

Learning PHP 7
High Performance

Improve the performance of your PHP application
to ensure the application users aren't left waiting

Altaf Hussain

BIRMINGHAM - MUMBAI

[FM-2]

Learning PHP 7 High Performance

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1190416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-226-5

www.packtpub.com

www.packtpub.com

[FM-3]

Credits

Author
Altaf Hussain

Reviewer
Raul Mesa Ros

Commissioning Editor
Kunal Parikh

Acquisition Editor
Vinay Argekar

Content Development Editor
Priyanka Mehta

Technical Editor
Ravikiran Pise

Copy Editor
Shruti Iyer

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

[FM-4]

About the Author

Altaf Hussain is a fullstack web and mobile app developer with over 6 years of
experience in PHP development. He received his degree in electrical engineering and
specialized in computer and communications from Pakistan. Altaf is an electrical
engineer on paper and a software engineer by heart.

He worked as a system programmer in his team, developing control software for
small test robots using assembly languages and C. After this, Altaf got interested
in web technologies and never looked back. He has worked with numerous PHP
frameworks, including Zend, Laravel, and Yii, and open source systems such
as Drupal, WordPress, PrestaShop, and Magento. Altaf designed and built two
proprietary CMS systems with full support for multiple languages and models,
permissions, and translations, as well as different kinds of multilingual content
management. Now, he works in the fashion industry as the head of IT at shy7lo.com,
where his role is to manage the development team on the premises and abroad, in
order to manage Magento and Laravel applications development and the deployment
life cycle. Besides web apps, Altaf has worked on iOS and Android applications,
including building APIs in Lumen. He is a big fan of service-oriented architecture
(SOA) and successfully uses it in different applications.

Altaf actively researches on website performance and has deployed the latest
technologies, such as PHP 7, NGINX, Redis, Varnish, and others, in production
environments for high-speed and scalable applications. He is a Debian lover and
uses it for all of his web application deployments.

When not working, Altaf writes articles for programmingtunes.com and
techyocean.com. He has reviewed several books for Packt Publishing, including
Learning Phalcon PHP, Mastering jQuery Mobile, and PrestaShop Module
Development.

programmingtunes.com
techyocean.com

[FM-5]

Acknowledgement

I would like to thank my parents, wife, and son, Haashir Khan, who were all very
helpful during the development of this book and my overall career. Without their
help and support, this book would not have been possible to complete. I would also
like to thank the PHP community for creating such awesome and beautiful tools and
making the life of a web developer easy.

[FM-6]

About the Reviewer

Raul Mesa Ros has been writing software for the Web since 2006. He started
with Java, later moved on to PHP, and obtained several certifications such as Zend
Engineer and Zend Framework. Having worked on several high-traffic web projects,
Raul is nowadays very interested in the DevOps philosophy.

He currently works as a senior web developer at EuroMillions.com using DevOps
and PHP technologies. Raul also leads various small-to-medium sized projects.

His twitter handle is @rmrbest.

I would like to thank my wife, Noemi, and my daughter, Valeria,
for their support and love, and also my father who bought me my
first computer back in 1992.

EuroMillions.com

[FM-7]

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface vii
Chapter 1: Setting Up the Environment 1

Setting up Windows 2
Setting up Debian or Ubuntu 5

Debian 5
Ubuntu 5

Setting up CentOS 9
Installing NGINX 10
Installing PHP 7 11
Installing Percona Server 13

Setting up Vagrant 14
Summary 16

Chapter 2: New Features in PHP 7 17
OOP features 18

Type hints 18
Scalar type hints 18
Return type hints 19

Namespaces and group use declaration 21
Non mixed group use declarations 25
Mixed group use declarations 26
The compound namespace declaration 26

The anonymous classes 27
Old-style constructor deprecation 30
The throwable interface 32

Error 32
New operators 33

The Spaceship operator (<=>) 33
The null coalesce operator(??) 35

Table of Contents

[ii]

Uniform variable syntax 37
Miscellaneous features and changes 38

Constant arrays 38
Multiple default cases in the switch statement 38
The options array for session_start function 39
Filtered unserialize function 39

Summary 40
Chapter 3: Improving PHP 7 Application Performance 41

NGINX and Apache 41
Apache 42
NGINX 42

HTTP server optimization 43
Caching static files 43

Apache 43
NGINX 43

HTTP persistent connection 44
Apache 45
NGINX 46
GZIP compression 46

Apache 46
NGINX 47

Using PHP as a separate service 48
Disabling unused modules 49

Apache 49
NGINX 50

Web server resources 51
NGINX 51

Content Delivery Network (CDN) 52
Using CDN 52

CSS and JavaScript optimization 54
Merging 54
Minifying 54

Minify 56
Grunt 58

Full page caching 62
Varnish 63
The infrastructure 66

Web servers 67
The database server 67
Load balancer (LB) 67

Table of Contents

[iii]

HAProxy load balancing 68
HAProxy installation 68
HAProxy load balancing 69

Summary 72
Chapter 4: Improving Database Performance 73

The MySQL database 73
Query caching 74

Storage engines 75
The MyISAM storage engine 76
The InnoDB storage engine 77

innodb_buffer_pool_size 77
innodb_buffer_pool_instances 77
innodb_log_file_size 78

The Percona Server - a fork of MySQL 78
Installing the Percona Server 78

MySQL performance monitoring tools 79
phpMyAdmin 80
The MySQL workbench 83
Percona Toolkit 84

pt-query-digest 84
pt-duplicate-key-checker 85

Percona XtraDB Cluster (PXC) 87
Redis – the key-value cache store 89

Connecting with the Redis server 92
Storing and fetching data from the Redis server 92
Redis management tools 94

Memcached key-value cache store 95
Summary 96

Chapter 5: Debugging and Profiling 97
Xdebug 97

Debugging with Sublime Text 98
Debugging with Eclipse 102

Profiling with Xdebug 106
PHP DebugBar 107
Summary 112

Chapter 6: Stress/Load Testing PHP Applications 113
Apache JMeter 114
ApacheBench (ab) 120
Siege 122

Table of Contents

[iv]

Load testing real-world applications 124
Magento 2 125
WordPress 4 126
Drupal 8 127

Summary 128
Chapter 7: Best Practices in PHP Programming 129

Coding styles 130
Test-driven development (TDD) 133
Design patterns 136
Service-oriented architecture (SOA) 137
Being object-oriented and reusable always 137
PHP frameworks 138
Version control system (VCS) and Git 138
Deployment and Continuous Integration (CI) 138
Summary 140

Appendix A: Tools to Make Life Easy 141
Composer – A dependency manager for PHP 141

Composer installation 142
Using Composer 142

Git – A version control system 144
Git installation 144
Using Git 144
Creating new branches and merging 146
Cloning a repository 148
Webhooks 148
Desktop tools to manage repositories 150

Grunt watch 151
Summary 154

Appendix B: MVC and Frameworks 155
The MVC design pattern 156

Model 156
Views 157
Controllers 157

Laravel 158
Installation 158
Features 158

Routing 159

Table of Contents

[v]

Eloquent ORM 160
Artisan CLI 163
Migrations 164
Blade templates 166
Other features 168

Lumen 169
Apigility 169
Summary 176

Index 177

[vii]

Preface
The PHP community faced a huge problem over decades: performance. No matter
how powerful hardware they got, in the end, PHP was a bottleneck in itself. With
PHP 5.4.x, 5.5.x, and 5.6.x, PHP's performance started to improve, but still it was a
huge problem in high-load applications. The community developed caching tools
such as Alternative PHP Cache (APC) and Zend OpCache, which cached the opcode
for high performance, and these tools had a good effect on the performance.

To get rid of the performance issues of PHP, Facebook built their own open source
tool called HHVM (HipHop Virtual Machine). According to their official website,
HHVM uses the Just In Time (JIT) compilation to achieve superior performance
while maintaining the development flexibility that PHP provides. HHVM had
great performance compared to PHP, and it is widely used in production for
heavy applications such as Magento.

PHP went to war with HHVM using PHP Next Generation (PHPNG). The whole
purpose of PHPNG is to increase performance and focus on the rewriting and
optimization of the Zend engine memory allocation and PHP data types. People
around the world started benchmarking PHPNG and HHVM, and according to
them, PHPNG was outperforming HHVM.

At last, PHPNG was merged with the master branch of PHP, and after a tremendous
amount of optimization and complete rewriting, PHP 7 was released with huge
performance improvements. PHP 7 is still not JIT, but its performance is great and
similar to HHVM. This is a huge performance increase from the older versions
of PHP.

Preface

[viii]

What this book covers
Chapter 1, Setting Up the Environment, covers how to set up different development
environments, including the installation of NGINX, PHP 7, and Percona Server on
Windows, different Linux distros, and setting up the Vagrant virtual machine for
development purposes.

Chapter 2, New Features in PHP 7, covers the major new features introduced in PHP
7, including Type Hints, Group use Declarations, Anonymous classes, and new
operators, such as Spaceship operator, Null Coalesce operators, and the Uniform
variable syntax.

Chapter 3, Improving PHP 7 Application Performance, covers different techniques to
increase and scale a PHP 7 application's performance. In this chapter, we cover
optimization of NGINX and Apache, CDN, and CSS/JavaScript, such as merging
and minifying them, full-page caching, and installing and configuring Varnish.
At last, we discuss an ideal infrastructure setup for application development.

Chapter 4, Improving Database Performance, covers techniques to optimize MySQL and
Percona Server configuration for high performance. Also, it covers different tools
to monitor the performance of a database. It also covers Memcached and Redis for
caching objects.

Chapter 5, Debugging and Profiling, covers debugging and profiling techniques
including the use of Xdebug for debugging and profiling, debugging with Sublime
Text 3 and Eclipse, and the PHP DebugBar.

Chapter 6, Stress/Load Testing PHP Applications, covers different tools to stress and
load test the application. It covers Apache JMeter, ApacheBench, and Siege for
load testing. It also covers how to load test different open source systems such
as Magento, Drupal, and WordPress on PHP 7 and PHP 5.6, and compares their
performance on PHP 7 and PHP 5.6.

Chapter 7, Best Practices in PHP Programming, covers a few best practices for producing
quality standard code. It covers coding styles, design patterns, service-oriented
architecture, test-driven development, Git, and deployments.

Appendix A, Tools to Make Life Easy, discusses three of these tools in much more detail.
The tools we will discuss are Composer, Git, and Grunt watch.

Appendix B, MVC and Frameworks, covers MVC design patterns and the most popular
frameworks that are used in PHP development, which include Laravel, Lumen,
and Apigility.

Preface

[ix]

What you need for this book
Any hardware specification that is compliant to run the latest versions of the
following software should be enough to get through this book:

• Operating systems: Debian or Ubuntu
• Software: NGINX, PHP 7, MySQL, PerconaDB, Redis, Memcached, Xdebug,

Apache JMeter, ApacheBench, Siege, and Git

Who this book is for
This book is for those who have basic experience in PHP programming. If you are
developing performance-critical applications, then this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

location ~ \.php$ {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME complete_path_webroot_
 folder$fastcgi_script_name;
 include fastcgi_params;
}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

server {
 …
 …
 root html;
 index index.php index.html index.htm;
 …

Preface

[x]

Any command-line input or output is written as follows:

php-cgi –b 127.0.0.1:9000

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/LearningPHP7HighPerformance_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

https://www.packtpub.com/sites/default/files/downloads/LearningPHP7HighPerformance_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningPHP7HighPerformance_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningPHP7HighPerformance_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xii]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Chapter 1

[1]

Setting Up the Environment
PHP 7 has finally been released. For a long time, the PHP community was talking
about it and has still not stopped. The main improvement in PHP 7 is its performance.
For a long time, the PHP community faced performance issues in large-scale
applications. Even some small applications with high traffic faced performance issues.
Server resources were increased, but it did not help much because in the end the
bottleneck was PHP itself. Different caching techniques were used, such as APC, and
this helped a little. However, the community still needed a version of PHP that could
boost the application's performance at its peak. And this is where PHPNG comes in.

PHPNG stands for PHP next generation. It is a completely separate branch and is
mainly targeted for performance. Some people thought that PHPNG is JIT (Just In
Time) compilation, but in reality, PHPNG is based on a refactored Zend Engine,
which was highly optimized for performance. PHPNG is used as a base for PHP 7
development, and according to the official PHP wiki page, the PHPNG branch is
now merged into the master branch.

Before starting to build an application, the development environment should be
finalized and configured. In this chapter, we will discuss setting up the development
environment on different systems, such as Windows and different flavors of Linux.

We will cover the following topics:

• Setting up Windows
• Setting up Ubuntu or Debian
• Setting up CentOS
• Setting up Vagrant

All other environments can be skipped, and we can set up the environment that we
will use.

Setting Up the Environment

[2]

Setting up Windows
There are many tools available that have Apache, PHP, and MySQL bundled for
Windows, provide easy installation, and are very easy to use. Most of these tools
already provide support for PHP 7 with Apache, such as through XAMPP, WAMPP,
and EasyPHP. EasyPHP is the only one that also provides support for NGINX and
provides easy steps to changes webserver from NGINX to Apache or Apache to Nginx.

XAMPP is also available for Linux and Mac OS X. However, WAMP
and EasyPHP are only available for Windows. Any of these three can
be used for this book, but we recommend EasyPHP as it supports
NGINX, and for this book, we mostly use NGINX.

Any of the three tools can be used, but we require more control over every element of
our web server tools, so we will also install NGINX, PHP 7, and MySQL individually
and then connect them together.

NGINX Windows binaries can be downloaded from http://
nginx.org/en/download.html. We recommend using a
stable version, though there is no problem with using a mainline
version. PHP Windows binaries can be downloaded from http://
windows.php.net/download/. Download either 32-bit or 64-bit
binaries of the non-thread safe version according to your system.

Perform the following steps:

1. Download NGINX and PHP Windows binaries mentioned in the information
box. Copy NGINX to a suitable directory. For example, we have a completely
separate D drive for development purposes. Copy NGINX to this development
drive or any other directory. Now, copy PHP either to the NGINX directory or
to any other secure folder location.

2. In the PHP directory, there will be two .ini files, php.ini-development
and php.ini-production. Rename either one of them to php.ini. PHP
will be using this configuration file.

3. Hold the Shift key and right click in the PHP directory to open the
command-line window. The command-line window will be opened
in the same location path. Issue the following command to start PHP:
php-cgi –b 127.0.0.1:9000

http://nginx.org/en/download.html
http://nginx.org/en/download.html
http://windows.php.net/download/
http://windows.php.net/download/

Chapter 1

[3]

The –b option starts PHP and binds to the path for external FastCGI servers.
The preceding command binds PHP to loop back the 127.0.0.1 IP on port
9000. Now, PHP is accessible on this path.

4. To configure NGINX, open the nginx_folder/conf/nginx.conf file.
The first thing to do is to add root and index to the server block, as follows:
server {
 root html;
 index index.php index.html index.htm;

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address
and password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the

code files.
• Choose from the drop-down menu where you purchased

this book from.
• Click on Code Download.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

5. Now, we need to configure NGINX to use PHP as FastCGI on the
path mentioned before on which it is started. In the nginx.conf file,
uncomment the following location block for PHP:
location ~ \.php$ {
 fastcgi_pass 127.0.0.1:9000;

Setting Up the Environment

[4]

 fastcgi_param SCRIPT_FILENAME complete_path_webroot_
folder$fastcgi_script_name;
include fastcgi_params;
}

Note the fastcgi_param option. The highlighted complete_path_webroot_
folder path should be the absolute path to the HTML directory inside the
nginx folder. Let's say that your NGINX is placed at the D:\nginx path;
then, the absolute path to the HTML folder will be D:\nginx\html. However,
for the preceding fastcgi_param option, \ should be replaced by /.

6. Now, restart NGINX by issuing the following command in the root of the
NGINX folder:
nginx –s restart

7. After NGINX is restarted, open your browser and enter the IP or hostname
of your Windows server or machine, and we will see the NGINX welcome
message.

8. Now, to verify the PHP installation and its working with NGINX, create an
info.php file in webroot and enter the following code in it:
<?php
 phpinfo();
?>

9. Now, in the browser, access your_ip/info.php, and we will be presented
with a page full of PHP and server information. Congratulations! We
configured NGINX and PHP to work perfectly together.

On Windows and Mac OS X, we recommend that you use a virtual
machine installed with all the tools on a Linux flavor to get the
best performance out of the server. It is easy to manage everything
in Linux. There are vagrant boxes available that have everything
ready to use. Also, a custom virtual machine configuration with all
the tools, including NGINX, Apache, PHP 7, Ubuntu, Debian, or
CentOS, and other great ones, can be made at https://puphpet.
com, which is an easy-to-use GUI. Another nice tool is Laravel
Homestead, which is a Vagrant box with great tools.

your_ip/info.php
https://puphpet.com
https://puphpet.com

Chapter 1

[5]

Setting up Debian or Ubuntu
Ubuntu is derived from Debian, so the process is the same for both Ubuntu and
Debian. We will use Debian 8 Jessie and Ubuntu 14.04 Server LTS. The same process
can be applied to desktop versions for both.

First, add the repositories for both Debian and Ubuntu.

Debian
As of the time we're writing this book, Debian does not provide an official repository
for PHP 7. So, for Debian, we will use dotdeb repositories to install NGINX and
PHP 7. Perform the following steps:

1. Open the /etc/apt/sources.list file and add the following two lines at
the end of the file:
deb http://packages.dotdeb.org jessie all
deb-src http://packages.dotdeb.org jessie all

2. Now, execute the following commands in the terminal:
wget https://www.dotdeb.org/dotdeb.gpg

sudo apt-key add dotdeb.gpg

sudo apt-get update

The first two commands will add dotdeb repo to Debian and the last command will
refresh the cache for sources.

Ubuntu
As of the time of writing this book, Ubuntu also does not provide PHP 7 in their
official repos, so we will use a third-party repo for the PHP 7 installation. Perform
the following steps:

1. Run the following commands in the terminal:
sudo add-apt-repository ppa:ondrej/php

sudo apt-get update

2. Now, the repositories are added. Let's install NGINX and PHP 7.

The rest of the process is mostly the same for both Debian
and Ubuntu, so we wont list them separately, as we did for
the adding repositories section.

Setting Up the Environment

[6]

3. To install NGINX, run the following command in the terminal
(Debian and Ubuntu):
sudo apt-get install nginx

4. After the installation is successful, it can be verified by entering the hostname
and IP of the Debian or Ubuntu server. If we see something similar to the
following screenshot, then our installation is successful:

The following is a list of three useful NGINX commands:
 ° service nginx start: This starts the NGINX server
 ° service nginx restart: This restarts the NGINX server
 ° service nginx stop: This stops the NGINX server

5. Now, it's time to install PHP 7 by issuing the following command:
sudo apt-get install php7.0 php7.0-fpm php7.0-mysql php7.0-mcrypt
php7.0-cli

This will install PHP 7 along with the other modules mentioned. Also, we
installed PHP Cli for the command-line purpose. To verify whether PHP 7
is properly installed, issue the following command in the terminal:
php –v

6. If it displays the PHP version along with some other details, as shown in the
following screenshot, then PHP is properly installed:

Chapter 1

[7]

7. Now, we need to configure NGINX to work with PHP 7. First, copy the
NGINX default config file /etc/nginx/sites-available/default to
/etc/nginx/sites-available/www.packt.com.conf using the following
command in the terminal:
cd /etc/nginx/sites-available

sudo cp default www.packt.com.conf

sudo ln –s /etc/nginx /sites-available/www.packt.com.conf /etc/
nginx/sites-enabled/www.packt.com.conf

First, we copied the default configuration file, created another virtual host
configuration file, www.packt.com.conf, and then created a symbolic link
file to this virtual host file in the sites-enabled folder.

It is good practice to create a configuration file for each virtual
host by the same name as of the domain so that it can easily be
recognized by any other person.

8. Now, open the /etc/nginx/sites-available/www.packt.com.conf file
and add or edit the highlighted code, as shown here:
server {
 server_name your_ip:80;
 root /var/www/html;
 index index.php index.html index.htm;
 location ~ \.php$ {
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
 fastcgi_index index.php;
 include fastcgi_params;
 }
}

The preceding configuration is not a complete configuration file. We copied
only those configuration options that are important and that we may want
to change.
In the preceding code, our webroot path is /var/www/html, where our PHP
files and other application files will be placed. In the index config option,
add index.php so that if no file is provided in the URL, NGINX can look
for and parse index.php.
We added a location block for PHP that includes a fastcgi_pass option,
which has a path to the PHP7 FPM socket. Here, our PHP runs on a Unix
socket, which is faster than that of TCP/IP.

Setting Up the Environment

[8]

9. After making these changes, restart NGINX. Now, to test whether PHP and
NGINX are properly configured, create an info.php file at the root of the
webroot folder and place the following code in it:
<?php
 phpinfo();
 ?>

10. Now, in the browser, type server_ip/info.php, and if you see a PHP
configuration page, then congratulations! PHP and NGINX are both
properly configured.

If PHP and NGINX run on the same system, then PHP listens
to the loopback IP at port 9000. The port can be changed to any
other port. In case, we want to run PHP on the TCP/IP port,
then in fastcgi_pass, we will enter 127.0.0.1:9000.

Now, let's install Percona Server. Percona Server is a fork of MySQL and is optimized
for high performance. We will read more about Percona Server in Chapter 3, Increasing
PHP 7 Application Performance. Now, let's install Percona Server on Debian/Ubuntu via
the following steps:

1. First, let's add the Percona Server repository to our system by running the
following command in the terminal:
sudo wget https://repo.percona.com/apt/percona-release_0.1-
3.$(lsb_release -sc)_all.deb

sudo dpkg -i percona-release_0.1-3.$(lsb_release -sc)_all.deb

The first command will download the repo packages from the Percona repo.
The second command will install the downloaded packages and will create
a percona-release.list file at /etc/apt/sources.list.d/percona-
release.list.

2. Now, install Percona Server by executing the following command in
the terminal:
sudo apt-get update

3. Now, issue the following command to install Percona Server:
sudo apt-get install percona-server-5.5

The installation process will start. It will take a while to download it.

Chapter 1

[9]

For the purpose of this book, we will install Percona Server 5.5. Percona
Server 5.6 is also available, which can be installed without any issues.

During the installation, the password for the root user will be asked,
as shown in the following screenshot:

It is optional but recommended to enter the password. After entering the
password, re-enter the password on the next screen. The installation process
will continue.

4. After the installation is complete, the Percona Server installation can be
verified by using the following command:
mysql –-version

It will display the version of Percona Server. As mentioned before, Percona
Server is a fork of MySQL, so all the same MySQL commands, queries, and
settings can be used.

Setting up CentOS
CentOS is a fork of Red Hat Enterprise Linux (RHEL) and stands for Community
Enterprise Operating System. It is a widely used OS on servers specially used by
hosting companies to provide shared hosting.

Setting Up the Environment

[10]

Let's start by configuring CentOS for our development environment. Perform the
following steps:

Installing NGINX
1. First, we need to add NGINX RPM to our CentOS installation because

CentOS does not provide any default repository for NGINX. Issue the
following command in your terminal:
sudo rpm -Uvh
http://nginx.org/packages/centos/7/noarch/RPMS/nginx-release-
centos-7-0.el7.ngx.noarch.rpm

This will add the NGINX repo to CentOS.

2. Now, issue the following command to see which versions of NGINX are
available to install:
sudo yum --showduplicates list Nginx

This will show you the latest stable releases. In our case, it displays NGINX
1.8.0 and NGINX 1.8.1.

3. Now, let's install NGINX using the following command:
sudo yum install Nginx

This will install NGINX.

4. On CentOS, NGINX won't start automatically after installation or restarting.
So, first, we will enable NGINX to autostart after a system restarts using the
following command:
systemctl enable Nginx.service

5. Now, let's start NGINX by issuing the following command:
systemctl start Nginx.service

6. Then, open your browser and enter the IP of the CentOS server or host name.
If you see the same welcome screen as we saw in the figure earlier in the
chapter for Debian, then NGINX is installed successfully.
To check which version of NGINX is installed, issue the following command
in the terminal:
Nginx –v

On our server, the NGINX version installed is 1.8.1.
Now, our web server is ready.

Chapter 1

[11]

Installing PHP 7
1. The next step is to install PHP 7 FPM and configure both NGINX and

PHP 7 to work together. As of the time of writing this book, PHP 7 is not
packaged in official CentOS repositories. So, we have two choices to install
PHP 7: either we build it from source, or we use third-party repositories.
Building from source is a little bit difficult, so let's go the easy way and
use third-party repositories.

For this book, we will use webtatic repos for the PHP 7 installation as
they provide quick updates for the new versions. There are some more
repositories, and it is just the reader's choice to use any repository as
long as it works.

2. Now, let's add a webtatic repository to our CentOS repo by issuing the
following command:
rpm -Uvh https://dl.fedoraproject.org/pub/epel/epel-release-
latest-7.noarch.rpm

rpm -Uvh https://mirror.webtatic.com/yum/el7/webtatic-release.rpm

3. After the repos are added successfully, issue the following command to see
which version is available for installation:
sudo yum –showduplicates list php70w

In our case, PHP 7.0.3 is available to install.

4. Now, issue the following command to install PHP 7 along with some
modules that may be required:
sudo yum install php70w php70w-common php70w-cli php70w-fpm
php70w-mysql php70w-opcache php70w-mcrypt

5. This will install core PHP 7 and some modules available for PHP 7. If any
other module is required, it can be installed easily; however, first, search
to check whether it is available or not. Issue the following command in the
terminal to see all the available modules for PHP 7:
sudo yum search php70w-

We will see a long list of all the available modules for PHP 7.

6. Now, let's say that we want to install the PHP 7 gd module; issue the
following command:
sudo yum install php70w-gd

Setting Up the Environment

[12]

This will install the gd module. Multiple modules can be installed using
the same command and separating each module by a space, as we did in
the initial installation of PHP.
Now, to check which version of PHP is installed, issue the following command:
php –v

In our case, PHP 7.0.3 is installed.

7. To start, stop, and restart PHP, issue the following commands in the terminal:
sudo systemctl start php-fpm

sudo systemctl restart php-fpm

sudo systemctl stop php-fpm

8. Now, let's configure NGINX to use PHP FPM. Open the default NGINX
virtual host file located at /etc/Nginx/conf.d/default.conf using either
vi, nano, or any other editor of your choice. Now, make sure that two
options are set in the server block, as follows:
server {
 listen 80;
 server_name localhost;
 root /usr/share/nginx/html;
index index.php index.html index.htm;

The root option indicates the web document root where our website source
code files will be placed. Index indicates the default files that will be loaded
along with extensions. If any of these files are found, they will be executed
by default, regardless of any file mentioned in the URLs.

9. The next configuration in NGINX is a location block for PHP. The following
is the configuration for PHP:
location ~ \.php$ {
 try_files $uri =404;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME
 $document_root$fastcgi_script_name;
 include fastcgi_params;
 }

Chapter 1

[13]

The preceding block is the most important configuration as it enables NGINX
to communicate with PHP. The line fastcgi_pass 127.0.0.1:9000 tells
NGINX that PHP FPM can be accessed on the 127.0.0.1 loopback IP on port
9000. The rest of the details are the same as those we discussed for Debian
and Ubuntu.

10. Now, to test our installation, we will create a file named info.php with the
following contents:
<?php
 phpinfo();
?>

After saving the file, type http://server_ip/info.php or http://
hostname/info.php, and we will get a page with complete information about
PHP. If you see this page, congratulations! PHP runs alongside NGINX.

Installing Percona Server
1. Now, we will install Percona Server on CentOS. The installation process is

the same, except that it has a separate repository. To add the Percona Server
repo to CentOS, execute the following command in the terminal:
sudo yum install http://www.percona.com/downloads/
percona-release/redhat/0.1-3/percona-release-0.1-3.noarch.rpm

After the repo installation is completed, a message will be displayed stating
the completion of the installation.

2. Now, to test the repo, issue the following command, and it will list all the
available Percona packages:
sudo yum search percona

3. To install Percona Server 5.5, issue the following command in the terminal:
sudo yum install Percona-Server-server-55

The installation process will start. The rest of the process is the same as for
Debian/Ubuntu.

4. After the installation is completed, we will see a completion message.

Setting Up the Environment

[14]

Setting up Vagrant
Vagrant is a tool used by developers for development environments. Vagrant
provides an easy command-line interface to set up virtual machines with all the
tools required. Vagrant uses boxes called Vagrant Boxes that can have a Linux
operating system and other tools according to this box. Vagrant supports both
Oracle VM VirtualBox and VMware. For the purpose of this book, we will use
VirtualBox, which we assume is installed on your machine as well.

Vagrant has several boxes for PHP 7, including Laravel Homestead and Rasmus
PHP7dev. So, let's get started by configuring the Rasmus PHP7dev box on Windows
and Mac OS X.

We assume that both VirutalBox and Vagrant are installed on our machine.
VirtualBox can be downloaded from https://www.virtualbox.org/
wiki/Downloads, and Vagrant can be downloaded from https://
www.vagrantup.com/downloads.html for different platforms. Details
about Rasmus PHP7dev VagrantBox can be found at https://github.
com/rlerdorf/php7dev.

Perform the following steps:

1. Make a directory in one of the drives. For example, we made a php7 directory
in our D drive. Then, open the command line in this specific folder directly
by holding the Shift key, right-clicking, and then selecting Open command
window here.

2. Now, issue the following command in the command window:
vagrant box add rasmus/php7dev

It will start downloading the Vagrant box, as shown in the
following screenshot:

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://github.com/rlerdorf/php7dev
https://github.com/rlerdorf/php7dev

Chapter 1

[15]

3. Now, when the download is completed, we need to initialize it so that
the box is configured and added to VirtualBox for us. Issue the following
command in the command window:
vagrant init rasmus/php7dev

This will start adding the box to VirtualBox and configuring it. When the
process is completed, it will display a message, as in the following screenshot:

4. Now, issue the following command, which will completely set up the
Vagrant box and start it up and running:
vagrant up

This process will take a little bit of time. When it is completed, your box is
ready and running and can be used.

5. Now, the first thing to do after it is up is to update everything. This box uses
Ubuntu, so open the command window in the same php7dev directory and
issue the following command:
vagrant ssh

It will connect us with the virtual machines through SSH.

In Windows, if SSH in not installed or not configured in the PATH
variable, PuTTY can be used. It can be downloaded from http://
www.chiark.greenend.org.uk/~sgtatham/putty/download.
html. For PuTTY, the host will be 127.0.0.1, and the port will be
2222. Vagrant is both the username and password for SSH.

6. When we are logged in to the box OS, issue the following commands to
update the system:
sudo apt-get update

sudo apt-get upgrade

This will update the core system, NGINX, MySQL, PHP 7, and other
installed tools if new versions are available.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Setting Up the Environment

[16]

7. The box is now ready to use for development purposes. The box can be
accessed in the browser by typing its IP address in the browser window.
To find the IP address of the box, issue the following command in the
SSH-connected command window:
sudo ifconfig

This will display some details. Find out the IPv4 details there and take the
IP of the box.

Summary
In this chapter, we configured different environments for the purpose of
development. We installed NGINX and PHP 7 on the windows machine. We also
configured Debian/Ubuntu and installed NGINX, PHP, and Percona Server 5.5.
Then, we configured CentOS and installed NGINX, PHP, and Percona Server 5.5.
Lastly, we discussed how to configure Vagrant Box on a Windows machine.

In the next chapter, we will study new features in PHP 7, such as type hints, namespace
groupings and declarations, the Spaceship operator, and other features.

Chapter 2

[17]

New Features in PHP 7
PHP 7 has introduced new features that can help programmers write high-performing
and effective code. Also, some old-fashioned features are completely removed, and
PHP 7 will throw an error if used. Most of the fatal errors are now exceptions, so
PHP won't show an ugly fatal error message any more; instead, it will go through an
exception with the available details.

In this chapter, we will cover the following topics:

• Type hints
• Namespaces and group use declarations
• The anonymous classes
• Old-style constructor deprecation
• The Spaceship operator
• The null coalesce operator
• Uniform variable syntax
• Miscellaneous changes

New Features in PHP 7

[18]

OOP features
PHP 7 introduced a few new OOP features that will enable developers to write clean
and effective code. In this section, we will discuss these features.

Type hints
Prior to PHP 7, there was no need to declare the data type of the arguments passed
to a function or class method. Also, there was no need to mention the return data
type. Any data type can be passed to and returned from a function or method. This
is one of the huge problems in PHP, in which it is not always clear which data types
should be passed or received from a function or method. To fix this problem, PHP 7
introduced type hints. As of now, two type hints are introduced: scalar and return
type hints. These are discussed in the following sections.

Type hints is a feature in both OOP and procedural PHP because it can be used for
both procedural functions and object methods.

Scalar type hints
PHP 7 made it possible to use scalar type hints for integers, floats, strings, and Booleans
for both functions and methods. Let's have a look at the following example:

class Person
{
 public function age(int $age)
 {
 return $age;
 }

 public function name(string $name)
 {
 return $name;
 }

 public function isAlive(bool $alive)
 {
 return $alive;
 }

}

$person = new Person();
echo $person->name('Altaf Hussain');
echo $person->age(30);
echo $person->isAlive(TRUE);

Chapter 2

[19]

In the preceding code, we created a Person class. We have three methods, and each
method receives different arguments whose data types are defined with them, as is
highlighted in the preceding code. If you run the preceding code, it will work fine
as we will pass the desired data types for each method.

Age can be a float, such as 30.5 years; so, if we pass a float number to the age
method, it will still work, as follows:

echo $person->age(30.5);

Why is that? It is because, by default, scalar type hints are nonrestrictive. This means
that we can pass float numbers to a method that expects an integer number.

To make it more restrictive, the following single-line code can be placed at the top of
the file:

declare(strict_types = 1);

Now, if we pass a float number to the age function, we will get an Uncaught Type
Error, which is a fatal error that tells us that Person::age must be of the int type
given the float. Similar errors will be generated if we pass a string to a method that
is not of the string type. Consider the following example:

echo $person->isAlive('true');

The preceding code will generate the fatal error as the string is passed to it.

Return type hints
Another important feature of PHP 7 is the ability to define the return data type for a
function or method. It behaves the same way scalar type hints behave. Let's modify
our Person class a little to understand return type hints, as follows:

class Person
{
 public function age(float $age) : string
 {
 return 'Age is '.$age;
 }

 public function name(string $name) : string
 {
 return $name;
 }

New Features in PHP 7

[20]

 public function isAlive(bool $alive) : string
 {
 return ($alive) ? 'Yes' : 'No';
 }

}

The changes in the class are highlighted. The return type is defined using the:
data-type syntax. It does not matter if the return type is the same as the scalar type.
These can be different as long as they match their respective data types.

Now, let's try an example with the object return type. Consider the previous Person
class and add a getAddress method to it. Also, we will add a new class, Address,
to the same file, as shown in the following code:

class Address
{
 public function getAddress()
 {
 return ['street' => 'Street 1', 'country' => 'Pak'];
 }
}

class Person
{
 public function age(float $age) : string
 {
 return 'Age is '.$age;
 }

 public function name(string $name) : string
 {
 return $name;
 }

 public function isAlive(bool $alive) : string
 {
 return ($alive) ? 'Yes' : 'No';
 }

 public function getAddress() : Address
 {
 return new Address();
 }
}

Chapter 2

[21]

The additional code added to the Person class and the new Address class is
highlighted. Now, if we call the getAddress method of the Person class, it will
work perfectly and won't throw an error. However, let's suppose that we change
the return statement, as follows:

public function getAddress() : Address
{
 return ['street' => 'Street 1', 'country' => 'Pak'];
}

In this case, the preceding method will throw an uncaught exception similar to
the following:

Fatal error: Uncaught TypeError: Return value of Person::getAddress()
must be an instance of Address, array returned

This is because we return an array instead of an Address object. Now, the question
is: why use type hints? The big advantage of using type hints is that it will always
avoid accidentally passing or returning wrong and unexpected data to methods
or functions.

As can be seen in the preceding examples, this makes the code clear, and by looking
at the declarations of the methods, one can exactly know which data types should be
passed to each of the methods and what kind of data is returned by looking into the
code of each method or comment, if any.

Namespaces and group use declaration
In a very large codebase, classes are divided into namespaces, which makes them easy
to manage and work with. However, if there are too many classes in a namespace and
we need to use 10 of them, then we have to type the complete use statement for all
these classes.

In PHP, it is not required to divide classes in subfolders
according to their namespace, as is the case with other
programming languages. Namespaces just provide a logical
separation of classes. However, we are not limited to placing
our classes in subfolders according to our namespaces.

New Features in PHP 7

[22]

For example, we have a Publishers/Packt namespace and the classes Book, Ebook,
Video, and Presentation. Also, we have a functions.php file, which has our
normal functions and is in the same Publishers/Packt namespace. Another file,
constants.php, has the constant values required for the application and is in the
same namespace. The code for each class and the functions.php and constants.
php files is as follows:

//book.php
namespace Publishers\Packt;

class Book
{
 public function get() : string
 {
 return get_class();
 }
}

Now, the code for the Ebook class is as follows:

//ebook.php
namespace Publishers\Packt;

class Ebook
{
 public function get() : string
 {
 return get_class();
 }
}

The code for the Video class is as follows:

//presentation.php
namespace Publishers\Packt;

class Video
{
 public function get() : string
 {
 return get_class();
 }
}

Chapter 2

[23]

Similarly, the code for the presentation class is as follows:

//presentation.php
namespace Publishers\Packt;

class Presentation
{
 public function get() : string
 {
 return get_class();
 }
}

All the four classes have the same methods, which return the classes' names using
the PHP built-in get_class() function.

Now, add the following two functions to the functions.php file:

//functions.php

namespace Publishers\Packt;

function getBook() : string
{
 return 'PHP 7';
}
function saveBook(string $book) : string
{
 return $book.' is saved';
}

Now, let's add the following code to the constants.php file:

//constants.php

namespace Publishers/Packt;

const COUNT = 10;
const KEY = '123DGHtiop09847';
const URL = 'https://www.Packtpub.com/';

The code in both functions.php and constants.php is self-explanatory. Note that
each file has a namespace Publishers/Packt line at the top, which makes these
classes, functions, and constants belong to this namespace.

New Features in PHP 7

[24]

Now, there are three ways to use the classes, functions, and constants. Let's consider
each one.

Take a look at the following code:

//Instantiate objects for each class in namespace

$book = new Publishers\Packt\Book();
$ebook = new Publishers\Packt\Ebook();
$video = new Publishers\Packt\Video();
$presentation = new Publishers\Packt\Presentation();

//Use functions in namespace

echo Publishers/Packt/getBook();
echo Publishers/Packt/saveBook('PHP 7 High Performance');

//Use constants

echo Publishers\Packt\COUNT;
echo Publishers\Packt\KEY;

In the preceding code, we used namespace names directly while creating objects or
using functions and constants. The code looks fine, but it is cluttered. Namespace
is everywhere, and if we have lots of namespaces, it will look very ugly, and the
readability will be affected.

We did not include class files in the previous code. Either the
include statements or PHP's __autoload function can be
used to include all the files.

Now, let's rewrite the preceding code to make it more readable, as follows:

use Publishers\Packt\Book;
use Publishers\Packt\Ebook;
use Publishers\Packt\Video;
use Publishers\Packt\Presentation;
use function Publishers\Packt\getBook;
use function Publishers\Packt\saveBook;
use const Publishers\Packt\COUNT;
use const Publishers\Packt\KEY;

$book = new Book();
$ebook = new Ebook(();

Chapter 2

[25]

$video = new Video();
$pres = new Presentation();

echo getBook();
echo saveBook('PHP 7 High Performance');

echo COUNT;
echo KEY;

In the preceding code, at the top, we used PHP statements for specific classes,
functions, and constants in a namespace. However, we still wrote duplicate lines
of code for each class, function, and/or constant. This may lead to us have lots of
use statements at the top of the file, and the overall verbosity would not be good.

To fix this problem, PHP 7 introduced group use declaration. There are three types
of group use declarations:

• Non mixed use declarations
• Mixed use declarations
• Compound use declarations

Non mixed group use declarations
Consider that we have different types of features in a namespace, as we have classes,
functions, and contacts in a namespace. In non mixed group use declarations, we
declare them separately using a use statement. To better understand it, take a look
at the following code:

use Publishers\Packt\{ Book, Ebook, Video, Presentation };
use function Publishers\Packt\{ getBook, saveBook };
use const Publishers\Packt\{ COUNT, KEY };

We have three types of features in a namespace: class, functions, and constants.
So, we have used separate group use declaration statements to use them. The code
is now looking more cleaner, organized, and readable and doesn't require too much
duplicate typing.

New Features in PHP 7

[26]

Mixed group use declarations
In this declaration, we combine all types into a single use statement. Take a look at
the following code:

use Publishers\Packt\{
 Book,
 Ebook,
 Video,
 Presentation,
 function getBook,
 function saveBook,
 const COUNT,
 const KEY
};

The compound namespace declaration
To understand the compound namespace declaration, we will consider the
following criteria.

Let's say we have a Book class in the Publishers\Packt\Paper namespace. Also, we
have an Ebook class in the Publishers\Packt\Electronic namespace. The Video
and Presentation classes are in the Publishers\Packt\Media namespace. So, to
use these classes, we will use the code, as follows:

use Publishers\Packt\Paper\Book;
use Publishers\Packt\Electronic\Ebook;
use Publishers\Packt\Media\{Video,Presentation};

In the compound namespace declaration, we can use the preceding namespaces
as follows:

use Publishers\Packt\{
 Paper\Book,
 Electronic\Ebook,
 Media\Video,
 Media\Presentation
};

It is more elegant and clear, and it doesn't require extra typing if the namespace
names are long.

Chapter 2

[27]

The anonymous classes
An anonymous class is a class that is declared and instantiated at the same time. It
does not have a name and can have the full features of a normal class. These classes
are useful when a single one-time small task is required to be performed and there is
no need to write a full-blown class for it.

While creating an anonymous class, it is not named, but it is named
internally in PHP with a unique reference based on its address in the
memory block. For example, the internal name of an anonymous class
may be class@0x4f6a8d124.

The syntax of this class is the same as that of the named classes, but only the name of
the class is missing, as shown in the following syntax:

new class(argument) { definition };

Let's look at a basic and very simple example of an anonymous class, as follows:

$name = new class() {
 public function __construct()
 {
 echo 'Altaf Hussain';
 }
};

The preceding code will just display the output as Altaf Hussain.

Arguments can also be passed to the anonymous class constructor, as shown in the
following code:

$name = new class('Altaf Hussain') {
 public function __construct(string $name)
 {
 echo $name;
 }
};

This will give us the same output as the first example.

New Features in PHP 7

[28]

Anonymous classes can extend other classes and have the same parent-child classes
functioning as normal named classes. Let's have another example; take a look at
the following:

class Packt
{
 protected $number;

 public function __construct()
 {
 echo 'I am parent constructor';
 }

 public function getNumber() : float
 {
 return $this->number;
 }
}

$number = new class(5) extends packt
{
 public function __construct(float $number)
 {
 parent::__construct();
 $this->number = $number;
 }
};

echo $number->getNumber();

The preceding code will display I am parent constructor and 5. As can be seen,
we extended the Packt class the way we extend named classes. Also, we can access
the public and protected properties and methods within the anonymous class and
public properties and methods using anonymous class objects.

Anonymous classes can implement interfaces too, the same as named classes.
Let's create an interface first. Run the following:

interface Publishers
{
 public function __construct(string $name, string $address);
 public function getName();
 public function getAddress();
}

Chapter 2

[29]

Now, let's modify our Packt class as follows. We added the highlighted code:

class Packt
{
 protected $number;
 protected $name;
 protected $address;
 public function …
}

The rest of the code is same as the first Packt class. Now, let's create our anonymous
class, which will implement the Publishers interface created in the previous code
and extend the new Packt class, as follows:

$info = new class('Altaf Hussain', 'Islamabad, Pakistan')
 extends packt implements Publishers
{
 public function __construct(string $name, string $address)
 {
 $this->name = $name;
 $this->address = $address;
 }

 public function getName() : string
 {
 return $this->name;
 }

 public function getAddress() : string
 {
 return $this->address;
 }
}

echo $info->getName(). ' '.$info->getAddress();

The preceding code is self-explanatory and will output Altaf Hussain along with
the address.

It is possible to use anonymous classes within another class, as shown here:

class Math
{
 public $first_number = 10;
 public $second_number = 20;

New Features in PHP 7

[30]

 public function add() : float
 {
 return $this->first_number + $this->second_number;
 }

 public function multiply_sum()
 {
 return new class() extends Math
 {
 public function multiply(float $third_number) : float
 {
 return $this->add() * $third_number;
 }
 };
 }
}

$math = new Math();
echo $math->multiply_sum()->multiply(2);

The preceding code will return 60. How does this happen? The Math class has a
multiply_sum method that returns the object of an anonymous class. This anonymous
class is extended from the Math class and has a multiply method. So, our echo
statement can be divided into two parts: the first is $math->multiply_sum(), which
returns the object of the anonymous class, and the second is ->multiply(2), in which
we chained this object to call the anonymous class's multiply method along with an
argument of the value 2.

In the preceding case, the Math class can be called the outer class, and the
anonymous class can be called the inner class. However, remember that it is not
required for the inner class to extend the outer class. In the preceding example,
we extended it just to ensure that the inner classes could have access to the outer
classes' properties and methods by extending the outer classes.

Old-style constructor deprecation
Back in PHP 4, the constructor of a class has the same name method as that of the
class. It is still used and is valid until PHP's 5.6 version. However, now, in PHP 7,
it is deprecated. Let's have an example, as shown here:

class Packt
{
 public function packt()
 {

Chapter 2

[31]

 echo 'I am an old style constructor';
 }
}

$packt = new Packt();

The preceding code will display the output I am an old style constructor with
a deprecated message, as follows:

Deprecated: Methods with the same name as their class will not be
constructors in a future version of PHP; Packt has a deprecated
constructor in…

However, the old style constructor is still called. Now, let's add the PHP __
construct method to our class, as follows:

class Packt
{
 public function __construct()
 {
 echo 'I am default constructor';
 }

 public function packt()
 {
 echo 'I am just a normal class method';
 }
}

$packt = new Packt();
$packt->packt();

In the preceding code, when we instantiated the object of the class, the normal __
construct constructor was called. The packt()method isn't considered a normal
class method.

Old-style constructors are deprecated, which means that they will
still work in PHP 7 and a deprecated message will be displayed,
but it will be removed in the upcoming versions. It is best practice
to not use them.

New Features in PHP 7

[32]

The throwable interface
PHP 7 introduced a base interface that can be base for every object that can use the
throw statement. In PHP, exceptions and errors can occur. Previously, exceptions
could be handled, but it was not possible to handle errors, and thus, any fatal error
caused the complete application or a part of the application to halt. To make errors
(the most fatal errors) catchable as well, PHP 7 introduced the throwable interface,
which is implemented by both the exception and error.

The PHP classes we created can't implement the throwable interface.
If required, these classes must extend an exception.

We all know exceptions, so in this topic, we will only discuss errors, which can
handle the ugly, fatal errors.

Error
Almost all fatal errors can now throw an error instance, and similarly to exceptions,
error instances can be caught using the try/catch block. Let's have a simple example:

function iHaveError($object)
{
 return $object->iDontExist();
 {

//Call the function
iHaveError(null);
echo "I am still running";

If the preceding code is executed, a fatal error will be displayed, the application will
be halted, and the echo statement won't be executed in the end.

Now, let's place the function call in the try/catch block, as follows:

try
{
 iHaveError(null);
} catch(Error $e)
{
 //Either display the error message or log the error message
 echo $e->getMessage();
}

echo 'I am still running';

Chapter 2

[33]

Now, if the preceding code is executed, the catch body will be executed, and after
this, the rest of the application will continue running. In the preceding case, the echo
statement will be executed.

In most cases, the error instance will be thrown for the most fatal errors, but
for some errors, a subinstance of error will be thrown, such as TypeError,
DivisionByZeroError, ParseError, and so on.

Now, let's take a look at a DivisionByZeroError exception in the following example:

try
{
 $a = 20;
 $division = $a / 20;
} catch(DivisionByZeroError $e)
{
 echo $e->getMessage();
}

Before PHP 7, the preceding code would have issued a warning about the division
by zero. However, now in PHP 7, it will throw a DivisionByZeroError, which can
be handled.

New operators
PHP 7 introduced two interested operators. These operators can help write less and
cleaner code, so the final code will be more readable as compared to the traditional
operators in use. Let's have a look at them.

The Spaceship operator (<=>)
The Spaceship or Combined Comparison operator is useful to compare values
(strings, integers, floats, and so on), arrays, and objects. This operator is just a
wrapper and performs the same tasks as the three comparison operators ==, <,
and >. This operator can also be used to write clean and less code for callback
functions for usort, uasort, and uksort. This operator works as follows:

• It returns 0 if both the operands on left- and right-hand sides are equal
• It returns -1 if the right operand is greater than the left operand
• It returns 1 if the left operand is greater than the right one

New Features in PHP 7

[34]

Let's take a look at a few examples by comparing integers, strings, objects, and arrays
and note the result:

$int1 = 1;
$int2 = 2;
$int3 = 1;

echo $int1 <=> $int3; //Returns 0
echo '
';
echo $int1 <=> $int2; //Returns -1
echo '
';
echo $int2 <=> $int3; //Returns 1

Run the preceding code, and you will have an output similar to the following:

0
-1
1

In the first comparison, in which we compare $int1 and $int3, both are equal, so it
will return 0. In the second comparison, in which $int1 and $int2 are compared,
it will return -1 because the right operand ($int2) in greater than the left operand
($int1). Finally, the third comparison will return 1 as the left operand ($int2) is
greater than the right operand ($int3).

The preceding is a simple example in which we compared integers. We can check
strings, objects, and arrays in the same way, and they are compared the same
standard PHP way.

Some examples for the <=> operator can be found
at https://wiki.php.net/rfc/combined-
comparison-operator. This is an RFC publication
that has more useful details about its usage.

This operator can be more useful in sorting arrays. Take a look at the following code:

Function normal_sort($a, $b) : int
{
 if($a == $b)
 return 0;
 if($a < $b)
 return -1;
 return 1;
}

https://wiki.php.net/rfc/combined-comparison-operator
https://wiki.php.net/rfc/combined-comparison-operator

Chapter 2

[35]

function space_sort($a, $b) : int
{
 return $a <=> $b;
}

$normalArray = [1,34,56,67,98,45];

//Sort the array in asc
usort($normalArray, 'normal_sort');

foreach($normalArray as $k => $v)
{
 echo $k.' => '.$v.'
';
}

$spaceArray = [1,34,56,67,98,45];

//Sort it by spaceship operator
usort($spaceArray, 'space_sort');

foreach($spaceArray as $key => $value)
{
 echo $key.' => '.$value.'
';
}

In the preceding code, we used two functions to sort the two different arrays with
the same values. The $normalArray array is sorted by the normal_sort function,
in which the normal_sort function uses if statements to compare the values. The
second array $spaceArray has the same values as $normalArray, but this array is
sorted by the space_sort function, which uses the Spaceship operator. The final
result for both array sorts is the same, but the code in the callback functions is
different. The normal_sort function has if statements and multiple lines of code,
while the space_sort function has a single line of code—that's it! The space_sort
function code is clearer and does not require multiple if statements.

The null coalesce operator(??)
We all know ternary operators, and we use them most of the time. Ternary operators
are just a single-line replacement for if-else statements. For example, consider the
following code:

$post = ($_POST['title']) ? $_POST['title'] : NULL;

New Features in PHP 7

[36]

If $_POST['title'] exists, then the $post variable will be assigned its value;
otherwise, NULL will be assigned. However, if $_POST or $_POST['title'] does
not exist or is null, then PHP will issue a notice of Undefined index. To fix this notice,
we need to use the isset function, as follows:

$post = isset($_POST['title']) ? $_POST['title'] : NULL;

Mostly, it will seem fine, but it becomes very nasty when we have to check for values
in multiple places, especially when using PHP as a templating language.

In PHP 7, the coalescence operator is introduced, which is simple and returns the
value of its first operand (left operand) if it exists and is not null. Otherwise, it
returns its second operand (right operand). Consider the following example:

$post = $_POST['title'] ?? NULL;

This example is exactly similar to the preceding code. The coalesce operator checks
whether $_POST['title'] exists. If it does, the operator returns it; otherwise, it
returns NULL.

Another great feature of this operator is that it can be chained. Here's an example:

$title = $_POST['title'] ?? $_GET['title'] ?? 'No POST or GET';

According to the definition, it will first check whether the first operand exists and
return it; if it does not exist, it will return the second operand. Now, if there is another
coalesce operator used on the second operand, the same rule will be applied, and the
value on the left operand will be returned if it exists. Otherwise, the value of the right
operand will be returned.

So, the preceding code is the same as the following:

If(isset($_POST['title']))
 $title = $_POST['title'];
elseif(isset($_GET['title']))
 $title = $_GET['title'];
else
 $title = 'No POST or GET';

As can be noted in the preceding examples, the coalesce operator can help write
clean, concise, and less code.

Chapter 2

[37]

Uniform variable syntax
Most of the time, we may face a situation in which the method, variable, or classes
names are stored in other variables. Take a look at the following example:

$objects['class']->name;

In the preceding code, first, $objects['class'] will be interpreted, and after this,
the property name will be interpreted. As shown in the preceding example, variables
are normally evaluated from left to right.

Now, consider the following scenario:

$first = ['name' => 'second'];
$second = 'Howdy';

echo $$first['name'];

In PHP 5.x, this code would be executed, and the output would be Howdy. However,
this is not inconsistent with the left-to-right expression evaluation. This is because
$$first should be evaluated first and then the index name, but in the preceding
case, it is evaluated as ${$first['name']}. It is clear that the variable syntax is not
consistent and may create confusion. To avoid this inconsistency, PHP 7 introduced a
new syntax called uniform variable syntax. Without using this syntax, the preceding
example will bring it into notice, and the desired results won't be produced. To make
it work in PHP 7, the curly brackets should be added, as follows:

echo ${$first['name']};

Now, let's have another example, as follows:

class Packt
{
 public $title = 'PHP 7';
 public $publisher = 'Packt Publisher';

 public function getTitle() : string
 {
 return $this->title;
 }

 public function getPublisher() : string
 {
 return $this->publisher;
 }
}

New Features in PHP 7

[38]

$mthods = ['title' => 'getTitle', 'publisher' => 'getPublisher'];
$object = new Packt();
echo 'Book '.$object->$methods['title']().
 ' is published by '.$object->$methods['publisher']();

If the preceding code is executed in PHP 5.x, it will work fine and output our
desired result. However, if we execute this code in PHP 7, it will give a fatal error.
The error will be at the last line of the code, which is highlighted. PHP 7 will first
try to evaluate $object->$method. After this, it will try to evaluate ['title'];
and so on; this is not correct.

To make it work in PHP 7, the curly brackets should be added, as in the following code:

echo 'Book '.$object->{$methods['title']}().
 ' is published by '.$object->{$methods['publisher']}();

After making the changes mentioned before, we will get our desired output.

Miscellaneous features and changes
PHP 7 also introduced some other new features with small changes, such as new
syntax for array constants, multiple default cases in switch statement, options array
in session_start, and so on. Let's have a look at these too.

Constant arrays
Starting with PHP 5.6, constant arrays can be initialized using the const keyword,
as follows:

const STORES = ['en', 'fr', 'ar'];

Now, starting with PHP 7, constant arrays can be initialized using the define
function, as follows:

define('STORES', ['en', 'fr', 'ar']);

Multiple default cases in the switch statement
Prior to PHP 7, multiple default cases in a switch statement were allowed. Check out
the following example:

switch(true)
{
 default:
 echo 'I am first one';

Chapter 2

[39]

 break;
 default:
 echo 'I am second one';
}

Before PHP 7, the preceding code was allowed, but in PHP 7, this will result in a fatal
error similar to the following:

Fatal error: Switch statements may only contain one default clause in…

The options array for session_start function
Before PHP 7, whenever we needed to start a session, we just used the session_
start() function. This function did not take any arguments, and all the settings
defined in php.ini were used. Now, starting with PHP 7, an optional array for
options can be passed, which will override the session settings in the php.ini file.

A simple example is as follows:

session_start([
 'cookie_lifetime' => 3600,
 'read_and_close' => true
]);

As can be seen in the preceding example, it is possible to override the php.ini
settings for a session easily.

Filtered unserialize function
It is common practice to serialize and unserialize objects. However, the PHP
unserialize() function was not secure because it did not have any filtering options
and could unserialize objects of any type. PHP 7 introduced filtering in this function.
The default filtering option is to unserialize objects of all classes or types. Its basic
working is as follows:

$result = unserialize($object,
 ['allowed_classes' => ['Packt', 'Books', 'Ebooks']]);

New Features in PHP 7

[40]

Summary
In this chapter, we discussed new OOP features, such as type hints, anonymous
classes, the throwable interface, group use declaration for namespaces, and two
important new operators, the Spaceship or Combined Comparison operator and
the null Coalesce operator. Also, we discussed the uniform variable syntax and a
few other new features, such as new syntax for the contact array definition, options
array for the session_start() function, and removal of multiple default cases in
the switch statement.

In the next chapter, we will discuss how to improve the application's performance.
We will discuss Apache and NGINX and different settings for them to improve
performance.

We will discuss different settings for PHP to improve its performance. The Google
page speed module, CSS/JavaScript combining and compression, CDN, and so on
will also be discussed.

[41]

Improving PHP 7
Application Performance

PHP 7 has been completely rewritten from the ground up based on the PHP Next
Generation (phpng or PHPNG) targeting performance. However, there are always
more ways to improve the performance of the application, including writing high
performance code, using best practices, web server optimizations, caching, and so
on. In this chapter, we will discuss such optimizations listed as follows:

• NGINX and Apache
• HTTP server optimization
• Content Delivery Network (CDN)
• JavaScript/CSS optimization
• Full page caching
• Varnish
• The infrastructure

NGINX and Apache
There are too many HTTP server software available, and each one has its pros and
cons. The two most popular HTTP servers used are NGINX and Apache. Let's have
a look at both of them and note which one is better for our needs.

Improving PHP 7 Application Performance

[42]

Apache
Apache is the most widely used HTTP server and is loved by most administrators.
It is selected by administrators because of its flexibility, widespread support, power,
and modules for most of the interpreted languages, such as PHP. As Apache can
process a vast number of interpreted languages, it does not need to communicate
with other software to fulfill the request. Apache can process requests in prefork
(the processes are spawned across thread), worker (threads are spawned across
processes), and event-driven (same as worker process, but it sets dedicated threads
for keep-alive connections and separate threads for active connections); thus,
it provides much more flexibility.

As discussed earlier, each request will be processed by a single thread or process,
so Apache consumes too many resources. When it comes to high-traffic applications,
Apache may slow down the application as it does not provide good support for
concurrent processing.

NGINX
NGINX was built to solve the concurrency problems with high-traffic applications.
NGINX provides asynchronous, event-driven, and nonblocking request handling.
As requests are processed asynchronously, NGINX does not wait for a request to
be completed to block the resource.

NGINX creates worker processes, and each individual worker process can handle
thousands of connections. So, a few processes can handle high traffic at once.

NGINX does not provide any built-in support for any interpreted languages.
It relies on external resources for this. This is also good because the processing is
made outside NGINX, and NGINX only processes the connections and requests.
Mostly, NGINX is considered faster than Apache. In some situations, such as with
static content (serving images, .css and .js files, and so on), this can be true, but in
current high performance servers, Apache is not the problem; PHP is the bottleneck.

Both Apache and NGINX are available for all kinds of operations
systems. For the purpose of this book, we will use Debian and
Ubuntu, so all file paths will be mentioned according to these OSes

As mentioned before, we will use NGINX for this book.

Chapter 3

[43]

HTTP server optimization
Each HTTP server provides certain features that can be used to optimize request
handling and serving content. In this section, we will share some techniques for
both Apache and NGINX that can be used to optimize the web server and provide
the best performance and scalability. Mostly, when these optimizations are applied,
a restart for Apache or NGINX is required.

Caching static files
Mostly, static files, such as images, .css, .js, and fonts don't change frequently.
So, it is best practice to cache these static files on the end user machine. For this
purpose, the web server adds special headers to the response, which tells the user
browser to cache the static content for a certain amount of time. The following is
the configuration code for both Apache and NGINX.

Apache
Let's have a look at the Apache configuration to cache the following static content:

<FilesMatch "\.(ico|jpg|jpeg|png|gif|css|js|woff)$">
 Header set Cache-Control "max-age=604800, public
</FileMatch>

In the preceding code that has to be placed in a .htaccess file, we used the Apache
FilesMatch directive to match the extensions of files. If a desired extension file is
requested, Apache sets the headers to cache control for seven days. The browser
then caches these static files for seven days.

NGINX
The following configuration can be placed in /etc/nginx/sites-available/your-
virtual-host-conf-file:

Location ~* .(ico|jpg|jpeg|png|gif|css|js|woff)$ {
 Expires 7d;
}

In the preceding code, we used the NGINX Location block with a case-insensitive
modifier (~*) to set Expires for seven days. This code will set the cache-control
header for seven days for all the defined file types.

Improving PHP 7 Application Performance

[44]

After making these settings, the response headers for a request will be as follows:

In the preceding figure, it can be clearly seen that the .js file is loaded from cache.
Its cache-control header is set to seven days or 604,800 seconds. The expiry date can
also be noted clearly in the expires headers. After the expiry date, the browser will
load this .js file from the server and cache it again for the duration
defined in the cache-control headers.

HTTP persistent connection
In HTTP persistent connection, or HTTP keep-alive, a single TCP/IP connection is
used for multiple requests or responses. It has a huge performance improvement
over the normal connection as it uses only a single connection instead of opening
and closing connections for each and every single request or response. Some of the
benefits of the HTTP keep-alive are as follows:

• The load on the CPU and memory is reduced because fewer TCP connections
are opened at a time, and no new connections are opened for subsequent
requests and responses as these TCP connections are used for them.

• Reduces latency in subsequent requests after the TCP connection is
established. When a TCP connection is to be established, a three-way
handshake communication is made between a user and the HTTP server.
After successfully handshaking, a TCP connection is established. In case of
keep-alive, the handshaking is performed only once for the initial request
to establish a TCP connection, and no handshaking or TCP connection
opening/closing is performed for the subsequent requests. This improves
the performance of the requests/responses.

• Network congestion is reduced because only a few TCP connections are
opened to the server at a time.

Chapter 3

[45]

Besides these benefits, there are some side effects of keep-alive. Every server has a
concurrency limit, and when this concurrency limit is reached or consumed, there
can be a huge degradation in the application's performance. To overcome this
issue, a time-out is defined for each connection, after which the HTTP keep-alive
connection is closed automatically. Now, let's enable HTTP keep-alive on both
Apache and NGINX.

Apache
In Apache, keep-alive can be enabled in two ways. You can enable it either in the
.htaccess file or in the Apache config file.

To enable it in the .htaccess file, place the following configuration in the
.htaccess file:

<ifModule mod_headers.c>
 Header set Connection keep-alive
</ifModule>

In the preceding configuration, we set the Connection header to keep-alive in the
.htaccess file. As the .htaccess configuration overrides the configuration in the
config files, this will override whatever configuration is made for keep-alive in the
Apache config file.

To enable the keep-alive connection in the Apache config file, we have to modify
three configuration options. Search for the following configuration and set the
values to the ones in the example:

KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 100

In the preceding configuration, we turned on the keep-alive configuration by
setting the value of KeepAlive to On.

The next is MaxKeepAliveRequests, which defines the maximum number of
keep-alive connections to the web server at the time. A value of 100 is the default in
Apache, and it can be changed according to the requirements. For high performance,
this value should be kept high. If set to 0, it will allow unlimited keep-alive connections,
which is not recommended.

The last configuration is KeepAliveTimeout, which is set to 100 seconds. This defines
the number of seconds to wait for the next request from the same client on the same
TCP connection. If no request is made, then the connection is closed.

Improving PHP 7 Application Performance

[46]

NGINX
HTTP keep-alive is part of the http_core module and is enabled by default. In the
NGINX configuration file, we can edit a few options, such as timeout. Open the
nginx config file, edit the following configuration options, and set its values to
the following:

keepalive_requests 100
keepalive_timeout 100

The keepalive_requests config defines the maximum number of requests a single
client can make on a single HTTP keep-alive connection.

The keepalive_timeout config is the number of seconds that the server needs to
wait for the next request until it closes the keep-alive connection.

GZIP compression
Content compression provides a way to reduce the contents' size delivered by the
HTTP server. Both Apache and NGINX provide support for GZIP compression, and
similarly, most modern browsers support GZIP. When the GZIP compression is
enabled, the HTTP server sends compressed HTML, CSS, JavaScript, and images
that are small in size. This way, the contents are loaded fast.

A web server only compresses content via GZIP when the browser sends information
about itself that it supports GZIP compression. Usually, a browser sends such
information in Request headers.

The following are codes for both Apache and NGINX to enable GZIP compression.

Apache
The following code can be placed in the .htaccess file:

<IfModule mod_deflate.c>
SetOutputFilter DEFLATE
 #Add filters to different content types
AddOutputFilterByType DEFLATE text/html text/plain text/xml text/
css text/javascript application/javascript
 #Don't compress images
 SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-
 vary
</IfModule>

Chapter 3

[47]

In the preceding code, we used the Apache deflate module to enable compression.
We used filter by type to compress only certain types of files, such as .html, plain text,
.xml, .css, and .js. Also, before ending the module, we set a case to not compress the
images because compressing images can cause image quality degradation.

NGINX
As mentioned previously, you have to place the following code in your virtual host
conf file for NGINX:

gzip on;
gzip_vary on;
gzip_types text/plain text/xml text/css text/javascript application/x-
javascript;
gzip_com_level 4;

In the preceding code, GZIP compression is activated by the gzip on; line. The
gzip_vary on; line is used to enable varying headers. The gzip_types line is used
to define the types of files to be compressed. Any file types can be added depending
on the requirements. The gzip_com_level 4; line is used to set the compression
level, but be careful with this value; you don't want to set it too high. Its range is
from 1 to 9, so keep it in the middle.

Now, let's check whether the compression really works. In the following screenshot,
the request is sent to a server that does not have GZIP compression enabled. The size
of the final HTML page downloaded or transferred is 59 KB:

Improving PHP 7 Application Performance

[48]

After enabling GZIP compression on the web server, the size of the transferred
HTML page is reduced up to 9.95 KB, as shown in the following screenshot:

Also, it can be noted that the time to load the contents is also reduced. So, the smaller
the size of your contents, the faster the page will load.

Using PHP as a separate service
Apache uses the mod_php module for PHP. This way, the PHP interpreter is integrated
to Apache, and all processing is done by this Apache module, which eats up more
server hardware resources. It is possible to use PHP-FPM with Apache, which uses
the FastCGI protocol and runs in a separate process. This enables Apache to worry
about HTTP request handlings, and the PHP processing is made by the PHP-FPM.

NGINX, on the other hand, does not provide any built-in support or any support
by module for PHP processing. So, with NGINX, PHP is always used in a separate
service.

Now, let's take a look at what happens when PHP runs as a separate service:
the web server does not know how to process the dynamic content request and
forwards the request to another external service, which reduces the processing
load on the web server.

Chapter 3

[49]

Disabling unused modules
Both Apache and NGINX come with lots of modules built into them. In most cases,
you won't need some of these modules. It is good practice to disable these modules.

It is good practice to make a list of the modules that are enabled, disable those
modules one by one, and restart the server. After this, check whether your application
is working or not. If it works, go ahead; otherwise, enable the module(s) after which
the application stopped working properly again.

This is because you may see that a certain module may not be required, but some
other useful module depends on this module. So, it's best practice it to make a list
and enable or disable the modules, as stated before.

Apache
To list all the modules that are loaded for Apache, issue the following command in
the terminal:

sudo apachectl –M

This command will list all the loaded modules, as can be seen in the following
screenshot:

Improving PHP 7 Application Performance

[50]

Now, analyze all the loaded modules, check whether they are needed for the
application, and disable them, as follows.

Open up the Apache config file and find the section where all the modules are
loaded. A sample is included here:

LoadModule access_compat_module modules/mod_access_compat.so
LoadModule actions_module modules/mod_actions.so
LoadModule alias_module modules/mod_alias.so
LoadModule allowmethods_module modules/mod_allowmethods.so
LoadModule asis_module modules/mod_asis.so
LoadModule auth_basic_module modules/mod_auth_basic.so
#LoadModule auth_digest_module modules/mod_auth_digest.so
#LoadModule auth_form_module modules/mod_auth_form.so
#LoadModule authn_anon_module modules/mod_authn_anon.so

The modules that have a # sign in front of them are not loaded. So, to disable a
module in the complete list, just place a # sign. The # sign will comment out the line,
and the module won't be loaded anymore.

NGINX
To check which modules NGINX is compiled with, issue the following command
in the terminal:

sudo Nginx –V

This will list complete information about the NGINX installation, including
the version and modules with which NGINX is compiled. Have a look at the
following screenshot:

Chapter 3

[51]

Normally, NGINX enables only those modules that are required for NGINX to work.
To enable any other module that is compiled with NGINX installed, we can place a
little configuration for it in the nginx.conf file, but there is no single way to disable
any NGINX module. So, it is good to search for this specific module and take a look
at the module page on the NGINX website. There, we can find information about this
specific module, and if available, we can find information about how to disable and
configure this module.

Web server resources
Each web server comes with its own optimum settings for general use. However,
these settings may be not optimum for your current server hardware. The biggest
problem on the web server hardware is the RAM. The more RAM the server has,
the more the web server will be able to handle requests.

NGINX
NGINX provides two variables to adjust the resources, which are worker_processes
and worker_connections. The worker_processes settings decide how many
NGINX processes should run.

Now, how many worker_processes resources should we use? This depends on
the server. Usually, it is one worker processes per processor core. So, if your server
processor has four cores, this value can be set to 4.

The value of worker_connections shows the number of connections per worker_
processes setting per second. Simply speaking, worker_connections tells NGINX
how many simultaneous requests can be handled by NGINX. The value of worker_
connections depends on the system processor core. To find out the core's limitations
on a Linux system (Debian/Ubuntu), issue the following command in the terminal:

Ulimit –n

This command will show you a number that should be used for worker_connections.

Now, let's say that our processor has four cores, and each core's limitation is 512.
Then, we can set the values for these two variables in the NGINX main configuration
file. On Debian/Ubuntu, it is located at /etc/nginx/nginx.conf.

Now, find out these two variables and set them as follows:

Worker_processes 4;
Worker_connections 512

The preceding values can be high, specially worker_connections, because server
processor cores have high limitations.

Improving PHP 7 Application Performance

[52]

Content Delivery Network (CDN)
Content Delivery Network is used to host static media files, such as images, .css
and .js files, and audio and video files. These files are stored on a geographical
network whose servers are located in different locations. Then, these files are
served to requests from a specific server, depending on the request location.

CDN provides the following features:

• As the contents are static, which don't change frequently, CDN caches
them in memory. When a request comes for a certain file, CDN sends the
file directly from cache, which is faster than loading the file from disk and
sending it to the browser.

• CDN servers are located in different locations. All the files are stored in each
location, depending on your settings in CDN. When a browser request arrives
to CDN, CDN sends the requested contents from the nearest location available
to the requested location. For example, if the CDN has servers in London, New
York, and Dubai and a request comes from Middle East, the CDN will send
content from the Dubai server. This way, as a CDN delivers the contents from
the nearest location, the response time is reduced.

• Each browser has limitations for sending simultaneous requests to a domain.
Mostly, it's three requests. When a response arrives for a request, the browser
sends more requests to the same domain, which causes a delay in complete
page loading. CDN provides subdomains (either their own subdomains or
your main domain's subdomains, using your main domain's DNS settings),
which enables browsers to send more parallel requests for the same contents
loading from different domains. This enables the browser to load the page
content fast.

• Generally, there is a small amount of requests for dynamic content and more
requests for static content. If your application's static content is hosted on a
separate CDN server, this will reduce the load on your server tremendously.

Using CDN
So, how do you use CDN in your application? In best practice, if your application
has high traffic, creating different subdomains at your CDN for each content type is
the best. For example, a separate domain for CSS and JavaScript files, a subdomain
for images, and another separate subdomain for audio/videos files can be created.
This way, the browser will send parallel requests for each content type. Let's say,
we have the following URLs for each content type:

• For CSS and JavaScript: http://css-js.yourcdn.com

http://css-js.yourcdn.com

Chapter 3

[53]

• For images: http://images.yourcdn.com
• For other media: http://media.yourcdn.com

Now, most open source applications provide settings at their admin control panel to
set up CDN URLs, but in case you happened to use an open source framework or a
custom-build application, you can define your own setting for CDN by placing the
previous URLs either in the database or in a configuration file loaded globally.

For our example, we will place the preceding URLs in a config file and create three
constants for them, as follows:

Constant('CSS_JS_URL', 'http://css-js.yourcdn.com/');
Constant('IMAGES_URL', 'http://images.yourcdn.com/');
Constant('MEDiA_URL', 'http://css-js.yourcdn.com/');

If we need to load a CSS file, it can be loaded as follows:

<script type="text/javascript" src="<?php echo CSS_JS_URL
?>js/file.js"></script>

For a JavaScript file, it can be loaded as follows:

<link rel="stylesheet" type="text/css" href="<?php echo CSS_JS_URL
?>css/file.css" />

If we load images, we can use the previous way in the src attribute of the img tag,
as follows:

<img src="<?php echo IMAGES_URL ?>images/image.png" />

In the preceding examples, if we don't need to use CDN or want to change the CDN
URLs, it will be easy to change in just one place.

Most famous JavaScript libraries and templating engines host their static resources
on their own personal CDN. Google hosts query libraries, fonts, and other JavaScript
libraries on its own CDN, which can be used directly in applications.

Sometimes, we may not want to use CDN or be able to afford them. For this,
we can use a technique called domain sharing. Using domain sharding, we can
create subdomains or point out other domains to our resources' directories on the
same server and application. The technique is the same as discussed earlier; the
only difference is that we direct other domains or subdomains to our media, CSS,
JavaScript, and image directories ourselves.

This may seem be fine, but it won't provide us with CDN's best performance. This
is because CDN decides the geographical availability of content depending on the
customer's location, extensive caching, and files optimization on the fly.

http://images.yourcdn.com
http://media.yourcdn.com

Improving PHP 7 Application Performance

[54]

CSS and JavaScript optimization
Every web application has CSS and JavaScript files. Nowadays, it is common that most
applications have lots of CSS and JavaScript files to make the application attractive and
interactive. Each CSS and JavaScript file needs a browser to send a request to the server
to fetch the file. So, the more the CSS and JavaScript files you have, the more requests
the browser will need to send, thus affecting its performance.

Each file has a content size, and it takes time for the browser to download it. For
example, if we have 10 CSS files of 10 KB each and 10 JavaScript files of 50 KB each,
the total content size of the CSS files is 100 KB, and for JavaScript it is 500 KB—600
KB for both types of files. This is too much, and the browser will take time to
download them.

Performance plays a vital role in web applications. Even Google
counts performance in its indexing. Don't think of a file that has
a few KBs and takes a 1 ms to download because when it comes
to performance, each millisecond is counted. The best thing is to
optimize, compress, and cache everything.

In this section, we will discuss two ways to optimize our CSS and JS, which are
as follows:

• Merging
• Minifying

Merging
In the merging process, we can merge all the CSS files into a single file, and the
same process is carried out with JavaScript files, thus creating a single file for CSS
and JavaScript. If we have 10 files for CSS, the browser sends 10 requests for all
these files. However, if we merge them in a single file, the browser will send only
one request, and thus, the time taken for nine requests is saved.

Minifying
In the minifying process, all the empty lines, comments, and extra spaces are
removed from the CSS and JavaScript files. This way, the size of the file is reduced,
and the file loads fast.

For example, let's say you have the following CSS code in a file:

.header {
 width: 1000px;

Chapter 3

[55]

 height: auto;
 padding: 10px
}

/* move container to left */
.float-left {
 float: left;
}

/* Move container to right */
.float-right {
 float: right;
}

After minifying the file, we will have CSS code similar to the following:

.header{width:100px;height:auto;padding:10px}.float-
left{float:left}.float-right{float:right}

Similarly for JavaScript, let's consider that we have the following code in a
JavaScript file:

/* Alert on page load */
$(document).ready(function() {
 alert("Page is loaded");
});

/* add three numbers */
function addNumbers(a, b, c) {
 return a + b + c;
}

Now, if the preceding file is minified, we will have the following code:

$(document).ready(function(){alert("Page is loaded")});
function addNumbers(a,b,c){return a+b+c;}

It can be noted in the preceding examples that all the unnecessary white spaces and
new lines are removed. Also, it places the complete file code in one single line. All
code comments are removed. This way, the file size is reduced, which helps the file
be loaded fast. Also, this file will consume less bandwidth, which is useful if the
server resources are limited.

Most open source applications, such as Magento, Drupal, and WordPress, provide
either built-in support or support the application by third-party plugins/modules.
Here, we won't cover how to merge CSS or JavaScript files in these applications, but
we will discuss a few tools that can merge CSS and JavaScript files.

Improving PHP 7 Application Performance

[56]

Minify
Minify is a set of libraries completely written in PHP. Minify supports both merging
and minifying for both CSS and JavaScript files. Its code is completely object-oriented
and namespaced, so it can be embedded into any current or proprietary framework.

The Minify homepage is located at http://minifier.org. It is also
hosted on GitHub at https://github.com/matthiasmullie/
minify. It is important to note that the Minify library uses a path
converter library, which is written by the same author. The path
converter library can be downloaded from https://github.com/
matthiasmullie/path-converter. Download this library and
place it in the same folder as the minify libraries.

Now, let's create a small project that we will use to minify and merge CSS and
JavaScript files. The folder structure of the project will be as in the following
screenshot:

http://minifier.org
https://github.com/matthiasmullie/minify
https://github.com/matthiasmullie/minify
https://github.com/matthiasmullie/path-converter
https://github.com/matthiasmullie/path-converter

Chapter 3

[57]

In the preceding screenshot, the complete project structure is shown. The project
name is minify. The css folder has all of our CSS files, including the minified or
merged ones. Similarly, the js folder has all our JavaScript files, including the
minified or merged ones. The libs folder has the Minify library along with the
Converter library. Index.php has our main code to minify and merge CSS and
JavaScript files.

The data folder in the project tree is related to JavaScript minification.
As JavaScript has keywords that require a space before and after them,
these .txt files are used to identify these operators.

So, let's start by minifying our CSS and JavaScript files using the following code
in index.php:

include('libs/Converter.php');
include('libs/Minify.php');
include('libs/CSS.php');
include('libs/JS.php');
include('libs/Exception.php');

use MatthiasMullie\Minify;

/* Minify CSS */
$cssSourcePath = 'css/styles.css';
$cssOutputPath = 'css/styles.min.css';
$cssMinifier = new Minify\CSS($cssSourcePath);
$cssMinifier->minify($cssOutputPath);

/* Minify JS */
$jsSourcePath = 'js/app.js';
$jsOutputPath = 'js/app.min.js';
$jsMinifier = new Minify\JS($jsSourcePath);
$jsMinifier->minify($jsOutputPath);

The preceding code is simple. First, we included all our required libraries. Then,
in the Minify CSS block, we created two path variables: $cssSourcePath, which
has the path to the CSS file that we need to minify, and $cssOutputPath, which
has path to the minified CSS file that will be generated.

After this, we instantiated an object of the CSS.php class and passed the CSS file that
we need to minify. Finally, we called the minify method of the CSS class and passed
the output path along with the filename, which will generate the required file for us.

Improving PHP 7 Application Performance

[58]

The same explanation goes for the JS minifying process.

If we run the preceding PHP code, all the files are in place, and everything goes fine,
then two new filenames will be created: styles.min.css and app.min.js. These are
the new minified versions of their original files.

Now, let's use Minify to merge multiple CSS and JavaScript files. First, add some CSS
and JavaScript files to the respective folders in the project. After this, we just need to
add a little code to the current code. In the following code, I will skip including all
the libraries, but these files have to be loaded whenever you need to use Minify:

/* Minify CSS */
$cssSourcePath = 'css/styles.css';
$cssOutputPath = 'css/styles.min.merged.css';
$cssMinifier = new Minify\CSS($cssSourcePath);
$cssMinifier->add('css/style.css');
$cssMinifier->add('css/forms.js');
$cssMinifier->minify($cssOutputPath);

/* Minify JS */
$jsSourcePath = 'js/app.js';
$jsOutputPath = 'js/app.min.merged.js';
$jsMinifier = new Minify\JS($jsSourcePath);
$jsMinifier->add('js/checkout.js');
$jsMinifier->minify($jsOutputPath);

Now, take a look at the highlighted code. In the CSS part, we saved the minified and
merged file as style.min.merged.css, but naming is not important; it is all up to
our own choice.

Now, we will simply use the add method of the $cssMinifier and $jsMinifier
objects to add new files and then call minify. This causes all the additional files to
be merged in the initial file and then minified, thus generating a single merged and
minified file.

Grunt
According to its official website, Grunt is a JavaScript task runner. It automates
certain repetitive tasks so that you don't have to work repeatedly. It is an awesome
tool and is widely used among web programmers.

Installing Grunt is very easy. Here, we will install it on MAC OS X, and the same
method is used for most Linux systems, such as Debian and Ubuntu.

Chapter 3

[59]

Grunt requires Node.js and npm. Installing and configuring
Node.js and npm is out of the scope of this book, so for this book,
we will assume that these tools are installed on your machine or
that you can search for them and figure out how to install them.

If Node.js and npm are installed on your machine, just fire up the following command
in your terminal:

sudo npm install –g grunt

This will install Grunt CLI. If everything goes fine, then the following command will
show you the version the of Grunt CLI:

grunt –version

The output of the preceding command is grunt-cli v0.1.13; as of writing this
book, this version is available.

Grunt provides you with a command-line, which enables you to run a Grunt
command. A Grunt project requires two files in your project file tree. One is
package.json, which is used by npm and lists Grunt and the Grunt plugins
that the project needs as DevDependencies.

The second file is the GruntFile, which is stored as GruntFile.js or GruntFile.
coffee and is used to configure and define Grunt tasks and load Grunt plugins.

Now, we will use the same preceding project, but our folder structure will be
as follows:

Now, open the terminal in your project root and issue the following command:

sudo npm init

Improving PHP 7 Application Performance

[60]

This will generate the package.json file by asking a few questions. Now, open the
package.json file and modify it so that the contents of the final package.json files
look similar to the following:

{
 "name" : "grunt" //Name of the project
 "version : "1.0.0" //Version of the project
 "description" : "Minify and Merge JS and CSS file",
 "main" : "index.js",
 "DevDependencies" : {
 "grunt" : "0.4.1", //Version of Grunt

 //Concat plugin version used to merge css and js files
 "grunt-contrib-concat" : "0.1.3"

 //CSS minifying plugin
 "grunt-contrib-cssmin" : "0.6.1",

 //Uglify plugin used to minify JS files.
 "grunt-contrib-uglify" : "0.2.0"

 },
"author" : "Altaf Hussain",
"license" : ""
}

I added comments to different parts of the package.json file so that it is easy to
understand. Note that for the final file, we will remove the comments from this file.

It can be seen that in the DevDependencies section, we added three Grunt plugins
used for different tasks.

The next step is to add GruntFile. Let's create a file called GruntFile.js in
our project root similar to the package.json file. Place the following contents in
GruntFile:

module.exports = function(grunt) {
 /*Load the package.json file*/
 pkg: grunt.file.readJSON('package.json'),
 /*Define Tasks*/
 grunt.initConfig({
 concat: {
 css: {
 src: [
 'css/*' //Load all files in CSS folder

Chapter 3

[61]

],
 dest: 'dest/combined.css' //Destination of the final combined
file.

 }, //End of CSS
js: {
 src: [
 'js/*' //Load all files in js folder
],
 dest: 'dest/combined.js' //Destination of the final combined
file.

 }, //End of js

}, //End of concat
cssmin: {
 css: {
 src : 'dest/combined.css',
 dest : 'dest/combined.min.css'
}
},//End of cssmin
uglify: {
 js: {
 files: {
 'dest/combined.min.js' : ['dest/combined.js'] // destination
 Path : [src path]
 }
 }
} //End of uglify

}); //End of initConfig

grunt.loadNpmTasks('grunt-contrib-concat');
grunt.loadNpmTasks('grunt-contrib-uglify');
grunt.loadNpmTasks('grunt-contrib-cssmin');
grunt.registerTask('default', ['concat:css', 'concat:js',
 'cssmin:css', 'uglify:js']);

}; //End of module.exports

The preceding code is simple and self-explanatory, and the comments are added
whenever needed. At the top, we loaded our package.json file, and after this, we
defined different tasks along with their src and destination files. Remember that
every task's src and destination syntax is different, and it depends on the plugin.
After initConfig block, we loaded different plugins and npm tasks and then
registered them with GRUNT.

Improving PHP 7 Application Performance

[62]

Now, let's run our tasks.

First, let's combine CSS and JavaScript files and store them in their respective
destinations defined in our tasks list in GruntFile via the following command:

grunt concat

After running the preceding command in your terminal, if you see a message
such as Done, without errors, then the task is completed successfully.

In the same way, let's minify our css file using the following command:

grunt cssmin

Then, we will minify our JavaScript file using the following command:

grunt uglify

Now, it may seem like a lot of work to use Grunt, but it provides some other
features that can make a developer's life easy. For example, what if you need to
change your JavaScript and CSS files? Should you run all the preceding commands
again? No, Grunt provides a watch plugin, which activates and executes all the
files in the destination paths in the tasks, and if any changes occur, it runs the
tasks automatically.

For a more detailed learning, take a look at Grunt's official website at
http://gruntjs.com/.

Full page caching
In full page caching, the complete page of the website is stored in a cache, and for
the next requests, this cached page is served. Full page cache is more effective if your
website content does not change too often; for example, on a blog with simple posts,
new posts are added on a weekly basis. In this case, the cache can be cleared after
new posts are added.

What if you have a website that has pages with dynamic parts, such as an e-commerce
website? In this case, a complete page caching will create problems because the page
is always different for each request; as a user is logged in, he/she may add products to
the shopping cart and so on. In this case, using full page caching may not be that easy.

Most popular platforms provide either built-in support for full page cache or
through plugins and modules. In this case, the plugin or module takes care of the
dynamic blocks of the page for each request.

http://gruntjs.com/

Chapter 3

[63]

Varnish
Varnish, as mentioned on its official website, makes your website fly; and this is true!
Varnish is an open source web application accelerator that runs in front of your web
server software. It has to be configured on port 80 so that each request comes to it.

Now, the Varnish configuration file (called VCL files with the .vcl extenstion) has a
definition for backends. A backend is the web server (Apache or NGINX) configured
on another port (let's say 8080). Multiple backends can be defined, and Varnish will
take care of the load balancing too.

When a request comes to Varnish, it checks whether the data for this request
in available at its cache or not. If it finds the data in its cache, this cached data
is returned to the request, and no request is sent to the web server or backend.
If Varnish does not find any data in its cache, it sends a request to the web server
and requests the data. When it receives data from the web server, it first caches
this data and then sends it back to the request.

As it is clear in the preceding discussion, if Varnish finds the data in the cache,
there is no need for a request to the web server and, therefore, for processing in
there, and the response is sent back very fast.

Varnish also provides features such as load balancing and health checks. Also,
Varnish has no support for SSL and cookies. If Varnish receives cookies from
the web server or backend, this page is not cached. There are different ways to
overcome these issues easily.

We've done enough theory; now, let's install Varnish on a Debian/Ubuntu server
via the following steps:

1. First, add the Varnish repositories to the sources.list file. Place the
following line in the file:
 deb https://repo.varnish-cache.org/debian/ Jessie
 varnish-4.1

2. After this, issue the following command to update the repositories:
sudo apt-get update

3. Now, issue the following command:
sudo apt-get install varnish

4. This will download and install Varnish. Now, the first thing to do is
configure Varnish to listen at port 80 and make your web server listen
at another port, such as 8080. We will configure it here with NGINX.

Improving PHP 7 Application Performance

[64]

5. Now, open the Varnish configuration file location at /etc/default/varnish
and change it so that it looks similar to the following code:
 DAEMON_OPS="-a :80 \
 -T localhost:6082 \
 -f /etc/varnish/default.vcl \
 -S /etc/varnish/secret \
 -s malloc,256m"

6. Save the file and restart Varnish by issuing the following command in
the terminal:
sudo service varnish restart

7. Now our Varnish runs on port 80. Let's make NGINX run on port 8080.
Edit the NGINX vhost file for the application and change the listen port
from 80 to 8080, as follows:
 listen 8080;

8. Now, restart NGINX by issuing the following command in the terminal:
sudo service nginx restart

9. The next step is to configure the Varnish VCL file and add a backend that
will communicate with our backend on port 8080. Edit the Varnish VCL
file located at /etc/varnish/default.vcl, as follows:
 backend default {
 .host = "127.0.0.1";
 .port = "8080";
 }

In the preceding configuration, our backend host is located at the same server on
which Varnish runs, so we entered the local IP. We can also enter a localhost in this
case. However, if our backend runs on a remote host or another server, the IP of this
server should be entered.

Now, we are done with Varnish and web server configuration. Restart both Varnish
and NGINX. Open your browser and enter the IP or hostname of the server. The
first response may seem slow, which is because Varnish is fetching data from the
backend and then caching it, but other subsequent responses will be extremely
fast, as Varnish cached them and is now sending back the cached data without
communicating with the backend.

Chapter 3

[65]

Varnish provides a tool in which we can easily monitor the Varnish cache status. It is
a real-time tool and updates its contents in real time. It is called varnishstat. To start
varnishstat, just issue the following command in the terminal:

varnishstat

The preceding command will display a session similar to the following screenshot:

As can be seen in the preceding screenshot, it displays very useful information, such
as the running time and the number of requests made at the beginning, cache hits,
cache misses, all backends, backend reusages, and so on. We can use this information
to tune Varnish for its best performance.

A complete Varnish configuration is out of the scope of this book,
but a good documentation can be found on the Varnish official
website at https://www.varnish-cache.org.

https://www.varnish-cache.org

Improving PHP 7 Application Performance

[66]

The infrastructure
We discussed too many topics on increasing the performance of our application.
Now, let's discuss the scalability and availability of our application. With time,
the traffic on our application can increase to thousands of users at a time. If our
application runs on a single server, the performance will be hugely effected. Also,
it is not a good idea to keep the application running at a single point because in
case this server goes down, our complete application will be down.

To make our application more scalable and better in availability, we can use an
infrastructure setup in which we can host our application on multiple servers.
Also, we can host different parts of the application on different servers. To better
understand, take a look at the following diagram:

Chapter 3

[67]

This is a very basic design for the infrastructure. Let's talk about its different parts
and what operations will be performed by each part and server.

It is possible that only the Load Balancer (LB) will be connected to
the public Internet, and the rest of the parts can be connected to each
through a private network in a Rack. If a Rack is available, this will be
very good because all the communication between all the servers will
be on a private network and therefore secure.

Web servers
In the preceding diagram, we have two web servers. There can be as many web
servers as needed, and they can be easily connected to LB. The web servers will
host our actual application, and the application will run on NGINX or Apache and
PHP 7. All the performance tunings we will discuss in this chapter can be used on
these web servers. Also, it is not necessary that these servers should be listening
at port 80. It is good that our web server should listen at another port to avoid any
public access using browsers.

The database server
The database server is mainly used for the database where the MySQL or Percona
Server can be installed. However, one of the problems in the infrastructure setup is
to store session data in a single place. For this purpose, we can also install the Redis
server on the database server, which will handle our application's session data.

The preceding infrastructure design is not a final or perfect design. It is just to give
the idea of a multiserver application hosting. It has room for a lot of improvement,
such as adding another local balancer, more web servers, and servers for the
database cluster.

Load balancer (LB)
The first part is the load balancer (LB). The purpose of the load balancer is to divide
the traffic among the web servers according to the load on each web server.

For the load balancer, we can use HAProxy, which is widely used for this purpose.
Also, HAProxy checks the health of each web server, and if a web server is down,
it automatically redirects the traffic of this down web server to other available web
servers. For this purpose, only LB will be listening at port 80.

Improving PHP 7 Application Performance

[68]

We don't want to place a load on our available web servers (in our case, two web
servers) of encrypting and decrypting the SSL communication, so we will use the
HAProxy server to terminate SSL there. When our LB receives a request with SSL,
it will terminate SSL and send a normal request to one of the web servers. When
it receives a response, HAProxy will encrypt the response and send it back to the
client. This way, instead of using both the servers for SSL encryption/decryption,
only a single LB server will be used for this purpose.

Varnish can be also used as a load balancer, but this is not a good idea
because the whole purpose of Varnish is HTTP caching.

HAProxy load balancing
In the preceding infrastructure, we placed a load balancer in front of our web
servers, which balance load on each server, check the health of each server,
and terminate SSL. We will install HAProxy and configure it to achieve all the
configurations mentioned before.

HAProxy installation
We will install HAProxy on Debian/Ubuntu. As of writing this book, HAProxy 1.6 is
the latest stable version available. Perform the following steps to install HAProxy:

1. First, update the system cache by issuing the following command in
the terminal:
sudo apt-get update

2. Next, install HAProxy by entering the following command in the terminal:
sudo apt-get install haproxy

This will install HAProxy on the system.

3. Now, confirm the HAProxy installation by issuing the following command
in the terminal:
haproxy -v

Chapter 3

[69]

If the output is as in the preceding screenshot, then congratulations! HAProxy is
installed successfully.

HAProxy load balancing
Now, it's time to use HAProxy. For this purpose, we have the following three servers:

• The first is a load balancer server on which HAProxy is installed. We will
call it LB. For this book's purpose, the IP of the LB server is 10.211.55.1. This
server will listen at port 80, and all HTTP requests will come to this server.
This server also acts as a frontend server as all the requests to our application
will come to this server.

• The second is a web server, which we will call Web1. NGINX, PHP 7,
MySQL, or Percona Server are installed on it. The IP of this server is
10.211.55.2. This server will either listen at port 80 or any other port.
We will keep it to listen at port 8080.

• The third is a second web server, which we will call Web2, with the IP
10.211.55.3. This has the same setup as of the Web1 server and will listen
at port 8080.

The Web1 and Web2 servers are also called backend servers. First, let's configure the
LB or frontend server to listen at port 80.

Open the haproxy.cfg file located at /etc/haproxy/ and add the following lines at
the end of the file:

frontend http
 bind *:80
 mode http
 default_backend web-backends

Improving PHP 7 Application Performance

[70]

In the preceding code, we set HAProxy to listen at the HTTP port 80 on any IP
address, either the local loopback IP 127.0.0.1 or the public IP. Then, we set the
default backend.

Now, we will add two backend servers. In the same file, at the end, place the
following code:

backend web-backend
 mode http
 balance roundrobin
 option forwardfor
 server web1 10.211.55.2:8080 check
 server web2 10.211.55.3:8080 check

In the preceding configuration, we added two servers into the web backend.
The reference name for the backend is web-backend, which is used in the frontend
configuration too. As we know, both our web servers listen at port 8080, so we
mentioned that it is the definition of each web server. Also, we used check at the end
of the definition of each web server, which tells HAProxy to check the server's health.

Now, restart HAProxy by issuing the following command in the terminal:

sudo service haproxy restart

To start HAProxy, we can use the sudo service haproxy
start command. To stop HAProxy, we can use the sudo
service haproxy stop command.

Now, enter the IP or hostname of the LB server in the browser, and our web
application page will be displayed either from Web1 or Web2.

Now, disable any of the web servers and then reload the page again. The application
will still work fine, because HAProxy automatically detected that one of web servers
is down and redirected the traffic to the second web server.

HAProxy also provides a stats page, which is browser-based. It provides complete
monitoring information about the LB and all the backends. To enable stats, open
haprox.cfg, and place the following code at the end of the file:

listen stats *:1434
 stats enable
 stats uri /haproxy-stats
 stats auth phpuser:packtPassword

Chapter 3

[71]

The stats are enabled at port 1434, which can be set to any port. The URL of the
page is stats uri. It can be set to any URL. The auth section is for basic HTTP
authentication. Save the file and restart HAProxy. Now, open the browser and
enter the URL, such as 10.211.55.1:1434/haproxy-stats. The stats page will
be displayed as follows:

In the preceding screenshot, each backend web server can be seen, including
frontend information.

Also, if a web server is down, HAProxy stats will highlight the row for this web
server, as can be seen in the following screenshot:

Improving PHP 7 Application Performance

[72]

For our test, we stopped NGINX at our Web2 server and refreshed the stats page,
and the Web2 server row in the backend section was highlighted.

To terminate SSL using HAProxy, it is pretty simple. To terminate SSL using
HAProxy, we will just add the SSL port 443 binding along with the SSL certificate
file location. Open the haproxy.cfg file, edit the frontend block, and add the
highlighted code in it, as in the following block:

frontend http
bind *:80
bind *:443 ssl crt /etc/ssl/www.domain.crt
 mode http
 default_backend web-backends

Now, HAProxy also listens at 443, and when an SSL request is sent to it, it processes
it there and terminates it so that no HTTPS requests are sent to backend servers.
This way, the load of SSL encryption/decryption is removed from the web servers
and is managed by the HAProxy server only. As SSL is terminated at the HAProxy
server, there is no need for web servers to listen at port 443, as regular requests from
HAProxy server are sent to the backend.

Summary
In this chapter, we discussed several topics starting from NGINX and Apache to
Varnish. We discussed how we can optimize our web server's software settings
for the best performance. Also, we discussed CDNs and how to use them in our
customer applications. We discussed two ways to optimize JavaScript and CSS
files for the best performance. We briefly discussed full page cache and Varnish
installation and configuration. At the end, we discussed multiserver hosting or
infrastructure setup for our application to be scalable and the best in availability.

In next chapter, we will look into the ways of increasing the performance of our
database. We will discuss several topics, including the Percona Server, different
storage engines for the database, query caching, Redis, and Memcached.

[73]

Improving Database
Performance

Databases play a key role in dynamic websites. All incoming and outgoing data is
stored in a database. So, if the database for a PHP application is not well designed
and optimized, it will effect the application's performance tremendously. In this
chapter, we will look into the ways of optimizing our PHP application's database.
The following topics will be covered in this chapter:

• MySQL
• Query caching
• The MyISAM and InnoDB storage engines
• The Percona DB and Percona XtraDB storage engines
• MySQL performance monitoring tools
• Redis
• Memcached

The MySQL database
MySQL is the most commonly used Relational Database Management System
(RDMS) for the Web. It is open source and has a free community version. It provides
all those features that can be provided by an enterprise-level database.

The default settings provided with the MySQL installation may not be so good
for performance, and there are always ways to fine-tune these settings to get an
improved performance. Also, remember that your database design plays a big
role in performance. A poorly designed database will have an effect on the
overall performance.

Improving Database Performance

[74]

In this section, we will discuss how to improve the MySQL database's performance.

We will modify the MySQL configuration's my.cnf file. This file
is located in different places in different operating systems. Also,
if you are using XAMPP, WAMP, or any other cross-platform web
server solution stack package on Windows, this file will be located in
the respective folder. Whenever my.cnf is mentioned, it is assumed
that the file is open no matter which OS is used.

Query caching
Query caching is an important performance feature of MySQL. It caches SELECT
queries along with the resulting dataset. When an identical SELECT query occurs,
MySQL fetches the data from memory so that the query is executed faster and
thus reduces the load on the database.

To check whether query cache is enabled on a MySQL server or not, issue the
following command in your MySQL command line:

SHOW VARIABLES LIKE 'have_query_cache';

The preceding command will display the following output:

The previous result set shows that query cache is enabled. If query cache is disabled,
the value will be NO.

To enable query caching, open up the my.cnf file and add the following lines. If
these lines are there and are commented, just uncomment them:

query_cache_type = 1
query_cache_size = 128MB
query_cache_limit = 1MB

Chapter 4

[75]

Save the my.cnf file and restart the MySQL server. Let's discuss what the preceding
three configurations mean:

• query_cache_type: This plays a little confusing role.
 ° If query_cache_type is set to 1 and query_cache_size is 0, then no

memory is allocated, and query cache is disabled.
If query_cache_size is greater than 0, then query cache is enabled,
memory is allocated, and all queries that do not exceed the query_
cache_limit value or use the SQL_NO_CACHE option are cached.

 ° If the query_cache_type value is 0 and query_cache_size is 0,
then no memory is allocated, and cache is disabled.
If query_cache_size is greater than 0, then memory is allocated,
but nothing is cached—that is, cache is disabled.

• query_cache_size: query_cache_size: This indicates how much memory
will be allocated. Some think that the more memory is used, the better it will
be, but this is just a misunderstanding. It all depends on the database size,
query types and ratios between read and writes, hardware, database traffic,
and other factors. A good value for query_cache_size is between 100 MB
and 200 MB; then, you can monitor the performance and other variables on
which query cache depends, as mentioned, and adjust the size. We have used
128MB for a medium traffic Magento website and it is working perfectly. Set
this value to 0 to disable query cache.

• query_cache_limit: This defines the maximum size of a query dataset to
be cached. If a query dataset's size is larger than this value, it isn't cached.
The value of this configuration can be guessed by finding out the largest
SELECT query and the size of its returned dataset.

Storage engines
Storage engines (or table types) are a part of core MySQL and are responsible for
handling operations on tables. MySQL provides several storage engines, and the
two most widely used are MyISAM and InnoDB. Both these storage engines have
their own pros and cons, but InnoDB is always prioritized. MySQL started using
InnoDB as the default storage engine, starting from 5.5.

Improving Database Performance

[76]

MySQL provides some other storage engines that have their own
purposes. During the database design process, which table should
use which storage engine can be decided. A complete list of storage
engines for MySQL 5.6 can be found at http://dev.mysql.com/
doc/refman/5.6/en/storage-engines.html.

A storage engine can be set at database level, which is then used as the default storage
engine for each newly created table. Note that the storage engine is the table's base,
and different tables can have different storage engines in a single database. What if
we have a table already created and want to change its storage engine? It is easy. Let's
say that our table name is pkt_users, its storage engine is MyISAM, and we want to
change it to InnoDB; we will use the following MySQL command:

ALTER TABLE pkt_users ENGINE=INNODB;

This will change the storage engine value of the table to INNODB.

Now, let's discuss the difference between the two most widely used storage engines:
MyISAM and InnoDB.

The MyISAM storage engine
A brief list of features that are or are not supported by MyISAM is as follows:

• MyISAM is designed for speed, which plays best with the SELECT statement.
• If a table is more static—that is, the data in this table is less frequently

updated/deleted and mostly only fetched—then MyISAM is the best
option for this table.

• MyISAM supports table-level locking. If a specific operation needs to be
performed on the data in a table, then the complete table can be locked.
During this lock, no operations can be performed on this table. This can
cause performance degradation if the table is more dynamic—that is,
if the data is frequently changed in this table.

• MyISAM does not have support for foreign keys.
• MyISAM supports full-text search.
• MyISAM does not support transactions. So, there is no support for COMMIT

and ROLLBACK. If a query on a table is executed, it is executed, and there is
no coming back.

• Data compression, replication, query caching, and data encryption
is supported.

• The cluster database is not supported.

http://dev.mysql.com/doc/refman/5.6/en/storage-engines.html
http://dev.mysql.com/doc/refman/5.6/en/storage-engines.html

Chapter 4

[77]

The InnoDB storage engine
A brief list of features that are or are not supported by InnoDB is as follows:

• InnoDB is designed for high reliability and high performance when
processing a high volume of data.

• InnoDB supports row-level locking. It is a good feature and is great for
performance. Instead of locking the complete table as with MyISAM, it
locks only the specific row for the SELECT, DELETE, or UPDATE operations,
and during these operations, other data in this table can be manipulated.

• InnoDB supports foreign keys and forcing foreign keys constraints.
• Transactions are supported. COMMIT and ROLLBACK are possible, so data

can be recovered from a specific transaction.
• Data compression, replication, query caching, and data encryption

is supported.
• InnoDB can be used in a cluster environment, but it does not have full support.

However, InnoDB tables can be converted to the NDB storage engine, which is
used in the MySQL cluster by changing the table engine to NDB.

In the following sections, we will discuss some more performance features that are
related to InnoDB. Values for the following configuration are set in the my.cnf file.

innodb_buffer_pool_size
This setting defines how much memory should be used for InnoDB data and the
indices loaded into memory. For a dedicated MySQL server, the recommended
value is 50-80% of the installed memory on the server. If this value is set too high,
there will be no memory left for the operating system and other subsystems of
MySQL, such as transaction logs. So, let's open our my.cnf file, search for innodb_
buffer_pool_size, and set the value between the recommended value (that is,
50-80%) of our RAM.

innodb_buffer_pool_instances
This feature is not that widely used. It enables multiple buffer pool instances to work
together to reduce the chances of memory contentions on a 64-bit system and with a
large value for innodb_buffer_pool_size.

There are different choices on which the value for innodb_buffer_pool_instances
are calculated. One way is to use one instance per GB of innodb_buffer_pool_size.
So, if the value of innodb_bufer_pool_size is 16 GB, we will set innodb_buffer_
pool_instances to 16.

Improving Database Performance

[78]

innodb_log_file_size
The innodb_log_file_size is the the size of the log file that stores every query
information executed. For a dedicated server, a value up to 4 GB is safe, but the time
taken for crash recovery may increase if the log file's size is too large. So, in best
practice, it is kept in between 1 and 4 GB.

The Percona Server - a fork of MySQL
According to the Percona website, Percona is a free, fully compatible, enhanced, open
source, and drop-in replacement for MySQL that provides superior performance,
scalability, and instrumentation.

Percona is a fork of MySQL with enhanced features for performance. All the features
available in MySQL are available in Percona. Percona uses an enhanced storage
engine called XtraDB. According to the Percona website, it is an enhanced version
of the InnoDB storage engine for MySQL that has more features, faster performance,
and better scalability on modern hardware. Percona XtraDB uses memory more
efficiently in high-load environments.

As mentioned earlier, XtraDB is a fork of InnoDB, so all the features available in
InnoDB are available in XtraDB.

Installing the Percona Server
Percona is only available for Linux systems. It is not available for Windows as of
now. In this book, we will install Percona Server on Debian 8. The process is same
for both Ubuntu and Debian.

To install the Percona Server on other Linux flavors, check out the
Percona installation manual at https://www.percona.com/doc/
percona-server/5.5/installation.html. As of now, they
provide instructions for Debian, Ubuntu, CentOS, and RHEL. They also
provide instructions to install the Percona Server from sources and Git.

https://www.percona.com/doc/percona-server/5.5/installation.html
https://www.percona.com/doc/percona-server/5.5/installation.html

Chapter 4

[79]

Now, let's install the Percona Server through the following steps:

1. Open your sources list file using the following command in your terminal:
sudo nano /etc/apt/sources.list

If prompted for a password, enter your Debian password. The file will
be opened.

2. Now, place the following repository information at the end of the
sources.list file:
deb http://repo.percona.com/apt jessie main
deb-src http://repo.percona.com/apt jessie main

3. Save the file by pressing CTRL + O and close the file by pressing CTRL + X.
4. Update your system using the following command in the terminal:

sudo apt-get update

5. Start the installation by issuing the following command in the terminal:
sudo apt-get install percona-server-server-5.5

6. The installation will be started. The process is the same as the MySQL server
installation. During the installation, the root password for the Percona Server
will be asked; you just need to enter it. When the installation is complete, you
will be ready to use the Percona Server in the same way as MySQL.

7. Configure the Percona Server and optimize it as discussed in the
earlier sections.

MySQL performance monitoring tools
There is always a need to monitor the performance of database servers. For this
purpose, there are many tools available that make it easy to monitor MySQL servers
and performance. Most of them are open source and free, and some provide a GUI.
The command-line tools are more powerful and the best to use, though it takes a
little time to understand and get used to them. We will discuss a few here.

Improving Database Performance

[80]

phpMyAdmin
This is the most famous, web-based, open source, and free tool available to manage
MySQL databases. Despite managing a MySQL server, it also provides some good
tools to monitor a MySQL server. If we log in to phpMyAdmin and then click on the
Status tab at the top, we will see the following screen:

The Server tab shows us basic data about the MySQL server, such as when it started,
how much traffic is handled from the last start, information about connections, and
so on.

The next is Query Statistics. This section provides full stats about all of the queries
executed. It also provides a pie chart, which visualizes the percentage of each query
type, as shown in the following screenshot.

If we carefully look at the chart, we can see that we have 54% of the SELECT queries
running. If we use some kind of cache, such as Memcached or Redis, these SELECT
queries should not be this high. So, this graph and statistics information provides us
with a mean to analyze our cache systems.

Chapter 4

[81]

The next option is All Status Variables, which lists all of the MySQL variables and
their current values. In this list, one can easily find out how MySQL is configured.
In the following screenshot, our query cache variables and their values are shown:

Improving Database Performance

[82]

The next option that phpMyAdmin provides is Monitor. This is a very powerful tool
that displays the server resources and their usages in real time in a graphical way.

As shown in the preceding screenshot, we can see Questions, Connections/Processes,
System CPU Usage, Traffic, System Memory, and System swap in a nice graphical
interface.

The last important section is Advisor. This gives us advice regarding the settings for
performance. It gives you as many details as possible so that the MySQL server can
be tuned for performance. A small section from the advisor section is shown in the
following screenshot:

Chapter 4

[83]

If all these advices are applied, some performance can be gained.

The MySQL workbench
This is a desktop application from MySQL and is fully equipped with tools
to manage and monitor the MySQL server. It provides us with a dashboard for
performance in which all the data related to the server can be seen in a beautiful
and graphical way, as shown in the screenshot that follows:

Improving Database Performance

[84]

Percona Toolkit
All the tools mentioned before are good and provide some visual information about
our database server. However, they are not good enough to show us some more
useful information or provide more features that can make our lives easy. For this
purpose, another command-line toolkit is available, which is called Percona Toolkit.

Percona Toolkit is a set of more than 30 command-line tools, which includes those
used to do an analysis of slow queries, archive, optimize indices and many more.

Percona Toolkit is free and open source and is available under
GPL. Most of its tools run on Linux/Unix-based systems, but
some can run on Windows too. An installation guide can be
found at https://www.percona.com/doc/percona-
toolkit/2.2/installation.html. A complete set of
tools can be found at https://www.percona.com/doc/
percona-toolkit/2.2/index.html.

Now, let's discuss a few tools in the subsections to follow.

pt-query-digest
This tool analyzes queries from slow, general, and binary log files. It generates a
sophisticated report about the queries. Let's run this tool for slow queries using the
following command:

Pt-query-digest /var/log/mysql/mysql-slow.log

After entering the preceding command in the terminal, we will see a long report.
Here, we will discuss a short part of the report, as shown in the following screenshot:

https://www.percona.com/doc/percona-toolkit/2.2/installation.html
https://www.percona.com/doc/percona-toolkit/2.2/installation.html
https://www.percona.com/doc/percona-toolkit/2.2/index.html
https://www.percona.com/doc/percona-toolkit/2.2/index.html

Chapter 4

[85]

In the preceding screenshot, slow queries are listed with the slowest at the top. The
first query, which is a SELECT query, takes the most time, which is about 12% of the
total time. The second query, which is also a SELECT query, takes 11.5% of the total
time. From this report, we can see which queries are slow so that we can optimize
them for the best performance.

Also, pt-query-digest displays information for each query, as shown in the following
screenshot. In the screenshot, data about the first query is mentioned, including the
total timing; percentage (pct) of time; min, max, and average time; bytes sent; and
some other parameters:

pt-duplicate-key-checker
This tool finds duplicate indices and duplicate foreign keys either in a set of specified
tables or in a complete database. Let's execute this tool again in a large database
using the following command in the terminal:

Pt-duplicate-key-checker –user packt –password dbPassword –database
packt_pub

Improving Database Performance

[86]

When executed, the following output is printed:

At the end of the report, a summary of the indices is displayed, which is
self-explanatory. Also, this tool prints out an ALTER query for each duplicate
index that can be executed as a MySQL query to fix the index, as follows:

Pt-variable-advisor

This tool displays MySQL config information and advice for each query. This is a
good tool that can help us set up MySQL configurations properly. We can execute
this tool by running the following command:

Pt-variable-advisor –user packt –password DbPassword localhost

After execution, the following output will be displayed:

There are many other tools provided by Percona Toolkit that are out of the scope
of this book. However, the documentation at https://www.percona.com/doc/
percona-toolkit/2.2/index.html is very helpful and easy to understand.
It provides complete details for each tool, including its description and risks,
how to execute it, and other options if there are any. This documentation is
worth reading if you wish to understand any tool in Percona Toolkit.

https://www.percona.com/doc/percona-toolkit/2.2/index.html
https://www.percona.com/doc/percona-toolkit/2.2/index.html

Chapter 4

[87]

Percona XtraDB Cluster (PXC)
Percona XtraDB Cluster provides a high-performance cluster environment that
can help easily configure and manage a database on multiple servers. It enables
databases to communicate with each other using the binary logs. The cluster
environment helps divide the load among different database servers and provides
safety from failure in case a server is down.

To set up the cluster, we need the following servers:

• One server with IP 10.211.55.1, which we will call Node1
• A second server with IP 10.211.55.2, which we will call Node2
• And a third server with IP 10.211.55.3, which we will call Node3

As we already have the Percona repository in our sources, let's start by installing and
configuring Percona XtraDB Cluster, also called PXC. Perform the following steps:

1. First, install Percona XtraDB Cluster on Node1 by issuing the following
command in the terminal:
apt-get install percona-xtradb-cluster-56

The installation will start similarly to a normal Percona Server installation.
During the installation, the password for a root user will be also asked.

2. When the installation is complete, we need to create a new user that has
replication privileges. Issue the following commands in the MySQL terminal
after logging in to it:
CREATE USER 'sstpackt'@'localhost' IDENTIFIED BY
'sstuserpassword';

GRANT RELOAD, LOCK TABLES, REPLICATION CLIENT ON *.* TO
'sstpackt'@'localhost';

FLUSH PRIVILEGES;

The first query creates a user with the username sstpackt and password
sstuserpassword. The username and password can be anything, but a
good and strong password is recommended. The second query sets proper
privileges to our new user, including locking tables and replication. The third
query refreshes the privileges.

3. Now, open the MySQL configuration file located at /etc/mysql/my.cnf.
Then, place the following configuration in the mysqld block:
#Add the galera library
wsrep_provider=/usr/lib/libgalera_smm.so

Improving Database Performance

[88]

#Add cluster nodes addresses
wsrep_cluster_address=gcomm://10.211.55.1,10.211.55.2,
10.211.55.3

#The binlog format should be ROW. It is required for galera to
work properly
binlog_format=ROW

#default storage engine for mysql will be InnoDB
default_storage_engine=InnoDB

#The InnoDB auto increment lock mode should be 2, and it is
required for galera
innodb_autoinc_lock_mode=2

#Node 1 address
wsrep_node_address=10.211.55.1

#SST method
wsrep_sst_method=xtrabackup

#Authentication for SST method. Use the same user name and
password created in above step 2
wsrep_sst_auth="sstpackt:sstuserpassword"

#Give the cluster a name
wsrep_cluster_name=packt_cluster

Save the file after adding the preceding configuration.

4. Now, start the first node by issuing the following command:
/etc/init.d/mysql bootstrap-pxc

This will bootstrap the first node. Bootstrapping means getting the initial
cluster up and running and defining which node has the correct information
and which one all the other nodes should sync to. As Node1 is our initial
cluster node and we created a new user here, we have to only bootstrap Node1.

SST stands for State Snapshot Transfer. It is responsible for copying
full data from one node to another. It is only used when a new node
is added to the cluster and this node has to get complete initial data
from an existing node. Three SST methods are available in Percona
XtraDB Cluster, mysqldump, rsync, and xtrabackup.

Chapter 4

[89]

5. Log in to the MySQL terminal on the first node and issue the
following command:
SHOW STATUS LIKE '%wsrep%';

A very long list will be displayed. A few of them are shown in the
following screenshot:

6. Now, repeat Step 1 and Step 3 for all nodes. The only configuration that
needs to be changed for each node is wsrep_node_address, which should
be the IP address of the node. Edit the my.cnf configuration file for all the
nodes and place the node address in wsrep_node_address.

7. Start the two new nodes by issuing the following command in the terminal:
/etc/init.d/mysql start

Now each node can be verified by repeating step 7.

To verify whether the cluster is working fine, create a database in one node and
add some tables and data into the tables. After this, check other nodes for the newly
created database, tables, and the data entered in each table. We will have all this data
synced to each node.

Redis – the key-value cache store
Redis is an open source, in-memory key-value data store that is widely used for
database caching. According to the Redis website (www.Redis.io), Redis supports
data structures such as strings, hashes, lists, sets, and sorted lists. Also, Redis
supports replication and transactions.

Redis installation instructions can be found at
http://redis.io/topics/quickstart.

www.Redis.io
http://redis.io/topics/quickstart

Improving Database Performance

[90]

To check whether Redis is working fine on your server or not, start the Redis server
instance by running the following command in the terminal:

redis server

Then issue the following command in a different terminal window:

redis-cli ping

If the output of the preceding command is as follows, the Redis server is ready to
be run:

Chapter 4

[91]

Redis provides a command line, which provides some useful commands. There
are two ways to execute commands on the Redis server. You can either use the
previous method or just type redis-cli and hit Enter; we will be presented with
the Redis command line, where we can then just type the Redis commands that
will be executed.

By default, Redis uses the IP 127.0.0.1 and port 6379. Remote connections are
not allowed, though remote connections can be enabled. Redis stores data that
is already created in the database. Database names are integer numbers, such as
0, 1, 2, and so on.

We won't go in much detail about Redis here, but we will discuss a few commands
that are worth noting. Note that all these commands can be either executed in the
previous way, or we can just enter the redis-cli command window and type
the commands without typing redis-cli. Also, the following commands can be
executed directly in PHP, which makes it possible to clear out the cache directly
from our PHP application:

• SELECT: This command changes the current database. By default, redis-cli
will be opened at database 0. So, if we want to go to database 1, we will run
the following command:
SELECT 1

• FLUSHDB: This command flushes the current database. All keys or data from
the current database will be deleted.

• FLUSHALL: This command flushes all the databases, no matter which database
it is executed in.

• KEYS: This command lists all the keys in the current database matching a
pattern. The following command lists all the keys in the current database.
KEYS *

Now, it's time for some action in PHP with Redis.

As of writing this topic, PHP 7 does not have built-in support for
Redis yet. For this book's purpose, we compiled the PHPRedis
module for PHP 7, and it works very nicely. The module can be
found at https://github.com/phpredis/phpredis.

https://github.com/phpredis/phpredis

Improving Database Performance

[92]

Connecting with the Redis server
As mentioned before, by default, the Redis server runs on the IP 127.0.0.1 and
port 6379. So, to make a connection, we will use these details. Take a look at the
following code:

$redisObject = new Redis();
if(!$redisObject->connect('127.0.0.1', 6379))
 die("Can't connect to Redis Server");

In the first line, we instantiated a Redis object by the name of redisObject, which
is then used in the second line to connect to the Redis server. The host is the local IP
address 127.0.0.1, and the port is 6379. The connect() method returns TRUE if the
connection is successful; otherwise, it returns FALSE.

Storing and fetching data from the
Redis server
Now, we are connected to our Redis server. Let's save some data in the Redis database.
For our example, we want to store some string data in the Redis database. The code is
as follows:

//Use same code as above for connection.
//Save Data in to Redis database.
$rdisObject->set('packt_title', 'Packt Publishing');

//Lets get our data from database
echo $redisObject->get('packt_title');

The set method stores data into the current Redis database and takes two arguments:
a key and a value. A key can be any unique name, and a value is what we need to
store. So, our key is packt_title, and the value is Packt Publishing. The default
database is always set to 0 (zero) unless explicitly set otherwise. So, the preceding set
method will save our data to database 0 with the packt_title key.

Now, the get method is used to fetch data from the current database. It takes the key
as the argument. So, the output of the preceding code will be our saved string data
Packt Publishing.

Chapter 4

[93]

Now, what about arrays or a set of data coming from the database? We can store
them in several ways in Redis. Let's first try the normal strings way, as shown here:

//Use same connection code as above.

/* This $array can come from anywhere, either it is coming from
database or user entered form data or an array defined in code */

$array = ['PHP 5.4', PHP 5.5, 'PHP 5.6', PHP 7.0];

//Json encode the array
$encoded = json_encode($array);

//Select redis database 1
$redisObj->select(1);

//store it in redis database 1
$redisObject->set('my_array', $encoded);

//Now lets fetch it
$data = $redisObject->get('my_array');

//Decode it to array
$decoded = json_decode($data, true);

print_r($decoded);

The output of the preceding code will be the same array. For testing purposes,
we can comment out the set method and check whether the get method fetches
the data or not. Remember that in the preceding code, we stored the array as a json
string, then fetched it as a json string, and decoded it to the array. This is because
we used the methods that are available for the string datatype, and it is not possible
to store arrays in the string datatype.

Also, we used the select method to select another database and use it instead of 0.
This data will be stored in database 1 and can't be fetched if we are at database 0.

A complete discussion of Redis is out of the scope of this book.
So, we have provided an introduction. Note that if you use any
framework, you have built-in libraries available for Redis that
are easy to use, and any datatype can be used easily.

Improving Database Performance

[94]

Redis management tools
Redis management tools provide an easy way to manage Redis databases. These
tools provide features so that every key can be checked and a cache can be cleared
easily. One default tool comes with Redis, called Redis-cli, and we discussed it
earlier. Now, let's discuss a visual tool that is great and easy to use, called Redis
Desktop Manage (RDM). A screenshot of the main window of RDM looks like the
following screenshot:

RDM provides the following features:

• It connects to remote multiple Redis servers
• It displays data in a specific key in different formats
• It adds new keys to a selected database
• It adds more data to a selected key
• It edits/deletes keys and their names
• It supports SSH and SSL and is cloud ready

There are some other tools that can be used, but RDM and Redis-cli are the best and
easiest to use.

Chapter 4

[95]

Memcached key-value cache store
According to the Memcached official website, it's a free, open source, high
performance, and distributed memory object caching system. Memcached is an
in-memory key-value store that can store datasets from a database or API calls.

Similarly to Redis, Memcached also helps a lot in speeding up a website. It stores the
data (strings or objects) in the memory. This allows us to reduce the communication
with outside resources, such as databases and or APIs.

We are assuming that Memcached is installed on the server.
Also, the PHP extension for PHP 7 is also assumed to be installed.

Now, let's play a little with Memcachd in PHP. Take a look at the following code:

//Instantiate Memcached Object
$memCached = new Memcached();

//Add server
$memCached->addServer('127.0.0.1', 11211);

//Lets get some data
$data = $memCached->get('packt_title');

//Check if data is available
if($data)
{
 echo $data;
}
else
{
 /*No data is found. Fetch your data from any where and add to
memcached */

 $memCached->set('packt_title', 'Packt Publishing');

}

Improving Database Performance

[96]

The preceding code is a very simple example of using Memcached. The comments
are written with each line of code and are self-explanatory. After instantiating a
Memcached object, we have to add a Memcached server. By default, the Memcached
server server runs on the localhost IP, which is 127.0.0.1, and on the port 11211. After
this, we checked for some data using a key, and if it is available, we can process it
(in this case, we displayed it. It can be returned, or whatever processing is required
can be carried out.). If the data is not available, we can just add it. Please note that
the data can come from a remote server API or from the database.

We have just provided an introduction to Memcached and how it can
help us store data and improve performance. A complete discussion is
not possible in this title. A good book on Memcached is Getting Started
with Memcached by Packt Publishing.

Summary
In this chapter, we covered MySQL and the Percona Server. Also, we discussed
in detail query caching and other MySQL configuration options for performance
in detail. We mentioned different storage engines, such as MyISAM, InnoDB, and
Percona XtraDB. We also configured Percona XtraDB Cluster on three nodes. We
discussed different monitoring tools, such as PhpMyAdmin monitoring tools, MySQL
workbench performance monitoring, and Percona Toolkit. We also discussed Redis
and Memcached caching for PHP and MySQL.

In the next chapter, we will discuss benchmarking and different tools. We will use
XDebug, Apache JMeter, ApacheBench, and Siege to benchmark different open
source systems, such as WordPress, Magento, Drupal, and different versions of PHP,
and compare their performance with PHP 7.

[97]

Debugging and Profiling
During development, every developer faces problems, and it becomes unclear what
is really going on here and why the problem is generated. Most the time, these issues
can be logical or with the data. It is always hard to find such issues. Debugging is a
process to find such issues and problems and fix them. Similarly, we often need to
know how many resources a script consumes, including memory consumption, CPU,
and how much time it takes to execute.

In this chapter, we will cover the following topics:

• Xdebug
• Debugging with Sublime Text 3
• Debugging with Eclipse
• Profiling with Xdebug
• PHP DebugBar

Xdebug
Xdebug is an extension for PHP that provides both debugging and profiling
information for PHP scripts. Xdebug displays a full-stake trace information for
errors, including function names, line numbers, and filenames. Also, it provides
the ability to debug scripts interactively using different IDEs, such as Sublime Text,
Eclipse, PHP Storm, and Zend Studio.

Debugging and Profiling

[98]

To check whether Xdebug is installed and enabled on our PHP installation, we need
to check the phpinfo() details. On the phpinfo details page, search for Xdebug, and
you should see details similar to the following screenshot:

This means that our PHP installation has Xdebug installed. Now, we need to
configure Xdebug. Either the Xdebug configuration will be in the php.ini file,
or it will have its separate .ini file. At our installation, we will have a separate
20-xdebug.ini file placed at the /etc/php/7.0/fpm/conf.d/ path.

For the purpose of this book, we will use the Homestead
Vagrant box from Laravel. It provides complete tools on the
Ubuntu 14.04 LTS installation, including PHP7 with Xdebug,
NGINX, and MySQL. For the purpose of development, this
Vagrant box is a perfect solution. More information can be
found at https://laravel.com/docs/5.1/homestead.

Now, open the 20-xdebug.ini file and place the following configuration in it:

zend_extension = xdebug.so
xdebug.remote_enable = on
xdebug.remote_connect_back = on
xdebug.idekey = "vagrant"

The preceding are the minimum configurations we should use that enable remote
debugging and set an IDE key. Now, restart PHP by issuing the following command
in the terminal:

sudo service php-fpm7.0 restart

Now we are ready to debug some code.

Debugging with Sublime Text
The Sublime Text editor has a plugin that can be used to debug PHP code with
Xdebug. First, let's install the xdebug package for Sublime Text.

For this topic, we will use Sublime Text 3, which is still in beta.
It is your own choice to use version 2 or 3.

https://laravel.com/docs/5.1/homestead

Chapter 5

[99]

First, go to Tools | Command Pallet. A popup similar to the following will
be displayed:

Select Package Control: Install Package, and a popup similar to the following
screenshot will be displayed:

Type in xdebug, and the Xdebug Client package will be displayed. Click on it and
wait for a while until it is installed.

Now, create a project in Sublime Text and save it. Open the Sublime Text project file
and insert the following code in it:

{
 "folders":
 [
 {

Debugging and Profiling

[100]

 "follow_symlinks": true,
 "path": "."
 }
],

"settings": {
 "xdebug": {
 "path_mapping": {
 "full_path_on_remote_host" : "full_path_on_local_host"
 },
 "url" : http://url-of-application.com/,
 "super_globals" : true,
 "close_on_stop" : true,
 }
 }
}

The highlighted code is important, and it has to be entered for Xdebug. Path mapping
is the most important part. It should have a full path to the root of the application on
the remote host and a full path to the root of the application on the localhost.

Now, let's start debugging. Create a file at the project's root, name it index.php, and
place the following code in it:

$a = [1,2,3,4,5];
$b = [4,5,6,7,8];

$c = array_merge($a, $b);

Now, right-click on a line in the editor and select Xdebug. Then, click on Add/Remove
Breakpoint. Let's add a few breakpoints as shown in the following screenshot:

Chapter 5

[101]

When a breakpoint is added to a line, a filled circle will be displayed on the left-hand
side near the line number, as can be seen in the preceding screenshot.

Now we are ready to debug our PHP code. Navigate to Tools | Xdebug | Start
Debugging (Launch in Browser). A browser window will open the application
along with a Sublime Text debug session parameter. The browser windows will be
in the loading state because as soon as the first breakpoint is reached, the execution
stops. The browser window will be similar to the following:

Some new small windows will also open in the Sublime Text editor that will display
debugging information along with all the variables available, as in the following
screenshot:

Debugging and Profiling

[102]

In the preceding screenshot, our $a, $b, and $c arrays are uninitialized because the
execution cursor is at Line 22, and it has stopped there. Also, all server variables,
cookies, environment variables, request data, and POST and GET data can be seen
here. This way, we can debug all kind of variables, arrays, and objects and check
what data each variable, object, or array holds at a certain point. This gives us the
possibility to find out the errors that are very hard to detect without debugging.

Now, let's move the execution cursor ahead. Right-click in the editor code section
and go to Xdebug | Step Into. The cursor will move ahead, and the variables data
may change according to the next line. This can be noted in the following screenshot:

Debugging can be stopped by clicking on Tools | Xdebug | Stop Debugging.

Debugging with Eclipse
Eclipse is the most free and powerful IDE widely used. It supports almost all major
programming languages, including PHP. We will discuss how to configure Eclipse
to use Xdebug to debug.

Chapter 5

[103]

First, open the project in Eclipse. Then, click on the down arrow to the right of the
small bug icon in the tool bar, as shown in the following screenshot:

After this, click on the Debug Configuration menu, and the following windows
will open:

Select PHP Web Application on left panel and then click on the Add New icon in
the top-left corner. This will add a new configuration, as shown in the preceding
screenshot. Give the configuration a name. Now, we need to add a PHP server to
our configuration. Click on the New button on the right-hand side panel, and the
following window will open:

Debugging and Profiling

[104]

We will enter the server name as PHP Server. The server name can be anything as
long as it is user-friendly and can be recognized for later use. In the Base URL field,
enter the complete URL of the application. Document Root should be the local path
of the root of the application. After entering all the valid data, click on the Next
button, and we will see the following window:

Select XDebug in the Debugger drop-down list and leave rest of the fields as they
are. Click on the Next button, and we will have the path mapping window. It is very
important to map the correct local path to the correct remote path. Click on the Add
button, and we will have the following window:

Chapter 5

[105]

Enter the full path to the document root of the application on the remote server. Then,
select Path in File System and enter the local path of the application's document root.
Click on OK and then click on the Finish button in the path mapping window. Then,
click on Finish in the next window to complete adding a PHP server.

Now, our configuration is ready. First, we will add some breakpoints to our PHP file
by clicking on the line number bar and a small blue dot will appear there, as shown
in the following screenshot. Now, click on the small bug icon on the tool bar, select
Debug As, and then click on PHP Web Application. The debug process will start,
and a window will be opened in the browser. It will be in the loading state, same as
we saw in Sublime Text debugging. Also, the Debug perspective will be opened in
Eclipse, as shown here:

When we click on the small (X)= icon in the right-hand side bar, we will see all the
variables there. Also, it is possible to edit any variable data, even the element values
of any array, object properties, and cookie data. The modified data will be retained
for the current debug session.

To step into the next line, we will just press F5, and the execution cursor will be
moved to the next line. To step out to the next breakpoint, we will press F6.

Debugging and Profiling

[106]

Profiling with Xdebug
Profiling gives us information about the cost of each script or task executed in an
application. It helps to provide information about how much time a task takes,
and hence we can optimize our code to consume less time.

Xdebug has a profiler that is disabled by default. To enable the profiler, open the
configuration file and place the following two lines in it:

xdebug.profiler_enable=on
xdebug.profiler_output_dir=/var/xdebug/profiler/

The first line enables the profiler. The second line, where we defined the output
directory for the profiler file, is important. In this directory, Xdebug will store the
output file when the profiler is executed. The output file is stored with a name, such
as cachegrind.out.id. This file contains all the profile data in a simple text format.

Now, we are set to profile a simple installation of the Laravel application home page.
The installation is a fresh and clean one. Now, let's open the application in a browser
and append ?XDEBUG_PROFILE=on at the end, as shown here:

http://application_url.com?XDEBUG_PROFILE=on

After this page is loaded, a cachegrind file will be generated at the specified location.
Now, when we open the file in a text editor, we will just see some text data.

The cachegrind file can be opened with different tools. One
of the tools for Windows is WinCacheGrind. For Mac, we have
qcachegrind. Any of these applications will view the file data in
such a way that we will see all the data in an interactive form that
can be easily analyzed. Also, PHP Storm has a nice analyzer for
cachegrind. For this topic, we used PHP Storm IDE.

http://application_url.com?XDEBUG_PROFILE=on

Chapter 5

[107]

After opening the file in PHP Storm, we will get a window similar to the
following screenshot:

As shown in the preceding screenshot, we have execution statistics in the upper
pane that shows the time (in ms) taken by each called script individually along
with the number of times it is called. In the lower pane, we have the callees that
called this script.

We can analyze which script takes more time, and we can optimize this script
to reduce its execution time. Also, we can find out whether, at a certain point,
we need to call a specific script or not. If not, then we can remove this call.

PHP DebugBar
PHP DebugBar is another awesome tool that displays a nice and full information bar
at the bottom of the page. It can display custom messages added for the purposes of
debugging and full request information including $_COOKIE, $_SERVER, $_POST, and
$_GET arrays along with the data if any of them have. Besides that, PHP DebugBar
displays details about exceptions if there are any, database queries executed, and
their details. Also it displays the memory taken by the script and the time the page
is loaded in.

Debugging and Profiling

[108]

According to the PHP Debug website, DebugBar integrates easily in any application
project and displays debugging and profiling data from any part of the application.

Its installation is easy. You can either download the complete source code, place it
somewhere in your application, and set up the autoloader to load all the classes, or
use composer to install it. We will use composer as it is the easy and clean way to
install it.

Composer is a nice tool for PHP to manage the dependencies
of a project. It is written in PHP and is freely available from
https://getcomposer.org/. We assume that composer
is installed on your machine.

In your project's composer.json file, place the following code in the required section:

"maximebf/debugbar" : ">=1.10.0"

Save the file and then issue the following command:

composer update

The Composer will start updating the dependencies and install composer. Also, it will
generate the autoloader file and/or the other dependencies required for DebugBar.

The preceding composer command will only work if
composer is installed globally on the system. If it is not,
we have to use the following command:

php composer.phar update

The preceding command should be executed in the
folder where composer.phar is placed.

https://getcomposer.org/

Chapter 5

[109]

After it is installed, the project tree for the DebugBar can be as follows:

The directories' structure may be a little bit different, but normally, it will be as
we previously noted. The src directory has the complete source code for DebugBar.
The vendor directory has some third-party modules or PHP tools that may or may
not be required. Also, note that the vendor folder has the autoloader to autoload all
the classes.

Let's check our installation now to see whether it is working or not. Create a new file
in your project root and name it index.php. After this, place the following code in it:

<?php
require "vendor/autoloader.php";
use Debugbar\StandardDebugBar;
$debugger = new StandardDebugBar();
$debugbarRenderer = $debugbar->getJavascriptRenderer();

Debugging and Profiling

[110]

//Add some messages
$debugbar['messages']->addMessage('PHP 7 by Packt');
$debugbar['messages']->addMessage('Written by Altaf Hussain');

?>

<html>
 <head>
 <?php echo $debugbarRenderer->renderHead(); ?>
 </head>
 <title>Welcome to Debug Bar</title>
 <body>
 <h1>Welcome to Debug Bar</h1>

 <!—- display debug bar here -->
 <?php echo $debugbarRenderer->render(); ?>

 </body>
</html>

In the preceding code, we first included our autoloader, which is generated
by composer for us to autoload all the classes. Then, we used the DebugBar\
StandardDebugbar namespace. After this, we instantiated two objects:
StandardDebugBar and getJavascriptRenderer. The StandardDebugBar object is
an array of objects that has objects for different collectors, such as message collectors
and others. The getJavascriptRenderer object is responsible for placing the required
JavaScript and CSS code at the header and displaying the bar at the bottom of the page.

We used the $debugbar object to add messages to the message collector. Collectors
are responsible for collecting data from different sources, such as databases, HTTP
requests, messages, and others.

In the head section of the HTML code, we used the renderHead method of
$debugbarRenderer to place the required JavaScript and CSS code. After this,
just before the end of the <body> block, we used the render method of the same
object to display the debug bar.

Now, load the application in the browser, and if you notice a bar at the bottom of
the browser as in the following screenshot, then congrats! DebugBar is properly
installed and is working fine.

Chapter 5

[111]

On the right-hand side, we have the memory consumed by our application and the
time it is loaded in.

If we click on the Messages tab, we will see the messages we added, as shown in the
following screenshot:

DebugBar provides data collectors, which are used to collect data from different
sources. These are called base collectors, and some of the data collectors are as follows:

• The message collector collects log messages, as shown in the
preceding example

• The TimeData collector collects the total execution time as well as the
execution time for a specific operation

• The exceptions collector displays all the exceptions that have occurred
• The PDO collector logs SQL queries
• The RequestData collector collects data of PHP global variables,

such as $_SERVER, $_POST, $_GET, and others
• The config collector is used to display any key-value pairs of arrays

Also, there are some collectors that provide the ability to collect data from third-
party frameworks such as Twig, Swift Mailer, Doctrine, and others. These collectors
are called bridge collectors. PHP DebugBar can be easily integrated into famous PHP
frameworks such as Laravel and Zend Framework 2 too.

A complete discussion of PHP DebugBar is not possible in
this book. Therefore, only a simple introduction is provided
here. PHP DebugBar has a nice documentation that provides
complete details with examples. The documentation can be
found at http://phpdebugbar.com/docs/readme.html.

http://phpdebugbar.com/docs/readme.html

Debugging and Profiling

[112]

Summary
In this chapter, we discussed different tools to debug a PHP application. We used
Xdebug, Sublime Text 3, and Eclipse to debug our applications. Then, we used the
Xdebug profiler to profile an application to find out the execution statistics. Finally,
we discussed PHP DebugBar to debug an application.

In the next chapter, we will discuss load testing tools, which we can use to place load
or virtual visitors on our application in order to load test it, and find out how much
load our application can bear, and how it affects the performance.

[113]

Stress/Load Testing
PHP Applications

After an application is developed, tested, debugged and then profiled, it is time
to bring it to production. However, before going to production, it is best practice
to stress/load test the application. This test will give us an approximate result of
how many requests at a certain time can be handled by our server running the
application. Using these results, we can optimize the application, web server,
database, and our caching tools to get a better result and process
more requests.

In this chapter, we will load test different open source tools on both PHP 5.6 and
PHP 7 and compare these applications' performance for both versions of PHP.

We will cover the following topics:

• Apache JMeter
• ApacheBench (ab)
• Seige
• Load testing Magento 2 on PHP 5.6 and PHP 7
• Load testing WordPress on PHP 5.6 and PHP 7
• Load testing Drupal 8 on PHP 5.6 and PHP 7

Stress/Load Testing PHP Applications

[114]

Apache JMeter
Apache JMeter is a graphical and open source tool used to load test a server's
performance. JMeter is completely written in Java, so it is compatible with all
operating systems that have Java installed. JMeter has a complete set of extensive
tools for every kind of load testing, from static content to dynamic resources and
web services.

Its installation is simple. We need to download it from the JMeter website and then
just run the application. As mentioned before, it will require Java to be installed on
the machine.

JMeter can test FTP servers, mail servers, database servers, queries,
and more. In this book, we can't cover all these topics, so we will only
load test web servers. Apache JMeter's list of features can be found at
http://jmeter.apache.org/.

When we run the application at first, we will see the following window:

http://jmeter.apache.org/

Chapter 6

[115]

To run any kind of test, you need to first create a test plan. A test plan has all the
components required to execute this test. By default, JMeter has a test plan called
Test Plan. Let's name it to our own plan, Packt Publisher Test Plan, as shown
in the following screenshot:

Now, save the test plan, and JMeter we will create a .jmx file. Save it in an
appropriate place.

The next step is to add a thread group. A thread group defines some basic properties for
the test plan, which can be common among all types of tests. To add a thread group, right-
click on the plan in the left panel, then navigate to Add | Threads (Users) | Thread
Group. The following window will be displayed:

The thread group has the following important properties:

• Number of Threads: This is the number of virtual users.
• The Ramp-Up period: This tells JMeter how long it should take to ramp up

to the full capacity of the number of threads. For example, in the preceding
screenshot, we have 40 threads and 80 seconds of ramp-up time; here, JMeter
will take 80 seconds to completely fire up 40 threads, and it will take 2
seconds for each of the three to start.

Stress/Load Testing PHP Applications

[116]

• Loop Count: This tells JMeter how much time it should take to run this
thread group.

• Scheduler: This is used to schedule the execution of the thread group for a
later time.

Now, we will need to add the HTTP request defaults. Right-click on Packt Thread
Group and then go to Add | Config Element | HTTP Request Defaults. A window
similar to the following will appear:

In the preceding window, we have to just enter the URL of the application or the IP
address. If the web server uses cookies, we can add HTTP Cookie Manager too, in
which we can add user-defined cookies with all the data, such as the name, value,
domain, path, and so on.

Next, we will add an HTTP request by right-clicking and navigating to Packt Thread
Group | Add | Sampler | HTTP Request, and the following window will appear:

Chapter 6

[117]

The important field here is Path. We want to run the test only against the home
page, so for this HTTP request, we will just add a slash (/) in the Path field. If we
want to test another path, such as "Contact us", we will need to add another HTTP
request sampler, as in the preceding screenshot. Then, in the path, we will add
path/contact-us.

The HTTP Request sampler can be used to test forms too, where POST requests
can be sent to the URL by selecting the POST method in the Method field. Also,
file upload can be simulated.

The next step is to add some listeners. Listeners provide some powerful views to display
results. The results can be displayed in a table view and different kinds of graphs can
be saved in a file. For this thread group, we will add three listeners: View Results
in Table, Response Time Graph, and Graph Results. Each listener view displays a
different kind of data. Add all the preceding listeners by right-clicking on Packt
Thread Group and then navigating to Add | Listeners. We will have a complete list
of all the available listeners. Add all the three listeners one by one. Our final Packt
Publisher Test Plan panel on the left-hand side of JMeter will look similar to the
following:

Now, we are ready to run our test plan by clicking on the Start button in the upper
tool bar, as shown in the following screenshot:

Stress/Load Testing PHP Applications

[118]

As soon as we click on the Start button (the green arrow pointing to the right-hand
side), JMeter will start our test plan. Now, if we click on the View Results in Table
listener on the left panel, we will see data for each request in a table, as shown in
the following screenshot:

The preceding screenshot shows some interesting data, such as sample time, status,
bytes, and latency.

Sample time is the number of milliseconds in which the server served the complete
request. Status is the status of the request. It can be either a success, warning, or
error. Bytes is the number of bytes received for the request. Latency is the number
of milliseconds in which JMeter received the initial response from the server.

Chapter 6

[119]

Now, if we click on Response Time Graph, we will see a visual graph for the
response time, which is similar to the one that follows:

Now, if we click on Graph Results, we will see the response time data along with
graphs for average, median, deviation, and throughput graphs, as shown in the
following graph:

Stress/Load Testing PHP Applications

[120]

Apache JMeter provides very powerful tools to load test our web servers by
simulating users. It can provide us with data regarding the amount of load that
makes our web server's response slow, and using this data, we can optimize
our web server and application.

ApacheBench (ab)
ApacheBench (ab) is also provided by Apache and is a command-line tool. It is a
lovely tool for command line lovers. This tool is normally installed on most Linux
flavors by default. Also, it is installed with Apache, so if you have Apache installed,
you will probably have ab installed too.

The basic syntax for an ab command is as follows:

ab –n <Number_Requests> -c <Concurrency> <Address>:<Port><Path>

Let's discuss what each part of the preceding command means:

• n: This is the number of requests for test.
• c: This is concurrency, which is the number of simultaneous requests

at a time.
• Address: This is either the application URL or IP address of the web server.
• Port: This is the port number at which the application is running.
• Path: This is the web path of the application that we can use to test. A slash

(/) is used for the home page.

Now, let's conduct a test using the ab tool by issuing the following command:

ab –n 500 –c 10 packtpub.com/

As the default port for the web server is 80, it is not required to mention it. Note the
slash at the end; this is required to place it there because it is the path's part.

Chapter 6

[121]

After executing the preceding command, we will have an output that looks similar to
the following:

We can see some useful information here, including the number of requests per
second, which is 490.3; the total time taken for the test, which is 1.020 seconds;
the shortest request, which is 20 ms; and the longest request, which is 52 ms.

The server load limit can be found by increasing the number of requests and
concurrency level and checking the web server's performance.

Stress/Load Testing PHP Applications

[122]

Siege
Siege is another command-line open source tool to test load and performance. Siege
is an HTTP/FTP load tester and benchmarking utility. It is designed for developers
and administrators to measure the performance of their applications under load.
It can send a configurable number of simultaneous requests to a server and those
requests that place the server under a siege.

Its installation is simple and easy. For Linux and Mac OS X, first download Siege by
issuing the following command in the terminal:

wget http://download.joedog.org/siege/siege-3.1.4.tar.gz

It will download the Siege TAR compressed file. Now, uncompress it by issuing the
following command:

tar –xvf siege-3.1.4.tar.gz

Now, all the files will be in the siege-3.1.4 folder. Build and install it by issuing the
following commands one by one in the terminal:

cd siege-3.1.4

./configure

make

make install

Now, Siege is installed. To confirm this, issue the following command to check the
Siege version:

siege –V

If it displays the version with some other information, then Siege is installed
successfully.

As of writing this book, the current Siege stable version is 3.1.4. Also,
Siege does not support Windows natively, and, of course, Windows
servers can be tested and benchmarked using Siege.

Now, let's have a load test. A basic load test can be executed by running the
following command:

siege some_url_or_ip

Chapter 6

[123]

Siege will then start the test. We have to enter the application URL or server IP that
we want to load test. To stop the test, press Ctrl + C, and we will have an output
similar to the following:

In the preceding screenshot we can see Transactions, Response time, and
Transaction rate along with Longest transaction and Shortest transaction.

By default, Siege creates 15 concurrent users. This can be changed by using the –c
option, which is done by making the following alteration in the command:

siege url_or_ip –c 100

However, Siege has a limitation for the concurrent users, which may be different for
each OS. This can be set in the Siege configuration file. To find out the config file
location and concurrent user limit, issue the following command in terminal:

siege -C

A list of the configuration options will be displayed. Also the resource file or config
file location will be displayed. Open that file and find the config concurrent and set
its value to an appropriate required value.

Stress/Load Testing PHP Applications

[124]

Another important feature of Siege is that a file that has all the URLs that need to be
tested can be used. The file should have a single URL in each line. The –f flag is used
with Siege as follows:

siege -f /path/to/url/file.txt –c 120

Siege will load the file and start load testing each URL.

Another interesting feature of Siege is the internet mode, which can be entered using
the –i flag in the following command:

siege –if path_to_urls_file –c 120

In the internet mode, each URL is hit randomly and mimics a real-life situation, in
which it can't be predicted which URL will be hit.

Siege has lots of useful flags and features. A detailed list can be found
in the official documentation at https://www.joedog.org/siege-
manual/.

Load testing real-world applications
We studied three tools in this chapter to load test. Now, it is time to load test some
real-world applications. In this section, we will test Magento 2, Drupal 8, and
WordPress 4. All these open source tools will have their default data.

We have three VPS configured with NGINX as the web server. One VPS has PHP
5.5-FPM, the second has PHP 5.6-FPM, and the third has PHP 7-FPM installed. The
hardware specs for all the three VPS are same, and all applications we will test will
have the same data and the same versions.

This way, we will benchmark these applications with PHP 5.5, PHP 5.6, and PHP 7
and take a look at how fast these applications can run on different versions of PHP.

In this topic, we won't cover configuring the servers with NGINX, PHP,
and the databases. We will assume that the VPS are configured and that
Magento 2, Drupal 8, and WordPress 4 are installed on them.

https://www.joedog.org/siege-manual/
https://www.joedog.org/siege-manual/

Chapter 6

[125]

Magento 2
Magento 2 is installed on all VPS, and all the caches are enabled for Magento. PHP
OPcache is also enabled. After running the tests, we got an average result for all the
three Magento 2 installations, as shown in the following graphs:

In the preceding chart, the vertical line, or Y-axis, shows the transactions per
second. As can be seen in the charts, Magento 2 on PHP 7 has 29 transactions per
second, while the same Magento 2 installation on the same hardware with PHP 5.6
has 12 transactions per second. Also, on PHP 5.5, the same Magento installation
has 9 transactions per second. So, in this case, Magento runs about 241% faster on
PHP 7 than PHP 5.6 and about 320% faster than in PHP 5.5. This is a very huge
improvement of PHP 7 on both PHP 5.6 and PHP 5.5.

Stress/Load Testing PHP Applications

[126]

WordPress 4
WordPress is installed on all of the three VPS. Unfortunately, there is no default
cache embedded into WordPress, and we will not install any third-party modules,
so no cache is used. The results are still good, as can be seen in the following graphs.
PHP OPcache is enabled.

As can be seen in the preceding graph, WordPress runs 135% faster in PHP 7 than in
PHP 5.6 and 182% faster than in PHP 5.5.

Chapter 6

[127]

Drupal 8
We used the same VPS for PHP 5.5, PHP 5.6, and PHP 7. The default Drupal 8
cache is enabled. After load testing the default home of Drupal 8, we got the
following results:

The preceding graph shows that Drupal 8 runs 178% faster in PHP 7 than in PHP 5.6
and 205% faster than in PHP 5.5.

In the preceding graphs, all these values are approximate values. If a
low-power hardware is used, then smaller values will be generated.
If we use a more powerful multiprocessor-dedicated server with the
web server and database optimizations, we will get higher values. The
point to consider is that we will always get better performance for PHP
7 than PHP 5.6.

Stress/Load Testing PHP Applications

[128]

A combined graph is shown here, which displays the performance improvements for
different applications in PHP 7 over PHP 5.5 and PHP 5.6:

Summary
In this chapter, we discussed a few load testing and benchmarking tools, such as
JMeter, ApacheBench (ab), and Siege. We used each tool to load test, and discussed
the output and what it means. Finally, we load tested three famous open source
applications, Magento 2, WordPress 4, and Drupal 8, and created graphs for each
application's transactions per second in both PHP 7 and PHP 5.6.

In the next chapter, we will discuss best practices for PHP development. These
practices are not limited only to PHP and can be used for any programming language.

[129]

Best Practices in
PHP Programming

So far, we discussed performance-related topics. Now, in this chapter, we will study
best practices in PHP applications' development and deployment. This is a vast topic,
but we will cover it briefly. PHP provides all levels of programmers with the ability
to write quality code easily and quickly. However, when the application advances
to a more complex nature, we forget to follow the best practices. To produce a high
performance PHP application, it is necessary to keep in mind the performance at
every line of the code.

We will cover the following topics:

• Coding styles
• Design patterns
• Service-oriented architecture (SOA)
• Test-driven development (TDD) and PHPUnit testing
• PHP frameworks
• Version control systems and Git
• Deployment

Best Practices in PHP Programming

[130]

Coding styles
There are too many coding styles out there, such as PSR-0, PSR-1, PSR-2, PSR-3, and
so on. Programmers can use different standards as they want, but it is necessary
to follow a standard that is already used in the libraries or a framework in use
to make the code more readable. For example, Laravel uses the PSR-1 and PSR-4
coding standards, so if we are developing in Laravel, we should follow these coding
standards. Some PHP frameworks, such as Yii 2 and Zend Framework 2, follow
the PSR-2 coding standards. However, none of these frameworks stick to a single
standard; most of them follow a mixed standard according to their requirements.

The important point is to follow the standard that is used in the libraries used in
the application. An organization can also use its own coding standards for internal
purposes. It is not a requirement for coding; it is a requirement for readability and
producing quality code that others can understand.

PHP Framework Interop Group (PHP-FIG) is a group whose members defined
coding standards for PHP. Full details about PSR standards can be found on their
website at http://www.php-fig.org/.

Instead of discussing a specific coding standard, let's discuss best practices in coding
styles for PHP:

• The first letter of each word in the class name must be capital. The opening
brace should be on the line after the class declaration, and the closing brace
should be on the line after the class end line. Here's an example:
class Foo
{
 …
 …
 …
}

• Class methods and function names should follow the camel case naming
convention. The starting braces should be on the next line of the class
declaration, and the end brace should be on the line at the end of the function
definition. There should be no spaces between the method name and the
parenthesis. Also, there should be no space between the first argument, the
opening parenthesis, the last argument, and the closing parenthesis. Also,
there should be no space between an argument and the comma at the end of
this argument, but there should be a space between a comma and the next
argument. Here's an example:
public function phpBook($arg1, $arg2, $arg3)
{

http://www.php-fig.org/

Chapter 7

[131]

 …
 …
 …
}

• If there is a namespace declaration, there must be a single empty line after
its declaration. If there are use declarations, all of them must go after that
namespace's declarations. There must be one use declaration per line, and
there must be a space after the use block. Also, the extends and implements
keywords must be on the same line as the class declaration. Here's an example:
namespace Packt\Videos;

use Packt\Books;
use Packt\Presentations;

class PacktClass extends VideosClass implements BaseClass
{
 …
 …
 …
}

• Visibility must be declared for all properties, and the properties must be in
camel case. Also, properties must not be prepended with an underscore for
private or protected visibilities. Take a look at the following example:
class PacktClass
{
 public $books;
 private $electronicBooks;
 …
 …
 …
}

• If there is an abstract keyword, it must come before the class keyword
for classes, and the final keyword must come before the method's visibility
in the case of methods. On the other hand, the static keyword must come
after the method visibility. Take a look at this example:
abstract class PacktClass
{
 final public static function favoriteBooks()
 {
 …

Best Practices in PHP Programming

[132]

 …
 …
 }
}

• All PHP keywords must be used in lowercase, including the true and false
keywords. Constants must be declared and used in capital case.

• For all control structures, there must be a space after the control structure
keyword. If there is an expression for this control structure, there must be no
space between the parenthesis holding this expression and the block of code
that follows. There must be a space after the parenthesis and the starting
brace. The starting brace must be on the same line as the control structure.
The closing brace must be on the line after the end of the body. Refer to the
following code for a better understanding:
if ($book == "PHP 7") {
 …
 …
 …
} else {
 …
 …
 …
}

• In the case of loops, the spaces must be as in the following examples:
for ($h = 0; $h < 10; $h++) {
 …
 …
 …
}

foreach ($books as $key => $value) {
 …
 …
 …
}

while ($book) {
 …
 …
 …
}

Chapter 7

[133]

For the purpose of this book, I did not follow the rule of the opening brace being on
the same line as the control structure declaration and always used it on the next line
of the declaration. I did not find it clearer; it is a personal choice, and anybody can
follow the standards mentioned here.

Standards are good to follow as they make the code more readable and professional.
However, never try to invent your own new standards; always follow those that are
already invented and followed by the community.

Test-driven development (TDD)
Test-driven development is the process of testing every aspect of the application
during development. Either the tests are defined before development and then
development is made to pass these tests, or the classes and libraries are built and
then tested. Testing the application is very important, and launching an application
without tests is like jumping from a 30-floor-high building without a parachute.

PHP does not provide any built-in features to test, but there are other test
frameworks that can be used for this purpose. One of most widely used frameworks
or libraries is PHPUnit. It is a very powerful tool and provides lots of features. Now,
let's have a look at it.

The installation of PHPUnit is easy. Just download it and place it in your project root
so that it can be accessed from the command line.

PHPUnit installation and basic details, including features and examples,
can be found at https://phpunit.de/.

Let's have a simple example. We have a Book class, as follows:

class Book
{
 public $title;
 public function __construct($title)
 {
 $this->title = $title;
}

 public function getBook()
 {
 return $this->title;
 }
}

https://phpunit.de/

Best Practices in PHP Programming

[134]

This is an example of a simple class that initializes the title property when the class
is instantiated. When the getBook method is called, it returns the title of the book.

Now, we want to make a test in which we will check whether the getBook method
returns PHP 7 as a title. So, perform the following steps to create the test:

1. Create a tests directory at your project's root. Create a BookTest.php file in
the tests directory.

2. Now, place the following code in the BookTest.php file:
include (__DIR__.'/../Book.php');

class BookTest extends PHPUnit_Framework_TestCase
{
 public function testBookClass()
 {
 $expected = 'PHP 7';
 $book = new Book('PHP 7');
 $actual = $book->getBook();
 $this->assertEquals($expected, $book);
 }
}

3. Now, we have written our first test. Note that we named our class BookTest,
which extends the PHPUnit_Framework_TestCase class. We can name
our test class whatever we want. However, the name should be easily
recognizable so that we know this is written for the class that needs
to be tested.

4. Then, we added a method named testBookClass. We are also free to select
whatever name we want to give to this method, but it should start with the
word test. If not, PHPUnit will not execute the method and will issue a
warning—in our case, for the preceding test class—that no tests were found.
In the testBookClass method, we created an object of the Book class and
passed PHP 7 as our title. Then, we fetched the title using the getBook
method of the Book class. The important part is the last line of the
testBookClass method, which performs the assertion and checks
whether the data returned from getBook is the desired data or not.

5. Now, we are ready to run our first test. Open the command line or terminal
in the root of the project and issue the following command:
php phpunit.phar tests/BookTest.php

Chapter 7

[135]

When the command is executed, we will have an output similar to the
following screenshot:

Our test is executed successfully as it met the criteria defined in our test.

6. Now, let's change our class a little bit and pass PHP to the Book class, as
shown in the following code:
public function testBookClass()
{
 $book = new Book('PHP');
 $title = $book->getBook();
 $this->assertEquals('PHP 7', $book);
}

7. Now, we are looking for PHP 7, and our Book class returns PHP, so it does not
pass our test. After executing this test, we will have a failure, as shown in the
following screenshot:

Best Practices in PHP Programming

[136]

As seen in the preceding screenshot, we expected PHP 7, and we got an
actual result of PHP 7. The – sign shows the expected value, and the + sign
shows the actual value.

In the previous topic, we discussed how we can perform tests on
our libraries. We only discussed a simple basic test. PHPUnit is not
limited to these simple tests, but covering PHPUnit completely is out
of the scope of this book. A very nice book on PHPUnit is PHPUnit
Essentials, published by Packt Publishing.

Design patterns
A design pattern solves a specific problem. It is not a tool; it is just a description
or template that describes how to solve a specific problem. Design patterns are
important, and they play a good role in writing clean and clear code.

One of the most widely used design patterns in the PHP community is the Model
View Controller (MVC) pattern. Most PHP frameworks are built upon this pattern.
MVC advises you to keep the business logic and data operations (that is, the
model) separate from the presentation (the view). Controllers just play the role of a
middleman between models and views and make the communication between them
possible. There is no direct communication between models and views. If a view
needs any kind of data, it sends a request to the controller. The controller knows
how to operate on this request and, if needed, make a call to the model to perform
any operation on the data (fetch, insert, validate, delete, and so on). Then at last,
the controller sends a response to the view.

In best practices, fat models and skinny controllers are used. This means that
controllers are only used to take a specific action on a request and nothing else. Even
in some modern frameworks, the validation is moved out of the controllers and is
performed at the model level. These models perform all the operations on the data.
In modern frameworks, models are considered as a layer, which can have multiple
parts, such as the business logic, Create Read Update Delete (CRUD) database
operations, data mapper pattern and services, and so on. So, a full load of models
and controllers is just sitting there and enjoying the lazy work load.

Another widely used design pattern is the factory design pattern. This pattern
simply creates objects that are needed to be used. Another good pattern is the
observer pattern, in which an object calls different observers on a specific event or
task on it. This is mainly used for event handling. Yet another widely used pattern is
the singleton pattern, which is used when there is a requirement that only a single
object of a class be used throughout the application's execution. A singleton object
can't be serialized and cloned.

Chapter 7

[137]

Service-oriented architecture (SOA)
In service-oriented architecture, the application's components provide services to each
other on a defined protocol. Each component is loosely coupled with each other, and
the only way of communication between them is through the services they provide.

In PHP, Symfony provides the best way to have SOA as it is mainly an HTTP-centric
framework. Symfony is the most mature, well-tested collection of libraries that
are widely used by other PHP frameworks, such as Zend Framework, Yii, Laravel,
and others.

Let's consider a scenario where we have a backend and a frontend for a website and
a mobile application. Normally, in most applications, the backend and frontend run
on the same code base and on a single access point, and an API or web service is built
for mobile applications to communicate with this backend. It is good, but we need
great. So, for high performance and scalable applications, the separate components
run independently of each other. If they need to communicate with each other, they
communicate through the web services.

Web services are the central communication point between the frontend and
backend and between the backend and mobile applications. The backend is the
main hub of data and any other business logic. It can be standalone and built using
any programming language, such as PHP. The frontend can be built using normal
HTML/CSS, AngularJS, Node.js, jQuery, or any other technology for the frontend.
Similarly, mobile apps can be native or built on cross-platform technologies. The
backend doesn't care what the frontend and mobile apps are built on.

Being object-oriented and reusable
always
This may seem difficult for a small, single-page application in which only a few
things are happening, but this is not the case. The classes are easy to handle, and the
code is always clear. Also, the classes separate the application logic from the views.
This make things more logical. In the earlier days when structure code was used and
a bunch of functions had to be created either in the view files or in a separate file,
this would have been too easy. However, when applications got more complex,
it got more difficult to handle.

Always try to create loosely coupled classes to make them more reusable in other
applications. Also, always perform a single task in each method of the class.

Best Practices in PHP Programming

[138]

PHP frameworks
We all know about frameworks, and they are not essential to a programmer's life.
There are lots of frameworks, and each framework has its own superiority over other
frameworks in some features. All frameworks are good, but what make a framework
not suitable for an application are the application's requirements.

Let's say that we want to build an enterprise-level CRM application, which
framework will suit us best? This is the most important, confusing, and time-wasting
question. First, we need to know the complete requirements for the CRM application,
usage capacity, features, data security, and performance.

Version control system (VCS) and Git
Version controller system provides the flexibility to properly maintain code, changes,
and versions of the application. Using VCS, a complete team can work together on an
application, and they can pull other team members' changes and their own changes
to the system without any big troubles. In case of a disaster, VCS provides the ability
to fall back to an old, more stable version of the application.

Oh wait! Are we talking about VCS? Did we mention Git? Nope! So, let's start
with Git.

Git is a powerful tool. It monitors changes in each file in a branch, and when pushed
to a remote branch, only the changed files are uploaded. Git keeps a history of the
file changes and provides you with the ability to compare the changed files.

A very informative and good book on Git is Git Essentials published by
Packt Publishing. Also, an official and free book about Git can be found at
https://git-scm.com/book/en/v2.

Deployment and Continuous Integration
(CI)
FTP is obsolete. It is not feasible for today, it makes things slow, and a normal
FTP connection is insecure. It is hard for a team to deploy their changes using FTP
because it creates huge conflicts in their code and this may cause problems, while
uploading changes and can override each other's changes.

https://git-scm.com/book/en/v2

Chapter 7

[139]

Using a Git versioning system, such as GitHub, GitLab, and Bitbucket, we can make
our deployment automatic. Different developers use different setups for automatic
deployments, and it all depends on their own choice and ease. The general rules of
using automatic deployments are to make them easy for a team and to not use FTP.

The following is a general flowchart for a deployment setup:

As shown in the preceding flowchart, we have two servers: the staging or testing
the server and production server. On the staging server, we have an exact copy
of the website to test new features and others, and the production server has our
live website.

Now, we have a repository that has two main branches: the master branch and the
production branch. The master branch is used for development and testing purposes,
and the production branch is used for final production features. Note that the
production branch should only accept merging, and it should not accept commits
so that the production environment is completely safe.

Now, let's say that we want to add a customer registration feature to our application.
We will perform the following steps:

1. The first and most important thing to do is to create a new branch from the
production branch head. Let's name this branch customer-registration.

2. Now, add all the new features to this customer-registration branch and
while verifying on the local development server, merge this branch to the
local master branch.

3. After merging the new branch to the local master branch, push the master
branch to remote master branch. A successful push will cause the new
features to be moved to the staging server.

4. Now, test all the new features on the staging server.

Best Practices in PHP Programming

[140]

5. When everything works fine, merge the remote master branch with the
remote production branch. This will cause all the changes to be moved to
the production branch, and this merge will cause all the new changes to be
moved to the production server.

6. An ideal setup similar to the preceding one makes deployment very
easy, and a complete team can work on the application regardless of the
geographical location. In case any issue occurs during the deployment,
one can be easily fall back to the old version of the production branch.

Continuous Integration (CI) is a technique in which all the members of a team
have to integrate their code into a shared repository, and then each check by the
team member is verified by automatic builds to catch errors and problems in
the early stages.

There are several tools that are used for CI for PHP; some of these are PHPCI,
Jenkins, Travis CI, and others.

Summary
In this chapter, we discussed a few best practices, including coding standards and
styles, PHP frameworks, design patterns, Git, and deployment. Also, we discussed
the PHPUnit framework to test classes and libraries against tests. Also, we discussed
Service-oriented design, which plays a major role in creating APIs for applications.

In this book, we studied setting up development environments, including Linux
servers, specifically Debian and Ubuntu, and we also discussed Vagrant. The new
features of PHP are also listed with sample codes. You read in detail about the tools
that we can use to improve the performance of an application and a database. Also,
we discussed debugging and stress or load testing our applications and some best
practices of writing quality code.

We mostly summarized the tools and techniques with simple examples to introduce
the reader to these tools and techniques. There is a good chance that each tool and
technique has its own book written for a more advanced usage. We recommend you
follow up on these tools and techniques and conduct more research for their advance
usage. Good luck Php-ing!

[141]

Tools to Make Life Easy
We covered many things in this book, starting with new features in PHP 7
and ending with the best techniques in programming. In each chapter, we used
and talked about some tools, but due to the finite length of chapters and the book,
we did not go too much in detail for these tools. In this appendix, we will discuss
three of these tools in much more detail. The tools we will to discuss are as follows:

• Composer
• Git
• Grunt watch

So, let's start.

Composer – A dependency manager
for PHP
Composer is a dependency management tool for PHP that enables us to define
dependencies for a PHP application, and Composer installs/updates them. Composer
is completely written in PHP and is an application in the PHP Archive (PHAR) format.

Composer downloads dependencies from https://packagist.
org/. Any dependency for an application can be installed through
Composer as long as it is available on Packagist. Also, complete
applications can be installed through Composer if they are
available at Packagist.

https://packagist.org/
https://packagist.org/

Tools to Make Life Easy

[142]

Composer installation
Composer is a command line tool and can be installed globally in the operating
system, or the composer.phar file can be placed in the root of the application and
then executed from the command line. For Windows, an executable setup file is
provided, which can be used to install Composer globally. For this book, we will
follow the instructions for Debian/Ubuntu globally. Perform the following steps:

1. Issue the following command to download the Composer installer. The file
name is installer and can only be executed with PHP once installed via
the following code:
Wget https://getcomposer.org/installer

2. Issue the following command to install it globally on Debian or Ubuntu:
Php install --install-dir=/usr/local/bin --filename=composer

This command will download Composer and will install it in the /usr/
local/bin directory with the file name composer. Now, we will be able
to run Composer globally.

3. Verify the Composer installation by issuing the following command in
the terminal:
Composer --version

If the Composer version is displayed, then Composer is successfully
installed globally.

If Composer is installed locally to an application, then we will
have a composer.phar file. The commands are the same, but all
the commands should be executed with PHP. For example, php
composer.phar --version will display the Composer version.

Now, Composer is installed successfully and is working; it's time to use it.

Using Composer
To use Composer in our project, we will need a composer.json file. This file
contains all the dependencies required for the project and some other metadata.
Composer uses this file to install and update different libraries.

Appendix A

[143]

Let's assume that our application needs to log different information in different ways.
For this, we can use the monolog library. First, we will create a composer.json file in
the root of our application and add the following code to it:

{
 "require": {
 "monolog/monolog": "1.0.*"
 }
}

After saving the file, execute the following command to install the dependencies of
the application:

Composer install

This command will download the dependencies and place them in the vendor
directory, as can be seen in the following screenshot:

As can be seen in the preceding screenshot, monolog version 1.0.2 is downloaded,
and a vendor directory is created. The monolog library is placed in this directory.
Also, if a package has to autoload information, then Composer places the library in
the Composer autoloader, which is also placed in the vendor directory. So, any new
libraries or dependencies will be autoloaded automatically during the application's
execution.

Also a new file can be seen, which is composer.lock. When Composer downloads
and installs any dependencies, the exact version and other information is written to
this file to lock the application to this specific version of dependencies. This ensures
that all the team members or whoever wants to set up the application will use the
exact same version of the dependencies, and thus, it will reduce the chances of using
different versions of dependencies.

Tools to Make Life Easy

[144]

Nowadays, Composer is widely used for package management. Big open source
projects such as Magento, Zend Framework, Laravel, Yii, and many others are easily
available for installation through Composer. We will install some of these in the next
appendix using Composer.

Git – A version control system
Git is the most widely used version control system. According to the Git official
website, it is a distributed version control system capable of handling everything
from small- to large-sized projects with speed and efficiency.

Git installation
Git is available for all major operating systems. For Windows, an executable setup
file is provided that can be used to install Git and use it in the command line. On OS
X, Git comes already installed, but if it is not found, it can be downloaded from their
official website. To install Git on Debian/Ubuntu, just issue the following command
in the terminal:

sudo apt-get install git

After installation, issue the following command to check whether it is
properly installed:

git –version

Then, we will see the current installed version of Git.

Using Git
For a better understanding of Git, we will start with a test project. Our test project
name is packt-git. For this project, we also created a GitHub repository named
packt-git, where will push our project files.

First, we will initialize Git in our project by issuing the following command:

git init

The preceding command will initialize an empty Git repository in our project root
directory, and the head will be kept on the master branch, which is the default
branch for every Git repository. It will create a hidden .git directory that will
contain all the information about the repository. Next, we will add a remote
repository that we will create on GitHub. I created a test repository at GitHub
that has the URL https://github.com/altafhussain10/packt-git.git.

https://github.com/altafhussain10/packt-git.git

Appendix A

[145]

Now, issue the following command to add the GitHub repository to our
empty repository:

git remote add origion https://github.com/altafhussain10/packt-git.git

Now, create a README.md file at your project root and add some content to it. The
README.md file is used to display the repository information and other details about
the repository at Git. This file is also used to display instructions regarding how to
use the repository and/or the project for which this repository is created.

Now, issue the following command to see the status of our Git repository:

git status

This command will display the status of the repository, as can be seen in the
following screenshot:

As can be seen in the preceding screenshot, we have an untracked file in our
repository that is not committed yet. First, we will add the files to be tracked
by issuing the following command in the terminal:

git add README.md

The git add command updates the index using the current contents found in the
working tree. This command adds all the changes made to the path. There are some
options that can be used to add some specific changes. The previous command we
used will only add the README.md file to the track in the repository. So, if we want
to track all the files, then we will use the following command:

git add

Tools to Make Life Easy

[146]

This will start tracking all the files in the current working directory or at the root of
the current branch. Now, if we want to track some specific files, such as all files with
the .php extension, then we can use it as follows:

git add '*.php

This will add all the files with the .php extension to track.

Next, we will commit changes or additions to our repository using the following
command:

git commit –m "Initial Commit"

The git commit command commits all the changes to the local repository.
The -m flag specifies any log message to commit. Remember that the changes
are only committed to the local repository.

Now, we will push the changes to our remote repository using the following
command:

git push –u origion master

The preceding command will push all the changes from the local repository to the
remote repository or origin. The -u flag is used to set the upstream, and it links our
local repo to our remote central repo. As we pushed our changes for the first time,
we have to use the -u option. After this, we can just use the following command:

git push

This will push all the changes to the main repository of the current branch at which
we are.

Creating new branches and merging
New branches are always required during development. If any kind of changes
are required, it is good to create a new branch for these changes. Then, make all the
changes on this branch and finally commit, merge, and push them to the remote origin.

To better understand this, let's suppose we want to fix an issue in the login page. The
issue is about validation errors. We will name our new branch login_validation_
errors_fix. It is good practice to give a more understandable name to branches.
Also, we would like to create this new branch from the master branch head. This
means that we want the new branch to inherit all the data from the master branch.
So, if we are not at the master branch, we have to use the following command to
switch to the master branch:

git checkout master

Appendix A

[147]

The preceding command will switch us to the master branch no matter which branch
we are at. To create the branch, issue the following command in the terminal:

git branch login_validation_errors_fix

Now, our new branch is created from the master branch head, so all the changes
should be made to this new branch. After all the changes and fixes are done, we have
to commit the changes to the local and remote repositories. Note that we did not
create the new branch in our remote repository. Now, let's commit the changes using
the following command:

git commit -a -m "Login validation errors fix"

Note that we did not use git add to add the changes or new additions. To
automatically commit our changes, we used the -a option in commit, which will
add all the files automatically. If git add is used, then there is no need to use the -a
option in commit. Now, our changes are committed to the local repository. We will
need to push the changes to the remote origin. Issue the following command in the
terminal:

git push -u origion login_validation_errors_fix

The preceding command will create a new branch at the remote repository, set the
tracking of the same local branch to the remote branch, and push all the changes to it.

Now, we want to merge the changes with our master branch. First, we need to
switch to our master branch using the following command:

git checkout master

Next, we will issue the following commands to merge our new branch login_
validation_errors_fix with the master branch:

git checkout master

git merge login_validation_errors_fix

git push

It is important to switch to the branch to which we want to merge our new branch.
After this, we need to use the git merge branch_to_merge syntax to merge this
branch with the current branch. Finally, we can just push to the remote origin. Now,
if we take a look at our remote repository, we will see the new branch and also the
changes in our master branch.

Tools to Make Life Easy

[148]

Cloning a repository
Sometimes, we need to work on a project that is hosted on a repository. For this,
we will first clone this repository, which will download the complete repository to
our local system, and then create a local repository for this remote repository. The
rest of the working is the same as we discussed before. To clone a repository, we
should first know the remote repository web address. Let's say that we want to clone
the PHPUnit repository. If we go to the GitHub repository for PHPUnit, we will
see the web address of the repository at the upper right-hand side, as shown in the
screenshot that follows:

The URL just after the HTTPS button is the web address for this repository.
Copy this URL and use the following command to clone this repository:

git clone https://github.com/sebastianbergmann/phpunit.git

This will start downloading the repository. After it is completed, we will have a
PHPUnit folder that will have the repository and all its files. Now, all the operations
mentioned in the preceding topics can be performed.

Webhooks
One of the most powerful features of Git is webhooks. Webhooks are events that
are fired when a specific action occurs on the repository. If an event or hook for
the Push request is made, then this hook will be fired every time a push is made
to this repository.

To add a webhook to a repository, click on the Settings link for the repository in
the upper right-hand side. In the new page, on the left-hand side, we will have
a Webhooks and Services link. Click on it, and we will see a page similar to
the following one:

Appendix A

[149]

As can be seen in the preceding screenshot, we have to enter a payload URL, which
will be called every time our selected event is fired. In Content type, we will select
the data format in which the payload will be sent to our URL. In the events section,
we can select whether we want only push events or all the events; we can select
multiple events for which we want this hook to be fired. After saving this hook,
it will be fired every time the selected event occurs.

Webhooks are mostly used for deployment. When the changes are pushed and if
there is a webhook for the push event, the specific URL is called. Then, this URL
executes some command to download the changes and processes them on the
local server and places them at the appropriate place. Also, webhooks are used
for continues integration and to deploy to cloud services.

Tools to Make Life Easy

[150]

Desktop tools to manage repositories
There are several tools that can be used to manage Git repositories. GitHub provides
its own tool called GitHub Desktop that can be used to manage GitHub repositories.
This can be used to create new repositories, see the history, and push, pull, and
clone repositories. It provides every feature that we can use in the command line.
The screenshot that follows shows our test packt-git repository:

GitHub Desktop can be downloaded from https://desktop.
github.com/ and is available for Mac and Windows only. Also,
GitHub Desktop can be only used with GitHub unless some hacks
are used to make it work with other repositories, such as GitLab
or Bitbucket.

Another powerful tool is SourceTree. SourceTree can be used with GitHub, GitLab,
and Bitbucket easily. It provides complete features to manage repositories, pull,
push, commit, merge, and other actions. SourceTree provides a very powerful and
beautiful graph tool for the branches and commits. The following is a screenshot
for SourceTree that is used to connect with our packt-git test repository:

https://desktop.github.com/
https://desktop.github.com/

Appendix A

[151]

Besides the previous two nice tools, every development IDE provides version control
systems with full support and also provides features such as different colors for
modified and newly added files.

Git is a powerful tool; it can't be covered in this appendix. There are
several books available, but Git Book is a very good place to start.
This can be downloaded in different formats from https://git-
scm.com/book/en/v2 or can be read online.

Grunt watch
We studied Grunt in Chapter 3, Improving PHP 7 Application Performance. We only
used it to merge CSS and JavaScript files and minify them. However, Grunt is not
used only for this purpose. It is a JavaScript task runner, which can run tasks either
by watching specific files for changes or by manually running tasks. We studied
how we can run tasks manually, so now we will study how to use grunt watch to
run specific tasks when some changes are made.

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2

Tools to Make Life Easy

[152]

Grunt watch is useful and saves a lot of time because it runs the specific tasks
automatically instead of running the tasks manually every time we change something.

Let's recall our examples from Chapter 3, Improving PHP 7 Application Performance.
We used Grunt to combine and compress CSS and JavaScript files. For this purpose,
we created four tasks. One task was combining all CSS files, the second task was
combining all JavaScript files, the third task was compressing the CSS files, and the
fourth task was compressing all JavaScript files. It will be very time consuming if we
run all these tasks manually every time we make some changes. Grunt provides a
feature called watch that watches different destinations for file changes, and if any
change occurs, it executes the tasks that are defined in the watch.

First, check whether the grunt watch module is installed or not. Check the
node_modules directory and see whether there is another directory with the name
grunt-contrib-watch. If this directory is there, then watch is already installed.
If the directory is not there, then just issue the following command in the terminal
at the project root directory where GruntFile.js is located:

npm install grunt-contrib-watch

The preceding command will install Grunt watch and the grunt-contrib-watch
directory will be available with the watch module.

Now, we will modify this GruntFile.js file to add the watch module, which will
monitor all the files in our defined directories, and if any changes occur, it will
run these tasks automatically. This will save a lot of time in manually executing
these tasks again and again. Look at the following code; the highlighted code is
the modified section:

module.exports = function(grunt) {
 /*Load the package.json file*/
 pkg: grunt.file.readJSON('package.json'),
 /*Define Tasks*/
 grunt.initConfig({
 concat: {
 css: {
 src: [
 'css/*' //Load all files in CSS folder
],
 dest: 'dest/combined.css' //Destination of the final combined
file.

 },//End of CSS
js: {
 src: [
 'js/*' //Load all files in js folder

Appendix A

[153]

],
 dest: 'dest/combined.js' //Destination of the final combined
file.

 }, //End of js

}, //End of concat
cssmin: {
 css: {
 src : 'dest/combined.css',
 dest : 'dest/combined.min.css'
}
}, //End of cssmin
uglify: {
 js: {
 files: {
 'dest/combined.min.js' : ['dest/combined.js']//destination
Path : [src path]
}
}
}, //End of uglify

//The watch starts here
watch: {
 mywatch: {
 files: ['css/*', 'js/*', 'dist/*'],
 tasks: ['concat', 'cssmin', 'uglify']
 },
},
}); //End of initConfig

grunt.loadNpmTasks('grunt-contrib-watch'); //Include watch module
grunt.loadNpmTasks('grunt-contrib-concat');
grunt.loadNpmTasks('grunt-contrib-uglify');
grunt.loadNpmTasks('grunt-contrib-cssmin');
grunt.registerTask('default', ['concat:css', 'concat:js',
'cssmin:css', 'uglify:js']);
}; //End of module.exports

In preceding highlighted code, we added a watch block. The mywatch title can be
any name. The files block is required, and it takes an array of the source paths.
The Grunt watch watches for changes in these destinations and executes the tasks
that are defined in the tasks block. Also, the tasks that are mentioned in the tasks
block are already created in GruntFile.js. Also, we have to load the watch module
using grunt.loadNpmTasks.

Tools to Make Life Easy

[154]

Now, open the terminal at the root of the project where GruntFile.js is located and
run the following command:

grunt watch

Grunt will start watching the source files for changes. Now, modify any file in the
paths defined in the files block in GruntFile.js and save the file. As soon as the
file is saved, the tasks will be executed and the output for the tasks will be displayed
in the terminal. A sample output can be seen in the following screenshot:

It is possible to watch as many tasks as required in the watch block, but these tasks
should be present in GruntFile.js.

Summary
In this appendix, we discussed Composer and how to use it to install and update
packages. Also, we discussed Git in detail, including pushing, pulling, committing,
creating branches, and merging different branches. Also, we discussed Git hooks.
Lastly, we discussed Grunt watch and created a watch that executed four tasks
whenever any changes occurred in the files paths defined in GruntFile.js.

[155]

MVC and Frameworks
We covered the names of some of the frameworks in different chapters, but we did
not discuss them. In today's world, we don't invent the wheel again; we build upon
the tools that are already built, tested, and widely used. So, as best practice, if there is
nothing available to fulfill the requirements, we can build it using a framework that
suits the requirements best.

We will cover the following topics:

• The MVC design pattern
• Laravel
• Lumen
• Apigility

MVC and Frameworks

[156]

The MVC design pattern
Model View Controller (MVC) is a design pattern widely used in different
programming languages. Most PHP frameworks use this design pattern. This pattern
divides the application into three layers: Model, View, and Controller. Each one of
these has separate tasks, and they are all interconnected. There are different visual
representations for MVC, but an overall and simple representation can be seen in the
following diagram:

Now, let's discuss each part of the MVC design pattern.

Model
The model layer is the backbone of the application and handles the data logic. Mostly,
it is considered that model is responsible for CRUD operations on a database, which
may or may not be true. As we mentioned previously, model is responsible for the
data logic, which means that data validation operations can also be performed here. In
simple words, models provide an abstraction for the data. The remaining application
layers don't know or care how and from where the data comes or how an operation is
performed on data. It is the model's responsibility to take care of all data logic.

In today's complex framework structures, the overall MVC structure is changed,
and not only do models handle data operations, but also, every other application
logic is handled by models. The method followed is fat models and slim controllers,
which means keep all the application logic in models and the controllers as clean
as possible.

Appendix B

[157]

Views
Views are what is visible to end users. All data related to this user and public is
displayed in the views, so views can be called the visual representation of the
models. Views need data to display. It asks for some specific data or action from the
controller. Views do not know or want to know from where the controller gets this
data; it just asks the controller to get it. Controller knows who to ask for this specific
data and communicates with the specific model. It means that views do not have
any direct link to models. However, in the earlier diagram, we linked model to view
directly. This is because in the advanced systems nowadays, views can directly take
data from models. For example, Magento controllers can't send data back to views.
For the data (that is, to get data directly from the database) and/or to communicate
with models, views communicate with blocks and helper classes. In modern
practices, views can be connected to models directly.

Controllers
Controllers respond to actions performed by a user in the views and respond to
the view. For example, a user fills a form and submits it. Here, the controller comes
in the middle and starts taking action on the submission of the form. Now, the
controller will first check whether the user is allowed to make this request or not.
Then, the controller will take the appropriate action, such as communicating with
the model or any other operation. In a simple analogy, the controller is the middle
man between views and models. As we mentioned before in the models section,
controllers should be slim. So, mostly, controllers are only used to handle the
requests and communicate with models and views. All kinds of data operations
are performed in models.

The MVC design pattern's sole job is to separate the responsibilities of different parts
in an application. So, models are used to manage the application data. Controllers
are used to take actions on user inputs, and views are responsible for the visual
representation of data. As we mentioned before, MVC separates the responsibilities
of each part, so it does not matter whether it accesses the model from controllers or
views; the only thing that matters is that views and controllers should not be used
to perform operations on data, as it is the model's responsibility, and controllers
should not be used to view any kind of data by the end user as this is the view's
responsibility.

MVC and Frameworks

[158]

Laravel
Laravel is one of the most popular PHP frameworks, and according to the
Laravel official website, it is a framework for Web Artisans. Laravel is beautiful,
powerful, and has tons of features that can enable developers to write efficient and
quality code. The Laravel official documentation is well written and very easy to
understand. So, let's play a little with Laravel.

Installation
Installation is very easy and simple. Let's use Composer to install Laravel.
We discussed Composer in Appendix A. Issue the following command in the
terminal to install and create a project in Laravel:

composer create-project --prefer-dist laravel/laravel packt

If Composer is not installed globally on the system, place composer.phar in a
directory where Laravel should be installed and issue the following command
in the terminal at the root of this directory:

php composer.phar create-project --prefer-dist laravel/laravel packt

Now, Laravel will be downloaded, and a new project with the name packt will
be created. Also, Composer will download and install all the dependencies for
the project.

Open the browser and head to the project's URL, and we will be welcomed with
a nice simple page saying Laravel 5.

As of the writing of this book, Laravel 5.2.29 is the latest version
available. However, if Composer is used, then every time the
composer update command is used, Laravel and all other
components will be automatically updated.

Features
Laravel provides tons of features, and we will only discuss a few here.

Appendix B

[159]

Routing
Laravel provides powerful routing. Routes can be grouped, and prefixes,
namespaces, and middleware can be defined for route groups. Also, Laravel
supports all HTTP methods, including POST, GET, DELETE, PUT, OPTIONS, and PATCH.
All the routes are defined in the routes.php file in the application's app folder. Take
a look at the following example:

Route::group(['prefix' => 'customer', 'namespace' => 'Customer',
 'middleware' => 'web'], function() {
 Route::get('/', 'CustomerController@index');
 Route::post('save', 'CustomerController@save');
 Route::delete('delete/{id}', 'CustomerController@delete');
});

In the preceding snippet, we created a new routes group. This will be only used
when the URL has a prefixed customer. For example, if a URL is similar to domain.
com/customer, this group will be used. We also used a customer namespace.
Namespacing allows us to use standard PHP namespaces and divide our files in
subfolders. In the preceding example, all customer controllers can be placed in the
Customer subfolder in the Controllers directory, and the controller will be created
as follows:

namespace App\Http\Controllers\Customer

use App\Http\{
Controllers\Controller,
Requests,
};
use Illuminate\Http\Request;

Class CustomerController extends Controller
{
 …
 …
}

So, namespacing a route group enables us to place our controller files in subfolders,
which are easy to manage. Also, we used the web middleware. Middleware provides
a way to filter the request before entering the application, which enables us to use it
to check whether a user is logged in or not, the CSRF protection, or whether there are
any other actions that can be performed in a middleware and need to be performed
before the request is sent to application. Laravel comes with a few middleware,
including web, api, auth, and so on.

MVC and Frameworks

[160]

If a route is defined as GET, no POST request can be sent to this route. It is very
convenient, which enables us to not worry about the request method filtering.
However, HTML forms do not support the HTTP methods like DELETE, PATCH,
and PUT. For this, Laravel provides method spoofing, in which a hidden form field
with name _method and the value of the HTTP method is used to make this request
possible. For example, in our routes group, to make the request possible to delete a
route, we need a form similar to the following:

<form action="/customer/delete" method="post">
 {{ method_field('DELETE') }}
 {{ csrf_field() }}
</form>

When the preceding form is submitted, it will work, and the delete route will be
used. Also, we created a CSRF hidden field, which is used for CSRF protection.

Laravel routing is very interesting, and it is a big topic. More in-depth
detail can be found at https://laravel.com/docs/5.2/routing.

Eloquent ORM
Eloquent ORM provides active records to interact with the database. To use Eloquent
ORM, we have to just extend our models from the Eloquent model. Let's have a look
at a simple user model, as follows:

namespace App;

use Illuminate\Database\Eloquent\Model;

class user extends Model
{
 //protected $table = 'customer';
 //protected $primaryKey = 'id_customer';
 …
 …
}

That's it; we have a model that can handle all the CRUD operations now. Note that
we commented the $table property and did the same for $primaryKey. This is
because Laravel uses a plural name of the class to look for the table unless the table is
defined with the protected $table property. In our case, Laravel will look for table
name users and use it. However, if we want to use a table named customers, we can
just uncomment the line, as follows:

protected $table = 'customers';

https://laravel.com/docs/5.2/routing

Appendix B

[161]

Similarly, Laravel thinks that a table will have a primary key with the column name
id. However, if another column is needed, we can override the default primary key,
as follows:

protected $primaryKey = 'id_customer';

Eloquent models also make it easy for timestamps. By default, if the table has
the created_at and updated_at fields, then these two dates will be generated
automatically and saved. If no timestamps are required, these can be disabled,
as follows:

protected $timestamps = false;

Saving data to the table is easy. The table columns are used as properties of the
models, so if our customer table has columns such as name, email, phone, and
so on, we can set them as follows in our customer controller, mentioned in the
routing section:

namespace App\Http\Controllers\Customer

use App\Http\{
Controllers\Controller,
Requests,
};
use Illuminate\Http\Request;
use App\Customer

Class CustomerController extends Controller
{
 public function save(Request $request)
 {
 $customer = new Customer();
 $customer->name = $request->name;
 $customer->email = $request->email;
 $customer->phone = $request->phone;

 $customer->save();

 }
}

MVC and Frameworks

[162]

In the preceding example, we added the save action to our controller. Now, if a POST
or GET request is made along the form data, Laravel assigns all the form-submitted
data to a Request object as properties with the same names as that of the form fields.
Then, using this request object, we can access all the data submitted by the form
either using POST or GET. After assigning all the data to model properties (the same
names as those of table columns), we can just call the save method. Now, our model
does not have any save method, but its parent class, which is the Eloquent model,
has this method defined. However, we can override this save method in our model
class in case we need some other features in this method.

Fetching data from the Eloquent model is also easy. Let's try an example. Add a new
action to the customer controller, as follows:

public function index()
{
 $customers = Customer::all();
}

We used the all() static method in the model, which is basically defined in the
Eloquent model, which, in turn, fetches all the data in our customers table. Now,
if we want to get a single customer by the primary key, we can use the find($id)
method, as follows:

$customer = Customer::find(3);

This will fetch the customer with the ID 3.

Updating is simple, and the same save() method is used, as shown here:

$customer = Customer::find(3);
$customer->name = 'Altaf Hussain';

$customer->save();

This will update the customer with the ID 3. First, we loaded the customer, then we
assigned new data to its properties, and then we called the same save() method.
Deleting the model is simple and easy and can be done as follows:

$customer = Customer::find(3);
$customer->delete();

We first loaded the customer with the ID 3, and then we called the delete method,
which will delete the customer with the ID 3.

Appendix B

[163]

Laravel's Eloquent models are very powerful and provide lots of features.
These are well explained in the documentation at https://laravel.
com/docs/5.2/eloquent. The Laravel database section is also worth
reading and can be found at https://laravel.com/docs/5.2/
database.

Artisan CLI
Artisan is the command-line interface provided with Laravel, and it has some nice
commands that can be used for quicker operations. It has lots of commands, and a
full list can be seen using the following command:

php artisan list

This will list all the options and commands available.

The php artisan command should be run in the same directory in
which the artisan file is located. It is placed at the root of the project.

Some of the basic commands are as follows:

• make:controller: This command creates a new controller in the
Controllers folder. The command can be used as follows:
php artisan make:controller MyController

If a namespaced controller is required, as it happened before with the
Customer namespace, it can be done as follows:
php artisan make:controller Customer/CustomerController

This command will create CustomerController in the Customer folder.
If the Customer folder is not available, it will create the folder as well.

• make:model: This creates a new model in the app folder. The syntax is the
same as the make:controller command, as follows:
php artisan make:model Customer

For the namespaced models, it can be used as follows:
php artisan make:model Customer/Customer

This will create the Customer model in the Customer folder and use the
Customer namespace for it.

https://laravel.com/docs/5.2/eloquent
https://laravel.com/docs/5.2/eloquent
https://laravel.com/docs/5.2/database
https://laravel.com/docs/5.2/database

MVC and Frameworks

[164]

• make:event: This creates a new event class in the Events folder. It can be
used as follows:
php artisan make:event MyEvent

• make:listener: This command creates a new listener for an event. This can
be used as follows:
php artisan make:listener MyListener --event MyEvent

The preceding command will create a new listener for our MyEvent event.
We have to always mention the event for which we need to create a listener
using the --event option.

• make:migration: This command creates a new migration in the database/
migrations folder.

• php artisan migrate: This runs all the available migrations that are not
executed.

• php artisan optimize: This command optimizes the framework for better
performance.

• php artisan down: This puts the application in maintenance mode.
• php artisan up: This command brings the application back live from the

maintenance mode.
• php artisan cache:clear: This command clears the application cache.
• php artisan db:seed: This command seeds the database with records.
• php artisan view:clear: This clears all the compiled view files.

More detail about the Artisan console or Artisan CLI can be found in the
documentation at https://laravel.com/docs/5.2/homestead.

Migrations
Migrations is another powerful feature in Laravel. In migrations, we define the
database schemas—whether it creates tables, removes tables, or adds/updates
columns in the tables. Migrations are very convenient in deployment and act as
version control for the database. Let's create a migration for our customer table
that is not available in the database yet. To create a migration, issue the following
command in the terminal:

php artisan make:migration create_custmer_table

https://laravel.com/docs/5.2/homestead

Appendix B

[165]

A new file in the database/migrations folder will be created with the filename
create_customer_table prefixed with the current date and a unique ID. The class
is created as CreateCustomerTable. This is a class as follows:

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateCustomerTable extends Migrations
{
 //Run the migrations

 public function up()
 {
 //schemas defined here
 }

 public function down()
 {
 //Reverse migrations
 }
}

The class will have two public methods: up() and down(). The up() method should
have all the new schemas for the table(s). The down() method is responsible for
reversing the executed migration. Now, lets add the customers table schema to
the up() method, as follows:

public function up()
{
 Schema::create('customers', function (Blueprint $table)
 {
 $table->increments('id', 11);
 $table->string('name', 250)
 $table->string('email', 50);
 $table->string('phone', 20);
 $table->timestamps();
 });
}
public function down()
{
 Schema::drop('customers');
}

MVC and Frameworks

[166]

In the up() method, we defined the schema and table name. Columns for the table
are individually defined, including the column size. The increments() method
defines the autoincrement column, which, in our case, is the id column. Next,
we created three string columns for name, email, and phone. Then, we used the
timestamps() method, which creates the created_at and updated_at timestamp
columns. In the down() method, we just used the drop() method of the Schema class
to drop out the customers table. Now, we need to run our migrations using the
following command:

php artisan migrate

The preceding command will not only run our migration but will also run all those
migrations that are not executed yet. When a migration is executed, Laravel stores
the migration name in a table called migrations, from where Laravel decides which
migrations it has to execute and which to skip.

Now, if we need to roll back the latest executed migration, we can use the following
command:

php artisan migrate:rollback

This will roll back to the last batch of migrations. To roll back all the migrations of
the application, we can use the reset command, as follows:

php artisan migrate:reset

This will roll back the complete application migrations.

Migrations make it easy for deployment because we won't need to upload the
database schemas every time we create some new changes in the tables or database.
We will just create the migrations and upload all the files, and after this, we will just
execute the migration command, and all the schemas will be updated.

Blade templates
Laravel comes with its own template language called Blade. Also, Blade template
files support plain PHP code. Blade template files are compiled to plain PHP files
and are cached until they are changed. Blade also supports layouts. For example,
the following is our master page layout in Blade, placed in the resources/views/
layout folder with the name master.blade.php. Take a look at the following code:

<!DOCTYPE html>
<html>
 <head>
 <title>@yield('title')</title>
 </head>

Appendix B

[167]

 <body>
 @section('sidebar')
 Our main sidebar
 @show

 <div class="contents">
 @yield('content')
 </div>
 </body>
</html>

In the preceding example, we had a section for the sidebar that defines a content
section. Also, we had @yield, which displays the contents of a section. Now, if we
want to use this layout, we will need to extend it in the child template files. Let's
create the customers.blade.php file in the resources/views/ folder and place
the following code in it:

@extend('layouts.master')
 @section('title', 'All Customers')
 @section('sidebar')
 This will be our side bar contents
 @endsection
 @section('contents')
 These will be our main contents of the page
 @endsection

As can be seen in the preceding code, we extended the master layout and then
placed contents in every section of the master layout. Also, it is possible to include
different templates in another template. For example, let's have two files, sidebar.
blade.php and menu.blade.php, in the resources/views/includes folder. Then,
we can include these files in any template, as follows:

@include(includes.menu)
@include(includes.sidebar)

We used @include to include a template. The dot (.) indicates a folder separation.
We can easily send data to Blade templates or views from our controllers or routers.
We have to just pass the data as an array to a view, as follows:

return view('customers', ['count => 5]);

Now, count is available in our customers view file and can be accessed as follows:

Total Number of Customers: {{ count }}

MVC and Frameworks

[168]

Yes, Blade uses double curly braces to echo a variable. For control structures and
loops, let's have another example. Let's send data to the customers view, as follows:

return view('customers', ['customers' => $allCustomers]);

Now, our customers view file will be similar to the following if we want to display
all the customers data:

…
…
@if (count($customers) > 0)
{{ count($customers) }} found.

@foreach ($customers as $customer)
{{ $customer->name }} {{ $customer->email }}
 {{ $customer->phone }}

@endforeach

@else
Now customers found.
@endif;
…
…

All the preceding syntax looks familiar as it is almost the same as plain PHP.
However, to display a variable, we have to use double curly braces {{}}.

A nice and easy-to-read documentation for Blade templates can be found
at https://laravel.com/docs/5.2/blade.

Other features
We only discussed a few basic features in the previous section. Laravel has tons of
other features, such as Authentication and Authorization, which provide an easy
way to authenticate and authorize users. Also, Laravel provides a powerful caching
system, which supports file-based cache, the Memcached, and Redis cache. Laravel
also provides events and listeners for these events, which is very convenient when
we want to perform a specific action and when a specific event occurs. Laravel
supports localization, which enables us to use localized contents and multiple
languages. Laravel also supports task scheduling and queues, in which we schedule
some tasks to run at a specific time and queue some tasks to be run when their
turn arrives.

https://laravel.com/docs/5.2/blade

Appendix B

[169]

Lumen
Lumen is a micro-framework provided by Laravel. Lumen is mainly intended to
create stateless APIs and has a minimal set of features of Laravel. Also, Lumen is
compatible with Laravel, which means that if we just copy our Lumen application to
Laravel, it will work fine. The installation is simple. Just use the following Composer
command to create a Lumen project, and it will download all the dependencies,
including Lumen:

composer create-project --prefer-dist laravel/lumen api

The preceding command will download Lumen and then create our API application.
After this, rename .env.example as .env. Also, create a 32-characters-long app
key and place it in the .env file. Now, the basic application is ready to use and
create APIs.

Lumen is almost the same as Laravel, but some Laravel features are not
included by default. More details can be found at https://lumen.
laravel.com/docs/5.2.

Apigility
Apigility is built and developed by Zend in Zend Framework 2. Apigility provides
an easy to use GUI to create and manage APIs. It is very easy to use and is capable of
creating complex APIs. Let's start by installing Apigility using Composer. Issue the
following command in the terminal:

composer create-project -sdev zfcampus/zf-apigility-skeleton packt

The preceding command will download Apigility and its dependencies, including
Zend Framework 2, and will set up our project named packt. Now, issue the
following command to enable the development mode so that we can have access
to the GUI:

php public/index.php development enable

https://lumen.laravel.com/docs/5.2
https://lumen.laravel.com/docs/5.2

MVC and Frameworks

[170]

Now, open the URL as yourdomain.com/packt/public, and we will see a beautiful
GUI, as shown in the following screenshot:

Now, let's create our first API. We will call this API "books", which will return a
list of books. Click on the New API button, as shown in the preceding picture, and
a popup will be displayed. In the text box, enter books as the API name and click
on Create button; the new API will be created. When the API is created, we will be
presented with the following screen:

Apigility provides easy ways to set other properties for the API, such as versioning
and authentication. Now, let's create an RPC service by clicking on the New Service
button in the left sidebar. Also, we can click on the Create a new one link in the RPC
section in the preceding screenshot. We will be presented with the following screen:

yourdomain.com/packt/public

Appendix B

[171]

As shown in the preceding screenshot, we created an RPC service named get in the
books API. The route URI entered is /books/get, which will be used to call this RPC
service. When we click on the Create service button, the API creation successful
message will be displayed, and also, the following screen will be displayed:

MVC and Frameworks

[172]

As can be seen in the preceding screenshot, the allowed HTTP method for this
service is only GET. Let's keep this as it is, but we can select all or any of them. Also,
we want to keep Content Negotiation Selector as Json, and our service will accept/
receive all the content in the JSON format. Also, we can select different media types
and content types.

Next, we should add some fields to our service that will be used. Click on the Fields
tab, and we will see the Fields screen. Click on the New Field button, and we will be
presented with the following popup:

As can be seen in the preceding screenshot, we can set all the properties for a field,
such as the Name, Description, whether it is required or not, and some other
settings, including an error message if the validation fails. After we created two
fields, title and author, we will have a screen similar to the following:

Appendix B

[173]

As can be seen in the preceding screen, we can add validators and filters to each
individual field too.

As this is just an introductory topic for Apigility, we will not cover
validators and filters and some other topics in this book.

The next topic is documentation. When we click on the Documentation tab, we will
see the following screen:

Here, we will document our service, add some description, and also can generate the
response body for documentation purposes. This is very important as it will enable
others to better understand our APIs and services.

MVC and Frameworks

[174]

Now, we need to get the all the books from somewhere. It can be either from the
database or from another service or any other source. However, for now, we will
just use an array of books for test purposes. If we click on the Source tab, we will
find that our code for the service is placed at module/books/src/books/V1/Rpc/
Get/GetController.php. Apigility created a module for our API books and then
placed all the source code in this module in different folders according to the version
of our API, which is V1 by default. We can add more versions, such as V2 and V3, to
our APIs. Now, if we open the GetController file, we will find some code and an
action called getAction according to our route URI. The code is as follows, and the
highlighted code is the one we added:

namespace books\V1\Rpc\Get;

use Zend\Mvc\Controller\AbstractActionController;
use ZF\ContentNegotiation\ViewModel;

class GetController extends AbstractActionController
{
 public function getAction()
 {
 $books = ['success' => [
 [
 'title' => 'PHP 7 High Performance',
 'author' => 'Altaf Hussain'
],
 [
 'title' => 'Magento 2',
 'author' => 'Packt Publisher'
],
]
];

 return new ViewModel($books);
 }
}

In the preceding code, we used ContentNegotiation\ViewModel, which is
responsible for responding with the data in the format that we selected in the service
setup, which is JSON in our case. Then, we created a simple $books array with
the fieldnames we created for the service and assigned our values to them. Then,
we returned them using the ViewModel object, which handles the response data
conversion to JSON.

Appendix B

[175]

Now, let's test our API. As our service can accept GET requests, we will just type our
URL in the browser with the books/get URI, and we will see the JSON response. It
is best to check the API with tools such as RestClient or Postman for Google Chrome,
which provides an easy-to-use interface to make different types of requests to APIs.
We tested it with Postman and got the response shown in the following screenshot:

Also note that we set our service to accept only GET requests. So, if we send a
request other than GET, we will get an HTTP Status code 405 methods not
allowed error.

Apigility is very powerful and provides tons of features, such as RESTFul APIs,
HTTP authentication, database connected services with easy-to-create DB connectors,
and a selection of tables for a service. While using Apigility, we need not worry
about the API, service structure security, and other things, as Apigility does this for
us. We need to only concentrate on the business logic of the APIs and services.

Apigility can't be covered completely in this Appendix. Apigility has lots
of features that can be covered in a complete book. Apigility's official
documentation at https://apigility.org/documentation is a
good place to get started and read more about this.

https://apigility.org/documentation

MVC and Frameworks

[176]

Summary
In this Appendix, we discussed the basics of the MVC design pattern. We also
discussed the Laravel framework and some of its good features. We introduced
you to the Laravel-based micro-framework, Lumen. At the end, we had a small
introduction to Apigility and created a test API and web service.

In IT, things get obsolete in a very short time span. It is always required to study
upgraded tools and find new ways and techniques for the best approaches in
programming. Therefore, one should not stop after completing this book and start
studying new topics and also the topics that are not covered completely in this
book. Until this point, you will have the knowledge that you can use to set up
high-performance environments for high-performance applications. We wish
you good luck and success in PHP-ing!

[177]

Index
A
anonymous classes 27-30
Apache 42
ApacheBench (ab) 120, 121
Apache JMeter

about 114-119
reference link 114

Apigility
about 169-175
reference link 175

Artisan CLI, Laravel
about 163
make:controller command 163
make:event command 164
make:listener command 164
make:migration command 164
make:model command 163
php artisan cache:clear command 164
php artisan db:seed command 164
php artisan down command 164
php artisan migrate command 164
php artisan optimize command 164
php artisan up command 164
php artisan view:clear command 164
reference link 164

B
base collectors 111
best practices, PHP Programming

coding styles 130
Continuous Integration (CI) 138
deployment 138
design patterns 136
Git 138

object-oriented 137
PHP frameworks 138
reusable feature 137
service-oriented architecture (SOA) 137
test-driven development (TDD) 133
version control system (VCS) 138

Blade templates, Laravel
about 166, 168
reference link 168

C
coding styles 130-132
Community Enterprise Operating System

(CentOS)
NGINX, installing 10
Percona Server, installing 13
PHP 7, installing 11, 12
setting up 9

Composer
about 141
dependencies, download link 141
installation 142
reference link 108
using 142, 143

Content Delivery Network (CDN)
about 52
features 52
reference links 53
using 52, 53

Continuous Integration (CI) 138-140
Create Read Update Delete (CRUD) 136
CSS and JavaScript optimization

about 54
Grunt 58-62
merging process 54

[178]

Minify 56-58
minifying process 54, 55

D
Debian

about 5
setting up 5

debugging
with Eclipse 102-105
with Sublime Text 98-102

deployment
about 139, 140
setup 139

design patterns 136
development environment

CentOS, setting up 9
Debian, setting up 5
Ubuntu, setting up 5
Vagrant, setting up 14
Windows, setting up 2

Drupal 8 127

E
Eclipse

used, for debugging 102-105
eloquent ORM, Laravel

about 160-162
reference link 163

F
FLUSHALL command 91
FLUSHDB command 91
full page caching 62

G
Git

about 138, 144
desktop tools, used for managing

repositories 150, 151
installation 144
new branches, creating 146, 147
new branches, merging 146, 147
reference link 138

repository, cloning 148
using 144-146
webhooks 148, 149

GitHub Desktop
download link 150

group use declaration
about 21-25
compound namespace declaration 26
mixed group use declarations 26
non mixed group use declarations 25

Grunt
about 58
reference link 62

Grunt watch 151-154
GZIP compression

about 46
in Apache 46, 47
in NGINX 47, 48

H
HAProxy

installation 68, 69
load balancing 68-72

Homestead Vagrant box
reference link 98

HTTP persistent connection
about 44
benefits 44, 45
GZIP compression 46
in Apache 45
in NGINX 46
PHP, using as separate service 48
unused modules, disabling 49
web server resources 51

HTTP server optimization
about 43
static files, caching 43

I
infrastructure

about 66, 67
database server 67
HAProxy, load balancing 68
load balancer (LB) 67, 68
web servers 67

[179]

InnoDB storage engine
features 77
innodb_buffer_pool_instances 77
innodb_buffer_pool_size 77
innodb_log_file_size 78

installation
Composer 142
Git 144
Percona Server 78, 79

J
Just In Time (JIT) 1

K
KEYS command 91

L
Laravel

about 158
Artisan 163
Artisan CLI 164
Blade templates 166-168
eloquent ORM 160-162
features 158, 168
installation 158
migrations 164, 166
reference link 160
routing 159

Lumen
about 169
reference link 169

M
Magento 2 125
Memcached

key-value cache store 95, 96
Minify

reference links 56
Model View Controller (MVC)

design pattern
about 156
controllers 157
model layer 156, 157

MyISAM storage engine
features 76

MySQL database
about 73
query caching 74, 75

MySQL performance monitoring tools
about 79
MySQL workbench 83
Percona Toolkit 84
phpMyAdmin 80-83

MySQL workbench 83

N
NGINX

about 41, 42
installing 10

NGINX Windows binaries
download link 2

null coalesce operator(??) 36

O
OOP features

about 18
anonymous classes 27-30
group use declaration 21
namespaces 21
old-style constructor deprecation 30, 31
throwable interface 32
type hints 18

operators, PHP
about 33
null coalesce operator(??) 35, 36
Spaceship operator (<=>) 33-35

P
packt-git

reference link 144
path converter library

download link 56
Percona Server

about 78
installing 13, 78, 79
reference link 78

[180]

Percona Toolkit
about 84
pt-duplicate-key-checker 85, 86
pt-query-digest 84
reference link 84

Percona XtraDB Cluster (PXC) 87-89
PHP 7

about 1, 17
installing 11, 12

PHP 7, features
about 38
constant arrays 38
filtered unserialize function 39
multiple default cases, in switch

statement 38
OOP features 18
operators 33
session_start function, options array 39
uniform variable syntax 37

PHP DebugBar
about 107-111
reference link 111

PHP Framework Interop Group (PHP-FIG)
about 130
reference link 130

PHP frameworks 138
phpMyAdmin 80-83
PHP next generation (PHPng) 1
PHPRedis

reference link 91
PHPUnit

reference link 133
PHP Windows binaries

download link 2
profiling

with Xdebug 106
PuPHPet

reference link 4
PuTTY

download link 15

Q
query caching

enabling 74, 75

R
real-world applications, load testing

about 124
Drupal 8 127
Magento 2 125
WordPress 4 126

Redis
about 89-91
connecting, with server 92
data, fetching 92, 93
data, storing 92, 93
features 94
installation link 89
management tools 94
reference link 89

Redis Desktop Manager (RDM) 94
Relational Database Management System

(RDMS) 73

S
SELECT command 91
service-oriented architecture (SOA) 137
session_start function 39
Siege

about 122-124
reference link 124

singleton pattern 136
Spaceship operator (<=>) 33-35

reference link 34
State Snapshot Transfer (SST) 88
static files

Apache configuration 43
caching 43
NGINX 43, 44

storage engines
about 75, 76
InnoDB storage engine 77
MyISAM storage engine 76
reference link 76

Sublime Text
used, for debugging 98-102

[181]

T
test-driven development (TDD) 133-135
throwable interface

about 32
error 32, 33

type hints
about 18
return type hints 19-21
scala type hints 18, 19

U
Ubuntu

about 5
setting up 5-9

Uncaught Type Error 19
uniform variable syntax

about 37, 38
null coalesce operator(??) 36-38

unserialize() function 39
unused modules

disabling 49
disabling, in Apache 49, 50
disabling, in NGINX 50

V
Vagrant

about 4
download link 14
setting up 14, 15

Varnish
about 63-65
reference link 65

version control system (VCS) 138

W
web server resources

about 51
in NGINX 51

Windows
setting up 2-4

WordPress 4 126

X
Xdebug

about 97, 98
used, for profiling 106, 107

Z
Zend Engine 1
Zend Framework 2 130

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up the Environment
	Setting up Windows
	Setting up Debian or Ubuntu
	Debian
	Ubuntu

	Setting up CentOS
	Installing NGINX
	Installing PHP 7
	Installing Percona Server

	Setting up Vagrant
	Summary

	Chapter 2: New Features in PHP 7
	OOP features
	Type hints
	Scalar type hints
	Return type hints

	Namespaces and group use declaration
	Non mixed group use declarations
	Mixed group use declarations
	The compound namespace declaration

	The anonymous classes
	Old-style constructor deprecation
	The throwable interface
	Error

	New operators
	The Spaceship operator (<=>)
	The null coalesce operator(??)

	Uniform variable syntax
	Miscellaneous features and changes
	Constant arrays
	Multiple default cases in the switch statement
	The options array for session_start function
	Filtered unserialize function

	Summary

	Chapter 3: Improving PHP 7 Application Performance
	NGINX and Apache
	Apache
	NGINX

	HTTP server optimization
	Caching static files
	Apache
	NGINX

	HTTP persistent connection
	Apache
	NGINX
	GZIP compression
	Apache
	NGINX

	Using PHP as a separate service
	Disabling unused modules
	Apache
	NGINX

	Web server resources
	NGINX

	Content Delivery Network (CDN)
	Using CDN

	CSS and JavaScript optimization
	Merging
	Minifying
	Minify
	GRUNT

	Full page caching
	Varnish
	The infrastructure
	Web servers
	The database server
	Load balancer (LB)
	HAProxy load balancing
	HAProxy installation
	HAProxy load balancing

	Summary

	Chapter 4: Improving Database Performance
	The MySQL database
	Query caching

	Storage engines
	The MyISAM storage engine
	The InnoDB storage engine
	innodb_buffer_pool_size
	innodb_buffer_pool_instances
	innodb_log_file_size

	The Percona Server - a fork of MySQL
	Installing the Percona Server

	MySQL performance monitoring tools
	phpMyAdmin
	The MySQL workbench
	Percona Toolkit
	pt-query-digest
	pt-duplicate-key-checker

	Percona XtraDB Cluster (PXC)
	Redis – the key-value cache store
	Connecting with the Redis server
	Storing and fetching data from the
Redis server
	Redis management tools

	Memcached key-value cache store
	Summary

	Chapter 5: Debugging and Profiling
	Xdebug
	Debugging with Sublime Text
	Debugging with Eclipse

	Profiling with Xdebug
	PHP DebugBar
	Summary

	Chapter 6: Stress/Load Testing PHP Applications
	Apache JMeter
	ApacheBench (ab)
	Siege
	Load testing real-world applications
	Magento 2
	WordPress 4
	Drupal 8

	Summary

	Chapter 7: Best Practices in PHP Programming
	Coding styles
	Test-driven development (TDD)
	Design patterns
	Service-oriented architecture (SOA)
	Being object-oriented and reusable always
	PHP frameworks
	Version control system (VCS) and Git
	Deployment and Continuous Integration (CI)
	Summary

	Appendix A: Tools to Make Life Easy
	Composer – A dependency manager
for PHP
	Composer installation
	Using Composer

	Git – A version control system
	Git installation
	Using Git
	Creating new branches and merging
	Cloning a repository
	Webhooks
	Desktop tools to manage repositories

	Grunt watch
	Summary

	Appendix B: MVC and Frameworks
	The MVC design pattern
	Model
	Views
	Controllers

	Laravel
	Installation
	Features
	Routing

	Eloquent ORM
	Artisan CLI
	Migrations
	Blade templates
	Other features

	Lumen
	Apigility
	Summary

	Index

