
A MODERN, ADAPTABLE PHP ENVIRONMENT

P
H

P
JU

M
P

 S
TA

R
T P

H
P

 E
N

V
IR

O
N

M
E

N
T

Š
K

V
O

R
C

SITEPOINT BOOKS

 Advocate best practice techniques

 Lead you through practical examples

 Provide working code for your website

 Make learning easy and fun

WEB DEVELOPMENT
PRINT ISBN: 978-0-9941826-4-7

EBOOK ISBN: 978-0-9943469-5-7

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

USD $29.95 CAD $34.95

SAMPLE CODE AVAILABLE FOR DOWNLOAD

Many entry level PHP developers want a quick path to glory,
a shortcut to knowing PHP. Too many books and tutorials
jump straight into a ready-made environment that just wants
you to code, with no regard for security, version control, or
other absolutely essential practices. This book is aimed at the
absolute beginner who wants to start learning PHP; it will set
you up with a thorough understanding of what makes for a
good, modern, adaptable PHP environment before you start
diving into PHP itself.

This book will cover a the building blocks of a good PHP
environment, including covering essential topics such as:

•	 The anatomy of a web request

•	 The importance of a good IDE

•	 Using Composer for package management

•	 Version control with Git and GitHub

•	 Deployment and hosting options

•	 Using virtual machines

•	 Build a sample app from scratch and deploy it

And much more…

GET STARTED IN PHP THE RIGHT WAY

YOUR AUTHOR

BRUNO ĢKVORC

Bruno, a web developer from Croatia,
is SitePoint’s senior PHP editor by
day, and a developer evangelist for
Diffbot.com by night. A big fan of
working on treadmill desks, he
spends the most of his days walking
through various projects and
problems, and then exposing them
on SitePoint.com. In his free time (i.e.
when his beagle is asleep) he swims,
#stronglifts, plays (board) games
and paints miniatures.

JUMP START

PHP
ENVIRONMENT

BY BRUNO ĢKVORC

Summary of Contents

Preface . xv

1. The Anatomy of Web Requests . 1

2. The Programming Environment . 13

3. The Application Environment . 29

4. Virtual Machines . 43

5. Versioning Systems . 59

6. Deployment and Hosting . 75

7. Composer . 89

8. Learn by Example: A Web App from Scratch . 103

JUMP START PHP
ENVIRONMENT

BY BRUNO ŠKVORC

Jump Start PHP Environment
by Bruno Škvorc

Copyright © 2015 SitePoint Pty. Ltd.

English Editor: Kelly SteeleProduct Manager: Simon Mackie

Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9941826-4-7 (print)

ISBN 978-0-9943469-5-7 (ebook)

Printed and bound in the United States of America

iv

About Bruno Škvorc

Bruno, a web developer from Croatia, is SitePoint's senior PHP editor by day, and a developer

evangelist for Diffbot.com by night. A big fan of working on treadmill desks, he spends the

most of his days walking through various projects and problems, and then exposing them

on SitePoint.com. In his free time (i.e. when his beagle is asleep) he swims, #stronglifts, plays

(board) games and paints miniatures.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

v

http://www.sitepoint.com/

To my beautiful Mateja, and

adorable Rita, without whom this

book would have been written

much sooner

Table of Contents

Preface . xv

The WWW . xv

The What and Why . xv

The Who . xviii

Conventions Used . xviii

Code Samples . xix

Tips, Notes, and Warnings . xx

Supplementary Materials . xx

Want to take your learning further? . xxi

Chapter 1 The Anatomy of Web Requests 1

The Client and the Server . 1

What is a client? . 2

What is a server? . 2

Web Request Basics . 3

How It All Works . 4

Front-end and Back-end . 5

Server-side Languages . 7

Generating Answers with Server-side Languages 9

For Those Who Want More . 10

DNS Servers . 10

What Happens When You Type ... 11

Chapter 2 The Programming Environment 13

A Good IDE Is Worth Its File Size in Gold . 14

PhpStorm . 17

NetBeans . 18

Zend Studio . 18

The Importance of Coding Standards . 20

The Command Line / Terminal . 22

The Community . 24

PHP Mentoring . 25

PHP.net Documentation . 25

Various Forums . 25

Summary . 26

Chapter 3 The Application Environment 29

Application Environments . 29

Production . 29

Development . 30

Staging and Maintenance . 33

The Evil of *AMP Bundles . 34

Machine Pollution . 34

Learning is Progress, or How the Comfort of Your Comfort Zone

is Overrated . 35

Testing . 35

The Uncleanable Mess . 36

Production/Development Parity . 36

Performance and Debugging . 37

Summary . 40

For Those Who Want More . 40

Chapter 4 Virtual Machines . 43

Virtual Machines Explained . 44

What are VMs? . 44

Getting to Know VirtualBox and Vagrant . 45

x

The Benefits of VMs . 47

Vagrant in a Nutshell . 48

Vagrant Boxes . 48

Provisioning . 49

Using Vagrant . 50

Homestead Improved: Explanation . 53

Defining New Sites . 54

Shutdown . 56

Further Reading . 56

Summary . 57

Chapter 5 Versioning Systems . 59

Versioning Basics . 60

Git and GitHub . 60

Git . 61

GitHub . 62

Git in Action . 63

Preparing the Environment . 63

Creating a “Hello World” page . 64

Git . 65

GitHub . 69

Useful Resources . 73

Summary . 73

Chapter 6 Deployment and Hosting 75

Hosting . 76

Shared Hosting . 76

Cloud Hosting . 79

(Virtual) Private Hosting . 82

Others . 84

xi

Deployment . 85

Manual . 85

Automatic and Semiautomatic Deployment 86

Recommendation . 87

Summary . 88

Chapter 7 Composer . 89

Spaghetti Western . 89

Namespaces and Ye Olde Package Management . 92

What is Composer? . 93

Usage Example . 94

Bootstrapping . 95

Installing Carbon . 96

Testing . 96

Cleanup . 98

More Tricks to Try . 98

Update versus Install and Composer Lock . 98

require-dev and global . 100

Is that all there is? . 101

For Those Who Want More . 102

Chapter 8 Learn by Example: A Web App
from Scratch . 103

What will we be building? . 104

Setting Up the Environment . 105

Bootstrapping the App . 107

Testing . 108

Frameworks versus Packages . 109

Developing the App . 112

xii

Var Dumper . 112

Database Connection . 115

Repo and First Push . 120

HTML Form . 122

Second Push . 126

Creating the Comment Class and the Database Table 127

Third Push . 133

Development vs Production Database . 133

Fourth Push . 136

Posting and Displaying Comments . 136

Final Push . 146

Deployment . 146

Deploying on a Shared Host (Hostgator) . 146

Deploying on DigitalOcean . 151

Conclusion . 158

For Those Who Want More . 159

xiii

Preface

The WWW
In this section, I will answer the three Ws. No, not that www―the three Ws of this

book:

■ Why was this book written?
■ What's it about?
■ Who is it for?

The What and Why
Before I explain who the book is for, I'd like to start by explaining what this book

is about and what prompted its writing.

The Why
As the editor for SitePoint's PHP channel1, I communicate daily with many PHP

developers. Almost every developer comes from a different background―educational,

racial, geographical―so the channel is truly a melting pot of cultures and approaches.

Some are formally trained computer scientists, others are self-taught freelancers.

Some are well-versed in enterprise etiquette, rigor, and culture; others just can't

wait to just churn out code and see it work. In all of my time working for SitePoint,

I've never once met two developers who have the same approach to writing and

coding.

Trying to create a channel that works cohesively with such an array or writers was

actually quite challenging. The writing part was easy to standardize―I enforced

the Markdown format (no need to concern yourself with this if you don't know what

it is) rather than HTML or Word files, passed on some links to valuable tools such

as spell-checkers and text smell detectors (tools that capitalize your title, check for

repeated phrases, isolate misused phrases, and so on). But when you're responsible

for editing and checking hundreds of posts, it's not the writing that's the biggest

problem―it's the code. Writers would send their code in zip archives alongside

their articles, as if thrown into a cardboard box, duct-taped, and shipped.

1 http://www.sitepoint.com/php/

http://www.sitepoint.com/php/

The code was everything from simply messy to incompatible with my version of

PHP, and thus it was insanely difficult to verify―after all, letting a malfunctioning

demo go live alongside a tutorial would be unforgivable! Imagine receiving code

samples from 100 different people, each configured for a separate combination of

PHP + server + PHP extensions and other factors. There's simply no way to manually

configure your computer fast enough to be able to go through them all reliably in a

given time frame. Code needs standardization, and in big teams, such as ours in

SitePoint's PHP channel, this is of utmost importance.

To remove this barrier, I used all the approaches I talk about in this book. To make

them work for you and to have code that is automatically compatible with all other

developers and their computers instantly would be minutes of work; however, this

book was written to help you understand what is going on in these configurations,

and how exactly this compatibility was achieved. Why would you want to know

this, you might wonder?

Two reasons:

1. You'll gain a solid foundation extremely early in your career, absorbing good

practices before you've had a chance to be exposed to bad ones. I cannot stress

enough how important this is; the amount of energy it takes to unlearn something

is colossal, especially if you're told you're wrong, because we have a natural

predisposition to take a defensive stance―even if, deep down, we might know

the other party is right.

2. If you're serious about building a PHP career, chances are you'll end up leading

or joining a team of developers one day. Maybe it will be a freelance team

building small websites for individual clients; perhaps you'll lead fifty people

in an enterprise effort to modernize a corporation's intranet application―who

knows, but you'll have to work with other developers eventually. Trust me when

I tell you that you won't be a one-man army forever (or at all!). When working

with others, it's vitally important you all have the exact same software setup in

order to prevent excuses such as "What do you mean broken? It works on my

machine!" With the instructions as laid out in this book, you'll understand com-

pletely what's necessary to set this up team-wide. Your team will thank you in

the long run, even if you'll initially slow down progress by making everyone adapt

to these practices.

xvi

With that out of the way, what will we be learning in this tome?

The What
This book will, in great detail, explain what you need to do to prepare to start

learning PHP. This might sound confusing (preparing for a start?), so let me explain.

Most people, when they become interested in web development, randomly google

for keywords and click the first results they find; "how to make a website," "build

php mysql site tutorial," and "learn to code," the search queries will say. Inevitably,

almost all newbies end up downloading XAMPP or WAMP (installer tools that get

PHP and associated packages set up on your machine), setting up a basic PHP in-

stallation on their computers, and writing the legendary Hello World "app." Without

fail, this is where over 70% of the newbies are lost. XAMPP, WAMP, EasyPHP, and

similar bundles that get you up and running fast are―while practical at first―de-

terrents in the long run. We'll talk about this in more depth in later chapters, but

suffice to say that while these bundles are easy to start, but hard to continue with,

this book takes the exact opposite approach: more complex to start, but easy to keep

going.

I'll show you how to configure your development environment in such a way that

you'll be able to develop without worrying about impacting anything on your

computer or its operating system, and can share your code with others without

concern about whether it will be compatible with their setup. What's more, you'll

be able to build and test applications for various versions of PHP without needing

to reinstall anything: your different versions of PHP will never conflict, and you

can even test your applications on different web servers as well.

Your code will be cross-platform compatible, meaning you'll be able to run it and

keep developing it anywhere you go, no matter which computer you land on or

which operating system powers it. I'll teach you about the powers of a good IDE

(integrated development environment), explain the powerful concepts of application

environments, show you the mysteries of virtual machines, and prepare you for the

professional PHP world.

If any of these terms sound intimidating or complex to you right now, don't despair.

We'll cover all of them later on. You will understand everything, that's a promise.

xvii

The Who
So, who is this book for?

Developers of beginner to intermediate level will benefit from this book. Even for

those familiar with some of the concepts, this book will hold some value. Remember,

everyone you ever meet will know something you don't. You can always learn more,

even if most of it sounds familiar.

If you are interested in improving your current development workflow and often

find yourself confused by missing PHP extensions or features while developing

applications, and frequently running into errors about software you need but are

yet to install―this book is for you. If your computer is so full of software used to

make other people's code run well on your machine, this book is definitely for you.

By reading it, you'll be able to restore your computer to an almost factory level of

performance while keeping all apps you come across compatible with it.

If you're just starting out with PHP, this book should be the very first resource you

read. It will explain not only isolated development environments and conflict pre-

vention, but also the inner workings of web requests and what happens when you

actually type an address into a browser's address bar. You'll learn why a server is

important, what PHP's role is, and how it all fits into the grand scheme of develop-

ment environments and setups that can help you achieve a smooth development

experience.

Note that this is not a programming book, per se. There will be very little PHP

coding in this book, at least until the very end of it. This book is a guide to setting

up your computer so that it obeys you, rather than the other way around. You want

programming to be a pleasant, relaxing, and predictable experience you can train

yourself in, day by day, rather than a source of endless frustration. That is what this

book is for―laying the foundation for a pleasant programming career.

Conventions Used
You'll notice that we've used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

xviii

Code Samples
Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book's code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Where existing code is required for context, rather than repeat all of it, ⋮ will be

displayed:

function animate() {
 ⋮
 return new_variable;
}

xix

Some lines of code should be entered on one line, but we've had to wrap them be-

cause of page constraints. An ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
https://www.sitepoint.com/premium/books/phpenv1

The book's website, containing links, updates, resources, and more.

https://github.com/spbooks/phpenv1-example/

The downloadable code archive for this book.

http://community.sitepoint.com/

SitePoint's forums, for help on any tricky web problems.

xx

https://www.sitepoint.com/premium/books/phpenv1
https://github.com/spbooks/phpenv1-example/
http://community.sitepoint.com/

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

Want to take your learning further?
Thanks for choosing to buy a SitePoint book. Would you like to continue learning?

You can now gain unlimited access to ALL SitePoint books and courses plus high-

quality books from our selected partners at SitePoint Premium.2 Enroll now and

start learning today!

2 https://www.sitepoint.com/premium/home

xxi

https://www.sitepoint.com/premium/home

Chapter1
The Anatomy of Web Requests
Before we get into the nitty-gritty of setting up a good PHP environment, you need

an understanding of how web requests actually work. This chapter will explain

what happens when you punch a web address into your browser and receive a result.

We’ll avoid being too technical―there’s no need to explain the nuts and bolts, as

it would likely only confuse you. Instead, it will be a newbie-friendly explanation

on how all the various aspects of web development and web consumption come

together and create the Web you know and love. The main purpose of this chapter

is to teach you where your programming language of choice (in this case, PHP)

comes into play, and which parts of the mysterious web request it affects.

If you know the essentials of the Web and are familiar with the terms mentioned in

the previous paragraph, feel free to jump to the next chapter.

The Client and the Server
You must have heard of the terms “client-side programming” and “server-side

programming,” at least in job ads. In this part, we’ll briefly explain them before

moving onto the details.

What is a client?
A client is your web browser.

In the context of the Web, while you are technically the client in the conventional

sense of the word (you are doing the requesting and being served by software), the

browser is considered to be the client software used to ask the server for something.

Once it receives this “something” (most often being a bunch of text), it decides how

it should present it to you, the ultimate client.

What is a server?
Similar to the client, a server also has two meanings:

1. a program that answers questions posed by the client

2. a computer (a physical machine) onto which the server program is installed

In this book, and in the context of web development, we generally mean the former.

In fact, throughout this book, we’ll learn how we can easily install a server program

on our own computer, essentially “faking the Internet” and letting the computer

think the website we’re developing is online and accessible by everyone.

Let’s look at the first point a bit more: how does a program answer questions?

In a nutshell, a server waits for a question such as “give me the text of the blog post

from February 14th” and responds with either “OK, here: [some HTML, containing

the text oft the post in question]” or “Sorry, I can’t find that, there’s nothing under

February 14th.” Admittedly, I’m paraphrasing, but that’s more or less what happens.

I’ve illustrated it in Figure 1.1.

Jump Start PHP Environment2

Figure 1.1. A simplified request to the server and its response

Web development is, in fact, a relatively simple matter of making the client ask the

right questions, and teaching the server to give the right responses. Ready to go a

little bit deeper into the rabbit hole? Here goes ...

Web Request Basics
While web request has a very specific meaning, it is often used as a blanket term

for the communication between the client and the server. This entire communication

process is neatly explained in Figure 1.2, a cute comic by VladStudio.1

1 http://www.vladstudio.com/wallpaper/?how_internet_works

3The Anatomy of Web Requests

http://www.vladstudio.com/wallpaper/?how_internet_works

Figure 1.2. How Internet Works by VladStudio

How It All Works
Let’s break the comic in Figure 1.2 down.

You are the user―you are the king. You issue the commands and the browser obeys,

happily. As the user, this is where your awareness of the process ends, and the next

time you’re consciously addressed is in the second-to-last frame of the comic. The

entire process in between is invisible to you, except when you’re a developer; then

you’re a magic wizard king who can see everything that’s happening, but more on

that in later chapters.

The browser goes through a firewall, which is usually taken for granted. You probably

have some manner of firewall on your computer right now, or in your router/modem.

The browser knows how to pass through it because you’ve told the guard the browser

is okay and should be let through.

Then comes a part we’ve yet to mention: the DNS (domain name system) servers―a

part so mystical and unapproachable to most, the vast majority of internet users

(and developers, even!) take it for granted, accept that it exists, and try not to worry

about it too much. The general consensus seems to be that, like questions about the

Jump Start PHP Environment4

meaning of life, queries about the origin of time and space, and the otherworldly

deliciousness of peanut butter and banana combo, some things―such as the origin

and purpose of DNS servers―are better left unquestioned. If you'd still like to know

what they are, they'll be explained in the section called “For Those Who Want

More” at the end of this chapter in greater detail.

In a nutshell, this is how they work. Every domain on the Internet (like “ex-

ample.com”) is bound to a specific IP address (represented by the numbers on the

signpost in the third frame of the comic). An IP address is a set of numbers identi-

fying a given server; IP addresses tell the browser how to navigate the Internet to

find the computer (server) it’s looking for.

Remember longitude and latitude from geography classes? They specifically define

a geographical point on planet Earth, and are cross-country compatible, meaning

anyone from anywhere will know how to a find a location if you give them the lat-

itude and longitude values; however, we also have a human-friendly description

for the most popular coordinates. For example, the name of the town I went to

university in is Rijeka. Not many people will know where to find it on a map, but

if I give them the coordinates (45.3167° N, 14.4167° E),2 they can easily locate it. A

DNS server is a translator, a guide. This server knows which IP addresses match

which domain name, and tells the browser where to go next.

Once redirected to a specific IP address, the browser knocks on the door of the

hosting server. This particular server was mentioned in the previous section, and

we refer to it only as “the server.” The browser brings with it the information that

the user requested and asks the server for an answer to the question “google.com?”.

The server answers: “Yes, under google.com, the file says ...” and gives the answer.

The browser returns to the user (the king) and conveys the information. This part

is what’s important for us developers―telling the server what answer to give for a

specific question. Remember this part.

Front-end and Back-end
It’s time to define two more terms you must have heard at least once. Front-end

development (also called client-side development) focuses on work with the client

2 http://bit.ly/rijekageo

5The Anatomy of Web Requests

http://bit.ly/rijekageo

software, while back-end development (also called server-side development) deals

with the server software.

When a server returns text to your browser (in Figure 1.2, this is the text that’s re-

peated to the king in the second-to-last frame) and your browser presents it to you,

how that text looks and in what ways you can interact with it is front-end (or client-

side) programming. When you open a website and a link is bold and a different

color to the rest of the text, that change in appearance was achieved with client-side

programming (HTML plus CSS). When you can drag an element around on the

screen or initiate animations or sounds, it’s also achieved with client-side program-

ming (specifically HTML and CSS accompanied by JavaScript).

Server-side programming, or back-end development, is the action of configuring

the server computer and program (see the section called “What is a server?” for an

explanation on this duality) to give back the appropriate data to the browser when

asked. This typically means programming in a server-side language such as PHP.

PHP will make some calculations or grab some data from a database, turn it into

text that can be given to the browser, and the browser will take it and display it to

the user.

Even though all content returned to the browser for delivery to the user is actually

stored on the server, we call CSS and JavaScript “client-side” because their calcula-

tions happen in the browser. For example, if I told JavaScript to animate a square

turning into a circle, the math behind the calculation will be happening in the

browser. The server will only provide the formula and tell the browser: “When you

take this back to your king, say it like this ...” On the other hand, server-side pro-

gramming implies that all logic, calculations, formulas, and so on happen on the

server, merely returning the end result. For example, if I have a website that counts

the number of images uploaded by a user (such as Facebook counting the number

of images in your album), this calculation will be done on the server, and only the

final number will be given to the browser when it asks for this information.

To recap: front end is when you write code that is executed in the browser (HTML,

CSS, JavaScript), while back end is when you write code that is executed on the

server before passing the final result onto the browser. PHP, server-side JavaScript,

server-side Dart, Ruby, Python, and other programming languages fit the bill.

Time to go even deeper into the rabbit hole.

Jump Start PHP Environment6

Server-side Languages
This book focuses on preparing a development environment for server-side program-

ming. We won’t be dealing with HTML, CSS, or JavaScript; there are plenty of books

on those out there, and setting up a client-side development flow is complex enough

on its own. Instead, we’ll be dealing exclusively with server-side preparations, as

it’s very easy to start off the wrong way. Just as a speck on a balloon will grow into

a large stain as it fills with air, so too can a misstep in the beginning of a program-

ming career grow into a long-term harmful habit.

As you may already know, examples of server-side languages include PHP, Ruby,

and Python. They sit as programs on the server computer, as well as the server

program. These languages take certain commands from the server program, and

output the result of these commands back to it. It is this output that is given to the

browser when a user asks for an answer to a certain question. In a nutshell, by telling

the server “When a request comes in for the example.com website, run this file

through PHP”:

<?php

echo "Hello World";

... we have given it a way to produce an answer for the client. The PHP file is then

run, and the content “Hello World” is generated and sent back to the server program,

which is then given to the browser. The browser takes it back to the user and simply

repeats “Hello World.” The browser stops short of relaying the rest of the contents

of the file; the php tag <?php and the keyword echo are skipped in the output. This

is because the tag <?php tells the server to “Run this file through PHP” and then,

when running the file through PHP, echo tells it “Output the following phrase on-

screen.”

If you’re having trouble grasping this, see Figure 1.3, which expands on Figure 1.1.

7The Anatomy of Web Requests

Figure 1.3. Server asks PHP for the answer if it’s unable to find one

In Figure 1.3:

■ the digram represents the insides of the physical computer in Figure 1.1
■ Nginx is a web server program installed on this machine
■ Nginx receives input from the client in the form of a question (blog for February

14th)
■ Nginx checks if there’s a page for blog/feb/14
■ as there is none, Nginx checks the routes towards PHP files
■ Nginx finds that it needs to run the blog.php script through PHP
■ the blog.php script connects to the database and sends back the text for the

given date
■ the PHP engine sends this result to the server
■ Nginx sends it back to the client

To recap: PHP is an answer generator for the server so it knows what answers to

give to the browser’s questions. This way, the server doesn’t need to know the an-

swers, it just knows that PHP does and asks it, then forwards the response to the

browser. Imagine a “Hello YourName” page; it’s impossible to generate pages for

every existing name, but we can have PHP ask for a name on one page, and then

generate the answer to give to the server on another page.

What’s important to grasp here is the communication flow between client and

server, and server and server-side language. This entire communication fits into the

Jump Start PHP Environment8

fifth and sixth frames in the comic in Figure 1.2. In fact, the part where the server

program talks to the PHP program would happen entirely in the sixth frame.

Generating Answers with Server-side Languages
The last and deepest level of our rabbit hole is the actual conversation between the

server program and a server-side language―in our case (and all future cases), PHP.

We covered this to an extent in the previous section, but let’s look at another example

now with a situation of when an answer cannot be found.

Let’s say that the server is asked the following by the client: “Can you get me

whatever you have filed under example.com/user/id/54?” This is what happens

next:

1. The server checks whether there’s something already prepared under the route:

/user/id/54. If there are no files to be found there, it’s configured to ask PHP.

2. The server asks PHP: “Hey, can you find anything under /user/id/54?”

3. PHP activates and looks through its routes. Lo and behold, the route /user/id/54

says “activate file user.php with the parameter id of value 54.”

4. PHP executes the file (the actual logic of the file is beside the point and outside

the scope of this chapter) and receives a result. Maybe the result is the email ad-

dress of the 54th user in the database. This email address is then given back to

the server: “Sure, I found something under that route. The answer is:

johndoe@example.com”.

5. The server responds with “Thanks!” and passes this message on to the client,

who then presents it to the end user―you.

However, what if there’s nothing filed under that route? For example, there is a typo

when the client requests example.com/urer/id/54 (rather than “user”). Here’s what

happens:

1. The server checks whether there’s anything already prepared under the route:

/urer/id/54. If no files are found, it’s configured to ask PHP.

2. The server asks PHP: “Can you find anything under /urer/id/54?”

3. PHP activates and looks through its routes, but fails to unearth anything. It returns

a “404 Page not found” error to the server (as in Figure 1.1, bottom-left result).

As you're most probably aware, 404 is a code that's common in web technologies

and means that what you're looking for is unable to be found where you think it

9The Anatomy of Web Requests

might be. Many such status codes exist, but there's no need to know them all in

this phase of your career.

4. The server receives the 404 message and thinks “Hmm, PHP lucked out. Well, it

has nothing, I have nothing, better return a page to the client that says we were

unsuccessful.” The browser is then given a 404 page, which is usually just a

textual warning such as “Whoops, you tried a wrong link!” but can also be as

intricate as you want it to be.3

I trust that this chapter was clear with the concepts it presented and helped you get

your bearings in terms of where you are (or will be) in the grand scheme of PHP

programming. In the section that follows, you’ll find some more technical informa-

tion on web requests and DNS servers.

For Those Who Want More
DNS Servers
As mentioned before, every domain (such as example.com) on the Internet is bound

to a specific IP address (such as 93.184.216.34). An IP address is a set of numbers

identifying a given server. In other words, IP addresses tell the browser how to

navigate the Internet to find the computer (server) it's looking for. A DNS server

(also known as just name server) knows which IP addresses match which domain

name, and tells the browser where to go next.

When trying to find out which IP address matches a domain name, the browser first

checks its own cache―a saved list of previously visited domains. Every browser

maintains this list and periodically refreshes it. If it finds the domain-IP combination

in its own cache, the site loads faster because there’s no need to ask the DNS server

for it. If the domain isn’t cached, the browser asks a program called the resolver

(which is built into your operating system) to check the hosts file on the computer

it’s installed on. The hosts file is where the user can actually define which website

maps to which IP address. (We’ll be learning to use this file in later chapters.) If the

necessary information isn’t there, the DNS cache on the router (routers usually have

one, too) is checked, and if it’s not found there either, the ISP company’s DNS

server is asked.

3 http://www.creativebloq.com/web-design/best-404-pages-812505

Jump Start PHP Environment10

http://www.creativebloq.com/web-design/best-404-pages-812505

Up until that last step, everything was happening on your own computer, or, as we

say, locally. Now that it’s time to visit the ISP, it’s no longer a local matter―it’s re-

mote. If the ISP’s DNS server is without a record for the domain, it finds out and

tells the browser, then caches the results for future queries. How does it find out?

It dissects the domain name from right to left.

www.example.com is split up into fragments. The .com part, called the TLD or top-

level domain, is first. There are many DNS servers around the world, often configured

in such a way that multiple computers act as one. This is so that if one dies, others

ensure the service is uninterrupted. The highest level of these servers are root

servers, which know where to further look for details about a domain on any given

TLD. The root server with the appropriate records for .com will know that it's a dot

com, so will send you a query further in XYZ―XYZ being another name server that

will know the example part. Further still, the www part (also known as the subdo-

main) will come into play, and be registered on a specific name server, too, in this

confusing chain of names and servers. Once all the fragments (also known as labels:

.com, example, and www) are resolved into an IP address, the result is sent back.

If you’d like to know more about root name servers and want to find out how the

entire Internet’s smooth functioning depends on thirteen main computers (well,

clusters of computers), take a look the root name server page on Wikipedia,4 or

check out some amazingly comprehensive answers on Super User.5

What Happens When You Type ...
A common programmer job interview question is “What happens when you type

google.com into your browser’s address box and press enter?” While, in part, we

explained this earlier (albeit in a simplified manner), check out Alex Gaynor’s ex-

cellent description if you’d like to know the exact details,6 from hardware to end

software. It’s an extremely comprehensive but very well-written post. Note that,

realistically, this level of detailed knowledge is unnecessary to be a good developer.

4 https://en.wikipedia.org/wiki/Root_name_server
5 http://superuser.com/questions/527116/how-does-my-browser-locate-the-nearest-dns-root-servers
6 https://github.com/alex/what-happens-when

11The Anatomy of Web Requests

https://en.wikipedia.org/wiki/Root_name_server
http://superuser.com/questions/527116/how-does-my-browser-locate-the-nearest-dns-root-servers
https://github.com/alex/what-happens-when
https://github.com/alex/what-happens-when

Chapter2
The Programming Environment
There are two types of environment in the context of programming: the application

environment, and the programming environment. We’ll be covering the application

environment in a later chapter. This part of the book will talk about the programming

environment, explaining IDEs (integrated development environments) and suggesting

which ones to try, explaining coding standards and exploring some command line

basics. In this chapter, it all becomes slightly more technical.

The programming environment includes―but is not limited to―the people you

interact with, your operating system, your code editor or IDE (more on this later),

your coding standards, and generally everything that helps or hinders your work

during development. In other words, the programming environment is the program-

mer’s environment.

Skip this chapter if you:

■ have a good IDE picked out and don’t intend to switch

■ know where to find help for any programming problems

■ are following coding standards already, whether you’re in a team or flying solo

■ are familiar with the command line

Read this chapter if you:

■ are using a simple text editor to code or don’t know any IDEs

■ think coding standards are unnecessary

■ have no idea where to obtain genuinely useful advice for problems you might

encounter

■ are unfamiliar with the command line and/or think it's unnecessary because al-

ternatives exist

A Good IDE Is Worth Its File Size in Gold
The old adage of “being worth its own weight in gold” stands true for IDEs, or in-

tegrated development environments. IDEs are advanced programs for writing code,

and at the end of this section we'll present a few decent options for you to try.

You may be familiar with text editors such as TextMate or Notepad. There are code-

oriented alternatives such as Sublime Text1 and Notepad++2 that make coding

much, much easier by offering commonly known language constructs and helping

you autocomplete some statements so that memorizing entire programming language

commands is a thing of the past. Most even offer syntax highlighting, which makes

code more readable by applying different colors to certain keywords and phrases

that are programming-language-specific. See Figure 2.1 for code without syntax

highlighting, and Figure 2.2 for an example with syntax highlighting.

1 http://www.sublimetext.com/
2 https://notepad-plus-plus.org/

Jump Start PHP Environment14

http://www.sublimetext.com/
https://notepad-plus-plus.org/

Figure 2.1. Text editor without syntax highlighting

15The Programming Environment

Figure 2.2. Text editor with syntax highlighting

Yet without exception, all text editors pale in comparison to good IDEs. An IDE is

a powerful program―it’s like a text editor on steroids containing in-depth references

to your given language of choice, often helping you by providing suggestions and

coloring the text to make it more readable, as well as by:

■ helping you automatically apply coding standards to your code (we'll discuss

coding standards later in this chapter)

■ allowing you to move code up and down or left and right, and easily duplicate

it without having to cut and paste

■ supplying coding templates so you that can avoid rewriting the same commands

over and over again

■ providing intricate search facilities that treat various commands and functions

as entities and not just text, meaning you can do things like tell the IDE “Show

me where this function first appears”

Jump Start PHP Environment16

■ integrating bug checkers, standards checkers, and testing suites, all of which

ensure that your application is running properly without you having to constantly

recheck it

■ integrating version control systems so that you can maintain different versions

of your code from the IDE, ensuring that you always have infinite “undo” capab-

ilities when programming (more on version control in Chapter 5)

■ enabling you to connect to databases and remote servers right from the IDE, letting

you easily debug your database or test the code on your remote server (for ex-

ample, a company’s server at headquarters while you’re at home) to ensure it

will work fine come Monday morning

And much, much more.

So, which IDEs are a good option for PHP development?

In my own order of preference:

PhpStorm
PhpStorm3 is a commercial IDE, meaning it’s neither open source nor free, but it’s

well worth the price. It offers everything that’s been mentioned above and more,

and works on all operating systems flawlessly, whether you’re on Linux, Windows,

or Mac OS X. It has been written about on SitePoint extensively4 if you’d like to

see some reviews, handy shortcuts, hacks to become even more efficient, other

people’s approaches, and so on. JetBrains―the company who makes it―also tends

to give out free licenses now and then, and you can qualify for one by maintaining

an open-source project. Alternatively, keep an eye out for surveys and reviews on

SitePoint’s PHP channel5 as we sometimes give out licenses, too.

Commercial support means quick responses from the support team, rapid develop-

ment (updates come out regularly with many new features), and a guarantee of

continued maintenance. Note that PhpStorm allows for a 30-day free trial, and if

you’re still yet to be convinced after a month, they’ll often extend your trial license.

3 https://www.jetbrains.com/phpstorm/
4 http://www.sitepoint.com/tag/phpstorm/
5 http://sitepoint.com/php

17The Programming Environment

https://www.jetbrains.com/phpstorm/
http://www.sitepoint.com/tag/phpstorm/
http://sitepoint.com/php

Pros: very fast, feature-rich, stable (never crashes), cross-platform support

Cons: costs money, can be resource-intensive, and is unfriendly to older com-

puters. See requirements at

https://www.jetbrains.com/phpstorm/help/system-requirements-and-installation.html.

NetBeans
NetBeans6, an open-source IDE, sports almost all the features of PhpStorm and is

its nemesis. I had used NetBeans for two years before transitioning to PhpStorm,

and recommend it to everyone who needs a good IDE but isn't prepared to pay for

a commercial one.

NetBeans is slightly slower than PhpStorm and more resource-intensive. It is cross-

platform, relatively stable, and very reliable. The group behind it was acquired by

Oracle, and while some see this as a bad omen, I feel it only cements the reliability

of the current version.

Pros: free, feature-rich, reliable, cross-platform, open source

Cons: Oracle-owned, lacks commercial support, slower to adopt new features

Zend Studio
Zend Studio7 is made by the company “in charge” of PHP (though, it’s been acquired

by Rogue Wave software, whose name may appear in certain places where Zend

used to be). Zend is the company who first brought PHP into existence, and who

provide official certification for the language.

Zend Studio is a commercial IDE that’s a bit pricier than PhpStorm, but it offers a

free trial so you can give it a spin before committing to it. It has many of the same

features of PhpStorm and NetBeans, with some exceptions, as well as some of its

own. Tools for easier mobile app development (available in Netbeans and PhpStorm

via plugins) are built into Zend Studio, and its own Apigility platform (a service

for creating APIs based on their Zend Framework) has a native Zend Studio driver,

too. Don’t worry if you’re unfamiliar with any of these terms, they’ll be covered

later in the book.

6 https://netbeans.org/
7 http://www.zend.com/en/products/studio

Jump Start PHP Environment18

https://www.jetbrains.com/phpstorm/help/system-requirements-and-installation.html
https://netbeans.org/
http://www.zend.com/en/products/studio

Another perk is the built-in support for Zend Server―a special kind of server pro-

gram used to run your PHP application and provide various analyses on running

code and advanced debugging capabilities. Zend Server is a paid product, though,

so if you want to use it in Zend Studio, you’ll need to purchase a license. There’s

some basic information about Zend Server here:

http://www.sitepoint.com/getting-know-zend-server-7/.

If your goal is to become the most “official” PHP developer you can be, with certi-

ficates and a total knowledge of officially endorsed tools and services, Zend Studio

is right for you. Otherwise, I’d recommend either of PhpStorm or NetBeans.

Pros: great commercial support due to being owned by Zend; feature-rich, cross-

platform, and integrates with other Zend products nicely

Cons: expensive, resource-intensive, and unstable; can be slow

Here are some other options you can research at your own leisure, a mix of commer-

cial and free:

■ Komodo IDE: http://komodoide.com/
■ Eclipse with PDT: https://eclipse.org/pdt/
■ Aptana Studio: http://www.aptana.com/
■ phpDesigner: http://www.mpsoftware.dk/phpdesigner.php

There’s also a list, ordered by popularity, at

http://www.sitepoint.com/best-php-ide-2014-survey-results/.

Whichever IDE you choose, stick with it for at least a couple of months. The learning

curve is often high, and you might feel overwhelmed by all the options when you

first start using it. In time you’ll become used to everything it offers, even if you’ll

only be using 10% of its functionality in your first 100 days of code. There’s nothing

wrong with switching IDEs at a later date, but give each one you try a reasonable

chance.

At this point in time, it’s unnecessary to download and install an IDE. This book is

very light on code, and you’ll only need one when we reach the later chapters.

19The Programming Environment

http://www.sitepoint.com/getting-know-zend-server-7/
http://komodoide.com/
https://eclipse.org/pdt/
http://www.aptana.com/
http://www.mpsoftware.dk/phpdesigner.php
http://www.sitepoint.com/best-php-ide-2014-survey-results/

Beware IDEs with WYSIWYG

One item IDEs do not and should not provide is WYSIWYG (What You See Is

What You Get) editing. Dreamweaver, an IDE by Adobe, is one such tool. It’s in-

famous for letting you get started easily because it allows you to pull in elements

from a toolbar and drop them visually onto the screen, helping you “build code”

as if playing with Lego blocks. Yet the code it generates is often suboptimal and

bloated, containing more code than necessary and slowing a website down. What’s

more, by skipping the real coding part, you're effectively holding yourself back.

You'll be unable to read anyone else's code, and you'll have a far tougher time

learning to solve problems on your own.

Dreamweaver is not the only WYSIWYG editor, but it’s by far the most popular

one. If you run into an IDE that supports WYSIWYG, I wholeheartedly recommend

you run in the opposite direction.

The Importance of Coding Standards
Coding standards are rules applied to code so that it's consistent across the entire

project. For example, if Jim writes code this way:

if ($purchaseWasCompleted)
 $this->succeed();
else
 $this->error();

but Mike writes code like this:

($purchaseWasCompleted) ? $this->succeed() : $this->error();

and Joanna writes it as follows:

$pwc = $purchaseWasCompleted;
if ($pwc)
{
 $this->succeed();

Jump Start PHP Environment20

} else {
 $this->error();
}

they have all written the same code differently. Now, if Jim reads through Mike’s

code, it might take him longer to go through it purely because he’s used to his own

way of writing. If they both examine Joanna’s code, they’ll be confused by the amount

of code it took her to produce the same outcome as them in a different form.

If, however, they agree on a coding standard, they’ll all produce the exact same

code. Once they grow used to the standard, they’ll be able to read each other’s code

more fluently, noticing bugs and reusing features with ease without any apparent

language barriers.

Many IDEs have the ability to automatically apply certain coding standards; for

example, the current favorite in the PHP world is the PSR-2 coding standard,8 and

all the IDEs mentioned have built-in mechanisms to at least check for it, if not apply

it automatically and autocorrect your code. With PSR-2 (PSR stands for PHP

Standard Recommendation), code such as this:9

class Test {
 protected $name;
 public function __construct($name) {
 $pointlessSum = 3+4;
 if ($name)
 $this->name = $name;
 else
 $this->name = "Default";
 }
 public function echoName() {
 echo $this->name;
 }
}

would be reformatted to look like this:

8 http://www.php-fig.org/psr/psr-2/
9 Don’t worry if you don’t understand this code, it’s just for demonstration purposes.

21The Programming Environment

http://www.php-fig.org/psr/psr-2/

class Test
{
 protected $name;

 public function __construct($name)
 {
 $pointlessSum = 3 + 4;
 if ($name) {
 $this->name = $name;
 } else {
 $this->name = "Default";
 }
 }

 public function echoName()
 {
 echo $this->name;
 }
}

Much more readable, isn’t it? And all it took was some blank lines and spacing

changes―that’s more or less everything a coding standard does. Trivially simple,

but vitally important. Standards also dictate other aspects, such as uppercase/lower-

case letter conventions when naming classes and variables (notice the uppercase

Test in the previously mentioned code); the position of curly braces in logic con-

structs such as if, for, and others; and more.

We strongly recommend using PSR-2. It’s what the vast majority of high-quality

projects out there use, making your coding style instantly compatible with that of

many, many developers. It will also prepare you for reading their code fluently.

With an IDE, this becomes incredibly easy. For example, in PhpStorm, you would

go to File > Settings > Editor > Code Style, and select PSR1/PSR2 (PSR-2 improves upon

PSR-1, so this option applies both). Note that, depending on your version of Php-

Storm, you might also have to select Set From in the Code Style windows. In other

IDEs, it's as simple as googling for the phrase “PSR-2 in EDITOR” where EDITOR

is your IDE of choice. It will yield a plethora of results.

The Command Line / Terminal
Finally, let’s briefly look at the command line or terminal. First, a clarification on

the terminology.

Jump Start PHP Environment22

On Windows, the program you can see in Figure 2.3 is called the command prompt

or command line:

Figure 2.3. The Command Prompt says “Hello”

You run it by typing “cmd” or “command prompt” into the search box. In this, its

most basic shape, it allows you to execute commands that run Windows programs,

and either produce some written output (such as the echo command seen in Fig-

ure 2.3 that produces the output “Hello!”), or open applications you’re already fa-

miliar with (if you type “notepad” into the command prompt and hit enter, the

Notepad application will open). The command line has alternative implementations

such as Cmder10 (seen in Figure 2.4) or Console.11 They are prettier versions that

essentially perform the same task, but make certain actions such as copy pasting,

tabbing interfaces, and selecting text simpler.

10 http://bliker.github.io/cmder/
11 http://sourceforge.net/projects/console/

23The Programming Environment

http://bliker.github.io/cmder/
http://sourceforge.net/projects/console/

Figure 2.4. Cmder says “Hello”

On Mac and Linux machines, the program is called Terminal. To run it on either

of these systems, open search and input “Terminal” and it should pop right up. It

performs the same functions as the Windows Command Prompt, though has different

commands. For example, the command to show the content of a directory (folder)

in Windows is dir while on Apple and Linux it’s ls.

Any developers worth their salt need to become friendly with the command line /

terminal to maximize their potential. There are common workarounds to most

command line commands and various shortcuts you can take at first, but it’s never

too long before those become more cumbersome and limiting instead of useful.

The differences between the Windows and the non-Windows versions are unimport-

ant because you’ll be using the Apple/Linux-specific commands, even on Windows.

We’ll show you how in Chapter 4.

The Community
As a final element of the programming environment, Iet’s discuss asking for and

providing help. The community around your programming language of choice is

among the most important factors when learning to code. Being able to quickly and

reliably obtain answers to problems you encounter can mean the difference between

making or missing a deadline in a commercial project.

Jump Start PHP Environment24

No developer knows the entire list of their preferred programming language's com-

mands by heart. I’ve been programming in PHP for almost a decade, and I still reg-

ularly look up even the basic commands. Real knowledge lies not in knowing the

commands by heart, but in knowing where to quickly find them.

That said, here are some resources you should bookmark in your browser right now

under a folder titled “PHP Help.”

PHP Mentoring
PHP Mentoring12 aims to assist people in finding mentors and disciples. If you’re

an expert, you can mentor newbies, and if you’re a beginner, you can find a mentor.

A mentor will tell you about best practices, analyze your code and provide feedback,

point out your mistakes, and set you on the right path whenever you stray. There

are no fees associated with this; it’s a purely voluntary effort by some good souls.

If you’re a total newbie, I suggest you apply for mentorship as soon as you flip this

book’s last page.

PHP.net Documentation
The official site of the programming language13 is chock-full of code samples, with

user comments further examining and explaining them. You will likely get little

use out of it by just wandering through the pages aimlessly, but whenever you be-

come stuck and need to check out a function or command, your first Google result

will likely be PHP.net. If you’re on a poor connection, or are often offline, there’s

also an offline version of these docs14 that you can download stand-alone or as a

Google Chrome application.15

Various Forums
The SitePoint forums16 are an excellent resource with legions of people willing to

help. You’re almost guaranteed to receive an answer in minutes if you go into enough

details with the question. The forums are gamified, meaning they have badges and

points awarded to those who post there, encouraging the community to participate.

12 http://phpmentoring.org/
13 http://php.net
14 http://php.net/download-docs.php
15 http://bit.ly/phpdocs
16 http://community.sitepoint.com

25The Programming Environment

http://phpmentoring.org/
http://php.net
http://php.net/download-docs.php
http://bit.ly/phpdocs
http://community.sitepoint.com

The StackExchange network is a consortium of context-specific (ranging from pro-

gramming to chess and cooking) question-and-answer websites, made by the same

people who built the software that powers the SitePoint forums. Being also gamified,

this form of reward system entices users to participate more than usual, so one can

gain an answer to a well-formed question in a matter of hours, if not minutes. There

are three major subsites you should bookmark for the full experience:

■ StackOverflow (http://stackoverflow.com/) is the most popular generic program-

ming Q&A site. You can ask about any language here, as long as it’s about devel-

opment. You can also ask questions not dealing with programming directly, such

as inquiries about IDEs, servers, and so on.

■ Programming (http://programmers.stackexchange.com/) focuses solely on pro-

gramming problems. If you get stuck coding, this is where you ask your questions,

but make sure you google extensively first. Most of the newbie problems already

have solutions online, and you won’t be hard-pressed to find them.

■ Code Review (http://codereview.stackexchange.com/) is used for having your

code reviewed by other people and receiving feedback. It’s important to accept

feedback for what it is: apply the positive, brush off the negative, and learn from

the constructive.

There are many other subsites in the network. Just look at the footer of any of these

three―the full list is there. You might even find some that interest you outside of

programming.

These resources listed will be of endless help to you at the beginning of your PHP

journey. As soon as you feel even the least bit comfortable in basic PHP programming,

I encourage you to seek out some intermediate and advanced tutorials by visiting

SitePoint’s PHP channel.17

Summary
In this chapter, we dealt with coding standards, code editors, communities, and

other approaches that make coding more comfortable for ourselves, along with the

people inheriting our code. Having a good coding bon ton from the get-go will pro-

17 http://sitepoint.com/php

Jump Start PHP Environment26

http://stackoverflow.com/
http://programmers.stackexchange.com/
http://codereview.stackexchange.com/
http://sitepoint.com/php

duce exponential improvements down the road as these helpful habits become

muscle memory. Remember: good habits are just as difficult to break as bad ones!

27The Programming Environment

Chapter3
The Application Environment
This chapter will focus on the application environment. We’ll also discuss *AMP

bundles such as XAMPP and why they’re a poor choice; production /development

parity; and performance and debugging.

If you’re familiar with all these terms, feel free to skip this chapter.

Application Environments
The application environment is the term used to describe the environment your

application can find itself in during various stages of its life cycle: the production

environment, the development environment, and the staging environment.

The word environment refers to the hardware and software around your application;

that is, everything used to power it.

Production
We’ll start with the most straightforward of environments: the production environ-

ment.

When you deploy your application―in other words, upload it to a server and make

it publicly accessible for the target audience―you’re putting it in production, or in

use. The production environment is your application’s final destination, your code’s

purpose.

In an application’s life cycle, the production environment is the live server―a

server computer that's set up so that other people can connect to it and see your

website. This live server will be configured to serve your application as efficiently

as possible. All the extra files you used during development will be removed from

the application via a process known as compiling or building, which is explained

further on.

When in production, your site is considered to be live (or deployed) and will be

accessible via its own domain; for example, http://mysite.com. When you launch

your site (put it into production mode), you have cause for celebration, because this

is the final step in your application’s development process.

It is the equivalent of a chef cooking a meal in a restaurant and having it delivered

to the patrons who ordered it.

Development
In the development environment, your application is being actively developed. The

development environment is the computer you as the developer are using to develop

the app, including the computers of all your team members, regardless of whether

they are near you or remote. It is important to note that despite covering both aspects,

the development environment refers more to the state your app is in, rather than

its physical location―the app is in the state of being developed.

In the development environment, you have various tools at your disposal―from

IDEs (see Chapter 2) to unit testing libraries and standards fixers, compilers and

builders, file watchers, and more―anything you need to achieve the job at hand.

If we compare our application to a smartphone, the assembly plant it’s being made

in is the development environment. This environment contains all the necessary

parts―the screen, the case, the battery, the various LEDs―and each part is individu-

ally tested before being used in the construction of a smartphone unit. This is called

unit testing―ensuring each unit works.

Jump Start PHP Environment30

For an example of unit testing in application development, see the section called

“For Those Who Want More” at the end of this chapter.

To take the smartphone assembly analogy further, the battery being tested might

require a separate charger attachment, or the screen may need to be tested using a

robotic arm with synthetic fingers to ensure that the screen’s touch sensitivity works.

Figure 3.1. Robot touching a smartphone screen

All these add-ons are there during development only. When converting from the

development environment to the production environment (also known as deploying),

these add-ons are removed. For our application, this means the aforementioned

compilation/building step: various CSS and JavaScript files are merged together

and shrunk so as to decrease the size of the website, making it appear faster when

people visit it; unit tests are ignored and left behind in the development environment;

and various other optimizations occur (covered later in the chapter)―all with the

intention of making the final product maximize its appeal and potential when de-

clared ready.

31The Application Environment

Hosts and Virtual Hosts
When you develop on your own computer, it’s impossible to visit the URL ht-

tp://mysite.com and expect to see your site; after all, your site is yet to go live―it’s

not on the Internet. To get around this and see our site as if it were live, we fake the

Internet by defining virtual hosts.

Put simply, a virtual host gives an instruction to the server program installed on

your computer, such as: IF a user requests http://mysite.com in the browser, run

the file mysite.php through PHP and show its output in the browser.

As you can see, this is nearly identical to the regular request flow of live sites. But

what makes the browser ask our own computer’s server program for the mysite.com

domain, rather than look it up on the Internet’s name servers? The hosts file.

The hosts file is a special file present on every operating system. We mentioned it

briefly in the section called “For Those Who Want More” in Chapter 1. It contains

a list of domains and their appropriate IP addresses, so that any browser on your

computer can read it and go directly to the IP address without having to talk to the

DNS to check where to go. On Windows, that file is in C:\Windows\Sys-

tem32\drivers\etc\hosts, and on Linux and Mac machines it's in /etc/hosts. If

you put an IP-name pair into this file, the computer will obey it. We can even try

it out right now. Have no fear―there's nothing that can go wrong. Ready?

On Windows, enter the search field, type in “notepad” and once it appears, right-

click it and select Run as Administrator. The system will then ask you for confirmation.

In the window that opens, select File > Open and go to: My Computer > C: > Windows

> System32 > drivers > etc. In the lower right corner of the Notepad window, you

might need to select All Files so that the hosts file shows. Double-click to open it.

On Linux/Mac machines, open Terminal by searching for it. On Linux, open the

default text editor as the administrator by typing sudo gedit into Terminal. You’ll

be asked for your administrator password. On OS X, enter sudo /Applica-

tions/TextEdit.app/Contents/MacOS/TextEdit, which will do the same task. In

either of these editors, go to File -> Open and enter the directory /etc to find the

hosts file. Double-click to open it.

Jump Start PHP Environment32

Once the file is opened, note the first few lines: they’ll all start with the hash symbol

(#). This indicates that they’re comments, and have no effect on the file. These serve

to explain a file’s purpose to the user, and they exist in PHP as well.

Now, under all these comment lines, add the following line:

208.117.229.217 bing.com

Save the file and open http://bing.com in your browser. You’ve just successfully

redirected all requests to Microsoft’s search engine Bing to Google! Of course, we

don’t want to keep these changes; feel free to delete this line or put a hash symbol

in front of it to turn it into a comment, and save the file. You should be able to visit

http://bing.com as normal again.

Using this method, we’ll later redirect all browser requests for http://mysite.com

(which will be our application’s example domain) to our own computer’s server.

This will enable us to easily test the development version of our site without deploy-

ing it live.

Staging and Maintenance
The staging environment is a separate server (or several servers) containing a

copy―also known as a mirror―of the production environment. The staging envir-

onment is often skipped in smaller companies or projects. It is designed to resemble

the production environment as closely as possible, with matching versions of in-

stalled software, identical configuration values, and so on. Staging is for performing

the final tests; for example, Facebook might redesign its front page, and before de-

ploying it out into production for all users to see, it would deploy to its staging

servers so that employees (dedicated non-programmers also known as the quality

assurance team) can test everything first as if using it regularly. If everything goes

well, the final deployment from staging to production happens.

Staging is beyond the scope of this book, but it’s good to know about it. In the age

of virtual machines and small throw-away projects, staging can be unnecessary,

only coming into play with bigger long-term web applications.

There is also maintenance mode, a term we must cover in this context. It's a mode

rather than an environment because the environment around the application doesn't

change―only the status of the application does. It's usually just a switch on the

33The Application Environment

production server telling those trying to access the website words to the effect of

“Be right back, tuning up!”

The Evil of *AMP Bundles
When starting out in PHP development, it’s tempting to download and install

packages such as XAMPP,1 WAMP,2 MAMP,3 or EasyPHP4. The AMP in those

names stands for “Apache, MySQL, and PHP.” XAMPP adds another P at the end

for the Perl language. The first letter refers to the operating system: Windows, Linux,

Mac OS X, or, in the case of XAMPP, cross-platform (meaning it works on any OS).

These bundles contain all the software you need to run your PHP applications

quickly and easily on your computer. In one click, you can install everything you

could ever need to write your very first PHP script. So, where’s the evil in this?

■ your computer will be polluted with unnecessary software
■ you'll learn less than you would by installing manually
■ testing is diffficult
■ if you make a mistake, it’s either very difficult or impossible to return to a previ-

ous state

Let’s address these one by one.

Machine Pollution
Whenever you install software such as an *AMP stack on your computer, a chunk

of your computer dies. Even if you delete the software later on, uncomfortable traces

usually remain―often in the form of registry entries in Windows or file dust on

Linux. In fact, this is especially apparent on Linux. While Windows and OS X ap-

plications are installed in an application folder with all related files inside it, on

Linux the installation of software is like taking a shotgun to a castle built of Legos.

One click and they’re everywhere.

As time goes on, you’ll install another library, another package, another tool. You’ll

keep adding supplementary software as you develop your app further, perhaps add

1 https://www.apachefriends.org/index.html
2 http://www.wampserver.com/en/
3 http://www.mamp.info/en/
4 http://www.easyphp.org/

Jump Start PHP Environment34

https://www.apachefriends.org/index.html
http://www.wampserver.com/en/
http://www.mamp.info/en/
http://www.easyphp.org/

different items entirely because you’ve started working on a new project in parallel.

Maybe app1 requires a PHP extension to edit images, and app2 needs a PHP exten-

sion that allows it to package code into closed source archives, so that your code is

hidden from your competition. In time, you’ll have hundreds of megabytes of devel-

opment software sitting on your machine, with no clue as to whether or not you

still need it.

Your machine will slow down, applications will become less usable, and your de-

velopment machine―the computer you’re working on―will become so different

from the production server you eventually intend to deploy your application on

that you’ll be unable to handle the difference gracefully. You’ll end up regularly

combating bugs on a live website and annoying your visitors to no end.

Learning is Progress, or How the Comfort of Your
Comfort Zone is Overrated
By depending on these prebuilt packages, you also rob yourself of the experience

of learning system administration work (ops, in short). Ops is, in larger companies,

a team or person in charge of server issues―whether it be fixing bugs, installation

of new software, upgrading existing software, and so on. In smaller teams or when

working solo for clients, basic system administration is an essential skill to have.

While being able to install everything you need onto your computer with a single

click is neat, there’s no user interface on a server and thus nothing to click; you

need to master the commands required to set up a server’s software so that it can

run your PHP application. Otherwise, you’re either destined to hire a server admin-

istrator to help you out, or even worse, use shared hosting (a horror story that's ex-

plained in Chapter 6).

By refusing to rely on these *AMP bundles, you’ll be forced to climb the learning

curve of installing a server and other software by hand—knowledge that’ll be useful

in more ways than one if you’re serious about this career path. Besides, nailing

down the basics is really not that hard, as you’ll see later in the book.

Testing
Say app1 and app2 are built on PHP 5.3, run MySQL 4.0, and are intended to go

live on a server powered by Apache (the server software). Then, there's a new re-

quirement: make sure app1 works on PHP 5.6 and MySQL 5.1, and can be powered

35The Application Environment

by Nginx (another server program that's competition to Apache, pronounced “engine

x”). Uh-oh, what now?

We could update PHP to a newer version and check whether app1 still works, but

how do we then keep developing app2 without accidentally using code that’s un-

available in PHP 5.3 if our entire computer is now running 5.6? Likewise, we could

upgrade MySQL to 5.1 and check that it still works, but how do we know MySQL

didn’t throw out some old features in version 5+ that would break app2 even if we

fixed app1 to work on 5.1? After all, app2 still needs to work on 4.0 because it’s

probably still deployed on such a production server. Heck, how do we handle the

Apache versus Nginx problem? Do we install both web servers on our computer

and test for each? How do we switch them out? How do we ensure that we remember

to test our site on one while the other is running?

And that’s just for two apps. Now imagine if you had to deal with a dozen applica-

tions from ten different clients, each with different requirements. It all stops being

fun very, very fast.

This separation of different software versions is easy to solve by means of virtual

machines, which we’ll talk about in Chapter 4.

The Uncleanable Mess
Finally, what if we try to install a new version of PHP, but something goes wrong?

This scenario is especially common in OS X and Linux―now none of the PHP

versions we have installed on the machine work and it’s proving impossible to get

a single site to run. What a mess! Instead of easily reverting to a previous running

state, we’re forced to spend the entire day debugging our own system and trying to

make it run―not necessarily the right version, but just run.

Wouldn't it be great if we could just enter a command and have things go back to

the way they were 10 minutes ago? Well, we can! This, too, will be demonstrated

in Chapter 4.

Production/Development Parity
This complicated-sounding phrase is actually very simple―we’ve actually indirectly

touched on it before. Production/development parity means nothing more than

having the production and development environment as similar as possible to each

Jump Start PHP Environment36

other, preferably identical, so that anything you develop will automatically run in

production without any excessive configuration or additional debugging or tweaking.

Achieving parity is very important for one’s workflow due to the enormous amount

of time it saves. Avoiding having to do any additional work for your application to

run in production means having the freedom and time to focus on important busi-

ness-related logic problems that actually benefit your application’s context, rather

than being stuck in a rut of constantly playing catch-up. Making a change in devel-

opment and then having to make two changes in production for that change to be-

come apparent is tedious at best and detrimental to a project’s health at worst. You

never know who on the team will slip up and cause the app to greet people with

an error screen.

The best way to achieve parity is by having the exact same software running in your

development environment as you do in your production environment. For example,

if you’re aiming to deploy your application to production onto a server running the

Ubuntu Linux version 14.04 operating system, it’s best that you develop on this

operating system as well. However, what if we were running Windows, because we

like to consume advanced multimedia content such as games, or we need powerful

image and video manipulation software that just cannot exist on a Linux OS? Should

we forsake all our other interests, install Linux over Windows, and strive for parity

over anything else? Or should we just forsake parity and risk it while keeping our

computer powerful, beautiful, and stable, sticking to our operating system of choice?

Fortunately, there’s a third way that allows you to achieve the best of both worlds:

virtual machines (covered in Chapter 4).

Performance and Debugging
The last aspects of the application environment we need to touch on is ensuring

that the app is fast (performance) and bug-free (debugging). This section is entirely

theoretical; it’s just so you know what to expect later on when we come across some

of these terms.

Performance is achieved through various methods of optimization. Contrary to the

word’s meaning, in application development optimization often has several layers

and is rarely the change that immediately brings about the perfect solution. Perform-

ance includes, but is not limited to, several areas:

37The Application Environment

Optimizing the database Often the slowest part of any website, the database

can benefit from additional optimizations after

it’s been running for a while and the bottlenecks

(the parts that are the slowest because they’re

unable to process the number of incoming re-

quests fast enough) become apparent. Methods

for database optimization include setting up in-

dexes, splitting reads and writes, changing data-

base engines, caching fetched data, and other

mystical-sounding phrases.

Optimizing the front-end assets We mentioned compilation and building earli-

er―it’s how we optimize the website’s front end.

When a website is shown to users, they see output

comprised of images, HTML, CSS, and JavaScript,

all of which need to be downloaded and executed

in the browser as explained in Chapter 1. The

smaller these files are―and the fewer there

are―the faster a website loads. Often, a website

will have multiple CSS files and multiple JavaS-

cript files. Combining each type into one bigger

CSS or JavaScript file yields dramatic increases

in a website’s download speed. Another front-end

asset optimization trick often done is serving im-

ages via a content delivery network, or CDN, a

third-party service that hosts your images for you

and ensures that the visitor to your website

downloads them from a server closest to them,

thereby further increasing speed. One can also

reduce image size, create an image sprite by pla-

cing all images into one file, and more.

Optimizing the back end This is also a compiling/building step. Test files

are ignored, and files are merged into bigger ones

to use instead of a million smaller ones. Some

PHP applications are even compiled into another

Jump Start PHP Environment38

programming language such as C++, which is

much, much faster.

Caching Caching is saving previously needed files and re-

sponses for later, with the expectation of them

being requested again. If you ask the database for

the total number of users in your database, it will

count them and give you the number. If you make

it save this number for later (that is, cache it), next

time it is asked it can just grab the already pre-

pared information. When you ask the server

“What do I get if I visit mysite.com/user/5?”, it

will tell you. If you tell it to remember the answer

next time the question is asked, there's no need

for the server to look as it already knows. Caching

is so important in web development―there’s a

common saying that “cache is king.” It can mean

the difference between life and death for your

application when a huge surge of traffic suddenly

happens.

Debugging is tightly coupled with performance. Besides a nasty error screen for

your users, a bug in the code can cause execution locks, holdups in your code where

there should be none, repeated and unnecessary queries into your database, and

more.

So, how does one measure performance or find bugs? There are many tools for

profiling PHP applications (that’s what finding bugs and measuring the performance

of various aspects of your application is called). Two of the better ones are Z-Ray5

and Blackfire6 (we won't be covering them in this book as they are outside of its

scope).

5 http://www.zend.com/en/products/server/z-ray
6 https://blackfire.io/getting-started

39The Application Environment

http://www.zend.com/en/products/server/z-ray
https://blackfire.io/getting-started

Beware Micro-optimization

It’s important to note that a common newbie error is micro-optimizing. For ex-

ample, it was once believed that using single quotes with strings ($var = 'Some

String') was faster than double quotes ($var = "Some String"). The perform-

ance gains such an optimization can bring to the table are negligent and almost

always insignificant; instead, improving a complex SQL query or caching a remote

HTTP call will always be an order of magnitude greater. When in doubt, use

benchmarks and real data (such as those from Z-Ray or Blackfire), and never your

gut.

Summary
In this chapter, we explored the application environment, covering the various

ecosystems present around your application in a given phase of its life cycle. We

talked about virtual hosts and configuring your computer to redirect website URLs

to your own PHP installation rather than looking for results online, and we discussed

the all-important development/production parity.

If it all seems overly complex, don’t despair. This is only because we’ve dealt almost

exclusively with theory so far―theory that is necessary to bravely proceed into the

practical realm. In the following chapter, we’ll get our hands dirty with some virtual

machines.

For Those Who Want More
In the application universe, testing the individual components is referred to as unit

testing―the testing of each individual set of code so that you know it works.

For example, a part of your application might have the ability to remove local

symbols from every name and turn them into US-friendly letters. My last name

“Škvorc” would thus be turned into “Skvorc.” Turning Škvorc into Skvorc is a small

set of code, or a unit. This unit is testable; that is, for any given input of “Škvorc”

I expect an output of “Skvorc.” I can then write a unit test, which is a file that defines

the input and desired output, and when I run it, it tests whether or not this function-

ality still works. If, two months later, I change something in my application, I can

easily run this test (which is still there) and check that this conversion still works.

This sort of workflow ensures that you can upgrade your application later on without

fear of breaking something you built before and forgot about. In our smartphone

Jump Start PHP Environment40

analogy at the beginning of the chapter, a single testable unit can be the touchscreen,

or the battery.

41The Application Environment

Chapter4
Virtual Machines
In this chapter, we’re going to learn about virtualization and why it’s absolutely

essential for a quality development experience. We’ll use industry-standard tools

such as Vagrant, and talk about ways to make using virtual machines more user-

friendly, so that they become more accessible to a wider audience.

I’d still advise reading this chapter even if you’re familiar with virtualization, as it

will undoubtedly contain information new to you. It will also explain and demon-

strate the virtual box that we’ll be using throughout the remainder of the book.

To use the tools we present in this chapter, you’ll need to install some software on

your computer. This software is cross-platform, so there’s a version for your computer

no matter which operating system you use.

Before proceeding, please ensure that you’ve installed the following:

■ Vagrant, from https://www.vagrantup.com/

■ VirtualBox, from https://www.virtualbox.org/

■ Git, from http://git-scm.com/downloads

https://www.vagrantup.com/
https://www.virtualbox.org/
http://git-scm.com/downloads

All these links include installation guides for every major operating system.

Virtual Machines Explained
Before we use virtual machines, or VMs, I’ll explain what they are in general, and

in the context of web development (which is not the same!).

What are VMs?
Your computer is a machine. It contains hardware such as the CPU, the GPU, some

RAM, a hard drive, and so on. You need all this to run your operating system and

the apps installed into it. A virtual machine is a special type of application that

reserves a part of your computer and pretends it's a real machine on its own. For

example, a virtual machine might reserve a part of your CPU and 2GB of RAM from

your main machine, along with 20GB of hard-drive space. These resources are then

brought together into a whole, seen in Figure 4.1, which can act as a computer on

its own. It can have its own operating system independent from the main machine's

OS (the host) with its own applications installed.

Figure 4.1. Visualizing a virtual machine

Jump Start PHP Environment44

The operating systems—in fact, the entire environments of the different machines

(the host and the virtual machine running on the host)—are entirely independent

and, indeed, unaware of each other. The host knows it has fewer resources at its

disposal, but is unconcerned. The virtual machine knows it has some resources at

its disposal, but has no idea they’re not real; it thinks they’re actual hardware parts.

A virtual machine is, quite literally, a computer within a computer. Some people

use them for running video games on operating systems without native support for

them; for example, running Windows games on a Linux system. Security companies

use them as sandboxes, environments in which they can let loose a virus or poten-

tially malicious piece of code without worrying about the consequences: if the vir-

tual machine gets damaged, it’s rebuilt with two simple commands (it’s virtual,

after all!). Enterprise companies use them as a way to avoid updating their software.

Rather than spend billions on a software rewrite because their internal application

depends on Windows XP and the newest version is Windows 10, they’ll spend

much less on buying Windows XP licenses and running Windows XP virtual ma-

chines inside of their Windows 10 host machines, enabling their app to live longer

while enjoying the increased security of a newer host operating system.

In development, a virtual machine is used as an isolated environment for your ap-

plication. You can install different versions of PHP and MySQL in it, and you can

break anything as a virtual machine can be reset into its original state easily. This

is what makes virtual machines very appealing, not only for testing code on different

versions of PHP on different operating systems, but also for development/production

parity (discussed in the Chapter 3): it allows you to configure a virtual machine to

resemble a live server as closely as possible, thus being able to test the code as if it

was online, minimizing errors.

Getting to Know VirtualBox and Vagrant
VirtualBox, one of the pieces of software we installed in the introduction to this

chapter, is used to build these virtual machines. It takes the resources from the host,

and gives them to the virtual machine. It is what boots up the virtual machine (they

need booting up just like regular machines), helping it live out its illusion of reality.

VirtualBox has many features including, but not limited to, the sharing of graphics

cards (enabling a virtual display within your display), inputs (keyboards, mice, and

so on), and sound (playing sound from the virtual machine on the host’s speakers).

Figure 4.2 depicts VirtualBox in action.

45Virtual Machines

Figure 4.2. VirtualBox in action

However, this can be very resource-consuming and can be incredibly sluggish.

Booting up virtual machines with full graphic interfaces takes just as long as booting

up on old hardware matching the hosts's power of the reserved resources; con-

sequently, this would be unnecessarily slow when developing for the Web. Further-

more, most web developers have their favorite IDE and browser, along with other

tools, all configured for a pleasant workflow. If developers had to reinstall and re-

configure these tools into every new virtual machine they booted up, their profession

would rapidly lose its appeal. Developers want to be able to use the tools they know

and love without much configuring; they want to be able to dive into a new project

as soon as possible, so they want to keep their tools on the host.

This is where Vagrant comes in. Vagrant is a helper tool that uses VirtualBox to

create “headless VMs.” In other words, it boots them up without the multimedia

angle (that is, without graphics and sound) so that they look almost like actual

servers; all you are given is a terminal application, as seen in Figure 4.3.

Jump Start PHP Environment46

Figure 4.3. Vagrant in action

We’ll discuss Vagrant in more depth below.

The Benefits of VMs
To recap, the benefits of using VMs in development are:

■ they’re easy to destroy and rebuild into an initial state without any consequences

■ you can use your favorite applications on your host machine

■ you can achieve development/production parity by configuring a VM to be

similar to your live server, thus enjoying a more bug-free deployment

■ you get to learn some system administration

■ it’s impossible to do any harm to your host machine when using VMs as they’re

completely isolated

47Virtual Machines

■ it’s easy to share entire configurations with other people (by sending them a

Vagrantfile—more on this later) so that they have the exact same setup on their

machine

■ there’s no need to install PHP, servers, and databases on your host machine,

thus keeping your main operating system clean and fast indefinitely

Vagrant in a Nutshell
Vagrant is an application that uses another application (in our case, VirtualBox) to

create virtual machines via simple commands such as vagrant up. Where punching

in such commands would usually be tedious, error-prone, and incredibly time-

consuming (albeit possible!) in a VirtualBox-only world, Vagrant helps us shorten

the process to be up and running incredibly quickly.

Vagrant knows what it needs to do with the help of a specific Vagrantfile, which

contains all the instructions for how to set up the environment, making the process

of creating a new virtual box much simpler.

Vagrant Boxes
Take, for example, your own computer. It has a plethora of installed applications

and services, and probably a bunch of media in your home folder such as pictures,

music, and so on. If you had the ability to package your entire machine’s collection

of software into a single file, so that when unpacked on another computer it turns

out a clone of your own machine, you would be building a box. This is what Vagrant

boxes are: preconfigured Virtual machine shells with some pre-installed software

(provisioned software―covered in the next section), making it easy to dive right

into a project.

All the various Vagrant boxes can be found on

https://atlas.hashicorp.com/boxes/search. These are boxes preconfigured by other

people and available to everyone for free. You can find anything from bare-bones

operating system installations to fully configured environments that are compatible

with specific software. You can use these preconfigured boxes, tweak existing ones,

or build your own. For resources on this, please see the links at the end of this

chapter.

Jump Start PHP Environment48

https://atlas.hashicorp.com/boxes/search

Provisioning
A provisioner is a tool used to automatically install some prerequisite software onto

a machine (whether virtual or not). Provisioners are often used in real live servers

as well to bring them up to par with the requirements of the application being de-

ployed. Some popular provisioners are Ansible,1 Puppet,2 and Chef.3 A provisioner

accepts a recipe, a list of steps required to prepare an environment for an application.

For example, assuming we’re about to build a PHP application, we might have a

provisioner do the following for us on a bare-bones Vagrant box:

■ install Git
■ install PHP
■ install some PHP extensions
■ install MySQL
■ set the default MySQL username and password
■ download sample database data and import it into MySQL

Doing all this manually is tedious and error-prone. Provisioners have the awesome

ability of taking care of operating system differences for us so they can be run on

our virtual machine, live server, staging server, and so on. They always perform the

same operations and produce the same result: the prerequisites to run our application

will be taken care of for us.

Vagrant integrates closely with the various provisioners and employs them to set

up the environments we tell it to set up. Thus, when booting up a Vagrant box the

virtual machine is started up first, followed by the designated provisioner. There’s

no need to know about provisioners at this point, but there will be links to some

more resources about them at the end of this chapter. We'll be using a preconfigured

Vagrantfile for our experiments in this chapter, along with an already preconfigured

provisioning script, in order to keep matters simple and newbie-friendly.

1 http://www.ansible.com/
2 https://puppetlabs.com/
3 https://www.chef.io/chef/

49Virtual Machines

http://www.ansible.com/
https://puppetlabs.com/
https://www.chef.io/chef/

Another approach to easy provisioning is using various available graphical user

interfaces (GUIs) to build your own Vagrantfile (and thus, provisioning script), such

as by using PuPHPet4, as shown in Figure 4.4..

Figure 4.4. Provisioning with PuPHPetPu

PuPHPet (which uses Puppet as a provisioner), and Phansible5 (which uses the ar-

guably simpler Ansible as a provisioner) are good examples of GUIs for setting up

virtual machines. These GUIs will enable you to go through a step-by-step process

of selecting all the software and configuration values you need for your environment,

ultimately producing a Vagrantfile, with which you can easily boot up your desired

environment. If you’d like to see an example of this, there’s a great post about Pu-

PHPet on SitePoint.6

Using Vagrant
Enough theory, let’s try and use Vagrant by setting up a version of Homestead, which

is a preconfigured virtual machine, and then I’ll explain it all in the next section.

Assuming you’ve installed the software from the introduction part of this chapter,

please go to the URL https://github.com/Swader/homestead_improved. Once there,

click the Download Zip button shown in Figure 4.5.

4 http://puphpet.com
5 http://phansible.com/
6 http://www.sitepoint.com/build-virtual-machines-easily-puphpet/

Jump Start PHP Environment50

http://puphpet.com
http://phansible.com/
http://www.sitepoint.com/build-virtual-machines-easily-puphpet/
http://www.sitepoint.com/build-virtual-machines-easily-puphpet/
https://github.com/Swader/homestead_improved

Figure 4.5. Downloading Homestead

Download the file somewhere onto your computer (I recommend your home folder)

and unzip it, either by double-clicking or by right-clicking and selecting Extract here.

Now it’s time to fire up our old friend Terminal, or command line, again. On OS X

or Linux, open the Terminal app. On Windows, because we installed Git at the be-

ginning of this chapter, run the program Git Bash as it should now be available.

Then, let’s enter the folder into which we extracted the contents of the

homestead_improved-master.zip archive, seen in Figure 4.6. The command should

be as simple as cd ~/homestead_improved-master, assuming you unzipped into

the home folder.

51Virtual Machines

Figure 4.6. The folder upon being unzipped

Now that you’re inside the homestead_improved-master folder, run the command

bin/folderfix.sh. Then, run the command vagrant up.

This will download the box and place it in a common location, so it doesn’t have

to be downloaded again when you make other “homesteads” in the future. It will

then use the box to create the virtual machine by following instructions in the

Vagrantfile. Depending on whether you’ve done this before, downloading the box

might take a while.

While waiting, add the following entry to your hosts file (see the Hosts and Virtual

Hosts section of Chapter 3 chapter for details on how and why to do this):

192.168.10.10 homestead.app

Once the original Terminal window where you ran the vagrant up command is

done and waiting for more input, open your browser and visit the URL: ht-

tp://homestead.app/. The screen should read No input file specified. If it

does, everything works! Now in the homestead_improved-master folder, make a

Jump Start PHP Environment52

subfolder called Project. Inside it, create another called public. Finally, in that folder

create a file called index.php with the following content inside:

<?php

echo "Hello Virtual Machine!";

Reload the http://homestead.app/ URL in your browser, and the screen should

read “Hello Virtual Machine!”

Let’s now examine everything that happened.

Homestead Improved: Explanation
When we visited the URL https://github.com/Swader/homestead_improved, we

went to GitHub, a coding social network for open-source projects. Homestead is a

preconfigured virtual machine running the Ubuntu operating system with critical

system security patches installed and some commonly used software for PHP devel-

opment; that is, a new version of PHP and some databases, among others. Homestead

Improved is a slightly enhanced version of Homestead that makes it even easier to

get started with some things. Every project on GitHub is a repository, a set of files.

The Homestead Improved repository contains all the files necessary to run a Vagrant

environment, specifically the Vagrantfile. This Vagrantfile loads the contents of all

the other important files in the repository and uses the combination of these files

to set up (provision) your environment. This is what the vagrant up command was

for: reading the Vagrantfile and following instructions within.

When we ran the folderfix command, we executed a shell script, which is a tiny

program whose sole purpose is to establish the folder from which it’s being run and

set that folder up as shared with the VM. Remember that VMs are isolated environ-

ments unaware of the host machine they’re running on? If they’re completely un-

connected, how can we then use our host machine’s applications to write code that

runs in the VMs? The answer is folder sharing. By mapping a specific location on

our host machine (the current folder) to a specific location within the VM (the Code

folder), we tell Vagrant to copy every file we create or change in this folder into the

designated location inside the VM. This creates a weak link between the host and

the virtual machine, enabling files to be shared; this, in turn, allows us to use the

53Virtual Machines

IDEs installed on the host machine to write code that eventually runs on the virtual

machine.

So, what about that No input file specified message? If you look at

Homestead.yaml in the sites block, you see the following:

sites:
 - map: homestead.app
 to: /home/vagrant/Code/Project/public

This means that whenever we try to visit http://homestead.app, the computer

should look for files to run inside the path in the to line. But since a fresh Homestead

Improved VM is yet to have any files in that location, the message we receive is one

of a missing input file. We then fix this by putting an index.php file in that location,

giving us our “Hello Virtual Machine” message.

Defining New Sites
Most of the time, you’ll want a custom folder path and site URL for your project.

Let’s define a new one on the same Homestead Improved VM we just used. A single

VM can host an unlimited number of apps/projects; it’s up to you to decide how

you want to distribute them across various machines/environments for testing or

development isolation purposes.

Open the file Homestead.yaml again. Under sites, add another map / to pair. Make

sure the indentation matches the pair above it, as they need to have the same pad-

ding—that’s a rule of the YAML file format. I’ll make a new site called test.app so

that my sites block looks as follows:

sites:
 - map: homestead.app
 to: /home/vagrant/Code/Project/public
 - map: test.app
 to: /home/vagrant/Code/test

This means: look for the files of the test.app URL in the folder

/home/vagrant/Code/test.

Now make a new test folder in the homestead_improved-master folder, and inside it

put the file index.php with the contents:

Jump Start PHP Environment54

<?php

echo "Hello ".(isset($_GET['name']) ? $_GET['name'] : "World")."!";

Then add 192.168.10.10 test.app to your hosts file.

To apply these changes, the VM needs to reload the configuration. We handle this

by executing the command vagrant provision from the command line inside the

homestead_improved-master folder.

If you now visit http://test.app/ in the browser, you should see “Hello World!”

And if you visit http://test.app?name=Vagrant, you should see “Hello Vagrant!”,

as shown in Figure 4.7. You’ve just done some PHP programming in a virtual ma-

chine!

Figure 4.7. Our first program in a virtual machine

You probably noticed that a new site requires you to add a new sites block, but

not a new folders entry. This is because we’ve set up Homestead Improved in such

a way that its entire master folder (the one you’re in: homestead_improved-master)

is shared into the Code folder of the VM, so any subfolders of these two folders are

automatically shared and kept in synchronization with each other as well. Technic-

ally, we could define separate folder mappings that go outside the

55Virtual Machines

homestead_improved-master folder and share a completely arbitrary location from

outside of it with a completely arbitrary location inside the VM, but it is my feeling

that adopting this isolated approach keeps it much cleaner.

Shutdown
The VM, while running, takes up a significant share of your host machine’s resources.

In fact, if you look at Homestead.yaml, you’ll notice that it takes one CPU core and

two entire gigabytes of RAM (lines two and three in the file). Leaving a VM on while

not in use is wasteful and slows down your host computer, so powering it down

(just like shutting a computer down when you leave the house, for example) makes

sense. We do this by executing the vagrant halt command from the terminal while

inside the homestead_improved-master folder. Alternatively, the vagrant suspend

command can be used―it’s faster, but ends up eating a bit more hard drive space,

even while off.

Let’s halt the machine. Inside the homestead_improved-master folder, run:

vagrant halt

To completely destroy the VM, wiping its hard drive and all the software installed

after download, we can execute vagrant destroy. To revive it and reinitiate the

provisioning process, we can run vagrant up again and all will be as it was. This

is the beauty of Vagrant―destroying and rebuilding is only two commands away,

lending itself perfectly to experimentation with even the most volatile cutting-edge

technologies.

Further Reading
This is, more or less, everything you need to know about Vagrant and VMs to get

started properly. Homestead is, of course, a shortcut―but it’s a good one worth

starting with. Once you’re comfortable with it, feel free to explore other approaches

such as building a box from scratch, modifying a Vagrantfile, using a different base

box to boot up a different operating system, and more.

For further reading and more in-depth information, please see the following articles:

Jump Start PHP Environment56

■ Re-introducing Vagrant: The Right Way to Start with PHP7

■ Quick Tip: Get a Homestead Vagrant VM Up and Running8

■ How to Create and Share a Vagrant Base Box9

■ Vagrantfile Explained: Setting Up and Provisioning with Shell10

Summary
In this chapter, we learned about virtualization―a crucial part of anyone’s develop-

ment workflow, even if they’re yet to know it. We introduced Vagrant, and added

new sites to a preconfigured Vagrantfile setup called Homestead Improved. We also

explained why one should always use virtual machines while developing, even for

the simplest projects.

In the next chapter, we’ll talk about version control and why it’s essential for any

kind of progressive work.

7 http://www.sitepoint.com/re-introducing-vagrant-right-way-start-php/
8 http://www.sitepoint.com/quick-tip-get-homestead-vagrant-vm-running/
9 http://www.sitepoint.com/create-share-vagrant-base-box/
10 http://www.sitepoint.com/vagrantfile-explained-setting-provisioning-shell/

57Virtual Machines

http://www.sitepoint.com/re-introducing-vagrant-right-way-start-php/
http://www.sitepoint.com/quick-tip-get-homestead-vagrant-vm-running/
http://www.sitepoint.com/create-share-vagrant-base-box/
http://www.sitepoint.com/vagrantfile-explained-setting-provisioning-shell/

Chapter5
Versioning Systems
In this chapter, we’ll cover versioning systems. In particular, we’ll be talking about

Git and GitHub, as those are by far the most popular two tools in use as far as ver-

sioning and code sharing are concerned.

If you’re an active user of Git and/or GitHub and are familiar with both the import-

ance and use of versioning systems in general, feel free to skip this chapter. Other-

wise, I strongly advise you to read it as it’s easy to absorb, and absolutely essential

in your future work.

If you didn’t read the previous chapter―though it is recommended that you do, so

please don’t skip it―install the following tools before proceeding:

■ Vagrant, from https://www.vagrantup.com/

■ VirtualBox, from https://www.virtualbox.org/

■ Git, from http://git-scm.com/downloads

https://www.vagrantup.com/
https://www.virtualbox.org/
http://git-scm.com/downloads

Versioning Basics
In software development, the term versioning or, more accurately, version control

refers specifically to the ability to:

■ track the changes of files over time and label those changes with helpful change

messages

■ revert those files to any of their previous versions (an infinite number of “undo”

operations)

■ share those changes with others in a way that’s visible and immediately clear

to every team member

■ enable more than one person to edit the same file at the same time, and being

able to sync those changes

■ have a central location for all source code from which all other team members

(and sometimes random enthusiasts) can grab your code and work on it

Conceptually, version control in software development is similar to applying version

control in other programs, such as tracking people’s contributions in Google Docs

documents, using the undo operation in Photoshop, and so on.

While version control is important in any kind of development, it is especially

precious in teamwork. In the past, teams working on the same codebase would share

code snippets over email (so-called “patchbombs”), which required a lot of manual

synchronization and administrative overhead in accepting changes and updates.

With tools such as Git and GitHub, this changed.

Git and GitHub
Git is an application for version control, or what is generally called a version control

system (VCS). It handles all the points listed under what constitutes versioning,

and more. GitHub is a variety of social network for coding, powered by Git.

Jump Start PHP Environment60

Git
Git is a command-line application that’s generally without a GUI. It’s used strictly

from the terminal or from within Git Bash, a tool that becomes automatically

available on Windows when you install Git.

Helper tools with graphical user interfaces do exist—partially removing the need

for manually punching in commands―but in the vast majority of use cases we re-

quire a version of the terminal. From now on in this book, whenever there’s an in-

struction like “execute the command git push”, it’s assumed we are using the ter-

minal or Git Bash to enter the command.

Through Git, we can easily download repositories such as Homestead Improved

from the last chapter without having to use the Download button. Instead, we use a

command called clone, like so:

git clone https://github.com/swader/homestead_improved

Notice that we used GitHub in the URL. We’ll explain that in the GitHub section

shortly.

How does it work?
In a nutshell, Git uses a hidden .git folder inside your project’s folder to track all

the changes and previous versions of the files. Whenever you make a new commit

(that’s a specifically flagged point in time when something changed in a given file

or set of files), Git will store a copy of the old version and new version in the .git

folder so that we can later refer to them if needed. That way, if we need to undo a

change, we just tell Git to reset to a previous point in time with, for example, git

reset 47298720dbf, where the code at the end is the name or flag of the commit.

We'll link to a more comprehensive Git guide at the end of this chapter. Reading it

will make you a Git master within a day or two, tops.

61Versioning Systems

Alternatives
Git is far from being the only VCS. There are others such as Mercurial,1 SVN,2 CVS,3

and many, many more, but Git is the most widely used one. It is the VCS to use if

you want to contribute to open-source projects today, as the vast majority of them

use it. It is also what mostly powers GitHub, so you’ll be part of the pack from the

get-go.

GitHub
When using Git, you have the ability to clone repositories from any remote endpoint,

provided the code is there. For example, if I have some source code and I put it on

a live server (one accessible to the Internet), then configure this server to accept

remote Git calls, anyone who has Git installed can clone this source code by running:

git clone https://myserver/myrepo.git

However, not everyone has the time, money, know-how, or patience to set up a

server just to host code for others to access. This is where GitHub comes in.4

GitHub is a website on which people can host their repositories for free, but there’s

a catch―all repositories are immediately accessible to everyone. They’re public.

Private repositories are supported, but cost money. This is ideal when developing

projects for clients that should be kept private—especially from the client’s compet-

ition. For free private repos, there are alternative websites such as GitLab5 and Bit-

bucket,6 but those aren’t nearly as popular as GitHub, hence why we’ll use GitHub

in this book. In your own adventures, feel free to use any service you like.

But why would one even want to use a service such as GitHub for their code? Apart

from the obvious answer of being able to share your code with others easily and for

free, services such as GitHub can be lifesavers when your machine dies and you

lose all its content. If you regularly pushed (a Git term for “upload”) to the reposit-

ory’s remote origin—meaning its GitHub URL—you’re safe from disaster: your entire

1 https://www.mercurial-scm.org/
2 https://subversion.apache.org/
3 http://www.nongnu.org/cvs/
4 https://github.com
5 https://gitlab.com
6 https://bitbucket.com

Jump Start PHP Environment62

https://www.mercurial-scm.org/
https://subversion.apache.org/
http://www.nongnu.org/cvs/
https://github.com
https://gitlab.com
https://bitbucket.com
https://bitbucket.com

file history is preserved and you can continue where you left off on another com-

puter. Furthermore, many other companion services exist that integrate automatically

with GitHub. One example would be Travis CI,7 a service that runs checks on the

code to make sure it all still works whenever changes to a GitHub repository are

detected. If something is wrong, Travis notifies you via email and updates a little

badge on the repo’s main web page warning users about the latest version.

Now that we’ve covered the theory of Git and GitHub, how about seeing it in action?

Git in Action
Let’s learn using a practical example. I recommend (and will assume) you put your

projects into your home folder, the path for which the shortcut is ~. If you opt to

use a different one, please adapt the code that follows.

Preparing the Environment
As we’ve done in previous chapters, we first need to configure a VM in which we’ll

do our experiments. We could do all this on our host machine, but remember that

the end goal is to keep the host machine as clean as possible, all while using a fully

discardable and experiment-friendly environment for all the playing around we can

think of. Here’s what to do:

1. Open Git Bash on Windows or Terminal on OS X/Linux.

2. Go into your home folder by executing the command cd ~.

3. Clone the homestead_improved repository into a folder named hi_phpenv with

the command: git clone https://github.com/swader/homestead_improved

hi_phpenv. You’ve just learned about git clone!

4. Enter the newly made folder with cd hi_phpenv.

5. Execute bin/folderfix.sh

6. Open Homestead.yaml and change the sites block so that it looks like this:

7 https://travis-ci.org/

63Versioning Systems

https://travis-ci.org/

sites:
 - map: phpenv.app
 to: /home/vagrant/Code/phpenv

7. Add a new hosts entry:

192.168.10.10 phpenv.app

If you’re unfamiliar with this step, please see the section Hosts and Virtual Hosts

in Chapter 3.

8. Finally, run vagrant up in the hi_phpenv folder. This will boot up the VM, and

you should be able to access http://phpenv.app/ in your browser and see the

message No input file specified.

This is a procedure you’ll have to repeat with every new project. After all, every

project deserves a fresh environment, oblivious to the mistakes and changes of the

last one. But fear not, in due time the procedure will become muscle memory, and

you’ll get from start to finish in a minute flat. To save you from having to remember

the procedure or continuously refer to this chapter, you can find a helpful guide at

http://www.sitepoint.com/quick-tip-get-homestead-vagrant-vm-running/.

Creating a “Hello World” page
With our environment ready, the path to learning about Git and GitHub is clear:

1. In the hi_phpenv folder, create a new folder named phpenv. You can do this either

through your host machine’s file explorer or via the Terminal / Git Bash with

mkdir phpenv. Change into the directory with cd phpenv.

2. Make a new file called index.php and give it the contents:

<?php echo "Hello World";

3. Try visiting http://phpenv.app/ in the browser to make sure it works.

We now have our “Hello World” page. We’re proud of our code and want to share

it with the world. Let’s use Git and GitHub to do that.

Jump Start PHP Environment64

http://www.sitepoint.com/quick-tip-get-homestead-vagrant-vm-running/

Git
Before we put anything on GitHub, we’ll tell Git to turn our source code into a re-

pository.

Repo Initialization

■ While in the phpenv folder (that’s hi_phpenv/phpenv), run git init. This is an

initialization command that will create an empty .git folder. It is hidden by de-

fault, but you can see it if you execute ls -a.

■ When developing with the power of a version control system such as Git, you

might want to ensure certain files are never added to a repository. For example,

if you had a database password in a configuration file, it would be unwise to let

this file be accessible online, as it would leak your password to everyone looking

at your repo. For this purpose, ignore files exist. These are special files for Git

with the filename being .gitignore and contents that list files to ignore line-by-

line, like so:

mypassword.php
sensitive-folder/*

This piece of code will make sure the file mypassword.php and everything inside

the folder sensitive-folder is never added to a repository, nor ends up in

anyone else’s clone of your code.

If you’re using an IDE to write this code, and I hope you are (see Chapter 2),

you’ll find that it likes to put its own helper files into the project’s root. For ex-

ample, PhpStorm loves to make an .idea folder and place some configuration

values inside that pertain to the current project. I definitely want to avoid having

anyone who clones my code be forced to also copy my IDE configuration, so

let’s use an ignore file to prevent this.

Create a .gitignore file in the folder with the command touch .gitignore, or

from within your IDE. Then edit it and give it the contents of the file at

https://gist.github.com/Swader/7844111 , which is an ignore file that takes into

account all the various IDE and OS configurations you can run into when

working on PHP projects.

65Versioning Systems

https://gist.github.com/Swader/7844111

Another way of making sure you never have to add this to a project’s .gitignore

file again is by adding it to your global .gitignore. To see how, check out this

handy guide from GitHub: https://help.github.com/articles/ignoring-files/.

■ With both our code and our .gitignore file ready, we’ll need a readme file. A

readme file is the first file a GitHub repo displays to visitors, so it’s good to in-

clude some useful information about the author, the purpose of the code, ways

to use it, ways to contribute to it, and so on. Make a README.md file in the phpenv

folder via your IDE or the Terminal with touch README.md and give it some

content such as:

Hello World

This is a README file from the Jump Start PHP Environment book.
Learning about Git and GitHub!

The .md extension indicates that this is a Markdown8 (MD) file―one type of file

GitHub uses to display the readme content in a pretty, formatted manner.

Knowing MD isn’t necessary in order to understand the rest of the content in

this book; however, it is important in coding life, so I recommend you take a

look at https://guides.github.com/features/mastering-markdown when you find

the time.

Adding and Committing
To add all the files in our project to our repository, execute git add -A. The add

command tells Git to add any changes that were made to the repo’s history track.

The -A flag means “add new files, add changes to existing files, and add file deletions

(that is, make note of all the files that were removed)”.

What this actually did, though, was merely tell that Git we’ll be tracking the changes

to all the files it just added some time in the future. To actually make a commit,

and by that create a restorable point in our project’s life cycle, we need to use the

commit command: git commit -m 'Added my first files!'. The -m means

“commit message” and it’s where you label your changes. Anyone coming into your

project will be able to look at that exact point in time and see your message, instantly

knowing why you did what you did. Execute this now.

8 https://help.github.com/articles/github-flavored-markdown/

Jump Start PHP Environment66

https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/github-flavored-markdown/
https://guides.github.com/features/mastering-markdown

Now that our files are added and committed, let’s introduce a change. Open index.php

again and change “Hello World” to “Hello Bob” so that the file looks like this:

<?php echo "Hello Bob";

Then make another add and commit: first git add -A, then git commit -m

'Changed World to Bob'.

Visit the page in the browser again via http://phpenv.app/ and notice how it now

says “Hello Bob.”

Reset
We really like Bob, but our boss doesn’t, and asks us to change it back to “World.”

We could make a change and commit, and be done with it. But in complex projects

with many files, reverting changes by manually changing files back to the state they

were in before will just fail to work. That’s why we have the reset command. To

reset back to the previous commit, we need to find out the ID of that commit.

We can do this with:

git log

In my case, as you can see in Figure 5.1, the ID of the commit before the most recent

one is b6adf1756bb9b94fcf9b46c6121180dc12b96176.

67Versioning Systems

Figure 5.1. Finding the ID of our commit

To reset to it, we execute:

git reset --hard b6adf1756bb9b94f

Notice how we used a shorter hash than what git log gave us. That’s a feature of

Git―just the first ten or so characters of a hash are enough to identify the correct

commit we're looking for.

Our entire Bob modification is removed and it’s as if nothing ever happened. A re-

fresh of http://phpenv.app will confirm this.

It can be tedious to find out the exact commit ID, so shorthand identifiers such as

HEAD~1 are supported, too. HEAD is “current commit” and ~1 tells Git to go one parent

into the past. Doing git reset --hard HEAD~1 would have worked, too.

Jump Start PHP Environment68

The --hard option tells Git “no matter what changes we have pending, this reset is

more important than anything, so just do it―no questions asked.” Without --hard,

Git would have complained if we had made any other uncommitted changes.

GitHub
Now that we’re happy with our source code again, let’s put it online for others to

clone and inspect. Sign up for a GitHub account if you haven't already, at

https://github.com.

1. In the top-right corner, click the Create New > New repository button, shown in

Figure 5.2.

Figure 5.2. Creating a new repository

2. Give it a name of your choice, such as “phpenv,” and leave all other options on

their default value.

3. On the next screen, you’re given instructions on how to place some existing code

online, seen in Figure 5.3.

69Versioning Systems

https://github.com

Figure 5.3. Instructions on adding code to the repository

Let’s follow these instructions, and in our Terminal/Git Bash execute (don’t forget

to modify USERNAME in the URL to match yours, of course):

git remote add origin git@github.com:USERNAME/phpenv.git
git push -u origin master

The remote add command tells Git “this repository has a copy that isn’t on this

machine. The copy’s URL is this, and we can refer to it as 'origin' in the future.”

The push command tells Git to “upload all the changes we've made so far to the

URL you know as 'origin'.” The -u flag allows you to just say git push in the

future, without origin master, but needs to be specified during the first run.

master refers to the branch name, but diving into branches is outside the scope

of this book for now (see the section called “Useful Resources” at the end of the

chapter for more information). The output produced by these commands should

resemble the following:

Jump Start PHP Environment70

Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (5/5), 713 bytes | 0 bytes/s, done.
Total 5 (delta 0), reused 0 (delta 0)
To git@github.com:Swader/phpenv.git
 * [new branch] master -> master
Branch master set up to track remote branch master from origin.

4. Visit the URL of your repository in your GitHub account, and you should see the

files you created residing there, as depicted in Figure 5.4.

Figure 5.4. Our files are now in the repository

To share this code with others, send them the link. They can then use the git clone

command to clone it to their computers, or download it as a zip archive as we did

in the previous chapter.

Finally, let’s add one more change and push it to the GitHub repo for all to see.

Modify the index.php file so it contains the following:

71Versioning Systems

<?php

echo "Hello ".(isset($_GET['name']) ? $_GET['name'] : "World");

This code, when run with PHP, allows the visitor to input their name like this ht-

tp://phpenv.app?name=Bob and see the message “Hello Bob.” Go ahead and test

it out.

Now let’s add and commit:

git add -A
git commit -m 'Name is now dynamic!'

Be Careful with Quotes

If you receive a warning saying -bash: !": event not found, it’s because

you’re using double (") rather than single quotes ('). Make sure that you use single

quotes with your commit messsage.

Finally, let’s push the code:

git push

If we now refresh the GitHub page, we should see the updated state of our code as

shown in Figure 5.5.

Figure 5.5. The updated repository

Notice how the commit message next to index.php is different from the others? This

indicates that it’s the only file that changed in the latest commit.

Go and explore GitHub’s interface. Click on the files, overviews, statistics, and

various commits. See what GitHub offers in terms of information about your pro-

Jump Start PHP Environment72

ject―you’ll be using it a lot in your future career. If you like, feel free to also explore

some of the GUI tools for Git. A comprehensive list is available at the following

URL: https://git-scm.com/downloads/guis.

Useful Resources
To learn more about Git, see SitePoint’s Jump Start Git9, or Apress’s Pro Git10. Both

are newbie-friendly.

If you don’t feel like taking the time to read an entire guide, there are helpful illus-

trated guides at GitHub11 that cover both Git and GitHub in a very approachable

manner. Even though we basically covered both in our usage example before, I re-

commend going through at least the “Hello World” and “Getting Your Project on

GitHub” guides before proceeding with this book. Consider it homework.

Summary
In this chapter, we looked at version control systems and explained how they work

and why they exist. We used an example project to briefly demonstrate what they

can do, and suggested some additional learning materials.

In the next chapter, we’ll talk about hosting, explaining where to find a server, what

to use and what to avoid, how to deploy code to a live server, and more.

9 https://www.sitepoint.com/premium/books/jump-start-git
10 http://git-scm.com/book/en/v2
11 https://guides.github.com

73Versioning Systems

https://www.sitepoint.com/premium/books/jump-start-git
http://git-scm.com/book/en/v2
https://guides.github.com
https://guides.github.com

Chapter6
Deployment and Hosting
Now that version control is out of the way, it's time to look into deployment and

hosting.

Deployment, as you may have learned from previous chapters, refers to the act of

putting your locally developed application online for people to use. A deployed

application doesn't necessarily mean a publicly available one―it can be an intranet

application that is internal to a company, for example; it means it can be used by

its target audience.

An application, however, cannot be deployed without being hosted; there needs to

be a server computer that is its home. In this chapter, we'll talk about both terms in

more detail and list some approaches to each. We'll also cover the pros and cons of

common approaches and define some terms you'll be hearing a lot throughout your

web development career.

Even if you're familiar with aspects of deployment and hosting, it's recommended

you read this chapter as it contains up-to-date information on what to avoid and

what to select.

Hosting
We'll explain hosting first, as it's important to know how to pick a home before you

move into one.

The three main types of hosting you'll repeatedly encounter are: shared hosting,

cloud hosting, and (virtual) private hosting. I'll explain the parenthesized "virtual"

further on.

Shared Hosting
When hosting companies have a single server (which can consist of either a single

machine or several acting as one), they make a separate folder and user account for

each customer on this server; this is known as shared hosting. Each customer is

allotted a part of the server's processing power, a fraction of its total RAM, and a

chunk of the hard drive space. This shard of resources can then be used as a home

for your deployed application. A company might have several such servers set up

for when one runs out of space to accommodate new users. This sounds great in

theory, but in practice it has many problems.

Shared Hosting is Bad
For lack of better (that is, cheaper and/or simpler) options, shared hosting was the

only viable approach for many people for a long, long time. This kind of widespread

use lead to its dominance of the hosting market, and it remains popular purely be-

cause of this initial inertia.

Shared hosting is bad for several reasons:

■ Security risk: many popular content management systems such as WordPress,

Drupal, Joomla, and others ask the user to enable write-all access mode on certain

folders so that they may place their files in there. In doing this, many users un-

wittingly allow access to their website's files by mistake while sharing a hard

drive with other customers. This so-called "777 problem" (where 777 is Linux

code for "allow everyone to do everything on this file or in this folder") is a tre-

mendous security risk. What's more, when using content management systems

on shared hosts, you're at risk of outdated versions. One site's laziness and un-

willingness to update another instance of the installed CMS on the same server

Jump Start PHP Environment76

can lead to your site being hacked, as it can become a gateway through which

attackers gain access to the entire server!

■ Traffic overload: You rely on other people's competence and traffic. If a site on

a given server has badly written code that uses too many CPU cycles or eats up

a lot of RAM, other applications on the same server may suffer because of it;

since all applications are sharing the same hardware—which is quite limited in

shared hosting environments—a user's excessive needs may be detrimental to

your own application. The same goes for well-written code with lots of traffic:

if another site receives too much traffic, the server might get overloaded and

shut down, taking your site down with it.

■ Limits: a lot of shared hosting companies promise unlimited bandwidth and re-

sources, but this is almost never true1. There is no such thing as "unlimited"

anything: as soon as your site manages to breach an internally agreed-upon

limit (be it regular CPU use, hard drive space, or bandwidth), you'll be sure to

discover just what unlimited really means. Check out the following piece from

WhoIsHostingThis.com that points out the pitfalls of shared hosting, and provides

a cautionary tale about getting disconnected due to using up too many resources

on an unlimited plan.2

■ Reputation: when you're on the same server as other customers, you all share

an IP address. Any illicit activity done by others on the same server can reflect

badly on you as well. Imagine a customer sending millions of spam emails from

a shared hosting server that you use. These emails are then picked up by popular

spam-hunting engines and the IP address is flagged as one that often spams

people. Suddenly, all emails that your own application sends out are also flagged

as spam in people's inboxes, purely because the IP address is the same as that

of the original spammer.

These are just some of the main issues around shared hosting. But there's one that's

arguably more important than all the others mentioned: shared hosting holds you

back.

1 http://myboringchannel.com/the-truth-about-web-hosting/
2 http://www.whoishostingthis.com/blog/2010/08/09/the-cautionary-tale-of-the-frogpants-network-and-

unlimited-hosting/

77Deployment and Hosting

http://myboringchannel.com/the-truth-about-web-hosting/
http://www.whoishostingthis.com/blog/2010/08/09/the-cautionary-tale-of-the-frogpants-network-and-unlimited-hosting/
http://www.whoishostingthis.com/blog/2010/08/09/the-cautionary-tale-of-the-frogpants-network-and-unlimited-hosting/

Shared Hosting Holds You Back
When using shared hosting, you're typically given a simplified user interface such

as cPanel, the one shown in Figure 6.1, through which to configure your site. There

is, however, no actual server access to fine-tune aspects of your site, install custom

extensions, upgrade your app the way you upgrade your local development server,

and so on. Essentially, you're locked into what the hosting company has installed

and there's no way to change it because it would affect hundreds―maybe thou-

sands―of other users.

Figure 6.1. cPanel is a common shared-hosting control panel

This might seem ideal for entry-level users, but it provides too much abstraction.

In other words, it places a user too far from the nitty-gritty of custom configuration

and server setups―something that is absolutely essential to be familiar with in your

web development career.

By sticking with such simple approaches, you do yourself a short-term favor for

long-term harm. The time will come when you'll have to deploy to a real, non-shared

server, or when you'll need to manually update server software.

But there must be some use cases where all this simplicity is good, right?

Jump Start PHP Environment78

Shared Hosting is Good for Limited Use Cases
There are projects where shared hosting is a godsend. In a career of serious web

development, these use cases are rare but still possible:

■ Custom email: with shared hosts, it's incredibly easy to set up a custom email

address. Ever dreamed about having an email address such as firstname@last-

name.com? Would look cool on a business card. With shared hosting, it's a breeze.

You buy a domain (lastname.com), go into your shared hosting account's control

panel, and set it all up according to the instructions. Most have a step-by-step

process, so you should have a personalized email account within 24 hours.

■ Small code samples: those requiring very few resources are easily hosted on

shared hosting servers. Small portfolio scripts and projects are ideal for this

purpose; for example, code demos within tutorials you write, sample code from

client websites you've built, and so on. Anything not needing to support large

amounts of bandwidth should work indefinitely, and live demos instead of words

on a resume always looks better!

■ Fire-and forget projects: Finally, there's the simple sites for really low-mainten-

ance clients such as a neighbor's pet, your grandma, a butcher, or a local store.

Maybe you're actively involved with volunteer work and are helping to organize

a conference by creating a website for them. Anything that's generally short-lived

or updated rarely (also known as a fire-and-forget project) has a comfy home on

a shared hosting server. The low resource demands of such projects and their

relatively limited traffic ensure their compatibility for a long time to come. For

a cost as low as $5 per month (the average price of shared hosting servers these

days), you can accommodate multiple clients. What's more, the simplicity of

the UI and ease of use ensure that the project can be easily taken over by someone

else if you're no longer interested in being involved.

Cloud Hosting
Cloud hosting is where many computers are linked in a symbiosis making them act

and appear as one.

In Figure 6.2, the horizontal units in the glass cases are minimized computers:

hardware units with all the unnecessary parts stripped out so that they are as power,

space, and heat efficient as possible. Networked together, they form one great whole,

79Deployment and Hosting

and there are warehouses upon warehouses of them. Contrary to their name, cloud

computer systems are very much grounded. They're merely very large computers

formed of many little ones.

Figure 6.2. A large collection of servers

On this apparent single computer, a special kind of software is run that dictates the

look and feel of the environment; for example, making it seem like we're dealing

with a single Linux server. In some ways it's like shared hosting―but on a much,

much greater scale (many more computers).

Cloud hosting usually allows terminal access to the server (enabling you to manually

configure some items) but often features GUI elements that are used to generate access

codes, install plugins into your cloud-powered applications, and more.

Some popular cloud hosting providers are:

■ Google App Engine (https://cloud.google.com/appengine/docs)
■ Heroku (https://www.heroku.com/)
■ Amazon Web Services (https://aws.amazon.com/)
■ OpenShift (https://www.openshift.com/)
■ Azure (https://azure.microsoft.com/en-us/)

Jump Start PHP Environment80

https://cloud.google.com/appengine/docs
https://www.heroku.com/
https://aws.amazon.com/
https://www.openshift.com/
https://azure.microsoft.com/en-us/

■ Fortrabbit (http://www.fortrabbit.com/)

... and there are many more.

There are several approaches to cloud hosting, but the one common vector they all

share is that you do not depend on other customers' good will and code, unlike

with shared hosting. The resources of the cloud (aka the network of computers on

which your app is operating) are focused on processing your (and other people's)

code, while the hard drive storage parts (such as storing images your users upload,

for example) are usually saved elsewhere. This has two advantages:

1. The cloud is used exclusively to process code. It is optimized for that one purpose,

so your app is always fast (depending on your code's quality, of course).

2. There are no resource limits. In cloud computing, there are so many machines

working as one that there are always plenty of resources for your app if needed.

Cloud hosting follows a payment model that charges by the number of units of time

your app has been using a server. For example, it might be priced at two cents per

unit of time per CPU, and units may be increments of 15 minutes. So if your applic-

ation used one CPU core for 24 hours, then had a sudden traffic spike and used four

cores for 24 more hours, you'd end up paying $1.9 for day one, and around $7.7 for

day two, totaling around $10 for two days. Cloud hosting is more expensive if you

have lots of traffic, but more reliable than shared hosting as it rarely, if ever, crashes.

It can also auto-scale (if you tell it to), which means that if your site suddenly re-

ceives a huge traffic boost (maybe it ended up on the news), the cloud-hosting pro-

vider can automatically allocate more CPU cores to your app and keep it alive for

those extra visitors. This means no lost business, which probably offsets those

hosting costs anyway! Besides, if you fear a wave of traffic so powerful it could

financially destroy you, most services offer limits you can set; for example, "throw

more power at my app as long as it stays under $2,000 per month."

Many cloud hosting services also offer free tiers, meaning you can use them free of

charge, no strings attached, for as long as you want―but with limited resources and

missing features (no custom domains, for example). If you want to expand, you can

very easily upgrade the account your site is already hosted on, and it immediately

becomes more powerful (and more expensive).

Cloud hosting is the hosting choice these days, particularly for high-profile applic-

ations requiring extreme reliability, as downtimes are rare. Cloud hosting is also

81Deployment and Hosting

http://www.fortrabbit.com/

excellent for one-off projects such as demos and portfolio pieces if you utilize the

free tiers many offer―at no cost, you can have permanently available, publicly ac-

cessible runnable code live online.

It's not all fun and games, though. Some of the disadvantages of shared hosting are

present in cloud hosting, too:

■ Vendor lock-in: this can happen in cloud hosting, too. Often, the platform you're

on will have platform-specific settings you need to learn and tweaks to master.

Likewise, versions of installed software also tend to remain unpatched. Since

the servers are tweaked to run a specific version of, for example, PHP at incredible

speeds, that version is also tweaked to run well in such an environment, making

it difficult to update as a new version would require those (often non-trivial)

tweaks applied as well.
■ Learning limitations: while shared hosting holds you back by failing to teach

you anything about server management, cloud hosting is limiting by teaching

you only a specific type of server management―theirs. Moving from Google App

Engine to Heroku is no trivial operation, both in code terms and in the learning

curve involved in mastering a new tool with its own specific commands and

utilities.

Remember―cloud hosting is similar to shared hosting, but on a much grander scale.

To use cloud hosting, however, one is typically an advanced user already proficient

in some server management. For the case of a newbie starting out, I'd always recom-

mend virtual private servers.

(Virtual) Private Hosting
Also known as dedicated hosting, private hosting promises a dedicated machine―be

it virtual or real―for your needs (hence why virtual is parenthesized). You can then

use this machine for whatever purpose you see fit. If you choose to make it into

your own shared hosting provider, you can set up the server to support this and

resell the space. You could also buy several machines, and cluster them up to make

your own mini cloud. Or just use a single server for a single app―that works, too!

In dedicated hosting, having a physical machine just for yourself is quite expensive,

getting into thousands of dollars per month depending on the machine's power.

That's why most users opt for VPS (virtual private servers), which are virtual ma-

chines, or VMs (not unlike Vagrant machines we talked about in previous chapters)

Jump Start PHP Environment82

on a single server. Much like in cloud and shared hosting, a single computer (or

what appears to be one) contains several smaller ones―instances for customers to

use. These instances act like real servers, so you gain full access to them via the

terminal. You can install and uninstall anything at all, even change the operating

system. The VM doesn't care; it's completely isolated from the rest, and you can

make it and break it at will.

VPS hosting is the most accessible approach for new users for the following reasons:

■ Price: modern VPS providers are incredibly cheap. Services such as Vultr3 and

DigitalOcean4 provide virtual servers―machines more than strong enough for

the average web app or two―for as little as five dollars per month. This is

cheaper than cloud hosting, but much more powerful than shared hosting. The

bandwidth is unlimited, and the only CPU, RAM, and hard drive limits you have

are those you agree on upon purchase. All servers can also be upgraded at any

time, and with programs such as DigitalOcean's referral system, you can end up

never paying for a single month if you refer enough people to the service. In fact,

the bonus goes both ways: even the ones coming in via a referral link receive a

bonus of (currently) ten dollars just for signing up, giving the referrer a bonus

after they've actually made a purchase.

■ Reliability: VPS is as reliable as you make it. Very rarely does an entire data

center of machines go offline for such a hosting provider, as there are a plethora

of fail-safes installed to prevent downtime from happening. For the most part,

the server's stability depends entirely on how you set it up, which leads to you

training yourself in server matters―something of utmost importance. When

compared to cloud hosting, reliability of the infrastructure behind the scenes is

identical; the only real risk of downtime is the customer misconfiguring their

VPS instance.

■ Familiarity: a VPS will look familiar if you started with Vagrant VMs as described

in this book. It will be the same interface, same commands, same procedures.

You'll be familiar with most of the aspects you can modify, and able to debug

your live server because you have experience on your local one (the local Vagrant

VM you're developing on). A VPS is a quick and easy way to development-pro-

3 https://www.vultr.com/
4 http://digitalocean.com

83Deployment and Hosting

https://www.vultr.com/
http://digitalocean.com

duction parity, which is not as easy to achieve with cloud hosting, and impossible

to achieve with shared hosting.

I always recommend VPS hosting to new developers because it's the perfect middle

ground between cloud hosting's power and shared hosting's ease of use, once a

person is comfortable enough with the terminal.

Others
There are, of course, countless other types of hosting as well―each matching spe-

cific use cases.

For example, Nitrous.IO5, Codenvy6, Cloud97, and Koding8 are all cloud-based de-

velopment environments (Cloud IDEs) with built-in hosting. Opening an account

with them will give you a web interface in which to edit your code―much like in

an IDE such as PhpStorm―and at the same time a place to automatically host and

run the code you write. These services can be costly for apps that go any measure

beyond basic, but are extremely practical for people on the go―particularly netbook

users who lack the computing power to run VMs, but are always online and prefer

to travel light.

Feel free to create an account with any of them and test out their sample applications.

Nothing can go wrong, and nor is there a need to be code-literate to understand

what's going on.

I've summarized my views on the pros and cons of various hosting options below.

Cloud IDEs(V)PSCloud HostingShared

Hosting

★★★ (★★★★★)

★

★★★ ★★★★★Affordability

★★★★★★★★★ ★★★★★★★★ Reliability

★★★★★★★★★ ★★ ★★★★★Ease of use

5 https://www.nitrous.io/
6 https://codenvy.com/
7 https://c9.io/
8 https://koding.com/

Jump Start PHP Environment84

https://www.nitrous.io/
https://codenvy.com/
https://c9.io/
https://koding.com/

Cloud IDEs(V)PSCloud HostingShared

Hosting

★ ★★★★★★ ★ Customizability

★★★★★★★★ ★★★★★★★ Security

★★★ ★★★★ ★★★★★★ Performance

★★★ ★★★ ★★★★★★ Hardware

limits

Deployment
Deployment is the act of sending a ready application to a live server so that it can

be accessed by its target audience. It also includes pushing updates to an application

online when a new feature is added or a bug is fixed.

There are two main types of deployment: manual and automatic.

Manual
Manual deployment involves actively recognizing that the application is at a stage

when it's usable by the target audience, or at a stage matching one in the project

specification―a document outlining the entire project's development process.

Once deemed ready, the developer takes one of several approaches to deploy the

application:

■ FTP: in the ancient days of Web 1.0, File Transfer Protocol (FTP) was a way to

transfer files (duh!) from one server to another. Today, this approach is usually

only seen in severely outdated systems and servers such as universities and

schools, or shared hosting. Uploading files via FTP requires you to have an FTP

client installed on your computer such as FileZilla9 or Cyberduck.10 You also

need the credentials of the server you're uploading to―usually the server name,

a username, and a password. If an application is already deployed and an updated

one is being deployed on top, the older one is usually overwritten, which opens

the doors to a whole throng of possible bugs. In regards to application deploy-

ment, there are better approaches and FTP should be avoided.

9 https://filezilla-project.org/
10 https://cyberduck.io/?l=en

85Deployment and Hosting

https://filezilla-project.org/
https://cyberduck.io/?l=en

■ Rsyncing involves using a tool called rsync to synchronize the contents of two

folders. Rsync works via SSH (Secure Shell), which essentially means you can

use it through the terminal without having to install any additional programs.

Rsyncing is better than FTPing because SSH is more secure than FTP―unless

you're using SCP (Secure Copy Protocol) in FTP (however, SCP in FTP is still

suboptimal as any number of things can go wrong, such as files going missing

or getting accidentally deleted, and there's little to no way to quickly undo these

mistakes.)

■ Pulling from a repository: this method uses the Git version control system (see

Chapter 5) to push the changes live. Two approaches can be taken: a push can

be made so that the code goes to a remote server. This is done from the develop-

ment environment―the local server. More commonly, a pull can be made. Pulling

is done by the live server―the machine on which the code should eventually

end up. Pulling code from development machines is usually not possible and

generally discouraged, because opening up outside access to your development

machine is a security risk. Instead, a push is first made to a central repository

such as GitHub, and then the live server pulls from there. This approach is the

most common as it offers the safety and sanctity of infinite undo steps courtesy

of version control, and removes any overwrites that may happen due to multiple

people working on the same codebase and trying to upload at once.

These are far from the only means of manual deployment, but they are the most

popular ones. They're somewhat tedious, though, and tend to take up time and re-

sources that are better spent elsewhere. In software development, the general rule

is to automate whatever can be automated. Which brings us to ...

Automatic and Semiautomatic Deployment
There are many tools for automatic deployment: Robo,11 Deployer,12 Envoyer,13

Rocketeer,14 DeployBot,15 and so on. They rely on certain pointers in the source

code to know when a version of the application is ready for deployment, or on

manual triggers from developers, and then take care of the rest automatically.

11 http://robo.li/
12 http://deployer.org/
13 https://envoyer.io/
14 https://github.com/rocketeers/rocketeer
15 http://deploybot.com/

Jump Start PHP Environment86

http://robo.li/
http://deployer.org/
https://envoyer.io/
https://github.com/rocketeers/rocketeer
http://deploybot.com/

Practical aspects of automatic deployers are outside the scope of this book but, put

simply, this is how they work:

1. You work on some code and then make a commit in Git.

2. You add this commit to the master branch, the main branch of your repository.

As a general rule, anything committed into the master branch is ready for produc-

tion, aka deployment.

3. A tool such as Deployer notices this new commit to the master branch, automat-

ically checks the code for common errors, and if everything is well sends it online

for you without you having to move a finger.

The application code will be up to date and you've simply continued to code after

your last commit without even needing to check. The tool did it all for you.

Fully automatic deployment of this kind can be risky, though. The tests in the ap-

plication may not be robust enough, enabling some bugs to slip through because

the application is unable to find its own errors.

This is where semiautomatic deployment comes into play―automatic, but with a

human element. Once a developer ensures the release (the newest version of the

app) is fine, they run a simple command such as dep deploy and the tool takes over

the rest of the process: preparing the server, making pushes and pulls, clearing cache

files, and so on. This is the best of both worlds; the machine does the heavy lifting,

but the developer tells it when to do it.

So, of all these tools and approaches, what's the best combination to use?

Recommendation
I'd recommend using manual deployment with an intermediary GitHub repository,

and using DigitalOcean for hosting, at least for the first few months. In due time,

you should definitely move towards automation―especially as more advanced

concepts such as database migrations, cache busting, and file permissions come

into play―but for now, this approach will benefit a newbie the most.

87Deployment and Hosting

GitHub accounts are free, so you can open one at any time and create an arbitrary

number of repositories. DigitalOcean is free for the first two months with my referral

link,16 and only five dollars per month subsequently.

Apart from being wallet-friendly, using these two services in tandem will teach you

server maintenance basics, improve your Git and GitHub skills, and make you pro-

ficient in the most commonly used deployment and hosting services today.

By the end of this book, we'll have used this GitHub and DigitalOcean flow to deploy

a simple application.

Summary
In this chapter, we explained the theory behind deployment and hosting and covered

the terms you'll meet most often. We went through the basics of how hosting services

work, and learned the best approach to take at this stage of your web development

career.

In subsequent chapters we'll be putting this theory into practice by using the tools

we mentioned to deploy a sample application; however, there's one more critical

piece of the puzzle we need to cover first: Composer, the PHP package manager.

Stay tuned, we're about to get our hands dirty again.

16 http://bit.ly/do-ref

Jump Start PHP Environment88

http://bit.ly/do-ref
http://bit.ly/do-ref

Chapter7
Composer
This chapter deals exclusively with Composer, the PHP package manager. If you’re

familiar with the tool, feel free to move onto the next chapter.

Spaghetti Western
Let’s talk about what led to the development of Composer in the first place.

Back when PHP was first created, a “web application” consisted of individual files

of PHP code which, when used in the right order, solved many of what was then

modern web development problems (submitting forms, writing to the database, and

so on). If you had a file called file-a.php with a specific bit of logic and file-b.php

with more logic, and you wanted to use them both, you would include them in yet

another file, file-c.php.

For example, say file-a.php has the code:

<?php

$word1 = "Hello";
?>

and file-b.php has the code:

<?php

$word2 = "World";
?>

You could use them in file-c.php like so:

<?php

include 'file-a.php';
include 'file-b.php';

echo "I am now using file-a and file-b, yay! {$word1} {$word2}!";
?>

This would output:

I am now using file-a and file-b, yay! Hello World!

With more files, the include lists grew larger and larger. It follows then that PHP

applications were mile-long invocations of these helper scripts, one after the other.

We call this code spaghetti code because it’s a mess―one line intertwined with the

next, no structure or order, a bit of logic calling another bit of logic that’s defined

in an arbitrary external location. Spaghetti code is very hostile to other developers

(or even the original developer a couple of months later!).

Jump Start PHP Environment90

Figure 7.1. Spaghetti mess

With the advent of object-oriented PHP in version 5, we gained the ability to write

blocks of code called classes. A class grouped together logic that belonged in a

specific context. Specifically, in the realm of the Web, a User class could have the

methods (aka internal functions, abilities) login and logout.

In an application, using this class would allow a developer to implement login and

log-out functionality. Classes could talk to other classes by including them just like

the files above (for example, a User class could include a Database class in order

to use it to check if the database contains the matching username and password

combination), but has the added advantage of being transparent about their context.

After all, it was very easy to find out what a certain class was intended to do by just

looking inside its file, or even at its name alone.

91Composer

Different classes with related contexts are called a package (also known as a library).

In the same package, one class could be dedicated to handling user logins and log-

outs, another to sending “reset password” emails, yet another to checking the role

of a user (admin, guest), and so on. The whole package could then be called Authen-

tication.

But as packages and classes proliferated, the problem of collisions appeared. If I

had a class User and borrowed, for example, Jim's User class, trying to use them at

the same time to get the best of both worlds would cause an error in PHP (maybe

his User class also supported profile picture uploads, which mine lacked). Two

classes cannot have the same name because PHP has no idea which of the two

classes to use! In PHP version 5.3, this problem was solved with namespaces.

Namespaces and Ye Olde Package
Management
A common feature in some other languages, namespaces found their way into PHP

with version 5.3. They sound intimidating, but in reality they're literally just prefixes

in front of PHP class names.

The aforementioned User class by our buddy Jim would thus be called Jim\User

(the backslash \ is special notation used to separate fragments of namespaces; this

allows namespaces to be nested into an arbitrary number of levels), while ours could

be called SitePoint\Authentication\User. While their final “name” is the same

(User), their fully qualified names are different, and PHP is happy to let us use both

at the same time.

But still, using several packages and classes means we have to include them all,

just like the previous example above―one file “calling” the others by filename,

making sure they're summoned for use. There are some ways around this, of

course―special functions called “autoloaders” were developed that looked for

classes in locations based on their names (for example, Jim\User could be in

classes\Jim\User.php); however, it is still tedious to not only find other people's

classes, but also effectively include them and make them conform to the autoloader

function in use.

To solve this problem, we use a tool called Composer.

Jump Start PHP Environment92

What is Composer?
Composer1 is a package manager for PHP. We already defined a package as a collec-

tion of classes. So what’s a package manager, then?

A package manager is a tool that removes the human element from the process of

finding and installing packages or programs into an environment. If you're using

OS X, for example, there is a package manager for the OS called Homebrew. Rather

than scour the Web in search of an application such as MPlayer, a media player,

one can use the terminal to run the command:

brew install mplayer

Like magic, the application will be installed and instantly available. On Linux op-

erating systems, there are several package managers. A popular one is Aptitude and

is used in a similar fashion:

sudo apt-get install chrome

This command installs the latest Chrome browser, just like that.

Package managers make sure packages (an application is a package―it’s a set of

files working together towards a singular purpose, be it media playback, web

browsing, or something else entirely) are installed cleanly, quickly, and safely.

Similarly, in the context of programming languages (such as PHP), a package manager

is used to retrieve, install, update, and uninstall packages. While the grunt work of

setting up autoloading for classes without Composer is easy enough, Composer re-

moves the process completely. It automates the manual process of finding a package

online, downloading it, unzipping, putting it into your project’s folder, including

it, configuring it, and so on.

Composer ties into Packagist,2 the de facto online directory of packages from PHP

users. Let’s explain what happens when you install a package with Composer.

1 http://getcomposer.org
2 http://packagist.org

93Composer

http://getcomposer.org
http://packagist.org

Installing packages with Composer is as easy as calling Composer’s require com-

mand while inside the folder of your application:

composer require nesbot/carbon

At this point Composer will, in order:

1. Look at the argument after require and determine that it is a valid package name.

Note that package names use the normal forward slash (/).

2. Look at its configuration (a special file called composer.json) for information on

where to find nesbot/carbon. No information is found, so it will move to the

next step.

3. Go to Packagist and look up the entry for nesbot/carbon. If it’s there, it then

moves to the next step.

4. Read the configuration of that package to find out if the package itself has any

dependencies (which are other packages it needs to do what it does). It then starts

the process over for each of them before finishing nesbot/carbon.

5. After all dependencies have been installed, it downloads nesbot/carbon, updates

an autoload file (located in the main project’s folder, under vendor/autoload.php

by default), and makes sure the newly installed package is usable in your applic-

ation.

To use this package, ensure that the aforementioned autoload.php file is included

in your app. This only needs to be done once, regardless of how many packages

you install. They’re all autoloaded with this one file:

<?php

include 'vendor/autoload.php';

This might seem a bit abstract, so let’s see it in action.

Usage Example
PHP has a built-in class called DateTime (documented at http://php.net/manu-

al/en/class.datetime.php), which can be used to do time-related calculations and

operations. The class is somewhat unintuitive, however.

Jump Start PHP Environment94

http://php.net/manual/en/class.datetime.php
http://php.net/manual/en/class.datetime.php

The nesbot/carbon package has a single class with the ability to manipulate time.

Well, not manipulate time per se―PHP isn’t that powerful (yet!)―but to manipulate

DateTime values.

Carbon was developed as an upgrade of DateTime, and lets you use very human

expressions to obtain the values you need. Let’s try and use this handy package! As

per the Carbon instructions,3 we could just download, unzip, and manually include

it in our project with include 'Carbon.php'; however, it really is recommended

that you use Composer every chance you can.

Bootstrapping
We start off by booting up a new virtual machine, as per Chapter 4. The following

five commands executed from the host computer’s terminal do everything for us:

git clone https://github.com/swader/homestead_improved hi_carbontest
cd hi_carbontest;
bin/folderfix.sh
vagrant up
vagrant ssh

The last command enters the VM, so you’re inside it, as if connected to a server.

Then, execute:

cd Code
touch index.php

The touch command creates an empty file with the given name.

Open this index.php file with your text editor or IDE of choice, either in the terminal

with vim index.php or on your host machine by going into the folder and double

clicking on it. Then give it the content:

<?php

echo "Hello World";

Save and exit the file, then in the terminal inside the VM run:

3 https://github.com/briannesbitt/Carbon

95Composer

https://github.com/briannesbitt/Carbon

php index.php

You should see “Hello World” appear onscreen.

Command Line Interface Mode

In this instance, we are executing PHP on the command line for the sake of sim-

plicity. In other words, we’re not using the browser to see the output. Rather,

we’re having PHP print its output on the screen of the terminal. This is also called

CLI mode, which is short for “Command Line Interface.”

Installing Carbon
Composer usually has to be manually installed onto fresh servers, but our Homestead

Improved VM comes with Composer pre-installed and accessible from any location,

so all we need to do is execute:

composer require nesbot/carbon

As soon as the procedure is done, reopen the index.php file from earlier, and add a

new line after <?php so that it now looks like this:

<?php

include 'vendor/autoload.php';

echo "Hello World";

Including the vendor/autoload.php file ensures that the classes we install with

Composer are automatically loaded into our application, without the need for

manually specifying include or require statements to combine them all into one

app.

Testing
Now that Carbon is installed and autoloaded into our application, we can give it a

try.

In index.php, instead of the Hello World line, add the following code so that the

file now looks like this:

Jump Start PHP Environment96

<?php

include 'vendor/autoload.php';

echo Carbon\Carbon::now();
echo "\n";

The last line prints out a blank line, so the output looks prettier.

Then, in the terminal, run php index.php. You should see a message not unlike

Figure 7.2.

Figure 7.2. Example output

It works! Let’s find out what day of the week it will be this time in five years by

adding the line:

echo Carbon\Carbon::now()->addYears(5)->dayOfWeek;

You should see output similar to Figure 7.3.

97Composer

Figure 7.3. Example output 2

This first creates a new “current time” with now(), adds five years to it, and then

grabs the day of week out of that value. Days start on Sunday (0), so Wednesday is

3, Friday is 5, and so on. In the example output, we got back Tuesday.

We’ve successfully installed and used the Carbon package in just a few lines of

code.

Cleanup
As we have no need for this VM anymore, nor this Carbon experiment, feel free to

delete it with the following commands:

exit # this exits the virtual machine
vagrant destroy # this shuts down and deletes the VM
cd .. # this goes up one folder
rm -rf hi_carbontest # this deletes the hi_carbontest folder

More Tricks to Try
There are some other commands and features worth mentioning.

Update versus Install and Composer Lock
When a package is installed with Composer, a composer.json file is automatically

created. Here’s the file that was created after we installed Carbon in the earlier ex-

ample:

Jump Start PHP Environment98

{
 "require": {
 "nesbot/carbon": "^1.21"
 }
}

The format you’re seeing here is called JSON,4 but it’s beyond this book’s purview.

Feel free to explore it on your own. What we can see here is that Composer automat-

ically figured out that 1.21 is the most recent version of Carbon and put that into

the file.

Likewise, a composer.lock file was created. As it’s a bit too large to include in this

book, let’s look at the relevant segment only:

 ⋮

"packages": [
 {
 "name": "nesbot/carbon",
 "version": "1.21.0",
 "source": {
 "type": "git",
 "url": "https://github.com/briannesbitt/Carbon.git",
 "reference": "7b08ec6f75791e130012f206e3f7b0e76e18
➥e3d7"
 },
 "dist": {
 "type": "zip",
 "url": "https://api.github.com/repos/briannesbitt/
➥Carbon/zipball/7b08ec6f75791e130012f206e3f7b0e76e18e3d7",
 "reference": "7b08ec6f75791e130012f206e3f7b0e76e18
➥e3d7",
 "shasum": ""
 },

 ⋮

It seems to have the same requirements listed, but in a much more verbose way.

What gives?

4 http://www.json.org/

99Composer

http://www.json.org/

The composer.lock file is used to list all the installed dependencies at a given time.

composer.lock is then committed (see Chapter 5) into your application’s repository

along with all source code, and on the live server (when deploying). composer in-

stall then looks for this file. If the command finds it, it will use the versions listed

in this file―no matter how outdated! If there is no lock file, it will look for the

newest versions of the required packages, generate a completely new composer.lock

file, and proceed as usual.

Why is this important?

Imagine using PackageX v1.2 in your local development environment, testing your

application, and after ensuring it all works, deploying it to a live server. Yet in the

time between your checks and the app being deployed, PackageX was updated to

v1.3, which differs from v1.2 enough to no longer share some functionality. Maybe

a method was renamed? Letting Composer determine the newest version on its own

would install the latest version and make your app use a non-existent method, thus

crashing the application. Disaster! That's why composer.lock is there―to ensure the

version that was used in development is what's installed.

So, how do we then update the package to 1.3 if we actually want to? We use the

composer update command.

composer update looks at all the installed packages, regardless of the presence of

a composer.lock file, updates both composer.json and composer.lock with the newest

versions, and installs them. Typically, composer update is run only in development

(not production); when you’re certain everything works with the latest version, the

newly generated composer.lock is deployed with the app as usual, and composer

install is run in production, again ensuring only the versions locked by

composer.lock are installed.

require-dev and global
During development, it’s common to write unit tests for your code. A final version

of your application/package, however, can omit those tests. Tests are for develop-

ment, to make sure the code works. Including them in final versions of your work

bloats the file size without any benefit to end users (though it is good for developers

who want to contribute to your code).

Jump Start PHP Environment100

For this purpose, a --dev option exists when calling composer require. For example,

if I’m using a package called PHPUnit to write my unit tests, I would install it like

so:

composer require phpunit/phpunit --dev

This places it in a special require-dev block in composer.json, rather than require,

and ensures it stays out of the end user’s way when a package is installed with the

--update-no-dev flag. For example, we developed SitePoint\Authorization\User

with PHPUnit for tests, but Jim just wants to use the package only―no need for

tests. He installs it with:

composer require sitepoint/auth-user --update-no-dev

PHPUnit, however, is a tool which is useful across many projects, but installing it

for each one is wasteful, as it’s quite large. That’s where global comes in. The

global option of the composer require command will make sure it’s installed as

a global package, instantly becoming available across the entire operating system

we’re working on:

composer global require phpunit/phpunit --dev

Is that all there is?
Of course not! Composer has a multitude of commands. All the above and much

more is what makes Composer an essential tool in a PHP developer’s daily routine.

From removing the mental overhead of tracking used packages and classes, to smooth

updates and flawless cooperation with other Composer users, this package manager

continues to take the PHP ecosystem by storm.

There’s also the very useful scripts block, which lets a package author execute

arbitrary scripts in the various stages of a command’s execution (that is, before in-

stalling or after updating), the composer remove command for removing packages

you no longer need, and so on.

However, this is not a Composer book, so we’ll avoid going into the full details here.

Instead, I suggest you have a look at the tutorials at the end of this chapter. They

include not only a top-down introduction into Composer that’s a bit more advanced

101Composer

than what you went through here, but list tips, tricks, and shortcuts to use with it,

maximizing the tool’s potential.

At this point in your programming career you’ll only be using it occasionally, and

what you learned here will be enough; once you progress further, you should find

these tutorials invaluable.

For Those Who Want More
If you’d like to explore the concepts of modern PHP applications in depth, I cannot

recommend Paul M. Jones’ book enough. Modernizing Legacy Applications in PHP5

is a complete hands-on guide to turning spaghetti code into maintainable object-

oriented professional code. While it probably would be unwise to dive into that

book without first going through a beginner-friendly PHP coding book such as PHP

and MySQL: Novice to Ninja,6 I wholeheartedly recommend you put it on your to-

read list for later.

Additionally, some useful tutorials on SitePoint related to the material presented

in this chapter can be found at the following links:

■ Namespaces introduction: http://www.sitepoint.com/php-53-namespaces-basics/
■ Composer introduction:

http://www.sitepoint.com/php-dependency-management-with-composer/
■ Composer cheat sheet: http://www.sitepoint.com/composer-cheatsheet/
■ Mastering Composer―tips and tricks:

http://www.sitepoint.com/mastering-composer-tips-tricks/

5 https://leanpub.com/mlaphp
6 https://www.sitepoint.com/premium/books/phpmysql5

Jump Start PHP Environment102

https://leanpub.com/mlaphp
https://www.sitepoint.com/premium/books/phpmysql5
https://www.sitepoint.com/premium/books/phpmysql5
http://www.sitepoint.com/php-53-namespaces-basics/
http://www.sitepoint.com/php-dependency-management-with-composer/
http://www.sitepoint.com/php-dependency-management-with-composer/
http://www.sitepoint.com/composer-cheatsheet/
http://www.sitepoint.com/mastering-composer-tips-tricks/

Chapter8
Learn by Example: A Web App from
Scratch
It's time to put everything we've learned so far to use―and then some! In this chapter,

we'll build a simple database-powered PHP application and deploy it online. We'll

explore different approaches to each aspect while keeping it all as newbie-friendly

as possible.

Some aspects, such as databases and frameworks, are yet to be covered in the book,

so they'll be briefly introduced in this chapter. As usual, the end of the chapter will

list links that are useful for further expanding one's knowledge of modern web app

development practices.

This chapter is the whole point of the book―demonstration of an app-building

process―so skipping it is not an option.

Note that the content you'll encounter throughout this chapter is likely to make you

feel overwhelmed―even frustrated if you're entirely unfamiliar with PHP code.

That's fine. In programming it's called the hump, and you just have to power through

it. You're just encountering it a little earlier than most newbies, but avoid letting it

frighten you. If you struggle to understand the code, go through it again and try to

comprehend what it does based on the explanations under the code snippets, but

don't force it. Take it for granted for now, and return when it becomes a little

clearer. No one understood everything on the first go. Besides, the point of this

chapter is to demonstrate the initialization of a development environment and the

deployment of an app. Everything learned in between is what I'd call collateral

profit.

What will we be building?
We'll craft a guestbook application. If you're a young millennial, you might not

know what a guestbook application is. A guestbook application was, in the ancient

times of the simpler Web, a way to leave feedback on a site; it applied to the site in

general, rather than being comments on a particular article or post, like it is today.

Guestbooks are rarely encountered these days, but the principles used to build a

guestbook app apply to building comment systems for per-post usage, hand-crafted

forums, and more.

Our app (seen in Figure 8.1) will have the following features:

■ a common HTML input form for comments
■ display previously entered comments above the input form

Jump Start PHP Environment104

Figure 8.1. The complete app

The guestbook app will be accessible in our development environment (see

Chapter 2) via http://guestbook.app.

Note that .app is a valid TLD (see Chapter 1 for an explanation of top-level domains),

so be careful with adding new etc/hosts entries under it; you might block access

to real .app websites if they start appearing. To be completely safe, use any of the

following suffixes instead: .test, .example, .localhost and .invalid.

Setting Up the Environment
Let's set up our environment (this process is described in detail in Chapter 4). Before

proceeding, please make sure you have installed the following:

■ Vagrant, from https://www.vagrantup.com/
■ VirtualBox, from https://www.virtualbox.org/
■ Git, from http://git-scm.com/downloads

105Learn by Example: A Web App from Scratch

https://www.vagrantup.com/
https://www.virtualbox.org/
http://git-scm.com/downloads

If you followed along through all the previous chapters, particularly Chapter 4,

you're all set.

To set up the environment:

1. Add the line 192.168.10.10 guestbook.app to our /etc/hosts file. See the

Chapter 3 for details on how and why to do this.

2. If your operating system is Windows, open the Git Bash program, which is

available after installing Git tools from the link at the start of the section. Other-

wise, open the Terminal app on Linux or OS X.

3. Change directory (by typing cd) into the folder where you'd like to develop your

project. A good place is your user's home folder: cd ~.

4. Enter the following commands:

git clone https://github.com/swader/homestead_improved hi_guestapp
cd hi_guestapp
bin/folderfix.sh
mkdir -p guestbook/public
mkdir guestbook/storage
touch guestbook/public/index.php

The last three commands create the folders our application will need, and an

empty index.php file into which we'll later put some PHP code.

5. Open the file Homestead.yaml in that folder and add a new sites pairing so that

the final version looks like:

sites:
 - map: homestead.app
 to: /home/vagrant/Code/Project/public
 - map: guestbook.app
 to: /home/vagrant/Code/guestbook/public

6. After saving the file, in the terminal run:

vagrant up; vagrant ssh

Jump Start PHP Environment106

Notice how we're using ; between commands? This chains them so that they are

executed one after the other without us having to wait for one's output to proceed

with the other.

Finally, we need to open the folder guestbook in our code editor of choice. Figure 8.2

shows it in PhpStorm.1

Figure 8.2. Our project open in PhpStorm

It's completely empty right now, but that's about to change.

Bootstrapping the App
Bootstrapping means establishing a setup for future work. In the context of web

app development, it means laying the foundation for development and getting the

common preparatory steps out of the way.

Before we do this, there are some terms we need to cover.

1 https://www.jetbrains.com/phpstorm/

107Learn by Example: A Web App from Scratch

https://www.jetbrains.com/phpstorm/

Testing
In programming, there is a concept known as testing. While testing is outside the

scope of this book (see the end of the chapter for links to further reading), I'll explain

it briefly.

Whenever you make a change in one of your apps, you usually refresh the app in

the browser to ensure the changes have been applied. This is called manual testing.

There are tools that automate this process. By writing a specific set of instructions

(tests), your application can test itself after every change. Writing these instructions

can be complicated and time-consuming, but as an application grows, the time in-

vested in writing tests pays off several times over. No longer does one need to, for

example, click every link of a web page to make sure it works; the tests do this

automatically, and outside of the traditional browser (with programs that simulate

a browser behind the scenes). This makes them much faster than humans and less

error-prone (due to removing the human element).

We'll skip automatic testing in this chapter, as it would be too complex to explain

(again, see the links at the end of the chapter for resources on testing). In general,

no application―regardless of complexity―should be without tests if its purpose is

to live longer than a few days or a few visitors (our demo app does not have these

constraints).

Our first manual test will be making sure we receive a blank page if we go to the

http://guestbook.app URL in the browser, as shown in Figure 8.3.

Jump Start PHP Environment108

Figure 8.3. No news is good news

No errors is a good sign. It means that our empty PHP file was reached, and gave

the browser its content. In this case, the content is literally nothing.

Frameworks versus Packages
Chapter 7 mentioned packages: they are sets of reusable code. There is, however,

another level beyond packages: PHP frameworks.

A framework is a predefined set of packages designed to quickly bootstrap an ap-

plication; the traditional process of setting up database connections, login systems,

and more are dealt with by having it all pre-built. This means most frameworks are

either very opinionated (that is, they enforce their particular way of doing things,

such as Laravel2) or incredibly extensible and hyper-configurable, but over-engin-

eered (thousands of lines of code handling what could be done in a dozen lines, all

for the sake of remaining fully configurable, such as Symfony3).

These days, frameworks are often the default starting point for a project. They can

be a quick way to skip coding elements that are minor to your project. Some de-

velopers shy away from using frameworks because they see them either as too

2 http://laravel.com
3 http://symfony.com

109Learn by Example: A Web App from Scratch

http://laravel.com
http://symfony.com

complex or too restrictive. Still, when contracts are at stake, being able to focus on

programming the business logic in a matter of hours rather than days can make or

break a job.

In our case, while a framework would get some hurdles out of the way, it would

introduce more. Frameworks are complex beasts consisting of hundreds of classes,

and we're yet to even touch on object-oriented programming or design pat-

terns―broad disciplines essential to taming a framework (see the links in the section

called “For Those Who Want More”). Therefore, we'll be doing it old-school and

pulling in just the packages we need, as we need them, with Composer, which we

saw in Chapter 7.

To begin bootstrapping our app, we'll first execute:

cd ~/Code/guestbook
composer init

This command is generally used for bootstrapping new packages (as in when we

intend to develop a reusable package and host it on Packagist―discussed in

Chapter 7). It is, however, useful for bootstrapping a new app as well, as it helps

the developer define metadata about the project. Once executed, Composer will ask

for some information, which should be answered like so:

vagrant@homestead:~/Code/guestbook$ composer init

 Welcome to the Composer config generator

This command will guide you through creating your composer.json
➥ config.

Package name (<vendor>/<name>) [root/guestbook]: sitepoint/guestbook
Description []: A guestbook app
Author []: Your Name Here <your@email.here>
Minimum Stability []:
Package Type []: project
License []: MIT

Define your dependencies.

Jump Start PHP Environment110

Would you like to define your dependencies (require) interactively
➥ [yes]? no
Would you like to define your dev dependencies (require-dev)
➥ interactively [yes]? no

Minimum stability allows the developer to lower the safety barrier for the stability

of packages. For example, a package we want to use may be without a stable version;

it might be in beta mode. To be able to install it, we'd have to set beta under that

option. In this case, we're just hitting Enter to leave it at the default.

Package type tells Composer that this is a project rather than a reusable package.

This has little to no effect on our app per se. License is rather well-explained on

the GitHub blog,4 and you can find out about the rest of the available options in

composer.json (which the command composer init generated) in Composer's

documentation.5

The final two questions ask us to define which packages we'll need. We don't know

yet, so we'll skip them.

Finally, we generate the autoload file:

composer install

As there are no dependencies defined in either the require or the require-dev

block of composer.json, there is nothing to install; the command merely generates

an autoload file that will automatically load classes we'll install later. Let's use that

file. Give public/index.php this content:

<?php

require_once '../vendor/autoload.php';

echo "Hello World";

Time for another manual test. Revisiting http://guestbook.app in the browser should

produce the message "Hello World" as shown in Figure 8.4. If it does, the PHP code

4 https://github.com/blog/1530-choosing-an-open-source-license
5 https://getcomposer.org/doc/04-schema.md

111Learn by Example: A Web App from Scratch

https://github.com/blog/1530-choosing-an-open-source-license
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md

was successfully executed past the require_once point, indicating that our autoload

file was loaded without problems.

Figure 8.4. "Hello World" loads with ease

require_once (see http://php.net/manual/en/function.require-once.php) is a

statement telling PHP to "Take the contents of this file and put them into the current

one. Crash if you cannot find it!" The require part makes sure of this. There are

other versions of this statement, all explained on the manual's page.

Developing the App
At last, the fun part! Or is it?

Var Dumper
We'll begin by pulling in the var-dumper package, a tool from the Symfony frame-

work (see the section called “Frameworks versus Packages”).

Like many other frameworks, Symfony is a collection of packages for solving common

web application development problems. When used as a set, they form a solid (albeit

complex) starting point for highly customizable web applications. These various

Jump Start PHP Environment112

http://php.net/manual/en/function.require-once.php

Symfony components are also designed to be used standalone, so if users adopt a

custom approach or different framework, they can benefit from Symfony packages.

var-dumper is one such component. PHP has a built-in function called var_dump

that outputs the contents of a variable onscreen. The var_dumper component provides

a dump function that does the same, but in a more readable manner and with col-

lapser/expander buttons. We'll demonstrate this shortly; for now, let's install it:

composer require symfony/var-dumper --dev

The --dev option tells Composer to place it in the require-dev block of

composer.json. This is because debugging helpers of this kind are typically used

in development, rather than production. For packages that are required in production,

we simply omit the --dev flag and they'll end up in the require block, not require-

dev. The rule of thumb is: if a package is meant to be used only during the develop-

ment phase of an app or another package, put it in require-dev. Otherwise, we can

put it in require (by omitting the --dev option). Then, when we deploy our app

to production, we'll be able to tell Composer to install with composer install --

no-dev, making the installation process much faster.

As we've mentioned, PHP has a built-in "variable dumper"―the function var_dump6.

Let's try it out on a PHP array. If you're unsure what an array is, imagine a box that

can contain a variety of items. In index.php, add the following:

$array = [1, "apple", 2, "foo", "bar"];

var_dump($array);

The square brackets in the code are the edges of our hypothetical box―everything

between them is placed into the array.

Then, refresh the http://guestbook.app page, and you should see a similar sight to

Figure 8.5.

6 http://php.net/manual/en/function.var-dump.php

113Learn by Example: A Web App from Scratch

http://php.net/manual/en/function.var-dump.php

Figure 8.5. Our var_dump example

The output is on the right, under "Hello World." It's not exactly unreadable―as

Homestead Improved comes with Xdebug installed, a PHP add-on that makes these

types of output prettier by default―but it could be better. Let's add in a call to dump.

The result can be seen in Figure 8.6.

Figure 8.6. An example of dump

Better, no? The collapser/expander button alone is worth it―you can imagine this

being tremendously useful when dealing with huge trees of nested arrays (an array

can contain an array, which can contain another array, and so on ...).7

With dump available, we've prepared our development environment for debugging.

Should any errors arise, we'll be able to output the information we need in an easily

navigable manner.

7 If you're curious, read more about var-dumper in this SitePoint post:

[http://www.sitepoint.com/var_dump-introducing-symfony-vardumper/]

Jump Start PHP Environment114

http://www.sitepoint.com/var_dump-introducing-symfony-vardumper/

Database Connection
There are many databases available: MySQL, OracleDB, PostreSQL, MSSQL, SQLite,

and so on. The most popular one to use in tandem with PHP is MySQL. Introducing

SQL is outside the scope of this book, but it's unnecessary for our purposes any-

way―we'll be using a library that abstracts database communication for us.

To understand abstraction, imagine a power socket in the EU. It looks like a pig

snout, and we call it the Schuko socket, seen in Figure 8.7.

Figure 8.7. Schuko socket, common to the EU

Then imagine a power socket in the US, seen in Figure 8.8. It has two vertical slits

and a screaming mouth that is completely incompatible with the EU one.

115Learn by Example: A Web App from Scratch

Figure 8.8. US socket

Every part of the world has its own standard,8 and if you're a world traveler, carrying

a separate power brick for each country you visit would quickly take you past the

airline's baggage weight limit (and your budget). Luckily there are items such as

socket adapters.

8 http://www.worldstandards.eu/electricity/plugs-and-sockets/

Jump Start PHP Environment116

http://www.worldstandards.eu/electricity/plugs-and-sockets/

Figure 8.9. A universal socket adapter

One beast such as the one in Figure 8.9 handles most of the world's power sockets.

Is it heavier than just carrying one laptop power brick and hoping your destination

supports the required socket? Yes, but for a few additional grams, you have all the

convenience of ten power bricks with a fraction of the weight. The adapter is an

abstract for a power-providing service.

The same happens with abstraction in software. We could learn how to communicate

with PostreSQL, SQLite, MySQL, MSSQL, and others, sure. It would take a while,

but it's possible―just like lugging around ten power bricks. Or we could rely on

abstraction―letting the authors of the package we put between the database and

us do the heavy lifting while we focus on usage.

117Learn by Example: A Web App from Scratch

One such database abstraction layer is the very lightweight Medoo package.9 At

only 20KB in file size added to our project, we have the power to communicate

with several database engines in exactly the same way.

We'll demonstrate this in an example soon. For now, let's install Medoo:

composer require catfan/medoo

Change the index.php file so that instead of the $array, var_dump and dump lines we

added before we now have:

$database = new medoo([
 'database_type' => 'sqlite',
 'database_file' => '../storage/database.db'
]);

The variable $database is there to hold a new instance of the Medoo class. The class

needs a type and a filepath as the constructor arguments―the values required for

a class to build its instance properly―so we pass them along in an array. (Notice

the square brackets―just like in the array example earlier). The arrows between the

left and right column indicate assignment between keys and values―just as in algebra

x = 3, so too database_type = sqlite. For links on crash courses in object-oriented

programming, please see the end of chapter.

I understand this may feel a bit frustrating if you struggle to fully comprehend the

code here and what follows. However, rest assured that understanding the code itself

is not all that important; the main aim of this book is to see an example app being

started and deployed the right way.

Refresh the browser and if there are no errors, we're good, as seen in Figure 8.10.

9 http://www.sitepoint.com/getting-started-medoo-examples-use/

Jump Start PHP Environment118

http://www.sitepoint.com/getting-started-medoo-examples-use/

Figure 8.10. Our database now exists

Additionally, notice how in the storage subfolder of the project a new file appeared:

database.db. This is because we're using SQLite in this example (there's a good in-

troduction to SQLite on SitePoint10), which creates a database file if it doesn't exist.

We could just as easily have put mysql or postgresql under database_type and

used that, as they're both pre-installed on Homestead Improved, but that would re-

quire additional configuration and wouldn't be as clear outside of Homestead; those

database engines need to be installed, after all.

SQLite, on the other hand, is present on almost all operating systems by default,

and can be used out of the box. It's not as fast as MySQL and lacks some advanced

features, but we need neither this speed nor the complexity in our current project.

The database_file value tells Medoo where to create the SQLite file to hold all

our saved data. We told it to go "up one folder, and into storage/database.db" ; hence,

the database.db file was created. The $database variable is now our adapter, plugged

into a wall socket―our access to the data storage.

Try dumping it, just to see what it's made of (Figure 8.11).

10 http://www.sitepoint.com/getting-started-sqlite3-basic-commands/

119Learn by Example: A Web App from Scratch

http://www.sitepoint.com/getting-started-sqlite3-basic-commands/
http://www.sitepoint.com/getting-started-sqlite3-basic-commands/

Figure 8.11. Medoo instance

Obviously, there's more beneath the surface, but we needn't concern ourselves with

this. The database access works, and that's all that matters right now.

Repo and First Push
At this point, we might as well put our project into version control and upload it

to GitHub. Not only will this allow us to share our code with others, but also provide

a layer of protection from critical hardware failures.

First, create a repo on GitHub as done in Chapter 5. In my case, that'll be

https://github.com/spbooks/phpenv1-example.

Then, in the root folder of our project (inside guestbook), run:

git init

Next, set up a basic .gitignore file by downloading the contents of

http://bit.ly/spignore or running:

curl http://bit.ly/spignore -L > .gitignore

If you're curious about the above, curl is a program we use to retrieve the contents

of a remote URL, like visiting web pages in the terminal. Next comes the URL the

contents of which we want to retrieve, then the -L flag which tells curl to "follow

redirects" in case the URL leads to another URL rather than to the end content, and

then > .gitignore tells it "write the output you get into .gitignore".

Jump Start PHP Environment120

https://github.com/spbooks/phpenv1-example
http://bit.ly/spignore

Then, we need to add a remote ― we need to let the local repo know where its online

home is. In my case, the command is:

git remote add origin git@github.com:spbooks/phpenv1-example.git

Alter the URL accordingly.

Adding Vagrant-powered Projects to Version Control

There are two schools of thought regarding committing Vagrant-powered projects

to version control. The first one, which matches the general consensus and the

official Vagrant docs, is that the Vagrantfile and all its accompanying scripts

should be committed to version control alongside a project's source code. If you

choose this path, you first remove all traces of version control from the Homestead

Improved clone by running rm -rf .git inside hi_guestapp, and then run git

init and everything else we describe here from within that folder. Proceed as

usual ― your whole team now also has your Vagrant setup. This is very handy

for teams developing commercial, closed-source apps, because the setup can be

dictated for the team.

The second approach, the one I personally favor and that, for the sake of simplicity,

we will take in this chapter, is committing only the source code of the project ―
not its surroundings, such as the Vagrantfile, Homestead.yaml, etc. This makes sure

it's usable in anyone's development machine, even those who don't use Vagrant

or those who use a different box for running test projects. Hence, this approach

is best for open source projects where you want to give contributors the freedom

to choose their own development environment. This approach is also a bit more

lightweight, in terms of filesize. Regardless of the approach you choose, you're

not wrong. Pick whatever feels better, or what ever the team you're working with

prefers.

On fresh VMs, Git ― when used from inside the VM ― won't know who's using it.

To make yourself known, optionally execute:

git config --global user.name "Your Name"
git config --global user.email you@example.com

If you're using Git outside the VM to commit the project files (doesn't matter which

approach you take, both are just fine), you can skip this step.

121Learn by Example: A Web App from Scratch

To add the files and folders we created so far to the repo and push them online, we

execute:

git add -A; git commit -m "First commit"; git push -u origin master

Figure 8.12. Pushed files

All the files we created thus far (including the database) are now online, as you can

see in Figure 8.12. Please note that when developing applications with databases

that contain sensitive information (like usernames, passwords, or emails), the

database files should never be committed into the repository for obvious reasons.

HTML Form
When starting new web projects, there is a useful "boilerplate" we can use with

some best practices already built in. While using it is optional, it's preferred purely

because when one starts from scratch and implements best practices manually, one

tends to eventually end up at the point of this pre-made boilerplate. That boilerplate

is called HTML5 Boilerplate or H5BP and can be downloaded at

https://html5boilerplate.com/.

Unzip its contents into the public folder of our project, so that it now looks like

Figure 8.13.

Jump Start PHP Environment122

https://html5boilerplate.com/

Figure 8.13. New folder structure

As you can see, a whole bunch of new files and folders was added. If you'd like to

know more about all these additions, please see H5BP's documentation.

index.php vs index.html

Most servers are configured to first look for an index.html file, then for a index.php

one. Indeed, if you refresh http://guestbook.app now, you'll see the greeting page

of H5BP, rather than our output from before.

We could just delete index.html and the server would once again serve index.php,

but then we'd lose the advantages of H5BP. To get our content back, we:

123Learn by Example: A Web App from Scratch

■ open index.php, and end the file with ?>. That's the PHP closing tag, and it's

how PHP knows it needs to process no more programming logic. It's how it

knows that from that point on, all it does is print the stuff it encounters out to

the screen. In pure PHP files, the closing tag is usually omitted because it serves

no purpose and can cause bugs11, but when using PHP and HTML in the same

file, it's necessary.

■ select all contents of index.php, and place them in index.html, at the very top,

before <doctype>. Save the file.

■ execute the commands:

cd public; rm index.php; mv index.html index.php; cd ..

The above deletes the old PHP file and turns the HTML file into a PHP one. This

way, the server moves directly to index.php again, but this time it also prints

out all the H5BP content (the various HTML tags that are invisible to us, but

useful to the browser and mobile devices). Refreshing the app now produces

our old content again.

The HTML Form
Finally, we can build the comment submission form.

In place of <p>Hello world! This is HTML5 Boilerplate.</p>, we need to put

the following:

<form method="post">

 <input type="submit" value="Save">
</form>

This is the beginning and end of our form. The method attribute on the opening

form tag means "send a POST request". The default is GET which, when a form is

submitted, puts all the values of the various form elements into the URL (e.g. ht-

tp://guestbook.app?name=bruno&email=bruno.skvorc@sitepoint.com&comment=...)

which is not something we want. GET is typically used for reading data from an

app; a URL you visit in a regular fashion, by clicking a link for example, is a GET

11 http://stackoverflow.com/questions/4410704/why-would-one-omit-the-close-tag

Jump Start PHP Environment124

http://stackoverflow.com/questions/4410704/why-would-one-omit-the-close-tag

request. POST requests are usually used for saving some data to the server, such as

creating new data in a database. For a refresher on requests and responses, see

Chapter 1.

The input element is the button we'll click to save the comment ― the value attrib-

ute is what is written on the button, while the type is there to make sure this button

is used for submitting the form.

If you refresh http://guestbook.app now, you should see a Save button at the bottom

of the screen. Clicking it will do nothing but refresh the screen (the button submits

the form, but since there's no PHP logic to process the form, we're just redirected

to the same page we were on).

Above the input, but still inside the form element, we add the following:

 <label>Name: <input type="text" name="name" placeholder="Your
➥ name"></label>
 <label>Email: <input type="text" name="email" placeholder="your@
➥email.com"></label>
 <label>Comment: <textarea name="comment" cols="30" rows="10">
➥</textarea></label>

HTML forms usually have labels for various form fields describing what's supposed

to be entered into the field. A label often wraps an element―a tag goes on either

side of it, like in the code above. The type attribute tells the browser it's a regular

text field, the name is there so we can identify the value in the PHP code, and the

placeholder is there to serve as an example of possible inputs. A textarea is a

different kind of element with no type, just dimensions expressed in the form of

columns (cols) and rows.

If we also remove the dummy outputs from the PHP part, we get a final result that

looks like this:

<?php

require_once '../vendor/autoload.php';

$database = new medoo([
 'database_type' => 'sqlite',
 'database_file' => '../storage/database.db'

125Learn by Example: A Web App from Scratch

]);

?>

 ⋮

<form method="post">
 <label>Name: <input type="text" name="name" placeholder="Your
➥ name"></label>
 <label>Email: <input type="text" name="email" placeholder="your@
➥email.com"></label>
 <label>Comment: <textarea name="comment" cols="30" rows="10">
➥</textarea></label>
 <input type="submit" value="Save">
</form>

It looks like Figure 8.14 when seen in the browser.

Figure 8.14. Form created

It's quite ugly, but we can deal with that later.

Second Push
With some additional files in the mix and our form built, it's time to do another Git

push:

Jump Start PHP Environment126

git add -A
git commit -m "Added HTML5 Boilerplate and built submission form"
git push origin master

Creating the Comment Class and the Database Table
Developing the Comment class from scratch with object oriented syntax, how ever

simple it may be, is outside the scope of this book. There are plenty of other books

you can look at for guidance on basic OOP ― the links at the end of the chapter

will be helpful. Right now, just to get some PHP muscle memory, I would recommend

you type the code below into a new file called Comment.php which you should

create in the src subfolder of the root folder of our project (the src folder will need

to be created, too). Alternatively, if you really don't feel like it, the full code is copy-

pasteable at: http://bit.ly/sp-book-comment.

<?php

namespace SitePoint;

class Comment
{
 protected $database;

 protected $name;
 protected $email;
 protected $comment;
 protected $submissionDate;

 public function __construct(\medoo $medoo)
 {
 $this->database = $medoo;
 }

 public function findAll()
 {
 $collection = [];
 $comments = $this->database->select('comments', '*',
 ["ORDER" => "comments.submissionDate DESC"]);
 if ($comments) {
 foreach ($comments as $array) {
 $comment = new self($this->database);
 $collection[] = $comment

127Learn by Example: A Web App from Scratch

http://bit.ly/sp-book-comment

 ->setComment($array['comment'])
 ->setEmail($array['email'])
 ->setName($array['name'])
 ->setSubmissionDate($array['submissionDate']);
 }
 }

 return $collection;
 }

 public function setName($name)
 {
 $this->name = (string)$name;

 return $this;
 }

 public function setEmail($email)
 {
 if (filter_var($email, FILTER_VALIDATE_EMAIL)) {
 $this->email = $email;
 } else {
 throw new \InvalidArgumentException('Not a valid
➥ email!');
 }

 return $this;
 }

 public function setComment($comment)
 {
 if (strlen($comment) < 10) {
 throw new \InvalidArgumentException('Comment too
➥ short!');
 } else {
 $this->comment = $comment;
 }

 return $this;
 }

 protected function setSubmissionDate($date)
 {
 $this->submissionDate = $date;

Jump Start PHP Environment128

 return $this;
 }

 public function getName()
 {
 return $this->name;
 }

 public function getEmail()
 {
 return $this->email;
 }

 public function getComment()
 {
 return $this->comment;
 }

 public function getSubmissionDate()
 {
 return $this->submissionDate;
 }

 public function save()
 {
 if ($this->getName() && $this->getEmail() && $this->
➥getComment()) {
 $this->setSubmissionDate(date('Y-m-d H:i:s'));

 return $this->database->insert('comments', [
 'name' => $this->getName(),
 'email' => $this->getEmail(),
 'comment' => $this->getComment(),
 'submissionDate' => $this->getSubmissionDate()
]);
 }
 throw new \Exception("Failed to save!");
 }
}

Explanation of the Code Above

An in-depth explanation of this class and all the functionality its code allows,

along with upgrades to the app's functionality that go beyond what we're covering

129Learn by Example: A Web App from Scratch

in the book, will be covered in bonus posts published on SitePoint.com. To find

links to this bonus content, please see the repository with the source code of the

guestbook app we're building at https://github.com/spbooks/phpenv1-example.

Before the Comment class can be used by our application, the app needs to know

where the class is. Remember the namespaces section from Chapter 7? This is the

part where we bind the namespace of the Comment class (namespace SitePoint;)

to a physical location on the hard drive (the src folder). We must edit the

composer.json file in our project's root folder and add the section:

"autoload": {
 "psr-4": {
 "SitePoint\\": "src"
 }
 }

For reference, Figure 8.15 what the whole file now looks like:

Jump Start PHP Environment130

https://github.com/spbooks/phpenv1-example

Figure 8.15. The current contents of composer.json

To apply these changes, we run composer dump-autoload so that the script which

auto-includes classes is regenerated with the src folder in mind.

One last step: before we can save data into the database, we need to create a table

into which the data will go. In the terminal, inside the root folder, execute:

sqlite3 storage/database.db

This enters the database in CLI mode, allowing for live execution of SQL commands.

To create the table we want, we need to execute the following statement while inside

the database engine:

131Learn by Example: A Web App from Scratch

CREATE TABLE comments (
 id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 name TEXT NOT NULL,
 email TEXT NOT NULL,
 comment TEXT NOT NULL,
 submissionDate TEXT NOT NULL);

This will create a table called comments with an auto-incrementing integer ID

(meaning the ID number will rise automatically as new records are inserted, we

don't need to provide this value), a name field, an email field, a comment field, and

our submissionDate field for saving the date of creation. Typing .tables after the

command above is executed should show that the table was created. Exit the prompt

by typing .quit.

How about we test everything we made so far? In index.php, under the $database

= new medoo... block put the following:

$comment = new SitePoint\Comment($database);
$comment->setEmail('bruno@skvorc.me')
 ->setName('Bruno Skvorc')
 ->setComment('It works!')
 ->setComment('Hooray! Saving comments works!')
 ->save();

Refresh http://guestbook.app, and there shouldn't be any changes.

However, if we look inside our database, we should be able to see the saved com-

ment, as shown in Figure 8.16.

Jump Start PHP Environment132

Figure 8.16. The comment is saved!

If by some chance the save didn't go through, this is where a call to the var-dumper

might be helpful. After the call to ->save();, in a new line, put:

dump($database->error());

If there were errors, this command will output them on the screen and you'll know

exactly what went wrong.

Third Push
It's time to add, commit and push again. Try to recall the commands without looking

them up. If you get stuck, they're a couple of pages back.

Development vs Production Database
It would be rather silly if we did all our testing on a real database, and then that

ended up live for our users to see. We need a "development" database which will

133Learn by Example: A Web App from Scratch

be in use while developing, and a "production" database which we'll deploy

alongside our app. See the Application Environment chapter for clarifications on

these terms.

There are many ways to do this, but one of the easiest is:

■ app checks if a file called database.local.db exists
■ if the file exists, it is used as the database
■ if the file does not exist, the file database.db is used

The file database.local.db can be put into the .gitignore file so it never ends

up being shared with other team members, and so that it cannot end up in the repo

(thus never getting deployed via Git). By default, this will make the production

version of our app use the production database, and the local version of our app

use the development database.

First, let's empty the database of dummy data.

sqlite3 storage/database.db
delete from comments;
delete from sqlite_sequence where name='comments';

The first delete deletes all test rows we may have inserted. The second one resets

the auto-incrementing ID field back to 0. Now, let's turn this database file into a

template for future ones, then create the databases we need:

cd storage
cp database.db database.tpl.db
cp database.tpl.db database.local.db
cd ..

cp is a terminal command for "Copy".

There should now be three files: database.tpl.db, database.db and database.loc-

al.db.

We can now add database.local.db to our .gitignore file, which will make sure it

never ends up in the repository:

Jump Start PHP Environment134

echo -e "\ndatabase.local.db" >> .gitignore

Finally, let's edit index.php. We'll replace the Medoo initialization:

$database = new medoo([
 'database_type' => 'sqlite',
 'database_file' => '../storage/database.db'
]);

with:

$file = '../storage/database.db';
if (is_writable('../storage/database.local.db')) {
 $file = '../storage/database.local.db';
}
$database = new medoo([
 'database_type' => 'sqlite',
 'database_file' => $file
]);

The above translates into "If there is a writable file called database.local.db in the

folder one level above the current one, use that. Otherwise, use database.db".

If we now refresh http://guestbook.app (and the dummy comment creation code

is still there), we should see the comment appear in database.local.db, but not in

database.db, as shown in Figure 8.17.

135Learn by Example: A Web App from Scratch

Figure 8.17. Local database populated

Fourth Push
Again, add, commit, and push. Don't look up the commands. If you can't remember

them, rather than look them up on the previous pages, try Googling for them.

Finding solutions by simply searching for them will become a daily ordeal for you

in the very near future. True skill is not in knowing something, but in knowing

where to find that knowledge (though, in all honesty, you'll probably end up on

StackOverflow).

Posting and Displaying Comments
First, let's modify index.php by removing the dummy Comment creation logic. The

PHP section and, thus, our new starting point, looks like this now:

<?php

require_once '../vendor/autoload.php';

Jump Start PHP Environment136

$file = '../storage/database.db';
if (is_writable('../storage/database.local.db')) {
 $file = '../storage/database.local.db';
}
$database = new medoo([
 'database_type' => 'sqlite',
 'database_file' => $file
]);
$comment = new SitePoint\Comment($database);

?>

At this point, we have autoloading set up, we have a database instance configured,

and we have an instance of the Comment class with the database connection injected

into it..

First up, let's make it possible to post new comments.

Posting
As we said earlier, when we visit a URL in a browser, we issue a GET request. GET

requests are for reading, they're not supposed to alter data. This is why our submis-

sion form is using method="post", so that the request we send to our app after

submitting the form is a POST one. In PHP, there are constructs called superglobals

― variables (usually arrays) accessible at any level of the application. Two such

superglobals are $_GET and $_POST.

When we visit a URL like http://some.url.com/?var=something&name=something-

else, the $_GET superglobal array will look like this:

$_GET = [
 'var' => 'something',
 'name' => 'something-else'
];

In other words, we'll be able to access var and name from the URL in any part of the

application with an approach like $username = $_GET['name'].

$_POST does the same thing, but for values submitted via a POST request, such as

from a form. When a form has an input field with the name name, then the $_POST

137Learn by Example: A Web App from Scratch

superglobal will also have a name key which will contain the value of said field.

Thus, the fields we defined in our form will have their values represented in $_POST

after the form has been submitted, as we'll soon see.

First, we need to detect we're dealing with a form submission. Under the $comment

line, but before the closing ?> PHP tag, we put the following:

if ($_SERVER['REQUEST_METHOD'] === 'POST') {
 echo "Form was submitted!";
}

The first line detects that we're dealing with a form submission. Remember how

we used method='post' in our HTML on the <form> element? $_SERVER is another

superglobal in PHP containing information about the current request that's coming

in (it gets filled automatically). In this case, we're dealing with the request that was

submitted via a form, thus using the POST method.

If we refresh http://guestbook.app now, we should see nothing new. But if we press

the Save button on the form, we should see "Form was submitted!". There's a small

problem, though. If we try to refresh the page after a form submission, we'll get a

strange warning, shown in Figure 8.18.

Figure 8.18. Form resubmission

In Chrome's universe, a refresh means a complete redo―the repeat of the last step,

rather than re-rendering the URL we're on. It wants to re-send the form information

Jump Start PHP Environment138

in its entirety when we try to refresh. This doesn't happen if we punch in the ht-

tp://guestbook.app URL manually and re-visit it that way, but refreshing it after a

form submission will always produce this warning. You'll encounter this on other

websites, too. We don't want to scare our visitors with this message, so we'll work

around it. For now, let's process the submission.

Replace echo "Form was submitted!"; with:

dump($_POST);

Then, enter some data into the comment form and submit it. You should see

something similar to Figure 8.19.

Figure 8.19. Dump of post data

Notice how all three fields were dumped (the dump function is the functionality of

the symfony/var-dumper package we installed at the beginning of this chapter), and

have the same names as the fields from which they originate.

An important aspect of receiving data from untrusted users in systems like the ones

we're building is input validation.

Validation: Never Trust User Input!
The golden rule of validation is never trust user input, because you never know

when someone well versed in coding will stumble upon your app and attempt to

enter malicious information into the fields in an attempt to break your app (by, for

139Learn by Example: A Web App from Scratch

example, entering data which triggers commands in the database, also known as

SQL injection12).

There are many ways to validate input data, and in this case we'll be using a min-

imalist package called particle/validator. Let's install it.

composer require particle/validator

Above the require_once line, put:

use Particle\Validator\Validator;

This imports the class so we can use its shorter name. Then, replace dump($_POST)

with:

 $v = new Validator();
 $v->required('name')->lengthBetween(1, 100)->alnum(true);
 $v->required('email')->email()->lengthBetween(5, 255);
 $v->required('comment')->lengthBetween(10, null);

 $result = $v->validate($_POST);

 if ($result->isValid()) {
 echo "Submission is good!";
 } else {
 dump($result->getMessages());
 }

The Validator package in question uses rules to define some constraints on certain

values in an array. In this case, we made all three fields required with required(),

we set a limit on their length with lengthBetween, we forced the name to be alpha-

numeric (so no miscellaneous characters, like punctuation ― but spaces are allowed,

indicated by the true we passed in) and we forced the email to be verified as an

email format. Just for testing, we dump the errors we get if something goes wrong,

or output "Submission is good" if all fields are OK. Figure 8.20 shows what I get

when I enter an invalid email address:

12 https://www.owasp.org/index.php/SQL_Injection

Jump Start PHP Environment140

https://www.owasp.org/index.php/SQL_Injection

Figure 8.20. Invalid email address

With our input data validated, we're ready to save the comment into the database.

Replace echo "Submission is good!"; with:

try {
 $comment
 ->setName($_POST['name'])
 ->setEmail($_POST['email'])
 ->setComment($_POST['comment'])
 ->save();

 header('Location: /');
 return;

 } catch (\Exception $e) {
 die($e->getMessage());
}

The try/catch block is another advanced construct. Suffice it to say that anything

thrown can be caught. In the Comment class, we tend to throw new exceptions of

different types. When an exception is thrown (throwing an exception in PHP basic-

ally means "making PHP crash with a specific error message), it bubbles up, which

means that the whole application can detect it, all the way up to the root index.php

file. This is why, in index.php, we put the try safeguard around all the $comment

method calls; if one of them throws an exception, the catch block will trigger. The

logic in the catch block will simply kill PHP with the function die() and output

141Learn by Example: A Web App from Scratch

the message that was passed via the \Exception that was caught (e.g. "Failed to

save!" in the save() method in the Comment class).

If the saving executes flawlessly, we call the header() function and pass in the

location for where we want the browser to redirect us to. The "path" / means "root

of this website", which is http://guestbook.app in our case. The return makes sure

PHP's code execution stops there. Why did we do this? Because of the aforemen-

tioned "form resubmission on refresh" problem.13

If we now enter valid information into the form and press submit, we'll be sent back

to http://guestbook.app, the comment will appear in the database, and the page will

be refreshable without the warning.

Try it out. Enter a couple of comments and take a look inside the database with:

sqlite3 database.local.db
select * from comments;

Reading
All we need to do now is add the listing logic to our app; we want to list the currently

saved comments.

Above the entire form block in index.php, put the following:

<?php foreach ($comment->findAll() as $comment) : ?>

 <div class="comment">
 <h3>On <?= $comment->getSubmissionDate() ?>, <?= $comment->
➥getName() ?> wrote:</h3>

 <p><?= $comment->getComment(); ?></p>
 </div>

<?php endforeach; ?>

When mixing PHP and HTML, we can use colon (:) and the appropriate block closer

instead of using curly braces { }. This helps maintain sanity when dealing with

13 The header function can only work if it comes before any HTML output. Thus, we've put all our

PHP code at the top of the file.

Jump Start PHP Environment142

big files ― one doesn't have to strain one's eyes looking for closing braces. Every

for has its endfor, if has its endif, foreach has an endforeach, and so on. It's a

convenience, a bit of syntactic sugar.

In the code above, we call the findAll method on $comment, the method which

fetches all the comments from the database in reverse order of submission (newest

to oldest). Then, we create an HTML div block to contain our comment. Inside it

we have an h3 element for the comment's "title" (information on who wrote the

comment and when) followed by a p element, which will contain our comment's

text.

The structure <?= $variable ?> is short for <?php echo $variable ?>, and is

available in all modern PHP version at all times (note that this is not the same as

short open tags14).

That's it ― it was that simple. Let's test our code by refreshing http://guestbook.app,

as shown in Figure 8.21.

Figure 8.21. It works!

14 http://php.net/manual/en/ini.core.php#ini.short-open-tag

143Learn by Example: A Web App from Scratch

http://php.net/manual/en/ini.core.php#ini.short-open-tag

CSS
Throughout all this the only thing we haven't paid any attention to was the design.

Let's drop in some rudimentary CSS, just to make everything prettier. Under the

line <link rel="stylesheet" href="css/main.css">, add this one:

 <link rel="stylesheet" href="css/custom.css">

Then, create the file public/css/custom.css and give it the following contents (or paste

from http://bit.ly/envbook-style):

body {
 padding: 10px;
}

form {
 width: 500px;
 border: 1px solid silver;
 border-radius: 3px;
 padding: 10px 10px 10px 4px;
}

form > input {
 width: 100%;
 margin-left:4px;
 height: 35px;
 border: 1px solid silver;
 background: #cccccc;
}

form > input:hover {
 background: whitesmoke;
}

label {
 display: block;
 margin: 5px;
 color: grey;
}

label > input {
 line-height: 30px;
}

Jump Start PHP Environment144

http://bit.ly/envbook-style

label > * {
 display: block;
 width: 100%;
}

.comment {
 width: 500px;
 border: 1px solid silver;
 border-radius: 3px;
 margin: 10px 0;
 background-color: lemonchiffon;
}

.comment > h3 {
 margin: 0;
 border-bottom: 1px solid silver;
 background-color: lightblue;
 padding: 3px;
}

.comment > p {
 margin: 10px;
}

This turns our ugly app into something marginally easier to look at, as shown in

Figure 8.22.

145Learn by Example: A Web App from Scratch

Figure 8.22. A prettier app

Final Push
By now, you should be a master of the push flow. Do one final push, and our applic-

ation is in the repository in its final form.

Deployment
In this section, we'll deploy our most excellent app. For more theory behind deploy-

ment, see Chapter 6.

Deploying on a Shared Host (Hostgator)
Like we discussed in Chapter 6, shared hosting isn't really a good option. It's insec-

ure, often very limited in resources (despite the unlimited claims) and these days

not all that cheaper than VPS. Still, it might be the only thing you have access to,

so it only makes sense we cover an old school FTP deployment procedure.

Jump Start PHP Environment146

Shared hosts will often have cPanel as a means of managing one's server, not unlike

the one shown in Figure 8.23.

Figure 8.23. cPanel

In this case, we're using Hostgator15, but the procedure is almost identical on every

shared host.

To deploy an app, you'll need a domain. Domains can be purchased (or rather,

rented) on websites like http://namecheap.com or http://name.com, and can range

from $2 per year to $2000 per year and more. I'll pick one of my own domains that

I'm not using for this example: caimeo.com. Add your domain to your shared host

via the Addon domains dialog:

15 http://hostgator.com

147Learn by Example: A Web App from Scratch

http://hostgator.com

Figure 8.24. Adding a new domain

Each shared host will also instruct you how to configure DNS settings for the domain

to respond to the shared host's servers. Note that it might take up to 24 hours for a

DNS change to propagate (apply) across the web.

Adding a new domain will automatically create an FTP account for it, as shown in

Figure 8.25.

Figure 8.25. New FTP account created

Note that the core domain behind the FTP account is different purely because my

Hostgator account was originally opened on it. There are ways to change a primary

domain, but the process is too time consuming and intense to be worth the effort.

Jump Start PHP Environment148

The next step is downloading an FTP client; this example will use Filezilla16, but

you can use whichever clientyou prefer. In the Site Manager window, we add a new

site and enter the credentials given to us by Hostgator, as shown in Figure 8.26.

Figure 8.26. Configured in Filezilla

You might be asked to "trust a certificate" when connecting. If so, just confirm.

Once the connection goes through, the right side indicating Remote will show an

empty folder ― in reality, the location is a subfolder of your home folder on the

shared host's server. To begin, we'll first upload our app by finding it in the left

frame, and dragging it over into the right one.

16 https://filezilla-project.org/

149Learn by Example: A Web App from Scratch

https://filezilla-project.org/

Due to having to copy the entire vendor folder and everything we used in develop-

ment, this might take a while ― there's no proper way to cherry pick what gets

copied, really. When this is done, we'll need to delete some of the development

files and folders (.git,, .gitignore, database.local.db, etc.) manually.

We then modify the document root of the domain to lead to caimeo.com/guest-

book/public rather than the default caimeo.com, as shown in Figure 8.27, because

otherwise our app won't run at http://caimeo.com, but rather at ht-

tp://caimeo.com/guestbook/public.

Figure 8.27. Modify docroot

After the changes apply (it might take a while), we should be able to visit our app

at the main domain, and we'll be able to enter new comments, too!

Jump Start PHP Environment150

Figure 8.28. Caimeo.com with comments

Victory!

The app is now deployed live on a shared host and works like a charm. It's a bit

tedious to have to reupload all changed files manually, and the app isn't all that

secure, but it's good enough for demos and proof-of-concept apps.

Deploying on DigitalOcean
Time for the good stuff.

On DigitalOcean, a VPS provider, you're given the ability to create droplets. A

droplet is a virtual private server that's very easy to tear down and rebuild, much

like a Vagrant box, only performing much better. DigitalOcean bills you according

to the resources a droplet spends, so unless you intend to host a long running ap-

plication, it makes sense to tear it down after you're done with it to conserve credits.

An added benefit of this type of setup is that you don't have to get a domain just to

launch a site ― DigitalOcean supports (as do most VPS hosts, as a matter of fact)

151Learn by Example: A Web App from Scratch

IP-based access, so you can access your app by punching in an IP bound to your

droplet. Additionally, if you don't want to use DigitalOcean, the procedure is nearly

identical on every VPS; in all cases, you're dealing with a typical blank server!

Droplets can be as cheap as $5 per month and by using someone's referral link, you

can get $10 instantly. Here's my link if you'd like to give the deployment procedure

below a try: http://bit.ly/doref.17

New Droplet
Assuming you've set up a new account and have some credits, let's create a new

droplet by going to https://cloud.digitalocean.com/droplets/new, giving it a name,

and selecting:

■ $5 per month
■ the region nearest to you
■ Ubuntu 14.04 image (it's the same OS that Homestead Improved uses, helping

development-production parity and providing us with a familiar environment)
■ No SSH key. We'll receive a root password via email which we'll use for remotely

logging into the server (very similar to vagrant ssh). We'll use the latter ap-

proach, considering most readers will likely be without SSH keys. For additional

information on setting up SSH keys and proper security measures, Digital Ocean's

tutorial18 will be invaluable.

Once the droplet has been created, you should have access to its main dashboard,

shown in Figure 8.29.

17 Full disclosure: the owner of the referral link (that's me!) will receive $25 as soon as a person they

referred spends $25 of their own, not counting the initial free $10.
18 https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-

on-a-freebsd-server

Jump Start PHP Environment152

https://cloud.digitalocean.com/droplets/new
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-freebsd-server
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-freebsd-server

Figure 8.29. Droplet dashboard

Notice the IP address right underneath its name. Right now, it won't lead anywhere

if it's put in your browser's URL field. We can, however, use it to log into our server

(whenever you see IP-ADDRESS below, substitute for the IP of your own droplet):

ssh root@IP-ADDRESS

Use the password from the email when prompted. As soon as you're logged in, you

will be asked to change the root password. Change it to something familiar but not

easily guessable. My recommendation would be using a password manager to gen-

erate a random one, and then just paste from there in the future.

Once you're in the server, a welcome message might display a warning about locales.

This can be fixed by running:

sudo locale-gen en_US en_US.UTF-8
export LANG=en_US.UTF-8
export LC_ALL=en_US.UTF-8

What this does is tell the OS on the droplet (Ubuntu Linux) which language we're

using (US English), and the type of encoding used to display its characters. UTF-8

153Learn by Example: A Web App from Scratch

is a type of encoding which makes possible the use of letters of different alphabets

and similar miscellaneous characters. UTF-8 is outside the scope of this book and

chapter, but if you're curious, there's an absolutely essential (and newbie-friendly)

bit of writing from 2003 about it at the following link:

http://www.joelonsoftware.com/articles/Unicode.html

If your local computer is running OS X or Linux, there might be another setting you

might need to modify. Exit the droplet with exit, then edit the file ssh_config in

/etc/ssh/, and comment out the following line by putting a hash in front:

SendEnv LANG LC_*

This is due to a common remote access bug19.

Now we're ready to install prerequisite software.

Prerequisites
First, we need to have Ubuntu pull in a list of the newly available Ubuntu packages.

While you're logged into the droplet, run:

sudo apt-get update

With the list updated, let's start by installing Git, SQLite3, and Nginx:

sudo apt-get install git sqlite3 nginx

Suddenly, our IP address is live! (Figure 8.30).

19 http://askubuntu.com/a/530829

Jump Start PHP Environment154

http://www.joelonsoftware.com/articles/Unicode.html
http://askubuntu.com/a/530829

Figure 8.30. Nginx welcome page

Next, we need to install PHP.

PHP and Composer
To install PHP, we run:

sudo add-apt-repository ppa:ondrej/php5-5.6
sudo apt-get update
sudo apt-get install php5 php5-fpm php5-cli php5-sqlite

php5 is the core PHP program. php5-fpm is the web interface through which a

server like Nginx passes PHP files and gets back a response. php5-cli is the com-

mand line interface, so we can use PHP in the terminal, without the browser. This

is what Composer uses to work. php5-sqlite is, of course, a PHP extension for

communication with SQLite3, which we know we'll be needing.

To install Composer globally, like on Homestead Improved, we execute:

155Learn by Example: A Web App from Scratch

curl -sS https://getcomposer.org/installer | php
sudo mv composer.phar /usr/local/bin/composer

Server Configuration
To configure Nginx, we can just grab the configuration from our VM! Open a new

terminal tab or window on the host machine, enter the Vagrant VM we developed

the app on with vagrant ssh as usual, and execute:

cp /etc/nginx/sites-available/guestbook.app ~/Code/guestbook-nginx.
➥txt

This will make the server configuration file immediately available in the VM's main

folder. Open it, select its contents (but be careful to ignore or just delete the two

bottom lines ― those mentioning SSL), copy the selection to the clipboard, and

then while connected to the droplet (switch back to the window / terminal connected

to it) run:

vim /etc/nginx/sites-available/guestbook.app

Press the i key to enter insert mode, and paste the contents in there with Ctrl + V

(CMD + V on a Mac). Then, edit the following lines:

■ change the value of server_name from a name (guestbook.app) to the IP of the

droplet
■ change the value of root to /var/www/guestbook/public

The var/www/ folder is the location that's typically used to host applications on

Linux. Exit insert mode with Esc, then exit the file by typing :x and pressing Enter.

Then, reboot Nginx with:

sudo service nginx restart

Encountering Issues

If you run into problems like a fully white screen, or a cryptic error, check the

error logs by running tail -f /var/log/nginx/guestbook.app-error.log.

Tail outputs the "tail" of a file (its last 10 lines) and -f tells it to "watch this file

Jump Start PHP Environment156

and update output as it changes", meaning that as new errors come in, they'll im-

mediately show up on screen. Feel free to open another terminal window, connect

to the droplet through it just like above, and run the tail there; that way, you

still have full control over the main terminal window to run commands in, and

the second will monitor errors for you.

Pulling With Git
At last! We're ready to deploy our app!

cd /var/www
git clone https://github.com/spbooks/phpenv1-example guestbook
cd guestbook
composer install --no-dev -o

Notice how we used --no-dev to prevent installing the dev packages and make the

installation faster. On an application of this size, it hardly matters, but on bigger

projects, the difference is obvious. We also used the option -o which is short for

--optimize-autoloader and builds a classmap - a special file which turns all

namespace-to-classes combinations (from the autoload section of composer.json)

into a fixed pre-calculated array, which in most cases significantly speeds up

autoloading. Read more about these command line options in the docs20.

Seeing as we did all this with the root account (we logged in with root@IP-ADDRESS,

remember?), our application is "owned" by the root user because that user created

it. This is okay in most cases, but not when PHP needs to do some reading and

writing on the hard drive; PHP is running as a separate user, and a user cannot

modify a super-user's (root's) files. As a final step, we need to modify permissions:

d /var/www/guestbook
sudo chown -R :www-data .
sudo chmod -R 775 storage

The chown command gives ownership of the folder to the www-data group of users:

a special subset of user accounts on the server in charge of serving web pages (PHP

and Nginx belong to this group). The chmod option gives writing permissions on

20 https://getcomposer.org/doc/03-cli.md

157Learn by Example: A Web App from Scratch

https://getcomposer.org/doc/03-cli.md

the entire storage folder to its owner (root) and owning group (www-data). In both

cases -R means "recursive", which means "apply to all subfolders as well".21

If we test our app now, we should see that everything is working fine, as shown in

Figure 8.31.

Figure 8.31. A working droplet

Conclusion
This chapter put to practice all the theory we covered before. Pretty much every

term we discussed and every code snippet we tried out were used in one way or

another through the creation of our little app.

21 775 is a file/folder access code―read more about them in this LinuxQuestions forum post:

http://www.linuxquestions.org/questions/linux-software-2/chmod-codes-list-142654/.

Jump Start PHP Environment158

http://www.linuxquestions.org/questions/linux-software-2/chmod-codes-list-142654/

The final application (downloadable / cloneable here22), while nothing to admire,

is a fine introduction to the modern development workflow. Of course, this is the

mere bottom of the basics, and your mission, should you choose to accept it, will

be to consume countless courses and tutorials more before even beginning to feel

ready. Thanks to this book, however, you should have a solid foundation on which

to build.

I encourage you to go through this chapter a couple more times. Start from scratch,

follow the procedure, try to skip reading a step now and then and recall how it was

done. Try to understand what the code does, really read into it. Once you've got it

down and the guestbook is almost muscle memory, try and introduce a change.

Look into styling your form with CSS, check out the links below to find out about

OOP, unit testing, login systems. Build on this sample app and use it as your

Frankenstein's monster, glue on new features, staple an arm or two onto its forehead.

Most importantly: have fun! The more fun you have, the more you'll want to learn,

experiment, and explore, and that's all becoming a programmer really is. Addition-

ally, for bonus content, code explanations and tutorials on how to implement some

other, more advanced features, please see the README file of the aforementioned

repository.

For Those Who Want More
To learn about HTML and CSS:

■ https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
■ https://www.sitepoint.com/premium/courses/introduction-to-html-2897
■ http://www.csstutorial.net/css-intro/introductioncss-part1.php
■ http://www.sitepoint.com/web-foundations/introduction-css-selectors/
■ https://www.sitepoint.com/premium/books/jump-start-css/online/ch01

To learn about modern PHP and MySQL:

■ https://www.codecademy.com/learn/php
■ http://knpuniversity.com/tracks/php
■ https://laracasts.com/series/object-oriented-bootcamp-in-php
■ https://laracasts.com/series/solid-principles-in-php

22 https://github.com/spbooks/phpenv1-example

159Learn by Example: A Web App from Scratch

https://github.com/spbooks/phpenv1-example
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
https://www.sitepoint.com/premium/courses/introduction-to-html-2897
http://www.csstutorial.net/css-intro/introductioncss-part1.php
http://www.sitepoint.com/web-foundations/introduction-css-selectors/
https://www.sitepoint.com/premium/books/jump-start-css/online/ch01
https://www.codecademy.com/learn/php
http://knpuniversity.com/tracks/php
https://laracasts.com/series/object-oriented-bootcamp-in-php
https://laracasts.com/series/solid-principles-in-php

To learn about the basics of automatic testing:

■ https://leanpub.com/mlaphp
■ http://www.sitepoint.com/tag/phpunit
■ https://knpuniversity.com/screencast/behat
■ http://www.sitepoint.com/php-continuous-integration-travis-ci/

To learn about the Laravel framework, it's best if you look at https://laracasts.com/,

while for Symfony, you'd best check out what http://knpuniversity.com has to offer.

Finally, to automate the last step of this chapter ― deployment ― and set it up so

it happens every time you, for example, push to the master branch (and for the

various names these procedures share), see:

■ http://stackoverflow.com/questions/28608015/
■ http://www.sitepoint.com/whats-continuous-deployment/
■ http://www.sitepoint.com/php-continuous-integration-travis-ci/
■ http://www.sitepoint.com/deploying-php-apps-digitalocean-dploy-io/
■ http://www.sitepoint.com/deploy-symfony-apps-capifony/
■ http://www.sitepoint.com/one-click-app-deployment-server-side-git-hooks/

For a constantly updated version of this list, see the README file of the example's

repository at https://github.com/spbooks/phpenv1-example, or read

http://phptherightway.com.

Jump Start PHP Environment160

https://leanpub.com/mlaphp
http://www.sitepoint.com/tag/phpunit
https://knpuniversity.com/screencast/behat
http://www.sitepoint.com/php-continuous-integration-travis-ci/
https://laracasts.com/
http://knpuniversity.com
http://stackoverflow.com/questions/28608015/
http://www.sitepoint.com/whats-continuous-deployment/
http://www.sitepoint.com/php-continuous-integration-travis-ci/
http://www.sitepoint.com/deploying-php-apps-digitalocean-dploy-io/
http://www.sitepoint.com/deploy-symfony-apps-capifony/
http://www.sitepoint.com/one-click-app-deployment-server-side-git-hooks/
https://github.com/spbooks/phpenv1-example
http://phptherightway.com

	Jump Start PHP Environment
	Table of Contents
	Preface
	The WWW
	The What and Why
	The Why
	The What

	The Who

	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Want to take your learning further?

	The Anatomy of Web Requests
	The Client and the Server
	What is a client?
	What is a server?

	Web Request Basics
	How It All Works
	Front-end and Back-end

	Server-side Languages
	Generating Answers with Server-side Languages

	For Those Who Want More
	DNS Servers
	What Happens When You Type ...

	The Programming Environment
	A Good IDE Is Worth Its File Size in Gold
	PhpStorm
	NetBeans
	Zend Studio

	The Importance of Coding Standards
	The Command Line / Terminal
	The Community
	PHP Mentoring
	PHP.net Documentation
	Various Forums

	Summary

	The Application Environment
	Application Environments
	Production
	Development
	Hosts and Virtual Hosts

	Staging and Maintenance

	The Evil of *AMP Bundles
	Machine Pollution
	Learning is Progress, or How the Comfort of Your Comfort Zone is Overrated
	Testing
	The Uncleanable Mess

	Production/Development Parity
	Performance and Debugging
	Summary
	For Those Who Want More

	Virtual Machines
	Virtual Machines Explained
	What are VMs?
	Getting to Know VirtualBox and Vagrant
	The Benefits of VMs

	Vagrant in a Nutshell
	Vagrant Boxes
	Provisioning
	Using Vagrant
	Homestead Improved: Explanation
	Defining New Sites
	Shutdown
	Further Reading

	Summary

	Versioning Systems
	Versioning Basics
	Git and GitHub
	Git
	How does it work?
	Alternatives

	GitHub

	Git in Action
	Preparing the Environment
	Creating a “Hello World” page
	Git
	Repo Initialization
	Adding and Committing
	Reset

	GitHub

	Useful Resources
	Summary

	Deployment and Hosting
	Hosting
	Shared Hosting
	Shared Hosting is Bad
	Shared Hosting Holds You Back
	Shared Hosting is Good for Limited Use Cases

	Cloud Hosting
	(Virtual) Private Hosting
	Others

	Deployment
	Manual
	Automatic and Semiautomatic Deployment

	Recommendation
	Summary

	Composer
	Spaghetti Western
	Namespaces and Ye Olde Package Management
	What is Composer?
	Usage Example
	Bootstrapping
	Installing Carbon
	Testing
	Cleanup

	More Tricks to Try
	Update versus Install and Composer Lock
	require-dev and global
	Is that all there is?

	For Those Who Want More

	Learn by Example: A Web App from Scratch
	What will we be building?
	Setting Up the Environment
	Bootstrapping the App
	Testing
	Frameworks versus Packages

	Developing the App
	Var Dumper
	Database Connection
	Repo and First Push
	HTML Form
	index.php vs index.html
	The HTML Form

	Second Push
	Creating the Comment Class and the Database Table
	Third Push
	Development vs Production Database
	Fourth Push
	Posting and Displaying Comments
	Posting
	Validation: Never Trust User Input!
	Reading
	CSS

	Final Push

	Deployment
	Deploying on a Shared Host (Hostgator)
	Deploying on DigitalOcean
	New Droplet
	Prerequisites
	PHP and Composer
	Server Configuration
	Pulling With Git

	Conclusion
	For Those Who Want More

