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Preface

Distributed systems are becoming ubiquitous in our life nowadays: from how
we communicate with our friends to how we make online shopping and many
more things. It might be transparent to us sometimes, but many companies
are making use of extremely complicated software systems under the hood
to satisfy our needs. By using these kind of systems, companies are capable
of significant achievements, such as sending our message to a friend who is
thousand miles away in a matter of milliseconds, delivering our orders despite
outages of whole datacenters or searching the whole Internet by processing
more than a million terabytes of data in less than a second. Putting all
of this into perspective, it’s easy to understand the value that distributed
systems bring in the current world and why it’s useful for software engineers
to be able to understand and make use of distributed systems.

However, as easy and fascinating as it might seem, the area of distributed
systems is a rather complicated one with many different execution models
and failure modes. As a result, in order for one to simply understand how
to use a 3rd party library or verify the correctness of a distributed system
under construction, one has to digest a vast amount of information first.
Distributed systems have been a really hot academic topic for the last decades
and tremendous progress has been achieved, albeit through a large number
of papers with one building on top of the previous ones usually. This sets
a rather high barrier to entry for newcomers and practitioners that just
want to understand the basic building blocks, so that they can be confident
in the systems they are building without any aspirations of inventing new
algorithms or protocols.

The ultimate goal of this book is to help these people get started with
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PREFACE ii

distributed systems in an easy and intuitive way. It was born out of my
initiation to the topic, which included a lot of transitions between excitement,
confusion and enlightenment.

Of course, it would be infeasible to tackle all the existing problems in the
space of distributed computing. So, this book will focus on:

• establishing the basic principles around distributed systems
• explaining what is and what is not possible to achieve
• explaining the basic algorithms and protocols, by giving easy-to-follow

examples and diagrams
• explaining the thinking behind some design decisions
• expanding on how these can be used in practice and what are some of

the issues that might arise when doing so
• eliminating confusion around some terms (i.e. consistency) and foster

thinking about trade-offs when designing distributed systems
• providing plenty of additional resources for people that are willing

to invest more time in order to get a deeper understanding of the
theoretical parts

Who is this book for

This book is aimed at software engineers that have some experience in
building software systems and have no or some experience in distributed
systems. We assume no knowledge around concepts and algorithms for
distributed systems. This book attempts to gradually introduce the terms
and explain the basic algorithms in the simplest way possible, providing
many diagrams and examples. As a result, this book can also be useful to
people that don’t develop software, but want to get an introduction to the
field of distributed systems. However, this book does not aim to provide a
full analysis or proof of every single algorithm. Instead, the book aims to
help the reader get the intuition behind a concept or an algorithm, while
also providing the necessary references to the original papers, so that the
reader can study other parts of interest in more depth.
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Chapter 1

Introduction

What is a distributed system and why we need it

First of all, we need to define what a distributed system is. Multiple, different
definitions can be found, but we will use the following:

"A distributed system is a system whose components are lo-
cated on different networked computers, which communi-
cate and coordinate their actions by passing messages to one
another."[1]

As shown in Figure 1.1, this network can either consist of direct connections
between the components of the distributed system or there could be more
components that form the backbone of the network (if communication is
done through the Internet for example). These components can take many
forms; they could be servers, routers, web browsers or even mobile devices.
In an effort to keep an abstract and generic view, in the context of this book
we’ll refer to them as nodes, being agnostic to their real form. In some cases,
such as when providing a concrete example, it might be useful to escape this
generic view and see how things work in real-life. In these cases, we might
explain in detail the role of each node in the system.

As we will see later, the 2 parts that were highlighted in the definition above
are central to how distributed systems function:

• the various parts that compose a distributed system are located re-
motely, separated by a network.

2



CHAPTER 1. INTRODUCTION 3

Figure 1.1: A distributed system

• the main mechanism of communication between them is by exchanging
messages, using this network that separates them.

Now that we have defined what a distributed system is, let’s explore its
value.

Why do we really need distributed systems ?

Looking at all the complexity that distributed systems introduce, as we will
see during this book, that’s a valid question. The main benefits of distributed
systems come mostly in the following 3 areas:

• performance
• scalability
• availability

Let’s explain each one separately. The performance of a single computer
has certain limits imposed by physical constraints on the hardware. Not
only that, but after a point, improving the hardware of a single computer
in order to achieve better performance becomes extremely expensive. As
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a result, one can achieve the same performance with 2 or more low-spec
computers as with a single, high-end computer. So, distributed systems
allow us to achieve better performance at a lower cost. Note that
better performance can translate to different things depending on the context,
such as lower latency per request, higher throughput etc.

"Scalability is the capability of a system, network, or process to
handle a growing amount of work, or its potential to be enlarged
to accommodate that growth." [2]

Most of the value derived from software systems in the real world comes from
storing and processing data. As the customer base of a system grows, the
system needs to handle larger amounts of traffic and store larger amounts of
data. However, a system composed of a single computer can only scale up to
a certain point, as explained previously. Building a distributed system
allows us to split and store the data in multiple computers, while
also distributing the processing work amongst them1. As a result of
this, we are capable of scaling our systems to sizes that would not even be
imaginable with a single-computer system.

In the context of software systems, availability is the probability that a
system will work as required when required during the period of a mission.
Note that nowadays most of the online services are required to operate all
the time (known also as 24/7 service), which makes this a huge challenge.
So, when a service states that it has 5 nines of availability, this means that
it operates normally for 99.999% of the time. This implies that it’s allowed
to be down for up to 5 minutes a year, to satisfy this guarantee. Thinking
about how unreliable hardware can be, one can easily understand how big
an undertaking this is. Of course, using a single computer, it would be
infeasible to provide this kind of guarantees. One of the mechanisms
that are widely used to achieve higher availability is redundancy,
which means storing data into multiple, redundant computers. So,
when one of them fails, we can easily and quickly switch to another one,
preventing our customers from experiencing this failure. Given that data are
stored now in multiple computers, we end up with a distributed system!

Leveraging a distributed system we can get all of the above benefits. However,
as we will see later on, there is a tension between them and several other

1The approach of scaling a system by adding resources (memory, CPU, disk) to a single
node is also referred to as vertical scaling, while the approach of scaling by adding more
nodes to the system is referred to as horizontal scaling.
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properties. So, in most of the cases we have to make a trade-off. To do this,
we need to understand the basic constraints and limitations of distributed
systems, which is the goal of the first part of this book.

The fallacies of distributed computing

Distributed systems are subject to many more constraints, when compared
to software systems that run in a single computer. As a result, developing
software for distributed systems is also very different. However, people that
are new to distributed systems make assumptions, based on their experience
developing software for systems that run on a single computer. Of course,
this creates a lot of problems down the road for the systems they build. In
an effort to eliminate this confusion and help people build better systems, L
Peter Deutsch and others at Sun Microsystems created a collection of these
false assumptions, which is now known as the fallacies of distributed
computing2. These are the following:

1. The network is reliable.[3][4]
2. Latency is zero.
3. Bandwidth is infinite.
4. The network is secure.
5. Topology doesn’t change.
6. There is one administrator.
7. Transport cost is zero.
8. The network is homogeneous.

We will focus on those that are mostly relevant to this book here: 1, 2 and 3.
The first fallacy is sometimes enforced by abstractions provided to developers
from various technologies and protocols. Even though protocols, like TCP,
can make us believe that network is reliable and never fails, this is just
an illusion. We should understand that network connections are also built
on top of hardware that will also fail at some point and we should design
our systems accordingly. The second assumption is also enforced nowadays
by libraries, which attempt to model remote procedure calls as local calls,

2See: https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
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such as gRPC3 or Thrift4. We should always keep in mind that there is a
difference of several orders of magnitude in latency between a call to a remote
system and a local memory access (from milliseconds to nanoseconds). This
is getting even worse, when we are talking about calls between datacenters in
different continents, so this is another thing to keep in mind when deciding
about how we want to geo-distribute our system. The third one is getting
weaker nowadays, since there have been significant improvements in the
bandwidth that can be achieved during the last decades. Still, even though
we can build high-bandwidth connections in our own datacenter, this does
not mean that we will be able to use all of it, if our traffic needs to cross the
Internet. This is an important consideration to keep in mind, when making
decisions about the topology of our distributed system and when requests
will have to travel through the Internet.

There’s one more fallacy that’s not included in the above set, but it’s still
very common amongst people new to distributed systems and can also create
a lot of confusion. If we were to follow the same style as above, we would
probably phrase it in the following way:

"Distributed systems have a global clock, which can be used to
identify when events happen"

This assumption can be quite deceiving, since it’s somewhat intuitive and
holds true when working in systems that are not distributed. For instance,
an application that runs in a single computer can use the computer’s local
clock in order to decide when events happen and what’s the order between
them. Nonetheless, that’s not true in a distributed system, where every node
in the system has its own local clock, which runs at a different rate from the
other ones. There are ways to try and keep the clocks in sync, but some of
them are very expensive and do not eliminate these differences completely.
This limitation is again bound by physical laws5. An example of such an
approach is the TrueTime API that was built by Google [5], which exposes
explicitly the clock uncertainty as a first-class citizen. However, as we will
see in the next chapters of the book, when one is mainly interested in cause
and effects, there are other ways to reason about time using logical clocks

3See: https://grpc.io/
4See: https://thrift.apache.org/
5See: https://en.wikipedia.org/wiki/Time_dilation

https://grpc.io/
https://thrift.apache.org/
https://en.wikipedia.org/wiki/Time_dilation
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instead.

Why distributed systems are hard

In general, distributed systems are hard to design, build and reason about,
thus increasing the risk of error. This will become more evident later in the
book while exploring some algorithms that solve fundamental problems that
emerge in distributed systems. It’s worth questioning: why are distributed
systems so hard? The answer to this question can help us understand what
are the main properties that make distributed systems challenging, thus
eliminating our blind spots and providing some guidance on what are some
of the aspects we should be paying attention to.

The main properties of distributed systems that make them challenging to
reason about are the following:

• network asynchrony
• partial failures
• concurrency

Network asynchrony is a property of communication networks that cannot
provide strong guarantees around delivery of events, e.g. a maximum amount
of time required for a message to be delivered. This can create a lot of
counter-intuitive behaviours that would not be present in non-distributed
systems. For instance, this is in contrast to memory operations that can
provide much stricter guarantees6. For instance, in a distributed system
messages might take extremely long to be delivered or they might be delivered
out of order.

Partial failures are cases where only some components of a distributed
system fail. This behaviour can come in contrast to certain kind of applica-
tions deployed in a single server that work under the assumption that either
the whole server has crashed or everything is working fine. It introduces
significant complexity when there is a requirement for atomicity across com-
ponents in a distributed system, i.e. we need to ensure that an operation is
either applied to all the nodes of a system or to none of them. The chapter
about distributed transactions analyses this problem.

Concurrency is execution of multiple computations happening at the same
6See: https://en.wikipedia.org/wiki/CAS_latency

https://en.wikipedia.org/wiki/CAS_latency
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time and potentially on the same piece of data interleaved with each other.
This introduces additional complexity, since these different computations can
interfere with each other and create unexpected behaviours. This is again in
contrast to simplistic applications with no concurrency, where the program
is expected to run in the order defined by the sequence of commands in the
source code. The various types of problematic behaviours that can arise from
concurrency are explained in the chapter that talks about isolation later in
the book.

As explained, these 3 properties are the major contributors of complexity in
the field of distributed systems. As a result, it will be useful to keep them in
mind during the rest of the book and when building distributed systems in
real life so that you can anticipate edge cases and handle them appropriately.

Correctness in distributed systems

The correctness of a system can be defined in terms of the properties it must
satisfy. These properties can be of the following types:

• Safety properties
• Liveness properties

A safety property defines something that must never happen in a correct
system, while a liveness property defines something that must eventually
happen in a correct system. As an example, considering the correctness
properties of an oven, we could say that the property of "the oven not
exceeding a maximum temperature threshold" is a safety property. The
property of "the oven eventually reaching the temperature we specified via
the button" is a liveness property. Similar to this example, in distributed
systems, it’s usually more important to make sure that the system satisfies the
safety properties than the liveness ones. Throughout this book, it will become
clear that there is an inherent tension between safety and liveness properties.
Actually, as we will see later in the book, there are some problems, where
it’s physically impossible to satisfy both kinds of properties, so compromises
are made for some liveness properties in order to maintain safety.
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System models

Real-life distributed systems can differ drastically in many dimensions, de-
pending on the network where they are deployed, the hardware they are
running on etc. Thus, we need a common framework so that we can solve
problems in a generic way without having to repeat the reasoning for all the
different variations of these systems. In order to do this, we can create a
model of a distributed system by defining several properties that it must
satisfy. Then, if we prove an algorithm is correct for this model, we can
be sure that it will also be correct for all the systems that satisfy these
properties.

The main properties that are of interest in a distributed system have to do
with:

• how the various nodes of a distributed system interact with each other
• how a node of a distributed system can fail

Depending on the nature of communication, we have 2 main categories of
systems: synchronous and asynchronous systems. A synchronous system
is one, where each node has an accurate clock and there is a known upper
bound on message transmission delay and processing time. As a result, the
execution is split into rounds so that every node can send a message to
another node, the messages are delivered and every node computes based on
the messages just received, all nodes running in lock-step. An asynchronous
system is one, where there is no fixed upper bound on how long it takes for
a message to be delivered or how much time elapses between consecutive
steps of a node. The nodes of the system do not have a common notion of
time and thus run in independent rates. The challenges arising from network
asynchrony have already been discussed previously. So, it should be clear
by now that the first model is much easier to describe, program and reason
about. However, the second model is closer to real-life distributed systems,
such as the Internet, where we cannot have control over all the components
involved and there are very limited guarantees on the time it will take for a
message to be sent between two places. As a result, most of the algorithms
we will be looking at this book assume an asynchronous system model.

There are also several different types of failure. The most basic categories
are:

• Fail-stop: A node halts and remains halted permanently. Other nodes
can detect that the node has failed (i.e. by communicating with it).
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• Crash: A node halts and remains halted, but it halts in a silent way.
So, other nodes may not be able to detect this state (i.e. they can only
assume it has failed on the basis of not being able to communicate
with it).

• Omission: A node fails to respond to incoming requests.
• Byzantine: A node exhibits arbitrary behavior: it may transmit

arbitrary messages at arbitrary times, it may stop or take an incorrect
step.

Byzantine failures can be exhibited, when a node does not behave according to
the specified protocol/algorithm, i.e. because the node has been compromised
by a malicious actor or because of a software bug. Coping with these failures
introduces significant complexity to the resulting solutions. At the same
time, most distributed systems in companies are deployed in environments
that are assumed to be private and secure. Fail-stop failures are the simplest
and the most convenient ones from the perspective of someone that builds
distributed systems. However, they are also not very realistic, since there
are cases in real-life systems where it’s not easy to identify whether another
node has crashed or not. As a result, most of the algorithms analysed in this
book work under the assumption of crash failures.

The tale of exactly-once semantics

As described in the beginning of the book, the various nodes of a distributed
system communicate with each other by exchanging messages. Given that
the network is not reliable, these messages might get lost. Of course, to cope
with this, nodes can retry sending them hoping that the network will recover
at some point and deliver the message. However, this means that messages
might be delivered multiple times, as shown in Figure 1.2, since the sender
can’t know what really happened.

This duplicate delivery of a message can create disastrous side-effects. For
instance, think what would happen if that message is supposed to signal
transfer of money between 2 bank accounts as part of a purchase; a customer
might be charged twice for a product. To handle scenarios like this, there
are multiple approaches to ensure that the processing of a message will only
be done once, even though it might be delivered multiple times.

One approach is using idempotent operations. Idempotent is an operation that
can be applied multiple times without changing the result beyond the initial
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Figure 1.2: Intricacies of a non-reliable network in distributed systems
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application. An example of an idempotent operation is adding a value in a set
of values. Even if this operation is applied multiple times, the applications
that follow the first one will have no effect, since the value will already
have been added in the set. Of course, this is under the assumption that
other operations cannot remove values from the set. Otherwise, the retried
operation might add a value that had been removed in the meanwhile. On
the contrary, an example of a non-idempotent operation would be increasing
a counter by one, which has additional side-effects every time it’s applied.
By making use of idempotent operations, we can have a guarantee that even
if a message is delivered multiple times and the operation is repeated, the
end result will be the same.

However, as demonstrated previously idempotent operations commonly im-
pose tight constraints on the system. So, in many cases we cannot build our
system, so that all operations are idempotent by nature. In these cases, we
can use a de-duplication approach, where we give every message a unique
identifier and every retried message contains the same identifier as the orig-
inal. In this way, the recipient can remember the set of identifiers it has
received and executed already and avoid executing operations that have
already been executed. It is important to note that in order to do this, one
must have control on both sides of the system (sender and receiver). This is
due to the fact that the ID generation is done on the sender side, but the
deduplication process is done on the receiver side. As an example, imagine
a scenario where an application is sending emails as part of an operation.
Sending an e-mail is not an idempotent operation, so if the e-mail protocol
does not support de-duplication on the receiver side, then we cannot be
absolutely sure that every e-mail is shown exactly once to the recipient.

When thinking about exactly-once semantics, it’s useful to distinguish be-
tween the notions of delivery and processing. In the context of this discussion,
let’s consider delivery being the arrival of the message at the destination
node at the hardware level. Then, we consider processing being the handling
of this message from the software application layer of the node. In most
cases, what we really care about is how many times a message is processed,
not how many times it has been delivered. For instance, in our previous
e-mail example, we are mainly interested in whether the application will
display the same e-mail twice, not whether it will receive it twice. As the
previous examples demonstrated, it’s impossible to have exactly-once
delivery in a distributed system. It’s still sometimes possible though to
have exactly-once processing. With all that said, it’s important to un-
derstand the difference between these 2 notions and make clear what you
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are referring to, when you are talking about exactly-once semantics.

Also, as a last note, it’s easy to see that at-most-once delivery semantics and
at-least-once delivery semantics can be trivially implemented. The former can
be achieved by sending every message only one time no matter what happens,
while the latter one can be achieved by sending a message continuously, until
we get an acknowledgement from the recipient.

Failure in the world of distributed systems

It is also useful to understand that it is very difficult to identify failure
because of all the characteristics of a distributed system described so far.
The asynchronous nature of the network in a distributed system can make
it very hard to differentiate between a node that has crashed and a node
that is just really slow to respond to requests. The main mechanism used
to detect failures in a distributed systems are timeouts. Since messages
can get infinitely delayed in an asynchronous network, timeouts impose an
artificial upper bound on these delays. As a result, when a node is slower
than this bound, we can assume that the node has failed. This is useful,
since otherwise the system might be blocked eternally waiting for nodes that
have crashed under the assumption that they might just be extremely slow.

However, this timeout does not represent an actual limit, so it creates the
following trade-off. Selecting a smaller value for this timeout means that
our system will waste less time waiting for nodes that have crashed. At the
same time, the system might be declaring dead some nodes that have not
crashed, but they are just being a bit slower than expected. On the other
hand, selecting a larger value for this timeout means that the system will be
more lenient with slow nodes. However, it also implies that the system will
be slower in identifying crashed nodes, thus wasting time waiting for them
in some cases. This is illustrated in Figure 1.3.

In fact, this is a very important problem in the field of distributed systems.
The component of a node that is used to identify other nodes that have failed
is called a failure detector. As we explained previously, this component
is very important for various algorithms that need to make progress in the
presence of failures. There has been extensive research about failure detectors
[6]. The different categories of failure detectors are distinguished by 2 basic
properties that reflect the aforementioned trade-off: completeness and accu-
racy. Completeness corresponds to the percentage of crashed nodes a failure
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Figure 1.3: Trade-offs in failure detection
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detector succeeded in identifying in a certain period. Accuracy corresponds
to the number of mistakes a failure detector made in a certain period. A
perfect failure detector is one that is characterised by the strongest form of
completeness and accuracy, namely one that can successfully detect every
faulty process without ever thinking a node has crashed before it actually
crashes. As expected, it is impossible to build a perfect failure detector in
purely asynchronous systems. Still, even imperfect failure detectors can be
used to solve difficult problems, such as the problem of consensus which is
described later.

Stateful and Stateless systems

We could say that a system can belong in one of the 2 following categories:

• stateless systems
• stateful systems

A stateless system is one that maintains no state of what has happened in
the past and is capable of performing its capabilities, purely based on the
inputs provided to it. For instance, a contrived stateless system is one that
receives a set of numbers as input, calculates the maximum of them and
returns it as the result. Note that these inputs can be direct or indirect.
Direct inputs are those included in the request, while indirect inputs are
those potentially received from other systems to fullfil the request. For
instance, imagine a service that calculates the price for a specific product by
retrieving the initial price for it and any currently available discounts from
some other services and then performing the necessary calculations with
this data. This service would still be stateless. On the other hand, stateful
systems are responsible for maintaining and mutating some state and their
results depend on this state. As an example, imagine a system that stores
the age of all the employees of a company and can be asked for the employee
with the maximum age. This system is stateful, since the result depends on
the employees we’ve registered so far in the system.

There are some interesting observations to be made about these 2 types of
systems:

• Stateful systems can be really useful in real-life, since computers are
much more capable in storing and processing data than humans.



CHAPTER 1. INTRODUCTION 16

• Maintaining state comes with additional complexity, such as deciding
what’s the most efficient way to store it and process it, how to perform
back-ups etc.

• As a result, it’s usually wise to create an architecture that contains
clear boundaries between stateful components (which are performing
business capabilities) and stateless components (which are responsible
for handling data).

• Last and most relevant to this book, it’s much easier to design, build
and scale distributed systems that are stateless when compared to
stateful ones. The main reason for this is that all the nodes (e.g.
servers) of a stateless system are considered to be identical. This makes
it a lot easier to balance traffic between them and scale by adding
or removing servers. However, stateful systems present many more
challenges, since different nodes can hold different pieces of data, thus
requiring additional work to direct traffic to the right place and ensure
each instance is in sync with the other ones.

As a result, some of the book’s examples might include stateless systems,
but most of the problems we will cover in this book are present mostly in
stateful systems.



Chapter 2

Basic concepts and theorems

Partitioning

As we described previously, one of the major benefits of distributed systems
is scalability, allowing us to store and process datasets much larger than
what one could do with a single machine. One of the primary mechanisms
of achieving scalability, is called partitioning. Partitioning is the process
of splitting a dataset into multiple, smaller datasets and then assigning
the responsibility of storing and processing them to different nodes of a
distributed system. This allows us to increase the size of the data our system
can handle, by adding more nodes to the system.

There are 2 different variations of partitioning: vertical partitioning and
horizontal partitioning (also called sharding). The terms vertical and hori-
zontal originate from the era of relational databases, which established the
notion of a tabular view of data.1 In this view, data consist of rows and
columns, where a row is a different entry in the dataset and each column is
a different attribute for every entry. Figure 2.1 contains a visual depiction of
the difference between these 2 approaches.

Vertical partitioning involves splitting a table into multiple tables with fewer
columns and using additional tables to store columns that serve the purpose
of relating rows across tables (commonly referred to as a join operation).
These different tables can then be stored in different nodes. Normalization2

1See: https://en.wikipedia.org/wiki/Relational_model
2See: https://en.wikipedia.org/wiki/Database_normalization
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Figure 2.1: Vertical and Horizontal Partitioning

is one way to perform vertical partitioning, but general vertical partitioning
can go far beyond that, splitting columns, even when they are normalized.

On the other hand, horizontal partitioning involves splitting a table into
multiple, smaller tables, where each of those tables contain a percentage of
the rows of the initial table. These different sub-tables can then be stored
in different nodes. There are multiple strategies for performing this split,
as we will see later on. A simplistic approach is an alphabetical split. For
instance, in a table containing the students of a school, we could partition
horizontally, using the surname of the students, as shown in Figure 2.2.

Partitioning helps with allowing a system to handle larger datasets more
efficiently, but it also introduces some limitations. In a vertically partitioned
system, requests that need to combine data from different tables (i.e. join
operations) become less efficient, because these requests might now have
to access data from multiple nodes. In a horizontally partitioned system,
this is usually avoided, because all the data for each row is located in the
same node. However, it can happen for requests that are searching for a
range of rows and these rows belong to multiple nodes. Another important
implication of horizontal partitioning is the potential for loss of transactional
semantics. When storing data in a single machine, it’s easy to perform
multiple operations in an atomic way, so that either all of them succeed or
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Figure 2.2: Horizontal Partitioning using alphabetical order

none of them succeeds, but this is much harder to achieve in a distributed
system (as we will see in the chapter about distributed transactions). As
a result, when partitioning data horizontally, it’s much harder to perform
atomic operations over data that reside in different nodes. This is a common
theme in distributed systems; there’s no silver bullet, one has to make
trade-offs in order to achieve a desired property.

Vertical partitioning is mainly a data modelling practice, which can be
performed by the engineers designing a system, sometimes independently of
the storage systems that will be used. However, horizontal partitioning is
commonly provided as a feature of distributed databases, so it’s important for
engineers to know how it works under the hood in order to make proper use
of these systems. As a result, we will focus mostly on horizontal partitioning
in this book.

Algorithms for horizontal partitioning

There are a lot of different algorithms for performing horizontal partitioning.
In this section, we will study some of these algorithms, discussing the
advantages and drawbacks of each one.

Range partitioning is a technique, where a dataset is split into ranges,
according to the value of a specific attribute. Each range is then stored in a
separate node. The case we described previously with the alphabetical split
is an example of range partitioning. Of course, the system should store and
maintain a list of all these ranges, along with a mapping, indicating which
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node stores a specific range. In this way, when the system is receiving a
request for a specific value (or a range of values), it consults this mapping
to identify to which node (or nodes, respectively) the request should be
redirected.

The advantages of this technique are:

• its simplicity and ease of implementation.
• the ability to perform range queries, using the value that is used as the

partitioning key.
• a good performance for range queries using the partitioning key, when

the queried range is small and resides in a single node.
• easy and efficient way to adjust the ranges (re-partition), since one

range can be increased or decreased, exchanging data only between 2
nodes.

Some of its disadvantages are:

• the inability to perform range queries, using other keys than the
partitioning key.

• a bad performance for range queries using the partitioning key, when
the queried range is big and resides in multiple nodes.

• an uneven distribution of the traffic or the data, causing some nodes to
be overloaded. For example, some letters are more frequent as initial
letters in surnames,3 which means that some nodes might have to store
more data and process more requests.

Some systems that leverage a range partitioning technique are Google’s
BigTable [7] and Apache HBase.4

Hash partitioning is a technique, where a hash function is applied to a
specific attribute of each row, resulting in a number that determines which
partition (and thus node) this row belongs to. For the sake of simplicity, let’s
assume we have one partition per node (as in the previous example) and a
hash function that returns an integer. If we have n number of nodes in our
system and trying to identify which node a student record with a surname s
is located at, then we could calculate it using the formula hash(s) mod n.
This mapping process needs to be done both when writing a new record and
when receiving a request to find a record for a specific value of this attribute.

3See: http://surnamestudies.org.uk/teaching/micro.htm
4See: https://hbase.apache.org/
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The advantages of this technique are:

• the ability to calculate the partitioning mapping at runtime, without
needing to store and maintain the mapping. This has benefits both
in terms of data storage needs and performance (since no additional
request is needed to find the mapping).

• a bigger chance of the hash function distributing the data more uni-
formly across the nodes of our system, thus preventing some nodes
from being overloaded.

Some disadvantages of this technique are:

• the inability to perform range queries at all (even for the attribute used
as a partitioning key), without storing additional data or querying all
the nodes.

• adding/removing nodes from the systems causes re-partitioning, which
results in significant movement of data across all nodes of the system.

Consistent hashing is a partitioning technique, having very similar char-
acteristics to the previous one, but solving the problem of increased data
movement during re-partitioning. The way it works is the following: each
node in the system is randomly assigned an integer in a range [0, L], called
ring (i.e. [0, 360]). Then, a record with a value s for the attribute used
as partitioning key is located to the node that is the next one after the
point hash(s) mod L in the ring. As a result, when a new node is added to
the ring, it receives data only from the previous node in the ring, without
any more data needed to be exchanged between any other nodes. In the
same way, when a node is removed from the ring, its data just need to be
transferred to the next node in the ring. For a visual representation of this
behaviour and the difference between these 2 different algorithms, see Figure
2.3.

Some disadvantages of this technique are:

• the potential for non-uniform distribution of the data, because of the
random assignment of the nodes in the ring.

• the potential for creating more imbalanced data distribution as nodes
are added or removed. For example, when a node is removed, its
dataset is not distributed evenly across the system, but it’s transferred
to a single node.

Both of these issues can be mitigated by using the concept of "virtual nodes",
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Figure 2.3: Re-partitioning, when a node (N3) is removed, in hash partitioning
and consistent hashing
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where each physical node is assigned multiple locations (virtual nodes) in
the ring. For more discussion on this concept, feel free to read the Dynamo
paper [8]. Another widely used system that makes use of consistent hashing
is Apache Cassandra [9].

Replication

As we discussed in the previous section, partitioning can improve the scala-
bility and performance of a system, by distributing data and request load
to multiple nodes. However, the introduction mentioned another dimension
that benefits from the usage of a distributed system and that was availability.
This property directly translates to the ability of the system to remain
functional despite failures in parts of it. Replication is the main technique
used in distributed systems in order to increase availability. It consists of
storing the same piece of data in multiple nodes (called replicas), so that if
one of them crashes, data is not lost and requests can be served from the
other nodes in the meanwhile.

However, the benefit of increased availability from replication comes with a
set of additional complications. Replication implies that the system now has
multiple copies of every piece of data, which must be maintained and kept
in sync with each other on every update. Ideally, replication should function
transparently to the end-user (or engineer), creating the illusion that there
is only a single copy of every piece of data. This makes a distributed system
look like a simple, centralised system of a single node, which is much easier
to reason about and develop software around.

Of course, this is not always possible; it might require significant hardware
resources or giving up other desired properties to achieve this ideal. For
instance, engineers are sometimes willing to accept a system that provides
much higher performance, giving occasionally a non-consistent view of the
data as long as this is done only under specific conditions and in a specific
way they can account for, when designing the overall application. As a result
of this, there are 2 main strategies for replication:

• Pessimistic replication: this strategy tries to guarantee from the
beginning that all of the replicas are identical to each other, as if there
was only a single copy of the data all along.

• Optimistic replication (also called lazy replication): this strategy
allows the different replicas to diverge, guaranteeing that they will
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converge again if the system does not receive any updates (also known
as quiesced) for a period of time.

Replication is a very active field in research, so there are many different
algorithms. As an introduction, we will now discuss the 2 main techniques:
single-master replication and multi-master replication.

Single-master replication

Single-master replication is a technique, where a single node amongst the
replicas is designated as master (or primary) and is responsible for receiving
all the updates5. The remaining replicas are commonly referred to as slaves
(or secondaries) and they can only handle read requests. Every time the
master receives an update, it’s responsible for propagating this update to
the other nodes besides executing it locally, ensuring all the replicas will
maintain a consistent view of the data. This propagation of the updates can
be done in 2 ways: either synchronously or asynchronously.

In synchronous replication, the node can reply to the client indicating
the update has been completed, only after having received acknowledgements
from the other replicas that they have also performed the update on their
local storage. This guarantees that after an update has been acknowledged
to a client, the client will be able to view this update in a subsequent read,
no matter which replica it reads from. Furthermore, it provides increased
durability, since the update will not be lost, even if the master crashes
right after acknowledging the update. However, this technique can make
write requests slower, since the master has to wait until responses have been
received from all the replicas.

In asynchronous replication, the node can reply to the client as soon
as it has performed the update in its local storage, without waiting for
responses from the other replicas. This increases performance significantly
for write requests, since the client does not pay the penalty of the network
requests to the other replicas anymore. However, this comes at a cost of
reduced consistency and decreased durability. After a client has received
a response for an update request, he might read older (stale) values in a
subsequent read, if this operation happens in one of the replicas that has not
performed the update yet. On top of that, if the master node crashes right

5This technique is also known as primary-backup replication.
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after acknowledging an update and the "propagation" requests to the other
replicas are lost, then an update that has been acknowledged is eventually
lost. The difference between these 2 techniques is visualised in Figure 2.4.

The main advantages of single-master replication are:

• it’s simple to understand and to implement.
• concurrent operations are serialized in the master node, obviating

the need for more complicated, distributed concurrency protocols. In
general, this property also makes it easier to support transactional
operations.

• it’s quite scalable for workloads that are read-heavy, since capacity for
read requests can be increased, by adding more read replicas.

Its main disadvantages are:

• it’s not very scalable for write-heavy workloads, since the capacity for
writes is determined by the capacity of a single node (the master).

• it imposes an obvious trade-off between performance, durability and
consistency.

• failing over to a slave node, when the master node crashes is not instant,
it might create some downtime and it also introduces risk of errors. In
general, there are two different approaches for performing the failover:
manual or automated. In the manual approach, the operator selects
the new master node and instructs all the nodes accordingly. This is
the safest approach, but it can also incur a significant downtime. The
alternative is an automated approach, where slave nodes detect that
the master node has crashed (e.g. via periodic heartbeats) and attempt
to elect a new master node. This can be faster, but it’s also quite
risky, because there are many different ways in which the nodes can get
confused and arrive to an incorrect state. The chapter about consensus
will be covering in more detail this topic, called leader election.

• even though read capacity can be scaled by adding more slave nodes,
the network bandwidth of the master node can end up being a bot-
tleneck, if there’s a big number of slaves listening for updates. An
interesting variation of single-master replication that mitigates this
problem is a technique, called chain replication, where nodes form a
chain, propagating the updates linearly [10].

Most of the widely used databases, such as PostgreSQL6 or MySQL,7 use
6See: https://www.postgresql.org/
7See: https://www.mysql.com/

https://www.postgresql.org/
https://www.mysql.com/


CHAPTER 2. BASIC CONCEPTS AND THEOREMS 26

Figure 2.4: Synchronous vs asynchronous replication
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a single-master replication technique, supporting both asynchronous and
synchronous replication.

Multi-master replication

As we’ve seen in the previous section, the single-master replication is a
technique, which is easy to implement and operate, it can easily support
transactions and can hide the distributed nature of the underlying system (i.e.
when using synchronous replication). However, it has some limitations in
terms of performance, scalability and availability. As we’ve already discussed,
there are some kinds of applications, where availability and performance is
much more important than data consistency or transactional semantics. A
frequently cited example is that of an e-commerce shopping cart, where the
most important thing is for the customers to be able to access their cart at
all times and be able to add items in a quick and easy way. Compromising
consistency to achieve this is acceptable, as long as there is data reconciliation
at some point. For instance, if 2 replicas diverge because of intermittent
failures, the customer can still resolve any conflicts, during the checkout
process.

Multi-master replication is an alternative replication technique that fa-
vors higher availability and performance over data consistency8. In this
technique, all replicas are considered to be equal and can accept write re-
quests, being also responsible for propagating the data modifications to the
rest of the group. There is a significant difference with the single-master
replication; in multi-master replication, there is no single, master node that
serializes the requests imposing a single order, since write requests are con-
currently handled by all the nodes. This means that nodes might disagree
on what the right order is for some requests. This is usually referred to as a
conflict. In order for the system to remain operational when this happens,
the nodes need to resolve this conflict, agreeing on a single order amongst
the available ones. Figure 2.5 shows an example, where 2 write requests can
potentially result in a conflict, depending on the latency of the propagation
requests between the nodes of the system. In the first diagram, write requests
are processed in the same order in all the nodes, so there is no conflict. In
the second diagram, the write requests are processed in different order in the
various nodes (because of network delays), which results in a conflict. In this

8This technique is also known as multi-primary replication.
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case, a subsequent read request could receive different results, depending on
the node that handles the request, unless we resolve the conflict so that all
the nodes converge again to a single value.

There are many different ways to resolve conflicts, depending on the guaran-
tees the system wants to provide. An important characteristic of different
approaches to resolving conflicts is whether they resolve the conflict eagerly
or lazily. In the first case, the conflict is resolved during the write operation.
In the second case, the write operation proceeds maintaining multiple, al-
ternative versions of the data record and these are eventually resolved to a
single version later on, i.e. during a subsequent read operation. For instance,
some common approaches for conflict resolution are:

• exposing conflict resolution to the clients. In this approach, when there
is a conflict, the multiple available versions are returned to the client,
who selects the right version and returns it to the system, resolving the
conflict. An example of this could be the shopping cart application,
where the customer selects the correct version of his/her cart.

• last-write-wins conflict resolution. In this approach, each node in the
system tags each version with a timestamp, using a local clock. During
a conflict, the version with the latest timestamp is selected. Since there
can’t be a global notion of time, as we’ve discussed, this technique can
lead to some unexpected behaviours, such as write A overriding write
B, even though B happened "as a result" of A.

• conflict resolution using causality tracking algorithms. In this approach,
the system makes use of an algorithm that keeps track of causal
relationships between different requests. When there is a conflict
between 2 writes (A, B) and one is determined to be the cause of the
other one (suppose A is the cause of B), then the resulting write (B) is
retained. However, keep in mind that there can still be writes that are
not causally related (requests that are actually concurrent), where the
system cannot make an easy decision.

We’ll elaborate more on some of these approaches later in the chapter about
time and order.

Quorums in distributed systems

The main pattern we’ve seen so far is writes being performed to all the
replica nodes, while reads are performed to one of them. Ensuring writes
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Figure 2.5: Conflicts in multi-master replication
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are performed to all of them (synchronously) before replying to the client,
we can guarantee that the subsequent reads will have seen all the previous
writes regardless of the node that processes the read operation. However,
this means that availability is quite low for write operations, since failure
of a single node makes the system unable to process writes, until the node
has recovered. Of course, the reverse strategy could be used; writing data
only to the node that is responsible for processing a write operation, but
processing read operations, by reading from all the nodes and returning the
latest value. This would increase significantly the availability of writes, but
it would decrease the availability of reads at the same time.

A useful mechanism in achieving a balance in this trade-off is using quorums.
For instance, in a system of 3 replicas, we could say that writes need to
complete in 2 nodes (also known as a quorum of 2), while reads need to
retrieve data from 2 nodes. In this way, we could be sure that reads will read
the latest value, because at least one of the nodes in the read quorum will be
included in the latest write quorum as well. This is based on the fact that in
a set of 3 elements, 2 subsets of 2 elements must have at least 1 common
element.

This technique was introduced in a past paper [11] as a quorum-based
voting protocol for replica control. In general, in a system that has a
total of V replicas, every read operation should obtain a read quorum of
Vr replicas, while a write operation should obtain a write quorum of Vw
replicas, respectively. The values of these quorums should obey the following
properties:

• Vr + Vw > V / 2
• Vw > V / 2

The first rule ensures that a data item is not read and written by 2 operations
concurrently, as we just described. The second rule ensures that there is at
least one node that will receive both 2 write operations and can impose an
order on them. Essentially, this means 2 write operations from 2 different
operations cannot occur concurrently on the same data item. Both of the
rules together guarantee that the associated distributed database behaves
as a centralized, one-replica database system. What this means exactly will
become more clear in the sections that follow, which provide more formal
definitions of various properties of distributed systems.

The concept of a quorum is really useful in distributed systems that are
composed of multiple nodes. As we will see later in the book, it has been
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used extensively in other areas, like distributed transactions or consensus
protocols. The concept is intentionally introduced early on in the book, so
that it is easier to identify it as a pattern in the following chapters.

Safety guarantees in distributed systems

Since distributed systems involve a lot of complexity, some safety guarantees
are used to ensure that the system will behave in specific expected ways.
This makes it easier for people to reason about a system and any potential
anomalies that can occur, so that they can build proper safeguards to prevent
these anomalies from happening. The main safety guarantees that systems
provide are around the following two properties:

• atomicity
• isolation
• consistency

The concepts of atomicity and isolation originate from database research and
ACID transactions, while by consistency in this book we will mostly refer to
the notion of consistency made popular by the CAP theorem. Thus, before
going any further it would be useful to have a look at these topics first.

It is interesting to observe that each one of these safety guarantees is tightly
related to one of the aforementioned reasons distributed systems are hard.
Achieving atomicity is in a distributed system is challenging because of the
possibility of partial failures. Achieving consistency is challenging because of
the network asynchrony and achieving isolation is also challenging because
of the inherent concurrency of distributed systems.

ACID transactions

ACID is a set of properties of database transactions that are used to provide
guarantees around the expected behaviour of transactions in the event of
errors, power failures etc. More specifically, these properties are:

• Atomicity (A): this property guarantees that a transaction composed
of multiple operations is treated as a single unit. This means that
either all operations of the transaction are executed or none of them is.
This concept of atomicity translates to distributed systems, where the
system might need to execute the same operation in multiple nodes of
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the system in an atomic way, so that the operation is either executed
to all the nodes or to none. This topic will be covered more extensively
in the chapter about distributed transactions.

• Consistency (C): this property guarantees that a transaction can
only transition the database from one valid state to another valid state,
maintaining any database invariants. However, these invariants are
application-specific and defined by every application accordingly. For
example, if an application has a table A with records that refer to
records in a table B through a foreign key relationship9, the database
will prevent a transaction from deleting a record from table A, unless
any records in table B referenced from this record have already been
deleted. Note that this is not the concept of consistency we will be
referring to in the context of distributed systems, that concept will be
presented below.

• Isolation (I): this property guarantees that even though transactions
might be running concurrently and have data dependencies, the end
result will be as if one of them was executing at a time, so that there
was no interference between them. This prevents a large number of
anomalies that will be discussed later.

• Durability (D): this property guarantees that once a transaction has
been committed, it will remain committed even in the case of failure.
In the context of single-node, centralised systems, this usually means
that completed transactions (and their effects) are recorded in non-
volatile storage. In the context of distributed systems, this might mean
that transactions need to be durably stored in multiple nodes, so that
recovery is possible even in the presence of total failures of a node
along with its storage facilities.

The CAP Theorem

The CAP Theorem [12] is one of the most fundamental theorems in the
field of distributed systems, outlining an inherent trade-off in the design of
distributed systems. It states that it’s impossible for a distributed data store
to simultaneously provide more than 2 of the following properties:

• Consistency10: this means that every successful read request will
9See: https://en.wikipedia.org/wiki/Foreign_key

10As implied earlier, the concept of consistency in the CAP theorem is completely
different from the concept of consistency in ACID transactions. The notion of consistency

https://en.wikipedia.org/wiki/Foreign_key
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receive the result of the most recent write request.
• Availability: this means that every request receives a non-error re-

sponse, without any guarantees on whether that reflects the most recent
write request.

• Partition Tolerance: this means that the system can continue to
operate despite an arbitrary number of messages being dropped by the
network between nodes due to a network partition.

It is very important to understand though that partition tolerance is not a
property you can abandon. In a distributed system, there is always the risk
of a network partition. If this happens, then the system needs to make a
decision either to continue operating while compromising data consistency
or stop operating, thus compromising availability. However, there is no such
thing as trading off partition tolerance in order to maintain both consistency
and availability. As a result, what this theorem really states is the following:

"In the presence of a partition, a distributed system can be either
consistent or available."

Let’s attempt to schematically prove this theorem in a simplistic way. As
shown in Figure 2.6, let’s imagine a distributed system consisting of 2 nodes.
This distributed system can act as a plain register, holding the value of a
variable, called X. Now, let’s assume that at some point there is a network
failure between the 2 nodes of the system, resulting in a network partition
between them. A user of the system is performing a write and then a read -
it could also be 2 different users performing the operations. We will examine
the case where each operation is processed by a different node of the system.
In that case, the system has 2 options: it can either fail one of the operations
(breaking the availability property) or it can process both of the operations
returning a stale value from the read (breaking the consistency property).
It cannot process both of the operations successfully, while also ensuring
that the read returns the latest value, which is the one written by the write
operation. The reason is that the results of the write cannot be propagated
from node A to node B due to the network partition.

This theorem is really important, because it has helped establish this basic
limitation that all distributed systems are imposed to. This forced designers
of distributed systems to make explicit trade-offs between availability and
consistency and engineers become aware about these properties and choose
the right system appropriately. When looking at the literature or reading

as presented in the CAP theorem is the one that is more important for distributed systems.
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Figure 2.6: Handling a network partition in a distributed system

documentation of distributed systems, you will notice systems are usually
classified in 2 basic categories, CP and AP, depending on which property
the system violates during a network partition. Sometimes, you might even
find a third category, called CA. As explained previously, there is no such
category for distributed systems and people usually refer either to one of the
other two categories instead or to a non-distributed system, such as a single
node database.

There is another important thing to note about the CAP theorem: this
choice between consistency and availability needs to be made only during
a network partition. At all other times, both of these properties can be
satisfied. However, even during normal operation when no network partition
is present, there’s a different trade-off between latency and consistency. In
order for the system to guarantee data consistency, it will have to essentially
delay write operations until the data have been propagated across the system
successfully, thus taking a latency hit. An example of this trade-off is the
single-master replication scheme we previously described. In this setting, a
synchronous replication approach would favor consistency over latency, while
asynchronous replication would benefit from reduced latency at the cost of
consistency.
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Figure 2.7: Categories of distributed systems according to the CAP theorem

There is actually an extension to the CAP theorem, called the PACELC
theorem, captured in a separate article [13]. This theorem states that:

• in the case of a network partition (P), the system has to choose between
availability (A) and consistency (C)

• but else (E) when the system is operating normally in the absence of
network partitions, the system has to choose between latency (L) and
consistency (C).

As a result, each branch of this theorem creates 2 sub-categories of systems.
The first part of the theorem defines the two categories we have already
seen: AP and CP. The second part defines two new categories: EL and EC.
These sub-categories are combined to form 4 categories in total: AP/EL,
CP/EL, AP/EC, CP/EC. For instance, a system from the AP/EL category
will prioritise availability during a network partition and it will prioritise
latency during normal operation. In most of the cases, systems are designed
with an overarching principle in mind, which is usually either performance
and availability or data consistency. As a result, most of the systems tend to
fall into the categories AP/EL or CP/EC. However, there are still systems
that cannot be strictly classified in one of these categories, since they have
various levers that can be used to tune the system differently when needed.
Still, this theorem serves as a good indicator of the various forces at play in
a distributed system. You can find a table with the categorisation of several
distributed systems along these dimensions in the associated Wikipedia
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Consistency models

In the previous section, we defined consistency as the property that every
successful read request will return the result of the most recent write. In
fact, this was an oversimplification, since there are many different forms of
consistency. In this section, we will introduce the forms that are the most
relevant to the topics of this book.

As with many other things, in order to define what each of these forms really
is, one needs to build a formal model. This is usually called a consistency
model and it defines the set of execution histories12 that are valid in a
system amongst all the possible ones. In layman’s terms, a model defines
formally what behaviours are possible in a distributed system. Consistency
models are extremely useful, because they help us formalise the behaviour
of a system. Systems can then provide guarantees about their behaviour
and software engineers can be confident that the way they use a distributed
system (i.e. a distributed database) will not violate any safety properties
they care about. In essence, software engineers can treat a distributed system
as a black box that provides a set of properties, while remaining unaware
of all the complexity that the system assumes internally in order to provide
these. We say that a consistency model A is stronger than model B, when the
first one allows fewer histories. Alternatively, we could say model A makes
more assumptions or poses more restrictions on the possible behaviours of
the system. Usually, the stronger the consistency model a system satisfies
the easier it is to build an application on top of it, since the developer can
rely on stricter guarantees.

There are many different consistency models in the literature. In the context
of this book, we will focus on the most fundamental ones, which are the
following:

• Linearizability
• Sequential Consistency

11See: https://en.wikipedia.org/wiki/PACELC_theorem
12A history is a collection of operations, including their concurrent structure (i.e. the

order they are interleaved during execution).

https://en.wikipedia.org/wiki/PACELC_theorem
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• Causal Consistency
• Eventual Consistency

A system that supports the consistency model of linearizability[14] is
one, where operations appear to be instantaneous to the external client.
This means that they happen at a specific point from the point the client
invokes the operation to the point the client receives the acknowledgement
by the system the operation has been completed. Furthermore, once an
operation is complete and the acknowledgement has been delivered to the
client, it is visible to all other clients. This implies that if a client C2
invokes a read operation after a client C1 has received the completion of
its write operation, then C2 should see the result of this (or a subsequent)
write operation. This property of operations being "instantaneous" and
"visible" after they are completed seems obvious, right ? However, as we have
discussed previously, there is no such thing as instantaneity in a distributed
system. Figure 2.8 might help you understand why. When thinking about a
distributed system as a single node, it seems obvious that every operation
happens at a specific instant of time and it’s immediately visible to everyone.
However, when thinking about the distributed system as a set of cooperating
nodes, then it becomes clear that this should not be taken for granted. For
instance, the system in the bottom diagram is not linearizable, since T4
> T3, but still the second client won’t observe the read, because it hasn’t
propagated to the node that processes the read operation yet. To relate
this to some of the techniques and principles we’ve discussed previously, the
non-linearizability comes from the use of asynchronous replication. By using
a synchronous replication technique, we could make the system linearizable.
However, that would mean that the first write operation would have to
take longer, until the new value has propagated to the rest of the nodes
(remember the latency-consistency trade-off from the PACELC theorem!).
As a result, one can realise that linearizability is a very powerful consistency
model, which can help us treat complex distributed systems as much simpler,
single-node datastores and reason about our applications more efficiently.
Moreover, leveraging atomic instructions provided by hardware (such as CAS
operations13), one can build more sophisticated logic on top of distributed
systems, such as mutexes, semaphores, counters etc., which would not be
possible under weaker consistency models.

Sequential Consistency is a weaker consistency model, where operations
are allowed to take effect before their invocation or after their completion.

13See: https://en.wikipedia.org/wiki/Compare-and-swap

https://en.wikipedia.org/wiki/Compare-and-swap
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Figure 2.8: Why linearizability is not obvious in a distributed system
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As a result, it provides no real-time guarantees. However, operations from
different clients have to be seen in the same order by all other clients and
operations of every single client preserve the order specified by its program
(in this "global" order). This allows many more histories than linearizability,
but still poses some constraints that can be useful to real-life applications.
For example, in a social networking application, one usually does not really
care what’s the ordering of posts between some of his/her friends, but there’s
still an expectation that posts from a single friend are displayed in the right
order (the one he/she published them at). Following the same logic, one
expects his/her comments in a post to appear in the order that he/she
submitted them. These are all properties that are captured by this model.

In some cases, we don’t even need to preserve this ordering specified by
each client’s program, as long as causally related operations are displayed
in the right order. In our previous example, one could accept comments
from one of his/her friends being displayed in a different order than the one
he/she originally submitted them, as long as every comment is displayed
after the comment it replies to. This would be expected, since there is
a cause-and-effect14 relationship between a comment and the comments
that constitute replies to it. This is the causal consistency model, which
requires that only operations that are causally related need to be seen in the
same order by all the nodes. Thus, unlike sequential consistency, the other
operations that are not causally related can be seen in different orders in the
various clients of the system, also without the need to maintain the order
of each client’s program. Of course, in order to achieve that each operation
needs to contain some information signalling whether it depends on other
operations or not. This does not need to be related to time at all and it
can be an application-specific property, as in the example we previously
described. Causal consistency is one of the weaker forms of consistency, while
still preventing a common class of unintuitive behaviours.

There are still even simpler applications that do not have the notion of a
cause-and-effect and they would benefit from an even simpler consistency
model. For instance, it could be acceptable that the order of operations
can be different between the multiple clients of the system and reads do
not need to return the latest write, as long as the system eventually arrives
at a stable state. In this state, if no more write operations are performed,
read operations will return the same result. This is the model of eventual
consistency. It is one of the weakest forms of consistency, since it does not

14See: https://en.wikipedia.org/wiki/Causality

https://en.wikipedia.org/wiki/Causality
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really provide any guarantees around the perceived order of operations or
the final state the system converges to. It can still be a useful model for
some applications, which do not require stronger assumptions or can detect
and resolve inconsistencies at the application level.

Note that there are many more consistency models, besides the ones we
explained here.15

When explaining the CAP theorem, we encountered the term consistency,
but which of all ?

The C property in the CAP theorem refers to the linearizability model we
previously described. This means it’s impossible to build a system that will
be available during a network partition, while also being linearizable. In
fact, there has been research that shows that even some weaker forms of
consistency, such as sequential consistency, cannot be supported in tandem
with availability under a network partition [15].

This vast number of different consistency models creates a significant amount
of complexity. As we explained previously, modelling consistency is supposed
to help us reason about these systems. However, the explosion of consistency
models can have the opposite effect. The CAP theorem can conceptually
draw a line between all these consistency models and separate them into 2
major categories: strong consistency models and weak consistency models.
Strong consistency models correspond to the C in the CAP theorem and
cannot be supported in systems that need to be available during network
partitions. On the other hand, weak consistency models are the ones that can
be supported, while also preserving availability during a network partition.

Looking at the guarantees provided by several popular distributed systems
nowadays (i.e. Apache Cassandra, DynamoDB etc.), there are 2 models that
are commonly supported. The first one is strong consistency, specifically
linearizability. The second one is weak consistency, specifically eventual
consistency. Most probably, the reasons most of the systems converged to
these 2 models are the following:

• Linearizability was selected amongst the available strong consistency
models, because in order to support a strong consistency model, a
system needs to give up availability, as part of the CAP theorem. It
then seems reasonable to provide the strongest model amongst the

15See: https://en.wikipedia.org/wiki/Consistency_model

https://en.wikipedia.org/wiki/Consistency_model
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available ones, facilitating the work of the software engineers having to
work with it.

• Eventual Consistency was selected amongst the available weak consis-
tency models thanks to its simplicity and performance. Thinking along
the same lines, given the application relinquishes the strict guarantees
of strong consistency for increased performance, it might as well accept
the weakest guarantees possible to get the biggest performance boost
it can. This makes it much easier for people designing and building
applications on top of distributed systems to make a decision, when
deciding which side of the CAP theorem they prefer to build their
application on.

Isolation levels

As mentioned already, the inherent concurrency in distributed systems cre-
ates the potential for anomalies and unexpected behaviours. Specifically,
transactions that are composed of multiple operations and run concurrently
can lead to different results depending on how their operations are interleaved.
As a result, there is still a need for some formal models that define what is
possible and what is not in the behaviour of a system.

These are called isolation levels. We will study the most common ones
here which are the following:

• Serializability
• Repeatable read
• Snapshot Isolation
• Read Committed
• Read Uncommitted

Unlike the consistency models presented in the previous section, some of these
isolation levels do not define what is possible via some formal specification.
Instead, they define what is not possible, i.e. which anomalies are prevented
amongst the ones that are already known. Of course, stronger isolation levels
prevent more anomalies at the cost of performance. Let’s first have a look at
the possible anomalies before examining the various levels.

The origin of the isolation levels above and the associated anomalies was
essentially the ANSI SQL-92 standard[16]. However, the definitions in this
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standard were ambiguous and missed some possible anomalies. Subsequent
research[17] examines more anomalies extensively and attempts a stricter
definition of these levels. The basic parts will be covered in this section, but
feel free to refer to it if you are looking for a deeper analysis.

The anomalies covered here are the following:

• Dirty writes
• Dirty reads
• (Fuzzy) non-repeatable reads
• Phantom reads
• Lost updates
• Read skew
• Write skew

A dirty write occurs when a transaction overwrites a value that has previ-
ously been written by another transaction that is still in-flight and has not
been committed yet. One reason dirty writes are problematic is they can
violate integrity constraints. For example, imagine there are 2 transactions
A and B, where transaction A is running the operations [x=1, y=1] and
transaction B is running the operations [x=2, y=2]. Then, a serial execution
of them would always result in a situation where x and y have the same
value, but in a concurrent execution where dirty writes are possible this is
not necessarily true. An example could be the following execution [x=1,
x=2, y=2, commit B, y=1, commit A] that would result in x=2 and y=1.
Another problem of dirty writes is they make it impossible for the system to
automatically rollback to a previous image of the database. As a result, this
is an anomaly that needs to be prevented in most cases.

A dirty read occurs when a transaction reads a value that has been written
by another transaction that has not been committed yet. This is problematic,
since decisions might be made by the system depending on these values even
though the associated transactions might be rolled back subsequently. Even
in the case where these transactions eventually commit, this can still be
problematic though. An example is the classic scenario of a bank transfer
where the total amount of money should be observed to be the same at all
times. However, if a transaction A is able to read the balance of two accounts
that are involved in a transfer right in the middle of another transaction
B that performs the transfer from account 1 to account 2, then it will look
like as if some money have been lost from account 1. However, there are a
few cases where allowing dirty reads can be useful, if done with care. One
such case is to generate a big aggregate report on a full table, when one
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can tolerate some inaccuracies on the numbers of the report. It can also be
useful when troubleshooting an issue and one wants to inspect the state of
the database in the middle of an ongoing transaction.

A fuzzy or non-repeatable read occurs when a value is retrieved twice
during a transaction (without it being updated in the same transaction) and
the value is different. This can lead to problematic situations similar to the
example presented above for dirty reads. Other cases where this can lead to
problems is if the first read of the value is used for some conditional logic
and the second is used in order to update data. In this case, the transaction
might be acting on stale data.

A phantom read occurs when a transaction does a predicate-based read
and another transaction writes or removes a data item matched by that
predicate while the first transaction is still in flight. If that happens, then
the first transaction might be acting again on stale data or inconsistent
data. For example, let’s say transaction A is running 2 queries to calculate
the maximum and the average age of a specific set of employees. However,
between the 2 queries transaction B is interleaved and inserts a lot of old
employees in this set, thus making transaction A return an average that
is larger than the maximum! Allowing phantom reads can be safe for an
application that is not making use of predicate-based reads, i.e. performing
only reads that select records using a primary key.

A lost update occurs when two transactions read the same value and then
try to update it to two different values. The end result is that one of the two
updates survives, but the process executing the other update is not informed
that its update did not take effect, thus called lost update. For instance,
imagine a warehouse with various controllers that are used to update the
database when new items arrive. The transactions are rather simple, reading
the number of items currently in the warehouse, adding the number of new
items to this number and then storing the result back to the database. This
anomaly could lead to the following problem: transactions A and B read
simultaneously the current inventory size (say 100 items), add the number
of new items to this (say 5 and 10 respectively) and then store this back to
the database. Let’s assume that transaction B was the last one to write, this
means that the final inventory is 110, instead of 115. Thus, 5 new items were
not recorded! See Figure 2.9 for a visualisation of this example. Depending
on the application, it might be safe to allow lost updates in some cases.
For example, consider an application that allows multiple administrators to
update specific parts of an internal website used by employees of a company.
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In this case, lost updates might not be that catastrophic, since employees
can detect any inaccuracies and inform the administrators to correct them
without any serious consequences.

Figure 2.9: Example of a lost update

A read skew occurs when there are integrity constraints between two data
items that seem to be violated because a transaction can only see partial
results of another transaction. For example, let’s imagine an application
that contains a table of persons, where each record represents a person and
contains a list of all the friends of this person. The main integrity constraint
is that friendships are mutual, so if person B is included in person A’s list of
friends, then A must also be included in B’s list. Everytime someone (say
P1) wants to unfriend someone else (say P2), a transaction is executed that
removes P2 from P1’s list and also removes P1 from P2’s list at a single
go. Now, let’s also assume that some other part of the application allows
people to view friends of multiple people at the same time. This is done
by a transaction that reads the friends list of these people. If the second
transaction reads the friends list of P1 before the first transaction has started,
but it reads the friends list of P2 after the second transaction has committed,
then it will notice an integrity violation. P2 will be in P1’s list of friends, but
P1 will not be in P2’s list of friends. Note that this case is not a dirty read,
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since any values written by the first transaction are read only after it has
been committed. See Figure 2.10 for a visualisation of this example. A strict
requirement to prevent read skew is quite rare, as you might have guessed
already. For example, a common application of this type might allow a user
to view the profile of only one person at a time along with his or her friends,
thus not having a requirement for the integrity constraint described above.

Figure 2.10: Example of a read skew

A write skew occurs when two transactions read the same data, but then
modify disjoint sets of data. For example, imagine of an application that
maintains the on-call rota of doctors in a hospital. A table contains one
record for every doctor with a field indicating whether they are oncall. The
application allows a doctor to remove himself/herself from the on-call rota if
another doctor is also registered. This is done via a transaction that reads
the number of doctors that are on-call from this table and if the number is
greater than one, then it updates the record corresponding to this doctor
to not be on-call. Now, let’s look at the problems that can arise from write
skew phenomena. Let’s say two doctors, Alice and Bob, are on-call currently
and they both decide to see if they can remove themselves. Two transactions
running concurrently might read the state of the database, seeing there are
two doctors and removing the associated doctor from being on-call. In the
end, the system ends with no doctors being on-call! See Figure 2.11 for a
visualisation of this example.
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Figure 2.11: Example of a write skew

It must be obvious by now that there are so many different anomalies to
consider. On top of that, different applications manipulate data in different
ways, so one would have to analyse each case separately to see which of those
anomalies could create problems.

Of course, there is one isolation level that prevents all of these anomalies,
the serializable one[18][19]. Similar to the consistency models presented
previously, this level provides a more formal specification of what is possible,
e.g. which execution histories are possible. More specifically, it guarantees
that the result of the execution of concurrent transactions is the same as
that produced by some serial execution of the same transactions. This means
that one can only analyse serial executions for defects. If all the possible
serial executions are safe, then any concurrent execution by a system at the
serializable level will also be safe.

However, serializability has performance costs, since it intentionally reduces
concurrency to guarantee safety. The other less strict levels provide better
performance via increased concurrency at the cost of decreased safety. These
models allow some of the anomalies we described previously. Figure 2.12
contains a table with the most basic isolation levels along with the anomalies
they prevent. As mentioned before, these isolation levels originated from
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the early relational database systems that were not distributed, but they are
applicable in distributed datastores too, as shown later in the book.

Figure 2.12: Isolation levels and prevented anomalies

Consistency and Isolation - Differences and Simi-
larities

It is interesting to observe that isolation levels are not that different from
consistency models. Both of them are essentially constructs that allow us to
express what executions are possible or not possible. In both cases, some
of the models are stricter allowing less executions, thus providing increased
safety at the cost of reduced performance and availability. For instance,
linearizability allows a subset of the executions causal consistency allows,
while serializability also allows a subset of the executions snapshot isolation
does. This strictness relationship can be expressed in a different way, saying
that one model implies another model. For example, the fact that a system
provides linearizability automatically implies that the same system also
provides causal consistency. Note that there are some models that are not
directly comparable, which means neither of them is stricter than the other.

At the same time, consistency models and isolation levels have some dif-
ferences with regards to the characteristics of the allowed and disallowed
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behaviours. A main difference between the consistency models and the
isolation levels presented so far is that the consistency models applied to
single-object operations (e.g. read/write to a single register), while isola-
tion levels applied to multi-object operations (e.g. read & write from/to
multiple rows in a table within a transaction). Looking at the strictest
models in these two groups, linearizability and serializability, there is another
important difference. Linearizability provides real-time guarantees, while
serializability does not. This means that linearizability guarantees that the
effects of an operation took place at some point between the time the client
invoked the operation and the result of the operation was returned to the
client. Serializability only guarantees that the effects of multiple transactions
will be the same as if they run in a serial order, but it does not provide any
guarantee on whether that serial order would be compatible with real-time
order.

Figure 2.13 contains the illustration of an example why real-time guaran-
tees are actually important from an application perspective. Think of an
automated teller machine that can support 2 transactions: getBalance()
and withdraw(amount). The first transaction performs a single operation to
read the balance of an account. The second operation reads the balance of an
account, reduces it by the specified amount and then returns to the client the
specified amount in cash. Let’s also assume this system is serializable. Now,
let’s examine the following scenario: a customer with an initial balance of x
reads his/her balance and then decides to withdraw 20 dollars by executing
a withdraw(20) transaction. After the transaction has been completed and
the money is returned, the customer performs a getBalance() operation to
check the new balance. However, the machine still returns x as the current
balance, instead of x-20. Note that this execution is serializable and the
end result is as if the machine executed first the getBalance() transactions
and then the withdraw(20) transaction in a completely serial order. This
example shows why in some cases serializability is not sufficient in itself.

In fact, there is another model that is a combination of linearizability and
serializability, called strict serializability. This model guarantees that the
result of multiple transactions is equivalent to the result of a serial execution
of them that would also be compatible with the real-time ordering of these
transactions. As a result, transactions appear to execute serially and the
effects of each one of them takes place at some point between its invocation
and its completion.

As illustated before, strict serializability is often a more useful guarantee



CHAPTER 2. BASIC CONCEPTS AND THEOREMS 49

Figure 2.13: Why serializability is not enough sometimes
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than plain serializability. However, in centralized systems providing strict
serializability is simple and as efficient as only providing serializability guaran-
tees. As a result, sometimes systems, such as relational databases, advertise
serializability guarantees, while they actually provide strict serializability.
This is not necessarily true in a distributed database, where providing strict
serializability can be more costly, since additional coordination is required.
Therefore, it is important to understand the difference between these two
guarantees in order to determine which one is needed depending on the
application domain.

All of the models presented so far - and many more that were not presented
in this book for practical reasons - can be organised in a hierarchical tree
according to their strictness and the guarantees they provide. This has
actually been done in previous research [15]. Figure 2.14 contains such a
tree containing only the models presented in this book.

Why all the formalities

The previous chapters spent significant amount of time going through many
different formal models. But why do we need all these complicated, formal,
academic constructs?

As explained before, these constructs help us define different types of proper-
ties in a more precise way. As a result, when designing a system it is easier
to reason about what kind of properties the system needs to satisfy and
which of these models are sufficient to provide the required guarantees. In
many cases, applications are built on top of pre-existing datastores and they
derive most of their properties from these datastores, since most of the data
management is delegated to them. As a consequence, necessary research
needs to be done to identify datastores that can provide the guarantees the
application needs.

Unfortunately, the terminology presented here and the associated models
are not used consistently across the industry making decision making and
comparison of systems a lot harder. For example, there are datastores that
do not state precisely what kind of consistency guarantees their system can
provide or at least these statements are well hidden, while they should be
highlighted as one of the most important things in their documentation. In
some other cases, this kind of documentation exists, but the various levels
presented before are misused leading to a lot of confusion. As mentioned
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Figure 2.14: Hierarchy of consistency
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before, one source of this confusion was the initial ANSI-SQL standard.
For example, the SERIALIZABLE level provided by Oracle 11g, mySQL 5.7
and postgreSQL 9.0 was not truly serializable and was susceptible to some
anomalies.

Understanding the models presented here is a good first step in thinking
more carefully when designing systems to reduce risk for errors. You should
be willing to search the documentation of systems you consider using to
understand what kind of guarantees they provide. Ideally, you should also
be able to read between the lines and identify mistakes or incorrect usages
of terms. This will help you make more informed decisions. Hopefully, it
will also help raise awareness across the industry and encourage vendors of
distributed systems to specify the guarantees their system can provide.
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Chapter 3

Distributed Transactions

One of the most common problems faced when moving from a centralised to
a distributed system is performing some operations across multiple nodes
in an atomic way, what is also known as a distributed transaction. In
this chapter, we will explore all the complexities involved in performing a
distributed transaction, examining several available solutions and the pitfalls
of each one.

What is a distributed transaction

Before diving on the available solutions, let’s first make a tour of transactions,
their properties and what distinguishes a distributed transaction.

A transaction is a unit of work performed in a database system, representing a
change, which can be potentially composed of multiple operations. Database
transactions are an abstraction that has been invented in order to simplify
engineers’ work and relieve them from dealing with all the possible failures,
introduced by the inherent unreliability of hardware.

As described previously, the major guarantees provided by database transac-
tions are usually summed up in the acronym ACID, which stands for:

• Atomicity
• Consistency
• Isolation
• Durability

54
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As we mentioned previously, each transaction TX can be composed of multiple
operations (op1, op2, op3, ...) and multiple transactions TX1, TX2 etc. can
be executed simultaneously in a database. Atomicity is the property that
guarantees that either all of the operations of a transaction will complete
successfully or none of them will take effect. In other words, there are
no situations where the transaction "partially fails", performing only some
of the operations. Consistency ensures that a transaction will transition
the database from a valid state to another valid state, maintaining all the
invariants defined by the application. As an example, a financial application
could define an invariant that states that the balance of every account
should always be positive. The database then ensures that this invariant is
maintained at all times, while executing transactions. Isolation guarantees
that transactions can be executed concurrently without interfering with each
other. Durability guarantees that once a transaction has been committed,
it will remain committed even in the case of a failure system (i.e. power
outage).

Each of those properties transfers a set of responsibilities from the application
to the database, simplifying the development of applications and reducing
the potential errors, because of software bugs or hardware failures. Atomicity
implies that our application will not have to take care of all possible failures
and have conditional logic in order to bring the database back to a consistent
state in the case of a partial failure, rolling back operations that should
not have taken effect. Consistency allows us to state the invariants of
our application in a declarative way, removing redundant code from our
application and allowing the database to perform these checks, when necessary.
Isolation allows our applications to leverage concurrency, serving multiple
requests by executing transactions in parallel, while being certain that the
database will take care to prevent any bugs because of this concurrent
execution. Last but not least, durability guarantees that when the database
has declared a transaction committed, this will be a final declaration that
can’t be reverted, relieving again our application from complicated logic.

The aforementioned aspects of consistency and durability do not require
special treatment in distributed systems and are relatively straightforward, so
there will not be a separate analysis in this book. Consistency is maintained
by many different mechanisms provided by databases, such as constraints, cas-
cades, triggers etc. The application is responsible for defining any constraints
through these mechanisms and the database is responsible for checking these
conditions, while executing transactions, aborting any transactions that vio-
late them. Durability is guaranteed by persisting transactions at non-volatile
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storage when they commit. In distributed systems, this might be a bit more
nuanced, since the system should ensure that results of a transaction are
stored in more than one node, so that the system can keep functioning if a
single node fails. In fact, this would be reasonable, since availability is one of
the main benefits of a distributed system, as we described in the beginning
of this book. This is achieved via replication as described previously.

As we just explained, a database transaction is a quite powerful abstraction,
which can simplify significantly how applications are built. Given the inherent
complexity in distributed systems, one can easily deduce that transactional
semantics can be even more useful in distributed systems. In this case, we
are talking about a distributed transaction, which is a transaction that
takes place in 2 or more different nodes. We could say that there are 2
slightly different variants of distributed transactions. The first variant is one,
where the same piece of data needs to be updated in multiple replicas. This
is the case where the whole database is essentially duplicated in multiple
nodes and a transaction needs to update all of them in an atomic way. The
second variant is one, where different pieces of data residing in different
nodes need to be updated atomically. For instance, a financial application
might be using a partitioned database for the accounts of customers, where
the balance of user A resides in node n1, while the balance of user B resides
in node n2 and we want to transfer some money from user A to user B. This
needs to be done in an atomic way, so that data are not lost (i.e. removed
from user A, but not added in user B, because the transaction failed midway).
The second variant is the most common use of distributed transactions, since
the first variant is mostly tackled via single-master synchronous replication.

The aspects of atomicity and isolation are significantly more complex and
require more things to be taken into consideration in the context of distributed
transactions. For instance, partial failures make it much harder to guarantee
atomicity, while the concurrency and the network asynchrony present in
distributed systems make it quite challenging to preserve isolation between
transactions running in different nodes. Furthermore, they can have far-
reaching implications for the performance and the availability of a distributed
system, as we will see later in this chapter.

For this reason, this book contains dedicated sections for these two aspects,
analysing their characteristics and some techniques that can be used. Note
that some of these techniques are used internally by database systems you
might want to use from of your application to store and access data. This
means that everything might be hidden from you behind a high-level interface
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that allows you to build an application without having to know how the
database provides all these capabilities under the hood. It is still useful
to have a good understanding of these techniques, because you can make
better decisions about which database systems to use. There can also be
cases where you might have to use some of these techniques directly at the
application level to achieve properties that might not be provided by the
database system.

Achieving Isolation

Previous sections have described some potential anomalies from concurrent
transactions that are not properly isolated. Some examples were also provided
that illustrated what the consequences can be in real life from these anomalies.
As explained in that section, in order to be completely protected against any
of these anomalies, the system should be strictly serializable.1 This section
will cover some algorithms that can be used to achieve strict serializability.

As explained in previous chapters, a system that provides serializability
guarantees that the result of any allowed execution of transactions is the
same as that produced by some serial execution2 of the same transactions,
hence the name. You might ask: what does same mean in the previous
sentence? There are two major types of serializability that establish two
different notions of similarity:

• view serializability: a schedule is view equivalent to a serial schedule
with the same transactions, when all the operations from transactions
in the two schedules read and write the same data values ("view" the
same data).

• conflict serializability: a schedule is conflict equivalent to a serial
schedule with the same transactions, when every pair of conflicting
operations between transactions are ordered in the same way in both
schedules.

1Note that this applies to transactions that are composed of multiple operations, as
explained before. In cases where transactions are composed of a single operation, there
is no potential for operations interleaving due to concurrency. In most of these cases,
the system needs to satisfy linearizability or some of the weaker consistency models for
single-object operations.

2In the context of isolation, an execution of multiple transactions that corresponds to
an ordering of the associated operations is also called a shedule.
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It turns out calculating whether a schedule is view serializable is a computa-
tionally very hard problem3, so we will not analyse view serializability further.
However, determining whether a schedule is conflict serializable is a much
easier problem to solve, which is one of the reasons conflict serializability is
widely used. In order to understand conflict serializability, we first have to
define what it means for two operations to be conflicting.

Two operations are conflicting (or conflict) if:

• they belong to different transactions.
• they are on the same data item and at least one of them is a write

operation, where a write operation inserts, modifies or deletes an object.

As a result, we can have three different forms of conflicts:

• a read-write conflict
• a write-read conflict
• a write-write conflict

A trivial way to check if a schedule is conflict serializable would be to calculate
all possible serial schedules, identify conflicting operations in them and check
if their order is the same as in the schedule under examination. As you
might have thought already, this would be computationally heavy, since we
would need to compute all the possible permutations of transactions. A more
practical way of determining whether a schedule is conflict serializable is
through a precedence graph.

A precedence graph is a directed graph, where nodes represent transactions
in a schedule and edges represent conflicts between operations. The edges
in the graph denote the order in which transactions must execute in the
corresponding serial schedule. As a result, a schedule is conflict serializable
if and only if its precedence graph of committed transactions is acyclic. Let’s
look at an example to get some intuition about this rule.

Figure 3.1 contains a schedule of three transactions T1, T2 and T3, where
R(Ii) and W(Ii) represent a read or write operation on item Ii respectively.
As we can see in the diagram, the conflicting operations in this schedule
form a precedence graph with a cycle. This means that this schedule is
not conflict serializable. The cycle between T1 and T2 means that there
must be a serial schedule where T1 executes before T2 and vice-versa, which

3More specifically, it is an NP-complete problem, which means the time required to
solve the problem using any currently known algorithm increases rapidly as the size of the
problem grows.
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is impossible. Figure 3.2 contains a slightly different schedule of the same
transactions that is now conflict serializable, since there are no cycles in the
corresponding precedence graph. Looking at the precedence graph, we can
see the edges only impose the constraints that T1 must be before T2 and
T3 in the corresponding serial schedule. This means that this schedule is
conflict equivalent to both serial schedules T1, T2, T3 and T1, T3, T2.

Figure 3.1: Precedence graph of a non-conflict serializable schedule

The method described above is one way to determine whether a schedule is
serializable after the fact. However, what we really need is a way to generate
a schedule that is serializable ahead of time. The notion of precedence graph
is still very useful. All we need to do is ensure that as we execute operations
in the schedule, no cycle is formed. This can be achieved in two basic ways.
One way is to prevent transactions from making progress when there is a
risk of introducing a conflict that can create a cycle. Another way is to
let transactions execute all their operations and check if committing that
transaction could introduce a cycle. In that case, the transaction can be
aborted and restarted from scratch.

These two approaches lead to the two main mechanisms for concurrency
control:

• Pessimistic concurrency control: this approach blocks a transac-
tion if it’s expected to cause violation of serializability and resumes it
when it is safe to do so. This is usually achieved by having transactions
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Figure 3.2: Precedence graph of a conflict serializable schedule

acquire locks on the data they process to prevent other transactions
from processing the same data concurrently. The name pessimistic
comes from the fact that this approach assumes that the majority of
transactions are expected to conflict with each other, so appropriate
measures are taken to prevent this from causing issues.

• Optimistic concurrency control: this approach delays the checking
of whether a transaction complies with the rules until the end of the
transaction. The transaction is aborted if a commit would violate any
serializability rules and then it can be restarted and re-executed from
the beginning. The name optimistic comes from the fact that this
approach assumes that the majority of transactions are expected to
not have conflicts, so measures are taken only in the rare case that
they do.

The main trade-off between pessimistic and optimistic concurrency control
is between the extra overhead from locking mechanisms and the wasted
computation from aborted transactions. In general, optimistic methods
are expected to perform well in cases where there are not many conflicts
between transactions. This can be the case for workloads with many read-
only transactions and only a few write transactions or in cases where most
of the transactions touch different data. Pessimistic methods incur some
overhead from the use of locks, but they can perform better in workloads
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that contain a lot of transactions that conflict, since they reduce the number
of aborts & restarts, thus reducing wasted effort.

To understand better the mechanics and trade-offs of these two approaches,
we will examine some algorithms from both of these categories in the following
sections.

2-phase locking (2PL)

2-phase locking (2PL) is a pessimistic concurrency control protocol that
makes use of locks to prevent concurrent transactions from interfering. These
locks indicate that a record is being used by a transaction, so that other
transactions can determine whether it is safe to use it or not.

There are 2 basic types of locks used in this protocol:

• Write (exclusive) locks: these locks are acquired when a record is
going to be written (inserted/updated/deleted).

• Read (shared) locks: these locks are acquired when a record is read.

The interaction between these 2 types of locks is the following:

• A read lock does not block a read from another transaction. This is
the reason they are also called shared, because multiple read locks can
be acquired at the same time.

• A read lock blocks a write from another transaction. The other trans-
action will have to wait until the read operation is completed and the
read lock released, then it will have to acquire a write lock and perform
the write operation.

• A write lock blocks both reads and writes from other transactions,
which is also the reason it’s also called exclusive. The other transactions
will have to wait for the write operation to complete and the write lock
to be released, then they will attempt to acquire the proper lock and
proceed.

If a lock blocks another lock, they are called incompatible. Otherwise, they
are called compatible. As a result, the relationships described above can
be visualised in a compatibility matrix, as shown in Figure 3.3. The astute
reader might notice a similarity between this matrix and the definition of
conflicts in conflict serializability. This is not a coincidence, the two-phase
locking protocol makes use of these locks to prevent cycles of these conflicts
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from forming, as described before. Each type of conflict is represented by an
incompatible entry in this matrix.

Figure 3.3: Compatibility of locks in 2PL

In this protocol, transactions acquire and release locks in 2 distinct phases:

• Expanding phase: in this phase, a transaction is allowed to only
acquire locks, but not release any locks.

• Shrinking phase: in this phase, a transaction is allowed to only
release locks, but not acquire any locks.

It’s been implied so far that locks are held per-record. However, it’s im-
portant to note that if the associated database supports operations based
on predicates, there must also be a way to lock ranges of records (predicate
locking), e.g. all the customers of age between 23 and 29. This is in order to
prevent anomalies like phantom reads.

This protocol is proven to only allow serializable executions to happen [20]. A
schedule generated by two-phase locking will be conflict equivalent to a serial
schedule, where transactions are serialized in the order they completed their
expanding phase. There are some slight variations of the protocol that can
provide some additional properties, such as strict two-phase locking (S2PL)
or strong strict two-phase locking (SS2PL).

The locking mechanism introduces the risk for deadlocks, where two trans-
actions might be waiting on each other for the release of a lock thus never
making progress. In general, there are two ways to deal with these deadlocks:

• prevention: prevent the deadlocks from being formed in the first place.
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For example, this can be done if transactions know all the locks they
need in advance and they acquire them in an ordered way. This is
typically done by the application, since many databases support inter-
active transactions and are thus unaware of all the data a transaction
will access.

• detection: detect deadlocks that occur and break them. For example,
this can be achieved by keeping track of which transaction a transaction
waits on, using this information to detect cycles that represent deadlocks
and then forcing one of these transactions to abort. This is typically
done by the database without the application having to do anything
extra.

Optimistic concurrency control (OCC)

Optimistic concurrency control (OCC) is a concurrency control method
that was first proposed in 1981[21], where transactions can access data items
without acquiring locks on them. In this method, transactions execute in
the following three phases:

• begin
• read & modify
• validate & commit/rollback

In the first phase, transactions are assigned a unique timestamp that marks
the beginning of the transaction. During the second phase, transaction
execute their read and write operations tentatively. This means that when an
item is modified, a copy of the item is written to a temporary, local storage
location. A read operation first checks for a copy of the item in this location
and returns this one, if it exists. Otherwise, it performs a regular read
operation from the database. The transaction enters the last phase, when all
operations have executed. During this phase, the transaction checks whether
there are other transactions that have modified the data this transaction
has accessed and have started after this transaction’s start time. If that’s
true, then the transaction is aborted and restarted from the beginning,
acquiring a new timestamp. Otherwise, the transaction can be committed.
The commit of a transaction is performed by copying all the values from write
operations from the local storage to the common database storage that other
transactions access. It’s important to note that the validation checks and the
associated commit operation need to be performed in a single atomic action
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as part of a critical section4. This requires essentially some form of locking
mechanism, so there are various optimisations of this approach that attempt
to reduce the duration of this phase in order to improve performance.

There are different ways to implement the validation logic:

• One way is via version checking, where every data item is marked with
a version number. Every time a transaction accesses an item, it can
keep track of the version number it had at that point. During the
validation phase, the transaction can check the version number is the
same, which would mean that no other transaction has accessed the
item in the meanwhile.

• Another way is by using timestamps assigned to transactions, a tech-
nique also known as timestamp ordering since the timestamp in-
dicates the order in which a transaction must occur, relative to the
other transaction. In this approach, each transaction keeps track of the
items that are accessed by read or write operations, known as the read
set and the write set. During validation, a transaction performs the
following inside a critical section. It records a fresh timestamp, called
the finish timestamp, and iterates over all the transactions that have
been assigned a timestamp between the transaction’s start and finish
timestamp. These are essentially all transactions that have started
after the running transaction and have already committed. For each
of those transactions, the running transaction checks if their write set
intersect with its own read set. If that’s true for any of these transac-
tions, this means that the transaction essentially read a value "from
the future". As a result, the transaction is invalid and must be aborted
and restarted from the beginning with a fresh timestamp. Otherwise,
the transaction is committed and it’s assigned the next timestamp.

If you are interested in more details or optimised versions of this protocol,
reading the original paper would be a very good starting point[21].

4A critical section is some part of a program that can only be executed by only one
process at a time, because it accesses shared resources for which concurrent access can lead
to erroneous behaviour. In this case, this could happen if some other transaction commits
in between the validation and commit of this transaction, which would make the validation
results of the this transaction invalid.
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Multi-version concurrency control (MVCC)

Multiversion Concurrency Control (MVCC) is a technique where
multiple physical versions are maintained for a single logical data item. As
a result, update operations do not overwrite existing records, but they just
write new version of these records. Read operations can then select a specific
version of a record, possibly an older one. This is in contrast with the
previous techniques, where updates are performed in-place and there is a
single record for each data item that can be accessed by read operations. The
original protocol was first proposed in a dissertation in 1978[22], but many
different variations of the original idea have been proposed since then[23][24].
As the name implies, this technique is focused on the multi-version aspect of
storage, so it can be used theoretically with both optimistic and pessimistic
schemes. However, most variations use an optimistic concurrency control
method in order to leverage the multiple versions of an item from transactions
that are running concurrently.

In practice, MVCC is commonly used to implement the snapshot isolation
level. As explained before, Snapshot Isolation (SI) is an isolation level that
essentially guarantees that all reads made in a transaction will see a consistent
snapshot of the database from the point it started and the transaction will
commit successfully if no other transaction has updated the same data since
that snapshot. As a result, it is practically easier to achieve snapshot isolation
using an MVCC technique.

This works in the following way:

• Each transaction is assigned a unique timestamp at the beginning.
• Every entry for a data item contains a version that corresponds to the

timestamp of the transaction that created this new version.
• Every transaction records the following pieces of information during

its beginning: the transaction with the highest timestamp that has
committed so far (let’s call it Ts) and the number of active transactions
that have started but haven’t been commited yet.

• When performing a read operation for an item, a transaction returns
the entry with the latest version that is earlier than Ts and does not
belong to one of the transactions that were active at the beginning of
this transaction. This prevents dirty reads as only committed values
from other transactions can be returned. There is an exception to this
rule: if the transaction has already updated this item, then this value
is returned instead. Fuzzy reads are also prevented, since all the reads
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will return values from the same snapshot and will ignore values from
transactions that committed after this transaction started.

• When performing a write operation for an item, a transaction checks
whether there is an entry for the same item that satisfies one of the
following criteria: its version is higher than this transaction’s timestamp
or its version is lower than this transaction’s timestamp, but this version
belongs to one of the transactions that were active at the beginning
of this transaction. In any of these cases, the transaction is aborted
and can be restarted from scratch with a larger timestamp. In the first
case, if the transaction commmitted, then we would have an entry with
version Tj committed before an entry with version Ti even though Ti
< Tj, which is wrong. In the second case, the transaction is aborted to
prevent a lost update anomaly.

As explained already, this prevents a lot of the anomalies, but it is still not
serializable and some anomalies would still be possible. An example of such
an anomaly that would not be prevented is write skew. Figure 3.4 contains
an example that illustrates how this can happen. In the schedule shown by
this example, none of the transactions sees the versions written by the other
transaction. However, this would not be possible in a serial execution.

Figure 3.4: Write skew in MVCC

Research on this field has resulted in an improved algorithm, called Seri-
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alizable Snapshot Isolation (SSI), which can provide full serializability
[25] and has been integrated in commercial, widely used databases [26]. This
algorithm is still optimistic and just adds some extensions on top of what
has been described above.

The mechanics of the solution are based on a key principle of previous
research that showed that all the non-serializable executions under snapshot
isolation share a common characteristic. This states that in the precedence
graph of any non-serializable execution, there are two rw-dependency edges
which form consecutive edges in a cycle and they involve two transactions
that have been active concurrently, as shown in Figure 3.5. A rw-dependency
is a data dependency between transactions T1 and T2 where T1 reads a
version of an item x and T2 produces a version of item x that is later in the
version order than the version read by T1. This was the case in the example
presented previously in Figure 3.4 too.

Figure 3.5: Dangerous structure in serialization graph for SSI

This approach detects these cases and breaks the cycle when they are about
to happen and it prevents them from being formed, by aborting one of the
involved transactions. In order to do so, it keeps track of the incoming and
outgoing rw-dependency edges of each transaction. If there is a transaction
that has both incoming and outgoing edges, the algorithm aborts one of the
transactions and retries it later.5 So, it is sufficient to maintain two boolean
flags per transaction T.inConflict and T.outConflict denoting whether
there is an incoming and outgoing rw-dependency edge. These flags can be

5Note this can lead to aborts that are false positives, since the algorithm does not
check whether there is a cycle. This is done intentionally to avoid the computational costs
associated with tracking cycles.
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maintained in the following way:

• When a transaction T is performing a read, it is able to detect whether
there is a version of the same item that was written after the trans-
action started, e.g. by another transaction U. This would imply a
rw-dependency edge, so the algorithm can update T.outConflict and
U.inConflict to true.

• However, this will not detect cases where the write happens after the
read. The algorithm uses a different mechanism to detect these cases
too. Every transaction creates a read lock, called SIREAD lock, when
performing a read. As a result, when a transaction performs a write it
can read the existing SIREAD locks and detect concurrent transactions
that have previously read the same item, thus updating accordingly
the same boolean flags. Note that these are a softer form of locks,
since they do not block other transactions from operating, but they
exist mainly to signal data dependencies between them. This means
the algorithm preserves its optimistic nature.

Figure 3.6 shows how this approach would prevent the write skew anomaly
in our previous example. When transaction T2 executes the write operation,
it checks for existing SIREAD locks on item I1. T1 holds such a lock,
so transaction T2 updates its inConflict flag to true. Given both the
inConflict and the outConflict flags for T2 are true at this moment, this
transaction is aborted.

For brevity, this explanation omitted some details of SSI. If you are interested,
have a look at the related papers[25][26].

Achieving atomicity

As explained before, the second challenging aspect of transactions, and
especially distributed transactions, is atomicity. One of the benefits of
grouping operations inside a transaction is the guarantee that either all of
them will be performed or none of them will be performed. As a result,
the application developer does not need to think about scenarios of partial
failures, where the transaction has failed midway after some of the operations
have been performed. Similar to the isolation guarantees, this makes it
easier to develop applications and delegates some of the complexity around
handling these situations to the persistence layer, e.g. to the datastore used
by the application that provides atomicity guarantees.
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Figure 3.6: How write skew is prevented in SSI

Guaranteeing atomicity is hard in general, not only in distributed systems.
The reason is components can fail unexpectedly regardless of whether they
are software or hardware components. Even the simple action of writing some
bytes to a file requires extra work to ensure it will be performed in an atomic
way and the file will not end up in a corrupted state if the disk fails while
executing part of the operation [27]. One common way of achieving atomicity
in this case is by using a technique called journalling or write-ahead logging,
where metadata about the operation are first written to a separate file along
with markers that denote whether an operation has been completed or not.
Based on this data, the system is capable of identifying which operations
were in-progress when a failure happened and drive them to completion either
by undoing their effects and aborting them or by completing the remaining
part and committing them. This approach is used extensively in file systems
and databases.

The issue of atomicity in a distributed system becomes even more complicated,
because components (nodes in this context) are separated by the network
that is slow and unreliable, as explained already. Furthermore, we do not
only need to make sure that an operation is performed atomically in a node,
but in most cases we need to ensure that an operation is performed atomically
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across multiple nodes. This means that the operation needs to take effect
either at all the nodes or at none of them. This problem is also known as
atomic commit6.

In the next sections, we will be looking at how atomicity can be achieved in
distributed settings. Algorithms are discussed in chronological order, so that
the reader can understand what are the pitfalls of each algorithm and how
they were addressed by subsequent ones.

2-phase commit (2PC)

As we’ve described many times so far, in a distributed system with an
unreliable network, just sending a message to the involved nodes would not
be enough for executing a distributed transaction. The node initiating the
transaction would be unable to know whether the other nodes committed
successfully or aborted because of some failure in order to take a final decision
about the result of the transaction. Thinking about that, the simplest idea
is to add another round of messages, checking what was the result on each
node.

This is essentially the 2-phase commit protocol (2PC ) [28][29], which
consists of 2 phases, as described previously, hence the name. The protocol
contains 2 different roles: the coordinator and the participants. Their names
reflect their actual responsibilities in the protocol, with the first being
responsible for coordinating the different phases of the protocol and the
second corresponding to all the nodes that participate in the transaction.
Note that one of the participants could also play the role of the coordinator.
As described, the protocol contains 2 phases:

• The first phase is called the voting phase, where the coordinator sends
the transaction to all the participants. The participants execute the
transaction up to the point where they are supposed to commit.7
Then, they respond to the coordinator with a vote that shows if the

6See: https://en.wikipedia.org/wiki/Atomic_commit
7In some cases, the operations of each transaction are executed separately and before

the voting phase, which starts after all the operations of a transaction have been executed.
Furthermore, agreement protocols like this usually involve some locking protocol as well,
so that other concurrent transactions cannot make participants that have already voted
change their mind on whether they can commit or not. For example, the 2-phase commit
protocol can be combined with the 2-phase locking protocol.

https://en.wikipedia.org/wiki/Atomic_commit
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transaction’s operations were executed successfully (Yes vote) or there
was some error that means the transaction can’t be committed (No
vote).

• The second phase is called the commit phase, where the coordinator
gathers all the votes from the participants. If all the votes were Yes, then
the coordinator messages the participants again with an instruction
to commit the transaction. Otherwise, if at least one vote is No, the
coordinator instructs the participants to abort the transaction. Finally,
the participants reply with an acknowledgement, closing this phase.

The fact that a unanimous positive vote is needed for commit means that the
transaction will either commit to all the participants or it will be aborted
to all of them (atomicity property). The coordinator and the participants
make use of a write-ahead-log, where they persist their decisions during the
various steps, so that they can recover in case of a failure. The coordinator
also uses a timeout, when waiting for the responses from the first phase. If
the timeout expires, the coordinator interprets this timeout as a No vote,
considering the node has failed. On the other hand, the participants do
not apply any timeouts, while waiting for coordinator’s messages since that
could lead to participants reaching different conclusions due to timing issues.
Figure 3.7 shows what this flow looks like.

Since the happy path is straightforward, let’s examine how the protocol
handles various kinds of failures:

• Failure of a participant in the first phase: As we described before, if a
participant fails in the voting phase before replying to the coordinator,
the coordinator will time out waiting and assume a No vote on behalf
of this participant. This means that the protocol will end up aborting
the transaction.

• Failure of a participant in the second phase: In this scenario, a par-
ticipant votes in the first phase, but then fails, before receiving the
message from the coordinator and completing the transaction (either
by commit or abort). In this case, the protocol will conclude without
this node. If this node recovers later on, it will identify that pending
transaction and will communicate with the coordinator to find out
what was the result and conclude it in the same way. So, if the result of
the transaction was successful, any crashed participant will eventually
find out upon recovery and commit it, the protocol does not allow
aborting it unilaterally.8 Thus, atomicity is maintained.

8An astute reader will observe that there is a chance that the participants might fail
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Figure 3.7: 2-phase commit flow
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• Network failures in the same steps of the protocol have similar results to
the ones described previously, since timeouts will make them equivalent
to node failures.

Even though 2-phase commit can handle gracefully all the aforementioned
failures, there’s a single point of failure, the coordinator. Because of the
blocking nature of the protocol, failures of the coordinator at specific stages
of the protocol can bring the whole system to a halt. More specifically, if a
coordinator fails after sending a prepare message to the participants, then
the participants will block waiting for the coordinator to recover in order
to find out what was the outcome of the transaction, so that they commit
or abort it respectively. This means that failures of the coordinator can
decrease availability of the system significantly. Moreover, if the data from
the coordinator’s disk cannot be recovered (e.g. due to disk corruption),
then the result of pending transactions cannot be discovered and manual
intervention might be needed to unblock the protocol.

Despite this, the 2-phase commit has been widely used and a specification
for it has also been released, called the eXtended Architecture (XA)9. In this
specification, each of the participant nodes are referred to as resources and
they must implement the interface of a resource manager. The specification
also defines the concept of a transaction manager, which plays the role of
the coordinator starting, coordinating and ending transactions.

To conclude, the 2PC protocol satisfies the safety property that all partic-
ipants will always arrive at the same decision (atomicity), but it does not
satisfy the liveness property that it will always make progress.

3-phase commit (3PC)

As we described previously, the main bottleneck of the 2-phase commit
protocol was failures of the coordinator leading the system to a blocked state.
Ideally, we would like the participants to be able to take the lead in some

at the point they try to commit the transaction essentially breaking their promise, e.g.
because they are out of disk space. Indeed, this is true, so participants have to make
the minimum work possible as part of the commit phase to avoid this. For example, the
participants can write all the necessary data on disk during the first phase, so that they
can signal a transaction is committed by doing minimal work during the second phase (e.g.
flipping a bit).

9See: https://en.wikipedia.org/wiki/X/Open_XA

https://en.wikipedia.org/wiki/X/Open_XA
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way and continue the execution of the protocol in this case, but this is not
so easy. The main underlying reason is the fact that in the 2nd phase, the
participants are not aware of the state of the other participants (only the
coordinator is), so taking the lead without waiting for the coordinator can
result in breaking the atomicity property. For instance, imagine the following
scenario: in the second phase of the protocol, the coordinator manages to
send a commit (or abort, respectively) message to one of the participants,
but then fails and this participant also fails. If one of the other participants
takes the lead, it will only be able to query the live participants, so it will be
unable to make the right decision without waiting for the failed participant
(or the coordinator) to recover.

This problem could be tackled by splitting the first round into 2 sub-rounds,
where the coordinator first communicates the votes result to the nodes,
waiting for an acknowledgement and then proceeds with the commit/abort
message. In this case, the participants would know what was the result from
the votes and could complete the protocol in case of a coordinator failure
independently. This is essentially the 3-phase commit protocol (3PC )
[30][31]. Wikipedia contains a nice, detailed description of the various stages
of the protocol and a nice visual demonstration10, so we won’t repeat it here,
but feel free to refer to this resource for additional study on the protocol.
The main benefit of this protocol is that the coordinator stops being a single
point of failure. In case of a coordinator failure, the participants are now
able to take over and complete the protocol. A participant taking over can
commit the transaction if it has received a prepare-to-commit, knowing that
all the participants have voted yes. If it has not received a prepare-to-commit,
it can abort the transaction, knowing that no participant has committed,
without all the participants having received a prepare-to-commit message
first.

As a result, it seems that the 3PC protocol increases availability, preventing
the coordinator from being a single point of failure. However, this comes
at the cost of correctness, since the protocol is vulnerable to some kind of
failures, such as network partitions. An example of such a failure case is
shown in Figure 3.8. In this example, a network partition occurs at a point,
where the coordinator has managed to send a prepare-to-commit message
only to some participants, while the coordinator fails right after this point, so
the participants time out and have to complete the protocol on their own. In
this case, the one side of the partition has participants that have received a

10See: https://en.wikipedia.org/wiki/Three-phase_commit_protocol

https://en.wikipedia.org/wiki/Three-phase_commit_protocol
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prepare-to-commit and continue with committing the transaction. However,
the other side of the partition has not received a prepare-to-commit message
and thus unilaterally abort the transaction. This can seem like a failure case
that is very unlikely to happen. However, the consequences are disastrous if
it does happen, since after the network partition is fixed, the system is now
at an inconsistent state, where the atomicity property of the transaction has
been violated.

To conclude, the 3PC protocol satisfies the liveness property that it will
always make progress at the cost of violating the safety property of atomicity.

Figure 3.8: Network partition issues in 3PC
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A quorum-based commit protocol

As we observed in the previous section, the main issue with the 3PC protocol
occurs in the end of the second phase, where a potential network partition
can bring the system to an inconsistent state. This can happen due to the
fact that participants attempt to unblock the protocol, by taking the lead
without having a picture of the overall system, resulting in a split-brain
situation11. Ideally, we would like to be able to cope with this network
partition, but without compromising on the safety of the protocol. This can
be done using a concept we have already introduced in the book, a quorum.

This approach is followed by the quorum-based commit protocol [32].
This protocol is significantly more complex, when compared to the other two
protocols we described previously, so you should study the original paper
carefully, if you want to examine all the possible edge cases. However, we
will attempt to give a high-level overview of the protocol in this section.

As we mentioned before, this protocol leverages the concept of a quorum to
ensure that different sides of a partition do not arrive to conflicting results.
The protocol establishes the concept of a commit quorum (VC) and an abort
quorum (VA). A node can proceed with committing only if a commit quorum
has been formed, while a node can proceed with aborting only if an abort
quorum has been formed. The values of the abort and commit quorums have
to be selected so that the property VA + VC > V holds, where V is the total
number of participants of the transaction. Based on the fact that a node can
be in only one of the two quorums, it’s impossible for both quorums to be
formed in two different sides of the partition, leading in conflicting results.

The protocol is composed of 3 different sub-protocols, used in different cases:

• the commit protocol, which is used when a new transaction starts
• the termination protocol, which is used when there is a network partition
• the merge protocol, which is used when the system recovers from a

network partition

The commit protocol is very similar to the 3PC protocol. The only difference
is that the coordinator is waiting for VC number of acknowledgements in
the end of the third phase to proceed with committing the transaction.
If there is a network partition at this stage, then the coordinator can be
rendered unable to complete the transaction. In this case, the participants

11See: https://en.wikipedia.org/wiki/Split-brain_(computing)

https://en.wikipedia.org/wiki/Split-brain_(computing)
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on each side of a partition will investigate whether they are able to complete
the transaction, using the termination protocol. Initially, a (surrogate)
coordinator will be selected amongst them via leader election. Note that
which leader election algorithm is used is irrelevant and even if multiple
leaders are elected, this does not violate the correctness of the protocol.
The elected coordinator queries the nodes of the partition for their status.
If there is at least one participant that has committed (or aborted), the
coordinator commits (or aborts) the transaction, maintaining the atomicity
property. If there is at least one participant at the prepare-to-commit state
and at least VC participants waiting for the votes result, the coordinator
sends prepare-to-commit to the participants and continues to the next step.
Alternatively, if there’s no participant at the prepare-to-commit state and
at least VA participants waiting for the results vote, the coordinator sends
a prepare-to-abort message. Note that this message does not exist in the
commit protocol, but only in the termination one. The last phase of the
termination protocol waits for acknowledgements and attempts to complete
the transaction in a similar fashion to the commit protocol. The merge
protocol is simple, including a leader election amongst the leaders of the 2
partitions that are merged and then execution of the termination protocol
we described.

Let’s examine what would happen in the network partition example from
the previous section (Figure 3.8). In this case, we had 3 participants (V =
3) and we will assume that the protocol would use quorums of size VA =
2 and VC = 2. As a result, during the network partition, the participant
on the left side of the partition would be unable to form a commit quorum.
On the other hand, the participants on the right side of the partition would
be able to form an abort quorum and they would proceed with aborting
the transaction, assuming no more partitions happen. Later on, when the
network partition recovers, the merge protocol would execute, ensuring that
the participant from the left side of the partition would also abort the
transaction, since the new coordinator would identify at least one node
that has aborted the transaction. Figure 3.9 contains a visualisation of this
execution. An interesting property of the protocol is that one can tune
the values of the quorums VA, VC, thus effectively adjusting the protocol’s
tendency to complete a transaction via commit or abort in the presence of a
partition.

To conclude, the quorum-based commit protocol satisfies the safety property
that all participants will always arrive at the same decision (atomicity). It
does not satisfy the liveness property that it will always make progress, since
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Figure 3.9: Network partition in quorum-based commit
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there are always degenerate, extreme failure cases (e.g. multiple, continuous
and small partitions). However, it’s much more resilient, when compared to
2PC and other protocols and can make progress in the most common types
of failures.

How it all fits together

As described already many times, transactions need to provide some guaran-
tees if applications are to get some benefit out of using them. Distributed
transactions need to provide similar guarantees. Some basic guarantees
commonly used are contained in the ACID acronym that has been analysed
previously. As explained before, consistency and durability do not require
very different treatment in a distributed setting when compared to a cen-
tralised, single-node system. For durability, it’s enough for the data to be
stored in non-volatile storage before being acknowledged to the client. In a
distributed system, it might be better to do this in more than one replicas
before acknowledging, so that the system can survive failures of a single
node. To achieve consistency, the system can just introduce some additional
read & write operations in the transaction’s context that exist to guarantee
application consistency is preserved. These operations might be automati-
cally generated, such as referential integrity contraints from foreign keys or
cascades, or they might be defined by the application e.g. via triggers.

The guarantees of atomicity and isolation are more challenging to preserve
and some of the algorithms that can be used were analysed previously. The
book examined some algorithms that can help preserve isolation across
transactions and some algorithms that can be used to preserve atomicity in a
distributed system. These algorithms must be combined in order to guarantee
all of these properties. Some combinations of these algorithms might be
easier to implement in practice because of their common characteristics. For
example, two-phase locking has very similar characteristics with two-phase
commit and it’s easier to understand how they can be combined. Spanner [5]
is an example of a system that uses a combination of these two techniques
to achieve atomicity and isolation, as explained later in the book.

Looking at the previous algorithms presented, it is not very hard to realise
that some of them introduce either brittleness (e.g. two-phase commit) or
a lot of additional complexity to a system (e.g. quorum-based commit).
The algorithms presented for isolation can be used both in centralised and
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distributed systems. However, their use in a distributed system has several
additional implications. For example, two-phase locking requires use of
distributed locks, which is something that is not trivial to implement in a
distributed system, as explained later in the book. Optimistic techniques,
such as snapshot isolation, will require a lot of data transfer between different
nodes in a distributed system, which will have adverse effects in terms of
performance [33]. As a consequence, using transactions in a distributed
system comes at a higher cost when compared to a centralised system and
systems that do not have a strong need for them can be designed in such a
way that makes it possible to operate safely without them. That is also one
of the reasons why many distributed databases either do not provide full
support for ACID transactions or force the user to explicitly opt in to use
them.

Long-lived transactions & Sagas

As explained previously, achieving complete isolation between transactions
is relatively expensive. The system either has to maintain locks for each
transaction potentially blocking other concurrent transactions from making
progress or it might have to abort some transactions to maintain safety
which leads to some wasted effort. Furthermore, the longer the duration of a
transaction is the bigger the impact of these mechanisms is expected to be
on the overall throughput. There is also a positive feedback cycle in that
using these mechanisms can cause transactions to take longer, which can
increase the impact of these mechanisms.

In fact, there is a specific class of transactions, called long-lived transac-
tions (LLT). These are transactions that are by their nature transactions
that have a longer duration in the order of hours or even days, instead of
milliseconds. This can happen because this transaction is processing a large
amount of data, requires human input to proceed or needs to communicate
with 3rd party systems that are slow. Examples of LLTs are:

• batch jobs that calculate reports over big datasets
• claims at an insurance company, containing various stages that require

human input
• an online order of a product that spans several days from order to

delivery

As a result, running these transactions using the common concurrent mech-
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anisms would degrade performance significantly, since they would need to
hold resources for long periods of time, while not operating on them. What’s
more, sometimes these transactions do not really require full isolation be-
tween each other, but they still need to be atomic, so that consistency is
maintained under partial failures. Thus, researchers came up with a new
concept, the saga[34]. The saga is essentially a sequence of transactions T1,
T2, ..., TN that can be interleaved with other transactions. However, it’s
guaranteed that either all of the transactions will succeed or none of them
will, maintaining the atomicity guarantee. Each transaction Ti is associated
with a so-called compensating transaction Ci, which is executed in case a
rollback is needed.

The concept of saga transactions can be really useful in distributed sys-
tems. As demonstrated in the previous sections, distributed transactions
are generally hard and can only be achieved, by making compromises on
performance and availability. There are cases, where a saga transaction can
be used instead of a distributed transaction, satisfying all of our business
requirements while also keeping our systems loosely coupled and achieving
good availability and performance.

As an example, let’s imagine we are building an e-commerce application,
where every order of a customer is composed of several discrete steps, such
as credit card authorization, checking warehouse inventory, item shipping,
invoice creation & delivery etc. One approach could be to perform a dis-
tributed transaction across all these systems for every order. However, in
this case, failure of a single component (i.e. the payment system) could
potentially bring the whole system to a halt, as we explained previously.
An alternative, leveraging the saga pattern, would be to model the order
operation as a saga operation, consisting of all these sub-transactions, where
each of them is associated with a compensating transaction. For example,
debiting a customer’s bank account could have a compensating transaction
that would give a refund. Then, we can build the order operation as a
sequential execution of these transactions, as shown in Figure 3.10 . In case
any of these transactions fails, then we rollback the transactions that have
been executed, running their corresponding compensating transactions.

There might still be cases where some form of isolation is needed. In the
example above, orders from different customers about the same product
might share some data, which can lead to interference between each other.
For instance, think about the scenario of 2 concurrent orders A and B, where
A has reserved the last item from the warehouse. As a result of this, order
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Figure 3.10: Example of a saga transaction
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B fails at the first step and it’s rejected because of zero inventory. Later
on, order A also fails at the second step because the customer’s card does
not have enough money and the associated compensating transaction is run
returning the reserved item to the warehouse. This would mean that an order
would have been rejected while it could have been processed normally. Of
course, this violation of isolation does not have severe consequences, but in
some cases the consequences might be more serious, e.g. leading to customers
being charged without receiving a product.

In order to prevent these scenarios, some form of isolation can be introduced
at the application layer. This topic has been studied by previous research
that proposed some concrete techniques [35], referred to as countermeasures
to isolation anomalies. Some of these techniques are:

• the use of a semantic lock, which essentially signals that some data
items are currently in process and should be treated differently or not
accessed at all. The final transaction of a saga takes care of releasing
this lock and resetting the data to their normal state.

• the use of commutative updates that have the same effect regardless of
their order of execution. This can help mitigate cases that are otherwise
susceptible to lost update phenomena.

• re-ordering the structure of the saga, so that a transaction called
as a pivot transaction delineates a boundary between transactions
that can fail and those that can’t. In this way, transactions that
can’t fail - but could lead to serious problems if being rolled-back
due to failures of other transactions - can be moved after the pivot
transaction. An example of this is a transaction that increases the
balance of an account. This transaction could have serious consequences
if another concurrent saga reads this increase in the balance, but then
the previous transaction is rolled back. Moving this transaction after
the pivot transaction means that it will never be rolled back, since all
the transactions after the pivot transaction can only succeeed.

These techniques can be applied selectively in cases where they are needed.
However, they introduce significant complexity and move some of the burden
back to the application developer that has to think again about all the
possible failures and design accordingly. These trade-offs need to be taken into
consideration when choosing between using saga transactions or leveraging
transaction capabilities of the underlying datastore.



Chapter 4

Consensus

Amongst all the problems encountered so far in the book, there is a common
trait that characterizes most (if not all) of them. It’s the fact that the various
nodes of a distributed systems try to reach an agreement on a specific thing.
In the case of a distributed transaction, it’s whether a transaction has been
committed or not. In case of a message delivery, it’s whether a message has
been delivered or not. In fact, this underlying property is common in many
more problems in the distributed systems space. As a result, researchers
have formally defined this problem and researched possible solutions, since
these can then be used as a building block for more complicated problems.
This is known as the consensus problem and this chapter of the book is
devoted to it.

Defining consensus

First of all, we need to formally define the problem of consensus. We assume
we have a distributed system, consisting of k nodes (n1, n2, ..., nk), where
each one can propose a different value vi. Consensus is the problem of making
all these nodes agree on a single value v. The following properties must also
be satisfied:

• Termination: Every non-faulty node must eventually decide.
• Agreement: The final decision of every non-faulty node must be

identical.

84
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• Validity: The value that is agreed must have been proposed by one
of the nodes.

Some use-cases of consensus

As explained before, the problem of consensus lies beneath a lot of other
common problems in the distributed systems space. We will now visit some
of them and discuss how they relate to the consensus problem.

A very common problem is leader election, where the nodes that are part
of a distributed system need to elect one node amongst them to act as their
leader, coordinating the operation of the whole system. An example of
this is the single-master replication scheme that was presented previously
in the book. This scheme is based on the fact that one node, designated
as primary, will be responsible for performing operations that update data
and the other nodes, designated as secondaries, will be following up with
the same operations. However, in order to do that the system first needs
to select the primary node, which is a process called leader election. Since,
all the nodes are practically agreeing on a single value, the identity of the
leader, this problem can easily be modelled as a consensus problem.

One more common problem is distributed locking. Most distributed
systems receive multiple concurrent requests and need to perform some
concurrency control to prevent data inconsistencies, because of interference
between these requests. One of these concurrency control methods is locking,
but using locking in the context of a distributed system comes with a lot of
edge-cases, adding a lot of risk. Of course, distributed locking can also be
modelled as a consensus problem, where the nodes of the system agree on a
single value, which is the node that holds the lock.

Another commonly cited problem is atomic broadcast, which is concerned
with allowing a set of nodes to concurrently broadcast messages while ensuring
that all destinations consistently deliver them in the exact same sequence
despite the possible presence of faulty nodes. This problem is also equivalent
to consensus, as also demonstrated in previous research [6][36].

The reason we described these problems and demonstrated how they can
be modelled as a consensus problem is so that you can appreciate the value
of this abstraction and understand that solving the consensus problem can
provide solutions to many more problems.
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FLP impossibility

Researchers have found a lot of different solutions to this problem, but they
have also found important constraints that impose some limitations on the
possible solutions. We should note that it’s extremely useful to know the
limits of the available solutions to a problem and the research community
has benefited massively from this. As a result, this chapter will unfold in a
counter-intuitive way, first explaining these limitations and then discussing
one of the solutions to the problem. In this way, we hope the reader will
be able to gain a better understanding of the problem and will be better
equipped to reason about the solution presented later on.

As explained previously in the book, there are several different system models
with the asynchronous being the one that is really close to real-life distributed
systems. So, it’s been proved that in asynchronous systems, where there can
be at least one faulty node, any possible consensus algorithm will be unable to
terminate, under some scenarios. In other words, there can be no consensus
algorithm that will always satisfy all the aforementioned properties. This
is referred to as the FLP impossibility after the last initials of the authors
of the associated paper[37]. The proof in the paper is quite complicated,
but it’s essentially based on the following 2 parts. First, the fact that it’s
always possible that the initial state of the system is one, where nodes can
reach different decisions depending on the ordering of messages (the so-called
bivalent configuration), as long as there can be at least one faulty node.
Second, from such a state it’s always possible to end up in another bivalent
state, just by introducing delays in some messages.

As a result, it’s impossible to develop a consensus algorithm that will
always be able to terminate successfully in asynchronous systems,
where at least one failure is possible. What we can do instead is develop
algorithms that minimize this possibility of arriving at ambivalent situations.

The Paxos algorithm

Some of the algorithms we have already studied in previous chapters could
arguably be applied as solutions to the consensus problem. For instance,
the 2-phase commit protocol could be used, where the coordinator would
drive the voting process. However, as we have already seen, such a protocol
would have very limited fault-tolerance, since the failure of a single node (the
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coordinator) could bring the whole system to a halt. The obvious next step is
to allow multiple nodes to inherit the role of the coordinator in these failure
cases. This would then mean that there might be multiple masters that might
produce conflicting results. We have already demonstrated this phenomenon
in the chapter about multi-master replication and when explaining the
3-phase commit.

One of the first algorithms that could solve the consensus problem safely
under these failures is called the Paxos algorithm. More specifically, this
algorithm guarantees that the system will come to an agreement on a single
value, tolerating the failure of any number of nodes (potentially all of them),
as long as more than half the nodes are working properly at any time, which
is a significant improvement. Funnily enough, this algorithm was invented by
Leslie Lamport during his attempt to prove this is actually impossible! He
decided to explain the algorithm in terms of a parliamentary procedure used
in an ancient, fictional Greek island, called Paxos. Despite being elegant
and highly entertaining, this first paper[38] was not well received by the
academic community, who found it extremely complicated and could not
discern its applicability in the field of distributed systems. A few years later
and after several successful attempts to use the algorithm in real-life systems,
Leslie decided to publish a second paper[39], explaining the algorithm in
simpler terms and demonstrating how it can be used to build an actual,
highly-available distributed system. A historical residue of all this is the fact
that the Paxos algorithm is regarded as a rather complicated algorithm until
today. Hopefully, this section will help dispel this myth.

The Paxos algorithm defines 3 different roles: the proposers, the acceptors
and the learners. Every node in the system can potentially play multiple
roles. A proposer is responsible for proposing values (potentially received
from clients’ requests) to the acceptors and trying to persuade them to
accept their value in order to arrive at a common decision. An acceptor is
responsible for receiving these proposals and replying with their decision on
whether this value can be chosen or not. Last but not least, the learners
are responsible for learning the outcome of the consensus, storing it (in a
replicated way) and potentially acting on it, by either notifying clients about
the result or performing actions. Figure 4.1 contains a visual overview of
these roles and how they interact with the clients.

The algorithm is split into 2 phases, each of which contains two parts:

• Phase 1 (a): A proposer selects a number n and sends a prepare
request with this number (prepare(n)) to at least a majority of the
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Figure 4.1: An overview of the paxos protocol
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acceptors.
• Phase 1 (b): When receiving a prepare request, an acceptor has the

following options:
– If it has not already responded to another prepare request of a

higher number n, it responds to the request with a promise not
to accept any more proposals that are numbered less than n. It
also returns the highest-numbered proposal it has accepted, if any
(note: the definition of a proposal follows).

– Otherwise, if it has already accepted a prepare request with a
higher number, it rejects this prepare request, ideally giving a
hint to the proposer about the number of that other prepare
request it has already responded to.

• Phase 2 (a): If the proposer receives a response to its prepare(n)
requests from a majority of acceptors, then it sends an accept(n, v)
request to these acceptors for a proposal numbered n with a value v.
The value is selected according to the following logic:

– If any of the acceptors had already accepted another proposal
and included that in its response, then the proposer uses the
value of the highest-numbered proposal among these responses.
Essentially, this means that the proposer attempts to bring the
latest proposal to conclusion.

– Otherwise, if none of the acceptors had accepted any other pro-
posal, then the proposer is free to select any desired value. This
value is usually selected based on the clients’ requests.

• Phase 2 (b): If the acceptor receives an accept(n, v) request for
a proposal numbered n, it accepts the proposal, unless it has already
responded to a prepare(k) request of a higher number (k > n).

Furthermore, as the acceptors accept proposals, they also announce their
acceptance to the learners. When a learner receives an acceptance from a
majority of acceptors, it knows that a value has been chosen. This is the
most basic version of the Paxos protocol. As we mentioned previously, nodes
can play multiple roles for practical reasons and this is usually the case in
real-life systems. As an example, one can observe that the proposers can play
the role of learners as well, since they will be receiving some of these accept
responses anyway, thus minimising traffic and improving the performance of
the system.

During Phase 1 (a) of the protocol, the proposers have to select a proposal
number n. These numbers must be unique in order for the protocol to
maintain its correctness properties. This is so that acceptors are always
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able to compare two prepare messages. This can be achieved in several
ways, but the easiest one is to compose these numbers out of 2 parts, the
one being an integer and the second one being a unique identifier of the
proposer (i.e. the IP address of the node). In this way, proposers can draw
numbers from the same set. As we have insinuated in the beginning of this
section, multiple proposers can initiate concurrent prepare requests. The
proposer that receives a response to its prepare request from a majority of
acceptors is essentially elected as the current (but temporary) leader. As
a result, it can proceed with making a proposal request. The value of this
proposal will be the chosen one, unless a majority of acceptors have failed
(and did not reply to the proposal) or another leader stepped up becoming
the temporary leader in the meanwhile (in which case, the acceptors will
reject this proposal).

The basic ingredient of the Paxos protocol is a concept we have already
seen, namely the quorum. More specifically, the Paxos protocol makes use of
majority quorums. A majority quorum is one that consists of more than half
of the nodes of the system, i.e. at least k+1 nodes in a system of 2k nodes.
The fact that proposers require a majority quorum to reply to their prepare
requests to proceed with a proposal guarantees that there can’t be 2 different
proposers that complete both phases of the protocol concurrently. As a
result, only a single value can be chosen, satisfying the agreement property
of consensus.

Intricacies of Paxos

As we mentioned previously, many people consider the Paxos protocol to
be difficult to understand. One of the reasons for this is the inherent
complexity of the consensus problem, which in turn originates from the
increased concurrency and large state space of distributed systems. This
section will cover some edge cases and how Paxos handles them. Of course,
we will not be able to cover all the possible cases, since that would be a much
bigger undertaking. But, we hope the examples presented in this section will
help you understand the basic parts of the protocol and give you a starting
point for exploring any other cases you might think of. For all of these
examples, we will assume that the nodes play all the roles of the protocol,
thus being proposers, acceptors and learners at the same time, in order to
simplify our explanations. Keep in mind that this a realistic assumption,
since many implementations of the Paxos protocol follow this approach.
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The beginning of this chapter outlined how Paxos can be used to solve the
leader election problem. Nonetheless, Paxos itself needs to elect a leader in
order to reach consensus, which seems like a catch-221. The Paxos protocol
resolves this paradox, by allowing multiple leaders to be elected, thus not
needing to reach consensus for the leader itself. It still has to guarantee
that there will be a single decision, even though multiple nodes might be
proposing different values. Let’s examine how Paxos achieves that and what
are some of the consequences. When a proposer receives a response to a
prepare message from a majority of nodes, it considers itself the (temporary)
leader and proceeds with a proposal. If no other proposer has attempted to
become the leader in the meanwhile, its proposal will be accepted. However,
if another proposer managed to become a leader, the accept requests of the
initial node will be rejected. This prevents multiple values to be chosen by
the proposals of both nodes. This can result in a situation, where proposers
are continuously duelling each other, thus not making any progress, as you
can see in Figure 4.2. There are many ways to avoid getting into this infinite
loop. The most basic one is forcing the proposers to use random delays or
exponential back-off every time they get their accept messages rejected and
have to send a new prepare request. In this way, they give more time to
the node that is currently leading to complete the protocol, by making a
successful proposal, instead of competing.

Another interesting aspect of the Paxos protocol is how it handles partial
failures gracefully, maintaining safety at all times. In this context, by partial
failures we refer to cases, where a node sends a message to multiple nodes (i.e.
accept messages as part of Phase 2.a) and only some of them are delivered
either due to node failures or network issues. As an example, let’s examine an
extreme case, where multiple proposers attempt to propose different values,
but only one of their accept messages gets delivered to the acceptors of the
majority quorum. Figure 4.3 provides a visualisation of the execution of
the protocol to aid comprehension. Every row represents a different round
of the protocol, while the dashed box shows which nodes were included
in the majority quorum of Phase 1. The text inside every node displays
any proposal that has already been accepted in the form (n, v), where n
is the proposal number and v is the value of the proposal. The bold text
represents the values that have been accepted in that round. As you can see,
every proposer manages to deliver an accept message to only one acceptor

1See: https://en.wikipedia.org/wiki/Catch-22_(logic)

https://en.wikipedia.org/wiki/Catch-22_(logic)
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Figure 4.2: The situation of duelling proposers
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at every round. For the first 3 rounds, none of the nodes in the majority
quorum have accepted any value, so proposers are free to propose their
own value. In rounds 4 and 5, proposers have to propose the value of the
highest-numbered proposal that has been accepted by the acceptors included
in Phase’s 1 majority quorum. This is A for round 4 and B for round 5. As
it’s demonstrated for round 6, at this point the behaviour depends partially
on the quorum that will be used. For example, if the next proposer selects
the yellow quorum, value C is going to be proposed, while value B will
be proposed if the green quorum is used instead. However, there is one
important thing to note: as soon as the system recovers from failures and a
proposer manages to get a proposal accepted by a majority quorum, then this
value is chosen and it cannot be changed. The reason is that any subsequent
proposer will need to get a majority quorum for Phase 1 of the protocol.
This majority will have to contain at least 1 node from the majority that has
accepted the aforementioned proposal, which will thus transfer the accepted
proposal to the prospective leader. Furthermore, it’s guaranteed this will be
the highest-numbered proposal, which means any subsequent proposer can
only propagate the chosen value to the acceptors that might not have it yet.

Paxos in real-life

As we have seen so far, the Paxos protocol is a well specified protocol.
However, there are some small details and optimisations that the original
paper could not cover. Some of these topics have been covered in subsequent
papers [40]. This section will cover some of these topics as briefly as possible.

The basic Paxos protocol describes how a distributed system of multiple
nodes can decide on a single value. However, just choosing a single value
would have limited practical applications on its own. In order to be able to
build more useful systems, we need to be able to continuously select values.
This can be achieved by running multiple instances of Paxos, where an
instance is an execution of the protocol that leads to a decision on a single
value. These instances can run independently and in parallel, but they also
have to be numbered. Depending on the functionality needed, there can
be several rules applied, such as not returning the result of an instance to
the client, unless all the previous instances have completed as well. We will
elaborate more on this topic in the next section.

Another common need is the ability to query the current state of the system.
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Figure 4.3: A Paxos execution with partial failures
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Of course, the clients of the system learn the chosen values, so they could keep
track of the state on their side. But, there will always be cases, where some
clients need to retrieve some of the values chosen in the past, i.e. because
they are clients that have just been brought into operation. So, Paxos
should also support read operations that return the decisions of previously
completed instances alongside write operations that start new instances of
the protocol. These read operations have to be routed to the current leader
of the system, which is essentially the node that completed successfully the
last proposal. It’s important to note that this node cannot reply to the client
using its local copy. The reason for this is that another node might have
done a proposal in the meanwhile (becoming the new leader), thus meaning
that the reply will not reflect the latest state of the system.2 As a result,
that node will have to perform a read from a majority of nodes, essentially
seeing any potential new proposal from another node. You should be able to
understand how a majority quorum can guarantee that by now. If not, it
would probably be a good idea to revisit the section about quorums and their
intersection properties. This means that reads can become quite slow, since
they will have to execute in 2 phases. An alternative option that works as
an optimisation is to make use of the so-called master leases [41]. Using this
approach, a node can take a lease, by running a Paxos instance, establishing
a point in time,3 until which it’s guaranteed to be considered the leader and
no other node can challenge him. This means that this node can then serve
read operations locally. However, one has to take clock skew into account in
the implementation of this approach and keep in mind it will be safe only if
there’s an upper bound in the clock skew.

By the same logic, one could argue that electing a leader in every instance of
the Paxos protocol is not as efficient as possible and degrades performance
significantly under normal conditions without many failures. Indeed, that is
true and there is a slightly adjusted implementation of Paxos, called Multi-
Paxos that mitigates this issue [42]. In this approach, the node that has
performed the last successful proposal is considered the current distinguished
proposer. This means that a node can perform a full instance of Paxos
and then it can proceed straight to the second phase for the subsequent
instances, using the same proposal number that has been accepted previously.

2This would mean that the read/write consensus operations would not be linearizable.
Note that in the context of consensus, operations such as proposals are considered single-
object operations. As a result, there is no need for isolation guarantees.

3This point in time is essentially the time of the proposal (a timestamp that can be part
of the proposal’s value) plus a pre-defined time period, which corresponds to the duration
of the lease.
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The rest of the nodes know which node is currently the leader based on
which node made the last successful proposal. They can perform periodic
health checks and if they believe this node has crashed, they can initiate a
prepare request in order to perform a successful proposal and become the
distinguished proposer. Essentially, this means that the protocol is much
more efficient under stable conditions, since it has only one phase. When
failures occur, the protocol just falls back to plain Paxos.

Another common need is a way to dynamically update the nodes that are
members of the system. The answer to this requirement might sound familiar
thanks to the elegance of the protocol; membership information can just
be propagated as a new Paxos proposal! The nodes that are member of
the system can have their own way of identifying failures of other nodes
(i.e. periodic health checks) and the corresponding policies on when a node
should be considered dead. When a node is considered dead, one of the
nodes that has identified it can trigger a new Paxos instance, proposing a
new membership list, which is the previous one minus the dead node. As
soon as this proposal completes, all the subsequent instances of Paxos should
make use of the updated membership list.

Replicated state machine via consensus

In the beginning of this chapter, we briefly described how a consensus al-
gorithm can be used to solve a wide variety of problems. This is not a
coincidence, since all these problems share a common, fundamental charac-
teristic. This is the fact that they can all be modelled as a state machine
to some extent. This is also the reason why it’s easier to solve them in a
centralised setting, but it gets much harder when we want to solve them in a
distributed setting in order to increase availability.

However, using a consensus algorithm we can build a replicated state machine.
This is a set of nodes, where each of them is receiving commands and executing
them transitioning between states. If all the nodes make use of the same
state machine, then all we need is to make sure that all the nodes receive the
same inputs in the same order and then we can guarantee that all the nodes
will make exactly the same transitions. This would mean that the distributed
system would look similar to a single server from the outside. As a result,
one could achieve all the benefits of a distributed system, while maintaining
a simple programming model. Figure 4.4 contains a high-level overview of
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such a system. The top layer is the one receiving requests from the clients
and creating proposals for the consensus layer, which conducts the necessary
coordination between the other nodes of the system and propagates the
chosen values to the lower layer, which just receives these values as inputs
and executes the necessary state transitions.

Figure 4.4: A replicated state machine using consensus

Let’s elaborate a bit more on what that would entail, assuming Paxos is
used as the consensus layer of the system. Essentially, the clients would
be sending regular requests to the system, depending on the domain of the
system. These requests could be either commands to the system or requests
to inspect its internal system. These requests would be dispatched to the
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current leader of the system, which will be determined based on previous
instances of the consensus. If a node that is not a leader receives a request,
it can return the leader’s address so the client can re-route it. When the
system is bootstrapped and no instances of consensus have been run yet, this
leader can be determined from a configuration file or the nodes can compete
with each other for the leader role. Every time the leader node receives a new
command, it attempts to execute a new instance of consensus, increasing the
instance number every time. In order to achieve satisfactory performance,
multiple consensus instances can be run in parallel. However, the necessary
serialization must be performed in some places to ensure correctness. For
instance, the lower layer should process the decision of a consensus instance,
only when it has processed all the previous instances to ensure that all
state machines perform the same transitions. Similarly, the leader should
wait after an instance is completed and reply to the associated client only
after all the previous instances have completed. During situations where
the current leader is unstable and other nodes start making proposals, there
might be increased contention for an instance, creating significant delays for
any subsequent instances that might have completed. A dummy value can
be proposed by the nodes in these cases, which essentially represents a no-op,
rejecting the client’s operation.

This abstraction of a replicated state machine is quite powerful and could
potentially be used to implement solutions for many common problems in
the distributed systems area.

Distributed transactions via consensus

The introduction of this chapter mentioned that the consensus problem is very
similar to the problem of distributed transactions. However, after studying
the Paxos algorithm, one might think there seems to be a fundamental conflict
between distributed transactions and the way Paxos solves the consensus
problem. The core characteristic of distributed transactions is atomicity, the
fact that either the relevant update has to be performed in all the nodes or
it should not be performed in any of them. However, the Paxos algorithm
relies on just a majority quorum to decide on a value. Indeed, the problem
of distributed transactions, known as atomic commit, and the consensus
problem might be closely related, but they are not equivalent[43]. First of
all, the consensus problem mandates that every non-faulty node must reach
the same decision, while the atomic commit problem requires that all the
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nodes (faulty or not) must reach the same decision. Furthermore, the atomic
commit problem imposes stricter relationships between votes or proposals
and the final decision than the consensus problem. In consensus, the only
requirement is that the value that is agreed must have been proposed by at
least one of the nodes. In atomic commit, a decision can be positive, only if
all the votes were positive. The decision is also required to be positive, if all
votes are positive and there are no failures.

As a result of this difference, one might think that the Paxos algorithm does
not have anything to offer in the problem space of distributed transactions.
This is not true and this section will try to illustrate what Paxos (and
any other consensus algorithm) has to offer. The biggest contribution of
a consensus algorithm would not be in the communication of the resource
managers’ results back to the transaction manager, which requires successful
communication for all of them and not just a majority. Its value would lie
in storing and transmitting the transaction’s result back to the resource
managers in a fault-tolerant way, so that the failure of a single node (the
transaction manager) cannot block the system.

Indeed, there is a very simple way to achieve that in the existing 2-phase
commit (2PC) protocol leveraging a consensus algorithm. Assuming we make
use of Paxos as a consensus algorithm, we could just have the transaction
manager start a new Paxos instance, proposing a value for the result of the
transaction, instead of just storing the result locally before sending it back to
the resource managers. The proposal value would be either commit or abort,
depending on the previous results of each one of the resource managers. This
adjustment on its own would make the 2-phase commit protocol resilient
against failures of the transaction manager, since another node could take
the role of the transaction manager and complete the protocol. That node
would have to read the result of the transaction from any existing Paxos
instance. If there’s no decision, that node would be free to make an abort
proposal.

This is simple and elegant, but it would require adding one more messaging
round to the 2-phase commit protocol. It’s actually possible to remove this
additional round, trading off some simplicity for increased performance. This
could be done by essentially "weaving" several instances of Paxos in the plain
2-phase commit protocol, practically obviating the need for a transaction
manager completely. More specifically, the resource managers would have to
send their response to the first phase to a set of acceptors, instead of sending
it to the transaction manager, thus creating a separate Paxos instance for
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every resource manager involved in the transaction. Similarly, the acceptors
could propagate the chosen values to the resource managers directly, instead
of doing that indirectly via the transaction manager. The resource managers
would be responsible for checking that all the Paxos instances from the other
resource managers had a positive result (corresponding to the first phase of
2PC) in order to commit the transaction.

A paper titled ’Consensus on transaction commit’ [44] examines this rela-
tionship between distributed transactions and consensus and also explains
this approach in much greater detail, which is referred to as Paxos commit.
This paper also demonstrates why 2-phase commit is essentially a special
case of Paxos commit with zero tolerance of node failures (f = 0).

Raft

Paxos has been the canonical solution to the consensus problem. However,
the initial specification of the algorithm did not cover some aspects that
were crucial in implementing the algorithm in practice. As explained previ-
ously, some of these aspects were covered in subsequent papers. The Paxos
algorithm is also known to be hard to understand.

As a response to these issues, researchers decided to create a new algorithm
with the goals of improved understandability and ease of implementation.
This algorithm is called Raft [45]. We will briefly examine this algorithm
in this section, since it has provided a good foundation for many practical
implementations and it nicely demonstrates how the various aspects described
before can be consolidated in a single protocol.

Raft establishes the concept of a replicated state machine and the associated
replicated log of commands as first class citizens and supports by default
multiple consecutive rounds of consensus. It requires a set of nodes that form
the consensus group, which is referred to as the Raft cluster. Each of these
nodes can be in one of 3 states: a leader, a follower or a candidate. One of
the nodes is elected the leader and is responsible for receiving log entries
from clients (proposals) and replicate them to the other follower nodes in
order to reach consensus. The leader is responsible for sending heartbeats to
the other nodes in order to maintain its leadership. Any node that hasn’t
heard from the leader for a while will assume the leader has crashed, it will
enter the candidate state and attempt to become leader by triggering a new
election. On the other hand, if a previous leader identifies another node has
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gained leadership, it falls back to a follower state. Figure 4.5 illustrates the
behaviour of the nodes depending on their state.

Figure 4.5: The states of nodes in Raft

In order to prevent two leaders from operating concurrently, Raft has the
temporal concept of terms. Time is divided into terms, which are numbered
with consecutive integers and each term begins with an election where one or
more candidates attempt to become leaders. In order to become a leader, a
candidate needs to receive votes from a majority of nodes. Each node votes
for at most one node per term on a first-come-first-served basis. Consequently,
at most one node can win the election for a specific term, since 2 different
majorities would conflict in at least one node. If a candidate wins the election,
it serves as the leader for the rest of the term. Any leader from previous
terms will not be able to replicate any new log entries across the group,
since the voters of the new leader will be rejecting its requests and it will
eventually discover it has been deposed. If none of the candidates manages
to get a majority of votes in a term, then this term ends with no leader and
a new term (with a new election) begins straight after.

Nodes communicate via remote procedure calls (RPCs) and Raft has 2 basic
RPC types:

• RequestVote: sent by candidates during an election.
• AppendEntries: sent by leaders to replicate log entries and also to

provide a form of heartbeat.

The commands are stored in a log replicated to all the nodes of the cluster.
The entries of the log are numbered sequentially and they contain the term in
which they were created and the associated command for the state machine,
as shown in Figure 4.6. An entry is considered committed if it can be applied
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to the state machine of the nodes. Raft guarantees that committed entries
are durable and will be eventually be executed by all of the available state
machines, while also guaranteeing that no other entry will be committed
for the same index. It also guarantees that all the preceding entries of a
committed entry are also committed. This status essentially signals that
consensus has been reached on this entry.

Figure 4.6: The structure of the replicated log

As mentioned previously, leaders are responsible for receiving commands
from clients and replicating them across the clusters. This happens in the
following order: when a leader receives a new command, it appends the entry
to its own log and then sends an AppendEntries request in parallel to the
other nodes, retrying when it does not receive a timely response. When the
leader receives a response from a majority of followers, the entry can be
considered committed. The leader applies the command to its state machine
and informs the followers they can do the same, by piggybacking the necessary
information about committed entries in subsequent AppendEntries messages.
Of course, this is mostly the happy path.

During leader and follower failures, divergence might be observed between
the various nodes. Figure 4.7 contains some examples of this phenomenon.
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For example, a follower might have crashed and thus missed missed some
(committed) entries (a, b). It might have received some more (non committed)
entries (c,d). Or both things might have happened (e,f). Specifically scenario
(f) could happen if a node was elected leader in both terms 2 and 3 and
replicated some entries, but it crashed before any of these entries were
committed.

Figure 4.7: Temporary divergence of node logs

Raft contains some additional elements to resolve these temporary divergences.
The main overarching principle is that any elected leader should contain
any entries that have been committed up to the term he becomes leader.
The leader is then responsible for helping any followers with conflicting logs
adjust them accordingly to converge again. It’s important to note that a
leader only appends entries to its log and never updates it, only followers are
allowed to update their log. These 2 aspects are satisfied in the following
way:

• During an election, every RequestVote RPC contains some information
about the candidate’s log. A voter is allowed to vote for a candidate
only if its log is not more up-to-date than the candidate’s log. Raft
determines which of two logs is more up-to-date by comparing the
index and term of the last entries in the logs. A candidate must receive
votes from a majority of the cluster in order to be elected, which means
that every committed entry must be present in at least one of those
servers. If the candidate’s log is at least as up-to-date as any other log
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in that majority, then it’s guaranteed to hold all the committed entries.
• When sending an AppendEntries RPC, a leader includes the index

and term of the entry that immediately precedes the new entries in its
log. The followers check against their own logs and reject the request
if their log differs. If that happens, the leader discovers the first index
where their logs disagree and starts sending all the entries after that
point from its log. The follower discards its own entries and adds the
leader’s entries to its log. As a result, their logs eventually converge
again.

We mentioned previously that a leader knows that an entry from its term
can be considered committed when it has been successfully replicated to a
majority of nodes and it can then be safely applied to the state machine.
But, what happens when a leader crashes before committing an entry?
If subsequent leaders have received this entry, they will attempt to finish
replicating the entry. However, a subsequent leader cannot safely conclude
that an entry from a previous term is commmitted once it is stored on a
majority of nodes. The reason is there is an edge case where future leaders
can still replace this entry even if it’s stored on a majority of nodes. Feel free
to refer to the paper for a full description of how this can happen. As a result,
leaders can safely conclude an entry from a previous term is committed by
replicating it and then replicating a new entry from its term on top of it. If
the new entry from its own term is replicated to a majority, the leader can
safely consider it as committed and thus it can also consider all the previous
entries as committed at this point. So, a leader is guaranteed to have all the
committed entries at the start of its term, but it doesn’t know which those
are. To find out, it needs to commit an entry from its own term. To expedite
this in periods of idleness, the leader can just commit a no-op command in
the beginning of its term.

What has been described so far consists the main specification of the Raft
protocol. The paper contains more information on some other implementation
details that will be covered briefly here. Cluster membership changes can
be performed using the same mechanisms by storing the members of the
cluster in the same way regular data is stored. An important note is that
transition from an old configuration Cold to a new configuration Cnew must
be done via a transition to an intermediate configuration Cjoint that contains
both the old and the new configuration. This is to prevent two different
leaders from being elected for the same term. Figure 4.8 illustrates how that
could happen if the cluster transitioned from Cold directly to Cnew. During
this intermediate transition, log entries are replicated to the servers of both
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configurations, any node from both configurations can serve as a leader and
consensus requires majority from both the old and the new configuration.
After the Cjoint configuration has been committed, the cluster then switches
to the new configuration Cnew. Since the log can grow infinitely, there also
needs to be a mechanism to avoid running out of storage. Nodes can perform
log compaction by writing a snapshot of the current state of the system on
stable storage and removing old entries. When handling read requests from
clients, a leader needs to first send heartbeats to ensure it’s still the current
leader. That guarantees the linearizability of reads. Alternatively, leaders
can rely on the heartbeat mechanism to provide some form of lease, but
this would assume bounded clock skew in order to be safe. A leader might
also fail after applying a committed entry to its state machine, but before
replying to the client. In these cases, clients are supposed to retry the request
to the new leader. If these requests are tagged with unique serial numbers,
the Raft nodes can identify commands that have already been executed and
reply to the clients without re-executing the same request twice.

Figure 4.8: Risk of switching directly from Cold to Cnew

Standing on the shoulders of giants

At this point, we have spent enough time examining all the small details
of the various consensus algorithms. This can prove to be very useful,
when one thinks about how to design a system, what kinds of guarantees
it would require or even when troubleshooting edge cases. Hopefully, you
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have realised by now that these problems are very complicated. As a result,
creating an algorithm that solves these problems or even translating an
existing algorithm to a concrete implementation is a really big undertaking.
If there is an existing solution out there, you should first consider re-using
this before rolling out your own, since it’s highly likely that the existing
solution would be much more mature and battle-tested. This is true not
only for consensus but other problems inherent to distributed systems as
well. A later chapter contains some case studies of basic categories of such
distributed systems that you can leverage to solve some common problems.



Part III

Time & Order
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Time and order are some of the most challenging aspects of distributed
systems. As you might have realised already by the examples presented, they
are also very intertwined. For instance, time can be defined by the order
of some events, such as the ticks of a clock. At the same time, the order
of some events can also be defined based on the time each of these events
happened. This relationship can feel natural when dealing with a system that
is composed of a single node, but it gets a lot more complicated when dealing
with distributed systems that consist of many nodes. As a result, people
that have been building single-node, centralised applications sometimes get
accustomed to operating under principles and assumptions that do not hold
when working in a distributed setting. This part will study this relationship
between time and order, the intricacies related to distributed systems and
some of the techniques that can be used to tackle some of the problems
inherent in distributed systems.



Chapter 5

Time

What is different in a distributed system

As mentioned previously, one of the main use cases of time in a software
system is to determine the order between different events. In practice, this
can mean very different things. For example, a system might want to impose
an order to requests received concurrently by different clients in order to
determine in which order the effects of each request should take place. A
different example is one where a system administrator might be investigating
an incident looking at the system logs and trying to infer relationships
between different events, using the timestamp of the logs associated to these
events. Both of these examples have a common, underlying goal, which is to
determine the order between events.

There is a main difference between a centralised system and a distributed,
multi-node system with regards to time. In the first type of systems, there is
only a single node and thus only a single clock. This means one can maintain
the illusion of a single, universal time dimension, which can determine the
order of the various events in the single node of the system. In a distributed
system, each node has its own clock and each one of those clocks may run
at a different rate or granularity, which means they will drift apart from
each other. As a consequence of this, in a distributed system there is
no global clock, which could have been used to order events happening on
different nodes of the system.

109
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A practical perspective

The clocks used in real systems are what we usually call physical clocks. A
physical clock is a physical process coupled with a method of measuring that
process to record the passage of time [46]. Most physical clocks are based on
cyclic processes. Below are some examples of such devices:

• Some of the most basic ones and easy to understand are devices like
a sundial or an hourglass. The former tells the time of the day using
a gnomon and tracking the shadow created by the sun. The latter
measures time by the regulated flow of of sand through a bulb.

• Another common clock device is a pendulum clock, which uses an
oscillating weight as its timekeeping element.

• An electronical version of the last type is used in software systems,
called a quartz clock. This device makes use of a crystal, called quartz
crystal, which vibrates or ticks with a specific frequency, when electricity
is applied to it.

• One of the most accurate timekeeping devices are atomic clocks, which
use the frequency of eletronic transitions in certain atoms to measure
time.

As explained initially, all these devices rely on physical processes to measure
time. Of course, there can be errors residing both in the measurement tools
being used and the actual physical processes themselves. As a result, no
matter how often we synchronize these clocks with each other or with other
clocks that have more accurate measurement methods, there will always be
a skew between the various clocks involved in a distributed system. When
building a distributed system, this difference between clocks must be taken
into account and the overall system should not operate under the assumption
that all these clocks are the same and can act as a single, global clock.

Figure 5.1 contains an example of what could happen otherwise. Let’s assume
we have a distributed system composed of 3 different nodes A, B and C.
Every time an event happens at a node, the node assigns a timestamp to
the event, using its own clock, and then propagates this event to the other
nodes. As the nodes receive events from the other nodes, they compare the
timestamps associated with these events to determine the order in which the
events happened. If all the clocks were completely accurate and reflecting
exactly the same time, then that scheme would theoretically be capable of
identifying the order. However, if there is a skew between the clocks of the
various nodes, the correctness of the system is violated. More specifically, in
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our example, we assume that the clock of node A is running ahead of the
clock of node B. In the same way, the clock of node C is running behind the
clock of node B. As a result, even if the event in node A happened before
the event in node C, node B will compare the associated timestamps and
will believe the event from node C happened first.

Figure 5.1: Side-effects of assuming a global clock

So, from a practical point of view, the best we could do is accept there will
always be a difference between the clocks of different nodes in the system
and expose this uncertainty in some way, so that the various nodes in the
system can handle it appropriately. Spanner [5] is a system that follows this
approach, using the TrueTime API that directly exposes this uncertainty by
using time intervals (embedding an error) instead of plain timestamps.

A theoretical perspective

What we have demonstrated so far is a rather practical and simplified version
of the notion of time. The main hypothesis was that there exists an absolute,
universal notion of time, but it’s practically impossible to measure it in a
completely precise way. In reality, there is no such absolute and universal
notion of time. According to the laws of physics, more specifically the special
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theory of relativity,1 it is impossible to say in an absolute sense that two
distinct events occur at the same time if those events are separated in space.
For example, a car crash in London and another in New York appearing
to happen at the same time to an observer on Earth, will appear to have
occurred at slightly different times to an observer on an airplane flying
between London and New York.

This can look like a paradox, but you can easily understand the intuition
behind this theory via a thought experiment, known as the train experiment.
It consists of a train with an observer located in the middle of the carriage
and another observer standing on the platform as the train passes by. A
flash of light is given in the middle of the carriage right at the point when
the two observers meet each other. For the observer inside the carriage, both
sides of the carriage have the same distance from the middle, so the light
will reach both sides at the same time. For the observer standing on the
platform, the rear side is moving towards the initial point of the flash, while
the front side is moving away from it, so the light will reach the two sides at
different points in time, since the speed of light is the same for all directions.
As a result, whether two spatially separated events happen at the
same time (simultaneously) is not absolute, but depends on the
observer’s reference frame.

Note that in practice relativity is not a problem for computing systems, since
all of humanity’s current computing computing systems share a close enough
frame of reference to make relativistic differences in the perception of time
immaterial. In the context of this book though, it mainly serves to underline
the fact that time is relative and there can be no absolute, universal time
dimension in a distributed system. It also gives rise to another observation
that forms the basis of distributed algorithms, which provide solutions to
ordering problems without relying on a global clock. These algorithms will be
covered in more detail in the next chapter. As illustrated from the previous
example, information in the real world flows through light. If the sun stops
shining, a human will realise that a bit later (around 8 minutes later, to be
concrete). This is the time it takes sunlight to reach Earth from the sun.
If you think about it, distributed systems are very similar. Events happen
at different nodes of the system and it takes some time for the information
that these events happened to propagate to the other nodes of the system.
A difference worth pointing out is that the speed of light is constant, but the
speed with which information flows in a distributed system is variable, since

1See: https://en.wikipedia.org/wiki/Relativity_of_simultaneity
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Figure 5.2: The train experiment
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it depends on the underlying infrastructure and conditions of the network.
In the worst-case scenario, information might not be able to flow between 2
parts of a system at all because of a network partition.

Logical clocks

The focus of this section has been on physical clocks so far, explaining their
main limitations when used in distributed systems. However, there is an
alternative category of clocks, which is not subject to the same constraints,
logical clocks. These are clocks that do not rely on physical processes to
keep track of time. Instead, they make use of messages exchanged between
the nodes of the system, which is the main mechanism information flows in
a distributed system, as described previously.

We can imagine a trivial form of such a clock in a system consisting of only
a single node. Instead of using a physical clock, this node could instead
make use of a logical clock, which would consist of a single method, say
getTime(). When invoked, this method would return a counter, which would
subsequently be incremented. For example, if the system started at 9:00 and
events A, B and C happened at 9:01, 9:05 and 9:55 respectively, then they
could be assigned the timestamps 1, 2 and 3. As a result, the system would
still be able to order the events, but it would not be able to determine the
temporal distance between any two events. Some more elaborate types of
logical clocks are described in the next section.



Chapter 6

Order

Total and partial ordering

As explained before, determining the order of events is a common problem
that needs to be solved in software systems. However, there are 2 different,
possible types of ordering: total ordering and partial ordering.

Total order is a binary relation that can be used to compare any 2 elements
of a set with each other. As a direct consequence of this property, using this
relation we can derive only a single order for all the elements in a set, which
is why it’s called total order. For instance, the set of unique integers {7, 9,
3, 2, 6} can be totally totally ordered (using the relation less than <) and
the associated total order is [2, 3, 6, 7, 9].

Partial order is a binary relation that can be used to compare only some of
the elements of a set with each other. As a consequence, using this relation
we can derive multiple, valid orders for all the elements in the set. For
example, the set of the following sets of integers {{0}, {1}, {2}, {0,1},
{1,2}} can only be partially ordered, using the subset relation ⊆. If we pick
the elements {0} and {0,1}, then they can be ordered, since {0} ⊆ {0,1}.
However, the elements {0,1} and {1,2} cannot be ordered using this relation,
since neither {0,1} ⊆ {1,2} nor {1,2} ⊆ {0,1} holds. As a result, both
[{0}, {1}, {2}, {0,1}, {1,2}] and [{2}, {1}, {0}, {1,2}, {0,1}]
would be valid partial orderings.

As the previous chapter implied, in systems that are composed of a single
node, it’s easy and intuitive to determine a total ordering of events. The main
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reason is that there is a single actor, where all the events happen, so this
actor can impose a total order on these events as they occur. Total orderings
also make it much simpler to build protocols and algorithms. However, in
a distributed system it’s not that straightforward to impose a total order
on events, since there are multiple nodes in the system and events might be
happening concurrently on different nodes. As a result, a distributed system
can make use of any valid partial ordering of the events occuring, if there is
no strict need for a total ordering.

Figure 6.1 contains a diagram that illustrates why total ordering is much
harder to determine in a distributed system. As displayed in the diagram, in
a system composed of a single node that can only execute events serially, it’s
easy to define a total order on all the events happening, since between two
events (e1, e2) one of them will have started after the other one finished. On
the other hand, in a distributed system composed of multiple nodes where
events are happening concurrently, it’s much harder to determine a total
order, since there might be pairs of events that cannot be ordered.

Figure 6.1: Total ordering vs partial ordering

An interesting and important observation can be made at this point: the
fact that these operations have some duration and are interleaved with each
other is not the only problem that makes a total ordering hard to achieve.
Even if these operations are instantaneous (also referred to as linearizable),
then total ordering is still non-trivial to achieve, since there is no global
clock, as we explained previously. As a result, even if each node can assign
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unique timestamps to the events happening, these timestamps will be coming
from clocks running at different rates, thus making it harder to compare
them. This is demonstrated in Figure 6.2, which shows that in a single-node
system, any clock errors can be ignored, since there is only one clock in
use. This makes it possible to assign timestamps to events as if they are
instantaneous and establish a total order. However, in a distributed system,
there are multiple clocks in play that that run in different rates and can have
different errors. This means that the errors need to be taken into account,
when comparing timestamps between different nodes, thus making it harder
to establish a total order, since there will be pairs of events where one cannot
know which of them happened first. Note that for ease of understanding, in
the figure the clocks of all the nodes appear to have the same error, which is
not realistic.

Figure 6.2: Clock errors making total ordering harder

The concept of causality

As humans, we grow accustomed to total ordering, because most of the
natural phenomena around us appear to be subject to total ordering. When
we go shopping, we are placed in a queue, so that we can be served in a
total order. Similarly, cars waiting for the signal to change at an intersection
are also ordered in the same way. However, there are scenarios - especially
prevalent in software systems - where a total ordering is not really necessary.
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For instance, look at some of the social media platforms people use nowadays,
where they can create posts and add comments to the posts of other people.
Do you really care about the order in which two unrelated posts are shown
to you? Probably not. As a result, the system could potentially leverage a
partial ordering, where posts that can’t really be ordered are displayed in
an arbitrarily chosen order. However, there is still a need for preserving the
order of some events that are tightly linked. For example, if a comment CB
is a reply to a comment CA, then you would most probably like to see CB
after CA. Otherwise, a conversation could end up being confusing and hard
to follow.

What we just described is the notion of causality, where one event con-
tributes to the production of another event. Looking back at one of the
introductory sections, you can find the description of a consistency model,
called the causal consistency model, which ensures that events that are
causally related are observed by the various nodes in a single order, where
causes precede the effects. Violating causality can lead to behaviours that
are really hard to understand by the users of a system. Fortunately, as we
will explore in the next sections of this chapter, it’s possible to track causality
without the need of physical time.

The notion of causality is also present in real life. We subconsciously make
use of causality when planning or determining the feasibility of a plan or the
innocence of an accused.1 Causality is determined based on a set of loosely
synchronized clocks (i.e. wrist watches, wall clocks etc.) under the illusion
of a global clock. This appears to work in most cases, because the time
duration of events is much more coarse-grained in real life and information
"flows" much more slowly than in software systems. For instance, compare
the time a human needs to go from London to Manchester and the time
needed for 10 kilobytes to travel the same distance via the Internet. As a
result, small differences between clocks do not create significant problems in
most real life scenarios. However, in distributed computing systems, events
happen at a much higher rate, higher speed and their duration is several
orders of magnitude smaller. As a consequence, if the physical clocks of the
various nodes in the system are not precisely synchronised, the causality
relation between events may not be accurately captured.

To sum up, causality can be leveraged in the design of distributed systems
with 2 main benefits: increasing concurrency and replacing real time with the
notion of logical time, which can be tracked with less infrastructure and costs.

1See: https://en.wikipedia.org/wiki/Alibi

https://en.wikipedia.org/wiki/Alibi
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As we have seen so far, distributed systems are inherently asynchronous. By
introducing coordination and synchronisation between them, we essentially
reduce the level of concurrency and consequently their performance. The
notion of causality allows us to allow these systems to remain asynchronous
while also supporting the causal consistency model, which prevents a big set
of counter-intuitive behaviours which stem from weak consistency. Further-
more, keeping physical clocks synchronised is a task that requires hardware
infrastructure with the associated costs, where the costs increase significantly
the more accurate the synchronisation needs to be. Logical clocks rely on
the existing messaging exchanged between nodes of a system, which makes
them less expensive to implement. Of course, logical clocks have their own
pitfalls, as some of the next sections will explain, so they are definitely not a
silver bullet.

As implied already, it’s possible to track causality relationships between events
without using physical clocks, using logical clocks instead. The following
sections will present some kinds of logical clocks, but it’s important to
highlight in advance that they all share some common characteristics [47].
The abstraction of logical clocks consist of 2 main parts:

• a data structure local to every node used to represent logical time.
• a protocol to update the data structures accordingly as events happen

and time passes by.

Each node maintains data structures that provide the following capabilities:

• a local logical clock that helps a node measure its own progress.
• a global logical clock that is a good representation of a node’s view of

the logical global time.

Similarly, the protocol consists of 2 main rules:

• R1: a rule that governs how the local logical clock is updated by a
node when it executes an event.

• R2: a rule that governs how a node updates its global logical clock
to update its view of the global time and progress. This determines
what information about the logical time needs to be piggybacked in the
messages exchanged and how this information is used by the receiving
node.

Different types of logical clocks have the same core parts and the protocol
described above, but they might differ in the actual data structures used to
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represent logical time or the logic in the rules of the protocol.

The events that happen in a distributed system can be classified in 3 very
basic categories: local events happening at a node and changing its state,
send events that represent a node sending a message to another node to
inform about a change and receive events that represent a node receiving a
message from another node about a change. As implied before, these events
that are exchanged between nodes in order to propagate information can also
propagate time changes between nodes. The notion of causality is built on
top of the happened-before2 relation (→). This is a strict, partial order
on the aforementioned events so that:

• If events a and b are two events happening at the same node, the
relation a → b holds if the occurence of event a preceded the occurence
of event b. Note that this is easy to determine for a single node, as
shown before.

• If event a is the event of a node corresponding to sending a message
and event b is the event of a different node corresponding to the receipt
of the same message, then a → b.

• For 3 events a, b, c, if a → b and b → c, then a → c.

We can say that event e1 causally precedes event e2 (or these 2 events are
causally related) if e1 → e2. We can say that event e1 is not causally related
to e2 (e1 || e2), if none of the relations e1 → e2 or e2 → e1 holds.

Figure 6.3 demonstrates how this would work in a distributed system of
3 nodes. Applying the rules described above, one can see the following
causal relationships: e1 → e4, e1 → e5, e1 → e6, e1 → e7, e1 → e8 and e1
→ e9. However, note that e1 || e3 and e2 || e6 even though these events are
temporally distant, because there was no information exchanged between
the nodes that could help the logical clocks track any relation between them.
This means that these pair of events should be considered as concurrent by
the system and could have happened in any order. The reason for this is that
e6 could have happened at any point in time from the moment right after
e1 to just before e9 preserving all the causal relationships intact. The same
holds true for e2, which could have happened at any point in time until e4.

In general, the concept of causality in distributed systems (and as defined
in the Lamport paper[48]) could be referred to as potential causality, since
it does not necessarily indicate a cause-and-effect relationship, but only a
potential for it. As a result, when we say that ei → ej, we don’t mean that

2See: https://en.wikipedia.org/wiki/Happened-before

https://en.wikipedia.org/wiki/Happened-before
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Figure 6.3: Happened-before relationship in a distributed system

ei has caused or affected ej. Instead, we mean that ei could have caused
or affected ej. This is because this concept is generic and does not have
application-specific context to infer actual cause-and-effect relationships.
However, applications can leverage the algorithms presented in this chapter,
enriching them with additional metadata that make it possible to track actual
causality, instead of potential causality. Note that even the ability to track
potential causality is still very useful to prevent system behaviours that will
be confusing to users, it just means that the system might be storing and
transmitting more information than necessary to achieve this purpose.

Lamport clocks

One of the first and simplest types of logical clocks were invented by Leslie
Lamport and is called Lamport clock [48]. In this type of logical clock,
every node in the system maintains a logical clock in the form of a numeric
counter that can start from zero when a node starts operating. The rules of
the protocol are the following:

• (R1) Before executing an event (send, receive or local), a node incre-
ments the counter of its logical clock by one: Ci = Ci + 1.

• (R2) Every sent message piggybacks the clock value of its sender at
sending time. When a node ni receives a message with timestamp Cmsg,
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it executes the following actions:
– Updates its clock by taking the maximum of its clock and the

received clock: Ci = max(Ci, Cmsg)
– Executes R1
– Delivers the message

The Lamport clocks satisfy the so-called clock consistency condition: if
one event e1 causally precedes another event e2, then C(e1) < C(e2). However,
the reverse which is known as the strong consistency condition is not
satisfied by Lamport clocks. This means that if C(e1) < C(e2), then this does
not mean necessarily that the event e1 causally precedes e2. As a result, this
means that Lamport clocks cannot be used to infer partial orderings that are
causally consistent. However, they can still be used for other purposes, such
as creating (non causally consistent) total orderings, as we will explain later.

Figure 6.4: Lamport clocks

To understand better how Lamport clocks work, let’s look at an example, as
shown in Figure 6.4. We have a distributed system that consists of 3 nodes
A, B and C that execute events locally and exchange messages to propagate
the necessary information across the whole system. You can try running the
rules described above and see that the clocks of each node will be updated
as shown in the figure. Essentially, each node ticks its clock as local events
happen and also bumps the clock in case it identifies that another node has
a higher clock value to that node’s value. Now, let’s discuss the conditions
presented previously a bit more. Any two events that are causally related
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will reflect this relationship in the clock’s value. For instance, A1 causally
precedes B1 and we can see that C(A1) = 1 < 2 = C(B1) (clock consistency
condition). We can also see that the strong consistency condition does not
hold. For instance, C(C2) < C(B2), but these 2 events are not causally
dependent. Event B2 could have happened either before or after C2 with the
same clock value.

Lamport clocks can be used to create a total ordering of events in a distributed
system by using some arbitrary mechanism to break ties, in case clocks of
different nodes have the same value (e.g. the ID of the node). The caveat
is this total ordering is somewhat arbitrary and cannot be used to infer
causal relationship, which limits the number of practical applications they
can have. The paper demonstrates how they could potentially be used to
solve synchronisation problems, such as mutual exclusion[48].

Vector clocks

As explained in the previous section, the main limitation of Lamport clocks is
that they do not satisfy the strong clock condition, which means they cannot
be used to infer causal relationships between events. The main underlying
reason for this is the fact that both the local and the global logical clocks for
each node are flattened into a single number, which does not provide all the
necessary information in order to track causal relationships. What we need
to do essentially is maintain for each event a set of all events that causally
precede it, which is known as a causal history[49]. For instance, in Figure
6.3 the causal history of e7 is {e1, e2, e3, e4, e5}. We also need to store the
causal history of each event as efficiently as possible, using a compact data
structure. A vector clock is an example of such a data structure[50][51].

A vector clock is another type of logical clock, where the clock data structure
for each node is a vector of N counters (where N is the number of nodes in
the system) [c0, c1, .., cN]. For the clock of the ith node [ci,0, ci,1, ..., ci,N]:

• the ith element of the clock ci,i represents the local logical clock of the
node.

• the remaining elements of the clock [c1,0, ..., ci,i-1, ci,i+1,..., c1,N] form
together the global logical clock of the node.

The rules of the protocol are the following:
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• (R1) Before executing an event (send, receive or local), a node incre-
ments the counter of its logical clock by one: Ci,i = Ci,i + 1.

• (R2) Every sent message piggybacks the clock value of its sender at
sending time. When the ith node receives a message with a vector [cj,0,
..., cj,N] from the jth node, it executes the following actions:
– Executes R1
– Updates each element in its vector by taking the maximum of the

value in its own vector clock and the value in the vector in the
received message: Ci,k = max(ci,k, cj,k) for every k in [0, N]

– Delivers the message

This type of clock satisfies the strong clock condition. This means that if for
2 events ei, ej with timestamps Ci, Cj the relationship Ci < Cj holds, then
ei → ej. The only missing thing is how to compare vector clocks with each
other, which is done in the following way:

• For 2 clocks Ci = [ci,0, ..., ci,N] and Cj = [cj,0, ..., cj,N] Ci < Cj iff all the
elements of the clock Ci are less than or equal to all the corresponding
elements of clock Cj (ci,k ≤ cj,k for all k) and there is at least one
element of Ci that is strictly smaller than the corresponding element
of Cj (ci,l < cj,l for at least one l in [0, N]).

Figure 6.5 contains the same distributed execution displayed in Figure 6.4,
but using vector clocks this time. Each node in the system maintains a
vector clock, where the first element corresponds to the time in node A, the
second to the time in node B and the third and last element to the time in
node C. You can spend some time again to verify that the clock values have
been assigned just by following the rules described above.This time, we can
see that the clock of A1 is smaller than the clock of B1, while also A1 →
B1. What’s more important though is that we can detect events that are not
causally related. For instance, B2 || C2 and we can see that the timestamp
of B2 is neither smaller or larger than the timestamp of C2. This means that
we can consider these events as concurrent and they could have happened in
any order.

Vector clocks can be used in cases that benefit from the capability to detect
whether two events are causally related or concurrent, while allowing the
different nodes of the system to make progress independently and efficiently
without synchronisation and coordination bottlenecks.

We mentioned previously that in a distributed system of n nodes, each vector
clock is composed of n elements. It’s important to clarify that every process
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Figure 6.5: Vector clocks

that consists a source of concurrency needs to be considered as a node of
the system in the context of the vector clocks, which means an entry for this
process should be dedicated in each clock. For example, if our application
consists of 3 servers and 2 clients, then each vector clock should contain
5 entries. Otherwise, we risk not being able to identify concurrent and
conflicting operations, treating them as causally related instead3. It has been
formally proven actually that the size of a vector clock must be at least n for
a system consisting of n nodes in order to fully capture causality[52]. This
means that vector clocks require a significant amount of storage in cases
where the number of all the participating nodes is large, which can be the
case for some types of systems nowadays, such as web applications where
every browser can be considered a client of the system.

Version vectors & Dotted Version Vectors

There is a mechanism that is very similar to vector clocks, called version
vectors. The data structure used by version vectors and the associated

3See: https://riak.com/posts/technical/why-vector-clocks-are-hard
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update rules are very similar to those used by vector clocks. However, they
are used for slightly different purposes. As explained previously, vector clocks
are used to maintain a logical form of time, which can then be used to identify
when events are happening, especially in comparison to other events. On
the other hand, version vectors are better suited for applications that store
data, where every data item is tagged with a version vector. In this way,
data can potentially be updated in multiple parts of the system concurrently
(e.g. when there is a network partition), so that the version vectors from the
resulting data items can help us identify those items that can be reconciled
automatically and those that require conflict resolution[53].

Version vectors maintain state identical to that in a vector clock, containing
one integer entry per node in the system. The update rules are slightly
different: nodes can experience both local updates (e.g. a write applied at a
server) or can synchronize with another node (e.g. when recovering from a
network partition).

• Initially, all vectors have all their elements set to zero.
• Each time a node experiences a local update event, it increments its

own counter in the vector by one.
• Each time two nodes a and b synchronize, they both set the elements in

their vector to the maximum of the elements across both vectors Va[x]
= Vb[x] = max(Va[x], Vb[x]). After synchronisation, both nodes will
have the same vectors. Furthermore, depending on whether the initial
vectors were causally related or not, one of the associated items will
supercede the other or some conflict resolution logic will be executed
to maintain one entry associated with the new vector.

Version vectors are mostly beneficial in systems that act as datastores, so the
nodes in the system will belong to two basic categories: the server or replica
nodes that store the data and receive read/write operations and the client
nodes that read data from the replica nodes and send update instructions. In
many cases, clients might not even be part of our systems, such as scenarios
where our system receives operations directly from web browsers of customers.
As a result, it would be better to avoid significant amount of logic and storage
overheads in the client nodes.

The version vector mechanism allows this in the following way: one entry is
maintained for every node (both replica/server and client nodes). However,
the client nodes can be stateless, which means they do not store the version
vectors. Instead, they receive a version vector as part of every read operation
and they provide this version vector when executing an update operation
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back to the corresponding replica node4. This vector is referred to as context
and it’s used by the replica node to update its version vector accordingly.
Figure 6.6 contains an example execution in a distributed system using
version vectors with one entry for each node in the system. For simplicity,
the example assumes there is only one item, so all clients operate on the
same item. It can easily be extended to cover cases with multiple items,
where each item will have a separate version vector and the clients would
also have to provide an identifier for the item to be accessed. Each read
operation returns the current value with the corresponding version vector.
Each write operation has 3 arguments: the first one is the version vector that
is given as context, the second one is the identifier of the client node and
the last one is the value to be written. The replica node is responsible for
incrementing the appropriate entry in the vector (depending on the identifier
of the client) and then persisting the new value. Note that this new value can
either be persisted alongside other values that had been written concurrently
or overwrite values that causally precede it. In the first case, multiple values
will be returned in subsequent reads and the following write operations will
reconcile them, persisting a single value. For instance, in our example below
if node D performed a read from node B (which will return both values V and
W and their version vectors) and then attempted to write the value Z, then
the update will be of the form PUT({(C,1), (D,1)}, D, Z). The replica
node will calculate the new version vector {(C,1), (D,2)} and will identify
it supersedes both existing version vectors {(C,1)} and {(D,1)}, so it will
replace both values V and W with Z.

The approach of including entries in the vector clock for all client nodes is
safe and can successfully identify when 2 different versions have been written
concurrently or one of them causally precedes the other one and can be
discarded. However, its main limitation is that the size of the vector clocks
does not scale nicely. In distributed systems that are used as distributed
datastores, the number of clients tends to be a lot bigger than the number of
server nodes by two or three orders of magnitude. For instance, in many cases
each item is replicated in 3 different servers, while there can be thousands of
clients accessing this item. Note that even in cases where the clients of the
systems are a few application servers, if each server is executing operations
concurrently from multiple threads a separate entry in the vector clock needs

4This is only possible in an environment, where client nodes are not supposed to
experience any local events, but only interact with server nodes via read/write operations.
It also requires read your writes semantics (i.e. obtained via read/write quorums), so that
each read returns the most recent update to a client[54].
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Figure 6.6: Version vectors with per-client entries

to be maintained for each one of them. As a result, this approach requires a
significant amount of storage.

Ideally, we would like the size of the vector clocks to scale with the number of
server nodes, instead of the number of clients. Could we perhaps remove the
client entries from the vector clocks and let the servers increment their own
entries, when performing the updates on behalf of the clients? Unfortunately,
not. If we did this, the system would not be able to detect that some
operations were performed concurrently, thus discarding values that should
have been preserved. Figure 6.7 illustrates the issues with this approach. As
you can see, the first write operations performed by client nodes C and D
are concurrent. However, the server node B would not be able to identify
that. The node B would consider the version vector of the second update
{(B,2)} to supercede {(B,1)}, thus discarding the value V and replacing it
with the value W.

There is a technique that makes it possible to successfully identify concurrent
versions, while also allowing the version vectors to scale with the number of
servers, called dotted version vectors. This technique has a characteristic
that allows it to achieve this: each entry in the vector is not anymore a single
number, but a pair of numbers. This can encode a sequence of numbers
that are not fully sequential, but can contain one gap. The pair (n1,n2)
represents all the numbers from 1 to n1 plus the number n2. For example,
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Figure 6.7: Version vectors with per-server entries

the pair (4,7) represents the sequence [1,2,3,4,7]. Note that the second
number is optional and some entries can still be single number. This can
be leveraged to keep track of concurrency between multiple versions. The
order between 2 versions is now defined in terms of the contains relationship
on the corresponding sequences. So, for vectors v1, v2 the relationship v1
≤ v2 holds if the sequence represented by v1 is a subset of the sequence
represented by v2. More specifically:

• (m) ≤ (m′) if m ≤ m′

• (m) ≤ (m′, n′) if m ≤ m′ ∨m = m′ + 1 = n′

• (m, n) ≤ (m′) if n ≤ m′

• (m, n) ≤ (m′, n′) if n ≤ m′ ∨ (m ≤ m′ ∧ n = n′)

The update rule executed by each replica node when receiving a write
operation is also slightly different. For all the indexes except the one belonging
to the replica node, the node uses the value (m) where m is the maximum
number amongst those available in the provided version vectors in the
context. For the index corresponding to the replica node, the node uses the
pair (m, n+1), where m is the maximum number amongst those available in
the provided version vectors in the context and n is the maximum number
amongst the version vectors present in the replica node (essentially the value
of its logical clock). For a more elaborate analysis of the rules and a formal
proof that this technique is safe, refer to the original paper[54]. Figure 6.8
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illustrates what a solution with dotted version vectors would look like in our
previous examples. As you can see, the write operations by client nodes C
and D end up receiving version vectors {(B,0,1)} and {(B,0,2)} and they
are successfully identified as concurrent, since {(B,0,1)} � {(B,0,2)} and
{(B,0,2)} � {(B,0,1)}.

Figure 6.8: Dotted version vectors

Distributed snapshots

There is another basic problem in the field of distributed systems that is
strongly related to the notion of time and order: how to record a snapshot
of the state of a distributed system composed of multiple nodes that perform
a continuous computation. This snapshot can simply be used as a recovery
mechanism from a point in the past when failures happen. However, there are
many more problems in distributed systems that can be expressed in terms
of the problem of detecting a global state and specific properties associated
with it5. This section will cover a seminal algorithm used for capturing
distributed snapshots, known as the Chandy-Lamport algorithm named after
its inventors [55].

The state of a distributed system consists of the state of the various nodes
5This problem is also known as stable property detection and can have many different

usages, such as detection of deadlocks or termination of a computation.
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and any messages that are in transit between the nodes. The main challenge
in recording this state is that the nodes that are part of the system do not
have a common clock, so they cannot record their local states at precisely
the same instant. As a result, the nodes have to coordinate with each other
by exchanging messages, so that each node records its state and the state
of associated communication channels. Thus, the collective set of all node
and channel states will form a global state. Furthermore, any communi-
cation required by the snapshot protocol should not alter the underlying
computation.

The paper presents a very interesting and illuminating analogy for this
problem. Imagine a group of photographers observing a panoramic, dynamic
scene such as a sky filled with migrating birds. This scene is so big that it
cannot be captured by a single photograph. As a result, the photographers
must take several snapshots and piece them together to form a picture of
the overall scene. The snapshots cannot be taken at the same time and the
photographers should not disturb the process that is being photographed, i.e.
they cannot get all the birds to remain motionless while the photographs are
taken. However, the composite picture should be meaningful.

This need for a meaningful snapshot still exists when talking about distributed
systems. For example, there’s no point recovering from a snapshot, if that
snapshot can lead to the system to an erroneous or corrupted state. A
meaningful snapshot is termed as a consistent snapshot in the paper, which
presents a formal definition of what this is6. This definition will be presented
here in a more simplified way for ease of understanding. Let’s assume a
distributed system can be modelled as a directed graph, where vertices
represent nodes of the system and edges represent communication channels.
An event e in a node p is an atomic action that may change the state of p
itself and the state of at most one channel c incident on p: the state of c
may be changed by the sending of a message M along c (if c is an outbound
edge from p) or the receipt of a message M along c (if c is an inbound edge
to p). So, an event e could be represented by the tuple <p, s, s', M, c>,
where s and s' are the previous and new state of the node. An event ei
moves the global state of the system from Si to Si+1. A snapshot Ssnapshot is
thus consistent if:

6An alternative definition is that of a consistent cut [51], which partitions the space-time
diagram along the time axis in a way that respects causality, e.g. for each pair of events e
and f, if f is in the cut and e -> f then e is also in the cut. Note that the Chandy-Lamport
algorithm produces snapshots that are also consistent cuts.
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• Ssnapshot is reachable from the state Sstart in which the algorithm was
initiated.

• the state Send in which the algorithm terminates is also reachable from
Ssnapshot.

Let’s look at an example to get some intuition about this. Let’s assume we
have a very simple distributed system consisting of 2 nodes p, q and two
channels c, c', as shown in Figure 6.9. The system contains one token that
is passed between the nodes. Each node has two possible states s0 and s1,
where s0 is the state in which the node does not possess the token and s1 is
the state in which it does. Figure 6.10 contains the possible global states of
the systems and the associated transitions. As a result, a snapshot where
the state is s0 for both of the nodes and the state of both channels is empty
would not be consistent, since the token is lost! A snapshot where the states
are s1 and s0 and channel c contains the token is also not consistent, since
there are now two tokens in the system.

Figure 6.9: A simple distributed system consisting of 2 nodes and 2 commu-
nication channels

The algorithm is based on the following main idea: a marker message is sent
between nodes using the available communication channels that represents
an instruction to a node to record a snapshot of the current state. The
algorithm works as follows:

• The node that initiates the protocol records its state and then sends a
marker message to all the outbound channels. Importantly, the marker
is sent after the node records its state and before any further messages
are sent to the channels.

• When a node receives a marker message, the behaviour depends on
whether the node has already recorded its state (while emitting the
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Figure 6.10: The possible global states and the corresponding transitions of
the token system

mark previously) or not.
– If the node has not recorded its state, it records its state and

then it records the state of the channel c the marker was received
from as an empty sequence. It then sends the marker to all the
outbound channels.

– If the node has recorded its state, it records the state of the
channel the marker was received from as the sequence of messages
received from c after the node’s state was recorded and before the
node received the marker from c.

Figure 6.11 contains a sample execution of this algorithm on the simple
system presented previously. The node p sends the token and right after
initiates an execution of the protocol. As a result, it records its state s0 and
sends the marker in channel c. The node q receives the token, transitions to
state s1. It then sends the token to channel c' and transitions to state s0.
Afterwards, it receives the marker message, records its state s0 and the state
of the channel c as an empty sequence and sends the marker message to
channel c'7. In the meanwhile, node p has received the token, transitioned

7Note that this is just one of the possible executions. In an alternative execution, the
node q could have processed both the token and the marker, recording its state as s1 and
potentially sending the marker across channel c' without sending the token yet. This
would have led to a different, but still consistent snapshot.
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to state s1 and buffered the token in the sequence of messages received while
the snapshot protocol was executing. The node p then receives the marker
and records the state of the channel c' as the sequence [token]. At this
point, the protocol concludes, since the state of all nodes and channels has
been recorded and the global snapshot state is the following:

snapshot(p): s0
snapshot(q): s0
snapshot(c): []
snapshot(c'): [token]

Figure 6.11: An execution of Chandy-Lamport algorithm on the token system

Physical & Logical time: closing thoughts

Hopefully, the two previous chapters helped you understand the difference
between the concepts of physical and logical time. At the same time, some
parts went into detail to explain the inner workings of some techniques and
their benefits and pitfalls. This might have left you with more questions,
so this section will contain an overview of what we have seen and some
additional observations. The goal is to help you finish this chapter with a
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clear understanding of the difference between these 2 concepts and what
each one has to offer.

Let’s start by reviewing the basic difference between physical and logical time.
As explained previously, physical time is measured based on some physical
phenomena. Depending on the phenomenon that is observed, the granularity
of physical time can differ from days to seconds or nanoseconds. In all cases,
the time flows continually between discrete values8. In a non-distributed
system, a computing node can use these measurements to associate occuring
events and compare them with each other to determine which happened
first. In a distributed system, the various nodes have separate clocks that
might not be in sync, so they will have to do additional work to make sure
the values from their clocks can be compared safely. This additional work
will involve exchange of messages between nodes, which will contain the
values of their clocks, so that nodes can adjust their clocks accordingly to
synchronize them. On the other hand, logical time is not measured based
on physical phenomena, but the node makes use of local events to measure
logical time instead. For instance, the node can maintain a counter that
is incremented everytime something happens. In this way, every event can
still be associated with a discrete "moment in time", but the value of this
time will be mostly relative and not absolute. Furthermore, logical time will
not flow continuously, but it will only flow when events happen at a node.
The node will still be able to compare local events and determine which one
happened first. As mentioned before, these instances of time do not have
any absolute semantics. As a result, in a distributed system, the various
nodes will have to exchange their perception of logical time, so that they can
compare the values of their logical clocks and be able to order events across
different nodes (and clocks).

After reading the previous paragraph, did you notice anything interesting?
In the beginning, the concepts of physical and logical time do seem really
different. However, closer examination reveals they are quite similar and
actually share some basic properties. In both cases, time flows in discrete
increments everytime something happens. In the case of physical time,
what happens is the underlying physical phenomenon, while in the case
of logical time it’s the actual logical event that happens in a node. In
both cases, communication is required between nodes to synchronise their

8Time can be considered discrete in the context of hardware or software systems.
Whether this is true in other contexts (i.e. physics) is a much bigger question and is out of
topic for this discussion.
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clocks. In the case of physical time, this communication is performed in the
background continuously, while in the case of logical time, this communication
is performed on-demand, when messages are sent between nodes.

Identifying that these 2 notions make use of these common, basic principles
but in a slightly different way is useful to understand the advantages and
disadvantages of each concept and where each one can be useful. By its
nature, physical time attempts to perform all the necessary coordination and
communication in the background, so that the various nodes can establish an
order without additional coordination, when needed. In most cases, physical
clocks are used in order to provide the illusion of a total order, which is
not realistic in a distributed system, as explained before. Furthermore,
physical clocks need to remain properly synchronised, which might not be
temporarily possible under network partitions. If clock drift between nodes
is larger than the acceptable error, then this might mean the correctness of
the application is compromised. On the other hand, logical time is operating
under the assumption that network partitions are a given and a partial
order satisfying causality is the best kind of ordering one can achieve in a
distributed system. During partitions, different nodes can keep operating,
while essentially leaving their clocks drift. However, when partitions are
healed or nodes communicate with each other, they can eventually detect
things that happened concurrently and perform the necessary reconciliation.
Logical clocks can also be adapted, so that only necessary causal relationships
are captured (instead of everything), thus achieving both good performance
and safety. However, as explained previously logical time does not flow
on its own as physical time does, it only flows when events happen. As a
consequence, logical time cannot be used for tasks that require a notion of
wall clock time that flows even when no events happen. For instance, in
order to identify whether another node is slow during communication or has
potentially crashed, a node needs to make use of timeouts and physical time.
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Chapter 7

Case studies

This chapter examines in more detail some specific examples of distributed
systems. Some of these systems are commercially available and widely used.
Some of them have been developed and used internally in companies, but
their design has been shared publicly via academic papers. The goal of this
chapter is twofold: first to provide an overview of the basic categories of
distributed systems and then to explain how these systems make use of the
principles that have been described so far.

However, keep in mind that some of the systems described in this chapter
might have evolved since the time of writing. As a point of reference, the
table below contains the versions of the associated systems at the time of
writing, when applicable.

System Version

HDFS 3.1.2
Zookeeper 3.5.5

Hbase 2.0
Cassandra 3.11.4
FaunaDB 2.7

Kafka 2.3.1
Kubernetes 1.13.12

Corda 4.1
Spark 2.4.4
Flink 1.8
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Distributed file systems (HDFS/GFS)

Google File System (GFS)[56] is a proprietary distributed file system devel-
oped by Google, which has been the inspiration for the Hadoop Distributed
File System (HDFS)[57], a distributed file system that has been developed
as an Apache project1. As explained later, the basic design principles are
similar for these two systems, which also have some small differences.

The core requirements for these distributed file systems were the following:

• fault tolerance: the ability to be operational even when some ma-
chines of the system have failed.

• scalability: the ability to scale the system to significantly large sizes
both in terms of number of files and file sizes.

• optimised for batch operations: the system should be optimised
for use-cases that involved batch operations, such as applications that
performed processing and analysis of huge datasets. This implies that
throughput is more important than latency and most of the files are
expected to be mutated by appending data rather than overwriting
existing data.

Figure 7.1 displays a high-level overview of the GFS architecture. A GFS
cluster consists of a single master node and multiple chunkserver
nodes. Chunkserver nodes are responsible for storing and serving the data
of the files, while the master node is responsible for maintaining the file
system metadata, informing clients about which chunkservers store a specific
part of a file and performing necessary administration tasks, such as garbage
collection of orphaned chunks or data migration during failures. Note that
the HDFS architecture is similar, but the master node is called Namenode
and the chunkserver nodes are called Datanodes.

Each file is divided into fixed-size chunks, which are identified by an im-
mutable and globally unique 64-bit chunk handle, assigned by the master
during chunk creation. Chunkservers store chunks on local disks as regular
files. The system employs both partitioning and replication: it partitions
files across different chunkservers and replicates each chunk on multiple
chunkservers. The former improves performance and the latter improves
availability and data reliability. The system takes into account the net-
work topology of a datacenter, which usually consists of multiple racks of
servers. This has several implications, e.g. bandwidth into or out of a rack

1See: https://www.apache.org

https://www.apache.org
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Figure 7.1: GFS high-level architecture

may be less than the aggregate bandwidth of all the machines within the
rack and a failure of a single shared resource in a rack (a network switch
or power circuit) can essentially bring all the machines of the rack down.
When creating a new chunk and placing its initially empty replicas, a master
tries to use chunkservers with below-average disk space utilisation. It also
tries to use chunkservers that have a low number of recent creations, since
that can reliably predict imminent heavy write traffic. In this way, the
master attempts to balance disk and network bandwidth utilisation across
the cluster. When deciding where to place the replicas, the master also
follows a chunk replica placement policy that is configurable. By default,
it will attempt to store two replicas at two different nodes that reside in
the same rack, while storing the third replica at a node that resides in a
separate rack. This is a trade-off between high network bandwidth and data
reliability.

The clients can create, read, write and delete files from the distributed
file system by using a GFS client library linked in to the application that
abstracts some implementation details. For example, the applications can
operate based on byte offsets of files and the client library can translate these
byte offsets to the associated chunk index, communicate with the master to
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retrieve the chunk handle for the provided chunk index and the location of
the associated chunkservers and finally contact the appropriate chunkserver
(most likely the closest one) to retrieve the data. Figure 7.1 displays this
workflow for a read operation. Clients cache the metadata for chunk locations
locally, so they only have to contact master for new chunks or when the cache
has expired. During migration of chunks due to failures, clients organically
request fresh data from the master, when they realise the old chunkservers
cannot serve the data for the specified chunk anymore. On the other hand,
clients do not cache the actual chunk data, since they are expected to stream
through huge files and have working sets that are too large to benefit from
caching.

The master stores the file and chunk namespaces, the mapping from files
to chunks and the chunk locations. All metadata is stored in the master’s
memory. The namespaces and the mappings are also kept persistent by
logging mutating operations (e.g. file creation, renaming etc.) to an operation
log that is stored on the master’s local disk and replicated on remote machines.
The master node also checkpoints its memory state to disk when the log
grows significantly. As a result, in case of the master’s failure the image of
the filesystem can be reconstructed by loading the last checkpoint in memory
and replaying the operation log from this point forward. File namespace
mutations are atomic and linearizable. This is achieved by executing this
operation in a single node, the master node. The operation log defines a
global total order for these operations and the master node also makes use
of read-write locks on the associated namespace nodes to perform proper
serialization on any concurrent writes.

GFS supports multiple concurrent writers for a single file. Figure 7.2 illus-
trates how this works. The client first communicates with the master node to
identify the chunkservers that contain the relevant chunks. Afterwards, the
clients starts pushing the data to all the replicas using some form of chain
replication. The chunkservers are put in a chain depending on the network
topology and data is pushed linearly along the chain. For instance, the
client pushes the data to the first chunkserver in the chain, which pushes the
data to the second chunkserver etc. This helps fully utilize each machine’s
network bandwidth avoiding bottlenecks in a single node. The master grants
a lease for each chunk to one of the chunkservers, which is nominated as
the primary replica, which is responsible for serializing all the mutations
on this chunk. After all the data is pushed to the chunkservers, the client
sends a write request to the primary replica, which identifies the data pushed
earlier. The primary assigns consecutive serial numbers to all the mutations,
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applies them locally and then forwards the write request to all secondary
replicas, which apply the mutations in the same serial number imposed by
the primary. After the secondary replicas have acknowledged the write to
the primary replica, then the primary replica can acknowledge the write to
the client.

Figure 7.2: How writes work in GFS

Of course, this flow is vulnerable to partial failures. For example, think about
the scenario, where the primary replica crashes in the middle of performing a
write. After the lease expires, a secondary replica can request the lease and
start imposing a new serial number that might disagree with the writes of
other replicas in the past. As a result, a write might be persisted only in some
replicas or it might be persisted in different orders in different replicas. GFS
provides a custom consistency model for write operations. The state of
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a file region after a mutation depends on the type of mutation, whether it
succeeds or fails and whether there are concurrent mutations. A file region
is consistent if all clients will always see the same data, regardless of the
replica they read from. A region is defined after a file data mutation if it
is consistent and clients will see what the mutation writes in its entirety.
When a mutation succeeds without interference from concurrent writes, the
affected region is defined: all clients will always see what the mutation has
written. Concurrent successful mutations leave the region undefined but
consistent: all the clients see the same data, but it may not reflect what
any one mutation has written. Typically, it consists of mingled fragments
from multiple mutations. A failed mutation makes the region inconsistent:
different clients may see different data at times. Besides regular writes, GFS
also provides an extra mutation operation: record appends. A record
append causes data to be appended atomically at least once even in the
presence of concurrent mutations, but at an offset of GFS’s choosing, which
is returned to the client. Clients are supposed to retry failed record appends
and GFS guarantees that each replica will contain the data of the operation
as an atomic unit at least once in the same offset. However, GFS may
insert padding or record duplicates in between. As a result, successful record
appends create defined regions interspersed with inconsistent regions. Table
7.3 contains a summary of the GFS consistency model.

Figure 7.3: How writes work in GFS

Applications can accommodate this relaxed consistency model of GFS by ap-
plying a few simple techniques at the application layer: using appends rather
than overwrites, checkpointing and writing self-validating, self-identifying
records. Appending is far more efficient and more resilient to application
failures than random writes. Each record prepared by a writer can contain
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extra information like checksums so that its validity can be verified. A reader
can then identify and discard extra padding and record fragments using
these checksums. If occasional duplicates are not acceptable, e.g. if they
could trigger non-idempotent operations, the reader can filter them out using
unique record identifiers that are selected and persisted by the writer.

HDFS has taken a slightly different path to simplify the semantics of mutating
operations. Specifically, HDFS supports only a single writer at a time. It
provides support only for append (and not overwrite) operations. It also does
not provide a record append operation, since there are no concurrent writes
and it handles partial failures in the replication pipeline a bit differently,
removing failed nodes from the replica set completely in order to ensure file
content is the same in all replicas.

Both GFS and HDFS provide applications with the information where a
region of a file is stored. This enables the applications to schedule processing
jobs to be run in nodes that store the associated data, minimizing network
congestion and improving the overall throughput of the system. This principle
is also known as moving computation to the data.

Distributed coordination service (Zookeeper/Chubby/etcd)

It must have become evident by now that coordination is a central aspect
in distributed systems. Even though each component of a distributed system
might function correctly in isolation, one needs to ensure that they will also
function correctly when operating simultaneously. This can be achieved
through some form of coordination between these components. As illustrated
in the section about consensus, this coordination can end up being quite
complicated with many edge cases. As a consequence, implementing these
coordination algorithms on every new system from scratch would be inefficient
and would also introduce a lot of risk for bugs. On the contrary, if there was
a separate system that could provide this form of coordination as an API, it
would be a lot easier for other systems to offload any coordination function
to this system.

Several different systems were born out of this need. Chubby [58] was such
a system implemented internally in Google and used from several different
systems for coordination purposes. Zookeeper [59] was a system that was
partially inspired from Chubby, it was originally developed in Yahoo and
later became an Apache project. It has been widely used by many companies
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to perform coordination in distributed systems, including some systems that
are part of the Hadoop ecosystem. etcd2 is another system that implements
similar coordination primitives and formed the basis of Kubernetes’ control
plane. As expected, these systems present a lot of similarities, but they
also have some small differences. For the sake of brevity, this chapter will
focus on Zookeeper providing an overview of its design, but it will also try to
comment on the basic differences of the other two systems where relevant.

Let’s start by looking at Zookeeper’s API, which is essentially a hierarchical
namespace similar to a filesystem.3 Every name is a sequence of path elements
separated by a slash (/). Every name represents a data node (called znode),
which can contain a piece of metadata and children nodes. For instance,
the node /a/b is considered a child of the node /a. The API contains basic
operations that can be used to create nodes, delete nodes, check if a specific
node exists, list the children of a node and read or set the data of a node.
There are 2 types of znodes: regular nodes and ephemeral nodes. Regular
nodes are created and deleted explicitly by clients. Ephemeral nodes can
also be removed by the system when the session that created them expires
(i.e. due to a failure). Additionally, when a client creates a new node, it
can set a sequential flag. Nodes created with this flag have the value of a
monotonically increasing counter appended to a provided prefix. Zookeeper
also provides an API that allows clients to receive notifications for changes
without polling, called watches. On read operations, clients can set a watch
flag, so that they are notified by the system when the information returned
has changed. A client connects to Zookeper initiating a session, which needs
to be maintained open by sending heartbeats to the associated server. If a
Zookeeper server does not receive anything from a client for more than a
specified timeout, it considers the client faulty and terminates the session.
This deletes the associated ephemeral nodes and unregisters any watches
registered via this session. The update operations can take an expected
version number, which enables the implementation of conditional updates
resolving any conflicts arising from concurrent update requests.

Zookeeper nodes form a cluster, which is called a Zookeepe ensemble. One
of these nodes is designated as the leader and the rest of the nodes are
followers. Zookeeper makes use of a custom atomic broadcast protocol,
called Zab [60][61]. This protocol is used in order to elect the leader and

2See: https://etcd.io
3Chubby also provides a hierarchical namespace, while etcd provides a key-value

interface.

https://etcd.io
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Figure 7.4: Hierarchical namespace in Zookeeper

replicate the write operations to the followers4. Each of those nodes has a
copy of the Zookeper state in memory. Any changes are also recorded in a
durable, write-ahead log which can be used for recovery. All the nodes can
serve read requests using their local database. Followers have to forward any
write requests to the leader node, wait until the request has been successfully
replicated/broadcasted and then respond to the client. Reads can be served
locally without any communication between nodes, so they are extremely
fast. However, a follower node might be lagging behind the leader node,
so client reads might not necessarily reflect the latest write that has been
performed. For this reason, Zookeeper provides an additional operation
called sync. Clients can initiate a sync before performing a read. In this
way, the read will reflect any write operations that had happened before
the sync was issued. The sync operation does not need to go through the
broadcast protocol, it it just placed at the end of the leader’s queue and
forwarded only to the associated follower5.

As a result, Zookeeper provides the following 2 safety guarantees:

• Linearizable writes: all requests that update the state of Zookeeper
are serializable and respect precedence. As mentioned before, writes

4Chubby uses Paxos for this purpose, while etcd makes use of Raft.
5In contrast, in Chubby both read and write requests are directed to the master. This

has the benefit of increased consistency, but the downside of decreased throughput. To
mitigate this, Chubby clients cache extensively and the master is responsible for invalidating
the caches before completing writes, thus making the system a bit more sensitive to client
failures.



CHAPTER 7. CASE STUDIES 147

Figure 7.5: Zookeeper architecture

are not linearizable with respect to reads, if sync is not used.
• FIFO client order: all requests from a given client are executed in

the order they were sent by the client.

There is one more important ordering guarantee: if a client is waiting for a
change, the client will see the notification event before it sees the new state
of the system after the change is made. As a result, when a client receives a
notification and performs a read, the result will reflect all writes at least up
to the one that triggered this notification.

Zookeeper also provides the following 2 liveness and durability guarantees:

• if a majority of servers are active and communicating, the service will
be available

• if the service responds successfully to a change request, that change
persists across any number of failures as long as a quorum of servers is
eventually able to recover.

As mentioned above, the Zookeeper atomic broadcast protocol (ZAB) is
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used in order to agree on a leader in the ensemble, synchronize the replicas,
manage the broadcast of update transactions and recover from a crashed
state to a valid state. This protocol shares a lot of characteristics with
other consensus protocols, such as Paxos or Raft. In Zab, transactions are
identified by a specific type of identifier, called zxid. This identifier consists
of 2 parts <e, c>, where e is the epoch number of the leader that generated
the transaction and c is an integer acting as a counter for this epoch. The
counter c is incremented every time a new transaction is introduced by
the leader, while e is incremented when a new leader becomes active. The
protocol consists of 4 basic phases:

• Leader election: peers are initialised in this phase, having state
election. This phase terminates when a quorum of peers have voted
for a leader. This leader is prospective and will become an established
leader only after the end of phase 3.

• Discovery: in this phase, the leader communicates with the followers in
order to discover the most up-to-date sequence of accepted transactions
among a quorum and establish a new epoch so that previous leaders
cannot commit new proposals.

• Synchronisation: in this phase, the leader synchronises the replicas
in the ensemble using the leader’s updated history from the previous
phase. At the end of this phase, the leader is said to be established.

• Broadcast: in this phase, the leader receives write requests and
performs broadcasts of the associated transactions. This phase lasts
until the leader loses its leadership, which is essentially maintained via
heartbeats to the followers.

In practice, Zookeeper is using a leader election algorithm called Fast Leader
Election (FLE), which employs an optimisation. It attempts to elect as leader
the peer that has the most up-to-date history from a quorum of processes.
This is done in order to minimize the data exchange between the leader and
the followers in the Discovery phase.

The Zookeeper API can be used to build more powerful primitives. Some
examples are the following:

• Configuration management: This can be achieved simply by having
the node that needs to publish some configuration information create a
znode zc and write the configuration as the znode’s data. The znode’s
path is provided to the other nodes of the system, which obtain the
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configuration by reading zc. They also register a watch, so that they
are informed when this configuration changes. If that happens, they
are notified and perform a new read to get the latest configuration.

• Group membership: A node zg is designated to represent the group.
When a node wants to join the group, it creates an ephemeral child
node under zg. If each node has a unique name or identifier, this can
be used as the name of the child node. Alternatively, the nodes can
make use of the sequential flag to obtain a unique name assignment
from Zookeeper. These nodes can also contain additional metadata
for the members of the group, such as addresses and ports. Nodes can
obtain the members of the group by listing the children of zg. If a
node wants to also monitor changes in the group membership, it can
register a watch. When nodes fail, their associated ephemeral nodes
are automatically removed, which signals their removal from the group.

• Simple locks: The simplest way to implement locks is by using a
simple "lock file", which is represented by a znode. To acquire a lock, a
client tries to create the designated znode with the ephemeral flag. If
the create succeeds, the client holds the lock. Otherwise, the client can
set a watch to the created node to be notified if the lock is released, so
that it attempts to re-acquire it. The lock is released when the client
explicitly deletes the znode or when it dies.

• Locks without herd effect: The previous pattern suffers from the
herd effect: if there are many clients waiting to acquire a lock, they
will all be notified simultaneously and attempt to acquire the lock even
though only one can acquire it, thus creating unnecessary contention.
There is a different way to implement locks to avoid this problem.
All the clients competing for the lock attempt to create a sequential,
ephemeral znode with the same prefix (i.e. /lock-). The client with
the smallest sequence number acquires the lock. The rest of the clients
register watches for the znode with the next lower sequence number.
Once a node is notified, it can check if it’s now the lowest sequence
number, which means it has acquired the lock. Otherwise, it registers
a new watch for the next znode with the lower sequence number.

In similar ways, many more primitives can be built, such as read/write locks,
barriers etc. These patterns in Zookeeper are usually called recipes6.

6See: https://zookeeper.apache.org/doc/current/recipes.html

https://zookeeper.apache.org/doc/current/recipes.html
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Distributed datastores

This section will examine some basic categories of distributed datastores.
It is impossible to cover all available datastores here. Furthermore, each
datastore can have some special characteristics that make it differ from the
rest, so it is not easy to establish clear boundaries between them and classify
them into well-defined categories. For this reason, datastores are grouped
based on their most basic architectural characteristics and their historical
origins. It is useful to draw comparisons against these systems and try to
understand the strengths and weaknesses of each one.

BigTable/HBase

BigTable [7] is a distributed storage system that was initially developed in
Google and was the inspiration for HBase7, a distributed datastore that is
part of the Apache Hadoop project. As expected, the architecture of these
two systems is very close, so this section will focus on HBase, which is an
open-source system.

Figure 7.6: HBase data model & physical layout

HBase provides a sparse, multi-dimensional sorted map as a data model,
as shown in Figure 7.6. The map is indexed by a row key, a column key
and a timestamp, while each value in the map is an uninterpreted array of
bytes. The columns are further grouped in column families. All members
of a column family are physically stored together on the filesystem and

7See: https://hbase.apache.org

https://hbase.apache.org
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the user can specify tuning configurations for each column family, such as
compression type or in-memory caching. Column families need to be declared
upfront during schema definition, but columns can be created dynamically.
Furthermore, the system supports a small number of column families, but
an unlimited number of columns. The keys are also uninterpreted bytes and
rows of the table are physically stored in lexicographical order of the keys.
Each table is partitioned horizontally using range partitioning based
on the row key into segments, called regions. The main goal of this data
model and the architecture described later is to allow the user to control the
physical layout of data, so that related data are stored near each other.

Figure 7.7 shows the high-level architecture of HBase, which is also based on
a master-slave architecture. The master is called HMaster and the slaves
are called region servers. The HMaster is responsible for assigning regions
to region servers, detecting the addition and expiration of region servers,
balancing region server load and handling schema changes. Each region server
manages a set of regions, handling read and write requests to the regions
it has loaded and splitting regions that have grown too large. Similar to
other single-master distributed systems, clients do not communicate with the
master for data flow operations, but only for control flow operations in order
to prevent it becoming the performance bottleneck of the system. Hbase
uses Zookeeper to perform leader election of the master node, maintain
group membership of region servers, store the bootstrap location of HBase
data and also store schema information and access control lists. Each region
server stores the data for the associated regions in HDFS, which provides
the necessary redundancy. A region server can be collocated at the same
machine of an HDFS datanode to enable data locality and minimize network
traffic.

There is a special HBase table, called the META table, which contains the
mapping between regions and region servers in the cluster. The location of
this table is stored in Zookeeper. As a result, the first time a client needs to
read/write to HBase, it first communicates with Zookeeper to retrieve the
region server that hosts the META table, then contacts this region server to
find the region server that contains the desired table and finally sends the
read/write operation to that server. The client caches locally the location
of the META table and the data already read from this table for future use.
HMasters initiallly compete to create an ephemeral node in Zookeeper. The
first one to do so becomes the active master, while the second one listens for
notifications from Zookeeper of the active master failure. Similarly, region
servers create ephemeral nodes in Zookeeper at a directory monitored by the
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Figure 7.7: HBase high-level architecture

HMaster. In this way, the HMaster is aware of region servers that join/leave
the cluster, so that it can manage assignment of regions accordingly.

Appends are more efficient than random writes, especially in a filesystem
like HDFS. Region servers try to take advantage of this fact by employing
the following components for storage and data retrieval:

• MemStore: this is used as a write cache. Writes are initially written
in this data structure, which is stored in-memory and can be sorted
efficiently before being written to disk. Writes are buffered in this data
structure and periodically written to HDFS after being sorted.

• HFile: this is the file in HDFS which stores sorted key-value entries
on disk.

• Write ahead log (WAL): this stores operations that have not been
persisted to permanent storage and are only stored in the MemStore.
This is also stored in HDFS and is used for recovery in the case of a
region server failure.

• BlockCache: this is the read cache. It stores frequently read data in
memory and least recently used data is evicted when the cache is full.

As a result, write operations go through WAL and MemStore first and
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eventually end up being stored in HFiles8, as shown in Figure 7.8. Read
operations have to read from both the MemStore, the BlockCache and the
existing HFiles and merge the results. This can be quite inefficient, so
there are several optimisations used. As mentioned previously, columns are
grouped by their column family and stored separately. As a result, only the
HFiles that contain the required column family need to be queried. All the
entries in an HFile are stored in lexicographical order and they contain an
index in the end of the file which can be kept in memory, so reads can find
the required data without reading the whole file. Each HFile also contains
the time range of the entries contained in it to avoid unnecessary reads of
files that cannot contain the requested data. Bloom filters9 are also used to
reduce the number of HFiles that need to be read; these are special data
structures that make it easy to identify whether some data is not contained
in a file using a very small amount of memory. There is also a background
process, called compaction, which merges multiple HFiles into a single HFile
removing older versions of data that are not needed anymore, thus reducing
the number of HFiles that need to be inspected during read operations.

Figure 7.8: read and write data flow in HBase

Some of the guarantees provided by HBase are the following:

Atomicity:
8This pattern originates from a data structure, called a log-structured merge (LSM)

tree[62]
9See: https://en.wikipedia.org/wiki/Bloom_filter

https://en.wikipedia.org/wiki/Bloom_filter
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• Operations that mutate multiple rows are atomic.
– An operation that returns a success code has completely succeeded.
– An operation that returns a failure code has completely failed.
– An operation that times out may have succeeded or may have

failed. However, it cannot have partially succeeded or failed.
– This is true even if the mutation crosses multiple column families

within a row.10

• Operations that mutate multiple rows will not be atomic. For example,
a mutative operation on rows ’a’, ’b’ and ’c’ may return having mutated
some but not all of the rows. In this case, the operation will return a
list of codes, some of which may be successes, failures or timeouts.

• Hbase provides a conditional operation, called checkAndPut, which
happens atomically like the typical compareAndSet (CAS) operation
found in many hardware architectures.

Consistency & Isolation:

• Single-row reads/writes are linearizable.
– When a client receives a successful response for any mutation,

this mutation is immediately visible to both that client and any
client with whom it later communicates through side channels.

• HBase provides a scan operation that provides efficient iteration over
multiple rows. This operation does not provide a consistent view of
the table and does not exhibit snapshot isolation. Instead:
– Any row returned by the scan is a consistent view, i.e. that

version of the complete row existed at some point in time.
– A scan operation must reflect all mutations committed prior to

the construction of the scanner and may reflect some mutations
committed subsequent to the construction of the scanner.

Durability:

• All visible data is also durable. This means that a read will never
return data that has not been made durable on disk.

• Any mutative operation that returns a successful response has been
made durable.

• Any operation that has been made durable is stored in at least n
different servers (Namenodes), where n is the configurable replication
factor of HDFS.

10This is achieved by fine-grained, per-row locking. Note that HFiles are essentially
immutable, so only the MemStore needs to participate in this which makes it very efficient.
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As mentioned earlier, HBase and Bigtable have a very similar architecture
with slightly different naming for the various components and different
dependencies. The table below contains a mapping between HBase concepts
and the associated concepts in Bigtable.

HBase Bigtable

region tablet
region server tablet server

Zookeeper Chubby
HDFS GFS
HFile SSTable

MemStore Memtable

Cassandra

Cassandra is a distributed datastore that combined ideas from the Dy-
namo[8]11 and the Bigtable[7] paper. It was originally developed by Face-
book[9], but it was then open sourced and became an Apache project.
During this period, it has evolved significantly from its original implementa-
tion12. The main design goals of Cassandra are extremely high availability,
performance (high throughput/low latency with emphasis on write-heavy
workloads) with unbounded, incremental scalability. As explained later, in
order to achieve these goals it trades off some other properties, such as strong
consistency.

The data model is relatively simple: it consists of keyspaces at the highest
level, which can contain multiple, different tables. Each table stores data
in sets of rows and is characterised by a schema. This schema defines the
structure of each row, which consists of the various columns and their types.
The schema also determines the primary key, which is a column or a set
of columns that have unique values for each row. The primary key can
have two components: the first component is the partition key and it’s
mandatory, while the second component contains the clustering columns

11There is also a separate distributed system, which is called DynamoDB. This is
commercially available, but details around its internal architecture have not been shared
publicly yet. However, this system has a lot of similarities with Cassandra, such as the
data model and tunable consistency.

12The information presented in this section refers to the state of this project at the time
of writing.



CHAPTER 7. CASE STUDIES 156

and is optional. If both of these components are present, then the primary
key is called a compound primary key. Furthermore, if the partition key is
composed of multiple columns, it’s called a composite partition key. Figure
7.9 contains an example of two tables, one having a simple primary key and
one having a compound primary key.

Figure 7.9: Cassandra data model

The primary key of a table is one of the most important parts of the schema,
because it determines how data is distributed across the system and also
how it is stored in every node. The first component of the primary key, the
partition key determines the distribution of data. The rows of a table are
conceptually split into different partitions, where each partition contains
only rows with the same value for the defined partition key. All the rows
corresponding to a single partition are guaranteed to be stored collocated
in the same nodes, while rows belonging to different partitions can be
distributed across different nodes. The second component of the primary
key, the clustering columns, determine how rows of the same partition will
be stored on disk. Specifically, rows of the same partition will be stored in
ascending order of the clustering columns defined, unless specified otherwise.
Figure 7.10 elaborates on the previous example, showing how data from the
two tables would be split into partitions and stored in practice.

Cassandra distributes the partitions of a table across the available nodes
using consistent hashing, while also making use of virtual nodes to provide
balanced, fine-grained partitioning. As a result, all the virtual nodes of a
Cassandra cluster form a ring. Each virtual node corresponds to a specific
value in the ring, called the token, which determines which partitions will
belong to this virtual node. Specifically, each virtual node contains all the
partitions whose partition key (when hashed) falls in the range between
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Figure 7.10: Cassandra partitioning

its token and the token of the previous virtual node in the ring13. Every
Cassandra node can be assigned multiple virtual nodes. Each partition is
also replicated across N nodes, where N is a number that is configurable
per keyspace and it’s called the replication factor. There are multiple,
available replication strategies that determine how the additional N-1 nodes
are selected. The simplest strategy just selects the next nodes clockwise in
the ring. More complicated strategies also take into account the network
topology of the nodes for the selection. The storage engine for each node
is inspired by Bigtable and is based on a commit log containing all the
mutations and a memtable that is periodically flushed to SSTables, which
are also periodically merged via compactions.

The nodes of the cluster communicate with each other periodically via a
gossip protocol, exchanging state and topology information about themselves
and other nodes they know about. New information is gradually spread
throughout the cluster via this process. In this way, nodes are able to keep
track of which nodes are responsible for which token ranges, so that they
can route requests accordingly. They can also determine which nodes are
healthy and which are not, so that they can omit sending requests to nodes
that are unreachable. Administrator tools are available that can be used
by an operator to instruct a node of the cluster to remove another node
that has crashed permanently from the ring. Any partitions belonging to

13Cassandra also supports some form of range partitioning, via the
ByteOrderedPartitioner. However, this is available mostly for backwards com-
patibility reasons and it’s not recommended, since it can cause issues with hot spots and
imbalanced data distribution.
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Figure 7.11: Cassandra partitioning

that node will be replicated to a different node from the remaining replicas.
There is need for a bootstrap process that will allow the first nodes to join
the cluster. For this reason, a set of nodes are designated as seed nodes
and they can be specified to all the nodes of the cluster via a configuration
file or a third-party system during startup.

Cassandra has no notion of a leader or primary node. All replica nodes are
considered equivalent. Every incoming request can be routed to any node in
the cluster. This node is called the coordinator node and is responsible
for managing the execution of the request on behalf of the client. This node
identifies the nodes that contain the data for the requested partition and
dispatches the requests. After successfully collecting the responses, it replies
to the client. Given there is no leader and all replica nodes are equivalent,
they can be handling writes concurrently. As a result, there is a need for
a conflict resolution scheme and Cassandra makes use of a last-write-wins
(LWW) scheme. Every row that is written comes with a timestamp. When a
read is performed, the coordinator collects all the responses from the replica
nodes and returns the one with the latest timestamp.

The client can also specify policies that define how this coordinator node is
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selected. This policy might select coordinator nodes randomly in a round-
robin fashion, select the closest node or select one of the replica nodes to
reduce subsequent network hops. Similar to the concept of seed nodes, the
client driver is provided some configuration that contains a list of contact
points, which are nodes of the cluster. The client will initially try and connect
to one of these nodes in order to acquire a view of the whole cluster and be
able to route requests everywhere.

When communicating with Cassandra nodes, clients can specify different
consistency levels, which allows them to optimise for consistency, availabil-
ity or latency accordingly. The client can define the desired read consistency
level and the desired write consistency level, where each consistency level
provides different guarantees. Some of the available levels are the following:

• ALL: A write must be written to all replica nodes in the cluster for the
associated partition. A read returns the record only after all replicas
have responded, while the operation fails if a single replica does not
respond. This option provides the highest consistency and the lowest
availability.

• QUORUM: A write must be written on a quorum of replica nodes across all
datacenters. A read returns the record after a quorum of replicas from
all datacenters has replied. This option provides a balance between
strong consistency and tolerance to a small number of failures.

• ONE: A write must be written to at least one replica node. A read
returns the record after the response of a single replica node. This
option provides the highest availability, but incurs a risk of reading
stale data since the replica that replied might not have received the
latest write.

The two consistency levels are not independent, so one should consider
the interactions between them when deciding the appropriate level. If we
assume a keyspace with replication factor N and clients that read with read
consistency R and write with write consistency W, then a read operation is
guaranteed to reflect the latest successful write as long as R + W > N. For
instance, this could be achieved by performing both reads and writes at
QUORUM level. Alternatively, it could be achieved by performing reads at ONE
level and writes at ALL level or vice versa. In all of these cases, at least one
node from the read set will exist in the write set, thus having seen the latest
write. However, each one of them provides different levels of availability,
durability, latency and consistency for read and write operations.

As illustrated so far, Cassandra favours high availability and performance
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over data consistency. As a result, it employs several mechanisms that ensure
the cluster can keep processing operations even during node failures and
partitions and the replicas can converge again as quickly as possible after
recovery. Some of these mechanisms are the following:

• hinted handoff
• read repair
• anti-entropy repair

Hinted handoff happens during write operations: if the coordinator cannot
contact the necessary number of replicas, then the coordinator can store
locally the result of the operation and forward it to the failed node after it has
recovered. Read repair happens during read operations: if the coordinator
receives conflicting data from the contacted replicas, it resolves the conflict by
selecting the latest record and forwards it synchronously to the stale replicas
before responding to the read request. Anti-entropy repair happens in the
background: replica nodes exchange the data for a specific range and if they
find differences, they keep the latest data for each record, complying with
the LWW strategy. However, this involves big datasets, so it’s important
to minimise consumption of network bandwidth. For this reason, the nodes
encode the data for a range in a Merkle tree and exchange parts of the tree
gradually, so that they can discover the conflicting data that need to be
exchanged.

It is important to note that by default operations on a single row are not
linearizable even when using majority quorums. To understand why, it is
useful to understand how partial failures and network delays are handled
by Cassandra. Let’s examine two different scenarios.

• First, let’s assume that read repair is not used. The system consists of 3
different replicas with a single row that contains a single column owner
with value "none". Client A initially performs a write operation to set
owner = A. While this operation is in progress, two different clients B
and C perform a read operation for owner in sequence. The majority
quorum of client B contains one replica that has already received the
write operation, while client C contacts a quorum with nodes that
haven’t received it yet. As a result, client B reads owner = A, while
client C reads owner = none even though the operation from the latter
started after the operation from the former had completed, which
violates linearizability. Figure 7.12 contains a diagram illustrating this
phenomenon.
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Figure 7.12: Linearizability violations when read repair is not used

• The violation of linearizability in the previous example would be elim-
inated if read repair was used, since the read from client B would
propagate the value to the replica 2 and client C would also read owner
= A. So, let’s assume that read repair is used and examine a different
scenario. Client A performs again a write operation to set owner = A.
The write succeeds in one replica and fails in the other replica. As a
result, the write is considered unsuccessful and the coordinator returns
a failure response back to the client. Afterwards, client B performs
a read operation that uses a quorum that contains the replica where
the previous write succeeded. Cassandra performs a read repair using
the LWW strategy, thus propagating the value to replica 2. As a
consequence, a write operation that failed has affected the state of
the database, thus violating linearizability. This example is shown in
Figure 7.13.

Cassandra provides another consistency level that provides linearizabil-
ity guarantees. This level is called SERIAL and the read/write operations
executed in this level are also referred to as lightweight transactions. This
level is implemented using a 4-phase protocol based on Paxos, as shown in
Figure 7.14. The first and third phases of the protocol are the exact phases
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Figure 7.13: Linearizability violations when read repair is used

of Paxos and satisfy the same needs: the first phase is called prepare and
corresponds to the nodes trying to gather votes before proposing a value
which is done in the third phase, called propose. When run under SERIAL
level, the write operations are conditional using an IF clause, also known
as compare-and-set (CAS). The second phase of the protocol is called read
and is used to retrieve the data in order to check whether the condition
is satisfied before proceeding with the proposal. The last phase is called
commit and it’s used to move the accepted value into Cassandra storage
and allow a new consensus round, thus unblocking concurrent LWTs again.
Read and write operations executed under SERIAL are guaranteed to be
linearizable. Read operations will commit any accepted proposal that has
not been committed yet as part of the read operation. Write operations
under SERIAL are required to contain a conditional part.

In Cassandra, performing a query that does not make use of the primary key
is guaranteed to be inefficient, because it will need to perform a full table
scan querying all the nodes of the cluster. There are two alternatives to this:
secondary indexes and materialized views. A secondary index can be defined
on some columns of a table. This means each node will index locally this table
using the specified columns. A query based on these columns will still need
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Figure 7.14: Phases of Cassandra LWT protocol
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to ask all the nodes of the system, but at least each node will have a more
efficient way to retrieve the necessary data without scanning all the data. A
materialised view can be defined as a query on an existing table with a newly
defined partition key. This materialised view is maintained as a separate
table and any changes on the original table are eventually propagated to it.
As a result, these two approaches are subject to the following trade-off:

• Secondary indexes are more suitable for high cardinality columns,
while materialized views are suitable for low cardinality columns as
they are stored as regular tables.

• Materialised views are expected to be more efficient during read
operations when compared to secondary indexes, since only the nodes
that contain the corresponding partition are queried.

• Secondary indexes are guaranteed to be strongly consistent, while
materialised views are eventually consistent.

Cassandra does not provide join operations, since they would be inefficient due
to the distribution of data. As a result, users are encouraged to denormalise
the data by potentially including the same data in multiple tables, so that
they can be queried efficiently reading only from a minimum number of
nodes. This means that any update operations on this data will need to
update multiple tables, but this is expected to be quite efficient. Cassandra
provides 2 flavours of batch operations that can update multiple partitions
and tables: logged and unlogged batches. Logged batches provide the
additional guarantee of atomicity, which means either all of the statements
of the batch operation will take effect or none of them. This can help ensure
that all the tables that share this denormalised data will be consistent with
each other. However, this is achieved by first logging the batch as a unit in a
system table which is replicated and then performing the operations, which
makes them less efficient than unlogged batches. Both logged and unlogged
batches do not provide any isolation, so concurrent requests might observe
the effects of some of the operations only temporarily.

Spanner

Spanner is a distributed datastore that was initially developed internally by
Google [5][63] and was subsequently released publicly as part of the Google
platform14.

14See: https://cloud.google.com/spanner

https://cloud.google.com/spanner
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The data model of Spanner is very close to the data model of classical
relational databases. A database in Spanner can contain one or more tables,
which can contain multiple rows. Each row contains a value for each column
that is defined and one or more columns are defined as the primary key of
the table, which must be unique for each row. Each table contains a schema
that defines the data types of each column.

Spanner partitions the data of a table using horizontal range partitioning.
The rows of a table are partitioned in multiple segments, called splits. A split
is a range of contiguous rows, where the rows are ordered by the corresponding
primary key. Spanner can perform dynamic load-based splitting, so any split
that receives an extreme amount of traffic can be partitioned further and
stored in servers that have less traffic. The user can also define parent-
child relationships between tables, so that related rows from the tables are
collocated making join operations much more efficient. A table C can be
declared as a child table of A, using the INTERLEAVE keyword and ensuring
the primary key of the parent table is a prefix of the primary key of the child
table. An example is shown in Figure 7.15, where a parent table Singers is
interleaved with a child table, called Albums . Spanner guarantees that the
row of a parent table and the associated rows of the child table will never be
assigned to a different split.

Figure 7.15: Definition of interleaved tables and data layout

A Spanner deployment is called a universe and it consists of a set of zones,
which are the units of administrative deployment, physical isolation and
replication (e.g. datacenters). Each zone has a zonemaster and hundreds
to several thousands spanservers. The former is responsible for assigning
data to spanservers, while the latter process read/write requests from clients
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and store data. The per-zone location proxies are used by clients to locate
the spanservers that serve a specific portion of data. The universe master
displays status information about all the zones for troubleshooting and the
placement driver handles automated movement of data across zones, e.g. for
load balancing reasons.

Each spanserver can manage multiple splits and each split is replicated across
multiple zones for availability, durability and performance15. All the replicas
of a split form a Paxos group. One of these replicas is voted as the leader
and is responsible for receiving incoming write requests and replicating them
to the replicas of the group via a Paxos round. The rest of the replicas are
followers and can serve some kinds of read requests. Spanner makes use of
long-lived leaders with time-based leader leases, which are renewed by default
every 10 seconds. Spanner makes use of pessimistic concurrency control to
ensure proper isolation between concurrent transactions, specifically two-
phase locking. The leader of each replica group maintains a lock table
that maps ranges of keys to lock states for this purpose16. Spanner also
provides support for distributed transactions that involve multiple splits
that potentially belong to different replica groups. This is achieved via
two-phase commit across the involved replica groups. As a result, the
leader of each group also implements a transaction manager to take part in
the two-phase commit. The leaders of each group that take part are referred
to as participant leaders and the follower replicas of each one of those groups
are referred to as participant slaves. More specifically, one of these groups is
chosen as the coordinator for the two-phase commit protocol and the replicas
of this group are referred to as coordinator leader and slaves respectively.

Spanner makes use of a novel API to record time, called TrueTime [64],
which was the key enabler for most of the consistency guarantees provided
by Spanner. This API directly exposes clock uncertainty and nodes can wait
out that uncertainty when comparing timestamps retrieved from different
clocks. If the uncertainty gets large because of some failure, this will manifest
as increased latency due to nodes having to wait longer periods. TrueTime
represents time as a TTInterval, which is an interval [earliest, latest] with
bounded time uncertainty. The API provides a method TT.now() that re-

15In fact, each split is stored in a distributed filesystem, called Colossus that is the
successor of GFS, which already provides byte-level replication. However, Spanner adds
another level of replication to provide the additional benefits of data availability and
geographic locality.

16In practice, these locks are also replicated in the replicas of the group to cover against
failures of the leader.
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Figure 7.16: Spanner architecture
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turns a TTInterval that is guaranteed to contain the absolute time during
which the method was invoked17. It also provides two convenience meth-
ods TT.after(t), TT.before(t) that specify whether t is definitely in the
past or in the future. These are essentially just wrappers around TT.now(),
since TT.after(t) = t < TT.now().earliest and TT.before(t) = t >
TT.now().latest. As a result, Spanner can assign timestamps to trans-
actions that have global meaning and can be compared by nodes having
different clocks. TrueTime is implemented by a set of time master machines
per datacenter and a timeslave daemon per machine. The masters can use
one of two different forms of time reference, either GPS or atomic clocks,
since they have different failure modes. The master servers compare their
time references periodically and they also cross-check the rate at which their
reference time advances against their local clock, evicting themselves from
the cluster if there is a significant divergence. Daemons poll a variety of
masters to synchronise their local clocks and advertise an uncertainty e
which corresponds to half of the interval’s width (latest - earliest) /
2. This uncertainty depends on master-daemon communication latency and
the uncertainty of the masters’ time. This uncertainty is a sawtooth function
of time that is slowly increasing between synchronisations. In Google’s
production environment, the average value of this uncertainty was reported
to be 4 milliseconds.

Spanner supports the following types of operations:

• standalone (strong or stale) reads
• read-only transactions
• read-write transactions

A read-write transaction can contain both read and/or write operations. It
provides full ACID properties for the operations of the transaction. More
specifically, read-write transactions are not simply serializable, but they are
strictly serializable18. A read-write transaction executes a set of reads and
write operations atomically at a single logical point in time. As explained
before, Spanner achieves these properties with the use of two-phase locking
for isolation and two-phase commit for atomicity across multiple splits.
More specifically, the workflow is the following:

17As also explained in the chapter about time, this is assuming there’s an idealized
absolute time that uses the Earth as a single frame of reference and is generated using
multiple atomic clocks. See: https://en.wikipedia.org/wiki/International_Atomic_Time

18In fact, Spanner documentation also refers to strict serializability with the name
"external consistency", but both are essentially the same guarantees.

https://en.wikipedia.org/wiki/International_Atomic_Time
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• After opening a transaction, a client directs all the read operations to
the leader of the replica group that manages the split with the required
rows. This leader acquires read locks for the rows and columns involved
before serving the read request. Every read also returns the timestamp
of any data read.

• Any write operations are buffered locally in the client until the point
the transaction is committed. While the transaction is open, the client
sends keepalive messages to prevent participant leaders from timing
out a transaction.

• When a client has completed all reads and buffered all writes, it starts
the two-phase commit protocol19. It chooses one of the participant
leaders as the coordinator leader and sends a prepare request to all the
participant leaders along with the identity of the coordinator leader.
The participant leaders that are involved in write operations also receive
the buffered writes at this stage.

• Every participant leader acquires the necessary write locks, chooses
a prepare timestamp that is larger than any timestamps of previous
transactions and logs a prepare record in its replica group through
Paxos. The leader also replicates the lock acquisition to the replicas to
ensure they will be held even in the case of a leader failure. It then
responds to the coordinator leader with the prepare timestamp.

• The coordinator leader waits for the prepare response from all par-
ticipant leaders. Afterwards, it acquires write locks and selects the
commit timestamp of the transaction s. This must be greater or equal
to all prepare timestamps from the participant leaders, greater than
TT.now().latest at the time the coordinator received the commit re-
quest from the client and greater than any timestamps it has assigned
to previous transactions. The coordinator leader then logs a commit
record at its replica group through Paxos and then sends the commit
timestamp to the client and all the participant leaders. In fact, the
coordinator waits until TT.after(s) before doing that to ensure that
clients cannot see any data committed by s until after TT.after(s) is
true.

• Each participant logs the transaction’s outcome through Paxos at its
replica group, applies the transaction’s writes at the commit timestamp
and then release any locks held from this transaction.

19The two-phase commit is required only if the transaction accesses data from multiple
replica groups. Otherwise, the leader of the single replica group can commit the transaction
only through Paxos.
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Figure 7.17 contains a visualisation of this sequence. It is worth noting that
the availability problems from two-phase commit are partially mitigated in
this scheme by the fact that both the participants and the coordinator are
essentially a Paxos group. So, if one of the leader nodes crashes, then another
replica from that replica group will eventually detect that, take over and help
the protocol make progress. Furthermore, the two-phase locking protocol
can result in deadlocks. Spanner resolves these situations via a wound-wait
scheme [65], where a transaction TX1 is allowed to abort a transaction TX2
that holds a desired lock only if TX1 is older than TX2.

Figure 7.17: Read-write transactions in Spanner

Spanner needs a way to know if a replica is up-to-date to satisfy a read
operation. For this reason, each replica tracks a value called safe time tsafe,
which is the maximum timestamp at which the replica is up-to-date. Thus,
a replica can satisfy a read at a timestamp t if t ≤ tsafe. This value is
calculated as tsafe = min(tsafe

Paxos, tsafe
TM). tsafe

Paxos is the timestamp of
the highest-applied Paxos write at a replica group and represents the highest
watermark below which writes will no longer occur with respect to Paxos.
tsafe

TM is calculated as mini(si,g
prepare) over all transactions Ti prepared (but

not committed yet) at replica group g. If there is no such transactions, then
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tsafe
TM = + ∞.

Read-only transactions allow a client to perform multiple reads at the same
timestamp and these operations are also guaranteed to be strictly serializ-
able. An interesting property of read-only transactions is they do not need
to hold any locks and they don’t block other transactions. The reason for
this is that these transactions perform reads at a specific timestamp, which
is selected in such a way as to guarantee that any concurrent/future write
operations will update data at a later timestamp. The timestamp is selected
at the beginning of the transaction as TT.now().latest and it’s used for all
the read operations that are executed as part of this transaction. In general,
the read operations at timestamp tread can be served by any replica g that is
up to date, which means tread ≤ tsafe,g. More specifically:

• In some cases, a replica can be certain via its internal state and
TrueTime that it is up to date enough to serve the read and does so.

• In some other cases, a replica might not be sure if it has seen the latest
data. It can then ask the leader of its group for the timestamp of the
last transaction it needs to apply in order to serve the read.

• In the case the replica is the leader itself, it can proceed directly since
it is always up to date.

Spanner also supports standalone reads outside the context of transactions.
These do not differ a lot from the read operations performed as part of
read-only transactions. For instance, their execution follows the same logic
using a specific timestamp. These reads can be strong or stale. A strong
read is a read at a current timestamp and is guaranteed to see all the data
that has been committed up until the start of the read. A stale read is a
read at a timestamp in the past, which can be provided by the application
or calculated by Spanner based on a specified upper bound on staleness. A
stale read is expected to have lower latency at the cost of stale data, since
it’s less likely the replica will need to wait before serving the request.

There is also another type of operations, called partitioned DML. This allows
a client to specify an update/delete operation in a declarative form, which
is then executed in parallel at each replica group. This parallelism and the
associated data locality makes these operations very efficient. However, this
comes with some tradeoffs. These operations need to be fully partitionable,
which means they must be expressible as the union of a set of statements,
where each statement accesses a single row of the table and each statement
accesses no other tables. This ensures each replica group will be able to
execute the operation locally without any coordination with other replica
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groups. Furthermore, these operations need to be idempotent, because
Spanner might execute a statement multiple times against some groups due to
network-level retries. Spanner does not provide atomicity guarantees for
each statement across the entire table, but it provides atomicity guarantees
per each group. This means that a statement might only run against some
rows of the table, e.g. if the user cancels the operation midway or the
execution fails in some splits due to constraint violations.

FaunaDB

FaunaDB20 is a distributed datastore that drew inspiration from the Calvin
protocol[66] for its core architecture. Calvin is based on the following central
idea: by replicating inputs instead of effects to the various nodes of the
system, it’s possible to have a system that is more deterministic where
all the non-failing nodes go through the same states. This determinism
can obviate the need for agreement protocols, such as two-phase commit,
when performing distributed transactions, since the nodes involved in the
transaction can rely on each other proceeding in exactly the same way.

Abstractly, the architecture is composed of three layers:

• the sequencing layer: this is responsible for receiving in-
puts/commands and placing them in a global order, which is
achieved via a consensus protocol. This is the sequence the operations
will be executed by all the nodes.

• the scheduling layer: this is responsible for orchestrating the execution
of transactions using a deterministic locking scheme to guarantee
equivalence to the serial order specified by the sequencing layer, while
also allowing transactions to be executed concurrently.

• the storage layer: this is responsible for the physical data layout.

In practice, every node in FaunaDB performs three roles simultaneously:

• query coordinator: this is responsible for receiving and processing a
request. As explained later, the request might be processed locally or
routed to other nodes, depending on its type.

• data replica: this is responsible for storing data and serving them
during read operations

20See: https://fauna.com

https://fauna.com
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• log replica: this is responsible for reaching consensus on the order of
inputs and adding them to the globally ordered log.

Figure 7.18: Conceptual view of FaunaDB’s architecture

A cluster is made up of three or more logical datacenters and data is parti-
tioned inside a datacenter and replicated across datacenters for increased
performance and availability. Multiple versions of each data item are
preserved, similar to Spanner. FaunaDB uses a slightly customised version
of Raft for consensus, which aggregates requests and replicates them in
batches21 to improve throughput. When a request arrives to a query coor-
dinator, it speculatively executes the transaction at the latest known log

21These batches are called epochs and a typical window of batching is 10 milliseconds,
so that the impact on latency is not significant. The ordering of requests is achieved by
combining the epoch number and the index of the request in the batch.
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timestamp to discover the data accessed by the transaction, also referred to
as read and write intents. The processing thereafter differs depending on the
type of request:

• If the request is a read-write transaction, it is forwarded to a log replica
that makes sure it’s recorded as part of the next batch, as agreed via
consensus with the other replicas. The request is then forwarded to each
data replica that contains associated data. An interesting difference
with other systems is that in FaunaDB data transfer at this stage is
push-based, not pull-based. As an example, if during a transaction
replica A needs to perform a write based on data owned by replica B,
replica B is supposed to send the data to replica A, instead of replica
A requesting them22. As a result, each data replica blocks until it has
received all the data needed from other replicas. Then, it resolves the
transaction, applies any local writes and acknowledge the success to
the query coordinator. It’s important to note that data might have
changed since the speculative execution of the query coordinator. If
that’s the case, the transaction will be aborted and can potentially be
retried, but this will be a unanimous decision since all the nodes will
execute the operations in the same order. As a consequence, there is
no need for an agreement protocol, such as two-phase commit.

• If the request is a read-only transaction, it is sent to the replica(s) that
contain the associated data or served locally, if the query coordinator
happens to contain all the data. The transaction is timestamped with
the latest known log timestamp and all read operations are performed
at this timestamp. The client library also maintains the timestamp
of the highest log position seen so far, which is used to guarantee a
monitonically advancing view of the transaction order. This guarantees
causal consistency in cases where the client switches from node A
to node B, where node B is lagging behind node A in transaction
execution from the log.

In terms of guarantees, read-write transactions are strictly serializable and
read-only transactions are only serializable. However, read-only transac-
tions can opt-in to be strictly serializable by using the so-called linearized
endpoint. In that case, the read is combined with a no-op write and it’s
executed as a regular read-write transaction going through consensus, thus

22A significant advantage of this is fewer messages that lead to reduced latency. A valid
question is what happens if the node that is supposed to send the data fails. In this case,
the data replica can fall back to requesting the data from other replicas of this partition.
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taking a latency hit.

To achieve these guarantees, read-write transactions make use of a pessimistic
concurrency control scheme based on read/write locks. This protocol is
deterministic, which means it guarantees that all nodes will acquire and
release locks in the exact, same order23. This order is defined by the order
of the transactions in the log. Note that this does not prevent transactions
from running concurrently, it just requires that locks for transaction ti can
be acquired only after locks have been acquired (and potentially released)
for all previous transactions tj (j < i).

This means that all the data accessed by read/write transactions need to
be known in advance24, which means FaunaDB cannot support interactive
transactions. Interactive transactions are ones that a client can keep open and
execute operations dynamically while potentially performing other operations
not related to the database. In contrast to that, transactions in FaunaDB are
declared at once and sent for processing. Interactive transactions could still
be simulated via a combination of snapshot reads and compare-and-swap
operations.

Figure 7.18 contains a conceptual view of the architecture described so far.
Each role is visualised separately in the figure to facilitate understanding of
how the various functions interoperate. However, a single node can perform
all these roles, as explained previously.

Distributed messaging system (Kafka)

Apache Kafka is an open-source messaging system initially developed by
Linkedin[68][69] and then donated to the Apache Software Foundation25.
The primary goal of Kafka was:

• performance: the ability to exchange messages between systems with
high throughput and low latency.

23An interesting benefit of this is that deadlocks are prevented. There is literature that
examines in more detail the benefits of determinism in database systems[67].

24As described previously, this is not strictly required, since the query coordinator per-
forms an initial reconaissance query and includes the results in the submitted transactions.
So, all the replicas can perform again the reads during the execution of the transaction
and identify whether read/write sets have changed, where the transaction can be aborted
and retried. This technique is called Optimistic Lock Location Prediction (OLLP).

25See: https://kafka.apache.org/

https://kafka.apache.org/
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• scalability: the ability to incrementally scale to bigger volumes of
data by adding more nodes to the system.

• durability & availability: the ability to provide durability and
availability of data even in the presence of node failures.

The central concept of Kafka is the topic. A topic is an ordered collection
of messages. For each topic, there can be multiple producers that write
messages to it. There can also be multiple consumers that read messages
from it26. To achieve performance and scalability, each topic is maintained
as a partitioned log, which is stored across multiple nodes called brokers.
Each partition is an ordered, immutable sequence of messages, where each
message is assigned a sequential id number called the offset, which uniquely
identifies each message within the partition. Messages by producers are
always appended to the end of the log. Consumers can consume records in
any order they like providing an offset, but normally a consumer will advance
its offset linearly as it reads records. This provides some useful flexibility,
which allows consumers to do things like replaying data starting from an
older offset or skipping messages and start consuming from the latest offset.
The messages are stored durably by Kafka and retained for a configurable
amount of period, called retention period, regardless of whether they have
been consumed by some client.

As explained before, every log is partitioned across multiple servers in a
Kafka cluster. Messages written by producers are distributed across these
partitions. This can be done in a round-robin fashion simply to balance
load or the partition can be selected by the producer according to some
semantic partitioning function (e.g. based on some attribute in the message
and a partitioning function), so that related messages are stored in the same
partition. Each consumer of a topic can have multiple consumer instances
for increased performance, which are all identified by a consumer group
name. Consumption is implemented in such a way that partitions in a log are
divided over the consumer instances, so that each instance is the exclusive
consumer of a "fair share" of partitions. As a result, each message published
to a topic is delivered to one consumer instance within each subscribing
consumer group. Each partition is also replicated across a configurable
number of nodes for fault tolerance. Each partition has one node which
acts as the leader and zero or more servers that act as followers. The leader
handles all read and write requests for the partition, while the followers

26This means Kafka can support both the point-to-point and the publish-subscribe model
depending on the number of consumers used.
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Figure 7.19: Structure of a Kafka topic
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passively replicate the leader. If the leader fails, one of the followers will
automatically detect that and become the new leader.

Figure 7.20: Kafka architecture

Kafka makes use of Zookeper for various functions, such as leader election
between the replica brokers and group membership of brokers and consumers.
Interestingly, log replication is separated from the key elements of the con-
sensus protocol, such as leader election and membership changes. The latter
are implemented via Zookeper, while the former is using a single-master
replication approach, where the leader waits for followers to persist each
message before acknowledging it to the client. For this purpose, Kafka has
the concept of in-sync replicas (ISR), which are replicas that have replicated
committed records and are thus considered to be in-sync with the leader. In
case of a leader failure, only a replica that is in the ISR set is allowed to be
elected as a leader. This guarantees zero data loss, since any replica in the
ISR set is guaranteed to have stored locally all the records acknowledged by
the previous leader. If a follower in the ISR set is very slow and lags behind,
the leader can evict that replica from the ISR set in order to make progress.
In this case, it’s important to note that the ISR update is completed before
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proceeding, e.g. acknowledging records that have been persisted by the new,
smaller ISR set. Otherwise, there would be a risk of data loss, if the leader
failed after acknowledging these records but before updating the ISR set,
so that the slow follower could be elected as the new leader even though
it would be missing some acknowledged records. The leader maintains 2
offsets, the log end offset (LEO) and the high watermark (HW). The former
indicates the last record stored locally, but not replicated or acknowledged
yet. The latter indicates the last record that has been successfully replicated
and can be acknowledged back to the client.

Kafka provides a lot of levers to adjust the way it operates depending on
the application’s needs. These levers should be tuned carefully depending
on requirements around availability, durability and performance. For
example, the user can control the replication factor of a topic, the minimum
size of the ISR set (min.insync.replicas) and the number of replicas from
the ISR set that need to acknowledge a record before it’s committed (acks).
Let’s see some of the trade-offs one can make using these values:

• Setting min.insync.replicas to a majority quorum (e.g.
(replication factor / 2) + 1) and acks to all would allow
one to enforce stricter durability guarantees, while also achieving good
availability. Let’s assume replication factor = 5, so there are 5
replicas per partition and min.insync.replicas = 3. This would
mean up to 2 node failures can be tolerated with zero data loss and
the cluster still being available for writes and reads.

• Setting min.insync.replicas equal to replication factor and
acks to all would provide even stronger durability guarantees at the
expense of lower availability. In our previous example of replication
factor = 5, this would mean that up to 4 node failures can now be
tolerated with zero data loss. However, a single node failure makes the
cluster unavailable for writes.

• Setting acks to 1 can provide better performance at the expense of
weaker durability and consistency guarantees. For example, records
will be considered committed and acknowledged as soon as the leader
has stored them locally without having to wait for any of the followers
to catch up. However, in case of a leader failure and election of a new
leader, records that had been acknowledged by the previous leader but
had not made it to the new leader yet will be lost.

Kafka can provide at-least-once, at-most-once and exactly-once messaging
guarantees through various different configurations. Let’s see each one of
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them separately:

• at-most-once semantics: this can be achieved on the producer
side by disabling any retries. If the write fails (e.g. due to a
TimeoutException), the producer will not retry the request, so the
message might or might not be delivered depending on whether it had
reached the broker. However, this guarantees that the message cannot
be delivered more than once. In a similar vein, consumers commit
message offsets before they process them. In that case, each message
is processed once in the happy path. However, if the consumer fails
after committing the offset but before processing the message, then
the message will never be processed.

• at-least-once semantics: this can be achieved by enabling retries for
producers. Since failed requests will now be retried, a message might
be delivered more than once to the broker leading to duplicates, but
it’s guaranteed it will be delivered at least once27. The consumer can
process the message first and then commit the offset. This would mean
that the message could be processed multiple times, if the consumer
fails after processing it but before committing the offset.

• exactly-once semantics: this can be achieved using the idempotent
producer provided by Kafka. This producer is assigned a unique
identifier (PID) and tags every message with a sequence number. In
this way, the broker can keep track of the largest number per PID and
reject duplicates. The consumers can store the committed offsets in
Kafka or in an external datastore. If the offsets are stored in the same
datastore where the side-effects of the message processing are stored,
then the offsets can be committed atomically with the side-effects, thus
providing exactly-once guarantees.

Kafka also provides a transactional client that allows producers to produce
messages to multiple partitions of a topic atomically. It also makes it
possible to commit consumer offsets from a source topic in Kafka and
produce messages to a destination topic in Kafka atomically. This makes it
possible to provide exactly-once guarantees for an end-to-end pipeline. This
is achieved through the use of a two-phase commit protocol, where the
brokers of the cluster play the role of the transaction coordinator in a highly
available manner using the same underlying mechanisms for partitioning,
leader election and fault-tolerant replication. The coordinator stores the

27Note that this is assuming infinite retries. In practice, a maximum threshold of retries is
usually performed, in which case a message might not be delivered if this limit is exhausted.
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status of a transaction in a separate log. The messages contained in a
transaction are stored in their own partitions as usual. When a transaction
is committed, the coordinator is responsible for writing a commit marker
to the partitions containing messages of the transactions and the partitions
storing the consumer offsets. Consumers can also specify the isolation level
they want to read under, read_committed or read_uncommitted. In the
former case, messages that are part of a transaction will be readable from a
partition only after a commit marker has been produced for the associated
transaction. This interaction is summarised in Figure 7.21.

Figure 7.21: High-level overview of Kafka transactions

The physical storage layout of Kafka is pretty simple: every log partition
is implemented as a set of segment files of approximately the same size
(e.g. 1 GB). Every time a producer publishes a message to a partition, the
broker simply appends the message to the last segment file. For better
performance, segment files are flushed to disk only after a configurable
number of messages have been published or a configurable amount of time
has elapsed28. Each broker keeps in memory a sorted list of offsets, including
the offset of the first message in every segment file. Kafka employs some more
performance optimisations, such as using the sendfile API29 for sending

28This behaviour is configurable through the values log.flush.interval.messages and
log.flush.interval.ms. It is important to note that this behaviour has implications in
the aforementioned durability guarantees, since some of the acknowledged records might
be temporarily stored only in the memory of all in-sync replicas for some time until they
are flushed to disk.

29See https://developer.ibm.com/articles/j-zerocopy

https://developer.ibm.com/articles/j-zerocopy
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data to consumers thus minimizing copying of data and system calls.

Figure 7.22: Storage layout of a Kafka topic

Some of the guarantees provided by Kafka are the following:

• Messages sent by a producer to a particular topic’s partition will be
appended in the order they are sent. That is, if a message M1 is sent
by the same producer as a message M2, and M1 is sent first, then M1
will have a lower offset than M2 and appear earlier in the log30.

• As explained before, Kafka can provide at-least-once, at-most-once and
exactly-once messaging semantics, depending on the configuration and
the type of producers and consumers used.

30Note that ordering guarantees are provided only per partition. Users of Kafka can
control partitioning, as described before, to leverage the ordering guarantees.
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• The durability, availability and consistency guarantees provided by
Kafka depend on the specific configuration of the cluster, as shown in
the examples above. For example, a topic with replication factor
of N, min.insync.replicas of N/2 + 1 and acks=all guarantees zero
data loss and availability of the cluster for up to N/2 failures.

Distributed cluster management (Kubernetes)

Kubernetes31 is a system that was originally designed by Google, inspired
by a similar system called Borg[70][71], and now maintained by the Cloud
Native Computing Foundation. It can be used to manage a cluster of nodes
and other resources (e.g. disks) handling all the aspects of running software
in the cluster, such as deployment, scaling and discovery.

A Kubernetes cluster contains a set of nodes that can have 2 distinct roles,
they can either be a master node or a worker node. A worker node is
responsible for running the user applications. A master node is responsible
for managing and coordinating the worker nodes. Essentially, worker nodes
make a set of resources available to the cluster and master nodes decide how
these resources are allocated to the applications that need to be executed
as specified by the user32. For availability and durability, multiple master
nodes can be run in parallel with one of them operating as the active leader
and the rest acting as passive followers. Kubernetes uses etcd for various
purposes, such as storing all the cluster data, performing leader election and
transmitting change notifications between different parts of the cluster. Each
node has several different components for the various functionalities that run
independently, i.e. as different processes.

The various objects of the cluster (e.g. nodes, services, jobs etc.) are called
resources and they are represented in etcd as key-value entries under the
right namespace. One of the most central resources in Kubernetes is the pod,
which represents the smallest deployable unit of computing. In practice, it
is a group of one or more containers33 with shared storage/network and a

31See: https://kubernetes.io/
32These applications can be divided in two main categories: long-running services that

are supposed to be running constantly and typically respond to incoming requests and
jobs that are supposed to run for a bounded amount of time typically doing some data
processing.

33A container is a lightweight and portable executable image that contains software and
all of its dependencies. Kubernetes supports multiple container runtimes with Docker

https://kubernetes.io/
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specification for how to run the containers. A persistent volume is a piece of
storage in the cluster that has a lifecycle independent of any individual pod
that uses it. A job creates one or more pods and ensures that a specified
number of them successfully terminate. A service is an abstraction which
defines a logical set of Pods and a policy by which to access them. Every
resource is characterised by some desired state (e.g. number of replicas for a
service) and the various components of Kubernetes cooperate to ensure the
cluster’s current state matches the desired state34.

The main components of the master node are the API Server
(kube-apiserver), the Scheduler (kube-scheduler) and the Controller
Manager (kube-controller-manager). The API Server is essentially the
front-end of the Kubernetes cluster allowing users to inspect the resources of
the cluster and modify them or create new ones. The Scheduler is responsible
for detecting newly created pods that have no node assigned and select a
node for them to run. This selection is done based on multiple criteria, such
as user-specified constraints, affinity specifications, data locality etc. The
Controller Manager is responsible for running all the available controllers in
the master node. A controller is essentially a control loop that watches the
state of the cluster through the API server making changes in order to move
the current state towards the desired state. Below are some examples of
controllers:

• Node Controller: responsible for noticing and responding to node
failures

• Replication Controller: responsible for maintaining the correct number
pods according to the replication specified by the user.

• Endpoints Controller: responsible for creating endpoints for services

The main components of the worker nodes are the kubelet and the proxy
(kube-proxy). The kubelet is an agent that runs on each node in the cluster,
receives a set of pod specifications and makes sure the containers described
in these specifications are running and are healthy. The proxy is a network
proxy that maintains network rules that allow network communication to
the pods from sessions inside and outside the cluster. The worker nodes also
contain software of the container runtime that is used.

As a result, Kubernetes operates under eventual consistency, recovering from

being the most popular.
34The desired state is provided by the user when creating a resource (Spec), while the

current state is supplied and updated by Kubernetes (Status).
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Figure 7.23: Kubernetes architecture
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potential failures and converging back to the desired state. Since there are
multiple components reading and updating the current state of the cluster,
there is a need for some concurrency control to prevent anomalies arising
from reduced isolation. Kubernetes achieves this with the use of conditional
updates. Every resource object has a resourceVersion field representing
the version of the resource as stored in etcd. This version can be used to
perform a compare-and-swap (CAS) operation, so that anomalies like lost
updates are prevented.

Distributed ledger (Corda)

Corda is a platform that allows multiple parties that do not fully trust each
other to maintain a distributed ledger with shared facts amongst each other.
By its nature, this means it is a distributed system similar to the systems
analysed previously. However, a distinctive characteristic of this system is
this lack of trust between the nodes that are part of the system, which also
gives it a decentralisation aspect. This distrust is managed through various
cryptographic primitives35, as explained later. This section will give a rather
brief overview of Corda’s architecture, but you can refer to the available
whitepapers for a more detailed analysis[72][73].

Each node in Corda is a JVM-runtime environment with a unique identity on
the network. A Corda network is made up of many such nodes that want to
transact with each other in order to maintain and evolve a set of shared facts.
This network is permissioned, which means nodes need to acquire an X.509
certificate from the network operator in order to be part of the network. The
component that issues these certificates is referred to as the doorman. In this
context, the doorman operates as a certificate authority for the nodes that
are part of the network. Each node maintains a public and a private key36,
where the private key is used to attest to facts by signing the associated data
and the public key is used by other nodes to verify these signatures. This
X.509 certificate creates an association between the public key of the node
and a human-readable X.500 name (e.g. O=MegaCorp,L=London,C=GB). The

35This is a book about distributed systems, so this section will focus mostly on the
distribution aspect of Corda. For the sake of completeness, the analysis might also mention
how some cryptographic techniques are used, but this will be done under the assumption
that the reader is familiar with basic concepts and can study them further outside the
scope of this book.

36See: https://en.wikipedia.org/wiki/Public-key_cryptography

https://en.wikipedia.org/wiki/Public-key_cryptography
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network also contains a network map service, which provides some form of
service discovery to the nodes that are part of the network. The nodes
can query this service to discover other nodes that are part of the network
in order to transact with them. Interestingly, the nodes do not fully trust
the network operator for the distribution of this information, so each entry
of this map that contains the identifying data of a node (i.e. IP address,
port, X.500 name, public key, X.509 certificate etc.) is also signed by the
corresponding node. In order to avoid censorship by the network operator,
the nodes can even exchange the files that contain this information with each
other out-of-band and install them locally.

Let’s have a look at the data model of Corda now. The shared facts between
Corda nodes are represented by states, which are immutable objects which
can contain arbitrary data depending on the use case. Since states are
immutable, they cannot be modified directly to reflect a change in the state
of the world. Instead, the current state is marked as historic and is replaced
by a new state, which creates a chain of states that gives us a full view
of the evolution of a shared fact over time. This evolution is done by a
Corda transaction, which specifies the states that are marked as historic
(also known as the input states of the transaction) and the new states that
supersede them (also known as the output states of the transaction). Of
course, there are specific rules that specify what kind of states each state
can be replaced by. These rules are specified by smart contracts and each
state also contains a reference to the contract that governs its evolution. The
smart contract is essentially a pure function that takes a transaction as an
input and determines whether this transaction is considered valid based on
the contract’s rules. Transactions can also contain commands, which indicate
the transaction’s intent in terms of how the data of the states are used. Each
command is also associated with a list of public keys that need to sign the
transaction in order to be valid.

Figure 7.24 contains a very simple example of this data model for electronic
money. In this case, each state represents an amount of money issued by
a specific bank and owned by a specific party at some point in time. We
can see that Alice combines two cash states in order to perform a payment
and transfer 10 GBP to Bob. After that, Bob decides to redeem this money
in order to get some cash from the bank. As shown in the diagram, there
are two different commands for each case. We can also guess some of the
rules of the associated contract for this cash state. For a Spend command,
the contract will verify that the sum of all input states equals the sum of
all output states, so that no money is lost or created out of thin air. Most
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likely, it will also check that the Spend command contains all the owners of
the input states as signers, which need to attest to this transfer of money.

Figure 7.24: Corda data model

The astute reader will notice that in this case nothing would prevent someone
from spending a specific cash state to two different parties who would not
be able to detect that. This is known as double spend and it’s prevented
in Corda via the concept of notaries. A notary is a Corda service that
is responsible for attesting that a specific state has not been spent more
than once. In practice, every state is associated with a specific notary and
every transaction that wants to spend this state needs to acquire a signature
from this notary that proves that the state has not been spent already by
another transaction. This process is known as transaction finalisation in
Corda. The notarisation services are not necessarily provided by a single
node, it can also be a notary cluster of multiple nodes in order to provide
better fault tolerance and availability. In that case, these nodes will form
a consensus group. Corda allows the consensus algorithm used by the
notary service to be pluggable depending on the requirements in terms of
privacy, scalability, performance etc. For instance, a notary cluster might
choose to use a crash fault tolerant (CFT) consensus algorithm (e.g. Raft)
that provides high performance but also requires high trust between the
nodes of the cluster. Alternatively, it might choose to use a byzantine fault
tolerant (BFT) algorithm that provides lower performance but also requires
less trust between the nodes of the cluster.
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At this point, it’s important to note that permissioning has different impli-
cations on regular Corda nodes and notaries. In the first case, it forms the
foundation for authentication of communication between nodes, while in the
second case it makes it easier to detect when a notary service deviates from a
protocol (e.g. violating finality), identify the associated real-world entity and
take the necessary actions. This means that finalised transactions are not
reversible in Corda unless someone violates the protocol37. As mentioned
previously, in some cases even some limited amount of protocol violation can
be tolerated, i.e. when using a byzantine consensus protocol.

The size of the ledger of all Corda applications deployed in a single network
can become pretty large. The various nodes of the network communicate
on a peer-to-peer fashion only with the nodes they need to transact, but
the notary service seems to be something that needs to be used by all the
nodes and could potentially end up being a scalability and performance
bottleneck. For this purpose, Corda supports both vertical and horizontal
partitioning. Each network can contain multiple notary clusters, so that
different applications can make use of different clusters (vertical partitioning).
Even the same application can choose to distribute its states between multiple
notary clusters for better performance and scalability (vertical partitioning).
The only requirement is for all input states of a transaction to belong to the
same notary. This is so that the operation of checking whether a state is
spent and marking it as spent can be done atomically in a simple and efficient
way without the use of distributed transaction protocols. Corda provides
a special transaction type, called notary-change transaction, which allows one
to change the notary associated with a state by essentially spending the state
and creating a new one associated with the new notary. However, in some use
cases datasets can be partitioned in a way that requires a minimal number
of such transactions, because the majority of transactions are expected to
access states from the same partition. An example of this is partitioning of
states according to geographic regions if we know in advance that most of the
transactions will be accessing data from the same region. This architecture
also makes it possible to use states from different applications in a very easy
way without the use of distributed transaction protocols38.

Corda applications are called CorDapps and contain several components of
which the most important ones are the states, their contracts and the flows.

37This is in contrast to some other distributed ledger systems where nodes are anonymous
and can thus collude in order to revert historic transactions, such as Bitcoin[74].

38This is known as atomic swap and a real use case in the financial world is known as
delivery-versus-payment (DvP).
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The flows define the workflows between nodes used to perform an update to
the ledger or simply exchange some messages. Corda provides a framework
that allows the application to define the interaction between nodes as a
set of blocking calls that send and receive messages and the framework is
responsible for transforming this to an asynchronous, event-driven execution.
Corda also provides a custom serialization framework that determines how
application messages are serialised when sent across the wire and how they
are deserialised when received. Messaging between nodes is performed with
the use of message queues, using the Apache ActiveMQ Artemis message
broker. Specifically, each node maintains an inbound queue for messages
received by other nodes and outbound queues for messages sent to other
nodes along with a bridge process responsible for forwarding messages from
the node’s outbound queues to the corresponding inbound queues of the
other nodes. Even though all of these moving parts can crash and restart
in the middle of some operation, the platform provides the guarantee that
every node will process each message exactly-once. This is achieved by
resending messages until they are acknowledged and having nodes keeping
track of messages processed already and discarding duplicates. Nodes also
need to acknowledge a message, store its identifier and perform any related
side-effects in an atomic way, which is achieved by doing all of this in a single
database transaction. All the states from the ledger that are relevant to a
node are stored in its database, this part of the database is called the vault.
A node provides some more APIs that can be used for various purposes,
such as starting flows or querying the node’s vault. These can be accessed
remotely via a client, which provides a remote procedure call (RPC)
interface that’s implemented on top of the existing messaging infrastructure
and using the serialization protocol described before. Figure 7.25 contains a
high-level overview of the architecture described so far.

Corda is a very interesting case study from the perspective of backwards
compatibility. In a distributed system, the various nodes of the system
might be running different versions of the software, since in many cases
software has to be deployed incrementally to them and not in a single step.
In a decentralised system, there is an additional challenge, because the
various nodes of the systems are now controlled by different organisations,
so these discrepancies might last longer. Corda provides a lot of different
mechanisms to preserve backwards compability in different areas, so let’s
explore some of them. First of all, Corda provides API & ABI39 backwards
compatibility for all the public APIs available to CorDapps. This means that

39See: https://en.wikipedia.org/wiki/Application_binary_interface

https://en.wikipedia.org/wiki/Application_binary_interface
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Figure 7.25: High-level overview of Corda’s architecture

any CorDapp should be able to run in future versions of the platform without
any change or re-compilation. Similar to other applications, CorDapps are
expected to evolve, which might involve changing the structure of data
exchanged between nodes and the structure of data stored in the ledger (e.g.
states). The serialization framework provides some support for evolution
for the first case. For instance, nullable properties can be added to a class
and the framework will take care of the associated conversions. A node
running an older version of the CorDapp will just ignore this new property
if data is sent from a node running a newer version of the CorDapp. A node
running a newer version of the CorDapp will populate the property with null
when receiving data from a node running the older version of the CorDapp.
Removing nullable properties and adding a non-nullable property is also
possible by providing a default value. However, the serialization framework
does not allow this form of data loss to happen for data that are persisted
in the ledger, such as states and commands. Since states can evolve and
the ledger might contain states from many earlier versions of a CorDapp,
newer versions of a contract need to contain appropriate logic that is able
to process states from earlier versions of the CorDapp. The contract logic
for handling states from version vi of the CorDapp can be removed by a
subsequent release of the CorDapp only after all unspent states in the ledger
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are from version vj of the CorDapp, where j > i.

In some cases, the platform might introduce a new feature that is not
backwards compatible, i.e. cannot be understood by older versions of the
platform. This can be problematic for two reasons. First of all, two nodes
running different versions of the platform might reach different conclusions
with regards to the validity of a transaction. Furthermore, when validating
a transaction nodes are supposed to also validate previous transactions that
were involved in the chain of provenance of the states that are consumed in
the current transaction. This means that a node running an older version
of the platform might fail to validate a transaction that was deemed valid
in the past, because it is using a feature introduced in a newer version
of the platform. Corda solves this problem with the use of the network
minimum platform version. Every network comes with a set of parameters
that every node participating in the network needs to agree on and to use to
correctly interoperate with each other. This set contains a parameter called
minimumPlatformVersion, which determines the minimum platform version
that the nodes must be running, any node which is below this will not be
able to start. Any feature of the platform that is not backwards compatible
and requires a minimum version of the platform can check this parameter
and be enabled only when the network is over a specific platform version. In
this way, the nodes of a network can start using a feature only after they
can be certain all other nodes will also be able to use it. This establishes a
balance between nodes in a network that are keen on using a new feature and
nodes that are risk averse and are not willing to upgrade to a new version of
the platform.

However, all of this applies only to features that have network-wide impli-
cations, e.g. ones that determine how data are stored on the ledger. There
can also be features that do not affect the whole network. Examples of this
are changes to the way two nodes interact during the execution of a flow or
even the way a single node executes some part of a CorDapp locally. Corda
provides multiple versioning levers for more fine-grained control. For this
purpose, CorDapps provide two version numbers: minimumPlatformVersion
and targetPlatformVersion. The former indicates the minimum platform
version the node must have for the CorDapp to function properly, which
is essentially determined based on the features that are necessary to the
CorDapp and the platform version they were introduced in. The latter
indicates the highest version the CorDapp has been tested against and helps
the platform disable backwards compatibility codepaths that might make
the CorDapp less efficient or secure. Note that these versions only have
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implications on the node running the CorDapp, instead of the whole network.
Another example is the fact that flows in a CorDapp can be versioned in
order to evolve while maintaining backwards compatibility. In this way, a
flow can behave differently depending on the version of the CorDapp that
is deployed on the counterparty node. This makes it possible to upgrade a
CorDapp incrementally across various nodes, instead of all of them having
to do it in lockstep.

Distributed data processing systems

This section will examine distributed systems that are used to process large
amounts of data that would be impossible or very inefficient to process using
only a single machine. They can be classified in two main categories:

• batch processing systems: these systems group individual data
items into groups, called batches, which are processed one at a time. In
many cases, these groups can be quite large (e.g. all items for a day),
so the main goal for these system is usually to provide high throughput
sometimes at the cost of increased latency.

• stream processing systems: these systems receive and process data
continuously as a stream of data items. As a result, the main goal for
these systems is providing very low latency sometimes at the cost of
decreased throughput.

Figure 7.26: Batch and stream processing
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There is also a form of processing that is essentially a hybrid between these
two categories, called micro-batch processing. This approach processes
data in batches, but these batches are kept very small in order to achieve a
balance between throughput and latency.

MapReduce

MapReduce was a framework for batch data processing originally developed
internally in Google[75] that was later incorporated in the wider Apache
Hadoop framework. The framework draws inspiration from the field of
functional programming and is based on the following main idea. Many
real-word computations can be expressed with the use of two main primitive
functions, map and reduce. The map function processes a set of key/value
pairs and produces as output another set of intermediate key/value pairs. The
reduce function receives all the values for each key and returns a single value,
essentially merging all the values according to some logic. These primitive
functions have a very important property, they can easily be parallelised
and run across multiple machines for different parts of the dataset. As a
result, the application code is responsible for defining these two methods
and the framework is responsible for partitioning the data, scheduling the
program’s execution across multiple nodes, handling node failures and
managing the required inter-machine communication.

Let’s see a typical example to understand better how this programming
model works in practice. We assume we have a huge collection of documents
(e.g. webpages) and we need to count the number of occurrences for each
word. To achieve that via MapReduce, we would use the following functions:

// key: the document name
// value: the document contents
map(String key, String value) {

for(word: value.split(" ")) {
emit(word, 1)

}
}

reduce(String key, Iterator<Integer> values) {
int count = 0;
for(value: values) {

result += value;
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}
emit(key, result);

}

In this case, the map function would emit a single record for each word with
the value 1, while the reduce function would just count all these entries and
return the final sum for each word.

This framework is also based on a master-worker architecture, where the
master node is responsible for scheduling tasks at worker nodes and managing
their execution, as shown in Figure 7.27. Apart from the definition of the
map/reduce functions, the user can also specify the number M of map tasks,
the number R of reduce tasks, the input/output files and a partitioning
function that defines how key/value pairs from the map tasks are partitioned
before being processed by the reduce tasks. By default, a hash partitioner
is used that selects a reduce task using the formula hash(key) mod R. The
execution of a MapReduce proceeds in the following way:

• The framework divides the input files into M pieces, called input splits,
which are typically between 16 and 64 MB per split.

• It then starts an instance of a master node and multiple instances of
worker nodes on an existing cluster of machines.

• The master selects idle worker nodes and assigns map tasks to them.
• A worker node that is assigned a map task reads the contents of the

associated input split, it parses key/value pairs and passes them to the
user-defined map function. The entries emitted by the map function
are buffered in memory and periodically written to the local disk,
partitioned into R regions using the partitioning function. When a
worker node completes a map task, it sends the location of the local
file to the master node.

• The master node assigns reduce tasks to worker nodes providing the
location to the associated files. These worker nodes then perform
remote procedure calls (RPCs) to read the data from the local disks
of the map workers. The data is first sorted40, so that all occurrences
of the same key are grouped together and then passed into the reduce
function.

• When all map and reduce tasks are completed, the master node returns
the control to the user program. After successful completion, the
output of the mapreduce job is available in the R output files that can
either be merged or passed as input to a separate MapReduce job.

40If the size is prohibitively large to fit in memory, external sorting is used.
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Figure 7.27: Architecture of MapReduce

The master node communicates with every worker periodically in the back-
ground as a form of heartbeat. If no response is received for a specific
amount of time, the master node considers the worker node as failed and
re-schedules all its tasks for re-execution. More specifically, reduce tasks
that had been completed do not need to be rerun, since the output files are
stored in an external file system. However, map tasks are rerun regardless of
whether they had completed, since their output is stored on the local disk
and is therefore inaccessible to the reduce tasks that need it.

This means that network partitions between the master node and worker
nodes might lead to multiple executions of a single map or reduce task.
Duplicate executions of map tasks are deduplicated at the master node,
which ignores completion messages for already completed map tasks. Reduce
tasks write their output to a temporary file, which is atomically renamed
when the reduce task completes. This atomic rename operation provided by
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the underlying file system guarantees that the output files will contain just
the data produced by a single execution of each reduce task. However, if the
map/reduce functions defined by the application code have additional side-
effects (e.g. writing to external datastores) the framework does not provide
any guarantees and the application writer needs to make sure these side-
effects are atomic and idempotent, since the framework might trigger
them more than once as part of a task re-execution.

Input and output files are usually stored in a distributed filesystem, such as
HDFS or GFS. MapReduce can take advantage of this to perform several
optimisations, such as scheduling map tasks on worker nodes that contain a
replica of the corresponding input to minimize network traffic or aligning
the size of input splits to the block size of the file system.

The framework provides the guarantee that within a given partition, the
intermediate key/value pairs are processed in increasing key order. This
ordering guarantees makes it easy to produce a sorted output file per partition,
which is useful for use cases that need to support efficient random access
lookups by key or need sorted data in general. Furthermore, some use-cases
would benefit from some form of pre-aggregation at the map level to reduce
the amount of data transferred between map and reduce tasks. This was
evident in the example presented above, where a single map would emit
multiple entries for each occurence of a word, instead of a single entry
with the number of occurrences. For this reason, the framework allows the
application code to also provide a combine function. This method has the
same type as the reduce function and is run as part of the map task in order
to pre-aggregate the data locally.

Apache Spark

Apache Spark [76][77] is a data processing system that was initially developed
at the University of California and then donated to the Apache Software
Foundation. It was developed in response to some of the limitations of
MapReduce. Specifically, the MapReduce model allowed developing and
running embarrassingly parallel computations on a big cluster of machines,
but every job had to read the input from disk and write the output to disk.
As a result, there was a lower bound in the latency of a job execution, which
was determined by disk speeds. This means MapReduce was not a good fit
for iterative computations, where a single job was executed multiple times
or data were passed through multiple jobs, and for interactive data analysis,
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where a user wants to run multiple ad-hoc queries on the same dataset. Spark
tried to address these two use-cases.

Spark is based on the concept of Resilient Distributed Datasets (RDD), which
is a distributed memory abstraction used to perform in-memory computations
on large clusters of machines in a fault-tolerant way. More concretely, an
RDD is a read-only, partitioned collection of records. RDDs can be
created through operations on data in stable storage or other RDDS. The
operations performed on an RDD can be one of the following two types:

• transformations, which are lazy operations that define a new RDD.
Some examples of transformations are map, filter, join and union.

• actions, which trigger a computation to return a value to the program
or write data to external storage. Some examples of actions are count,
collect, reduce and save.

A typical Spark application will create an RDD by reading some data from
a distributed filesystem, it will then process the data by calculating new
RDDs through transformations and will finally store the results in an output
file. For example, an application used to read some log files from HDFS and
count the number of lines that contain the word "sale completed" would look
like the following:

lines = spark.textFile("hdfs://...")
completed_sales = lines.filter(_.contains("sale completed"))
number_of_sales = completed_sales.count()

This program can either be submitted to be run as an invividual application
in the background or each one of the commands can be executed interactively
in the Spark interpreter. A Spark program is executed from a coordinator
process, called the driver. The Spark cluster contains a cluster manager node
and a set of worker nodes. The responsibilities between these components
are split in the following way:

• The cluster manager is responsible for managing the resources of the
cluster (i.e. the worker nodes) and allocating resources to clients that
need to run applications.

• The worker nodes are the nodes of the cluster waiting to receive
applications/jobs to execute.

• Spark also contains a master process that requests resources in the
cluster and makes them available to the driver41.

41Note that Spark supports both a standalone clustering mode and some clustering modes
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• The driver is responsible for requesting the required resources from the
master and starting a Spark agent process on each node that runs for
the entire lifecycle of the application, called executor. The driver then
analyses the user’s application code into a directed acyclic graph (DAG)
of stages, partitions the associated RDDs and assigns the corresponding
tasks to the executors available to compute them. The driver is also
responsible for managing the overall execution of the application, e.g.
receiving heartbeats from executors and restarting failed tasks.

Figure 7.28: Architecture of Spark

Notably, in the previous example the second line is executed without any
data being read or processed yet, since filter is a transformation. The
data is being read from HDFS, filtered and then counted, when the third
line is processed, which contains the count operation which is an action.
To achieve that, the driver maintains the relationship between the various
RDDs through a lineage graph, triggering calculation of an RDD and all its
ancestors only when an action is performed. RDDs provide the following
basic operations42:

• partitions(), which returns a list of partition objects. For example,

using third-party cluster management systems, such as YARN, Mesos and Kubernetes.
In the standalone mode, the master process also performs the functions of the cluster
manager. In some of the other clustering modes, such as Mesos and YARN, they are
separate processes.

42Note that these operations are mainly used by the framework to orchestrate the
execution of Spark applications. The applications are not supposed to make use of these
operations, they should be using the transformations and actions that were presented
previously.
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an RDD representing an HDFS file has a partition for each block of
the file by default. The user can specify a custom number of partitions
for an RDD, if needed.

• partitioner(), which returns metadata determining whether the
RDD is hash/range partitioned. This is relevant to transformations
that join multiple key-value RDDs based on their keys, such as join
or groupByKey. In these cases, hash partitioning is used by default on
the keys, but the application can specify a custom range partitioning
to be used, if needed. An example is provided in the paper [77], where
execution of the PageRank algorithm on Spark can be optimised by
providing a custom partitioner that groups all the URLs of a single
domain in the same partition.

• preferredLocations(p), which lists nodes where partition p can be
accessed faster due to data locality. This might return nodes that
contain the blocks of an HDFS file corresponding to that partition or
a node that already contains in memory a partition that needs to be
processed.

• dependencies(), which returns a list of dependencies on parent RDDs.
These dependencies can be classified into two major types: narrow and
wide dependencies. A narrow dependency is one where a partition of
the parent RDD is used by at most one partition of the child RDD, such
as map, filter or union. A wide dependency is one where multiple
child partitions may depend on a single parent partition, such as a
join or groupByKey. Note that a join of two RDDs can lead to two
narrow dependencies, if both of the RDDs are partitioned with the
same partitioner, as shown in Figure 7.29.

• iterator(p, parentIters), which computes the elements of a parti-
tion p given iterators for its parent partitions.

As explained before, the driver examines the lineage graph of the application
code and builds a DAG of stages to execute, where each stage contains as
many pipelined transformations with narrow dependencies as possible. The
boundaries of each stage correspond to operations with wide dependencies
that require data shuffling between partitions or any already computed
partitions that have been persisted and can short-circuit the computation
of ancestor RDDs. The driver launches tasks to compute missing partitions
from each stage until it has computed the target RDD. The tasks are assigned
to executors based on data locality. If a task needs to process a partition
that is available in memory on a node, it’s submitted to that node. If a
task processes a partition for which the containing RDD provides preferred
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Figure 7.29: Examples of narrow and wide dependencies. Each big rectangle
is an RDD with the smaller grey rectangles representing partitions of the
RDD



CHAPTER 7. CASE STUDIES 202

locations (e.g. an HDFS file), it’s submitted to these nodes. For wide
dependencies that require data shuffling, nodes holding parent partitions
materialize intermediate records locally that are later pulled by nodes from
the next stage, similar to MapReduce.

Figure 7.30: Example of a DAG of stages computed from a Spark application

This graph is the basic building block for efficient fault-tolerance. When
an executor fails for some reason, any tasks running on it are re-scheduled on
another executor. Along with this, tasks are scheduled for any parent RDDs
required to calculate the RDD of this task. As a consequence of this, wide
dependencies can be much more inefficient than narrow dependencies when
recovering from failures, as shown in Figure 7.31. Long lineage graphs can
also make recovery very slow, since many RDDs will need to be recomputed
in a potential failure near the end of the graph. For this reason, Spark
provides a checkpointing capability, which can be used to store RDDs from
specified tasks to stable storage (e.g. a distributed filesystem). In this way,
RDDs that have been checkpointed can be read from stable storage during
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recovery, thus only having to rerun smaller portions of the graph. Users can
call a persist() method to indicate which RDDs need to be stored on disk.

Figure 7.31: The impact of wide dependencies on recovery from failures.
The red cross indicates failure of a task calculating a specific partition of an
RDD. The black rectangles represent the partitions of RDDs that need to
be recomputed, if not persisted.

The persist() method provides different storage levels depending on the
needs of the application. As explained before, persistence on disk can be
used to make recovery from failures faster. Users can also instruct nodes to
store calculated RDDs in memory, so that they can be served from memory
every time they are needed and they don’t need to be recalculated. This
option is very useful for interactive applications, where a specific RDD is
calculated and is then used in multiple different ways in order to explore a
dataset without having to calculate the whole lineage each time. Spark also
provides graceful degradation in cases where memory is not enough, so that
the application does not fail but keeps running with decreased performance.
For instance, Spark can either recalculate any partitions on demand when
they don’t fit in memory or spill them to disk. Wide dependencies cause
more data to be exchanged between nodes compared to narrow dependencies,
so performance can be increased significantly by reducing wide dependencies
or the amount of data that need to be shuffled. One way to do this is by
pre-aggregating data, also known as map-side reduction43. As an example,
the following code performs a word count in two different ways: the first one
will send multiple records of value 1 for each word across the network, while

43As explained previously, this is a capability provided in the MapReduce framework
too through the use of combiners.
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the second one will send one record for each word containing the number of
occurrences.

// word count without pre-aggregation
sparkContext.textFile("hdfs://...")

.flatMap(line => line.split(" "))

.map(word => (word,1))

.groupByKey()

.map((x,y) => (x,sum(y)))

// word count with pre-aggregation
sparkContext.textFile("hdfs://...")

.flatMap(line => line.split(" "))

.map(word => (word,1))

.reduceByKey((x,y)=> (x+y))

Spark can also be configured in a way that is resilient to failures of the
master process. This is achieved via Zookeeper, where all the masters are
performing leader election and one of them is elected as the leader with the
rest remaining in standby mode. When a new worker node is added to the
cluster, it registers with the master node. If failover occurs, the new master
will contact all previously registered worker nodes to inform them of the
change in leadership. So, only the scheduling of new applications is affected
during a failover, applications that were already running are unaffected.
When submitting a job to the Spark cluster, the user can specify through a
--supervise option that the driver needs to be automatically restarted by
the master if it fails with non-zero exit code.

Spark supports multiple, different systems for data persistence. It has
a commit protocol that aims to provide exactly-once guarantees on
the job’s output under specific conditions. This means that no matter
how many times worker nodes fail and tasks are rerun, if a job com-
pletes, there will be no duplicate or corrupt data in the final output file.
This might not be the case for every supported storage system and it’s
achieved differently depending on the available capabilities. For instance,
when using HDFS, each task writes the output data to a unique, tem-
porary file (e.g. targetDirectory/_temp/part-XXXX_attempt-YYYY) and
when the write is complete, the file is moved to the final location (e.g.
targetDirectory/part-XXXX) using an atomic rename operation provided
by HDFS. As a result, even if a task is executed multiple times due to
failures, the final file will contain its output exactly once. Furthermore, no
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matter which execution completed successfully, the output data will be the
same as long as the transformations that were used were deterministic
and idempotent. This is true for any transformations that act solely on
the data provided by the previous RDDs using deterministic operations.
However, this is not the case if these transformations make use of data
from other systems that might change between executions or if they use
non-deterministic actions (e.g. mathematical calculations based on random
number generation). Furthermore, if transformations perform side-effects on
external systems that are not idempotent, no guarantee is provided since
Spark might execute each side-effect more than once.

Apache Flink

Apache Flink[78][79] is an open-source stream-processing framework de-
veloped by the Apache Software Foundation aiming to provide a high-
throughput, low latency data processing engine44.

The basic constructs in Flink are streams and transformations. A stream is
an unbounded45 flow of data records and a transformation is an operation
that takes one or more streams as input and produces one or more output
streams as a result. Flink provides many different APIs that can be used
to define these transformations. For example, the ProcessFunction API is
a low-level interface that allows the user to define imperatively what each
transformation should do by providing the code that will process each record.
The DataStream API is a high-level interface that allows the user to define
declaratively the various transformations by re-using basic operations, such
as map, flatMap, filter, union etc. Since streams can be unbounded, the
application has to produce some intermediate, periodic results. For this
purpose, Flink provides some additional constructs, such as windows, timers
and local storage for stateful operators. Flink provides a set of high-level
operators that specify the windows over which data from the stream will

44This is a main differentiator between Flink and Spark. Flink processes incoming
data as they arrive, thus managing to provide sub-second latency that can go down to
single-digit millisecond latency. Note that Spark also provides a streaming engine, called
Spark Streaming[80]. However, that is running some form of micro-batch processing, where
an input data stream is split into batches, which are then processed to generate the final
results in batches with the associated latency trade-off.

45Note that Flink can also execute batch processing applications, where data is treated
as a bounded stream. As a result, the mechanisms described in this section are used in
this case too with slight variations.
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be aggregated. These windows can be time-driven (e.g. time intervals) or
data-driven (e.g. number of elements). The timer API allows applications to
register callbacks to be executed at specific points in time in the future.

A data processing application in Flink can be represented as a directed acyclic
graph (DAG)46, where nodes represent computing tasks and edges represent
data subscriptions between tasks. Flink is responsible for translating the
logical graph corresponding to the application code to the actual physical
graph that will be executed. This includes logical dataflow optimisations,
such as fusion of multiple operations to a single task (e.g. combination of
two consecutive filters). It also includes partitioning each task into multiple
instances that can be executed in parallel in different compute nodes. Figure
7.32 illustrates this process.

Figure 7.32: A Flink dataflow graph example

The high-level architecture of Flink consists of 3 main components, as shown
in Figure 7.33. The client receives the program code, transforms it into a
dataflow graph and submits it to the Job Manager, which coordinates the
distributed execution of the dataflow. The Job Manager is responsible for
scheduling execution of tasks on Task Managers, tracking their progress
and coordinating checkpoints and recovery from possible failures of tasks.
Each Task Manager is responsible for executing one or more tasks that

46Note that Flink also has support for cyclic dataflow graphs, which can be used for
use-cases such as iterative algorithms. However, this detail is omitted here for the sake of
simplicity.
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execute user-specified operators that can produce other streams and report
their status to the Job Manager along with heartbeats that are used for
failure detection. When processing unbounded streams, these tasks are
supposed to be long-lived. If they fail, the Job Manager is responsible for
restarting them. To avoid making the Job Manager a single point of failure,
multiple instances can be running in parallel. One of them will be elected
leader via Zookeeper and will be responsible for coordinating the execution
of applications, while the rest will be waiting to take over in case of a leader
failure. As a result, the leader Job Manager stores some critical metadata
about every application in Zookeeper, so that it’s accessible to newly elected
leaders.

Figure 7.33: Apache Flink architecture

As explained previously, time is a crucial element that is commonly used to
define boundaries on unbounded streams. Similar to other stream processing
systems[81][82], Flink supports two main notions of time: processing time
and event time47. Processing time refers to the system time of the machine
that is executing an operation. Event time is the time that each individual

47In fact, Flink has a third notion of time, called the ingestion time. This corresponds
to the time an event enters Flink. The discussion in this section will focus on event and
processing time.
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event occured on its producing device. Each one of them can be used with
some trade-offs:

• When a streaming program runs on processing time, all time-based
operations (e.g. time windows) will use the system clock of the machines
that run the respective operation. This is the simplest notion of time
and requires no coordination between the nodes of the system. It also
provides good performance and reliably low latency on the produced
results. However, all this comes at the cost of consistency and non-
determinism. The system clocks of different machines will differ and
the various nodes of the system will process data at different rates. As
a consequence, different nodes might assign the same event to different
windows depending on timing.

• When a streaming program runs on event time, all time-based opera-
tions will use the event time embedded within the stream records to
track progress of time, instead of system clocks. This brings consistency
and determinism to the execution of the program, since nodes will
now have a common mechanism to track progress of time and assign
events to windows. However, it requires some coordination between the
various nodes, as we will see below. It also introduces some additional
latency, since nodes might have to wait for out-of-order or late events.

The main mechanism to track progress in event time in Flink is watermarks.
Watermarks are control records that flow as part of a data stream and carry a
timestamp t. A Watermark(t) record indicates that event time has reached
time t in that stream, which means there should be no more elements with
a timestamp t' ≤ t. Once a watermark reaches an operator, the operator
can advance its internal event time clock to the value of the watermark.
Watermarks can be generated either directly in the data stream source or by
a watermark generator in the beginning of a Flink pipeline. The operators
later in the pipeline are supposed to use the watermarks for their processing
(e.g. to trigger calculation of windows) and then emit them downstream
to the next operators. There are many different strategies for generating
watermarks. An example is the BoundedOutOfOrdernessGenerator, which
assumes that the latest elements for a certain timestamp t will arrive at
most n milliseconds after the earliest elements for timestamp t. Of course,
there could be elements that do not satisfy this condition and arrive after
the associated watermark has been emitted and the corresponding windows
have been calculated. These are called late elements and Flink provides
different ways to deal with them, such as discarding them or re-triggering
the calculation of the associated window. Figure 7.34 contains an illustration
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of how watermarks flow in a Flink pipeline and how event time progresses.

Figure 7.34: Event time & watermarks in Flink

As mentioned previously, stream processing applications in Flink are supposed
to be long-lived. As a result, there must be an efficient way to recover from
failures without having to repeat a lot of work. For this purpose, Flink
periodically checkpoints the operators’ state along with the position of the
stream that has been consumed to generate this state. In case of a failure,
an application can be restarted from the latest checkpoint and continue
processing from there. All this is achieved via an algorithm similar to the
Chandy-Lamport algorithm for distributed snapshots, called Asynchronous
Barrier Snapshotting (ABS)[83]. This algorithm operates slightly different
for acyclic and cyclic graphs, so we will examine the first case here which is
a bit simpler. The algorithms works in the following way:

• The Job Manager periodically injects some control records in the
stream, referred to as stage barriers. These records are supposed to
divide the stream into stages, where the set of operator states at the
end of a stage reflects the whole execution history up to the associated
barrier and thus it can be used for a snapshot.

• When a source task receives a barrier, it takes a snapshot of its current
state and it then broadcasts the barrier to all its outputs.

• When a non-source task receives a barrier from one of its inputs, it
blocks that input until it has received a barrier from all the inputs.
It then takes a snapshot of its current state and broadcasts the bar-
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rier to its outputs. Finally, it unblocks its inputs. This blocking is
needed, so that the checkpoint is guaranteed to contain the state after
processing all the elements before the barrier and no elements after
the barrier. Note that the snapshot taken while the inputs are blocked
can be a logical one, where the actual, physical snapshot is happening
asynchronously in the background48. This is done in order to reduce
the duration of this blocking phase, so that the application can start
processing data again as quickly as possible.

• Once the background copy process has completed, each task acknowl-
edges the checkpoint back to the Job Manager. After the Job Manager
has received an acknowledgement from all the tasks, the checkpoint is
considered complete and can be used for recovery if a failure happens
later on. At this point, the Job Manager notifies all the tasks that
the checkpoint is complete, so that they can perform any cleanup or
bookkeeping logic required.

There are 2 subtle points in the checkpoint algorithm and the recovery
process. During recovery, tasks will be reset back to the last checkpoint and
start processing again from the first element after the checkpoint was taken.
This implies that any state that might have been produced by elements after
the last checkpoint will be essentially discarded, so that each element is
processed exactly-once. However, this raises the following questions:

• How is the state produced after the last checkpoint discarded in practice
if it’s been persisted in the operator’s state?

• What happens with sink tasks that interact with external systems and
records that might have been emitted after the last checkpoint in case
of a failure?

• What happens with sources that do not support replay of past records?

The answers to all these questions partially rely on a core characteristic of the
checkpoint algorithm. As explained previously, the algorithm has the form of
a two-phase commit protocol, where the first phase consists of the Job
Manager instructing all the tasks to create a checkpoint and the second phase
consists of the Job Manager informing them that all the tasks succcesfully
managed to create a checkpoint. The state of an operator can be stored in
different ways, such as in the operator’s memory, in an embedded key-value
store or in an external datastore. If that datastore supports MVCC, then all
the updates to the state can simply be stored under a version that corresponds

48One way to achieve this is through copy-on-write techniques. See: https://en.wikipedia.
org/wiki/Copy-on-write

https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Copy-on-write
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to the next checkpoint. During recovery, updates that had been performed
after the last checkpoint are automatically ignored, since reads will return
the version corresponding to the last checkpoint. If the datastore does not
support MVCC, all the state changes can be maintained temporarily in local
storage in the form of a write-ahead-log (WAL), which will be committed to
the datastore during the second phase of the checkpoint protocol. Flink can
also integrate with various other systems that can be used to retrieve input
data from (sources) or send output data to (sinks), such as Kafka, RabbitMQ
etc. Each one of them provides different capabilities. For example, Kafka
provides an offset-based interface, which makes it very easy to replay data
records in case of recovery from a failure. A sink task just has to keep track
of the offset of each checkpoint and start reading from that offset during
recovery. However, message queues do not provide this interface, so Flink
has to use alternative methods to provide the same guarantees. For instance,
in the case of RabbitMQ, messages are acknowledged and removed from the
queue only after the associated checkpoint is complete, again during the
second phase of the protocol. Similarly, a sink needs to coordinate with the
checkpoint protocol in order to be able to provide exactly-once guarantees.
Kafka is a system that can support this through the use of its transactional
client. When a checkpoint is created by the sink, the flush() operation is
called as part of the checkpoint. After the notification that the checkpoint
has been completed in all operators is received from the Job Manager, the
sink calls Kafka’s commitTransaction method. Flink provides an abstract
class called TwoPhaseCommitSinkFunction that provides the basic methods
that need to be implemented by a sink that wants to provide these guarantees
(i.e. beginTransaction, preCommit, commit, abort).

To sum up, some of the guarantees provided by Flink are the following:

• Depending on the types of sources and sinks used, Flink provides
exactly-once processing semantics even across failures.

• The user can also optionally downgrade to at-least-once processing
semantics, which can provide increased performance.

• It’s important to note that the exactly-once guarantees apply to stream
records and local state produced using the Flink APIs. If an operator
performs additional side-effects on systems external to Flink, then no
guarantees are provided for them.

• Flink does not provide ordering guarantees after any form of repartition-
ing or broadcasting and the responsibility of dealing with out-of-order
records is left to the operator implementation.



Chapter 8

Practices & Patterns

This chapter covers common practices and patterns used when building
and operating distributed systems. These are not supposed to be exact
prescriptions, but they can help you identify some of the basic approaches
available to you and the associated trade-offs. It goes without saying that
there are so many practices and patterns that we would never be able to
cover them all. As a result, the goal is to cover some of the most fundamental
and valuable ones.

Communication patterns

One of the main differentiating characteristics of distributed systems is
the fact that the various nodes need to exchange data across the network
boundary. In this section, we will examine how that can be achieved and
what are the trade-offs of each approach. First of all, every node needs a
way to transform data that reside in memory into a format that can be
transmitted over the network and it also needs a way to translate data
received from the network back to the appropriate in-memory representation.
These processes are called serialisation and deserialisation respectively1.

The various nodes of the system need to agree on a common way to serialise
and deserialise data. Otherwise, they will not be able to translate data they

1Note that serialisation can also be used to transform data in a format that’s suitable
for storage, not only communication.
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Figure 8.1: Serialisation and deserialisation

send to each other. There are various options available for this purpose, so
let’s have a look at some of them:

• Some languages provide native support for serialisation, such as Java
and Python via its pickle module. The main benefit of this option is
convenience, since there is very little extra code needed to serialise and
deserialise an object. However, this comes at the cost of maintainability,
security and interoperability. Given the transparent nature of how
these serialisation methods work, it becomes hard to keep the format
stable, since it can be affected even by small changes to an object
that do not affect the data contained in it (e.g. implementing a new
interface). Furthermore, some of these mechanisms are not very secure,
since they indirectly allow a remote sender of data to initialise any
objects they want, thus introducing the risk of remote code execution.
Last but not least, most of these methods are available only in specific
languages, which means systems developed in different programming
languages will not be able to communicate. Note that there are some
third-party libraries that operate in a similar way using reflection or
bytecode manipulation, such as Kryo2. These libraries tend to be
subject to the same trade-offs.

• Another option is a set of libraries that serialise an in-memory object
2See: https://github.com/EsotericSoftware/kryo

https://github.com/EsotericSoftware/kryo
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based on instructions provided by the application. These instructions
can be either imperative or declarative, i.e. annotating the fields to
be serialised instead of explicitly calling operations for every field. An
example of such a library is Jackson3, which supports a lot of different
formats, such as JSON and XML. A main benefit of this approach
is the ability to interoperate between different languages. Most of
these libraries also have rather simple rules on what gets serialised,
so it’s easier to preserve backwards compatibility when evolving some
data, i.e. introducing new optional fields. They also tend to be a bit
more secure, since they reduce the surface of exploitation by reducing
the number of types that can be instantiated during deserialisation,
i.e. only the ones that have been annotated for serialisation and thus
implicitly whitelisted. However, sometimes they can create additional
development effort, since the same serialisation mapping needs to be
defined on every application.

• The last option we will explore is interface definition languages
(IDL). These are specification languages used to define the schema of a
data type in a language-independent way. Typically, these definitions
can then be used to dynamically generate code in different languages
that will be able to perform serialisation and deserialisation, when
included in the application. This can allow applications built in different
programming languages to interoperate, depending on the languages
supported by the IDL. Each IDL allows for different forms of evolution
of the underlying data types. They also reduce duplicate development
effort, but they require adjusting build processes so that they are able
to integrate with the code generation mechanisms. Some examples of
IDLs are Protocol Buffers4, Avro5 and Thrift6.

Figure 8.2 provides an illustration of the difference between the second and
the third approach, using Jackson and Protocol Buffers as examples.

So far, we have seen what are the options for creating and parsing the data
sent through the network. A question that remains unanswered is what are
the main ways through which this data is sent and received and the associated
trade-offs. This does not refer to the underlying transfer protocols that are
used, such as Ethernet, IP, TCP, UDP etc. These are actually essential to
this data transfer, but they are beyond the scope of this book. Instead, it

3See: https://github.com/FasterXML/jackson
4See: https://github.com/protocolbuffers/protobuf
5See: https://avro.apache.org/
6See: https://thrift.apache.org/

https://github.com/FasterXML/jackson
https://github.com/protocolbuffers/protobuf
https://avro.apache.org/
https://thrift.apache.org/
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Figure 8.2: Jackson and Protocol Buffers

refers to the two basic, high-level forms of communication, synchronous
and asynchronous communication.

If node A is communicating synchronously with node B, this means that node
A will be waiting until it has received a response from node B before pro-
ceeding with subsequent tasks. If node A is communicating asynchronously
instead, this means that it does not have to wait until that request is com-
plete; it can proceed and perform other tasks at the same time. A simple
illustration of this difference can be seen in Figure 8.3. Synchronous commu-
nication is typically used in cases, where node A needs to retrieve some data
in order to execute the next task or it needs to be sure a side-effect has been
performed successfully on node B’s system before proceeding. Asynchronous
communication is preferred in cases, where the operation performed in node
B can be executed independently without blocking other operations from
making progress. For instance, an e-commerce system might need to know
that a payment has been performed successfully before dispatching an item,
thus using synchronous communication. However, after the order has been
dispatched, the process that sends the appropriate notification e-mail to the
customer can be triggered asynchronously.

Synchronous communication is usually implemented on top of the existing
protocols, such as using HTTP in order to transmit data in JSON or some
other serialisation format (e.g. protocol buffers). In the case of asynchronous
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Figure 8.3: Synchronous and asynchronous communication

communication between two nodes, there is usually a need to persistently
store incoming requests until they are processed. This is needed so that
requests are not lost even if the recipient node fails for some reason7. These
requests can be stored in an intermediate datastore in order to prevent loss
in the face of failures. The datastores that are typically used for this purpose
belong in two main categories: message queues and event logs.

Some commonly used messages queues are ActiveMQ8, RabbitMQ9 and
Amazon SQS10. A message queue usually operates with first-in, first-out
(FIFO) semantics. This means that messages, in general, are added to the tail
of the queue and removed from the head. Note that multiple producers can
be sending messages to the queue and multiple consumers can be receiving

7Note that this is not necessarily needed in the case of synchronous communication,
because if the recipient crashes before processing a request, the sender will notice at some
point and it can retry the request. But, even when using asynchronous communication,
there can be cases where losing requests is not a big problem. A typical example of this is
the autocomplete functionality of a search engine; this can be done asynchronously in the
background and losing some requests will just lead to fewer suggestions to the user, so it
might be acceptable.

8See: http://activemq.apache.org
9See: https://www.rabbitmq.com

10See: https://aws.amazon.com/sqs

http://activemq.apache.org
https://www.rabbitmq.com
https://aws.amazon.com/sqs
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messages and processing them concurrently. Depending on how a message
queue is configured, messages can be deleted as soon as they are delivered
to a consumer or only after a consumer has explicitly acknowledged it has
succcessfully processed a message. The former essentially provides at-most-
once guarantees, since a consumer might fail after receiving a message, but
before acknowledging it. The latter can provide at-least-once semantics,
since at least a single consumer must have processed a message before it
being removed from the queue. However, most message queues contain a
timeout logic on unacknowledged messages to cope with failed consumers
ensuring liveness11. This means that unacknowledged messages are being
put back to the queue and redelivered to a new consumer. As a consequence
of this, there are cases where a message might be delivered more than once
to multiple consumers. The application is responsible for converting the
at-least-once delivery semantics to exactly-once processing semantics.
As we have seen already, a typical way to achieve this is by associating every
operation with a unique identifier that is used to deduplicate operations
originating from the same message. Figure 8.4 shows an example of how this
would work in practice12.

Figure 8.4: Example of exactly-once processing through deduplication

An event log provides a slightly different abstraction than a message queue.
Messages are still inserted by producers at the tail of the log and stored in
an ordered fashion. However, the consumers are free to select the point of
the log they want to consume messages from, which is not necessarily the

11For example, Amazon SQS achieves that using a per-message visibility timeout, while
ActiveMQ and RabbitMQ rely on a connection to timeout in order to redeliver all the
unacknowledged messages of this connection.

12An important thing to note here is that the side-effect from the operation and the
storage of the unique identifier must be done atomically to guarantee exactly-once processing.
A simple way to do this is store both in the same datastore using a transaction.
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head. Messages are typically associated with an index, which can be used by
consumers to declare where they want to consume from. Another difference
with message queues is that the log is typically immutable, so messages are
not removed after they are processed. Instead, a garbage collection is run
periodically that removes old messages from the head of the log. This means
that consumers are responsible for keeping track of an offset indicating the
part of the log they have already consumed in order to avoid processing the
same message twice, thus achieving exactly-once processing semantics.
This is done in a similar way as described previously with this offset playing
the role of the unique identifier for each message. Some examples of event
logs are Apache Kafka13, Amazon Kinesis14 and Azure Event Hubs15.

Message queues and event logs can enable two slightly different forms of
communication, known as point-to-point and publish-subscribe. The
point-to-point model is used when we need to connect only 2 applications16.
The publish-subscribe model is used when more than one applications might
be interested in the messages sent by a single application. For example,
the fact that a customer made an order might be needed by an application
sending recommendations for similar products, an application that sends the
associated invoices and an application that calculates loyalty points for the
customer. Using a publish-subscribe model, the application handling the
order is capable of sending a message about this order to all the applications
that need to know about it, sometimes without even knowing which these
applications are.

These two models of communication are implemented slightly different de-
pending on whether an event log or a message queue is used. This difference
is mostly due to the fact that consumption of messages behaves differently
in each system:

• Point-to-point communication is pretty straightforward when using
a message queue. Both applications are connected to a single queue,
where messages are produced and consumed. In the publish-subscribe
model, one queue can be created and managed by the producer appli-
cation and every consumer application can create its own queue. There
also needs to be a background process that receives messages from the

13See: https://kafka.apache.org
14See: https://aws.amazon.com/kinesis
15See: https://azure.microsoft.com/services/event-hubs
16Note that point-to-point refers to the number of applications, not the actual servers.

Every application on each side might consist of multiple servers that produce and consume
messages concurrently.

https://kafka.apache.org
https://aws.amazon.com/kinesis
https://azure.microsoft.com/services/event-hubs
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producer’s queue and forwards them to the consumers’ queues17.
• When using an event log, both models of communication can be imple-

mented in the same way. The producer application writes messages to
the log and multiple consumer applications can be consuming from the
log concurrently the same messages maintaining independent offsets.

Figure 8.5 illustrates this difference.

Figure 8.5: Implementations of point-to-point and publish-subscribe models

Coordination patterns

In many cases, a business function is performed by many different systems
that cooperate with each other, so that each one of them performs some part
of the overall function. For example, displaying a product page might require
combining functionality from different systems, such as an advertising system,
a recommendation system, a pricing system etc. The previous section exam-
ined the basic ways in which two different systems can communicate. This
section will examine the two basic approaches that can be used to coordinate
different systems in order to perform a common goal: orchestration and
choreography.

In orchestration, there is a single, central system that is responsible for
coordinating the execution of the various other systems, thus resembling a star
topology. That central system is usually referred to as the orchestrator and
it needs to have knowledge about all the other systems and their capabilities;

17Some systems might provide facilities that provide this functionality out of the box.
For example, this is achieved in ActiveMQ via a bridge and in Amazon SQS via a separate
AWS service, called Amazon Simple Notification Service (SNS).
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these systems can be unaware of each other. In choreography, these systems
coordinate with each other without the need of an external coordinator. They
are essentially placed in a chain, where each system is aware of the previous
and the next system in the topology. A request is successively passed through
the chain from each system to the next one. Figure 8.6 contains a basic
diagram of these two patterns.

Note that the communication link between two systems can be of any of
the two forms described in the previous section. The systems can either
communicate synchronously (i.e. using RPC calls) or asynchronously (i.e. via
an intermediary message queue). Each option is subject to different trade-offs,
some of which we will discuss in the next sections. These patterns will also
behave slightly differently depending on whether the function performed has
side-effects or not. For example, displaying a product page is most likely
a function that does not have side-effects. This means that partial failures
can be treated simply by retrying any failed requests, until they all succeed.
Alternatively, if some requests are continuously failing, then they can be
abandoned and the original request can be forced to fail. However, processing
a customer order is most likely an operation with side-effects, which might
need to be performed atomically. It’s probably undesirable to charge a
customer for an order that cannot be processed or to send an order to a
customer that cannot pay. Each of the aforementioned patterns need to
ensure this atomicity. One way to achieve this would be via a protocol like
two-phase commit. An alternative would be to make use of the concept
of saga transactions, described previously in the book. The first approach
would fit better in the orchestrator pattern where the orchestrator plays the
role of the coordinator of the two-phase commit protocol, while the second
approach could be used in both patterns.

Data synchronisation

There are some cases, where the same data needs to be stored in multiple
places and in potentially different forms18. Below are some typical examples:

• Data that reside in a persistent datastore also need to be cached in a
separate in-memory store, so that read operations can be processed

18These are also referred to as materialized views. See: https://en.wikipedia.org/wiki/
Materialized_view

https://en.wikipedia.org/wiki/Materialized_view
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Figure 8.6: Orchestration and choreography
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from the cache with lower latency. Writes operations need to update
both the persistent datastore and the in-memory store.

• Data that are stored in a distributed key-value store need to also be
stored in a separate datastore that provides efficient full-text search,
such as ElasticSearch19 or Solr20. Depending on the form of read oper-
ations, the appropriate datastore can be used for optimal performance.

• Data that are stored in a relational database need to also be stored in
a graph database, so that graph queries can be performed in a more
efficient way.

Given data reside in multiple places, there needs to be a mechanism that
keeps them in sync. This section will examine some of the approaches
available for this purpose and the associated trade-offs.

One approach is to perform writes to all the associated datastores from
a single application that receives update operations. This approach is
sometimes referred to as dual writes. Typically, writes to the associated
data stores are performed synchronously, so that data have been updated in
all the locations before responding to the client with a confirmation that the
update operation was successful. One drawback of this approach is the way
partial failures are handled and their impact on atomicity. If the application
manages to update the first datastore successfully, but the request to update
the second datastore fails, then atomicity is violated and the overall system
is left in an inconsistent state. It’s also unclear what the response to the
client should be in this case, since data has been updated, but only in some
places. However, even if we assume that there are not partial failures, there is
another pitfall that has to do with how race conditions are handled between
concurrent writers and their impact on isolation. Let’s assume two writers
submit an update operation for the same item. The application receives them
and attempts to update both datastores, but the associated requests are re-
ordered, as shown in Figure 8.7. This means that the first datastore contains
data from the first request, while the second datastore contains data from the
second request. This also leaves the overall system at an inconsistent state.
An obvious solution to mitigate these issues is to introduce a distributed
transaction protocol that provides the necessary atomicity & isolation, such
as a combination of two-phase commit and two-phase locking. In order to
be able to do this, the underlying datastores need to provide support for
this. Even in that case though, this protocol will have some performance

19See: https://github.com/elastic/elasticsearch
20See: https://github.com/apache/lucene-solr
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and availability implications, as explained in the previous chapters.

Figure 8.7: Isolation issues with dual writes

Another approach is writing any update operations to an append-only event
log and having any interested applications consume events from this log
and storing the associated data in their preferred datastore. This approach
is called event sourcing. The current state of the system can be derived
simply by consuming all the events from the beginning of the log. However,
applications typically save periodical snapshots (also known as checkpoints)
of the state to avoid having to reconsume the whole log in case of failures. In
this case, an application that recovers from a failure only needs to replay the
events of the log after the latest snapshot. This approach does not suffer from
atomicity violations, which means there is no need for an atomic commit
protocol. The reason is every application is consuming the log independently
and they will eventually process all the events successfully, restarting from
the last consumed event in case of a temporary failure. The isolation problem
described in the first approach is also mitigated, since the applications will
be consuming all the events in the same order. There is a small caveat:
applications might be consuming the events from the log at different speeds,
which means an event will not be reflected at the same instance on all the
applications. This phenomenon can be handled at the application level. For
example, if an item is not available in the cache, the application can query the
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other datastores. A different manifestation of this problem could be an item
that has been indexed successfully has not been stored in the authoritative
datastore yet, which could lead to a dangling pointer. This could also be
mitigated at the application level, by identifying and discarding these items,
instead of displaying broken links. If no such technique can be applied at
the application level, a concurrency control protocol could be used, e.g. a
locking protocol with the associated performance and availability costs.

Some kind of applications need to perform update operations that need
an up-to-date view of the data. The simplest example is a conditional
update operation21, create a user if no user with the same username exists
already. This is not easily achievable when using event sourcing, because
the applications consume the log asynchronously, so they are only eventually
consistent. There is another approach that solves this problem, known as
change data capture (CDC). When using this approach, a datastore is
selected as the authoritative source of data, where all update operations are
performed. An event log is then created from this datastore that is consumed
by all the remaining operations the same way as in event sourcing. This
primary datastore needs to provide the necessary transactional semantics
and a way to monitor changes in the underlying data in order to produce the
event log. Relational databases are usually a good fit for this, since most of
them provide strong transactional guarantees and they internally use a write-
ahead-log (WAL) that imposes an order on the performed operations and can
be used to feed an event log22. As a result, clients are able to perform updates
that are conditional on the current state and the remaining applications can
apply these operations independently at their own datastores.

Shared-nothing architectures

At this point, it must have become evident that sharing leads to coordination,
which is one of the main factors that inhibit high availability, performance
and scalability. For example, we have already explained how distributed
databases can scale to larger datasets and in a more cost-efficient manner than
centralised, single-node databases. At the same time, some form of sharing
is sometimes necessary and even beneficial for the same characteristics. For
instance, a system can increase its overall availability by reducing sharing

21This is also known as a compare-and-set (CAS) operation. See: https://en.wikipedia.
org/wiki/Compare-and-swap

22An example of a tool that does this is Debezium. See: https://debezium.io

https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Compare-and-swap
https://debezium.io
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Figure 8.8: Data synchronisation techniques
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through partitioning, since the various partitions can have independent failure
modes. However, when looking at a single data item, availability can be
increased by increasing sharing via replication.

A key takeaway from all this is that reducing sharing can be very beneficial,
when applied properly. There are some system architectures that follow this
principle to the extreme in order to reduce coordination and contention, so
that every request can be processed independently by a single node or a single
group of nodes in the system. These are usually called shared-nothing
architectures. This section will explain how this principle can be used in
practice to build such architectures and what are some of the trade-offs.

A basic technique to reduce sharing used widely is decomposing stateful
and stateless parts of a system. The main benefit from this is that stateless
parts of a system tend to be fully symmetric and homogeneous, which means
that every instance of a stateless application is indistinguishable from the
rest. Separating them makes scaling a lot easier. Since all the instances of
an application are identical, one can balance the load across all of them in
an easy way, since all of them should be capable of processing any incoming
request23. The system can be scaled out in order to handle more load
by simply introducing more instances of the applications behind the load
balancer. The instances could also send heartbeats to the load balancer, so
that the load balancer is capable of identifying the ones that have potentially
failed and stop sending requests to them. The same could also be achieved
by the instances exposing an API, where requests can be sent periodically by
the load balancer to identify healthy instances. Of course, in order to achieve
high availability and be able to scale incrementally, the load balancer also
needs to be composed of multiple, redundant nodes. There are different ways
to achieve this in practice, but a typical implementation uses a single domain
name (DNS) for the application that resolves to multiple IPs belonging to
the various servers of the load balancer. The clients, such as web browsers
or other applications, can rotate between these IPs. The DNS entry needs
to specify a relatively small time-to-live (TTL), so that clients can identify
new servers in the load balancer fleet relatively quickly.

As seen already throughout the book, stateful systems are a bit harder
to manage, since the various nodes of the system are not identical. Each
node contains different pieces of data, so the appropriate routing must be

23Note that in practice the load balancer might need to have some state that reflects the
load of the various instances. But, this detail is omitted here on purpose for the sake of
simplicity.
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performed in order to direct requests to the proper part of the system.
As implied before, the presence of this state also creates a tension that
prevents us from completely eliminating sharing if there is a need for high
availability. A combination of partitioning and replication is typically used
to strike a balance. Data are partitioned to reduce sharing and create some
independence and fault isolation, but every partition is replicated across
multiple nodes to make every partition fault tolerant. We have already
examined several systems that follow this pattern, such as Cassandra and
Kafka. Sharing is thus not a binary property of a system, but rather a
spectrum. On the one end of the spectrum, there might be systems that
have as little sharing as possible, i.e. not allowing any transactions across
partitions in order to reduce the coordination needed. Some systems might
fall in the middle of the spectrum, where transactions are supported, but
performed in a way that introduces coordination only across the involved
partitions instead of the whole system. Lastly, systems that store all the
data in a single node fall somewhere on the other end of the spectrum.

Figure 8.9 illustrates an example of such a shared-nothing architecture. As
explained already, such an architecture provides a lot of benefits from a
performance and fault-tolerance perspective. All layers of the applications
can be incrementally scaled out or in depending on the load. Admittedly,
this is easier and quicker to achieve in the stateless components, since it
requires less data transfer. The system is resilient to single-node and multi-
node failures. More specifically, these two different forms of failure impact
the stateless parts of the system in a similar way, the size of the impact
is just different. For example, the remaining nodes might need to handle
bigger load or more servers might need to be provisioned. For the stateful
parts of the architecture, these two different forms of failure have slightly
different behaviours. Single-node failures are a lot easier to handle, since
each partition can use a consensus-based technique for replication which can
remain fully functional as long as a majority of nodes is healthy. However,
multi-node failures can affect a majority, thus making a partition unavailable.
Even in this case, the good thing is only this partition will be unavailable
and the rest of system’s data will still be available.

This type of architecture tends to be a good fit for problems that are amenable
to fine-grained partitioning. Some examples of problems in this space are
managing user sessions or managing the products of a catalog. In both cases,
data can easily be partitioned in a way, where data access operations will
need to access a single data item. For example, sessions can be assigned a
unique identifier and they can be partitioned by this attribute and products
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Figure 8.9: Example of a typical shared-nothing architecture

can be partitioned according to a similar product identifier. If sessions and
products are mostly retrieved and updated by their identifier, this can be
done quite efficiently by querying only the nodes that have the associated
data. There is also space for some form of limited concurrency control in
the scope of a partition. For cases where single-item access is the norm,
a common technique is using optimistic concurrency control in order
to reduce overhead and contention. This can be achieved by including a
version attribute on every data item. Every writer performs a read before
a write in order to find the current version and then includes the current
version in the update as a condition to be satisfied in order for it to be
completed. Of course, this requires the corresponding datastore to provide
support for conditional updates. If a concurrent writer has updated the
same item in the meanwhile, the first writer will have to abort and restart
by performing a new read to determine whether its initial write should still
apply and if so, retry it.

Of course, all of this does not mean this architecture does not have drawbacks.
The main one is reduced flexibility. If the application needs access to new
data access patterns in an efficient way, it might be hard to provide it given
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the system’s data have been partitioned in a specific way. For example,
attempting to query by a secondary attribute that is not the partitioning key
might require to access all the nodes of the system. This reduced flexibility
might also manifest in lack of strong transactional semantics. Applications
that need to perform reads of multiple items with strong isolation or write
multiple items in a single atomic transaction might not be able to do this
under this form of architecture or it might only be possible at the cost of
excessive additional overhead.

Distributed locking

As explained already in the introductory chapters of the book, concurrency
is one of factors that contribute significantly to the complexity of distributed
systems. A mechanism is needed to ensure that all the various components of
a distributed system that are running concurrently do so in a way that is safe
and does not bring the overall system to an inconsistent state. An example
we have already seen is leader election, where the system needs to ensure
only one node in the system is capable of performing the leader duties at
any point in time. Amongst the available techniques, locking is the simplest
solution and one that is used commonly. However, locking techniques are
subject to different failure modes when applied in a distributed system. This
section will cover some common pitfalls and how to address them to use
locking safely in a distributed system.

The main property derived from the use of locks is mutual exclusion: mul-
tiple concurrent actors can be sure that only one of them will be performing
a critical operation at a time. Typically, all of the actors have to follow the
same sequence of operations, which is first acquiring the lock, performing
that critical operation and then releasing the lock, so that other workers can
proceed. This is usually simple to implement in cases where all actors are
running inside the same application sharing a single memory address space
and the same lifecycle. However, doing the same in a distributed system is
much more complicated, mostly due to the potential of partial failures.

The main complication in a distributed system is that the various nodes
of the system can fail independently. As a result, a node that is currently
holding a lock might fail before being able to release the lock. This would
bring the system to a halt until that lock is released via some other means
(i.e. via an operator), thus reducing availability significantly. A timeout
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mechanism can be used to cope with this issue. A lease[84] is essentially a
lock with an expiry timeout after which the lock is automatically released
by the system that is responsible for managing the locks. By using leases
instead of locks, the system can automatically recover from failures of nodes
that have acquired locks by releasing these locks and giving the opportunity
to other nodes to acquire them in order to make progress. However, this
introduces new safety risks. There are now two different nodes in the system
that can have different views about the state of the system, specifically
which nodes holds a lock. This is not only due to the fact that these nodes
have different clocks so the time of expiry can differ between them, but also
because a failure detector cannot be perfect, as explained earlier in the book.
The fact that part of the system considers a node to be failed does not mean
this node is necessarily failed. It could be a network partition that prevents
some messages from being exchanged between some nodes or that node might
just be busy with processing something unrelated. As a result, that node
might think it still holds the lock even though the lock has expired and it
has been automatically released by the system.

Figure 8.10 shows an example of this problem, where nodes A and B are
trying to acquire a lease in order to perform some operations in a separate
system. Node A manages to successfully acquire a lease first. However,
there is a significant delay between acquiring the lease and performing the
associated operation. This could be due to various reasons, such as a long
garbage collection pause, scheduling delays or simply network delays. In the
meanwhile, the lease has expired, it has been released by the system and
acquired by node B, which has also managed to perform the operation that’s
protected by the lock. After a while, the operation from node A also reaches
the system and it’s executed even though the lease is not held anymore by
that node violating the basic invariant that was supposed to be protected
by the lease mechanism. Note that simply performing another check the
lease is still held before initiating the operation in node A would not solve
the problem, since the same delays can occur between this check and the
initiation of the operation or even the delivery of the operation to the system.

There is one simple technique that solves this problem and it’s called fencing.
The main idea behind fencing is that the system can block some nodes from
performing some operations they are trying to perform, when these nodes
are malfunctioning. In our case, nodes are malfunctioning in the sense that
they think they hold a lease, while they don’t. The locking subsystem can
associate every lease with a monotonically increasing number. This number
can then be used by all the other systems in order to keep track of the node
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Figure 8.10: Issues with distributed locking & leases
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that has performed an operation with the most recent lease. If a node with
an older lease attempts to perform an operation, the system is able to detect
that and reject the operation, while also notifying the node that it’s not the
leader anymore. Figure 8.11 shows how that would work in practice. This
essentially means that in a distributed system, lock management cannot be
performed by a single part of the system, but it has to be done collectively
by all the parts of the system that are protected by this lock. For this to
be possible, the various components of the system need to provide some
basic capabilities. The locking subsystem needs to provide a monotonically
increasing identifier for every lock acquisition. Some examples of systems
that provide this is Zookeeper via the zxid or the znode version number
and Hazelcast as part of the fenced token provided via the FencedLock API.
Any external systems protected by the locks needs to provide conditional
updates with linearizability guarantees.

Figure 8.11: Mutual exclusion using fencing
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Compatibility patterns

As explained early on in the book, a defining characteristic of distributed
systems is they are composed of multiple nodes. In general, it is useful to
allow the various nodes of such a system to operate independently for various
reasons. A very typical requirement for some applications in real life is to be
able to deploy new versions of the software with zero downtime. The simplest
way to achieve that is to perform rolling deployments, instead of deploying
in lockstep the software to all the servers at the same time. In some cases,
this is not just a nice-to-have, but an inherent characteristic of the system.
An example of this is mobile applications (e.g. Android applications), where
user consent is required to perform an upgrade, which implies that users are
deploying the new version of the software at their own pace. As a result, the
various nodes of a distributed systems can be running different versions of
the software at any time. This section will examine the implications of this
and some techniques that can help manage this complication.

The phenomenon described previously manifests in many different ways.
One of the most common ones is when two different applications need to
communicate with each other, while each one of them evolves independently
by deploying new versions of its software. For example, one of the applications
might want to expose more data at some point. If this is not done in a
careful way, the other application might not be able to understand the new
data making the whole interaction between the applications fail. Two very
useful properties related to this are backward compatibility and forward
compatibility:

• Backward compatibility is a property of a system that provides inter-
operability with an earlier version of itself or other systems.

• Forward compatibility is a property of system that provides interoper-
ability with a later version of itself or other systems.

These two properties essentially reflect a single characteristic viewed from
different perspectives, those of the sender and the recipient of data. Let’s
consider for a moment a contrived example of two systems S and R, where the
former sends some data to the latter. We can say that a change on system S
is backward compatible, if older versions of R will be able to communicate
successfully with a new version of S. We can also say that the system R is
designed in a forward compatible way, so that it will be able to understand
new versions of S. Let’s look at some examples. Let’s assume system S needs
to change the data type of a specific attribute. Changing the data type of
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an existing attribute is not a backward compatible change in general, since
system R would be expecting a different type for this attribute and it would
fail to understand the data. However, this change could be decomposed
in the following sub-changes that preserve compatibility between the two
systems. The system R can deploy a new version of the software that is is
capable of reading that data either from the new attribute with the new
data type or the old attribute with the old data type. The system S can
then deploy a new version of the software that stops populating the old
attribute and starts populating the new attribute24. The previous example
probably demonstrated that seemingly trivial changes to software are a lot
more complicated when they need to be performed in a distributed system in
a safe way. As a consequence, maintaining backward compatibility imposes
a tradeoff between agility and safety.

It’s usually beneficial to version the API of an application, since that makes
it easier to compare versions of different nodes and applications of the
system and determine which versions are compatible with each other or
not. Semantic versioning is a very useful convention, where each version
number consists of 3 digits x.y.z. The last one (z) is called the patch version
and it’s incremented when a backward compatible bug fix is made to the
software. The second one (y) is called the minor version and it’s incremented
when new functionality is added in a backward compatible way. The first
one (x) is called the major version and it’s incremented when a backward
incompatible change is made. As a result, the clients of the software can easily
quickly understand the compatibility characteristics of new software and
the associated implications. When providing software as a binary artifact,
the version is usually embedded in the artifact. The consumers of the
artifact then need to take the necessary actions, if it includes a backward
incompatible change, e.g. adjusting their application’s code. However, when
applied to live applications, semantic versioning needs to be implemented
slightly differently. The major version needs to be embedded in the address
of the application’s endpoint, while the major and patch versions can be
included in the application’s responses25. This is needed so that clients can
be automatically upgraded to newer versions of the software if desired, but
only if these are backward compatible.

24Note that whether a change is backward compatible or not can differ depend-
ing on the serialization protocol that is used. The following article explains this
nicely: https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-
buffers-thrift.html

25For an example of this, see: https://developers.facebook.com/docs/apps/versions

https://developers.facebook.com/docs/apps/versions
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Another technique for maintaining backward compatibility through the use
of explicitly versioned software is protocol negotiation. Let’s assume a
scenario as mentioned previously, where the client of an application is a
mobile application. Every version of the application needs to be backward
compatible with all the versions of the client application running on user
phones currently. This means that the staged approach described previously
cannot be used when making backward incompatible changes, since end users
cannot be forced to upgrade to a newer version. Instead, the application can
identify the version of the client and adjust its behaviour accordingly. For
example, consider the case of a feature introduced on version 4.1.2 that is
backward incompatible with versions < 4.x.x. If the application receives a
request from a 3.0.1 client, it can disable that feature in order to maintain
compatibility. If it receives a request from a 4.0.3 client, it can enable the
feature.

In some cases, an application might not be aware of the applications that will
be consuming its data. An example of this is the publish-subscribe model,
where the publisher does not necessarily need to know all the subscribers.
It’s still very important to ensure consumers will be able to deserialise and
process any produced data successfully as its format changes. One pattern
used here is defining a schema for the data, which is used by both the
producers and consumers. This schema can be embedded in the message
itself. Otherwise, to avoid duplication of the schema data, a reference to the
schema can be put inside the message and the schema can be stored in a
separate store. For example, this is a pattern commonly used in Kafka via the
Schema Registry26. However, it’s important to remember that even in this
case, producers and consumers are evolving independently, so consumers are
not necessarily using the latest version of the schema used by the producer.
So, producers need to preserve compatibility either by ensuring consumers
can read data of the new schema using an older schema or by ensuring all
consumers have started using the new schema before starting to produce
messages with it. Note that similar considerations need to be made for the
compatibility of the new schema with old data. For example, if consumers are
not able to read old data with the new schema, the producers might have to
make sure all the messages with the previous schema have been consumed by
everyone first. Interestingly, the Schema Registry defines different categories
of compatibility along these dimensions, which determine what changes are
allowed in each category and what is the upgrade process, e.g. if producers
or consumers need to upgrade first. It can also check two different versions of

26See: https://docs.confluent.io/current/schema-registry

https://docs.confluent.io/current/schema-registry
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a schema and confirm that they are compatible under one of these categories
to prevent errors later on27.

Note that it’s not only changes in data that can break backward compatibility.
Slight changes in behaviour or semantics of an API can also have serious
consequences in a distributed system. For example, let’s consider a failure
detector that makes use of heartbeats to identify failed nodes. Every node
sends a heartbeat every 1 second and the failure detector considers a node
failed if it hasn’t received a single heartbeat in the last 3 seconds. This causes
a lot of network traffic that affects the performance of the application, so we
decide to increase the interval of a heartbeat from 1 to 5 seconds and the
threshold of the failure detector from 3 to 15 seconds. Note that if we start
performing a rolling deployment of this change, all the servers with the old
version of the software will start thinking all the servers with the new version
have failed. This due to the fact that their failure detectors will still have the
old deadline of 3 seconds, while the new servers will send a heartbeat every
5 seconds. One way to make this change backward compatible would be to
perform an initial change that increases the failure detector threshold from 3
to 15 seconds and the follow this with a subsequent change that increases the
heartbeat interval to 5 seconds, only after the first change has been deployed
to all the nodes. This technique of splitting a change in two parts to make it
backward compatible is commonly used and it’s also known as two-phase
deployment.

Dealing with failure

Failure is the norm in a distributed system, so building a system that is able
to cope with failures is crucial. This section will cover some principles on how
to deal with failures and present some basic patterns for building systems
that are resilient to failures. As shown throughout this section, dealing with
a failure consists of three main parts: identifying the failure, recovering
from the failure and in some cases containing a failure to reduce its impact.

Hardware failures can be the most damaging ones, since they can lead to
data loss or corruption. On top of that, the probability of a hardware failure
is significantly higher in a distributed system due to the bigger number of
hardware components involved. Silent hardware failures are the ones with the

27See: https://docs.confluent.io/current/schema-registry/avro.html#schema-evolution-
and-compatibility
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biggest impact, since they can potentially affect the behaviour of a system
without anyone noticing. An example of a silent failure would be a node in
the network corrupting some part of a message, so that the recipient receives
data that is different to what the sender originally sent without being able
to detect that. Similarly, data written to a disk can be corrupted during
the write operation or even a long time after that was completed. Below are
some techniques that are commonly used to handle these kind of failures:

• One way to detect these failures when sending a message to another
node is to introduce some redundancy in the message using a check-
sum derived from the actual payload. If the message is corrupted,
the checksum will not be valid. As a result, the recipient can ask the
sender to send the message again.

• When writing data to disk, this technique might not be useful, since
the corruption will be detected a long time after a write operation has
been performed by the client, which means it might not be feasible
to rewrite the data. Instead, the application can make sure that data
is written to multiple disks, so that corrupted data can be discarded
later on and the right data can be read from another disk with a valid
checksum.

• Another technique used in cases where retransmitting or storing the
data multiple times is impossible or costly is error correcting codes
(ECC). These are similar to checksums and are stored alongside the
actual payload, but they have the additional property that they can
also be used to correct corruption errors calculating the original payload
again. The downside is they are larger than checksums, thus having
a higher overhead in terms of data stored or transmitted across the
network.

A distributed system consists of many different parts and these kind of
failures can happen on any of them. This raises the question of where and
how to apply these techniques. There is a design principle, known as the
end-to-end argument, which suggests that some functions such as the fault
tolerance techniques described above can be implemented completely and
correctly only wih the knowledge and help of the application standing at the
end points of the communication system. A canonical example to illustrate
this point is the "careful file transfer" application, where a file needs to be
moved from computer A’s storage to computer B’s storage without damage.
As shown in Figure 8.12, hardware failures can happen in many places during
this process, such as the disks of computers, the software of the file system,
the hardware processors, their local memory or the communication system.



CHAPTER 8. PRACTICES & PATTERNS 238

Even if the various subsystems embed error recovery functionality, this can
only cover lower levels of the system and it cannot protect from errors
happening at a higher level of the system. For example, error detection and
recovery implemented at the disk level or in the operating system won’t help,
if the application has a defect that leads to writing the wrong data in the
first place. This implies that complete correctness can only be achieved by
implementing this function at the application level. Note that this function
can be implemented redundantly at lower levels too, but this is done mostly as
a performance optimisation. It’s also important to note that this redundant
implementation at lower levels is not always beneficial, but it depends on the
use case. There is existing literature that covers extensively this trade-off, so
we’ll refer the reader to it instead of repeating the same analysis here[85][86].

Figure 8.12: Careful file transfer and possible failures

It’s interesting to observe that this principle manifests in many different
ways when dealing with a distributed system. The most relevant problem
we have encountered repeatedly throughout this book is providing exactly-
once guarantees. Let’s consider an extremely simplified version of the
problem, where applications A wants to trigger an operation on application
B exactly once and each application consists of a single server. Note that the
communication subsystem, specifically TCP, can provide reliable delivery
of data via retries, acknowledgements and deduplication, which are the
techniques already described in this book. However, this is still not sufficient
for providing exactly-once guarantees at the application level. Let’s look at
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some of the things that can go wrong:

• The TCP layer on the side of application B might receive a packet and
acknowledge it back to the sender side, while buffering it locally to be
delivered to the application. However, the application crashes before it
manages to receive this packet from the TCP layer and process it. In
this case, the application will think the packet has been successfully
processed, while it wasn’t.

• The TCP layer on the side of the application B might receive a packet
and deliver it successfully to the application, which processes it success-
fully. However, a failure happens at this point and the applications on
both sides are forced to establish a new TCP connection. Application
had not received an application acknowledgement for the last message,
so it attempts to resend it on the new connection. TCP provides
reliable transfer only in the scope of a single connection, so it will not
be able to detect this packet has been received and processed in a
previous connection. As a result, a packet will be processed by the
application more than once.

The main takeaway is that any functionality needed for exactly-once semantics
(e.g. retries, acknowledgements and deduplication) needs to be implemented
at the application level in order to be correct and safe against all kind of
failures28. Another problem where the end-to-end principle manifests in a
slightly different shade is the problem of mutual exclusion in a distributed
system. The fencing technique presented previously essentially extends the
function of mutual exclusion to all the involved ends of the application.
The goal of this section is not to go through all the problems, where the
end-to-end argument is applicable. Instead, the goal is to raise awareness
and make the reader appreciate its value on system design, so that it’s taken
into account if and when need be.

The main technique to recover from failures is using retries. In the case
of a stateless system, the application of retries is pretty simple, since all
the nodes of the application are identical from the perspective of the client
so it could retry a request on any node. In some cases, that can be done
in a fully transparent way to the client. For example, the application can
be fronted by a load balancer that receives all the requests under a single
domain and it’s responsible for forwarding the requests to the various nodes

28It’s also worth reminding here that the side-effects from processing a request and
storing the associated deduplication ID need to be done in an atomic way to avoid partial
failures violating the exactly-once guarantees.
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of the application. In this way, the client would only have to retry the request
to the same endpoint and the load balancer would take care of balancing
the requests across all the available nodes. In the case of stateful systems,
this gets slightly more complicated, since nodes are not identical and retries
need to be directed to the right one. For example, when using a system with
master-slave replication, a failure of the master node must be followed by a
failover to a slave node that is now the new master and new requests should
be going there. There are different mechanisms to achieve this depending
on the technology used. The same applies to consensus-based replication,
where new leader election might need to happen and write operations need
to be directed to the current leader.

Most of the techniques described so far are used to identify failure and recover
from it. It’s also useful to be able to contain the impact of a failure, so
we will now discuss some techniques for this purpose. This can be done
via technical means, such as fault isolation. One common way to achieve
this is to deploy an application redundantly in multiple facilities that are
physically isolated and have independent failure modes. So, when there is
an incident that affects one of these facilities, the other facilities are not
impacted and continue functioning as normal. Note that this introduces a
trade-off between availability and latency, since physical isolation comes with
increased network distance and latency. Most of the cloud providers provide
multiple datacenters that are physically isolated and all located close to each
other in a single region to strike a good balance in this trade-off. These are
commonly known as availability zones. There are also cases where this can be
achieved by a technique called graceful degradation, where an application
reduces the quality of its service in order to avoid failing completely. For
instance, let’s think about a service that provides the capabilities of a search
engine by calling to downstream services. Let’s also assume one of these
services that provides the advertisements to be shown for each query is having
some issues. The top-level service can just render the results of a search
term without any advertisements, instead of returning an error message or a
completely empty response.

Techniques to contain failure can be broadly categorised in two main groups:
those performed at the client side and those performed at the server side.
A very useful concept in the field of distributed systems is backpressure.
Backpressure is essentially a resistance to the desired flow of data through
a system. This resistance can manifest in different ways, such as increased
latency of requests or failed requests. Backpressure can also be implicit
or explicit. For example, implicit backpressure arises in a system that is
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overloaded by a traffic surge and becomes extremely slow. On the other hand,
a system that rejects some requests during a traffic surge in order to maintain
a good quality of service is essentially exerting explicit backpressure to its
clients. Most of the techniques to contain failure reflect how applications
exert backpressure and how their clients handle backpressure.

Let’s look first at how applications can exert backpressure. It is useful for
a system to know its limits and exert backpressure when they are reached,
instead of relying on implicit backpressure. Otherwise, there can be many
failure modes that are unexpected and harder to deal with when they
happen. The main technique to exert backpressure is load shedding, where
an application is aware of the maximum load it can handle and rejects any
requests that cross this threshold in order to keep operating at the desired
levels. A more special form of load shedding is selective client throttling,
where an application assigns different quotas to each of its clients. This
technique can also be used to prioritise traffic from some clients that are more
important. Let’s consider a service that is responsible for serving the prices
of products, which is used both by systems that are responsible to display
product pages and by systems that are responsible to receive purchases and
charge the customer. In case of a failure, that service could throttle the
former type of systems more than the latter, since purchases are considered
to be more important for a business and they also tend to constitute a smaller
percentage of the overall traffic. In the case of asynchronous systems that
make use of message queues, load shedding can be performed by imposing
an upper bound on the size of the queue. There is a common misconception
that message queues can help absorb any form of backpressure without any
consequences. However, this comes at the cost of an increased backlog of
messages, which can lead to increased processing latency or even failure of
the messaging system in extreme cases.

Clients of an application should also be able to react properly to backpressure
emitted by an application. The most typical way to react to failures in a
distributed systems is retries. This is done under the assumption that
a failure is temporary, so retrying a request is expected to have a better
outcome. However, retries can have adverse effects, such as overloading a
service. There are some techniques to make sure retries are used properly
and negative side-effects are avoided as much as possible. First of all, it
is useful to think about the whole architecture of the systems and the
various applications involved to determine where retries will be performed.
Performing retries at multiple levels can lead to significant amplification of
the traffic coming from customers, which can overload services and cause
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Figure 8.13: Load amplification due to retries

issues. As an example, let’s assume we have 4 services A, B, C and D that
call each other in order, as shown in Figure 8.13. If each service performs 3
retries for every failed request, then a temporary issue at service D will cause
every request to be retried 27 times, thus creating a lot of additional load to
service D during a period it’s already experiencing issues. A conventional
approach to mitigate this issue is to retry failed requests at the highest
level possible, which usually contains additional context around the business
function of the request and whether it’s actually worth retrying or not.
Another technique is using exponential backoff when retrying a request,
so that the system waits a bit more every time before performing the next
retry. This gives the downstream system a better opportunity to recover
from any temporary issues. Ideally, exponential backoff is also combined with
some jitter. This is so retries from various servers of a service are distributed
evenly and they do not produce sudden spikes of traffic that can also cause
overload issues. Clients of an application can also perform some form of
load shedding to help downstream applications to recover with the use of
circuit breaker. A circuit breaker essentially monitors the percentage of
failed requests. When a specific threshold is crossed, this is interpreted
as a permanent failure of the downstream application. As a result, the
circuit breaker rejects all the requests locally without sending them to the
downstream application. The circuit breaker allows just a few requests to
be sent periodically and if a good percentage of them is successful, it starts
sending load again. This technique is beneficial in two ways. First of all, it
gives the downstream service a chance to recover from overload situations or
other kinds of permanent failures. On top of that, it improves the customer
experience by reducing request latency in cases where the response from
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a downstream is not absolutely necessary29. Another useful thing clients
can do to help downstream applications is embed timeout hints in their
requests. These hints inform downstream applications about the time after
which a response to a request is not useful anymore. In this way, downstream
applications can simply discard requests that had been waiting for a long
time in message queues or in memory buffers due to resource exhaustion,
thus speeding up processing of accumulated backlogs.

Distributed tracing

Tracing refers to the special use of logging to record information about a
program’s execution, which can be used for troubleshooting or diagnostic
purposes. In its simplest form, this can be achieved by associating every
request to the program with a unique identifier and recording logs for the
most important operations of the program alongside the request identifier. In
this way, when trying to diagnose a specific customer issue, the logs can easily
be filtered down to only include a chronologically ordered list of operation
logs pertaining to the associated request identifier. These logs can provide a
summary of the various operations the program executed and the steps it
went through.

In a distributed system, every client request is typically served through the
use of multiple, different applications. As a result, one needs to collate traces
from multiple programs in order to fully understand how a request was
served and where something might have gone wrong. This is not as easy as it
sounds, because every application might be using its own request identifiers
and the applications are most likely processing multiple requests concurrently.
This makes it harder to determine which requests correspond to a specific
client request. This problem can be solved through the use of correlation
identifiers. A correlation identifier is a unique identifier that corresponds to
a top-level client request. This identifier might be automatically generated
or it might be provided by some external system or manual process. It
is then propagated through the various applications that are involved in
serving this request. These applications can then include that correlation
identifier in their logs along with their own request identifiers. In this way,
it is easier to identify all the operations across all applications corresponding

29An example of this is the situation described previously, when explaining the concept
of graceful degradation.



CHAPTER 8. PRACTICES & PATTERNS 244

Figure 8.14: Distributed tracing via correlation IDs

to a specific client request by filtering their logs based on this correlation
identifier. By also incorporating timing data in this logging, one can use
this technique to also retrieve performance data, such as the time spent on
every operation. Figure 8.14 illustrates how correlation IDs can be used and
an example of a trace that shows latency contribution of every application.
There are several libraries and tools for implementing distributed tracing,
such as OpenTracing30 or Zipkin31.

30See: https://opentracing.io
31See: https://zipkin.io

https://opentracing.io
https://zipkin.io


Chapter 9

Closing thoughts

Hopefully, this book has helped you understand how distributed systems
can be useful, what are some of the main challenges one might face when
building distributed systems and how to overcome them. Ideally, it has also
made you realise that building or using a distributed system is a serious
undertaking that should be done only when necessary. If your requirements
around performance, scalability or availability can be met without the use of
a distributed system, then not using a distributed system might actually be
a wise decision.

This might feel like the end of a journey, but for some of you it might just
be the beginning of it. For this reason, I think it would be useful to recap
some key learnings from this book, while also highlighting topics that were
left uncovered. In this way, those of you that are willing to dive deeper on
some areas will have some starting points to do so.

First of all, we introduced some of the basic areas where distributed systems
can help: performance, scalability and availability. Throughout the book, we
analysed basic mechanisms that can help in these areas, such as partitioning
and replication. It also became evident that these mechanisms introduce
some tension between the aforementioned characteristics and other properties,
such as consistency. This tension is formalised by basic theorems, such as the
CAP theorem and the FLP result. This tension manifests in various ways, as
shown in the book. For example, the decision on whether replication operates
synchronously or asynchronously can be a trade-off between performance
and availability or durability. Early on, we explained the difference between
liveness and safety properties and tried to provide an overview of the basic
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consistency models that help formalise the behaviour of a distributed system
and facilitate reasoning about its interaction with other systems. However,
there are many more models we omitted in this book in the interest of time
and simplicity, such as read-your-writes, monotonic reads and monotonic
writes consistency models[87]. The first chapter also introduced the concept
of failure detection and gave an example of a simplistic failure detector that
makes use of heartbeats and timeouts. In reality, failure detectors have to
deal with many more practical problems and need to be quite more complex.
This might mean they have to avoid using timeouts in order to be applicable
to quiescent algorithms[88], operate using a gossip protocol1 to improve
scalability and fault-tolerance[90] or output a suspicion level on a continuous
scale instead of a binary value[91].

In the second chapter, we explored several partitioning techniques. Again,
there are many more algorithms to study further if you want to, such as shuffle
sharding[92] for workload and fault isolation, jump consistent hashing[93]
for reduced memory overhead and better load distribution, multi-probe
consistent hashing[94] and rendez-vous hashing[95]. The fourth chapter
introduces the problem of consensus and explains the two major algorithms
that solve it, Paxos and Raft. The topic of consensus is very old, but there is
still a lot of very useful research being conducted in this area. For example,
the original Paxos algorithm operated under the assumption that all quorums
need to be majority quorums in order to maintain the safety properties of
the algorithm. However, recent research[96] has actually demonstrated that
this is not absolutely necessary. Instead, the algorithm just needs to ensure
quorums from the first phase of the algorithm overlap with quorums from the
second phase. This allows one to size the quorums of each phase accordingly
depending on the requirements around performance and fault-tolerance
during the steady state or during recovery. There are also a lot of variations
of the Paxos algorithm, such as egalitarian Paxos[97] that does not require a
stable leader, vertical Paxos[98] that allows a reconfiguration in the middle
of a consensus round and more[99]. All these algorithms solve the consensus
problem in cases where nodes can crash or get arbitrarily slow, but assuming
they do not exhibit byzantine failures. Solving consensus under the presence
of byzantine failures is a much more challenging task[100][101] and is subject
to different constraints. There is also another category of algorithms worth
exploring that solve the problem of consensus probabilistically2, such as the

1Gossip protocols were also not covered in this book and they can be considered a whole
topic on its own[89].

2This means that a value is agreed with a specific probability p, where 1-p is the
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one used in the Bitcoin protocol and known as the Nakamoto consensus[74].

In the fifth and sixth chapter, we introduced the notions of time and or-
der and their relationship. We explained the difference between total and
partial order, which is quite important in the field of distributed systems.
While consensus can be considered as the problem of establishing total order
amongst all events of a system, there are also systems that do not have a
need for such strict requirements and can also operate successfully under
a partial order. Vector clocks is one mechanism outlined in the book that
allows a system to keep track of such a partial order that preserves causality
relationships between events. However, there are more techniques that were
not presented in the book. An example is conflict-free replicated data types
(CRDTs)[102][103], which are data structures that can be replicated across
multiple nodes, where the replicas can be updated independently and con-
currently without coordination between the replicas and it’s always possible
to resolve inconsistencies that might result from this. Some examples of such
data structures are a grow-only counter, a grow-only set or a linear sequence
CRDT. The lack of need for coordination makes these data structures more
efficient due to reduced contention and more tolerant to partitions, since the
various replicas can keep operating independently. However, they require the
underlying operations to have some specific characteristics (e.g. commutativ-
ity, associativity, idempotency etc.), which can limit their expressibility and
practical application.

We believe it is a lot easier for someone to understand theory, when it is
put into context by demonstrating how it is used in practical systems. This
is the reason we included a chapter dedicated to case studies about real
systems and how they use algorithms and techniques presented in the book.
We tried to cover systems from as many different categories as possible, but
we have to admit there are many more systems that are very interesting
and we would like to include in this chapter, but we couldn’t due to time
constraints. The last chapter on practices and patterns was written under the
same spirit and subject to similar time constraints. So, we call the reader to
study more resources than those that were available in the book for a deeper
understanding of how theory can be put in practice[104][105][106][107][108].
At the risk of being unfair to other systems and material out there, we would
like to mention CockroachDB3 as one system that has a lot of public material

probability of this value being considered not agreed (what is also referred to as reversed)
in the future.

3See: https://github.com/cockroachdb/cockroach

https://github.com/cockroachdb/cockroach
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demonstrating how they have used theoretical concepts in practice. Some
concrete examples are how they implemented pipelined consensus4 and how
they implemented a parallelised version of two-phase commit5 that required
a single round-trip instead of two before acknowledging a commit. Some
resources that also contain a lot of practical information on how to build and
operate distributed systems are the Amazon Builders Library6 and papers
with learnings of practitioners that have built large-scale systems[109][110].

The last chapter included a discussion around high-level communication
patterns. This chapter did not contain descriptions of basic protocols used
widely, such as TCP, UDP, HTTP, DNS etc. This was done on purpose,
since these protocols are quite involved and there are already many books
containing detailed analyses about them. However, this does not imply
these protocols are not as important. On the contrary, these protocols
are extremely important and they can have significant implications on the
behaviour of systems built on top of them. As a result, it is really important
to have a good understanding of them when trying to build or use a system
that makes use of them7. The last chapter also contained discussion about
how systems can deal with failure. There are two types of failure that are
frequently neglected when building or operating distributed systems even
though they are quite common: gray failures[111] and partial failures[112].
Gray failures are those that do not manifest cleanly as a binary indication,
but they are more subtle and they can be observed differently by different
parts of a system. Partial failures are those in which only parts of a system
fail in a way that has serious consequences equivalent to a full failure of the
system sometimes due to a defect in the design. These types of failure can
be very common in distributed systems due to many moving parts and they
can have serious consequences, so it is very important for people that build
and run distributed systems to internalise these concepts and look out for
them in the systems they build and operate.

Finally, there are few topics that can be central or useful to how a distributed
system operates, but they were not covered in this book either because they
are a separate, extensive topic or because they are a bit more advanced.
One such topic is security. In a distributed system, nodes are separated by
network. Depending on the thread model in place, additional precautions

4See: https://www.cockroachlabs.com/blog/transaction-pipelining
5See: https://www.cockroachlabs.com/blog/parallel-commits
6See: https://aws.amazon.com/builders-library
7The analysis of the following incident is a good example of how such knowledge can

be useful in mitigating and preventing issues: https://www.usenix.org/node/195676

https://www.cockroachlabs.com/blog/transaction-pipelining
https://www.cockroachlabs.com/blog/parallel-commits
https://aws.amazon.com/builders-library
https://www.usenix.org/node/195676
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might need to be taken in order to make sure the system operates in a secure
way. The data transmitted in this network might need to be protected so that
only authorised nodes can read it. The nodes might need to authenticate each
other, so that they can be sure they are communicating with the right node
and not some impersonator. There are a lot of cryptographic techniques that
can help with these aspects, such as encryption, authentication and digital
signatures. However, the interested reader will have to study them separately,
since that’s a separate field of study. We also did not examine how networks
can be designed, so that distributed systems can run on top of them at scale,
which is another broad and challenging topic[113]. Another important topic
that we did not cover is formal verification of systems. There are many
formal verification techniques and tools that can be used to prove safety
and liveness properties of systems with TLA+[114] being one of the most
commonly used across the software industry[115]. It is important to note
that users of these formal verification methods have acknowledged publicly
that they have not only helped them discover bugs in their designs, but
they have also helped them significantly reason about the behaviour of their
systems in a better way.
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