapter 2, we’ll revisit this topic and cover how
a variable’s role impacts its lookup (specifically, if the lookup
fails).

Cheating: Runtime Scope
Modifications

It should be clear by now that scope is determined as the
program is compiled, and should not generally be affected
by runtime conditions. However, in non-strict-mode, there
are technically still two ways to cheat this rule, modifying
a program’s scopes during runtime.

Neither of these techniques should be used—they’re both
dangerous and confusing, and you should be using strict-
mode (where they’re disallowed) anyway. But it’s important
to be aware of them in case you run across them in some
programs.

The eval(..) function receives a string of code to compile
and execute on the fly during the program runtime. If that
string of code has a var or function declaration in it, those
declarations will modify the current scope that the eval(..)
is currently executing in:

function badIdea() {
eval("var oops = 'Ugh!';");
console.log(oops);

}
badIdea(); // Ugh!

If the eval(..) had not been present, the oops variable in
console.log(oops) would not exist, and would throw a

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 16

ReferenceError. But eval(..) modifies the scope of the
badIdea() function at runtime. This is bad for many rea-
sons, including the performance hit of modifying the already
compiled and optimized scope, every time badIdea() runs.

The second cheat is the with keyword, which essentially
dynamically turns an object into a local scope—its properties
are treated as identifiers in that new scope’s block:

var badIdea = { oops: "Ugh!" };

with (badIdea) {
console.log(oops); // Ugh!

}

The global scope was not modified here, but badIdea was
turned into a scope at runtime rather than compile time, and
its property oops becomes a variable in that scope. Again, this
is a terrible idea, for performance and readability reasons.

At all costs, avoid eval(..) (at least, eval(..) creating
declarations) and with. Again, neither of these cheats is
available in strict-mode, so if you just use strict-mode (you
should!) then the temptation goes away!

Lexical Scope

We’ve demonstrated that JS’s scope is determined at compile
time; the term for this kind of scope is “lexical scope”. “Lex-
ical” is associated with the “lexing” stage of compilation, as
discussed earlier in this chapter.

To narrow this chapter down to a useful conclusion, the key
idea of “lexical scope” is that it’s controlled entirely by the

You Don’t Know JS Yet: Scope & Closures

Chapter 1: What’s the Scope? 17

placement of functions, blocks, and variable declarations, in
relation to one another.

If you place a variable declaration inside a function, the
compiler handles this declaration as it’s parsing the function,
and associates that declaration with the function’s scope. If
a variable is block-scope declared (let / const), then it’s
associated with the nearest enclosing { .. } block, rather
than its enclosing function (as with var).

Furthermore, a reference (target or source role) for a variable
must be resolved as coming from one of the scopes that
are lexically available to it; otherwise the variable is said
to be “undeclared” (which usually results in an error!). If
the variable is not declared in the current scope, the next
outer/enclosing scope will be consulted. This process of step-
ping out one level of scope nesting continues until either a
matching variable declaration can be found, or the global
scope is reached and there’s nowhere else to go.

It’s important to note that compilation doesn’t actually do
anything in terms of reserving memory for scopes and vari-
ables. None of the program has been executed yet.

Instead, compilation creates a map of all the lexical scopes
that lays out what the program will need while it executes.
You can think of this plan as inserted code for use at runtime,
which defines all the scopes (aka, “lexical environments”) and
registers all the identifiers (variables) for each scope.

In other words, while scopes are identified during compila-
tion, they’re not actually created until runtime, each time a
scope needs to run. In the next chapter, we’ll sketch out the
conceptual foundations for lexical scope.

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 18

Chapter 2: Illustrating
Lexical Scope
In Chapter 1, we explored how scope is determined during
code compilation, a model called “lexical scope.” The term
“lexical” refers to the first stage of compilation (lexing/pars-
ing).

To properly reason about our programs, it’s important to have
a solid conceptual foundation of how scope works. If we rely
on guesses and intuition, we may accidentally get the right
answers some of the time, but many other times we’re far off.
This isn’t a recipe for success.

Like way back in grade school math class, getting the right
answer isn’t enough if we don’t show the correct steps to get
there! We need to build accurate and helpful mental models
as foundation moving forward.

This chapter will illustrate scope with several metaphors. The
goal here is to think about how your program is handled by
the JS engine in ways that more closely align with how the JS
engine actually works.

Marbles, and Buckets, and
Bubbles… Oh My!

One metaphor I’ve found effective in understanding scope is
sorting colored marbles into buckets of their matching color.

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 19

Imagine you come across a pile of marbles, and notice that all
the marbles are colored red, blue, or green. Let’s sort all the
marbles, dropping the red ones into a red bucket, green into a
green bucket, and blue into a blue bucket. After sorting, when
you later need a green marble, you already know the green
bucket is where to go to get it.

In this metaphor, the marbles are the variables in our pro-
gram. The buckets are scopes (functions and blocks), which
we just conceptually assign individual colors for our discus-
sion purposes. The color of each marble is thus determined by
which color scope we find the marble originally created in.

Let’s annotate the running program example from Chapter 1
with scope color labels:

// outer/global scope: RED

var students = [
{ id: 14, name: "Kyle" },
{ id: 73, name: "Suzy" },
{ id: 112, name: "Frank" },
{ id: 6, name: "Sarah" }

];

function getStudentName(studentID) {
// function scope: BLUE

for (let student of students) {
// loop scope: GREEN

if (student.id == studentID) {
return student.name;

}
}

}

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 20

var nextStudent = getStudentName(73);
console.log(nextStudent); // Suzy

We’ve designated three scope colors with code comments:
RED (outermost global scope), BLUE (scope of function get-
StudentName(..)), and GREEN (scope of/inside the for
loop). But it still may be difficult to recognize the boundaries
of these scope buckets when looking at a code listing.

Figure 2 helps visualize the boundaries of the scopes by
drawing colored bubbles (aka, buckets) around each:

Fig. 2: Colored Scope Bubbles

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 21

1. Bubble 1 (RED) encompasses the global scope, which
holds three identifiers/variables: students (line 1), get-
StudentName (line 8), and nextStudent (line 16).

2. Bubble 2 (BLUE) encompasses the scope of the function
getStudentName(..) (line 8), which holds just one
identifier/variable: the parameter studentID (line 8).

3. Bubble 3 (GREEN) encompasses the scope of the for-
loop (line 9), which holds just one identifier/variable:
student (line 9).

Note
Technically, the parameter studentID is not ex-
actly in the BLUE(2) scope. We’ll unwind that
confusion in “Implied Scopes” in Appendix A.
For now, it’s close enough to label studentID a
BLUE(2) marble.

Scope bubbles are determined during compilation based on
where the functions/blocks of scope are written, the nesting
inside each other, and so on. Each scope bubble is entirely
contained within its parent scope bubble—a scope is never
partially in two different outer scopes.

Each marble (variable/identifier) is colored based on which
bubble (bucket) it’s declared in, not the color of the scope it
may be accessed from (e.g., students on line 9 and studen-
tID on line 10).

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 22

Note
Remember we asserted in Chapter 1 that id,
name, and log are all properties, not variables;
in other words, they’re not marbles in buckets,
so they don’t get colored based on any the rules
we’re discussing in this book. To understand how
such property accesses are handled, see the third
book in the series, Objects & Classes.

As the JS engine processes a program (during compilation),
and finds a declaration for a variable, it essentially asks,
“Which color scope (bubble or bucket) am I currently in?” The
variable is designated as that same color, meaning it belongs
to that bucket/bubble.

The GREEN(3) bucket is wholly nested inside of the BLUE(2)
bucket, and similarly the BLUE(2) bucket is wholly nested
inside the RED(1) bucket. Scopes can nest inside each other
as shown, to any depth of nesting as your program needs.

References (non-declarations) to variables/identifiers are al-
lowed if there’s a matching declaration either in the current
scope, or any scope above/outside the current scope, but not
with declarations from lower/nested scopes.

An expression in the RED(1) bucket only has access to RED(1)
marbles, not BLUE(2) or GREEN(3). An expression in the
BLUE(2) bucket can reference either BLUE(2) or RED(1) mar-
bles, not GREEN(3). And an expression in the GREEN(3)
bucket has access to RED(1), BLUE(2), andGREEN(3)marbles.

We can conceptualize the process of determining these non-
declaration marble colors during runtime as a lookup. Since
the students variable reference in the for-loop statement
on line 9 is not a declaration, it has no color. So we ask the

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 23

current BLUE(2) scope bucket if it has a marble matching
that name. Since it doesn’t, the lookup continues with the
next outer/containing scope: RED(1). The RED(1) bucket has
a marble of the name students, so the loop-statement’s
students variable reference is determined to be a RED(1)
marble.

The if (student.id == studentID) statement on line 10
similarly references a GREEN(3) marble named student and
a BLUE(2) marble studentID.

Note
The JS engine doesn’t generally determine these
marble colors during runtime; the “lookup” here
is a rhetorical device to help you understand the
concepts. During compilation, most or all vari-
able references will match already-known scope
buckets, so their color is already determined,
and stored with each marble reference to avoid
unnecessary lookups as the program runs. More
on this nuance in Chapter 3.

The key take-aways from marbles & buckets (and bubbles!):

• Variables are declared in specific scopes, which can
be thought of as colored marbles from matching-color
buckets.

• Any variable reference that appears in the scope where
it was declared, or appears in any deeper nested scopes,
will be labeled a marble of that same color—unless an
intervening scope “shadows” the variable declaration;
see “Shadowing” in Chapter 3.

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 24

• The determination of colored buckets, and the marbles
they contain, happens during compilation. This infor-
mation is used for variable (marble color) “lookups”
during code execution.

A Conversation Among Friends

Another useful metaphor for the process of analyzing vari-
ables and the scopes they come from is to imagine various
conversations that occur inside the engine as code is processed
and then executed. We can “listen in” on these conversations
to get a better conceptual foundation for how scopes work.

Let’s now meet the members of the JS engine that will have
conversations as they process our program:

• Engine: responsible for start-to-finish compilation and
execution of our JavaScript program.

• Compiler : one of Engine’s friends; handles all the dirty
work of parsing and code-generation (see previous sec-
tion).

• Scope Manager : another friend of Engine; collects and
maintains a lookup list of all the declared variables/i-
dentifiers, and enforces a set of rules as to how these are
accessible to currently executing code.

For you to fully understand how JavaScript works, you need
to begin to think like Engine (and friends) think, ask the
questions they ask, and answer their questions likewise.

To explore these conversations, recall again our running
program example:

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 25

var students = [
{ id: 14, name: "Kyle" },
{ id: 73, name: "Suzy" },
{ id: 112, name: "Frank" },
{ id: 6, name: "Sarah" }

];

function getStudentName(studentID) {
for (let student of students) {

if (student.id == studentID) {
return student.name;

}
}

}

var nextStudent = getStudentName(73);

console.log(nextStudent);
// Suzy

Let’s examine how JS is going to process that program,
specifically starting with the first statement. The array and its
contents are just basic JS value literals (and thus unaffected
by any scoping concerns), so our focus here will be on
the var students = [..] declaration and initialization-
assignment parts.

We typically think of that as a single statement, but that’s not
how our friend Engine sees it. In fact, JS treats these as two
distinct operations, one which Compiler will handle during
compilation, and the other which Engine will handle during
execution.

The first thing Compiler will do with this program is perform
lexing to break it down into tokens, which it will then parse
into a tree (AST).

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 26

Once Compiler gets to code generation, there’s more detail
to consider than may be obvious. A reasonable assump-
tion would be that Compiler will produce code for the first
statement such as: “Allocate memory for a variable, label
it students, then stick a reference to the array into that
variable.” But that’s not the whole story.

Here’s the steps Compiler will follow to handle that state-
ment:

1. Encountering var students, Compiler will ask Scope
Manager to see if a variable named students already
exists for that particular scope bucket. If so, Compiler
would ignore this declaration and move on. Otherwise,
Compiler will produce code that (at execution time) asks
ScopeManager to create a new variable called students
in that scope bucket.

2. Compiler then produces code for Engine to later execute,
to handle the students = [] assignment. The code
Engine runs will first ask Scope Manager if there is
a variable called students accessible in the current
scope bucket. If not, Engine keeps looking elsewhere (see
“Nested Scope” below). Once Engine finds a variable, it
assigns the reference of the [..] array to it.

In conversational form, the first phase of compilation for
the program might play out between Compiler and Scope
Manager like this:

Compiler : Hey, ScopeManager (of the global scope),
I found a formal declaration for an identifier called
students, ever heard of it?

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 27

(Global) Scope Manager: Nope, never heard of it,
so I just created it for you.

Compiler : Hey, Scope Manager, I found a formal
declaration for an identifier called getStudent-
Name, ever heard of it?

(Global) Scope Manager: Nope, but I just created
it for you.

Compiler : Hey, Scope Manager, getStudentName
points to a function, so we need a new scope
bucket.

(Function) Scope Manager: Got it, here’s the
scope bucket.

Compiler : Hey, Scope Manager (of the function), I
found a formal parameter declaration for studen-
tID, ever heard of it?

(Function) Scope Manager: Nope, but now it’s
created in this scope.

Compiler : Hey, Scope Manager (of the function),
I found a for-loop that will need its own scope
bucket.

…

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 28

The conversation is a question-and-answer exchange, where
Compiler asks the current Scope Manager if an encountered
identifier declaration has already been encountered. If “no,”
Scope Manager creates that variable in that scope. If the
answer is “yes,” then it’s effectively skipped over since there’s
nothing more for that Scope Manager to do.

Compiler also signals when it runs across functions or block
scopes, so that a new scope bucket and Scope Manager can be
instantiated.

Later, when it comes to execution of the program, the con-
versation will shift to Engine and Scope Manager, and might
play out like this:

Engine: Hey, Scope Manager (of the global scope),
before we begin, can you look up the identifier
getStudentName so I can assign this function to
it?

(Global) ScopeManager: Yep, here’s the variable.

Engine: Hey, Scope Manager, I found a target
reference for students, ever heard of it?

(Global) Scope Manager: Yes, it was formally
declared for this scope, so here it is.

Engine: Thanks, I’m initializing students to un-
defined, so it’s ready to use.

Hey, Scope Manager (of the global scope), I found
a target reference for nextStudent, ever heard of
it?

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 29

(Global) Scope Manager: Yes, it was formally
declared for this scope, so here it is.

Engine: Thanks, I’m initializing nextStudent to
undefined, so it’s ready to use.

Hey, Scope Manager (of the global scope), I found a
source reference for getStudentName, ever heard
of it?

(Global) Scope Manager: Yes, it was formally
declared for this scope. Here it is.

Engine: Great, the value in getStudentName is a
function, so I’m going to execute it.

Engine: Hey, Scope Manager, now we need to
instantiate the function’s scope.

…

This conversation is another question-and-answer exchange,
where Engine first asks the current Scope Manager to look up
the hoisted getStudentName identifier, so as to associate the
function with it. Engine then proceeds to ask Scope Manager
about the target reference for students, and so on.

To review and summarize how a statement like var stu-
dents = [..] is processed, in two distinct steps:

1. Compiler sets up the declaration of the scope variable
(since it wasn’t previously declared in the current scope).

2. While Engine is executing, to process the assignment
part of the statement, Engine asks ScopeManager to look
up the variable, initializes it to undefined so it’s ready
to use, and then assigns the array value to it.

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 30

Nested Scope

When it comes time to execute the getStudentName() func-
tion, Engine asks for a Scope Manager instance for that
function’s scope, and it will then proceed to look up the
parameter (studentID) to assign the 73 argument value to,
and so on.

The function scope for getStudentName(..) is nested inside
the global scope. The block scope of the for-loop is similarly
nested inside that function scope. Scopes can be lexically
nested to any arbitrary depth as the program defines.

Each scope gets its own Scope Manager instance each time
that scope is executed (one or more times). Each scope auto-
matically has all its identifiers registered at the start of the
scope being executed (this is called “variable hoisting”; see
Chapter 5).

At the beginning of a scope, if any identifier came from a
function declaration, that variable is automatically initial-
ized to its associated function reference. And if any identifier
came from a var declaration (as opposed to let/const), that
variable is automatically initialized to undefined so that it
can be used; otherwise, the variable remains uninitialized
(aka, in its “TDZ,” see Chapter 5) and cannot be used until
its full declaration-and-initialization are executed.

In the for (let student of students) { statement, stu-
dents is a source reference that must be looked up. But how
will that lookup be handled, since the scope of the function
will not find such an identifier?

To explain, let’s imagine that bit of conversation playing out
like this:

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 31

Engine: Hey, Scope Manager (for the function), I
have a source reference for students, ever heard
of it?

(Function) Scope Manager: Nope, never heard of
it. Try the next outer scope.

Engine: Hey, ScopeManager (for the global scope),
I have a source reference for students, ever heard
of it?

(Global) Scope Manager: Yep, it was formally
declared, here it is.

…

One of the key aspects of lexical scope is that any time an
identifier reference cannot be found in the current scope, the
next outer scope in the nesting is consulted; that process is
repeated until an answer is found or there are no more scopes
to consult.

Lookup Failures

When Engine exhausts all lexically available scopes (moving
outward) and still cannot resolve the lookup of an identifier,
an error condition then exists. However, depending on the
mode of the program (strict-mode or not) and the role of
the variable (i.e., target vs. source; see Chapter 1), this error
condition will be handled differently.

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 32

Undefined Mess

If the variable is a source, an unresolved identifier lookup
is considered an undeclared (unknown, missing) variable,
which always results in a ReferenceError being thrown.
Also, if the variable is a target, and the code at that moment is
running in strict-mode, the variable is considered undeclared
and similarly throws a ReferenceError.

The error message for an undeclared variable condition, in
most JS environments, will look like, “Reference Error: XYZ is
not defined.” The phrase “not defined” seems almost identical
to the word “undefined,” as far as the English language goes.
But these two are very different in JS, and this error message
unfortunately creates a persistent confusion.

“Not defined” really means “not declared”—or, rather, “unde-
clared,” as in a variable that has no matching formal declara-
tion in any lexically available scope. By contrast, “undefined”
really means a variable was found (declared), but the variable
otherwise has no other value in it at the moment, so it defaults
to the undefined value.

To perpetuate the confusion even further, JS’s typeof opera-
tor returns the string "undefined" for variable references in
either state:

var studentName;
typeof studentName; // "undefined"

typeof doesntExist; // "undefined"

These two variable references are in very different conditions,
but JS sure does muddy the waters. The terminology mess is

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 33

confusing and terribly unfortunate. Unfortunately, JS devel-
opers just have to pay close attention to not mix up which
kind of “undefined” they’re dealing with!

Global… What!?

If the variable is a target and strict-mode is not in effect,
a confusing and surprising legacy behavior kicks in. The
troublesome outcome is that the global scope’s ScopeManager
will just create an accidental global variable to fulfill that
target assignment!

Consider:

function getStudentName() {
// assignment to an undeclared variable :(
nextStudent = "Suzy";

}

getStudentName();

console.log(nextStudent);
// "Suzy" -- oops, an accidental-global variable!

Here’s how that conversation will proceed:

Engine: Hey, Scope Manager (for the function),
I have a target reference for nextStudent, ever
heard of it?

(Function) Scope Manager: Nope, never heard of
it. Try the next outer scope.

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 34

Engine: Hey, ScopeManager (for the global scope),
I have a target reference for nextStudent, ever
heard of it?

(Global) ScopeManager: Nope, but sincewe’re in
non-strict-mode, I helped you out and just created
a global variable for you, here it is!

Yuck.

This sort of accident (almost certain to lead to bugs eventu-
ally) is a great example of the beneficial protections offered
by strict-mode, and why it’s such a bad idea not to be
using strict-mode. In strict-mode, theGlobal ScopeManager
would instead have responded:

(Global) Scope Manager: Nope, never heard of it.
Sorry, I’ve got to throw a ReferenceError.

Assigning to a never-declared variable is an error, so it’s right
that we would receive a ReferenceError here.

Never rely on accidental global variables. Always use strict-
mode, and always formally declare your variables. You’ll then
get a helpful ReferenceError if you ever mistakenly try to
assign to a not-declared variable.

Building On Metaphors

To visualize nested scope resolution, I prefer yet another
metaphor, an office building, as in Figure 3:

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 35

Fig. 3: Scope “Building”

The building represents our program’s nested scope collec-
tion. The first floor of the building represents the currently
executing scope. The top level of the building is the global
scope.

You resolve a target or source variable reference by first
looking on the current floor, and if you don’t find it, taking
the elevator to the next floor (i.e., an outer scope), looking
there, then the next, and so on. Once you get to the top floor
(the global scope), you either find what you’re looking for, or
you don’t. But you have to stop regardless.

Continue the Conversation

By this point, you should be developing richer mental models
for what scope is and how the JS engine determines and uses
it from your code.

Before continuing, go find some code in one of your projects
and run through these conversations. Seriously, actually speak
out loud. Find a friend and practice each role with them. If

You Don’t Know JS Yet: Scope & Closures

Chapter 2: Illustrating Lexical Scope 36

either of you find yourself confused or tripped up, spendmore
time reviewing this material.

As wemove (up) to the next (outer) chapter, we’ll explore how
the lexical scopes of a program are connected in a chain.

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 37

Chapter 3: The Scope
Chain
Chapters 1 and 2 laid down a concrete definition of lexical
scope (and its parts) and illustrated helpful metaphors for its
conceptual foundation. Before proceeding with this chapter,
find someone else to explain (written or aloud), in your own
words, what lexical scope is andwhy it’s useful to understand.

That seems like a step you might skip, but I’ve found it
really does help to take the time to reformulate these ideas
as explanations to others. That helps our brains digest what
we’re learning!

Now it’s time to dig into the nuts and bolts, so expect that
things will get a lot more detailed from here forward. Stick
with it, though, because these discussions really hammer
home just how much we all don’t know about scope, yet.
Make sure to take your time with the text and all the code
snippets provided.

To refresh the context of our running example, let’s recall
the color-coded illustration of the nested scope bubbles, from
Chapter 2, Figure 2:

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 38

Fig. 2 (Ch. 2): Colored Scope Bubbles

The connections between scopes that are nested within other
scopes is called the scope chain, which determines the path
along which variables can be accessed. The chain is directed,
meaning the lookup moves upward/outward only.

“Lookup” Is (Mostly) Conceptual

In Figure 2, notice the color of the students variable refer-
ence in the for-loop. How exactly did we determine that it’s
a RED(1) marble?

In Chapter 2, we described the runtime access of a variable
as a “lookup,” where the Engine has to start by asking the
current scope’s Scope Manager if it knows about an identi-
fier/variable, and proceeding upward/outward back through
the chain of nested scopes (toward the global scope) until
found, if ever. The lookup stops as soon as the first matching
named declaration in a scope bucket is found.

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 39

The lookup process thus determined that students is a
RED(1) marble, because we had not yet found a matching
variable name as we traversed the scope chain, until we
arrived at the final RED(1) global scope.

Similarly, studentID in the if-statement is determined to be
a BLUE(2) marble.

This suggestion of a runtime lookup process works well for
conceptual understanding, but it’s not actually how things
usually work in practice.

The color of a marble’s bucket (aka, meta information of what
scope a variable originates from) is usually determined during
the initial compilation processing. Because lexical scope is
pretty much finalized at that point, a marble’s color will
not change based on anything that can happen later during
runtime.

Since the marble’s color is known from compilation, and it’s
immutable, this information would likely be stored with (or
at least accessible from) each variable’s entry in the AST;
that information is then used explicitly by the executable
instructions that constitute the program’s runtime.

In other words, Engine (from Chapter 2) doesn’t need to
lookup through a bunch of scopes to figure out which scope
bucket a variable comes from. That information is already
known! Avoiding the need for a runtime lookup is a key opti-
mization benefit of lexical scope. The runtime operates more
performantly without spending time on all these lookups.

But I said “…usually determined…” just a moment ago, with
respect to figuring out a marble’s color during compilation. So
in what case would it ever not be known during compilation?

Consider a reference to a variable that isn’t declared in any

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 40

lexically available scopes in the current file—see Get Started,
Chapter 1, which asserts that each file is its own separate
program from the perspective of JS compilation. If no dec-
laration is found, that’s not necessarily an error. Another file
(program) in the runtime may indeed declare that variable in
the shared global scope.

So the ultimate determination of whether the variable was
ever appropriately declared in some accessible bucket may
need to be deferred to the runtime.

Any reference to a variable that’s initially undeclared is left
as an uncolored marble during that file’s compilation; this
color cannot be determined until other relevant file(s) have
been compiled and the application runtime commences. That
deferred lookupwill eventually resolve the color to whichever
scope the variable is found in (likely the global scope).

However, this lookup would only be needed once per variable
at most, since nothing else during runtime could later change
that marble’s color.

The “Lookup Failures” section in Chapter 2 covers what hap-
pens if a marble is ultimately still uncolored at the moment
its reference is runtime executed.

Shadowing

“Shadowing” might sound mysterious and a little bit sketchy.
But don’t worry, it’s completely legit!

Our running example for these chapters uses different vari-
able names across the scope boundaries. Since they all have
unique names, in a way it wouldn’t matter if all of them were
just stored in one bucket (like RED(1)).

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 41

Where having different lexical scope buckets starts to matter
more is when you have two or more variables, each in
different scopes, with the same lexical names. A single scope
cannot have two or more variables with the same name; such
multiple references would be assumed as just one variable.

So if you need to maintain two or more variables of the same
name, you must use separate (often nested) scopes. And in
that case, it’s very relevant how the different scope buckets
are laid out.

Consider:

var studentName = "Suzy";

function printStudent(studentName) {
studentName = studentName.toUpperCase();
console.log(studentName);

}

printStudent("Frank");
// FRANK

printStudent(studentName);
// SUZY

console.log(studentName);
// Suzy

Tip
Before you move on, take some time to analyze
this code using the various techniques/metaphors
we’ve covered in the book. In particular, make
sure to identify the marble/bubble colors in this
snippet. It’s good practice!

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 42

The studentName variable on line 1 (the var studentName
= .. statement) creates a RED(1) marble. The same named
variable is declared as a BLUE(2) marble on line 3, the
parameter in the printStudent(..) function definition.

What color marble will studentName be in the studentName
= studentName.toUpperCase() assignment statement and
the console.log(studentName) statement? All three stu-
dentName references will be BLUE(2).

With the conceptual notion of the “lookup,” we asserted that it
starts with the current scope and works its way outward/up-
ward, stopping as soon as a matching variable is found.
The BLUE(2) studentName is found right away. The RED(1)
studentName is never even considered.

This is a key aspect of lexical scope behavior, called shadow-
ing. The BLUE(2) studentName variable (parameter) shad-
ows the RED(1) studentName. So, the parameter is shadow-
ing the (shadowed) global variable. Repeat that sentence to
yourself a few times to make sure you have the terminology
straight!

That’s why the re-assignment of studentName affects only
the inner (parameter) variable: the BLUE(2) studentName,
not the global RED(1) studentName.

When you choose to shadow a variable from an outer scope,
one direct impact is that from that scope inward/downward
(through any nested scopes) it’s now impossible for any
marble to be colored as the shadowed variable—(RED(1),
in this case). In other words, any studentName identifier
reference will correspond to that parameter variable, never
the global studentName variable. It’s lexically impossible to
reference the global studentName anywhere inside of the
printStudent(..) function (or from any nested scopes).

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 43

Global Unshadowing Trick

Please beware: leveraging the technique I’m about to describe
is not very good practice, as it’s limited in utility, confusing
for readers of your code, and likely to invite bugs to your
program. I’m covering it only because you may run across
this behavior in existing programs, and understanding what’s
happening is critical to not getting tripped up.

It is possible to access a global variable from a scope where
that variable has been shadowed, but not through a typical
lexical identifier reference.

In the global scope (RED(1)), var declarations and function
declarations also expose themselves as properties (of the same
name as the identifier) on the global object—essentially an
object representation of the global scope. If you’ve written JS
for a browser environment, you probably recognize the global
object as window. That’s not entirely accurate, but it’s good
enough for our discussion. In the next chapter, we’ll explore
the global scope/object topic more.

Consider this program, specifically executed as a standalone
.js file in a browser environment:

var studentName = "Suzy";

function printStudent(studentName) {
console.log(studentName);
console.log(window.studentName);

}

printStudent("Frank");
// "Frank"
// "Suzy"

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 44

Notice the window.studentName reference? This expression
is accessing the global variable studentName as a property on
window (which we’re pretending for now is synonymous with
the global object). That’s the only way to access a shadowed
variable from inside a scope where the shadowing variable is
present.

The window.studentName is a mirror of the global student-
Name variable, not a separate snapshot copy. Changes to one
are still seen from the other, in either direction. You can think
of window.studentName as a getter/setter that accesses the
actual studentName variable. As a matter of fact, you can
even add a variable to the global scope by creating/setting a
property on the global object.

Warning
Remember: just because you can doesn’t mean
you should. Don’t shadow a global variable that
you need to access, and conversely, avoid using
this trick to access a global variable that you’ve
shadowed. And definitely don’t confuse read-
ers of your code by creating global variables as
window properties instead of with formal decla-
rations!

This little “trick” only works for accessing a global scope
variable (not a shadowed variable from a nested scope), and
even then, only one that was declared with var or function.

Other forms of global scope declarations do not create mir-
rored global object properties:

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 45

var one = 1;
let notOne = 2;
const notTwo = 3;
class notThree {}

console.log(window.one); // 1
console.log(window.notOne); // undefined
console.log(window.notTwo); // undefined
console.log(window.notThree); // undefined

Variables (no matter how they’re declared!) that exist in any
other scope than the global scope are completely inaccessible
from a scope where they’ve been shadowed:

var special = 42;

function lookingFor(special) {
// The identifier `special` (parameter) in this
// scope is shadowed inside keepLooking(), and
// is thus inaccessible from that scope.

function keepLooking() {
var special = 3.141592;
console.log(special);
console.log(window.special);

}

keepLooking();
}

lookingFor(112358132134);
// 3.141592
// 42

The global RED(1) special is shadowed by the BLUE(2)
special (parameter), and the BLUE(2) special is itself

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 46

shadowed by the GREEN(3) special inside keepLooking().
We can still access the RED(1) special using the indirect ref-
erence window.special. But there’s no way for keepLook-
ing() to access the BLUE(2) special that holds the number
112358132134.

Copying Is Not Accessing

I’ve been asked the following “But what about…?” question
dozens of times. Consider:

var special = 42;

function lookingFor(special) {
var another = {

special: special
};

function keepLooking() {
var special = 3.141592;
console.log(special);
console.log(another.special); // Ooo, tricky!
console.log(window.special);

}

keepLooking();
}

lookingFor(112358132134);
// 3.141592
// 112358132134
// 42

Oh! So does this another object technique disprove my claim
that the special parameter is “completely inaccessible” from
inside keepLooking()? No, the claim is still correct.

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 47

special: special is copying the value of the special
parameter variable into another container (a property of
the same name). Of course, if you put a value in another
container, shadowing no longer applies (unless another was
shadowed, too!). But that doesn’t mean we’re accessing the
parameter special; it means we’re accessing the copy of the
value it had at that moment, by way of another container
(object property). We cannot reassign the BLUE(2) special
parameter to a different value from inside keepLooking().

Another “But…!?” you may be about to raise: what if I’d
used objects or arrays as the values instead of the numbers
(112358132134, etc.)? Would us having references to objects
instead of copies of primitive values “fix” the inaccessibility?

No. Mutating the contents of the object value via a reference
copy is not the same thing as lexically accessing the variable
itself. We still can’t reassign the BLUE(2) special parameter.

Illegal Shadowing

Not all combinations of declaration shadowing are allowed.
let can shadow var, but var cannot shadow let:

function something() {
var special = "JavaScript";

{
let special = 42; // totally fine shadowing

// ..
}

}

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 48

function another() {
// ..

{
let special = "JavaScript";

{
var special = "JavaScript";
// ^^^ Syntax Error

// ..
}

}
}

Notice in the another() function, the inner var special
declaration is attempting to declare a function-wide special,
which in and of itself is fine (as shown by the something()
function).

The syntax error description in this case indicates that spe-
cial has already been defined, but that error message is
a little misleading—again, no such error happens in some-
thing(), as shadowing is generally allowed just fine.

The real reason it’s raised as a SyntaxError is because the
var is basically trying to “cross the boundary” of (or hop over)
the let declaration of the same name, which is not allowed.

That boundary-crossing prohibition effectively stops at each
function boundary, so this variant raises no exception:

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 49

function another() {
// ..

{
let special = "JavaScript";

ajax("https://some.url",function callback(){
// totally fine shadowing
var special = "JavaScript";

// ..
});

}
}

Summary: let (in an inner scope) can always shadow an
outer scope’s var. var (in an inner scope) can only shadow an
outer scope’s let if there is a function boundary in between.

Function Name Scope

As you’ve seen by now, a function declaration looks like
this:

function askQuestion() {
// ..

}

And as discussed in Chapters 1 and 2, such a function
declaration will create an identifier in the enclosing scope (in
this case, the global scope) named askQuestion.

What about this program?

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 50

var askQuestion = function(){
// ..

};

The same is true for the variable askQuestion being created.
But since it’s a function expression—a function definition
used as value instead of a standalone declaration—the func-
tion itself will not “hoist” (see Chapter 5).

One major difference between function declarations and
function expressions is what happens to the name identifier
of the function. Consider a named function expression:

var askQuestion = function ofTheTeacher(){
// ..

};

We know askQuestion ends up in the outer scope. But what
about the ofTheTeacher identifier? For formal function
declarations, the name identifier ends up in the outer/en-
closing scope, so it may be reasonable to assume that’s true
here. But ofTheTeacher is declared as an identifier inside
the function itself :

var askQuestion = function ofTheTeacher() {
console.log(ofTheTeacher);

};

askQuestion();
// function ofTheTeacher()...

console.log(ofTheTeacher);
// ReferenceError: ofTheTeacher is not defined

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 51

Note
Actually, ofTheTeacher is not exactly in the
scope of the function. Appendix A, “Implied
Scopes” will explain further.

Not only is ofTheTeacher declared inside the function rather
than outside, but it’s also defined as read-only:

var askQuestion = function ofTheTeacher() {
"use strict";
ofTheTeacher = 42; // TypeError

//..
};

askQuestion();
// TypeError

Because we used strict-mode, the assignment failure is re-
ported as a TypeError; in non-strict-mode, such an assign-
ment fails silently with no exception.

What about when a function expression has no name iden-
tifier?

var askQuestion = function(){
// ..

};

A function expression with a name identifier is referred to
as a “named function expression,” but one without a name
identifier is referred to as an “anonymous function expres-
sion.” Anonymous function expressions clearly have no name
identifier that affects either scope.

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 52

Note
We’ll discuss named vs. anonymous function
expressions in much more detail, including what
factors affect the decision to use one or the other,
in Appendix A.

Arrow Functions

ES6 added an additional function expression form to the
language, called “arrow functions”:

var askQuestion = () => {
// ..

};

The => arrow function doesn’t require the word function
to define it. Also, the (..) around the parameter list is
optional in some simple cases. Likewise, the { .. } around
the function body is optional in some cases. And when the {
.. } are omitted, a return value is sent out without using a
return keyword.

Note
The attractiveness of => arrow functions is often
sold as “shorter syntax,” and that’s claimed to
equate to objectively more readable code. This
claim is dubious at best, and I believe outright
misguided. We’ll dig into the “readability” of
various function forms in Appendix A.

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 53

Arrow functions are lexically anonymous, meaning they have
no directly related identifier that references the function.
The assignment to askQuestion creates an inferred name of
“askQuestion”, but that’s not the same thing as being non-
anonymous:

var askQuestion = () => {
// ..

};

askQuestion.name; // askQuestion

Arrow functions achieve their syntactic brevity at the expense
of having to mentally juggle a bunch of variations for differ-
ent forms/conditions. Just a few, for example:

() => 42;

id => id.toUpperCase();

(id,name) => ({ id, name });

(...args) => {
return args[args.length - 1];

};

The real reason I bring up arrow functions is because of the
common but incorrect claim that arrow functions somehow
behave differently with respect to lexical scope from standard
function functions.

This is incorrect.

Other than being anonymous (and having no declarative
form), => arrow functions have the same lexical scope rules as

You Don’t Know JS Yet: Scope & Closures

Chapter 3: The Scope Chain 54

function functions do. An arrow function, with or without
{ .. } around its body, still creates a separate, inner nested
bucket of scope. Variable declarations inside this nested scope
bucket behave the same as in a function scope.

Backing Out

When a function (declaration or expression) is defined, a
new scope is created. The positioning of scopes nested inside
one another creates a natural scope hierarchy throughout the
program, called the scope chain. The scope chain controls
variable access, directionally oriented upward and outward.

Each new scope offers a clean slate, a space to hold its own
set of variables. When a variable name is repeated at different
levels of the scope chain, shadowing occurs, which prevents
access to the outer variable from that point inward.

As we step back out from these finer details, the next chapter
shifts focus to the primary scope all JS programs include: the
global scope.

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 55

Chapter 4: Around the
Global Scope
Chapter 3 mentioned the “global scope” several times, but you
may still be wondering why a program’s outermost scope is
all that important in modern JS. The vast majority of work
is now done inside of functions and modules rather than
globally.

Is it good enough to just assert, “Avoid using the global scope,”
and be done with it?

The global scope of a JS program is a rich topic, with much
more utility and nuance than you would likely assume. This
chapter first explores how the global scope is (still) useful
and relevant to writing JS programs today, then looks at
differences in where and how to access the global scope in
different JS environments.

Fully understanding the global scope is critical in your mas-
tery of using lexical scope to structure your programs.

Why Global Scope?

It’s likely no surprise to readers that most applications are
composed of multiple (sometimes many!) individual JS files.
So how exactly do all those separate files get stitched together
in a single runtime context by the JS engine?

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 56

With respect to browser-executed applications, there are three
main ways.

First, if you’re directly using ES modules (not transpiling
them into some other module-bundle format), these files are
loaded individually by the JS environment. Each module then
imports references to whichever other modules it needs to
access. The separate module files cooperate with each other
exclusively through these shared imports, without needing
any shared outer scope.

Second, if you’re using a bundler in your build process, all
the files are typically concatenated together before delivery
to the browser and JS engine, which then only processes one
big file. Even with all the pieces of the application co-located
in a single file, some mechanism is necessary for each piece
to register a name to be referred to by other pieces, as well as
some facility for that access to occur.

In some build setups, the entire contents of the file are
wrapped in a single enclosing scope, such as a wrapper func-
tion, universal module (UMD—see Appendix A), etc. Each
piece can register itself for access from other pieces by way of
local variables in that shared scope. For example:

(function wrappingOuterScope(){
var moduleOne = (function one(){

// ..
})();

var moduleTwo = (function two(){
// ..

function callModuleOne() {
moduleOne.someMethod();

}

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 57

// ..
})();

})();

As shown, the moduleOne and moduleTwo local variables
inside the wrappingOuterScope() function scope are de-
clared so that these modules can access each other for their
cooperation.

While the scope of wrappingOuterScope() is a function and
not the full environment global scope, it does act as a sort
of “application-wide scope,” a bucket where all the top-level
identifiers can be stored, though not in the real global scope.
It’s kind of like a stand-in for the global scope in that respect.

And finally, the third way: whether a bundler tool is used
for an application, or whether the (non-ES module) files are
simply loaded in the browser individually (via <script> tags
or other dynamic JS resource loading), if there is no single
surrounding scope encompassing all these pieces, the global
scope is the only way for them to cooperate with each other:

A bundled file of this sort often looks something like this:

var moduleOne = (function one(){
// ..

})();
var moduleTwo = (function two(){

// ..

function callModuleOne() {
moduleOne.someMethod();

}

// ..
})();

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 58

Here, since there is no surrounding function scope, these
moduleOne and moduleTwo declarations are simply dropped
into the global scope. This is effectively the same as if the files
hadn’t been concatenated, but loaded separately:

module1.js:

var moduleOne = (function one(){
// ..

})();

module2.js:

var moduleTwo = (function two(){
// ..

function callModuleOne() {
moduleOne.someMethod();

}

// ..
})();

If these files are loaded separately as normal standalone
.js files in a browser environment, each top-level variable
declaration will end up as a global variable, since the global
scope is the only shared resource between these two separate
files—they’re independent programs, from the perspective of
the JS engine.

In addition to (potentially) accounting for where an applica-
tion’s code resides during runtime, and how each piece is able
to access the other pieces to cooperate, the global scope is also
where:

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 59

• JS exposes its built-ins:
– primitives: undefined, null, Infinity, NaN
– natives: Date(), Object(), String(), etc.
– global functions: eval(), parseInt(), etc.
– namespaces: Math, Atomics, JSON
– friends of JS: Intl, WebAssembly

• The environment hosting the JS engine exposes its own
built-ins:
– console (and its methods)
– the DOM (window, document, etc)
– timers (setTimeout(..), etc)
– web platform APIs: navigator, history, geoloca-
tion, WebRTC, etc.

These are just some of the many globals your programs will
interact with.

Note
Node also exposes several elements “globally,”
but they’re technically not in the global scope:
require(), __dirname, module, URL, and so on.

Most developers agree that the global scope shouldn’t just be a
dumping ground for every variable in your application. That’s
a mess of bugs just waiting to happen. But it’s also undeniable
that the global scope is an important glue for practically every
JS application.

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 60

Where Exactly is this Global
Scope?

It might seem obvious that the global scope is located in the
outermost portion of a file; that is, not inside any function or
other block. But it’s not quite as simple as that.

Different JS environments handle the scopes of your pro-
grams, especially the global scope, differently. It’s quite com-
mon for JS developers to harbor misconceptions without even
realizing it.

Browser “Window”

With respect to treatment of the global scope, the most pure
environment JS can be run in is as a standalone .js file loaded
in a web page environment in a browser. I don’t mean “pure”
as in nothing automatically added—lots may be added!—
but rather in terms of minimal intrusion on the code or
interference with its expected global scope behavior.

Consider this .js file:

var studentName = "Kyle";

function hello() {
console.log(`Hello, ${ studentName }!`);

}

hello();
// Hello, Kyle!

This code may be loaded in a web page environment using
an inline <script> tag, a <script src=..> script tag in

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 61

the markup, or even a dynamically created <script> DOM
element. In all three cases, the studentName and hello
identifiers are declared in the global scope.

That means if you access the global object (commonly, win-
dow in the browser), you’ll find properties of those same
names there:

var studentName = "Kyle";

function hello() {
console.log(`Hello, ${ window.studentName }!`);

}

window.hello();
// Hello, Kyle!

That’s the default behavior one would expect from a reading
of the JS specification: the outer scope is the global scope and
studentName is legitimately created as global variable.

That’s what I mean by pure. But unfortunately, that won’t
always be true of all JS environments you encounter, and
that’s often surprising to JS developers.

Globals Shadowing Globals

Recall the discussion of shadowing (and global unshadowing)
from Chapter 3, where one variable declaration can override
and prevent access to a declaration of the same name from an
outer scope.

An unusual consequence of the difference between a global
variable and a global property of the same name is that, within
just the global scope itself, a global object property can be
shadowed by a global variable:

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 62

window.something = 42;

let something = "Kyle";

console.log(something);
// Kyle

console.log(window.something);
// 42

The let declaration adds a something global variable but
not a global object property (see Chapter 3). The effect then is
that the something lexical identifier shadows the something
global object property.

It’s almost certainly a bad idea to create a divergence between
the global object and the global scope. Readers of your code
will almost certainly be tripped up.

A simple way to avoid this gotcha with global declarations:
always use var for globals. Reserve let and const for block
scopes (see “Scoping with Blocks” in Chapter 6).

DOM Globals

I asserted that a browser-hosted JS environment has the most
pure global scope behaviorwe’ll see. However, it’s not entirely
pure.

One surprising behavior in the global scope you may en-
counter with browser-based JS applications: a DOM element
with an id attribute automatically creates a global variable
that references it.

Consider this markup:

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 63

<ul id="my-todo-list">
<li id="first">Write a book
..

And the JS for that page could include:

first;
// <li id="first">..

window["my-todo-list"];
// <ul id="my-todo-list">..

If the id value is a valid lexical name (like first), the lexical
variable is created. If not, the only way to access that global
is through the global object (window[..]).

The auto-registration of all id-bearing DOM elements as
global variables is an old legacy browser behavior that never-
theless must remain because so many old sites still rely on it.
My advice is never to use these global variables, even though
they will always be silently created.

What’s in a (Window) Name?

Another global scope oddity in browser-based JS:

var name = 42;

console.log(name, typeof name);
// "42" string

window.name is a pre-defined “global” in a browser context;
it’s a property on the global object, so it seems like a normal
global variable (yet it’s anything but “normal”).

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 64

We used var for our declaration, which does not shadow the
pre-defined name global property. That means, effectively, the
var declaration is ignored, since there’s already a global scope
object property of that name. As we discussed earlier, had we
used let name, wewould have shadowed window.namewith
a separate global name variable.

But the truly surprising behavior is that even though we
assigned the number 42 to name (and thus window.name),
when we then retrieve its value, it’s a string "42"! In this
case, the weirdness is because name is actually a pre-defined
getter/setter on the window object, which insists on its value
being a string value. Yikes!

With the exception of some rare corner cases like DOM
element ID’s and window.name, JS running as a standalone
file in a browser page has some of the most pure global scope
behavior we will encounter.

Web Workers

WebWorkers are a web platform extension on top of browser-
JS behavior, which allows a JS file to run in a completely
separate thread (operating systemwise) from the thread that’s
running the main JS program.

Since these Web Worker programs run on a separate thread,
they’re restricted in their communications with the main
application thread, to avoid/limit race conditions and other
complications. Web Worker code does not have access to
the DOM, for example. Some web APIs are, however, made
available to the worker, such as navigator.

Since a Web Worker is treated as a wholly separate program,
it does not share the global scope with the main JS program.

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 65

However, the browser’s JS engine is still running the code,
so we can expect similar purity of its global scope behavior.
Since there is no DOM access, the window alias for the global
scope doesn’t exist.

In aWebWorker, the global object reference is typically made
using self:

var studentName = "Kyle";
let studentID = 42;

function hello() {
console.log(`Hello, ${ self.studentName }!`);

}

self.hello();
// Hello, Kyle!

self.studentID;
// undefined

Just as with main JS programs, var and function declara-
tions create mirrored properties on the global object (aka,
self), where other declarations (let, etc) do not.

So again, the global scope behavior we’re seeing here is about
as pure as it gets for running JS programs; perhaps it’s even
more pure since there’s no DOM to muck things up!

Developer Tools Console/REPL

Recall from Chapter 1 in Get Started that Developer Tools
don’t create a completely adherent JS environment. They
do process JS code, but they also lean in favor of the UX

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 66

interaction being most friendly to developers (aka, developer
experience, or DX).

In some cases, favoring DX when typing in short JS snippets,
over the normal strict steps expected for processing a full JS
program, produces observable differences in code behavior
between programs and tools. For example, certain error con-
ditions applicable to a JS program may be relaxed and not
displayed when the code is entered into a developer tool.

With respect to our discussions here about scope, such ob-
servable differences in behavior may include:

• The behavior of the global scope
• Hoisting (see Chapter 5)
• Block-scoping declarators (let / const, see Chapter 6)
when used in the outermost scope

Although it might seem, while using the console/REPL, that
statements entered in the outermost scope are being processed
in the real global scope, that’s not quite accurate. Such tools
typically emulate the global scope position to an extent; it’s
emulation, not strict adherence. These tool environments
prioritize developer convenience, which means that at times
(such as with our current discussions regarding scope), ob-
served behavior may deviate from the JS specification.

The take-away is that Developer Tools, while optimized to be
convenient and useful for a variety of developer activities, are
not suitable environments to determine or verify explicit and
nuanced behaviors of an actual JS program context.

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 67

ES Modules (ESM)

ES6 introduced first-class support for the module pattern
(covered in Chapter 8). One of the most obvious impacts of
using ESM is how it changes the behavior of the observably
top-level scope in a file.

Recall this code snippet from earlier (which we’ll adjust to
ESM format by using the export keyword):

var studentName = "Kyle";

function hello() {
console.log(`Hello, ${ studentName }!`);

}

hello();
// Hello, Kyle!

export hello;

If that code is in a file that’s loaded as an ES module, it will
still run exactly the same. However, the observable effects,
from the overall application perspective, will be different.

Despite being declared at the top level of the (module) file,
in the outermost obvious scope, studentName and hello are
not global variables. Instead, they are module-wide, or if you
prefer, “module-global.”

However, in a module there’s no implicit “module-wide scope
object” for these top-level declarations to be added to as prop-
erties, as there is when declarations appear in the top-level of
non-module JS files. This is not to say that global variables
cannot exist or be accessed in such programs. It’s just that

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 68

global variables don’t get created by declaring variables in
the top-level scope of a module.

The module’s top-level scope is descended from the global
scope, almost as if the entire contents of the module were
wrapped in a function. Thus, all variables that exist in the
global scope (whether they’re on the global object or not!) are
available as lexical identifiers from inside the module’s scope.

ESM encourages a minimization of reliance on the global
scope, where you import whatever modules you may need
for the current module to operate. As such, you less often see
usage of the global scope or its global object.

However, as noted earlier, there are still plenty of JS and web
globals that you will continue to access from the global scope,
whether you realize it or not!

Node

One aspect of Node that often catches JS developers off-guard
is that Node treats every single .js file that it loads, including
the main one you start the Node process with, as amodule (ES
module or CommonJS module, see Chapter 8). The practical
effect is that the top level of your Node programs is never
actually the global scope, the way it is when loading a non-
module file in the browser.

As of time of this writing, Node has recently added support
for ES modules. But additionally, Node has from its beginning
supported amodule format referred to as “CommonJS”, which
looks like this:

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 69

var studentName = "Kyle";

function hello() {
console.log(`Hello, ${ studentName }!`);

}

hello();
// Hello, Kyle!

module.exports.hello = hello;

Before processing, Node effectively wraps such code in a
function, so that the var and function declarations are
contained in that wrapping function’s scope, not treated as
global variables.

Envision the preceding code as being seen by Node as this
(illustrative, not actual):

function Module(module,require,__dirname,...) {
var studentName = "Kyle";

function hello() {
console.log(`Hello, ${ studentName }!`);

}

hello();
// Hello, Kyle!

module.exports.hello = hello;
}

Node then essentially invokes the added Module(..) func-
tion to run your module. You can clearly see here why
studentName and hello identifiers are not global, but rather
declared in the module scope.

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 70

As noted earlier, Node defines a number of “globals” like
require(), but they’re not actually identifiers in the global
scope (nor properties of the global object). They’re injected in
the scope of everymodule, essentially a bit like the parameters
listed in the Module(..) function declaration.

So how do you define actual global variables in Node? The
only way to do so is to add properties to another of Node’s
automatically provided “globals,” which is ironically called
global. global is a reference to the real global scope object,
somewhat like using window in a browser JS environment.

Consider:

global.studentName = "Kyle";

function hello() {
console.log(`Hello, ${ studentName }!`);

}

hello();
// Hello, Kyle!

module.exports.hello = hello;

Here we add studentName as a property on the global
object, and then in the console.log(..) statement we’re
able to access studentName as a normal global variable.

Remember, the identifier global is not defined by JS; it’s
specifically defined by Node.

Global This

Reviewing the JS environments we’ve looked at so far, a
program may or may not:

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 71

• Declare a global variable in the top-level scope with var
or function declarations—or let, const, and class.

• Also add global variables declarations as properties of
the global scope object if var or function are used for
the declaration.

• Refer to the global scope object (for adding or retrieving
global variables, as properties) with window, self, or
global.

I think it’s fair to say that global scope access and behavior
is more complicated than most developers assume, as the
preceding sections have illustrated. But the complexity is
never more obvious than in trying to nail down a universally
applicable reference to the global scope object.

Yet another “trick” for obtaining a reference to the global
scope object looks like:

const theGlobalScopeObject =
(new Function("return this"))();

Note
A function can be dynamically constructed
from code stored in a string value with the
Function() constructor, similar to eval(..)
(see “Cheating: Runtime Scope Modifications” in
Chapter 1). Such a function will automatically be
run in non-strict-mode (for legacy reasons) when
invoked with the normal () function invocation
as shown; its this will point at the global object.
See the third book in the series,Objects & Classes,
for more information on determining this bind-
ings.

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 72

So, we have window, self, global, and this ugly new Func-
tion(..) trick. That’s a lot of different ways to try to get at
this global object. Each has its pros and cons.

Why not introduce yet another!?!?

As of ES2020, JS has finally defined a standardized reference
to the global scope object, called globalThis. So, subject to
the recency of the JS engines your code runs in, you can use
globalThis in place of any of those other approaches.

We could even attempt to define a cross-environment polyfill
that’s safer across pre-globalThis JS environments, such as:

const theGlobalScopeObject =
(typeof globalThis != "undefined") ? globalThis :
(typeof global != "undefined") ? global :
(typeof window != "undefined") ? window :
(typeof self != "undefined") ? self :
(new Function("return this"))();

Phew! That’s certainly not ideal, but it works if you find
yourself needing a reliable global scope reference.

(The proposed name globalThis was fairly controversial
while the feature was being added to JS. Specifically, I and
many others felt the “this” reference in its name was mislead-
ing, since the reason you reference this object is to access to
the global scope, never to access some sort of global/default
this binding. There were many other names considered, but
for a variety of reasons ruled out. Unfortunately, the name
chosen ended up as a last resort. If you plan to interact with
the global scope object in your programs, to reduce confusion,
I strongly recommend choosing a better name, such as (the
laughably long but accurate!) theGlobalScopeObject used
here.)

You Don’t Know JS Yet: Scope & Closures

Chapter 4: Around the Global Scope 73

Globally Aware

The global scope is present and relevant in every JS program,
even though modern patterns for organizing code into mod-
ules de-emphasizes much of the reliance on storing identifiers
in that namespace.

Still, as our code proliferates more and more beyond the
confines of the browser, it’s especially important we have a
solid grasp on the differences in how the global scope (and
global scope object!) behave across different JS environments.

With the big picture of global scope now sharper in focus, the
next chapter again descends into the deeper details of lexical
scope, examining how and when variables can be used.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 74

Chapter 5: The (Not So)
Secret Lifecycle of
Variables
By now you should have a decent grasp of the nesting of
scopes, from the global scope downward—called a program’s
scope chain.

But just knowing which scope a variable comes from is only
part of the story. If a variable declaration appears past the first
statement of a scope, howwill any references to that identifier
before the declaration behave? What happens if you try to
declare the same variable twice in a scope?

JS’s particular flavor of lexical scope is rich with nuance in
how and when variables come into existence and become
available to the program.

When Can I Use a Variable?

At what point does a variable become available to use within
its scope? There may seem to be an obvious answer: after the
variable has been declared/created. Right? Not quite.

Consider:

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 75

greeting();
// Hello!

function greeting() {
console.log("Hello!");

}

This code works fine. Youmay have seen or even written code
like it before. But did you ever wonder how or why it works?
Specifically, why can you access the identifier greeting from
line 1 (to retrieve and execute a function reference), even
though the greeting() function declaration doesn’t occur
until line 4?

Recall Chapter 1 points out that all identifiers are registered to
their respective scopes during compile time. Moreover, every
identifier is created at the beginning of the scope it belongs
to, every time that scope is entered.

The term most commonly used for a variable being visible
from the beginning of its enclosing scope, even though its
declaration may appear further down in the scope, is called
hoisting.

But hoisting alone doesn’t fully answer the question. We can
see an identifier called greeting from the beginning of the
scope, but why can we call the greeting() function before
it’s been declared?

In other words, how does the variable greeting have any
value (the function reference) assigned to it, from the moment
the scope starts running? The answer is a special characteris-
tic of formal function declarations, called function hoisting.
When a function declaration’s name identifier is registered
at the top of its scope, it’s additionally auto-initialized to that

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 76

function’s reference. That’s why the function can be called
throughout the entire scope!

One key detail is that both function hoisting and var-flavored
variable hoisting attach their name identifiers to the nearest
enclosing function scope (or, if none, the global scope), not a
block scope.

Note
Declarations with let and const still hoist (see
the TDZ discussion later in this chapter). But
these two declaration forms attach to their en-
closing block rather than just an enclosing func-
tion as with var and function declarations. See
“Scoping with Blocks” in Chapter 6 for more
information.

Hoisting: Declaration vs. Expression

Function hoisting only applies to formal function declara-
tions (specifically those which appear outside of blocks—see
“FiB” in Chapter 6), not to function expression assignments.
Consider:

greeting();
// TypeError

var greeting = function greeting() {
console.log("Hello!");

};

Line 1 (greeting();) throws an error. But the kind of error
thrown is very important to notice. A TypeError means

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 77

we’re trying to do something with a value that is not allowed.
Depending on your JS environment, the error message would
say something like, “‘undefined’ is not a function,” or more
helpfully, “‘greeting’ is not a function.”

Notice that the error is not a ReferenceError. JS isn’t telling
us that it couldn’t find greeting as an identifier in the scope.
It’s telling us that greeting was found but doesn’t hold a
function reference at that moment. Only functions can be
invoked, so attempting to invoke some non-function value
results in an error.

But what does greeting hold, if not the function reference?

In addition to being hoisted, variables declared with var are
also automatically initialized to undefined at the beginning
of their scope—again, the nearest enclosing function, or the
global. Once initialized, they’re available to be used (assigned
to, retrieved from, etc.) throughout the whole scope.

So on that first line, greeting exists, but it holds only the
default undefined value. It’s not until line 4 that greeting
gets assigned the function reference.

Pay close attention to the distinction here. A function decla-
ration is hoisted and initialized to its function value (again,
called function hoisting). A var variable is also hoisted, and
then auto-initialized to undefined. Any subsequent func-
tion expression assignments to that variable don’t happen
until that assignment is processed during runtime execution.

In both cases, the name of the identifier is hoisted. But the
function reference association isn’t handled at initialization
time (beginning of the scope) unless the identifier was created
in a formal function declaration.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 78

Variable Hoisting

Let’s look at another example of variable hoisting:

greeting = "Hello!";
console.log(greeting);
// Hello!

var greeting = "Howdy!";

Though greeting isn’t declared until line 5, it’s available to
be assigned to as early as line 1. Why?

There’s two necessary parts to the explanation:

• the identifier is hoisted,
• and it’s automatically initialized to the value undefined
from the top of the scope.

Note
Using variable hoisting of this sort probably feels
unnatural, and many readers might rightly want
to avoid relying on it in their programs. But
should all hoisting (including function hoisting)
be avoided?We’ll explore these different perspec-
tives on hoisting in more detail in Appendix A.

Hoisting: Yet Another Metaphor

Chapter 2 was full of metaphors (to illustrate scope), but here
we are faced with yet another: hoisting itself. Rather than

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 79

hoisting being a concrete execution step the JS engine per-
forms, it’s more useful to think of hoisting as a visualization
of various actions JS takes in setting up the program before
execution.

The typical assertion of what hoisting means: lifting—like
lifting a heavy weight upward—any identifiers all the way to
the top of a scope. The explanation often asserted is that the
JS engine will actually rewrite that program before execution,
so that it looks more like this:

var greeting; // hoisted declaration
greeting = "Hello!"; // the original line 1
console.log(greeting); // Hello!
greeting = "Howdy!"; // `var` is gone!

The hoisting (metaphor) proposes that JS pre-processes the
original program and re-arranges it a bit, so that all the decla-
rations have been moved to the top of their respective scopes,
before execution. Moreover, the hoisting metaphor asserts
that function declarations are, in their entirety, hoisted to
the top of each scope. Consider:

studentName = "Suzy";
greeting();
// Hello Suzy!

function greeting() {
console.log(`Hello ${ studentName }!`);

}
var studentName;

The “rule” of the hoisting metaphor is that function declara-
tions are hoisted first, then variables are hoisted immediately

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 80

after all the functions. Thus, the hoisting story suggests that
program is re-arranged by the JS engine to look like this:

function greeting() {
console.log(`Hello ${ studentName }!`);

}
var studentName;

studentName = "Suzy";
greeting();
// Hello Suzy!

This hoisting metaphor is convenient. Its benefit is allowing
us to hand wave over the magical look-ahead pre-processing
necessary to find all these declarations buried deep in scopes
and somehow move (hoist) them to the top; we can just think
about the program as if it’s executed by the JS engine in a
single pass, top-down.

Single-pass definitely seemsmore straightforward thanChap-
ter 1’s assertion of a two-phase processing.

Hoisting as a mechanism for re-ordering code may be an
attractive simplification, but it’s not accurate. The JS engine
doesn’t actually re-arrange the code. It can’t magically look
ahead and find declarations; the only way to accurately find
them, as well as all the scope boundaries in the program,
would be to fully parse the code.

Guess what parsing is? The first phase of the two-phase
processing! There’s no magical mental gymnastics that gets
around that fact.

So if the hoistingmetaphor is (at best) inaccurate, what should
we do with the term? I think it’s still useful—indeed, even

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 81

members of TC39 regularly use it!—but I don’t think we
should claim it’s an actual re-arrangement of source code.

Warning
Incorrect or incomplete mental models often still
seem sufficient because they can occasionally
lead to accidental right answers. But in the long
run it’s harder to accurately analyze and pre-
dict outcomes if your thinking isn’t particularly
aligned with how the JS engine works.

I assert that hoisting should be used to refer to the compile-
time operation of generating runtime instructions for the
automatic registration of a variable at the beginning of its
scope, each time that scope is entered.

That’s a subtle but important shift, from hoisting as a runtime
behavior to its proper place among compile-time tasks.

Re-declaration?

What do you think happens when a variable is declared more
than once in the same scope? Consider:

var studentName = "Frank";
console.log(studentName);
// Frank

var studentName;
console.log(studentName); // ???

What do you expect to be printed for that second message?
Many believe the second var studentName has re-declared

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 82

the variable (and thus “reset” it), so they expect undefined
to be printed.

But is there such a thing as a variable being “re-declared” in
the same scope? No.

If you consider this program from the perspective of the
hoisting metaphor, the code would be re-arranged like this
for execution purposes:

var studentName;
var studentName; // clearly a pointless no-op!

studentName = "Frank";
console.log(studentName);
// Frank

console.log(studentName);
// Frank

Since hoisting is actually about registering a variable at the
beginning of a scope, there’s nothing to be done in the middle
of the scope where the original program actually had the sec-
ond var studentName statement. It’s just a no-op(eration), a
pointless statement.

Tip
In the style of the conversation narrative from
Chapter 2, Compiler would find the second var
declaration statement and ask the Scope Manager
if it had already seen a studentName identifier;
since it had, there wouldn’t be anything else to
do.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 83

It’s also important to point out that var studentName;
doesn’t mean var studentName = undefined;, as most
assume. Let’s prove they’re different by considering this
variation of the program:

var studentName = "Frank";
console.log(studentName); // Frank

var studentName;
console.log(studentName); // Frank <--- still!

// let's add the initialization explicitly
var studentName = undefined;
console.log(studentName); // undefined <--- see!?

See how the explicit = undefined initialization produces a
different outcome than assuming it happens implicitly when
omitted? In the next section, we’ll revisit this topic of initial-
ization of variables from their declarations.

A repeated var declaration of the same identifier name in
a scope is effectively a do-nothing operation. Here’s another
illustration, this time across a function of the same name:

var greeting;

function greeting() {
console.log("Hello!");

}

// basically, a no-op
var greeting;

typeof greeting; // "function"

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 84

var greeting = "Hello!";

typeof greeting; // "string"

The first greeting declaration registers the identifier to the
scope, and because it’s a var the auto-initialization will be
undefined. The function declaration doesn’t need to re-
register the identifier, but because of function hoisting it
overrides the auto-initialization to use the function reference.
The second var greeting by itself doesn’t do anything
since greeting is already an identifier and function hoisting
already took precedence for the auto-initialization.

Actually assigning "Hello!" to greeting changes its value
from the initial function greeting() to the string; var itself
doesn’t have any effect.

What about repeating a declaration within a scope using let
or const?

let studentName = "Frank";

console.log(studentName);

let studentName = "Suzy";

This programwill not execute, but instead immediately throw
a SyntaxError. Depending on your JS environment, the
error message will indicate something like: “studentName has
already been declared.” In other words, this is a case where
attempted “re-declaration” is explicitly not allowed!

It’s not just that two declarations involving let will throw
this error. If either declaration uses let, the other can be
either let or var, and the error will still occur, as illustrated
with these two variations:

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 85

var studentName = "Frank";

let studentName = "Suzy";

and:

let studentName = "Frank";

var studentName = "Suzy";

In both cases, a SyntaxError is thrown on the second decla-
ration. In other words, the only way to “re-declare” a variable
is to use var for all (two or more) of its declarations.

But why disallow it? The reason for the error is not technical
per se, as var “re-declaration” has always been allowed;
clearly, the same allowance could have been made for let.

It’s really more of a “social engineering” issue. “Re-declara-
tion” of variables is seen by some, including many on the
TC39 body, as a bad habit that can lead to program bugs.
So when ES6 introduced let, they decided to prevent “re-
declaration” with an error.

Note
This is of course a stylistic opinion, not really
a technical argument. Many developers agree
with the position, and that’s probably in part
why TC39 included the error (as well as let
conforming to const). But a reasonable case
could have been made that staying consistent
with var’s precedent was more prudent, and that
such opinion-enforcement was best left to opt-in
tooling like linters. In Appendix A, we’ll explore
whether var (and its associated behavior, like
“re-declaration”) can still be useful in modern JS.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 86

When Compiler asks Scope Manager about a declaration, if
that identifier has already been declared, and if either/both
declarations were made with let, an error is thrown. The
intended signal to the developer is “Stop relying on sloppy
re-declaration!”

Constants?

The const keyword is more constrained than let. Like let,
const cannot be repeatedwith the same identifier in the same
scope. But there’s actually an overriding technical reasonwhy
that sort of “re-declaration” is disallowed, unlike let which
disallows “re-declaration” mostly for stylistic reasons.

The const keyword requires a variable to be initialized, so
omitting an assignment from the declaration results in a
SyntaxError:

const empty; // SyntaxError

const declarations create variables that cannot be re-as-
signed:

const studentName = "Frank";
console.log(studentName);
// Frank

studentName = "Suzy"; // TypeError

The studentName variable cannot be re-assigned because it’s
declared with a const.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 87

Warning
The error thrown when re-assigning
studentName is a TypeError, not a
SyntaxError. The subtle distinction here is
actually pretty important, but unfortunately
far too easy to miss. Syntax errors represent
faults in the program that stop it from even
starting execution. Type errors represent faults
that arise during program execution. In the
preceding snippet, "Frank" is printed out before
we process the re-assignment of studentName,
which then throws the error.

So if const declarations cannot be re-assigned, and const
declarations always require assignments, thenwe have a clear
technical reason why const must disallow any “re-declara-
tions”: any const “re-declaration” would also necessarily be
a const re-assignment, which can’t be allowed!

const studentName = "Frank";

// obviously this must be an error
const studentName = "Suzy";

Since const “re-declaration” must be disallowed (on those
technical grounds), TC39 essentially felt that let “re-dec-
laration” should be disallowed as well, for consistency. It’s
debatable if this was the best choice, but at least we have the
reasoning behind the decision.

Loops

So it’s clear from our previous discussion that JS doesn’t really
want us to “re-declare” our variables within the same scope.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 88

That probably seems like a straightforward admonition, until
you consider what it means for repeated execution of decla-
ration statements in loops. Consider:

var keepGoing = true;
while (keepGoing) {

let value = Math.random();
if (value > 0.5) {

keepGoing = false;
}

}

Is value being “re-declared” repeatedly in this program?Will
we get errors thrown? No.

All the rules of scope (including “re-declaration” of let-
created variables) are applied per scope instance. In other
words, each time a scope is entered during execution, every-
thing resets.

Each loop iteration is its own new scope instance, and within
each scope instance, value is only being declared once.
So there’s no attempted “re-declaration,” and thus no error.
Before we consider other loop forms, what if the value
declaration in the previous snippet were changed to a var?

var keepGoing = true;
while (keepGoing) {

var value = Math.random();
if (value > 0.5) {

keepGoing = false;
}

}

Is value being “re-declared” here, especially since we know
var allows it? No. Because var is not treated as a block-

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 89

scoping declaration (see Chapter 6), it attaches itself to the
global scope. So there’s just one value variable, in the same
scope as keepGoing (global scope, in this case). No “re-
declaration” here, either!

One way to keep this all straight is to remember that var,
let, and const keywords are effectively removed from the
code by the time it starts to execute. They’re handled entirely
by the compiler.

If you mentally erase the declarator keywords and then try
to process the code, it should help you decide if and when
(re-)declarations might occur.

What about “re-declaration” with other loop forms, like for-
loops?

for (let i = 0; i < 3; i++) {
let value = i * 10;
console.log(`${ i }: ${ value }`);

}
// 0: 0
// 1: 10
// 2: 20

It should be clear that there’s only one value declared per
scope instance. But what about i? Is it being “re-declared”?

To answer that, consider what scope i is in. It might seem like
it would be in the outer (in this case, global) scope, but it’s not.
It’s in the scope of for-loop body, just like value is. In fact,
you could sorta think about that loop in this more verbose
equivalent form:

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 90

{
// a fictional variable for illustration
let $$i = 0;

for (/* nothing */; $$i < 3; $$i++) {
// here's our actual loop `i`!
let i = $$i;

let value = i * 10;
console.log(`${ i }: ${ value }`);

}
// 0: 0
// 1: 10
// 2: 20

}

Now it should be clear: the i and value variables are both de-
clared exactly once per scope instance. No “re-declaration”
here.

What about other for-loop forms?

for (let index in students) {
// this is fine

}

for (let student of students) {
// so is this

}

Same thing with for..in and for..of loops: the declared
variable is treated as inside the loop body, and thus is handled
per iteration (aka, per scope instance). No “re-declaration.”

OK, I know you’re thinking that I sound like a broken record
at this point. But let’s explore how const impacts these
looping constructs. Consider:

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 91

var keepGoing = true;
while (keepGoing) {

// ooo, a shiny constant!
const value = Math.random();
if (value > 0.5) {

keepGoing = false;
}

}

Just like the let variant of this program we saw earlier,
const is being run exactly once within each loop iteration, so
it’s safe from “re-declaration” troubles. But things get more
complicated when we talk about for-loops.

for..in and for..of are fine to use with const:

for (const index in students) {
// this is fine

}

for (const student of students) {
// this is also fine

}

But not the general for-loop:

for (const i = 0; i < 3; i++) {
// oops, this is going to fail with
// a Type Error after the first iteration

}

What’s wrong here? We could use let just fine in this
construct, and we asserted that it creates a new i for each
loop iteration scope, so it doesn’t even seem to be a “re-
declaration.”

Let’s mentally “expand” that loop like we did earlier:

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 92

{
// a fictional variable for illustration
const $$i = 0;

for (; $$i < 3; $$i++) {
// here's our actual loop `i`!
const i = $$i;
// ..

}
}

Do you spot the problem? Our i is indeed just created
once inside the loop. That’s not the problem. The problem
is the conceptual $$i that must be incremented each time
with the $$i++ expression. That’s re-assignment (not “re-
declaration”), which isn’t allowed for constants.

Remember, this “expanded” form is only a conceptual model
to help you intuit the source of the problem. You might
wonder if JS could have effectively made the const $$i = 0
instead into let $ii = 0, which would then allow const to
work with our classic for-loop? It’s possible, but then it could
have introduced potentially surprising exceptions to for-loop
semantics.

For example, it would have been a rather arbitrary (and likely
confusing) nuanced exception to allow i++ in the for-loop
header to skirt strictness of the const assignment, but not
allow other re-assignments of i inside the loop iteration, as
is sometimes useful.

The straightforward answer is: const can’t be used with the
classic for-loop form because of the required re-assignment.

Interestingly, if you don’t do re-assignment, then it’s valid:

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 93

var keepGoing = true;

for (const i = 0; keepGoing; /* nothing here */) {
keepGoing = (Math.random() > 0.5);
// ..

}

That works, but it’s pointless. There’s no reason to declare i
in that position with a const, since the whole point of such a
variable in that position is to be used for counting iterations.
Just use a different loop form, like a while loop, or use a let!

Uninitialized Variables (aka, TDZ)

With var declarations, the variable is “hoisted” to the top
of its scope. But it’s also automatically initialized to the
undefined value, so that the variable can be used throughout
the entire scope.

However, let and const declarations are not quite the same
in this respect.

Consider:

console.log(studentName);
// ReferenceError

let studentName = "Suzy";

The result of this program is that a ReferenceError is
thrown on the first line. Depending on your JS environment,
the error message may say something like: “Cannot access
studentName before initialization.”

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 94

Note
The error message as seen here used to be much
more vague or misleading. Thankfully, several of
us in the community were successfully able to
lobby for JS engines to improve this errormessage
so it more accurately tells you what’s wrong!

That error message is quite indicative of what’s wrong: stu-
dentName exists on line 1, but it’s not been initialized, so it
cannot be used yet. Let’s try this:

studentName = "Suzy"; // let's try to initialize it!
// ReferenceError

console.log(studentName);

let studentName;

Oops. We still get the ReferenceError, but now on the
first line where we’re trying to assign to (aka, initialize!) this
so-called “uninitialized” variable studentName. What’s the
deal!?

The real question is, how do we initialize an uninitialized
variable? For let/const, the only way to do so is with an
assignment attached to a declaration statement. An assign-
ment by itself is insufficient! Consider:

let studentName = "Suzy";
console.log(studentName); // Suzy

Here, we are initializing the studentName (in this case, to
"Suzy" instead of undefined) by way of the let declaration
statement form that’s coupled with an assignment.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 95

Alternatively:

// ..

let studentName;
// or:
// let studentName = undefined;

// ..

studentName = "Suzy";

console.log(studentName);
// Suzy

Note
That’s interesting! Recall from earlier, we said
that var studentName; is not the same as var
studentName = undefined;, but here with
let, they behave the same. The difference comes
down to the fact that var studentName auto-
matically initializes at the top of the scope, where
let studentName does not.

Remember that we’ve asserted a few times so far that Com-
piler ends up removing any var/let/const declarators, re-
placing them with the instructions at the top of each scope to
register the appropriate identifiers.

So if we analyze what’s going on here, we see that an addi-
tional nuance is that Compiler is also adding an instruction
in the middle of the program, at the point where the variable
studentNamewas declared, to handle that declaration’s auto-
initialization. We cannot use the variable at any point prior

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 96

to that initialization occuring. The same goes for const as it
does for let.

The term coined by TC39 to refer to this period of time from
the entering of a scope to where the auto-initialization of the
variable occurs is: Temporal Dead Zone (TDZ).

The TDZ is the timewindowwhere a variable exists but is still
uninitialized, and therefore cannot be accessed in any way.
Only the execution of the instructions left by Compiler at
the point of the original declaration can do that initialization.
After that moment, the TDZ is done, and the variable is free
to be used for the rest of the scope.

A var also has technically has a TDZ, but it’s zero in length
and thus unobservable to our programs! Only let and const
have an observable TDZ.

By the way, “temporal” in TDZ does indeed refer to time not
position in code. Consider:

askQuestion();
// ReferenceError

let studentName = "Suzy";

function askQuestion() {
console.log(`${ studentName }, do you know?`);

}

Even though positionally the console.log(..) referencing
studentName comes after the let studentName declara-
tion, timing wise the askQuestion() function is invoked
before the let statement is encountered, while studentName
is still in its TDZ! Hence the error.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 97

There’s a common misconception that TDZ means let and
const do not hoist. This is an inaccurate, or at least slightly
misleading, claim. They definitely hoist.

The actual difference is that let/const declarations do not
automatically initialize at the beginning of the scope, the
way var does. The debate then is if the auto-initialization
is part of hoisting, or not? I think auto-registration of a
variable at the top of the scope (i.e., what I call “hoisting”) and
auto-initialization at the top of the scope (to undefined) are
distinct operations and shouldn’t be lumped together under
the single term “hoisting.”

We’ve already seen that let and const don’t auto-initialize
at the top of the scope. But let’s prove that let and const do
hoist (auto-register at the top of the scope), courtesy of our
friend shadowing (see “Shadowing” in Chapter 3):

var studentName = "Kyle";

{
console.log(studentName);
// ???

// ..

let studentName = "Suzy";

console.log(studentName);
// Suzy

}

What’s going to happen with the first console.log(..)
statement? If let studentName didn’t hoist to the top of the
scope, then the first console.log(..) should print "Kyle",

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 98

right? At that moment, it would seem, only the outer stu-
dentName exists, so that’s the variable console.log(..)
should access and print.

But instead, the first console.log(..) throws a TDZ error,
because in fact, the inner scope’s studentName was hoisted
(auto-registered at the top of the scope). What didn’t happen
(yet!) was the auto-initialization of that inner studentName;
it’s still uninitialized at that moment, hence the TDZ viola-
tion!

So to summarize, TDZ errors occur because let/const dec-
larations do hoist their declarations to the top of their scopes,
but unlike var, they defer the auto-initialization of their
variables until the moment in the code’s sequencing where
the original declaration appeared. This window of time (hint:
temporal), whatever its length, is the TDZ.

How can you avoid TDZ errors?

My advice: always put your let and const declarations at
the top of any scope. Shrink the TDZ window to zero (or near
zero) length, and then it’ll be moot.

But why is TDZ even a thing? Why didn’t TC39 dictate that
let/const auto-initialize the way var does? Just be patient,
we’ll come back to explore the why of TDZ in Appendix A.

Finally Initialized

Working with variables has much more nuance than it seems
at first glance. Hoisting, (re)declaration, and the TDZ are
common sources of confusion for developers, especially those
who have worked in other languages before coming to JS.

You Don’t Know JS Yet: Scope & Closures

Chapter 5: The (Not So) Secret Lifecycle of Variables 99

Before moving on, make sure your mental model is fully
grounded on these aspects of JS scope and variables.

Hoisting is generally cited as an explicit mechanism of the JS
engine, but it’s really more a metaphor to describe the various
ways JS handles variable declarations during compilation.
But even as a metaphor, hoisting offers useful structure for
thinking about the life-cycle of a variable—when it’s created,
when it’s available to use, when it goes away.

Declaration and re-declaration of variables tend to cause
confusion when thought of as runtime operations. But if you
shift to compile-time thinking for these operations, the quirks
and shadows diminish.

The TDZ (temporal dead zone) error is strange and frustrating
when encountered. Fortunately, TDZ is relatively straightfor-
ward to avoid if you’re always careful to place let/const
declarations at the top of any scope.

As you successfully navigate these twists and turns of variable
scope, the next chapter will lay out the factors that guide
our decisions to place our declarations in various scopes,
especially nested blocks.

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 100

Chapter 6: Limiting
Scope Exposure
So far our focus has been explaining the mechanics of how
scopes and variables work. With that foundation now firmly
in place, our attention raises to a higher level of thinking:
decisions and patterns we apply across the whole program.

To begin, we’re going to look at how and why we should
be using different levels of scope (functions and blocks) to
organize our program’s variables, specifically to reduce scope
over-exposure.

Least Exposure

It makes sense that functions define their own scopes. But
why do we need blocks to create scopes as well?

Software engineering articulates a fundamental discipline,
typically applied to software security, called “The Principle
of Least Privilege” (POLP). ¹ And a variation of this principle
that applies to our current discussion is typically labeled as
“Least Exposure” (POLE).

POLP expresses a defensive posture to software architecture:
components of the system should be designed to function
with least privilege, least access, least exposure. If each piece

¹Principle of Least Privilege, https://en.wikipedia.org/wiki/Principle_of_least_priv-
ilege, 3 March 2020.

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 101

is connected with minimum-necessary capabilities, the over-
all system is stronger from a security standpoint, because a
compromise or failure of one piece has a minimized impact
on the rest of the system.

If POLP focuses on system-level component design, the POLE
Exposure variant focuses on a lower level; we’ll apply it to
how scopes interact with each other.

In following POLE, what do we want to minimize the expo-
sure of? Simply: the variables registered in each scope.

Think of it this way: why shouldn’t you just place all the
variables of your program out in the global scope? That
probably immediately feels like a bad idea, but it’s worth
considering why that is. When variables used by one part of
the program are exposed to another part of the program, via
scope, there are three main hazards that often arise:

• Naming Collisions: if you use a common and useful
variable/function name in two different parts of the
program, but the identifier comes from one shared scope
(like the global scope), then name collision occurs, and
it’s very likely that bugs will occur as one part uses the
variable/function in a way the other part doesn’t expect.

For example, imagine if all your loops used a single
global i index variable, and then it happens that one
loop in a function is running during an iteration of a loop
from another function, and now the shared i variable
gets an unexpected value.

• Unexpected Behavior: if you expose variables/func-
tions whose usage is otherwise private to a piece of the
program, it allows other developers to use them in ways
you didn’t intend, which can violate expected behavior
and cause bugs.

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 102

For example, if your part of the program assumes an
array contains all numbers, but someone else’s code
accesses and modifies the array to include booleans and
strings, your code may then misbehave in unexpected
ways.

Worse, exposure of private details invites those with
mal-intent to try to work around limitations you have
imposed, to do things with your part of the software that
shouldn’t be allowed.

• UnintendedDependency: if you expose variables/func-
tions unnecessarily, it invites other developers to use
and depend on those otherwise private pieces. While
that doesn’t break your program today, it creates a
refactoring hazard in the future, because now you can-
not as easily refactor that variable or function without
potentially breaking other parts of the software that you
don’t control.

For example, if your code relies on an array of numbers,
and you later decide it’s better to use some other data
structure instead of an array, you now must take on the
liability of adjusting other affected parts of the software.

POLE, as applied to variable/function scoping, essentially
says, default to exposing the bare minimum necessary, keep-
ing everything else as private as possible. Declare variables
in as small and deeply nested of scopes as possible, rather
than placing everything in the global (or even outer function)
scope.

If you design your software accordingly, you have a much
greater chance of avoiding (or at least minimizing) these three
hazards.

Consider:

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 103

function diff(x,y) {
if (x > y) {

let tmp = x;
x = y;
y = tmp;

}

return y - x;
}

diff(3,7); // 4
diff(7,5); // 2

In this diff(..) function, we want to ensure that y is greater
than or equal to x, so that when we subtract (y - x), the
result is 0 or larger. If x is initially larger (the result would
be negative!), we swap x and y using a tmp variable, to keep
the result positive.

In this simple example, it doesn’t seem to matter whether tmp
is inside the if block or whether it belongs at the function
level—it certainly shouldn’t be a global variable! However,
following the POLE principle, tmp should be as hidden in
scope as possible. So we block scope tmp (using let) to the
if block.

Hiding in Plain (Function) Scope

It should now be clear why it’s important to hide our variable
and function declarations in the lowest (most deeply nested)
scopes possible. But how do we do so?

We’ve already seen the let and const keywords, which are
block scoped declarators; we’ll come back to them in more

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 104

detail shortly. But first, what about hiding var or function
declarations in scopes? That can easily be done by wrapping
a function scope around a declaration.

Let’s consider an example where function scoping can be
useful.

The mathematical operation “factorial” (notated as “6!”) is
the multiplication of a given integer against all successively
lower integers down to 1—actually, you can stop at 2 since
multiplying 1 does nothing. In other words, “6!” is the same
as “6 * 5!”, which is the same as “6 * 5 * 4!”, and so on. Because
of the nature of the math involved, once any given integer’s
factorial (like “4!”) has been calculated, we shouldn’t need to
do that work again, as it’ll always be the same answer.

So if you naively calculate factorial for 6, then later want to
calculate factorial for 7, you might unnecessarily re-calculate
the factorials of all the integers from 2 up to 6. If you’re willing
to trade memory for speed, you can solve that wasted com-
putation by caching each integer’s factorial as it’s calculated:

var cache = {};

function factorial(x) {
if (x < 2) return 1;
if (!(x in cache)) {

cache[x] = x * factorial(x - 1);
}
return cache[x];

}

factorial(6);
// 720

cache;

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 105

// {
// "2": 2,
// "3": 6,
// "4": 24,
// "5": 120,
// "6": 720
// }

factorial(7);
// 5040

We’re storing all the computed factorials in cache so that
across multiple calls to factorial(..), the previous com-
putations remain. But the cache variable is pretty obviously
a private detail of how factorial(..)works, not something
that should be exposed in an outer scope—especially not the
global scope.

Note
factorial(..) here is recursive—a call to itself
is made from inside—but that’s just for brevity
of code sake; a non-recursive implementation
would yield the same scoping analysis with re-
spect to cache.

However, fixing this over-exposure issue is not as simple as
hiding the cache variable inside factorial(..), as it might
seem. Since we need cache to survive multiple calls, it must
be located in a scope outside that function. So what can we
do?

Define another middle scope (between the outer/global scope
and the inside of factorial(..)) for cache to be located:

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 106

// outer/global scope

function hideTheCache() {
// "middle scope", where we hide `cache`
var cache = {};

return factorial;

// **********************

function factorial(x) {
// inner scope
if (x < 2) return 1;
if (!(x in cache)) {

cache[x] = x * factorial(x - 1);
}
return cache[x];

}
}

var factorial = hideTheCache();

factorial(6);
// 720

factorial(7);
// 5040

The hideTheCache() function serves no other purpose than
to create a scope for cache to persist in across multiple calls
to factorial(..). But for factorial(..) to have access to
cache, we have to define factorial(..) inside that same
scope. Then we return the function reference, as a value from
hideTheCache(), and store it in an outer scope variable, also
named factorial. Now as we call factorial(..) (multiple

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 107

times!), its persistent cache stays hidden yet accessible only
to factorial(..)!

OK, but… it’s going to be tedious to define (and name!) a
hideTheCache(..) function scope each time such a need for
variable/function hiding occurs, especially since we’ll likely
want to avoid name collisions with this function by giving
each occurrence a unique name. Ugh.

Note
The illustrated technique—caching a function’s
computed output to optimize performance when
repeated calls of the same inputs are expected—
is quite common in the Functional Programming
(FP) world, canonically referred to as “memoiza-
tion”; this caching relies on closure (see Chap-
ter 7). Also, there are memory usage concerns
(addressed in “A Word About Memory” in Ap-
pendix B). FP libraries will usually provide an
optimized and vetted utility for memoization
of functions, which would take the place of
hideTheCache(..) here. Memoization is be-
yond the scope (pun intended!) of our discussion,
but see my Functional-Light JavaScript book for
more information.

Rather than defining a new and uniquely named function
each time one of those scope-only-for-the-purpose-of-hiding-
a-variable situations occurs, a perhaps better solution is to use
a function expression:

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 108

var factorial = (function hideTheCache() {
var cache = {};

function factorial(x) {
if (x < 2) return 1;
if (!(x in cache)) {

cache[x] = x * factorial(x - 1);
}
return cache[x];

}

return factorial;
})();

factorial(6);
// 720

factorial(7);
// 5040

Wait! This is still using a function to create the scope for
hiding cache, and in this case, the function is still named
hideTheCache, so how does that solve anything?

Recall from “Function Name Scope” (in Chapter 3), what
happens to the name identifier from a function expression.
Since hideTheCache(..) is defined as a function expres-
sion instead of a function declaration, its name is in its own
scope—essentially the same scope as cache—rather than in
the outer/global scope.

That means we can name every single occurrence of such a
function expression the exact same name, and never have any
collision. More appropriately, we can name each occurrence
semantically based on whatever it is we’re trying to hide, and
not worry that whatever name we choose is going to collide

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 109

with any other function expression scope in the program.

In fact, we could just leave off the name entirely—thus defin-
ing an “anonymous function expression” instead. But Ap-
pendix A will discuss the importance of names even for such
scope-only functions.

Invoking Function Expressions
Immediately

There’s another important bit in the previous factorial recur-
sive program that’s easy to miss: the line at the end of the
function expression that contains })();.

Notice that we surrounded the entire function expression in
a set of (..), and then on the end, we added that second
() parentheses set; that’s actually calling the function ex-
pression we just defined. Moreover, in this case, the first set
of surrounding (..) around the function expression is not
strictly necessary (more on that in a moment), but we used
them for readability sake anyway.

So, in other words, we’re defining a function expression
that’s then immediately invoked. This common pattern has
a (very creative!) name: Immediately Invoked Function Ex-
pression (IIFE).

An IIFE is useful when we want to create a scope to hide
variables/functions. Since it’s an expression, it can be used in
any place in a JS program where an expression is allowed. An
IIFE can be named, as with hideTheCache(), or (much more
commonly!) unnamed/anonymous. And it can be standalone
or, as before, part of another statement—hideTheCache()
returns the factorial() function reference which is then =
assigned to the variable factorial.

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 110

For comparison, here’s an example of a standalone IIFE:

// outer scope

(function(){
// inner hidden scope

})();

// more outer scope

Unlike earlier with hideTheCache(), where the outer sur-
rounding (..) were noted as being an optional stylistic
choice, for a standalone IIFE they’re required; they distin-
guish the function as an expression, not a statement. For
consistency, however, always surround an IIFE function
with (..).

Note
Technically, the surrounding (..) aren’t the
only syntactic way to ensure the function in
an IIFE is treated by the JS parser as a function
expression. We’ll look at some other options in
Appendix A.

Function Boundaries

Beware that using an IIFE to define a scope can have some
unintended consequences, depending on the code around it.
Because an IIFE is a full function, the function boundary alters
the behavior of certain statements/constructs.

For example, a return statement in some piece of code
would change its meaning if an IIFE is wrapped around it,

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 111

because now the return would refer to the IIFE’s function.
Non-arrow function IIFEs also change the binding of a this
keyword—more on that in the Objects & Classes book. And
statements like break and continue won’t operate across an
IIFE function boundary to control an outer loop or block.

So, if the code you need to wrap a scope around has return,
this, break, or continue in it, an IIFE is probably not the
best approach. In that case, you might look to create the scope
with a block instead of a function.

Scoping with Blocks

You should by this point feel fairly comfortable with the
merits of creating scopes to limit identifier exposure.

So far, we looked at doing this via function (i.e., IIFE) scope.
But let’s now consider using let declarations with nested
blocks. In general, any { .. } curly-brace pair which is a
statement will act as a block, but not necessarily as a scope.

A block only becomes a scope if necessary, to contain its
block-scoped declarations (i.e., let or const). Consider:

{
// not necessarily a scope (yet)

// ..

// now we know the block needs to be a scope
let thisIsNowAScope = true;

for (let i = 0; i < 5; i++) {
// this is also a scope, activated each
// iteration

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 112

if (i % 2 == 0) {
// this is just a block, not a scope
console.log(i);

}
}

}
// 0 2 4

Not all { .. } curly-brace pairs create blocks (and thus are
eligible to become scopes):

• Object literals use { .. } curly-brace pairs to delimit
their key-value lists, but such object values are not
scopes.

• class uses { .. } curly-braces around its body defini-
tion, but this is not a block or scope.

• A function uses { .. } around its body, but this is
not technically a block—it’s a single statement for the
function body. It is, however, a (function) scope.

• The { .. } curly-brace pair on a switch statement
(around the set of case clauses) does not define a
block/scope.

Other than such non-block examples, a { .. } curly-brace
pair can define a block attached to a statement (like an if
or for), or stand alone by itself—see the outermost { .. }
curly brace pair in the previous snippet. An explicit block of
this sort—if it has no declarations, it’s not actually a scope—
serves no operational purpose, though it can still be useful as
a semantic signal.

Explicit standalone { .. } blocks have always been valid
JS syntax, but since they couldn’t be a scope prior to ES6’s

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 113

let/const, they are quite rare. However, post ES6, they’re
starting to catch on a little bit.

In most languages that support block scoping, an explicit
block scope is an extremely common pattern for creating a
narrow slice of scope for one or a few variables. So following
the POLE principle, we should embrace this pattern more
widespread in JS as well; use (explicit) block scoping to
narrow the exposure of identifiers to the minimum practical.

An explicit block scope can be useful even inside of another
block (whether the outer block is a scope or not).

For example:

if (somethingHappened) {
// this is a block, but not a scope

{
// this is both a block and an
// explicit scope
let msg = somethingHappened.message();
notifyOthers(msg);

}

// ..

recoverFromSomething();
}

Here, the { .. } curly-brace pair inside the if statement is
an even smaller inner explicit block scope for msg, since that
variable is not needed for the entire if block. Most developers
would just block-scope msg to the if block and move on. And
to be fair, when there’s only a few lines to consider, it’s a toss-
up judgement call. But as code grows, these over-exposure
issues become more pronounced.

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 114

So does it matter enough to add the extra { .. } pair and
indentation level? I think you should follow POLE and always
(within reason!) define the smallest block for each variable. So
I recommend using the extra explicit block scope as shown.

Recall the discussion of TDZ errors from “Uninitialized Vari-
ables (TDZ)” (Chapter 5). My suggestion there was: to min-
imize the risk of TDZ errors with let/const declarations,
always put those declarations at the top of their scope.

If you find yourself placing a let declaration in the middle of
a scope, first think, “Oh, no! TDZ alert!” If this let declaration
isn’t needed in the first half of that block, you should use an
inner explicit block scope to further narrow its exposure!

Another example with an explicit block scope:

function getNextMonthStart(dateStr) {
var nextMonth, year;

{
let curMonth;
[, year, curMonth] = dateStr.match(

/(\d{4})-(\d{2})-\d{2}/
) || [];

nextMonth = (Number(curMonth) % 12) + 1;
}

if (nextMonth == 1) {
year++;

}

return `${ year }-${
String(nextMonth).padStart(2,"0")

}-01`;
}
getNextMonthStart("2019-12-25"); // 2020-01-01

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 115

Let’s first identify the scopes and their identifiers:

1. The outer/global scope has one identifier, the function
getNextMonthStart(..).

2. The function scope for getNextMonthStart(..) has
three: dateStr (parameter), nextMonth, and year.

3. The { .. } curly-brace pair defines an inner block
scope that includes one variable: curMonth.

So why put curMonth in an explicit block scope instead of
just alongside nextMonth and year in the top-level function
scope? Because curMonth is only needed for those first two
statements; at the function scope level it’s over-exposed.

This example is small, so the hazards of over-exposing cur-
Month are pretty limited. But the benefits of the POLE prin-
ciple are best achieved when you adopt the mindset of min-
imizing scope exposure by default, as a habit. If you follow
the principle consistently even in the small cases, it will serve
you more as your programs grow.

Let’s now look at an even more substantial example:

function sortNamesByLength(names) {
var buckets = [];

for (let firstName of names) {
if (buckets[firstName.length] == null) {

buckets[firstName.length] = [];
}
buckets[firstName.length].push(firstName);

}

// a block to narrow the scope
{

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 116

let sortedNames = [];

for (let bucket of buckets) {
if (bucket) {

// sort each bucket alphanumerically
bucket.sort();

// append the sorted names to our
// running list
sortedNames = [

...sortedNames,

...bucket
];

}
}

return sortedNames;
}

}

sortNamesByLength([
"Sally",
"Suzy",
"Frank",
"John",
"Jennifer",
"Scott"

]);
// ["John", "Suzy", "Frank", "Sally",
// "Scott", "Jennifer"]

There are six identifiers declared across five different scopes.
Could all of these variables have existed in the single out-
er/global scope? Technically, yes, since they’re all uniquely
named and thus have no name collisions. But this would be
really poor code organization, and would likely lead to both

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 117

confusion and future bugs.

We split them out into each inner nested scope as appropriate.
Each variable is defined at the innermost scope possible for
the program to operate as desired.

sortedNames could have been defined in the top-level func-
tion scope, but it’s only needed for the second half of this
function. To avoid over-exposing that variable in a higher
level scope, we again follow POLE and block-scope it in the
inner explicit block scope.

var and let

Next, let’s talk about the declaration var buckets. That
variable is used across the entire function (except the final
return statement). Any variable that is needed across all (or
evenmost) of a function should be declared so that such usage
is obvious.

Note
The parameter names isn’t used across the whole
function, but there’s no way limit the scope of
a parameter, so it behaves as a function-wide
declaration regardless.

So why did we use var instead of let to declare the buckets
variable? There’s both semantic and technical reasons to
choose var here.

Stylistically, var has always, from the earliest days of JS,
signaled “variable that belongs to a whole function.” As we
asserted in “Lexical Scope” (Chapter 1), var attaches to the

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 118

nearest enclosing function scope, no matter where it appears.
That’s true even if var appears inside a block:

function diff(x,y) {
if (x > y) {

var tmp = x; // `tmp` is function-scoped
x = y;
y = tmp;

}

return y - x;
}

Even though var is inside a block, its declaration is function-
scoped (to diff(..)), not block-scoped.

While you can declare var inside a block (and still have it be
function-scoped), I would recommend against this approach
except in a few specific cases (discussed in Appendix A).
Otherwise, var should be reserved for use in the top-level
scope of a function.

Why not just use let in that same location? Because var
is visually distinct from let and therefore signals clearly,
“this variable is function-scoped.” Using let in the top-level
scope, especially if not in the first few lines of a function, and
when all the other declarations in blocks use let, does not
visually draw attention to the difference with the function-
scoped declaration.

In other words, I feel var better communicates function-
scoped than let does, and let both communicates (and
achieves!) block-scoping where var is insufficient. As long
as your programs are going to need both function-scoped
and block-scoped variables, the most sensible and readable

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 119

approach is to use both var and let together, each for their
own best purpose.

There are other semantic and operational reasons to choose
var or let in different scenarios. We’ll explore the case for
var and let in more detail in Appendix A.

Warning
My recommendation to use both var and let is
clearly controversial and contradicts the major-
ity. It’s far more common to hear assertions like,
“var is broken, let fixes it” and, “never use var,
let is the replacement.” Those opinions are valid,
but they’re merely opinions, just like mine. var is
not factually broken or deprecated; it has worked
since early JS and it will continue to work as long
as JS is around.

Where To let?

My advice to reserve var for (mostly) only a top-level func-
tion scope means that most other declarations should use let.
But you may still be wondering how to decide where each
declaration in your program belongs?

POLE already guides you on those decisions, but let’s make
sure we explicitly state it. The way to decide is not based on
which keyword you want to use. The way to decide is to ask,
“What is the most minimal scope exposure that’s sufficient
for this variable?”

Once that is answered, you’ll know if a variable belongs in a
block scope or the function scope. If you decide initially that

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 120

a variable should be block-scoped, and later realize it needs to
be elevated to be function-scoped, then that dictates a change
not only in the location of that variable’s declaration, but also
the declarator keyword used. The decision-making process
really should proceed like that.

If a declaration belongs in a block scope, use let. If it belongs
in the function scope, use var (again, just my opinion).

But another way to sort of visualize this decision making is to
consider the pre-ES6 version of a program. For example, let’s
recall diff(..) from earlier:

function diff(x,y) {
var tmp;

if (x > y) {
tmp = x;
x = y;
y = tmp;

}

return y - x;
}

In this version of diff(..), tmp is clearly declared in the
function scope. Is that appropriate for tmp? I would argue, no.
tmp is only needed for those few statements. It’s not needed
for the return statement. It should therefore be block-scoped.

Prior to ES6, we didn’t have let so we couldn’t actually
block-scope it. But we could do the next-best thing in sig-
naling our intent:

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 121

function diff(x,y) {
if (x > y) {

// `tmp` is still function-scoped, but
// the placement here semantically
// signals block-scoping
var tmp = x;
x = y;
y = tmp;

}

return y - x;
}

Placing the var declaration for tmp inside the if statement
signals to the reader of the code that tmp belongs to that block.
Even though JS doesn’t enforce that scoping, the semantic
signal still has benefit for the reader of your code.

Following this perspective, you can find any var that’s inside
a block of this sort and switch it to let to enforce the semantic
signal already being sent. That’s proper usage of let in my
opinion.

Another example that was historically based on var but
which should now pretty much always use let is the for
loop:

for (var i = 0; i < 5; i++) {
// do something

}

Nomatter where such a loop is defined, the i should basically
always be used only inside the loop, in which case POLE
dictates it should be declared with let instead of var:

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 122

for (let i = 0; i < 5; i++) {
// do something

}

Almost the only case where switching a var to a let in
this way would “break” your code is if you were relying on
accessing the loop’s iterator (i) outside/after the loop, such
as:

for (var i = 0; i < 5; i++) {
if (checkValue(i)) {

break;
}

}

if (i < 5) {
console.log("The loop stopped early!");

}

This usage pattern is not terribly uncommon, but most feel
it smells like poor code structure. A preferable approach is to
use another outer-scoped variable for that purpose:

var lastI;

for (let i = 0; i < 5; i++) {
lastI = i;
if (checkValue(i)) {

break;
}

}

if (lastI < 5) {
console.log("The loop stopped early!");

}

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 123

lastI is needed across this whole scope, so it’s declared with
var. i is only needed in (each) loop iteration, so it’s declared
with let.

What’s the Catch?

So far we’ve asserted that var and parameters are func-
tion-scoped, and let/const signal block-scoped declarations.
There’s one little exception to call out: the catch clause.

Since the introduction of try..catch back in ES3 (in 1999),
the catch clause has used an additional (little-known) block-
scoping declaration capability:

try {
doesntExist();

}
catch (err) {

console.log(err);
// ReferenceError: 'doesntExist' is not defined
// ^^^^ message printed from the caught exception

let onlyHere = true;
var outerVariable = true;

}

console.log(outerVariable); // true

console.log(err);
// ReferenceError: 'err' is not defined
// ^^^^ this is another thrown (uncaught) exception

The err variable declared by the catch clause is block-scoped
to that block. This catch clause block can hold other block-
scoped declarations via let. But a var declaration inside this
block still attaches to the outer function/global scope.

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 124

ES2019 (recently, at the time of writing) changed catch
clauses so their declaration is optional; if the declaration is
omitted, the catch block is no longer (by default) a scope; it’s
still a block, though!

So if you need to react to the condition that an exception
occurred (so you can gracefully recover), but you don’t care
about the error value itself, you can omit the catch declara-
tion:

try {
doOptionOne();

}
catch { // catch-declaration omitted

doOptionTwoInstead();
}

This is a small but delightful simplification of syntax for
a fairly common use case, and may also be slightly more
performant in removing an unnecessary scope!

Function Declarations in Blocks
(FiB)

We’ve seen now that declarations using let or const are
block-scoped, and var declarations are function-scoped. So
what about function declarations that appear directly inside
blocks? As a feature, this is called “FiB.”

We typically think of function declarations like they’re the
equivalent of a var declaration. So are they function-scoped
like var is?

No and yes. I know… that’s confusing. Let’s dig in:

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 125

if (false) {
function ask() {

console.log("Does this run?");
}

}
ask();

What do you expect for this program to do? Three reasonable
outcomes:

1. The ask() call might fail with a ReferenceError ex-
ception, because the ask identifier is block-scoped to the
if block scope and thus isn’t available in the outer/-
global scope.

2. The ask() call might fail with a TypeError exception,
because the ask identifier exists, but it’s undefined
(since the if statement doesn’t run) and thus not a
callable function.

3. The ask() call might run correctly, printing out the
“Does it run?” message.

Here’s the confusing part: depending on which JS environ-
ment you try that code snippet in, you may get different
results! This is one of those few crazy areas where existing
legacy behavior betrays a predictable outcome.

The JS specification says that function declarations inside
of blocks are block-scoped, so the answer should be (1). How-
ever, most browser-based JS engines (including v8, which
comes from Chrome but is also used in Node) will behave
as (2), meaning the identifier is scoped outside the if block
but the function value is not automatically initialized, so it
remains undefined.

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 126

Why are browser JS engines allowed to behave contrary to the
specification? Because these engines already had certain be-
haviors around FiB before ES6 introduced block scoping, and
there was concern that changing to adhere to the specification
might break some existing website JS code. As such, an excep-
tion was made in Appendix B of the JS specification, which
allows certain deviations for browser JS engines (only!).

Note
You wouldn’t typically categorize Node as a
browser JS environment, since it usually runs on
a server. But Node’s v8 engine is shared with
Chrome (and Edge) browsers. Since v8 is first
a browser JS engine, it adopts this Appendix B
exception, which then means that the browser
exceptions are extended to Node.

One of the most common use cases for placing a function
declaration in a block is to conditionally define a function one
way or another (like with an if..else statement) depending
on some environment state. For example:

if (typeof Array.isArray != "undefined") {
function isArray(a) {

return Array.isArray(a);
}

}
else {

function isArray(a) {
return Object.prototype.toString.call(a)

== "[object Array]";
}

}

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 127

It’s tempting to structure code this way for performance
reasons, since the typeof Array.isArray check is only
performed once, as opposed to defining just one isArray(..)
and putting the if statement inside it—the check would then
run unnecessarily on every call.

Warning
In addition to the risks of FiB deviations, another
problem with conditional-definition of functions
is it’s harder to debug such a program. If you
end up with a bug in the isArray(..) function,
you first have to figure out which isArray(..)
implementation is actually running! Sometimes,
the bug is that thewrong onewas applied because
the conditional check was incorrect! If you define
multiple versions of a function, that program is
always harder to reason about and maintain.

In addition to the previous snippets, several other FiB corner
cases are lurking; such behaviors in various browsers and
non-browser JS environments (JS engines that aren’t browser
based) will likely vary. For example:

if (true) {
function ask() {

console.log("Am I called?");
}

}

if (true) {
function ask() {

console.log("Or what about me?");
}

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 128

}

for (let i = 0; i < 5; i++) {
function ask() {

console.log("Or is it one of these?");
}

}

ask();

function ask() {
console.log("Wait, maybe, it's this one?");

}

Recall that function hoisting as described in “When Can I Use
a Variable?” (in Chapter 5) might suggest that the final ask()
in this snippet, with “Wait, maybe…” as its message, would
hoist above the call to ask(). Since it’s the last function dec-
laration of that name, it should “win,” right? Unfortunately,
no.

It’s not my intention to document all these weird corner cases,
nor to try to explain why each of them behaves a certain way.
That information is, in my opinion, arcane legacy trivia.

My real concern with FiB is, what advice can I give to ensure
your code behaves predictably in all circumstances?

As far as I’m concerned, the only practical answer to avoiding
the vagaries of FiB is to simply avoid FiB entirely. In other
words, never place a function declaration directly inside any
block. Always place function declarations anywhere in the
top-level scope of a function (or in the global scope).

So for the earlier if..else example, my suggestion is to
avoid conditionally defining functions if at all possible. Yes, it

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 129

may be slightly less performant, but this is the better overall
approach:

function isArray(a) {
if (typeof Array.isArray != "undefined") {

return Array.isArray(a);
}
else {

return Object.prototype.toString.call(a)
== "[object Array]";

}
}

If that performance hit becomes a critical path issue for your
application, I suggest you consider this approach:

var isArray = function isArray(a) {
return Array.isArray(a);

};

// override the definition, if you must
if (typeof Array.isArray == "undefined") {

isArray = function isArray(a) {
return Object.prototype.toString.call(a)

== "[object Array]";
};

}

It’s important to notice that here I’m placing a function
expression, not a declaration, inside the if statement. That’s
perfectly fine and valid, for function expressions to appear
inside blocks. Our discussion about FiB is about avoiding
function declarations in blocks.

Even if you test your program and it works correctly, the small
benefit youmay derive from using FiB style in your code is far

You Don’t Know JS Yet: Scope & Closures

Chapter 6: Limiting Scope Exposure 130

outweighed by the potential risks in the future for confusion
by other developers, or variances in how your code runs in
other JS environments.

FiB is not worth it, and should be avoided.

Blocked Over

The point of lexical scoping rules in a programming language
is so we can appropriately organize our program’s variables,
both for operational as well as semantic code communication
purposes.

And one of themost important organizational techniques is to
ensure that no variable is over-exposed to unnecessary scopes
(POLE). Hopefully you now appreciate block scoping much
more deeply than before.

Hopefully by you now feel like you’re standing on much
more solid ground with understanding lexical scope. From
that base, the next chapter jumps into the weighty topic of
closure.

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 131

Chapter 7: Using
Closures
Up to this point, we’ve focused on the ins and outs of lexical
scope, and how that affects the organization and usage of
variables in our programs.

Our attention again shifts broader in abstraction, to the his-
torically somewhat daunting topic of closure. Don’t worry!
You don’t need an advanced computer science degree to
make sense of it. Our broad goal in this book is not merely
to understand scope, but to more effectively use it in the
structure of our programs; closure is central to that effort.

Recall the main conclusion of Chapter 6: the least exposure
principle (POLE) encourages us to use block (and function)
scoping to limit the scope exposure of variables. This helps
keep code understandable and maintainable, and helps avoid
many scoping pitfalls (i.e., name collision, etc.).

Closure builds on this approach: for variables we need to use
over time, instead of placing them in larger outer scopes, we
can encapsulate (more narrowly scope) them but still preserve
access from inside functions, for broader use. Functions re-
member these referenced scoped variables via closure.

We already saw an example of this kind of closure in the
previous chapter (factorial(..) in Chapter 6), and you’ve
almost certainly already used it in your own programs. If
you’ve ever written a callback that accesses variables outside
its own scope… guess what!? That’s closure.

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 132

Closure is one of the most important language characteristics
ever invented in programming—it underlies major program-
ming paradigms, including Functional Programming (FP),
modules, and even a bit of class-oriented design. Getting com-
fortable with closure is required for mastering JS and effec-
tively leveraging many important design patterns throughout
your code.

Addressing all aspects of closure requires a daunting moun-
tain of discussion and code throughout this chapter. Make
sure to take your time and ensure you’re comfortable with
each bit before moving onto the next.

See the Closure

Closure is originally a mathematical concept, from lambda
calculus. But I’m not going to list out math formulas or use a
bunch of notation and jargon to define it.

Instead, I’m going to focus on a practical perspective. We’ll
start by defining closure in terms of what we can observe in
different behavior of our programs, as opposed to if closure
was not present in JS. However, later in this chapter, we’re
going to flip closure around to look at it from an alternative
perspective.

Closure is a behavior of functions and only functions. If you
aren’t dealing with a function, closure does not apply. An
object cannot have closure, nor does a class have closure
(though its functions/methods might). Only functions have
closure.

For closure to be observed, a function must be invoked,
and specifically it must be invoked in a different branch

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 133

of the scope chain from where it was originally defined. A
function executing in the same scope it was defined would
not exhibit any observably different behavior with or without
closure being possible; by the observational perspective and
definition, that is not closure.

Let’s look at some code, annotated with its relevant scope
bubble colors (see Chapter 2):

// outer/global scope: RED(1)

function lookupStudent(studentID) {
// function scope: BLUE(2)

var students = [
{ id: 14, name: "Kyle" },
{ id: 73, name: "Suzy" },
{ id: 112, name: "Frank" },
{ id: 6, name: "Sarah" }

];

return function greetStudent(greeting){
// function scope: GREEN(3)

var student = students.find(
student => student.id == studentID

);

return `${ greeting }, ${ student.name }!`;
};

}

var chosenStudents = [
lookupStudent(6),
lookupStudent(112)

];

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 134

// accessing the function's name:
chosenStudents[0].name;
// greetStudent

chosenStudents[0]("Hello");
// Hello, Sarah!

chosenStudents[1]("Howdy");
// Howdy, Frank!

The first thing to notice about this code is that the lookup-
Student(..) outer function creates and returns an inner
function called greetStudent(..). lookupStudent(..) is
called twice, producing two separate instances of its inner
greetStudent(..) function, both of which are saved into
the chosenStudents array.

We verify that’s the case by checking the .name property of
the returned function saved in chosenStudents[0], and it’s
indeed an instance of the inner greetStudent(..).

After each call to lookupStudent(..) finishes, it would
seem like all its inner variables would be discarded and GC’d
(garbage collected). The inner function is the only thing that
seems to be returned and preserved. But here’s where the
behavior differs in ways we can start to observe.

While greetStudent(..) does receive a single argument as
the parameter named greeting, it also makes reference to
both students and studentID, identifiers which come from
the enclosing scope of lookupStudent(..). Each of those
references from the inner function to the variable in an outer
scope is called a closure. In academic terms, each instance of
greetStudent(..) closes over the outer variables students
and studentID.

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 135

So what do those closures do here, in a concrete, observable
sense?

Closure allows greetStudent(..) to continue to access
those outer variables even after the outer scope is finished
(when each call to lookupStudent(..) completes). Instead
of the instances of students and studentID being GC’d,
they stay around in memory. At a later time when either
instance of the greetStudent(..) function is invoked, those
variables are still there, holding their current values.

If JS functions did not have closure, the completion of each
lookupStudent(..) call would immediately tear down its
scope and GC the students and studentID variables. When
we later called one of the greetStudent(..) functions, what
would then happen?

If greetStudent(..) tried to access what it thought was
a BLUE(2) marble, but that marble did not actually exist
(anymore), the reasonable assumption is we should get a
ReferenceError, right?

But we don’t get an error. The fact that the execution of
chosenStudents[0]("Hello") works and returns us the
message “Hello, Sarah!”, means it was still able to access
the students and studentID variables. This is a direct
observation of closure!

Pointed Closure

Actually, we glossed over a little detail in the previous discus-
sion which I’m guessing many readers missed!

Because of how terse the syntax for => arrow functions is,
it’s easy to forget that they still create a scope (as asserted

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 136

in “Arrow Functions” in Chapter 3). The student => stu-
dent.id == studentID arrow function is creating another
scope bubble inside the greetStudent(..) function scope.

Building on themetaphor of colored buckets and bubbles from
Chapter 2, if we were creating a colored diagram for this code,
there’s a fourth scope at this innermost nesting level, so we’d
need a fourth color; perhaps we’d pick ORANGE(4) for that
scope:

var student = students.find(
student =>

// function scope: ORANGE(4)
student.id == studentID

);

The BLUE(2) studentID reference is actually inside the OR-
ANGE(4) scope rather than the GREEN(3) scope of greet-
Student(..); also, the student parameter of the arrow
function is ORANGE(4), shadowing the GREEN(3) student.

The consequence here is that this arrow function passed
as a callback to the array’s find(..) method has to hold
the closure over studentID, rather than greetStudent(..)
holding that closure. That’s not too big of a deal, as everything
still works as expected. It’s just important not to skip over the
fact that even tiny arrow functions can get in on the closure
party.

Adding Up Closures

Let’s examine one of the canonical examples often cited for
closure:

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 137

function adder(num1) {
return function addTo(num2){

return num1 + num2;
};

}

var add10To = adder(10);
var add42To = adder(42);

add10To(15); // 25
add42To(9); // 51

Each instance of the inner addTo(..) function is closing over
its own num1 variable (with values 10 and 42, respectively),
so those num1’s don’t go away just because adder(..) fin-
ishes. When we later invoke one of those inner addTo(..)
instances, such as the add10To(15) call, its closed-over num1
variable still exists and still holds the original 10 value. The
operation is thus able to perform 10 + 15 and return the
answer 25.

An important detail might have been too easy to gloss over
in that previous paragraph, so let’s reinforce it: closure is
associatedwith an instance of a function, rather than its single
lexical definition. In the preceding snippet, there’s just one
inner addTo(..) function defined inside adder(..), so it
might seem like that would imply a single closure.

But actually, every time the outer adder(..) function runs,
a new inner addTo(..) function instance is created, and for
each new instance, a new closure. So each inner function
instance (labeled add10To(..) and add42To(..) in our
program) has its own closure over its own instance of the
scope environment from that execution of adder(..).

Even though closure is based on lexical scope, which is

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 138

handled at compile time, closure is observed as a runtime
characteristic of function instances.

Live Link, Not a Snapshot

In both examples from the previous sections, we read the
value from a variable that was held in a closure. That makes
it feel like closuremight be a snapshot of a value at some given
moment. Indeed, that’s a common misconception.

Closure is actually a live link, preserving access to the full
variable itself. We’re not limited to merely reading a value;
the closed-over variable can be updated (re-assigned) as well!
By closing over a variable in a function, we can keep using
that variable (read and write) as long as that function refer-
ence exists in the program, and from anywhere we want to
invoke that function. This is why closure is such a powerful
technique used widely across so many areas of programming!

Figure 4 depicts the function instances and scope links:

Fig. 4: Visualizing Closures

As shown in Figure 4, each call to adder(..) creates a new
BLUE(2) scope containing a num1 variable, as well as a new

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 139

instance of addTo(..) function as a GREEN(3) scope. Notice
that the function instances (addTo10(..) and addTo42(..))
are present in and invoked from the RED(1) scope.

Now let’s examine an example where the closed-over variable
is updated:

function makeCounter() {
var count = 0;

return function getCurrent(){
count = count + 1;
return count;

};
}

var hits = makeCounter();

// later

hits(); // 1

// later

hits(); // 2
hits(); // 3

The count variable is closed over by the inner getCurrent()
function, which keeps it around instead of it being subjected
to GC. The hits() function calls access and update this
variable, returning an incrementing count each time.

Though the enclosing scope of a closure is typically from a
function, that’s not actually required; there only needs to be
an inner function present inside an outer scope:

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 140

var hits;
{ // an outer scope (but not a function)

let count = 0;
hits = function getCurrent(){

count = count + 1;
return count;

};
}
hits(); // 1
hits(); // 2
hits(); // 3

Note
I deliberately defined getCurrent() as a
function expression instead of a function
declaration. This isn’t about closure, but with
the dangerous quirks of FiB (Chapter 6).

Because it’s so common to mistake closure as value-ori-
ented instead of variable-oriented, developers sometimes get
tripped up trying to use closure to snapshot-preserve a value
from some moment in time. Consider:

var studentName = "Frank";

var greeting = function hello() {
// we are closing over `studentName`,
// not "Frank"
console.log(

`Hello, ${ studentName }!`
);

}

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 141

// later

studentName = "Suzy";

// later

greeting();
// Hello, Suzy!

By defining greeting() (aka, hello()) when student-
Name holds the value "Frank" (before the re-assignment to
"Suzy"), the mistaken assumption is often that the closure
will capture "Frank". But greeting() is closed over the
variable studentName, not its value. Whenever greeting()
is invoked, the current value of the variable ("Suzy", in this
case) is reflected.

The classic illustration of this mistake is defining functions
inside a loop:

var keeps = [];

for (var i = 0; i < 3; i++) {
keeps[i] = function keepI(){

// closure over `i`
return i;

};
}

keeps[0](); // 3 -- WHY!?
keeps[1](); // 3
keeps[2](); // 3

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 142

Note
This kind of closure illustration typically uses
a setTimeout(..) or some other callback like
an event handler, inside the loop. I’ve simpli-
fied the example by storing function references
in an array, so that we don’t need to consider
asynchronous timing in our analysis. The closure
principle is the same, regardless.

You might have expected the keeps[0]() invocation to
return 0, since that function was created during the first
iteration of the loop when iwas 0. But again, that assumption
stems from thinking of closure as value-oriented rather than
variable-oriented.

Something about the structure of a for-loop can trick us into
thinking that each iteration gets its own new i variable; in
fact, this program only has one i since it was declared with
var.

Each saved function returns 3, because by the end of the
loop, the single i variable in the program has been assigned
3. Each of the three functions in the keeps array do have
individual closures, but they’re all closed over that same
shared i variable.

Of course, a single variable can only ever hold one value at
any givenmoment. So if youwant to preservemultiple values,
you need a different variable for each.

How could we do that in the loop snippet? Let’s create a new
variable for each iteration:

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 143

var keeps = [];

for (var i = 0; i < 3; i++) {
// new `j` created each iteration, which gets
// a copy of the value of `i` at this moment
let j = i;

// the `i` here isn't being closed over, so
// it's fine to immediately use its current
// value in each loop iteration
keeps[i] = function keepEachJ(){

// close over `j`, not `i`!
return j;

};
}
keeps[0](); // 0
keeps[1](); // 1
keeps[2](); // 2

Each function is now closed over a separate (new) variable
from each iteration, even though all of them are named j. And
each j gets a copy of the value of i at that point in the loop
iteration; that j never gets re-assigned. So all three functions
now return their expected values: 0, 1, and 2!

Again remember, even if we were using asynchrony in this
program, such as passing each inner keepEachJ() function
into setTimeout(..) or some event handler subscription,
the same kind of closure behavior would still be observed.

Recall the “Loops” section in Chapter 5, which illustrates how
a let declaration in a for loop actually creates not just one
variable for the loop, but actually creates a new variable for
each iteration of the loop. That trick/quirk is exactly what we
need for our loop closures:

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 144

var keeps = [];

for (let i = 0; i < 3; i++) {
// the `let i` gives us a new `i` for
// each iteration, automatically!
keeps[i] = function keepEachI(){

return i;
};

}
keeps[0](); // 0
keeps[1](); // 1
keeps[2](); // 2

Since we’re using let, three i’s are created, one for each loop,
so each of the three closures just work as expected.

Common Closures: Ajax and Events

Closure is most commonly encountered with callbacks:

function lookupStudentRecord(studentID) {
ajax(

`https://some.api/student/${ studentID }`,
function onRecord(record) {

console.log(
`${ record.name } (${ studentID })`

);
}

);
}

lookupStudentRecord(114);
// Frank (114)

The onRecord(..) callback is going to be invoked at some
point in the future, after the response from theAjax call comes

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 145

back. This invocation will happen from the internals of the
ajax(..) utility, wherever that comes from. Furthermore,
when that happens, the lookupStudentRecord(..) call will
long since have completed.

Why then is studentID still around and accessible to the
callback? Closure.

Event handlers are another common usage of closure:

function listenForClicks(btn,label) {
btn.addEventListener("click",function onClick(){

console.log(
`The ${ label } button was clicked!`

);
});

}

var submitBtn = document.getElementById("submit-btn");

listenForClicks(submitBtn,"Checkout");

The label parameter is closed over by the onClick(..)
event handler callback.When the button is clicked, label still
exists to be used. This is closure.

What If I Can’t See It?

You’ve probably heard this common adage:

If a tree falls in the forest but nobody is around to
hear it, does it make a sound?

It’s a silly bit of philosophical gymnastics. Of course from a
scientific perspective, sound waves are created. But the real
point: does it matter if the sound happens?

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 146

Remember, the emphasis in our definition of closure is ob-
servability. If a closure exists (in a technical, implementation,
or academic sense) but it cannot be observed in our programs,
does it matter? No.

To reinforce this point, let’s look at some examples that are
not observably based on closure.

For example, invoking a function that makes use of lexical
scope lookup:

function say(myName) {
var greeting = "Hello";
output();

function output() {
console.log(

`${ greeting }, ${ myName }!`
);

}
}

say("Kyle");
// Hello, Kyle!

The inner function output() accesses the variables greet-
ing and myName from its enclosing scope. But the invocation
of output() happens in that same scope, where of course
greeting and myName are still available; that’s just lexical
scope, not closure.

Any lexically scoped language whose functions didn’t sup-
port closure would still behave this same way.

In fact, global scope variables essentially cannot be (observ-
ably) closed over, because they’re always accessible from

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 147

everywhere. No function can ever be invoked in any part of
the scope chain that is not a descendant of the global scope.

Consider:

var students = [
{ id: 14, name: "Kyle" },
{ id: 73, name: "Suzy" },
{ id: 112, name: "Frank" },
{ id: 6, name: "Sarah" }

];

function getFirstStudent() {
return function firstStudent(){

return students[0].name;
};

}

var student = getFirstStudent();

student();
// Kyle

The inner firstStudent() function does reference stu-
dents, which is a variable outside its own scope. But since
students happens to be from the global scope, no matter
where that function is invoked in the program, its ability to
access students is nothing more special than normal lexical
scope.

All function invocations can access global variables, regard-
less of whether closure is supported by the language or not.
Global variables don’t need to be closed over.

Variables that are merely present but never accessed don’t
result in closure:

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 148

function lookupStudent(studentID) {
return function nobody(){

var msg = "Nobody's here yet.";
console.log(msg);

};
}

var student = lookupStudent(112);

student();
// Nobody's here yet.

The inner function nobody() doesn’t close over any outer
variables—it only uses its own variable msg. Even though
studentID is present in the enclosing scope, studentID is
not referred to by nobody(). The JS engine doesn’t need
to keep studentID around after lookupStudent(..) has
finished running, so GC wants to clean up that memory!

Whether JS functions support closure or not, this program
would behave the same. Therefore, no observed closure here.

If there’s no function invocation, closure can’t be observed:

function greetStudent(studentName) {
return function greeting(){

console.log(
`Hello, ${ studentName }!`

);
};

}

greetStudent("Kyle");

// nothing else happens

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 149

This one’s tricky, because the outer function definitely does
get invoked. But the inner function is the one that could have
had closure, and yet it’s never invoked; the returned function
here is just thrown away. So even if technically the JS engine
created closure for a brief moment, it was not observed in any
meaningful way in this program.

A tree may have fallen… but we didn’t hear it, so we don’t
care.

Observable Definition

We’re now ready to define closure:

Closure is observed when a function uses vari-
able(s) from outer scope(s) even while running
in a scope where those variable(s) wouldn’t be
accessible.

The key parts of this definition are:

• Must be a function involved
• Must reference at least one variable from an outer scope
• Must be invoked in a different branch of the scope chain
from the variable(s)

This observation-oriented definition means we shouldn’t dis-
miss closure as some indirect, academic trivia. Instead, we
should look and plan for the direct, concrete effects closure
has on our program behavior.

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 150

The Closure Lifecycle and
Garbage Collection (GC)

Since closure is inherently tied to a function instance, its
closure over a variable lasts as long as there is still a reference
to that function.

If ten functions all close over the same variable, and over
time nine of these function references are discarded, the lone
remaining function reference still preserves that variable.
Once that final function reference is discarded, the last closure
over that variable is gone, and the variable itself is GC’d.

This has an important impact on building efficient and per-
formant programs. Closure can unexpectedly prevent the GC
of a variable that you’re otherwise done with, which leads to
run-awaymemory usage over time. That’s why it’s important
to discard function references (and thus their closures) when
they’re not needed anymore.

Consider:

function manageBtnClickEvents(btn) {
var clickHandlers = [];

return function listener(cb){
if (cb) {

let clickHandler =
function onClick(evt){

console.log("clicked!");
cb(evt);

};
clickHandlers.push(clickHandler);
btn.addEventListener(

"click",

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 151

clickHandler
);

}
else {

// passing no callback unsubscribes
// all click handlers
for (let handler of clickHandlers) {

btn.removeEventListener(
"click",
handler

);
}

clickHandlers = [];
}

};
}

// var mySubmitBtn = ..
var onSubmit = manageBtnClickEvents(mySubmitBtn);

onSubmit(function checkout(evt){
// handle checkout

});

onSubmit(function trackAction(evt){
// log action to analytics

});

// later, unsubscribe all handlers:
onSubmit();

In this program, the inner onClick(..) function holds a
closure over the passed in cb (the provided event callback).
That means the checkout() and trackAction() function
expression references are held via closure (and cannot be

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 152

GC’d) for as long as these event handlers are subscribed.

When we call onSubmit() with no input on the last line,
all event handlers are unsubscribed, and the clickHandlers
array is emptied. Once all click handler function references
are discarded, the closures of cb references to checkout()
and trackAction() are discarded.

When considering the overall health and efficiency of the
program, unsubscribing an event handler when it’s no longer
needed can be even more important than the initial subscrip-
tion!

Per Variable or Per Scope?

Another question we need to tackle: should we think of
closure as applied only to the referenced outer variable(s),
or does closure preserve the entire scope chain with all its
variables?

In other words, in the previous event subscription snippet, is
the inner onClick(..) function closed over only cb, or is it
also closed over clickHandler, clickHandlers, and btn?

Conceptually, closure is per variable rather than per scope.
Ajax callbacks, event handlers, and all other forms of function
closures are typically assumed to close over only what they
explicitly reference.

But the reality is more complicated than that.

Another program to consider:

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 153

function manageStudentGrades(studentRecords) {
var grades = studentRecords.map(getGrade);

return addGrade;

// ************************

function getGrade(record){
return record.grade;

}

function sortAndTrimGradesList() {
// sort by grades, descending
grades.sort(function desc(g1,g2){

return g2 - g1;
});

// only keep the top 10 grades
grades = grades.slice(0,10);

}

function addGrade(newGrade) {
grades.push(newGrade);
sortAndTrimGradesList();
return grades;

}
}

var addNextGrade = manageStudentGrades([
{ id: 14, name: "Kyle", grade: 86 },
{ id: 73, name: "Suzy", grade: 87 },
{ id: 112, name: "Frank", grade: 75 },
// ..many more records..
{ id: 6, name: "Sarah", grade: 91 }

]);

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 154

// later

addNextGrade(81);
addNextGrade(68);
// [.., .., ...]

The outer function manageStudentGrades(..) takes a list
of student records, and returns an addGrade(..) function
reference, which we externally label addNextGrade(..).
Each time we call addNextGrade(..) with a new grade, we
get back a current list of the top 10 grades, sorted numerically
descending (see sortAndTrimGradesList()).

From the end of the original manageStudentGrades(..)
call, and between the multiple addNextGrade(..) calls, the
grades variable is preserved inside addGrade(..) via clo-
sure; that’s how the running list of top grades is maintained.
Remember, it’s a closure over the variable grades itself, not
the array it holds.

That’s not the only closure involved, however. Can you spot
other variables being closed over?

Did you spot that addGrade(..) references sortAndTrim-
GradesList? That means it’s also closed over that identifier,
which happens to hold a reference to the sortAndTrim-
GradesList() function. That second inner function has to
stay around so that addGrade(..) can keep calling it, which
also means any variables it closes over stick around—though,
in this case, nothing extra is closed over there.

What else is closed over?

Consider the getGrade variable (and its function); is it closed
over? It’s referenced in the outer scope of manageStudent-
Grades(..) in the .map(getGrade) call. But it’s not refer-
enced in addGrade(..) or sortAndTrimGradesList().

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 155

What about the (potentially) large list of student records we
pass in as studentRecords? Is that variable closed over? If it
is, the array of student records is never getting GC’d, which
leads to this programholding onto a larger amount ofmemory
than we might assume. But if we look closely again, none of
the inner functions reference studentRecords.

According to the per variable definition of closure, since
getGrade and studentRecords are not referenced by the
inner functions, they’re not closed over. They should be freely
available for GC right after the manageStudentGrades(..)
call completes.

Indeed, try debugging this code in a recent JS engine, like v8
in Chrome, placing a breakpoint inside the addGrade(..)
function. You may notice that the inspector does not list
the studentRecords variable. That’s proof, debugging-wise
anyway, that the engine does not maintain studentRecords
via closure. Phew!

But how reliable is this observation as proof? Consider this
(rather contrived!) program:

function storeStudentInfo(id,name,grade) {
return function getInfo(whichValue){

// warning:
// using `eval(..)` is a bad idea!
var val = eval(whichValue);
return val;

};
}

var info = storeStudentInfo(73,"Suzy",87);

info("name");
// Suzy

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 156

info("grade");
// 87

Notice that the inner function getInfo(..) is not explicitly
closed over any of id, name, or grade variables. And yet, calls
to info(..) seem to still be able to access the variables, albeit
through use of the eval(..) lexical scope cheat (see Chapter
1).

So all the variables were definitely preserved via closure,
despite not being explicitly referenced by the inner function.
So does that disprove the per variable assertion in favor of per
scope? Depends.

Many modern JS engines do apply an optimization that re-
moves any variables from a closure scope that aren’t explicitly
referenced. However, as we see with eval(..), there are
situations where such an optimization cannot be applied, and
the closure scope continues to contain all its original variables.
In other words, closure must be per scope, implementation
wise, and then an optional optimization trims down the scope
to only what was closed over (a similar outcome as per
variable closure).

Even as recent as a few years ago, many JS engines did
not apply this optimization; it’s possible your websites may
still run in such browsers, especially on older or lower-end
devices. That means it’s possible that long-lived closures such
as event handlers may be holding onto memory much longer
than we would have assumed.

And the fact that it’s an optional optimization in the first
place, rather than a requirement of the specification, means
that we shouldn’t just casually over-assume its applicability.

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 157

In cases where a variable holds a large value (like an object
or array) and that variable is present in a closure scope, if you
don’t need that value anymore and don’t want that memory
held, it’s safer (memory usage) to manually discard the value
rather than relying on closure optimization/GC.

Let’s apply a fix to the earlier manageStudentGrades(..)
example to ensure the potentially large array held in studen-
tRecords is not caught up in a closure scope unnecessarily:

function manageStudentGrades(studentRecords) {
var grades = studentRecords.map(getGrade);

// unset `studentRecords` to prevent unwanted
// memory retention in the closure
studentRecords = null;

return addGrade;
// ..

}

We’re not removing studentRecords from the closure scope;
that we cannot control. We’re ensuring that even if stu-
dentRecords remains in the closure scope, that variable is
no longer referencing the potentially large array of data; the
array can be GC’d.

Again, in many cases JS might automatically optimize the
program to the same effect. But it’s still a good habit to be
careful and explicitly make sure we don’t keep any significant
amount of device memory tied up any longer than necessary.

As a matter of fact, we also technically don’t need the
function getGrade() anymore after the .map(getGrade)
call completes. If profiling our application showed this was

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 158

a critical area of excess memory use, we could possibly eek
out a tiny bit more memory by freeing up that reference so
its value isn’t tied up either. That’s likely unnecessary in this
toy example, but this is a general technique to keep in mind if
you’re optimizing the memory footprint of your application.

The takeaway: it’s important to know where closures appear
in our programs, and what variables are included. We should
manage these closures carefully so we’re only holding onto
what’s minimally needed and not wasting memory.

An Alternative Perspective

Reviewing our working definition for closure, the assertion
is that functions are “first-class values” that can be passed
around the program, just like any other value. Closure is the
link-association that connects that function to the scope/vari-
ables outside of itself, no matter where that function goes.

Let’s recall a code example from earlier in this chapter, again
with relevant scope bubble colors annotated:

// outer/global scope: RED(1)

function adder(num1) {
// function scope: BLUE(2)

return function addTo(num2){
// function scope: GREEN(3)

return num1 + num2;
};

}

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 159

var add10To = adder(10);
var add42To = adder(42);

add10To(15); // 25
add42To(9); // 51

Our current perspective suggests that wherever a function is
passed and invoked, closure preserves a hidden link back to
the original scope to facilitate the access to the closed-over
variables. Figure 4, repeated here for convenience, illustrates
this notion:

Fig. 4 (repeat): Visualizing Closures

But there’s another way of thinking about closure, and more
precisely the nature of functions being passed around, that
may help deepen the mental models.

This alternative model de-emphasizes “functions as first-class
values,” and instead embraces how functions (like all non-
primitive values) are held by reference in JS, and assigned/-
passed by reference-copy—see Appendix A of the Get Started
book for more information.

Instead of thinking about the inner function instance of

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 160

addTo(..)moving to the outer RED(1) scope via the return
and assignment, we can envision that function instances
actually just stay in place in their own scope environment,
of course with their scope-chain intact.

What gets sent to the RED(1) scope is just a reference to the
in-place function instance, rather than the function instance
itself. Figure 5 depicts the inner function instances remaining
in place, pointed to by the RED(1) addTo10 and addTo42
references, respectively:

Fig. 5: Visualizing Closures (Alternative)

As shown in Figure 5, each call to adder(..) still creates a
new BLUE(2) scope containing a num1 variable, as well as
an instance of the GREEN(3) addTo(..) scope. But what’s
different from Figure 4 is, now these GREEN(3) instances
remain in place, naturally nested inside of their BLUE(2)
scope instances. The addTo10 and addTo42 references are

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 161

moved to the RED(1) outer scope, not the function instances
themselves.

When addTo10(15) is called, the addTo(..) function in-
stance (still in place in its original BLUE(2) scope environ-
ment) is invoked. Since the function instance itself never
moved, of course it still has natural access to its scope chain.
Same with the addTo42(9) call—nothing special here beyond
lexical scope.

So what then is closure, if not the magic that lets a function
maintain a link to its original scope chain even as that func-
tion moves around in other scopes? In this alternative model,
functions stay in place and keep accessing their original scope
chain just like they always could.

Closure instead describes themagic of keeping alive a func-
tion instance, along with its whole scope environment and
chain, for as long as there’s at least one reference to that
function instance floating around in any other part of the
program.

That definition of closure is less observational and a bit less
familiar-sounding compared to the traditional academic per-
spective. But it’s nonetheless still useful, because the benefit
is that we simplify explanation of closure to a straightforward
combination of references and in-place function instances.

The previous model (Figure 4) is not wrong at describing
closure in JS. It’s just more conceptually inspired, an academic
perspective on closure. By contrast, the alternative model
(Figure 5) could be described as a bit more implementation
focused, how JS actually works.

Both perspectives/models are useful in understanding closure,
but the reader may find one a little easier to hold than the

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 162

other. Whichever you choose, the observable outcomes in our
program are the same.

Note
This alternative model for closure does affect
whether we classify synchronous callbacks as
examples of closure or not. More on this nuance
in Appendix A.

Why Closure?

Now that we have a well-rounded sense of what closure is
and how it works, let’s explore some ways it can improve the
code structure and organization of an example program.

Imagine you have a button on a page that when clicked,
should retrieve and send some data via an Ajax request.
Without using closure:

var APIendpoints = {
studentIDs:

"https://some.api/register-students",
// ..

};

var data = {
studentIDs: [14, 73, 112, 6],
// ..

};

function makeRequest(evt) {
var btn = evt.target;

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 163

var recordKind = btn.dataset.kind;
ajax(

APIendpoints[recordKind],
data[recordKind]

);
}

// <button data-kind="studentIDs">
// Register Students
// </button>
btn.addEventListener("click",makeRequest);

The makeRequest(..) utility only receives an evt object
from a click event. From there, it has to retrieve the data-
kind attribute from the target button element, and use that
value to lookup both a URL for the API endpoint as well as
what data should be included in the Ajax request.

This works OK, but it’s unfortunate (inefficient, more confus-
ing) that the event handler has to read a DOM attribute each
time it’s fired. Why couldn’t an event handler remember this
value? Let’s try using closure to improve the code:

var APIendpoints = {
studentIDs:

"https://some.api/register-students",
// ..

};

var data = {
studentIDs: [14, 73, 112, 6],
// ..

};

function setupButtonHandler(btn) {
var recordKind = btn.dataset.kind;

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 164

btn.addEventListener(
"click",
function makeRequest(evt){

ajax(
APIendpoints[recordKind],
data[recordKind]

);
}

);
}

// <button data-kind="studentIDs">
// Register Students
// </button>

setupButtonHandler(btn);

With the setupButtonHandler(..) approach, the data-
kind attribute is retrieved once and assigned to the record-
Kind variable at initial setup. recordKind is then closed over
by the inner makeRequest(..) click handler, and its value is
used on each event firing to look up the URL and data that
should be sent.

Note
evt is still passed to makeRequest(..), though
in this case we’re not using it anymore. It’s still
listed, for consistency with the previous snippet.

By placing recordKind inside setupButtonHandler(..),
we limit the scope exposure of that variable to a more appro-
priate subset of the program; storing it globally would have
been worse for code organization and readability. Closure lets

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 165

the inner makeRequest() function instance remember this
variable and access whenever it’s needed.

Building on this pattern, we could have looked up both the
URL and data once, at setup:

function setupButtonHandler(btn) {
var recordKind = btn.dataset.kind;
var requestURL = APIendpoints[recordKind];
var requestData = data[recordKind];

btn.addEventListener(
"click",
function makeRequest(evt){

ajax(requestURL,requestData);
}

);
}

Now makeRequest(..) is closed over requestURL and re-
questData, which is a little bit cleaner to understand, and
also slightly more performant.

Two similar techniques from the Functional Programming
(FP) paradigm that rely on closure are partial application and
currying. Briefly, with these techniques, we alter the shape
of functions that require multiple inputs so some inputs are
provided up front, and other inputs are provided later; the
initial inputs are remembered via closure. Once all inputs
have been provided, the underlying action is performed.

By creating a function instance that encapsulates some in-
formation inside (via closure), the function-with-stored-in-
formation can later be used directly without needing to re-
provide that input. This makes that part of the code cleaner,

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 166

and also offers the opportunity to label partially applied
functions with better semantic names.

Adapting partial application, we can further improve the
preceding code:

function defineHandler(requestURL,requestData) {
return function makeRequest(evt){

ajax(requestURL,requestData);
};

}

function setupButtonHandler(btn) {
var recordKind = btn.dataset.kind;
var handler = defineHandler(

APIendpoints[recordKind],
data[recordKind]

);
btn.addEventListener("click",handler);

}

The requestURL and requestData inputs are provided ahead
of time, resulting in the makeRequest(..) partially applied
function, which we locally label handler. When the event
eventually fires, the final input (evt, even though it’s ignored)
is passed to handler(), completing its inputs and triggering
the underlying Ajax request.

Behavior-wise, this program is pretty similar to the pre-
vious one, with the same type of closure. But by isolat-
ing the creation of makeRequest(..) in a separate util-
ity (defineHandler(..)), we make that definition more
reusable across the program. We also explicitly limit the
closure scope to only the two variables needed.

You Don’t Know JS Yet: Scope & Closures

Chapter 7: Using Closures 167

Closer to Closure

As we close down a dense chapter, take some deep breaths let
it all sink in. Seriously, that’s a lot of information for anyone
to consume!

We explored two models for mentally tackling closure:

• Observational: closure is a function instance remember-
ing its outer variables even as that function is passed to
and invoked in other scopes.

• Implementational: closure is a function instance and its
scope environment preserved in-place while any refer-
ences to it are passed around and invoked from other
scopes.

Summarizing the benefits to our programs:

• Closure can improve efficiency by allowing a function
instance to remember previously determined informa-
tion instead of having to compute it each time.

• Closure can improve code readability, bounding scope-
exposure by encapsulating variable(s) inside function
instances, while still making sure the information in
those variables is accessible for future use. The resul-
tant narrower, more specialized function instances are
cleaner to interact with, since the preserved information
doesn’t need to be passed in every invocation.

Before you move on, take some time to restate this summary
in your own words, explaining what closure is and why it’s
helpful in your programs. The main book text concludes with
a final chapter that builds on top of closure with the module
pattern.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 168

Chapter 8: The Module
Pattern
In this chapter, we wrap up the main text of the book by ex-
ploring one of the most important code organization patterns
in all of programming: the module. As we’ll see, modules are
inherently built from what we’ve already covered: the payoff
for your efforts in learning lexical scope and closure.

We’ve examined every angle of lexical scope, from the breadth
of the global scope down through nested block scopes, into the
intricacies of the variable lifecycle. Then we leveraged lexical
scope to understand the full power of closure.

Take a moment to reflect on how far you’ve come in this
journey so far; you’ve taken big steps in getting to know JS
more deeply!

The central theme of this book has been that understanding
andmastering scope and closure is key in properly structuring
and organizing our code, especially the decisions on where to
store information in variables.

Our goal in this final chapter is to appreciate how mod-
ules embody the importance of these topics, elevating them
from abstract concepts to concrete, practical improvements
in building programs.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 169

Encapsulation and Least
Exposure (POLE)

Encapsulation is often cited as a principle of object-oriented
(OO) programming, but it’s more fundamental and broadly
applicable than that. The goal of encapsulation is the bundling
or co-location of information (data) and behavior (functions)
that together serve a common purpose.

Independent of any syntax or code mechanisms, the spirit
of encapsulation can be realized in something as simple as
using separate files to hold bits of the overall program with
common purpose. If we bundle everything that powers a list
of search results into a single file called “search-list.js”, we’re
encapsulating that part of the program.

The recent trend in modern front-end programming to orga-
nize applications around Component architecture pushes en-
capsulation even further. For many, it feels natural to consol-
idate everything that constitutes the search results list—even
beyond code, including presentational markup and styling—
into a single unit of program logic, something tangible we
can interact with. And then we label that collection the
“SearchList” component.

Another key goal is the control of visibility of certain as-
pects of the encapsulated data and functionality. Recall from
Chapter 6 the least exposure principle (POLE), which seeks
to defensively guard against various dangers of scope over-
exposure; these affect both variables and functions. In JS, we
most often implement visibility control through the mechan-
ics of lexical scope.

The idea is to group alike program bits together, and selec-

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 170

tively limit programmatic access to the parts we consider
private details. What’s not considered private is then marked
as public, accessible to the whole program.

The natural effect of this effort is better code organization. It’s
easier to build and maintain software when we know where
things are, with clear and obvious boundaries and connection
points. It’s also easier to maintain quality if we avoid the
pitfalls of over-exposed data and functionality.

These are some of themain benefits of organizing JS programs
into modules.

What Is a Module?

A module is a collection of related data and functions (often
referred to as methods in this context), characterized by a
division between hidden private details and public accessible
details, usually called the “public API.”

A module is also stateful: it maintains some information
over time, along with functionality to access and update that
information.

Note
A broader concern of the module pattern is fully
embracing system-level modularization through
loose-coupling and other program architecture
techniques. That’s a complex topic well beyond
the bounds of our discussion, but is worth further
study beyond this book.

To get a better sense of what a module is, let’s compare some

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 171

module characteristics to useful code patterns that aren’t
quite modules.

Namespaces (Stateless Grouping)

If you group a set of related functions together, without
data, then you don’t really have the expected encapsulation a
module implies. The better term for this grouping of stateless
functions is a namespace:

// namespace, not module
var Utils = {

cancelEvt(evt) {
evt.preventDefault();
evt.stopPropagation();
evt.stopImmediatePropagation();

},
wait(ms) {

return new Promise(function c(res){
setTimeout(res,ms);

});
},
isValidEmail(email) {

return /[^@]+@[^@.]+\.[^@.]+/.test(email);
}

};

Utils here is a useful collection of utilities, yet they’re
all state-independent functions. Gathering functionality to-
gether is generally good practice, but that doesn’t make this
a module. Rather, we’ve defined a Utils namespace and
organized the functions under it.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 172

Data Structures (Stateful Grouping)

Even if you bundle data and stateful functions together, if
you’re not limiting the visibility of any of it, then you’re
stopping short of the POLE aspect of encapsulation; it’s not
particularly helpful to label that a module.

Consider:

// data structure, not module
var Student = {

records: [
{ id: 14, name: "Kyle", grade: 86 },
{ id: 73, name: "Suzy", grade: 87 },
{ id: 112, name: "Frank", grade: 75 },
{ id: 6, name: "Sarah", grade: 91 }

],
getName(studentID) {

var student = this.records.find(
student => student.id == studentID

);
return student.name;

}
};

Student.getName(73);
// Suzy

Since records is publicly accessible data, not hidden behind
a public API, Student here isn’t really a module.

Student does have the data-and-functionality aspect of en-
capsulation, but not the visibility-control aspect. It’s best to
label this an instance of a data structure.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 173

Modules (Stateful Access Control)

To embody the full spirit of the module pattern, we not
only need grouping and state, but also access control through
visibility (private vs. public).

Let’s turn Student from the previous section into a module.
We’ll start with a form I call the “classic module,” which was
originally referred to as the “revealing module” when it first
emerged in the early 2000s. Consider:

var Student = (function defineStudent(){
var records = [

{ id: 14, name: "Kyle", grade: 86 },
{ id: 73, name: "Suzy", grade: 87 },
{ id: 112, name: "Frank", grade: 75 },
{ id: 6, name: "Sarah", grade: 91 }

];

var publicAPI = {
getName

};

return publicAPI;

// ************************

function getName(studentID) {
var student = records.find(

student => student.id == studentID
);
return student.name;

}
})();

Student.getName(73); // Suzy

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 174

Student is now an instance of a module. It features a public
API with a single method: getName(..). This method is able
to access the private hidden records data.

Warning
I should point out that the explicit student data
being hard-coded into this module definition is
just for our illustration purposes. A typical mod-
ule in your programwill receive this data from an
outside source, typically loaded from databases,
JSON data files, Ajax calls, etc. The data is
then injected into the module instance typically
through method(s) on the module’s public API.

How does the classic module format work?

Notice that the instance of the module is created by the
defineStudent() IIFE being executed. This IIFE returns an
object (named publicAPI) that has a property on it referenc-
ing the inner getName(..) function.

Naming the object publicAPI is stylistic preference on my
part. The object can be named whatever you like (JS doesn’t
care), or you can just return an object directly without assign-
ing it to any internal named variable. More on this choice in
Appendix A.

From the outside, Student.getName(..) invokes this ex-
posed inner function, which maintains access to the inner
records variable via closure.

You don’t have to return an object with a function as one of its
properties. You could just return a function directly, in place
of the object. That still satisfies all the core bits of a classic
module.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 175

By virtue of how lexical scope works, defining variables and
functions inside your outer module definition function makes
everything by default private. Only properties added to the
public API object returned from the function will be exported
for external public use.

The use of an IIFE implies that our program only ever needs a
single central instance of themodule, commonly referred to as
a “singleton.” Indeed, this specific example is simple enough
that there’s no obvious reason we’d need anything more than
just one instance of the Student module.

Module Factory (Multiple Instances)

But if we did want to define a module that supported multiple
instances in our program, we can slightly tweak the code:

// factory function, not singleton IIFE
function defineStudent() {

var records = [
{ id: 14, name: "Kyle", grade: 86 },
{ id: 73, name: "Suzy", grade: 87 },
{ id: 112, name: "Frank", grade: 75 },
{ id: 6, name: "Sarah", grade: 91 }

];

var publicAPI = {
getName

};

return publicAPI;

// ************************

function getName(studentID) {

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 176

var student = records.find(
student => student.id == studentID

);
return student.name;

}
}

var fullTime = defineStudent();
fullTime.getName(73); // Suzy

Rather than specifying defineStudent() as an IIFE, we just
define it as a normal standalone function, which is commonly
referred to in this context as a “module factory” function.

We then call the module factory, producing an instance of the
module that we label fullTime. This module instance implies
a new instance of the inner scope, and thus a new closure that
getName(..) holds over records. fullTime.getName(..)
now invokes the method on that specific instance.

Classic Module Definition

So to clarify what makes something a classic module:

• There must be an outer scope, typically from a module
factory function running at least once.

• The module’s inner scope must have at least one piece of
hidden information that represents state for the module.

• The module must return on its public API a reference
to at least one function that has closure over the hidden
module state (so that this state is actually preserved).

You’ll likely run across other variations on this classic module
approach, which we’ll look at in more detail in Appendix A.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 177

Node CommonJS Modules

In Chapter 4, we introduced the CommonJS module format
used by Node. Unlike the classic module format described
earlier, where you could bundle the module factory or IIFE
alongside any other code including other modules, Com-
monJS modules are file-based; one module per file.

Let’s tweak our module example to adhere to that format:

module.exports.getName = getName;

// ************************

var records = [
{ id: 14, name: "Kyle", grade: 86 },
{ id: 73, name: "Suzy", grade: 87 },
{ id: 112, name: "Frank", grade: 75 },
{ id: 6, name: "Sarah", grade: 91 }

];

function getName(studentID) {
var student = records.find(

student => student.id == studentID
);
return student.name;

}

The records and getName identifiers are in the top-level
scope of this module, but that’s not the global scope (as
explained in Chapter 4). As such, everything here is by default
private to the module.

To expose something on the public API of a CommonJS
module, you add a property to the empty object provided

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 178

as module.exports. In some older legacy code, you may
run across references to just a bare exports, but for code
clarity you should always fully qualify that reference with
the module. prefix.

For style purposes, I like to put my “exports” at the top andmy
module implementation at the bottom. But these exports can
be placed anywhere. I strongly recommend collecting them
all together, either at the top or bottom of your file.

Some developers have the habit of replacing the default
exports object, like this:

// defining a new object for the API
module.exports = {

// ..exports..
};

There are some quirks with this approach, including unex-
pected behavior if multiple such modules circularly depend
on each other. As such, I recommend against replacing the
object. If you want to assign multiple exports at once, using
object literal style definition, you can do this instead:

Object.assign(module.exports,{
// .. exports ..

});

What’s happening here is defining the { .. } object lit-
eral with your module’s public API specified, and then Ob-
ject.assign(..) is performing a shallow copy of all those
properties onto the existing module.exports object, instead
of replacing it This is a nice balance of convenience and safer
module behavior.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 179

To include another module instance into your module/pro-
gram, use Node’s require(..)method. Assuming this mod-
ule is located at “/path/to/student.js”, this is how we can
access it:

var Student = require("/path/to/student.js");

Student.getName(73);
// Suzy

Student now references the public API of our example
module.

CommonJS modules behave as singleton instances, similar to
the IIFE module definition style presented before. No matter
howmany times you require(..) the samemodule, you just
get additional references to the single sharedmodule instance.

require(..) is an all-or-nothing mechanism; it includes a
reference of the entire exposed public API of the module. To
effectively access only part of the API, the typical approach
looks like this:

var getName = require("/path/to/student.js").getName;

// or alternately:

var { getName } = require("/path/to/student.js");

Similar to the classic module format, the publicly exported
methods of a CommonJS module’s API hold closures over
the internal module details. That’s how the module singleton
state is maintained across the lifetime of your program.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 180

Note
In Node require("student") statements, non-
absolute paths ("student") assume a “.js” file
extension and search “node_modules”.

Modern ES Modules (ESM)

The ESM format shares several similarities with the Com-
monJS format. ESM is file-based, and module instances are
singletons, with everything private by default. One notable
difference is that ESM files are assumed to be strict-mode,
without needing a "use strict" pragma at the top. There’s
no way to define an ESM as non-strict-mode.

Instead of module.exports in CommonJS, ESM uses an
export keyword to expose something on the public API of
the module. The import keyword replaces the require(..)
statement. Let’s adjust “students.js” to use the ESM format:

export { getName };

// ************************

var records = [
{ id: 14, name: "Kyle", grade: 86 },
{ id: 73, name: "Suzy", grade: 87 },
{ id: 112, name: "Frank", grade: 75 },
{ id: 6, name: "Sarah", grade: 91 }

];

function getName(studentID) {
var student = records.find(

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 181

student => student.id == studentID
);
return student.name;

}

The only change here is the export { getName } statement.
As before, export statements can appear anywhere through-
out the file, though export must be at the top-level scope; it
cannot be inside any other block or function.

ESM offers a fair bit of variation on how the export state-
ments can be specified. For example:

export function getName(studentID) {
// ..

}

Even though export appears before the function keyword
here, this form is still a function declaration that also hap-
pens to be exported. That is, the getName identifier is function
hoisted (see Chapter 5), so it’s available throughout the whole
scope of the module.

Another allowed variation:

export default function getName(studentID) {
// ..

}

This is a so-called “default export,” which has different se-
mantics from other exports. In essence, a “default export” is
a shorthand for consumers of the module when they import,
giving them a terser syntax when they only need this single
default API member.

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 182

Non-default exports are referred to as “named exports.”

The import keyword—like export, it must be used only at
the top level of an ESM outside of any blocks or functions—
also has a number of variations in syntax. The first is referred
to as “named import”:

import { getName } from "/path/to/students.js";

getName(73); // Suzy

As you can see, this form imports only the specifically named
public API members from a module (skipping anything not
named explicitly), and it adds those identifiers to the top-level
scope of the current module. This type of import is a familiar
style to those used to package imports in languages like Java.

Multiple API members can be listed inside the { .. } set,
separated with commas. A named import can also be renamed
with the as keyword:

import { getName as getStudentName }
from "/path/to/students.js";

getStudentName(73); // Suzy

If getName is a “default export” of the module, we can import
it like this:

import getName from "/path/to/students.js";

getName(73); // Suzy

The only difference here is dropping the { } around the
import binding. If youwant tomix a default import with other
named imports:

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 183

import { default as getName, /* .. others .. */ }
from "/path/to/students.js";

getName(73); // Suzy

By contrast, the other major variation on import is called
“namespace import”:

import * as Student from "/path/to/students.js";

Student.getName(73); // Suzy

As is likely obvious, the * imports everything exported to
the API, default and named, and stores it all under the single
namespace identifier as specified. This approach most closely
matches the form of classic modules for most of JS’s history.

Note
As of the time of this writing, modern browsers
have supported ESM for a few years now, but
Node’s stable’ish support for ESM is fairly re-
cent, and has been evolving for quite a while.
The evolution is likely to continue for an-
other year or more; the introduction of ESM
to JS back in ES6 created a number of chal-
lenging compatibility concerns for Node’s in-
terop with CommonJS modules. Consult Node’s
ESM documentation for all the latest details:
https://nodejs.org/api/esm.html

You Don’t Know JS Yet: Scope & Closures

Chapter 8: The Module Pattern 184

Exit Scope

Whether you use the classic module format (browser or
Node), CommonJS format (in Node), or ESM format (browser
or Node), modules are one of the most effective ways to
structure and organize your program’s functionality and data.

The module pattern is the conclusion of our journey in this
book of learning how we can use the rules of lexical scope
to place variables and functions in proper locations. POLE
is the defensive private by default posture we always take,
making sure we avoid over-exposure and interact only with
the minimal public API surface area necessary.

And underneath modules, the magic of how all our module
state is maintained is closures leveraging the lexical scope
system.

That’s it for the main text. Congratulations on quite a journey
so far! As I’ve said numerous times throughout, it’s a really
good idea to pause, reflect, and practice what we’ve just
discussed.

When you’re comfortable and ready, check out the appen-
dices, which dig deeper into some of the corners of these
topics, and also challenge you with some practice exercises
to solidify what you’ve learned.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 185

Appendix A: Exploring
Further
We will now explore a number of nuances and edges around
many of the topics covered in the main text of this book. This
appendix is optional, supporting material.

Some people find diving too deeply into the nuanced cor-
ner cases and varying opinions creates nothing but noise
and distraction—supposedly, developers are better served by
sticking to the commonly-tread paths. My approach has been
criticized as being impractical and counterproductive. I un-
derstand and appreciate that perspective, even if I don’t
necessarily share it.

I believe it’s better to be empowered by knowledge of how
things work than to just gloss over details with assumptions
and lack of curiosity. Ultimately, you will encounter situa-
tions where something bubbles up from a piece you hadn’t
explored. In other words, you won’t get to spend all your
time riding on the smooth happy path. Wouldn’t you rather
be prepared for the inevitable bumps of off-roading?

These discussions will also be more heavily influenced by
my opinions than the main text was, so keep that in mind as
you consume and consider what is presented. This appendix
is a bit like a collection of mini-blog posts that elaborate on
various book topics. It’s long and deep in the weeds, so take
your time and don’t rush through everything here.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 186

Implied Scopes

Scopes are sometimes created in non-obvious places. In prac-
tice, these implied scopes don’t often impact your program
behavior, but it’s still useful to know they’re happening. Keep
an eye out for the following surprising scopes:

• Parameter scope
• Function name scope

Parameter Scope

The conversation metaphor in Chapter 2 implies that function
parameters are basically the same as locally declared variables
in the function scope. But that’s not always true.

Consider:

// outer/global scope: RED(1)

function getStudentName(studentID) {
// function scope: BLUE(2)

// ..
}

Here, studentID is a considered a “simple” parameter, so it
does behave as a member of the BLUE(2) function scope. But
if we change it to be a non-simple parameter, that’s no longer
technically the case. Parameter forms considered non-simple
include parameters with default values, rest parameters (us-
ing ...), and destructured parameters.

Consider:

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 187

// outer/global scope: RED(1)

function getStudentName(/*BLUE(2)*/ studentID = 0) {
// function scope: GREEN(3)

// ..
}

Here, the parameter list essentially becomes its own scope,
and the function’s scope is then nested inside that scope.

Why?What difference does it make? The non-simple parame-
ter forms introduce various corner cases, so the parameter list
becomes its own scope to more effectively deal with them.

Consider:

function getStudentName(studentID = maxID, maxID) {
// ..

}

Assuming left-to-right operations, the default = maxID for
the studentID parameter requires a maxID to already exist
(and to have been initialized). This code produces a TDZ
error (Chapter 5). The reason is that maxID is declared in the
parameter scope, but it’s not yet been initialized because of
the order of parameters. If the parameter order is flipped, no
TDZ error occurs:

function getStudentName(maxID,studentID = maxID) {
// ..

}

The complication gets even more in the weeds if we introduce
a function expression into the default parameter position,

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 188

which then can create its own closure (Chapter 7) over
parameters in this implied parameter scope:

function whatsTheDealHere(id,defaultID = () => id) {
id = 5;
console.log(defaultID());

}

whatsTheDealHere(3);
// 5

That snippet probablymakes sense, because the defaultID()
arrow function closes over the id parameter/variable, which
we then re-assign to 5. But now let’s introduce a shadowing
definition of id in the function scope:

function whatsTheDealHere(id,defaultID = () => id) {
var id = 5;
console.log(defaultID());

}

whatsTheDealHere(3);
// 3

Uh oh! The var id = 5 is shadowing the id parameter,
but the closure of the defaultID() function is over the
parameter, not the shadowing variable in the function body.
This proves there’s a scope bubble around the parameter list.

But it gets even crazier than that!

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 189

function whatsTheDealHere(id,defaultID = () => id) {
var id;

console.log(`local variable 'id': ${ id }`);
console.log(

`parameter 'id' (closure): ${ defaultID() }`
);

console.log("reassigning 'id' to 5");
id = 5;

console.log(`local variable 'id': ${ id }`);
console.log(

`parameter 'id' (closure): ${ defaultID() }`
);

}

whatsTheDealHere(3);
// local variable 'id': 3 <--- Huh!? Weird!
// parameter 'id' (closure): 3
// reassigning 'id' to 5
// local variable 'id': 5
// parameter 'id' (closure): 3

The strange bit here is the first console message. At that mo-
ment, the shadowing id local variable has just been var id
declared, which Chapter 5 asserts is typically auto-initialized
to undefined at the top of its scope. Why doesn’t it print
undefined?

In this specific corner case (for legacy compat reasons), JS
doesn’t auto-initialize id to undefined, but rather to the
value of the id parameter (3)!

Though the two ids look at that moment like they’re one vari-
able, they’re actually still separate (and in separate scopes).

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 190

The id = 5 assignment makes the divergence observable,
where the id parameter stays 3 and the local variable becomes
5.

My advice to avoid getting bitten by these weird nuances:

• Never shadow parameters with local variables
• Avoid using a default parameter function that closes
over any of the parameters

At least now you’re aware and can be careful about the fact
that the parameter list is its own scope if any of the parameters
are non-simple.

Function Name Scope

In the “Function Name Scope” section in Chapter 3, I asserted
that the name of a function expression is added to the func-
tion’s own scope. Recall:

var askQuestion = function ofTheTeacher(){
// ..

};

It’s true that ofTheTeacher is not added to the enclosing
scope (where askQuestion is declared), but it’s also not just
added to the scope of the function, the way you’re likely
assuming. It’s another strange corner case of implied scope.

The name identifier of a function expression is in its own
implied scope, nested between the outer enclosing scope and
the main inner function scope.

If ofTheTeacher was in the function’s scope, we’d expect an
error here:

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 191

var askQuestion = function ofTheTeacher(){
// why is this not a duplicate declaration error?
let ofTheTeacher = "Confused, yet?";

};

The let declaration form does not allow re-declaration (see
Chapter 5). But this is perfectly legal shadowing, not re-
declaration, because the two ofTheTeacher identifiers are in
separate scopes.

You’ll rarely run into any case where the scope of a function’s
name identifier matters. But again, it’s good to know how
these mechanisms actually work. To avoid being bitten, never
shadow function name identifiers.

Anonymous vs. Named Functions

As discussed in Chapter 3, functions can be expressed either
in named or anonymous form. It’s vastly more common to
use the anonymous form, but is that a good idea?

As you contemplate naming your functions, consider:

• Name inference is incomplete
• Lexical names allow self-reference
• Names are useful descriptions
• Arrow functions have no lexical names
• IIFEs also need names

Explicit or Inferred Names?

Every function in your program has a purpose. If it doesn’t
have a purpose, take it out, because you’re just wasting space.
If it does have a purpose, there is a name for that purpose.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 192

So far many readers likely agree with me. But does that mean
we should always put that name into the code? Here’s where
I’ll raise more than a few eyebrows. I say, unequivocally, yes!

First of all, “anonymous” showing up in stack traces is just
not all that helpful to debugging:

btn.addEventListener("click",function(){
setTimeout(function(){

["a",42].map(function(v){
console.log(v.toUpperCase());

});
},100);

});
// Uncaught TypeError: v.toUpperCase is not a function
// at myProgram.js:4
// at Array.map (<anonymous>)
// at myProgram.js:3

Ugh. Compare to what is reported if I give the functions
names:

btn.addEventListener("click",function onClick(){
setTimeout(function waitAMoment(){

["a",42].map(function allUpper(v){
console.log(v.toUpperCase());

});
},100);

});
// Uncaught TypeError: v.toUpperCase is not a function
// at allUpper (myProgram.js:4)
// at Array.map (<anonymous>)
// at waitAMoment (myProgram.js:3)

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 193

See how waitAMoment and allUpper names appear and give
the stack trace more useful information/context for debug-
ging? The program is more debuggable if we use reasonable
names for all our functions.

Note
The unfortunate “<anonymous>” that still shows
up refers to the fact that the implementation of
Array.map(..) isn’t present in our program, but
is built into the JS engine. It’s not from any con-
fusion our program introduces with readability
shortcuts.

By the way, let’s make sure we’re on the same page about
what a named function is:

function thisIsNamed() {
// ..

}

ajax("some.url",function thisIsAlsoNamed(){
// ..

});

var notNamed = function(){
// ..

};

makeRequest({
data: 42,
cb /* also not a name */: function(){

// ..
}

});

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 194

var stillNotNamed = function butThisIs(){
// ..

};

“But wait!”, you say. Some of those are named, right!?

var notNamed = function(){
// ..

};

var config = {
cb: function(){

// ..
}

};

notNamed.name;
// notNamed

config.cb.name;
// cb

These are referred to as inferred names. Inferred names
are fine, but they don’t really address the full concern I’m
discussing.

Missing Names?

Yes, these inferred names might show up in stack traces,
which is definitely better than “anonymous” showing up.
But…

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 195

function ajax(url,cb) {
console.log(cb.name);

}

ajax("some.url",function(){
// ..

});
// ""

Oops. Anonymous function expressions passed as callbacks
are incapable of receiving an inferred name, so cb.name holds
just the empty string "". The vast majority of all function
expressions, especially anonymous ones, are used as callback
arguments; none of these get a name. So relying on name
inference is incomplete, at best.

And it’s not just callbacks that fall short with inference:

var config = {};

config.cb = function(){
// ..

};

config.cb.name;
// ""

var [noName] = [function(){}];
noName.name
// ""

Any assignment of a function expression that’s not a simple
assignment will also fail name inferencing. So, in other words,
unless you’re careful and intentional about it, essentially
almost all anonymous function expressions in your program
will in fact have no name at all.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 196

Name inference is just… not enough.

And even if a function expression does get an inferred name,
that still doesn’t count as being a full named function.

Who am I?

Without a lexical name identifier, the function has no internal
way to refer to itself. Self-reference is important for things like
recursion and event handling:

// broken
runOperation(function(num){

if (num <= 1) return 1;
return num * oopsNoNameToCall(num - 1);

});

// also broken
btn.addEventListener("click",function(){

console.log("should only respond to one click!");
btn.removeEventListener("click",oopsNoNameHere);

});

Leaving off the lexical name from your callback makes it
harder to reliably self-reference the function. You could de-
clare a variable in an enclosing scope that references the
function, but this variable is controlled by that enclosing
scope—it could be re-assigned, etc.—so it’s not as reliable as
the function having its own internal self-reference.

Names are Descriptors

Lastly, and I think most importantly of all, leaving off a name
from a function makes it harder for the reader to tell what

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 197

the function’s purpose is, at a quick glance. They have to read
more of the code, including the code inside the function, and
the surrounding code outside the function, to figure it out.

Consider:

[1, 2, 3, 4, 5].filter(function(v){
return v % 2 == 1;

});
// [1, 3, 5]

[1, 2, 3, 4, 5].filter(function keepOnlyOdds(v){
return v % 2 == 1;

});
// [1, 3, 5]

There’s just no reasonable argument to bemade that omitting
the name keepOnlyOdds from the first callback more effec-
tively communicates to the reader the purpose of this call-
back. You saved 13 characters, but lost important readability
information. The name keepOnlyOdds very clearly tells the
reader, at a quick first glance, what’s happening.

The JS engine doesn’t care about the name. But human
readers of your code absolutely do.

Can the reader look at v % 2 == 1 and figure out what it’s
doing? Sure. But they have to infer the purpose (and name) by
mentally executing the code. Even a brief pause to do so slows
down reading of the code. A good descriptive namemakes this
process almost effortless and instant.

Think of it this way: how many times does the author of
this code need to figure out the purpose of a function before
adding the name to the code? About once. Maybe two or three
times if they need to adjust the name. But how many times

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 198

will readers of this code have to figure out the name/purpose?
Every single time this line is ever read. Hundreds of times?
Thousands? More?

No matter the length or complexity of the function, my
assertion is, the author should figure out a good descriptive
name and add it to the code. Even the one-liner functions in
map(..) and then(..) statements should be named:

lookupTheRecords(someData)
.then(function extractSalesRecords(resp){

return resp.allSales;
})
.then(storeRecords);

The name extractSalesRecords tells the reader the pur-
pose of this then(..) handler better than just inferring that
purpose from mentally executing return resp.allSales.

The only excuse for not including a name on a function is
either laziness (don’t want to type a few extra characters)
or uncreativity (can’t come up with a good name). If you
can’t figure out a good name, you likely don’t understand
the function and its purpose yet. The function is perhaps
poorly designed, or it does too many things, and should be
re-worked. Once you have a well-designed, single-purpose
function, its proper name should become evident.

Here’s a trick I use: while first writing a function, if I don’t
fully understand its purpose and can’t think of a good name
to use, I just use TODO as the name. That way, later when re-
viewing my code, I’m likely to find those name placeholders,
and I’m more inclined (and more prepared!) to go back and
figure out a better name, rather than just leave it as TODO.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 199

All functions need names. Every single one. No exceptions.
Any name you omit is making the program harder to read,
harder to debug, harder to extend and maintain later.

Arrow Functions

Arrow functions are always anonymous, even if (rarely)
they’re used in a way that gives them an inferred name. I
just spent several pages explaining why anonymous functions
are a bad idea, so you can probably guess what I think about
arrow functions.

Don’t use them as a general replacement for regular functions.
They’re more concise, yes, but that brevity comes at the
cost of omitting key visual delimiters that help our brains
quickly parse out what we’re reading. And, to the point of this
discussion, they’re anonymous, which makes them worse for
readability from that angle as well.

Arrow functions have a purpose, but that purpose is not to
save keystrokes. Arrow functions have lexical this behavior,
which is somewhat beyond the bounds of our discussion in
this book.

Briefly: arrow functions don’t define a this identifier key-
word at all. If you use a this inside an arrow function, it
behaves exactly as any other variable reference, which is that
the scope chain is consulted to find a function scope (non-
arrow function) where it is defined, and to use that one.

In other words, arrow functions treat this like any other
lexical variable.

If you’re used to hacks like var self = this, or if you prefer
to call .bind(this) on inner function expressions, just to

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 200

force them to inherit a this from an outer function like it
was a lexical variable, then => arrow functions are absolutely
the better option. They’re designed specifically to fix that
problem.

So, in the rare cases you need lexical this, use an arrow
function. It’s the best tool for that job. But just be aware that
in doing so, you’re accepting the downsides of an anonymous
function. You should expend additional effort to mitigate the
readability cost, such as more descriptive variable names and
code comments.

IIFE Variations

All functions should have names. I said that a few times,
right!? That includes IIFEs.

(function(){
// don't do this!

})();

(function doThisInstead(){
// ..

})();

How do we come up with a name for an IIFE? Identify what
the IIFE is there for. Why do you need a scope in that spot?
Are you hiding a cache variable for student records?

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 201

var getStudents = (function StoreStudentRecords(){
var studentRecords = [];

return function getStudents() {
// ..

}
})();

I named the IIFE StoreStudentRecords because that’s what
it’s doing: storing student records. Every IIFE should have a
name. No exceptions.

IIFEs are typically defined by placing (..) around the
function expression, as shown in those previous snippets.
But that’s not the only way to define an IIFE. Technically, the
only reason we’re using that first surrounding set of (..)
is just so the function keyword isn’t in a position to qualify
as a function declaration to the JS parser. But there are other
syntactic ways to avoid being parsed as a declaration:

!function thisIsAnIIFE(){
// ..

}();

+function soIsThisOne(){
// ..

}();

~function andThisOneToo(){
// ..

}();

The !, +, ∼, and several other unary operators (operators with
one operand) can all be placed in front of function to turn

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 202

it into an expression. Then the final () call is valid, which
makes it an IIFE.

I actually kind of like using the void unary operator when
defining a standalone IIFE:

void function yepItsAnIIFE() {
// ..

}();

The benefit of void is, it clearly communicates at the begin-
ning of the function that this IIFE won’t be returning any
value.

However you define your IIFEs, show them some love by
giving them names.

Hoisting: Functions and Variables

Chapter 5 articulated both function hoisting and variable
hoisting. Since hoisting is often cited as mistake in the design
of JS, I wanted to briefly explore why both these forms of
hoisting can be beneficial and should still be considered.

Give hoisting a deeper level of consideration by considering
the merits of:

• Executable code first, function declarations last
• Semantic placement of variable declarations

Function Hoisting

To review, this program works because of function hoisting:

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 203

getStudents();

// ..

function getStudents() {
// ..

}

The function declaration is hoisted during compilation,
which means that getStudents is an identifier declared for
the entire scope. Additionally, the getStudents identifier
is auto-initialized with the function reference, again at the
beginning of the scope.

Why is this useful? The reason I prefer to take advantage
of function hoisting is that it puts the executable code in
any scope at the top, and any further declarations (functions)
below. This means it’s easier to find the code that will run
in any given area, rather than having to scroll and scroll,
hoping to find a trailing }marking the end of a scope/function
somewhere.

I take advantage of this inverse positioning in all levels of
scope:

getStudents();

// *************

function getStudents() {
var whatever = doSomething();

// other stuff

return whatever;

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 204

// *************

function doSomething() {
// ..

}
}

When I first open a file like that, the very first line is
executable code that kicks off its behavior. That’s very easy
to spot! Then, if I ever need to go find and inspect getStu-
dents(), I like that its first line is also executable code. Only
if I need to see the details of doSomething() do I go and find
its definition down below.

In other words, I think function hoisting makes code more
readable through a flowing, progressive reading order, from
top to bottom.

Variable Hoisting

What about variable hoisting?

Even though let and const hoist, you cannot use those
variables in their TDZ (see Chapter 5). So, the following
discussion only applies to var declarations. Before I continue,
I’ll admit: in almost all cases, I completely agree that variable
hoisting is a bad idea:

pleaseDontDoThis = "bad idea";

// much later
var pleaseDontDoThis;

While that kind of inverted ordering was helpful for function
hoisting, here I think it usually makes code harder to reason
about.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 205

But there’s one exception that I’ve found, somewhat rarely,
in my own coding. It has to do with where I place my var
declarations inside a CommonJS module definition.

Here’s how I typically structure my module definitions in
Node:

// dependencies
var aModuleINeed = require("very-helpful");
var anotherModule = require("kinda-helpful");

// public API
var publicAPI = Object.assign(module.exports,{

getStudents,
addStudents,
// ..

});

// ********************************
// private implementation

var cache = { };
var otherData = [];

function getStudents() {
// ..

}

function addStudents() {
// ..

}

Notice how the cache and otherData variables are in the
“private” section of the module layout? That’s because I don’t
plan to expose them publicly. So I organize the module so

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 206

they’re located alongside the other hidden implementation
details of the module.

But I’ve had a few rare cases where I needed the assignments
of those values to happen above, before I declare the exported
public API of the module. For instance:

// public API
var publicAPI = Object.assign(module.exports,{

getStudents,
addStudents,
refreshData: refreshData.bind(null,cache)

});

I need the cache variable to have already been assigned a
value, because that value is used in the initialization of the
public API (the .bind(..) partial-application).

Should I just move the var cache = { .. } up to the top,
above this public API initialization? Well, perhaps. But now
it’s less obvious that var cache is a private implementation
detail. Here’s the compromise I’ve (somewhat rarely) used:

cache = {}; // used here, but declared below

// public API
var publicAPI = Object.assign(module.exports,{

getStudents,
addStudents,
refreshData: refreshData.bind(null,cache)

});

// ********************************
// private implementation

var cache /* = {}*/;

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 207

See the variable hoisting? I’ve declared the cache down
where it belongs, logically, but in this rare case I’ve used it
earlier up above, in the area where its initialization is needed.
I even left a hint at the value that’s assigned to cache in a
code comment.

That’s literally the only case I’ve ever found for leveraging
variable hoisting to assign a variable earlier in a scope than its
declaration. But I think it’s a reasonable exception to employ
with caution.

The Case for var

Speaking of variable hoisting, let’s have some real talk for a bit
about var, a favorite villain devs love to blame formany of the
woes of JS development. In Chapter 5, we explored let/const
and promised we’d revisit where var falls in the whole mix.

As I lay out the case, don’t miss:

• var was never broken
• let is your friend
• const has limited utility
• The best of both worlds: var and let

Don’t Throw Out var

var is fine, and works just fine. It’s been around for 25 years,
and it’ll be around and useful and functional for another 25
years or more. Claims that var is broken, deprecated, out-
dated, dangerous, or ill-designed are bogus bandwagoning.

Does that mean var is the right declarator for every single
declaration in your program? Certainly not. But it still has its

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 208

place in your programs. Refusing to use it because someone
on the team chose an aggressive linter opinion that chokes on
var is cutting off your nose to spite your face.

OK, now that I’ve got you really riled up, let me try to explain
my position.

For the record, I’m a fan of let, for block-scoped declarations.
I really dislike TDZ and I think that was a mistake. But let
itself is great. I use it often. In fact, I probably use it as much
or more than I use var.

const-antly Confused

const on the other hand, I don’t use as often. I’m not going
to dig into all the reasons why, but it comes down to const
not carrying its own weight. That is, while there’s a tiny bit
of benefit of const in some cases, that benefit is outweighed
by the long history of troubles around const confusion in a
variety of languages, long before it ever showed up in JS.

const pretends to create values that can’t be mutated—a
misconception that’s extremely common in developer com-
munities across many languages—whereas what it really does
is prevent re-assignment.

const studentIDs = [14, 73, 112];

// later

studentIDs.push(6); // whoa, wait... what!?

Using a const with a mutable value (like an array or object)
is asking for a future developer (or reader of your code) to fall
into the trap you set, which was that they either didn’t know,

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 209

or sorta forgot, that value immutability isn’t at all the same
thing as assignment immutability.

I just don’t think we should set those traps. The only time I
ever use const is when I’m assigning an already-immutable
value (like 42 or "Hello, friends!"), and when it’s clearly
a “constant” in the sense of being a named placeholder for a
literal value, for semantic purposes. That’s what const is best
used for. That’s pretty rare in my code, though.

If variable re-assignment were a big deal, then const would
be more useful. But variable re-assignment just isn’t that big
of a deal in terms of causing bugs. There’s a long list of things
that lead to bugs in programs, but “accidental re-assignment”
is way, way down that list.

Combine that with the fact that const (and let) are supposed
to be used in blocks, and blocks are supposed to be short,
and you have a really small area of your code where a const
declaration is even applicable. A const on line 1 of your ten-
line block only tells you something about the next nine lines.
And the thing it tells you is already obvious by glancing down
at those nine lines: the variable is never on the left-hand side
of an =; it’s not re-assigned.

That’s it, that’s all const really does. Other than that, it’s not
very useful. Stacked up against the significant confusion of
value vs. assignment immutability, const loses a lot of its
luster.

A let (or var!) that’s never re-assigned is already behav-
iorally a “constant”, even though it doesn’t have the compiler
guarantee. That’s good enough in most cases.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 210

var and let

In my mind, const is pretty rarely useful, so this is only two-
horse race between let and var. But it’s not really a race
either, because there doesn’t have to be just one winner. They
can both win… different races.

The fact is, you should be using both var and let in your
programs. They are not interchangeable: you shouldn’t use
var where a let is called for, but you also shouldn’t use let
where a var is most appropriate.

So where should we still use var? Under what circumstances
is it a better choice than let?

For one, I always use var in the top-level scope of any func-
tion, regardless of whether that’s at the beginning, middle, or
end of the function. I also use var in the global scope, though
I try to minimize usage of the global scope.

Why use var for function scoping? Because that’s exactly
what var does. There literally is no better tool for the job of
function scoping a declaration than a declarator that has, for
25 years, done exactly that.

You could use let in this top-level scope, but it’s not the best
tool for that job. I also find that if you use let everywhere,
then it’s less obvious which declarations are designed to be
localized and which ones are intended to be used throughout
the function.

By contrast, I rarely use a var inside a block. That’s what let
is for. Use the best tool for the job. If you see a let, it tells
you that you’re dealing with a localized declaration. If you
see var, it tells you that you’re dealing with a function-wide
declaration. Simple as that.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 211

function getStudents(data) {
var studentRecords = [];

for (let record of data.records) {
let id = `student-${ record.id }`;
studentRecords.push({

id,
record.name

});
}

return studentRecords;
}

The studentRecords variable is intended for use across the
whole function. var is the best declarator to tell the reader
that. By contrast, record and id are intended for use only
in the narrower scope of the loop iteration, so let is the best
tool for that job.

In addition to this best tool semantic argument, var has a few
other characteristics that, in certain limited circumstances,
make it more powerful.

One example is when a loop is exclusively using a variable,
but its conditional clause cannot see block-scoped declara-
tions inside the iteration:

function commitAction() {
do {

let result = commit();
var done = result && result.code == 1;

} while (!done);
}

Here, result is clearly only used inside the block, so we use
let. But done is a bit different. It’s only useful for the loop,

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 212

but the while clause cannot see let declarations that appear
inside the loop. So we compromise and use var, so that done
is hoisted to the outer scope where it can be seen.

The alternative—declaring done outside the loop—separates
it from where it’s first used, and either necessitates picking a
default value to assign, or worse, leaving it unassigned and
thus looking ambiguous to the reader. I think var inside the
loop is preferable here.

Another helpful characteristic of var is seen with declara-
tions inside unintended blocks. Unintended blocks are blocks
that are created because the syntax requires a block, but
where the intent of the developer is not really to create a
localized scope. The best illustration of unintended scope is
the try..catch statement:

function getStudents() {
try {

// not really a block scope
var records = fromCache("students");

}
catch (err) {

// oops, fall back to a default
var records = [];

}
// ..

}

There are other ways to structure this code, yes. But I think
this is the best way, given various trade-offs.

I don’t want to declare records (with var or let) outside
of the try block, and then assign to it in one or both blocks.
I prefer initial declarations to always be as close as possible
(ideally, same line) to the first usage of the variable. In this

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 213

simple example, that would only be a couple of lines distance,
but in real code it can grow to many more lines. The bigger
the gap, the harder it is to figure out what variable from what
scope you’re assigning to. var used at the actual assignment
makes it less ambiguous.

Also notice I used var in both the try and catch blocks.
That’s because I want to signal to the reader that no matter
which path is taken, records always gets declared. Techni-
cally, that works because var is hoisted once to the function
scope. But it’s still a nice semantic signal to remind the reader
what either var ensures. If var were only used in one of
the blocks, and you were only reading the other block, you
wouldn’t as easily discover where recordswas coming from.

This is, in my opinion, a little superpower of var. Not only
can it escape the unintentional try..catch blocks, but it’s
allowed to appear multiple times in a function’s scope. You
can’t do that with let. It’s not bad, it’s actually a little helpful
feature. Think of varmore like a declarative annotation that’s
reminding you, each usage, where the variable comes from.
“Ah ha, right, it belongs to the whole function.”

This repeated-annotation superpower is useful in other cases:

function getStudents() {
var data = [];

// do something with data
// .. 50 more lines of code ..

// purely an annotation to remind us
var data;

// use data again

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 214

// ..
}

The second var data is not re-declaring data, it’s just an-
notating for the readers’ benefit that data is a function-wide
declaration. That way, the reader doesn’t need to scroll up 50+
lines of code to find the initial declaration.

I’m perfectly fine with re-using variables for multiple pur-
poses throughout a function scope. I’m also perfectly finewith
having two usages of a variable be separated by quite a few
lines of code. In both cases, the ability to safely “re-declare”
(annotate) with var helps make sure I can tell where my data
is coming from, no matter where I am in the function.

Again, sadly, let cannot do this.

There are other nuances and scenarios when var turns out to
offer some assistance, but I’m not going to belabor the point
any further. The takeaway is that var can be useful in our
programs alongside let (and the occasional const). Are you
willing to creatively use the tools the JS language provides to
tell a richer story to your readers?

Don’t just throw away a useful tool like var because someone
shamed you into thinking it wasn’t cool anymore. Don’t avoid
var because you got confused once years ago. Learn these
tools and use them each for what they’re best at.

What’s the Deal with TDZ?

The TDZ (temporal dead zone) was explained in Chapter
5. We illustrated how it occurs, but we skimmed over any
explanation of why it was necessary to introduce in the first
place. Let’s look briefly at the motivations of TDZ.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 215

Some breadcrumbs in the TDZ origin story:

• consts should never change
• It’s all about time
• Should let behave more like const or var?

Where It All Started

TDZ comes from const, actually.

During early ES6 development work, TC39 had to decide
whether const (and let) were going to hoist to the top of
their blocks. They decided these declarations would hoist,
similar to how var does. Had that not been the case, I think
some of the fear was confusion with mid-scope shadowing,
such as:

let greeting = "Hi!";

{
// what should print here?
console.log(greeting);

// .. a bunch of lines of code ..

// now shadowing the `greeting` variable
let greeting = "Hello, friends!";

// ..
}

What should we do with that console.log(..) statement?
Would it make any sense to JS devs for it to print “Hi!”? Seems
like that could be a gotcha, to have shadowing kick in only

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 216

for the second half of the block, but not the first half. That’s
not very intuitive, JS-like behavior. So let and const have to
hoist to the top of the block, visible throughout.

But if let and const hoist to the top of the block (like var
hoists to the top of a function), why don’t let and const
auto-initialize (to undefined) the way var does? Here was
the main concern:

{
// what should print here?
console.log(studentName);

// later

const studentName = "Frank";

// ..
}

Let’s imagine that studentName not only hoisted to the top of
this block, but was also auto-initialized to undefined. For the
first half of the block, studentName could be observed to have
the undefined value, such as with our console.log(..)
statement. Once the const studentName = .. statement is
reached, now studentName is assigned "Frank". From that
point forward, studentName can’t ever be re-assigned.

But, is it strange or surprising that a constant observably has
two different values, first undefined, then "Frank"? That
does seem to go against what we think a constant means; it
should only ever be observable with one value.

So… now we have a problem. We can’t auto-initialize stu-
dentName to undefined (or any other value for that matter).

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 217

But the variable has to exist throughout the whole scope.
What do we do with the period of time from when it first
exists (beginning of scope) and when it’s assigned its value?

We call this period of time the “dead zone,” as in the “temporal
dead zone” (TDZ). To prevent confusion, it was determined
that any sort of access of a variable while in its TDZ is illegal
and must result in the TDZ error.

OK, that line of reasoning does make some sense, I must
admit.

Who let the TDZ Out?

But that’s just const. What about let?

Well, TC39 made the decision: since we need a TDZ for
const, we might as well have a TDZ for let as well. In
fact, if we make let have a TDZ, then we discourage all that
ugly variable hoisting people do. So there was a consistency
perspective and, perhaps, a bit of social engineering to shift
developers’ behavior.

My counter-argument would be: if you’re favoring consis-
tency, be consistent with var instead of const; let is def-
initely more like var than const. That’s especially true since
they had already chosen consistency with var for the whole
hoisting-to-the-top-of-the-scope thing. Let const be its own
unique deal with a TDZ, and let the answer to TDZ purely
be: just avoid the TDZ by always declaring your constants
at the top of the scope. I think this would have been more
reasonable.

But alas, that’s not how it landed. let has a TDZ because
const needs a TDZ, because let and const mimic var in

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 218

their hoisting to the top of the (block) scope. There ya go. Too
circular? Read it again a few times.

Are Synchronous Callbacks Still
Closures?

Chapter 7 presented two different models for tackling closure:

• Closure is a function instance remembering its outer
variables even as that function is passed around and
invoked in other scopes.

• Closure is a function instance and its scope environment
being preserved in-place while any references to it are
passed around and invoked from other scopes.

These models are not wildly divergent, but they do approach
from a different perspective. And that different perspective
changes what we identify as a closure.

Don’t get lost following this rabbit trail through closures and
callbacks:

• Calling back to what (or where)?
• Maybe “synchronous callback” isn’t the best label
• IIF functions don’t move around, why would they need
closure?

• Deferring over time is key to closure

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 219

What is a Callback?

Before we revisit closure, let me spend a brief moment ad-
dressing the word “callback.” It’s a generally accepted norm
that saying “callback” is synonymous with both asynchronous
callbacks and synchronous callbacks. I don’t think I agree that
this is a good idea, so I want to explain why and propose we
move away from that to another term.

Let’s first consider an asynchronous callback, a function ref-
erence that will be invoked at some future later point. What
does “callback” mean, in this case?

It means that the current code has finished or paused, sus-
pended itself, and that when the function in question is
invoked later, execution is entering back into the suspended
program, resuming it. Specifically, the point of re-entry is the
code that was wrapped in the function reference:

setTimeout(function waitForASecond(){
// this is where JS should call back into
// the program when the timer has elapsed

},1000);

// this is where the current program finishes
// or suspends

In this context, “calling back” makes a lot of sense. The JS
engine is resuming our suspended program by calling back in
at a specific location. OK, so a callback is asynchronous.

Synchronous Callback?

But what about synchronous callbacks? Consider:

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 220

function getLabels(studentIDs) {
return studentIDs.map(

function formatIDLabel(id){
return `Student ID: ${

String(id).padStart(6)
}`;

}
);

}

getLabels([14, 73, 112, 6]);
// [
// "Student ID: 000014",
// "Student ID: 000073",
// "Student ID: 000112",
// "Student ID: 000006"
//]

Should we refer to formatIDLabel(..) as a callback? Is
the map(..) utility really calling back into our program by
invoking the function we provided?

There’s nothing to call back into per se, because the program
hasn’t paused or exited. We’re passing a function (reference)
from one part of the program to another part of the program,
and then it’s immediately invoked.

There’s other established terms that might match what we’re
doing—passing in a function (reference) so that another part
of the program can invoke it on our behalf. You might think
of this as Dependency Injection (DI) or Inversion of Control
(IoC).

DI can be summarized as passing in necessary part(s) of
functionality to another part of the program so that it can
invoke them to complete its work. That’s a decent description

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 221

for the map(..) call above, isn’t it? The map(..) utility
knows to iterate over the list’s values, but it doesn’t know
what to do with those values. That’s why we pass it the
formatIDLabel(..) function. We pass in the dependency.

IoC is a pretty similar, related concept. Inversion of control
means that instead of the current area of your program
controlling what’s happening, you hand control off to another
part of the program. We wrapped the logic for computing
a label string in the function formatIDLabel(..), then
handed invocation control to the map(..) utility.

Notably, Martin Fowler cites IoC as the difference between a
framework and a library: with a library, you call its functions;
with a framework, it calls your functions. ²

In the context of our discussion, either DI or IoC could work
as an alternative label for a synchronous callback.

But I have a different suggestion. Let’s refer to (the functions
formerly known as) synchronous callbacks, as inter-invoked
functions (IIFs). Yes, exactly, I’m playing off IIFEs. These
kinds of functions are inter-invoked, meaning: another entity
invokes them, as opposed to IIFEs, which invoke themselves
immediately.

What’s the relationship between an asynchronous callback
and an IIF? An asynchronous callback is an IIF that’s invoked
asynchronously instead of synchronously.

Synchronous Closure?

Now that we’ve re-labeled synchronous callbacks as IIFs, we
can return to our main question: are IIFs an example of clo-

²Inversion of Control, Martin Fowler, https://martinfowler.com/bliki/InversionOf
Control.html, 26 June 2005.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 222

sure? Obviously, the IIF would have to reference variable(s)
from an outer scope for it to have any chance of being a
closure. The formatIDLabel(..) IIF from earlier does not
reference any variables outside its own scope, so it’s definitely
not a closure.

What about an IIF that does have external references, is that
closure?

function printLabels(labels) {
var list = document.getElementByID("labelsList");

labels.forEach(
function renderLabel(label){

var li = document.createELement("li");
li.innerText = label;
list.appendChild(li);

}
);

}

The inner renderLabel(..) IIF references list from the
enclosing scope, so it’s an IIF that could have closure. But
here’s where the definition/model we choose for closure
matters:

• If renderLabel(..) is a function that gets passed
somewhere else, and that function is then invoked, then
yes, renderLabel(..) is exercising a closure, because
closure is what preserved its access to its original scope
chain.

• But if, as in the alternative conceptual model from
Chapter 7, renderLabel(..) stays in place, and only
a reference to it is passed to forEach(..), is there any

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 223

need for closure to preserve the scope chain of render-
Label(..), while it executes synchronously right inside
its own scope?

No. That’s just normal lexical scope.

To understand why, consider this alternative form of print-
Labels(..):

function printLabels(labels) {
var list = document.getElementByID("labelsList");

for (let label of labels) {
// just a normal function call in its own
// scope, right? That's not really closure!
renderLabel(label);

}

// **************

function renderLabel(label) {
var li = document.createELement("li");
li.innerText = label;
list.appendChild(li);

}
}

These two versions of printLabels(..) are essentially the
same.

The latter one is definitely not an example of closure, at least
not in any useful or observable sense. It’s just lexical scope.
The former version, with forEach(..) calling our function
reference, is essentially the same thing. It’s also not closure,
but rather just a plain ol’ lexical scope function call.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 224

Defer to Closure

By the way, Chapter 7 briefly mentioned partial application
and currying (which do rely on closure!). This is a interesting
scenario where manual currying can be used:

function printLabels(labels) {
var list = document.getElementByID("labelsList");
var renderLabel = renderTo(list);

// definitely closure this time!
labels.forEach(renderLabel);

// **************

function renderTo(list) {
return function createLabel(label){

var li = document.createELement("li");
li.innerText = label;
list.appendChild(li);

};
}

}

The inner function createLabel(..), which we assign to
renderLabel, is closed over list, so closure is definitely
being utilized.

Closure allows us to remember list for later, while we
defer execution of the actual label-creation logic from the
renderTo(..) call to the subsequent forEach(..) invoca-
tions of the createLabel(..) IIF. That may only be a brief
moment here, but any amount of time could pass, as closure
bridges from call to call.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 225

Classic Module Variations

Chapter 8 explained the classic module pattern, which can
look like this:

var StudentList = (function defineModule(Student){
var elems = [];

var publicAPI = {
renderList() {

// ..
}

};

return publicAPI;

})(Student);

Notice that we’re passing Student (another module instance)
in as a dependency. But there’s lots of useful variations on this
module form you may encounter. Some hints for recognizing
these variations:

• Does the module know about its own API?
• Even if we use a fancy module loader, it’s just a classic
module

• Some modules need to work universally

Where’s My API?

First, most classic modules don’t define and use a publicAPI
the way I have shown in this code. Instead, they typically look
like:

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 226

var StudentList = (function defineModule(Student){
var elems = [];

return {
renderList() {

// ..
}

};

})(Student);

The only difference here is directly returning the object that
serves as the public API for the module, as opposed to first
saving it to an inner publicAPI variable. This is by far how
most classic modules are defined.

But I strongly prefer, and always use myself, the former
publicAPI form. Two reasons:

• publicAPI is a semantic descriptor that aids readability
by making it more obvious what the purpose of the
object is.

• Storing an inner publicAPI variable that references the
same external public API object returned, can be useful
if you need to access or modify the API during the
lifetime of the module.

For example, you may want to call one of the publicly
exposed functions, from inside the module. Or, you may
want to add or remove methods depending on certain
conditions, or update the value of an exposed property.

Whatever the case may be, it just seems rather silly to
me that we wouldn’t maintain a reference to access our
own API. Right?

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 227

Asynchronous Module Defintion (AMD)

Another variation on the classic module form is AMD-style
modules (popular several years back), such as those supported
by the RequireJS utility:

define(["./Student"],function StudentList(Student){
var elems = [];

return {
renderList() {

// ..
}

};
});

If you look closely at StudentList(..), it’s a classic mod-
ule factory function. Inside the machinery of define(..)
(provided by RequireJS), the StudentList(..) function is
executed, passing to it any other module instances declared
as dependencies. The return value is an object representing
the public API for the module.

This is based on exactly the same principles (including how
the closure works!) as we explored with classic modules.

Universal Modules (UMD)

The final variation we’ll look at is UMD, which is less a
specific, exact format and more a collection of very similar
formats. It was designed to create better interop (without
any build-tool conversion) for modules that may be loaded
in browsers, by AMD-style loaders, or in Node. I personally
still publish many of my utility libraries using a form of UMD.

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 228

Here’s the typical structure of a UMD:

(function UMD(name,context,definition){
// loaded by an AMD-style loader?
if (

typeof define === "function" &&
define.amd

) {
define(definition);

}
// in Node?
else if (

typeof module !== "undefined" &&
module.exports

) {
module.exports = definition(name,context);

}
// assume standalone browser script
else {

context[name] = definition(name,context);
}

})("StudentList",this,function DEF(name,context){

var elems = [];

return {
renderList() {

// ..
}

};

});

Though it may look a bit unusual, UMD is really just an IIFE.

What’s different is that themain function expression part (at
the top) of the IIFE contains a series of if..else if state-

You Don’t Know JS Yet: Scope & Closures

Appendix A: Exploring Further 229

ments to detect which of the three supported environments
the module is being loaded in.

The final () that normally invokes an IIFE is being passed
three arguments: "StudentsList", this, and another func-
tion expression. If you match those arguments to their pa-
rameters, you’ll see they are: name, context, and defini-
tion, respectively. "StudentList" (name) is the name label
for the module, primarily in case it’s defined as a global
variable. this (context) is generally the window (aka, global
object; see Chapter 4) for defining the module by its name.

definition(..) is invoked to actually retrieve the definition
of the module, and you’ll notice that, sure enough, that’s just
a classic module form!

There’s no question that as of the time of this writing, ESM (ES
Modules) are becoming popular and widespread rapidly. But
with millions and millions of modules written over the last 20
years, all using some pre-ESM variation of classic modules,
they’re still very important to be able to read and understand
when you come across them.

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 230

Appendix B: Practice
This appendix aims to give you some challenging and inter-
esting exercises to test and solidify your understanding of
the main topics from this book. It’s a good idea to try out
the exercises yourself—in an actual code editor!—instead of
skipping straight to the solutions at the end. No cheating!

These exercises don’t have a specific right answer that you
have to get exactly. Your approach may differ some (or a lot!)
from the solutions presented, and that’s OK.

There’s no judging you on how you write your code. My hope
is that you come away from this book feeling confident that
you can tackle these sorts of coding tasks built on a strong
foundation of knowledge. That’s the only objective, here. If
you’re happy with your code, I am, too!

Buckets of Marbles

Remember Figure 2 from back in Chapter 2?

Fig. 2 (Ch. 2): Colored Scope Bubbles

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 231

This exercise asks you to write a program—any program!—
that contains nested functions and block scopes, which satis-
fies these constraints:

• If you color all the scopes (including the global scope!)
different colors, you need at least six colors. Make sure to
add a code comment labeling each scope with its color.

BONUS: identify any implied scopes your code may
have.

• Each scope has at least one identifier.
• Contains at least two function scopes and at least two
block scopes.

• At least one variable from an outer scope must be
shadowed by a nested scope variable (see Chapter 3).

• At least one variable reference must resolve to a variable
declaration at least two levels higher in the scope chain.

Note
You can just write junk foo/bar/baz-type code for
this exercise, but I suggest you try to come up
with some sort of non-trivial real’ish code that
at least does something kind of reasonable.

Try the exercise for yourself, then check out the suggested
solution at the end of this appendix.

Closure (PART 1)

Let’s first practice closure with some common computer-
math operations: determining if a value is prime (has no

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 232

divisors other than 1 and itself), and generating a list of prime
factors (divisors) for a given number.

For example:

isPrime(11); // true
isPrime(12); // false

factorize(11); // [11]
factorize(12); // [3, 2, 2] --> 3*2*2=12

Here’s an implementation of isPrime(..), adapted from the
Math.js library: ³

function isPrime(v) {
if (v <= 3) {

return v > 1;
}
if (v % 2 == 0 || v % 3 == 0) {

return false;
}
var vSqrt = Math.sqrt(v);
for (let i = 5; i <= vSqrt; i += 6) {

if (v % i == 0 || v % (i + 2) == 0) {
return false;

}
}
return true;

}

And here’s a somewhat basic implementation of factor-
ize(..) (not to be confused with factorial(..) from
Chapter 6):

³Math.js: isPrime(..), https://github.com/josdejong/mathjs/blob/develop/src/funct
ion/utils/isPrime.js, 3 March 2020.

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 233

function factorize(v) {
if (!isPrime(v)) {

let i = Math.floor(Math.sqrt(v));
while (v % i != 0) {

i--;
}
return [

...factorize(i),

...factorize(v / i)
];

}
return [v];

}

Note
I call this basic because it’s not optimized for
performance. It’s binary-recursive (which isn’t
tail-call optimizable), and it creates a lot of in-
termediate array copies. It also doesn’t order the
discovered factors in any way. There are many,
many other algorithms for this task, but I wanted
to use something short and roughly understand-
able for our exercise.

If you were to call isPrime(4327) multiple times in a pro-
gram, you can see that it would go through all its dozens
of comparison/computation steps every time. If you consider
factorize(..), it’s calling isPrime(..) many times as it
computes the list of factors. And there’s a good chance most
of those calls are repeats. That’s a lot of wasted work!

The first part of this exercise is to use closure to implement a
cache to remember the results of isPrime(..), so that the
primality (true or false) of a given number is only ever

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 234

computed once. Hint: we already showed this sort of caching
in Chapter 6 with factorial(..).

If you look at factorize(..), it’s implemented with recur-
sion, meaning it calls itself repeatedly. That again means we
may likely see a lot of wasted calls to compute prime factors
for the same number. So the second part of the exercise is to
use the same closure cache technique for factorize(..).

Use separate closures for caching of isPrime(..) and fac-
torize(..), rather than putting them inside a single scope.

Try the exercise for yourself, then check out the suggested
solution at the end of this appendix.

A Word About Memory

I want to share a little quick note about this closure cache
technique and the impacts it has on your application’s per-
formance.

We can see that in saving the repeated calls, we improve
computation speed (in some cases, by a dramatic amount).
But this usage of closure is making an explicit trade-off that
you should be very aware of.

The trade-off is memory. We’re essentially growing our cache
(in memory) unboundedly. If the functions in question were
calledmanymillions of timeswithmostly unique inputs, we’d
be chewing up a lot of memory. This can definitely be worth
the expense, but only if we think it’s likely we see repetition of
common inputs so that we’re taking advantage of the cache.

If most every call will have a unique input, and the cache is
essentially never used to any benefit, this is an inappropriate
technique to employ.

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 235

It also might be a good idea to have a more sophisticated
caching approach, such as an LRU (least recently used) cache,
that limits its size; as it runs up to the limit, an LRU evicts the
values that are… well, least recently used!

The downside here is that LRU is quite non-trivial in its own
right. You’ll want to use a highly optimized implementation
of LRU, and be keenly aware of all the trade-offs at play.

Closure (PART 2)

In this exercise, we’re going to again practive closure by
defining a toggle(..) utility that gives us a value toggler.

You will pass one or more values (as arguments) into tog-
gle(..), and get back a function. That returned function will
alternate/rotate between all the passed-in values in order, one
at a time, as it’s called repeatedly.

function toggle(/* .. */) {
// ..

}

var hello = toggle("hello");
var onOff = toggle("on","off");
var speed = toggle("slow","medium","fast");

hello(); // "hello"
hello(); // "hello"

onOff(); // "on"
onOff(); // "off"
onOff(); // "on"

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 236

speed(); // "slow"
speed(); // "medium"
speed(); // "fast"
speed(); // "slow"

The corner case of passing in no values to toggle(..) is
not very important; such a toggler instance could just always
return undefined.

Try the exercise for yourself, then check out the suggested
solution at the end of this appendix.

Closure (PART 3)

In this third and final exercise on closure, we’re going to
implement a basic calculator. The calculator() function
will produce an instance of a calculator that maintains its own
state, in the form of a function (calc(..), below):

function calculator() {
// ..

}

var calc = calculator();

Each time calc(..) is called, you’ll pass in a single character
that represents a keypress of a calculator button. To keep
things more straightforward, we’ll restrict our calculator to
supporting entering only digits (0-9), arithmetic operations
(+, -, *, /), and “=” to compute the operation. Operations
are processed strictly in the order entered; there’s no “()”
grouping or operator precedence.

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 237

We don’t support entering decimals, but the divide opera-
tion can result in them. We don’t support entering negative
numbers, but the “-“ operation can result in them. So, you
should be able to produce any negative or decimal number by
first entering an operation to compute it. You can then keep
computing with that value.

The return of calc(..) calls should mimic what would be
shown on a real calculator, like reflecting what was just
pressed, or computing the total when pressing “=”.

For example:

calc("4"); // 4
calc("+"); // +
calc("7"); // 7
calc("3"); // 3
calc("-"); // -
calc("2"); // 2
calc("="); // 75
calc("*"); // *
calc("4"); // 4
calc("="); // 300
calc("5"); // 5
calc("-"); // -
calc("5"); // 5
calc("="); // 0

Since this usage is a bit clumsy, here’s a useCalc(..) helper,
that runs the calculator with characters one at a time from a
string, and computes the display each time:

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 238

function useCalc(calc,keys) {
return [...keys].reduce(

function showDisplay(display,key){
var ret = String(calc(key));
return (

display +
(
(ret != "" && key == "=") ?

"=" :
""

) +
ret

);
},
""

);
}

useCalc(calc,"4+3="); // 4+3=7
useCalc(calc,"+9="); // +9=16
useCalc(calc,"*8="); // *5=128
useCalc(calc,"7*2*3="); // 7*2*3=42
useCalc(calc,"1/0="); // 1/0=ERR
useCalc(calc,"+3="); // +3=ERR
useCalc(calc,"51="); // 51

The most sensible usage of this useCalc(..) helper is to
always have “=” be the last character entered.

Some of the formatting of the totals displayed by the cal-
culator require special handling. I’m providing this for-
matTotal(..) function, which your calculator should use
whenever it’s going to return a current computed total (after
an "=" is entered):

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 239

function formatTotal(display) {
if (Number.isFinite(display)) {

// constrain display to max 11 chars
let maxDigits = 11;
// reserve space for "e+" notation?
if (Math.abs(display) > 99999999999) {

maxDigits -= 6;
}
// reserve space for "-"?
if (display < 0) {

maxDigits--;
}

// whole number?
if (Number.isInteger(display)) {

display = display
.toPrecision(maxDigits)
.replace(/\.0+$/,"");

}
// decimal
else {

// reserve space for "."
maxDigits--;
// reserve space for leading "0"?
if (

Math.abs(display) >= 0 &&
Math.abs(display) < 1

) {
maxDigits--;

}
display = display

.toPrecision(maxDigits)

.replace(/0+$/,"");
}

}
else {

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 240

display = "ERR";
}
return display;

}

Don’t worry too much about how formatTotal(..) works.
Most of its logic is a bunch of handling to limit the calculator
display to 11 characters max, even if negatives, repeating
decimals, or even “e+” exponential notation is required.

Again, don’t get too mired in the mud around calculator-
specific behavior. Focus on the memory of closure.

Try the exercise for yourself, then check out the suggested
solution at the end of this appendix.

Modules

This exercise is to convert the calculator from Closure (PART
3) into a module.

We’re not adding any additional functionality to the calcu-
lator, only changing its interface. Instead of calling a single
function calc(..), we’ll be calling specific methods on the
public API for each “keypress” of our calculator. The outputs
stay the same.

This module should be expressed as a classic module factory
function called calculator(), instead of a singleton IIFE, so
that multiple calculators can be created if desired.

The public API should include the following methods:

• number(..) (input: the character/number “pressed”)
• plus()

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 241

• minus()
• mult()
• div()
• eq()

Usage would look like:

var calc = calculator();

calc.number("4"); // 4
calc.plus(); // +
calc.number("7"); // 7
calc.number("3"); // 3
calc.minus(); // -
calc.number("2"); // 2
calc.eq(); // 75

formatTotal(..) remains the same from that previous ex-
ercise. But the useCalc(..) helper needs to be adjusted to
work with the module API:

function useCalc(calc,keys) {
var keyMappings = {

"+": "plus",
"-": "minus",
"*": "mult",
"/": "div",
"=": "eq"

};

return [...keys].reduce(
function showDisplay(display,key){

var fn = keyMappings[key] || "number";
var ret = String(calc[fn](key));
return (

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 242

display +
(
(ret != "" && key == "=") ?

"=" :
""

) +
ret

);
},
""

);
}

useCalc(calc,"4+3="); // 4+3=7
useCalc(calc,"+9="); // +9=16
useCalc(calc,"*8="); // *5=128
useCalc(calc,"7*2*3="); // 7*2*3=42
useCalc(calc,"1/0="); // 1/0=ERR
useCalc(calc,"+3="); // +3=ERR
useCalc(calc,"51="); // 51

Try the exercise for yourself, then check out the suggested
solution at the end of this appendix.

As you work on this exercise, also spend some time consider-
ing the pros/cons of representing the calculator as a module as
opposed to the closure-function approach from the previous
exercise.

BONUS: write out a few sentences explaining your thoughts.

BONUS #2: try converting your module to other module for-
mats, including: UMD, CommonJS, and ESM (ES Modules).

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 243

Suggested Solutions

Hopefully you’ve tried out the exercises before you’re reading
this far. No cheating!

Remember, each suggested solution is just one of a bunch of
different ways to approach the problems. They’re not “the
right answer,” but they do illustrate a reasonable way to
approach each exercise.

The most important benefit you can get from reading these
suggested solutions is to compare them to your code and
analyze why we each made similar or different choices. Don’t
get into too much bikeshedding; try to stay focused on the
main topic rather than the small details.

Suggested: Buckets of Marbles

The Buckets of Marbles Exercise can be solved like this:

// RED(1)
const howMany = 100;

// Sieve of Eratosthenes
function findPrimes(howMany) {

// BLUE(2)
var sieve = Array(howMany).fill(true);
var max = Math.sqrt(howMany);

for (let i = 2; i < max; i++) {
// GREEN(3)
if (sieve[i]) {

// ORANGE(4)
let j = Math.pow(i,2);

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 244

for (let k = j; k < howMany; k += i) {
// PURPLE(5)
sieve[k] = false;

}
}

}

return sieve
.map(function getPrime(flag,prime){

// PINK(6)
if (flag) return prime;
return flag;

})
.filter(function onlyPrimes(v){

// YELLOW(7)
return !!v;

})
.slice(1);

}

findPrimes(howMany);
// [
// 2, 3, 5, 7, 11, 13, 17,
// 19, 23, 29, 31, 37, 41,
// 43, 47, 53, 59, 61, 67,
// 71, 73, 79, 83, 89, 97
//]

Suggested: Closure (PART 1)

The Closure Exercise (PART 1), for isPrime(..) and fac-
torize(..), can be solved like this:

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 245

var isPrime = (function isPrime(v){
var primes = {};

return function isPrime(v) {
if (v in primes) {

return primes[v];
}
if (v <= 3) {

return (primes[v] = v > 1);
}
if (v % 2 == 0 || v % 3 == 0) {

return (primes[v] = false);
}
let vSqrt = Math.sqrt(v);
for (let i = 5; i <= vSqrt; i += 6) {

if (v % i == 0 || v % (i + 2) == 0) {
return (primes[v] = false);

}
}
return (primes[v] = true);

};
})();

var factorize = (function factorize(v){
var factors = {};

return function findFactors(v) {
if (v in factors) {

return factors[v];
}
if (!isPrime(v)) {

let i = Math.floor(Math.sqrt(v));
while (v % i != 0) {

i--;
}
return (factors[v] = [

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 246

...findFactors(i),

...findFactors(v / i)
]);

}
return (factors[v] = [v]);

};
})();

The general steps I used for each utility:

1. Wrap an IIFE to define the scope for the cache variable
to reside.

2. In the underlying call, first check the cache, and if a
result is already known, return.

3. At each place where a returnwas happening originally,
assign to the cache and just return the results of that as-
signment operation—this is a space savings trick mostly
just for brevity in the book.

I also renamed the inner function from factorize(..) to
findFactors(..). That’s not technically necessary, but it
helps it make clearer which function the recursive calls in-
voke.

Suggested: Closure (PART 2)

The Closure Exercise (PART 2) toggle(..) can be solved like
this:

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 247

function toggle(...vals) {
var unset = {};
var cur = unset;

return function next(){
// save previous value back at
// the end of the list
if (cur != unset) {

vals.push(cur);
}
cur = vals.shift();
return cur;

};
}

var hello = toggle("hello");
var onOff = toggle("on","off");
var speed = toggle("slow","medium","fast");

hello(); // "hello"
hello(); // "hello"

onOff(); // "on"
onOff(); // "off"
onOff(); // "on"

speed(); // "slow"
speed(); // "medium"
speed(); // "fast"
speed(); // "slow"

Suggested: Closure (PART 3)

The Closure Exercise (PART 3) calculator() can be solved
like this:

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 248

// from earlier:
//
// function useCalc(..) { .. }
// function formatTotal(..) { .. }

function calculator() {
var currentTotal = 0;
var currentVal = "";
var currentOper = "=";

return pressKey;

// ********************

function pressKey(key){
// number key?
if (/\d/.test(key)) {

currentVal += key;
return key;

}
// operator key?
else if (/[+*/-]/.test(key)) {

// multiple operations in a series?
if (

currentOper != "=" &&
currentVal != ""

) {
// implied '=' keypress
pressKey("=");

}
else if (currentVal != "") {

currentTotal = Number(currentVal);
}
currentOper = key;
currentVal = "";
return key;

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 249

}
// = key?
else if (

key == "=" &&
currentOper != "="

) {
currentTotal = op(

currentTotal,
currentOper,
Number(currentVal)

);
currentOper = "=";
currentVal = "";
return formatTotal(currentTotal);

}
return "";

};

function op(val1,oper,val2) {
var ops = {

// NOTE: using arrow functions
// only for brevity in the book
"+": (v1,v2) => v1 + v2,
"-": (v1,v2) => v1 - v2,
"*": (v1,v2) => v1 * v2,
"/": (v1,v2) => v1 / v2

};
return ops[oper](val1,val2);

}
}

var calc = calculator();

useCalc(calc,"4+3="); // 4+3=7
useCalc(calc,"+9="); // +9=16
useCalc(calc,"*8="); // *5=128

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 250

useCalc(calc,"7*2*3="); // 7*2*3=42
useCalc(calc,"1/0="); // 1/0=ERR
useCalc(calc,"+3="); // +3=ERR
useCalc(calc,"51="); // 51

Note
Remember: this exercise is about closure. Don’t
focus too much on the actual mechanics of a cal-
culator, but rather on whether you are properly
remembering the calculator state across function
calls.

Suggested: Modules

The Modules Exercise calculator() can be solved like this:

// from earlier:
//
// function useCalc(..) { .. }
// function formatTotal(..) { .. }

function calculator() {
var currentTotal = 0;
var currentVal = "";
var currentOper = "=";

var publicAPI = {
number,
eq,
plus() { return operator("+"); },
minus() { return operator("-"); },
mult() { return operator("*"); },

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 251

div() { return operator("/"); }
};

return publicAPI;

// ********************

function number(key) {
// number key?
if (/\d/.test(key)) {

currentVal += key;
return key;

}
}

function eq() {
// = key?
if (currentOper != "=") {

currentTotal = op(
currentTotal,
currentOper,
Number(currentVal)

);
currentOper = "=";
currentVal = "";
return formatTotal(currentTotal);

}
return "";

}

function operator(key) {
// multiple operations in a series?
if (

currentOper != "=" &&
currentVal != ""

) {

You Don’t Know JS Yet: Scope & Closures

Appendix B: Practice 252

// implied '=' keypress
eq();

}
else if (currentVal != "") {

currentTotal = Number(currentVal);
}
currentOper = key;
currentVal = "";
return key;

}

function op(val1,oper,val2) {
var ops = {

// NOTE: using arrow functions
// only for brevity in the book
"+": (v1,v2) => v1 + v2,
"-": (v1,v2) => v1 - v2,
"*": (v1,v2) => v1 * v2,
"/": (v1,v2) => v1 / v2

};
return ops[oper](val1,val2);

}
}

var calc = calculator();

useCalc(calc,"4+3="); // 4+3=7
useCalc(calc,"+9="); // +9=16
useCalc(calc,"*8="); // *5=128
useCalc(calc,"7*2*3="); // 7*2*3=42
useCalc(calc,"1/0="); // 1/0=ERR
useCalc(calc,"+3="); // +3=ERR
useCalc(calc,"51="); // 51

That’s it for this book, congratulations on your achievement!
When you’re ready, move on to Book 3, Objects & Classes.

You Don’t Know JS Yet: Scope & Closures

	Table of Contents
	Foreword
	Preface
	The Parts
	The Title?
	The Mission
	The Path

	Chapter 1: What's the Scope?
	About This Book
	Compiled vs. Interpreted
	Compiling Code
	Compiler Speak
	Cheating: Runtime Scope Modifications
	Lexical Scope

	Chapter 2: Illustrating Lexical Scope
	Marbles, and Buckets, and Bubbles… Oh My!
	A Conversation Among Friends
	Nested Scope
	Continue the Conversation

	Chapter 3: The Scope Chain
	``Lookup'' Is (Mostly) Conceptual
	Shadowing
	Function Name Scope
	Arrow Functions
	Backing Out

	Chapter 4: Around the Global Scope
	Why Global Scope?
	Where Exactly is this Global Scope?
	Global This
	Globally Aware

	Chapter 5: The (Not So) Secret Lifecycle of Variables
	When Can I Use a Variable?
	Hoisting: Yet Another Metaphor
	Re-declaration?
	Uninitialized Variables (aka, TDZ)
	Finally Initialized

	Chapter 6: Limiting Scope Exposure
	Least Exposure
	Hiding in Plain (Function) Scope
	Scoping with Blocks
	Function Declarations in Blocks (FiB)
	Blocked Over

	Chapter 7: Using Closures
	See the Closure
	The Closure Lifecycle and Garbage Collection (GC)
	An Alternative Perspective
	Why Closure?
	Closer to Closure

	Chapter 8: The Module Pattern
	Encapsulation and Least Exposure (POLE)
	What Is a Module?
	Node CommonJS Modules
	Modern ES Modules (ESM)
	Exit Scope

	Appendix A: Exploring Further
	Implied Scopes
	Anonymous vs. Named Functions
	Hoisting: Functions and Variables
	The Case for var
	What's the Deal with TDZ?
	Are Synchronous Callbacks Still Closures?
	Classic Module Variations

	Appendix B: Practice
	Buckets of Marbles
	Closure (PART 1)
	Closure (PART 2)
	Closure (PART 3)
	Modules
	Suggested Solutions

