
David Sklar

Learning PHP
A GENTLE INTRODUCTION TO THE WEB'S MOST POPULAR LANGUAGE

Covers PHP 7

WEB DEVELOPMENT

Learning PHP

ISBN: 978-1-491-93357-2

US $41.99 CAN $48.99

Twitter: @oreillymedia
facebook.com/oreilly

If you want to get started with PHP, this book is essential. Author David
Sklar (PHP Cookbook) guides you through aspects of the language you
need to build dynamic server-side websites. By exploring features of PHP
5.x and the exciting enhancements in the latest release, PHP 7, you’ll learn
how to work with web servers, browsers, databases, and web services.
End-of-chapter exercises help you make the lessons stick.

Whether you’re a hobbyist looking to build dynamic websites, a frontend
developer ready to add server-side programs, or an experienced
programmer who wants to get up to speed with this language, this
gentle introduction also covers aspects of modern PHP, such as
internationalization, using PHP from the command line, and package
management.

 ■ Learn how PHP interacts with browsers and servers

 ■ Understand data types, variables, logic, looping, and other
language basics

 ■ Explore how to use arrays, functions, and objects

 ■ Build and validate web forms

 ■ Work with databases and session management

 ■ Access APIs to interact with web services and other websites

 ■ Jumpstart your project with popular PHP web application
frameworks

David Sklar works as a Staff Software Engineer at Google. Before that, he built
platforms, APIs, and sandboxed PHP execution runtimes at Ning. He’s the author
of Learning PHP 5, Essential PHP Tools, and coauthor of PHP Cookbook.

“	David	Sklar	brings	
his	deep	technical	
knowledge	and	crystal	
clear	communication	
style	to	bear	in	
Learning PHP.	Highly	
recommended.”

—Thomas David Baker

Learning PH
P

David Sklar

Learning PHP
A Gentle Introduction to

the Web’s Most Popular Language

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-93357-2

[LSI]

Learning PHP
by David Sklar

Copyright © 2016 David Sklar. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editors: Colleen Lobner
and Nicole Shelby
Copyeditor: Gillian McGarvey
Proofreader: Rachel Head

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

April 2016: First Edition

Revision History for the First Edition
2016-04-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491933572 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning PHP, the cover image of an
eagle, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491933572

To M and S: may you never stop learning.

Table of Contents

Preface. xi

1. Orientation and First Steps. 1
PHP’s Place in the Web World 1
What’s So Great About PHP? 4

PHP Is Free (as in Money) 4
PHP Is Free (as in Speech) 5
PHP Is Cross-Platform 5
PHP Is Widely Used 5
PHP Hides Its Complexity 5
PHP Is Built for Web Programming 6

PHP in Action 6
Basic Rules of PHP Programs 12

Start and End Tags 13
Whitespace and Case-Sensitivity 14
Comments 15

Chapter Summary 17

2. Data: Working with Text and Numbers. 19
Text 19

Defining Text Strings 20
Manipulating Text 24

Numbers 29
Using Different Kinds of Numbers 30
Arithmetic Operators 30

Variables 31
Operating on Variables 33
Putting Variables Inside Strings 34

v

Chapter Summary 36
Exercises 37

3. Logic: Making Decisions and Repeating Yourself. 39
Understanding true and false 40
Making Decisions 41
Building Complicated Decisions 43
Repeating Yourself 51
Chapter Summary 54
Exercises 55

4. Groups of Data: Working with Arrays. 57
Array Basics 57

Creating an Array 58
Choosing a Good Array Name 60
Creating a Numeric Array 60
Finding the Size of an Array 61

Looping Through Arrays 62
Modifying Arrays 68
Sorting Arrays 70
Using Multidimensional Arrays 74
Chapter Summary 77
Exercises 78

5. Groups of Logic: Functions and Files. 81
Declaring and Calling Functions 82
Passing Arguments to Functions 83
Returning Values from Functions 87
Understanding Variable Scope 92
Enforcing Rules on Arguments and Return Values 96
Running Code in Another File 98
Chapter Summary 100
Exercises 100

6. Data and Logic Together: Working with Objects. 103
Object Basics 104
Constructors 107
Indicating a Problem with Exceptions 108
Extending an Object 110
Property and Method Visibility 113
Namespaces 114
Chapter Summary 116

vi | Table of Contents

Exercises 117

7. Exchanging Information with Users: Making Web Forms. 119
Useful Server Variables 123
Accessing Form Parameters 124
Form Processing with Functions 127
Validating Data 129

Required Elements 131
Numeric or String Elements 131
Number Ranges 134
Email Addresses 135
<select> Menus 136
HTML and JavaScript 138
Beyond Syntax 141

Displaying Default Values 142
Putting It All Together 144
Chapter Summary 153
Exercises 153

8. Remembering Information: Databases. 155
Organizing Data in a Database 156
Connecting to a Database Program 158
Creating a Table 160
Putting Data into the Database 162
Inserting Form Data Safely 168
A Complete Data Insertion Form 170
Retrieving Data from the Database 173
Changing the Format of Retrieved Rows 178
Retrieving Form Data Safely 179
A Complete Data Retrieval Form 182
Chapter Summary 186
Exercises 187

9. Working with Files. 189
Understanding File Permissions 189
Reading and Writing Entire Files 190

Reading a File 190
Writing a File 192

Reading and Writing Parts of Files 192
Working with CSV Files 195
Inspecting File Permissions 198
Checking for Errors 199

Table of Contents | vii

Sanitizing Externally Supplied Filenames 202
Chapter Summary 204
Exercises 204

10. Remembering Users: Cookies and Sessions. 207
Working with Cookies 208
Activating Sessions 213
Storing and Retrieving Information 214
Configuring Sessions 218
Login and User Identification 219
Why setcookie() and session_start() Want to Be at the Top of the Page 226
Chapter Summary 228
Exercises 228

11. Talking to Other Websites and Services. 231
Simple URL Access with File Functions 231
Comprehensive URL Access with cURL 236

Retrieving URLs via GET 236
Retrieving URLs via POST 239
Using Cookies 240
Retrieving HTTPS URLs 243

Serving API Requests 244
Chapter Summary 247
Exercises 248

12. Debugging. 249
Controlling Where Errors Appear 249
Fixing Parse Errors 251
Inspecting Program Data 254

Adding Debug Output 255
Using a Debugger 258

Handling Uncaught Exceptions 261
Chapter Summary 263
Exercises 263

13. Testing: Ensuring Your Program Does the Right Thing. 265
Installing PHPUnit 266
Writing a Test 266
Isolating What You Test 270
Test-Driven Development 272
More Information About Testing 275
Chapter Summary 275

viii | Table of Contents

Exercises 276

14. Software Engineering Practices You Should Be Aware Of. 279
Source Control 280
Issue Tracking 281
Environments and Deployment 282
Scaling Eventually 283
Chapter Summary 284

15. Handling Dates and Times. 285
Displaying the Date or Time 285
Parsing a Date or Time 288
Calculating Dates and Times 290
Working with Timezones 291
Chapter Summary 292

16. Package Management. 293
Installing Composer 293
Adding a Package to Your Program 294
Finding Packages 295
Getting More Information on Composer 296
Chapter Summary 298

17. Sending Email. 299
Swift Mailer 299
Chapter Summary 301

18. Frameworks. 303
Laravel 304
Symfony 305
Zend Framework 307
Chapter Summary 309

19. Command-Line PHP. 311
Writing Command-Line PHP Programs 312
Using PHP’s Built-in Web Server 313
Running a PHP REPL 314
Chapter Summary 316

20. Internationalization and Localization. 317
Manipulating Text 318
Sorting and Comparing 320

Table of Contents | ix

Localizing Output 321
Chapter Summary 323

A. Installing and Configuring the PHP Engine. 325

B. Answers to Exercises. 335

Index. 381

x | Table of Contents

Preface

Boring websites are static. Interesting websites are dynamic—that is, their content
changes. A giant static HTML page listing the names, pictures, descriptions, and pri‐
ces of all 1,000 products a company has for sale is hard to use and takes forever to
load. A dynamic web product catalog that lets you search and filter those products so
you see only the six items that meet your price and category criteria is more useful,
faster, and much more likely to close a sale.

The PHP programming language makes it easy to build dynamic websites. Whatever
interactive excitement you want to create—whether it be as a product catalog, a blog,
a photo album, or an event calendar—PHP is up to the task. And after reading this
book, you’ll be up to the task of building that dynamic website, too.

Who This Book Is For
This book will be useful for many different kinds of people:

• A hobbyist who wants to create an interactive website for himself, his family, or a
nonprofit organization

• A website builder who wants to use the PHP setup provided by an ISP or hosting
provider

• A developer or designer who needs to write a plugin or extension for a popular
piece of software written in PHP, such as Drupal, WordPress, or MediaWiki

• A page designer who wants to communicate better with her developer co-
workers

• A JavaScript whiz who wants to build server-side programs that complement her
client-side code

• A Perl, Python, or Ruby programmer who wants to get up to speed with PHP
• Anybody who wants a straightforward, jargon-free introduction to one of the

most popular programming languages for building interactive websites

xi

PHP’s gentle learning curve and approachable syntax make it an ideal “gateway” lan‐
guage for the nontechnical web professional. Learning PHP is aimed at this interested,
intelligent, but not necessarily technical individual as well as at programmers familiar
with another language who want to learn PHP.

If you are completely new to programming and embarking on your first interactive
website, you’ve got the right book in your hands. The beginning chapters will give
you a gentle introduction to the syntax of the PHP language and basic computer pro‐
gramming topics as they apply to PHP. Start at the beginning of the book and work
your way forward.

If you are familiar with programming in another language but starting your first PHP
project, you may want to start with the second section of the book and dip back into
the first set of chapters when you have a specific question about syntax or how some‐
thing basic is done in PHP.

Aside from basic computer literacy (knowing how to type, moving files around, surf‐
ing the Web), the only assumption that this book makes about you is that you’re
acquainted with HTML. You don’t need to be an HTML wizard, but you should be
comfortable with the HTML tags that populate a basic web page, such as <html>,
<head>, <body>, <p>, <a>, and
. If you’re not familiar with HTML, read Head
First HTML and CSS by Elisabeth Robson and Eric Freeman (O’Reilly).

Contents of This Book
This book is designed so that you start at the beginning and work through the chap‐
ters in order. For the most part, each chapter depends on material in the previous
chapters. Chapters 2 through 13 each end with exercises that test your understanding
of the chapter’s content.

Chapter 1 provides some general background on PHP and how it interacts with your
web browser and a web server. It also shows some PHP programs and what they do,
to give you an idea of what PHP programs look like. Especially if you’re new to pro‐
gramming or building dynamic websites, it is important to read Chapter 1.

The next five chapters give you a grounding in the fundamentals of PHP. Before
you can write great literature, you need to learn a little grammar and some vocabu‐
lary. That’s what these chapters are for. (Don’t worry—you’ll learn enough PHP
grammar and vocabulary right away to start writing some short programs, if not great
literature.)

Chapter 2 shows you how to work with different kinds of data, such as pieces of text
and numbers. This is important because the web pages that your PHP programs gen‐
erate are just big pieces of text.

xii | Preface

http://bit.ly/head-first-html
http://bit.ly/head-first-html

Chapter 3 describes the PHP commands that your programs can use to make deci‐
sions. These decisions are at the heart of the “dynamic” in dynamic website. The con‐
cepts in Chapter 3 are what you use, for example, to display only those items in a
product catalog that fall between two prices a user enters in a web form.

Chapter 4 introduces arrays, which are collections of a bunch of individual numbers
or pieces of text. Many frequent activities in PHP programs, such as processing sub‐
mitted web form parameters or examining information pulled out of a database,
involve using arrays.

As you write more complicated programs, you’ll find yourself wanting to repeat simi‐
lar tasks. Functions, discussed in Chapter 5, help you reuse pieces of your programs.

Chapter 6 shows how data and logic together are combined into objects. Objects are
reusable bundles of code that help you structure your programs. Objects also allow
you to integrate existing PHP add-ons and libraries into your code.

The next five chapters cover essential tasks in building a dynamic website: interacting
with users, saving information, and interacting with other websites.

Chapter 7 supplies details on working with web forms, which are the primary way
that users interact with your website.

Chapter 8 discusses databases. A database holds the information that your website
displays, such as a product catalog or event calendar. This chapter shows you how to
make your PHP programs talk to a database. With the techniques in Chapter 8, your
website can do user-specific things such as display sensitive information only to
authorized people or tell someone how many new message board posts have been
created since she last logged in.

In addition to a database, you might also need to work with data stored in files. Chap‐
ter 9 explains to how read and write files from a PHP program.

Next, Chapter 10 details how to keep track of your users. This includes using cookies
for transient data, but also users logging in to accounts and tracking session data such
as a shopping cart of products.

The last chapter in this section, Chapter 11, delves into how your PHP program can
interact with other websites and web services. You can retrieve the contents of other
web pages or web APIs to use in your programs. Similarly, you can use PHP to serve
up not just regular web pages but API responses to other clients.

Instead of new features you could incorporate into your programs, the next three
chapters discuss things that help you be a better programmer.

Chapter 12 explains debugging: finding and fixing errors in your programs.

Preface | xiii

Chapter 13 shows how to write tests that exercise different parts of your program.
These tests provide a way to make sure that your program does what you expect it
to do.

Lastly, Chapter 14 talks about some aspects of software engineering that are not
specific to PHP but that you should be familiar with as you work on projects with
other developers.

The final section of the book is a collection of short explorations into a few common
tasks and topics. These are not as fundamental as the material on the basic structure
of PHP, or how to store information, but are still things that you’re likely to run into
as you spend time with PHP. These chapters give you the basics.

Chapter 15 shows PHP’s powerful and comprehensive set of capabilities for working
with dates and times. Chapter 16 discusses package management, with which you
have a drop-dead simple way of incorporating useful libraries written by others into
your code. Chapter 17 explains how to send email messages from your PHP program.
Chapter 18 examines three popular PHP web application frameworks, which can
jumpstart your project by eliminating a lot of common boilerplate code. Chapter 19
delves into using PHP from the command line (rather than from a web server), which
can be a handy way to write simple utilities or test short programs. Finally, Chap‐
ter 20 lays out some techniques for successfully writing PHP programs that flawlessly
handle text in different languages and character sets.

The two appendixes provide supplementary material. To run PHP programs, you
need to have a copy of the PHP engine installed on your computer (or have an
account with a web-hosting provider that supports PHP). Appendix A helps you get
up and running, whether you are using Windows, OS X, or Linux.

Appendix B contains the answers to all the exercises in the book. No peeking until
you’ve tried the exercises!

What’s Not in This Book
This book is of finite length, so unfortunately it can’t include everything there is to
know about PHP. The primary goal of the book is to provide an introduction to PHP
and to some of the basics of computer programming.

If you’re already a PHP programmer and are primarily interested in what’s new in
PHP 7, Upgrading to PHP 7 by Davey Shafik (O’Reilly) is a great place to look for all
the details on what’s new and different in this latest version of PHP. Bruno Skvorc’s
compilation of links and references at SitePoint also has a lot of great detail.

xiv | Preface

http://www.oreilly.com/web-platform/free/upgrading-to-php-seven.csp
http://bit.ly/skvorc-php7

Other Resources
The online annotated PHP Manual is a great resource for exploring PHP’s extensive
function library. Plenty of user-contributed comments offer helpful advice and sam‐
ple code, too. Additionally, there are many PHP mailing lists covering installation,
programming, extending PHP, and various other topics. You can learn about and
subscribe to these mailing lists at php.net. Also worth exploring is the PHP Presenta‐
tion System archive. This is a collection of presentations about PHP that have been
delivered at various conferences.

PHP The Right Way is also a splendid resource for getting to know PHP, especially if
you’re familiar with another programming language.

After you’re comfortable with the material in this book, the following books about
PHP are good next steps:

• Programming PHP by Rasmus Lerdorf, Peter MacIntyre, and Kevin Tatroe
(O’Reilly). A more detailed and technical look at how to write PHP programs.
Includes information on security, XML, and generating graphics.

• PHP Cookbook by David Sklar and Adam Trachtenberg (O’Reilly). A comprehen‐
sive collection of common PHP programming problems and their solutions.

• Modern PHP by Josh Lockhart (O’Reilly). This book is not about syntax and spe‐
cific PHP tasks. Instead, it helps you write PHP with consistent, high-quality
style and understand good practices for software engineering with PHP: it covers
issues such as code deployment, testing, and profiling.

These books are helpful for learning about databases, SQL, and MySQL:

• Learning PHP, MySQL & JavaScript by Robin Nixon (O’Reilly). Explains how
to make PHP, MySQL and JavaScript sing in harmony to make a robust dynamic
website.

• SQL in a Nutshell by Kevin E. Kline, Daniel Kline, and Brand Hunt (O’Reilly).
Covers the essentials you need to know to write SQL queries, and covers the SQL
dialects used by Microsoft SQL Server, MySQL, Oracle, and PostgreSQL.

• MySQL Cookbook by Paul DuBois (O’Reilly). A comprehensive collection of
common MySQL tasks.

• MySQL Reference Manual. The ultimate source for information about MySQL’s
features and SQL dialect.

Preface | xv

http://www.php.net/manual
http://www.php.net/mailing-lists.php
http://talks.php.net
http://talks.php.net
http://www.phptherightway.com
http://bit.ly/prog-php
http://bit.ly/phpckbk3
http://bit.ly/modern_php
http://bit.ly/lpmjch_4e
http://bit.ly/sql-nutshell
http://bit.ly/mysql_ckbk_3e
http://dev.mysql.com/doc/mysql

Conventions Used in This Book
The following programming and typesetting conventions are used in this book.

Programming Conventions
The code examples in this book are designed to work with PHP 7.0.0. They were tes‐
ted with PHP 7.0.5, which was the most up-to-date version of PHP 7 available at the
time of publication. Where the book references or uses features added in PHP 5.4.0
or later, there is generally a mention of which version the feature was added in.

Typographical Conventions
The following typographical conventions are used in this book:

Italic
Indicates new terms, example URLs, example email addresses, filenames, file
extensions, pathnames, and directories.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Typing some of the example programs in the book yourself is instructive when you
are getting started. However, if your fingers get weary, you can download all of the
code examples from https://github.com/oreillymedia/Learning_PHP.

xvi | Preface

https://github.com/oreillymedia/Learning_PHP

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact the pub‐
lisher for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: Learning PHP by David Sklar. Copy‐
right 2016 David Sklar, 978-149-193357-2.” If you feel your use of code examples falls
outside fair use or the permission given above, feel free to contact the publisher at
permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

Preface | xvii

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway
North Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning_php.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

Or you can contact the author directly via his website, http://www.sklar.com.

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at http://www.oreilly.com.

Acknowledgments
This book is the end result of the hard work of many people. Thank you to:

• The many programmers, testers, documentation writers, bug fixers, and other
folks whose time, talent, and devotion have made PHP the first-class develop‐
ment platform that it is today. Without them, I’d have nothing to write about.

• My diligent reviewers: Thomas David Baker and Phil McCluskey. They caught
plenty of mistakes, turned confusing explanations into clear ones, and otherwise
made this book far better than it would have been without them.

• My diligent editor: Ally MacDonald. The author is just one of the many pieces it
takes to make a book and Ally made sure everything that needed to happen with
all of those pieces actually happened!

For a better fate than wisdom, thank you also to Susannah, with whom I continue to
enjoy ignoring the syntax of things.

xviii | Preface

http://bit.ly/learning_php
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.sklar.com
http://www.oreilly.com

CHAPTER 1

Orientation and First Steps

There are lots of great reasons to write computer programs in PHP. Maybe you want
to learn PHP because you need to put together a small website that has some interac‐
tive elements. Perhaps PHP is being used where you work and you have to get up to
speed. This chapter provides context for how PHP fits into the puzzle of website con‐
struction: what it can do and why it’s so good at what it does. You’ll also get your first
look at the PHP language and see it in action.

PHP’s Place in the Web World
PHP is a programming language that’s used mostly for building websites. Instead of a
PHP program running on a desktop computer for the use of one person, it typically
runs on a web server and is accessed by lots of people using web browsers on their
own computers. This section explains how PHP fits into the interaction between a
web browser and a web server.

When you sit down at your computer and pull up a web page using a browser such as
Safari or Firefox, you cause a little conversation to happen over the Internet between
your computer and another computer. This conversation, and how it makes a web
page appear on your screen, is illustrated in Figure 1-1.

Here’s what’s happening in the numbered steps of the diagram:

1. You type www.example.com/catalog.html into your browser’s location bar.
2. The browser sends a message over the Internet to the computer named

www.example.com asking for the /catalog.html page.
3. Apache HTTP Server, a program running on the www.example.com computer,

gets the message and reads the catalog.html file from its disk drive.

1

4. Apache sends the contents of the file back to your computer over the Internet as a
response to the browser’s request.

5. Your browser displays the page on your screen, following the instructions of the
HTML tags in the page.

Figure 1-1. Client and server communication without PHP

Every time a browser asks for http://www.example.com/catalog.html, the web server
sends back the contents of the same catalog.html file. The only time the response from
the web server changes is if someone edits the file on the server.

When PHP is involved, however, the server does more work for its half of the conver‐
sation. Figure 1-2 shows what happens when a web browser asks for a page that is
generated by PHP.

Figure 1-2. Client and server communication with PHP

Here’s what’s happening in the numbered steps of the PHP-enabled conversation:

1. You type www.example.com/catalog/yak.php into your browser’s location bar.

2 | Chapter 1: Orientation and First Steps

2. Your browser sends a message over the Internet to the computer named
www.example.com asking for the /catalog/yak.php page.

3. Apache HTTP Server, a program running on the www.example.com computer,
gets the message and asks the PHP engine, another program running on the
www.example.com computer, “What does /catalog/yak.php look like?”

4. The PHP engine reads the file yak.php from the disk drive.
5. The PHP engine runs the commands in yak.php, possibly exchanging data with a

database program such as MySQL.
6. The PHP engine takes the yak.php program output and sends it back to Apache

HTTP Server as an answer to “What does /catalog/yak.php look like?”
7. Apache HTTP Server sends the page contents it got from the PHP engine back to

your computer over the Internet in response to your browser’s request.
8. Your browser displays the page on your screen, following the instructions of the

HTML tags in the page.

PHP is a programming language. Something in the web server computer reads your
PHP programs, which are instructions written in this programming language, and
figures out what to do. The PHP engine follows your instructions. Programmers often
say “PHP” when they mean either the programming language or the engine. In this
book, just “PHP” means the programming language. “PHP engine” means the thing
that follows the commands in the PHP programs you write and that generates
web pages.

If PHP (the programming language) is like English (the human language), then the
PHP engine is like an English-speaking person. The English language defines various
words and combinations that, when read or heard by an English-speaking person,
translate into various meanings that cause the person to do things such as feel embar‐
rassed, go to the store to buy some milk, or put on pants. The programs you write in
PHP (the programming language) cause the PHP engine to do things such as talk to a
database, generate a personalized web page, or display an image.

This book is concerned with the details of writing those programs—i.e., what hap‐
pens in step 5 of Figure 1-2 (although Appendix A contains details on configuring
and installing the PHP engine on your own web server).

PHP is called a server-side language because, as Figure 1-2 illustrates, it runs on a web
server. A language such as JavaScript can be used as a client-side language because,
embedded in a web browser, it can cause that browser, while running on your desktop
PC, to do something such as pop up a new window. Once the web server has sent the
generated web page to the client (step 7 in Figure 1-2), PHP is out of the picture. If
the page content contains some JavaScript, then that JavaScript runs on the client, but
it is totally disconnected from the PHP program that generated the page.

A plain HTML web page is like the “sorry you found a cockroach in your soup” form
letter you might get after dispatching an angry complaint to a bug-infested airline.

PHP’s Place in the Web World | 3

When your letter arrives at the airline’s headquarters, the overburdened secretary in
the customer service department pulls the “cockroach reply letter” out of the filing
cabinet, makes a copy, and puts the copy in the mail back to you. Every similar
request gets the exact same response.

In contrast, a dynamic page that PHP generates is like a postal letter you write to a
friend across the globe. You can put whatever you like down on the page—doodles,
diagrams, haikus, and tender stories of how unbearably cute your new baby is when
she spatters mashed carrots all over the kitchen. The content of your letter is tailored
to the specific person to whom it’s being sent. Once you put that letter in the mailbox,
however, you can’t change it any more. It wings its way across the globe and is read by
your friend. You don’t have any way to modify the letter as your friend is reading it.

Now imagine you’re writing a letter to an arts-and-crafts-inspired friend. Along with
the doodles and stories you include instructions such as “Cut out the little picture of
the frog at the top of the page and paste it over the tiny rabbit at the bottom of the
page,” and “Read the last paragraph on the page before any other paragraph.” As your
friend reads the letter, she also performs actions the letter instructs her to take. These
actions are like JavaScript in a web page. They’re set down when the letter is written
and don’t change after that. But when the reader of the letter follows the instructions,
the letter itself can change. Similarly, a web browser obeys any JavaScript commands
in a page and pops up windows, changes form menu options, or refreshes the page to
a new URL.

What’s So Great About PHP?
You may be attracted to PHP because it’s free, because it’s easy to learn, or because
your boss told you that you need to start working on a PHP project next week. Since
you’re going to use PHP, you need to know a little bit about what makes it special.
The next time someone asks you “What’s so great about PHP?” use this section as the
basis for your answer.

PHP Is Free (as in Money)
You don’t have to pay anyone to use PHP. Whether you run the PHP engine on a
beat-up 10-year-old PC in your basement or in a room full of million-dollar
“enterprise-class” servers, there are no licensing fees, support fees, maintenance fees,
upgrade fees, or any other kind of charge.

OS X and most Linux distributions come with PHP already installed. If yours doesn’t,
or you are using another operating system such as Windows, you can download PHP
from http://www.php.net. Appendix A has detailed instructions on how to install PHP.

4 | Chapter 1: Orientation and First Steps

http://www.php.net/

PHP Is Free (as in Speech)
As an open source project, PHP makes its innards available for anyone to inspect. If it
doesn’t do what you want, or you’re just curious about why a feature works the way it
does, you can poke around in the guts of the PHP engine (written in the C program‐
ming language) to see what’s what. Even if you don’t have the technical expertise to do
that, you can get someone who does to do the investigating for you. Most people can’t
fix their own cars, but it’s nice to be able to take your car to a mechanic who can pop
open the hood and fix it.

PHP Is Cross-Platform
You can use PHP with a web server computer that runs Windows, Mac OS X, Linux,
and many other versions of Unix. Plus, if you switch web server operating systems,
you generally don’t have to change any of your PHP programs. Just copy them from
your Windows server to your Unix server, and they will still work.

While Apache is the most popular web server program used with PHP, you can also
use nginx, Microsoft Internet Information Server (IIS), or any other web server
that supports the CGI standard. PHP also works with a large number of databases,
including MySQL, PostgreSQL, Oracle, Microsoft SQL Server, SQLite, Redis, and
MongoDB.

If all the acronyms in the last paragraph freak you out, don’t worry. It boils down to
this: whatever system you’re using, PHP probably runs on it just fine and works with
whatever database you are already using.

PHP Is Widely Used
PHP is used on more than 200 million different websites, from countless tiny per‐
sonal home pages to giants like Facebook, Wikipedia, Tumblr, Slack, and Yahoo.
There are many books, magazines, and websites devoted to teaching PHP and explor‐
ing what you can do with it. There are companies that provide support and training
for PHP. In short, if you are a PHP user, you are not alone.

PHP Hides Its Complexity
You can build powerful ecommerce engines in PHP that handle millions of custom‐
ers. You can also build a small site that automatically maintains links to a changing
list of articles or press releases. When you’re using PHP for a simpler project,
it doesn’t get in your way with concerns that are only relevant in a massive system.
When you need advanced features such as caching, custom libraries, or dynamic
image generation, they are available. If you don’t need them, you don’t have to worry
about them. You can just focus on the basics of handling user input and displaying
output.

What’s So Great About PHP? | 5

PHP Is Built for Web Programming
Unlike most other programming languages, PHP was created from the ground up for
generating web pages. This means that common web programming tasks, such as
accessing form submissions and talking to a database, are often easier in PHP. PHP
comes with the capability to format HTML, manipulate dates and times, and manage
web cookies—tasks that are often available only via add-on libraries in other pro‐
gramming languages.

PHP in Action
Ready for your first taste of PHP? This section contains a few program listings and
explanations of what they do. If you don’t understand everything going on in each
listing, don’t worry! That’s what the rest of the book is for. Read these listings to get a
sense of what PHP programs look like and an outline of how they work. Don’t sweat
the details yet.

When given a program to run, the PHP engine pays attention only to the parts of the
program between PHP start and end tags. Whatever’s outside those tags is printed
with no modification. This makes it easy to embed small bits of PHP in pages that
mostly contain HTML. The PHP engine runs the commands between <?php (the
PHP start tag) and ?> (the PHP end tag). PHP pages typically live in files whose
names end in .php. Example 1-1 shows a page with one PHP command.

Example 1-1. Hello, World!

<html>
<head><title>PHP says hello</title></head>
<body>

<?php
print "Hello, World!";
?>

</body>
</html>

The output of Example 1-1 is:

<html>
<head><title>PHP says hello</title></head>
<body>

Hello, World!
</body>
</html>

6 | Chapter 1: Orientation and First Steps

In your web browser, this looks like Figure 1-3.

Figure 1-3. Saying hello with PHP

Printing a message that never changes is not a very exciting use of PHP, however. You
could have included the “Hello, World!” message in a plain HTML page with the
same result. More useful is printing dynamic data—i.e., information that changes.
One of the most common sources of information for PHP programs is the user: the
browser displays a form, the user enters information into that and hits the “submit”
button, the browser sends that information to the server, and the server finally passes
it on to the PHP engine where it is available to your program.

Example 1-2 is an HTML form with no PHP. The form consists simply of a text box
named user and a Submit button. The form submits to sayhello.php, specified via the
<form> tag’s action attribute.

Example 1-2. HTML form for submitting data

<form method="POST" action="sayhello.php">
Your Name: <input type="text" name="user" />

<button type="submit"">Say Hello</button>
</form>

Your web browser renders the HTML in Example 1-2 into the form shown in
Figure 1-4.

PHP in Action | 7

Figure 1-4. Printing a form

Example 1-3 shows the sayhello.php program that prints a greeting to whomever is
named in the form’s text box.

Example 1-3. Dynamic data

<?php
print "Hello, ";
// Print what was submitted in the form parameter called 'user'
print $_POST['user'];
print "!";
?>

If you type Ellen in the text box and submit the form, then Example 1-3 prints
Hello, Ellen!. Figure 1-5 shows how your web browser displays that.

$_POST holds the values of submitted form parameters. In programming terminology,
it is a variable, so called because you can change the values it holds. In particular, it is
an array variable, because it can hold more than one value. This particular array is
discussed in Chapter 7. Arrays in general are discussed in Chapter 4.

In this example, the line that begins with // is called a comment line. Comment lines
are there for human readers of source code and are ignored by the PHP engine. Com‐
ments are useful for annotating your programs with information about how they
work. “Comments” on page 15 discusses comments in more detail.

8 | Chapter 1: Orientation and First Steps

Figure 1-5. Printing a form parameter

You can also use PHP to print out the HTML form that lets someone submit a value
for user. This is shown in Example 1-4.

Example 1-4. Printing a form

<?php
print <<<_HTML_
<form method="post" action="$_SERVER[PHP_SELF]">
Your Name: <input type="text" name="user" />

<button type="submit">Say Hello</button>
</form>
HTML;
?>

Example 1-4 uses a string syntax called a here document. Everything between the
<<<_HTML_ and the _HTML_ is passed to the print command to be displayed. Just like
in Example 1-3, a variable inside the string is replaced with its value. This time, the
variable is $_SERVER[PHP_SELF]. This is a special PHP variable that contains the URL
(without the protocol or hostname) of the current page. If the URL for the page in
Example 1-4 is http://www.example.com/users/enter.php, then $_SERVER[PHP_SELF]
contains /users/enter.php.

PHP in Action | 9

With $_SERVER[PHP_SELF] as the form action, you can put the code for printing a
form and for doing something with the submitted form data in the same page.
Example 1-5 combines Examples 1-3 and 1-4 into one page that displays a form and
prints a greeting when the form is submitted.

Example 1-5. Printing a greeting or a form

<?php
// Print a greeting if the form was submitted
if ($_POST['user']) {
 print "Hello, ";
 // Print what was submitted in the form parameter called 'user'
 print $_POST['user'];
 print "!";
} else {
 // Otherwise, print the form
 print <<<_HTML_
<form method="post" action="$_SERVER[PHP_SELF]">
Your Name: <input type="text" name="user" />

<button type="submit">Say Hello</button>
</form>
HTML;
}
?>

Example 1-5 uses the if() construct to see whether the browser sent a value for the
form parameter user. It uses that to decide which of two things to do: print a greeting
or print a form. Chapter 3 talks about if(). Using $_SERVER[PHP_SELF] and process‐
ing forms are discussed in Chapter 7.

PHP has a huge library of internal functions that you can use in your programs.
These functions help you accomplish common tasks. One built-in function is
number_format(), which provides a formatted version of a number. Example 1-6 uses
number_format() to print out a number.

Example 1-6. Printing a formatted number

<?php print "The population of the US is about: ";
print number_format(320853904);
?>

Example 1-6 prints:

The population of the US is about: 320,853,904

Chapter 5 is about functions. It shows you how to write your own and explains
the syntax for calling and handling the results of functions. Many functions, includ‐

10 | Chapter 1: Orientation and First Steps

ing number_format(), have a return value. This is the result of running the function.
In Example 1-6, the data the second print statement is given to print is the return
value from number_format(). In this case, it’s the comma-formatted population num‐
ber.

One of the most common types of programs written in PHP is one that displays a
web page containing information retrieved from a database. When you let submitted
form parameters control what is pulled from the database, you open the door to a
universe of interactivity on your website. Example 1-7 shows a PHP program that
connects to a database server, retrieves a list of dishes and their prices based on
the value of the form parameter meal, and prints those dishes and prices in an HTML
table.

Example 1-7. Displaying information from a database

<?php
// Use the SQLite database 'dinner.db'
$db = new PDO('sqlite:dinner.db');
// Define what the allowable meals are
$meals = array('breakfast','lunch','dinner');
// Check if submitted form parameter "meal" is one of
// "breakfast", "lunch", or "dinner"
if (in_array($_POST['meal'], $meals)) {
 // If so, get all of the dishes for the specified meal
 $stmt = $db->prepare('SELECT dish,price FROM meals WHERE meal LIKE ?');
 $stmt->execute(array($_POST['meal']));
 $rows = $stmt->fetchAll();
 // If no dishes were found in the database, say so
 if (count($rows) == 0) {
 print "No dishes available.";
 } else {
 // Print out each dish and its price as a row
 // in an HTML table
 print '<table><tr><th>Dish</th><th>Price</th></tr>';
 foreach ($rows as $row) {
 print "<tr><td>$row[0]</td><td>$row[1]</td></tr>";
 }
 print "</table>";
 }
} else {
 // This message prints if the submitted parameter "meal" isn't
 // "breakfast", "lunch", or "dinner"
 print "Unknown meal.";
}
?>

There’s a lot going on in Example 1-7, but it’s a testament to the simplicity and power
of PHP that it takes only about 20 lines of code (without comments) to make this

PHP in Action | 11

dynamic, database-backed web page. The following describes what happens in those
20 lines.

The new PDO() function at the top of the example sets up the connection to the
SQLite database in a particular file. These functions, like the other database functions
used in this example (prepare(), execute(), and fetchAll()), are explained in more
detail in Chapter 8.

Things in the program that begin with a $, such as $db, $_POST, $stmt, and $row,
are variables. Variables hold values that may change as the program runs or that
are created at one point in the program and are saved to use later. Chapter 2 talks
about variables.

After connecting to the database, the next task is to see what meal the user requested.
The $meals array is initialized to hold the allowable meals: breakfast, lunch, and
dinner. The statement in_array($POST['meal'], $meals) checks whether the sub‐
mitted form parameter meal (the value of $_POST['meal']) is in the $meals array. If
not, execution skips down to the end of the example, after the last else, and the pro‐
gram prints Unknown meal.

If an acceptable meal was submitted, prepare() and execute() send a query to the
database. For example, if the meal is breakfast, the query that is sent is as follows:

SELECT dish,price FROM meals WHERE meal LIKE 'breakfast'

Queries to SQLite and most other relational databases are written in a language called
Structured Query Language (SQL). Chapter 8 provides the basics of SQL. The
prepare() function returns an identifier that we can use to get further information
about the query.

The fetchAll() function uses that identifier to get all the matching meals the query
found in the database. If there are no applicable meals, the program prints No dishes
available. Otherwise, it displays information about the matching meals.

The program prints the beginning of the HTML table. Then, it uses the foreach con‐
struct to process each dish that the query found. The print statement uses elements
of the array returned by fetchAll() to display one table row per dish.

Basic Rules of PHP Programs
This section lays out some ground rules about the structure of PHP programs. More
foundational than basics such as “How do I print something?” or “How do I add two
numbers?” these proto-basics are the equivalent of someone telling you that you
should read pages in this book from top to bottom and left to right, or that what’s
important on the page are the black squiggles, not the large white areas.

12 | Chapter 1: Orientation and First Steps

If you’ve had a little experience with PHP already or you’re the kind of person that
prefers playing with all the buttons on your new Blu-Ray player before going back
and reading in the manual about how the buttons actually work, feel free to skip
ahead to Chapter 2 now and flip back here later. If you forge ahead to write some
PHP programs of your own and they behave unexpectedly, or the PHP engine
complains of “parse errors” when it tries to run your program, revisit this section for
a refresher.

Start and End Tags
Each of the examples you’ve already seen in this chapter uses <?php as the PHP start
tag and ?> as the PHP end tag. The PHP engine ignores anything outside of those
tags. Text before the start tag or after the end tag is printed with no interference from
the PHP engine. You can leave off the end tag at the end of a PHP file. If the PHP
engine reaches the end of a file and doesn’t see a PHP end tag, it acts as if there was
one as the very last thing in the file. This is very useful for ensuring that invisible
extra stuff (such as blank lines) after an end tag doesn’t accidentally make it into your
program output.

A PHP program can have multiple start and end tag pairs, as shown in Example 1-8.

Example 1-8. Multiple start and end tags

Five plus five is:
<?php print 5 + 5; ?>
<p>
Four plus four is:
<?php
 print 4 + 4;
?>
<p>

The PHP source code inside each set of <?php ?> tags is processed by the PHP engine,
and the rest of the page is printed as is. Example 1-8 prints:

Five plus five is:
10<p>
Four plus four is:
8<p>

Some older PHP programs use <? as a start tag instead of <?php. The <? is called the
short open tag, since it’s shorter than <?php. It’s usually better to use the regular <?php
open tag since it’s guaranteed to work on any server running the PHP engine. Sup‐
port for the short tag can be turned on or off with a PHP configuration setting.

Basic Rules of PHP Programs | 13

Appendix A shows you how to modify your PHP configuration to control which
open tags are valid in your programs.

The rest of the examples in this chapter all begin with the <?php start tag and end
with ?>. In subsequent chapters, not all the examples have start and end tags—but
remember, your programs need them in order for the PHP engine to recognize
your code.

Whitespace and Case-Sensitivity
Like all PHP programs, the examples in this section consist of a series of statements,
each of which ends with a semicolon. You can put multiple PHP statements on the
same line of a program as long as they are separated with a semicolon. You can put as
many blank lines between statements as you want. The PHP engine ignores them.
The semicolon tells the engine that one statement is over and another is about to
begin. No whitespace at all or lots and lots of whitespace between statements doesn’t
affect the program’s execution. (Whitespace is programmer-speak for blank-looking
characters such as spaces, tabs, and newlines.)

In practice, it’s good style to put one statement on a line and blank lines between
statements only when it improves the readability of your source code. The spacing in
Examples 1-9 and 1-10 is bad. Instead, format your code as in Example 1-11.

Example 1-9. This PHP is too cramped

<?php print "Hello"; print " World!"; ?>

Example 1-10. This PHP is too sprawling

<?php

print "Hello";

print " World!";

?>

Example 1-11. This PHP is just right

<?php
print "Hello";
print " World!";
?>

In addition to ignoring whitespace between lines, the PHP engine also ignores white‐
space between language keywords and values. You can have zero spaces, one space, or

14 | Chapter 1: Orientation and First Steps

a hundred spaces between print and "Hello, World!" and again between "Hello,
World!" and the semicolon at the end of the line.

Good coding style is to put one space between print and the value being printed
and then to follow the value immediately with a semicolon. Example 1-12 shows
three lines, one with too much spacing, one with too little, and one with just the right
amount.

Example 1-12. Spacing

<?php
print "Too many spaces" ;
print"Too few spaces";
print "Just the right amount of spaces";
?>

Language keywords (such as print) and function names (such as number_format)
are not case-sensitive. The PHP engine doesn’t care whether you use uppercase let‐
ters, lowercase letters, or both when you put these keywords and function names in
your programs. The statements in Example 1-13 are identical from the engine’s per‐
spective.

Example 1-13. Keywords and function names are case-insensitive

<?php
// These four lines all do the same thing
print number_format(320853904);
PRINT Number_Format(320853904);
Print number_format(320853904);
pRiNt NUMBER_FORMAT(320853904);
?>

Comments
As you’ve seen in some of the examples in this chapter, comments are a way to
explain to other people how your program works. Comments in source code are an
essential part of any program. When you’re coding, what you are writing may seem
crystal clear to you at the time. A few months later, however, when you need to go
back and modify the program, your brilliant logic may not be so obvious. That’s
where comments come in. By explaining in plain language how the programs work,
comments make programs much more understandable.

Comments are even more important when the person who needs to modify the pro‐
gram isn’t the original author. Do yourself and anyone else who might have occasion
to read your source code a favor and fill your programs with a lot of comments.

Basic Rules of PHP Programs | 15

Perhaps because they’re so important, PHP provides many ways to put comments in
your programs. One syntax you’ve seen already is to begin a line with //. This tells
the PHP engine to treat everything on that line as a comment. After the end of the
line, the code is treated normally. This style of comment is also used in other pro‐
gramming languages such as C++, JavaScript, and Java. You can also put // on a line
after a statement to have the remainder of the line treated as a comment. PHP also
supports the Perl- and shell-style single-line comments. These are lines that begin
with #. You can use # to start a comment in the same places that you use //, but the
modern style prefers // over #. Some single-line comments are shown in
Example 1-14.

Example 1-14. Single-line comments with // or #

<?php
// This line is a comment
print "Smoked Fish Soup ";
print 'costs $3.25.';

Add another dish to the menu
print 'Duck with Pea Shoots ';
print 'costs $9.50.';
// You can put // or # inside single-line comments
// Using // or # somewhere else on a line also starts a comment
print 'Shark Fin Soup'; // I hope it's good!
print 'costs $25.00!'; # This is getting expensive!

Putting // or # inside a string doesn't start a comment
print 'http://www.example.com';
print 'http://www.example.com/menu.php#dinner';
?>

For a multiline comment, start the comment with /* and end it with */. Everything
between the /* and */ is treated as a comment by the PHP engine. Multiline com‐
ments are useful for temporarily turning off a small block of code. Example 1-15
shows some multiline comments.

Example 1-15. Multiline comments

<?php
/* We're going to add a few things to the menu:
 - Smoked Fish Soup
 - Duck with Pea Shoots
 - Shark Fin Soup
*/
print 'Smoked Fish Soup, Duck with Pea Shoots, Shark Fin Soup ';
print 'Cost: 3.25 + 9.50 + 25.00';

/* This is the old menu:

16 | Chapter 1: Orientation and First Steps

The following lines are inside this comment so they don't get executed.
print 'Hamburger, French Fries, Cola ';
print 'Cost: 0.99 + 1.25 + 1.50';
*/
?>

There is no strict rule in PHP about which comment style is the best. Multiline com‐
ments are often the easiest to use, especially when you want to comment out a block
of code or write a few lines describing a function. However, when you want to tack on
a short explanation to the end of a line, a //-style comment fits nicely. Use whichever
comment style you feel most comfortable with.

Chapter Summary
This chapter covered:

• PHP’s usage by a web server to create a response or document to send back to
the browser

• PHP as a server-side language, meaning it runs on the web server (this is in
contrast to a client-side language such as JavaScript that is run inside of a web
browser)

• What you sign up for when you decide to use PHP: it’s free (in terms of money
and speech), cross-platform, popular, and designed for web programming

• How PHP programs that print information, process forms, and talk to a database
appear

• Some basics of the structure of PHP programs, such as the PHP start and end
tags (<?php and ?>), whitespace, case-sensitivity, and comments

Chapter Summary | 17

CHAPTER 2

Data: Working with Text and Numbers

PHP can work with different types of data. In this chapter, you’ll learn about individ‐
ual values such as numbers and single pieces of text. You’ll learn how to put text and
numbers in your programs, as well as some of the limitations the PHP engine puts on
those values and some common tricks for manipulating them.

Most PHP programs spend a lot of time handling text because they spend a lot of
time generating HTML and working with information in a database. HTML is just a
specially formatted kind of text; and information in a database, such as a username, a
product description, or an address, is a piece of text, too. Slicing and dicing text easily
means you can build dynamic web pages easily.

In Chapter 1, you saw variables in action, but this chapter teaches you more about
them. A variable is a named container that holds a value. The value that a variable
holds can change as a program runs. When you access data submitted from a form or
exchange data with a database, you use variables. In real life, a variable is something
such as your checking account balance. As time goes on, the value that the phrase
“checking account balance” refers to fluctuates. In a PHP program, a variable might
hold the value of a submitted form parameter. Each time the program runs, the value
of the submitted form parameter can be different. But whatever the value, you
can always refer to it by the same name. This chapter also explains in more detail
what variables are: how you create them and do things such as change their values or
print them.

Text
When they’re used in computer programs, pieces of text are called strings. This is
because they consist of individual items, strung together. Strings can contain letters,
numbers, punctuation, spaces, tabs, or any other characters. Some examples of strings

19

1 You may also see echo used in some PHP programs to print text. It works just like print.

are I would like 1 bowl of soup, and "Is it too hot?" he asked, and There's
no spoon!. A string can even contain the contents of a binary file, such as an image
or a sound. The only limit to the length of a string in a PHP program is the amount of
memory your computer has.

Strings in PHP are sequences of bytes, not characters. If you’re
dealing only with English text then this distinction won’t affect you.
If you work with non-English text and need to make sure that your
characters in other alphabets are handled properly, make sure
to read Chapter 20, which discusses working with different charac‐
ter sets.

Defining Text Strings
There are a few ways to indicate a string in a PHP program. The simplest is to sur‐
round the string with single quotes:

print 'I would like a bowl of soup.';
print 'chicken';
print '06520';
print '"I am eating dinner," he growled.';

Since the string consists of everything inside the single quotes, that’s what is printed:

I would like a bowl of soup.chicken06520"I am eating dinner," he growled.

Note that the output of those four print statements appears all on one line. No line
breaks are added by print.1

The single quotes aren’t part of the string. They are delimiters, which tell the PHP
engine where the start and end of the string is. If you want to include a single quote
inside a string surrounded with single quotes, put a backslash (\) before the single
quote inside the string:

print 'We\'ll each have a bowl of soup.';

The \' sequence is turned into ' inside the string, so what is printed is:

We'll each have a bowl of soup.

The backslash tells the PHP engine to treat the following character as a literal single
quote instead of the single quote that means “end of string.” This is called escaping,
and the backslash is called the escape character. An escape character tells the system
to do something special with the character that comes after it. Inside a single-quoted

20 | Chapter 2: Data: Working with Text and Numbers

string, a single quote usually means “end of string.” Preceding the single quote with a
backslash changes its meaning to a literal single quote character.

Curly Quotes and Text Editors
Word processors often automatically turn straight quotes like ' and " into curly quotes
like ‘, ’, “, and ”. The PHP engine only understands straight quotes as string delimiters.
If you’re writing PHP programs in a word processor or text editor that puts curly
quotes in your programs, you have two choices: tell your word processor to stop it or
use a different one. A program such as Emacs, Vi, Sublime Text, or Windows Notepad
leaves your quotes alone.

The escape character can itself be escaped. To include a literal backslash character in a
string, put a backslash before it:

print 'Use a \\ to escape in a string';

This prints:

Use a \ to escape in a string

The first backslash is the escape character: it tells the PHP engine that something dif‐
ferent is going on with the next character. This affects the second backslash: instead
of the special action (“treat the next character literally”), a literal backslash is included
in the string.

Note that these are backslashes that go from top left to bottom right, not forward
slshes that go from bottom left to top right. Remember that two forward slashes in a
PHP program (//) indicate a comment.

You can include whitespace such as newlines in single-quoted strings:

print '
Beef Chow-Fun
Sauteed Pea Shoots
Soy Sauce Noodles
';

This puts the HTML on multiple lines:

Beef Chow-Fun
Sauteed Pea Shoots
Soy Sauce Noodles

Since the single quote that marks the end of the string is immediately after the ,
there is no newline at the end of the string.

Text | 21

The only characters that get special treatment inside single-quoted strings are the
backslash and single quote. Everything else is treated literally.

You can also delimit strings with double quotes. Double-quoted strings are similar to
single-quoted strings, but they have more special characters. These special characters
are listed in Table 2-1.

Table 2-1. Special characters in double-quoted strings

Character Meaning
\n Newline (ASCII 10)
\r Carriage return (ASCII 13)
\t Tab (ASCII 9)
\\ \
\$ $
\" "
\0 .. \777 Octal (base 8) number
\x0 .. \xFF Hexadecimal (base 16) number

The biggest difference between single-quoted and double-quoted strings is that when
you include variable names inside a double-quoted string, the value of the variable
is substituted into the string, which doesn’t happen with single-quoted strings. For
example, if the variable $user holds the value Bill, then 'Hi $user' is just that:
Hi $user. However, "Hi $user" is Hi Bill. “Variables” on page 31 gets into this in
more detail.

As mentioned in “PHP in Action” on page 6, you can also define strings with the here
document syntax. A here document begins with <<< and a delimiter word. It ends
with the same word at the beginning of a line. Example 2-1 shows a here document.

Example 2-1. Here document

<<<HTMLBLOCK
<html>
<head><title>Menu</title></head>
<body bgcolor="#fffed9">
<h1>Dinner</h1>

 Beef Chow-Fun
 Sauteed Pea Shoots
 Soy Sauce Noodles

</body>
</html>
HTMLBLOCK

22 | Chapter 2: Data: Working with Text and Numbers

In Example 2-1, the delimiter word is HTMLBLOCK. Here document delimiters can con‐
tain letters, numbers, and the underscore character. The first character of the delim‐
iter must be a letter or underscore. It’s a good idea to make all the letters in your here
document delimiters uppercase to visually set off the here document. The delimiter
that ends the here document must be alone on its line. The delimiter can’t be inden‐
ted and no whitespace, comments, or other characters are allowed after it. The only
exception to this is that a semicolon is allowed immediately after the delimiter to end
a statement. In that case, nothing can be on the same line after the semicolon. The
code in Example 2-2 follows these rules to print a here document.

Example 2-2. Printing a here document

print <<<HTMLBLOCK
<html>
<head><title>Menu</title></head>
<body bgcolor="#fffed9">
<h1>Dinner</h1>

 Beef Chow-Fun
 Sauteed Pea Shoots
 Soy Sauce Noodles

</body>
</html>
HTMLBLOCK;

Here documents obey the same escape character and variable substitution rules as
double-quoted strings. This makes them especially useful when you want to define or
print a string that contains a lot of text or HTML with some variables mixed in. Later
on in the chapter, Example 2-22 demonstrates this.

To combine two strings, use a . (period), the string concatenation operator. Here are
some combined strings:

print 'bread' . 'fruit';
print "It's a beautiful day " . 'in the neighborhood.';
print "The price is: " . '$3.95';
print 'Inky' . 'Pinky' . 'Blinky' . 'Clyde';

The combined strings print as:

breadfruit
It's a beautiful day in the neighborhood.
The price is: $3.95
InkyPinkyBlinkyClyde

Text | 23

Manipulating Text
PHP has a number of built-in functions that are useful when working with strings.
This section introduces the functions that are most helpful for two common tasks:
validation and formatting. The “Strings” chapter of the online PHP Manual has infor‐
mation on other built-in string handling functions.

Validating strings
Validation is the process of checking that input coming from an external source con‐
forms to an expected format or meaning. It’s making sure that a user really entered a
zip code in the “zip Code” box of a form or a reasonable email address in the appro‐
priate place. Chapter 7 delves into all the aspects of form handling, but since submit‐
ted form data is provided to your PHP programs as strings, this section discusses how
to validate those strings.

The trim() function removes whitespace from the beginning and end of a string.
Combined with strlen(), which tells you the length of a string, you can use this
function to find out the length of a submitted value while ignoring any leading or
trailing spaces. Example 2-3 shows you how. (Chapter 3 discusses in more detail the
if() statement used in Example 2-3.)

Example 2-3. Checking the length of a trimmed string

// $_POST['zipcode'] holds the value of the submitted form parameter
// "zipcode"
$zipcode = trim($_POST['zipcode']);
// Now $zipcode holds that value, with any leading or trailing spaces
// removed
$zip_length = strlen($zipcode);
// Complain if the zip code is not 5 characters long
if ($zip_length != 5) {
 print "Please enter a zip code that is 5 characters long.";
}

Using trim() protects against someone who types a zip code of 732 followed by two
spaces. Sometimes the extra spaces are accidental, and sometimes they are malicious.
Whatever the reason, throw them away when appropriate to make sure that you’re
getting the string length you care about.

You can chain together the calls to trim() and strlen() for more concise code.
Example 2-4 does the same thing as Example 2-3.

24 | Chapter 2: Data: Working with Text and Numbers

http://www.php.net/strings

Example 2-4. Concisely checking the length of a trimmed string

if (strlen(trim($_POST['zipcode'])) != 5) {
 print "Please enter a zip code that is 5 characters long.";
}

Four things happen in the first line of Example 2-4. First, the value of the variable
$_POST['zipcode'] is passed to the trim() function. Second, the return value of that
function—$_POST['zipcode'] with leading and trailing whitespace removed—is
handed off to the strlen() function, which then returns the length of the trimmed
string. Third, this length is compared with 5. Last, if the length is not equal to 5 the
print statement inside the if() block runs.

To compare two strings, use the equal operator (==), as shown in Example 2-5.

Example 2-5. Comparing strings with the equal operator

if ($_POST['email'] == 'president@whitehouse.gov') {
 print "Welcome, US President.";
}

The print statement in Example 2-5 runs only if the submitted form parameter
email is the all-lowercase president@whitehouse.gov. When comparing strings with
==, case is important. The string president@whitehouse.GOV is not the same as
President@Whitehouse.Gov or president@whitehouse.gov.

To compare strings without paying attention to case, use strcasecmp(). It compares
two strings while ignoring differences in capitalization. If the two strings you provide
to strcasecmp() are the same independent of any differences between upper- and
lowercase letters, it returns 0. Example 2-6 shows how to use strcasecmp().

Example 2-6. Comparing strings case-insensitively

if (strcasecmp($_POST['email'], 'president@whitehouse.gov') == 0) {
 print "Welcome back, US President.";
}

The print statement in Example 2-6 runs if the submitted form parameter email
is President@Whitehouse.Gov, PRESIDENT@WHITEHOUSE.GOV, presIDENT@white

HOUSE.GoV, or any other capitalization of president@whitehouse.gov.

Formatting text

The printf() function gives you more control (compared to print) over how the
output looks. You pass printf() a format string and a bunch of items to print. Each

Text | 25

rule in the format string is replaced by one item. Example 2-7 shows printf()
in action.

Example 2-7. Formatting a price with printf()

$price = 5; $tax = 0.075;
printf('The dish costs $%.2f', $price * (1 + $tax));

This prints:

The dish costs $5.38

In Example 2-7, the format rule %.2f is replaced with the value of $price * (1 +
$tax) and formatted so that it has two decimal places.

Format string rules begin with % and then have some optional modifiers that affect
what the rule does:

A padding character
If the string that is replacing the format rule is too short, this is used to pad it.
Use a space to pad with spaces or a 0 to pad with zeros.

A sign
For numbers, a plus sign (+) makes printf() put a + before positive numbers
(normally, they’re printed without a sign.) For strings, a minus sign (-) makes
printf() right-justify the string (normally, they’re left-justified.)

A minimum width
This specifies the minimum size that the value replacing the format rule should
be. If it’s shorter, then the padding character is used to beef it up.

A period and a precision number
For floating-point numbers, this controls how many digits go after the decimal
point. In Example 2-7, this is the only modifier present. The .2 formats $price *
(1 + $tax) with two decimal places.

After the modifiers come a mandatory character that indicates what kind of value
should be printed. The three discussed here are d for decimal number, s for string,
and f for floating-point number.

If this stew of percent signs and modifiers has you scratching your head, don’t worry.
The most frequent use of printf() is probably to format prices with the %.2f format
rule as shown in Example 2-7. If you absorb nothing else about printf() for now,
just remember that it’s your go-to function when you want to format a decimal value.

26 | Chapter 2: Data: Working with Text and Numbers

But if you delve a little deeper, you can do some other handy things with it. For exam‐
ple, using the 0 padding character and a minimum width, you can format a date or
zip code properly with leading zeros, as shown in Example 2-8.

Example 2-8. Zero-padding with printf()

$zip = '6520';
$month = 2;
$day = 6;
$year = 2007;

printf("ZIP is %05d and the date is %02d/%02d/%d", $zip, $month, $day, $year);

Example 2-8 prints:

ZIP is 06520 and the date is 02/06/2007

The sign modifier is helpful for explicitly indicating positive and negative values.
Example 2-9 uses it to display some temperatures.

Example 2-9. Displaying signs with printf()

$min = -40;
$max = 40;
printf("The computer can operate between %+d and %+d degrees Celsius.", $min, $max);

Example 2-9 prints:

The computer can operate between -40 and +40 degrees Celsius.

To learn about other printf() format rules, visit http://www.php.net/sprintf.

Another kind of text formatting is to manipulate the case of strings. The functions
strtolower() and strtoupper() make all-lowercase and all-uppercase versions,
respectively, of a string. Example 2-10 shows strtolower() and strtoupper()
at work.

Example 2-10. Changing case

print strtolower('Beef, CHICKEN, Pork, duCK');
print strtoupper('Beef, CHICKEN, Pork, duCK');

Example 2-10 prints:

beef, chicken, pork, duck
BEEF, CHICKEN, PORK, DUCK

The ucwords() function uppercases the first letter of each word in a string. This is
useful when combined with strtolower() to produce nicely capitalized names when

Text | 27

http://www.php.net/sprintf

they are provided to you in all uppercase. Example 2-11 shows how to combine strto
lower() and ucwords().

Example 2-11. Prettifying names with ucwords()

print ucwords(strtolower('JOHN FRANKENHEIMER'));

Example 2-11 prints:

John Frankenheimer

With the substr() function, you can extract just part of a string. For example, you
may only want to display the beginnings of messages on a summary page.
Example 2-12 shows how to use substr() to truncate the submitted form parameter
comments.

Example 2-12. Truncating a string with substr()

// Grab the first 30 bytes of $_POST['comments']
print substr($_POST['comments'], 0, 30);
// Add an ellipsis
print '...';

If the submitted form parameter comments is:

The Fresh Fish with Rice Noodle was delicious, but I didn't like the Beef Tripe.

Example 2-12 prints:

The Fresh Fish with Rice Noodl...

The three arguments to substr() are the string to work with, the starting position of
the substring to extract, and the number of bytes to extract. The beginning of the
string is position 0, not 1, so substr($_POST['comments'], 0, 30) means “extract
30 bytes from $_POST['comments'] starting at the beginning of the string.”

When you give substr() a negative number for a start position, it counts back from
the end of the string to figure out where to start. A start position of -4 means “start
four bytes from the end.” Example 2-13 uses a negative start position to display just
the last four digits of a credit card number.

Example 2-13. Extracting the end of a string with substr()

print 'Card: XX';
print substr($_POST['card'],-4,4);

If the submitted form parameter card is 4000-1234-5678-9101, Example 2-13 prints:

Card: XX9101

28 | Chapter 2: Data: Working with Text and Numbers

As a shortcut, use substr($_POST['card'],-4) instead of substr($_POST['card'],
-4,4). When you leave out the last argument, substr() returns everything from the
starting position (whether positive or negative) to the end of the string.

Instead of extracting a substring, the str_replace() function changes parts of a
string. It looks for a substring and replaces the substring with a new string. This is
useful for simple template-based customization of HTML. Example 2-14 uses
str_replace() to set the class attribute of tags.

Example 2-14. Using str_replace()

$html = 'Fried Bean Curd
Oil-Soaked Fish';

print str_replace('{class}',$my_class,$html);

If $my_class has been set to lunch, then Example 2-14 prints:

Fried Bean Curd
Oil-Soaked Fish

Each instance of {class} (the first argument to str_replace()) is replaced by lunch
(the value of $my_class) in the string that is the third argument passed to
str_replace().

Numbers
Numbers in PHP are expressed using familiar notation, although you can’t use com‐
mas or any other characters to group thousands. You don’t have to do anything spe‐
cial to use a number with a decimal part as compared to an integer. Example 2-15
prints some valid numbers in PHP.

Example 2-15. Numbers

print 56;
print 56.3;
print 56.30;
print 0.774422;
print 16777.216;
print 0;
print -213;
print 1298317;
print -9912111;
print -12.52222;
print 0.00;

Numbers | 29

Using Different Kinds of Numbers
Internally, the PHP engine makes a distinction between numbers with a decimal part
and those without one. The former are called floating-point numbers and the latter
are called integers. Floating-point numbers take their name from the fact that the dec‐
imal point can “float” around to represent different amounts of precision.

The PHP engine uses the math facilities of your operating system to represent num‐
bers, so the largest and smallest numbers you can use, as well as the number of deci‐
mal places you can have in a floating-point number, vary on different systems.

One distinction between the PHP engine’s internal representation of integers and
floating-point numbers is the exactness of how they’re stored. The integer 47 is stored
as exactly 47. The floating-point number 46.3 could be stored as 46.2999999. This
affects the correct technique of how to compare numbers. “Building Complicated
Decisions” on page 43 explains comparisons and shows how to properly compare
floating-point numbers.

Arithmetic Operators
Doing math in PHP is a lot like doing math in elementary school, except it’s much
faster. Some basic operations between numbers are shown in Example 2-16.

Example 2-16. Math operations

print 2 + 2;
print 17 - 3.5;
print 10 / 3;
print 6 * 9;

The output of Example 2-16 is:

4
13.5
3.3333333333333
54

In addition to the plus sign (+) for addition, the minus sign (-) for subtraction, the
forward slash (/) for division, and the asterisk (*) for multiplication, PHP also sup‐
ports two asterisks (**) for exponentiation and the percent sign (%) for modulus divi‐
sion (returning the remainder of a division operation):

print 17 % 3;

This prints:

2

30 | Chapter 2: Data: Working with Text and Numbers

Since 17 divided by 3 is 5 with a remainder of 2, 17 % 3 equals 2. The modulus opera‐
tor is useful for printing rows whose CSS class names alternate in an HTML table, as
shown in Example 4-13.

The exponentiation operator was introduced in PHP 5.6. If you’re
using an older version of PHP, use the pow() function.

The arithmetic operators, as well as the other PHP operators that you’ll meet later in
the book, fit into a strict precedence of operations. This is how the PHP engine
decides in what order to do calculations if they are written ambiguously. For example,
“3 + 4 * 2” could mean “add 3 and 4 and then multiply the result by 2,” which results
in 14. Or, it could mean “add 3 to the product of 4 and 2,” which results in 11. In PHP
(as well as the math world in general), multiplication has a higher precedence than
addition, so the second interpretation is correct. First, the PHP engine multiplies 4
and 2, and then it adds 3 to the result.

The precedence table of all PHP operators is part of the online PHP Manual. You can
avoid the need to memorize or repeatedly refer to this table, however, with a healthy
dose of parentheses. Grouping operations inside parentheses unambiguously tells the
PHP engine to do what’s inside the parentheses first. The expression “(3 + 4) * 2”
means “add 3 and 4 and then multiply the result by 2.” The expression “3 + (4 * 2)”
means “multiply 4 and 2 and then add 3 to the result.”

Like in other modern programming languages, you don’t have to do anything special
to ensure that the results of your calculations are properly represented as integers or
floating-point numbers. Dividing one integer by another produces a floating-point
result if the two integers don’t divide evenly. Similarly, if you do something to an inte‐
ger that makes it larger than the maximum allowable integer or smaller than the min‐
imum possible integer, the PHP engine converts the result into a floating-point
number so you get the proper result for your calculation.

Variables
Variables hold the data that your program manipulates while it runs, such as user
information that you’ve loaded from a database or entries that have been typed into
an HTML form. In PHP, variables are denoted by a $ followed by the variable’s name.
To assign a value to a variable, use an equals sign (=). This is known as the assignment
operator.

Variables | 31

http://www.php.net/language.operators.precedence

Here are a few examples:

$plates = 5;
$dinner = 'Beef Chow-Fun';
$cost_of_dinner = 8.95;
$cost_of_lunch = $cost_of_dinner;

Assignment works with here documents as well:

$page_header = <<<HTML_HEADER
<html>
<head><title>Menu</title></head>
<body bgcolor="#fffed9">
<h1>Dinner</h1>
HTML_HEADER;

$page_footer = <<<HTML_FOOTER
</body>
</html>
HTML_FOOTER;

Variable names may only include:

• Uppercase or lowercase Basic Latin letters (A-Z and a-z)
• Digits (0-9)
• Underscore (_)
• Any non-Basic Latin character (such as ç or or), if you’re using a character

encoding such as UTF-8 for your program file

Additionally, the first character of a variable name is not allowed to be a digit.
Table 2-2 lists some allowable variable names.

Table 2-2. Allowable variable names
$size

$drinkSize

$SUPER_BIG_DRINK

$_d_r_i_n_k_y

$drink4you2

$напиток

$သောက်စရာ
$🄳🅁🄸🄽🄺
$😀

Keep in mind that, despite the alluring aesthetic possibilities of variable names with
emoticons in them, most PHP code sticks with digits, underscores, and Basic Latin
letters.

32 | Chapter 2: Data: Working with Text and Numbers

Table 2-3 lists some disallowed variable names and what’s wrong with them.

Table 2-3. Disallowed variable names

Variable name Flaw
$2hot4u Begins with a number
$drink-size Unacceptable character: -
$drinkmaster@example.com Unacceptable characters: @ and .
$drink!lots Unacceptable character: !
$drink+dinner Unacceptable character: +

Variable names are case-sensitive. This means that variables named $dinner,
$Dinner, and $DINNER are separate and distinct, with no more in common than if
they were named $breakfast, $lunch, and $supper. In practice, you should avoid
using variable names that differ only by letter case. They make programs difficult to
read and debug.

Operating on Variables
Arithmetic and string operators work on variables containing numbers or strings just
like they do on literal numbers or strings. Example 2-17 shows some math and string
operations at work on variables.

Example 2-17. Operating on variables

$price = 3.95;
$tax_rate = 0.08;
$tax_amount = $price * $tax_rate;
$total_cost = $price + $tax_amount;

$username = 'james';
$domain = '@example.com';
$email_address = $username . $domain;

print 'The tax is ' . $tax_amount;
print "\n"; // this prints a line break
print 'The total cost is ' .$total_cost;
print "\n"; // this prints a line break
print $email_address;

Example 2-17 prints:

The tax is 0.316
The total cost is 4.266
james@example.com

The assignment operator can be combined with arithmetic and string operators for a
concise way to modify a value. An operator followed by the equals sign means “apply

Variables | 33

this operator to the variable.” Example 2-18 shows two identical ways to add 3
to $price.

Example 2-18. Combined assignment and addition

// Add 3 the regular way
$price = $price + 3;
// Add 3 with the combined operator
$price += 3;

Combining the assignment operator with the string concatenation operator appends
a value to a string. Example 2-19 shows two identical ways to add a suffix to a string.
The advantage of the combined operators is that they are more concise.

Example 2-19. Combined assignment and concatenation

$username = 'james';
$domain = '@example.com';

// Concatenate $domain to the end of $username the regular way
$username = $username . $domain;
// Concatenate with the combined operator
$username .= $domain;

Incrementing and decrementing variables by 1 are so common that these operations
have their own operators. The ++ operator adds 1 to a variable, and the -- operator
subtracts 1. These operators are usually used in for() loops, which are detailed in
Chapter 3. But you can use them on any variable holding a number, as shown in
Example 2-20.

Example 2-20. Incrementing and decrementing

// Add 1 to $birthday
$birthday = $birthday + 1;
// Add another 1 to $birthday
++$birthday;

// Subtract 1 from $years_left
$years_left = $years_left - 1;
// Subtract another 1 from $years_left
--$years_left;

Putting Variables Inside Strings
Frequently, you print the values of variables combined with other text, such as when
you display an HTML table with calculated values in the cells or a user profile page
that shows a particular user’s information in a standardized HTML template. Double-

34 | Chapter 2: Data: Working with Text and Numbers

quoted strings and here documents have a property that makes this easy: you can
interpolate variables into them. This means that if the string contains a variable name,
the variable name is replaced by the value of the variable. In Example 2-21, the value
of $email is interpolated into the printed string.

Example 2-21. Variable interpolation

$email = 'jacob@example.com';
print "Send replies to: $email";

Example 2-21 prints:

Send replies to: jacob@example.com

Here documents are especially useful for interpolating many variables into a long
block of HTML, as shown in Example 2-22.

Example 2-22. Interpolating in a here document

$page_title = 'Menu';
$meat = 'pork';
$vegetable = 'bean sprout';
print <<<MENU
<html>
<head><title>$page_title</title></head>
<body>

 Barbecued $meat
 Sliced $meat
 Braised $meat with $vegetable

</body>
</html>
MENU;

Example 2-22 prints:

<html>
<head><title>Menu</title></head>
<body>

 Barbecued pork
 Sliced pork
 Braised pork with bean sprout

</body>
</html>

Variables | 35

Here Documents and Now Documents
In PHP 5.3 and later, the here document has a noninterpolating cousin called the
now document. When you put the beginning delimiter word in single quotes, you
get a now document instead of a here document. Unlike in a here document, no vari‐
able interpolation is done inside a now document. If you think of a here document
like a multiline double-quoted string, a now document is like a multiline single-
quoted string.

When you interpolate a variable into a string in a place where the PHP engine could
be confused about the variable name, surround the variable with curly braces to
remove the confusion. Example 2-23 needs curly braces so that $preparation is
interpolated properly.

Example 2-23. Interpolating with curly braces

$preparation = 'Braise';
$meat = 'Beef';
print "{$preparation}d $meat with Vegetables";

Example 2-23 prints:

Braised Beef with Vegetables

Without the curly braces, the print statement in Example 2-23 would be print
"$preparationd $meat with Vegetables";. In that statement, it looks like the vari‐
able to interpolate is named $preparationd. The curly braces are necessary to indi‐
cate where the variable name stops and the literal string begins. The curly brace
syntax is also useful for interpolating more complicated expressions and array values,
discussed in Chapter 4.

Chapter Summary
This chapter covered:

• Defining strings in your programs in three different ways: with single quotes,
with double quotes, and as a here document

• Escaping: what it is and what characters need to be escaped in each kind of string
• Validating a string by checking its length, removing leading and trailing white‐

space from it, or comparing it to another string
• Formatting a string with printf()
• Manipulating the case of a string with strtolower(), strtoupper(), or
ucwords()

36 | Chapter 2: Data: Working with Text and Numbers

• Selecting part of a string with substr()
• Changing part of a string with str_replace()
• Defining numbers in your programs
• Doing math with numbers
• Storing values in variables
• Naming variables appropriately
• Using combined operators with variables
• Using increment and decrement operators with variables
• Interpolating variables in strings

Exercises
1. Find the errors in this PHP program:

<? php
print 'How are you?';
print 'I'm fine.';
??>

2. Write a PHP program that computes the total cost of this restaurant meal: two
hamburgers at $4.95 each, one chocolate milkshake at $1.95, and one cola at 85
cents. The sales tax rate is 7.5%, and you left a pre-tax tip of 16%.

3. Modify your solution to the previous exercise to print out a formatted bill. For
each item in the meal, print the price, quantity, and total cost. Print the pre-tax
food and drink total, the post-tax total, and the total with tax and tip. Make sure
that prices in your output are vertically aligned.

4. Write a PHP program that sets the variable $first_name to your first name and
$last_name to your last name. Print out a string containing your first and last
name separated by a space. Also print out the length of that string.

5. Write a PHP program that uses the increment operator (++) and the combined
multiplication operator (*=) to print out the numbers from 1 to 5 and powers of
2 from 2 (21) to 32 (25).

6. Add comments to the PHP programs you’ve written for the other exercises. Try
both single and multiline comments. After you’ve added the comments, run the
programs to make sure they work properly and your comment syntax is correct.

Exercises | 37

CHAPTER 3

Logic: Making Decisions
and Repeating Yourself

Chapter 2 covered the basics of how to represent data in PHP programs. A program
full of data is only half complete, though. The other piece of the puzzle is using that
data to control how the program runs, taking actions such as:

• If an administrative user is logged in, print a special menu.
• Print a different page header if it’s after three o’clock.
• Notify a user if new messages have been posted since she last logged in.

All of these actions have something in common: they make decisions about whether a
certain logical condition involving data is true or false. In the first action, the logical
condition is “Is an administrative user logged in?” If the condition is true (yes, an
administrative user is logged in), then a special menu is printed. The same kind of
thing happens in the next example. If the condition “Is it after three o’clock?” is true,
then a different page header is printed. Likewise, if “Have new messages been posted
since the user last logged in?” is true, then the user is notified.

When making decisions, the PHP engine boils down an expression into true or
false. “Understanding true and false” on page 40 explains how the engine decides
which expressions and values are true and which are false.

Those true and false values are used by language constructs such as if() to decide
whether to run certain statements in a program. The ins and outs of if() are detailed
in “Making Decisions” on page 41. Use if() and similar constructs any time the out‐
come of a program depends on some changing conditions.

39

1 An empty array is also false. This is discussed in Chapter 4.

While true and false are the cornerstones of decision making, usually you want to
ask more complicated questions, such as “Is this user at least 21 years old?” or “Does
this user have a monthly subscription to the website or enough money in his account
to buy a daily pass?” “Building Complicated Decisions” on page 43 explains PHP’s
comparison and logical operators. These help you express whatever kinds of deci‐
sions you need to make in a program, such as seeing whether numbers or strings are
greater than or less than each other. You can also chain together decisions into a
larger decision that depends on its pieces.

Decision making is also used in programs when you want to repeatedly execute cer‐
tain statements, and you need a way to indicate when the repetition should stop. Fre‐
quently, this is determined by a simple counter, such as “repeat 10 times.” This is like
asking the question “Have I repeated 10 times yet?” If so, then the program continues.
If not, the action is repeated again. Determining when to stop can be more compli‐
cated, too—for example, “Show another math question to a student until six ques‐
tions have been answered correctly.” “Repeating Yourself ” on page 51 introduces
PHP’s while() and for() constructs, which you can use to implement these kinds
of loops.

Understanding true and false
Every expression in a PHP program has a truth value: true or false. Sometimes that
truth value is important because you use it in a calculation, but sometimes you ignore
it. Understanding how expressions evaluate to true or false is an important part of
understanding PHP.

Most scalar values are true. All integers and floating-point numbers (except for 0 and
0.0) are true. All strings are true except for two: a string containing nothing at all
and a string containing only the character 0. The special constants false and null
also evaluate to false. These six values are false. Everything else is true.1

A variable equal to one of the false values, or a function that returns one of those
values, also evaluates to false. Every other expression evaluates to true.

Figuring out the truth value of an expression has two steps. First, figure out the actual
value of the expression. Then, check whether that value is true or false. Some
expressions have common-sense values. The value of a mathematical expression is
what you’d get by doing the math with paper and pencil. For example, 7 * 6 equals
42. Since 42 is true, the expression 7 * 6 is true. The expression 5 - 6 + 1 equals 0.
Since 0 is false, the expression 5 - 6 + 1 is false.

40 | Chapter 3: Logic: Making Decisions and Repeating Yourself

The same is true with string concatenation. The value of an expression that concate‐
nates two strings is the new combined string. The expression 'jacob' .

'@example.com' equals the string jacob@example.com, which is true.

The value of an assignment operation is the value being assigned. The expression
$price = 5 evaluates to 5, since that’s what’s being assigned to $price. Because
assignment produces a result, you can chain assignment operations together to assign
the same value to multiple variables:

$price = $quantity = 5;

This expression means “set $price equal to the result of setting $quantity equal to
5.” When this expression is evaluated, the integer 5 is assigned to the variable
$quantity. The result of that assignment expression is 5, the value being assigned.
Then, that result (5) is assigned to the variable $price. Both $price and $quantity
are set to 5.

Making Decisions
With the if() construct, you can have statements in your program that are only run
if certain conditions are true. This lets your program take different actions depend‐
ing on the circumstances. For example, you can check that a user has entered valid
information in a web form before letting her see sensitive data.

The if() construct runs a block of code if its test expression is true. This is demon‐
strated in Example 3-1.

Example 3-1. Making a decision with if()

if ($logged_in) {
 print "Welcome aboard, trusted user.";
}

The if() construct finds the truth value of the expression inside its parentheses (the
test expression). If the expression evaluates to true, then the statements inside the
curly braces after the if() are run. If the expression isn’t true, then the program con‐
tinues with the statements after the curly braces. In this case, the test expression is
just the variable $logged_in. If $logged_in is true (or has a value that evaluates to
true, such as 5, -12.6, or Grass Carp), then Welcome aboard, trusted user. is
printed.

You can have as many statements as you want in the code block inside the curly
braces. However, you need to terminate each of them with a semicolon. This is the
same rule that applies to code outside an if() statement. You don’t, however, need a
semicolon after the closing curly brace that encloses the code block. You also don’t

Making Decisions | 41

put a semicolon after the opening curly brace. Example 3-2 shows an if() clause that
runs multiple statements when its test expression is true.

Example 3-2. Multiple statements in an if() code block

print "This is always printed.";
if ($logged_in) {
 print "Welcome aboard, trusted user.";
 print 'This is only printed if $logged_in is true.';
}
print "This is also always printed.";

To run different statements when the if() test expression is false, add an else
clause to your if() statement. This is shown in Example 3-3.

Example 3-3. Using else with if()

if ($logged_in) {
 print "Welcome aboard, trusted user.";
} else {
 print "Howdy, stranger.";
}

In Example 3-3, the first print statement is only executed when the if() test expres‐
sion (the variable $logged_in) is true. The second print statement, inside the else
clause, is only run when the test expression is false.

The if() and else constructs are extended further with the elseif() construct. You
can pair one or more elseif() clauses with an if() to test multiple conditions sepa‐
rately. Example 3-4 demonstrates elseif().

Example 3-4. Using elseif()

if ($logged_in) {
 // This runs if $logged_in is true
 print "Welcome aboard, trusted user.";
} elseif ($new_messages) {
 // This runs if $logged_in is false but $new_messages is true
 print "Dear stranger, there are new messages.";
} elseif ($emergency) {
 // This runs if $logged_in and $new_messages are false
 // but $emergency is true
 print "Stranger, there are no new messages, but there is an emergency.";
}

If the test expression for the if() statement is true, the PHP engine executes the
statements inside the code block after the if() and ignores the elseif() clauses and

42 | Chapter 3: Logic: Making Decisions and Repeating Yourself

their code blocks. If the test expression for the if() statement is false, then the
engine moves on to the first elseif() statement and applies the same logic. If that
test expression is true, then it runs the code block for that elseif() statement. If it is
false, then the engine moves on to the next elseif().

For a given set of if() and elseif() statements, at most one of the code blocks is
run: the code block of the first statement whose test expression is true. If the test
expression of the if() statement is true, none of the elseif() code blocks are run,
even if their test expressions are true. Once one of the if() or elseif() test expres‐
sions is true, the rest are ignored. If none of the test expressions in the if() and
elseif() statements are true, then none of the code blocks are run.

You can use else with elseif() to include a code block that runs if none of the if()
or elseif() test expressions are true. Example 3-5 adds an else to the code in
Example 3-4.

Example 3-5. elseif() with else

if ($logged_in) {
 // This runs if $logged_in is true
 print "Welcome aboard, trusted user.";
} elseif ($new_messages) {
 // This runs if $logged_in is false but $new_messages is true
 print "Dear stranger, there are new messages.";
} elseif ($emergency) {
 // This runs if $logged_in and $new_messages are false
 // but $emergency is true
 print "Stranger, there are no new messages, but there is an emergency.";
} else {
 // This runs if $logged_in, $new_messages, and
 // $emergency are all false
 print "I don't know you, you have no messages, and there's no emergency.";
}

All of the code blocks we’ve used so far have been surrounded by curly braces. Strictly
speaking, you don’t need to put curly braces around code blocks that contain just one
statement. If you leave them out, the code still executes correctly. However, reading
the code can be confusing if you leave out the curly braces, so it’s always a good idea
to include them. The PHP engine doesn’t care, but humans who read your programs
(especially you, reviewing code a few months after you’ve originally written it) will
appreciate the clarity that the curly braces provide.

Building Complicated Decisions
The comparison and logical operators in PHP help you put together more compli‐
cated expressions on which an if() construct can decide. These operators let you

Building Complicated Decisions | 43

compare values, negate values, and chain together multiple expressions inside one
if() statement.

The equal operator is == (two equals signs). It returns true if the two values you test
with it are equal. The values can be variables or literals. Some uses of the equal opera‐
tor are shown in Example 3-6.

Example 3-6. The equal operator

if ($new_messages == 10) {
 print "You have ten new messages.";
}

if ($new_messages == $max_messages) {
 print "You have the maximum number of messages.";
}

if ($dinner == 'Braised Scallops') {
 print "Yum! I love seafood.";
}

Assignment Versus Comparison
Be careful not to use = when you mean ==. A single equals sign assigns a value and
returns the value assigned. Two equals signs test for equality and return true if the
values are equal. If you leave off the second equals sign, you usually get an if() test
that is always true, as in the following:

if ($new_messages = 12) {
 print "It seems you now have twelve new messages.";
}

Instead of testing whether $new_messages equals 12, the code shown here sets
$new_messages to 12. This assignment returns 12, the value being assigned. The if()
test expression is always true, no matter what the value of $new_messages is. Addi‐
tionally, the value of $new_messages is overwritten. One way to avoid using = instead
of == is to put the variable on the right side of the comparison and the literal on the
left side, as in the following:

if (12 == $new_messages) {
 print "You have twelve new messages.";
}

The test expression above may look a little funny, but it gives you some insurance if
you accidentally use = instead of ==. With one equals sign, the test expression is 12 =
$new_messages, which means “assign the value of $new_messages to 12.” This doesn’t
make any sense: you can’t change the value of 12. If the PHP engine sees this in your
program, it reports a parse error and the program doesn’t run. The parse error alerts

44 | Chapter 3: Logic: Making Decisions and Repeating Yourself

you to the missing =. With the literal on the righthand side of the expression, the code
is parseable by the engine, so it doesn’t report an error.

The opposite of the equal operator is !=. It returns true if the two values that you test
with it are not equal. See Example 3-7.

Example 3-7. The not-equal operator

if ($new_messages != 10) {
 print "You don't have ten new messages.";
}

if ($dinner != 'Braised Scallops') {
 print "I guess we're out of scallops.";
}

With the less-than operator (<) and the greater-than operator (>), you can compare
amounts. Similar to < and > are <= (“less than or equal to”) and >= (“greater than or
equal to”). Example 3-8 shows how to use these operators.

Example 3-8. Less-than and greater-than (or equal to)

if ($age > 17) {
 print "You are old enough to download the movie.";
}
if ($age >= 65) {
 print "You are old enough for a discount.";
}
if ($celsius_temp <= 0) {
 print "Uh-oh, your pipes may freeze.";
}
if ($kelvin_temp < 20.3) {
 print "Your hydrogen is a liquid or a solid now.";
}

As mentioned in “Numbers” on page 29, floating-point numbers are stored internally
in such a way that they could be slightly different than their assigned values. For
example, 50.0 could be stored internally as 50.00000002. To test whether two floating-
point numbers are equal, check whether the two numbers differ by less than some
acceptably small threshold instead of using the equal operator. For example, if you are
comparing currency amounts, then an acceptable threshold could be 0.00001.
Example 3-9 demonstrates how to compare two floating-point numbers.

Building Complicated Decisions | 45

Example 3-9. Comparing floating-point numbers

if(abs($price_1 - $price_2) < 0.00001) {
 print '$price_1 and $price_2 are equal.';
} else {
 print '$price_1 and $price_2 are not equal.';
}

The abs() function used in Example 3-9 returns the absolute value of its argument.
With abs(), the comparison works properly whether $price_1 is larger than
$price_2 or $price_2 is larger than $price_1.

The less-than and greater-than operators (and their “or equal to” partners) can be
used with numbers or strings. Generally, strings are compared as if they were being
looked up in a dictionary. A string that appears earlier in the dictionary is “less than”
a string that appears later in the dictionary. Some examples of this are shown in
Example 3-10.

Example 3-10. Comparing strings

if ($word < 'baa') {
 print "Your word isn't cookie.";
}
if ($word >= 'zoo') {
 print "Your word could be zoo or zymurgy, but not zone.";
}

String comparison can produce unexpected results, however, if the strings contain
only numbers or start with numbers. When the PHP engine sees strings like this, it
converts them to numbers for the comparison. Example 3-11 shows this automatic
conversion in action.

Example 3-11. Comparing numbers and strings

// These values are compared using dictionary order
if ("x54321"> "x5678") {
 print 'The string "x54321" is greater than the string "x5678".';
} else {
 print 'The string "x54321" is not greater than the string "x5678".';
}

// These values are compared using numeric order
if ("54321" > "5678") {
 print 'The string "54321" is greater than the string "5678".';
} else {
 print 'The string "54321" is not greater than the string "5678".';
}

// These values are compared using dictionary order

46 | Chapter 3: Logic: Making Decisions and Repeating Yourself

2 The “dictionary” that the PHP engine uses for comparing strings is the ASCII codes for characters. This puts
numerals before letters, and orders the numerals from 0 to 9. It also puts uppercase letters before lowercase
letters.

if ('6 pack' < '55 card stud') {
 print 'The string "6 pack" is less than the string "55 card stud".';
} else {
 print 'The string "6 pack" is not less than the string "55 card stud".';
}

// These values are compared using numeric order
if ('6 pack' < 55) {
 print 'The string "6 pack" is less than the number 55.';
} else {
 print 'The string "6 pack" is not less than the number 55.';
}

The output of the four tests in Example 3-11 is:

The string "x54321" is not greater than the string "x5678".
The string "54321" is greater than the string "5678".
The string "6 pack" is not less than the string "55 card stud".
The string "6 pack" is less than the number 55.

In the first test, because both of the strings start with a letter, they are treated as regu‐
lar strings and compared using dictionary order. Their first two characters (x5) are
the same, but the third character of the first word (4) is less than the third character
of the second word (6),2 so the greater-than comparison returns false. In the second
test, each string consists entirely of numerals, so the strings are compared as num‐
bers. The number 54,321 is larger than the number 5,678, so the greater-than com‐
parison returns true. In the third test, because both strings consist of numerals and
other characters, they are treated as strings and compared using dictionary order. The
numeral 6 comes after 5 in the engine’s dictionary, so the less-than test returns false.
In the last test, the PHP engine converts the string 6 pack to the number 6, and then
compares it to the number 55 using numeric order. Since 6 is less than 55, the less-
than test returns true.

If you want to ensure that the PHP engine compares strings using dictionary order
without any converting to numbers behind the scenes, use the built-in function
strcmp(). It always compares its arguments in dictionary order.

Building Complicated Decisions | 47

Comparing Non-ASCII Strings
Remember, strings in PHP are just sequences of bytes. If you need to compare strings
whose letters wouldn’t be found in a plain English dictionary, then the regular opera‐
tors and string comparison functions may not do what you want. “Sorting and Com‐
paring” on page 320 discusses the Collator class, which can compare and sort text in
different character sets.

The strcmp() function takes two strings as arguments. It returns a positive number if
the first string is greater than the second string or a negative number if the first string
is less than the first string. “Greater than” and “less than” for strcmp() are defined by
dictionary order. The function returns 0 if the strings are equal.

The same comparisons from Example 3-11 are shown using strcmp() in
Example 3-12.

Example 3-12. Comparing strings with strcmp()

$x = strcmp("x54321","x5678");
if ($x > 0) {
 print 'The string "x54321" is greater than the string "x5678".';
} elseif ($x < 0) {
 print 'The string "x54321" is less than the string "x5678".';
}

$x = strcmp("54321","5678");
if ($x > 0) {
 print 'The string "54321" is greater than the string "5678".';
} elseif ($x < 0) {
 print 'The string "54321" is less than the string "5678".';
}

$x = strcmp('6 pack','55 card stud');
if ($x > 0) {
 print 'The string "6 pack" is greater than the string "55 card stud".';
} elseif ($x < 0) {
 print 'The string "6 pack" is less than the string "55 card stud".';
}

$x = strcmp('6 pack',55);
if ($x > 0) {
 print 'The string "6 pack" is greater than the number 55.';
} elseif ($x < 0) {
 print 'The string "6 pack" is less than the number 55.';
}

48 | Chapter 3: Logic: Making Decisions and Repeating Yourself

The output from Example 3-12 is as follows:

The string "x54321" is less than the string "x5678".
The string "54321" is less than the string "5678".
The string "6 pack" is greater than the string "55 card stud".
The string "6 pack" is greater than the number 55.

Using strcmp() and dictionary order produces different results than Example 3-11
for the second and fourth comparisons. In the second comparison, strcmp() com‐
putes that the string 54321 is less than 5678 because the second characters of the
strings differ and 4 comes before 6. It doesn’t matter to strcmp() that 5678 is shorter
than 54321 or that it is numerically smaller. In dictionary order, 54321 comes before
5678. The fourth comparison turns out differently because strcmp() doesn’t convert
6 pack to a number. Instead, it compares 6 pack and 55 as strings and computes that
6 pack is bigger because its first character, 6, comes later in the dictionary than the
first character of 55.

The spaceship operator (<=>) does comparison similar to strcmp(), but for any data
type. It evaluates to a negative number when its lefthand operand is less than the
righthand operand, a positive number when the righthand operand is bigger, and 0
when they are equal. Example 3-13 shows the spaceship operator at work.

Example 3-13. Comparing data types with the spaceship operator

// $a is a negative number since 1 is less than 12.7
$a = 1 <=> 12.7;

// $b is a positive number since "c" comes after "b"
$b = "charlie" <=> "bob";

// Comparing numeric strings works like < and >, not like strcmp()
$x = '6 pack' <=> '55 card stud';
if ($x > 0) {
 print 'The string "6 pack" is greater than the string "55 card stud".';
} elseif ($x < 0) {
 print 'The string "6 pack" is less than the string "55 card stud".';
}

// Comparing numeric strings works like < and >, not like strcmp()
$x ='6 pack' <=> 55;
if ($x > 0) {
 print 'The string "6 pack" is greater than the number 55.';
} elseif ($x < 0) {
 print 'The string "6 pack" is less than the number 55.';
}

Building Complicated Decisions | 49

The spaceship operator was introduced in PHP 7. If you’re using an
older version of PHP, stick with the other comparison operators.

Example 3-13 prints:

The string "6 pack" is greater than the string "55 card stud".
The string "6 pack" is less than the number 55.

The spaceship operator follows the same rules about string and number conversion as
the other comparison operators. It converts “numerical” strings to numbers just like
==, <, and the others.

To negate a truth value, use !. Putting ! before an expression is like testing to see
whether the expression equals false. The two if() statements in Example 3-14 are
equivalent.

Example 3-14. Using the negation operator

// The entire test expression ($finished == false)
// is true if $finished is false
if ($finished == false) {
 print 'Not done yet!';
}

// The entire test expression (! $finished)
// is true if $finished is false
if (! $finished) {
 print 'Not done yet!';
}

You can use the negation operator with any value. If the value is true, then the com‐
bination of it with the negation operator is false. If the value is false, then the com‐
bination of it with the negation operator is true. Example 3-15 shows the negation
operator at work with a call to strcasecmp().

Example 3-15. The negation operator

if (! strcasecmp($first_name,$last_name)) {
 print '$first_name and $last_name are equal.';
}

In Example 3-15, the statement in the if() code block is executed only when the
entire test expression is true. When the two strings provided to strcasecmp() are
equal (ignoring capitalization), strcasecmp() returns 0, which is false. The test
expression is the negation operator applied to this false value. The negation of false

50 | Chapter 3: Logic: Making Decisions and Repeating Yourself

is true. So, the entire test expression is true when two equal strings are given to
strcasecmp().

With logical operators, you can combine multiple expressions inside one if() state‐
ment. The logical AND operator (&&) tests whether one expression and another are
both true. The logical OR operator (||) tests whether either one expression or
another (or both) is true. These logical operators are used in Example 3-16.

Example 3-16. Logical operators

if (($age >= 13) && ($age < 65)) {
 print "You are too old for a kid's discount and too young for the senior's
discount.";
}

if (($meal == 'breakfast') || ($dessert == 'souffle')) {
 print "Time to eat some eggs.";
}

The first test expression in Example 3-16 is true when both of its subexpressions are
true—when $age is at least 13 but not more than 65. The second test expression is
true when at least one of its subexpressions is true: when $meal is breakfast or
$dessert is souffle.

The admonition about operator precedence and parentheses from Chapter 2 holds
true for logical operators in test expressions, too. To avoid ambiguity, surround each
subexpression with parentheses inside a larger test expression.

Repeating Yourself
When a computer program does something repeatedly, it’s called looping. This hap‐
pens a lot—for example, when you want to retrieve a set of rows from a database,
print rows of an HTML table, or print elements in an HTML <select> menu.
The two looping constructs discussed in this section are while() and for(). Their
specifics differ, but each requires you to specify the two essential attributes of any
loop: what code to execute repeatedly and when to stop. The code to execute is a code
block just like what goes inside the curly braces after an if() construct. The condi‐
tion for stopping the loop is a logical expression just like an if() construct’s test
expression.

The while() construct is like a repeating if(). You provide an expression to
while(), just like to if(). If the expression is true, then a code block is executed.
Unlike if(), however, while() checks the expression again after executing the code
block. If it’s still true, then the code block is executed again (and again, and again, as
long as the expression is true.) Once the expression is false, program execution

Repeating Yourself | 51

continues with the lines after the code block. As you have probably guessed, your
code block should do something that changes the outcome of the test expression so
that the loop doesn’t go on forever.

Example 3-17 uses while() to print an HTML form <select> menu with 10 choices.

Example 3-17. Printing a <select> menu with while()

$i = 1;
print '<select name="people">';
while ($i <= 10) {
 print "<option>$i</option>\n";
 $i++;
}
print '</select>';

Example 3-17 prints:

<select name="people"><option>1</option>
<option>2</option>
<option>3</option>
<option>4</option>
<option>5</option>
<option>6</option>
<option>7</option>
<option>8</option>
<option>9</option>
<option>10</option>
</select>

Before the while() loop runs, the code sets $i to 1 and prints the opening <select>
tag. The test expression compares $i to 10. As long as $i is less than or equal to 10,
the two statements in the code block are executed. The first prints an <option> tag
for the <select> menu, and the second increments $i. If you didn’t increment $i
inside the while() loop, Example 3-17 would print out <option>1</option> forever.

After the code block prints <option>10</option>, the $i++ line makes $i equal to
11. Then the test expression ($i <= 10) is evaluated. Since it’s not true (11 is not less
than or equal to 10), the program continues past the while() loop’s code block and
prints the closing </select> tag.

The for() construct also provides a way for you to execute the same statements mul‐
tiple times. Example 3-18 uses for() to print the same HTML form <select> menu
as Example 3-17.

52 | Chapter 3: Logic: Making Decisions and Repeating Yourself

Example 3-18. Printing a <select> menu with for()

print '<select name="people">';
for ($i = 1; $i <= 10; $i++) {
 print "<option>$i</option>\n";
}
print '</select>';

Using for() is a little more complicated than using while(). Instead of one test
expression in parentheses, there are three expressions separated with semicolons: the
initialization expression, test expression, and iteration expression. Once you get the
hang of it, however, for() is a more concise way to have a loop with easy-to-express
initialization and iteration conditions.

The first expression in Example 3-18, $i = 1, is the initialization expression. It is eval‐
uated once, when the loop starts. This is where you put variable initializations or
other setup code. The second expression in Example 3-18, $i <= 10, is the test
expression. It is evaluated once each time through the loop, before the statements in
the loop body. If it’s true, then the loop body is executed (print "<option>

$i</option>"; in Example 3-18). The third expression in Example 3-18, $i++, is the
iteration expression. It is run after each time the loop body is executed. In
Example 3-18, the sequence of statements goes like this:

1. Initialization expression: $i = 1;
2. Test expression: $i <= 10 (true, $i is 1)
3. Code block: print "<option>$i</option>";
4. Iteration expression: $i++;
5. Test expression: $i <= 10 (true, $i is 2)
6. Code block: print "<option>$i</option>";
7. Iteration expression: $i++;
8. (Loop continues with incrementing values of $i)
9. Test expression: $i <= 10 (true, $i is 9)

10. Code block: print "<option>$i</option>";
11. Iteration expression: $i++;
12. Test expression: $i <= 10 (true, $i is 10)
13. Code block: print "<option>$i</option>";
14. Iteration expression: $i++;
15. Test expression: $i <= 10 (false, $i is 11)

You can combine multiple expressions in the initialization expression and the itera‐
tion expression of a for() loop by separating each of the individual expressions with
a comma. This is usually done when you want to change more than one variable as
the loop progresses. Example 3-19 applies this to the variables $min and $max.

Repeating Yourself | 53

Example 3-19. Multiple expressions in for()

print '<select name="doughnuts">';
for ($min = 1, $max = 10; $min < 50; $min += 10, $max += 10) {
 print "<option>$min - $max</option>\n";
}
print '</select>';

Each time through the loop, $min and $max are each incremented by 10.
Example 3-19 prints:

<select name="doughnuts"><option>1 - 10</option>
<option>11 - 20</option>
<option>21 - 30</option>
<option>31 - 40</option>
<option>41 - 50</option>
</select>

Chapter Summary
This chapter covered:

• Evaluating an expression’s truth value: true or false
• Making a decision with if()
• Extending if() with else
• Extending if() with elseif()
• Putting multiple statements inside an if(), elseif(), or else code block
• Using the equal (==) and not-equal (!=) operators in test expressions
• Distinguishing between assignment (=) and equality comparison (==)
• Using the less-than (<), greater-than (>), less-than-or-equal-to (<=), and greater-

than-or-equal-to (>=) operators in test expressions
• Comparing two floating-point numbers with abs()
• Comparing two strings with operators
• Comparing two strings with strcmp() or strcasecmp()
• Comparing two values with the spaceship operator (<=>)
• Using the negation operator (!) in test expressions
• Using the logical operators (&& and ||) to build more complicated test expres‐

sions
• Repeating a code block with while()
• Repeating a code block with for()

54 | Chapter 3: Logic: Making Decisions and Repeating Yourself

Exercises
1. Without using a PHP program to evaluate them, determine whether each of

these expressions is true or false:
a. 100.00 - 100

b. "zero"

c. "false"

d. 0 + "true"

e. 0.000

f. "0.0"

g. strcmp("false","False")

h. 0 <=> "0"

2. Without running it through the PHP engine, figure out what this program prints:
$age = 12;
$shoe_size = 13;
if ($age > $shoe_size) {
 print "Message 1.";
} elseif (($shoe_size++) && ($age > 20)) {
 print "Message 2.";
} else {
 print "Message 3.";
}
print "Age: $age. Shoe Size: $shoe_size";

3. Use while() to print a table of Fahrenheit and Celsius temperature equivalents
from –50 degrees F to 50 degrees F in 5-degree increments. On the Fahrenheit
temperature scale, water freezes at 32 degrees and boils at 212 degrees. On the
Celsius scale, water freezes at 0 degrees and boils at 100 degrees. So, to convert
from Fahrenheit to Celsius, you subtract 32 from the temperature, multiply by 5,
and divide by 9. To convert from Celsius to Fahrenheit, you multiply by 9, divide
by 5, and then add 32.

4. Modify your answer to Exercise 3 to use for() instead of while().

Exercises | 55

CHAPTER 4

Groups of Data: Working with Arrays

Arrays are collections of related values, such as the data submitted from a form, the
names of students in a class, or the populations of a list of cities. In Chapter 2, you
learned that a variable is a named container that holds a value. An array is a container
that holds multiple values.

This chapter shows you how to work with arrays. The next section, “Array Basics”,
goes over fundamentals such as how to create arrays and manipulate their elements.
Frequently, you’ll want to do something with each element in an array, such as print it
or inspect it for certain conditions. “Looping Through Arrays” on page 62 explains
how to do these things with the foreach() and for() constructs. “Modifying Arrays”
on page 68 introduces the implode() and explode() functions, which turn arrays
into strings and strings into arrays. Another kind of array modification is sorting,
which is discussed in “Sorting Arrays” on page 70. Finally, “Using Multidimensional
Arrays” on page 74 explores arrays that contain other arrays.

Working with arrays is a common PHP programming task. Chapter 7 shows you how
to process form data, which the PHP engine automatically puts into an array for you.
When you retrieve information from a database as described in Chapter 8, that data is
often packaged into an array. Being comfortable with arrays makes it easy for you to
manipulate these kinds of data.

Array Basics
An array is made up of elements. Each element has a key and a value. For example, an
array holding information about the colors of vegetables has vegetable names for keys
and colors for values, as shown in Figure 4-1.

57

1 Scalar describes data that has a single value: a number, a piece of text, true, or false. Complex data types
such as arrays, which hold multiple values, are not scalars.

Figure 4-1. Keys and values in an array holding information about vegetable colors

An array can only have one element with a given key. In the vegetable color array,
there can’t be another element with the key corn even if its value is blue. However,
the same value can appear many times in one array. You can have green peppers,
green broccoli, and green celery.

Any string or number value can be an array element key, such as corn, 4, -36, or Salt
Baked Squid. Arrays and other nonscalar1 values can’t be keys, but they can be ele‐
ment values. An element value can be anything: a string, a number, true, false, or a
nonscalar type such as another array.

Creating an Array
To create an array, use the array() language construct. Specify a comma-delimited
list of key/value pairs, with the key and the value separated by =>. This is shown in
Example 4-1.

Example 4-1. Creating an array

$vegetables = array('corn' => 'yellow',
 'beet' => 'red',
 'carrot' => 'orange');

$dinner = array(0 => 'Sweet Corn and Asparagus',
 1 => 'Lemon Chicken',
 2 => 'Braised Bamboo Fungus');

$computers = array('trs-80' => 'Radio Shack',
 2600 => 'Atari',
 'Adam' => 'Coleco');

The array keys and values in Example 4-1 are strings (such as corn, Braised Bamboo
Fungus, and Coleco) and numbers (such as 0, 1, and 2600). They are written just like

58 | Chapter 4: Groups of Data: Working with Arrays

other strings and numbers in PHP programs: with quotes around the strings but not
around the numbers.

A shortcut for the array() language construct is a pair of square brackets (called the
short array syntax). Example 4-2 creates the same arrays as Example 4-1 but with the
short array syntax.

Example 4-2. Using short array syntax

$vegetables = ['corn' => 'yellow', 'beet' => 'red', 'carrot' => 'orange'];

$dinner = [0 => 'Sweet Corn and Asparagus',
 1 => 'Lemon Chicken',
 2 => 'Braised Bamboo Fungus'];

$computers = ['trs-80' => 'Radio Shack', 2600 => 'Atari', 'Adam' => 'Coleco'];

The short array syntax was introduced in PHP 5.4. If you’re using
an earlier version of PHP, you need to stick with array().

You can also add elements to an array one at a time by assigning a value to a particu‐
lar array key. Example 4-3 builds the same arrays as the previous two examples but
does it element by element.

Example 4-3. Creating an array element by element

// An array called $vegetables with string keys
$vegetables['corn'] = 'yellow';
$vegetables['beet'] = 'red';
$vegetables['carrot'] = 'orange';

// An array called $dinner with numeric keys
$dinner[0] = 'Sweet Corn and Asparagus';
$dinner[1] = 'Lemon Chicken';
$dinner[2] = 'Braised Bamboo Fungus';

// An array called $computers with numeric and string keys
$computers['trs-80'] = 'Radio Shack';
$computers[2600] = 'Atari';
$computers['Adam'] = 'Coleco';

In Example 4-3, the square brackets after the array’s variable name reference a partic‐
ular key in the array. By assigning a value to that key, you create an element in the
array.

Array Basics | 59

Choosing a Good Array Name
Names for variables holding arrays follow the same rules as names for any other vari‐
ables. Names for arrays and scalar variables come from the same pool of possible
names, so you can’t have an array called $vegetables and a scalar called $vegetables
at the same time. If you assign a scalar value to an array (or vice versa), the old value
is silently wiped out and the variable becomes the new value. In Example 4-4,
$vegetables becomes a scalar, and $fruits becomes an array.

Example 4-4. Array and scalar collision

// This makes $vegetables an array
$vegetables['corn'] = 'yellow';

// This removes any trace of "corn" and "yellow" and makes $vegetables a scalar
$vegetables = 'delicious';

// This makes $fruits a scalar
$fruits = 283;

// This doesn't work -- $fruits stays 283 and the PHP engine
// issues a warning
$fruits['potassium'] = 'banana';

// But this overwrites $fruits and it becomes an array
$fruits = array('potassium' => 'banana');

In Example 4-1, the $vegetables and $computers arrays each store a list of relation‐
ships. The $vegetables array relates vegetables and colors, while the $computers
array relates computer names and manufacturers. In the $dinner array, however, we
just care about the names of dishes that are the array values. The array keys are just
numbers that distinguish one element from another.

Creating a Numeric Array
PHP provides some shortcuts for working with arrays that have only numbers as
keys. If you create an array with [] or array() by specifying only a list of values
instead of key/value pairs, the PHP engine automatically assigns a numeric key to
each value. The keys start at 0 and increase by one for each element. Example 4-5 uses
this technique to create the $dinner array.

Example 4-5. Creating numeric arrays with array()

$dinner = array('Sweet Corn and Asparagus',
 'Lemon Chicken',
 'Braised Bamboo Fungus');
print "I want $dinner[0] and $dinner[1].";

60 | Chapter 4: Groups of Data: Working with Arrays

Example 4-5 prints:

I want Sweet Corn and Asparagus and Lemon Chicken.

Internally, the PHP engine treats arrays with numeric keys and arrays with string keys
(and arrays with a mix of numeric and string keys) identically. Because of the resem‐
blance to features in other programming languages, programmers often refer to
arrays with only numeric keys as “numeric,” “indexed,” or “ordered” arrays, and to
string-keyed arrays as “associative” arrays. An associative array, in other words, is one
whose keys signify something other than the positions of the values within the array.
Each key is associated with its value.

PHP automatically uses incrementing numbers for array keys when you create an
array or add elements to an array with the empty brackets syntax shown in
Example 4-6.

Example 4-6. Adding elements with []

// Create $lunch array with two elements
// This sets $lunch[0]
$lunch[] = 'Dried Mushrooms in Brown Sauce';
// This sets $lunch[1]
$lunch[] = 'Pineapple and Yu Fungus';

// Create $dinner with three elements
$dinner = array('Sweet Corn and Asparagus', 'Lemon Chicken',
 'Braised Bamboo Fungus');
// Add an element to the end of $dinner
// This sets $dinner[3]
$dinner[] = 'Flank Skin with Spiced Flavor';

The empty brackets add an element to the array. The new element has a numeric key
that’s one more than the biggest numeric key already in the array. If the array doesn’t
exist yet, the empty brackets add an element with a key of 0.

Making the first element have key 0, not key 1, is not in line with
how normal humans (in contrast to computer programmers)
think, so it bears repeating. The first element of an array with
numeric keys is element 0, not element 1.

Finding the Size of an Array
The count() function tells you the number of elements in an array. Example 4-7
demonstrates count().

Array Basics | 61

Example 4-7. Finding the size of an array

$dinner = array('Sweet Corn and Asparagus',
 'Lemon Chicken',
 'Braised Bamboo Fungus');

$dishes = count($dinner);

print "There are $dishes things for dinner.";

Example 4-7 prints:

There are 3 things for dinner.

When you pass it an empty array (that is, an array with no elements in it), count()
returns 0. An empty array also evaluates to false in an if() test expression.

Looping Through Arrays
One of the most common things to do with an array is to consider each element in
the array individually and process it in some way. This may involve incorporating it
into a row of an HTML table or adding its value to a running total.

The easiest way to iterate through each element of an array is with foreach(). The
foreach() construct lets you run a code block once for each element in an array.
Example 4-8 uses foreach() to print an HTML table containing each element in
an array.

Example 4-8. Looping with foreach()

$meal = array('breakfast' => 'Walnut Bun',
 'lunch' => 'Cashew Nuts and White Mushrooms',
 'snack' => 'Dried Mulberries',
 'dinner' => 'Eggplant with Chili Sauce');
print "<table>\n";
foreach ($meal as $key => $value) {
 print "<tr><td>$key</td><td>$value</td></tr>\n";
}
print '</table>';

Example 4-8 prints:

<table>
<tr><td>breakfast</td><td>Walnut Bun</td></tr>
<tr><td>lunch</td><td>Cashew Nuts and White Mushrooms</td></tr>
<tr><td>snack</td><td>Dried Mulberries</td></tr>
<tr><td>dinner</td><td>Eggplant with Chili Sauce</td></tr>
</table>

62 | Chapter 4: Groups of Data: Working with Arrays

For each element in $meal, foreach() copies the key of the element into $key and the
value into $value. Then, it runs the code inside the curly braces. In Example 4-8, the
code prints $key and $value with some HTML to make a table row. You can use
whatever variable names you want for the key and value inside the code block. If the
variable names were in use before the foreach(), though, they’re overwritten with
values from the array.

When you’re using foreach() to print out data in an HTML table, often you want to
apply alternating CSS classes to each table row. This is easy to do when you store the
alternating class names in a separate array. Then, switch a variable between 0 and 1
each time through the foreach() to print the appropriate class name. Example 4-9
alternates between the two class names in its $row_styles array.

Example 4-9. Alternating table row classes

$row_styles = array('even','odd');
$style_index = 0;
$meal = array('breakfast' => 'Walnut Bun',
 'lunch' => 'Cashew Nuts and White Mushrooms',
 'snack' => 'Dried Mulberries',
 'dinner' => 'Eggplant with Chili Sauce');
print "<table>\n";
foreach ($meal as $key => $value) {
 print '<tr class="' . $row_styles[$style_index] . '">';
 print "<td>$key</td><td>$value</td></tr>\n";
 // This switches $style_index between 0 and 1
 $style_index = 1 - $style_index;
}
print '</table>';

Example 4-9 prints:

<table>
<tr class="even"><td>breakfast</td><td>Walnut Bun</td></tr>
<tr class="odd"><td>lunch</td><td>Cashew Nuts and White Mushrooms</td></tr>
<tr class="even"><td>snack</td><td>Dried Mulberries</td></tr>
<tr class="odd"><td>dinner</td><td>Eggplant with Chili Sauce</td></tr>
</table>

Inside the foreach() code block, changing the values of loop variables like $key and
$value doesn’t affect the elements in the actual array. If you want to change the array
element values, use the $key variable as an index into the array. Example 4-10 uses
this technique to double each element in the array.

Example 4-10. Modifying an array with foreach()

$meals = array('Walnut Bun' => 1,
 'Cashew Nuts and White Mushrooms' => 4.95,

Looping Through Arrays | 63

 'Dried Mulberries' => 3.00,
 'Eggplant with Chili Sauce' => 6.50);

foreach ($meals as $dish => $price) {
 // $price = $price * 2 does NOT work
 $meals[$dish] = $meals[$dish] * 2;
}

// Iterate over the array again and print the changed values
foreach ($meals as $dish => $price) {
 printf("The new price of %s is \$%.2f.\n",$dish,$price);
}

Example 4-10 prints:

The new price of Walnut Bun is $2.00.
The new price of Cashew Nuts and White Mushrooms is $9.90.
The new price of Dried Mulberries is $6.00.
The new price of Eggplant with Chili Sauce is $13.00.

There’s a more concise form of foreach() for use with numeric arrays, shown in
Example 4-11.

Example 4-11. Using foreach() with numeric arrays

$dinner = array('Sweet Corn and Asparagus',
 'Lemon Chicken',
 'Braised Bamboo Fungus');
foreach ($dinner as $dish) {
 print "You can eat: $dish\n";
}

Example 4-11 prints:

You can eat: Sweet Corn and Asparagus
You can eat: Lemon Chicken
You can eat: Braised Bamboo Fungus

With this form of foreach(), just specify one variable name after as, and each ele‐
ment value is copied into that variable inside the code block. However, you can’t
access element keys inside the code block.

To keep track of your position in the array with foreach(), you have to use a separate
variable that you increment each time the foreach() code block runs. With for(),
you get the position explicitly in your loop variable. The foreach() loop gives you
the value of each array element, but the for() loop gives you the position of each
array element. There’s no loop structure that gives you both at once.

So, if you want to know what element you’re on as you’re iterating through a numeric
array, use for() instead of foreach(). Your for() loop should depend on a loop vari‐

64 | Chapter 4: Groups of Data: Working with Arrays

able that starts at 0 and continues up to one less than the number of elements in the
array. This is shown in Example 4-12.

Example 4-12. Iterating through a numeric array with for()

$dinner = array('Sweet Corn and Asparagus',
 'Lemon Chicken',
 'Braised Bamboo Fungus');
for ($i = 0, $num_dishes = count($dinner); $i < $num_dishes; $i++) {
 print "Dish number $i is $dinner[$i]\n";
}

Example 4-12 prints:

Dish number 0 is Sweet Corn and Asparagus
Dish number 1 is Lemon Chicken
Dish number 2 is Braised Bamboo Fungus

When iterating through an array with for(), you have a running counter available of
which array element you’re on. Use this counter with the modulus operator (%) to
alternate table row classes, as shown in Example 4-13.

Example 4-13. Alternating table row classes with for()

$row_styles = array('even','odd');
$dinner = array('Sweet Corn and Asparagus',
 'Lemon Chicken',
 'Braised Bamboo Fungus');
print "<table>\n";

for ($i = 0, $num_dishes = count($dinner); $i < $num_dishes; $i++) {
 print '<tr class="' . $row_styles[$i % 2] . '">';
 print "<td>Element $i</td><td>$dinner[$i]</td></tr>\n";
}
print '</table>';

Example 4-13 computes the correct table row class with $i % 2. This value alternates
between 0 and 1 as $i alternates between even and odd. There’s no need to use a sepa‐
rate variable, such as $style_index, as in Example 4-9, to hold the appropriate row
class name. Example 4-13 prints:

<table>
<tr class="even"><td>Element 0</td><td>Sweet Corn and Asparagus</td></tr>
<tr class="odd"><td>Element 1</td><td>Lemon Chicken</td></tr>
<tr class="even"><td>Element 2</td><td>Braised Bamboo Fungus</td></tr>
</table>

When you iterate through an array using foreach(), the elements are accessed in the
order in which they were added to the array. The first element added is accessed first,
the second element added is accessed next, and so on. If you have a numeric array

Looping Through Arrays | 65

whose elements were added in a different order than how their keys would usually be
ordered, this could produce unexpected results. Example 4-14 doesn’t print array ele‐
ments in numeric or alphabetic order.

Example 4-14. Array element order and foreach()

$letters[0] = 'A';
$letters[1] = 'B';
$letters[3] = 'D';
$letters[2] = 'C';

foreach ($letters as $letter) {
 print $letter;
}

Example 4-14 prints:

ABDC

To guarantee that elements are accessed in numerical key order, use for() to iterate
through the loop:

for ($i = 0, $num_letters = count($letters); $i < $num_letters; $i++) {
 print $letters[$i];
}

This prints:

ABCD

If you’re looking for a specific element in an array, you don’t need to iterate through
the entire array to find it. There are more efficient ways to locate a particular element.
To check for an element with a certain key, use array_key_exists(), shown in
Example 4-15. This function returns true if an element with the provided key exists
in the provided array.

Example 4-15. Checking for an element with a particular key

$meals = array('Walnut Bun' => 1,
 'Cashew Nuts and White Mushrooms' => 4.95,
 'Dried Mulberries' => 3.00,
 'Eggplant with Chili Sauce' => 6.50,
 'Shrimp Puffs' => 0); // Shrimp Puffs are free!
$books = array("The Eater's Guide to Chinese Characters",
 'How to Cook and Eat in Chinese');

// This is true
if (array_key_exists('Shrimp Puffs',$meals)) {
 print "Yes, we have Shrimp Puffs";
}
// This is false

66 | Chapter 4: Groups of Data: Working with Arrays

if (array_key_exists('Steak Sandwich',$meals)) {
 print "We have a Steak Sandwich";
}
// This is true
if (array_key_exists(1, $books)) {
 print "Element 1 is How to Cook and Eat in Chinese";
}

To check for an element with a particular value, use in_array(), as shown in
Example 4-16.

Example 4-16. Checking for an element with a particular value

$meals = array('Walnut Bun' => 1,
 'Cashew Nuts and White Mushrooms' => 4.95,
 'Dried Mulberries' => 3.00,
 'Eggplant with Chili Sauce' => 6.50,
 'Shrimp Puffs' => 0);
$books = array("The Eater's Guide to Chinese Characters",
 'How to Cook and Eat in Chinese');

// This is true: key Dried Mulberries has value 3.00
if (in_array(3, $meals)) {
 print 'There is a $3 item.';
}
// This is true
if (in_array('How to Cook and Eat in Chinese', $books)) {
 print "We have How to Cook and Eat in Chinese";
}
// This is false: in_array() is case-sensitive
if (in_array("the eater's guide to chinese characters", $books)) {
 print "We have the Eater's Guide to Chinese Characters.";
}

The in_array() function returns true if it finds an element with the given value. It is
case-sensitive when it compares strings. The array_search() function is similar to
in_array(), but if it finds an element, it returns the element key instead of true. In
Example 4-17, array_search() returns the name of the dish that costs $6.50.

Example 4-17. Finding an element with a particular value

$meals = array('Walnut Bun' => 1,
 'Cashew Nuts and White Mushrooms' => 4.95,
 'Dried Mulberries' => 3.00,
 'Eggplant with Chili Sauce' => 6.50,
 'Shrimp Puffs' => 0);

$dish = array_search(6.50, $meals);
if ($dish) {

Looping Through Arrays | 67

 print "$dish costs \$6.50";
}

Example 4-17 prints:

Eggplant with Chili Sauce costs $6.50

Modifying Arrays
You can operate on individual array elements just like regular scalar variables, using
arithmetic, logical, and other operators. Example 4-18 shows some operations on
array elements.

Example 4-18. Operating on array elements

$dishes['Beef Chow Foon'] = 12;
$dishes['Beef Chow Foon']++;
$dishes['Roast Duck'] = 3;

$dishes['total'] = $dishes['Beef Chow Foon'] + $dishes['Roast Duck'];

if ($dishes['total'] > 15) {
 print "You ate a lot: ";
}

print 'You ate ' . $dishes['Beef Chow Foon'] . ' dishes of Beef Chow Foon.';

Example 4-18 prints:

You ate a lot: You ate 13 dishes of Beef Chow Foon.

Interpolating array element values in double-quoted strings or here documents is
similar to interpolating numbers or strings. The easiest way is to include the array ele‐
ment in the string, but don’t put quotes around the element key. This is shown in
Example 4-19.

Example 4-19. Interpolating array element values in double-quoted strings

$meals['breakfast'] = 'Walnut Bun';
$meals['lunch'] = 'Eggplant with Chili Sauce';
$amounts = array(3, 6);

print "For breakfast, I'd like $meals[breakfast] and for lunch,\n";
print "I'd like $meals[lunch]. I want $amounts[0] at breakfast and\n";
print "$amounts[1] at lunch.";

68 | Chapter 4: Groups of Data: Working with Arrays

Example 4-19 prints:

For breakfast, I'd like Walnut Bun and for lunch,
I'd like Eggplant with Chili Sauce. I want 3 at breakfast and
6 at lunch.

The interpolation in Example 4-19 works only with array keys that consist exclusively
of letters, numbers, and underscores. If you have an array key that has whitespace
or other punctuation in it, interpolate it with curly braces, as demonstrated in
Example 4-20.

Example 4-20. Interpolating array element values with curly braces

$meals['Walnut Bun'] = '$3.95';
$hosts['www.example.com'] = 'website';

print "A Walnut Bun costs {$meals['Walnut Bun']}.\n";
print "www.example.com is a {$hosts['www.example.com']}.";

Example 4-20 prints:

A Walnut Bun costs $3.95.
www.example.com is a website.

In a double-quoted string or here document, an expression inside curly braces is eval‐
uated and then its value is put into the string. In Example 4-20, the expressions used
are lone array elements, so the element values are interpolated into the strings.

To remove an element from an array, use unset():

unset($dishes['Roast Duck']);

Removing an element with unset() is different than just setting the element value to
0 or the empty string. When you use unset(), the element is no longer there when
you iterate through the array or count the number of elements in the array. Using
unset() on an array that represents a store’s inventory is like saying that the store no
longer carries a product. Setting the element’s value to 0 or the empty string says that
the item is temporarily out of stock.

When you want to print all of the values in an array at once, the quickest way is to use
the implode() function. It makes a string by combining all the values in an array,
putting a string delimiter between each value. Example 4-21 prints a comma-
separated list of dim sum choices.

Example 4-21. Making a string from an array with implode()

$dimsum = array('Chicken Bun','Stuffed Duck Web','Turnip Cake');
$menu = implode(', ', $dimsum);
print $menu;

Modifying Arrays | 69

Example 4-21 prints:

Chicken Bun, Stuffed Duck Web, Turnip Cake

To implode an array with no delimiter, use the empty string as the first argument to
implode():

$letters = array('A','B','C','D');
print implode('',$letters);

This prints:

ABCD

Use implode() to simplify printing HTML table rows, as shown in Example 4-22.

Example 4-22. Printing HTML table rows with implode()

$dimsum = array('Chicken Bun','Stuffed Duck Web','Turnip Cake');
print '<tr><td>' . implode('</td><td>',$dimsum) . '</td></tr>';

Example 4-22 prints:

<tr><td>Chicken Bun</td><td>Stuffed Duck Web</td><td>Turnip Cake</td></tr>

The implode() function puts its delimiter between each value, so to make a complete
table row, you also have to print the opening tags that go before the first element and
the closing tags that go after the last element.

The counterpart to implode() is called explode(). It breaks a string apart into an
array. The delimiter argument to explode() is the string it should look for to separate
array elements. Example 4-23 demonstrates explode().

Example 4-23. Turning a string into an array with explode()

$fish = 'Bass, Carp, Pike, Flounder';
$fish_list = explode(', ', $fish);
print "The second fish is $fish_list[1]";

Example 4-23 prints:

The second fish is Carp

Sorting Arrays
There are several ways to sort arrays. Which function to use depends on how you
want to sort your array and what kind of array it is.

The sort() function sorts an array by its element values. It should only be used on
numeric arrays, because it resets the keys of the array when it sorts. Example 4-24
shows some arrays before and after sorting.

70 | Chapter 4: Groups of Data: Working with Arrays

Example 4-24. Sorting with sort()

$dinner = array('Sweet Corn and Asparagus',
 'Lemon Chicken',
 'Braised Bamboo Fungus');
$meal = array('breakfast' => 'Walnut Bun',
 'lunch' => 'Cashew Nuts and White Mushrooms',
 'snack' => 'Dried Mulberries',
 'dinner' => 'Eggplant with Chili Sauce');

print "Before Sorting:\n";
foreach ($dinner as $key => $value) {
 print " \$dinner: $key $value\n";
}
foreach ($meal as $key => $value) {
 print " \$meal: $key $value\n";
}

sort($dinner);
sort($meal);

print "After Sorting:\n";
foreach ($dinner as $key => $value) {
 print " \$dinner: $key $value\n";
}
foreach ($meal as $key => $value) {
 print " \$meal: $key $value\n";
}

Example 4-24 prints:

Before Sorting:
 $dinner: 0 Sweet Corn and Asparagus
 $dinner: 1 Lemon Chicken
 $dinner: 2 Braised Bamboo Fungus
 $meal: breakfast Walnut Bun
 $meal: lunch Cashew Nuts and White Mushrooms
 $meal: snack Dried Mulberries
 $meal: dinner Eggplant with Chili Sauce
After Sorting:
 $dinner: 0 Braised Bamboo Fungus
 $dinner: 1 Lemon Chicken
 $dinner: 2 Sweet Corn and Asparagus
 $meal: 0 Cashew Nuts and White Mushrooms
 $meal: 1 Dried Mulberries
 $meal: 2 Eggplant with Chili Sauce
 $meal: 3 Walnut Bun

Both arrays have been rearranged in ascending order by element value. The first value
in $dinner is now Braised Bamboo Fungus, and the first value in $meal is Cashew Nuts
and White Mushrooms. The keys in $dinner haven’t changed because it was a numeric

Sorting Arrays | 71

array before we sorted it. The keys in $meal, however, have been replaced by numbers
from 0 to 3.

To sort an associative array by element value, use asort(). This keeps keys together
with their values. Example 4-25 shows the $meal array from Example 4-24 sorted
with asort().

Example 4-25. Sorting with asort()

$meal = array('breakfast' => 'Walnut Bun',
 'lunch' => 'Cashew Nuts and White Mushrooms',
 'snack' => 'Dried Mulberries',
 'dinner' => 'Eggplant with Chili Sauce');

print "Before Sorting:\n";
foreach ($meal as $key => $value) {
 print " \$meal: $key $value\n";
}

asort($meal);

print "After Sorting:\n";
foreach ($meal as $key => $value) {
 print " \$meal: $key $value\n";
}

Example 4-25 prints:

Before Sorting:
 $meal: breakfast Walnut Bun
 $meal: lunch Cashew Nuts and White Mushrooms
 $meal: snack Dried Mulberries
 $meal: dinner Eggplant with Chili Sauce
After Sorting:
 $meal: lunch Cashew Nuts and White Mushrooms
 $meal: snack Dried Mulberries
 $meal: dinner Eggplant with Chili Sauce
 $meal: breakfast Walnut Bun

The values are sorted in the same way with asort() as with sort(), but this time, the
keys stick around.

While sort() and asort() sort arrays by element value, you can also sort arrays by
key with ksort(). This keeps key/value pairs together, but orders them by key.
Example 4-26 shows $meal sorted with ksort().

Example 4-26. Sorting with ksort()

$meal = array('breakfast' => 'Walnut Bun',
 'lunch' => 'Cashew Nuts and White Mushrooms',

72 | Chapter 4: Groups of Data: Working with Arrays

 'snack' => 'Dried Mulberries',
 'dinner' => 'Eggplant with Chili Sauce');

print "Before Sorting:\n";
foreach ($meal as $key => $value) {
 print " \$meal: $key $value\n";
}

ksort($meal);

print "After Sorting:\n";
foreach ($meal as $key => $value) {
 print " \$meal: $key $value\n";
}

Example 4-26 prints:

Before Sorting:
 $meal: breakfast Walnut Bun
 $meal: lunch Cashew Nuts and White Mushrooms
 $meal: snack Dried Mulberries
 $meal: dinner Eggplant with Chili Sauce
After Sorting:
 $meal: breakfast Walnut Bun
 $meal: dinner Eggplant with Chili Sauce
 $meal: lunch Cashew Nuts and White Mushrooms
 $meal: snack Dried Mulberries

The array is reordered so the keys are now in ascending alphabetical order. Each ele‐
ment is unchanged, so the value that went with each key before the sorting is still
attached to the same key after the sorting. If you sort a numeric array with ksort(),
then the elements are ordered so the keys are in ascending numeric order. This is the
same order you start out with when you create a numeric array using array() or [].

The array-sorting functions sort(), asort(), and ksort() have counterparts that
sort in descending order. The reverse-sorting functions are named rsort(),
arsort(), and krsort(). They work exactly the same as sort(), asort(), and
ksort(), except they sort the arrays so the largest (or alphabetically last) key or value
is first in the sorted array, and subsequent elements are arranged in descending order.
Example 4-27 shows arsort() in action.

Example 4-27. Sorting with arsort()

$meal = array('breakfast' => 'Walnut Bun',
 'lunch' => 'Cashew Nuts and White Mushrooms',
 'snack' => 'Dried Mulberries',
 'dinner' => 'Eggplant with Chili Sauce');

print "Before Sorting:\n";
foreach ($meal as $key => $value) {

Sorting Arrays | 73

 print " \$meal: $key $value\n";
}

arsort($meal);

print "After Sorting:\n";
foreach ($meal as $key => $value) {
 print " \$meal: $key $value\n";
}

Example 4-27 prints:

Before Sorting:
 $meal: breakfast Walnut Bun
 $meal: lunch Cashew Nuts and White Mushrooms
 $meal: snack Dried Mulberries
 $meal: dinner Eggplant with Chili Sauce
After Sorting:
 $meal: breakfast Walnut Bun
 $meal: dinner Eggplant with Chili Sauce
 $meal: snack Dried Mulberries
 $meal: lunch Cashew Nuts and White Mushrooms

The arsort() function keeps the association between key and value, just like
asort(), but puts the elements in the opposite order (by value). The element whose
value begins with W is now first, and the element whose value begins with C is last.

Using Multidimensional Arrays
As mentioned in “Array Basics” on page 57, the value of an array element can be
another array. This is useful when you want to store data that has a more complicated
structure than just a key and a single value. A standard key/value pair is fine for
matching up a meal name (such as breakfast or lunch) with a single dish (such as
Walnut Bun or Chicken with Cashew Nuts), but what about when each meal con‐
sists of more than one dish? Then, element values should be arrays, not strings.

Use the array() construct or the [] short array syntax to create arrays that have more
arrays as element values, as shown in Example 4-28.

Example 4-28. Creating multidimensional arrays with array() and []

$meals = array('breakfast' => ['Walnut Bun','Coffee'],
 'lunch' => ['Cashew Nuts', 'White Mushrooms'],
 'snack' => ['Dried Mulberries','Salted Sesame Crab']);

$lunches = [['Chicken','Eggplant','Rice'],
 ['Beef','Scallions','Noodles'],
 ['Eggplant','Tofu']];

74 | Chapter 4: Groups of Data: Working with Arrays

$flavors = array('Japanese' => array('hot' => 'wasabi',
 'salty' => 'soy sauce'),
 'Chinese' => array('hot' => 'mustard',
 'pepper-salty' => 'prickly ash'));

Access elements in these arrays of arrays by using more sets of square brackets to
identify elements. Each set of square brackets goes one level into the entire array.
Example 4-29 demonstrates how to access elements of the arrays defined in
Example 4-28.

Example 4-29. Accessing multidimensional array elements

print $meals['lunch'][1]; // White Mushrooms
print $meals['snack'][0]; // Dried Mulberries
print $lunches[0][0]; // Chicken
print $lunches[2][1]; // Tofu
print $flavors['Japanese']['salty']; // soy sauce
print $flavors['Chinese']['hot']; // mustard

Each level of an array is called a dimension. Before this section, all the arrays in this
chapter have been one-dimensional arrays. They each have one level of keys. Arrays
such as $meals, $lunches, and $flavors, shown in Example 4-29, are called multidi‐
mensional arrays because they each have more than one dimension.

You can also create or modify multidimensional arrays with the square bracket syn‐
tax. Example 4-30 shows some multidimensional array manipulation.

Example 4-30. Manipulating multidimensional arrays

$prices['dinner']['Sweet Corn and Asparagus'] = 12.50;
$prices['lunch']['Cashew Nuts and White Mushrooms'] = 4.95;
$prices['dinner']['Braised Bamboo Fungus'] = 8.95;

$prices['dinner']['total'] = $prices['dinner']['Sweet Corn and Asparagus'] +
 $prices['dinner']['Braised Bamboo Fungus'];

$specials[0][0] = 'Chestnut Bun';
$specials[0][1] = 'Walnut Bun';
$specials[0][2] = 'Peanut Bun';
$specials[1][0] = 'Chestnut Salad';
$specials[1][1] = 'Walnut Salad';
// Leaving out the index adds it to the end of the array
// This creates $specials[1][2]
$specials[1][] = 'Peanut Salad';

To iterate through each dimension of a multidimensional array, use nested foreach()
or for() loops. Example 4-31 uses foreach() to iterate through a multidimensional
associative array.

Using Multidimensional Arrays | 75

Example 4-31. Iterating through a multidimensional array with foreach()

$flavors = array('Japanese' => array('hot' => 'wasabi',
 'salty' => 'soy sauce'),
 'Chinese' => array('hot' => 'mustard',
 'pepper-salty' => 'prickly ash'));

// $culture is the key and $culture_flavors is the value (an array)
foreach ($flavors as $culture => $culture_flavors) {
 // $flavor is the key and $example is the value
 foreach ($culture_flavors as $flavor => $example) {
 print "A $culture $flavor flavor is $example.\n";
 }
}

Example 4-31 prints:

A Japanese hot flavor is wasabi.
A Japanese salty flavor is soy sauce.
A Chinese hot flavor is mustard.
A Chinese pepper-salty flavor is prickly ash.

The first foreach() loop in Example 4-31 iterates through the first dimension of
$flavors. The keys stored in $culture are the strings Japanese and Chinese, and the
values stored in $culture_flavors are the arrays that are the element values of this
dimension. The next foreach() iterates over those element value arrays, copying
keys such as hot and salty into $flavor, and values such as wasabi and soy sauce
into $example. The code block of the second foreach() uses variables from both
foreach() statements to print out a complete message.

Just like nested foreach() loops iterate through a multidimensional associative array,
nested for() loops iterate through a multidimensional numeric array, as shown in
Example 4-32.

Example 4-32. Iterating through a multidimensional array with for()

$specials = array(array('Chestnut Bun', 'Walnut Bun', 'Peanut Bun'),
 array('Chestnut Salad','Walnut Salad', 'Peanut Salad'));

// $num_specials is 2: the number of elements in the first dimension of $specials
for ($i = 0, $num_specials = count($specials); $i < $num_specials; $i++) {
 // $num_sub is 3: the number of elements in each subarray
 for ($m = 0, $num_sub = count($specials[$i]); $m < $num_sub; $m++) {
 print "Element [$i][$m] is " . $specials[$i][$m] . "\n";
 }
}

76 | Chapter 4: Groups of Data: Working with Arrays

Example 4-32 prints:

Element [0][0] is Chestnut Bun
Element [0][1] is Walnut Bun
Element [0][2] is Peanut Bun
Element [1][0] is Chestnut Salad
Element [1][1] is Walnut Salad
Element [1][2] is Peanut Salad

In Example 4-32, the outer for() loop iterates over the two elements of $specials.
The inner for() loop iterates over each element of the subarrays that hold the differ‐
ent strings. In the print statement, $i is the index in the first dimension (the ele‐
ments of $specials), and $m is the index in the second dimension (the subarray).

To interpolate a value from a multidimensional array into a double-quoted string or
here document, use the curly brace syntax from Example 4-20. Example 4-33 uses
curly braces for interpolation to produce the same output as Example 4-32. In fact,
the only different line in Example 4-33 is the print statement.

Example 4-33. Multidimensional array element value interpolation

$specials = array(array('Chestnut Bun', 'Walnut Bun', 'Peanut Bun'),
 array('Chestnut Salad','Walnut Salad', 'Peanut Salad'));

// $num_specials is 2: the number of elements in the first dimension of $specials
for ($i = 0, $num_specials = count($specials); $i < $num_specials; $i++) {
 // $num_sub is 3: the number of elements in each subarray
 for ($m = 0, $num_sub = count($specials[$i]); $m < $num_sub; $m++) {
 print "Element [$i][$m] is {$specials[$i][$m]}\n";
 }
}

Chapter Summary
This chapter covered:

• Understanding the components of an array: elements, keys, and values
• Defining an array in your programs two ways: with array() and with the short

array syntax
• Adding elements to an array with square brackets
• Understanding the shortcuts PHP provides for arrays with numeric keys
• Counting the number of elements in an array
• Visiting each element of an array with foreach()
• Alternating table row CSS class names with foreach() and an array of class

names
• Modifying array element values inside a foreach() code block
• Visiting each element of a numeric array with for()

Chapter Summary | 77

• Alternating table row CSS class names with for() and the modulus operator (%)
• Understanding the order in which foreach() and for() visit array elements
• Checking for an array element with a particular key
• Checking for an array element with a particular value
• Interpolating array element values in strings
• Removing an element from an array
• Generating a string from an array with implode()
• Generating an array from a string with explode()
• Sorting an array with sort(), asort(), or ksort()
• Sorting an array in reverse
• Defining a multidimensional array
• Accessing individual elements of a multidimensional array
• Visiting each element in a multidimensional array with foreach() or for()
• Interpolating multidimensional array elements in a string

Exercises
1. According to the US Census Bureau, the 10 largest American cities (by popula‐

tion) in 2010 were as follows:

• New York, NY (8,175,133 people)
• Los Angeles, CA (3,792,621)
• Chicago, IL (2,695,598)
• Houston, TX (2,100,263)
• Philadelphia, PA (1,526,006)
• Phoenix, AZ (1,445,632)
• San Antonio, TX (1,327,407)
• San Diego, CA (1,307,402)
• Dallas, TX (1,197,816)
• San Jose, CA (945,942)

Define an array (or arrays) that holds this information about locations and popu‐
lations. Print a table of locations and population information that includes the
total population in all 10 cities.

2. Modify your solution to the previous exercise so that the rows in the result table
are ordered by population. Then modify your solution so that the rows are
ordered by city name.

3. Modify your solution to the first exercise so that the table also contains rows that
hold state population totals for each state represented in the list of cities.

4. For each of the following kinds of information, state how you would store it in an
array and then give sample code that creates such an array with a few elements.
For example, for the first item, you might say, “An associative array whose key is

78 | Chapter 4: Groups of Data: Working with Arrays

the student’s name and whose value is an associative array of grade and ID num‐
ber,” as in the following:
$students = ['James D. McCawley' => ['grade' => 'A+','id' => 271231],
 'Buwei Yang Chao' => ['grade' => 'A', 'id' => 818211]];

a. The grades and ID numbers of students in a class
b. How many of each item in a store inventory are in stock
c. School lunches for a week: the different parts of each meal (entrée, side dish,

drink, etc.) and the cost for each day
d. The names of people in your family
e. The names, ages, and relationship to you of people in your family

Exercises | 79

CHAPTER 5

Groups of Logic: Functions and Files

When you’re writing computer programs, laziness is a virtue. Reusing code you’ve
already written makes it easier to do as little work as possible. Functions are the key
to code reuse. A function is a named set of statements that you can execute just by
invoking the function name instead of retyping the statements. This saves time and
prevents errors. Plus, functions make it easier to use code that other people have writ‐
ten (as you’ve discovered by using the built-in functions written by the authors of the
PHP engine).

The basics of defining your own functions and using them are laid out in the next
section, “Declaring and Calling Functions”. When you call a function, you can hand
it some values with which to operate. For example, if you wrote a function to check
whether a user is allowed to access the current web page, you would need to provide
the username and the current web page name to the function. These values are called
arguments. “Passing Arguments to Functions” on page 83 explains how to write func‐
tions that accept arguments and how to use the arguments from inside the functions.

Some functions are one-way streets. You may pass them arguments, but you don’t get
anything back. A print_header() function that prints the top of an HTML page may
take an argument containing the page title, but it doesn’t give you any information
after it executes. It just displays output. Most functions move information in two
directions. The access control function mentioned previously is an example of this.
The function gives you back a value: true (access granted) or false (access denied).
This value is called the return value. You can use the return value of a function like
any other value or variable. Return values are discussed in “Returning Values from
Functions” on page 87.

The statements inside a function can use variables just like statements outside a func‐
tion. However, the variables inside a function and outside a function live in two sepa‐
rate worlds. The PHP engine treats a variable called $name inside a function and a

81

1 Strictly speaking, the parentheses aren’t part of the function name, but it’s good practice to include them when
referring to functions. Doing so helps you to distinguish functions from variables and other language con‐
structs.

variable called $name outside a function as two unrelated variables. “Understanding
Variable Scope” on page 92 explains the rules about which variables are usable in
which parts of your programs. It’s important to understand these rules—get them
wrong and your code relies on uninitialized or incorrect variables. That’s a bug that is
hard to track down.

Because functions lend themselves so well to reuse, it’s convenient to create separate
files full of function definitions and then refer to those files from your programs. This
lets different programs (and different parts of the same program) share the functions
without duplication. “Running Code in Another File” on page 98 explains PHP’s
facilities for tying together multiple files in a program.

Declaring and Calling Functions
To create a new function, use the function keyword, followed by the function name
and then, inside curly braces, the function body. Example 5-1 declares a new function
called page_header().1

Example 5-1. Declaring a function

function page_header() {
 print '<html><head><title>Welcome to my site</title></head>';
 print '<body bgcolor="#ffffff">';
}

Function names follow the same rules as variable names: they must begin with a letter
or an underscore, and the rest of the characters in the name can be letters, numbers,
or underscores. The PHP engine doesn’t prevent you from having a variable and a
function with the same name, but you should avoid it if you can. Many things with
similar names makes for programs that are hard to understand.

The page_header() function defined in Example 5-1 can be called just like a built-in
function. Example 5-2 uses page_header() to print a complete page.

Example 5-2. Calling a function

page_header();
print "Welcome, $user";
print "</body></html>";

82 | Chapter 5: Groups of Logic: Functions and Files

Functions can be defined before or after they are called. The PHP engine reads the
entire program file and takes care of all the function definitions before it runs any of
the commands in the file. The page_header() and page_footer() functions in
Example 5-3 both execute successfully, even though page_header() is defined before
it is called and page_footer() is defined after it is called.

Example 5-3. Defining functions before or after calling them

function page_header() {
 print '<html><head><title>Welcome to my site</title></head>';
 print '<body bgcolor="#ffffff">';
}

page_header();
print "Welcome, $user";
page_footer();

function page_footer() {
 print '<hr>Thanks for visiting.';
 print '</body></html>';
}

Passing Arguments to Functions
While some functions (such as page_header() in the previous section) always do the
same thing, other functions operate on input that can change. The input values sup‐
plied to a function are called arguments. Arguments add to the power of functions
because they make functions more flexible. You can modify page_header() to take an
argument that holds the page color. The modified function declaration is shown in
Example 5-4.

Example 5-4. Declaring a function with an argument

function page_header2($color) {
 print '<html><head><title>Welcome to my site</title></head>';
 print '<body bgcolor="#' . $color . '">';
}

In the function declaration, you add $color between the parentheses after the func‐
tion name. This lets the code inside the function use a variable called $color, which
holds the value passed to the function when it is called. For example, you can call the
function like this:

page_header2('cc00cc');

This sets $color to cc00cc inside page_header2(), so it prints:

<html><head><title>Welcome to my site</title></head><body bgcolor="#cc00cc">

Passing Arguments to Functions | 83

When you define a function that takes an argument as in Example 5-4, you must pass
an argument to the function when you call it. If you call the function without a value
for the argument, the PHP engine complains with a warning. For example, if you call
page_header2() like this:

page_header2();

the engine prints a message that looks like this:

PHP Warning: Missing argument 1 for page_header2()

To avoid this warning, define a function to take an optional argument by specifying a
default in the function declaration. If a value is supplied when the function is called,
then the function uses the supplied value. If a value is not supplied when the function
is called, then the function uses the default value. To specify a default value, put it
after the argument name. Example 5-5 sets the default value for $color to cc3399.

Example 5-5. Specifying a default value

function page_header3($color = 'cc3399') {
 print '<html><head><title>Welcome to my site</title></head>';
 print '<body bgcolor="#' . $color . '">';
}

Calling page_header3('336699') produces the same results as calling
page_header2('336699'). When the body of each function executes, $color has the
value 336699, which is the color printed for the bgcolor attribute of the <body> tag.
But while page_header2() without an argument produces a warning, you can run
page_header3() without an argument, with $color set to cc3399.

Default values for arguments must be literals, such as 12, cc3399, or Shredded Swiss
Chard. They can’t be variables. The following is not OK and will cause the PHP
engine to stop running your program:

$my_color = '#000000';

// This is incorrect: the default value can't be a variable
function page_header_bad($color = $my_color) {
 print '<html><head><title>Welcome to my site</title></head>';
 print '<body bgcolor="#' . $color . '">';
}

To define a function that accepts multiple arguments, separate each argument with a
comma in the function declaration. In Example 5-6, page_header4() takes two argu‐
ments: $color and $title.

84 | Chapter 5: Groups of Logic: Functions and Files

Example 5-6. Defining a two-argument function

function page_header4($color, $title) {
 print '<html><head><title>Welcome to ' . $title . '</title></head>';
 print '<body bgcolor="#' . $color . '">';
}

To pass a function multiple arguments when you call it, separate the argument values
by commas in the function call. Example 5-7 calls page_header4() with values for
$color and $title.

Example 5-7. Calling a two-argument function

page_header4('66cc66','my homepage');

Example 5-7 prints:

<html><head><title>Welcome to my homepage</title></head><body bgcolor="#66cc66">

In Example 5-6, both arguments are mandatory. You can use the same syntax in func‐
tions that take multiple arguments to denote default argument values as you do in
functions that take one argument. However, all of the optional arguments must come
after any mandatory arguments. Example 5-8 shows the correct ways to define a
three-argument function that has one, two, or three optional arguments.

Example 5-8. Multiple optional arguments

// One optional argument: it must be last
function page_header5($color, $title, $header = 'Welcome') {
 print '<html><head><title>Welcome to ' . $title . '</title></head>';
 print '<body bgcolor="#' . $color . '">';
 print "<h1>$header</h1>";
}
// Acceptable ways to call this function:
page_header5('66cc99','my wonderful page'); // uses default $header
page_header5('66cc99','my wonderful page','This page is great!'); // no defaults

// Two optional arguments: must be last two arguments
function page_header6($color, $title = 'the page', $header = 'Welcome') {
 print '<html><head><title>Welcome to ' . $title . '</title></head>';
 print '<body bgcolor="#' . $color . '">';
 print "<h1>$header</h1>";
}
// Acceptable ways to call this function:
page_header6('66cc99'); // uses default $title and $header
page_header6('66cc99','my wonderful page'); // uses default $header
page_header6('66cc99','my wonderful page','This page is great!'); // no defaults

// All optional arguments

Passing Arguments to Functions | 85

2 Except for objects. If you pass an object to a function, changes made to that object inside the function affect
the object outside the function. Objects are discussed in Chapter 6.

function page_header7($color = '336699', $title = 'the page', $header = 'Welcome') {
 print '<html><head><title>Welcome to ' . $title . '</title></head>';
 print '<body bgcolor="#' . $color . '">';
 print "<h1>$header</h1>";
}
// Acceptable ways to call this function:
page_header7(); // uses all defaults
page_header7('66cc99'); // uses default $title and $header
page_header7('66cc99','my wonderful page'); // uses default $header
page_header7('66cc99','my wonderful page','This page is great!'); // no defaults

All of the optional arguments must be at the end of the argument list to avoid ambi‐
guity. If page_header7() could be defined with a mandatory first argument of
$color, an optional second argument of $title, and a mandatory third argument of
$header, then what would page_header7('33cc66','Good Morning') mean? The
'Good Morning' argument could be a value for either $title or $header. Putting all
optional arguments after any mandatory arguments avoids this confusion.

Any changes you make to a variable passed as an argument to a function don’t affect
the variable outside the function.2 In Example 5-9, the value of $counter outside the
function doesn’t change.

Example 5-9. Changing argument values

function countdown($top) {
 while ($top > 0) {
 print "$top..";
 $top--;
 }
 print "boom!\n";
}

$counter = 5;
countdown($counter);
print "Now, counter is $counter";

Example 5-9 prints:

5..4..3..2..1..boom!
Now, counter is 5

Passing $counter as the argument to countdown() tells the PHP engine to copy the
value of $counter into $top at the start of the function, because $top is the name of
the argument. Whatever happens to $top inside the function doesn’t affect $counter.

86 | Chapter 5: Groups of Logic: Functions and Files

Once the value of $counter is copied into $top, $counter is out of the picture for the
duration of the function.

Modifying arguments doesn’t affect variables outside the function even if the argu‐
ment has the same name as a variable outside the function. If countdown() in
Example 5-9 is changed so that its argument is called $counter instead of $top, the
value of $counter outside the function doesn’t change. The argument and the vari‐
able outside the function just happen to have the same name. They remain com‐
pletely unconnected.

Returning Values from Functions
The header-printing function you’ve seen in this chapter takes action by displaying
some output. In addition to an action such as printing data or saving information
into a database, functions can also compute a value, called the return value, which can
be used later in a program. To capture the return value of a function, assign the func‐
tion call to a variable. Example 5-10 stores the return value of the built-in function
number_format() in the variable $number_to_display.

Example 5-10. Capturing a return value

$number_to_display = number_format(321442019);
print "The population of the US is about: $number_to_display";

Just like Example 1-6, Example 5-10 prints:

The population of the US is about: 321,442,019

Assigning the return value of a function to a variable is just like assigning a string or
number to a variable. The statement $number = 57 means “store 57 in the variable
$number.” The statement $number_to_display = number_format(321442019) means
“call the number_format() function with the argument 321442019 and store the
return value in $number_to_display.” Once the return value of a function has been
put into a variable, you can use that variable and the value it contains just like any
other variable in your program.

To return values from functions you write, use the return keyword with a value to
return. When a function is executing, as soon as it encounters the return keyword, it
stops running and returns the associated value. Example 5-11 defines a function that
returns the total amount of a restaurant check after adding tax and tip.

Example 5-11. Returning a value from a function

function restaurant_check($meal, $tax, $tip) {
 $tax_amount = $meal * ($tax / 100);
 $tip_amount = $meal * ($tip / 100);

Returning Values from Functions | 87

 $total_amount = $meal + $tax_amount + $tip_amount;

 return $total_amount;
}

The value that restaurant_check() returns can be used like any other value in a pro‐
gram. Example 5-12 uses the return value in an if() statement.

Example 5-12. Using a return value in an if() statement

// Find the total cost of a $15.22 meal with 8.25% tax and a 15% tip
$total = restaurant_check(15.22, 8.25, 15);

print 'I only have $20 in cash, so...';
if ($total > 20) {
 print "I must pay with my credit card.";
} else {
 print "I can pay with cash.";
}

A particular return statement can only return one value. You can’t return multiple
values with something like return 15, 23. If you want to return more than one
value from a function, you can put the different values into one array and then return
the array.

Example 5-13 shows a modified version of restaurant_check() that returns a two-
element array containing the total amount before the tip is added and after it is
added.

Example 5-13. Returning an array from a function

function restaurant_check2($meal, $tax, $tip) {
 $tax_amount = $meal * ($tax / 100);
 $tip_amount = $meal * ($tip / 100);
 $total_notip = $meal + $tax_amount;
 $total_tip = $meal + $tax_amount + $tip_amount;

 return array($total_notip, $total_tip);
}

Example 5-14 uses the array returned by restaurant_check2().

Example 5-14. Using an array returned from a function

$totals = restaurant_check2(15.22, 8.25, 15);

if ($totals[0] < 20) {
 print 'The total without tip is less than $20.';
}

88 | Chapter 5: Groups of Logic: Functions and Files

if ($totals[1] < 20) {
 print 'The total with tip is less than $20.';
}

Although you can only return a single value with a return statement, you can have
more than one return statement inside a function. The first return statement
reached by the program flow inside the function causes the function to stop running
and return a value. This isn’t necessarily the return statement closest to the begin‐
ning of the function. Example 5-15 moves the cash-or-credit-card logic from
Example 5-12 into a new function that determines the appropriate payment method.

Example 5-15. Multiple return statements in a function

function payment_method($cash_on_hand, $amount) {
 if ($amount > $cash_on_hand) {
 return 'credit card';
 } else {
 return 'cash';
 }
}

Example 5-16 uses the new payment_method() function by passing it the result from
restaurant_check().

Example 5-16. Passing a return value to another function

$total = restaurant_check(15.22, 8.25, 15);
$method = payment_method(20, $total);
print 'I will pay with ' . $method;

Example 5-16 prints the following:

I will pay with cash

This is because the amount restaurant_check() returns is less than 20. This is
passed to payment_method() in the $total argument. The first comparison in
payment_method(), between $amount and $cash_on_hand, is false, so the code in
the else block inside payment_method() executes. This causes the function to return
the string cash.

The rules about truth values discussed in Chapter 3 apply to the return values of
functions just like other values. You can take advantage of this to use functions inside
if() statements and other control flow constructs. Example 5-17 decides what to
do by calling the restaurant_check() function from inside an if() statement’s test
expression.

Returning Values from Functions | 89

Example 5-17. Using return values with if()

if (restaurant_check(15.22, 8.25, 15) < 20) {
 print 'Less than $20, I can pay cash.';
} else {
 print 'Too expensive, I need my credit card.';
}

To evaluate the test expression in Example 5-17, the PHP engine first calls the
restaurant_check() function. The return value of the function is then compared
with 20, just as it would be if it were a variable or a literal value. If restau
rant_check() returns a number less than 20, which it does in this case, then the first
print statement is executed. Otherwise, the second print statement runs.

A test expression can also consist of just a function call with no comparison or other
operator. In such a test expression, the return value of the function is converted to
true or false according to the rules outlined in “Understanding true and false” on
page 40. If the return value is true, then the test expression is true. If the return
value is false, so is the test expression. A function can explicitly return true or
false to make it more obvious that it should be used in a test expression. The
can_pay_cash() function in Example 5-18 does this as it determines whether we can
pay cash for a meal.

Example 5-18. Functions that return true or false

function can_pay_cash($cash_on_hand, $amount) {
 if ($amount > $cash_on_hand) {
 return false;
 } else {
 return true;
 }
}

$total = restaurant_check(15.22,8.25,15);
if (can_pay_cash(20, $total)) {
 print "I can pay in cash.";
} else {
 print "Time for the credit card.";
}

In Example 5-18, the can_pay_cash() function compares its two arguments. If
$amount is bigger, then the function returns true. Otherwise, it returns false. The
if() statement outside the function single-mindedly pursues its mission as an if()
statement—finding the truth value of its test expression. Since this test expression is a
function call, it calls can_pay_cash() with the two arguments 20 and $total. The
return value of the function is the truth value of the test expression and controls
which message is printed.

90 | Chapter 5: Groups of Logic: Functions and Files

Just like you can put a variable in a test expression, you can put a function’s return
value in a test expression. In any situation where you call a function that returns
a value, you can think of the code that calls the function, such as
restaurant_check(15.22,8.25,15), as being replaced by the return value of the
function as the program runs.

One frequent shortcut is to use a function call with the assignment operator in a test
expression and to rely on the fact that the result of the assignment is the value being
assigned. This lets you call a function, save its return value, and check whether the
return value is true all in one step. Example 5-19 demonstrates how to do this.

Example 5-19. Assignment and function call inside a test expression

function complete_bill($meal, $tax, $tip, $cash_on_hand) {
 $tax_amount = $meal * ($tax / 100);
 $tip_amount = $meal * ($tip / 100);
 $total_amount = $meal + $tax_amount + $tip_amount;
 if ($total_amount > $cash_on_hand) {
 // The bill is more than we have
 return false;
 } else {
 // We can pay this amount
 return $total_amount;
 }
}

if ($total = complete_bill(15.22, 8.25, 15, 20)) {
 print "I'm happy to pay $total.";
} else {
 print "I don't have enough money. Shall I wash some dishes?";
}

In Example 5-19, the complete_bill() function returns false if the calculated bill,
including tax and tip, is more than $cash_on_hand. If the bill is less than or equal to
$cash_on_hand, then the amount of the bill is returned. When the if() statement
outside the function evaluates its test expression, the following things happen:

1. complete_bill() is called with arguments 15.22, 8.25, 15, and 20.
2. The return value of complete_bill() is assigned to $total.
3. The result of the assignment (which, remember, is the same as the value being

assigned) is converted to either true or false and used as the end result of the
test expression.

Returning Values from Functions | 91

Understanding Variable Scope
As you saw in Example 5-9, changes inside a function to variables that hold argu‐
ments don’t affect those variables outside of the function. This is because activity
inside a function happens in a different scope. Variables defined outside of a function
are called global variables. They exist in one scope. Variables defined inside of a func‐
tion are called local variables. Each function has its own scope.

Imagine each function is one branch office of a big company, and the code outside of
any function is the company headquarters. At the Philadelphia branch office, co-
workers refer to each other by their first names: “Alice did great work on this report,”
or “Bob never puts the right amount of sugar in my coffee.” These statements talk
about the folks in Philadelphia (local variables of one function), and say nothing
about an Alice or a Bob who works at another branch office (local variables of
another function) or at the company headquarters (global variables).

Local and global variables work similarly. A variable called $dinner inside a function,
whether or not it’s an argument to that function, is completely disconnected from a
variable called $dinner outside of the function and from a variable called $dinner
inside another function. Example 5-20 illustrates the unconnectedness of variables in
different scopes.

Example 5-20. Variable scope

$dinner = 'Curry Cuttlefish';

function vegetarian_dinner() {
 print "Dinner is $dinner, or ";
 $dinner = 'Sauteed Pea Shoots';
 print $dinner;
 print "\n";
}

function kosher_dinner() {
 print "Dinner is $dinner, or ";
 $dinner = 'Kung Pao Chicken';
 print $dinner;
 print "\n";
}

print "Vegetarian ";
vegetarian_dinner();
print "Kosher ";
kosher_dinner();
print "Regular dinner is $dinner";

92 | Chapter 5: Groups of Logic: Functions and Files

Example 5-20 prints:

Vegetarian Dinner is , or Sauteed Pea Shoots
Kosher Dinner is , or Kung Pao Chicken
Regular dinner is Curry Cuttlefish

In both functions, before $dinner is set to a value inside the function, it has no value.
The global variable $dinner has no effect inside the function. Once $dinner is set
inside a function, though, it doesn’t affect the global $dinner set outside any function
or the $dinner variable in another function. Inside each function, $dinner refers to
the local version of $dinner and is completely separate from a variable that happens
to have the same name in another function.

Like all analogies, though, the analogy between variable scope and corporate organi‐
zation is not perfect. In a company, you can easily refer to employees at other loca‐
tions; the folks in Philadelphia can talk about “Alice at headquarters” or “Bob in
Atlanta,” and the overlords at headquarters can decide the futures of “Alice in Phila‐
delphia” or “Bob in Charleston.” With variables, however, you can access global vari‐
ables from inside a function, but you can’t access the local variables of a function
from outside that function. This is equivalent to folks at a branch office being able to
talk about people at headquarters but not anyone at the other branch offices, and to
folks at headquarters not being able to talk about anyone at any branch office.

There are two ways to access a global variable from inside a function. The most
straightforward is to look for them in a special array called $GLOBALS. Each global
variable is accessible as an element in that array. Example 5-21 demonstrates how to
use the $GLOBALS array.

Example 5-21. The $GLOBALS array

$dinner = 'Curry Cuttlefish';

function macrobiotic_dinner() {
 $dinner = "Some Vegetables";
 print "Dinner is $dinner";
 // Succumb to the delights of the ocean
 print " but I'd rather have ";
 print $GLOBALS['dinner'];
 print "\n";
}

macrobiotic_dinner();
print "Regular dinner is: $dinner";

Example 5-21 prints:

Dinner is Some Vegetables but I'd rather have Curry Cuttlefish
Regular dinner is: Curry Cuttlefish

Understanding Variable Scope | 93

Example 5-21 accesses the global $dinner from inside the function as $GLOBALS[
'dinner']. The $GLOBALS array can also modify global variables. Example 5-22 shows
how to do that.

Example 5-22. Modifying a variable with $GLOBALS

$dinner = 'Curry Cuttlefish';

function hungry_dinner() {
 $GLOBALS['dinner'] .= ' and Deep-Fried Taro';
}

print "Regular dinner is $dinner";
print "\n";
hungry_dinner();
print "Hungry dinner is $dinner";

Example 5-22 prints:

Regular dinner is Curry Cuttlefish
Hungry dinner is Curry Cuttlefish and Deep-Fried Taro

Inside the hungry_dinner() function, $GLOBALS['dinner'] can be modified just like
any other variable, and the modifications change the global variable $dinner. In this
case, $GLOBALS['dinner'] has a string appended to it using the concatenation opera‐
tor from Example 2-19.

The second way to access a global variable inside a function is to use the global key‐
word. This tells the PHP engine that further use of the named variable inside a func‐
tion should refer to the global variable with the given name, not a local variable. This
is called “bringing a variable into local scope.” Example 5-23 shows the global key‐
word at work.

Example 5-23. The global keyword

$dinner = 'Curry Cuttlefish';

function vegetarian_dinner() {
 global $dinner;
 print "Dinner was $dinner, but now it's ";
 $dinner = 'Sauteed Pea Shoots';
 print $dinner;
 print "\n";
}

print "Regular Dinner is $dinner.\n";
vegetarian_dinner();
print "Regular dinner is $dinner";

94 | Chapter 5: Groups of Logic: Functions and Files

Example 5-23 prints:

Regular Dinner is Curry Cuttlefish.
Dinner was Curry Cuttlefish, but now it's Sauteed Pea Shoots
Regular dinner is Sauteed Pea Shoots

The first print statement displays the unmodified value of the global variable
$dinner. The global $dinner line in vegetarian_dinner() means that any use of
$dinner inside the function refers to the global $dinner, not a local variable with the
same name. So, the first print statement in the function prints the already-set global
value, and the assignment on the next line changes the global value. Since the global
value is changed inside the function, the last print statement outside the function
prints the changed value as well.

The global keyword can be used with multiple variable names at once. Just separate
each variable name with a comma. For example:

global $dinner, $lunch, $breakfast;

Generally, use the $GLOBALS array to access global variables inside
functions instead of the global keyword. Using $GLOBALS provides
a reminder on every variable access that you’re dealing with a
global variable. Unless you’re writing a very short function, it’s easy
to forget that you’re dealing with a global variable with global and
become confused as to why your code is misbehaving. Relying on
the $GLOBALS array requires a tiny bit of extra typing, but it does
wonders for your code’s intelligibility.

You may have noticed something strange about the examples that use the $GLOBALS
array. These examples use $GLOBALS inside a function, but don’t bring $GLOBALS into
local scope with the global keyword. The $GLOBALS array, whether used inside or
outside a function, is always in scope. This is because $GLOBALS is a special kind of
predefined variable, called an auto-global. Auto-globals are variables that can be used
anywhere in your PHP programs without anything required to bring them into
scope. They’re like a well-known employee that everyone, at headquarters or a branch
office, refers to by his first name.

The auto-globals are always arrays that are automatically populated with data. They
contain things such as submitted form data, cookie values, and session information.
Chapters 7 and 10 each describe specific auto-global variables that are useful in dif‐
ferent contexts.

Understanding Variable Scope | 95

Enforcing Rules on Arguments and Return Values
Unless you tell the PHP engine otherwise, function arguments and return values
don’t have any constraints on their types or values. The countdown() function in
Example 5-9 assumes that its argument is a number, but you could pass a string such
as "Caramel" as an argument and the PHP engine wouldn’t complain.

Type declarations are a way to express constraints on argument values. These tell the
PHP engine what kind of value is allowed for an argument so it can warn you when
the wrong kind is provided. Table 5-1 shows the different kinds of declarations the
PHP engine understands and what version of PHP introduced support for them.

Table 5-1. Type declarations

Declaration Argument rule Minimum PHP version
array Must be an array 5.1.0
bool Must be boolean: true or false 7.0.0
callable Must be something representing a function or method

that can be calleda
5.4.0

float Must be a floating-point number 7.0.0
int Must be an integer 7.0.0.
string Must be a string 7.0.0.
Name of a class Must be an instance of that class (see Chapter 6 for

more information about classes and instances).
5.0.0

a This can be a string containing a valid function name, a two-element array where the first element is an object instance and
the second is a string holding a method name, or a few other things. See http://www.php.net/language.types.callable for all
the details.

When defining a function, the type declaration goes before the argument name.
Example 5-24 shows the function from Example 5-9 with the appropriate int type
declaration in place.

Example 5-24. Declaring an argument type

function countdown(int $top) {
 while ($top > 0) {
 print "$top..";
 $top--;
 }
 print "boom!\n";
}

$counter = 5;
countdown($counter);
print "Now, counter is $counter";

96 | Chapter 5: Groups of Logic: Functions and Files

http://www.php.net/language.types.callable

3 In earlier versions of PHP, type declaration violations are reported as the paradoxically named Catchable
fatal error. These errors cause your program to stop running unless you handle them yourself in a special
error handler. http://www.php.net/set_error_handler describes how to implement your own error handler for
this situation.

The only difference between Example 5-9 and Example 5-24 is the int after
countdown(and before $top. When countdown() is passed a valid integer (such as
5), the code runs just fine. If another type of value is passed, then the PHP engine
complains. For example, if you call countdown("grunt"); when using PHP 7, then
you get an error message similar to:

PHP Fatal error: Uncaught TypeError: Argument 1 passed to countdown()
must be of the type integer, string given, called in decl-error.php
on line 2 and defined in countdown.php:2
Stack trace:
#0 decl-error.php(2): countdown('grunt')
#1 {main}
 thrown in countdown.php on line 2

In the error message, the PHP engine tells you about a TypeError, indicating which
argument (1) passed to which function (countdown()) had a type mismatch, includ‐
ing what the argument type was supposed to be (integer) and what the argument
type actually was (string). You also get information about where the problematic
function call is and where the called function is defined.

In PHP 7, that TypeError is an exception that can be caught with an exception han‐
dler. “Indicating a Problem with Exceptions” on page 108 provides details on how to
catch exceptions in your program.3

PHP 7 also supports type declarations for the kind of value a function returns. To
enforce checking of the return type of a function, put a : after the) that closes the
argument list, and then the return type declaration. For example, Example 5-25
shows the restaurant_check() function from Example 5-26 augmented with a
return type declaration.

Example 5-25. Declaring a return type

function restaurant_check($meal, $tax, $tip): float {
 $tax_amount = $meal * ($tax / 100);
 $tip_amount = $meal * ($tip / 100);
 $total_amount = $meal + $tax_amount + $tip_amount;

 return $total_amount;
}

Enforcing Rules on Arguments and Return Values | 97

http://www.php.net/set_error_handler

If the function in Example 5-25 returns anything but a float, the PHP engine gener‐
ates a TypeError.

For scalar type declarations in PHP 7, the enforcement of the decla‐
rations is not absolutely strict by default.
Even with type declarations, PHP 7 attempts to convert the type of
an argument or return value that doesn’t actually match a type dec‐
laration but could match it. Numeric values get silently converted
to strings, and strings that contain numbers get silently converted
to the appropriate numeric type.
You can turn off this loosey-goosey default in a particular file by
putting declare(strict_types=1); at the top of the file. Then, the
arguments and return values of any function calls in that file must
match the type declarations (but you can still pass an integer as an
argument declared as float).
You can’t enforce strict typing globally. You have to declare it in
each file for which you want to use it.

Running Code in Another File
The PHP code examples we’ve seen so far are mostly self-contained individual files.
Any variables or functions that are used are also defined in the same file. As your pro‐
grams grow, they are easier to manage when you can split the code into different files.
The require directive tells the PHP engine to load code located in a different file,
making it easy to reuse that code in many places.

For example, consider some of the functions defined earlier in this chapter. We could
combine them into one file and save it as restaurant-functions.php, as shown in
Example 5-26.

Example 5-26. Defining functions in their own file

<?php

function restaurant_check($meal, $tax, $tip) {
 $tax_amount = $meal * ($tax / 100);
 $tip_amount = $meal * ($tip / 100);
 $total_amount = $meal + $tax_amount + $tip_amount;

 return $total_amount;
}

function payment_method($cash_on_hand, $amount) {
 if ($amount > $cash_on_hand) {
 return 'credit card';

98 | Chapter 5: Groups of Logic: Functions and Files

 } else {
 return 'cash';
 }
}

?>

Assuming Example 5-26 is saved as restaurant-functions.php, then another file could
reference it, as shown in Example 5-27, with require 'restaurant-

functions.php';.

Example 5-27. Referencing a separate file

require 'restaurant-functions.php';

/* $25 check, plus 8.875% tax, plus 20% tip */
$total_bill = restaurant_check(25, 8.875, 20);

/* I've got $30 */
$cash = 30;

print "I need to pay with " . payment_method($cash, $total_bill);

The require 'restaurant-functions.php'; line in Example 5-27 tells the PHP
engine to stop reading the commands in the file it’s currently reading, go read all the
commands in the restaurant-functions.php file, and then come back to the first file
and keep going. In this example, restaurant-functions.php just defines some functions,
but a file loaded with require can contain any valid PHP code. If that loaded file con‐
tains print statements, then the PHP engine will print whatever it’s told to print out.

If the require statement can’t find the file it’s told to load, or it does find the file but it
doesn’t contain valid PHP code, the PHP engine stops running your program. The
include statement also loads code from another file, but will keep going if there’s a
problem with the loaded file.

How the PHP Engine Finds Files
If require or include is given an absolute pathname—one that starts with / on OS X
or Linux or with a drive letter or \ on Windows—then the PHP engine just looks in
that specific place for the file.

Similarly, if a relative path is provided—starting with ./ for the current directory
or ../ for the parent of the current directory—then the PHP only looks in that place
for the file.

However, for other filenames or pathnames provided, the PHP engine consults the
configuration directive include_path. Its value is a list of directories to look in when

Running Code in Another File | 99

requiring or including files. If the file can’t be found in any of those directories,
the PHP engine checks the directory that contains the file doing the requiring or
including.

Because organizing your code in separate files makes it easy to reuse common func‐
tions and definitions, this book relies on it frequently in subsequent chapters. Using
require and include also opens the door to easily using code libraries written by
other people, which is discussed in Chapter 16.

Chapter Summary
This chapter covered:

• Defining functions and calling them in your programs
• Defining a function with mandatory arguments
• Defining a function with optional arguments
• Returning a value from a function
• Understanding variable scope
• Using global variables inside a function
• Understanding type declarations
• Using argument type declarations
• Using return type declarations
• Organizing PHP code in separate files

Exercises
1. Write a function to return an HTML tag. The function should accept a

mandatory argument of the image URL and optional arguments for alt text,
height, and width.

2. Modify the function in the previous exercise so that only the filename is passed
to the function in the URL argument. Inside the function, prepend a global vari‐
able to the filename to make the full URL. For example, if you pass photo.png to
the function, and the global variable contains /images/, then the src attribute of
the returned tag would be /images/photo.png. A function like this is an
easy way to keep your image tags correct, even if the images move to a new path
or server. Just change the global variable—for example, from /images/ to
http://images.example.com/.

3. Put your function from the previous exercise in one file. Then make another file
that loads the first file and uses it to print out some tags.

100 | Chapter 5: Groups of Logic: Functions and Files

4. What does the following code print out?
<?php

function restaurant_check($meal, $tax, $tip) {
 $tax_amount = $meal * ($tax / 100);
 $tip_amount = $meal * ($tip / 100);
 return $meal + $tax_amount + $tip_amount;
}

$cash_on_hand = 31;
$meal = 25;
$tax = 10;
$tip = 10;

while(($cost = restaurant_check($meal,$tax,$tip)) < $cash_on_hand) {
 $tip++;
 print "I can afford a tip of $tip% ($cost)\n";
}

?>

5. Web colors such as #ffffff and #cc3399 are made by concatenating the hexa‐
decimal color values for red, green, and blue. Write a function that accepts deci‐
mal red, green, and blue arguments and returns a string containing the
appropriate color for use in a web page. For example, if the arguments are 255, 0,
and 255, then the returned string should be #ff00ff. You may find it helpful to
use the built-in function dechex(), which is documented at http://www.php.net/
dechex.

Exercises | 101

http://www.php.net/dechex
http://www.php.net/dechex

CHAPTER 6

Data and Logic Together:
Working with Objects

The basics of data and logic that you’ve seen so far are enough to get lots of things
done in PHP. An additional concept—object-oriented programming, which combines
data with the logic that operates on it—helps to organize your code. In particular,
objects are great for making reusable bundles of code, so being familiar with how
they work will make it easier to use lots of existing PHP add-ons and libraries.

In the programming world, an object is a structure that combines data about a thing
(such as the ingredients in an entrée) with actions on that thing (such as determining
if a certain ingredient is in the entrée). Using objects in a program provides an organ‐
izational structure for grouping related variables and functions together.

Here are some basic terms to know when working with objects:

Class
A template or recipe that describes the variables and functions for a kind of
object. For example, an Entree class would contain variables that hold its name
and ingredients. The functions in an Entree class would be for things such as
cooking the entrée, serving it, and determining whether a particular ingredient is
in it.

Method
A function defined in a class.

Property
A variable defined in a class.

103

Instance
An individual usage of a class. If you are serving three entrées for dinner in your
program, you would create three instances of the Entree class. While each of
these instances is based on the same class, they differ internally by having differ‐
ent property values. The methods in each instance contain the same instructions,
but probably produce different results because they each rely on the particular
property values in their instance. Creating a new instance of a class is called
“instantiating an object.”

Constructor
A special method that is automatically run when an object is instantiated. Usu‐
ally, constructors set up object properties and do other housekeeping that makes
the object ready for use.

Static method
A special kind of method that can be called without instantiating a class. Static
methods don’t depend on the property values of a particular instance.

Object Basics
Example 6-1 defines an Entree class to represent an entrée.

Example 6-1. Defining a class

class Entree {
 public $name;
 public $ingredients = array();

 public function hasIngredient($ingredient) {
 return in_array($ingredient, $this->ingredients);
 }
}

In Example 6-1, the class definition starts with the special keyword class followed by
the name we’re giving to the class. After the class name, everything between the curly
braces is the definition of the class—the properties and methods of the class.
This class has two properties ($name and $ingredients) and one method
(hasIngredient()). The public keyword tells the PHP engine which parts of your
program are allowed to access the particular property or method the keyword is
attached to. We’ll get into that later, in “Property and Method Visibility” on page 113.

The hasIngredient() method looks mostly like a regular function definition, but its
body contains something new: $this. This is a special variable that refers to whatever
instance of a class is calling the function. Example 6-2 shows this in action with two
different instances.

104 | Chapter 6: Data and Logic Together: Working with Objects

Example 6-2. Creating and using objects

// Create an instance and assign it to $soup
$soup = new Entree;
// Set $soup's properties
$soup->name = 'Chicken Soup';
$soup->ingredients = array('chicken', 'water');

// Create a separate instance and assign it to $sandwich
$sandwich = new Entree;
// Set $sandwich's properties
$sandwich->name = 'Chicken Sandwich';
$sandwich->ingredients = array('chicken', 'bread');

foreach (['chicken','lemon','bread','water'] as $ing) {
 if ($soup->hasIngredient($ing)) {
 print "Soup contains $ing.\n";
 }
 if ($sandwich->hasIngredient($ing)) {
 print "Sandwich contains $ing.\n";
 }
}

The new operator returns a new Entree object, so in Example 6-2, $soup and
$sandwich each refer to different instances of the Entree class.

The arrow operator (->), composed of a hyphen and a greater-than sign, is your road
to the properties (variables) and methods (functions) inside an object. To access a
property, put the arrow after the object’s name and put the property after the arrow.
To call a method, put the method name after the arrow, followed by the parentheses
that indicate a function call.

Note that the arrow operator used to access properties and methods is different from
the operator that separates array keys and values in array() or foreach(). The array
arrow has an equals sign: =>. The object arrow has a hyphen: ->.

Assigning a value to a property works just like assigning a value to any other variable,
but with the arrow syntax to indicate the property name. The expression
$soup->name means “the name property inside the object instance that the $soup vari‐
able holds,” and the expression $sandwich->ingredients means “the ingredients
property inside the object instance that the $sandwich variable holds.”

Inside the foreach() loop, each object’s hasIngredient() method gets called. The
method is passed the name of an ingredient, and it returns whether or not that ingre‐
dient is in the object’s ingredient list. Here you can see how the special $this variable
works. When $soup->hasIngredient() is called, $this refers to $soup inside the
body of hasIngredient(). When $sandwich->hasIngredient() is called, $this

Object Basics | 105

refers to $sandwich. The $this variable doesn’t always refer to the same object
instance, but instead refers to the instance the method is being called on. This means
that when Example 6-2 runs, it prints:

Soup contains chicken.
Sandwich contains chicken.
Sandwich contains bread.
Soup contains water.

In Example 6-2, when $ing is chicken, then both $soup->hasIngredient($ing)
and $sandwich->hasIngredient($ing) return true. Both objects’ $ingredients
properties contain an element with the value chicken. But only $soup->ingredients
has water and only $sandwich->ingredients has bread. Neither object has lemon in
its $ingredients property.

Classes can also contain static methods. These methods cannot use the $this variable
since they do not get run in the context of a specific object instance, but on the class
itself. Static methods are useful for behavior that is relevant to what the class is for,
but not to any one object. Example 6-3 adds a static method to Entree that returns a
list of possible entrée sizes.

Example 6-3. Defining a static method

class Entree {
 public $name;
 public $ingredients = array();

 public function hasIngredient($ingredient) {
 return in_array($ingredient, $this->ingredients);
 }

 public static function getSizes() {
 return array('small','medium','large');
 }
}

The declaration of the static method in Example 6-3 is similar to other method defi‐
nitions, with the addition of the static keyword before function. To call a static
method, you put :: between the class name and the method name instead of ->, as
shown in Example 6-4.

Example 6-4. Calling a static method

$sizes = Entree::getSizes();

106 | Chapter 6: Data and Logic Together: Working with Objects

Constructors
A class can have a special method, called a constructor, which is run when the object
is created. Constructors typically handle setup and housekeeping tasks that make the
object ready to use. For example, we can change the Entree class and give it a con‐
structor. This constructor accepts two arguments: the name of the entrée and the
ingredient list. By passing those values to the constructor, we avoid having to set the
properties after the object is created. In PHP, the constructor method of a class is
always called __construct(). Example 6-5 shows the changed class with its construc‐
tor method.

Example 6-5. Initializing an object with a constructor

class Entree {
 public $name;
 public $ingredients = array();

 public function __construct($name, $ingredients) {
 $this->name = $name;
 $this->ingredients = $ingredients;
 }

 public function hasIngredient($ingredient) {
 return in_array($ingredient, $this->ingredients);
 }
}

In Example 6-5, you can see that the __construct() method accepts two arguments
and assigns their values to the properties of the class. The fact that the argument
names match the property names is just a convenience—the PHP engine doesn’t
require that they match. Inside a constructor, the $this keyword refers to the specific
object instance being constructed.

To pass arguments to the constructor, treat the class name like a function name when
you invoke the new operator by putting parentheses and argument values after it.
Example 6-6 shows our class with the constructor in action by creating $soup and
$sandwich objects identical to what we’ve used previously.

Example 6-6. Calling constructors

// Some soup with name and ingredients
$soup = new Entree('Chicken Soup', array('chicken', 'water'));

// A sandwich with name and ingredients
$sandwich = new Entree('Chicken Sandwich', array('chicken', 'bread'));

Constructors | 107

The constructor is invoked by the new operator as part of what the PHP engine does
to create a new object, but the constructor itself doesn’t create the object. This means
that the constructor function doesn’t return a value and can’t use a return value to
signal that something went wrong. That is a job for exceptions, discussed in the next
section.

Indicating a Problem with Exceptions
In Example 6-5, what happens if something other than an array is passed in as the
$ingredients argument? As the code is written in Example 6-5, nothing!
$this->ingredients is assigned the value of $ingredients no matter what it is. But
if it’s not an array, this causes problems when hasIngredient() is called—that
method assumes the $ingredients property is an array.

Constructors are great for verifying that supplied arguments are the right type or
otherwise appropriate. But they need a way to complain if there is a problem. This is
where an exception comes in. An exception is a special object that can be used to indi‐
cate that something exceptional has happened. Creating an exception interrupts the
PHP engine and sets it on a different code path.

Example 6-7 modifies the Entree constructor to throw an exception if the
$ingredients argument is not an array. (“Throwing” an exception means you use an
exception tell the PHP engine that something went wrong.)

Example 6-7. Throwing an exception

class Entree {
 public $name;
 public $ingredients = array();

 public function __construct($name, $ingredients) {
 if (! is_array($ingredients)) {
 throw new Exception('$ingredients must be an array');
 }
 $this->name = $name;
 $this->ingredients = $ingredients;
 }

 public function hasIngredient($ingredient) {
 return in_array($ingredient, $this->ingredients);
 }
}

Exceptions are represented by the Exception class. The first argument to Exception’s
constructor is a string describing what went wrong. So, the line throw new

108 | Chapter 6: Data and Logic Together: Working with Objects

Exception('$ingredients must be an array'); creates a new Exception object
and then hands it to the throw construct in order to interrupt the PHP engine.

If $ingredients is an array, then the code runs just as before. If it’s not an array, then
the exception is thrown. Example 6-8 shows the creation of an Entree object with a
bad $ingredients argument.

Example 6-8. Causing an exception to be thrown

$drink = new Entree('Glass of Milk', 'milk');
if ($drink->hasIngredient('milk')) {
 print "Yummy!";
}

Example 6-8 displays an error message like this (assuming the code is in a file named
exception-use.php and the Entree class definition is in a file named construct-
exception.php):

PHP Fatal error: Uncaught Exception: $ingredients must be an array
in construct-exception.php:9
Stack trace:
#0 exception-use.php(2): Entree->__construct('Glass of Milk', 'milk')
#1 {main}
 thrown in construct-exception.php on line 9

In that error output, there are two separate things to recognize. The first is the
error message from the PHP engine: PHP Fatal error: Uncaught exception

'Exception' with message '$ingredients must be an array' in construct-

exception.php:9. This means that in line 9 of construct-exception.php (the file defin‐
ing the Entree class), an exception was thrown. Because there was no additional code
to deal with that exception (we’ll see how to do that shortly), it’s called “uncaught”
and causes the PHP engine to come to a screaming halt—a “fatal” error that stops
program execution immediately.

The second thing in that error output is a stack trace: a list of all the functions that
were active when the PHP engine stopped. Here there’s just one: the Entree construc‐
tor that got called from new Entree. The {main} line in the stack trace represents the
first level of program execution before anything else runs. You’ll always see that at the
bottom of any stack trace.

It’s good that we prevented hasIngredient() from getting called so it doesn’t operate
on a non-array of ingredients, but completely stopping the program with such a
harsh error message is overkill. The flip side of throwing exceptions is catching them
—grabbing the exception before the PHP engine gets it and bails out.

Indicating a Problem with Exceptions | 109

To handle an exception yourself, do two things:

1. Put the code that might throw an exception inside a try block.
2. Put a catch block after the potentially exception-throwing code in order to han‐

dle the problem.

Example 6-9 adds try and catch blocks to deal with the exception.

Example 6-9. Handling an exception

try {
 $drink = new Entree('Glass of Milk', 'milk');
 if ($drink->hasIngredient('milk')) {
 print "Yummy!";
 }
} catch (Exception $e) {
 print "Couldn't create the drink: " . $e->getMessage();
}

In Example 6-9, the try and catch blocks work together. Each of the statements
inside the try block is run, stopping if an exception is encountered. If that happens,
the PHP engine jumps down to the catch block, setting the variable $e to hold the
Exception object that was created. The code inside the catch block uses the
Exception class’s getMessage() method to retrieve the text of the message given to
the exception when it was created. Example 6-9 prints:

Couldn't create the drink: $ingredients must be an array

Extending an Object
One of the aspects of objects that make them so helpful for organizing your code is
the notion of subclassing, which lets you reuse a class while adding some custom
functionality. A subclass (sometimes called a child class) starts with all the methods
and properties of an existing class (the parent class), but then can change them or add
its own.

For example, consider an entrée that is not just a single dish but a combination of a
few, such as a bowl of soup and a sandwich together. Our existing Entree class would
be forced to model this either by treating “soup” and “sandwich” as ingredients or by
enumerating all of the soup ingredients and sandwich ingredients as ingredients of
this combo. Neither solution is ideal: soup and sandwich themselves are not ingredi‐
ents, and reenumerating all the ingredients would mean we would need to update
multiple places when any ingredient changed.

We can solve the problem more cleanly by making a subclass of Entree that expects
to be given Entree object instances as ingredients and then modifying the subclass’s

110 | Chapter 6: Data and Logic Together: Working with Objects

hasIngredient() method to inspect those object instances for ingredients. The code
for this ComboMeal class is shown in Example 6-10.

Example 6-10. Extending the Entree class

class ComboMeal extends Entree {

 public function hasIngredient($ingredient) {
 foreach ($this->ingredients as $entree) {
 if ($entree->hasIngredient($ingredient)) {
 return true;
 }
 }
 return false;
 }
}

In Example 6-10, the class name, ComboMeal, is followed by extends Entree. This
tells the PHP engine that the ComboMeal class should inherit all of the methods
and properties of the Entree class. To the PHP engine, it’s as if you retyped the defini‐
tion of Entree inside the definition of ComboMeal, but you get that without actually
having to do all that tedious typing. Then, the only things that need to be inside the
curly braces of ComboMeal’s definition are changes or additions. In this case,
the only change is a new hasIngredient() method. Instead of examining
$this->ingredients as an array, it treats it as an array of Entree objects and calls
the hasIngredient() method on each of those objects. If any of those calls return
true, it means that one of the entrées in the combo has the specified ingredient, so
ComboMeal’s hasIngredient() method returns true. If, after iterating through all of
the entrées, nothing has returned true, then the method returns false, which means
that no entrée has the ingredient in it. Example 6-11 shows the subclass at work.

Example 6-11. Using a subclass

// Some soup with name and ingredients
$soup = new Entree('Chicken Soup', array('chicken', 'water'));

// A sandwich with name and ingredients
$sandwich = new Entree('Chicken Sandwich', array('chicken', 'bread'));

// A combo meal
$combo = new ComboMeal('Soup + Sandwich', array($soup, $sandwich));

foreach (['chicken','water','pickles'] as $ing) {
 if ($combo->hasIngredient($ing)) {
 print "Something in the combo contains $ing.\n";
 }
}

Extending an Object | 111

Because both the soup and the sandwich contain chicken, the soup contains water,
but neither contains pickles, Example 6-11 prints:

Something in the combo contains chicken.
Something in the combo contains water.

This works well, but we don’t have any guarantee that the items passed to ComboMeal’s
constructor are really Entree objects. If they’re not, then invoking hasIngredient()
on them could cause an error. To fix this, we need to add a custom constructor to
ComboMeal that checks this condition and also invokes the regular Entree constructor
so that the properties are set properly. A version of ComboMeal with this constructor is
shown in Example 6-12.

Example 6-12. Putting a constructor in a subclass

class ComboMeal extends Entree {

 public function __construct($name, $entrees) {
 parent::__construct($name, $entrees);
 foreach ($entrees as $entree) {
 if (! $entree instanceof Entree) {
 throw new Exception('Elements of $entrees must be Entree objects');
 }
 }
 }

 public function hasIngredient($ingredient) {
 foreach ($this->ingredients as $entree) {
 if ($entree->hasIngredient($ingredient)) {
 return true;
 }
 }
 return false;
 }
}

The constructor in Example 6-12 uses the special syntax parent::__construct() to
refer to the constructor in Entree. Just as $this has a special meaning inside of object
methods, so does parent. It refers to the class of which the current class is a subclass.
Because ComboMeal extends Entree, parent inside of ComboMeal refers to Entree. So,
parent::__construct() inside of ComboMeal refers to the __construct() method
inside the Entree class.

In subclass constructors, it is important to remember that you have to call the parent
constructor explicitly. If you leave out the call to parent::__construct(), the parent
constructor never gets called and its presumably important behavior never gets
executed by the PHP engine. In this case, Entree’s constructor makes sure that
$ingredients is an array and sets the $name and $ingredients properties.

112 | Chapter 6: Data and Logic Together: Working with Objects

1 The instanceof operator also evaluates to true if the provided object is a subclass of the provided class name.
This code will work, for example, with combo meals made up of other combo meals.

After the call to parent::__construct(), ComboMeal’s constructor ensures that each
provided ingredient of the combo is itself an Entree object. It uses the instanceof
operator for this. The expression $entree instanceof Entree evaluates to true if
$entree refers to an object instance of the Entree class.1 If any of the provided ingre‐
dients (which, for a ComboMeal, are really entrées) are not Entree objects, then the
code throws an exception.

Property and Method Visibility
The ComboMeal constructor in Example 6-12 does a great job of ensuring that a
ComboMeal is only given instances of Entree to be its ingredients. But what happens
after that? Subsequent code could change the value of the $ingredients property to
anything—an array of non-Entrees, a number, or even false.

We prevent this problem by changing the visibility of the properties. Instead of
public, we can label them as private or protected. These other visibility settings
don’t change what code inside the class can do—it can always read or write its own
properties. The private visibility prevents any code outside the class from accessing
the property. The protected visibility means that the only code outside the class that
can access the property is code in subclasses.

Example 6-13 shows a modified version of the Entree class in which the $name prop‐
erty is private and the $ingredients property is protected.

Example 6-13. Changing property visibility

class Entree {
 private $name;
 protected $ingredients = array();

 /* Since $name is private, this provides a way to read it */
 public function getName() {
 return $this->name;
 }

 public function __construct($name, $ingredients) {
 if (! is_array($ingredients)) {
 throw new Exception('$ingredients must be an array');
 }
 $this->name = $name;
 $this->ingredients = $ingredients;
 }

Property and Method Visibility | 113

2 Namespaces cover functions and some other things that are not classes, but this section just explores name‐
spaces with classes.

 public function hasIngredient($ingredient) {
 return in_array($ingredient, $this->ingredients);
 }
}

Because $name is private in Example 6-13, there is no way to read or change it from
code outside Entree. The added getName() method provides a way for non-Entree
code to get the value of $name, though. This kind of method is called an accessor. It
provides access to a property that would otherwise be forbidden. In this case, the
combination of private visibility and an accessor that returns the property value lets
any code read the value of $name, but nothing outside of Entree can change $name’s
value once it’s been set.

The $ingredients property, on the other hand, is protected, which allows access to
$ingredients from subclasses. This ensures that the hasIngredient() method in
ComboMeal works properly.

The same visibility settings apply equally to methods as well as properties. Methods
marked public may be invoked by any code. Methods marked private may be
invoked only by other code inside the same class. Methods marked protected may
be invoked only by other code inside the same class or inside subclasses.

Namespaces
Beginning with version 5.4, the PHP engine lets you organize your code into name‐
spaces. Namespaces provide a way to group related code and ensure that names of
classes that you’ve written don’t collide with identically named classes written by
someone else.2

Getting comfortable with namespaces is important so you can incorporate packages
written by others into your programs. Chapter 16 goes into detail about using the
Composer package management system. This section familiarizes you with the syntax
of namespaces.

Think of a namespace as a container that can hold class definitions or other namespa‐
ces. It’s a syntactic convenience, rather than providing new functionality. When you
see the namespace keyword or some backslashes in what appears to be a class name,
you’ve encountered a PHP namespace.

To define a class inside a particular namespace, use the namespace keyword at the top
of a file with a namespace name. Then, a class definition later in the file will define

114 | Chapter 6: Data and Logic Together: Working with Objects

the class inside that namespace. Example 6-14 defines a Fruit class inside the Tiny
namespace.

Example 6-14. Defining a class in a namespace

namespace Tiny;

class Fruit {
 public static function munch($bite) {
 print "Here is a tiny munch of $bite.";
 }
}

To use a class defined in a namespace, you need to incorporate the namespace into
how you refer to the class. The most unambiguous way to do this is to begin with \
(the top-level namespace), then write the name of the namespace the class is in, then
add another \, then write the class name. For example, to invoke munch() on the
Fruit class defined in Example 6-14, write:

\Tiny\Fruit::munch("banana");

Namespaces can also hold other namespaces. If Example 6-14 began with namespace
Tiny\Eating;, then you’d refer to the class as \Tiny\Eating\Fruit.

Without that leading \, how a reference to a class gets resolved depends on the cur‐
rent namespace—whatever namespace is active at the time of the reference. In a PHP
file with no namespace declaration at the top, the current namespace is the top-level
namespace. Class names behave like regular class names that you’ve encountered so
far without namespaces. The namespace keyword, however, changes the current
namespace. A declaration of namespace Tiny; changes the current namespace to
Tiny. That’s why the class Fruit definition in Example 6-14 puts the Fruit class
inside the Tiny namespace.

However, this also means that any other class name reference in that file is resolved
relative to the Tiny namespace. A method inside the Tiny\Fruit class that contains
the code $soup = new Entree('Chicken Soup', array('chicken','water'));

tells the PHP engine to look for an Entree class inside the Tiny namespace. It’s as if
the code were written as $soup = new \Tiny\Entree('Chicken Soup',

array('chicken','water'));. To unambiguously refer to a class in the top-level
namespace, you need a leading \ before the class name.

Typing all those backslashes and namespace names over and over again is painful.
The PHP engine gives you the use keyword to simplify things. Example 6-15 shows
how to use use.

Namespaces | 115

Example 6-15. Using the use keyword

use Tiny\Eating\Fruit as Snack;

use Tiny\Fruit;

// This calls \Tiny\Eating\Fruit::munch();
Snack::munch("strawberry");

// This calls \Tiny\Fruit::munch();
Fruit::munch("orange");

Writing use Tiny\Eating\Fruit as Snack; tells the PHP engine, “For the rest of
this file, when I say Snack as a class name, I really mean \Tiny\Eating\Fruit.”
Without the as, the PHP engine infers the “nickname” for the class from the last ele‐
ment of what is given to use. So, use Tiny\Fruit; tells the PHP engine, “For the rest
of this file, when I say Fruit as a class name, I really mean \Tiny\Fruit.”

These kinds of use declarations are especially helpful with many modern PHP frame‐
works that put their various classes into namespaces and subnamespaces. With a few
use lines at the top of your file, you can transform verbose incantations such as
\Symfony\Component\HttpFoundation\Response to a more concise Response.

Chapter Summary
This chapter covered:

• Understanding how objects help you organize your code
• Defining a class with methods and properties
• Creating an object with the new operator
• Accessing methods and properties with the arrow operator
• Defining and calling a static method
• Initializing an object with a constructor
• Throwing an exception to indicate a problem
• Catching an exception to handle the problem
• Extending a class with a subclass
• Controlling access to properties and methods by changing visibility
• Organizing code into namespaces

116 | Chapter 6: Data and Logic Together: Working with Objects

Exercises
1. Create a class called Ingredient. Each instance of this class represents a single

ingredient. The instance should keep track of an ingredient’s name and its cost.
2. Add a method to your IngredientCost class that changes the cost of an ingredi‐

ent.
3. Make a subclass of the Entree class used in this chapter that accepts Ingredient

objects instead of string ingredient names to specify the ingredients. Give your
Entree subclass a method that returns the total cost of the entrée.

4. Put your Ingredient class into its own namespace and modify your other code
that uses IngredientCost to work properly.

Exercises | 117

CHAPTER 7

Exchanging Information with Users:
Making Web Forms

Form processing is an essential component of almost any web application. Forms are
how users communicate with your server: signing up for a new account, searching a
forum for all the posts about a particular subject, retrieving a lost password, finding a
nearby restaurant or shoemaker, or buying a book.

Using a form in a PHP program is a two-step activity. Step one is to display the form.
This involves constructing HTML that has tags for the appropriate user-interface ele‐
ments in it, such as text boxes, checkboxes, and buttons. If you’re not familiar with
the HTML required to create forms, the “HTML Forms” chapter in Elisabeth Robson
and Eric Freeman’s Head First HTML and CSS (O’Reilly) is a good place to start.

When a user sees a page with a form in it, she inputs the requested information into
the form and then clicks a button or hits Enter to send the form information back to
your server. Processing that submitted form information is step two of the operation.

Example 7-1 is a page that says “Hello” to a user. If the page is loaded in response to a
form submission, then it displays a greeting. Otherwise, the page displays a form with
which a user can submit her name.

Example 7-1. Saying “Hello”

if ('POST' == $_SERVER['REQUEST_METHOD']) {
 print "Hello, ". $_POST['my_name'];
} else {
 print<<<_HTML_
<form method="post" action="$_SERVER[PHP_SELF]">
 Your name: <input type="text" name="my_name" >

<input type="submit" value="Say Hello">

119

http://shop.oreilly.com/product/9780596159924.do

</form>
HTML;
}

Remember the client and server communication picture from Chapter 1? Figure 7-1
shows the client and server communication necessary to display and process the form
in Example 7-1. The first request-and-response pair causes the browser to display the
form. In the second request-and-response pair, the server processes the submitted
form data and the browser displays the results.

Figure 7-1. Displaying and processing a simple form

The response to the first request is some HTML for a form. Figure 7-2 shows what
the browser displays when it receives that response.

120 | Chapter 7: Exchanging Information with Users: Making Web Forms

Figure 7-2. A simple form

The response to the second request is the result of processing the submitted form
data. Figure 7-3 shows the output when the form is submitted with Susannah typed in
the text box.

Figure 7-3. The form, submitted

Exchanging Information with Users: Making Web Forms | 121

1 As discussed in Example 4-19, the array element $_SERVER['PHP_SELF'] goes in the here document without
quotes around the key for its value to be interpolated properly.

The pattern in Example 7-1 of “if form data has been submitted, process it; otherwise,
print out a form” is common in simple programs. When you’re building a basic form,
putting the code to display the form and the code to process the form in the same
page makes it easier to keep the form and its associated logic in sync. As we get to
more complicated forms later in this chapter, we’ll split out the form to separate the
display and the processing logic into separate files.

The form submission is sent back to the same URL that was used to request the form
in the first place. This is because of the special variable that is the value of the action
attribute in the <form> tag: $_SERVER['PHP_SELF']. The $_SERVER auto-global array
holds a variety of information about your server and the current request the PHP
engine is processing. The PHP_SELF element of $_SERVER holds the pathname part of
the current request’s URL. For example, if a PHP script is accessed at http://
www.example.com/store/catalog.php, $_SERVER['PHP_SELF'] is /store/catalog.php1

in that page.

The simple form also makes use of $_SERVER['REQUEST_METHOD']. This array
element is the HTTP method that the web browser used to request the current page.
For regular web pages, it is almost always either GET or POST. A GET usually means
a regular page retrieval and a POST is a form submission. The value of
$_SERVER['REQUEST_METHOD'] is always uppercase, no matter how the value of the
action attribute in the <form> tag is written.

So, testing whether $_SERVER['REQUEST_METHOD'] is POST lets us check whether the
form was submitted or it was a regular page request.

The $_POST array is an auto-global variable that holds submitted form data. The keys
in $_POST are the form element names, and the corresponding values in $_POST are
the values of the form elements. Typing your name into the text box in Example 7-1
and clicking the submit button makes the value of $_POST['my_name'] whatever you
typed into the text box because the name attribute of the text box is my_name.

The structure of Example 7-1 is the kernel of the form processing material in this
chapter. However, it has a flaw: printing unmodified external input—as print
"Hello, ". $_POST['my_name']; does with the value of the my_name form parameter
—is dangerous. Data that comes from outside of your program, such as a submitted
form parameter, can contain embedded HTML or JavaScript. “HTML and JavaScript”
on page 138 explains how to make your program safer by cleaning up external input.

122 | Chapter 7: Exchanging Information with Users: Making Web Forms

The rest of this chapter provides details about the various aspects of form handling.
“Accessing Form Parameters” on page 124 dives into the specifics of handling differ‐
ent kinds of form input, such as form parameters that can submit multiple values.
“Form Processing with Functions” on page 127 lays out a flexible, function-based
structure for working with forms that simplifies some form maintenance tasks. This
function-based structure also lets you check the submitted form data to make sure it
doesn’t contain anything unexpected. “Validating Data” on page 129 explains the dif‐
ferent ways you can check submitted form data. “Displaying Default Values” on page
142 demonstrates how to supply default values for form elements and preserve user-
entered values when you redisplay a form. Finally, “Putting It All Together” on page
144 shows a complete form that incorporates everything in the chapter: function-
based organization, validation and display of error messages, defaults and preserving
user input, and processing submitted data.

Useful Server Variables
In addition to PHP_SELF and REQUEST_METHOD, the $_SERVER auto-global array con‐
tains a number of useful elements that provide information on the web server and the
current request. Table 7-1 lists some of them.

Table 7-1. Entries in $_SERVER

Element Example Description
QUERY_STRING category=kitchen&price=5 The part of the URL after the question mark where the

URL parameters live. The example query string shown is
for the URL http://www.example.com/catalog/store.php?
category=kitchen&price=5.

PATH_INFO /browse Extra path information tacked onto the end of the URL
after a slash. This is a way to pass information to a script
without using the query string. The example
PATH_INFO shown is for the URL http://
www.example.com/catalog/store.php/browse.

SERVER_NAME www.example.com The name of the website on which the PHP engine is
running. If the web server hosts many different virtual
domains, this is the name of the particular virtual domain
that is being accessed.

DOCUMENT_ROOT /usr/local/htdocs The directory on the web server computer that holds the
documents available on the website. If the document root
is /usr/local/htdocs for the website http://
www.example.com, then a request for http://
www.example.com/catalog/store.php corresponds to the
file /usr/local/htdocs/catalog/store.php.

REMOTE_ADDR 175.56.28.3 The IP address of the user making the request to your web
server.

Useful Server Variables | 123

Element Example Description
REMOTE_HOST pool0560.cvx.dialup.veri

zon.net

If your web server is configured to translate user IP
addresses into hostnames, this is the hostname of the user
making the request to your web server. Because this
address-to-name translation is relatively expensive (in
terms of computational time), most web servers do not do
it.

HTTP_REFERERa http://shop.oreilly.com/

product/0636920029335.do

If someone clicked on a link to reach the current URL,
HTTP_REFERER contains the URL of the page that
contained the link. This value can be faked, so don’t use it
as your sole criterion for giving access to private web
pages. It can, however, be useful for finding out who’s
linking to you.

HTTP_USER_AGENT Mozilla/5.0 (Macintosh;

Intel Mac OS X 10.10; rv:

37.0) Gecko/20100101 Fire

fox/37.0

The web browser that retrieved the page. The example
value is the signature of Firefox 37 running on OS X. Like
with HTTP_REFERER, this value can be faked, but is
useful for analysis.

a The correct spelling is HTTP_REFERRER. But it was misspelled in an early Internet specification document, so you
frequently see the three-R version when web programming.

Accessing Form Parameters
At the beginning of every request, the PHP engine sets up some auto-global arrays
that contain the values of any parameters submitted in a form or passed in the URL.
URL and form parameters from GET method forms are put into $_GET. Form parame‐
ters from POST method forms are put into $_POST.

The URL http://www.example.com/catalog.php?product_id=21&category=fryingpan
puts two values into $_GET:

• $_GET['product_id'] is set to 21
• $_GET['category'] is set to fryingpan

Submitting the form in Example 7-2 causes the same values to be put into $_POST,
assuming 21 is entered in the text box and Frying Pan is selected from the menu.

Example 7-2. A two-element form

<form method="POST" action="catalog.php">
<input type="text" name="product_id">
<select name="category">
<option value="ovenmitt">Pot Holder</option>
<option value="fryingpan">Frying Pan</option>
<option value="torch">Kitchen Torch</option>
</select>
<input type="submit" name="submit">
</form>

124 | Chapter 7: Exchanging Information with Users: Making Web Forms

Example 7-3 incorporates the form in Example 7-2 into a complete PHP program
that prints the appropriate values from $_POST after displaying the form. Because the
action attribute of the <form> tag in Example 7-3 is catalog.php, you need to save
the program in a file called catalog.php on your web server. If you save it in a file with
a different name, adjust the action attribute accordingly.

Example 7-3. Printing submitted form parameters

<form method="POST" action="catalog.php">
<input type="text" name="product_id">
<select name="category">
<option value="ovenmitt">Pot Holder</option>
<option value="fryingpan">Frying Pan</option>
<option value="torch">Kitchen Torch</option>
</select>
<input type="submit" name="submit">
</form>
Here are the submitted values:

product_id: <?php print $_POST['product_id'] ?? '' ?>

category: <?php print $_POST['category'] ?? '' ?>

To avoid a warning message from PHP when no POST variables have been submitted,
Example 7-3 uses ??, the null coalesce operator.

The code $_POST['product_id'] ?? '' evaluates to whatever’s in $_POST['pro
duct_id'] if there’s something there, or the empty string ('') otherwise. Without it,
you’d see messages like PHP Notice: Undefined index: product_id when the page
is retrieved by the GET method and no POST variables have been set up.

The null coalesce operator was introduced in PHP 7. If you’re using
an older version of PHP, use isset() instead:

if (isset($_POST['product_id'])) {
 print $_POST['product_id'];
 }

A form element that can have multiple values needs to have a name that ends in [].
This tells the PHP engine to treat the multiple values as array elements. The <select>
menu in Example 7-4 has its submitted values put into $_POST['lunch'].

Example 7-4. Multiple-valued form elements

<form method="POST" action="eat.php">
<select name="lunch[]" multiple>
<option value="pork">BBQ Pork Bun</option>

Accessing Form Parameters | 125

<option value="chicken">Chicken Bun</option>
<option value="lotus">Lotus Seed Bun</option>
<option value="bean">Bean Paste Bun</option>
<option value="nest">Bird-Nest Bun</option>
</select>
<input type="submit" name="submit">
</form>

If the form in Example 7-4 is submitted with Chicken Bun and Bird-Nest Bun
selected, then $_POST['lunch'] becomes a two-element array, with element values
chicken and nest. Access these values using the regular multidimensional array syn‐
tax. Example 7-5 incorporates the form from Example 7-4 into a complete program
that prints out each value selected in the menu. (The same rule applies here to the
filename and the action attribute. Save the code in Example 7-5 in a file called
eat.php or adjust the action attribute of the <form> tag to the correct filename.)

Example 7-5. Accessing multiple submitted values

<form method="POST" action="eat.php">
<select name="lunch[]" multiple>
<option value="pork">BBQ Pork Bun</option>
<option value="chicken">Chicken Bun</option>
<option value="lotus">Lotus Seed Bun</option>
<option value="bean">Bean Paste Bun</option>
<option value="nest">Bird-Nest Bun</option>
</select>
<input type="submit" name="submit">
</form>
Selected buns:

<?php
if (isset($_POST['lunch'])) {
 foreach ($_POST['lunch'] as $choice) {
 print "You want a $choice bun.
";
 }
}
?>

With Chicken Bun and Bird-Nest Bun selected in the menu, Example 7-5 prints
(after the form):

Selected buns:
You want a chicken bun.
You want a nest bun.

You can think of a form element named lunch[] as translating into the following
PHP code when the form is submitted (assuming the submitted values for the form
element are chicken and nest):

126 | Chapter 7: Exchanging Information with Users: Making Web Forms

$_POST['lunch'][] = 'chicken';
$_POST['lunch'][] = 'nest';

As you saw in Example 4-6, this syntax adds an element to the end of an array.

Form Processing with Functions
The basic form in Example 7-1 can be made more flexible by putting the display code
and the processing code in separate functions. Example 7-6 is a version of
Example 7-1 with functions.

Example 7-6. Saying “Hello” with functions

// Logic to do the right thing based on
// the request method
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 process_form();
} else {
 show_form();
}

// Do something when the form is submitted
function process_form() {
 print "Hello, ". $_POST['my_name'];
}

// Display the form
function show_form() {
 print<<<_HTML_
<form method="POST" action="$_SERVER[PHP_SELF]">
Your name: <input type="text" name="my_name">

<input type="submit" value="Say Hello">
</form>
HTML;
}

To change the form or what happens when it’s submitted, change the body of
process_form() or show_form().

Breaking up the form processing and display into functions also makes it easy to add
a data validation stage. Data validation, covered in detail in “Validating Data” on page
129, is an essential part of any web application that accepts input from a form. Data
should be validated after a form is submitted, but before it is processed. Example 7-7
adds a validation function to Example 7-6.

Form Processing with Functions | 127

Example 7-7. Validating form data

// Logic to do the right thing based on
// the request method
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (validate_form()) {
 process_form();
 } else {
 show_form();
 }
} else {
 show_form();
}

// Do something when the form is submitted
function process_form() {
 print "Hello, ". $_POST['my_name'];
}

// Display the form
function show_form() {
 print<<<_HTML_
<form method="POST" action="$_SERVER[PHP_SELF]">
Your name: <input type="text" name="my_name">

<input type="submit" value="Say Hello">
</form>
HTML;
}

// Check the form data
function validate_form() {
 // Is my_name at least 3 characters long?
 if (strlen($_POST['my_name']) < 3) {
 return false;
 } else {
 return true;
 }
}

The validate_form() function in Example 7-7 returns false if $_POST['my_name']
is less than three characters long, and returns true otherwise. At the top of the page,
validate_form() is called when the form is submitted. If it returns true, then
process_form() is called. Otherwise, show_form() is called. This means that if you
submit the form with a name that’s at least three characters long, such as Bob or
Bartholomew, the same thing happens as in previous examples: a Hello, Bob or
Hello, Bartholomew message is displayed. If you submit a short name such as BJ or
leave the text box blank, then validate_form() returns false and process_form() is
never called. Instead show_form() is called and the form is redisplayed.

128 | Chapter 7: Exchanging Information with Users: Making Web Forms

Example 7-7 doesn’t tell you what’s wrong if you enter a name that doesn’t pass the
test in validate_form(). Ideally, when someone submits data that fails a validation
test, you should explain the error when you redisplay the form and, if appropriate,
redisplay the value entered inside the appropriate form element. The following sec‐
tion shows you how to display error messages, and “Displaying Default Values” on
page 142 explains how to safely redisplay user-entered values.

Validating Data
Data validation is one of the most important parts of a web application. Weird,
wrong, and damaging data shows up where you least expect it. Users can be careless,
malicious, and fabulously more creative (often accidentally) than you may ever imag‐
ine when you are designing your application. Even a a Clockwork Orange–style forced
viewing of a filmstrip on the dangers of unvalidated data would not over-emphasize
how crucial it is that you stringently validate any piece of data coming into your
application from an external source. Some of these external sources are obvious: most
of the input to your application is probably coming from a web form. But there are
lots of other ways data can flow into your programs as well: databases that you share
with other people or applications, web services and remote servers, even URLs and
their parameters.

As mentioned earlier, Example 7-7 doesn’t indicate what’s wrong with the form if
the check in validate_form() fails. Example 7-8 alters validate_form() and
show_form() to manipulate and print an array of possible error messages.

Example 7-8. Displaying error messages with the form

// Logic to do the right thing based on
// the request method
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 if ($form_errors = validate_form()) {
 show_form($form_errors);
 } else {
 process_form();
 }
} else {
 show_form();
}

// Do something when the form is submitted
function process_form() {
 print "Hello, ". $_POST['my_name'];
}

// Display the form
function show_form($errors =) {

Validating Data | 129

 // If some errors were passed in, print them out
 if ($errors) {
 print 'Please correct these errors: ';
 print implode('', $errors);
 print '';
 }

 print<<<_HTML_
<form method="POST" action="$_SERVER[PHP_SELF]">
Your name: <input type="text" name="my_name">

<input type="submit" value="Say Hello">
</form>
HTML;
}

// Check the form data
function validate_form() {
 // Start with an empty array of error messages
 $errors = array();

 // Add an error message if the name is too short
 if (strlen($_POST['my_name']) < 3) {
 $errors[] = 'Your name must be at least 3 letters long.';
 }

 // Return the (possibly empty) array of error messages
 return $errors;
}

The code in Example 7-8 takes advantage of the fact that an empty array evaluates to
false. The line if ($form_errors = validate_form()) decides whether to call
show_form() again and pass it the error array, or to call process_form(). The array
that validate_form() returns is assigned to $form_errors. The truth value of the
if() test expression is the result of that assignment, which, as you saw in “Under‐
standing true and false” on page 40, is the value being assigned. So, the if() test
expression is true if $form_errors has some elements in it, and false if
$form_errors is empty. If validate_form() encounters no errors, then the array it
returns is empty.

It is a good idea to do validation checks on all of the form elements in one pass,
instead of redisplaying the form immediately when you find a single element that isn’t
valid. A user should find out all of his errors when he submits a form instead of hav‐
ing to submit the form over and over again, with a new error message revealed on
each submission. The validate_form() function in Example 7-8 does this by adding
an element to $errors for each problem with a form element. Then, show_form()
prints out a list of the error messages.

130 | Chapter 7: Exchanging Information with Users: Making Web Forms

The validation methods shown here all go inside the validate_form() function. If a
form element doesn’t pass the test, then a message is added to the $errors array.

Required Elements
To make sure something has been entered into a required element, check the ele‐
ment’s length with strlen(), as in Example 7-9.

Example 7-9. Verifying a required element

if (strlen($_POST['email']) == 0) {
 $errors[] = "You must enter an email address.";
}

It is important to use strlen() when checking a required element instead of testing
the value itself in an if() statement. A test such as if (! $_POST['quantity'])
treats a value that evaluates to false as an error. Using strlen() lets users enter a
value such as 0 into a required element.

Numeric or String Elements
To ensure that a submitted value is an integer or floating-point number, use
filter_input() function with an appropriate filter. With filter_input, you tell
PHP what kind of input to operate on, the name of the submitted value in the input,
and what rule you want the value to conform to. The FILTER_VALIDATE_INT and
FILTER_VALIDATE_FLOAT filters check for integers and floating-point numbers,
respectively.

Example 7-10 shows the integer filter in use.

Example 7-10. Filtering integer input

$ok = filter_input(INPUT_POST, 'age', FILTER_VALIDATE_INT);
if (is_null($ok) || ($ok === false)) {
 $errors[] = 'Please enter a valid age.';
}

In Example 7-10, filter_input(INPUT_POST, 'age', FILTER_VALIDATE_INT) tells
the PHP engine to examine submitted form data (INPUT_POST), specifically the
form field named age, and check it against the integer validation filter
(FILTER_VALIDATE_INT). The filter_input() function gets told where to look
(INPUT_POST) and what field to check (age) rather than being given an entry in an
array such as $_POST['age'] so that it can properly handle missing values and avoid
being confused if your PHP program changes values in $_POST.

Validating Data | 131

If filter_input() sees that the specified input element is valid, it returns the value. If
the specified input element is missing, it returns null. If the specified input element is
present but not valid according to the filter, the function returns false. In the if()
test expression in Example 7-10, $ok is compared to false with === (three equals
signs). This is called the identity operator. It compares values and evaluates to true if
the two values are the same and have the same type. As you saw in Example 3-11,
when you compare two values of different types (such as string and integer, or integer
and boolean), the PHP engine may change the type of the values to compare them. In
this case, if the value of the submitted input was 0, which is a valid integer, $ok would
be 0. Then the regular equality comparison between $ok and false would be true,
since 0 evaluates to false. With the identity operator, the comparison is false,
because the types don’t match.

This means that the $errors array gets an error message added to it if the age form
element is either not present (is_null($ok)) or not an integer ($ok === false).

Filtering floating-point numbers works similarly, as shown in Example 7-11.

Example 7-11. Filtering floating-point input

$ok = filter_input(INPUT_POST, 'price', FILTER_VALIDATE_FLOAT);
if (is_null($ok) || ($ok === false)) {
 $errors[] = 'Please enter a valid price.';
}

When validating elements (particularly string elements), it is often helpful to remove
leading and trailing whitespace with the trim() function. You can combine this with
the strlen() test for required elements to disallow an entry of just whitespace char‐
acters. The combination of trim() and strlen() is shown in Example 7-12.

Example 7-12. Combining trim() and strlen()

if (strlen(trim($_POST['name'])) == 0) {
 $errors[] = "Your name is required.";
}

All URL and submitted form data arrives at the PHP engine as strings. The
filter_input() function, if given a numeric filter (and a valid value), returns the
value converted to an integer or floating-point number. Like working with a
whitespace-trimmed string, using these converted values rather than $_POST directly
is often convenient in your program. A good way to accomplish that is to have your
validation function build an array of converted values to work with. This is shown in
Example 7-13.

132 | Chapter 7: Exchanging Information with Users: Making Web Forms

Example 7-13. Building an array of modified input data

function validate_form() {
 $errors = array();
 $input = array();

 $input['age'] = filter_input(INPUT_POST, 'age', FILTER_VALIDATE_INT);
 if (is_null($input['age']) || ($input['age'] === false)) {
 $errors[] = 'Please enter a valid age.';
 }

 $input['price'] = filter_input(INPUT_POST, 'price', FILTER_VALIDATE_FLOAT);
 if (is_null($input['price']) || ($input['price'] === false)) {
 $errors[] = 'Please enter a valid price.';
 }

 // Use the null coalesce operator in case $_POST['name'] isn't set
 $input['name'] = trim($_POST['name'] ?? '');
 if (strlen($input['name']) == 0) {
 $errors[] = "Your name is required.";
 }

 return array($errors, $input);
}

The validate_form() function in Example 7-13 builds up the $input array, putting
values into it as they are checked. It also builds up the $errors array if there are any
problems. Having created both arrays, it needs to return both so that the rest of the
program can use $input, not just $errors. To do that, it bundles them up into a two-
element array and returns that.

If validate_form() is returning both input and errors, the code calling it must be
modified to take that into account. Example 7-14 shows a modified version of the
beginning of Example 7-8 that handles both arrays returned from validate_form().

Example 7-14. Handling errors and modified input data

// Logic to do the right thing based on the request method
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($form_errors, $input) = validate_form();
 if ($form_errors) {
 show_form($form_errors);
 } else {
 process_form($input);
 }
} else {
 show_form();
}

Validating Data | 133

In Example 7-14, the list() construct is used to destructure the return value from
validate_form(). Because we know that validate_form() will always return
an array with two elements (the first element is the possibly empty array of error
messages and the second element is the array of modified input data),
list($form_errors, $input) tells the PHP engine to put the first element of that
returned array into the $form_errors variable and the second element into $input.
Having those separate arrays in separate variables makes the code easier to read.

Once the returned arrays are properly handled, the logic is similar. If the $errors
array is not empty, then show_form() is called with the $errors array as an argument.
Otherwise, the form processing function is called. One slight difference is that now
the form processing function is passed the array of modified input values to use. This
means that process_form() should now refer to $input['my_name'] rather than
$_POST['my_name'] to find values to print.

Number Ranges
To check whether an integer falls within a certain range, use the min_range and
max_range options of the FILTER_VALIDATE_INT filter. The options get passed as a
fourth argument to filter_input(), as shown in Example 7-15.

Example 7-15. Checking an integer range

$input['age'] = filter_input(INPUT_POST, 'age', FILTER_VALIDATE_INT,
 array('options' => array('min_range' => 18,
 'max_range' => 65)));
if (is_null($input['age']) || ($input['age'] === false)) {
 $errors[] = 'Please enter a valid age between 18 and 65.';
}

Notice that the array of options and their values are not themselves the fourth argu‐
ment to filter_input(). That argument is a one-element array with a key of
options and a value of the actual array of options and their values.

The FILTER_VALIDATE_FLOAT filter doesn’t support the min_range and max_range
options, so you need to do the comparisons yourself:

$input['price'] = filter_input(INPUT_POST, 'price', FILTER_VALIDATE_FLOAT);
if (is_null($input['price']) || ($input['price'] === false) ||
 ($input['price'] < 10.00) || ($input['price'] > 50.00)) {
 $errors[] = 'Please enter a valid price between $10 and $50.';
}

To test a date range, convert the submitted date value into a DateTime object and then
check that its value is appropriate (for more information on DateTime objects and the
checkdate() functions used in Example 7-16, see Chapter 15). Because DateTime

134 | Chapter 7: Exchanging Information with Users: Making Web Forms

objects encapsulate all the bits of information necessary to represent a point in time,
you don’t have to do anything special when using a range that spans a month or
year boundary. Example 7-16 checks to see whether a supplied date is less than six
months old.

Example 7-16. Checking a date range

// Make a DateTime object for 6 months ago
$range_start = new DateTime('6 months ago');
// Make a DateTime object for right now
$range_end = new DateTime();

// 4-digit year is in $_POST['year']
// 2-digit month is in $_POST['month']
// 2-digit day is is $_POST['day']
$input['year'] = filter_input(INPUT_POST, 'year', FILTER_VALIDATE_INT,
 array('options' => array('min_range' => 1900,
 'max_range' => 2100)));
$input['month'] = filter_input(INPUT_POST, 'month', FILTER_VALIDATE_INT,
 array('options' => array('min_range' => 1,
 'max_range' => 12)));
$input['day'] = filter_input(INPUT_POST, 'day', FILTER_VALIDATE_INT,
 array('options' => array('min_range' => 1,
 'max_range' => 31)));
// No need to use === to compare to false since 0 is not a valid
// choice for year, month, or day. checkdate() makes sure that
// the number of days is valid for the given month and year.
if ($input['year'] && input['month'] && input['day'] &&
 checkdate($input['month'], $input['day'], $input['year'])) {
 $submitted_date = new DateTime(strtotime($input['year'] . '-' .
 $input['month'] . '-' .
 $input['day']));
 if (($range_start > $submitted_date) || ($range_end < $submitted_date)) {
 $errors[] = 'Please choose a date less than six months old.';
 }
} else {
 // This happens if someone omits one of the form parameters or submits
 // something like February 31.
 $errors[] = 'Please enter a valid date.';
}

Email Addresses
Checking an email address is arguably the most common form validation task. There
is, however, no perfect one-step way to make sure an email address is valid, since
“valid” could mean different things depending on your goal. If you truly want to
make sure that someone is giving you a working email address, and that the person
providing it controls that address, you need to do two things. First, when the email
address is submitted, send a message containing a random string to that address. In

Validating Data | 135

the message, tell the user to submit the random string in a form on your site. Or, you
can include a URL in the message that the user can just click on, which has the code
embedded into it. If the code is submitted (or the URL is clicked on), then you know
that the person who received the message and controls the email address submitted it
to your site (or at least is aware of and approves of the submission).

If you don’t want to go to all the trouble of verifying the email address with a separate
message, there is still an easy syntax check you can do in your form validation code to
weed out mistyped addresses. The FILTER_VALIDATE_EMAIL filter checks strings
against the rules for valid email addresses, as shown in Example 7-17.

Example 7-17. Checking the syntax of an email address

$input['email'] = filter_input(INPUT_POST, 'email', FILTER_VALIDATE_EMAIL);
if (! $input['email']) {
 $errors[] = 'Please enter a valid email address';
}

In Example 7-17, the simpler validity check if (! $input['email']) is fine because
any submitted strings that would evaluate to false (such as the empty string or 0) are
also invalid email addresses.

<select> Menus
When you use a <select> menu in a form, you need to ensure that the submitted
value for the menu element is one of the permitted choices in the menu. Although a
user can’t submit an off-menu value using a mainstream, well-behaved browser such
as Firefox or Chrome, an attacker can construct a request containing any arbitrary
value without using a browser.

To simplify display and validation of <select> menus, put the menu choices in an
array. Then, iterate through that array to display the <select> menu inside the
show_form() function. Use the same array in validate_form() to check the submit‐
ted value. Example 7-18 shows how to display a <select> menu with this technique.

Example 7-18. Displaying a <select> menu

$sweets = array('Sesame Seed Puff','Coconut Milk Gelatin Square',
 'Brown Sugar Cake','Sweet Rice and Meat');

function generate_options($options) {
 $html = '';
 foreach ($options as $option) {
 $html .= "<option>$option</option>\n";
 }
 return $html;
}

136 | Chapter 7: Exchanging Information with Users: Making Web Forms

// Display the form
function show_form() {
 $sweets = generate_options($GLOBALS['sweets']);
 print<<<_HTML_
<form method="post" action="$_SERVER[PHP_SELF]">
Your Order: <select name="order">
$sweets
</select>

<input type="submit" value="Order">
</form>
HTML;
}

The HTML that show_form() in Example 7-18 prints is:

<form method="post" action="order.php">
Your Order: <select name="order">
<option>Sesame Seed Puff</option>
<option>Coconut Milk Gelatin Square</option>
<option>Brown Sugar Cake</option>
<option>Sweet Rice and Meat</option>

</select>

<input type="submit" value="Order">
</form>

Inside validate_form(), use the array of <select> menu options like this:

$input['order'] = $_POST['order'];
if (! in_array($input['order'], $GLOBALS['sweets'])) {
 $errors[] = 'Please choose a valid order.';
}

If you want a <select> menu with different displayed choices and option values, you
need to use a more complicated array. Each array element key is a value attribute for
one option. The corresponding array element value is the displayed choice for that
option. In Example 7-19, the option values are puff, square, cake, and ricemeat.
The displayed choices are Sesame Seed Puff, Coconut Milk Gelatin Square, Brown
Sugar Cake, and Sweet Rice and Meat.

Example 7-19. A <select> menu with different choices and values

$sweets = array('puff' => 'Sesame Seed Puff',
 'square' => 'Coconut Milk Gelatin Square',
 'cake' => 'Brown Sugar Cake',
 'ricemeat' => 'Sweet Rice and Meat');

function generate_options_with_value ($options) {

Validating Data | 137

 $html = '';
 foreach ($options as $value => $option) {
 $html .= "<option value=\"$value\">$option</option>\n";
 }
 return $html;
}

// Display the form
function show_form() {
 $sweets = generate_options_with_value($GLOBALS['sweets']);
 print<<<_HTML_
<form method="post" action="$_SERVER[PHP_SELF]">
Your Order: <select name="order">
$sweets
</select>

<input type="submit" value="Order">
</form>
HTML;
}

The form displayed by Example 7-19 is as follows:

<form method="post" action="order.php">
Your Order: <select name="order">
<option value="puff">Sesame Seed Puff</option>
<option value="square">Coconut Milk Gelatin Square</option>
<option value="cake">Brown Sugar Cake</option>
<option value="ricemeat">Sweet Rice and Meat</option>

</select>

<input type="submit" value="Order">
</form>

The submitted value for the <select> menu in Example 7-19 should be puff, square,
cake, or ricemeat. Example 7-20 shows how to verify this in validate_form().

Example 7-20. Checking a <select> menu submission value

$input['order'] = $_POST['order'];
if (! array_key_exists($input['order'], $GLOBALS['sweets'])) {
 $errors[] = 'Please choose a valid order.';
}

HTML and JavaScript
Submitted form data that contains HTML or JavaScript can cause big problems. Con‐
sider a simple blog application that lets users submit comments on a blog post page
and then displays a list of those comments below the blog post. If users behave nicely

138 | Chapter 7: Exchanging Information with Users: Making Web Forms

and enter only comments containing plain text, the page remains benign. One user
submits Cool page! I like how you list the different ways to cook fish.
When you come along to browse the page, that’s what you see.

The situation is more complicated when the submissions are not just plain text. If an
enthusiastic user submits This page rules!!!! as a comment, and it is
redisplayed verbatim by the application, then you see rules!!!! in bold when you
browse the page. Your web browser can’t tell the difference between HTML tags that
come from the application itself (perhaps laying out the comments in a table or a list)
and HTML tags that happen to be embedded in the comments that the application
is printing.

Although seeing bold text instead of plain text is a minor annoyance, displaying
unfiltered user input leaves the application open to giving you a much larger head‐
ache. Instead of tags, one user’s submission could contain a malformed or
unclosed tag (such as) that prevents your browser
from displaying the page properly. Even worse, that submission could contain Java‐
Script code that, when executed by your web browser as you look at the page, does
nasty stuff such as send a copy of your cookies to a stranger’s email box or surrepti‐
tiously redirect you to another web page.

The application acts as a facilitator, letting a malicious user upload some HTML or
JavaScript that is later run by an unwitting user’s browser. This kind of problem is
called a cross-site scripting attack because the poorly written blog application allows
code from one source (the malicious user) to masquerade as coming from another
place (the application hosting the comments).

To prevent cross-site scripting attacks in your programs, never display unmodified
external input. Either remove suspicious parts (such as HTML tags) or encode special
characters so that browsers don’t act on embedded HTML or JavaScript. PHP gives
you two functions that make these tasks simple. The strip_tags() function removes
HTML tags from a string, and the htmlentities() function encodes special HTML
characters.

Example 7-21 demonstrates strip_tags().

Example 7-21. Stripping HTML tags from a string

// Remove HTML from comments
$comments = strip_tags($_POST['comments']);
// Now it's OK to print $comments
print $comments;

Validating Data | 139

If $_POST['comments'] contains

I
love sweet <div
class="fancy">rice</div> &
tea.

then Example 7-21 prints:

I love sweet rice & tea.

All HTML tags and their attributes are removed, but the plain text between the tags is
left intact. The strip_tags() function is very convenient, but it behaves poorly with
mismatched < and > characters. For example, it turns I <3 Monkeys into I . It starts
stripping once it sees that < and never stops because there’s no corresponding <.

Encoding instead of stripping the tags often gives better results. Example 7-22 dem‐
onstrates encoding with htmlentities().

Example 7-22. Encoding HTML entities in a string

$comments = htmlentities($_POST['comments']);
// Now it's OK to print $comments
print $comments;

If $_POST['comments'] contains

I
love sweet <div
class="fancy">rice</div> &
tea

then Example 7-22 prints:

I love sweet <div class="fancy
">rice</div> & tea.

The characters that have a special meaning in HTML (<, >, &, and ") have been
changed into their entity equivalents:

• < to <
• > to >
• & to &
• " to "

When a browser sees <, it prints out a < character instead of thinking “OK, here
comes an HTML tag.” This is the same idea (but with a different syntax) as escaping a
" or $ character inside a double-quoted string, as you saw in “Text” on page 19.
Figure 7-4 shows what the output of Example 7-22 looks like in a web browser.

140 | Chapter 7: Exchanging Information with Users: Making Web Forms

In most applications, you should use htmlentities() to sanitize external input. This
function doesn’t throw away any content, and it also protects against cross-site script‐
ing attacks. A discussion board where users post messages, for example, about HTML
(“What does the <div> tag do?”) or algebra (“If x<y, is 2x>z?”) wouldn’t be very use‐
ful if those posts were run through strip_tags(). The questions would be printed as
“What does the tag do?” and “If xz?”

Figure 7-4. Displaying entity-encoded text

Beyond Syntax
Most of the validation strategies discussed in this chapter so far check the syntax of a
submitted value. They make sure that what’s submitted matches a certain format.
However, sometimes you want to make sure that a submitted value has not just the
correct syntax, but an acceptable meaning as well. The <select> menu validation
does this. Instead of just assuring that the submitted value is a string, it matches it
against a specific array of values. The confirmation-message strategy for checking
email addresses is another example of checking for more than syntax. If you ensure
only that a submitted email address has the correct form, a mischievous user can pro‐
vide an address such as president@whitehouse.gov that almost certainly doesn’t
belong to her. The confirmation message makes sure that the meaning of the address
—i.e., “this email address belongs to the user providing it”—is correct.

Validating Data | 141

Displaying Default Values
Sometimes, you want to display a form with a value already in a text box or with pre‐
selected checkboxes, radio buttons, or <select> menu items. Additionally, when you
redisplay a form because of an error, it is helpful to preserve any information that a
user has already entered. Example 7-23 shows the code to do this. It belongs at the
beginning of show_form() and makes $defaults the array of values to use with the
form elements.

Example 7-23. Building an array of defaults

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 $defaults = $_POST;
} else {
 $defaults = array('delivery' => 'yes',
 'size' => 'medium',
 'main_dish' => array('taro','tripe'),
 'sweet' => 'cake');
}

If $_SERVER['REQUEST_METHOD'] is POST, that means the form has been submitted. In
that case, the defaults should come from whatever the user submitted. Otherwise, you
can set your own defaults. For most form parameters, the default is a string or a num‐
ber. For form elements that can have more than one value, such as the multivalued
<select> menu main_dish, the default value is an array.

After setting the defaults, provide the appropriate value from $defaults when print‐
ing out the HTML tag for the form element. Remember to encode the defaults with
htmlentities() when necessary in order to prevent cross-site scripting attacks.
Because of the structure of the HTML tags, you need to treat text boxes, <select>
menus, text areas, and checkboxes/radio buttons differently.

For text boxes, set the value attribute of the <input> tag to the appropriate element
of $defaults. Example 7-24 shows how to do this.

Example 7-24. Setting a default value in a text box

print '<input type="text" name="my_name" value="' .
 htmlentities($defaults['my_name']). '">';

For multiline text areas, put the entity-encoded value between the <textarea> and
</textarea> tags, as shown in Example 7-25.

142 | Chapter 7: Exchanging Information with Users: Making Web Forms

Example 7-25. Setting a default value in a multiline text area

print '<textarea name="comments">';
print htmlentities($defaults['comments']);
print '</textarea>';

For <select> menus, add a check to the loop that prints out the <option> tags so that
it prints a selected attribute when appropriate. Example 7-26 contains the code to
do this for a single-valued <select> menu.

Example 7-26. Setting a default value in a <select> menu

$sweets = array('puff' => 'Sesame Seed Puff',
 'square' => 'Coconut Milk Gelatin Square',
 'cake' => 'Brown Sugar Cake',
 'ricemeat' => 'Sweet Rice and Meat');

print '<select name="sweet">';
// > is the option value, $label is what's displayed
foreach ($sweets as $option => $label) {
 print '<option value="' .$option .'"';
 if ($option == $defaults['sweet']) {
 print ' selected';
 }
 print "> $label</option>\n";
}
print '</select>';

To set defaults for a multivalued <select> menu, you need to convert the array of
defaults into an associative array in which each key is a choice that should be selected.
Then, print the selected attribute for the options found in that associative array.
Example 7-27 demonstrates how to do this.

Example 7-27. Setting defaults in a multivalued <select> menu

$main_dishes = array('cuke' => 'Braised Sea Cucumber',
 'stomach' => "Sauteed Pig's Stomach",
 'tripe' => 'Sauteed Tripe with Wine Sauce',
 'taro' => 'Stewed Pork with Taro',
 'giblets' => 'Baked Giblets with Salt',
 'abalone' => 'Abalone with Marrow and Duck Feet');

print '<select name="main_dish[]" multiple>';

$selected_options = array();
foreach ($defaults['main_dish'] as $option) {
 $selected_options[$option] = true;
}

Displaying Default Values | 143

// print out the <option> tags
foreach ($main_dishes as $option => $label) {
 print '<option value="' . htmlentities($option) . '"';
 if (array_key_exists($option, $selected_options)) {
 print ' selected';
 }
 print '>' . htmlentities($label) . '</option>';
 print "\n";
}
print '</select>';

For checkboxes and radio buttons, add a checked attribute to the <input> tag. The
syntax for checkboxes and radio buttons is identical except for the type attribute.
Example 7-28 prints a default-aware checkbox named delivery and three default-
aware radio buttons, each named size and each with a different value.

Example 7-28. Setting defaults for checkboxes and radio buttons

print '<input type="checkbox" name="delivery" value="yes"';
if ($defaults['delivery'] == 'yes') { print ' checked'; }
print '> Delivery?';

$checkbox_options = array('small' => 'Small',
 'medium' => 'Medium',
 'large' => 'Large');

foreach ($checkbox_options as $value => $label) {
 print '<input type="radio" name="size" value="'.$value.'"';
 if ($defaults['size'] == $value) { print ' checked'; }
 print "> $label ";
}

Putting It All Together
Turning the humble web form into a feature-packed application with data validation,
printing default values, and processing the submitted results might seem like an
intimidating task. To ease your burden, this section contains a complete example of a
program that does it all:

• Displaying a form, including default values
• Validating the submitted data
• Redisplaying the form with error messages and preserved user input if the sub‐

mitted data isn’t valid
• Processing the submitted data if it is valid

144 | Chapter 7: Exchanging Information with Users: Making Web Forms

The do-it-all example relies on a class containing some helper functions to simplify
form element display and processing. This class is listed in Example 7-29.

Example 7-29. Form element display helper class

class FormHelper {
 protected $values = array();

 public function __construct($values = array()) {
 if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 $this->values = $_POST;
 } else {
 $this->values = $values;
 }
 }

 public function input($type, $attributes = array(), $isMultiple = false) {
 $attributes['type'] = $type;
 if (($type == 'radio') || ($type == 'checkbox')) {
 if ($this->isOptionSelected($attributes['name'] ?? null,
 $attributes['value'] ?? null)) {
 $attributes['checked'] = true;
 }
 }
 return $this->tag('input', $attributes, $isMultiple);
 }

 public function select($options, $attributes = array()) {
 $multiple = $attributes['multiple'] ?? false;
 return
 $this->start('select', $attributes, $multiple) .
 $this->options($attributes['name'] ?? null, $options) .
 $this->end('select');
 }

 public function textarea($attributes = array()) {
 $name = $attributes['name'] ?? null;
 $value = $this->values[$name] ?? '';
 return $this->start('textarea', $attributes) .
 htmlentities($value) .
 $this->end('textarea');
 }

 public function tag($tag, $attributes = array(), $isMultiple = false) {
 return "<$tag {$this->attributes($attributes, $isMultiple)} />";
 }
 public function start($tag, $attributes = array(), $isMultiple = false) {
 // <select> and <textarea> tags don't get value attributes on them
 $valueAttribute = (! (($tag == 'select')||($tag == 'textarea')));
 $attrs = $this->attributes($attributes, $isMultiple, $valueAttribute);
 return "<$tag $attrs>";

Putting It All Together | 145

 }
 public function end($tag) {
 return "</$tag>";
 }

 protected function attributes($attributes, $isMultiple,
 $valueAttribute = true) {
 $tmp = array();
 // If this tag could include a value attribute and it
 // has a name and there's an entry for the name
 // in the values array, then set a value attribute
 if ($valueAttribute && isset($attributes['name']) &&
 array_key_exists($attributes['name'], $this->values)) {
 $attributes['value'] = $this->values[$attributes['name']];
 }
 foreach ($attributes as $k => $v) {
 // True boolean value means boolean attribute
 if (is_bool($v)) {
 if ($v) { $tmp[] = $this->encode($k); }
 }
 // Otherwise k=v
 else {
 $value = $this->encode($v);
 // If this is an element that might have multiple values,
 // tack [] onto its name
 if ($isMultiple && ($k == 'name')) {
 $value .= '[]';
 }
 $tmp[] = "$k=\"$value\"";
 }
 }
 return implode(' ', $tmp);
 }

 protected function options($name, $options) {
 $tmp = array();
 foreach ($options as $k => $v) {
 $s = "<option value=\"{$this->encode($k)}\"";
 if ($this->isOptionSelected($name, $k)) {
 $s .= ' selected';
 }
 $s .= ">{$this->encode($v)}</option>";
 $tmp[] = $s;
 }
 return implode('', $tmp);
 }

 protected function isOptionSelected($name, $value) {
 // If there's no entry for $name in the values array,
 // then this option can't be selected
 if (! isset($this->values[$name])) {
 return false;

146 | Chapter 7: Exchanging Information with Users: Making Web Forms

 }
 // If the entry for $name in the values array is itself
 // an array, check if $value is in that array
 else if (is_array($this->values[$name])) {
 return in_array($value, $this->values[$name]);
 }
 // Otherwise, compare $value to the entry for $name
 // in the values array
 else {
 return $value == $this->values[$name];
 }
 }

 public function encode($s) {
 return htmlentities($s);
 }
}

Methods in Example 7-29 incorporate the appropriate logic discussed in “Displaying
Default Values” on page 142 for particular kinds of form elements. Because the form
code in Example 7-30 has a number of different elements, it’s easier to put the ele‐
ment display code in functions that are called repeatedly than to duplicate the code
each time you need to print a particular element.

The FormHelper constructor should be passed an associative array of default values
for arguments. If the request method is not POST, it uses this array to figure out
appropriate defaults. Otherwise, it uses the submitted data as the basis for defaults.

FormHelper’s input() method generates appropriate HTML for any <input/> ele‐
ment. Its required first argument is the type of the element (such as submit, radio, or
text). The optional second argument is an associative array of element attributes
(such as ['name' => 'meal']). The optional third argument should be true if you’re
generating HTML for an element that can have multiple values, such as a checkbox.

The select() method generates HTML for a <select> menu. Its first argument is
an array of options for the menu and its optional second argument is an associative
array of attributes for the <select> tag. For a multivalued <select> menu, make
sure to include 'multiple' => true in the array of attributes passed as the second
argument.

The textarea() method generates HTML for a <textarea>. It just takes a single
argument: an associative array of attributes for the tag.

Those three methods should take care of the majority of your form display needs, but
in case you need other tags or special treatment, you can use the tag(), start(), and
end() methods.

Putting It All Together | 147

The tag() method produces HTML for an entire self-closing HTML tag such as
<input/>. Its arguments are the name of the tag, an optional array of attributes, and
true if the tag can accept multiple values. The input() method uses tag() to actually
generate the proper HTML.

The start() and end() methods are for elements with separate start and end tags.
The start() method generates the element start tag, accepting the familiar trio of tag
name, attributes, and multiple flag as arguments. The end() method just accepts a tag
name for an argument and returns the closing tag HTML. For example, if you’re
using an HTML tag such as <fieldset>, you could call start('fieldset',['name'
=> 'adjustments']), then emit HTML that should be inside the field set, then call
end('fieldset').

The rest of the class is devoted to methods that help to generate the HTML and are
not meant to be called from outside the class. The attributes() method formats a
set of attributes to be appropriately included inside an HTML tag. Using the defaults
set up in the object, it inserts an appropriate value attribute when necessary. It also
takes care of appending [] to the element name if the element can accept multiple
values and assures that all attribute values are appropriately encoded with HTML
entities.

The options() method handles formatting the <option> tags for a <select> menu.
With the help of isOptionSelected(), it figures out which options should be marked
as selected and does proper HTML entity encoding.

The encode() method is a wrapper for PHP’s built-in htmlentities() method. It’s
public so that other code can use it to make your entity encoding consistent.

The code in Example 7-30 relies on the FormHelper class and displays a short food-
ordering form. When the form is submitted correctly, it shows the results in the
browser and emails them to an address defined in process_form() (presumably to
the chef, so he can start preparing your order). Because the code jumps in and out of
PHP mode, it includes the <?php start tag at the beginning of the example and the ?>
closing tag at the end to make things clearer.

Example 7-30. A complete form: display with defaults, validation, and processing

<?php

// This assumes FormHelper.php is in the same directory as
// this file.
require 'FormHelper.php';

// Set up the arrays of choices in the select menus.
// These are needed in display_form(), validate_form(),
// and process_form(), so they are declared in the global scope.

148 | Chapter 7: Exchanging Information with Users: Making Web Forms

$sweets = array('puff' => 'Sesame Seed Puff',
 'square' => 'Coconut Milk Gelatin Square',
 'cake' => 'Brown Sugar Cake',
 'ricemeat' => 'Sweet Rice and Meat');

$main_dishes = array('cuke' => 'Braised Sea Cucumber',
 'stomach' => "Sauteed Pig's Stomach",
 'tripe' => 'Sauteed Tripe with Wine Sauce',
 'taro' => 'Stewed Pork with Taro',
 'giblets' => 'Baked Giblets with Salt',
 'abalone' => 'Abalone with Marrow and Duck Feet');

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 $defaults = array('delivery' => 'yes',
 'size' => 'medium');
 // Set up the $form object with proper defaults
 $form = new FormHelper($defaults);

 // All the HTML and form display is in a separate file for clarity
 include 'complete-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 // name is required
 $input['name'] = trim($_POST['name'] ?? '');
 if (! strlen($input['name'])) {
 $errors[] = 'Please enter your name.';
 }
 // size is required
 $input['size'] = $_POST['size'] ?? '';
 if (! in_array($input['size'], ['small','medium','large'])) {
 $errors[] = 'Please select a size.';

Putting It All Together | 149

 }
 // sweet is required
 $input['sweet'] = $_POST['sweet'] ?? '';
 if (! array_key_exists($input['sweet'], $GLOBALS['sweets'])) {
 $errors[] = 'Please select a valid sweet item.';
 }
 // exactly two main dishes required
 $input['main_dish'] = $_POST['main_dish'] ?? array();
 if (count($input['main_dish']) != 2) {
 $errors[] = 'Please select exactly two main dishes.';
 } else {
 // we know there are two main dishes selected, so make sure they are
 // both valid
 if (! (array_key_exists($input['main_dish'][0], $GLOBALS['main_dishes']) &&
 array_key_exists($input['main_dish'][1], $GLOBALS['main_dishes']))) {
 $errors[] = 'Please select exactly two valid main dishes.';
 }
 }
 // if delivery is checked, then comments must contain something
 $input['delivery'] = $_POST['delivery'] ?? 'no';
 $input['comments'] = trim($_POST['comments'] ?? '');
 if (($input['delivery'] == 'yes') && (! strlen($input['comments']))) {
 $errors[] = 'Please enter your address for delivery.';
 }

 return array($errors, $input);
}

function process_form($input) {
 // look up the full names of the sweet and the main dishes in
 // the $GLOBALS['sweets'] and $GLOBALS['main_dishes'] arrays
 $sweet = $GLOBALS['sweets'][$input['sweet']];
 $main_dish_1 = $GLOBALS['main_dishes'][$input['main_dish'][0]];
 $main_dish_2 = $GLOBALS['main_dishes'][$input['main_dish'][1]];
 if (isset($input['delivery']) && ($input['delivery'] == 'yes')) {
 $delivery = 'do';
 } else {
 $delivery = 'do not';
 }
 // build up the text of the order message
 $message=<<<_ORDER_
Thank you for your order, {$input['name']}.
You requested the {$input['size']} size of $sweet, $main_dish_1, and $main_dish_2.
You $delivery want delivery.
ORDER;
 if (strlen(trim($input['comments']))) {
 $message .= 'Your comments: '.$input['comments'];
 }

 // send the message to the chef
 mail('chef@restaurant.example.com', 'New Order', $message);
 // print the message, but encode any HTML entities

150 | Chapter 7: Exchanging Information with Users: Making Web Forms

 // and turn newlines into
 tags
 print nl2br(htmlentities($message, ENT_HTML5));
}
?>

There are four parts to the code in Example 7-30: the code in the global scope at the
top of the example, the show_form() function, the validate_form() function, and
the process_form() function.

The global scope code does three things. The first is that it loads the FormHelper class
from its separate file. Then, it sets up two arrays that describe the choices in the form’s
two <select> menus. Because these arrays are used by each of the show_form(),
validate_form(), and process_form() functions, they need to be defined in the
global scope. The global code’s last task is to process the if() statement that decides
what to do: display, validate, or process the form.

Displaying the form is accomplished by show_form(). First, the function makes
$defaults an array of default values. This array is passed to FormHelper’s construc‐
tor, so the $form object uses the right default values. Then, show_form() hands off
control to another file, complete-form.php, which contains the actual HTML and PHP
code to display the form. Putting the HTML in a separate file for a big program like
this makes it easier to digest everything and also easier for the two files to be changed
independently. The contents of complete-form.php are shown in Example 7-31.

Example 7-31. PHP and HTML generating a form

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>

 <tr><td>Your Name:</td><td><?= $form->input('text', ['name' => 'name']) ?>
 </td></tr>

 <tr><td>Size:</td>
 <td><?= $form->input('radio',['name' => 'size', 'value' => 'small']) ?>
 Small

 <?= $form->input('radio',['name' => 'size', 'value' => 'medium']) ?>
 Medium

 <?= $form->input('radio',['name' => 'size', 'value' => 'large']) ?>
 Large

Putting It All Together | 151

 </td></tr>

 <tr><td>Pick one sweet item:</td>
 <td><?= $form->select($GLOBALS['sweets'], ['name' => 'sweet']) ?></td>
 </tr>

 <tr><td>Pick two main dishes:</td>
 <td><?= $form->select($GLOBALS['main_dishes'], ['name' => 'main_dish',
 'multiple' => true]) ?></td>
 </tr>

 <tr><td>Do you want your order delivered?</td>
 <td><?= $form->input('checkbox',['name' => 'delivery',
 'value' => 'yes'])
 ?> Yes </td></tr>

 <tr><td>Enter any special instructions.

 If you want your order delivered, put your address here:</td>
 <td><?= $form->textarea(['name' => 'comments']) ?></td></tr>

 <tr><td colspan="2" align="center">
 <?=$form->input('submit', ['value' => 'Order']) ?>
 </td></tr>

</table>
</form>

The code in complete-form.php executes as if it were part of the show_form() func‐
tion. This means that local variables in the function, such as $errors and $form, are
available in complete-form.php. Like all included files, complete-form.php starts out‐
side of any PHP tags, so it can print some plain HTML and then jump into PHP
mode when it needs to call methods or use PHP logic. The code here uses the special
short echo tag (<?=) as a concise way to display the results of various method calls.
Starting a PHP block with <?= means exactly the same thing as starting a PHP block
with <php echo. Since our various FormHelper methods return HTML that should be
displayed, this makes a handy way to build up the HTML for the form.

Back in the main file, the validate_form() function builds an array of error mes‐
sages if the submitted form data doesn’t meet appropriate criteria. Note that the
checks for size, sweet, and main_dish don’t just look to see whether something was
submitted for those parameters, but also that what was submitted is a valid value for
the particular parameter. For size, this means that the submitted value must be
small, medium, or large. For sweet and main_dish, this means that the submitted
values must be keys in the global $sweets or $main_dishes arrays. Even though the
form contains default values, it’s still a good idea to validate the input. Someone try‐
ing to break into your website could bypass a regular web browser and construct a

152 | Chapter 7: Exchanging Information with Users: Making Web Forms

request with an arbitrary value that isn’t a legitimate choice for the <select> menu or
radio button set.

Lastly, process_form() takes action when the form is submitted with valid data.
It builds a string, $message, that contains a description of the submitted order. Then
it emails $message to chef@restaurant.example.com and prints it. The built-in
mail() function sends the email message. Before printing $message,
process_form() passes it through two functions. The first is htmlentities(),
which, as you’ve already seen, encodes any special characters as HTML entities. The
second is nl2br(), which turns any newlines in $message into HTML
 tags.
Turning newlines into
 tags makes the line breaks in the message display prop‐
erly in a web browser.

Chapter Summary
This chapter covered:

• Understanding the conversation between the web browser and web server that
displays a form, processes the submitted form parameters, and then displays a
result

• Making the connection between the <form> tag’s action attribute and the URL to
which form parameters are submitted

• Using values from the $_SERVER auto-global array
• Accessing submitted form parameters in the $_GET and $_POST auto-global arrays
• Accessing multivalued submitted form parameters
• Using the show_form(), validate_form(), and process_form() functions to

modularize form handling
• Displaying error messages with a form
• Validating form elements: required elements, integers, floating-point numbers,

strings, date ranges, email addresses, and <select> menus
• Defanging or removing submitted HTML and JavaScript before displaying it
• Displaying default values for form elements
• Using helper functions to display form elements

Exercises
1. What does $_POST look like when the following form is submitted with the third

option in the Braised Noodles menu selected, the first and last options in the
Sweet menu selected, and 4 entered into the text box?
<form method="POST" action="order.php">
Braised Noodles with: <select name="noodle">
<option>crab meat</option>

Chapter Summary | 153

<option>mushroom</option>
<option>barbecued pork</option>
<option>shredded ginger and green onion</option>
</select>

Sweet: <select name="sweet[]" multiple>
<option value="puff"> Sesame Seed Puff
<option value="square"> Coconut Milk Gelatin Square
<option value="cake"> Brown Sugar Cake
<option value="ricemeat"> Sweet Rice and Meat
</select>

Sweet Quantity: <input type="text" name="sweet_q">

<input type="submit" name="submit" value="Order">
</form>

2. Write a process_form() function that prints out all submitted form parameters
and their values. You can assume that form parameters have only scalar values.

3. Write a program that does basic arithmetic. Display a form with text box inputs
for two operands and a <select> menu to choose an operation: addition, sub‐
traction, multiplication, or division. Validate the inputs to make sure that they
are numeric and appropriate for the chosen operation. The processing function
should display the operands, the operator, and the result. For example, if the
operands are 4 and 2 and the operation is multiplication, the processing function
should display something like 4 * 2 = 8.

4. Write a program that displays, validates, and processes a form for entering infor‐
mation about a package to be shipped. The form should contain inputs for the
from and to addresses for the package, dimensions of the package, and weight of
the package. The validation should check (at least) that the package weighs no
more than 150 pounds and that no dimension of the package is more than 36
inches. You can assume that the addresses entered on the form are both US
addresses, but you should check that a valid state and a zip code with valid syntax
are entered. The processing function in your program should print out the infor‐
mation about the package in an organized, formatted report.

5. (Optional) Modify your process_form() function that enumerates all submitted
form parameters and their values so that it correctly handles submitted form
parameters that have array values. Remember, those array values could them‐
selves contain arrays.

154 | Chapter 7: Exchanging Information with Users: Making Web Forms

CHAPTER 8

Remembering Information: Databases

The HTML and CSS that give your website its pretty face reside in individual files on
your web server. So does the PHP code that processes forms and performs other
dynamic wizardry. There’s a third kind of information necessary to a web application,
though: data. And while you can store data such as user lists and product information
in individual files, most people find it easier to use databases, which are the focus of
this chapter.

Lots of information falls under the broad umbrella of data:

• Who your users are, such as their names and email addresses
• What your users do, such as message board posts and profile information
• The “stuff ” that your site is about, such as a list of record albums, a product cata‐

log, or what’s for dinner

There are three big reasons why this kind of data belongs in a database instead of in
files: convenience, simultaneous access, and security. A database program makes it
much easier to search for and manipulate individual pieces of information. With a
database program, you can do things such as change the email address for user
Duck29 to ducky@ducks.example.com in one step. If you put usernames and email
addresses in a file, changing an email address would be much more complicated:
you’d have to read the old file, search through each line until you find the one for
Duck29, change the line, and write the file back out. If, at same time, one request
updates Duck29’s email address and another updates the record for user Piggy56, one
update could be lost, or (worse) the data file could be corrupted. Database software
manages the intricacies of simultaneous access for you.

In addition to searchability, database programs usually provide you with a different
set of access control options compared to files. It is an exacting process to set things
up properly so that your PHP programs can create, edit, and delete files on your web

155

server without opening the door to malicious attackers who could abuse that setup to
alter your PHP scripts and data files. A database program makes it easier to arrange
the appropriate levels of access to your information. It can be configured so that your
PHP programs can read and change some information, but only read other informa‐
tion. However the database access control is set up, it doesn’t affect how files on the
web server are accessed. Just because your PHP program can change values in the
database doesn’t give an attacker an opportunity to change your PHP programs and
HTML files themselves.

The word database is used in a few different ways when talking about web applica‐
tions. A database can be a pile of structured information, a program (such as MySQL
or Oracle) that manages that structured information, or the computer on which that
program runs. This book uses “database” to mean the pile of structured information.
The software that manages the information is a database program, and the computer
that the database program runs on is a database server.

Most of this chapter uses the PHP Data Objects (PDO) database program abstraction
layer. This is a part of PHP that simplifies communication between your PHP pro‐
gram and your database program. With PDO, you can use the same functions in PHP
to talk to many different kinds of database programs. Without PDO, you need to rely
on other PHP functions to talk to your database program. The appropriate set of
functions varies with each database program. Some of the more exotic features of
your database program may only be accessible through the database-specific func‐
tions.

Organizing Data in a Database
Information in your database is organized in tables, which have rows and columns.
(Columns are also sometimes referred to as fields.) Each column in a table is a cate‐
gory of information, and each row is a set of values for each column. For example, a
table holding information about dishes on a menu would have columns for each
dish’s ID, name, price, and whether or not it’s spicy. Each row in the table is the group
of values for one particular dish—for example, “1,” “Fried Bean Curd,” “5.50,” and “0”
(meaning not spicy).

You can think of a table as being organized like a simple spreadsheet, with column
names across the top, as shown in Figure 8-1.

One important difference between a spreadsheet and a database table, however, is that
the rows in a database table have no inherent order. When you want to retrieve data
from a table with the rows arranged in a particular way (e.g., in alphabetic order by
student name), you need to explicitly specify that order when you ask the database for
the data. The “SQL Lesson: ORDER BY and LIMIT” sidebar in this chapter describes
how to do this.

156 | Chapter 8: Remembering Information: Databases

Figure 8-1. Data organized in a table

Structured Query Language (SQL) is a language used to ask questions of and give
instructions to the database program. Your PHP program sends SQL queries to a
database program. If the query retrieves data in the database (for example, “Find me
all spicy dishes”), then the database program responds with the set of rows that match
the query. If the query changes data in the database (for example, “Add this new dish”
or “Double the prices of all nonspicy dishes”), then the database program replies with
whether or not the operation succeeded.

SQL is a mixed bag when it comes to case-sensitivity. SQL keywords are not case-
sensitive, but in this book they are always written in uppercase to distinguish them
from the other parts of the queries. Names of tables and columns in your queries gen‐
erally are case-sensitive. All of the SQL examples in this book use lowercase column
and table names to help you distinguish them from the SQL keywords. Any literal
values that you put in queries are case-sensitive. Telling the database program that the
name of a new dish is fried bean curd is different than telling it that the new dish is
called FRIED Bean Curd.

Almost all of the SQL queries that you write to use in your PHP programs will rely on
one of four SQL commands: INSERT, UPDATE, DELETE, or SELECT. Each of these com‐
mands is described in this chapter. “Creating a Table” on page 160 describes the
CREATE TABLE command, which you use to make new tables in your database.

To learn more about SQL, read SQL in a Nutshell, by Kevin E. Kline (O’Reilly). It pro‐
vides an overview of standard SQL as well as the SQL extensions in MySQL, Oracle,
PostgreSQL, and Microsoft SQL Server. For more in-depth information about work‐
ing with PHP and MySQL, read Learning PHP, MySQL & JavaScript, by Robin Nixon
(O’Reilly). MySQL Cookbook by Paul DuBois (O’Reilly) is also an excellent source for
answers to lots of SQL and MySQL questions.

Organizing Data in a Database | 157

http://shop.oreilly.com/product/9780596518851.do
http://shop.oreilly.com/product/0636920036463.do
http://shop.oreilly.com/product/0636920032274.do

Connecting to a Database Program
To establish a connection to a database program, create a new PDO object. You pass
the PDO constructor a string that describes the database you are connecting to, and it
returns an object that you use in the rest of your program to exchange information
with the database program.

Example 8-1 shows a call to new PDO() that connects to a database named
restaurant in a MySQL server running on db.example.com, using the username
penguin and the password top^hat.

Example 8-1. Connecting with a PDO object

$db = new PDO('mysql:host=db.example.com;dbname=restaurant','penguin','top^hat');

The string passed as the first argument to the PDO constructor is called a data source
name (DSN). It begins with a prefix indicating what kind of database program to con‐
nect to, then has a :, then some semicolon-separated key=value pairs providing
information about how to connect. If the database connection needs a username and
password, these are passed as the second and third arguments to the PDO constructor.

The particular key=value pairs you can put in a DSN depend on what kind of data‐
base program you’re connecting to. Although the PHP engine has the capability to
connect to many different databases with PDO, that connectivity has to be enabled
when the engine is built and installed on your server. If you get a could not find
driver message when creating a PDO object, it means that your PHP engine installa‐
tion does not incorporate support for the database you’re trying to use.

Table 8-1 lists the DSN prefixes and options for some of the most popular database
programs that work with PDO.

Table 8-1. PDO DSN prefixes and options

Database
program

DSN prefix DSN options Notes

MySQL mysql host, port,
dbname,
unix_socket,
charset

unix_socket is for local MySQL connections. Use it or host and
port, but not both.

PostgreSQL pgsql host, port,
dbname, user, pass
word, others

The whole connection string is passed to an internal PostgreSQL
connection function, so you can use any of the options listed in the
PostgreSQL documentation.

Oracle oci dbname, charset The value of dbname should either be an Oracle Instant Client
connection URI of the form //hostname:port/database or
an address name defined in your tnsnames.ora file.

158 | Chapter 8: Remembering Information: Databases

http://bit.ly/pgsql-param

Database
program

DSN prefix DSN options Notes

SQLite sqlite None After the prefix, the entire DSN must be either a path to an SQLite
database file, or the string :memory: to use a temporary in-
memory database.

ODBC odbc DSN, UID, PWD The value for the DSN key inside the DSN string should either be a
name defined in your ODBC catalog or a full ODBC connection string.

MS SQL
Server or
Sybase

mssql,
sybase,
dblib

host, dbname, char
set, appname

The appname value is a string that the database program uses to
describe your connection in its statistics. The mssql prefix is for
when the PHP engine is using Microsoft’s SQL Server libraries; the
sybase prefix is for when the engine is using Sybase CT-Lib
libraries; the dblib prefix is for when the engine is using the
FreeTDS libraries.

The host and port DSN options, as seen in Example 8-1, specify the host and net‐
work port of the database server. The charset option, available with some database
programs, specifies how the database program should handle non-English characters.
The user and password options for PostgreSQL and the UID and PWD options for
ODBC provide a way to put the connection username and password in the DSN
string. If they are used, their values override any username or password passed as
additional arguments to the PDO constructor.

If all goes well with new PDO(), it returns an object that you use to interact with the
database. If there is a problem connecting, it throws a PDOException exception. Make
sure to catch exceptions that could be thrown from the PDO constructor so you can
verify that the connection succeeded before going forward in your program.
Example 8-2 shows how to do this.

Example 8-2. Catching connection errors

try {
 $db = new PDO('mysql:host=localhost;dbname=restaurant','penguin','top^hat');
 // Do some stuff with $db here
} catch (PDOException $e) {
 print "Couldn't connect to the database: " . $e->getMessage();
}

In Example 8-2, if the PDO constructor throws an exception, then any code inside the
try block after the call to new PDO() doesn’t execute. Instead, the PHP engine jumps
ahead to the catch block, where an error is displayed.

Connecting to a Database Program | 159

For example, if top^hat is the wrong password for user penguin, Example 8-2 prints
something like:

Couldn't connect to the database: SQLSTATE[HY000] [1045] Access denied
for user 'penguin'@'client.example.com'
(using password: YES)

Creating a Table
Before you can put any data into or retrieve any data from a database table, you must
create the table. This is usually a one-time operation. You tell the database program to
create a new table once. Your PHP program that uses the table may read from or
write to that table every time it runs, but it doesn’t have to re-create the table each
time. If a database table is like a spreadsheet, then creating a table is like making a
new spreadsheet file. After you create the file, you can open it many times to read or
change it.

The SQL command to create a table is CREATE TABLE. You provide the name of the
table and the names and types of all the columns in the table. Example 8-3 shows the
SQL command to create the dishes table pictured in Figure 8-1.

Example 8-3. Creating the dishes table

CREATE TABLE dishes (
 dish_id INTEGER PRIMARY KEY,
 dish_name VARCHAR(255),
 price DECIMAL(4,2),
 is_spicy INT
)

Example 8-3 creates a table called dishes with four columns. The dishes table looks
like the one pictured in Figure 8-1. The columns in the table are dish_id, dish_name,
price, and is_spicy. The dish_id and is_spicy columns are integers. The price
column is a decimal number. The dish_name column is a string.

After the literal CREATE TABLE comes the name of the table. Then, between the paren‐
theses, is a comma-separated list of the columns in the table. The phrase that defines
each column has two parts: the column name and the column type. In Example 8-3,
the column names are dish_id, dish_name, price, and is_spicy. The column types
are INTEGER, VARCHAR(255), DECIMAL(4,2), and INT.

Additionally, the dish_id column’s type has PRIMARY KEY after it. This tells the data‐
base program that the values for this column can’t be duplicated in this table. Only
one row can have a particular dish_id value at a time. Additionally, this lets SQLite,
the database program used in this chapter’s examples, automatically assign new
unique values to this column when we insert data. Other database programs have

160 | Chapter 8: Remembering Information: Databases

different syntax for automatically assigning unique integer IDs. For example, MySQL
uses the AUTO_INCREMENT keyword, PostgreSQL uses serial types, and Oracle uses
sequences.

INT and INTEGER can generally be used interchangeably. However, a quirk of SQLite is
that in order to get the automatic assign-new-unique-values behavior with PRIMARY
KEY, you need to specify the column type INTEGER exactly.

Some column types include length or formatting information in parentheses. For
example, VARCHAR(255) means “a variable-length character column that is at most
255 characters long.” The type DECIMAL(4,2) means “a decimal number with two dig‐
its after the decimal place and four digits total.” Table 8-2 lists some common types
for database table columns.

Table 8-2. Common database table column types

Column type Description
VARCHAR(length) A variable-length string up to length characters long
INT An integer

BLOBa Up to 64 KB of string or binary data

DECIMAL(total_digits,deci

mal_places)

A decimal number with a total of total_digits digits and deci
mal_places digits after the decimal point

DATETIMEb A date and time, such as 1975-03-10 19:45:03 or 2038-01-18
22:14:07

a PostgreSQL calls this BYTEA instead of BLOB.
b Oracle calls this DATE instead of DATETIME.

Different database programs support different column types, although all database
programs should support the types listed in Table 8-2. The maximum and minimum
numbers that the database can handle in numeric columns and the maximum size of
text columns varies based on what database program you are using. For example,
MySQL allows VARCHAR columns to be up to 255 characters long, but Microsoft SQL
Server allows VARCHAR columns to be up to 8,000 characters long. Check your data‐
base manual for the specifics that apply to you.

To actually create the table, you need to send the CREATE TABLE command to the data‐
base. After connecting with new PDO(), use the exec() function to send the com‐
mand as shown in Example 8-4.

Example 8-4. Sending a CREATE TABLE command to the database program

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
 $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $q = $db->exec("CREATE TABLE dishes (

Creating a Table | 161

 dish_id INT,
 dish_name VARCHAR(255),
 price DECIMAL(4,2),
 is_spicy INT
)");
} catch (PDOException $e) {
 print "Couldn't create table: " . $e->getMessage();
}

The next section explains exec() in much more detail. The call to $db-

>setAttribute() in Example 8-4 ensures that PDO throws exceptions if there are
problems with queries, not just a problem when connecting. Error handling with
PDO is also discussed in the next section.

The opposite of CREATE TABLE is DROP TABLE. It removes a table and the data in it
from a database. Example 8-5 shows the syntax of a query that removes the dishes
table.

Example 8-5. Removing a table

DROP TABLE dishes

Once you’ve dropped a table, it’s gone for good, so be careful with DROP TABLE!

Putting Data into the Database
Assuming the connection to the database succeeds, the object returned by new PDO()
provides access to the data in your database. Calling that object’s functions lets you
send queries to the database program and access the results. To put some data into
the database, pass an INSERT statement to the object’s exec() method, as shown in
Example 8-6.

Example 8-6. Inserting data with exec()

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
 $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $affectedRows = $db->exec("INSERT INTO dishes (dish_name, price, is_spicy)
 VALUES ('Sesame Seed Puff', 2.50, 0)");
} catch (PDOException $e) {
 print "Couldn't insert a row: " . $e->getMessage();
}

The exec() method returns the number of rows affected by the SQL statement that
was sent to the database server. In this case, inserting one row returns 1 because one
row (the row you inserted) was affected.

162 | Chapter 8: Remembering Information: Databases

If something goes wrong with INSERT, an exception is thrown. Example 8-7 attempts
an INSERT statement that has a bad column name in it. The dishes table doesn’t con‐
tain a column called dish_size.

Example 8-7. Checking for errors from exec()

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
 $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $affectedRows = $db->exec("INSERT INTO dishes (dish_size, dish_name,
 price, is_spicy)
 VALUES ('large', 'Sesame Seed Puff', 2.50, 0)");
} catch (PDOException $e) {
 print "Couldn't insert a row: " . $e->getMessage();
}

Because the call to $db->setAttribute() tells PDO to throw an exception any time
there’s an error, Example 8-7 prints:

Couldn't insert a row: SQLSTATE[HY000]: General error: 1 table dishes
has no column named dish_size

PDO has three error modes: exception, silent, and warning. The exception error
mode, which is activated by calling $db->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION), is the best for debugging and is the mode that makes it
easiest to ensure you don’t miss a database problem. If you don’t handle an exception
that PDO generates, your program stops running.

The other two error modes require you to check the return values from your PDO
function calls to determine if there is an error and then use additional PDO methods
to find information about the error.

The silent mode is the default. Like other PDO methods, if exec() fails at its task, it
returns false. Example 8-8 checks exec()’s return value and then uses PDO’s
errorInfo() method to get details of the problem.

Example 8-8. Working with the silent error mode

// The constructor always throws an exception if it fails
try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (PDOException $e) {
 print "Couldn't connect: " . $e->getMessage();
}
$result = $db->exec("INSERT INTO dishes (dish_size, dish_name, price, is_spicy)
 VALUES ('large', 'Sesame Seed Puff', 2.50, 0)");
if (false === $result) {
 $error = $db->errorInfo();
 print "Couldn't insert!\n";

Putting Data into the Database | 163

 print "SQL Error={$error[0]}, DB Error={$error[1]}, Message={$error[2]}\n";
}

Example 8-8 prints:

Couldn't insert!
SQL Error=HY000, DB Error=1, Message=table dishes has no column named dish_size

In Example 8-8, the return value from exec() is compared with false using the
triple-equals-sign identity operator to distinguish between an actual error (false)
and a successful query that just happened to affect zero rows. Then, errorInfo()
returns a three-element array with error information. The first element is an
SQLSTATE error code. These are error codes that are mostly standardized across differ‐
ent database programs. In this case, HY000 is a catch-all for general errors. The second
element is an error code specific to the particular database program in use. The third
element is a textual message describing the error.

The warning mode is activated by setting the PDO::ATTR_ERRMODE attribute to
PDO::ERRMODE_WARNING, as shown in Example 8-9. In this mode, functions behave as
they do in silent mode—no exceptions, returning false on error—but the PHP
engine also generates a warning-level error message. Depending on how you’ve con‐
figured error handling, this message may get displayed on screen or in a log file.
“Controlling Where Errors Appear” on page 249 shows how to control where error
messages appear.

Example 8-9. Working with the warning error mode

// The constructor always throws an exception if it fails
try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (PDOException $e) {
 print "Couldn't connect: " . $e->getMessage();
}
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING);
$result = $db->exec("INSERT INTO dishes (dish_size, dish_name, price, is_spicy)
 VALUES ('large', 'Sesame Seed Puff', 2.50, 0)");
if (false === $result) {
 $error = $db->errorInfo();
 print "Couldn't insert!\n";
 print "SQL Error={$error[0]}, DB Error={$error[1]}, Message={$error[2]}\n";
}

Example 8-9 produces the same output as Example 8-8 but also generates the follow‐
ing error message:

PHP Warning: PDO::exec(): SQLSTATE[HY000]: General error: 1 table dishes
has no column named dish_size in error-warning.php on line 10

164 | Chapter 8: Remembering Information: Databases

SQL Lesson: INSERT
The INSERT command adds a row to a database table. Example 8-10 shows the syntax
of INSERT.

Example 8-10. Inserting data

INSERT INTO table (column1[, column2, column3, ...])
 VALUES (value1[, value2, value3, ...])

The INSERT query in Example 8-11 adds a new dish to the dishes table.

Example 8-11. Inserting a new dish

INSERT INTO dishes (dish_id, dish_name, price, is_spicy)
 VALUES (1, 'Braised Sea Cucumber', 6.50, 0)

String values such as Braised Sea Cucumber have to have single quotes around them
when used in an SQL query. Because single quotes are used as string delimiters, you
need to escape single quotes (by putting two single quotes in a row) when they appear
inside of a query. Example 8-12 shows how to insert a dish named General Tso's
Chicken into the dishes table.

Example 8-12. Quoting a string value

INSERT INTO dishes (dish_id, dish_name, price, is_spicy)
 VALUES (2, 'General Tso''s Chicken', 6.75, 1)

The number of columns enumerated in the parentheses before VALUES must match
the number of values in the parentheses after VALUES. To insert a row that contains
values only for some columns, just specify those columns and their corresponding
values, as shown in Example 8-13.

Example 8-13. Inserting without all columns

INSERT INTO dishes (dish_name, is_spicy)
 VALUES ('Salt Baked Scallops', 0)

As a shortcut, you can eliminate the column list when you’re inserting values for all
columns. Example 8-14 performs the same INSERT as Example 8-11.

Example 8-14. Inserting with values for all columns

INSERT INTO dishes
 VALUES (1, 'Braised Sea Cucumber', 6.50, 0)

Use the exec() function to change data with UPDATE. Example 8-15 shows some
UPDATE statements.

Putting Data into the Database | 165

Example 8-15. Changing data with exec()

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
 $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 // Eggplant with Chili Sauce is spicy
 // If we don't care how many rows are affected,
 // there's no need to keep the return value from exec()
 $db->exec("UPDATE dishes SET is_spicy = 1
 WHERE dish_name = 'Eggplant with Chili Sauce'");
 // Lobster with Chili Sauce is spicy and pricy
 $db->exec("UPDATE dishes SET is_spicy = 1, price=price * 2
 WHERE dish_name = 'Lobster with Chili Sauce'");
} catch (PDOException $e) {
 print "Couldn't insert a row: " . $e->getMessage();
}

Also use the exec() function to delete data with DELETE. Example 8-16 shows exec()
with two DELETE statements.

Example 8-16. Deleting data with exec()

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
 $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 // remove expensive dishes
 if ($make_things_cheaper) {
 $db->exec("DELETE FROM dishes WHERE price > 19.95");
 } else {
 // or, remove all dishes
 $db->exec("DELETE FROM dishes");
 }
} catch (PDOException $e) {
 print "Couldn't delete rows: " . $e->getMessage();
}

SQL Lesson: UPDATE
The UPDATE command changes data already in a table. Example 8-17 shows the syntax
of UPDATE.

Example 8-17. Updating data

UPDATE tablename SET column1=value1[, column2=value2,
 column3=value3, ...] [WHERE where_clause]

The value that a column is changed to can be a string or number, as shown in
Example 8-18. The lines in Example 8-18 that begin with ; are SQL comments.

166 | Chapter 8: Remembering Information: Databases

Example 8-18. Setting a column to a string or number

; Change price to 5.50 in all rows of the table
UPDATE dishes SET price = 5.50

; Change is_spicy to 1 in all rows of the table
UPDATE dishes SET is_spicy = 1

The value can also be an expression that includes column names. The query in
Example 8-19 doubles the price of each dish.

Example 8-19. Using a column name in an UPDATE expression

UPDATE dishes SET price = price * 2

The UPDATE queries shown so far change all rows in the dishes table. To only change
some rows with an UPDATE query, add a WHERE clause. This is a logical expression that
describes which rows you want to change. The changes in the UPDATE query then hap‐
pen only in rows that match the WHERE clause. Example 8-20 contains two UPDATE
queries, each with a WHERE clause.

Example 8-20. Using a WHERE clause with UPDATE

; Change the spicy status of Eggplant with Chili Sauce
UPDATE dishes SET is_spicy = 1
 WHERE dish_name = 'Eggplant with Chili Sauce'

; Decrease the price of General Tso's Chicken
UPDATE dishes SET price = price - 1
 WHERE dish_name = 'General Tso's Chicken'

The WHERE clause is explained in more detail in the sidebar “SQL Lesson: SELECT” on
page 175.

Remember that exec() returns the number of rows changed or removed by an
UPDATE or DELETE statement. Use the return value to find out how many rows that
query affected. Example 8-21 reports how many rows have had their prices changed
by an UPDATE query.

Example 8-21. Finding how many rows an UPDATE or DELETE affects

// Decrease the price of some dishes
$count = $db->exec("UPDATE dishes SET price = price + 5 WHERE price > 3");
print 'Changed the price of ' . $count . ' rows.';

Putting Data into the Database | 167

If there are two rows in the dishes table whose price is more than 3, then
Example 8-21 prints:

Changed the price of 2 rows.

SQL Lesson: DELETE
The DELETE command removes rows from a table. Example 8-22 shows the syntax
of DELETE.

Example 8-22. Removing rows from a table

DELETE FROM tablename [WHERE where_clause]

Without a WHERE clause, DELETE removes all the rows from the table. Example 8-23
clears out the dishes table.

Example 8-23. Removing all rows from a table

DELETE FROM dishes

With a WHERE clause, DELETE removes the rows that match the WHERE clause.
Example 8-24 shows two DELETE queries with WHERE clauses.

Example 8-24. Removing some rows from a table

; Delete rows in which price is greater than 10.00
DELETE FROM dishes WHERE price > 10.00

; Delete rows in which dish_name is exactly "Walnut Bun"
DELETE FROM dishes WHERE dish_name = 'Walnut Bun'

There is no SQL UNDELETE command, so be careful with your DELETEs.

Inserting Form Data Safely
As “HTML and JavaScript” on page 138 explained, printing unsanitized form data
can leave you and your users vulnerable to a cross-site scripting attack. Using unsani‐
tized form data in SQL queries can cause a similar problem, called an “SQL injection
attack.” Consider a form that lets a user suggest a new dish. The form contains a text
element called new_dish_name into which the user can type the name of a new dish.
The call to exec() in Example 8-25 inserts the new dish into the dishes table, but is
vulnerable to an SQL injection attack.

168 | Chapter 8: Remembering Information: Databases

Example 8-25. Unsafe insertion of form data

$db->exec("INSERT INTO dishes (dish_name)
 VALUES ('$_POST[new_dish_name]')");

If the submitted value for new_dish_name is reasonable, such as Fried Bean Curd,
then the query succeeds. PHP’s regular double-quoted string interpolation rules make
the query INSERT INTO dishes (dish_name) VALUES ('Fried Bean Curd'), which
is valid and respectable. A query with an apostrophe in it causes a problem, though. If
the submitted value for new_dish_name is General Tso's Chicken, then the query
becomes INSERT INTO dishes (dish_name) VALUES ('General Tso's Chicken').
This makes the database program confused. It thinks that the apostrophe between
Tso and s ends the string, so the s Chicken' after the second single quote is an
unwanted syntax error.

What’s worse, a user who really wants to cause problems can type in specially con‐
structed input to wreak havoc. Consider this unappetizing input:

x'); DELETE FROM dishes; INSERT INTO dishes (dish_name) VALUES ('y.

When that gets interpolated, the query becomes:

INSERT INTO DISHES (dish_name) VALUES ('x');
DELETE FROM dishes; INSERT INTO dishes (dish_name) VALUES ('y')

Some databases let you pass multiple queries separated by semicolons in one call of
exec(). On those databases, the previous input will cause the dishes table to be
demolished: a dish named x is inserted, all dishes are deleted, and a dish named y
is inserted.

By submitting a carefully built form input value, a malicious user can inject arbitrary
SQL statements into your database program. To prevent this, you need to escape spe‐
cial characters (most importantly, the apostrophe) in SQL queries. PDO provides a
helpful feature called prepared statements that makes this a snap.

With prepared statements, you separate your query execution into two steps. First,
you give PDO’s prepare() method a version of your query with a ? in the SQL in
each place you want a value to go. This method returns a PDOStatement object. Then,
you call execute() on your PDOStatement object, passing it an array of values to be
substituted for the placeholding ? characters. The values are appropriately quoted
before they are put into the query, protecting you from SQL injection attacks.
Example 8-26 shows the safe version of the query from Example 8-25.

Example 8-26. Safe insertion of form data

$stmt = $db->prepare('INSERT INTO dishes (dish_name) VALUES (?)');
$stmt->execute(array($_POST['new_dish_name']));

Inserting Form Data Safely | 169

You don’t need to put quotes around the placeholder in the query. PDO takes care of
that for you, too. If you want to use multiple values in a query, put multiple place‐
holders in the query and in the value array. Example 8-27 shows a query with three
placeholders.

Example 8-27. Using multiple placeholders

$stmt = $db->prepare('INSERT INTO dishes (dish_name,price,is_spicy) VALUES (?,?,?)');
$stmt->execute(array($_POST['new_dish_name'], $_POST['new_price'],
 $_POST['is_spicy']));

A Complete Data Insertion Form
Example 8-28 combines the database topics covered so far in this chapter with the
form-handling code from Chapter 7 to build a complete program that displays a
form, validates the submitted data, and then saves the data into a database table. The
form displays input elements for the name of a dish, the price of a dish, and whether
the dish is spicy. The information is inserted into the dishes table.

The code in Example 8-28 relies on the FormHelper class defined in Example 7-29.
Instead of repeating it in this example, the code assumes it has been saved into a file
called FormHelper.php and then loads it with the require 'FormHelper.php' line at
the top of the program.

Example 8-28. Program for inserting records into dishes

<?php

// Load the form helper class
require 'FormHelper.php';

// Connect to the database
try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (PDOException $e) {
 print "Can't connect: " . $e->getMessage();
 exit();
}
// Set up exceptions on DB errors
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {

170 | Chapter 8: Remembering Information: Databases

 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 // Set our own defaults: price is $5
 $defaults = array('price' => '5.00');

 // Set up the $form object with proper defaults
 $form = new FormHelper($defaults);

 // All the HTML and form display is in a separate file for clarity
 include 'insert-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 // dish_name is required
 $input['dish_name'] = trim($_POST['dish_name'] ?? '');
 if (! strlen($input['dish_name'])) {
 $errors[] = 'Please enter the name of the dish.';
 }

 // price must be a valid floating-point number and
 // more than 0
 $input['price'] = filter_input(INPUT_POST, 'price', FILTER_VALIDATE_FLOAT);
 if ($input['price'] <= 0) {
 $errors[] = 'Please enter a valid price.';
 }

 // is_spicy defaults to 'no'
 $input['is_spicy'] = $_POST['is_spicy'] ?? 'no';

 return array($errors, $input);
}

function process_form($input) {
 // Access the global variable $db inside this function
 global $db;

 // Set the value of $is_spicy based on the checkbox
 if ($input['is_spicy'] == 'yes') {
 $is_spicy = 1;
 } else {

A Complete Data Insertion Form | 171

 $is_spicy = 0;
 }

 // Insert the new dish into the table
 try {
 $stmt = $db->prepare('INSERT INTO dishes (dish_name, price, is_spicy)
 VALUES (?,?,?)');
 $stmt->execute(array($input['dish_name'], $input['price'],$is_spicy));
 // Tell the user that we added a dish
 print 'Added ' . htmlentities($input['dish_name']) . ' to the database.';
 } catch (PDOException $e) {
 print "Couldn't add your dish to the database.";
 }
}

?>

Example 8-28 has the same basic structure as the form examples from Chapter 7:
functions for displaying, validating, and processing the form with some global logic
that determines which function to call. The two new pieces are the global code
that sets up the database connection and the database-related activities in
process_form().

The database setup code comes after the require statements and before the if
($_SERVER['REQUEST_METHOD'] == 'POST'). The new PDO() call establishes a data‐
base connection, and the next few lines check to make sure the connection succeeded
and then set up exception mode for error handling.

The show_form() function displays the form HTML defined in the insert-form.php
file. This file is shown in Example 8-29.

Example 8-29. Form for inserting records into dishes

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>

 <tr>
 <td>Dish Name:</td>
 <td><?= $form->input('text', ['name' => 'dish_name']) ?></td>
 </tr>
 <tr>

172 | Chapter 8: Remembering Information: Databases

 <td>Price:</td>
 <td><?= $form->input('text', ['name' => 'price']) ?></td>
 </tr>

 <tr>
 <td>Spicy:</td>
 <td><?= $form->input('checkbox',['name' => 'is_spicy',
 'value' => 'yes']) ?> Yes</td>
 </tr>

 <tr><td colspan="2" align="center">
 <?= $form->input('submit',['name' => 'save','value' => 'Order']) ?>
 </td></tr>

</table>
</form>

Aside from connecting, all of the other interaction with the database is in the
process_form() function. First, the global $db line lets you refer to the database
connection variable inside the function as $db instead of the clumsier
$GLOBALS['db']. Then, because the is_spicy column of the table holds a 1 in the
rows of spicy dishes and a 0 in the rows of nonspicy dishes, the if() clause in
process_form() assigns the appropriate value to the local variable $is_spicy based
on what was submitted in $input['is_spicy'].

After that come the calls to prepare() and execute() that actually put the new infor‐
mation into the database. The INSERT statement has three placeholders that are filled
by the variables $input['dish_name'], $input['price'], and $is_spicy. No value
is necessary for the dish_id column because SQLite populates that automatically.
Lastly, process_form() prints a message telling the user that the dish was inserted.
The htmlentities() function protects against any HTML tags or JavaScript in the
dish name. Because prepare() and execute() are inside a try block, if anything goes
wrong, an alternate error message is printed.

Retrieving Data from the Database
Use the query() method to retrieve information from the database. Pass it an SQL
query for the database. It returns a PDOStatement object that provides access to the
retrieved rows. Each time you call the fetch() method of this object, you get the next
row returned from the query. When there are no more rows left, fetch() returns a
value that evaluates to false, making it perfect to use in a while() loop. This is
shown in Example 8-30.

Retrieving Data from the Database | 173

Example 8-30. Retrieving rows with query() and fetch()

$q = $db->query('SELECT dish_name, price FROM dishes');
while ($row = $q->fetch()) {
 print "$row[dish_name], $row[price] \n";
}

Example 8-30 prints:

Walnut Bun, 1
Cashew Nuts and White Mushrooms, 4.95
Dried Mulberries, 3
Eggplant with Chili Sauce, 6.5

The first time through the while() loop, fetch() returns an array containing
Walnut Bun and 1. This array is assigned to $row. Since an array with elements in it
evaluates to true, the code inside the while() loop executes, printing the data from
the first row returned by the SELECT query. This happens three more times. On each
trip through the while() loop, fetch() returns the next row in the set of rows
returned by the SELECT query. When it has no more rows to return, fetch() returns a
value that evaluates to false, and the while() loop is done.

By default, fetch() returns an array with both numeric and string keys. The numeric
keys, starting at 0, contain each column’s value for the row. The string keys do as well,
with key names set to column names. In Example 8-30, the same results could be
printed using $row[0] and $row[1].

If you want to find out how many rows a SELECT query has returned, your only fool‐
proof option is to retrieve all the rows and count them. The PDOStatement object pro‐
vides a rowCount() method, but it doesn’t work with all databases. If you have a small
number of rows and you’re going to use them all in your program, use the
fetchAll() method to put them into an array without looping, as shown in
Example 8-31.

Example 8-31. Retrieving all rows without a loop

$q = $db->query('SELECT dish_name, price FROM dishes');
// $rows will be a four-element array; each element is
// one row of data from the database
$rows = $q->fetchAll();

If you have so many rows that retrieving them all is impractical, ask your database
program to count the rows for you with SQL’s COUNT() function. For example, SELECT
COUNT(*) FROM dishes returns one row with one column whose value is the number
of rows in the entire table.

174 | Chapter 8: Remembering Information: Databases

SQL Lesson: SELECT
The SELECT command retrieves data from the database. Example 8-32 shows the syn‐
tax of SELECT.

Example 8-32. Retrieving data

SELECT column1[, column2, column3, ...] FROM tablename

The SELECT query in Example 8-33 retrieves the dish_name and price columns for all
the rows in the dishes table.

Example 8-33. Retrieving dish_name and price

SELECT dish_name, price FROM dishes

As a shortcut, you can use * instead of a list of columns. This retrieves all columns
from the table. The SELECT query in Example 8-34 retrieves everything from the
dishes table.

Example 8-34. Using * in a SELECT query

SELECT * FROM dishes

To restrict a SELECT statement so that it matches only certain rows, add a WHERE clause
to it. Only rows that meet the tests listed in the WHERE clause are returned by the
SELECT statement. The WHERE clause goes after the table name, as shown in
Example 8-35.

Example 8-35. Restricting the rows returned by SELECT

SELECT column1[, column2, column3, ...] FROM tablename
 WHERE where_clause

The where_clause part of the query is a logical expression that describes which rows
you want to retrieve. Example 8-36 shows some SELECT queries with WHERE clauses.

Example 8-36. Retrieving certain dishes

; Dishes with price greater than 5.00
SELECT dish_name, price FROM dishes WHERE price > 5.00

; Dishes whose name exactly matches "Walnut Bun"
SELECT price FROM dishes WHERE dish_name = 'Walnut Bun'

; Dishes with price more than 5.00 but less than or equal to 10.00
SELECT dish_name FROM dishes WHERE price > 5.00 AND price <= 10.00

; Dishes with price more than 5.00 but less than or equal to 10.00,
; or dishes whose name exactly matches "Walnut Bun" (at any price)

Retrieving Data from the Database | 175

SELECT dish_name, price FROM dishes WHERE (price > 5.00 AND price <= 10.00)
 OR dish_name = 'Walnut Bun'

Table 8-3 lists some operators that you can use in a WHERE clause.

Table 8-3. SQL WHERE clause operators

Operator Description
= Equal to (like == in PHP)
<> Not equal to (like != in PHP)
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
AND Logical AND (like && in PHP)
OR Logical OR (like || in PHP)
() Grouping

If you are expecting only one row to be returned from a query, you can chain your
fetch() call onto the end of query(). Example 8-37 uses a chained fetch() to dis‐
play the least expensive item in the dishes table. The ORDER BY and LIMIT parts of the
query in Example 8-37 are explained in the sidebar “SQL Lesson: ORDER BY and
LIMIT” on page 176.

Example 8-37. Retrieving a row with a chained fetch()

$cheapest_dish_info = $db->query('SELECT dish_name, price
 FROM dishes ORDER BY price LIMIT 1')->fetch();
print "$cheapest_dish_info[0], $cheapest_dish_info[1]";

Example 8-37 prints:

Walnut Bun, 1

SQL Lesson: ORDER BY and LIMIT
As mentioned in “Organizing Data in a Database” on page 156, rows in a table don’t
have any inherent order. A database server doesn’t have to return rows from a SELECT
query in any particular pattern. To force a certain order on the returned rows, add an
ORDER BY clause to your SELECT. Example 8-38 returns all the rows in the dishes
table ordered by price, lowest to highest.

176 | Chapter 8: Remembering Information: Databases

Example 8-38. Ordering rows returned from a SELECT query

SELECT dish_name FROM dishes ORDER BY price

To order from highest to lowest value, add DESC (descending) after the column that
the results are ordered by. Example 8-39 returns all the rows in the dishes table
ordered by price, highest to lowest.

Example 8-39. Ordering from highest to lowest

SELECT dish_name FROM dishes ORDER BY price DESC

You can specify multiple columns to order by. If two rows have the same value for the
first ORDER BY column, they are sorted by the second. The query in Example 8-40
orders rows in dishes by price (highest to lowest). If multiple rows have the same
price, then they are ordered alphabetically by name.

Example 8-40. Ordering by multiple columns

SELECT dish_name FROM dishes ORDER BY price DESC, dish_name

Using ORDER BY doesn’t change the order of the rows in the table itself (remember,
they don’t really have any set order), but rearranges the results of the query. This
affects only the answer to the query. If you hand someone a menu and ask him to
read you the appetizers in alphabetical order, it doesn’t affect the printed menu—just
the response to your query (“Read me all the appetizers in alphabetical order”).

Normally, a SELECT query returns all rows that match the WHERE clause (or all rows in
a table if there is no WHERE clause). Sometimes it’s helpful to just get a certain number
of rows back. You may want to find the lowest-priced dish available or just print 10
search results. To restrict the results to a specific number of rows, add a LIMIT clause
to the end of the query. Example 8-41 returns the row from dishes with the lowest
price.

Example 8-41. Limiting the number of rows returned by SELECT

SELECT * FROM dishes ORDER BY price LIMIT 1

Example 8-42 returns the first (sorted alphabetically by dish name) 10 rows from
dishes.

Example 8-42. Still limiting the number of rows returned by SELECT

SELECT dish_name, price FROM dishes ORDER BY dish_name LIMIT 10

In general, you should only use LIMIT in a query that also has an ORDER BY clause. If
you leave out ORDER BY, the database program can return rows in any order. So, the
“first” row one time a query is executed might not be the “first” row another time the
same query is executed.

Retrieving Data from the Database | 177

Changing the Format of Retrieved Rows
So far, fetch() has been returning rows from the database as combined numerically
and string-indexed arrays. This makes for concise and easy interpolation of values in
double-quoted strings—but it can also be problematic. Trying to remember, for
example, which column from the SELECT query corresponds to element 6 in the result
array can be difficult and error-prone. Some string column names might require
quoting to interpolate properly. And having the PHP engine set up numeric indexes
and string indexes is wasteful if you don’t need them both. Fortunately, PDO lets you
specify that you’d prefer to have each result row delivered in a different way. Pass an
alternate fetch style to fetch() or fetchAll() as a first argument and you get your
row back as only a numeric array, only a string array, or an object.

To get a row back as an array with only numeric keys, pass PDO::FETCH_NUM as the
first argument to fetch() or fetchAll(). To get an array with only string keys, use
PDO::FETCH_ASSOC (remember that string-keyed arrays are sometimes called “asso‐
ciative” arrays).

To get a row back as an object instead of an array, use PDO::FETCH_OBJ. The object
that’s returned for each row has property names that correspond to column names.

Example 8-43 shows these alternate fetch styles in action.

Example 8-43. Using a different fetch style

// With numeric indexes only, it's easy to join the values together
$q = $db->query('SELECT dish_name, price FROM dishes');
while ($row = $q->fetch(PDO::FETCH_NUM)) {
 print implode(', ', $row) . "\n";
}

// With an object, property access syntax gets you the values
$q = $db->query('SELECT dish_name, price FROM dishes');
while ($row = $q->fetch(PDO::FETCH_OBJ)) {
 print "{$row->dish_name} has price {$row->price} \n";
}

If you want to use an alternate fetch style repeatedly, you can set the default for a par‐
ticular statement for all queries you issue on a given connection. To set the default for
a statement, call setFetchMode() on your PDOStatement object, as shown in
Example 8-44.

Example 8-44. Setting a default fetch style on a statement

$q = $db->query('SELECT dish_name, price FROM dishes');
// No need to pass anything to fetch(); setFetchMode()
// takes care of it

178 | Chapter 8: Remembering Information: Databases

$q->setFetchMode(PDO::FETCH_NUM);
while($row = $q->fetch()) {
 print implode(', ', $row) . "\n";
}

To set the default fetch style for everything, use setAttribute() to set the
PDO::ATTR_DEFAULT_FETCH_MODE attribute on your database connection, like this:

// No need to call setFetchMode() or pass anything to fetch();
// setAttribute() takes care of it
$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_NUM);

$q = $db->query('SELECT dish_name, price FROM dishes');
while ($row = $q->fetch()) {
 print implode(', ', $row) . "\n";
}

$anotherQuery = $db->query('SELECT dish_name FROM dishes WHERE price < 5');
// Each subarray in $moreDishes is numerically indexed, too
$moreDishes = $anotherQuery->fetchAll();

Retrieving Form Data Safely
It’s possible to use placeholders with SELECT statements just as you do with INSERT,
UPDATE, or DELETE statements. Instead of using query() directly, use prepare() and
execute(), but give prepare() a SELECT statement.

However, when you use submitted form data or other external input in the WHERE
clause of a SELECT, UPDATE, or DELETE statement, you must take extra care to ensure
that any SQL wildcards are appropriately escaped. Consider a search form with a text
element called dish_search into which the user can type the name of a dish she’s
looking for. The call to execute() in Example 8-45 uses placeholders to guard against
confounding single quotes in the submitted value.

Example 8-45. Using a placeholder in a SELECT statement

$stmt = $db->prepare('SELECT dish_name, price FROM dishes
 WHERE dish_name LIKE ?');
$stmt->execute(array($_POST['dish_search']));
while ($row = $stmt->fetch()) {
 // ... do something with $row ...
}

Whether dish_search is Fried Bean Curd or General Tso's Chicken, the place‐
holder interpolates the value into the query appropriately. However, what if
dish_search is %chicken%? Then, the query becomes SELECT dish_name, price
FROM dishes WHERE dish_name LIKE '%chicken%'. This matches all rows that con‐
tain the string chicken, not just rows in which dish_name is exactly %chicken%.

Retrieving Form Data Safely | 179

SQL Lesson: Wildcards
Wildcards are useful for matching text inexactly, such as finding strings that end
with .edu or that contain @. SQL has two wildcards: the underscore (_) matches one
character and the percent sign (%) matches any number of characters (including zero
characters). The wildcards are active inside strings used with the LIKE operator in a
WHERE clause.

Example 8-46 shows two SELECT queries that use LIKE and wildcards.

Example 8-46. Using wildcards with SELECT

; Retrieve all rows in which dish name begins with D
SELECT * FROM dishes WHERE dish_name LIKE 'D%'

; Retrieve rows in which dish name is Fried Cod, Fried Bod,
; Fried Nod, and so on.
SELECT * FROM dishes WHERE dish_name LIKE 'Fried _od'

Wildcards are active in the WHERE clauses of UPDATE and DELETE statements, too. The
query in Example 8-47 doubles the prices of all dishes that have chili in their names.

Example 8-47. Using wildcards with UPDATE

UPDATE dishes SET price = price * 2 WHERE dish_name LIKE '%chili%'

The query in Example 8-48 deletes all rows whose dish_name ends with Shrimp.

Example 8-48. Using wildcards with DELETE

DELETE FROM dishes WHERE dish_name LIKE '%Shrimp'

To match against a literal % or _ when using the LIKE operator, put a backslash before
the % or _. The query in Example 8-49 finds all rows whose dish_name contains 50%
off.

Example 8-49. Escaping wildcards

SELECT * FROM dishes WHERE dish_name LIKE '%50\% off%'

Without the backslash, the query in Example 8-49 would match rows whose
dish_name contains 50 and then has a space and off somewhere later in the name,
such as Spicy 50 shrimp with shells off salad or Famous 500 offer duck.

To prevent SQL wildcards in form data from taking effect in queries, you must forgo
the comfort and ease of the placeholder and rely on two other functions: quote() in
PDO and PHP’s built-in strtr() function. First, call quote() on the submitted value.

180 | Chapter 8: Remembering Information: Databases

This does the same quoting operation that the placeholder does. For example, it turns
General Tso's Chicken into 'General Tso''s Chicken'. The next step is to use
strtr() to backslash-escape the SQL wildcards % and _. The quoted and wildcard-
escaped value can then be used safely in a query.

Example 8-50 shows how to use quote() and strtr() to make a submitted value safe
for a WHERE clause.

Example 8-50. Not using a placeholder in a SELECT statement

// First, do normal quoting of the value
$dish = $db->quote($_POST['dish_search']);
// Then, put backslashes before underscores and percent signs
$dish = strtr($dish, array('_' => '_', '%' => '\%'));
// Now, $dish is sanitized and can be interpolated right into the query
$stmt = $db->query("SELECT dish_name, price FROM dishes
 WHERE dish_name LIKE $dish");

You can’t use a placeholder in this situation because the escaping of the SQL wild‐
cards has to happen after the regular quoting. The regular quoting puts a backslash
before single quotes, but also before backslashes. If strtr() processes the string first,
a submitted value such as %chicken% becomes \%chicken\%. Then, the quoting
(whether by quote() or the placeholder processing) turns \%chicken\% into
'\\%chicken\\%'. This is interpreted by the database to mean a literal backslash, fol‐
lowed by the “match any characters” wildcard, followed by chicken, followed by
another literal backslash, followed by another “match any characters” wildcard.
However, if quote() goes first, %chicken% is turned into '%chicken%'. Then, strtr()
turns it into '\%chicken\%'. This is interpreted by the database as a literal percent
sign, followed by chicken, followed by another percent sign, which is what the user
entered.

Not quoting wildcard characters has an even more drastic effect in the WHERE clause
of an UPDATE or DELETE statement. Example 8-51 shows a query incorrectly using pla‐
ceholders to allow a user-entered value to control which dishes have their prices set
to $1.

Example 8-51. Incorrect use of placeholders in an UPDATE statement

$stmt = $db->prepare('UPDATE dishes SET price = 1 WHERE dish_name LIKE ?');
$stmt->execute(array($_POST['dish_name']));

If the submitted value for dish_name in Example 8-51 is Fried Bean Curd, then the
query works as expected: the price of that dish only is set to 1. But if
$_POST['dish_name'] is %, then all dishes have their price set to 1! The quote() and

Retrieving Form Data Safely | 181

strtr() technique prevents this problem. The right way to do the update is in
Example 8-52.

Example 8-52. Correct use of quote() and strtr() with an UPDATE statement

// First, do normal quoting of the value
$dish = $db->quote($_POST['dish_name']);
// Then, put backslashes before underscores and percent signs
$dish = strtr($dish, array('_' => '_', '%' => '\%'));
// Now, $dish is sanitized and can be interpolated right into the query
$db->exec("UPDATE dishes SET price = 1 WHERE dish_name LIKE $dish");

A Complete Data Retrieval Form
Example 8-53 is another complete database and form program. It presents a search
form and then prints an HTML table of all rows in the dishes table that match the
search criteria. Like Example 8-28, it relies on the form helper class being defined in a
separate FormHelper.php file.

Example 8-53. Program for searching the dishes table

<?php

// Load the form helper class
require 'FormHelper.php';

// Connect to the database
try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (PDOException $e) {
 print "Can't connect: " . $e->getMessage();
 exit();
}
// Set up exceptions on DB errors
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Set up fetch mode: rows as objects
$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_OBJ);

// Choices for the "spicy" menu in the form
$spicy_choices = array('no','yes','either');

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {

182 | Chapter 8: Remembering Information: Databases

 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 // Set our own defaults
 $defaults = array('min_price' => '5.00',
 'max_price' => '25.00');

 // Set up the $form object with proper defaults
 $form = new FormHelper($defaults);

 // All the HTML and form display is in a separate file for clarity
 include 'retrieve-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 // Remove any leading/trailing whitespace from submitted dish name
 $input['dish_name'] = trim($_POST['dish_name'] ?? '');

 // Minimum price must be a valid floating-point number
 $input['min_price'] = filter_input(INPUT_POST,'min_price',
 FILTER_VALIDATE_FLOAT);
 if ($input['min_price'] === null || $input['min_price'] === false) {
 $errors[] = 'Please enter a valid minimum price.';
 }

 // Maximum price must be a valid floating-point number
 $input['max_price'] = filter_input(INPUT_POST,'max_price',
 FILTER_VALIDATE_FLOAT);
 if ($input['max_price'] === null || $input['max_price'] === false) {
 $errors[] = 'Please enter a valid maximum price.';
 }

 // Minimum price must be less than the maximum price
 if ($input['min_price'] >= $input['max_price']) {
 $errors[] = 'The minimum price must be less than the maximum price.';
 }

 $input['is_spicy'] = $_POST['is_spicy'] ?? '';
 if (! array_key_exists($input['is_spicy'], $GLOBALS['spicy_choices'])) {
 $errors[] = 'Please choose a valid "spicy" option.';

A Complete Data Retrieval Form | 183

 }
 return array($errors, $input);
}

function process_form($input) {
 // Access the global variable $db inside this function
 global $db;

 // Build up the query
 $sql = 'SELECT dish_name, price, is_spicy FROM dishes WHERE
 price >= ? AND price <= ?';

 // If a dish name was submitted, add to the WHERE clause.
 // We use quote() and strtr() to prevent user-entered wildcards from working.
 if (strlen($input['dish_name'])) {
 $dish = $db->quote($input['dish_name']);
 $dish = strtr($dish, array('_' => '_', '%' => '\%'));
 $sql .= " AND dish_name LIKE $dish";
 }

 // If is_spicy is "yes" or "no", add appropriate SQL
 // (if it's "either", we don't need to add is_spicy to the WHERE clause)
 $spicy_choice = $GLOBALS['spicy_choices'][$input['is_spicy']];
 if ($spicy_choice == 'yes') {
 $sql .= ' AND is_spicy = 1';
 } elseif ($spicy_choice == 'no') {
 $sql .= ' AND is_spicy = 0';
 }

 // Send the query to the database program and get all the rows back
 $stmt = $db->prepare($sql);
 $stmt->execute(array($input['min_price'], $input['max_price']));
 $dishes = $stmt->fetchAll();

 if (count($dishes) == 0) {
 print 'No dishes matched.';
 } else {
 print '<table>';
 print '<tr><th>Dish Name</th><th>Price</th><th>Spicy?</th></tr>';
 foreach ($dishes as $dish) {
 if ($dish->is_spicy == 1) {
 $spicy = 'Yes';
 } else {
 $spicy = 'No';
 }
 printf('<tr><td>%s</td><td>$%.02f</td><td>%s</td></tr>',
 htmlentities($dish->dish_name), $dish->price, $spicy);
 }
 }
}
?>

184 | Chapter 8: Remembering Information: Databases

Example 8-53 is a lot like Example 8-28: it uses the standard display/validate/process
form structure with global code for database setup and database interaction inside
process_form(). The show_form() function displays the form HTML defined in the
retrieve-form.php file. This file is shown in Example 8-54.

Example 8-54. Form for retrieving information about dishes

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>

 <tr>
 <td>Dish Name:</td>
 <td><?= $form->input('text', ['name' => 'dish_name']) ?></td>
 </tr>

 <tr>
 <td>Minimum Price:</td>
 <td><?= $form->input('text',['name' => 'min_price']) ?></td>
 </tr>

 <tr>
 <td>Maximum Price:</td>
 <td><?= $form->input('text',['name' => 'max_price']) ?></td>
 </tr>

 <tr>
 <td>Spicy:</td>
 <td><?= $form->select($GLOBALS['spicy_choices'], ['name' => 'is_spicy']) ?>
 </td>
 </tr>

 <tr>
 <td colspan="2" align="center">
 <?= $form->input('submit', ['name' => 'search',
 'value' => 'Search']) ?></td>
 </tr>
</table>
</form>

A Complete Data Retrieval Form | 185

One difference in Example 8-53 is an additional line in its database setup code: a call
to setAttribute() that changes the fetch mode. Since process_form() is going to
retrieve information from the database, the fetch mode is important.

The process_form() function builds up a SELECT statement, sends it to the database
with execute(), retrieves the results with fetchAll(), and prints the results in an
HTML table. Up to four factors go into the WHERE clause of the SELECT statement. The
first two are the minimum and maximum price. These are always in the query, so
they get placeholders in $sql, the variable that holds the SQL statement.

Next comes the dish name. That’s optional, but if it’s submitted, it goes into the query.
A placeholder isn’t good enough for the dish_name column, though, because the sub‐
mitted form data could contain SQL wildcards. Instead, quote() and strtr() pre‐
pare a sanitized version of the dish name, and it’s added directly onto the WHERE
clause.

The last possible column in the WHERE clause is is_spicy. If the submitted choice is
yes, then AND is_spicy = 1 goes into the query so that only spicy dishes are
retrieved. If the submitted choice is no, then AND is_spicy = 0 goes into the query
so that only nonspicy dishes are found. If the submitted choice is either, then there’s
no need to have is_spicy in the query—rows should be picked regardless of their
spiciness.

After the full query is constructed in $sql, it’s prepared with prepare() and sent to
the database program with execute(). The second argument to execute() is an array
containing the minimum and maximum price values so that they can be substituted
for the placeholders. The array of rows that fetchAll() returns is stored in $dishes.

The last step in process_form() is printing some results. If there’s nothing in
$dishes, No dishes matched is displayed. Otherwise, a foreach() loop iterates
through dishes and prints out an HTML table row for each dish, using printf() to
format the price properly and htmlentities() to encode any special characters in
the dish name. An if() clause turns the database-friendly is_spicy values of 1 or 0
into the human-friendly values of Yes or No.

Chapter Summary
This chapter covered:

• Figuring out what kinds of information belong in a database
• Understanding how data is organized in a database
• Establishing a database connection
• Creating a table in the database
• Removing a table from the database

186 | Chapter 8: Remembering Information: Databases

• Using the SQL INSERT command
• Inserting data into the database with exec()
• Checking for database errors by handling exceptions
• Changing the error mode with setAttribute()
• Using the SQL UPDATE and DELETE commands
• Changing or deleting data with exec()
• Counting the number of rows affected by a query
• Using placeholders to insert data safely
• Using the SQL SELECT command
• Retrieving data from the database with query() and fetch()
• Counting the number of rows retrieved by query()
• Using the SQL ORDER BY and LIMIT keywords with SELECT
• Retrieving rows as string-keyed arrays or objects
• Using the SQL wildcards with LIKE: % and _
• Escaping SQL wildcards in SELECT statements
• Saving submitted form parameters in the database
• Using data from the database in form elements

Exercises
The following exercises use a database table called dishes with the following struc‐
ture:

CREATE TABLE dishes (
 dish_id INT,
 dish_name VARCHAR(255),
 price DECIMAL(4,2),
 is_spicy INT
)

Here is some sample data to put into the dishes table:

INSERT INTO dishes VALUES (1,'Walnut Bun',1.00,0)
INSERT INTO dishes VALUES (2,'Cashew Nuts and White Mushrooms',4.95,0)
INSERT INTO dishes VALUES (3,'Dried Mulberries',3.00,0)
INSERT INTO dishes VALUES (4,'Eggplant with Chili Sauce',6.50,1)
INSERT INTO dishes VALUES (5,'Red Bean Bun',1.00,0)
INSERT INTO dishes VALUES (6,'General Tso''s Chicken',5.50,1)

1. Write a program that lists all of the dishes in the table, sorted by price.
2. Write a program that displays a form asking for a price. When the form is sub‐

mitted, the program should print out the names and prices of the dishes whose
price is at least the submitted price. Don’t retrieve from the database any rows or
columns that aren’t printed in the table.

Exercises | 187

3. Write a program that displays a form with a <select> menu of dish names. Cre‐
ate the dish names to display by retrieving them from the database. When the
form is submitted, the program should print out all of the information in the
table (ID, name, price, and spiciness) for the selected dish.

4. Create a new table that holds information about restaurant customers. The table
should store the following information about each customer: customer ID, name,
phone number, and the ID of the customer’s favorite dish. Write a program that
displays a form for putting a new customer into the table. The part of the form
for entering the customer’s favorite dish should be a <select> menu of dish
names. The customer’s ID should be generated by your program, not entered in
the form.

188 | Chapter 8: Remembering Information: Databases

CHAPTER 9

Working with Files

The data storage destination of choice for a web application is a database. That
doesn’t mean that you’re completely off the hook from dealing with regular old files,
though. Plain text files are still a handy, universal way to exchange some kinds
of information.

You can do easy customization of your website by storing HTML templates in text
files. When it’s time to generate a specialized page, load the text file, substitute real
data for the template elements, and print it. Example 9-2 shows you how to do this.

Files are also good for exchanging tabular data between your program and a spread‐
sheet. In your PHP programs, you can easily read and write the CSV (comma-
separated value) files with which spreadsheet programs work.

This chapter shows you how to work with files from your PHP programs: dealing
with file permissions, which your computer uses to enforces rules about which files
your programs can read and write; reading data from and writing data to files; and
handling errors that may occur with file-related operations.

Understanding File Permissions
To read or write a file with any of the functions you’ll learn about in this chapter, the
PHP engine must have permission from the operating system to do so. Every pro‐
gram that runs on a computer, including the PHP engine, runs with the privileges of a
particular user account. Most of the user accounts correspond to people. When you
log in to your computer and start up your word processor, that word processor runs
with the privileges that correspond to your account: it can read files that you are
allowed to see and write files that you are allowed to change.

189

Some user accounts on a computer, however, aren’t for people but for system pro‐
cesses such as web servers. When the PHP interpreter runs inside of a web server, it
has the privileges that the web server’s “account” has. So if the web server is allowed
to read a certain file or directory, then the PHP engine (and therefore your PHP pro‐
gram) can read that file or directory. If the web server is allowed to change a certain
file or write new files in a particular directory, then so can the PHP engine and your
PHP program.

Usually, the privileges extended to a web server’s account are more limited than the
privileges that go along with a real person’s account. The web server (and the PHP
engine) need to be able to read all of the PHP program files that make up your web‐
site, but they shouldn’t be able to change them. If a bug in the web server or an inse‐
cure PHP program lets an attacker break in, the PHP program files should be
protected against being changed by that attacker.

In practice, what this means is that your PHP programs shouldn’t have too much
trouble reading most files that you need to read. (Of course, if you try to read another
user’s private files, you may run into a problem—but that’s as it should be!) However,
the files that your PHP program can change and the directories into which your pro‐
gram can write new files are limited. If you need to create lots of new files in your
PHP programs, work with your system administrator to make a special directory that
you can write to but that doesn’t compromise system security. “Inspecting File Per‐
missions” on page 198 shows you how to determine which files and directories your
programs are allowed to read and write.

Reading and Writing Entire Files
This section shows you how to work with an entire file at once, as opposed to manip‐
ulating just a few lines of a file. PHP provides special functions for reading or writing
a whole file in a single step.

Reading a File
To read the contents of a file into a string, use file_get_contents(). Pass it a file‐
name, and it returns a string containing everything in the file. Example 9-2 reads the
file in Example 9-1 with file_get_contents(), modifies it with str_replace(), and
then prints the result.

Example 9-1. page-template.html for Example 9-2

<html>
<head><title>{page_title}</title></head>
<body bgcolor="{color}">

<h1>Hello, {name}</h1>

190 | Chapter 9: Working with Files

</body>
</html>

Example 9-2. Using file_get_contents() with a page template

// Load the template file from the previous example
$page = file_get_contents('page-template.html');

// Insert the title of the page
$page = str_replace('{page_title}', 'Welcome', $page);

// Make the page blue in the afternoon and
// green in the morning
if (date('H' >= 12)) {
 $page = str_replace('{color}', 'blue', $page);
} else {
 $page = str_replace('{color}', 'green', $page);
}

// Take the username from a previously saved session
// variable
$page = str_replace('{name}', $_SESSION['username'], $page);

// Print the results
print $page;

Every time you use a file access function, you need to check that it
didn’t encounter an error because of a lack of disk space, permis‐
sion problem, or other failure. Error checking is discussed in detail
in “Checking for Errors” on page 199. The examples in the next few
sections don’t have error-checking code, so you can see the actual
file access function at work without other new material getting in
the way. Real programs that you write always need to check for
errors after calling a file access function.

With $_SESSION['username'] set to Jacob, Example 9-2 prints:

<html>
<head><title>Welcome</title></head>
<body bgcolor="green">

<h1>Hello, Jacob</h1>

</body>
</html>

Reading and Writing Entire Files | 191

Writing a File
The counterpart to reading the contents of a file into a string is writing a string to a
file. And the counterpart to file_get_contents() is file_put_contents().
Example 9-3 extends Example 9-2 by saving the HTML to a file instead of printing it.

Example 9-3. Saving a file with file_put_contents()

// Load the template file we used earlier
$page = file_get_contents('page-template.html');

// Insert the title of the page
$page = str_replace('{page_title}', 'Welcome', $page);

// Make the page blue in the afternoon and
// green in the morning
if (date('H' >= 12)) {
 $page = str_replace('{color}', 'blue', $page);
} else {
 $page = str_replace('{color}', 'green', $page);
}

// Take the username from a previously saved session
// variable
$page = str_replace('{name}', $_SESSION['username'], $page);

// Write the results to page.html
file_put_contents('page.html', $page);

Example 9-3 writes the value of $page (the HTML) to the file page.html. The first
argument to file_put_contents() is the filename to write to, and the second argu‐
ment is what to write to the file.

Reading and Writing Parts of Files
The file_get_contents() and file_put_contents() functions are fine when you
want to work with an entire file at once. But when it’s time for precision work, use the
file() function to access each line of a file. Example 9-4 reads a file in which each
line contains a name and an email address and then prints an HTML-formatted list of
that information.

Example 9-4. Accessing each line of a file

foreach (file('people.txt') as $line) {
 $line = trim($line);
 $info = explode('|', $line);
 print '' . $info[1] ."\n";
}

192 | Chapter 9: Working with Files

Suppose people.txt contains what’s listed in Example 9-5.

Example 9-5. people.txt for Example 9-4

alice@example.com|Alice Liddell
bandersnatch@example.org|Bandersnatch Gardner
charles@milk.example.com|Charlie Tenniel
dodgson@turtle.example.com|Lewis Humbert

Then, Example 9-4 prints:

Alice Liddell
Bandersnatch Gardner
Charlie Tenniel
Lewis Humbert

The file() function returns an array. Each element of that array is a string contain‐
ing one line of the file, newline included. So, the foreach() loop in Example 9-4 visits
each element of the array, putting the string in $line. The trim() function removes
the trailing newline, explode() breaks apart the line into what’s before the | and
what’s after it, and then print outputs the HTML list elements.

Although file() is very convenient, it can be problematic with very large files. It
reads the whole file to build the array of lines—and with a file that contains lots of
lines, that may use up too much memory. In that case, you need to read the file line-
by-line, as shown in Example 9-6.

Example 9-6. Reading a file one line at a time

$fh = fopen('people.txt','rb');
while ((! feof($fh)) && ($line = fgets($fh))) {
 $line = trim($line);
 $info = explode('|', $line);
 print '' . $info[1] ."\n";
}
fclose($fh);

The four file access functions in Example 9-6 are fopen(),fgets(), feof(), and
fclose(). They work together as follows:

• The fopen() function opens a connection to the file and returns a variable that’s
used for subsequent access to the file in the program. (This is conceptually simi‐
lar to the database connection variable returned by new PDO() that you saw in
Chapter 8.)

• The fgets() function reads a line from the file and returns it as a string.
• The PHP engine keeps a bookmark of where its current position in the file is.

The bookmark starts at the beginning of the file, so the first time that fgets() is

Reading and Writing Parts of Files | 193

called, the first line of the file is read. After that line is read, the bookmark is
updated to the beginning of the next line.

• The feof() function returns true if the bookmark is past the end of the file
(“eof ” stands for “end of file”).

• The fclose() function closes the connection to the file.

The while() loop in Example 9-6 keeps executing as long as two things are true:

• feof($fh) returns false.
• The $line value that fgets($fh) returns evaluates to true.

Each time fgets($fh) runs, the PHP engine grabs a line from the file, advances its
bookmark, and returns the line. When the bookmark is pointing at the very last spot
in the file, feof($fh) still returns false. At that point, however, fgets($fh) returns
false because it tries to read a line and can’t. So, both of those checks are necessary to
make the loop end properly.

Example 9-6 uses trim() on $line because the string that fgets() returns includes
the trailing newline at the end of the line. The trim() function removes the newline,
which makes the output look better.

The first argument to fopen() is the name of the file that you want to access. As with
other PHP file access functions, use forward slashes (/) instead of backslashes (\)
here, even on Windows. Example 9-7 opens a file in the Windows system directory.

Example 9-7. Opening a file on Windows

$fh = fopen('c:/windows/system32/settings.txt','rb');

Because backslashes have a special meaning (escaping, which you saw in “Defining
Text Strings” on page 20) inside strings, it’s easier to use forward slashes in filenames.
The PHP engine does the right thing in Windows and loads the correct file.

The second argument to fopen() is the file mode. This controls what you’re allowed
to do with the file once it’s opened: reading, writing, or both. The file mode also
affects where the PHP engine’s file position bookmark starts, whether the file’s con‐
tents are cleared out when it’s opened, and how the PHP engine should react if the file
doesn’t exist. Table 9-1 lists the different modes that fopen() understands.

Table 9-1. File modes for fopen()

Mode Allowable
actions

Position bookmark
starting point

Clear
contents?

If the file doesn’t exist?

rb Reading Beginning of file No Issue a warning, return false.
rb+ Reading, Writing Beginning of file No Issue a warning, return false.
wb Writing Beginning of file Yes Try to create it.

194 | Chapter 9: Working with Files

Mode Allowable
actions

Position bookmark
starting point

Clear
contents?

If the file doesn’t exist?

wb+ Reading, writing Beginning of file Yes Try to create it.
ab Writing End of file No Try to create it.
ab+ Reading, writing End of file No Try to create it.
xb Writing Beginning of file No Try to create it; if the file does exist, issue a

warning and return false.
xb+ Reading, writing Beginning of file No Try to create it; if the file does exist, issue a

warning and return false.
cb Writing Beginning of file No Try to create it.
cb+ Reading, writing Beginning of file No Try to create it.

Once you’ve opened a file in a mode that allows writing, use the fwrite() function to
write something to the file. Example 9-8 uses the wb mode with fopen() and uses
fwrite() to write information retrieved from a database table to the file dishes.txt.

Example 9-8. Writing data to a file

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (Exception $e) {
 print "Couldn't connect to database: " . $e->getMessage();
 exit();
}

// Open dishes.txt for writing
$fh = fopen('dishes.txt','wb');

$q = $db->query("SELECT dish_name, price FROM dishes");
while($row = $q->fetch()) {
 // Write each line (with a newline on the end) to
 // dishes.txt
 fwrite($fh, "The price of $row[0] is $row[1] \n");
}
fclose($fh);

The fwrite() function doesn’t automatically add a newline to the end of the string
you write. It just writes exactly what you pass to it. If you want to write a line at a time
(such as in Example 9-8), be sure to add a newline (\n) to the end of the string that
you pass to fwrite().

Working with CSV Files
One type of text file gets special treatment in PHP: the CSV file. It can’t handle graphs
or charts, but excels at sharing tables of data among different programs. To read a line
of a CSV file, use fgetcsv() instead of fgets(). It reads a line from the CSV file and

Working with CSV Files | 195

returns an array containing each field in the line. Example 9-9 is a CSV file of infor‐
mation about restaurant dishes. Example 9-10 uses fgetcsv() to read the file and
insert the information in it into the dishes database table from Chapter 8.

Example 9-9. dishes.csv

"Fish Ball with Vegetables",4.25,0
"Spicy Salt Baked Prawns",5.50,1
"Steamed Rock Cod",11.95,0
"Sauteed String Beans",3.15,1
"Confucius ""Chicken""",4.75,0

Example 9-10. Inserting CSV data into a database table

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (Exception $e) {
 print "Couldn't connect to database: " . $e->getMessage();
 exit();
}
$fh = fopen('dishes.csv','rb');
$stmt = $db->prepare('INSERT INTO dishes (dish_name, price, is_spicy)
 VALUES (?,?,?)');
while ((! feof($fh)) && ($info = fgetcsv($fh))) {
 // $info[0] is the dish name (the first field in a line of dishes.csv)
 // $info[1] is the price (the second field)
 // $info[2] is the spicy status (the third field)
 // Insert a row into the database table
 $stmt->execute($info);
 print "Inserted $info[0]\n";
}
// Close the file
fclose($fh);

Example 9-10 prints:

Inserted Fish Ball with Vegetables
Inserted Spicy Salt Baked Prawns
Inserted Steamed Rock Cod
Inserted Sauteed String Beans
Inserted Confucius "Chicken"

Writing a CSV-formatted line is similar to reading one. The fputcsv() function takes
a file handle and an array of values as arguments and writes those values, formatted as
proper CSV, to the file. Example 9-11 uses fputcsv() along with fopen() and
fclose() to retrieve information from a database table and write it to a CSV file.

196 | Chapter 9: Working with Files

Example 9-11. Writing CSV-formatted data to a file

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (Exception $e) {
 print "Couldn't connect to database: " . $e->getMessage();
 exit();
}

// Open the CSV file for writing
$fh = fopen('dish-list.csv','wb');

$dishes = $db->query('SELECT dish_name, price, is_spicy FROM dishes');
while ($row = $dishes->fetch(PDO::FETCH_NUM)) {
 // Write the data in $row as a CSV-formatted string. fputcsv()
 // adds a newline at the end.
 fputcsv($fh, $row);
}
fclose($fh);

To send a page that consists only of CSV-formatted data back to a web client, you
need to tell fputcsv() to write the data to the regular PHP output stream (instead of
a file). You also have to use PHP’s header() function to tell the web client to expect a
CSV document instead of an HTML document. Example 9-12 shows how to call the
header() function with the appropriate arguments.

Example 9-12. Changing the page type to CSV

// Tell the web client to expect a CSV file
header('Content-Type: text/csv');
// Tell the web client to view the CSV file in a separate program
header('Content-Disposition: attachment; filename="dishes.csv"');

Example 9-13 contains a complete program that sends the correct CSV header,
retrieves rows from a database table, and prints them. Its output can be loaded
directly into a spreadsheet program from a user’s web browser.

Example 9-13. Sending a CSV file to the browser

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (Exception $e) {
 print "Couldn't connect to database: " . $e->getMessage();
 exit();
}

// Tell the web client that a CSV file called "dishes.csv" is coming
header('Content-Type: text/csv');
header('Content-Disposition: attachment; filename="dishes.csv"');

Working with CSV Files | 197

// Open a file handle to the output stream
$fh = fopen('php://output','wb');

// Retrieve the info from the database table and print it
$dishes = $db->query('SELECT dish_name, price, is_spicy FROM dishes');
while ($row = $dishes->fetch(PDO::FETCH_NUM)) {
 fputcsv($fh, $row);
}

In Example 9-13, the first argument to fputcsv() is php://output. This is a special
built-in file handle which sends data to the same place that print sends it to.

To generate more complicated spreadsheets that include formulas, formatting, and
images, use the PHPOffice PHPExcel package.

See Chapter 16 for details on how to install packages.

Inspecting File Permissions
As mentioned at the beginning of the chapter, your programs can only read and write
files when the PHP engine has permission to do so. You don’t have to cast about
blindly and rely on error messages to figure out what those permissions are, however.
PHP gives you functions with which you can determine what your program is
allowed to do.

To check whether a file or directory exists, use file_exists(). Example 9-14 uses
this function to report whether a directory’s index file has been created.

Example 9-14. Checking the existence of a file

if (file_exists('/usr/local/htdocs/index.html')) {
 print "Index file is there.";
} else {
 print "No index file in /usr/local/htdocs.";
}

To determine whether your program has permission to read or write a particular file,
use is_readable() or is_writeable(). Example 9-15 checks that a file is readable
before retrieving its contents with file_get_contents().

198 | Chapter 9: Working with Files

https://packagist.org/packages/phpoffice/phpexcel

Example 9-15. Testing for read permission

$template_file = 'page-template.html';
if (is_readable($template_file)) {
 $template = file_get_contents($template_file);
} else {
 print "Can't read template file.";
}

Example 9-16 verifies that a file is writeable before appending a line to it with
fopen() and fwrite().

Example 9-16. Testing for write permission

$log_file = '/var/log/users.log';
if (is_writeable($log_file)) {
 $fh = fopen($log_file,'ab');
 fwrite($fh, $_SESSION['username'] . ' at ' . strftime('%c') . "\n");
 fclose($fh);
} else {
 print "Cant write to log file.";
}

Checking for Errors
So far, the examples in this chapter have been shown without any error checking in
them. This keeps them shorter, so you can focus on the file manipulation functions
such as file_get_contents(), fopen(), and fgetcsv(). It also makes them some‐
what incomplete. Just like talking to a database program, working with files means
interacting with resources external to your program. This means you have to worry
about all sorts of things that can cause problems, such as operating system file per‐
missions or a disk running out of free space.

In practice, to write robust file-handling code, you should check the return value of
each file-related function. They each generate a warning message and return false if
there is a problem. If the configuration directive track_errors is on, the text of the
error message is available in the global variable $php_errormsg.

Example 9-17 shows how to check whether fopen() or fclose() encounters an error.

Example 9-17. Checking for an error from fopen() or fclose()

try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (Exception $e) {
 print "Couldn't connect to database: " . $e->getMessage();
 exit();
}

Checking for Errors | 199

// Open dishes.txt for writing
$fh = fopen('/usr/local/dishes.txt','wb');
if (! $fh) {
 print "Error opening dishes.txt: $php_errormsg";
} else {
 $q = $db->query("SELECT dish_name, price FROM dishes");
 while($row = $q->fetch()) {
 // Write each line (with a newline on the end) to
 // dishes.txt
 fwrite($fh, "The price of $row[0] is $row[1] \n");
 }
 if (! fclose($fh)) {
 print "Error closing dishes.txt: $php_errormsg";
 }
}

If your program doesn’t have permission to write into the /usr/local directory, then
fopen() returns false, and Example 9-17 prints:

Error opening dishes.txt: failed to open stream: Permission denied

It also generates a warning message that looks like this:

Warning: fopen(/usr/local/dishes.txt): failed to open stream: Permission denied
in dishes.php on line 5

“Controlling Where Errors Appear” on page 249 talks about how to control where the
warning message is shown.

The same thing happens with fclose(). If it returns false, then the Error closing
dishes.txt message is printed. Sometimes operating systems buffer data written
with fwrite() and don’t actually save the data to the file until you call fclose(). If
there’s no space on the disk for the data you’re writing, the error might show up when
you call fclose(), not when you call fwrite().

Checking for errors from the other file-handling functions (such as fgets(),
fwrite(), fgetcsv(), file_get_contents(), and file_put_contents()) is a little
trickier. This is because you have to do something special to distinguish the value
they return when an error happens from the data they return when everything
goes OK.

If something goes wrong with fgets(), file_get_contents(), or fgetcsv(), they
each return false. However, it’s possible that these functions could succeed and still
return a value that evaluates to false in a comparison. If file_get_contents() reads
a file that just consists of the one character 0, then it returns a one-character string, 0.
Remember from “Understanding true and false” on page 40, though, that such a
string is considered false.

200 | Chapter 9: Working with Files

To get around this, be sure to use the identity operator to check the function’s return
value. That way, you can compare the value with false and know that an error has
happened only if the function actually returns false, not a string that evaluates
to false.

Example 9-18 shows how to use the identity operator to check for an error from
file_get_contents().

Example 9-18. Checking for an error from file_get_contents()

$page = file_get_contents('page-template.html');
// Note the three equals signs in the test expression
if ($page === false) {
 print "Couldn't load template: $php_errormsg";
} else {
 // ... process template here
}

Use the same technique with fgets() or fgetcsv(). Example 9-19 correctly checks
for errors from fopen(), fgets(), and fclose().

Example 9-19. Checking for an error from fopen(), fgets(), or fclose()

$fh = fopen('people.txt','rb');
if (! $fh) {
 print "Error opening people.txt: $php_errormsg";
} else {
 while (! feof($fh)) {
 $line = fgets($fh);
 if ($line !== false) {
 $line = trim($line);
 $info = explode('|', $line);
 print '' . $info[1] ."\n";
 }
 }
 if (! fclose($fh)) {
 print "Error closing people.txt: $php_errormsg";
 }
}

When fwrite(), fputcsv(), and file_put_contents() succeed, they return the
number of bytes they’ve written. When fwrite() or fputcsv() fails, it returns false,
so you can use the identity operator with it just like with fgets(). The
file_put_contents() function is a little different. Depending on what goes wrong,
it either returns false or -1, so you need to check for both possibilities.
Example 9-20 shows how to check for errors from file_put_contents().

Checking for Errors | 201

Example 9-20. Checking for an error from file_put_contents()

// Load the file from Example 9-1
$page = file_get_contents('page-template.html');

// Insert the title of the page
$page = str_replace('{page_title}', 'Welcome', $page);

// Make the page blue in the afternoon and
// green in the morning
if (date('H' >= 12)) {
 $page = str_replace('{color}', 'blue', $page);
} else {
 $page = str_replace('{color}', 'green', $page);
}

// Take the username from a previously saved session
// variable
$page = str_replace('{name}', $_SESSION['username'], $page);

$result = file_put_contents('page.html', $page);
// Need to check if file_put_contents() returns false or -1
if (($result === false) || ($result == -1)) {
 print "Couldn't save HTML to page.html";
}

Sanitizing Externally Supplied Filenames
Just as data submitted in a form or URL can cause problems when it is displayed
(cross-site scripting attack) or put in an SQL query (SQL injection attack), it can also
cause problems when it is used as a filename or as part of a filename. This problem
doesn’t have a fancy name like those other attacks, but it can be just as devastating.

The cause of the problem is the same: there are special characters that must be esca‐
ped so they lose their special meaning. In filenames, the special characters are /
(which separates parts of filenames), and the two-character sequence .. (which means
“go up one directory” in a filename).

For example, the funny-looking filename /usr/local/data/../../../etc/passwd doesn’t
point to a file in the /usr/local/data directory but instead to the location of the
file /etc/passwd, which, on most Unix systems, contains a list of user accounts.
The filename /usr/local/data/../../../etc/passwd means “from the directory /usr/local/
data, go up one level (to /usr/local), then go up another level (to /usr), then go up
another level (to /, the top level of the filesystem), then down into /etc, then stop at
the file passwd.”

How could this be a problem in your PHP programs? When you use data from a
form in a filename, you are vulnerable to an attack that enables a user to gain access
to areas of your filesystem that you may not have intended, unless you sanitize the

202 | Chapter 9: Working with Files

submitted form data. Example 9-21 takes the approach of removing all forward
slashes and .. sequences from a submitted form parameter before incorporating the
parameter into a filename.

Example 9-21. Cleaning up a form parameter that goes in a filename

// Remove slashes from user
$user = str_replace('/', '', $_POST['user']);
// Remove .. from user
$user = str_replace('..', '', $user);

if (is_readable("/usr/local/data/$user")) {
 print 'User profile for ' . htmlentities($user) .':
';
 print file_get_contents("/usr/local/data/$user");
}

If a malicious user supplies ../../../etc/passwd as the user form parameter in
Example 9-21, that is translated into etcpasswd before being interpolated into the
filename used with file_get_contents().

Another helpful technique for getting rid of user-entered nastiness is to use
realpath(). It translates an obfuscated filename that contains .. sequences into
the ..-less version of the filename that more directly indicates where the file is.
For example, realpath('/usr/local/data/../../../etc/passwd') returns the
string /etc/passwd. You can use realpath() as in Example 9-22 to see whether file‐
names, after incorporating form data, are acceptable.

Example 9-22. Cleaning up a filename with realpath()

$filename = realpath("/usr/local/data/$_POST[user]");

// Make sure that $filename is under /usr/local/data
if (('/usr/local/data/' == substr($filename, 0, 16)) &&
 is_readable($filename)) {
 print 'User profile for ' . htmlentities($_POST['user']) .':
';
 print file_get_contents($filename);
} else {
 print "Invalid user entered.";
}

In Example 9-22, if $_POST['user'] is james, then $filename is set to /usr/local/
data/james and the if() code block runs. However, if $_POST['user'] is something
suspicious such as ../secrets.txt, then $filename is set to /usr/local/

secrets.txt, and the if() test fails, so Invalid user entered. is printed.

Sanitizing Externally Supplied Filenames | 203

Chapter Summary
This chapter covered:

• Understanding where the PHP engine’s file access permissions come from
• Reading entire files with file_get_contents()
• Writing entire files with file_put_contents()
• Reading each line of a file with file()
• Opening and closing files with fopen() and fclose()
• Reading a line of a file with fgets()
• Using feof() and a while() loop to read each line in a file
• Using forward slashes in filenames with all operating systems
• Providing different file modes to fopen()
• Writing data to a file with fwrite()
• Reading a line of a CSV file with fgetcsv()
• Writing a line of a CSV file with fputcsv()
• Using the php://output stream to display output
• Determining whether a file exists with file_exists()
• Inspecting file permissions with is_readable() and is_writeable()
• Checking for errors returned from file access functions
• Understanding when to check a return value with the identity operator (===)
• Removing potentially dangerous parts of externally supplied filenames

Exercises
1. Outside of the PHP engine, create a new template file in the style of Example 9-1.

Write a program that uses file_get_contents() and file_put_contents() to
read the HTML template file, substitute values for the template variables, and
save the new page to a separate file.

2. Outside of the PHP engine, create a file that contains some email addresses, one
per line. Make sure a few of the addresses appear more than once in the file. Call
that file addresses.txt. Then, write a PHP program that reads each line in
addresses.txt and counts how many times each address appears. For each distinct
address in addresses.txt, your program should write a line to another file,
addresses-count.txt. Each line in addresses-count.txt should consist of the number
of times an address appears in addresses.txt, a comma, and the email address.
Write the lines to addresses-count.txt in sorted order from the address that occurs
the most times in addresses.txt to the address that occurs the fewest times in
addresses.txt.

204 | Chapter 9: Working with Files

3. Display a CSV file as an HTML table. If you don’t have a CSV file (or spreadsheet
program) handy, use the data from Example 9-9.

4. Write a PHP program that displays a form that asks a user for the name of a file
underneath the web server’s document root directory. If that file exists on the
server, is readable, and is underneath the web server’s document root directory,
then display the contents of the file. For example, if the user enters article.html,
display the file article.html in the document root directory. If the user enters cata‐
log/show.php, display the file show.php in the directory catalog under the docu‐
ment root directory. Table 7-1 tells you how to find the web server’s document
root directory.

5. Modify your solution to the previous exercise so that the program displays only
files whose names end in .html. Letting users look at the PHP source code of any
page on your site can be dangerous if those pages have sensitive information in
them such as database usernames and passwords.

Exercises | 205

CHAPTER 10

Remembering Users: Cookies and Sessions

A web server is a lot like a clerk at a busy deli full of pushy customers. The customers
at the deli shout requests: “I want a half pound of corned beef!” and “Give me a
pound of pastrami, sliced thin!” The clerk scurries around slicing and wrapping to
satisfy the requests. Web clients electronically shout requests (“Give me /catalog/
yak.php!” or “Here’s a form submission for you!”), and the server, with the PHP
engine’s help, electronically scurries around constructing responses to satisfy
the requests.

The deli clerk has an advantage that the web server doesn’t, though: a memory. She
naturally ties together all the requests that come from a particular customer. The PHP
engine and the web server can’t do that without some extra steps. That’s where cookies
come in.

A cookie identifies a particular web client to the web server and PHP engine. Each
time a web client makes a request, it sends the cookie along with the request.
The engine reads the cookie and figures out that a particular request is coming from
the same web client that made previous requests, which were accompanied by the
same cookie.

If deli customers were faced with a memory-deprived clerk, they’d have to adopt the
same strategy. Their requests for service would look like this:

“I’m customer 56 and I want a half pound of corned beef.”
“I’m customer 29 and I want three knishes.”
“I’m customer 56 and I want two pounds of pastrami.”
“I’m customer 77 and I’m returning this rye bread—it’s stale.”
“I’m customer 29 and I want a salami.”

207

The “I’m customer so-and-so” part of the requests is the cookie. It gives the clerk
what she needs to be able to link a particular customer’s requests together.

A cookie has a name (such as “customer”) and a value (such as “77” or “ronald”). The
following section shows you how to work with individual cookies in your programs:
setting them, reading them, and deleting them.

One cookie is best at keeping track of one piece of information. Often, you need
to keep track of more about a user (such as the contents of that user’s shopping cart).
Using multiple cookies for this is cumbersome. PHP’s session capabilities solve this
problem.

A session uses a cookie to distinguish users from one another and makes it easy to
keep a temporary pile of data for each user on the server. This data persists across
requests. On one request, you can add a variable to a user’s session (such as putting
something into the shopping cart). On a subsequent request, you can retrieve what’s
in the session (such as on the order checkout page when you need to list everything
in the cart). “Activating Sessions” on page 213 describes how to get started with ses‐
sions, and “Storing and Retrieving Information” on page 214 provides the details on
working with sessions.

Working with Cookies
To set a cookie, use the setcookie() function. This tells a web client to remember a
cookie name and value and send them back to the server on subsequent requests.
Example 10-1 sets a cookie named userid to the value ralph.

Example 10-1. Setting a cookie

setcookie('userid','ralph');

To read a previously set cookie from your PHP program, use the $_COOKIE auto-
global array. Example 10-2 prints the value of the userid cookie.

Example 10-2. Printing a cookie value

print 'Hello, ' . $_COOKIE['userid'];

The value for a cookie that you provide to setcookie() can be a string or a number.
It can’t be an array or more complicated data structure.

208 | Chapter 10: Remembering Users: Cookies and Sessions

The setcookie() function URL-encodes the cookie value before
sending it to the web client. This means that a space is turned into a
+, and everything else other than letters, digits, underscores,
hyphens, and periods is turned into a percent sign followed by its
ASCII value in hexadecimal. If you don’t want PHP to monkey
with your cookie value, use setrawcookie() instead of set
cookie(). However, with setrawcookie(), your cookie value can‐
not contain =, ,, ;, or any whitespace.

When you call setcookie(), the response that the PHP engine generates to send back
to the web client includes a special header that tells the web client about the new
cookie. On subsequent requests, the web client sends that cookie name and value
back to the server. This two-step conversation is illustrated in Figure 10-1.

Figure 10-1. Client and server communication when setting a cookie

Usually, you must call setcookie() before the page generates any output. This means
that setcookie() must come before any print statements. It also means that there
can’t be any text before the <?php start tag in the page that comes before the set
cookie() function. Later in this chapter, “Why setcookie() and session_start() Want
to Be at the Top of the Page” on page 226 explains why this requirement exists, and
how, in some cases, you can get around it.

Example 10-3 shows the correct way to put a setcookie() call at the top of your
page.

Working with Cookies | 209

1 Chapter 15 has more detail about time() and DateTime.

Example 10-3. Starting a page with setcookie()

<?php
setcookie('userid','ralph');
?>
<html><head><title>Page with cookies</title><head>
<body>
This page sets a cookie properly, because the PHP block
with setcookie() in it comes before all of the HTML.
</body></html>

Cookies show up in $_COOKIE only when the web client sends them along with the
request. This means that a name and value do not appear in $_COOKIE immediately
after you call setcookie(). Only after that cookie-setting response is digested by the
web client does the client know about the cookie. And only after the client sends the
cookie back on a subsequent request does it appear in $_COOKIE.

The default lifetime for a cookie is the lifetime of the web client. When you quit Safari
or Firefox, the cookie is deleted. To make a cookie live longer (or expire sooner), use
the third argument to setcookie(). This is an optional cookie expiration time.
Example 10-4 shows some cookies with different expiration times.

Example 10-4. Setting cookie expiration

// The cookie expires one hour from now
setcookie('short-userid','ralph',time() + 60*60);

// The cookie expires one day from now
setcookie('longer-userid','ralph',time() + 60*60*24);

// The cookie expires at noon on October 1, 2019
$d = new DateTime("2019-10-01 12:00:00");
setcookie('much-longer-userid','ralph', $d->format('U'));

The cookie expiration time needs to be given to setcookie() expressed as the num‐
ber of seconds elapsed since midnight on January 1, 1970. Two things make coming
up with appropriate expiration values easier: time() and the U format character of
DateTime::format().1 The time() function returns the current number of elapsed
seconds since January 1, 1970 (the Unix “epoch”). So, if you want the cookie expira‐
tion time to be a certain number of seconds from now, add that value to what time()
returns. There are 60 seconds in a minute and 60 minutes in an hour, so 60*60 is the
number of seconds in an hour. That makes time() + 60*60 equal to the “elapsed

210 | Chapter 10: Remembering Users: Cookies and Sessions

seconds” value for an hour from now. Similarly, 60*60*24 is the number of seconds in
a day, so time() + 60*60*24 is the “elapsed seconds” value for a day from now.

The U format character of DateTime::format() tells you the “elapsed seconds” value
for the point in time represented by a DateTime object.

Setting a cookie with a specific expiration time makes the cookie last even if the web
client exits and restarts.

Aside from expiration time, there are a few other cookie parameters that are helpful
to adjust: the path, the domain, and two security-related parameters.

Normally, cookies are only sent back with requests for pages in the same directory (or
below) as the page that set the cookie. A cookie set by http://www.example.com/
buy.php is sent back with all requests to the server www.example.com, because buy.php
is in the top-level directory of the web server. A cookie set by http://www.exam‐
ple.com/catalog/list.php is sent back with other requests in the catalog directory, such
as http://www.example.com/catalog/search.php. It is also sent back with requests for
pages in subdirectories of catalog, such as http://www.example.com/catalog/detailed/
search.php. But it is not sent back with requests for pages above or outside the catalog
directory, such as http://www.example.com/sell.php or http://www.example.com/users/
profile.php.

The part of the URL after the hostname (such as /buy.php, /catalog/list.php, or /users/
profile.php) is called the path. To tell the web client to match against a different path
when determining whether to send a cookie to the server, provide that path as the
fourth argument to setcookie(). The most flexible path to provide is /, which means
“send this cookie back with all requests to the server.” Example 10-5 sets a cookie with
the path set to /.

Example 10-5. Setting the cookie path

setcookie('short-userid','ralph',0,'/');

In Example 10-5, the expiration time argument to setcookie() is 0. This tells the
setcookie() method to use the default expiration time (when the web client exits)
for the cookie. When you specify a path to setcookie(), you have to fill in something
for the expiration time argument. It can be a specific time value (such as time() +
60*60), or it can be 0 to use the default expiration time.

Setting the path to something other than / is a good idea if you are on a shared server
and all of your pages are under a specific directory. For example, if your web space is
under http://students.example.edu/~alice/, then you should set the cookie path
to /~alice/, as shown in Example 10-6.

Working with Cookies | 211

Example 10-6. Setting the cookie path to a specific directory

setcookie('short-userid','ralph',0,'/~alice/');

With a cookie path of /~alice/, the short-userid cookie is sent with a request
to http://students.example.edu/~alice/search.php, but not with requests to other stu‐
dents’ web pages such as http://students.example.edu/~bob/sneaky.php or http://
students.example.edu/~charlie/search.php.

The next argument that affects which requests the web client decides to send a partic‐
ular cookie with is the domain. The default behavior is to send cookies only with
requests to the same host that set the cookie. If http://www.example.com/login.php
set a cookie, then that cookie is sent back with other requests to the server
www.example.com—but not with requests to shop.example.com, www.yahoo.com, or
www.example.org.

You can alter this behavior slightly. A fifth argument to setcookie() tells the web cli‐
ent to send the cookie with requests that have a hostname whose end matches the
argument. The most common use of this feature is to set the cookie domain to some‐
thing like .example.com (the period at the beginning is important for older web cli‐
ents). This tells the web client that the cookie should accompany future requests to
www.example.com, shop.example.com, testing.development.example.com, and any
other server name that ends in .example.com. Example 10-7 shows how to set a
cookie like this.

Example 10-7. Setting the cookie domain

setcookie('short-userid','ralph',0,'/','.example.com');

The cookie in Example 10-7 expires when the web client exits and is sent with
requests in any directory (because the path is /) on any server whose name ends
with .example.com.

The path that you provide to setcookie() must match the end of the name of your
server. If your PHP programs are hosted on the server students.example.edu, you
can’t supply .yahoo.com as a cookie path and have the cookie you set sent back to all
servers in the yahoo.com domain. You can, however, specify .example.edu as a
cookie domain to have your cookie sent with all requests to any server in the
example.edu domain.

The last two optional arguments to setcookie() affect a cookie’s security settings. A
value of true for the sixth argument to setcookie() tells a web client to only return
the cookie over a secure connection—one where the URL begins with https. It is still
your responsibility to make sure to only call setcookie() like this when the request
to the page executing setcookie() is done over a secure connection. But this

212 | Chapter 10: Remembering Users: Cookies and Sessions

instructs the client not to send the cookie back over a subsequent request to an inse‐
cure URL.

Finally, a value of true for the seventh argument to setcookie() tells the web client
that this cookie is an HttpOnly cookie. An HttpOnly cookie gets sent back and forth
between client and server as usual, but it is not accessible by client-side JavaScript.
This can provide some protection from cross-site scripting attacks (described in
“HTML and JavaScript” on page 138). Example 10-8 shows a cookie that expires in 24
hours, has no path or domain restrictions, should only be sent back over a secure
connection, and is not available to client-side JavaScript.

Example 10-8. Setting a cookie with security parameters

// null for domain and path tell PHP not to put any
// domain or path in the cookie
setcookie('short-userid','ralph',0,null, null, true, true);

To delete a cookie, call setcookie() with the name of the cookie you want to delete
and the empty string as the cookie value, as shown in Example 10-9.

Example 10-9. Deleting a cookie

setcookie('short-userid','');

If you’ve set a cookie with nondefault values for an expiration time, path, or domain,
you must provide those same values again when you delete the cookie in order for the
cookie to be deleted properly.

Most of the time, cookies you set will be fine with the default values for expiration
time, path, or domain. But understanding how these values can be changed helps you
understand how PHP’s session behavior can be customized.

Activating Sessions
Sessions, by default, use a cookie called PHPSESSID. When you start a session on a
page, the PHP engine checks for the presence of this cookie and sets it if it doesn’t
exist. The value of the PHPSESSID cookie is a random alphanumeric string. Each web
client gets a different session ID. The session ID in the PHPSESSID cookie identifies
that web client uniquely to the server. That lets the engine maintain separate piles of
data for each web client.

The conversation between the web client and the server when starting up a session is
illustrated in Figure 10-2.

Activating Sessions | 213

Figure 10-2. Client and server communication when starting a session

To use a session in a page, call session_start() at the beginning of your script. Like
setcookie(), this function must be called before any output is sent. If you want to
use sessions in all your pages, set the configuration directive session.auto_start to
On. Appendix A explains how to change configuration settings. Once you do that,
there’s no need to call session_start() in each page.

Storing and Retrieving Information
Session data is stored in the $_SESSION auto-global array. Read and change elements
of that array to manipulate the session data. Example 10-10 shows a page counter that
uses the $_SESSION array to keep track of how many times a user has looked at
the page.

Example 10-10. Counting page accesses with a session

session_start();

if (isset($_SESSION['count'])) {
 $_SESSION['count'] = $_SESSION['count'] + 1;
} else {
 $_SESSION['count'] = 1;
}
print "You've looked at this page " . $_SESSION['count'] . ' times.';

The first time a user accesses the page in Example 10-10, no PHPSESSID cookie is sent
by the user’s web client to the server. The session_start() function creates a new
session for the user and sends a PHPSESSID cookie with the new session ID in it.

214 | Chapter 10: Remembering Users: Cookies and Sessions

When the session is created, the $_SESSION array starts out empty. So, the code
checks for a count key in the $_SESSION array. If it’s there, then the value is incremen‐
ted. If not, it’s set to 1 to mark the first visit. The print statement outputs:

You've looked at this page 1 times.

At the end of the request, the information in $_SESSION is saved into a file on the web
server associated with the appropriate session ID.

The next time the user accesses the page, the web client sends the PHPSESSID cookie.
The session_start() function sees the session ID in the cookie and loads the
file that contains the saved session information associated with that session ID. In this
case, that saved information just says that $_SESSION['count'] is 1. Next,
$_SESSION['count'] is incremented to 2 and You've looked at this page 2
times. is printed. Again, at the end of the request, the contents of $_SESSION (now
with $_SESSION['count'] equal to 2) are saved to a file.

The PHP engine keeps track of the contents of $_SESSION separately for each session
ID. When your program is running, $_SESSION contains the saved data for one ses‐
sion only—the active session corresponding to the ID that was sent in the PHPSESSID
cookie. Each user’s PHPSESSID cookie has a different value.

As long as you call session_start() at the top of a page (or if session.auto_start
is On), you have access to a user’s session data in your page. The $_SESSION array is a
way of sharing information between pages.

Example 10-11 is a complete program that displays a form in which a user picks a
dish and a quantity. That dish and quantity are added to the session variable order.

Example 10-11. Saving form data in a session

require 'FormHelper.php';

session_start();

$main_dishes = array('cuke' => 'Braised Sea Cucumber',
 'stomach' => "Sauteed Pig's Stomach",
 'tripe' => 'Sauteed Tripe with Wine Sauce',
 'taro' => 'Stewed Pork with Taro',
 'giblets' => 'Baked Giblets with Salt',
 'abalone' => 'Abalone with Marrow and Duck Feet');

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 process_form($input);

Storing and Retrieving Information | 215

 }
} else {
 show_form();
}

function show_form($errors = array()) {
 // No defaults of our own, so nothing to pass to the
 // FormHelper constructor
 $form = new FormHelper();

 // Build up the error HTML to use later
 if ($errors) {
 $errorHtml = '';
 $errorHtml .= implode('',$errors);
 $errorHtml .= '';
 } else {
 $errorHtml = '';
 }

 // This form is small, so we'll just print out its components
 // here
print <<<_FORM_
<form method="POST" action="{$form->encode($_SERVER['PHP_SELF'])}">
 $errorHtml
 Dish: {$form->select($GLOBALS['main_dishes'],['name' => 'dish'])}

 Quantity: {$form->input('text',['name' => 'quantity'])}

 {$form->input('submit',['value' => 'Order'])}
</form>
FORM;
}

function validate_form() {
 $input = array();
 $errors = array();

 // The dish selected in the menu must be valid
 $input['dish'] = $_POST['dish'] ?? '';
 if (! array_key_exists($input['dish'], $GLOBALS['main_dishes'])) {
 $errors[] = 'Please select a valid dish.';
 }

 $input['quantity'] = filter_input(INPUT_POST, 'quantity', FILTER_VALIDATE_INT,
 array('options' => array('min_range' => 1)));
 if (($input['quantity'] === false) || ($input['quantity'] === null)) {
 $errors[] = 'Please enter a quantity.';
 }
 return array($errors, $input);
}

216 | Chapter 10: Remembering Users: Cookies and Sessions

function process_form($input) {
 $_SESSION['order'][] = array('dish' => $input['dish'],
 'quantity' => $input['quantity']);

 print 'Thank you for your order.';
}

The form-handling code in Example 10-11 is mostly familiar. As in Examples 8-28
and 8-53, the form-element-printing helper class is loaded from the FormHelper.php
file. The show_form(), validate_form(), and process_form() functions display,
validate, and process the form data.

Where Example 10-11 takes advantage of sessions, however, is in process_form().
Each time the form is submitted with valid data, an element is added to the
$_SESSION['order'] array. Session data isn’t restricted to strings and numbers,
like cookies. You can treat $_SESSION like any other array. The syntax
$_SESSION['order'][] says, “Treat $_SESSION['order'] as an array and add a
new element onto its end.” In this case, what’s being added to the end of $_SES
SION['order'] is a two-element array containing information about the dish and
quantity that were submitted in the form.

The program in Example 10-12 prints a list of dishes that have been ordered by
accessing the information that’s been stored in the session by Example 10-11.

Example 10-12. Printing session data

session_start();

$main_dishes = array('cuke' => 'Braised Sea Cucumber',
 'stomach' => "Sauteed Pig's Stomach",
 'tripe' => 'Sauteed Tripe with Wine Sauce',
 'taro' => 'Stewed Pork with Taro',
 'giblets' => 'Baked Giblets with Salt',
 'abalone' => 'Abalone with Marrow and Duck Feet');

if (isset($_SESSION['order']) && (count($_SESSION['order']) > 0)) {
 print '';
 foreach ($_SESSION['order'] as $order) {
 $dish_name = $main_dishes[$order['dish']];
 print " $order[quantity] of $dish_name ";
 }
 print "";
} else {
 print "You haven't ordered anything.";
}

Example 10-12 has access to the data stored in the session by Example 10-11. It treats
$_SESSION['order'] as an array: if there are elements in the array (because count()

Storing and Retrieving Information | 217

returns a positive number), then it iterates through the array with foreach() and
prints out a list element for each dish that has been ordered.

Configuring Sessions
Sessions work just fine with no additional tweaking. Turn them on with the
session_start() function or the session.auto_start configuration directive, and
the $_SESSION array is there for your enjoyment. However, if you’re more particular
about how you want sessions to function, there are a few helpful settings that can
be changed.

Session data sticks around as long as the session is accessed at least once every 24
minutes. This is fine for most applications. Sessions aren’t meant to be a permanent
data store for user information—that’s what the database is for. Sessions are for keep‐
ing track of recent user activity to make the browsing experience smoother.

Some situations may need a shorter session length, however. If you’re developing a
financial application, you may want to allow only 5 or 10 minutes of idle time to
reduce the chance that an unattended computer can be used by an unauthorized per‐
son. Conversely, if your application doesn’t work with critical data and you have easily
distracted users, you may want to set the session length to longer than 24 minutes.

The session.gc_maxlifetime configuration directive controls how much idle time is
allowed between requests to keep a session active. Its default value is 1440—there are
1,440 seconds in 24 minutes. You can change session.gc_maxlifetime in your
server configuration or by calling the ini_set() function from your program. If you
use ini_set(), you must call it before session_start(). Example 10-13 shows how
to use ini_set() to change the allowable session idle time to 10 minutes.

Example 10-13. Changing the allowable session idle time

ini_set('session.gc_maxlifetime',600); // 600 seconds == 10 minutes
session_start();

Expired sessions don’t actually get wiped out instantly after 24 minutes elapse. Here’s
how it really works: at the beginning of any request that uses sessions (because the
page calls session_start(), or session.auto_start is On), there is a 1% chance that
the PHP engine scans through all of the sessions on the server and deletes any that
are expired. “A 1% chance” sounds awfully unpredictable for a computer program. It
is. But that randomness makes things more efficient. On a busy site, searching for
expired sessions to destroy at the beginning of every request would consume too
much server power.

You’re not stuck with that 1% chance if you’d like expired sessions to be removed
more promptly. The session.gc_probability configuration directive controls the

218 | Chapter 10: Remembering Users: Cookies and Sessions

percent chance that the “erase old sessions” routine runs at the start of a request. To
have that happen on every request, set it to 100. Like with session.gc_maxlifetime,
if you use ini_set() to change the value of session.gc_probability, you need
to do it before session_start(). Example 10-14 demonstrates how to change
session.gc_probability with ini_set().

Example 10-14. Changing the expired session cleanup probability

ini_set('session.gc_probability',100); // 100% : clean up on every request
session_start();

If you are activating sessions with the session.auto_start configuration directive
and you want to change the value of session.gc_maxlifetime or
session.gc_probability, you can’t use ini_set() to change those values—you
have to do it in your server configuration.

The cookie used to store a user’s session ID can have its properties adjusted via
configuration parameters as well. The properties you can adjust mirror the tweaks
you can make to a regular cookie via the different arguments to setcookie() (except
for the cookie value, of course). Table 10-1 describes the different cookie configura‐
tion parameters.

Table 10-1. Session cookie configuration parameters

Configuration parameter Default value Description
session.name PHPSESSID Name of the cookie. Letters and numbers only, with at least one letter.
session.cookie_lifetime 0 Seconds-since-1970 timestamp when the cookie should expire. 0

means “when the browser exits.”
session.cookie_path / URL path prefix that must match for the cookie to be sent.
session.cookie_domain None Domain suffix that must match for the cookie to be sent. No value

means the cookie is sent back only to the full hostname that sent it.
session.cookie_secure Off Set to On to have the cookie only sent back with HTTPS URLs.
session.cookie_httponly Off Set to On to tell browsers to prevent JavaScript from reading the

cookie.

Login and User Identification
A session establishes an anonymous relationship with a particular user. Requiring
users to log in to your website lets them tell you who they are. The login process typi‐
cally requires users to provide you with two pieces of information: one that identifies
them (a username or an email address) and one that proves that they are who they
say they are (a secret password).

Login and User Identification | 219

Once a user is logged in, he can access private data, submit message board posts with
his name attached, or do anything else that the general public isn’t allowed to do.

Adding user login on top of sessions has five parts:

1. Displaying a form asking for a username and password
2. Checking the form submission
3. Adding the username to the session (if the submitted password is correct)
4. Looking for the username in the session to do user-specific tasks
5. Removing the username from the session when the user logs out

The first three steps are handled in the context of regular form processing. The
validate_form() function gets the responsibility of checking to make sure that the
supplied username and password are acceptable. The process_form() function adds
the username to the session. Example 10-15 displays a login form and adds the user‐
name to the session if the login is successful.

Example 10-15. Displaying a login form

require 'FormHelper.php';
session_start();

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 process_form($input);
 }
} else {
 show_form();
}

function show_form($errors = array()) {
 // No defaults of our own, so nothing to pass to the
 // FormHelper constructor
 $form = new FormHelper();

 // Build up the error HTML to use later
 if ($errors) {
 $errorHtml = '';
 $errorHtml .= implode('',$errors);
 $errorHtml .= '';
 } else {
 $errorHtml = '';
 }

 // This form is small, so we'll just print out its components

220 | Chapter 10: Remembering Users: Cookies and Sessions

 // here
print <<<_FORM_
<form method="POST" action="{$form->encode($_SERVER['PHP_SELF'])}">
 $errorHtml
 Username: {$form->input('text', ['name' => 'username'])}

 Password: {$form->input('password', ['name' => 'password'])}

 {$form->input('submit', ['value' => 'Log In'])}
</form>
FORM;
}

function validate_form() {
 $input = array();
 $errors = array();

 // Some sample usernames and passwords
 $users = array('alice' => 'dog123',
 'bob' => 'my^pwd',
 'charlie' => '**fun**');

 // Make sure username is valid
 $input['username'] = $_POST['username'] ?? '';
 if (! array_key_exists($input['username'], $users)) {
 $errors[] = 'Please enter a valid username and password.';
 }
 // The else clause means we avoid checking the password if an invalid
 // username is entered
 else {
 // See if password is correct
 $saved_password = $users[$input['username']];
 $submitted_password = $_POST['password'] ?? '';
 if ($saved_password != $submitted_password) {
 $errors[] = 'Please enter a valid username and password.';
 }
 }
 return array($errors, $input);
}

function process_form($input) {
 // Add the username to the session
 $_SESSION['username'] = $input['username'];

 print "Welcome, $_SESSION[username]";
}
?>

Figure 10-3 shows the form that Example 10-15 displays, Figure 10-4 shows what
happens when an incorrect password is entered, and Figure 10-5 shows what happens
when a correct password is entered.

Login and User Identification | 221

Figure 10-3. Login form

Figure 10-4. Unsuccessful login

222 | Chapter 10: Remembering Users: Cookies and Sessions

Figure 10-5. Successful login

In Example 10-15, validate_form() checks two things: whether a valid username is
entered and whether the correct password was supplied for that username. Note that
the same error message is added to the $errors array in either case. If you use differ‐
ent error messages for a missing username (such as “Username not found”) and bad
passwords (such as “Password doesn’t match”), you provide helpful information for
someone trying to guess a valid username and password. Once this attacker stumbles
on a valid username, she sees the “Password doesn’t match” error message instead of
the “Username not found” message. She then knows that she’s working with a real
username and has to guess the password only. When the error messages are the same
in both cases, all the attacker knows is that something about the username/password
combination she tried is not correct.

If the username is valid and the right password is submitted, validate_form()
returns no errors. When this happens, tge process_form() function is called. This
function adds the submitted username ($input['username']) to the session and
prints out a welcome message for the user. This makes the username available in the
session for other pages to use. Example 10-16 demonstrates how to check for a user‐
name in the session in another page.

Login and User Identification | 223

Example 10-16. Doing something special for a logged-in user

<?php
session_start();

if (array_key_exists('username', $_SESSION)) {
 print "Hello, $_SESSION[username].";
} else {
 print 'Howdy, stranger.';
}
?>

The only way a username element can be added to the $_SESSION array is by your
program. So if it’s there, you know that a user has logged in successfully.

The validate_form() function in Example 10-15 uses a sample array of usernames
and passwords called $users. Storing passwords without hashing them is a bad idea.
If the list of unhashed passwords is compromised, then an attacker can log in as any
user. Storing hashed passwords prevents an attacker from getting the actual pass‐
words even if she gets the list of hashed passwords, because there’s no way to go from
the hashed password back to the plain password she’d have to enter to log in. Operat‐
ing systems that require you to log in with a password use this same technique.

A better validate_form() function is shown in Example 10-17. The $users array in
this version of the function contains passwords that have been hashed with PHP’s
password_hash() function. Because the passwords are stored as hashed strings, they
can’t be compared directly with the plain password that the user enters. Instead, the
submitted password in $input['password'] is checked by the password_verify()
function. This function uses the information in the saved hashed password to pro‐
duce a hash of the submitted password in the same way. If the two hashes match, then
the user has submitted the correct password and password_verify() returns true.

Example 10-17. Using hashed passwords

function validate_form() {
 $input = array();
 $errors = array();

 // Sample users with hashed passwords
 $users = array('alice' =>
 '$2y$10$N47IXmT8C.sKUFXs1EBS9uJRuVV8bWxwqubcvNqYP9vcFmlSWEAbq',
 'bob' =>
 '$2y$10$qCczYRc7S0llVRESMqUkGeWQT4V4OQ2qkSyhnxO0c.fk.LulKwUwW',
 'charlie' =>
 '$2y$10$nKfkdviOBONrzZkRq5pAgOCbaTFiFI6O2xFka9yzXpEBRAXMW5mYi');

 // Make sure username is valid
 if (! array_key_exists($_POST['username'], $users)) {

224 | Chapter 10: Remembering Users: Cookies and Sessions

 $errors[] = 'Please enter a valid username and password.';
 }
 else {
 // See if password is correct
 $saved_password = $users[$input['username']];
 $submitted_password = $_POST['password'] ?? '';
 if (! password_verify($submitted_password, $saved_password)) {
 $errors[] = 'Please enter a valid username and password.';
 }
 }

 return array($errors, $input);
}

Using password_hash() and password_verify() ensures that the passwords
are hashed in a sufficiently secure manner and gives you the ability to strengthen
that hash in the future if necessary. If you’re interested in more details about how
they work, read the password_hash and password_verify pages in the online PHP
Manual, or see Recipe 18.7 of PHP Cookbook, by David Sklar and Adam Trachtenberg
(O’Reilly).

The password_hash()and password_verify() functions are avail‐
able in PHP 5.5.0 and later. If you’re using an earlier version of
PHP, use the password_compat library, which provides versions
of these functions.

Putting an array of users and passwords inside validate_form() makes these exam‐
ples self-contained. However, more typically, your usernames and passwords are
stored in a database table. Example 10-18 is a version of validate_form() that
retrieves the username and hashed password from a database. It assumes that a data‐
base connection has already been set up outside the function and is available in the
global variable $db.

Example 10-18. Retrieving a username and password from a database

function validate_form() {
 global $db;
 $input = array();
 $errors = array();

 // This gets set to true only if the submitted password matches
 $password_ok = false;

 $input['username'] = $_POST['username'] ?? '';
 $submitted_password = $_POST['password'] ?? '';

 $stmt = $db->prepare('SELECT password FROM users WHERE username = ?');

Login and User Identification | 225

http://www.php.net/password_hash
http://www.php.net/password_verify
http://bit.ly/phpckbk3
https://github.com/ircmaxell/password_compat

 $stmt->execute($input['username']);
 $row = $stmt->fetch();
 // If there's no row, then the username didn't match any rows
 if ($row) {
 $password_ok = password_verify($submitted_password, $row[0]);
 }
 if (! $password_ok) {
 $errors[] = 'Please enter a valid username and password.';
 }

 return array($errors, $input);
}

The query that prepare() and execute() send to the database returns the hashed
password for the user identified in $input['username']. If the username supplied
doesn’t match any rows in the database, then $row is false. If a row is returned, then
password_verify() checks the submitted password against the hashed password
retrieved from the database. Only if there is a row returned and the row contains a
correct hashed password does $password_ok get set to true. Otherwise, an error
message is added to the $errors array.

Just like with any other array, use unset() to remove a key and value from
$_SESSION. This is how to log out a user. Example 10-19 shows a logout page.

Example 10-19. Logging out

session_start();
unset($_SESSION['username']);

print 'Bye-bye.';

When the $_SESSION array is saved at the end of the request that calls unset(), the
username element isn’t included in the saved data. The next time that session’s data
is loaded into $_SESSION, there is no username element, and the user is once again
anonymous.

Why setcookie() and session_start() Want to Be at the
Top of the Page
When a web server sends a response to a web client, most of that response is the
HTML document that the browser renders into a web page on your screen: the soup
of tags and text that Safari or Firefox formats into tables or changes the color or size
of. But before that HTML is a section of the response that contains headers. These
don’t get displayed on your screen but are commands or information from the server
for the web client. The headers say things such as “this page was generated at such-

226 | Chapter 10: Remembering Users: Cookies and Sessions

and-such a time,” “please don’t cache this page,” or the one that’s relevant here, “please
remember that the cookie named userid has the value ralph.”

All of the headers in the response from the web server to the web client have to be at
the beginning of the response, before the response body, which is the HTML that con‐
trols what the browser actually displays. Once some of the body is sent—even one
line—no more headers can be sent.

Functions such as setcookie() and session_start() add headers to the response.
In order for the added headers to be sent properly, they must be added before any
output starts. That’s why they must be called before any print statements or any
HTML appearing outside <?php ?> PHP tags.

If any output has been sent before setcookie() or session_start() is called, the
PHP engine prints an error message that looks like this:

Warning: Cannot modify header information - headers already sent by
(output started at /www/htdocs/catalog.php:2)
in /www/htdocs/catalog.php on line 4

This means that line 4 of catalog.php called a function that sends a header, but some‐
thing was already printed by line 2 of catalog.php.

If you see the “headers already sent” error message, scrutinize your code for errant
output. Make sure there are no print statements before you call setcookie() or
session_start(). Check that there is nothing before the first <?php start tag in the
page. Also, check that there is nothing outside the <?php and ?> tags in any included
or required files—even blank lines.

An alternative to hunting down mischievous blank lines in your files is to use output
buffering. This tells the PHP engine to wait to send any output until it’s finished pro‐
cessing the whole request. Then, it sends any headers that have been set, followed by
all the regular output. To enable output buffering, set the output_buffering configu‐
ration directive to On in your server configuration. Web clients will have to wait a few
additional milliseconds to get the page content from your server, but you’ll save
megaseconds by not having to fix your code to have all output happen after calls to
setcookie() or session_start().

With output buffering turned on, you can mix print statements, cookie and session
functions, HTML outside of <?php and ?> tags, and regular PHP code without getting
the “headers already sent” error. The program in Example 10-20 works only
when output buffering is turned on. Without it, the HTML printed before the <?php
start tag triggers the sending of headers, which prevents setcookie() from working
properly.

Why setcookie() and session_start() Want to Be at the Top of the Page | 227

Example 10-20. A program that needs output buffering to work

<html>
<head>Choose Your Site Version</head>
<body>
<?php
setcookie('seen_intro', 1);
?>
Basic
 or
Advanced
</body>
</html>

Chapter Summary
This chapter covered:

• Understanding why cookies are necessary to identify a particular web browser to
a web server

• Setting a cookie in a PHP program
• Reading a cookie value in a PHP program
• Modifying cookie parameters such as expiration time, path, and domain
• Deleting a cookie in a PHP program
• Turning on sessions from a PHP program or in the PHP engine configuration
• Storing information in a session
• Reading information from a session
• Saving form data in a session
• Removing information from a session
• Configuring session expiration and cleanup
• Displaying, validating, and processing a validation form
• Using hashed passwords
• Understanding why setcookie() and session_start() must be called before

anything is printed

Exercises
1. Make a web page that uses a cookie to keep track of how many times a user has

viewed the page. The first time a particular user looks at the page, it should print
something like “Number of views: 1.” The second time the user looks at the page,
it should print “Number of views: 2,” and so on.

2. Modify the web page from the first exercise so that it prints out a special message
on the 5th, 10th, and 15th times the user looks at the page. Also modify it so that

228 | Chapter 10: Remembering Users: Cookies and Sessions

on the 20th time the user looks at the page, it deletes the cookie and the page
count starts over.

3. Write a PHP program that displays a form for a user to pick his favorite color
from a list of colors. Make another page whose background color is set to the
color that the user picks in the form. Store the color value in $_SESSION so that
both pages can access it.

4. Write a PHP program that displays an order form. The order form should list six
products. Next to each product name there should be a text box into which a user
can enter how many of that product she wants to order. When the form is sub‐
mitted, the submitted form data should be saved into the session. Make another
page that displays the contents of the saved order, a link back to the order form
page, and a Check Out button. If the link back to the order form page is clicked,
the order form page should be displayed with the saved order quantities from the
session in the text boxes. When the Check Out button is clicked, the order should
be cleared from the session.

Exercises | 229

CHAPTER 11

Talking to Other Websites and Services

Previous chapters discussed external sources of data such as databases and files. This
chapter is about another important external source of data: other websites. PHP pro‐
grams are often clients of other sites or APIs that offer up data that you need. Your
website could itself serve up data to another site that needs it. This chapter shows
how to retrieve external URLs and access APIs. It also explains what you need to do
to serve API requests to others.

The first section shows how to use PHP’s built-in file access functions with URLs
instead of filenames. This is a convenient option for quick and easy remote URL
access. For more power and flexibility, though, use PHP’s cURL extension, discussed
in “Comprehensive URL Access with cURL” on page 236. The cURL functions let you
control many different aspects of the requests you’re making.

Serving up API responses instead of web pages from your PHP program is the focus
of “Serving API Requests” on page 244. These responses are similar to standard
HTML pages but have some important differences.

Simple URL Access with File Functions
An extremely convenient aspect of file access functions like file_get_contents() is
that they understand URLs in addition to local filenames. Grabbing a remote URL
and putting it into a string is just a matter of handing that URL to file_get_con
tents().

Example 11-1 uses file_get_contents() to display an interesting fact from the web‐
site numbersapi.com about September 27th.

231

Example 11-1. Retrieving a URL with file_get_contents()

Did you know that <?= file_get_contents('http://numbersapi.com/09/27') ?>

The Numbers API knows a lot of facts about each day, but for me the result of
Example 11-1 looked like this:

Did you know that September 27th is the day in 1961 that Sierra Leone
joins the United Nations.

The http_build_query() function is useful when you need to build an API URL that
includes query string parameters. Give http_build_query() an associative array of
parameter names and values and it gives you back a string of key=value pairs joined
by & and properly encoded—exactly what you need for a URL.

The United States Department of Agriculture has a nifty API on top of its National
Nutrient Database. This NDB API is free and easy to use.

The NDB API used for examples in this chapter requires that
requests have a parameter named api_key whose value is a distinct
API key that you get by signing up for the API. To get your own
API key, visit https://api.data.gov/signup/. It’s free, quick, and
requires you to provide minimal information—just your name and
email address.
The examples in this chapter use the constant NDB_API_KEY in place
of an actual API key. To run the examples on your own, you can
either replace the NDB_API_KEY with a string containing your own
API key, or use define() to set the NDB_API_KEY constant equal to
the value of your API key. For example, if your API key were
273bqhebrfkhuebf, you’d put this line at the top of your code:

define('NDB_API_KEY','273bqhebrfkhuebf');

Example 11-2 uses the NDB search API to find some information about black pepper.
This API returns information about each food in the database whose name matches
what’s in the q query string parameter.

Example 11-2. Putting query string parameters in an API URL

$params = array('api_key' => NDB_API_KEY,
 'q' => 'black pepper',
 'format' => 'json');

$url = "http://api.nal.usda.gov/ndb/search?" . http_build_query($params);

The $url variable in Example 11-2 is set to something like the following (the actual
value depends on your API key):

232 | Chapter 11: Talking to Other Websites and Services

https://api.data.gov/signup/

http://api.nal.usda.gov/ndb/search?
api_key=j724nbefuy72n4&q=black+pepper&format=json

Each key and value in the $params array has been put together with = and &, and spe‐
cial characters, such as the space in black pepper, have been encoded.

Passing such a URL to file_get_contents() makes the API call. In this case, the
API returns JSON, so the return value of file_get_contents() is this string:

{
 "list": {
 "q": "black pepper",
 "sr": "27",
 "start": 0,
 "end": 1,
 "total": 1,
 "group": "",
 "sort": "r",
 "item": [
 {
 "offset": 0,
 "group": "Spices and Herbs",
 "name": "Spices, pepper, black",
 "ndbno": "02030"
 }
]
 }
}

Because file_get_contents() returns the response from retrieving the URL as a
string, it’s a snap to pass that string to other functions that further transform it. For
example, pass the API response above to json_decode() to transform the JSON into
a PHP data structure you can manipulate. Example 11-3 prints out the NDB ID num‐
ber for each matching food item.

Example 11-3. Decoding a JSON API response

$params = array('api_key' => NDB_API_KEY,
 'q' => 'black pepper',
 'format' => 'json');

$url = "http://api.nal.usda.gov/ndb/search?" . http_build_query($params);
$response = file_get_contents($url);
$info = json_decode($response);

foreach ($info->list->item as $item) {
 print "The ndbno for {$item->name} is {$item->ndbno}.\n";
}

Simple URL Access with File Functions | 233

1 The HTTP specification says to use an Accept header for this, but that’s not how this particular API works.

The json_decode() function turns JSON objects into PHP objects and JSON arrays
into PHP arrays. The top-level item in the response is an object. This is the return
value from json_decode() and is assigned to $info. That object has a list property
that is another object. The list object can be referred to as $info->list. That list
object has an array property named item whose elements hold the details about the
matching foods. So, the array that foreach() iterates over is $info->list->item.
Each $item inside the foreach() loop is one object from that array. Example 11-3
prints:

The ndbno for Spices, pepper, black is 02030.

The NDB API calls made so far return JSON because of the format=json query string
parameter. The API also supports specifying the response format by sending a
Content-Type header.1 A header value of application/json tells the server to format
the response as JSON.

To add headers to your HTTP request with file_get_contents(), you create a
stream context. The PHP engine’s underlying mechanisms for flowing data into and
out of your programs are called streams. A stream can be a local file, a remote URL,
or another exotic place that produces or consumes data. The first argument to
file_get_contents() is the stream’s target: the file or URL to read from or write to.
Additional information about the reading or writing operation is expressed through
the stream context, created by passing an associative array of the additional informa‐
tion to the stream_context_create() function.

Different kinds of streams support different kinds of options for their contexts. For
the http stream, a header option gets a string value containing the names and values
of any headers to send with the HTTP request. Example 11-4 shows how to create a
stream context that includes an HTTP header and use it with file_get_contents().

Example 11-4. Sending HTTP headers with a stream context

// Just key and query term, no format specified in query string
$params = array('api_key' => NDB_API_KEY,
 'q' => 'black pepper');
$url = "http://api.nal.usda.gov/ndb/search?" . http_build_query($params);

// Options are to set a Content-Type request header
$options = array('header' => 'Content-Type: application/json');
// Create a context for an 'http' stream
$context = stream_context_create(array('http' => $options));

234 | Chapter 11: Talking to Other Websites and Services

// Pass the context as the third argument to file_get_contents
print file_get_contents($url, false, $context);

In Example 11-4, the $options array contains the key/value pairs of options to set.
The stream_context_create() function needs to be told which kind of stream it’s
creating a context for, so its argument is an array whose key is the stream type (http)
and the value is the options to set.

The second argument of file_get_contents() indicates whether the function
should pay attention to the PHP engine’s include path when looking for a file. This is
irrelevant with HTTP, so false is supplied for a value. The context is the third argu‐
ment to file_get_contents().

The context is also how you send a POST request with file_get_contents(). The
method context option controls the request method, and the content context option
contains any request body to send. The content must be formatted properly for the
content type you specify as a header.

We can’t use the NDB API for POST, since it just tells us nutrition data via GET. It
doesn’t allow us to send new data in. Example 11-5 uses file_get_contents() to
send a POST request to an example URL. This request acts just like a form submission
sending two form variables: name and smell.

Example 11-5. Sending a POST request with file_get_contents()

$url = 'http://php7.example.com/post-server.php';

// Two variables to send via POST
$form_data = array('name' => 'black pepper',
 'smell' => 'good');

// Set the method, content type, and content
$options = array('method' => 'POST',
 'header' => 'Content-Type: application/x-www-form-urlencoded',
 'content' => http_build_query($form_data));
// Create a context for an 'http' stream
$context = stream_context_create(array('http' => $options));

// Pass the context as the third argument to file_get_contents.
print file_get_contents($url, false, $context);

In Example 11-5, the method stream context option ensures that this is a POST request.
The value you supply here is used verbatim by the PHP engine to make the request,
so be sure to make it all capital letters. The value for the Content-Type header is the
standard value that web browsers use for regular form data. It corresponds to data
formatted like query string parameters but sent in the request body. Conveniently,

Simple URL Access with File Functions | 235

this lets us use http_build_query() to construct the properly formatted request
body.

In Example 11-5, as in other examples in this section,
php7.example.com is used as a sample hostname. You must
change this to a real hostname (preferably of your own web
server!) to make the code work.

If you need to send a different kind of data in your POST request, just change the value
of the Content-Type header and how you format the request content. For example, to
send JSON, change the header option to Content-Type: application/json and
change the content option to json_encode($form_data).

More information about the PHP engine’s different stream types and other supported
context options is available at http://www.php.net/context.

Although the simplicity of retrieving URLs with built-in file access functions is
fantastic, these functions do not make life simple if there is an error when making the
request. When that happens, file_get_contents() returns false and the PHP
engine generates an error message that looks like failed to open stream: HTTP
request failed! HTTP/1.1 404 Not Found. Having more control over what to
do when a request is not successful is one good reason to use the cURL functions
instead.

Comprehensive URL Access with cURL
The file_get_contents() function, especially when combined with context options,
lets you make a wide variety of HTTP requests. But when you really need control
over the details of your HTTP requests and responses, turn to PHP’s cURL functions.
By using a powerful underlying library, libcurl, these functions give you access to all
aspects of your HTTP requests and responses.

Retrieving URLs via GET
Accessing a URL with cURL begins by passing the URL you want to access to
curl_init(). This function doesn’t immediately go out and retrieve the URL; it
returns a handle, which is a variable that you pass to other functions to set options
and configure how cURL should work. You can have multiple handles in different
variables at the same time. Each handle controls a different request.

The curl_setopt() function controls the PHP engine’s behavior when retrieving the
URL, and the curl_exec() function actually causes the request to be retrieved.
Example 11-6 uses cURL to retrieve the numbersapi.com URL from Example 11-1.

236 | Chapter 11: Talking to Other Websites and Services

http://www.php.net/context

Example 11-6. Retrieving a URL with cURL

<?php

$c = curl_init('http://numbersapi.com/09/27');
// Tell cURL to return the response contents as a string
// rather then printing them out immediately
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
// Execute the request
$fact = curl_exec($c);

?>
Did you know that <?= $fact ?>

In Example 11-6, the call to curl_setopt() sets the CURLOPT_RETURNTRANSFER
option. This tells cURL that when it makes the HTTP request, it should return the
response as a string. Otherwise, it prints out the response as it is retrieved. The
curl_exec() function makes the request and returns the result.

Other cURL options let you set headers. Example 11-7 uses cURL functions to make
the request from Example 11-4.

Example 11-7. Using cURL with query string parameters and headers

// Just key and query term, no format specified in query string
$params = array('api_key' => NDB_API_KEY,
 'q' => 'black pepper');
$url = "http://api.nal.usda.gov/ndb/search?" . http_build_query($params);

$c = curl_init($url);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));
print curl_exec($c);

In Example 11-7, the URL is constructed in a familiar way with http_build_query().
The query string parameters are part of the URL, so they go into the URL string
passed to curl_init(). The new CURLOPT_HTTP_HEADER option sets the HTTP header
to be sent with the request. If you have multiple headers, put multiple items in
this array.

There are two kinds of errors to deal with from cURL requests. The first is an error
from cURL itself. This could be something such as not finding the hostname, or not
being able to make a connection to the remote server. If this kind of thing happens,
curl_exec() returns false and curl_errno() returns an error code. The
curl_error() function returns the error message that corresponds to the code.

The second kind of error is an error from the remote server. This happens if the URL
you ask for isn’t found or the server has a problem producing a response to your

Comprehensive URL Access with cURL | 237

request. cURL still considers this a successful request because the server returned
something, so you need to check the HTTP response code to see if there’s a problem.
The curl_getinfo() function returns an array of information about the request. One
of the elements in that array is the HTTP response code.

Example 11-8 shows cURL request-making code that handles both kinds of errors.

Example 11-8. Handling errors with cURL

// A pretend API endpoint that doesn't exist
$c = curl_init('http://api.example.com');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$result = curl_exec($c);
// Get all the connection info, whether or not it succeeded
$info = curl_getinfo($c);

// Something went wrong with the connection
if ($result === false) {
 print "Error #" . curl_errno($c) . "\n";
 print "Uh-oh! cURL says: " . curl_error($c) . "\n";
}
// HTTP response codes in the 400s and 500s mean errors
else if ($info['http_code'] >= 400) {
 print "The server says HTTP error {$info['http_code']}.\n";
}
else {
 print "A successful result!\n";
}
// The request info includes timing statistics as well
print "By the way, this request took {$info['total_time']} seconds.\n";

Example 11-8 starts out with a standard cURL request. After making the request, it
stores the request info from curl_getinfo() into $info. The curl_getinfo() func‐
tion needs to be passed the cURL handle it should operate on, just like curl_errno()
and curl_error(). This is necessary in order to return information about the correct
request.

The host api.example.com doesn’t actually exist, so cURL can’t connect to it to make
a request. So, curl_exec() returns false. Example 11-8 prints:

Error #6
Uh-oh! cURL says: Could not resolve host: api.example.com
By the way, this request took 0.000146 seconds.

The PHP manual page about curl_errno() has a list of all the cURL error codes.

238 | Chapter 11: Talking to Other Websites and Services

http://www.php.net/curl_errno

If the request made it to the server but the server returned an error, then $result is
not false, but holds whatever response the server sent back. This response code is in
the http_code element of the $info array. If Example 11-8 encountered an HTTP 404
error, which means that the server couldn’t find the page the request asked for, then
the example would print:

The server says HTTP error 404.
By the way, this request took 0.00567 seconds.

Both outputs from the example also include the total time it took to make the request.
This is another handy bit of request data in the $info array. The PHP manual page
for curl_getinfo() lists all the elements of this array.

Retrieving URLs via POST
To use the POST method with cURL, adjust the settings to change the request method
and supply the request body data. The CURLOPT_POST setting tells cURL you want a
POST request, and the CURLOPT_POSTFIELDS setting holds the data you want to send.
Example 11-9 shows how to make a POST request with cURL.

Example 11-9. Making a POST request with cURL

$url = 'http://php7.example.com/post-server.php';

// Two variables to send via POST
$form_data = array('name' => 'black pepper',
 'smell' => 'good');

$c = curl_init($url);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
// This should be a POST request
curl_setopt($c, CURLOPT_POST, true);
// This is the data to send
curl_setopt($c, CURLOPT_POSTFIELDS, $form_data);

print curl_exec($c);

In Example 11-9, you don’t need to set the Content-Type header or format the data
you’re sending. cURL takes care of that for you.

However, if you want to send a different content type than regular form data, you
need to do a little more work. Example 11-10 shows how to send JSON via a POST
request with cURL.

Example 11-10. Sending JSON via POST with cURL

$url = 'http://php7.example.com/post-server.php';

Comprehensive URL Access with cURL | 239

http://www.php.net/curl_getinfo

// Two variables to send as JSON via POST
$form_data = array('name' => 'black pepper',
 'smell' => 'good');

$c = curl_init($url);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
// This should be a POST request
curl_setopt($c, CURLOPT_POST, true);
// This is a request containing JSON
curl_setopt($c, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));
// This is the data to send, formatted appropriately
curl_setopt($c, CURLOPT_POSTFIELDS, json_encode($form_data));

print curl_exec($c);

In Example 11-10, the CURLOPT_HTTPHEADER setting tells the server that the request
body is JSON, not regular form data. Then, the value of CURLOPT_POSTFIELDS is set to
json_encode($form_data) so that the request body is indeed JSON.

Using Cookies
If the response to a cURL request includes a header that sets a cookie, cURL doesn’t
do anything special with that header by default. But cURL does give you a few config‐
uration settings that let you track cookies, even across different PHP programs or
executions of the same program.

Example 11-11 is a simple page that maintains a cookie, c. Each time the page is
requested, the response includes a c cookie whose value is one greater than whatever
value is supplied for the c cookie in the request. If no c cookie is sent, then the
response sets the c cookie to 1.

Example 11-11. Simple cookie-setting server

// Use the value sent in the cookie, if any, or 0 if no cookie supplied
$value = $_COOKIE['c'] ?? 0;
// Increment the value by 1
$value++;
// Set the new cookie in the response
setcookie('c', $value);
// Tell the user what cookies we saw
print "Cookies: " . count($_COOKIE) . "\n";
foreach ($_COOKIE as $k => $v) {
 print "$k: $v\n";
}

With no additional configuration, cURL doesn’t keep track of the cookie sent back in
Example 11-11. In Example 11-12, curl_exec() is called twice on the same handle,

240 | Chapter 11: Talking to Other Websites and Services

but the cookie sent back in the response to the first request is not sent on the second
request.

Example 11-12. cURL’s default cookie-handling behavior

// Retrieve the cookie server page, sending no cookies
$c = curl_init('http://php7.example.com/cookie-server.php');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
// The first time, there are no cookies
$res = curl_exec($c);
print $res;

// The second time, there are still no cookies
$res = curl_exec($c);
print $res;

In Example 11-12, as in the other client examples in this section,
the program is accessible at http://php7.example.com/cookie-
server.php. To run the code yourself, change the URL to point to
your PHP server.

Example 11-12 prints:

Cookies: 0
Cookies: 0

Both requests get a response of Cookies: 0 because cURL sent no Cookie header
with the request.

Enabling cURL’s cookie jar tells it to keep track of cookies. To keep track of cookies
within the lifetime of a specific cURL handle, set CURLOPT_COOKIEJAR to true, as in
Example 11-13.

Example 11-13. Enabling cURL’s cookie jar

// Retrieve the cookie server page, sending no cookies
$c = curl_init('http://php7.example.com/cookie-server.php');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
// Turn on the cookie jar
curl_setopt($c, CURLOPT_COOKIEJAR, true);

// The first time, there are no cookies
$res = curl_exec($c);
print $res;

// The second time, there are cookies from the first request
$res = curl_exec($c);
print $res;

Comprehensive URL Access with cURL | 241

Example 11-13 prints:

Cookies: 0
Cookies: 1
c: 1

In Example 11-13, cURL keeps track of cookies sent in response to a request as long
as the handle for that cURL request exists in your program. The second time
curl_exec() is called for the handle $c, the cookie set in the first response is used.

In this mode, the cookie jar only tracks cookies within a handle. Changing the value
of CURLOPT_COOKIEJAR to a filename tells cURL to write the cookie values to that file.
Then you can also provide that filename as the value for CURLOPT_COOKIEFILE. Before
sending a request, cURL reads in any cookies from the CURLOPT_COOKIEFILE file and
uses them in subsequent requests. Example 11-14 shows the cookie jar and cookie file
in action.

Example 11-14. Tracking cookies across requests

// Retrieve the cookie server page
$c = curl_init('http://php7.example.com/cookie-server.php');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
// Save cookies to a 'saved.cookies' file in the same directory
// as this program
curl_setopt($c, CURLOPT_COOKIEJAR, __DIR__ . '/saved.cookies');
// Load cookies (if any have been previously saved) from the
// 'saved.cookies' file in this directory
curl_setopt($c, CURLOPT_COOKIEFILE, __DIR__ . '/saved.cookies');

// This request includes cookies from the file (if any)
$res = curl_exec($c);
print $res;

The first time Example 11-14 is run, it prints:

Cookies: 0

The second time Example 11-14 is run, it prints:

Cookies: 1
c: 1

The third time Example 11-14 is run, it prints:

Cookies: 1
c: 2

And so forth. Each time the program runs, it looks for a saved.cookies file, loads up
any cookies stored in the file, and uses them for the request. After the request, it saves
any cookies back to the same file because the CURLOPT_COOKIEFILE setting has the

242 | Chapter 11: Talking to Other Websites and Services

same value as the CURLOPT_COOKIEJAR setting. This updates the saved cookies file so
it’s ready with the new value the next time the program runs.

If you’re writing a program that mimics a user logging in with a web browser and
then making requests, the cookie jar is a very convenient way to have all of the server-
sent cookies accompany the requests cURL makes.

Retrieving HTTPS URLs
To retrieve URLs that use the https protocol, you do all the same things with cURL
that you’d do with regular http URLs. However, there are some security settings that
are important to get right. Usually, your defaults will be OK. This section explains
those values so you can be sure they’re correct and understand why you shouldn’t
change them.

When a web client retrieves an https URL, the security provided has two separate
features. One is identity verification: the server asserts that it is really the server that
should be handling the URL (based on the hostname). The other is protection from
eavesdropping: anybody who scoops up the conversation between the client and the
server sees just a meaningless jumble of characters instead of the real request
and response.

The CURLOPT_SSL_VERIFYPEER and CURLOPT_SSL_VERIFYHOST settings control
whether cURL is strict about identify verification. If CURLOPT_SSL_VERIFYPEER is set
to false, or CURLOPT_SSL_VERIFYHOST is set to something other than 2, then cURL
will skip essential steps that make sure the server is who it says it is.

If you’re using cURL version 7.10 or later, then CURLOPT_SSL_VERIFYPEER is turned
on by default. If you’re using cURL version 7.28.1 or later, then cURL won’t let you
change CURLOPT_SSL_VERIFYHOST to a value other than 2.

Use the curl_version() function to find out what version your PHP installation has.
This function returns an associative array of information about the installed version
of cURL’s capabilities. The version element of the array contains the version of cURL
that the PHP engine is relying on.

There are also different versions of the secure protocol that web clients and servers
use to implement HTTPS URLs. Which protocol version cURL uses is controlled
by the CURLOPT_SSLVERSION setting. There should be no need to change this value.
The default value (which you can explicitly set with the constant
CURL_SSLVERSION_DEFAULT) uses the most up-to-date and secure version of the pro‐
tocol available to the version of cURL you have.

Comprehensive URL Access with cURL | 243

Serving API Requests
Your PHP program can serve API requests to clients as well. Instead of generating a
plain HTML page, you generate whatever data is appropriate to the API call. Addi‐
tionally, you may need to manipulate the HTTP response code and response headers
you send.

To send an HTTP header along with your response, use the header() function.
Example 11-15 is a tiny clock API in PHP. It serves up the current time in JSON
format.

Example 11-15. Serving a JSON response

$response_data = array('now' => time());
header('Content-Type: application/json');
print json_encode($response_data);

The call to header() in Example 11-15 adds a header line to the HTTP response that
the PHP engine generates. The header line is whatever you pass to the function. The
code uses the json_encode() function to generate the JSON that makes up the
response. This function is the opposite of json_decode(). You give it a PHP data type
(string, number, object, array, etc.) and it returns a string containing the JSON repre‐
sentation of what was passed in. Example 11-15 generates an HTTP response that
looks like this:

HTTP/1.1 200 OK
Host: www.example.com
Connection: close
Content-Type: application/json

{"now":1962258300}

The first four lines are the response headers. A few get added automatically by your
web server. The Content-Type: application/json line is from the call to header().
After the blank line comes the request body. This is the stuff you see in your web
browser (or, if it’s HTML, you see the results of your web browser rendering the
HTML). In this case, the request body is a JSON object with one property, now, whose
value is a timestamp corresponding to the current time. The value you get when you
run this code will almost certainly be different because you are almost certainly run‐
ning this code at a different time than the timestamp printed here. For more details
on time handling in PHP, see Chapter 15.

The first line of the response headers contains the response code, which in this case is
200—which is HTTP-speak for “everything was fine.” To send a different response
code, use the http_response_code() function. Example 11-16 is like Example 11-15

244 | Chapter 11: Talking to Other Websites and Services

except it sends back a 403 status code (“Forbidden”) and an error response body
unless a query string parameter named key is supplied with a value of pineapple.

Example 11-16. Changing the response code

if (! (isset($_GET['key']) && ($_GET['key'] == 'pineapple'))) {
 http_response_code(403);
 $response_data = array('error' => 'bad key');
}
else {
 $response_data = array('now' => time());
}
header('Content-Type: application/json');
print json_encode($response_data);

Without the proper query string parameter supplied, Example 11-16’s response looks
like this:

HTTP/1.1 403 Forbidden
Host: www.example.com
Connection: close
Content-Type: application/json

{"error":"bad key"}

Example 11-4 used a Content-Type header to tell the NDB API to send back a
response as JSON. To access incoming request headers from your PHP program, look
in the $_SERVER array. Each incoming header is there. A header’s array key is HTTP_
followed by the header’s name in all uppercase and with any dashes (-) converted to
underscores (_). For example, the value of an incoming Content-Type header would
be in $_SERVER['HTTP_CONTENT_TYPE']. Example 11-17 examines the value of an
incoming Accept header to determine how to format the output data.

Example 11-17. Examining a request header

<?php

// Formats we want to support
$formats = array('application/json','text/html','text/plain');
// Response format if not specified
$default_format = 'application/json';

// Was a response format supplied?
if (isset($_SERVER['HTTP_ACCEPT'])) {
 // If a supported format is supplied, use it
 if (in_array($_SERVER['HTTP_ACCEPT'], $formats)) {
 $format = $_SERVER['HTTP_ACCEPT'];
 }
 // An unsupported format was supplied, so return an error

Serving API Requests | 245

2 Parsing real Accept headers is a bit more complicated because clients are allowed to send multiple formats
and indicate which one they prefer. Look on GitHub for a complete solution to this process, which is called
content negotiation.

 else {
 // 406 means "You want a response in a format I can't generate"
 http_response_code(406);
 // Exiting now means no response body, which is OK
 exit();
 }
} else {
 $format = $default_format;
}

// Figure out what time it is
$response_data = array('now' => time());
// Tell the client what kind of content we're sending
header("Content-Type: $format");
// Print the time in a format-appropriate way
if ($format == 'application/json') {
 print json_encode($response_data);
}
else if ($format == 'text/html') { ?>
<!doctype html>
 <html>
 <head><title>Clock</title></head>
 <body><time><?= date('c', $response_data['now']) ?></time></body>
 </html>
<?php
} else if ($format == 'text/plain') {
 print $response_data['now'];
}

If the incoming Accept header is application/json, text/html, or text/plain, then
$format is set to the proper format to use. This value gets put in the Content-Type
header of the response and is used to generate a format-appropriate output. If no
Accept header is supplied, a default of application/json is used. If any other value
is supplied in the Accept header, then the program returns an empty body with a 406
error code. This tells the client that an invalid format was asked for.2

The $_SERVER array is also where you look to determine if the current request is a
secure request; that is, if it was made with HTTPS. If the current request is secure,
then $_SERVER['HTTPS'] is set to on. Example 11-18 checks if the current request was
made over HTTPS and redirects to an HTTPS version of the current request’s URL
if not.

246 | Chapter 11: Talking to Other Websites and Services

https://github.com/willdurand/Negotiation

Example 11-18. Checking for HTTPS

$is_https = (isset($_SERVER['HTTPS']) && ($_SERVER['HTTPS'] == 'on'));
if (! $is_https) {
 $newUrl = 'https://' . $_SERVER['HTTP_HOST'] . $_SERVER['REQUEST_URI'];
 header("Location: $newUrl");
 exit();
}
print "You accessed this page over HTTPS. Yay!";

In Example 11-18, the first line determines whether the current request was over
HTTPS by ensuring two things: first, that there is a value set for $_SERVER['HTTPS']
and second, that the value is on. If both of those things are not true, then an HTTPS
version of the current URL is built by combining the right protocol (https://) with
the current request’s hostname (the value of $_SERVER['HTTP_HOST']) and the cur‐
rent request’s path (the value of $_SERVER['REQUEST_URI']). If the request included
any query string parameters, those are included in $_SERVER['REQUEST_URI'] as
well. The Location header, sent by the header() function, redirects a web client to a
new URL.

Chapter Summary
This chapter covered:

• Retrieving URLs with file_get_contents()
• Retrieving a URL that includes query string parameters
• Decoding a JSON HTTP response
• Understanding PHP’s stream contexts
• Including additional headers when retrieving a URL
• Retrieving URLs via the POST method with file_get_contents()
• Retrieving URLs with cURL
• Using query string parameters with cURL
• Adding request headers with cURL
• Handling errors from cURL requests
• Retrieving URLs via the POST method with cURL
• Keeping track of HTTP cookies with cURL
• Using cURL securely with HTTPS
• Serving non-HTML responses
• Changing the HTTP response code.
• Using values from HTTP request headers
• Checking if a request is made with HTTPS

Chapter Summary | 247

Exercises
1. http://php.net/releases/?json is a JSON feed of the latest PHP releases. Write a pro‐

gram that uses file_get_contents() to retrieve this feed and print out the latest
version of PHP released.

2. Modify your program from the previous exercise to use cURL instead of
file_get_contents().

3. Write a web page that uses a cookie to tell the user when he last looked at the web
page (you may find the date-and-time-handling functions described in Chap‐
ter 15 useful).

4. A GitHub gist is a snippet of text or code that is easy to share. The GitHub API
allows you to create gists without logging in. Write a program that creates a gist
whose contents are the program you’re writing to create a gist. Note that the Git‐
Hub API requires you to set a User-Agent header in your HTTP API requests.
The CURLOPT_USERAGENT setting can be used to set this header.

248 | Chapter 11: Talking to Other Websites and Services

http://php.net/releases/?json
https://developer.github.com/v3/gists/#create-a-gist

CHAPTER 12

Debugging

Programs rarely work correctly the first time you run them. This chapter shows you
some techniques for finding and fixing the problems in your programs. When you’re
just learning PHP, your programs are probably simpler than the programs that PHP
wizards write. The errors you get, however, generally aren’t much simpler, and you
have to use the same tools and techniques to find and fix those errors.

Controlling Where Errors Appear
Many things can go wrong in your program that cause the PHP engine to generate an
error message. You have a choice about where those error messages go. The messages
can be sent along with other program output to the web browser. They can also be
included in the web server error log.

A useful way to configure an error message display is to have the errors displayed on
screen while you’re developing a PHP program, and then when you’re done with
development and people are actually using the program, send error messages to the
error log. While you’re working on a program, it’s helpful to see immediately that
there was a parse error on a particular line, for example. But once the program is
(supposedly) working and your coworkers and customers are using it, such an error
message would be confusing to them.

To make error messages display in the browser, set the display_errors configuration
directive to On. Set it to Off to prevent error messages from displaying in the browser.
To make sure errors end up in the web server error log, keep log_errors set to On.

249

An error message that the PHP engine generates will fall into one of five different cat‐
egories:

Parse error
A problem with the syntax of your program, such as leaving a semicolon off of
the end of a statement. The engine stops running your program when it encoun‐
ters a parse error.

Fatal error
A severe problem with the content of your program, such as calling a function
that hasn’t been defined. The engine stops running your program when it
encounters a fatal error.

Warning
An advisory from the engine that something is fishy in your program, but the
engine can keep going. Using the wrong number of arguments when you call a
function causes a warning.

Notice
A tip from the PHP engine playing the role of Miss Manners. For example, print‐
ing a variable without first initializing it to some value generates a notice.

Strict notices or deprecation warning
An admonishment from the PHP engine about your coding style, or that some‐
thing you’re doing will stop working in a future version of PHP.

You don’t have to be notified about all the error categories. The error_reporting
configuration directive controls which kinds of errors the PHP engine reports. The
default value for error_reporting is E_ALL & ~E_NOTICE & ~E_DEPRECATED, which
tells the engine to report all errors except notices and deprecation warnings. Appen‐
dix A explains what the & and ~ mean in configuration directive values.

PHP defines some constants you can use to set the value of error_reporting such
that only errors of certain types get reported:

• E_ALL (for all errors)
• E_PARSE (parse errors)
• E_ERROR (fatal errors)
• E_WARNING (warnings)
• E_NOTICE (notices)
• E_STRICT (strict notices, in versions of PHP before 7.0.0)

Because strict notices were new to PHP 5, they are not included in E_ALL in versions
of PHP before 5.4.0. To tell an older version of the PHP engine that you want to hear
about everything that could possibly be an error, set error_reporting to E_ALL |
E_STRICT.

250 | Chapter 12: Debugging

Fixing Parse Errors
The PHP engine is really picky but not very chatty. If you leave out a necessary semi‐
colon, or start a string with a single quote but end it with a double quote, the engine
doesn’t run your program. It throws up its (virtual) hands, complains about a “parse
error,” and leaves you stuck in the debugging wilderness.

This can be one of the most frustrating things about programming when you’re get‐
ting started. Everything has to be phrased and punctuated just so in order for the
PHP engine to accept it. One thing that helps this process along is writing your
programs in an editor that is PHP-aware. This is a program that, when you tell it that
you are editing a PHP program, turns on some special features that make program‐
ming easier.

One of these special features is syntax highlighting. It changes the color of different
parts of your program based on what those parts are. For example, strings would be
pink, keywords such as if and while would be blue, comments would be grey, and
variables would be black. Syntax highlighting makes it easier to detect things such as
a string that’s missing its closing quote: the pink text continues past the line that the
string is on, all the way to the end of the file (or the next quote that appears later in
the program).

Another feature is quote and bracket matching, which helps to make sure that your
pairs of quotes and brackets are balanced. When you type a closing delimiter such
as }, the editor highlights the opening { that it matches. Different editors do this in
different ways, but typical methods are to flash the cursor at the location of the open‐
ing {, or to bold the { } pair for a short time. This behavior is helpful for pairs of
punctuation that go together: single and double quotes that delimit strings, parenthe‐
ses, square brackets, and curly braces.

These editors also show the line numbers of your program files. When you get an
error message from the PHP engine complaining about a parse error in line 35 in
your program, you know where to look for your error.

Table 12-1 lists some PHP-aware editors. Prices are in USD and accurate at the time
of writing.

Table 12-1. PHP-aware text editors

Name URL Cost
PhpStorm https://www.jetbrains.com/phpstorm $89
NetBeans https://netbeans.org Free
Zend Studio http://www.zend.com/en/products/studio $89
Eclipse + PDT http://www.eclipse.org/pdt Free
Sublime Text http://www.sublimetext.com $70

Fixing Parse Errors | 251

https://www.jetbrains.com/phpstorm
https://netbeans.org
http://www.zend.com/en/products/studio
http://www.eclipse.org/pdt
http://www.sublimetext.com

Name URL Cost
Emacs http://ergoemacs.org/emacs/which_emacs.html Free
Vim http://vim.wikia.com/wiki/Where_to_download_Vim Free

PhpStorm, NetBeans, Zend Studio, and Eclipse + PDT are more like traditional
integrated development environments (IDEs), whereas Sublime Text, Emacs, and
Vim are more like traditional text editors—though they can easily be customized with
plugins that help them understand PHP. PhpStorm and Zend Studio are the most
PHP-specific of these editors, while the others are made to work with many other
programming languages as well. All of the non-free editors in Table 12-1 have free
evaluation periods, so you can try them out to see which one is most comfortable
for you.

Parse errors happen when the PHP engine comes upon something unexpected in
your program. Consider the broken program in Example 12-1.

Example 12-1. A parse error

<?php
if $logged_in) {
 print "Welcome, user.";
 }
?>

When told to run the code in Example 12-1, the PHP engine produces the following
error message:

PHP Parse error: syntax error, unexpected '$logged_in' (T_VARIABLE),
expecting '(' in welcome.php on line 2

That error message means that in line 2 of the file, the PHP engine was expecting to
see an open parenthesis but instead encountered $logged_in, which it thinks is
something called a T_VARIABLE. The T_VARIABLE is a token. Tokens are the PHP
engine’s way of expressing different fundamental parts of programs. When the engine
reads in a program, it translates what you’ve written into a list of tokens. Wherever
you put a variable in your program, there is a T_VARIABLE token in the engine’s list.

So, what the PHP engine is trying to tell you with the error message is “I was reading
line 2 and saw a variable named $logged_in where I was expecting an open parenthe‐
sis.” Looking at line 2 of Example 12-1, you can see why this is so: the open parenthe‐
sis that should start the if() test expression is missing. After seeing if, PHP expects
a (to start the test expression. Since that’s not there, it sees $logged_in, a variable,
instead.

A list of all the tokens that the PHP engine uses (and therefore that may show up in
an error message) can be found in the online PHP Manual.

252 | Chapter 12: Debugging

http://ergoemacs.org/emacs/which_emacs.html
http://vim.wikia.com/wiki/Where_to_download_Vim
http://www.php.net/tokens

The insidious thing about parse errors, though, is that the line number reported in
the error message is often not the line where the error actually is. Example 12-2 has
such an error in it.

Example 12-2. A trickier parse error

<?php
$first_name = "David';
if ($logged_in) {
 print "Welcome, $first_name";
} else {
 print "Howdy, Stranger.";
}
?>

When it tries to run the code in Example 12-2, the PHP engine says:

PHP Parse error: syntax error, unexpected 'Welcome' (T_STRING)
in trickier.php on line 4

That error makes it seem like line 4 contains a string (Welcome) in a place where it
shouldn’t. But you can scrutinize line 4 all you want to find a problem with it, and
you still won’t find one. That line, print "Welcome, $first_name";, is perfectly cor‐
rect—the string is correctly delimited with double quotes and the line appropriately
ends with a semicolon.

The real problem in Example 12-2 is in line 2. The string being assigned to
$first_name starts with a double quote but “ends” with a single quote. As the PHP
engine reads line 2, it sees the double quote and thinks, “OK, here comes a string. I’ll
read everything until the next (unescaped) double quote as the contents of this
string.” That makes the engine fly right over the single quote in line 2 and keep going
all the way until the first double quote in line 4. When it sees that double quote, the
engine thinks it’s found the end of the string. So then it considers what happens after
the double quote to be a new command or statement. But what’s after the double
quote is Welcome, $first_name";. This doesn’t make any sense to the engine. It’s
expecting an immediate semicolon to end a statement, or maybe a period to concate‐
nate the just-defined string with another string. But Welcome, $first_name"; is just
an undelimited string sitting where it doesn’t belong. So the engine gives up and
shouts out a parse error.

Fixing Parse Errors | 253

Imagine you’re running down the streets of Manhattan at supersonic speed. The side‐
walk on 35th Street has some cracks in it, so you trip. But you’re going so fast that you
land on 39th Street and dirty the pavement with your blood and guts. Then a traffic
safety officer comes over and says, “Hey! There’s a problem with 39th Street! Some‐
one’s soiled the sidewalk with their innards!”

That’s what the PHP engine is doing in this case. The line number in the parse error is
where the engine sees something it doesn’t expect, which is not always the same as the
line number where the actual error is.

When you get a parse error from the engine, first take a look at the line reported in
the parse error. Check for the basics, such as making sure that you’ve got a semicolon
at the end of the statement. If the line seems OK, work your way forward and back a
few lines in the program to hunt down the actual error. Pay special attention to punc‐
tuation that goes in pairs: single or double quotes that delimit strings, parentheses in
function calls or test expressions, square brackets in array elements, and curly braces
in code blocks. Count that the number of opening punctuation marks (such as (, [,
and {) matches the number of closing punctuation marks (such as),], and }).

Situations such as this one are where a PHP-aware editor is really helpful. With syn‐
tax highlighting or bracket matching, the editor can tell you about the problem
without making you have to hunt around for it. For example, if you’re reading a digi‐
tal version of this book, the syntax highlighting and color coding of Example 12-2
probably made it very easy to spot the error.

Inspecting Program Data
Once you clear the parse error hurdle, you still may have some work to do before you
reach the finish line. A program can be syntactically correct but logically flawed. Just
as the sentence “The tugboat chewed apoplectically with six subtle buffaloes” is gram‐
matically correct but meaningless nonsense, you can write a program that the PHP
engine doesn’t find any problems with but that doesn’t do what you expect.

Finding and fixing parts of a programs that don’t behave as you expect is a big part of
programming. The specifics of how you’d diagnose and explore particular situations
vary greatly depending on what you’re trying to fix. This section shows you two tech‐
niques for investigating what’s going on in your PHP program. The first, adding
debugging output, is easy, but requires modifying your program and may not be suit‐
able for a production environment where regular users can also see the output. The
second, using a debugger, requires more work to set up properly, but gives you more
runtime flexibility as to how you inspect the running program.

254 | Chapter 12: Debugging

Adding Debug Output
If your program is acting funny, add some checkpoints that display the values of vari‐
ables. That way, you can see where the program’s behavior diverges from your expect‐
ations. Example 12-3 shows a program that incorrectly attempts to calculate the total
cost of a few items.

Example 12-3. A broken program

$prices = array(5.95, 3.00, 12.50);
$total_price = 0;
$tax_rate = 1.08; // 8% tax

foreach ($prices as $price) {
 $total_price = $price * $tax_rate;
}

printf('Total price (with tax): $%.2f', $total_price);

Example 12-3 doesn’t do the right thing. It prints:

Total price (with tax): $13.50

The total price of the items should be at least $20. What’s wrong with Example 12-3?
One way you can try to find out is to insert a line in the foreach() loop that prints
the value of $total_price before and after it changes. That should provide some
insight into why the math is wrong. Example 12-4 annotates Example 12-3 with some
diagnostic print statements.

Example 12-4. A broken program with debugging output

$prices = array(5.95, 3.00, 12.50);
$total_price = 0;
$tax_rate = 1.08; // 8% tax

foreach ($prices as $price) {
 print "[before: $total_price]";
 $total_price = $price * $tax_rate;
 print "[after: $total_price]";
}

printf('Total price (with tax): $%.2f', $total_price);

Example 12-4 prints:

[before: 0][after: 6.426][before: 6.426][after: 3.24][before: 3.24]
[after: 13.5]Total price (with tax): $13.50

Inspecting Program Data | 255

From analyzing the debugging output from Example 12-4, you can see that
$total_price isn’t increasing on each trip through the foreach() loop. Scrutinizing
the code further leads you to the conclusion that the line:

$total_price = $price * $tax_rate;

should be:

$total_price += $price * $tax_rate;

Instead of the assignment operator (=), the code needs the increment-and-assign
operator (+=).

Editing the Right File
If you make changes to a program while debugging it but don’t see those changes
reflected when you reload the program in your web browser, make sure you’re editing
the right file. When working with a local copy of the program but loading it in the
browser from a remote server, be sure to copy the changed file to the server before
you reload the page.

One way to make sure that the file you’re editing and the page you’re looking at in the
web browser are in sync is to temporarily add a line at the top of the program that
calls die(), as in the following.

die('This is: ' . __FILE__);

The special constant __FILE__ holds the name of the file being run. So, when you
load a PHP page in your browser with a URL such as http://www.example.com/cata‐
log.php, which has the code just shown at the top, all you should see is something like:

This is: /usr/local/htdocs/catalog.php

When you see the results of die() in your web browser, you know you’re editing the
right file. Remove the call to die() from your program and continue debugging.

Example 12-5. Printing all submitted form parameters with var_dump()

print '<pre>';
var_dump($_POST);
print '</pre>';

To include an array in debugging output, use var_dump(). It prints all the elements in
an array. Surround the output of var_dump() with HTML <pre> and </pre> tags to
have it nicely formatted in your web browser. Example 12-5 prints the contents of all
submitted form parameters with var_dump().

256 | Chapter 12: Debugging

Debugging messages are informative but can be confusing or disruptive when mixed
in with the regular page output. To send debugging messages to the web server error
log instead of the web browser, use the error_log() function instead of print.
Example 12-6 shows the program from Example 12-4 but uses error_log() to send
the diagnostic messages to the web server error log.

Example 12-6. A broken program with error log debugging output

$prices = array(5.95, 3.00, 12.50);
$total_price = 0;
$tax_rate = 1.08; // 8% tax

foreach ($prices as $price) {
 error_log("[before: $total_price]");
 $total_price = $price * $tax_rate;
 error_log("[after: $total_price]");
}

printf('Total price (with tax): $%.2f', $total_price);

Example 12-6 prints just the total price line:

Total price (with tax): $13.50

However, it sends lines to the web server error log that look like this:

[before: 0]
[after: 6.426]
[before: 6.426]
[after: 3.24]
[before: 3.24]
[after: 13.5]

The exact location of your web server error log varies based on how your web server
is configured. If you’re using Apache, the error log location is specified by the
ErrorLog Apache configuration setting.

Because the var_dump() function itself prints information, you need to do a little
fancy footwork to send its output to the error log, similar to the output buffering
functionality discussed at the end of “Why setcookie() and session_start() Want to Be
at the Top of the Page” on page 226. You surround the call to var_dump() with func‐
tions that temporarily suspend output, as shown in Example 12-7.

Inspecting Program Data | 257

Example 12-7. Sending all submitted form parameters to the error log with var_dump()

// Capture output instead of printing it
ob_start();
// Call var_dump() as usual
var_dump($_POST);
// Store in $output the output generated since calling ob_start()
$output = ob_get_contents();
// Go back to regular printing of output
ob_end_clean();
// Send $output to the error log
error_log($output);

The ob_start(), ob_get_contents(), and ob_end_clean() functions in
Example 12-7 manipulate how the PHP engine generates output. The ob_start()
function tells the engine, “Don’t print anything from now on. Just accumulate any‐
thing you would print in an internal buffer.” When var_dump() is called, the engine is
under the spell of ob_start(), so the output goes into that internal buffer. The
ob_get_contents() function returns the contents of the internal buffer. Since
var_dump() is the only thing that generated output since ob_start() was called, this
puts the output of var_dump() into $output. The ob_end_clean() function undoes
the work of ob_start(): it tells the PHP engine to go back to its regular behavior
with regard to printing. Finally, error_log() sends $output (which holds what
var_dump() “printed”) to the web server error log.

Using a Debugger
The printing and logging approach described in the previous section is easy to use.
But because it requires modifying your program, you can’t use it in a production
environment where regular users might see the debugging output. Also, you need to
decide what information you want to print or log before you start running your pro‐
gram. If you haven’t added any code to print a value you’re interested in, you have to
modify your program again and rerun it.

Examining your program with a debugger solves these problems. A debugger lets you
inspect your program while it is running so you can see the values of variables and
which functions call which other functions. It doesn’t require any changes to your
program, but it does require some separate setup.

There are a few debuggers that work with PHP, and many of the editors listed in
Table 12-1 integrate well with a debugger to allow you to inspect a running PHP pro‐
gram from within your editor. This section shows program inspection with the
phpdbg debugger, which comes with PHP.

258 | Chapter 12: Debugging

The phpdbg debugger is part of PHP versions 5.6 and later, but
your installation of the PHP engine may not be configured to
include it. If you don’t have a phpdbg program on your system that
you can run, check (or ask your system administrator to check)
that your PHP installation was built with the --enable-phpdbg
option.
The Xdebug debugger is powerful and full-featured. It can commu‐
nicate with editors and IDEs using a protocol but does not come
with an easy-to-use client on its own. Xdebug is free.
The Zend Debugger is part of Zend Studio. It uses its own protocol
to communicate with Zend Studio, but some other IDEs, such as
PhpStorm, work with it as well.

To start a debugging session with phpdbg, run the phpdbg program with a -e argu‐
ment indicating what program you want to debug:

phpdbg -e broken.php

phpdbg responds with:

Welcome to phpdbg, the interactive PHP debugger, v0.4.0]
To get help using phpdbg type "help" and press enter
[Please report bugs to <http://github.com/krakjoe/phpdbg/issues>]
[Successful compilation of broken.php]

This means that phpdbg has read broken.php, has digested the commands in it, and is
ready to run it for you. First, we’re going to set a breakpoint. This tells phpdbg to
pause whenever it reaches a certain place in the program. When phpdbg pauses, we
can inspect the program’s innards. Line 7 is the line where $total_price gets its
value assigned within the loop, so let’s break there:

prompt> break 7

The prompt> part is not something to type. phpdbg prints that on its own as a prompt
telling you it is ready for a command. The break 7 command tells phpdbg to pause
execution when it reaches line 7 of the program. phpdbg responds with:

[Breakpoint #0 added at broken.php:7]

We’re ready to go, so tell phpdbg to start running the program:

prompt> run

It starts from the beginning, running each line of the program until it gets to the
breakpoint at line 7. At that point, phpdbg says:

[Breakpoint #0 at broken.php:7, hits: 1]
>00007: $total_price = $price * $tax_rate;
 00008: }
 00009:

Inspecting Program Data | 259

http://www.xdebug.org
http://www.zend.com/Studio

Now we can add a watch point for $total_price. This tells phpdbg to pause program
execution each time the value of $total_price changes. This is exactly what we need
to diagnose our problem, since it’s the value of $total_price that’s not getting set to
what we expect. The watch command adds a watch point:

prompt> watch $total_price

phpdbg responds with:

[Set watchpoint on $total_price]

Now that we have our watch point, we don’t need the breakpoint on line 7 any more.
The break del command deletes a breakpoint:

prompt> break del 0

This tells phpdbg to remove the first breakpoint we set (like PHP with array elements,
phpdbg starts numbering things with 0, not 1). phpdbg acknowledges the breakpoint
deletion with:

[Deleted breakpoint #0]

We are all set to continue running the program and have it pause whenever the value
of $total_price changes. The continue command tells phpdbg to keep going:

prompt> continue

phpdbg starts running the program. The first commands that now get executed are
the ones in line 7, which change the value of $total_price. So right away program
execution is paused, and phpdbg says:

[Breaking on watchpoint $total_price]
Old value: 0
New value: 6.426
>00007: $total_price = $price * $tax_rate;
 00008: }
 00009:

This is useful—we see that the code is changing $total_price from 0 to 6.426. Let’s
see what happens next. The continue command tells phpdbg to get things going
again:

prompt> continue

And then the program stops again:

[Breaking on watchpoint $total_price]
Old value: 6.426
New value: 3.24
>00007: $total_price = $price * $tax_rate;
 00008: }
 00009:

260 | Chapter 12: Debugging

Back again on line 7 in the loop, $total_price goes from 6.426 to 3.24. That defi‐
nitely doesn’t look right—$total_price should be increasing! Let’s keep going:

prompt> continue

One last time, the value of $total_price gets changed:

[Breaking on watchpoint $total_price]
Old value: 3.24
New value: 13.5
>00007: $total_price = $price * $tax_rate;
 00008: }
 00009:

This time it increases to 13.5. And a final continue to finish out the program:

prompt> continue

phpdbg keeps running the program, and we get the actual program output:

Total price (with tax): $13.50
[$total_price was removed, removing watchpoint]
[Script ended normally]

The second time phpdbg pauses at the watch point, it is clear that there is a problem
with how the value of $total_price is being calculated. This is the same conclusion
that the debugging output introduced in the previous section shows.

The specific syntax to type (or places to click in a GUI) may vary with a different
debugger or IDE, but the basic idea is the same: the debugger runs your program
with special oversight. You get to pause your program execution in the places of your
choosing and inspect the program’s guts when it pauses.

Handling Uncaught Exceptions
“Indicating a Problem with Exceptions” on page 108 explained the basics of how PHP
uses exceptions, and Example 6-8 showed what happens if an exception is thrown but
not caught: your PHP program stops running and the PHP engine prints out error
information and a stack trace (the list of functions that have called one another at the
point where the program has stopped).

While you should always include try/catch blocks around any code that might throw
an exception, in practice it can be difficult to meet that goal perfectly. You might be
using a third-party library and unaware of exceptions it throws, or you might just
make a mistake and forget a situation where your own code can throw an exception.
For these situations, PHP gives you a way to specify a special exception handler that
will get called if your code doesn’t handle an exception. This exception handler is a
good place to log information about the exception and present information to your
program’s user that is friendlier than a stack trace.

Handling Uncaught Exceptions | 261

To use a custom exception handler for otherwise uncaught exceptions, do two things:

1. Write a function that will handle the exception. It takes one argument: the excep‐
tion.

2. Use set_exception_handler() to tell the PHP engine about your function.

Example 12-8 sets up an exception handler that prints a nice error message for a user
and logs more detailed information about the exception.

Example 12-8. Setting up a custom exception handler

function niceExceptionHandler($ex) {
 // Tell the user something unthreatening
 print "Sorry! Something unexpected happened. Please try again later.";
 // Log more detailed information for a sysadmin to review
 error_log("{$ex->getMessage()} in {$ex->getFile()} @ {$ex->getLine()}");
 error_log($ex->getTraceAsString());
}

set_exception_handler('niceExceptionHandler');

print "I'm about to connect to a made up, pretend, broken database!\n";

// The DSN given to the PDO constructor does not specify a valid database
// or connection parameters, so the constructor will throw an exception
$db = new PDO('garbage:this is obviously not going to work!');

print "This is not going to get printed.";

In Example 12-8, the niceExceptionHandler() function uses print to give the user
a simple message and error_log(), along with methods on the Exception object,
to log more detailed technical information for review. The call to
set_exception_handler() with the niceExceptionHandler argument (as a string)
tells the PHP engine to give any unhandled exceptions to that function.

The output from Example 12-8 is:

I'm about to connect to a made up, pretend, broken database!
Sorry! Something unexpected happened. Please try again later.

And the logged error information is:

could not find driver in exception-handler.php @ 17
#0 exception-handler.php(17): PDO->__construct('garbage:this is...')
#1 {main}

This prevents the user from seeing confusing technical details that could potentially
leak secure information (such as database credentials or file paths) but stores that
information in the error log for review.

262 | Chapter 12: Debugging

A custom exception handler doesn’t prevent your program from stopping after
the exception is handled. After the exception handler runs, your program is done.
That’s why, in Example 12-8, the This is not going to get printed. line is never
printed.

Chapter Summary
This chapter covered:

• Configuring error display for a web browser, a web server error log, or both
• Configuring the PHP engine’s error-reporting level
• Getting the benefits of a PHP-aware text editor
• Deciphering parse error messages
• Finding and fixing parse errors
• Printing debugging information with print, var_dump(), and error_log()
• Sending var_dump() output to the error log with output buffering functions
• Inspecting a running program with a debugger
• Handling exceptions not caught by any other code

Exercises
1. This program has a syntax error in it:

<?php
$name = 'Umberto';
function say_hello() {
 print 'Hello, ';
 print global $name;
}
say_hello();
?>

Without running the program through the PHP engine, figure out what the parse
error that gets printed when the engine tries to run the program looks like. What
change must you make to the program to get it to run properly and print Hello,
Umberto?

2. Modify the validate_form() function in your answer to Exercise 3 in Chapter 7
(see “Exercise 3” on page 345) so that it prints in the web server error log the
names and values of all of the submitted form parameters.

3. Modify your answer to Exercise 4 in Chapter 8 (see “Exercise 4” on page 357) to
use a custom database error-handling function that prints out different messages
in the web browser and in the web server error log. The error-handling function
should make the program exit after it prints the error messages.

Chapter Summary | 263

4. The following program is supposed to print out an alphabetical list of all the cus‐
tomers in the table from Exercise 4 in Chapter 8 (see “Exercise 4” on page 357).
Find and fix the errors in it.
<?php
// Connect to the database
try {
 $db = new PDO('sqlite::/tmp/restaurant.db');
} catch ($e) {
 die("Can't connect: " . $e->getMessage());
}
// Set up exception error handling
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
// Set up fetch mode: rows as arrays
$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_ASSOC);
// Get the array of dish names from the database
$dish_names = array();
$res = $db->query('SELECT dish_id,dish_name FROM dishes');
foreach ($res->fetchAll() as $row) {
 $dish_names[$row['dish_id']]] = $row['dish_name'];
}
$res = $db->query('SELECT ** FROM customers ORDER BY phone DESC');
$customers = $res->fetchAll();
if (count($customers) = 0) {
 print "No customers.";
} else {
 print '<table>';
 print '<tr><th>ID</th><th>Name</th><th>Phone</th>
 <th>Favorite Dish</th></tr>';
 foreach ($customers as $customer) {
 printf("<tr><td>%d</td><td>%s</td><td>%f</td><td>%s</td></tr>\n",
 $customer['customer_id'],
 htmlentities($customer['customer_name']),
 $customer['phone'],
 $customer['favorite_dish_id']);
 }
 print '</table>';
?>

264 | Chapter 12: Debugging

CHAPTER 13

Testing: Ensuring Your Program
Does the Right Thing

How do you know your program does what you think it does? Even with your careful
attention to detail, are you sure that sales tax calculation function works properly?
How do you know?

This chapter is about giving you the peace of mind that comes with answers to those
questions. Unit testing is a way of making assertions about small bits of your code—
“If I put these values into this function, I should get this other value out.” By creating
tests that check the behavior of your code in appropriate situations, you can have
confidence in how your program behaves.

PHPUnit is the de facto standard for writing tests for PHP code. Your tests are them‐
selves little bits of PHP code. The following section describes how to install PHPUnit.
“Writing a Test” shows some code and a first test for it. Use and run this code to make
sure you’ve got PHPUnit installed properly and understand the basic pieces of a test.

Then, “Isolating What You Test” on page 270 looks at how to narrow the focus of
what you’re testing for maximum efficiency.

“Test-Driven Development” on page 272 extends the tested code by adding some tests
for code that doesn’t exist yet, and then adding the code to make the tests pass. This
technique can be a handy way to ensure you’re writing code that is tested properly.

At the end of this chapter, “More Information About Testing” on page 275 provides
details on where to find more information about PHPUnit and testing in general.

265

Installing PHPUnit
The quickest way to get PHPUnit running is to download a self-contained PHP
Archive of the entire PHPUnit package and make it executable. As described at the
PHPUnit website, the PHPUnit project makes this archive available at https://
phar.phpunit.de/phpunit.phar. You can download this file and make it executable to
run it directly as in Example 13-1, or just run it through the php command-line pro‐
gram, as in Example 13-2.

Example 13-1. Running PHPUnit as an executable PHAR file

Assuming phpunit.phar is in the current directory, this
makes it executable
chmod a+x phpunit.phar
And this runs it
./phpunit.phar --version

Example 13-2. Running PHPUnit with the php command-line program

php ./phpunit.phar --version

However you run PHPUnit, if things are working properly, the output of
phpunit.phar --version should look something like this:

PHPUnit 4.7.6 by Sebastian Bergmann and contributors.

If you decide to use PHPUnit for testing in a larger project that relies on Composer to
manage packages and dependencies, add a reference to it in the require-dev section
of your composer.json file by running the following command:

composer require-dev phpunit/phpunit

Writing a Test
The restaurant_check() function from Example 5-11 calculates the total bill for a
restaurant meal, given the cost of the meal itself, the tax rate, and the tip rate.
Example 13-3 shows the function again to refresh your memory.

Example 13-3. restaurant_check()

function restaurant_check($meal, $tax, $tip) {
 $tax_amount = $meal * ($tax / 100);
 $tip_amount = $meal * ($tip / 100);
 $total_amount = $meal + $tax_amount + $tip_amount;

266 | Chapter 13: Testing: Ensuring Your Program Does the Right Thing

https://phpunit.de/getting-started.html
https://phar.phpunit.de/phpunit.phar
https://phar.phpunit.de/phpunit.phar

 return $total_amount;
}

Tests in PHPUnit are organized as methods inside a class. The class you write to con‐
tain your tests must extend the PHPUnit_Framework_TestCase class. The name of
each method that implements a test must begin with test. Example 13-4 shows a
class with a test in it for restaurant_check().

Example 13-4. Testing restaurant check calculation

include 'restaurant-check.php';

class RestaurantCheckTest extends PHPUnit_Framework_TestCase {

 public function testWithTaxAndTip() {
 $meal = 100;
 $tax = 10;
 $tip = 20;
 $result = restaurant_check($meal, $tax, $tip);
 $this->assertEquals(130, $result);
 }

}

Note that Example 13-4 assumes that the restaurant_check() function is defined in
a file named restaurant-check.php, which it includes before defining the test class. It is
your responsibility to make sure that the code that your tests are testing is loaded and
available for your test class to invoke.

To run the test, give the filename you’ve saved the code in as an argument to the
PHPUnit program:

phpunit.phar RestaurantCheckTest.php

That produces output like the following:

PHPUnit 4.8.11 by Sebastian Bergmann and contributors.

.

Time: 121 ms, Memory: 13.50Mb

OK (1 test, 1 assertion)

Each . before the Time: line represents one test that was run. The last line (OK (1
test, 1 assertion)) tells you the status of all the tests, how many tests were run,
and how many assertions all those tests contained. An OK status means no tests failed.
This example had one test method, testWithTaxAndTip(), and inside that test

Writing a Test | 267

method there was one assertion: the call to assertEquals() that checked that the
return value from the function equaled 130.

A test method is generally structured like the preceding example. It has a name begin‐
ning with test that describes what behavior the method is testing. It does any vari‐
able initialization or setup necessary to exercise the code to test. It invokes the code to
test. Then it makes some assertions about what happened. Assertions are available as
instance methods on the PHPUnit_Framework_TestCase class, so they are available in
our test subclass.

The assertion method names each begin with assert. These methods let you check
all sorts of aspects of how your code works, such as whether values are equal, ele‐
ments are present in an array, or an object is an instance of a certain class. Appendix
A of the PHPUnit manual lists all the assertion methods available.

PHPUnit’s output looks different when a test fails. Example 13-5 adds a second test
method to the RestaurantCheckTest class.

Example 13-5. A test with a failing assertion

include 'restaurant-check.php';

class RestaurantCheckTest extends PHPUnit_Framework_TestCase {

 public function testWithTaxAndTip() {
 $meal = 100;
 $tax = 10;
 $tip = 20;
 $result = restaurant_check($meal, $tax, $tip);
 $this->assertEquals(130, $result);
 }

 public function testWithNoTip() {
 $meal = 100;
 $tax = 10;
 $tip = 0;
 $result = restaurant_check($meal, $tax, $tip);
 $this->assertEquals(120, $result);
 }
}

In Example 13-5, the testWithNoTip() test method asserts that the total check on a
$100 meal with 10% tax and no tip should equal $120. This is wrong—the total
should be $110. PHPUnit’s output in this case looks like this:

PHPUnit 4.8.11 by Sebastian Bergmann and contributors.

.F

268 | Chapter 13: Testing: Ensuring Your Program Does the Right Thing

https://phpunit.de/manual/current/en/appendixes.assertions.html
https://phpunit.de/manual/current/en/appendixes.assertions.html

Time: 129 ms, Memory: 13.50Mb

There was 1 failure:

1) RestaurantCheckTest::testWithNoTip
Failed asserting that 110.0 matches expected 120.

RestaurantCheckTest.php:20

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

Because the test fails, it gets an F instead of a . in the initial part of the output.
PHPUnit also reports more details on the failure. It tells you what test class and test
method contained the failure, and what the failed assertion was. The test code
expected 120 (the first argument to assertEquals()) but instead got 110 (the second
argument to assertEquals()).

If you change the assertion in testWithNoTip() to expect 110 instead, the test passes.

Some deliberation and creativity is usually required to ensure that your tests cover an
adequate variety of situations so that you have confidence in how your code behaves.
For example, how should restaurant_check() calculate the tip? Some people calcu‐
late the tip just on the meal amount, and some on the meal amount plus tax. A test is
a good way to be explicit about your function’s behavior. Example 13-6 adds tests that
verify the function’s existing behavior: the tip is calculated only on the meal, not on
the tax.

Example 13-6. Testing how tip is calculated

include 'restaurant-check.php';

class RestaurantCheckTest extends PHPUnit_Framework_TestCase {

 public function testWithTaxAndTip() {
 $meal = 100;
 $tax = 10;
 $tip = 20;
 $result = restaurant_check($meal, $tax, $tip);
 $this->assertEquals(130, $result);
 }

 public function testWithNoTip() {
 $meal = 100;
 $tax = 10;
 $tip = 0;
 $result = restaurant_check($meal, $tax, $tip);
 $this->assertEquals(110, $result);
 }

Writing a Test | 269

 public function testTipIsNotOnTax() {
 $meal = 100;
 $tax = 10;
 $tip = 10;
 $checkWithTax = restaurant_check($meal, $tax, $tip);
 $checkWithoutTax = restaurant_check($meal, 0, $tip);
 $expectedTax = $meal * ($tax / 100);
 $this->assertEquals($checkWithTax, $checkWithoutTax + $expectedTax);
 }

}

The testTipIsNotOnTax() method calculates two different restaurant checks: one
with the provided tax rate and one with a tax rate of 0. The difference between these
two should just be the expected amount of tax. There should not also be a difference
in the tip. The assertion in this test method checks that the check with tax is equal to
the check without tax, plus the expected tax amount. This ensures that the function is
not calculating the tip on the tax amount, too.

Isolating What You Test
An important principle of productive testing is that the thing you’re testing should be
as isolated as possible. Ideally, there is no global state or long-lived resource outside of
your test function whose contents or behavior could change the results of the test
function. Your test functions should produce the same result regardless of the order
in which they are run.

Consider the validate_form() function from Example 7-13. To validate incoming
data, it examines the $_POST array and uses filter_input() to operate directly on
INPUT_POST. This is a concise way to access the data that needs validating. However,
in order to test this function, it looks like we’d have to adjust values in the auto-global
$_POST array. What’s more, that wouldn’t even help filter_input() work properly. It
always looks at the underlying, unmodified submitted form data, even if you change
the values in $_POST.

To make this function testable, it needs to be passed the submitted form data to vali‐
date as an argument. Then this array can be referenced instead of $_POST, and
filter_var() can examine the array’s elements. Example 13-7 shows this isolated
version of the validate_form() function.

Example 13-7. Validating form data in isolation

function validate_form($submitted) {
 $errors = array();
 $input = array();

270 | Chapter 13: Testing: Ensuring Your Program Does the Right Thing

 $input['age'] = filter_var($submitted['age'] ?? NULL, FILTER_VALIDATE_INT);
 if ($input['age'] === false) {
 $errors[] = 'Please enter a valid age.';
 }

 $input['price'] = filter_var($submitted['price'] ?? NULL,
 FILTER_VALIDATE_FLOAT);
 if ($input['price'] === false) {
 $errors[] = 'Please enter a valid price.';
 }

 $input['name'] = trim($submitted['name'] ?? '');
 if (strlen($input['name']) == 0) {
 $errors[] = "Your name is required.";
 }

 return array($errors, $input);
}

The first argument to filter_var() is the variable to filter. PHP’s normal rules about
undefined variables and undefined array indices apply here, so the null coalesce oper‐
ator is used ($submitted['age'] ?? NULL) to provide NULL as the value being filtered
if it’s not present in the array. Since NULL is not a valid integer or float, filter_var()
returns false in those cases, just as it would if an invalid number was provided.

When the modified validate_form() function is called in your application, pass
$_POST as an argument:

list ($form_errors, $input) = validate_form($_POST);

In your test code, pass it an array of pretend form input that exercises the situation
you want to test and then verify the results with assertions. Example 13-8 shows a few
tests for validate_form(): one that makes sure decimal ages are not allowed; one
that makes sure prices with dollar signs are not allowed; and one that makes sure val‐
ues are returned properly if a valid price, age, and name are provided.

Example 13-8. Testing isolated form data validation

// validate_form() is defined in this file
include 'isolate-validation.php';

class IsolateValidationTest extends PHPUnit_Framework_TestCase {

 public function testDecimalAgeNotValid() {
 $submitted = array('age' => '6.7',
 'price' => '100',
 'name' => 'Julia');
 list($errors, $input) = validate_form($submitted);
 // Expecting only one error -- about age
 $this->assertContains('Please enter a valid age.', $errors);

Isolating What You Test | 271

 $this->assertCount(1, $errors);
 }

 public function testDollarSignPriceNotValid() {
 $submitted = array('age' => '6',
 'price' => '$52',
 'name' => 'Julia');
 list($errors, $input) = validate_form($submitted);
 // Expecting only one error -- about age
 $this->assertContains('Please enter a valid price.', $errors);
 $this->assertCount(1, $errors);
 }

 public function testValidDataOK() {
 $submitted = array('age' => '15',
 'price' => '39.95',
 // Some whitespace around name that
 // should be trimmed
 'name' => ' Julia ');
 list($errors, $input) = validate_form($submitted);
 // Expecting no errors
 $this->assertCount(0, $errors);
 // Expecting 3 things in input
 $this->assertCount(3, $input);
 $this->assertSame(15, $input['age']);
 $this->assertSame(39.95, $input['price']);
 $this->assertSame('Julia', $input['name']);
 }
}

Example 13-8 uses a few new assertions: assertContains(), assertCount(), and
assertSame(). The assertContains() and assertCount() assertions are useful with
arrays. The first tests whether a certain element is in an array and the second checks
the size of the array. These two assertions express the expected condition about the
$errors array in the tests and about the $input array in the third test.

The assertSame() assertion is similar to assertEquals() but goes one step further.
In addition to testing that two values are equal, it also tests that the types of the
two values are the same. The assertEquals() assertion passes if given the string
'130' and the integer 130, but assertSame() fails. Using assertSame() in
testValidDataOK() checks that the input data variable types are being set properly
by filter_var().

Test-Driven Development
A popular programming technique that makes extensive use of tests is called test-
driven development (TDD). The big idea of TDD is that when you have a new feature

272 | Chapter 13: Testing: Ensuring Your Program Does the Right Thing

to implement, you write a test for the feature before you write the code. The test is
your expression of what you expect the code to do. Then you write the code for the
new feature so that the test passes.

While not ideal for every situation, TDD can be helpful for providing clarity
on what you need to do and helping you build a comprehensive set of tests that cover
your code. As an example, we can use TDD to add an optional feature to the
restaurant_check() function that tells it to include the tax in the total amount
when calculating the tip. This feature is implemented as an optional fourth argument
to the function. A true value tells restaurant_check() to include the tax in the tip-
calculation amount. A false value tells it not to. If no value is provided, the function
should behave as it already does.

First, the test. We need a test that tells restaurant_check() to include the tax in the
tip-calculation amount and then ensures that the total check amount is correct. We
also need a test that makes sure the function works properly when it is explicitly told
not to include the tax in the tip-calculation amount. These two new test methods are
shown in Example 13-9. (For clarity, just the two new methods are shown, not the
whole test class.)

Example 13-9. Adding tests for new tip-calculation logic

public function testTipShouldIncludeTax() {
 $meal = 100;
 $tax = 10;
 $tip = 10;
 // 4th argument of true says that the tax should be included
 // in the tip-calculation amount
 $result = restaurant_check($meal, $tax, $tip, true);
 $this->assertEquals(121, $result);
}

public function testTipShouldNotIncludeTax() {
 $meal = 100;
 $tax = 10;
 $tip = 10;
 // 4th argument of false says that the tax should explicitly
 // NOT be included in the tip-calculation amount
 $result = restaurant_check($meal, $tax, $tip, false);
 $this->assertEquals(120, $result);
}

Test-Driven Development | 273

It should not be surprising that the new test testTipShouldIncludeTax() fails:

PHPUnit 4.8.11 by Sebastian Bergmann and contributors.

...F.

Time: 138 ms, Memory: 13.50Mb

There was 1 failure:

1) RestaurantCheckTest::testTipShouldIncludeTax
Failed asserting that 120.0 matches expected 121.

RestaurantCheckTest.php:40

FAILURES!
Tests: 5, Assertions: 5, Failures: 1.

To get that test to pass, restaurant_check() needs to handle a fourth argument that
controls the tip-calculation behavior, as shown in Example 13-10.

Example 13-10. Changing tip calculation logic

function restaurant_check($meal, $tax, $tip, $include_tax_in_tip = false) {
 $tax_amount = $meal * ($tax / 100);
 if ($include_tax_in_tip) {
 $tip_base = $meal + $tax_amount;
 } else {
 $tip_base = $meal;
 }
 $tip_amount = $tip_base * ($tip / 100);
 $total_amount = $meal + $tax_amount + $tip_amount;

 return $total_amount;
}

With the new logic in Example 13-10, the restaurant_check() function reacts to its
fourth argument and changes the base of what the tip is calculated on accordingly.
This version of restaurant_check() lets all the tests pass:

PHPUnit 4.8.11 by Sebastian Bergmann and contributors.

.....

Time: 120 ms, Memory: 13.50Mb

OK (5 tests, 5 assertions)

Because the test class includes not just the new tests for this new functionality but all
of the old tests as well, it ensures that existing code using restaurant_check() before

274 | Chapter 13: Testing: Ensuring Your Program Does the Right Thing

this new feature was added continues to work. A comprehensive set of tests provides
reassurance that changes made to the code don’t break existing functionality.

More Information About Testing
As your projects grow larger, the benefits of comprehensive testing increase as well.
At first, it feels like a drag to write a bunch of seemingly extra code to verify some‐
thing obvious, such as the basic mathematical operations in restaurant_check().
But as your project accumulates more and more functionality (and perhaps more and
more people working on it), the accumulated tests are invaluable.

Absent some fancy-pants computer science formal methods, which rarely find their
way into modern PHP applications, the results of your tests are the evidence you have
to answer the question “How do you know your program does what you think it
does?” With tests, you know what the program does because you run it in various
ways and ensure the results are what you expect.

This chapter shows the basics for integrating PHPUnit into your project and writing
some simple tests. To go further, here are a few additional resources about PHPUnit
and testing in general:

• The PHPUnit manual is helpful and comprehensive. It includes tutorial-style
information on common PHPUnit tasks as well as reference material on PHPU‐
nit’s features.

• There is a great list of presentations about PHPUnit at https://phpunit.de/presen‐
tations.html.

• Browsing the test directory of popular PHP packages to see how those packages
do their tests is instructive as well. In the Zend Framework, you can find the tests
for the zend-form component and the zend-validator component on GitHub.
The popular Monolog package has its tests on on GitHub as well.

• Naturally, PHPUnit has numerous tests that verify its behavior. And those tests
are PHPUnit tests!

Chapter Summary
This chapter covered:

• Understanding the benefits of code testing
• Installing and running PHPUnit
• Understanding how test case classes, test methods, and assertions work together

in PHPUnit
• Writing a test that verifies a function’s behavior
• Running your test in PHPUnit

More Information About Testing | 275

https://phpunit.de/manual/current/en/index.html
https://phpunit.de/presentations.html
https://phpunit.de/presentations.html
https://github.com/zendframework/zend-form/tree/master/test
https://github.com/zendframework/zend-validator/tree/master/test
https://github.com/Seldaek/monolog/tree/master/tests/Monolog
https://github.com/sebastianbergmann/phpunit/tree/master/tests

• Understanding PHPUnit’s output when tests succeed and fail
• Understanding why to isolate the code you are testing
• Removing global variables from code to make it more testable
• Learning about test-driven development
• Writing a test for a new feature before the feature’s code is written
• Writing code to make the new test pass
• Where to go to find more information about PHPUnit and testing

Exercises
1. Follow the instructions in “Installing PHPUnit ” on page 266 to install PHPUnit,

write a test class with a single test containing a single simple assertion that passes
(such as $this->assertEquals(2, 1 + 1);) and run PHPUnit on your test
class.

2. Add a test case to Example 13-8 that ensures an error is returned when no name
is submitted.

3. Write tests to verify the behavior of the select() function from Example 7-29.
Be sure to consider the following situations:

• If an associative array of options is provided, then each <option> tag should be
rendered with the array key as the value attribute of the <option> tag and the
array value as the text between <option> and </option>.

• If a numeric array of options is provided, then each <option> tag should be
rendered with the array index as the value attribute of the <option> tag and
the array value as the text between <option> and </option>.

• If no attributes are provided, then the opening tag should be <select>.
• If an attribute is provided with a boolean true value, then only the attribute’s

name should be included inside the opening <select> tag.
• If an attribute is provided with a boolean false value, then the attribute

should not be included inside the opening <select> tag.
• If an attribute is provided with any other value, then the attribute and its value

should be included inside the opening <select> tag as an attribute=value
pair.

• If the multiple attribute is set, [] should be appended to the value of the name
attribute in the opening <select> tag.

• Any attribute values or option text that contains special characters such as < or
& should be rendered with encoded HTML entities such as < or &.

4. The HTML5 forms specification lists, in great detail, the specific attributes that
are allowed for each form element. The complete set of possible attributes is
mighty and numerous. Some attributes are relatively constrained, though. For

276 | Chapter 13: Testing: Ensuring Your Program Does the Right Thing

http://www.w3.org/TR/html5/forms.html

example, the <button> tag supports only three possible values for its type
attribute: submit, reset, and button.
Without first modifying FormHelper, write some new tests that check the value of
a type attribute provided for a <button> tag. The attribute is optional, but if it’s
provided, it must be one of the three allowable values.
After you’ve completed your tests, write the new code for FormHelper that makes
the tests pass.

Exercises | 277

CHAPTER 14

Software Engineering Practices
You Should Be Aware Of

Unlike previous chapters, this chapter is not a detailed look at how to do something
in a PHP program. Instead, it looks at a few tools and topics that apply to software
development in general. These techniques are especially useful when coordinating
with other people but can also be valuable when you’re working on a project all
by yourself.

The PHP code you write to make the computer do something specific isn’t the
entirety of your software project. You also need to keep track of how your code has
changed so you can go back to an earlier version if a bug creeps in or reconcile
changes that two people have made to the same parts of the code. If bugs do come
up or users make requests for new features, how do you keep track of those tasks?
Has a bug been fixed? What code was changed to fix that bug? Who fixed it? Is the
version of the code with the bug fix live for users to see yet? Source control systems
(discussed in “Source Control” on page 280) and issue tracking systems (discussed in
“Issue Tracking” on page 281) give you the information you need to answer these
questions.

On all but the smallest projects, when you make changes, you don’t want to edit the
code that is running on the actual website that users interact with. Doing that exposes
potential problems to your users. Your users will not be happy if you accidentally save
a file with a typo in it, or you make a change that bogs down your server with time-
consuming calculations.

Instead, work on a set of files that gets released to the servers that users interact with
only when you’re happy with how the program works. “Environments and Deploy‐
ment” on page 282 discusses how to do this and how to make your PHP programs
run smoothly in different contexts.

279

The chapter concludes with “Scaling Eventually” on page 283, a brief discussion
of when to worry about your website’s performance and how to optimize it when nec‐
essary.

Source Control
A source control system keeps track of changes to your files. It lets you review the
history of how your code has changed, see who made what changes, and compare
versions. With a source control system, two developers can work independently on
changes and then combine them with ease.

A source control system is essential when more than one person is working on a
project, but it is also useful for projects that you’re working on alone. Being able to
“go back in time” and see what your code contained at a previous point is a lifesaver
when you’re trying to figure out when a bug was introduced.

There are many popular source control systems, and which one you use will either be
a matter of personal preference (for your own projects) or a foregone conclusion
(when you’re working on an existing project that already has one). The code for the
PHP engine itself is managed using the Git source control system. You can browse
the PHP engine’s source code at http://git.php.net. Other popular source control sys‐
tems include Mercurial and Subversion.

Learning About Git
Git is popular, powerful, and comprehensive. If you’ve never used it (or any source
control system), spend a few minutes with the excellent tutorial at https://try.github.io.
With a simulated terminal prompt in your browser, it guides you through the basics.
You’ll learn how to tell Git to keep track of the changes to files, make changes, undo
changes, and show the list of changes you’ve made.

Source control systems excel at handling text files. Since your PHP code is essentially
a collection of text files, there’s nothing special you need to do to make it play nicely
with any popular source control system. Still, following some conventions will make
your code easier to manage.

One convention is how to organize classes in files. If you’re writing object-oriented
code, define only one class per file and make the filename the same as the class name
(plus the .php extension). If you define classes inside namespaces, make a directory
that corresponds to each namespace component, and arrange your files under those
directories.

For example, a class named CheeseGrater goes in the file CheeseGrater.php. If you’ve
defined that class in a Utensils namespace, then CheeseGrater.php goes in a Utensils

280 | Chapter 14: Software Engineering Practices You Should Be Aware Of

http://git.php.net/
https://www.mercurial-scm.org
http://subversion.apache.org
https://try.github.io

subdirectory. Multiple levels of namespace mean multiple subdirectories. A class
whose fully qualified name is \Kitchen\Utensils\CheeseGrater goes in the path
Kitchen/Utensils/CheeseGrater.php.

This convention is known as PSR-4. PSR means PHP Standard Recommendation. The
PHP Standard Recommendations are conventions on coding style and organization
that most major PHP projects use.

Issue Tracking
Methods abound for keeping track of what you should be working on. Formal issue
tracking systems are a reliable way to keep lists of bugs, feature requests, and other
work that needs to be done. These systems ensure that each task is assigned to a per‐
son responsible for it. Each task is associated with relevant metadata, such as priority,
estimated length of time to do it, progress and completion status, and comments.
This metadata makes it a breeze to sort, search, and understand the background of
each issue.

There are lots of issue tracking systems out there, and, like with source control sys‐
tems, which one you use may be dictated by whatever’s already in use in the project
you’re joining or the company you work for. If you’re looking for a free system to try
out, one worth mentioning is MantisBT, because it is open source and itself written in
PHP.

Issue tracking systems are agnostic about what programming language you’re using,
so no special work is required to get your PHP programs to play nicely with them. A
helpful convention, though, is to refer to issue IDs liberally in your program when
you’re writing code relevant to a particular issue.

Each issue tracked by the system gets an ID. It might be numbers, letters, or a combi‐
nation, and it provides a short and unique way to reference an issue. For example,
imagine a bug with the description “Login doesn’t work when there’s a + in email
address” that, when entered into the system, gets assigned the ID MXH-26. When you
write the code to fix the problem, reference that issue ID in a comment. For example:

// MXH-26: URL-encode email address to prevent problems with +
$email = urlencode($email);

This way, when another developer is looking at the code, she can see the issue num‐
ber and look it up in the issue tracking system for context and an explanation of why
your code is there.

Issue Tracking | 281

http://www.php-fig.org/psr/
http://www.mantisbt.org

Environments and Deployment
Ideally, the files you’re editing when you’re writing your PHP program are not the
same files your web server is reading when it is responding to user requests. Editing
those “live” files directly can cause many problems:

• Your users will immediately see errors if you save a file with a typo.
• Bad guys may be able to access backup copies that your editor saves automati‐

cally.
• You don’t have a good way to test changes before real users see them.

Avoid these problems by maintaining different environments—separate contexts
where your code can run. At a minimum, you need a development environment and a
production environment. The development environment is where you do your work
and the production environment is where you run the code that real users interact
with. A typical setup is that the development environment is on your own computer
and the production environment is on a server in a data center or cloud hosting pro‐
vider such as Amazon Web Services or Google Cloud Platform.

Like the other aspects of software engineering discussed in this chapter, there are
many ways of setting up different environments, moving code between environments,
and managing all the different computers involved. These tools and techniques are
typically not language-specific. There are things you can do in your PHP code, how‐
ever, to make it easier to run seamlessly in different environments.

The most important thing is to separate environment-specific configuration informa‐
tion from your code so the configuration can be swapped without changing the code
itself. This information includes data such as database hostnames and login creden‐
tials, locations of log files, other filesystem paths, and verbosity of logging. Once
this information is in a separate file, PHP gives you a few methods for getting it into
your program.

The parse_ini_file() function turns the contents of a key=value config file (the
same format that the PHP engine’s php.ini file uses) into an associative array. For
example, consider the following configuration file:

;
; Comment lines in a config file start with semicolon
;

; Database Information
; Need quotes around the dsn value because of the = inside it
dsn="mysql:host=db.dev.example.com;dbname=devsnacks"
dbuser=devuser
dbpassword=raisins

282 | Chapter 14: Software Engineering Practices You Should Be Aware Of

Example 14-1 reads that configuration file (assuming it’s been saved into config.ini)
and uses the configuration data to establish a database connection.

Example 14-1. Reading a configuration file

$config = parse_ini_file('config.ini');
$db = new PDO($config['dsn'], $config['dbuser'], $config['dbpassword']);

In Example 14-1, the array returned by parse_ini_file() contains keys and values
that correspond to each key=value line in config.ini. In a different environment with
different database connection information, nothing has to change in the
PHP program. The only thing necessary to establish the right connection is a new
config.ini file.

Scaling Eventually
If you spend time around software engineers or businesspeople interested in building
or running big systems, you’ll hear them ask questions like “Does this scale?” or “Is
this system scalable?” They are not talking about cleaning fish. They are wondering,
sometimes imprecisely, what happens when this system gets big and busy? Does the
website that is speedy with 3 people using it get slow when 3,000 people are using it?
What about 3,000,000 people?

The best advice about making a scalable system for a beginning programmer is “don’t
worry about it for now.” It is far more important to get things (mostly) working at
first with just a light burden on your application than it is to ensure up front that
everything will be OK with a heavy burden.

PHP at Scale
Because PHP is easy to get started with, it’s used on zillions of small websites. But it
handles plenty of giants as well. Facebook even built its own version of the PHP
engine, HHVM, to run the PHP code that powers its infrastructure even more effi‐
ciently. Baidu, Wikipedia, and Etsy use that engine, too.

What’s more, when you do start to notice performance issues in your application,
your PHP code is probably not the biggest problem. Many things can affect an appli‐
cation’s performance. An inefficient database query that takes a few seconds to run
makes a web page load very slowly, even if the PHP program sending the query to the
database and generating HTML from the database’s response only takes a few milli‐
seconds to do its part. A web page that the server quickly sends to a client still feels
slow to a human user if the HTML loads hundreds of images that take a long time to
display in a web browser.

Scaling Eventually | 283

http://hhvm.com

When you do get to the point of ensuring that the PHP-specific parts of your applica‐
tion are speedy, use a profiler to gather data on how the PHP engine performs when
running your code. The two most popular open source profilers are Xdebug and
XHProf. XHProf has not been updated to work with PHP 7. Xdebug supports PHP 7
as of its 2.4.0rc1 release in November 2015.

As discussed in Chapter 12, Xdebug integrates with several IDEs, including
PhpStorm and NetBeans. To learn about profiling in PhpStorm, read the JetBrains
article about it. If you’re not using PhpStorm, check out the Xdebug docs for generic
information on getting Xdebug’s profiler up and running and then viewing the profil‐
ing output.

Chapter Summary
This chapter covered:

• Understanding what a source control system is
• Organizing classes into files with the PSR-4 convention
• Using an issue tracking system
• Referencing issue IDs in code comments
• Working in separate environments for development and production
• Putting environment-specific information in a configuration file
• Reading a configuration file with parse_ini_file()
• Being comfortable with not worrying about scalability at first
• Learning where to find more information on using the Xdebug and XHProf

profilers

284 | Chapter 14: Software Engineering Practices You Should Be Aware Of

http://www.xdebug.org
http://www.php.net/xhprof
http://bit.ly/profiling-phpstorm
http://bit.ly/profiling-phpstorm
http://xdebug.org/docs/profiler

CHAPTER 15

Handling Dates and Times

Dates and times are all over the place in a web application. In a shopping cart, you
need to handle shipping dates of products. In a forum, you need to keep track of
when messages are posted. In all sorts of applications, you need to keep track of the
last time each user logged in so that you can tell them things like “15 new messages
were posted since you last logged in.”

Handling dates and times properly in your programs is more complicated than han‐
dling strings or numbers. A date or a time is not a single value but a collection of
values—month, day, and year, for example, or hour, minute, and second. Because of
this, doing math with them can be tricky. Instead of just adding or subtracting entire
dates and times, you have to consider their component parts and what the allowable
values for each part are. Hours go up to 12 (or 24), minutes and seconds go up to 59,
and not all months have the same number of days.

To ease this burden, PHP provides you with a class, DateTime, that encapsulates all
the information about a specific point in time. With the methods of this class, you
can print out a date or time in the format of your choice, add or subtract two dates,
and work with time intervals.

In this book, the phrase time parts (or date parts or time-and-date parts) means an
array or group of time-and-date components such as day, month, year, hour, minute,
and second. Formatted time string (or formatted date string, etc.) means a string that
contains some particular grouping of time-and-date parts—for example “Thursday,
October 20, 2016” or “3:54 p.m.”

Displaying the Date or Time
The simplest display of date or time is telling your users what time it is. For this, use
the format() method of a DateTime object, as shown in Example 15-1.

285

Example 15-1. What time is it?

$d = new DateTime();
print 'It is now: ';
print $d->format('r');
print "\n";

If you get a warning that “It is not safe to rely on the system’s
timezone settings” from the PHP engine when you run the code
in Example 15-1, peek ahead at “Working with Timezones” on
page 291 to find out what that means and how to make it
go away.

At noon on October 20, 2016, Example 15-1 would print:

It is now: Thu, 20 Oct 2016 12:00:00 +0000

When you create a DateTime object, the time or date to store inside it is provided to
the object constructor. If no argument is provided, as in Example 15-1, the current
date and time are used. The format string passed to the format() method controls
how the date and time are formatted for printing.

Individual letters in the format string translate into certain time values. Example 15-2
prints out a month, day, and year.

Example 15-2. Printing a formatted date string

$d = new DateTime();
print $d->format('m/d/y');

At noon on October 20, 2016, Example 15-2 would print:

10/20/16

In Example 15-2, the m becomes the month (10), the d becomes the day of the month
(20), and the y becomes the two-digit year (04). Because the slash is not a format
character that format() understands, it is left alone in the string that format()
returns.

Table 15-1 lists all of the special characters that DateTime::format() understands.

Table 15-1. Date/time formatting characters

Type Format
character

Description Range/example

Day j Day of the month; numeric 1–31
Day d Day of the month; numeric; leading zeros 01–31
Day S English ordinal suffix for day of month, text st, th, nd, rd

286 | Chapter 15: Handling Dates and Times

Type Format
character

Description Range/example

Day z Day of the year; numeric 0–365
Day w Day of the week; numeric; 0 == Sunday 0–6
Day N Day of the week; numeric; 1 == Monday 1–7
Day D Abbreviated weekday name; text Mon–Sun
Day l Full weekday name; text Monday–Sunday
Week W Week number in the year (ISO-8601); numeric;

leading zeros; week 01 is the first week that has
at least four days in the current year; Monday is
the first day of the week

01-53

Month M Abbreviated month name; text Jan–Dec

Month F Full month name; text January–December
Month n Month; numeric 1–12
Month m Month; numeric; leading zeros 01–12
Month t Month length in days; numeric 28–31
Year y Year; without century; numeric 00–99
Year Y Year; including century; numeric 0000–9999
Year o Year (ISO-8601); including century; numeric;

year that the current week number (W) belongs
to

0000–9999

Year L Leap year flag; 1 == yes 0,1
Hour g Hour; 12-hour clock; numeric 1–12
Hour h Hour; 12-hour clock; numeric; leading zeros 01–12
Hour G Hour; 24-hour clock; numeric 0–23
Hour H Hour; 24-hour clock; numeric; leading zeros 00–23
Hour a a.m. or p.m. designation am, pm
Hour A A.M. or P.M. designation AM, PM
Minute i Minutes; numeric; leading zeros 00–59
Second s Seconds; numeric; leading zeros 00–59
Second u Microseconds; numeric; leading zeros 000000–999999
Timezone e Timezone identifier; text From supported timezones
Timezone T Timezone abbreviation; text GMT, CEST, MDT, etc.
Timezone O Timezone difference to UTC in hours with sign;

text
-1100 – +1400

Timezone P Timezone difference to UTC in hours with sign
and colon; text

-11:00 – +14:00

Timezone Z Timezone difference to UTC in seconds; numeric -39600–50400
Other I Daylight Saving Time flag; 1 == yes 0,1
Other B Swatch Internet Time; numeric 000–999
Other c ISO-8601 formatted date; text 2016-10-20T12:33:56+06:00

Displaying the Date or Time | 287

http://www.php.net/timezones

Type Format
character

Description Range/example

Other r RFC-2822 formatted date; text Thu, 20 Oct 2016 12:33:56

+0600

Other U Seconds since 12:00:00 a.m. UTC on Jan 1, 1970 1476945236

Parsing a Date or Time
To create a DateTime object that represents a specific time, pass that time as a first
argument to the constructor. This argument is a string indicating the date and time
you want the object to represent. A DateTime object understands a very wide variety
of format strings. Whatever you are dealing with probably works, but an exhaustive
list of all the possible formats is available at http://www.php.net/datetime.formats.

Example 15-3 shows a few date-and-time formats that the DateTime constructor
understands.

Example 15-3. Formatted date/time strings that DateTime understands

// If only a time is supplied, the current date is used for day/month/year
$a = new DateTime('10:36 am');
// If only a date is supplied, the current time is used for hour/minute/second
$b = new DateTime('5/11');
$c = new DateTime('March 5th 2017');
$d = new DateTime('3/10/2018');
$e = new DateTime('2015-03-10 17:34:45');
// DateTime understands microseconds
$f = new DateTime('2015-03-10 17:34:45.326425');
// Epoch timestamp must be prefixed with @
$g = new DateTime('@381718923');
// Common log format
$h = new DateTime('3/Mar/2015:17:34:45 +0400');

// Relative formats, too!
$i = new DateTime('next Tuesday');
$j = new DateTime("last day of April 2015");
$k = new DateTime("November 1, 2012 + 2 weeks");

At noon on October 20, 2016, the full dates and times that would end up in the vari‐
ables in Example 15-3 would be:

Thu, 20 Oct 2016 10:36:00 +0000
Wed, 11 May 2016 00:00:00 +0000
Sun, 05 Mar 2017 00:00:00 +0000
Sat, 10 Mar 2018 00:00:00 +0000
Tue, 10 Mar 2015 17:34:45 +0000
Tue, 10 Mar 2015 17:34:45 +0000
Fri, 05 Feb 1982 01:02:03 +0000
Tue, 03 Mar 2015 17:34:45 +0400

288 | Chapter 15: Handling Dates and Times

http://www.php.net/datetime.formats

Tue, 25 Oct 2016 00:00:00 +0000
Thu, 30 Apr 2015 00:00:00 +0000
Thu, 15 Nov 2012 00:00:00 +0000

If you have discrete date-and-time parts, such as those submitted from form elements
in which a user can specify month, day, and year or hour, minute, and second, you
can also pass them to the the setTime() and setDate() methods to adjust the time
and date stored inside the DateTime object.

Example 15-4 shows setTime() and setDate() at work.

Example 15-4. Setting date or time parts

// $_POST['mo'], $_POST['dy'], and $_POST['yr']
// contain month number, day, and year submitted
// from a form
//
// $_POST['hr'], $_POST['mn'] contain
// hour and minute submitted from a form

// $d contains the current time, but soon that will
// be overridden
$d = new DateTime();

$d->setDate($_POST['yr'], $_POST['mo'], $_POST['dy']);
$d->setTime($_POST['hr'], $_POST['mn']);

print $d->format('r');

If $_POST['yr'] is 2016, $_POST['mo'] is 5, $_POST['dy'] is 12, $_POST['hr'] is 4,
and $_POST['mn'] is 15, then Example 15-4 prints:

Thu, 12 May 2016 04:15:00 +0000

Even though $d is initialized to the current date and time when Example 15-4 is run,
the calls to setDate() and setTime() change what’s stored inside the object.

The DateTime object tries to be as accommodating as possible when parsing incom‐
ing data. Sometimes this is helpful, but sometimes it is not. For example, consider
what you think should happen if, in Example 15-4, $_POST['mo'] is 3 and
$_POST['dy'] is 35. It can never be the 35th of March. That doesn’t bother DateTime,
though. It considers March 35 to be the same as April 4 (March 31 is the last day of
March, so March 32 is the next day (April 1), March 33 is April 2, March 34 is April 3,
and March 35 is April 4). Calling $d->setDate(2016, 3, 35) gives you a DateTime
object set to April 4, 2016.

For stricter validation of days and months, use checkdate() on the month, day, and
year first. It tells you whether the provided month and day are valid for the provided
year, as shown in Example 15-5.

Parsing a Date or Time | 289

Example 15-5. Verifying months and days

if (checkdate(3, 35, 2016)) {
 print "March 35, 2016 is OK";
}
if (checkdate(2, 29, 2016)) {
 print "February 29, 2016 is OK";
}
if (checkdate(2, 29, 2017)) {
 print "February 29, 2017 is OK";
}

In Example 15-5, only the second call to checkdate() returns true. The first fails
because March always has fewer than 35 days, and the third fails because 2017 is not a
leap year.

Calculating Dates and Times
Once you’ve got a DateTime object that represents a particular point in time, it’s
straightforward to do date or time calculations. You might want to give a user a set of
dates or times to choose from in a menu. Example 15-6 displays an HTML <select>
menu where each choice is a day. The first choice is the date corresponding to the
first Tuesday after the program is run. The subsequent choices are every other day
after that.

Example 15-6. Displaying a range of days

$daysToPrint = 4;
$d = new DateTime('next Tuesday');
print "<select name='day'>\n";
for ($i = 0; $i < $daysToPrint; $i++) {
 print " <option>" . $d->format('l F jS') . "</option>\n";
 // Add 2 days to the date
 $d->modify("+2 day");
}
print "</select>";

In Example 15-6, the modify() method changes the date inside the DateTime object
at each pass through the loop. The modify() method accepts a string holding
one of the relative date/time formats described at http://www.php.net/
datetime.formats.relative and adjusts the object accordingly. In this case, +2 day

bumps it forward two days each time.

On October 20, 2016, Example 15-6 would print:

<select name='day'>
 <option>Tuesday October 25th</option>
 <option>Thursday October 27th</option>

290 | Chapter 15: Handling Dates and Times

http://www.php.net/datetime.formats.relative
http://www.php.net/datetime.formats.relative

1 “Modifying PHP Configuration Directives” on page 327 explains how to adjust configuration parameters.

 <option>Saturday October 29th</option>
 <option>Monday October 31st</option>
</select>

The DateTime object’s diff() method tells you the difference between two dates. It
returns a DateInterval object, which encapsulates the interval between the dates.
Example 15-7 checks whether a given birthdate means someone is over 13 years old.

Example 15-7. Computing a date interval

$now = new DateTime();
$birthdate = new DateTime('1990-05-12');
$diff = $birthdate->diff($now);

if (($diff->y > 13) && ($diff->invert == 0)) {
 print "You are more than 13 years old.";
} else {
 print "Sorry, too young.";
}

In Example 15-7, the call to $birthdate->diff($now) returns a new DateInterval
object. This object’s properties describe the interval between $birthdate and $now.
The y property is the number of years and the invert property is 0 when the differ‐
ence is a positive amount (the invert property would be 1 if $birthdate were after
$now). The other properties are m (months), d (days in the month), h (hours), i
(minutes), s (seconds), and days (total number of days between the two dates).

Working with Timezones
Dates and times are, unfortunately, not just collections of hours, minutes, seconds,
months, days, and years. To be complete, they must also include a timezone. “Noon
on October 20, 2016” is not the same instant in time in New York City as it is in
London.

The PHP engine must be configured with a default timezone to use. The easiest way
to do this is to set the date.timezone configuration parameter in your PHP configu‐
ration file.1 If you can’t adjust the file, call the date_default_timezone_set() func‐
tion in your program before you do any date or time manipulation. In PHP 7, the
engine defaults to the UTC timezone if you don’t specify your own default value.

There is a big list of possible timezone values that the PHP engine understands.
Instead of using your local timezone, however, a convention that often makes soft‐
ware development easier is to set the timezone to UTC, the code for Coordinated Uni‐

Working with Timezones | 291

http://www.php.net/timezones

versal Time. This is the time at zero degrees longitude and doesn’t adjust in the
summer for a Daylight Saving Time setting. Although you have to do a little mental
math to convert a UTC timestamp that appears, say, in a log file to your local time,
using UTC makes it easier to work with time data that could be coming from multi‐
ple servers located in different timezones. It also avoids confusion during the switch
to and from Daylight Saving Time because the apparent “clock time” doesn’t change.

Chapter Summary
This chapter covered:

• Defining some time- and date-handling vocabulary such as time-and-date parts
and formatted time-and-date string

• Getting the current time and date
• Printing formatted time-and-date strings with the DateTime object’s format()

method
• Exploring the format characters that format() understands
• Parsing a date or time from an absolute or relative format
• Calculating a date or time relative to another date or time
• Computing the difference between two dates
• Understanding why UTC is a convenient default timezone

292 | Chapter 15: Handling Dates and Times

CHAPTER 16

Package Management

Take the virtuous laziness introduced in Chapter 5 to a powerful new level by relying
on entire packages of code that other people have written. This chapter shows you
how to use the Composer package management system to find existing libraries and
integrate them into your programs.

If you’ve tried to integrate third-party libraries without a package manager before,
you’re probably familiar with all the steps that entails: downloading an archive file
containing the library, unpacking it, putting the unpacked files in a special place, and
then modifying your program so it can find the new files.

With Composer, all of that is reduced to a single command. Plus, when newer ver‐
sions of the packages you use are released, Composer can upgrade them in a snap.

If you’ve used a package manager in another language (such as npm with JavaScript,
gem with Ruby, or cpan with Perl) you’ll find the Composer experience familiar
and pleasant.

Installing Composer
Download and run Composer’s installer by running this command at a shell prompt
in your terminal:

curl -sS https://getcomposer.org/installer | php

On Windows, download and run the Composer installer and then run Composer-
Setup.exe.

If you’ve installed Composer successfully, when you run it from the command line
(by typing php composer.phar, or just composer on Windows, you should see a help
screen listing the commands that Composer supports.

293

https://getcomposer.org/Composer-Setup.exe

Adding a Package to Your Program
The require command adds a package to your program. At a minimum, require
must be told the name of the package to add. Example 16-1 adds the Swift Mailer
library to your program.

Example 16-1. Adding a package with require

php composer.phar require swiftmailer/swiftmailer

This command downloads the package, installs its files under a directory named ven‐
dor in your current project directory, and updates the composer.json file. The com‐
poser.json file tracks the packages you’ve installed as well as other Composer-managed
settings about your project. Composer also maintains a composer.lock file, which
tracks the specific versions of packages you’ve installed.

Once Composer has installed a package, all you have to do to make it available to
your program is to reference the Composer autoload file with this simple line of PHP
code: require "vendor/autoload.php;". The logic in this file contains a mapping
from class names to filenames. When you reference a class in an installed package, it
ensures that the files that define the class are loaded.

You only need to load the vendor/autoload.php file once, no matter how many pack‐
ages you have installed. Programs that rely on Composer-installed packages generally
make the require "vendor/autoload.php"; statement one of the first things in the
program. Example 16-2 shows that statement in the context of using Swift Mailer to
create a message (as discussed in Chapter 17).

Example 16-2. Using a Composer-installed library

// Tell PHP to load Composer's class-finding logic
require 'vendor/autoload.php';
// The Swift_Message class is now automatically available
$message = Swift_Message::newInstance();
$message->setFrom('julia@example.com');
$message->setTo(array('james@example.com' => 'James Beard'));
$message->setSubject('Delicious New Recipe');
$message->setBody(<<<_TEXT_
Dear James,

You should try this: puree 1 pound of chicken with two pounds
of asparagus in the blender, then drop small balls of the mixture
into a deep fryer. Yummy!

Love,
Julia

294 | Chapter 16: Package Management

TEXT
);

If your program is being checked into a source control system (see Chapter 14), you
need to take a few steps to make sure things play nicely with Composer. First, make
sure that you include both composer.json and composer.lock in the files that are
tracked by the source control system. These are necessary for somebody else who
checks out the program from the source control system to be able to install the same
packages and the same package versions as you have. Second, make sure that the ven‐
dor directory is not tracked by the source control system. All the code in vendor is
managed by Composer. When you upgrade a package version, the only files you want
to track changes in are the composer.json and composer.lock files—not all of the indi‐
vidual files under vendor that may have changed.

With composer.json and composer.lock but not vendor in source control, another per‐
son who checks out your code from the source control system just has to run the
command php composer.phar install and they will have all of the right versions of
the right packages in the right place.

Finding Packages
The real utility of a package management system such as Composer, of course,
depends on the utility of the packages you can install. So how do you find great pack‐
ages to install that solve the problems you have? The most popular Composer pack‐
age repository (a site that indexes the packages for you to browse and download) is
Packagist.

For example, perhaps you need to geocode some addresses—i.e., find the longitude
and latitude that correspond to each particular address. Type geocode into the search
box at the top of the Packagist website, click the arrow next to the search box to sort
the results by number of downloads, and you instantly see a bunch of results, as
shown in Figure 16-1.

Adding one of those packages to your project is now as easy as typing either php
composer.phar require willdurand/geocoder or php composer.phar require
league/geotools. Figure 16-2 shows what happens at the terminal prompt when
willdurand/geocoder is installed.

In Figure 16-2, php composer.phar require willdurand/geocoder kicks things off
at the top. Composer then figures out the most recent stable version to use (3.2) and
what dependencies also need to be installed, and then downloads and installs those
packages. One of the dependencies (http-adapter) suggests, but doesn’t require, that
a number of other packages could be installed, so Composer prints out messages
about those packages instead of installing them.

Finding Packages | 295

https://packagist.org

Figure 16-1. Finding packages on packagist.org

Getting More Information on Composer
The overview of Composer in this chapter is all about using code that other people
have written in your project. If you are interested in making your code available as a
library for other people to install via Composer, read the “Libraries” chapter of the
documentation. Publishing a package on Packagist is free and easy.

There are other Composer repositories as well. For example, WordPress Packagist is a
repository of WordPress themes and plugins set up so you can install the themes and
plugins with Composer. Drupal packages are available via Composer from Packagist.

296 | Chapter 16: Package Management

https://getcomposer.org/doc/02-libraries.md
https://getcomposer.org/doc/02-libraries.md
http://wpackagist.org
https://packagist.drupal-composer.org/

Figure 16-2. Installing the willdurand/geocoder package

Getting More Information on Composer | 297

Chapter Summary
This chapter covered:

• Installing the Composer package management tool
• Downloading and installing a package for use in your program
• Making sure your code has access to the package files by loading the Composer

autoload.php file
• Integrating your Composer-using program with your source control system
• Finding packages to install
• Getting more information about using Composer

298 | Chapter 16: Package Management

CHAPTER 17

Sending Email

Most of your interaction with users will be via web pages, but sending or receiving an
email message every now and then is useful, too. Email is a great way send updates,
order confirmations, and links that let users reset their passwords.

This chapter explains the basics of using the Swift Mailer library to send email
messages.

Swift Mailer
First, use Composer to install Swift Mailer:

php composer.phar require swiftmailer/swiftmailer

As long as you’ve got the standard require "vendor/autoload.php"; statement in
your program, Swift Mailer is now available to use.

Swift Mailer represents messages as Swift_Message objects. To create an email mes‐
sage, you create one of these objects and then call methods on it to build the message.
Then you hand the message object to an instance of the Swift_Mailer class so that
the message can be sent. The Swift_Mailer instance, in turn, is configured with a
particular kind of Swift_Transport class. This transport class embodies the logic of
how the message is actually sent—either by connecting to a remote server or by using
mail utilities on the local server.

Example 17-1 creates a simple email message with a subject, from address, to address,
and plain-text body.

299

Example 17-1. Creating an email message

$message = Swift_Message::newInstance();
$message->setFrom('julia@example.com');
$message->setTo(array('james@example.com' => 'James Bard'));
$message->setSubject('Delicious New Recipe');
$message->setBody(<<<_TEXT_
Dear James,

You should try this: puree 1 pound of chicken with two pounds
of asparagus in the blender, then drop small balls of the mixture
into a deep fryer. Yummy!

Love,
Julia

TEXT
);

The arguments to setFrom() and setTo() can be email addresses as strings or email
addresses and full names as key/value pairs. To specify multiple recipients, pass an
array that contains any mix of strings (addresses) and key/value pairs (addresses and
full names).

The setBody() method sets the plain-text body of the message. To add an HTML
version of the message body, call addPart() with the alternative message body as a
first argument and the right MIME type as the second argument. For example:

$message->addPart(<<<_HTML_
<p>Dear James,</p>
<p>You should try this:</p>

puree 1 pound of chicken with two pounds of asparagus in the blender
drop small balls of the mixture into a deep fryer.

<p>Yummy!</em</p>

<p>Love,</p>
<p>Julia</p>

HTML
 // MIME type as second argument
 , "text/html");

A message needs a mailer to send it, and a mailer needs a transport to know how to
send the message. This chapter shows the Simple Mail Transfer Protocol (SMTP)
transport, which connects to a standard email server to send the message. Creating an
instance of the Swift_SmtpTransport class requires you to know the hostname
and port (and maybe username and password) of your mail server. Ask your system

300 | Chapter 17: Sending Email

administrator or check the account settings in your email program to find this infor‐
mation.

Example 17-2 creates a Swift_SmtpTransport object that uses an example SMTP
server at port 25 of host smtp.example.com and then creates a Swift_Mailer object
which uses that transport.

Example 17-2. Creating an SMTP transport

$transport = Swift_SmtpTransport::newInstance('smtp.example.com', 25);
$mailer = Swift_Mailer::newInstance($transport);

Once you’ve got a Swift_Mailer, pass your Swift_Message object to its send()
method and your message is sent:

$mailer->send($message);

Swift Mailer supports a lot more functionality than what’s described here. You can
attach files to messages, add arbitrary headers to messages, request read receipts,
connect to mail servers over SSL, and more. The Swift Mailer documentation is the
place to start to find out the details of these features.

Chapter Summary
This chapter covered:

• Installing Swift Mailer
• Understanding Swift Mailer message, mailer, and transport objects
• Creating a Swift_Message and adjusting its contents
• Creating a Swift_SmtpTransport and using it with a Swift_Mailer
• Sending a message
• Finding Swift Mailer documentation to learn more

Chapter Summary | 301

http://swiftmailer.org/docs/introduction.html

CHAPTER 18

Frameworks

An application framework is a set of functions, classes, and conventions that make it
easier to accomplish common tasks. Lots of programming languages have popular
frameworks, and PHP is no exception. This chapter provides an overview of three
popular PHP frameworks. These frameworks speed your journey from nothing to a
functioning web application.

Frameworks aimed at web development generally provide standard ways to accom‐
plish at least the following tasks:

Routing
Translating user-requested URLs to specific methods or functions that are
responsible for generating a response

Object-relational mapping
Letting you treat rows in your database as objects in your code and providing
methods on those objects that modify the database

User management
Standard mechanisms for maintaining information about your app’s users and
deciding which users have permission to do which operations

By using a framework, you save time compared to implementing all of the frame‐
work’s functionality yourself. You may also be able to jump-start new developers
coming to work with you if they are familiar with the framework. The trade-off is that
you must invest time in learning the framework and adapting to its conventions of
how to accomplish things.

303

1 This requires that the global composer binary directory be in your system’s $PATH. See “Running a PHP REPL”
on page 314 for more information.

The three frameworks explored in this chapter are Laravel, Symfony, and Zend
Framework. Each provides a very different kind of solution to the “framework” ques‐
tion. They differ in how they are installed, what their documentation explains, how
they balance simplicity and capability, and what you do to find more information
when you’re stumped.

There are many other PHP frameworks out there. The three in this chapter are
included because they are some of the most popular and most capable, but the exclu‐
sion of other frameworks should not be taken as an injunction against trying some‐
thing else. The Internet abounds with guides that attempt to answer the question
“What PHP framework should I use?” For up-to-date information, check out
the PHP Frameworks topic on Quora or search for php framework on Hacker News
or SitePoint.

Laravel
Laravel’s creator describes it as a framework for people who value “elegance, simplic‐
ity, and readability.” It has well-thought-out documentation, a vibrant ecosystem of
users, and available hosting providers and tutorials.

To install Laravel, run the command php composer.phar global require

laravel/installer=~1.1". Then, to create a new web project that uses Laravel, run
laravel new project-name,1 substituting your project name for project-name. For
example, running laravel new menu creates a directory called menu and populates it
with the necessary code and configuration scaffolding for Laravel to work properly.

To see the scaffolding in action, fire up the built-in PHP web server by pointing it at
server.php in your project directory. For example, php -S localhost:8000 -t

menu2/public menu/server.php lets you access the new Laravel project in the menu
subdirectory at http://localhost:8000.

Laravel’s routing is controlled by the code in app/Http/routes.php. Each call to a static
method in the Route class tells Laravel what to do when an HTTP request comes in
with a certain method and URL path. The code in Example 18-1 tells Laravel to
respond to a GET request for /show.

304 | Chapter 18: Frameworks

https://www.quora.com/PHP-Frameworks
http://news.ycombinator.com
http://www.sitepoint.com
http://laravel.com

Example 18-1. Adding a Laravel route

Route::get('/show', function() {
 $now = new DateTime();
 $items = ["Fried Potatoes", "Boiled Potatoes", "Baked Potatoes"];
 return view('show-menu', ['when' => $now,
 'what' => $items]);
});

In Example 18-1, the call to Route::get() tells Laravel that it should be responding
to HTTP GET (not POST) requests, and the first argument of /show tells Laravel that
this Route::get() call provides information on what to do when the URL /show is
visited. The second argument to Route::get() is the function that Laravel runs to
compute the response to GET /show. This function sets up two variables, $now and
$items, and then passes them to the show-menu view as keys when and what.

A view is a template that contains presentation logic—what your application should
display. The view() function in Laravel looks for a file in a predefined location
and then runs the PHP code in that file to generate a response. The call to
view('show-menu') tells Laravel to look for a file named show-menu.php in the
resources/views directory. Example 18-2 contains the code for this view.

Example 18-2. A Laravel view

<p> At <?php echo $when->format('g:i a') ?>, here is what's available: </p>

<?php foreach ($what as $item) { ?>
<?php echo $item ?>
<?php } ?>

The view is just plain PHP. Any data coming from an external source such as a user
or database should be properly escaped to prevent cross-site scripting problems, as
discussed in “HTML and JavaScript” on page 138. Laravel includes support for the
Blade templating engine, which makes many things easier, including escaping output
by default.

Symfony
Symfony describes itself as both a set of reusable components and a framework for
web projects. This means that even if you don’t use its framework for request routing
or other web-related tasks, you can still use its individual components for tasks such
as templating, managing configuration files, or debugging.

Symfony | 305

https://symfony.com

Like Laravel, Symfony has a command-line program used to create and manage
projects. Install the symfony program and rename the downloaded installer file to
symfony. Move it into a directory in your system path. On Linux or OS X, make
the symfony program executable by typing chmod a+x /path/to/symfony

(where /path/to/symfony is the full path of the place you’ve put the symfony pro‐
gram).

Then, to create a new web project that uses Symfony, run symfony new project-
name, substituting your project name for project-name. For example, running the
command symfony new menu creates a directory called menu and populates it with
the code and configuration scaffolding necessary for Symfony to work properly.

Symfony includes some glue that makes it easy to run your project in PHP’s built-in
web server. Just change your current directory to your project directory (e.g., cd
menu) and then run php app/console server:run. Then visit http://localhost:8000/
in your web browser, and you’ll see a “Welcome to Symfony” page complete with lots
of interesting diagnostic information at the bottom.

With Symfony, routes are not specified in one central place. Instead, individual
classes in the src/AppBundle/Controller directory define the methods that are trig‐
gered by the routes that the app handles. A special annotation in a comment next to a
method indicates what route the method handles. Example 18-3 defines a handler for
a GET /show request. Put it in MenuController.php in src/AppBundle/Controllers.

Example 18-3. Specifying a route with Symfony

namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Method;
use Symfony\Component\HttpFoundation\Response;

class MenuController extends Controller
{
 /**
 * @Route("/show")
 * @Method("GET")
 */
 public function showAction()
 {
 $now = new \DateTime();
 $items = ["Fried Potatoes", "Boiled Potatoes", "Baked Potatoes"];

 return $this->render("show-menu.html.twig",
 ['when' => $now,
 'what' => $items]);

306 | Chapter 18: Frameworks

http://symfony.com/installer

 }
}

In Example 18-3, the items in the comment before the showAction() method indicate
the route that showAction() handles: URL path /show with method GET. The
render() method returns a Symfony data structure that holds the contents of the
response. Its first argument is the name of a view template file to use, and the second
argument is data to pass to the template. It is possible to use plain PHP as a template
language with Symfony, but its default setup is to use the Twig templating engine, so
that’s what’s specified here.

Symfony’s view directory is app/Resources/views. This means that passing
show-menu.html.twig to render() tells Symfony to look for app/Resources/views/
show-menu.html.twig in your project directory. Save the contents of Example 18-4 in
that place.

Example 18-4. Defining a Symfony view

{% extends 'base.html.twig' %}

{% block body %}
<p> At {{ when|date("g:i a") }}, here is what's available: </p>

{% for item in what %}
{{ item }}
{% endfor %}

{% endblock %}

In Twig, {% %} indicates a templating language command and {{ }} indicates a vari‐
able whose value (with proper HTML escaping) should be included in the output. Its
syntax may take some getting used to, but Twig is a powerful and speedy templating
language.

Zend Framework
More so than the other two frameworks reviewed in this chapter, Zend Framework
takes a “collection of components” approach. While this makes it easy to drop a com‐
ponent or two into an existing project without conforming to a particular file struc‐
ture or request routing convention, it also means starting from scratch is a little more
complicated.

Zend Framework | 307

http://twig.sensiolabs.org/
http://framework.zend.com/

To install a Zend Framework “skeleton” app into the menu directory that contains the
basics necessary to get up and running, run the following Composer command all on
one line:

composer create-project --no-interaction --stability="dev"
zendframework/skeleton-application menu

Then, to make the built-in PHP web server serve up your new Zend Framework
application, change into the project directory and run php -S localhost:8000 -t
public/ public/index.php. Visit http://localhost:8000 to see the default front page
of your new application.

Zend Framework organizes related application code into modules. In a big applica‐
tion, you can create separate modules for separate high-level parts of your program.
For this small sample application, we’ll add code to the base Application module
that’s already there. This module contains some default routing logic that maps paths
under /Application to code in controller classes in a specific place in the filesystem.
Example 18-5 shows a new MenuController.php. Save it in the module/Application/src/
Application/Controller directory of your Zend Framework project.

Example 18-5. A Zend Framework controller

namespace Application\Controller;
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;

class MenuController extends AbstractActionController
{
 public function showAction()
 {
 $now = new \DateTime();
 $items = ["Fried Potatoes", "Boiled Potatoes", "Baked Potatoes"];

 return new ViewModel(array('when' => $now, 'what' => $items));
 }
}

Then, to tell the framework about your new class, find the section of module/Applica‐
tion/config/module.config.php that looks like this:

'controllers' => array(
 'invokables' => array(
 'Application\Controller\Index' =>
 'Application\Controller\IndexController'
),
),

And add this line as a second element in the invokables array:

'Application\Controller\Menu' => 'Application\Controller\MenuController'

308 | Chapter 18: Frameworks

Don’t forget to add a comma after 'Application\Controller\IndexController' so
that the array elements have the proper syntax. When you’re done, this section of the
config file should look like this:

'controllers' => array(
 'invokables' => array(
 'Application\Controller\Index' =>
 'Application\Controller\IndexController',
 'Application\Controller\Menu' =>
 'Application\Controller\MenuController'
),
),

Now you’ve got a new controller and the framework knows how to use it. The last
step is to add a view so the time and items information can be rendered. With Zend
Framework, the default template language is just plain PHP. Save the code in
Example 18-6 in module/Application/view/application/menu/show.phtml under your
project directory.

Example 18-6. A Zend Framework view

<p> At <?php echo $when->format("g:i a") ?>, here is what's available: </p>

<?php foreach ($what as $item) { ?>
<?php echo $this->escapeHtml($item) ?>
<?php } ?>

The keys in the array passed to new ViewModel() in the controller are local variable
names in the view. This makes accessing these values very straightforward. However,
because the template language is plain PHP, HTML entities and other special charac‐
ters are not escaped by default. Example 18-6 uses the escapeHtml() helper method
to escape special characters in each item name.

Chapter Summary
This chapter covered:

• Understanding what an application framework is and why you might want to
use one

• Installing Laravel
• Creating a new Laravel project
• Adding a route with Laravel
• Adding a view for a route with Laravel
• Installing Symfony
• Creating a new Symfony project

Chapter Summary | 309

• Adding a route with Symfony
• Adding a view for a route with Symfony
• Installing Zend Framework
• Creating a new Zend Framework project
• Adding a route with Zend Framework
• Adding a view for a route with Zend Framework

310 | Chapter 18: Frameworks

CHAPTER 19

Command-Line PHP

Usually, the PHP engine is invoked by a web server in response to a request from a
web client. However, the PHP engine can also be run as a command-line utility on
your computer. If you’ve been running all of the code examples in the book so
far, you’ve run PHP as a command-line program when you used PHPUnit and
Composer.

Writing a PHP program intended for use on the command line is a little different
than writing a PHP program intended for use in a website. You have access to all the
same functions for string manipulation, JSON and XML handling, working with files,
and so forth, but there’s no incoming form or URL data. Instead, you get information
from command-line arguments. The standard print statement prints data to the con‐
sole. The next section, “Writing Command-Line PHP Programs”, shows you the
basics of writing a command-line PHP program.

The PHP engine also comes with a mini web server that you can invoke by running
PHP on the command line. “Using PHP’s Built-in Web Server” on page 313 explains
how this works. The built-in web server is handy for quick testing.

One other handy use for PHP on the command line is as an interactive shell, other‐
wise known as a Read-Eval-Print Loop (REPL). This is a program that gives you a
prompt to type in some PHP code, and then runs that PHP code and tells you the
results. For exploration of how a PHP function works and quick gratification, noth‐
ing beats a REPL. “Running a PHP REPL” on page 314 explains PHP’s built-in REPL,
and provides information about one others.

311

Writing Command-Line PHP Programs
A simple PHP program that outputs data works fine from the command line. Con‐
sider Example 19-1, which uses the Yahoo! Weather API to print out the current
weather conditions for a zip code.

Example 19-1. Finding the weather

// Zip code to look up weather for
$zip = "98052";

// YQL query to find the weather
// See https://developer.yahoo.com/weather/ for more info
$yql = 'select item.condition from weather.forecast where woeid in '.
 '(select woeid from geo.places(1) where text="'.$zip.'")';

// The params that the Yahoo! YQL query endpoint expects
$params = array("q" => $yql,
 "format" => "json",
 "env" => "store://datatables.org/alltableswithkeys");

// Build the YQL URL, appending the query parameters
$url = "https://query.yahooapis.com/v1/public/yql?" . http_build_query($params);
// Make the request
$response = file_get_contents($url);
// Decode the response as JSON
$json = json_decode($response);
// Select the object in the nested JSON response that contains the info
$conditions = $json->query->results->channel->item->condition;
// Print out the weather
print "At {$conditions->date} it is {$conditions->temp} degrees " .
 "and {$conditions->text} in $zip\n";

If you save Example 19-1 in a file called weather.php, you can run it with a command
such as php weather.php and be told the current weather. But it’s only accurate if you
want the weather for zip code 98052. Otherwise you have to edit the file. This is not
very useful. It would be better if you could provide a zip code as an argument to
the program when you run it. Example 19-2 is an updated version of the program
that looks in the $_SERVER['argv'] array for command-line arguments. The
command-line version of the PHP engine automatically populates this array with
provided arguments.

Example 19-2. Accessing command-line arguments

// Zip code to look up weather for
if (isset($_SERVER['argv'][1])) {
 $zip = $_SERVER['argv'][1];
} else {

312 | Chapter 19: Command-Line PHP

 print "Please specify a zip code.\n";
 exit();
}

// YQL query to find the weather
// See https://developer.yahoo.com/weather/ for more info
$yql = 'select item.condition from weather.forecast where woeid in ' .
 '(select woeid from geo.places(1) where text="'.$zip.'")';

// The params that the Yahoo! YQL query endpoint expects
$params = array("q" => $yql,
 "format" => "json",
 "env" => "store://datatables.org/alltableswithkeys");

// Build the YQL URL, appending the query parameters
$url = "https://query.yahooapis.com/v1/public/yql?" . http_build_query($params);
// Make the request
$response = file_get_contents($url);
// Decode the response as JSON
$json = json_decode($response);
// Select the object in the nested JSON response that contains the info
$conditions = $json->query->results->channel->item->condition;
// Print out the weather
print "At {$conditions->date} it is {$conditions->temp} degrees " .
 "and {$conditions->text} in $zip\n";

Assuming you save Example 19-2 in weather2.php, you can run php weather2 19096
to get the weather for zip code 19096.

Note that the first argument is at $_SERVER['argv'][1], even though, as mentioned
in “Creating a Numeric Array” on page 60, PHP arrays start with index 0. This is
because $_SERVER['argv'][0] contains the name of the program you’ve run. In the
case of running php weather2.php 19096, $_SERVER['argv'][0] is weather2.php.

Using PHP’s Built-in Web Server
If you want to check out how some PHP code you’re writing behaves with real
requests from a web browser, a quick way to dive in is to use the PHP engine’s built-in
web server.

The built-in web server is available in PHP 5.4.0 and later.

Run php with a -S argument that provides a hostname and port number, and you’ve
got a running web server providing access to the files in whatever directory you ran

Using PHP’s Built-in Web Server | 313

php in. For example, to run the web server on port 8000 of your local machine, run
php -S localhost:8000. With that server running, visiting http://localhost:8000/
pizza.php causes the web server to execute the code in pizza.php and send the results
back to your web browser.

If the web server is not finding files that you think it should, check what directory
you were in when you ran the php -S command. By default, the PHP web server
serves up files in the directory that you ran php -S in (and below). To provide an
alternate document root directory, add a -t argument. For example, php -S local
host:8000 -t /home/mario/web serves up the files under /home/mario/web at http://
localhost:8000.

The PHP web server doesn’t do anything fancy to map URLs to files. It just looks for a
filename under its base directory as specified in the URL. If you leave a filename
out of the URL, it looks for index.php and index.html before returning a “file not
found” error.

The built-in web server only handles one request at a time. It is best for testing func‐
tionality and experiments on a development machine. It’s much easier to get up and
running than a big Apache or nginx installation that you’d need to configure, but it
also is not as full-featured. When it’s time to deploy your code to a production envi‐
ronment, use a web server that can handle the scale and security requirements of gen‐
eral usage.

Running a PHP REPL
The built-in web server is a great way to quickly see your PHP code in action.
Another handy tool for exploration and testing is the PHP REPL. Run php -a and
you get a php > prompt at which you can type in some PHP code and immediately
see the results, as shown in Example 19-3.

Example 19-3. Using the PHP REPL

% php -a
Interactive shell

php > print strlen("mushrooms");
9
php > $releases = simplexml_load_file("https://secure.php.net/releases/feed.php");
php > print $releases->entry[0]->title;
PHP 7.0.5 released!
php >

In Example 19-3, the initial % is a Unix shell prompt and php -a is what you type to
run the PHP REPL. The REPL then prints Interactive shell and a php > prompt.

314 | Chapter 19: Command-Line PHP

1 SimpleXML is a speedy way of doing XML processing in PHP.

It executes what you type when you press the Return key and prints any results. Typ‐
ing print strlen("mushrooms"); (and then Return) tells the REPL to run
strlen("mushrooms") and pass the results to print, so it prints 9. Don’t forget the
trailing ;—PHP code typed into the REPL follows the same syntax rules as PHP code
you write in a regular program.

If you just typed strlen("mushrooms"); the code would execute without any errors,
but you wouldn’t see any output before the next php > prompt. The PHP REPL only
displays something if the PHP code you enter creates output.

The REPL remembers variables between commands. Entering $releases =

simplexml_load_file("https://secure.php.net/releases/feed.php"); uses the
simplexml_load_file() function to retrieve the XML from the provided URL and
store the results, as a SimpleXML object, in $releases.1 SimpleXML provides a hier‐
archy of objects corresponding to the structure of the returned XML, so the value of
the title element under the first entry element under the top-level XML element is
$releases->entry[0]->title. When the code in Example 19-3 was run, the first
element in the releases feed was PHP 7.0.5.

There are other REPLs aside from the built-in one. A nifty example is PsySH. You can
install it with Composer: php composer.phar global require psy/psysh.

That global before require tells Composer to install PsySH not in any package-
specific directory but in a systemwide Composer directory. On OS X and Linux, this
is the .composer directory under your home directory. On Windows, it’s AppData
\Roaming\Composer under your home directory. For example, if you log in to your
computer with username squidsy, then the Composer directory is /Users/
squidsy/.composer on OS X, /home/squidsy/.composer on Linux, and C:\Users\squidsy
\AppData\Roaming\Composer on Windows.

The actual psysh program is put in a vendor/bin directory under the Composer direc‐
tory. So, to run it from the command line, you either need to type out the full path
(e.g., /Users/squidsy/.composer/vendor/bin/psysh) or add that vendor/bin direc‐
tory to your system’s $PATH, the default set of directories it looks in for program
names that you type.

Once you run psysh, you get a prompt at which you can type in some PHP code.
Unlike the built-in REPL, it prints the value a statement evaluates to (even if you don’t
include a print command) and uses different colors of text for different kinds
of variables.

Running a PHP REPL | 315

http://www.php.net/simplexml
http://psysh.org

Chapter Summary
This chapter covered:

• Running from the command line a PHP program you’ve written
• Accessing command-line arguments from a PHP program
• Running your PHP programs via the built-in web server
• Executing commands in the built-in PHP REPL
• Installing PsySH and running it from the global Composer directory

316 | Chapter 19: Command-Line PHP

CHAPTER 20

Internationalization and Localization

As mentioned in “Text” on page 19, strings in PHP are sequences of bytes. A byte can
have up to 256 possible values. This means that representing text that only uses
English characters (the US-ASCII character set) is straightforward in PHP, but you
must take extra steps to ensure that processing text that contains other kinds of char‐
acters works properly.

The Unicode standard defines how computers encode the thousands and thousands
of possible characters you can use. In addition to letters such as ä, ñ, ž, λ, د, ד , and ド,
the standard also includes a variety of symbols and icons. The UTF-8 encoding
defines what bytes represent each character. The easy English characters are each rep‐
resented by only one byte. But other characters may require two, three, or four bytes.

You probably don’t have to do anything special to ensure your PHP installation uses
UTF-8 for text processing. The default_charset configuration variable controls
what encoding is used, and its default value is UTF-8. If you are having problems,
make sure default_charset is set to UTF-8.

This chapter tours the basics of successfully working with multibyte UTF-8 charac‐
ters in your PHP programs. The next section, “Manipulating Text”, explains basic text
manipulations, such as calculating length and extracting substrings. “Sorting and
Comparing” on page 320 shows how to sort and compare strings in ways that respect
different languages’ rules for the proper order of characters. “Localizing Output” on
page 321 provides examples of how to use PHP’s message formatting features so your
program can display information in a user’s preferred language.

The code in this chapter relies on PHP functions in the mbstring and intl exten‐
sions. The functions in “Manipulating Text” whose names begin with mb_ require the
mbstring extension. The Collator and MessageFormatter classes referenced in
“Sorting and Comparing” on page 320 and “Localizing Output” on page 321 require

317

the intl extension. The intl extension in turn relies on the third-party ICU library.
If these extensions aren’t available, ask your system administrator or hosting provider
to install them, or follow the instructions in Appendix A.

Manipulating Text
Since the strlen() function only counts bytes, it reports incorrect results when a
character requires more than one byte. To count the characters in a string, independ‐
ent of how many bytes each character requires, use mb_strlen(), as shown in
Example 20-1.

Example 20-1. Measuring string length

$english = "cheese";
$greek = "τυρί";

print "strlen() says " . strlen($english) . " for $english and " .
 strlen($greek) . " for $greek.\n";

print "mb_strlen() says " . mb_strlen($english) . " for $english and " .
 mb_strlen($greek) . " for $greek.\n";

Since each of the Greek characters requires two bytes, the output of Example 20-1 is:

strlen() says 6 for cheese and 8 for τυρί.
mb_strlen() says 6 for cheese and 4 for τυρί.

Operations that depend on string positions, such as finding substrings, must also be
done in a character-aware instead of byte-aware way when multibyte characters are
used. Example 2-12 used substr() to extract the first 30 bytes of a user-submitted
message. To extract the first 30 characters, use mb_substr() instead, as shown in
Example 20-2.

Example 20-2. Extracting a substring

$message = "In Russia, I like to eat каша and drink квас.";

print "substr() says: " . substr($message, 0, 30) . "\n";
print "mb_substr() says: " . mb_substr($message, 0, 30) . "\n";

Example 20-2 prints:

substr() says: In Russia, I like to eat ка�
mb_substr() says: In Russia, I like to eat каша

The line of output from substr() is totally bungled! Each Cyrillic character requires
more than one byte, and 30 bytes into the string is midway through the byte sequence

318 | Chapter 20: Internationalization and Localization

http://site.icu-project.org/

for a particular character. The output from mb_substr() stops properly on the cor‐
rect character boundary.

What “uppercase” and “lowercase” mean is also different in different character sets.
The mb_strtolower() and mb_strtoupper() functions provide character-aware
versions of strtolower() and strtoupper(). Example 20-3 shows these functions
at work.

Example 20-3. Changing case

$english = "Please stop shouting.";
$danish = "Venligst stoppe råben.";
$vietnamese = "Hãy dừng la hét.";

print "strtolower() says: \n";
print " " . strtolower($english) . "\n";
print " " . strtolower($danish) . "\n";
print " " . strtolower($vietnamese) . "\n";

print "mb_strtolower() says: \n";
print " " . mb_strtolower($english) . "\n";
print " " . mb_strtolower($danish) . "\n";
print " " . mb_strtolower($vietnamese) . "\n";

print "strtoupper() says: \n";
print " " . strtoupper($english) . "\n";
print " " . strtoupper($danish) . "\n";
print " " . strtoupper($vietnamese) . "\n";

print "mb_strtoupper() says: \n";
print " " . mb_strtoupper($english) . "\n";
print " " . mb_strtoupper($danish) . "\n";
print " " . mb_strtoupper($vietnamese) . "\n";

Example 20-3 prints:

strtolower() says:
 please stop shouting.
 venligst stoppe r�ben.
 h�y dừng la h�t.
mb_strtolower() says:
 please stop shouting.
 venligst stoppe råben.
 hãy dừng la hét.
strtoupper() says:
 PLEASE STOP SHOUTING.
 VENLIGST STOPPE RåBEN.
 HãY D{NG LA HéT.
mb_strtoupper() says:
 PLEASE STOP SHOUTING.

Manipulating Text | 319

 VENLIGST STOPPE RÅBEN.
 HÃY DỪNG LA HÉT.

Because strtoupper() and strtolower() work on individual bytes, they don’t
replace whole multibyte characters with the correct equivalents like mb_strtoupper()
and mb_strtolower() do.

Sorting and Comparing
PHP’s built-in text sorting and comparison functions also operate on a byte-by-byte
basis following the order of letters in the English alphabet. Turn to the Collator class
to do these operations in a character-aware manner.

First, construct a Collator object, passing its constructor a locale string. This string
references a particular country and language and tells the Collator what rules to use.
There are lots of finicky details about what can go into a locale string, but usually it’s a
two-letter language code, then _, then a two-letter country code. For example, en_US
for US English, or fr_BE for Belgian French, or ko_KR for South Korean. Both a lan‐
guage code and a country code are provided to allow for the different ways a language
may be used in different countries.

The sort() method does the same thing as the built-in sort() function, but in a
language-aware way: it sorts array values in place. Example 20-4 shows how this func‐
tion works.

Example 20-4. Sorting arrays

// US English
$en = new Collator('en_US');
// Danish
$da = new Collator('da_DK');

$words = array('absent','åben','zero');

print "Before sorting: " . implode(', ', $words) . "\n";

$en->sort($words);
print "en_US sorting: " . implode(', ', $words) . "\n";

$da->sort($words);
print "da_DK sorting: " . implode(', ', $words) . "\n";

In Example 20-4, the US English rules put the Danish word åben before the English
word absent, but in Danish, the å character sorts at the end of the alphabet, so åben
goes at the end of the array.

320 | Chapter 20: Internationalization and Localization

http://userguide.icu-project.org/locale

The Collator class has an asort() method too that parallels the built-in asort()
method. Also, the compare() method works like strcmp(). It returns -1 if the first
string sorts before the second, 0 if they are equal, and 1 if the first string sorts after
the second.

Localizing Output
An application used by people all over the world not only has to handle different
character sets properly, but also has to produce messages in different languages. One
person’s “Click here” is another’s “Cliquez ici” or “ هنا اضــغط ” The MessageFormatter
class helps you generate messages that are appropriately localized for different places.

First, you need to build a message catalog. This is a list of translated messages for
each of the locales you support. They could be simple strings such as Click here, or
they may contain markers for values to be interpolated, such as My favorite food
is {0}, in which {0} should be replaced with a word.

In a big application, you may have hundreds of different items in your message cata‐
log for each locale. To explain how MessageFormatter works, Example 20-5 shows a
few entries in a sample catalog.

Example 20-5. Defining a message catalog

$messages = array();
$messages['en_US'] = array('FAVORITE_FOODS' => 'My favorite food is {0}',
 'COOKIE' => 'cookie',
 'SQUASH' => 'squash');
$messages['en_GB'] = array('FAVORITE_FOODS' => 'My favourite food is {0}',
 'COOKIE' => 'biscuit',
 'SQUASH' => 'marrow');

The keys in the $messages array are locale strings. The values are the messages
appropriately translated for each locale, indexed by a key that is used to refer to the
message later.

To create a locale-specific message, create a new MessageFormatter object by provid‐
ing a locale and a message format to its constructor, as shown in Example 20-6.

Example 20-6. Formatting a message

$fmtfavs = new MessageFormatter('en_GB', $messages['en_GB']['FAVORITE_FOODS']);
$fmtcookie = new MessageFormatter('en_GB', $messages['en_GB']['COOKIE']);

// This returns "biscuit"
$cookie = $fmtcookie->format(array());

Localizing Output | 321

// This prints the sentence with "biscuit" substituted
print $fmtfavs->format(array($cookie));

Example 20-6 prints:

My favourite food is biscuit

When a message format has curly braces, the elements in the array passed as an argu‐
ment to format() are substituted for the curly braces.

In Example 20-6, we had to do most of the work to figure out the right en_GB strings
to use, so MessageFormatter didn’t add much. It really helps, though, when you
need locale-specific formatting of numbers and other data. Example 20-7 shows how
MessageFormatter can properly handle numbers and money amounts in different
locales.

Example 20-7. Formatting numbers in a message

$msg = "The cost is {0,number,currency}.";

$fmtUS = new MessageFormatter('en_US', $msg);
$fmtGB = new MessageFormatter('en_GB', $msg);

print $fmtUS->format(array(4.21)) . "\n";
print $fmtGB->format(array(4.21)) . "\n";

Example 20-7 prints:

The cost is $4.21.
The cost is £4.21.

Because MessageFormatter relies on the powerful ICU library, it uses its internal
database of currency symbols, number formatting, and other rules about how differ‐
ent places and languages organize information to produce proper output.

The MessageFormatter class can do lots more than what’s described here, such as for‐
mat text properly for singular and plural, handle languages where the gender of a
word affects how it’s written, and format dates and times. If you want to learn more,
check out the ICU User Guide to Formatting and Parsing.

322 | Chapter 20: Internationalization and Localization

http://userguide.icu-project.org/formatparse

Chapter Summary
This chapter covered:

• Understanding why some characters need more than one byte to represent them
• Measuring string length in characters instead of bytes
• Extracting substrings by character position
• Safely changing the case of characters
• Sorting text in a locale-aware manner
• Comparing strings in a locale-aware manner
• Localizing output for different locales

Chapter Summary | 323

APPENDIX A

Installing and Configuring the PHP Engine

If you want to write some PHP programs, you need a PHP engine to turn them from
punctuation-studded text files into actual interactive web pages. The easiest way to
get up and running with PHP is to sign up with a cheap or free web-hosting provider
that offers PHP—but you can run the PHP engine on your own computer, too.

Using PHP with a Web-Hosting Provider
If you already have an account with a web-hosting provider, you probably have access
to a PHP-enabled server. These days, it is the odd web-hosting provider that doesn’t
have PHP support. Usually, hosting providers configure their servers so that files
whose names end in .php are treated as PHP programs. To see whether your hosted
website supports PHP, first save the file in Example A-1 on your server as phptest.php.

Example A-1. PHP test program

<?php print "PHP enabled"; ?>

Load the file in your browser by visiting the URL for your site (e.g., http://www.exam‐
ple.com/phptest.php). If you see just the message PHP enabled, then your website host
supports PHP. If you see the entire contents of the page (<?php print "PHP

enabled"; ?>), then your hosting provider probably doesn’t support PHP. Check
with them, however, to make sure that they haven’t turned on PHP for a different file
extension or made some other nonstandard configuration choice.

Installing the PHP Engine
Installing the PHP engine on your own computer is a good idea if you don’t have an
account with a hosting provider, or you just want to experiment with PHP without

325

exposing your programs to the entire Internet. If you’re not using a hosting provider
and want to install the PHP engine on your own computer, follow the instructions
in this section. After you’ve installed the engine, you’ll be able to run your own PHP
programs.

Installing the PHP engine is a matter of downloading some files and putting them in
the right places on your computer. You may also need to configure your web server so
that it knows about PHP. This section contains instructions on how to do this for
computers running Linux and OS X, and also includes some references for how to
install PHP on Windows. If you get stuck, check out the php.net installation FAQ.

Installing on OS X
OS X comes with PHP 5.5 installed. However, to install a newer version of PHP and
be able to easily manage add-ons and extensions, you’ll want to install your own PHP
engine using the Homebrew package manager. Homebrew helps you install OS X
programs and the libraries those programs depend on.

First, install Homebrew if you don’t already have it installed. Visit http://brew.sh/ for
all the nitty-gritty details, or just type the following into a Terminal prompt (on a sin‐
gle line):

ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

If that’s too much to type, visit the Homebrew site, from which you can copy the
command to the clipboard and paste it into Terminal.

Once Homebrew is installed, you need to tell it where to find the latest and greatest
PHP. Run these commands to do so:

brew tap homebrew/dupes
brew tap homebrew/versions
brew tap homebrew/homebrew-php

Then, to install PHP 7, run brew install php70. That’s it!

At the end of installation, Homebrew prints out a bunch of stuff about configuring
your setup. Pay attention to those instructions, since you need to follow them to tell
your Mac’s copy of the Apache web server where to find PHP.

Homebrew includes a number of extensions (including intl and mbstring, used in
Chapter 20), but also offers other PHP extensions for installation. Run brew search
php70- to see a list of extension packages. Installing one of those extensions and its
dependent libraries is as easy as running brew install with the extension package
name. For example, brew install php70-gmp installs the GMP (GNU Multiple Pre‐
cision) extension for doing arbitrary-precision math with huge numbers.

Justin Hileman has more details on installing PHP with Homebrew.

326 | Appendix A: Installing and Configuring the PHP Engine

http://www.php.net/manual/faq.installation
http://brew.sh/
http://bit.ly/hileman-php/

Installing on Linux
Most Linux distributions come with PHP already installed or with binary PHP
packages that you can install. For example, if you’re using Fedora Linux, use yum to
install the php package. If you’re using Ubuntu, use apt-get to install the package.
The most up-to-date PHP 5 package is php5, and at the time of writing, an official
php7 package is not available yet. A well-supported PHP 7 package for Ubuntu is
available from an alternate source. First, run sudo add-apt-repository

ppa:ondrej/php and sudo apt-get update, and then you can install the php7.0
package with apt-get.

If those packages are out of date, you can build PHP yourself. Download the Current
Stable .tar.gz package. From a shell prompt, uncompress and unpack the archive:

gunzip php-7.0.5.tar.gz
tar xvf php-7.0.5.tar

This creates a directory, php-7.0.5, that contains the PHP engine source code. Read
the file INSTALL at the top level of the source code directory for detailed installation
instructions. There is also an overview of PHP installation on Linux and Unix on
php.net, as well as instructions for installing PHP with Apache 2.0.

Installing on Windows
Installing PHP on Windows is a little different than on OS X or Linux. The assump‐
tions that the PHP engine can make about the things it needs when it’s being installed
are different, as well as the tools that might be available for it to compile itself.

Fortunately, there are several good all-in-one packages that combine PHP, Apache,
and MySQL for Windows. These include WampServer, the Bitnami WAMP Stack,
and Apache Friends XAMPP.

Microsoft maintains a website devoted to running PHP with IIS. Additionally, the
official PHP For Windows website has different versions of PHP for Windows avail‐
able for download.

Modifying PHP Configuration Directives
Earlier chapters in the book mention various PHP configuration directives. These are
settings that affect the behavior of the PHP engine, such as how errors are reported,
where the PHP engine looks for included files and extensions, and much more.

Read this section when you encounter a configuration directive you want to alter or
are curious about how you can tweak the PHP engine’s settings (whether you are
using PHP on your own computer or with a hosting provider). For example, chang‐
ing the output_buffering directive (as discussed in “Why setcookie() and ses‐

Installing and Configuring the PHP Engine | 327

https://getfedora.org
http://www.ubuntu.com/
http://www.php.net/downloads.php
http://www.php.net/manual/install.unix
http://www.php.net/manual/install.unix.apache2
http://www.wampserver.com/en/
https://bitnami.com/stack/wamp
https://www.apachefriends.org/index.html
http://php.iis.net/
http://windows.php.net/

sion_start() Want to Be at the Top of the Page” on page 226) makes your life much
easier if you are working with cookies and sessions.

The values of configuration directives can be changed in a few places: in the PHP
engine’s php.ini configuration file, in Apache’s httpd.conf or .htaccess configuration
files, and in your PHP programs. Not all configuration directives can be changed in
all places. If you can edit your php.ini or httpd.conf file, it’s easiest to set PHP configu‐
ration directives there. But if you can’t change those files because of server permis‐
sions, then you can still change some settings in your PHP programs.

If your web server talks to the PHP engine using CGI or FastCGI, you can also set
configuration directives in .user.ini files. In PHP 5.3.0 and later, the PHP engine looks
for a file called .user.ini in the same directory as the PHP program it’s running. If the
PHP program is inside the web server’s document root, the PHP engine also looks in
the program’s parent directory, and that directory’s parent, and so on, up to the docu‐
ment root. The syntax for .user.ini files is the same as for the main php.ini file.

The php.ini file holds systemwide configuration for the PHP engine. When the web
server process starts up, the PHP engine reads the php.ini file and adjusts its configu‐
ration accordingly. To find the location of your system’s php.ini file, examine the out‐
put from the phpinfo() function. This function prints a report of the PHP engine’s
configuration. The tiny program in Example A-2 produces a page that looks like the
one in Figure A-1.

Example A-2. Getting configuration details with phpinfo()

<?php phpinfo(); ?>

In Figure A-1, the sixth line (Configuration File (php.ini) Path) shows that the
php.ini file is located at /php7/etc/php.ini. Your php.ini file may be in a different place.

328 | Appendix A: Installing and Configuring the PHP Engine

Figure A-1. Output of phpinfo()

In the php.ini file, lines that begin with a semicolon (;) are comments. Lines that set
values for configuration directives look like those shown in Example A-3.

Example A-3. Sample lines in php.ini

; How to specify directories on Unix: forward slash for a separator
; and a colon between the directory names
include_path = ".:/usr/local/lib/php/includes"

Installing and Configuring the PHP Engine | 329

; How to specify directories on Windows: backslash for a separator
; and a semicolon between the directory names
; Windows: "\path1;\path2"
include_path = ".;c:\php\includes"

; Report all errors except notices
error_reporting = E_ALL & ~E_NOTICE

; Record errors in the error log
log_errors = On

; An uploaded file can't be more than 2 megabytes
upload_max_filesize = 2M

; Sessions expire after 1440 seconds
session.gc_maxlifetime = 1440

The error_reporting configuration directive is set by combining built-in constants
with logical operators. For example, the line error_reporting = E_ALL &

~E_NOTICE sets error_reporting to E_ALL but not E_NOTICE. The operators you can
use are & (“and”), | (“either ... or”), and ~ (“not”). So, to the PHP engine, E_ALL &
~E_NOTICE means E_ALL and not E_NOTICE. You may find it easier to read “and not” as
“but not,” as in E_ALL but not E_NOTICE. The setting E_ALL | E_NOTICE means either
E_ALL or E_NOTICE.

When setting a configuration directive whose value is a number (such as
upload_max_filesize), you can use M (for megabyte) or K (for kilobyte) at the end of
the number to multiply by 1,048,576 or 1,024. Setting upload_max_filesize=2M is
the same as setting upload_max_filesize=2097152. There are 1,048,576 bytes in a
megabyte, and 2,097,152 = 2 * 1,048,576.

To change a configuration directive in Apache’s httpd.conf or .htaccess file, you must
use a slightly different syntax, shown in Example A-4.

Example A-4. Sample PHP configuration lines in httpd.conf

; How to specify directories on Unix: forward slash for a separator
; and a colon between the directory names
php_value include_path ".:/usr/local/lib/php/includes"

; How to specify directories on Windows: backslash for a separator
; and a semicolon between the directory names
; Windows: "\path1;\path2"
php_value include_path ".;c:\php\includes"

; Report all errors but notices
php_value error_reporting "E_ALL & ~E_NOTICE"

; Record errors in the error log

330 | Appendix A: Installing and Configuring the PHP Engine

php_flag log_errors On

; An uploaded file can't be more than 2 megabytes
php_value upload_max_filesize 2M

; Sessions expire after 1440 seconds
php_value session.gc_maxlifetime 1440

The php_flag and php_value words in Example A-4 tell Apache that the rest of the
line is a PHP configuration directive. After php_flag, put the name of the configura‐
tion directive and then On or Off. After php_value, put the name of the directive and
then its value. If the value has spaces in it (such as E_ALL & ~E_NOTICE), you must
put it in quotes. There is no equals sign between the name of the configuration direc‐
tive and the value.

To change a configuration directive from within a PHP program, use the ini_set()
function. Example A-5 sets error_reporting from within a PHP program.

Example A-5. Changing a configuration directive with ini_set()

ini_set('error_reporting',E_ALL & ~E_NOTICE);

The first argument to ini_set() is the name of the configuration directive to set. The
second argument is the value to which you want to set the configuration directive.
For error_reporting, that value is the same logical expression as you’d put in php.ini.
For configuration directives whose values are strings or integers, pass the string or
integer to ini_set(). For configuration directives whose values are On or Off, pass 1
(for On) or 0 (for Off) to ini_set().

To find the value of a configuration directive from within a program, use ini_get().
Pass it the name of the configuration directive, and it returns the value. This is useful
for adding a directory to the include_path, as shown in Example A-6.

Example A-6. Changing include_path with ini_get() and ini_set()

// These lines add /home/ireneo/php to the end of the include_path
$include_path = ini_get('include_path');
ini_set('include_path',$include_path . ':/home/ireneo/php');

As mentioned earlier, not all configuration directives can be set in all places. There
are some configuration directives that cannot be set from within your PHP programs.
These are directives that the PHP engine must know about before it starts reading
your program, such as output_buffering. The output_buffering directive makes a
change to the engine’s behavior that must be active before the engine gets a look at
your program, so you can’t set output_buffering with ini_set(). In addition, some
configuration directives are prohibited from being set in Apache .htaccess files and

Installing and Configuring the PHP Engine | 331

some from being set in the Apache httpd.conf file. All configuration directives can be
set in the php.ini file.

The PHP Manual has a big list of all the configuration directives and the contexts in
which they can be changed. Some useful configuration directives to know about are
listed in Table A-1.

Table A-1. Useful configuration directives

Directive Recommended
value

Description

allow_url_fopen On Whether to allow functions such as file_get_contents() to
work with URLs in addition to local files.

auto_append_file Set this to a filename to have the PHP code in that file run after the
PHP engine runs a program. This is useful for printing out a common
page footer.

auto_prepend_file Set this to a filename to have the PHP code in that file run before the
PHP engine runs a program. This is useful for defining functions or
including files that you use in your entire site.

date.timezone UTC The PHP engine needs a default timezone set before you call any
date or time functions. Using UTC, as discussed in “Working with
Timezones” on page 291, makes many time-related tasks easier.

display_errors On for
debugging, Off
for production

When this is on, the PHP engine prints errors as part of your program
output.

error_reporting E_ALL This controls what kinds of errors the PHP engine reports. See
“Controlling Where Errors Appear” on page 249.

extension Each extension line in php.ini loads a PHP extension. The
extension library must be present on your system to load it.

extension_dir The directory the PHP engine looks in to find extensions specified by
the extension directive.

file_uploads On Whether to allow file uploads via forms.
include_path A list of directories that the PHP engine looks in for files loaded via

include, require, include_once, and require_once.
log_errors On When this is on, the PHP engine puts program errors in the web

server error log.
output_buffering On When this is on, the PHP engine waits until your script runs before it

sends HTTP headers, making it easier to use cookies and sessions. See
“Why setcookie() and session_start() Want to Be at the Top of the
Page” on page 226 in Chapter 10.

session.auto_start On (if you’re
using sessions)

When this is on, the PHP engine starts a session at the beginning of
each page, so you don’t have to call session_start().

session.gc_maxlifetime 1440 The number of seconds that a session should last. The default value
of 1440 is fine for most applications.

332 | Appendix A: Installing and Configuring the PHP Engine

http://www.php.net/ini.list

Directive Recommended
value

Description

session.gc_probability 1 The likelihood (out of 100) that expired sessions are cleaned up at
the beginning of any request. The default value of 1 is fine for most
applications.

short_open_tag Off When this is on, you can start a PHP block with <? as well as <?
php. Since not all servers are configured to accept short tags, it’s
good practice to leave this off and always use the <?php start tag.

track_errors On for
debugging, Off
for production

When this is on, the PHP engine stores an error message in the
global variable $php_errormsg when it encounters a problem.
See “Checking for Errors” on page 199.

upload_max_filesize 2M The maximum permitted size for a file uploaded via a form. Unless
you are building an application that requires users to upload very
large files, don’t increase this value. Lots of large uploaded files can
clog your server.

Appendix Summary
This appendix covered:

• Using PHP with a web-hosting provider
• Installing the PHP engine on OS X, Linux, or Windows
• Using phpinfo() to see the PHP engine’s configuration
• Understanding the structure of the php.ini configuration file
• Configuring the PHP engine in the httpd.conf configuration file
• Reading and writing configuration directive values with ini_get() and
ini_set()

• Using common configuration directives

Installing and Configuring the PHP Engine | 333

APPENDIX B

Answers to Exercises

Chapter 2
Exercise 1

1. The opening PHP tag should be just <?php with no space between the <? and
php.

2. Because the string I'm fine contains a ', it should be surrounded by double
quotes ("I'm fine") or the ' should be escaped ('I\'m fine').

3. The closing PHP tag should be ?>, not ??>. Or, if this code were the last thing in
its file, the closing PHP tag could be omitted.

Exercise 2
$hamburger = 4.95;
$shake = 1.95;
$cola = 0.85;

$tip_rate = 0.16;
$tax_rate = 0.075;

$food = (2 * $hamburger) + $shake + $cola;
$tip = $food * $tip_rate;
$tax = $food * $tax_rate;

$total = $food + $tip + $tax;

print 'The total cost of the meal is $' . $total;

335

Exercise 3
$hamburger = 4.95;
$shake = 1.95;
$cola = 0.85;

$tip_rate = 0.16;
$tax_rate = 0.075;

$food = (2 * $hamburger) + $shake + $cola;
$tip = $food * $tip_rate;
$tax = $food * $tax_rate;

$total = $food + $tip + $tax;

printf("%d %-9s at \$%.2f each: \$%5.2f\n", 2, 'Hamburger', $hamburger,
 2 * $hamburger);
printf("%d %-9s at \$%.2f each: \$%5.2f\n", 1, 'Shake', $shake, $hamburger);
printf("%d %-9s at \$%.2f each: \$%5.2f\n", 1, 'Cola', $cola, $cola);
printf("%25s: \$%5.2f\n", 'Food Total', $food);
printf("%25s: \$%5.2f\n", 'Food and Tax Total', $food + $tax);
printf("%25s: \$%5.2f\n", 'Food, Tax, and Tip Total', $total);

Exercise 4
$first_name = 'Srinivasa';
$last_name = 'Ramanujan';
$name = "$first_name $last_name";
print $name;
print strlen($name);

Exercise 5
$n = 1; $p = 2;
print "$n, $p\n";

$n++; $p *= 2;
print "$n, $p\n";

$n++; $p *= 2;
print "$n, $p\n";

$n++; $p *= 2;
print "$n, $p\n";

$n++; $p *= 2;
print "$n, $p\n";

336 | Appendix B: Answers to Exercises

Chapter 3
Exercise 1

1. false

2. true

3. true

4. false

5. false

6. true

7. true

8. false

Exercise 2
Message 3.Age: 12. Shoe Size: 14

Exercise 3
$f = -50;
while ($f <= 50) {
 $c = ($f - 32) * (5/9);
 printf("%d degrees F = %d degrees C\n", $f, $c);
 $f += 5;
}

Exercise 4
for ($f = -50; $f <= 50; $f += 5) {
 $c = ($f - 32) * (5/9);
 printf("%d degrees F = %d degrees C\n", $f, $c);
}

Chapter 4
Exercise 1
<table>
<tr><th>City</th><th>Population</th></tr>
<?php
$census = ['New York, NY' => 8175133,
 'Los Angeles, CA' => 3792621,
 'Chicago, IL' => 2695598,
 'Houston, TX' => 2100263,
 'Philadelphia, PA' => 1526006,
 'Phoenix, AZ' => 1445632,

Answers to Exercises | 337

 'San Antonio, TX' => 1327407,
 'San Diego, CA' => 1307402,
 'Dallas, TX' => 1197816,
 'San Jose, CA' => 945942];

$total = 0;
foreach ($census as $city => $population) {
 $total += $population;
 print "<tr><td>$city</td><td>$population</td></tr>\n";
}
print "<tr><td>Total</td><td>$total</td></tr>\n";
print "</table>";

Exercise 2
$census = ['New York, NY' => 8175133,
 'Los Angeles, CA' => 3792621,
 'Chicago, IL' => 2695598,
 'Houston, TX' => 2100263,
 'Philadelphia, PA' => 1526006,
 'Phoenix, AZ' => 1445632,
 'San Antonio, TX' => 1327407,
 'San Diego, CA' => 1307402,
 'Dallas, TX' => 1197816,
 'San Jose, CA' => 945942];

// Sort the associative array by value
asort($census);

print "<table>\n";
print "<tr><th>City</th><th>Population</th></tr>\n";
$total = 0;
foreach ($census as $city => $population) {
 $total += $population;
 print "<tr><td>$city</td><td>$population</td></tr>\n";
}
print "<tr><td>Total</td><td>$total</td></tr>\n";
print "</table>";

// Sort the associative array by key
ksort($census);

print "<table>\n";
print "<tr><th>City</th><th>Population</th></tr>\n";
$total = 0;
foreach ($census as $city => $population) {
 $total += $population;
 print "<tr><td>$city</td><td>$population</td></tr>\n";
}
print "<tr><td>Total</td><td>$total</td></tr>\n";
print "</table>";

338 | Appendix B: Answers to Exercises

Exercise 3
<table>
<tr><th>City</th><th>Population</th></tr>
<?php
// Each element in $census is a three-element array
// containing city name, state, and population
$census = [['New York', 'NY', 8175133],
 ['Los Angeles', 'CA' , 3792621],
 ['Chicago', 'IL' , 2695598],
 ['Houston', 'TX' , 2100263],
 ['Philadelphia', 'PA' , 1526006],
 ['Phoenix', 'AZ' , 1445632],
 ['San Antonio', 'TX' , 1327407],
 ['San Diego', 'CA' , 1307402],
 ['Dallas', 'TX' , 1197816],
 ['San Jose', 'CA' , 945942]];

$total = 0;
$state_totals = array();
foreach ($census as $city_info) {
 // Update the total population
 $total += $city_info[2];
 // If we haven't seen this state yet, initialize its
 // population total to 0
 if (! array_key_exists($city_info[1], $state_totals)) {
 $state_totals[$city_info[1]] = 0;
 }
 // Update the per-state population
 $state_totals[$city_info[1]] += $city_info[2];
 print "<tr><td>$city_info[0], $city_info[1]</td><td>
 $city_info[2]</td></tr>\n";
}
print "<tr><td>Total</td><td>$total</td></tr>\n";
// Print the per-state totals
foreach ($state_totals as $state => $population) {
 print "<tr><td>$state</td><td>$population</td></tr>\n";
}
print "</table>";

Exercise 4
/* The grades and ID numbers of students in a class:
 An associative array whose key is the student's name and whose value is
 an associative array of grade and ID number
*/
$students = ['James D. McCawley' => ['grade' => 'A+','id' => 271231],
 'Buwei Yang Chao' => ['grade' => 'A', 'id' => 818211]];

/* How many of each item in a store inventory are in stock:
 An associative array whose key is the item name and whose value is the
 number in stock

Answers to Exercises | 339

 */
$inventory = ['Wok' => 5, 'Steamer' => 3, 'Heavy Cleaver' => 3,
 'Light Cleaver' => 0];

/* School lunches for a week — the different parts of each meal
 (entree, side dish, drink, etc.) and the cost for each day:
 An associative array whose key is the day and whose value is an
 associative array describing the meal. This associative array has a key/value
 pair for cost and a key/value pair for each part of the meal.
*/
$lunches = ['Monday' => ['cost' => 1.50,
 'entree' => 'Beef Shu-Mai',
 'side' => 'Salty Fried Cake',
 'drink' => 'Black Tea'],
 'Tuesday' => ['cost' => 2.50,
 'entree' => 'Clear-steamed Fish',
 'side' => 'Turnip Cake',
 'drink' => 'Bubble Tea'],
 'Wednesday' => ['cost' => 2.00,
 'entree' => 'Braised Sea Cucumber',
 'side' => 'Turnip Cake',
 'drink' => 'Green Tea'],
 'Thursday' => ['cost' => 1.35,
 'entree' => 'Stir-fried Two Winters',
 'side' => 'Egg Puff',
 'drink' => 'Black Tea'],
 'Friday' => ['cost' => 3.25,
 'entree' => 'Stewed Pork with Taro',
 'side' => 'Duck Feet',
 'drink' => 'Jasmine Tea']];

/* The names of people in your family:
 A numeric array whose indices are implicit and whose values are the names
 of family members
 */
$family = ['Bart', 'Lisa', 'Homer', 'Marge', 'Maggie'];

/* The names, ages, and relationship to you of people in your family:
 An associative array whose keys are the names of family members and whose
 values are associative arrays with age and relationship key/value pairs
 */
$family = ['Bart' => ['age' => 10,
 'relation' => 'brother'],
 'Lisa' => ['age' => 7,
 'relation' => 'sister'],
 'Homer' => ['age' => 36,
 'relation' => 'father'],
 'Marge' => ['age' => 34,
 'relation' => 'mother'],
 'Maggie' => ['age' => 1,
 'relation' => 'self']];

340 | Appendix B: Answers to Exercises

Chapter 5
Exercise 1
function html_img($url, $alt = null, $height = null, $width = null) {
 $html = '<img src="' . $url . '"';
 if (isset($alt)) {
 $html .= ' alt="' . $alt . '"';
 }
 if (isset($height)) {
 $html .= ' height="' . $height . '"';
 }
 if (isset($width)) {
 $html .= ' width="' . $width . '"';
 }
 $html .= '/>';
 return $html;
}

Exercise 2
function html_img2($file, $alt = null, $height = null, $width = null) {
 if (isset($GLOBALS['image_path'])) {
 $file = $GLOBALS['image_path'] . $file;
 }
 $html = '<img src="' . $file . '"';
 if (isset($alt)) {
 $html .= ' alt="' . $alt . '"';
 }
 if (isset($height)) {
 $html .= ' height="' . $height . '"';
 }
 if (isset($width)) {
 $html .= ' width="' . $width . '"';
 }
 $html .= '/>';
 return $html;
}

Exercise 3
// The html_img2() function from the previous exercise is saved in this file
include "html-img2.php";

$image_path = '/images/';

print html_img2('puppy.png');
print html_img2('kitten.png','fuzzy');
print html_img2('dragon.png',null,640,480);

Answers to Exercises | 341

Exercise 4
I can afford a tip of 11% (30)
I can afford a tip of 12% (30.25)
I can afford a tip of 13% (30.5)
I can afford a tip of 14% (30.75)

Exercise 5
/* Using dechex(): */
function web_color1($red, $green, $blue) {
 $hex = [dechex($red), dechex($green), dechex($blue)];
 // Prepend a leading 0 if necessary to 1-digit hex values
 foreach ($hex as $i => $val) {
 if (strlen($i) == 1) {
 $hex[$i] = "0$val";
 }
 }
 return '#' . implode('', $hex);
}

/* You can also rely on sprintf()'s %x format character to do
 hex-to-decimal conversion: */
function web_color2($red, $green, $blue) {
 return sprintf('#%02x%02x%02x', $red, $green, $blue);
}

Chapter 6
Exercise 1
class Ingredient {
 protected $name;
 protected $cost;

 public function __construct($name, $cost) {
 $this->name = $name;
 $this->cost = $cost;
 }

 public function getName() {
 return $this->name;
 }

 public function getCost() {
 return $this->cost;
 }
}

342 | Appendix B: Answers to Exercises

Exercise 2
class Ingredient {
 protected $name;
 protected $cost;

 public function __construct($name, $cost) {
 $this->name = $name;
 $this->cost = $cost;
 }

 public function getName() {
 return $this->name;
 }

 public function getCost() {
 return $this->cost;
 }

 // This method sets the cost to a new value
 public function setCost($cost) {
 $this->cost = $cost;
 }

}

Exercise 3
class PricedEntree extends Entree {
 public function __construct($name, $ingredients) {
 parent::__construct($name, $ingredients);
 foreach ($this->ingredients as $ingredient) {
 if (! $ingredient instanceof Ingredient) {
 throw new Exception('Elements of $ingredients must be
 Ingredient objects');
 }
 }
 }

 public function getCost() {
 $cost = 0;
 foreach ($this->ingredients as $ingredient) {
 $cost += $ingredient->getCost();
 }
 return $cost;
 }
}

Answers to Exercises | 343

Exercise 4
The Ingredient class in its own namespace:

namespace Meals;

class Ingredient {
 protected $name;
 protected $cost;

 public function __construct($name, $cost) {
 $this->name = $name;
 $this->cost = $cost;
 }

 public function getName() {
 return $this->name;
 }

 public function getCost() {
 return $this->cost;
 }

 // This method sets the cost to a new value
 public function setCost($cost) {
 $this->cost = $cost;
 }

}

The PricedEntree class referencing that namespace:

class PricedEntree extends Entree {
 public function __construct($name, $ingredients) {
 parent::__construct($name, $ingredients);
 foreach ($this->ingredients as $ingredient) {
 if (! $ingredient instanceof \Meals\Ingredient) {
 throw new Exception('Elements of $ingredients must be
 Ingredient objects');
 }
 }
 }

 public function getCost() {
 $cost = 0;
 foreach ($this->ingredients as $ingredient) {
 $cost += $ingredient->getCost();
 }
 return $cost;
 }
}

344 | Appendix B: Answers to Exercises

Chapter 7
Exercise 1
$_POST['noodle'] = 'barbecued pork';
$_POST['sweet'] = ['puff', 'ricemeat'];
$_POST['sweet_q'] = '4';
$_POST['submit'] = 'Order';

Exercise 2
/* Since this is operating on form data, it looks directly at $_POST
 instead of a validated $input array */
function process_form() {
 print '';
 foreach ($_POST as $k => $v) {
 print '' . htmlentities($k) .'=' . htmlentities($v) . '';
 }
 print '';
}

Exercise 3
<?php

// This assumes FormHelper.php is in the same directory as
// this file.
require 'FormHelper.php';

// Set up the arrays of choices in the select menu.
// This is needed in display_form(), validate_form(),
// and process_form(), so it is declared in the global scope.
$ops = array('+','-','*','/');

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 // And then show the form again to do another calculation
 show_form();
 }
} else {
 // The form wasn't submitted, so display
 show_form();

Answers to Exercises | 345

}

function show_form($errors = array()) {
 $defaults = array('num1' => 2,
 'op' => 2, // the index of '*' in $ops
 'num2' => 8);
 // Set up the $form object with proper defaults
 $form = new FormHelper($defaults);

 // All the HTML and form display is in a separate file for clarity
 include 'math-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 // op is required
 $input['op'] = $GLOBALS['ops'][$_POST['op']] ?? '';
 if (! in_array($input['op'], $GLOBALS['ops'])) {
 $errors[] = 'Please select a valid operation.';
 }
 // num1 and num2 must be numbers
 $input['num1'] = filter_input(INPUT_POST, 'num1', FILTER_VALIDATE_FLOAT);
 if (is_null($input['num1']) || ($input['num1'] === false)) {
 $errors[] = 'Please enter a valid first number.';
 }

 $input['num2'] = filter_input(INPUT_POST, 'num2', FILTER_VALIDATE_FLOAT);
 if (is_null($input['num2']) || ($input['num2'] === false)) {
 $errors[] = 'Please enter a valid second number.';
 }

 // Can't divide by zero
 if (($input['op'] == '/') && ($input['num2'] == 0)) {
 $errors[] = 'Division by zero is not allowed.';
 }

 return array($errors, $input);
}

function process_form($input) {
 $result = 0;
 if ($input['op'] == '+') {
 $result = $input['num1'] + $input['num2'];
 }
 else if ($input['op'] == '-') {
 $result = $input['num1'] - $input['num2'];
 }
 else if ($input['op'] == '*') {
 $result = $input['num1'] * $input['num2'];
 }

346 | Appendix B: Answers to Exercises

 else if ($input['op'] == '/') {
 $result = $input['num1'] / $input['num2'];
 }
 $message = "{$input['num1']} {$input['op']} {$input['num2']} = $result";

 print "<h3>$message</h3>";
}
?>

The code relies on the FormHelper.php file discussed in Chapter 7. The math-
form.php file referenced, which displays the form HTML, contains:

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>

 <tr><td>First Number:</td>
 <td><?= $form->input('text', ['name' => 'num1']) ?></td>
 </tr>
 <tr><td>Operation:</td>
 <td><?= $form->select($GLOBALS['ops'], ['name' => 'op']) ?></td>
 </tr>
 <tr><td>Second Number:</td>
 <td><?= $form->input('text', ['name' => 'num2']) ?></td>
 </tr>

 <tr><td colspan="2" align="center"><?= $form->input('submit',
 ['value' => 'Calculate']) ?>
 </td></tr>

</table>
</form>

Exercise 4
<?php

// This assumes FormHelper.php is in the same directory as
// this file.
require 'FormHelper.php';

// Set up the array of choices in the select menu.
// This is needed in display_form(), validate_form(),
// and process_form(), so it is declared in the global scope.

Answers to Exercises | 347

$states = ['AL', 'AK', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA',
'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD', 'MA', 'MI', 'MN',
'MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ', 'NM', 'NY', 'NC', 'ND', 'OH', 'OK',
'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', 'WI',
'WY'];

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 // Set up the $form object with proper defaults
 $form = new FormHelper();

 // All the HTML and form display is in a separate file for clarity
 include 'shipping-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 foreach (['from','to'] as $addr) {
 // Check required fields
 foreach (['Name' => 'name', 'Address 1' => 'address1',
 'City' => 'city', 'State' => 'state'] as $label => $field){
 $input[$addr.'_'.$field] = $_POST[$addr.'_'.$field] ?? '';
 if (strlen($input[$addr.'_'.$field]) == 0) {
 $errors[] = "Please enter a value for $addr $label.";
 }
 }
 // Check state
 $input[$addr.'_state'] =
 $GLOBALS['states'][$input[$addr.'_state']] ?? '';
 if (! in_array($input[$addr.'_state'], $GLOBALS['states'])) {
 $errors[] = "Please select a valid $addr state.";
 }
 // Check zip code
 $input[$addr.'_zip'] = filter_input(INPUT_POST, $addr.'_zip',

348 | Appendix B: Answers to Exercises

 FILTER_VALIDATE_INT,
 ['options' => ['min_range'=>10000,
 'max_range'=>99999]]);
 if (is_null($input[$addr.'_zip']) || ($input[$addr.'_zip']===false)) {
 $errors[] = "Please enter a valid $addr ZIP";
 }
 // Don't forget about address2!
 $input[$addr.'_address2'] = $_POST[$addr.'_address2'] ?? '';
 }

 // height, width, depth, weight must all be numbers > 0
 foreach(['height','width','depth','weight'] as $field) {
 $input[$field] =filter_input(INPUT_POST, $field, FILTER_VALIDATE_FLOAT);
 // Since 0 is not valid, we can just test for truth rather than
 // null or exactly false
 if (! ($input[$field] && ($input[$field] > 0))) {
 $errors[] = "Please enter a valid $field.";
 }
 }
 // Check weight
 if ($input['weight'] > 150) {
 $errors[] = "The package must weigh no more than 150 lbs.";
 }
 // Check dimensions
 foreach(['height','width','depth'] as $dim) {
 if ($input[$dim] > 36) {
 $errors[] = "The package $dim must be no more than 36 inches.";
 }
 }

 return array($errors, $input);
}

function process_form($input) {
 // Make a template for the report
 $tpl=<<<HTML
<p>Your package is {height}" x {width}" x {depth}" and weighs {weight} lbs.</p>

<p>It is coming from:</p>
<pre>
{from_name}
{from_address}
{from_city}, {from_state} {from_zip}
</pre>

<p>It is going to:</p>
<pre>
{to_name}
{to_address}
{to_city}, {to_state} {to_zip}
</pre>
HTML;

Answers to Exercises | 349

 // Adjust addresses in $input for easier output
 foreach(['from','to'] as $addr) {
 $input[$addr.'_address'] = $input[$addr.'_address1'];
 if (strlen($input[$addr.'_address2'])) {
 $input[$addr.'_address'] .= "\n" . $input[$addr.'_address2'];
 }
 }

 // Replace each template variable with the corresponding value
 // in $input
 $html = $tpl;
 foreach($input as $k => $v) {
 $html = str_replace('{'.$k.'}', $v, $html);
 }

 // Print the report
 print $html;
}
?>

The code relies on the FormHelper.php file discussed in Chapter 7. The shipping-
form.php file referenced, which displays the form HTML, contains:

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>

 <tr><th>From:</th><td></td></tr>
 <tr><td>Name:</td>
 <td><?= $form->input('text', ['name' => 'from_name']) ?></td></tr>
 <tr><td>Address 1:</td>
 <td><?= $form->input('text', ['name' => 'from_address1']) ?></td></tr>
 <tr><td>Address 2:</td>
 <td><?= $form->input('text', ['name' => 'from_address2']) ?></td></tr>
 <tr><td>City:</td>
 <td><?= $form->input('text', ['name' => 'from_city']) ?></td></tr>
 <tr><td>State:</td>
 <td><?= $form->select($GLOBALS['states'], ['name' => 'from_state']) ?>
 </td></tr>
 <tr><td>ZIP:</td>
 <td><?= $form->input('text', ['name' => 'from_zip', 'size' => 5]) ?>
 </td></tr>

 <tr><th>To:</th><td></td></tr>

350 | Appendix B: Answers to Exercises

 <tr><td>Name:</td>
 <td><?= $form->input('text', ['name' => 'to_name']) ?></td></tr>
 <tr><td>Address 1:</td>
 <td><?= $form->input('text', ['name' => 'to_address1']) ?></td></tr>
 <tr><td>Address 2:</td>
 <td><?= $form->input('text', ['name' => 'to_address2']) ?></td></tr>
 <tr><td>City:</td>
 <td><?= $form->input('text', ['name' => 'to_city']) ?></td></tr>
 <tr><td>State:</td>
 <td><?= $form->select($GLOBALS['states'], ['name' => 'to_state']) ?>
 </td></tr>
 <tr><td>ZIP:</td>
 <td><?= $form->input('text', ['name' => 'to_zip', 'size' => 5]) ?>
 </td></tr>

 <tr><th>Package:</th><td></td></tr>
 <tr><td>Weight:</td>
 <td><?= $form->input('text', ['name' => 'weight']) ?></td></tr>
 <tr><td>Height:</td>
 <td><?= $form->input('text', ['name' => 'height']) ?></td></tr>
 <tr><td>Width:</td>
 <td><?= $form->input('text', ['name' => 'width']) ?></td></tr>
 <tr><td>Depth:</td>
 <td><?= $form->input('text', ['name' => 'depth']) ?></td></tr>

 <tr><td colspan="2" align="center">
 <?= $form->input('submit', ['value' => 'Ship!']) ?>
 </td></tr>

</table>
</form>

Exercise 5
function print_array($ar) {
 print '';
 foreach ($ar as $k => $v) {
 if (is_array($v)) {
 print '' . htmlentities($k) .':';
 print_array($v);
 } else {
 print '' . htmlentities($k) .'=' . htmlentities($v) . '';
 }
 }
 print '';
}

/* Since this is operating on form data, it looks directly at $_POST
 instead of a validated $input array */
function process_form() {
 print_array($_POST);
}

Answers to Exercises | 351

Chapter 8
Exercise 1
try {
 // Connect
 $db = new PDO('sqlite:/tmp/restaurant.db');
 // Set up exceptions on DB errors
 $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $stmt = $db->query('SELECT * FROM dishes ORDER BY price');
 $dishes = $stmt->fetchAll();
 if (count($dishes) == 0) {
 $html = '<p>No dishes to display</p>';
 } else {
 $html = "<table>\n";
 $html .= "<tr><th>Dish Name</th><th>Price</th><th>Spicy?</th></tr>\n";
 foreach ($dishes as $dish) {
 $html .= '<tr><td>' .
 htmlentities($dish['dish_name']) . '</td><td>$' .
 sprintf('%.02f', $dish['price']) . '</td><td>' .
 ($dish['is_spicy'] ? 'Yes' : 'No') . "</td></tr>\n";
 }
 $html .= "</table>";
 }
} catch (PDOException $e) {
 $html = "Can't show dishes: " . $e->getMessage();
}
print $html;

Exercise 2
<?php

// Load the form helper class
require 'FormHelper.php';

// Connect to the database
try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (PDOException $e) {
 print "Can't connect: " . $e->getMessage();
 exit();
}
// Set up exceptions on DB errors
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Set up fetch mode: rows as objects
$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_OBJ);

// The main page logic:
// - If the form is submitted, validate and then process or redisplay

352 | Appendix B: Answers to Exercises

// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 // Set up the $form object with proper defaults
 $form = new FormHelper();
 // All the HTML and form display is in a separate file for clarity
 include 'price-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 // Minimum price must be a valid floating-point number
 $input['min_price'] = filter_input(INPUT_POST,'min_price',
 FILTER_VALIDATE_FLOAT);
 if ($input['min_price'] === null || $input['min_price'] === false) {
 $errors[] = 'Please enter a valid minimum price.';
 }
 return array($errors, $input);
}

function process_form($input) {
 // Access the global variable $db inside this function
 global $db;

 // Build up the query
 $sql = 'SELECT dish_name, price, is_spicy FROM dishes WHERE
 price >= ?';

 // Send the query to the database program and get all the rows back
 $stmt = $db->prepare($sql);
 $stmt->execute(array($input['min_price']));
 $dishes = $stmt->fetchAll();

 if (count($dishes) == 0) {
 print 'No dishes matched.';
 } else {
 print '<table>';

Answers to Exercises | 353

 print '<tr><th>Dish Name</th><th>Price</th><th>Spicy?</th></tr>';
 foreach ($dishes as $dish) {
 if ($dish->is_spicy == 1) {
 $spicy = 'Yes';
 } else {
 $spicy = 'No';
 }
 printf('<tr><td>%s</td><td>$%.02f</td><td>%s</td></tr>',
 htmlentities($dish->dish_name), $dish->price, $spicy);
 }
 print '</table>';
 }
}
?>

The code relies on the FormHelper.php file discussed in Chapter 7. The price-form.php
file referenced, which displays the form HTML, contains:

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>
 <tr>
 <td>Minimum Price:</td>
 <td><?= $form->input('text',['name' => 'min_price']) ?></td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <?= $form->input('submit', ['name' => 'search',
 'value' => 'Search']) ?></td>
 </tr>
</table>
</form>

Exercise 3
<?php

// Load the form helper class
require 'FormHelper.php';

// Connect to the database
try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (PDOException $e) {

354 | Appendix B: Answers to Exercises

 print "Can't connect: " . $e->getMessage();
 exit();
}
// Set up exceptions on DB errors
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Set up fetch mode: rows as objects
$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_OBJ);

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 global $db;

 // Set up the $form object with proper defaults
 $form = new FormHelper();

 // Retrieve the list of dish names to use from the database
 $sql = 'SELECT dish_id, dish_name FROM dishes ORDER BY dish_name';
 $stmt = $db->query($sql);
 $dishes = array();
 while ($row = $stmt->fetch()) {
 $dishes[$row->dish_id] = $row->dish_name;
 }

 // All the HTML and form display is in a separate file for clarity
 include 'dish-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 // As long as some dish_id value is submitted, we'll consider it OK.
 // If it doesn't match any dishes in the database, process_form()
 // can report that.
 if (isset($_POST['dish_id'])) {

Answers to Exercises | 355

 $input['dish_id'] = $_POST['dish_id'];
 } else {
 $errors[] = 'Please select a dish.';
 }
 return array($errors, $input);
}

function process_form($input) {
 // Access the global variable $db inside this function
 global $db;

 // Build up the query
 $sql = 'SELECT dish_id, dish_name, price, is_spicy FROM dishes WHERE
 dish_id = ?';

 // Send the query to the database program and get all the rows back
 $stmt = $db->prepare($sql);
 $stmt->execute(array($input['dish_id']));
 $dish = $stmt->fetch();

 if (count($dish) == 0) {
 print 'No dishes matched.';
 } else {
 print '<table>';
 print '<tr><th>ID</th><th>Dish Name</th><th>Price</th>';
 print '<th>Spicy?</th></tr>';
 if ($dish->is_spicy == 1) {
 $spicy = 'Yes';
 } else {
 $spicy = 'No';
 }
 printf('<tr><td>%d</td><td>%s</td><td>$%.02f</td><td>%s</td></tr>',
 $dish->dish_id,
 htmlentities($dish->dish_name), $dish->price, $spicy);
 print '</table>';
 }
}
?>

The code relies on the FormHelper.php file discussed in Chapter 7. The dish-form.php
file referenced, which displays the form HTML, contains:

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>

356 | Appendix B: Answers to Exercises

 <tr>
 <td>Dish:</td>
 <td><?= $form->select($dishes,['name' => 'dish_id']) ?></td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <?= $form->input('submit', ['name' => 'info',
 'value' => 'Get Dish Info']) ?></td>
 </tr>
</table>
</form>

Exercise 4
<?php

// Load the form helper class
require 'FormHelper.php';

// Connect to the database
try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (PDOException $e) {
 print "Can't connect: " . $e->getMessage();
 exit();
}
// Set up exceptions on DB errors
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Set up fetch mode: rows as objects
$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_OBJ);

// Put the list of dish IDs and names in a global array because
// we'll need it in show_form() and validate_form()
$dishes = array();
$sql = 'SELECT dish_id, dish_name FROM dishes ORDER BY dish_name';
$stmt = $db->query($sql);
while ($row = $stmt->fetch()) {
 $dishes[$row->dish_id] = $row->dish_name;
}

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);

Answers to Exercises | 357

 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 global $db, $dishes;

 // Set up the $form object with proper defaults
 $form = new FormHelper();

 // All the HTML and form display is in a separate file for clarity
 include 'customer-form.php';
}

function validate_form() {
 global $dishes;
 $input = array();
 $errors = array();

 // Make sure a dish_id valid is submitted and in $dishes.
 // As long as some dish_id value is submitted, we'll consider it OK.
 // If it doesn't match any dishes in the database, process_form()
 // can report that.
 $input['dish_id'] = $_POST['dish_id'] ?? '';
 if (! array_key_exists($input['dish_id'], $dishes)) {
 $errors[] = 'Please select a valid dish.';
 }

 // Name is required
 $input['name'] = trim($_POST['name'] ?? '');
 if (0 == strlen($input['name'])) {
 $errors[] = 'Please enter a name.';
 }

 // Phone number is required
 $input['phone'] = trim($_POST['phone'] ?? '');
 if (0 == strlen($input['phone'])) {
 $errors[] = 'Please enter a phone number.';
 } else {
 // Be US-centric and ensure that the phone number contains
 // at least 10 digits. Using ctype_digit() on each
 // character is not the most efficient way to do this,
 // but is logically straightforward and avoids
 // regular expressions.
 $digits = 0;
 for ($i = 0; $i < strlen($input['phone']); $i++) {
 if (ctype_digit($input['phone'][$i])) {
 $digits++;
 }
 }

358 | Appendix B: Answers to Exercises

 if ($digits < 10) {
 $errors[] = 'Phone number needs at least ten digits.';
 }
 }

 return array($errors, $input);
}

function process_form($input) {
 // Access the global variable $db inside this function
 global $db;

 // Build up the query. No need to specify customer_id because
 // the database will automatically assign a unique one.
 $sql = 'INSERT INTO customers (name,phone,favorite_dish_id) ' .
 'VALUES (?,?,?)';

 // Send the query to the database program and get all the rows back
 try {
 $stmt = $db->prepare($sql);
 $stmt->execute(array($input['name'],$input['phone'],$input['dish_id']));
 print '<p>Inserted new customer.</p>';
 } catch (Exception $e) {
 print "<p>Couldn't insert customer: {$e->getMessage()}.</p>";
 }
}
?>

The code relies on the FormHelper.php file discussed in Chapter 7. The customer-
form.php file referenced, which displays the form HTML, contains:

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>
 <tr>
 <tr><td>Name:</td><td><?= $form->input('text', ['name' => 'name']) ?>
 </td></tr>
 <tr><td>Phone Number:</td>
 <td><?= $form->input('text', ['name' => 'phone']) ?></td></tr>
 <tr><td>Favorite Dish:</td>
 <td><?= $form->select($dishes,['name' => 'dish_id']) ?></td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <?= $form->input('submit', ['name' => 'add',

Answers to Exercises | 359

 'value' => 'Add Customer']) ?></td>
 </tr>
</table>
</form>

Chapter 9
Exercise 1
The template file, template.html:
<html>
 <head><title>{title}</title></head>
 <body>
 <h1>{headline}</h1>
 <h2>By {byline}</h2>
 <div class="article">{article}</div>
 <p><small>Page generated: {date}</small></p>
 </body>
</html>

The PHP program to replace template variables:

$now = new DateTime();
// Express the vars as simply as possible, just key => value
$vars = array('title' => 'Man Bites Dog',
 'headline' => 'Man and Dog Trapped in Biting Fiasco',
 'byline' => 'Ireneo Funes',
 'article' => <<<_HTML_
<p>While walking in the park today, Bioy Casares took a big juicy
bite out of his dog, Santa's Little Helper. When asked why he did
it, Mr. Casares said, "I was hungry."</p>
HTML
 ,
 'date' => $now->format('l, F j, Y'));

// Make a version of $vars to match the templating syntax, with
// {} around the keys
$template_vars = array();
foreach ($vars as $k => $v) {
 $template_vars['{'.$k.'}'] = $v;
}
// Load the template
$template = file_get_contents('template.html');
if ($template === false) {
 die("Can't read template.html: $php_errormsg");
}
// If given an array of strings to look for and an array of replacements,
// str_replace() does all the replacements at once for you
$html = str_replace(array_keys($template_vars),
 array_values($template_vars),
 $template);

360 | Appendix B: Answers to Exercises

// Write out the new HTML page
$result = file_put_contents('article.html', $html);
if ($result === false) {
 die("Can't write article.html: $php_errormsg");
}

Exercise 2
// The array to accumulate address counts
$addresses = array();

$fh = fopen('addresses.txt','rb');
if (! $fh) {
 die("Can't open addresses.txt: $php_errormsg");
}
while ((! feof($fh)) && ($line = fgets($fh))) {
 $line = trim($line);
 // Use the address as the key in $addresses. The value is the number
 // of times the address has appeared.
 if (! isset($addresses[$line])) {
 $addresses[$line] = 0;
 }
 $addresses[$line] = $addresses[$line] + 1;
}
if (! fclose($fh)) {
 die("Can't close addresses.txt: $php_errormsg");
}

// Reverse sort (biggest first) $addresses by element value
arsort($addresses);

$fh = fopen('addresses-count.txt','wb');
if (! $fh) {
 die("Can't open addresses-count.txt: $php_errormsg");
}
foreach ($addresses as $address => $count) {
 // Don't forget the newline at the end
 if (fwrite($fh, "$count,$address\n") === false) {
 die("Can't write $count,$address: $php_errormsg");
 }
}
if (! fclose($fh)) {
 die("Can't close addresses-count.txt: $php_errormsg");
}

Here is a sample addresses.txt to use:

brilling@tweedledee.example.com
slithy@unicorn.example.com
uffish@knight.example.net
slithy@unicorn.example.com
jubjub@sheep.example.com
tumtum@queen.example.org

Answers to Exercises | 361

slithy@unicorn.example.com
uffish@knight.example.net
manxome@king.example.net
beamish@lion.example.org
uffish@knight.example.net
frumious@tweedledum.example.com
tulgey@carpenter.example.com
vorpal@crow.example.org
beamish@lion.example.org
mimsy@walrus.example.com
frumious@tweedledum.example.com
raths@owl.example.net
frumious@tweedledum.example.com

Exercise 3
$fh = fopen('dishes.csv','rb');
if (! $fh) {
 die("Can't open dishes.csv: $php_errormsg");
}
print "<table>\n";
while ((! feof($fh)) && ($line = fgetcsv($fh))) {
 // Using implode() as in Chapter 4
 print "<tr><td>" . implode("</td><td>", $line) . "</td></tr>\n";
}
print "</table>";

Exercise 4
<?php

// Load the form helper class
require 'FormHelper.php';

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {

362 | Appendix B: Answers to Exercises

 // Set up the $form object with proper defaults
 $form = new FormHelper();

 // All the HTML and form display is in a separate file for clarity
 include 'filename-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 // Make sure a filename is specified
 $input['file'] = trim($_POST['file'] ?? '');
 if (0 == strlen($input['file'])) {
 $errors[] = 'Please enter a filename.';
 } else {
 // Make sure the full filename is under the web
 // server's document root
 $full = $_SERVER['DOCUMENT_ROOT'] . '/' . $input['file'];
 // Use realpath() to resolve any .. sequences or
 // symbolic links
 $full = realpath($full);
 if ($full === false) {
 $errors[] = "Please enter a valid filename.";
 } else {
 // Make sure $full begins with the document root directory
 $docroot_len = strlen($_SERVER['DOCUMENT_ROOT']);
 if (substr($full, 0, $docroot_len) != $_SERVER['DOCUMENT_ROOT']) {
 $errors[] = 'File must be under document root.';
 } else {
 // If it's OK, put the full path in $input so we can use
 // it in process_form()
 $input['full'] = $full;
 }
 }
 }

 return array($errors, $input);
}

 function process_form($input) {
 if (is_readable($input['full'])) {
 print htmlentities(file_get_contents($input['full']));
 } else {
 print "Can't read {$input['file']}.";
 }
}
?>

Answers to Exercises | 363

The code relies on the FormHelper.php file discussed in Chapter 7. The filename-
form.php file referenced, which displays the form HTML, contains:

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>

 <tr><td>File:</td>
 <td><?= $form->input('text', ['name' => 'file']) ?></td></tr>
 <tr><td colspan="2"
 align="center"><?= $form->input('submit', ['value' => 'Display']) ?>
 </td></tr>

</table>
</form>

Exercise 5
Here is the new validate_form() function that implements the additional test using
strcasecmp():

function validate_form() {
 $input = array();
 $errors = array();

 // Make sure a filename is specified
 $input['file'] = trim($_POST['file'] ?? '');
 if (0 == strlen($input['file'])) {
 $errors[] = 'Please enter a filename.';
 } else {
 // Make sure the full filename is under the web
 // server's document root
 $full = $_SERVER['DOCUMENT_ROOT'] . '/' . $input['file'];
 // Use realpath() to resolve any .. sequences or
 // symbolic links
 $full = realpath($full);
 if ($full === false) {
 $errors[] = "Please enter a valid filename.";
 } else {
 // Make sure $full begins with the document root directory
 $docroot_len = strlen($_SERVER['DOCUMENT_ROOT']);
 if (substr($full, 0, $docroot_len) != $_SERVER['DOCUMENT_ROOT']) {
 $errors[] = 'File must be under document root.';
 } else if (strcasecmp(substr($full, -5), '.html') != 0) {

364 | Appendix B: Answers to Exercises

 $errors[] = 'File name must end in .html';
 } else {
 // If it's OK, put the full path in $input so we can use
 // it in process_form()
 $input['full'] = $full;
 }
 }
 }

 return array($errors, $input);
}

Chapter 10
Exercise 1
$view_count = 1 + ($_COOKIE['view_count'] ?? 0);
setcookie('view_count', $view_count);
print "<p>Hi! Number of times you've viewed this page: $view_count.</p>";

Exercise 2
$view_count = 1 + ($_COOKIE['view_count'] ?? 0);

if ($view_count == 20) {
 // An empty value for setcookie() removes the cookie
 setcookie('view_count', '');
 $msg = "<p>Time to start over.</p>";
} else {
 setcookie('view_count', $view_count);
 $msg = "<p>Hi! Number of times you've viewed this page: $view_count.</p>";
 if ($view_count == 5) {
 $msg .= "<p>This is your fifth visit.</p>";
 } elseif ($view_count == 10) {
 $msg .= "<p>This is your tenth visit. You must like this page.</p>";
 } elseif ($view_count == 15) {
 $msg .= "<p>This is your fifteenth visit. " .
 "Don't you have anything else to do?</p>";
 }
}
print $msg;

Exercise 3
The color-picking page:

<?php
// Start sessions first thing so we can use $_SESSION freely later
session_start();

// Load the form helper class

Answers to Exercises | 365

require 'FormHelper.php';

$colors = array('ff0000' => 'Red',
 'ffa500' => 'Orange',
 'ffffff' => 'Yellow',
 '008000' => 'Green',
 '0000ff' => 'Blue',
 '4b0082' => 'Indigo',
 '663399' => 'Rebecca Purple');

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 global $colors;

 // Set up the $form object with proper defaults
 $form = new FormHelper();
 // All the HTML and form display is in a separate file for clarity
 include 'color-form.php';
}

function validate_form() {
 $input = array();
 $errors = array();

 // color must be a valid color
 $input['color'] = $_POST['color'] ?? '';
 if (! array_key_exists($input['color'], $GLOBALS['colors'])) {
 $errors[] = 'Please select a valid color.';
 }

 return array($errors, $input);
}

function process_form($input) {
 global $colors;

366 | Appendix B: Answers to Exercises

 $_SESSION['background_color'] = $input['color'];
 print '<p>Your color has been set.</p>';
}
?>

The code relies on the FormHelper.php file discussed in Chapter 7. The color-form.php
file referenced, which displays the form HTML, contains:

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>
 <tr>
 <td>Favorite Color:</td>
 <td><?= $form->select($colors,['name' => 'color']) ?></td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <?= $form->input('submit', ['name' => 'set',
 'value' => 'Set Color']) ?></td>
 </tr>
</table>
</form>

The page with background color set:

<?php
// Start sessions first thing so we can use $_SESSION freely later
session_start();
?>
<html>
 <head><title>Background Color Example</title>
 <body style="background-color:<?= $_SESSION['background_color'] ?>">
 <p>What color did you pick?</p>
 </body>
</html>

Exercise 4
The ordering page:

session_start();

// This assumes FormHelper.php is in the same directory as
// this file.
require 'FormHelper.php';

Answers to Exercises | 367

// Set up the array of choices in the select menu.
// This is needed in display_form(), validate_form(),
// and process_form(), so it is declared in the global scope.
$products = ['cuke' => 'Braised Sea Cucumber',
 'stomach' => "Sauteed Pig's Stomach",
 'tripe' => 'Sauteed Tripe with Wine Sauce',
 'taro' => 'Stewed Pork with Taro',
 'giblets' => 'Baked Giblets with Salt',
 'abalone' => 'Abalone with Marrow and Duck Feet'];

// The main page logic:
// - If the form is submitted, validate and then process or redisplay
// - If it's not submitted, display
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 // If validate_form() returns errors, pass them to show_form()
 list($errors, $input) = validate_form();
 if ($errors) {
 show_form($errors);
 } else {
 // The submitted data is valid, so process it
 process_form($input);
 }
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form($errors = array()) {
 global $products;
 $defaults = array();
 // Start out with 0 as a default
 foreach ($products as $code => $label) {
 $defaults["quantity_$code"] = 0;
 }
 // If quantities are in the session, use those
 if (isset($_SESSION['quantities'])) {
 foreach ($_SESSION['quantities'] as $field => $quantity) {
 $defaults[$field] = $quantity;
 }
 }
 $form = new FormHelper($defaults);
 // All the HTML and form display is in a separate file for clarity
 include 'order-form.php';
}

function validate_form() {
 global $products;

 $input = array();
 $errors = array();

368 | Appendix B: Answers to Exercises

 // For each quantity box, make sure the value is
 // a valid integer >= 0
 foreach ($products as $code => $name) {
 $field = "quantity_$code";
 $input[$field] = filter_input(INPUT_POST, $field,
 FILTER_VALIDATE_INT,
 ['options' => ['min_range'=>0]]);
 if (is_null($input[$field]) || ($input[$field] === false)) {
 $errors[] = "Please enter a valid quantity for $name.";
 }
 }

 return array($errors, $input);
}

function process_form($input) {
 $_SESSION['quantities'] = $input;

 print "Thank you for your order.";
}

The code relies on the FormHelper.php file discussed in Chapter 7. The order-
form.php file referenced, which displays the form HTML, contains:

<form method="POST" action="<?= $form->encode($_SERVER['PHP_SELF']) ?>">
<table>
 <?php if ($errors) { ?>
 <tr>
 <td>You need to correct the following errors:</td>
 <td>
 <?php foreach ($errors as $error) { ?>
 <?= $form->encode($error) ?>
 <?php } ?>
 </td>
 <?php } ?>

 <tr><th>Product</th><td>Quantity</td></tr>
<?php foreach ($products as $code => $name) { ?>
 <tr><td><?= htmlentities($name) ?>:</td>
 <td><?= $form->input('text', ['name' => "quantity_$code"]) ?></td></tr>
<?php } ?>
 <tr><td colspan="2"
 align="center"><?= $form->input('submit', ['value' => 'Order']) ?>
 </td></tr>

</table>
</form>

The checkout page:

session_start();

// The same products from the order page

Answers to Exercises | 369

$products = ['cuke' => 'Braised Sea Cucumber',
 'stomach' => "Sauteed Pig's Stomach",
 'tripe' => 'Sauteed Tripe with Wine Sauce',
 'taro' => 'Stewed Pork with Taro',
 'giblets' => 'Baked Giblets with Salt',
 'abalone' => 'Abalone with Marrow and Duck Feet'];

// Simplified main page logic without form validation
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 process_form();
} else {
 // The form wasn't submitted, so display
 show_form();
}

function show_form() {
 global $products;

 // The "form" is just a single submit button, so we won't use
 // FormHelper and just inline all the HTML here
 if (isset($_SESSION['quantities']) && (count($_SESSION['quantities'])>0)) {
 print "<p>Your order:</p>";
 foreach ($_SESSION['quantities'] as $field => $amount) {
 list($junk, $code) = explode('_', $field);
 $product = $products[$code];
 print "$amount $product";
 }
 print "";
 print '<form method="POST" action=' .
 htmlentities($_SERVER['PHP_SELF']) . '>';
 print '<input type="submit" value="Check Out" />';
 print '</form>';
 } else {
 print "<p>You don't have a saved order.</p>";
 }
 // This assumes the order form page is saved as "order.php"
 print 'Return to Order page';
}

function process_form() {
 // This removes the data from the session
 unset($_SESSION['quantities']);
 print "<p>Thanks for your order.</p>";
}

Chapter 11
Exercise 1
$json = file_get_contents("http://php.net/releases/?json");
if ($json === false) {

370 | Appendix B: Answers to Exercises

 print "Can't retrieve feed.";
}
else {
 $feed = json_decode($json, true);
 // $feed is an array whose top-level keys are major release
 // numbers. First we need to pick the biggest one.
 $major_numbers = array_keys($feed);
 rsort($major_numbers);
 $biggest_major_number = $major_numbers[0];
 // The "version" element in the array under the major number
 // key is the latest release for that major version number
 $version = $feed[$biggest_major_number]['version'];
 print "The latest version of PHP released is $version.";
}

Exercise 2
$c = curl_init("http://php.net/releases/?json");
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$json = curl_exec($c);
if ($json === false) {
 print "Can't retrieve feed.";
}
else {
 $feed = json_decode($json, true);
 // $feed is an array whose top-level keys are major release
 // numbers. First we need to pick the biggest one.
 $major_numbers = array_keys($feed);
 rsort($major_numbers);
 $biggest_major_number = $major_numbers[0];
 // The "version" element in the array under the major number
 // key is the latest release for that major version number
 $version = $feed[$biggest_major_number]['version'];
 print "The latest version of PHP released is $version.";
}

Exercise 3
// Seconds from Jan 1, 1970 until now
$now = time();
setcookie('last_access', $now);
if (isset($_COOKIE['last_access'])) {
 // To create a DateTime from a seconds-since-1970 value,
 // prefix it with @.
 $d = new DateTime('@'. $_COOKIE['last_access']);
 $msg = '<p>You last visited this page at ' .
 $d->format('g:i a') . ' on ' .
 $d->format('F j, Y') . '</p>';
} else {
 $msg = '<p>This is your first visit to this page.</p>';
}

Answers to Exercises | 371

print $msg;

Exercise 4
$url = 'https://api.github.com/gists';
$data = ['public' => true,
 'description' => "This program a gist of itself.",
 // As the API docs say:
 // The keys in the files object are the string filename,
 // and the value is another object with a key of content
 // and a value of the file contents.
 'files' => [basename(__FILE__) =>
 ['content' => file_get_contents(__FILE__)]]];

$c = curl_init($url);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_POST, true);
curl_setopt($c, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));
curl_setopt($c, CURLOPT_POSTFIELDS, json_encode($data));
curl_setopt($c, CURLOPT_USERAGENT, 'learning-php-7/exercise');

$response = curl_exec($c);
if ($response === false) {
 print "Couldn't make request.";
} else {
 $info = curl_getinfo($c);
 if ($info['http_code'] != 201) {
 print "Couldn't create gist, got {$info['http_code']}\n";
 print $response;
 } else {
 $body = json_decode($response);
 print "Created gist at {$body->html_url}\n";
 }
}

Chapter 12
Exercise 1
The keyword global should not be in line 5, so the parse error should report that
unexpected keyword. The actual parse error is:

PHP Parse error: syntax error, unexpected 'global' (T_GLOBAL)
in debugging-12.php on line 5

372 | Appendix B: Answers to Exercises

To make the program run properly, change the line print global $name; to print
$GLOBALS['name'];. Or, you can add global name; as the first line of the function
and then change print global $name; to print $name;.

Exercise 2
function validate_form() {
 $input = array();
 $errors = array();

 // turn on output buffering
 ob_start();
 // dump all the submitted data
 var_dump($_POST);
 // capture the generated "output"
 $output = ob_get_contents();
 // turn off output buffering
 ob_end_clean();
 // send the variable dump to the error log
 error_log($output);

 // op is required
 $input['op'] = $GLOBALS['ops'][$_POST['op']] ?? '';
 if (! in_array($input['op'], $GLOBALS['ops'])) {
 $errors[] = 'Please select a valid operation.';
 }
 // num1 and num2 must be numbers
 $input['num1'] = filter_input(INPUT_POST, 'num1', FILTER_VALIDATE_FLOAT);
 if (is_null($input['num1']) || ($input['num1'] === false)) {
 $errors[] = 'Please enter a valid first number.';
 }

 $input['num2'] = filter_input(INPUT_POST, 'num2', FILTER_VALIDATE_FLOAT);
 if (is_null($input['num2']) || ($input['num2'] === false)) {
 $errors[] = 'Please enter a valid second number.';
 }

 // can't divide by zero
 if (($input['op'] == '/') && ($input['num2'] == 0)) {
 $errors[] = 'Division by zero is not allowed.';
 }

 return array($errors, $input);
}

Exercise 3
At the top of the program, this code defines an exception handler and sets it up to be
called on unhandled exceptions:

Answers to Exercises | 373

function exceptionHandler($ex) {
 // Log the specifics to the error log
 error_log("ERROR: " . $ex->getMessage());
 // Print something less specific for users to see
 // and exit
 die("<p>Sorry, something went wrong.</p>");
}
set_exception_handler('exceptionHandler');

Then the try/catch blocks can be removed from the two places they are used (once
around creating the PDO object and once in process_form()) because the exceptions
will be handled by the exception handler.

Exercise 4
• Line 4: Change :: to : in the DSN.
• Line 5: Change catch ($e) to catch (Exception $e).
• Line 16: Change $row['dish_id']] to $row['dish_id'] as the key to look up in

the $dish_names array.
• Line 18: Change ** to * in the SQL query.
• Line 20: Change = to ==.
• Line 26: Change the third format specifier from %f to %s—$customer['phone']

is a string.
• Line 30: Change $customer['favorite_dish_id'] to $dish_names

[$customer['favorite_dish_id']] so that the dish ID is translated into the
name of the corresponding dish.

• Line 33: Insert a } to match the opening { in line 22.

The complete corrected program is:

<?php
// Connect to the database
try {
 $db = new PDO('sqlite:/tmp/restaurant.db');
} catch (Exception $e) {
 die("Can't connect: " . $e->getMessage());
}
// Set up exception error handling
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
// Set up fetch mode: rows as arrays
$db->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_ASSOC);
// Get the array of dish names from the database
$dish_names = array();
$res = $db->query('SELECT dish_id,dish_name FROM dishes');
foreach ($res->fetchAll() as $row) {
 $dish_names[$row['dish_id']] = $row['dish_name'];
}
$res = $db->query('SELECT * FROM customers ORDER BY phone DESC');

374 | Appendix B: Answers to Exercises

$customers = $res->fetchAll();
if (count($customers) == 0) {
 print "No customers.";
} else {
 print '<table>';
 print '<tr><th>ID</th><th>Name</th>
 <th>Phone</th><th>Favorite Dish</th></tr>';
 foreach ($customers as $customer) {
 printf("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td></tr>\n",
 $customer['customer_id'],
 htmlentities($customer['customer_name']),
 $customer['phone'],
 $dish_names[$customer['favorite_dish_id']]);
 }
 print '</table>';
}
?>

Chapter 13
Exercise 2
public function testNameMustBeSubmitted() {
 $submitted = array('age' => '15',
 'price' => '39.95');
 list($errors, $input) = validate_form($submitted);
 $this->assertContains('Your name is required.', $errors);
 $this->assertCount(1, $errors);

 }

Exercise 3
include 'FormHelper.php';

class FormHelperTest extends PHPUnit_Framework_TestCase {

 public $products = ['cu&ke' => 'Braised <Sea> Cucumber',
 'stomach' => "Sauteed Pig's Stomach",
 'tripe' => 'Sauteed Tripe with Wine Sauce',
 'taro' => 'Stewed Pork with Taro',
 'giblets' => 'Baked Giblets with Salt',
 'abalone' => 'Abalone with Marrow and Duck Feet'];
 public $stooges = ['Larry','Moe','Curly','Shemp'];

 // This code gets run before each test. Putting it in
 // the special setUp() method is more concise than having
 // to repeat it in each test method.
 public function setUp() {
 $_SERVER['REQUEST_METHOD'] = 'GET';
 }

Answers to Exercises | 375

 public function testAssociativeOptions() {
 $form = new FormHelper();
 $html = $form->select($this->products);
 $this->assertEquals($html,<<<_HTML_
<select ><option value="cu&ke">Braised <Sea> Cucumber</option>
<option value="stomach">Sauteed Pig's Stomach</option>
<option value="tripe">Sauteed Tripe with Wine Sauce</option>
<option value="taro">Stewed Pork with Taro</option>
<option value="giblets">Baked Giblets with Salt</option>
<option value="abalone">Abalone with Marrow and Duck Feet</option></select>
HTML
);
 }

 public function testNumericOptions() {
 $form = new FormHelper();
 $html = $form->select($this->stooges);
 $this->assertEquals($html,<<<_HTML_
<select ><option value="0">Larry</option>
<option value="1">Moe</option>
<option value="2">Curly</option>
<option value="3">Shemp</option></select>
HTML
);
 }

 public function testNoOptions() {
 $form = new FormHelper();
 $html = $form->select([]);
 $this->assertEquals('<select ></select>', $html);
 }

 public function testBooleanTrueAttributes() {
 $form = new FormHelper();
 $html = $form->select([],['np' => true]);
 $this->assertEquals('<select np></select>', $html);

 }

 public function testBooleanFalseAttributes() {
 $form = new FormHelper();
 $html = $form->select([],['np' => false, 'onion' => 'red']);
 $this->assertEquals('<select onion="red"></select>', $html);
 }

 public function testNonBooleanAttributes() {
 $form = new FormHelper();
 $html = $form->select([],['spaceship'=>'<=>']);
 $this->assertEquals('<select spaceship="<=>"></select>', $html);
 }

376 | Appendix B: Answers to Exercises

 public function testMultipleAttribute() {
 $form = new FormHelper();
 $html = $form->select([],["name" => "menu",
 "q" => 1, "multiple" => true]);
 $this->assertEquals('<select name="menu[]" q="1" multiple></select>',
 $html);
 }
}

Exercise 4
The additional test methods for FormHelperTest:

public function testButtonNoTypeOK() {
 $form = new FormHelper();
 $html = $form->tag('button');
 $this->assertEquals('<button />',$html);
 }
 public function testButtonTypeSubmitOK() {
 $form = new FormHelper();
 $html = $form->tag('button',['type'=>'submit']);
 $this->assertEquals('<button type="submit" />',$html);
 }
 public function testButtonTypeResetOK() {
 $form = new FormHelper();
 $html = $form->tag('button',['type'=>'reset']);
 $this->assertEquals('<button type="reset" />',$html);
 }
 public function testButtonTypeButtonOK() {
 $form = new FormHelper();
 $html = $form->tag('button',['type'=>'button']);
 $this->assertEquals('<button type="button" />',$html);
 }
 public function testButtonTypeOtherFails() {
 $form = new FormHelper();
 // FormHelper should throw an InvalidArgumentException
 // when an invalid attribute is provided
 $this->setExpectedException('InvalidArgumentException');
 $html = $form->tag('button',['type'=>'other']);
 }

The necessary modifications for FormHelper that make the tests pass are:

// This code goes just after the "class FormHelper" declaration
 // This array expresses, for the specified elements,
 // what attribute names have what allowed values
 protected $allowedAttributes = ['button' => ['type' => ['submit',
 'reset',
 'button']]];

 // tag() is modified to pass $tag as the first argument to
 // $this->attributes()

Answers to Exercises | 377

 public function tag($tag, $attributes = array(), $isMultiple = false) {
 return "<$tag {$this->attributes($tag, $attributes, $isMultiple)} />";
 }

 // start() is also modified to pass $tag as the first argument to
 // $this->attributes()
 public function start($tag, $attributes = array(), $isMultiple = false) {
 // <select> and <textarea> tags don't get value attributes on them
 $valueAttribute = (! (($tag == 'select')||($tag == 'textarea')));
 $attrs = $this->attributes($tag, $attributes, $isMultiple,
 $valueAttribute);
 return "<$tag $attrs>";
 }

 // attributes() is modified to accept $tag as a first argument,
 // set up $attributeCheck if allowed attributes for the tag have
 // been defined in $this->allowedAttributes, and then, if allowed
 // attributes have been defined, see if the provided value is
 // allowed and throw an exception if not
 protected function attributes($tag, $attributes, $isMultiple,
 $valueAttribute = true) {
 $tmp = array();
 // If this tag could include a value attribute and it
 // has a name and there's an entry for the name
 // in the values array, then set a value attribute
 if ($valueAttribute && isset($attributes['name']) &&
 array_key_exists($attributes['name'], $this->values)) {
 $attributes['value'] = $this->values[$attributes['name']];
 }
 if (isset($this->allowedAttributes[$tag])) {
 $attributeCheck = $this->allowedAttributes[$tag];
 } else {
 $attributeCheck = array();
 }
 foreach ($attributes as $k => $v) {
 // Check if the attribute's value is allowed
 if (isset($attributeCheck[$k]) &&
 (! in_array($v, $attributeCheck[$k]))) {
 throw new
 InvalidArgumentException("$v is not allowed as value for $k");
 }
 // True boolean value means boolean attribute
 if (is_bool($v)) {
 if ($v) { $tmp[] = $this->encode($k); }
 }
 // Otherwise k=v
 else {
 $value = $this->encode($v);
 // If this is an element that might have multiple values,
 // tack [] onto its name
 if ($isMultiple && ($k == 'name')) {

378 | Appendix B: Answers to Exercises

 $value .= '[]';
 }
 $tmp[] = "$k=\"$value\"";
 }
 }
 return implode(' ', $tmp);
 }

Answers to Exercises | 379

Index

Symbols
! (negation) operator, 50
!= (not equal) operator, 45
" " (quotation marks, double)

debugging, 251
interpolating array elements in double-

quoted strings, 68
string delimiter in PHP, 22

(octothorpe) character, introducing com‐
ments, 16

$ (dollar sign), denoting variables, 12
$GLOBALS array, 93

modifying global variable with, 94
recommended use versus global keyword,

95
$params array, 233
$this variable, 104

example of, 105
$_COOKIE array, 208, 210
$_GET array, 124
$_POST array, 122, 124
$_SERVER array, 122

accessing incoming request headers, 245
argv, 312
HTTPS, 246
HTTP_HOST, 247
PHP_SELF element, 122
REQUEST_METHOD element, 122
REQUEST_URI, 247
useful elements, 123

$_SESSION array, 214
removing a key and value from, 226
usernames in, 224

% (percent sign)

beginning format string rules, 26
literal, matching with LIKE, 180
modulus operator, 30
Unix shell prompt, 314
wildcard character in SQL, 180

&& (logical and) operator, 51
' ' (quotation marks, single)

debugging, 251
escaping in PHP strings, 20
string delimiter in PHP, 20

' (apostrophe), in SQL queries, 169
escaping, 169

() (parentheses)
following function names, 82
grouping operations with, 31, 51

* (asterisk)
** (exponentiation) operator, 30
multiplication operator, 30
wildcard character, using with SELECT, 175

+ (plus sign)
++ (increment) operator, 34
+= (addition and assignment) operator, 34,

256
addition operator, 30

- (subtraction) operator, 30
-- (decrement) operator, 34
-> (arrow) operator, 105
. (period)

.. in filenames, 202
string concatenation operator, 23

. (string concatenation) operator
combining with assignment operator, 34

/ (slash)
/* and */ delimiting multiline comments, 16

381

// beginning comment lines, 8, 16
division operator, 30
in filenames, 202
path for cookies, 211
using with file access functions, 194

:: in static method calls, 106
; (semicolon)

beginning comments in config files, 282,
329

ending PHP statements, 14, 41, 315
< (less than) operator, 45
<= (less than or equal to) operator, 45
<=> (spaceship) operator, 49
<?php start tag, 13
= (equals) sign

= (assignment) versus == (comparison), 44
== (equal) operator, 25, 44
=== (identity) operator, 132, 164, 201
=> (array arrrow) operator, 105
assignment operator, 31, 33

> (greater than) operator, 45
>= (greater than or equal to) operator, 45
?> PHP end tag, 13
?? (null coalesce) operator, 125, 271
[] (square brackets)

accessing an array element, 59
bracket matching in editors, 251
creating arrays or adding elements, 61
ending form element names, 125
short array syntax, 59

creating multidimensional arrays, 74
\ (backslash)

escape character in PHP, 20
escaping in PHP strings, 21
top-level namespace, 115

_ (underscore)
literal, matching with LIKE, 180
wildcard character in SQL, 180

{} (curly braces)
bracket matching in editors, 251
enclosing code blocks, 41, 43
enclosing function body, 82
in message formats, 322
interpolating array element values, 69
multidimensional array value interpolation

with, 77
variable interpolation with, 36

|| (logical OR) operator, 51

A
abs() function, 46
absolute file paths, 99
Accept header, 246
action attribute, form tag, 122, 125
answers to exercises, 335-379
Apache web server

error log, 257
for Windows, 327
httpd.conf or .htaccess file, 330

API key, 232
API requests, serving, 244-247
API URL, putting query string parameters in,

232
application frameworks (see frameworks)
arguments (command line), 312
arguments (function), 83

changing argument values, 86
default value for, 84
defining function with multiple arguments,

84
optional arguments, 85
type declarations for, 96

arithmetic operators, 30
using on variables, 33

array arrow operator (=>), 105
array() function, 58

creating multidimensional arrays, 74
creating numeric arrays, 60

arrays, 8, 57-79
basics of, 57
creating, 58
creating element by element, 59
creating numeric arrays, 60
finding size of, 61
indexing of PHP arrays, 313
JSON, conversion to PHP arrays, 234
looping through, 62-68
modifying, 68-70
naming, 60
of modified input data, building, 132
returning database rows as, 178
sorting, 70-74
using multidimensional arrays, 74-77

array_key_exists() function, 66
array_search() function, 67
arrow operator (->), 105
arsort() function, 73
as keyword, 116

382 | Index

asort() function, 72
asort() method (Collator), 321
assertion methods, 268
assertions, 267

IsolateValidationTest (example), 272
assignment

assigning value to properties, 105
chaining assignment operations, 41
comparison versus, 44
using with function call in test expression,

91
associative arrays, 61, 178

multidimensional, iterating through, 75
sorting by element value, 72

auto-globals, 95

B
backslash (\)

escape character in PHP, 20
escaping in PHP strings, 21
top-level namespace, 115

booleans, 39, 96, 200
in type comparisons, 132
truth values, 40

browsers (see web browsers)
buffering (output), 227

data written with fwrite(), 200
output_buffering directive, 331
sending var_dump() output to error log,

257
bytes (PHP string representation), 20

C
case

case-sensitivity in variable names, 33
in string comparisons, 25
keywords and function names in PHP, 15
manipulating for strings, 27
SQL and, 157
uppercase and lowercase in different char‐

acter sets, 319
case sensitivity in PHP, 15
catch blocks, 110
catching exceptions, 109
character sets, 317

default_charset configuration variable, 317
class keyword, 104
classes, 103

(see also objects)

constructors, 107
defining, 104
extending, 110
organizing into files, 280
static methods, 106

client-side languages, 3
client/server commuications

initiating sessions, 213
when setting a cookie, 209

Collator class, 320
columns

common types for database columns, 161
defining in a database table, 160

command line, PHP on, 311-315
running a PHP REPL, 314
using as interactive shell, 311
writing a program for, 312

accessing command-line arguments, 312
using PHP built-in web server, 314

comments, 8
in config files, 282, 329
multiline, 16
single-line, styles for, 16
SQL, 166

compare() method (Collator), 321
comparison operators, 40, 43
comparisons, 40

comparing text, 320
Composer, 266, 293-298

adding a package with, 294
information resources on, 296
installing, 293
installing Laravel, 304
installing PsySH, 315
installing Swift Mailer with, 299
using a Composer-installed library, 294
using with source control systems, 295

configuration directives, 327-333
changing in php.ini file, 328
changing within PHP program with

ini_set(), 331
summary listing of useful directives, 332

configuration files, 282, 328
reading, 283

__construct() method, 107
constructors, 104, 107

calling, 107
putting in a subclass, 112
throwing exceptions, 108

Index | 383

content negotiation, 246
Content-Type headers, 234, 235
cookies, 207-213, 213

(see also sessions)
client/server communication when setting,

209
in sessions, 208
lifetime of, 210
reading, 208
setting, 208
setting expiration, 210
setting path for, 211
setting path to specific directory, 211
using with cURL, 240-243

Coordinated Universal Time (see UTC)
count() function, 61
COUNT() function, 174
country codes, 320
CREATE TABLE command, 160

sending to the database program, 161
cross-platform PHP, 5
cross-site scripting attacks, 139

HttpOnly cookies and, 213
CSV files, 195-199
cURL, 236-247

errors from requests, 237
handling errors with, 238
retrieving HTTPS URLs, 243
retrieving URLs via GET, 236
retrieving URLs via POST, 239
sending JSON via POST request, 239
using cookies, 240-243
using with query string parameters and

headers, 237
CURLOPT_COOKIEFILE, 242
CURLOPT_COOKIEJAR, 241
CURLOPT_HTTPHEADER, 237, 240
CURLOPT_POST, 239
CURLOPT_POSTFIELDS, 239, 240
CURLOPT_RETURNTRANSFER, 237
CURLOPT_SSLVERSION, 243
CURLOPT_SSL_VERIFYHOST, 243
CURLOPT_SSL_VERIFYPEER, 243
curl_errno() function, 237
curl_exec() function, 236
curl_getinfo() function, 238
curl_init() function, 236
curl_setopt() function, 236
curl_version() function, 243

D
Data Source Name (see DSN)
data types

database column, 160
declaring a return type, 97
declaring an argument type, 96
declaring strict typing, 98
type declarations in PHP versions, 96

database connections
establishing from config file, 283
setting up with PDO(), 12

database program abstraction layer (see PDO)
databases, 155-188

advantages of using, 155
changing format of retrieved rows, 178-179
complete data insertion form (example),

170-173
complete data retrieval form (example),

182-186
connecting to a database program, 158
creating a table, 160
different meanings of database, 156
displaying information from, 11
inserting CSV data in a table, 196
inserting form data safely, 168
organizing data in, 156
putting data into, 162
retrieving data from, 173-177
retrieving form data safely, 179
retrieving username and password from,

225
use with PHP, 5

DateInterval object, 291
dates and time

calculating, 290
checking date range for form data, 134
components of, 285
cookie expiration, 210
displaying the date or time, 285
parsing, 288
printing formatted date string, 286
setting date or time parts, 289
timezones, 291

dates and times, 285-292
DateTime class, 285
DateTime::checkdate(), 289
DateTime::diff(), 291
DateTime::format(), 210, 285

formatting characters, 286

384 | Index

DateTime::modify(), 290
DateTime::setTime(), 289
DateTime:setDate(), 289
date_default_timezone_set() function, 291
debuggers, 258
debugging, 249-264

controlling where errors appear, 249-250
fixing parse errors, 251-254
handling uncaught exceptions, 261
inspecting program data, 254-261

adding debugging output, 254
editing the right file, 256
using a debugger, 258

DECIMAL type, 161
decision-making, 39

(see also logic and decision-making)
default values, displaying for form items, 142,

144
default_charset configuration variable, 317
DELETE command, 166

syntax and use of, 168
using wildcards in WHERE clause, 180

dependencies (package), 295
deprecation warnings, 250
DESC operator, 177
descending order, sorting arrays in, 73
development environment, 282
dictionary order, string comparisons, 47
die() function, 256
display_errors configuration directive, 249
domain, setting for cookies, 212
DROP TABLE command, 162
DSN (Data Source Name), 158

prefixes and options for database programs,
158

dynamic websites, xi

E
editors, PHP-aware, 251
elements (array), 57
else clauses

in if() construct, 42
with elseif() construct, 43

elseif() construct, 42
email addresses, validating, 135, 141
email, sending with Swift Mailer, 299-301
empty arrays, 62
environments, 282

separating configuration information from
code, 282

equal operator (==), 44
assignment operator (=) versus, 44
comparing strings with, 25

error messages, 109
configuring display of, 249
displaying for form data, 129
generated by PHP engine, categories of, 250
headers already sent, 227
invalid username or password, 223
line number in, 253

errors
accessing URLs with file access functions,

236
checking for, in file handling, 199-202
form data submissions, 129
form input, in $errors array, 130
from cURL requests, 237
from data insertion with exec(), 163
login and user identification, 223
PDO silent error mode, working with, 163
PDO warning error mode, working with,

164
error_log() function, 257, 262
error_reporting configuration directive, 250,

330
constants setting value of, 250

exceptions, 108-110
handling, 110
handling uncaught exceptions, 261
PDO error mode, 163
using, 108

exec() function, 161
changing data with UPDATE, 165
checking errors from, 163
deleting data with, 166
inserting data with, 162

execute() function, 12, 169
exercises, answers to, 335-379
expiration (cookies), 210

default expiration, 211
expired sessions, removal of, 218
explode() function, 70, 193

F
Facebook, HHVM PHP engine, 283
fatal errors, 250
fclose() function, 194

Index | 385

checking an error from, 201
checking for errors from, 199
fwrite() errors and, 200

feof() function, 194
fetch() method, 173

chaining to end of query() call, 176
passing fetch styles to, 178

fetchAll() method, 12, 174
passing fetch styles to, 178

fgetcsv() function, 195
fgets() function, 193

checking an error from, 201
__FILE__ constant, 256
file modes for fopen(), 194
file() function, 192
files, 189-203

CSV files, working with, 195-199
editing the right file (in debugging), 256
organizing classes into, 280
permissions, 189
reading and writing entire files, 190
reading and writing parts of, 192-195
running code in another file, 98-100
sanitizing externally supplied filenames, 202

file_exists() function, 198
file_get_contents() function, 190

checking an error from, 201
retrieving a URL with, 232
sending POST request via, 235

file_put_contents() function, 192
floating-point numbers, 30

checking for, in form data, 131
comparing, 45
filtering in form data, 132
validating range for form data, 134

fopen() function, 193
checking an error from, 201
checking for errors from, 199
error opening files, 200
file modes, 194

for() construct, 52
iterating through arrays, 64
iterating through multidimensional arrays,

76
multiple expressions in, 53
sequence of statements, 53

foreach() construct, 62
array element order and, 65

iterating through multidimensional arrays,
75

format strings (DateTime::format), 286
format strings (printf function), 25
forms, 119-154

accessing form parameters, 124-127
cleaning up parameter that goes in filename,

203
complete application (example), 144-153

complete form, 148-151
form element display helper class,

145-148
PHP and HTML generating a form,

151-153
complete data insertion form (example),

170-173
complete data retrieval form (example), 182
displaying and processing a form, 120
displaying default values, 142-144
login form, displaying, 220
printing submitted form parameters with

var_dump(), 257
printing using PHP, 9
processing with functions, 127
retrieving form data safely from database,

179
saving form data in a session, 215
unsanitized form data in SQL queries, 168
useful elements in $_SERVER array, 123
validating data, 129-141

fputcsv() function, 196
frameworks, 303-310

choosing a PHP framework, 304
Laravel, 304
Symfony, 305
web development, tasks performed by, 303
Zend Framework, 307

function keyword, 82
functions, 81-101

calling, 82
declaring, 82
defining before or after calling, 83
form processing with, 127
names of, 82
organizing into files, 98-100
passing arguments to, 83
returning values from, 87
rules on arguments and return values,

enforcing, 96-98

386 | Index

variable scope and, 92-95
fwrite() function, 195

G
garbage collection, expired sessions, 218
GET method, 122

retrieving URLs with cURL GET requests,
236

retrieving URLs with file_get_contents(),
231

Route::get() method, 305
git, 280
global Composer directory, 315
global keyword, 94
global variables, 92

accessing using global keyword, 94
modifying with $GLOBALS array, 94

H
handles (cURL), 236
header() function, 197
headers, 226

adding to HTTP requests, 234
cURL options for, 237
headers already sent error message, 227
HTTP response, 244
sending HTTP headers with stream context,

234
here documents, 9

assignment in, 32
defining strings with, 22
printing, 23
variable interpolation in, 35

.htaccess file (Apache), 330
HTML, xii

encoding HTML entities in a string, 140
filtering from form data input, 138
forms, 119

(see also forms)
stripping HTML tags from a string, 139

htmlentities() function, 139, 140, 153
HTTP response codes, 239, 244
httpd.conf file (Apache), 330
HttpOnly cookies, 213
HTTPS URLs, retrieving with cURL, 243
http_build_query() function, 232

I
ICU library, 318
ICU User Guide to Formatting and Parsing, 322
IDEs (integrated development environments),

252
Xdebug integration with, 284

idle time for sessions, 218
if() construct, 10

else clause, 42
elseif clauses paired with, 42
elseif() with else, 43
multiple statements in code block, 42
test expression for validating form data, 130
test expression, evaluating truth value of, 41
test expressions, 252
using comparison and logical operators in,

44-51
using function return values in, 89

implode() function, 69
include directive, 99
include_path configuration directive, 331
initialization expression, 53
ini_get() function, 331
ini_set() function, 218

changing configuration directives, 331
INSERT command, 162

tutorial on, 165
instanceof operator, 113
instances, 104
INT type, 161
INTEGER type, 161
integers, 30

checking for, in form data, 131
checking range for form data, 134

integrated development environments (IDEs),
252
Xdebug integration with, 284

interactive shells, 311
running a PHP REPL, 314
running PsySH, 315

internationalization and localization, 317
localizing output, 321
manipulating text, 318-320
sorting and comparing text, 320

intl extension, 317
in_array() function, 67
isset() function, 125
issue tracking, 281

issue IDs, 281

Index | 387

is_readable() function, 198
is_writeable() function, 198

J
JavaScript, 3

filtering from form data input, 139
HttpOnly cookies and, 213

JSON, 233
decoding JSON API response, 233
sending in a POST request, 236
sending via POST request with cURL, 239
serving a JSON response, 244

json_decode() function, 233

K
key/value pairs (array), 57
keywords

names of, 15
whitespace between values and, 14

krsort() function, 73
ksort() function, 72

L
language codes, 320
Laravel framework, 304, 304

routing, 304
views, 305

libcurl, 236
libraries

Composer-installed, using, 294
trying to integrate without a package man‐

ager, 293
LIKE operator, 180

matching a literal _ or %, 180
LIMIT clause, 176

limiting rows returned by SELECT, 177
line number in parse errors, 254
Linux, installing PHP engine, 327
local variables, 92
locale strings, 320, 321
localization, 317

(see also internationalization and localiza‐
tion)

localizing output, 321
logic and decision-making, 39-55

complex decisions, building, 43-51
making decisions, 41
repeated execution or looping, 51-54

true and false values, 40
logical operators, 43, 50
login, adding to sessions, 219-226
logout, 226
looping, 51-54

through arrays, 62-68
through multidimensional arrays, 75

M
mail() function, 153
MantisBT, 281
mbstring extension, 317
mb_strlen() function, 318
mb_strtolower() function, 319
mb_strtoupper() function, 319
mb_substr() function, 318
MessageFormatter object, 321

formatting a message, 321
formatting numbers, 322

messages (locale-specific), defining, 321
method stream context option, 235
methods, 103

accessing with arrow operator, 105
constructor, 107
static, 104
visibility of, 114

multibyte UTF-8 characters, 317
multidimensional arrays, 74-77

creating, 74
element value interpolation, 77
looping through, 75

MySQL
for Windows, 327
information resources, 157

N
namespace keyword, 114
namespaces, 114-116

organizing into directories, 280
NDB API, 232
NDB_API_KEY constant, 232
negation operator (!), 50
new operator, 105

invoking constructors, 108
newlines

fwrite() function and, 195
nl2br() function, 153

not equal operator (!=), 45
notices, 250

388 | Index

now documents, 36
null coalesce operator (??), 125, 271
numbers, 29

comparing numbers and strings, 46
locale-specific formatting of, 322
using arithmetic operators for math in PHP,

30
using different kinds of, 30
validating number ranges for form data, 134
validating numeric elements in form data,

131
number_format() function, 10
numeric arrays

creating, 60
iterating through with for(), 65
multidimensional, iterating through, 76
sorting with sort(), 70
using foreach() with, 64

O
object-oriented programming, 103
objects, 103-117

creating and using, 104
defining a class, 104
exceptions, 108-110
extending, 110-113
fetching database rows as, 178
initializing with a constructor, 107
JSON, conversion to PHP objects, 234
namespaces, 114-116
static methods, 106
visibility of properties and methods, 113

ob_end_clean() function, 258
ob_get_contents() function, 258
ob_start() function, 258
operators

precedence of operations, 31
used with SQL WHERE clause, 176

ORDER BY clause, 176
OS X, installing PHP engine, 326
output buffering, 227

sending var_dump() output to error log,
257

output_buffering configuration directive, 331

P
package managers, 293

(see also Composer)
packages

adding to your program, 294
finding useful packages to install, 295
using a source control system, 295
using Composer-installed library, 294

Packagist, 295
publishing a package on, 296

parameters (query string)
format=json, 234
key, 245
putting in API URLs, 232
using with cURL, 237

parent::__construct(), 112
parse errors, 250

fixing, 251-254
line numbers in error messages, 253
string quoting error, 253
using PHP-aware text editors, 251

parse_ini_file() function, 282
passwords

hashed, retrieving from a database, 225
storing in hashed form, 224
validation in login form, 223

password_compat library, 225
password_hash() function, 224
password_verify() function, 224
$PATH (system), 304, 315
pathnames, 99
paths

path in URLs, 211
setting cookie path to value other than /,

211
PDO, 156

connecting to a PDO object, 158
creating a new PDO object, 158
DSN prefixes and options, 158
error modes, 163
prepared statements, 169

PDO() function, 12
PDO::ATTR_DEFAULT_FETCH_MODE, 179
PDO::FETCH_ASSOC, 178
PDO::FETCH_NUM, 178
PDO::FETCH_OBJ, 178
PDOException, 159
PDOStatement object, 169, 173

rowCount() method, 174
setFetchMode() method, 178

performance issues, 283
permissions

Index | 389

checking for read and write permissions,
198

understanding file permissions, 189
PHP

about, 1
advantages of, 4
frameworks, 304
ground rules for program structure, 12-17
programming language and engine, 3
role in website construction, 1-4
versions, xvi

php -a command, 314, 314
php -S command, 314
php command-line program, 266
PHP Data Object extension (see PDO)
PHP engine, 3, 325

default timezone, 291
installing, 325
modifying configuration directives, 327-333

PHP Standard Recommendation (PSR), 281
php.ini configuration file, 328
php://output file handle, 198
phpdbg debugger, 259

debugging with, 259
phpinfo() function, 328
PHPSESSID cookie, 213, 214

changing properties of, 219
PhpStorm, profiling in, 284
PHPUnit, 265

information resources on, 275
installing, 266
IsolateValidationTest class (example), 271
RestaurantCheckTest class (example), 267

checking tip calculation, 269
test with failing assertions, 268

running as executable PHAR file, 266
running with php command-line program,

266
PHPUnit_Framework_TestCase class, 267
PHP_SELF element ($_SERVER), 122
placeholders in SQL queries, 170, 179

incorrect use in UPDATE, 181
not using in SELECT, 181

POST method, 122
making POST request with cURL, 239
sending JSON via POST with cURL, 239
sending POST request via file_get_contents,

235
pow() function, 31

precedence (operator), 31
logical operators in test expressions, 51

prepare() function, 12
prepared statements, 169
PRIMARY KEY column, 160
print statements

printing function return value, 11
printing to console, 311

printf() function, 25
private keyword, 113
private visibility, 114
production environment, 282
profilers, 284
properties, 103

accessing with arrow operator, 105
assigning value to, 105
visibility of, 113

protected keyword, 113
protected visibility, 114
PSR (PHP Standard Recommendation), 281
PsySH REPL, 315
public keyword, 104
public visibility, 113

Q
query() method, 173

chaining fetch() call to, 176
quotation marks

debugging in PHP-aware editors, 251
debugging string quoting error, 253

quote() function, 180
correct use with UPDATE, 182

R
ranges

checking for form data, 134
displaying range of days, 290

reading files, 190
accessing each line, 192
checking errors from, 200
configuration files, 283
CSV file, 195
one line at a time, 193

realpath() function, 203
relative file paths, 99
REPLs (Read-Eval-Print Loops), 311

other than built-in PHP REPL, 315
running a PHP REPL, 314

390 | Index

REQUEST_METHOD element ($_SERVER),
122

require (Composer command)
adding a package with, 294

require command
global before, 315

require directive, 99
required elements, validating for forms, 131
return keyword, 87
return statements, 89
return values (function), 10, 81

assigning to a variable, 87
capturing, 87
declaring return type, 97
passing return value to another function, 89

reverse-sorting functions, 73
Route::get(), 305
routing

in Laravel, 304
in Symfony, 306
in Zend, 308

rowCount() method, 174
rsort() function, 73

S
scalability, 283
scope (variables), 92-95
security

cookie security settings, 212
cross-site scripting attacks, preventing, 139
sanitizing externally supplied filenames, 202
SQL injection attacks, 168
storing passwords in hashed form, 224

SELECT command
tutorial on, 175
using a placeholder, 179
using ORDER BY and LIMIT with, 176
using quote() and strtr() to sanitize values

for WHERE clause, 181
using wildcards and LIKE operator, 180
using with query() and fetch(), 173

select menus, validating for forms, 136, 141
server-side languages, 3
session.auto_start, 214

changing configuration settings, 219
session.gc_maxlifetime, 218
session.gc_probability, 218
sessions, 208, 213-229

activating, 213

configuring, 218
session length, 218

login and user identification, 219-226
setcookie() and session_start() at head of

page, 226
storing and retrieving information, 214-218

counting page accesses, 214
printing session data, 217
saving form data, 215

session_start() function, 214
putting at top of page, 226

setcookie() function, 208
cookie expiration, 210
cookie security settings, 212
putting at top of page, 209, 226
setting cookie domain, 212
setting cookie path, 211

setrawcookie() function, 209
short array syntax, 59
silent error mode (PDO), 163
SimpleXML, 315
SMTP (Simple Mail Transfer Protocol), 300
software engineering practices, 279-284

environments and deployment, 282-283
issue tracking, 281
scaling, 283
source control, 280

sort() function, 70
sort() method (Collator), 320
sorting text, 320
source control, 280

git, 280
using Composer with, 295

spaceship operator (<=>), 49
spreadsheets versus database tables, 156
SQL (Structured Query Language), 12, 157

information resources, 157
SQL injection attacks, 168
SQLite

DSN for, 159
PRIMARY KEY, 160

SQLSTATE error code, 164
stack traces, 109
start and end tags for PHP, 13, 227
static methods, 104

defining, 106
strcasecmp() function, 25

using negation operator with, 50
strcmp() function, 47

Index | 391

stream context, 234
including an HTTP header, 234
method option, 235

streams, 234
stream_context_create() function, 234
strict notices, 250

setting error_reporting for, 250
strict typing, 98
strings

arrays of, 58
comparing, 46

strings containing numbers, 46
using strcmp(), 48

comparing using equality operator, 25
concatenating, 23, 41
converting to arrays with explode(), 70
defining text strings, 20
exracting part of, with substr(), 28
extracting a substring, 318
formatted date/time strings, 288
formatting text, 25
manipulating, 318-320
quoting errors, debugging, 253
sorting and comparing, 320
string values in SQL queries, 165
validating, 24
validating string elements for forms, 132
variable interpolation in, 34
working with multibyte, 20

strip_tags() function, 139
strlen() function, 24

checking required form elements, 131
combining with trim(), 132
multi-byte characters and, 318
passing results to print, 315

strtolower() function, 27, 319
strtoupper() function, 27, 319
strtr() function, 180

correct use with UPDATE, 182
str_replace() function, 29, 190
subclasses, 110-113
substr() function, 28, 318
Swift Mailer library, 299

creating an email message, 299
documentation, 301
installing with Composer, 299

Swift_Mailer object, 301
Swift_Message object, 299
Swift_SmtpTransport class, 300

Swift_Transport object, 299
symfony command-line program, making exe‐

cutable, 306
Symfony framework, 304, 305

installing, 306
routes, 306
views, 307

syntax highlighting, 251

T
tables (database), 156

creating, 160
removing with DROP TABLE, 162
spreadsheets versus, 156

test expressions, 41
following if() construct, 252
in for loop, 53

testing, 265-277
information resources on, 275
isolating what you test, 270-272
test-driven development (TDD), 272-275
writing a test, 266-270

covering adequate variety of situations,
269

text (see strings)
text editors, PHP-aware, 251
$this variable, 104
time

component parts, 285
displaying, 285

time() function, 210
timezones, 291
tokens, 252
trim() function, 24, 193

combining with strlen(), 132
true and false values, 39

evaluating expressions for, 40
function return values, 81, 89
returned from file-handling functions, 200

try/catch blocks, 110, 261
Twig templating engine, 307
TypeError exception, 97
T_VARIABLE token, 252

U
ucwords() function, 27
uncaught exceptions, 109

handling, 261
Unicode, 317

392 | Index

unit testing, 265
(see also testing)

unset() function, 69
removing key/value pairs from $_SESSION,

226
UPDATE command, 165

correct use of quote() and strtr() with, 182
incorrect use of placeholders in, 181
syntax, 166
using wildcards in WHERE clause, 180
WHERE clause with, 167

URLs
accessing with file access functions, 231-236
comprehensive access with cURL, 236-247

GET method, 236
HTTPS URLs, 243
POST method, 239
using cookies, 240-243

path, 211
US-ASCII character set, 317
use keyword, 115
.user.ini files, 328
usernames

retrieving from a database, 225
validation in login form, 223

UTC (Coordinated Universal Time), 292
UTF-8 encoding, 317

V
validation, 24

function validating form data, 127
of days and months, 289
of form data, 129-141

beyond syntax, 141
email addresses, 135
HTML and JavaScript, 138
in isolation, 270
number ranges, 134
numeric or string elements, 131
required elements, 131
select menus, 136

username and password in login form, 223
VALUES keyword, 165
VARCHAR type, 161

maximum sizes for VARCHAR columns,
161

variable interpolation, 34
variable substitution

in double-quoted strings, 22

in here documents, 23
variables, 12, 19, 31

array, 8
assigning return value of functions to, 87
assigning value to, 31
auto-global, 95
holding arrays, names for, 60
in PHP REPL, 315
in single-quoted strings, 22
inside and outside of functions, 81
names of, 32
operating on, 33
scope, 92-95

var_dump() function, 257
sending output to web server error log, 257

visibility of properties and methods, 113

W
warning error mode (PDO), 164
warnings, 250
web browsers

error message display in, 249
interactions with web servers, 1-4

web programming, PHP for, 6
web servers

error log, sending debugging messages to,
257

PHP built-in server, 311
use with PHP, 5
user accounts and permissions, 190
using PHP's built-in web server, 313

web-hosting provider, using PHP with, 325
websites and services, talking to, 231-248

comprehensive URL access with cURL,
236-243

serving API requests, 244-247
URL access using file functions, 231-236

WHERE clause
operators used with, 176
using quote() and strtr() to sanitize values,

181
using submitted form data or external input

in, 179
using wildcards in UPDATE, 180
using with DELETE, 168
using with SELECT, 175
using with UPDATE, 167

while() construct, 51
printing a form, 52

Index | 393

reading files line-by-line, 194
using with SELECT query, 174

whitespace
in PHP code, 14
removing from strings, 24

wildcards in SQL
escaping, 179, 180
tutorial on, 180
using * with SELECT, 175

Windows systems
installing Composer, 293
installing PHP engine, 327
opening a file on, 194

WordPress Packagist, 296
writing files, 192

checking for errors, 201
CSV-formatted data, 196

writing data to a file, 195

X
XDebug, 284
xdebug debugger, 259
XHProf, 284
XML processing with SimpleXML, 315

Y
Yahoo! Weather API, 312

Z
Zend Debugger, 259
Zend Framework, 304, 307

controller, 308
views, 309

394 | Index

About the Author
David Sklar works as a Staff Software Engineer at Google. Before that, he built plat‐
forms, APIs, and sandboxed PHP execution runtimes at Ning. He lives in New York
City, where he enjoys eating and walking, sometimes simultaneously. Read David’s
blog at www.sklar.com/blog.

Colophon
The animal on the cover of Learning PHP is an eagle. Eagles fall into the category of
bird known as “raptors,” a category that also includes falcons and hawks. There are
two types of raptor: grasping killers, with beaks shaped for tearing and cutting, and
short toes with curved claws designed for killing; and grasping holders, with beaks
shaped for tearing and biting, and longer toes designed for holding. Eagles are grasp‐
ing killers. Sea eagles have special adaptations to their toes that enable them to grasp
smooth prey such as fish. Their excellent vision enables all eagles to spot prey from
the air or a high perch. The eagle then swoops down, grabs its prey, and takes off in
flight again, in one graceful movement. Eagles often eat their victims while still flying,
breaking them apart and discarding the nonedible parts to lighten their load. Eagles,
like most raptors, often dine on sick or wounded animals.

There are more than 50 species of eagle spread throughout the world, with the excep‐
tion of New Zealand and Antarctica. All species of eagles build nests, known as aeries,
high above the ground, in trees or on rocky ledges. A pair of eagles will use the same
nest year after year, lining it with green leaves and grass, fur, turf, or other soft mate‐
rials. The eagle will add to its nest each year. The largest eagle nest ever found was 20
feet deep and 10 feet across.

Hunting, increased use of pesticides, and the diminishment of their natural environ‐
ment, with the attendant reduction in food sources, have endangered many species
of eagle.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

http://www.sklar.com/blog/
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Contents of This Book
	What’s Not in This Book
	Other Resources
	Conventions Used in This Book
	Programming Conventions
	Typographical Conventions

	Using Code Examples
	Safari® Books Online
	Comments and Questions
	Acknowledgments

	Chapter 1. Orientation and First Steps
	PHP’s Place in the Web World
	What’s So Great About PHP?
	PHP Is Free (as in Money)
	PHP Is Free (as in Speech)
	PHP Is Cross-Platform
	PHP Is Widely Used
	PHP Hides Its Complexity
	PHP Is Built for Web Programming

	PHP in Action
	Basic Rules of PHP Programs
	Start and End Tags
	Whitespace and Case-Sensitivity
	Comments

	Chapter Summary

	Chapter 2. Data: Working with Text and Numbers
	Text
	Defining Text Strings
	Manipulating Text

	Numbers
	Using Different Kinds of Numbers
	Arithmetic Operators

	Variables
	Operating on Variables
	Putting Variables Inside Strings

	Chapter Summary
	Exercises

	Chapter 3. Logic: Making Decisions and Repeating Yourself
	Understanding true and false
	Making Decisions
	Building Complicated Decisions
	Repeating Yourself
	Chapter Summary
	Exercises

	Chapter 4. Groups of Data: Working with Arrays
	Array Basics
	Creating an Array
	Choosing a Good Array Name
	Creating a Numeric Array
	Finding the Size of an Array

	Looping Through Arrays
	Modifying Arrays
	Sorting Arrays
	Using Multidimensional Arrays
	Chapter Summary
	Exercises

	Chapter 5. Groups of Logic: Functions and Files
	Declaring and Calling Functions
	Passing Arguments to Functions
	Returning Values from Functions
	Understanding Variable Scope
	Enforcing Rules on Arguments and Return Values
	Running Code in Another File
	Chapter Summary
	Exercises

	Chapter 6. Data and Logic Together: Working with Objects
	Object Basics
	Constructors
	Indicating a Problem with Exceptions
	Extending an Object
	Property and Method Visibility
	Namespaces
	Chapter Summary
	Exercises

	Chapter 7. Exchanging Information with Users: Making Web Forms
	Useful Server Variables
	Accessing Form Parameters
	Form Processing with Functions
	Validating Data
	Required Elements
	Numeric or String Elements
	Number Ranges
	Email Addresses
	<select> Menus
	HTML and JavaScript
	Beyond Syntax

	Displaying Default Values
	Putting It All Together
	Chapter Summary
	Exercises

	Chapter 8. Remembering Information: Databases
	Organizing Data in a Database
	Connecting to a Database Program
	Creating a Table
	Putting Data into the Database
	Inserting Form Data Safely
	A Complete Data Insertion Form
	Retrieving Data from the Database
	Changing the Format of Retrieved Rows
	Retrieving Form Data Safely
	A Complete Data Retrieval Form
	Chapter Summary
	Exercises

	Chapter 9. Working with Files
	Understanding File Permissions
	Reading and Writing Entire Files
	Reading a File
	Writing a File

	Reading and Writing Parts of Files
	Working with CSV Files
	Inspecting File Permissions
	Checking for Errors
	Sanitizing Externally Supplied Filenames
	Chapter Summary
	Exercises

	Chapter 10. Remembering Users: Cookies and Sessions
	Working with Cookies
	Activating Sessions
	Storing and Retrieving Information
	Configuring Sessions
	Login and User Identification
	Why setcookie() and session_start() Want to Be at the Top of the Page
	Chapter Summary
	Exercises

	Chapter 11. Talking to Other Websites and Services
	Simple URL Access with File Functions
	Comprehensive URL Access with cURL
	Retrieving URLs via GET
	Retrieving URLs via POST
	Using Cookies
	Retrieving HTTPS URLs

	Serving API Requests
	Chapter Summary
	Exercises

	Chapter 12. Debugging
	Controlling Where Errors Appear
	Fixing Parse Errors
	Inspecting Program Data
	Adding Debug Output
	Using a Debugger

	Handling Uncaught Exceptions
	Chapter Summary
	Exercises

	Chapter 13. Testing: Ensuring Your Program Does the Right Thing
	Installing PHPUnit
	Writing a Test
	Isolating What You Test
	Test-Driven Development
	More Information About Testing
	Chapter Summary
	Exercises

	Chapter 14. Software Engineering Practices You Should Be Aware Of
	Source Control
	Issue Tracking
	Environments and Deployment
	Scaling Eventually
	Chapter Summary

	Chapter 15. Handling Dates and Times
	Displaying the Date or Time
	Parsing a Date or Time
	Calculating Dates and Times
	Working with Timezones
	Chapter Summary

	Chapter 16. Package Management
	Installing Composer
	Adding a Package to Your Program
	Finding Packages
	Getting More Information on Composer
	Chapter Summary

	Chapter 17. Sending Email
	Swift Mailer
	Chapter Summary

	Chapter 18. Frameworks
	Laravel
	Symfony
	Zend Framework
	Chapter Summary

	Chapter 19. Command-Line PHP
	Writing Command-Line PHP Programs
	Using PHP’s Built-in Web Server
	Running a PHP REPL
	Chapter Summary

	Chapter 20. Internationalization and Localization
	Manipulating Text
	Sorting and Comparing
	Localizing Output
	Chapter Summary

	Appendix A. Installing and Configuring the PHP Engine
	Using PHP with a Web-Hosting Provider
	Installing the PHP Engine
	Installing on OS X
	Installing on Linux
	Installing on Windows

	Modifying PHP Configuration Directives
	Appendix Summary

	Appendix B. Answers to Exercises
	Chapter 2
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 3
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 4
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 5
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 6
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 7
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 8
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 9
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4
	Exercise 5

	Chapter 10
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 11
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 12
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Chapter 13
	Exercise 2
	Exercise 3
	Exercise 4

	Index
	About the Author
	Colophon

